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Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.



VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),
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Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair



Preface

This volume contains the papers presented at ESOP 2012, the 21st European
Symposium on Programming, held March 26–28, 2012, in Tallinn, Estonia.

ESOP is an annual conference devoted to fundamental issues in the specifi-
cation, design, analysis, and implementation of programming languages and sys-
tems. ESOP 2012 was the 21st edition in the series. The Programme Committee
(PC) invited papers on all aspects of programming language research including:
programming paradigms and styles, methods and tools to write and specify pro-
grams and languages, methods and tools for reasoning about programs, methods
and tools for implementation, and concurrency and distribution.

Following previous editions, we maintained the page limit of 20 pages, and
a rebuttal process of 72 hours during which the authors could respond to the
reviews of their submissions. Like last year, PC submissions were not allowed.
We received 106 abstracts and in the end got 92 full submissions; four submis-
sions were withdrawn. The remaining 88 submissions were assigned to 3 to 4
PC members; eventually the PC selected 28 papers for publication. These pro-
ceedings consist of an invited paper by Bjarne Stroustrup and of the 28 selected
papers.

I would like to thank the PC and the subreviewers for their dedicated work
in the paper selection process, and all authors who submitted their work to the
conference. I would also like to thank the 2012 Organizing Committee, chaired
by Tarmo Uustalu, and the Steering Committee, chaired by Vladimiro Sassone,
for coordinating the organization of ETAPS 2012. Finally, I would like to thank
Andrei Voronkov, whose EasyChair system proved (once more) invaluable
throughout the whole process.

January 2012 Helmut Seidl
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Foundations of C++ 

Bjarne Stroustrup 

Texas A&M University 
bs@cs.tamu.edu 

Abstract. C++ is a large and complicated language. People get lost in details. 
However, to write good C++ you only need to understand a few fundamental 
techniques – the rest is indeed details. This paper presents fundamental exam-
ples and explains the principles behind them.  Among the issues touched upon 
are type safety, resource management, compile-time computation, error-
handling, concurrency, performance, object-oriented programming, and generic 
programming. The presentation relies on and introduces a few features from the 
recent ISO C++ standard, C++11, that simplify the discussion of C++  
fundamentals and modern style. 

Keywords: C++, programming style, fundamental techniques. 

1 Introduction 

A programming language – any programming language – has a few fundamental con-
structs, techniques, and underlying models. Understand those and you have a good 
idea of what can be expressed in the language, and how. In addition, most languages – 
and especially older languages that are maintained with a concern for compatibility – 
provides a host of “incidental” features that can distract from understanding and  
complicate use. Here, I will briefly present most of the key concepts of C++. Natural-
ly, my presentation will not be complete in either features offered or their details. 
That’s what textbooks and standards are for. So, with the caveat that there is always 
much more that could be said, here we go! 

C++ is defined by its ISO Standard [1]. A detailed description can be found in [2], 
a tutorial for beginners in [3], and a list of language and library features added for 
C++11 in [4]. 

I assume that you know about traditional naming and lexical scoping so I don’t 
waste time on such topics. Similarly, I assume that you are at least superficially  
acquainted with C/C++ syntax and linkage conventions. 
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2 Ideals 

The aim of C++ is to help in classical systems programming tasks. It supports the use 
of light-weight abstraction for resource-constrained and often mission-critical  
infrastructure applications. By “light-weight abstraction,” I mean abstractions that do 
not impose space or time overheads in excess of what would be imposed by careful 
hand coding of a particular example of the abstraction. The aim is to allow a  
programmer to work at the highest feasible level of abstraction by providing 

• A simple and direct mapping to hardware 
• Zero-overhead abstraction mechanisms 

The aim is to support a type-rich style of programming. In particular, C++ supports 
type-safe programming with a non-trivial set of types. 

Naturally, not every application meets these ideals. In particular, a programmer can 
choose to write a low-level-C style and/or violate every rule of good programming. 
That is not my topic here. 

3 Memory and Objects 

C++ maps directly onto hardware. Its basic types (such as, char, int, and double) 
map directly into memory entities (such as, bytes and words), most arithmetic and 
logical operations provided by processors are available for those types. Pointers, ar-
rays, and references directly reflect the addressing hardware. There is no “abstract”, 
“virtual” or mathematical model between the C++ programmer’s expressions and the 
machine’s facilities. Memory is seen as sequences of bytes. A typed object is given a 
location in memory (a sequence of bytes) and values are placed in such objects. Se-
quences of objects are dealt with as arrays, typically accessed through pointers hold-
ing machine addresses. Often, code manipulates sequence of objects defined by  
a pointer to the beginning of an array and a pointer to one-beyond-the-end of an  
array: 
 

 

 
 
 

pointer p:

array a:       

pointer q:
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That is, the array a can be seen as a half-open sequence of elements [p:q). The flex-
ibility of forming such addresses by the user and by code generators can be important. 

User-defined types are created by simple composition. Consider a simple type  
 
Point: 

class Point { int x; int y; /* … */ }; 

Point xy {1,2};   // named and scoped object 

Point* p = new Point{1,2}; // free store (dynamic, heap) object 

            
 

 
A Point is simply the concatenation of its data members, so the size of the Point 

xy is simply two times the size of an int. Named objects (of any built-in or  
user-defined type) are allocated statically or on the stack. Only if we explicitly allo-
cate an (unnamed) Point on the free store (the heap), as done for the Point pointed to 
by p, do we incur memory overhead (and allocation overhead). Such very simple  
user-defined types are critical to type-rich programming and very common 

Similarly, basic inheritance simply involves the concatenation of members of the 
base and derived classes: 

 
 

class X { int b; } 

class Y : public X { int d; }; 
 

       
 
 
 
 
 

1

2

xy:

1

2

Heap
info

  p:

b b

d

X:
Y:
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Only when we add virtual functions (C++’s variant of run-time dispatch supplying 
run-time polymorphism), do we need to add supporting data structures, and those are 
just tables of functions: 

 
class Shape {    // a base class; an interface 

public: 
 virtual void draw() = 0; 
 virtual Point center() const = 0; 
 // … 
}; 
 
Class Circle : public Shape {  // a derived class 
 Point c; 
 double radius; 
public: 
 void draw() { /* draw the circle */ } 
 Point center() const { return c; } 
 // … 
}; 
 
Shape* p = new Circle{Point{1,2},3.4}; 

 

         
 
 

What you see is what you get. For more details see [5]. In general, C++ implementa-
tions obey the zero-overhead principle: What you don’t use, you don’t pay for [6]. 
And further: What you do use, you couldn’t hand code any better. 

 
 

Heap
info 

vptr

{1,2}

 

draw

center

Circle’s 
draw()

Circle’s 
center()

vtbl:

p:
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Please note that not every language provides such simple mappings to hardware 
and obeys these simple rules. Consider the C++ layout of an array of objects of a 
user-defined type: 

 

class complex { double re, im; /* … */ }; 
complex a[ ] = { {1,2}, {3,4} }; 
 

                          
 

The likely size is 4*sizeof(double) which is likely to be 8 words (assuming a 32-bit 
word). Compare this with a more typical layout from a “pure object-oriented lan-
guage” where each user-defined object is allocated separately on the heap and ac-
cessed through a reference: 

 

Here, 3*sizeof(reference)+3*sizeof(heap_overhead)+4*sizeof(double) is the likely 
size. Assuming a reference to be one word and the heap overhead to be two words, we 
get a likely size of 19 words to compare to C++’s 8 words. This memory overhead 
comes with a run-time overhead from allocation and indirect access to  
elements. That indirect access to memory typically causes problems with cache  
utilization and limits ROMability. 

Memory is turned into an object containing a value of some type by a constructor 
[6,7]. This operation is reversed by a destructor: after a destructor is run the object no 
longer exist and its former location is simply memory again. The meaning of con-
structors and destructors for built-in types and simple aggregates are language  
defined. For more complex types, the programmer can define constructors and de-
structors. 

 

 
 

1a: 432

References:

Reference:

21 43

Memory (bits) Memory (bits)

Object

(containing a value)
constructor destructor
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4 Compile-Time Computation 

Sometimes, we prefer a computation be done at compile-time. The reasons vary, for 
example: 
 

• Efficiency: To pre-calculate a value (often a size). For simple cases, that is done by 
an optimizer. Examples include object and array sizes and table values. 

• Type-safety: To compute a type at compile time.  

• Simplify concurrency: you can’t have a race condition on a constant. 

In C++11, we can do type-rich computation at compile time. Consider a simple  
distance calculation: 

 
constexpr double d = dist(NewYork,Boston); 

 
Here, I assume that the city names are 2D grid points and that dist() computes the 
distance between them. The constexpr keyword is C++’s way of requesting compile-
time evaluation. The code doing the calculation might look like this: 

 

struct City { double  x, y }; 

constexpr double csqrt(double) { /* calculate square root */ } 

constexpr double square(double d) { return d*d; } 

constexpr double dist(City c1, City c2) 

 { return csqrt(square(abs(c1.x-c2.x))+square(abs(c1.y-c2.y))); } 

 

I had to define my own csqrt() because the standard library sqrt() isn’t designed to 
work at compile time; constexpr is C++’s way of requiring that a function is  
executable at compile-time. If I wanted to, I could add unit checking [8,9]: 

 

constexpr Distance d = dist_in_km(NewYork,Boston); 

 
Various forms of user-specified compile-time computation are essential in critical 
embedded systems applications, much low-level code, and many high-end numerical 
applications. 
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5 Error Handling 

Errors that cannot be handled locally are reported by throwing an exception. An 
exception is a value of some type, usually a user-defined type. Code that is interested 
in handling a type of exception provides a handler (catch-clause) for it. For  
example: 
 

 
void do_task(int i) 
{ 
 if (i==0) throw std::runtime_error{"do_task() of zero"}; 
 if (i<0) throw Bad_arg{i}; 
 // do the task and return normally 
} 
 
 
void task_master(int i) 
{ 
 try { 
  do_task(i); 
  // … 
 } 
 catch (Bad_arg a) { 
  cout << "do_task() of negative" << a.val << "\n"; 
 } 
} 
 
 

Code that cannot perform its required task throws an exception and that code that 
requests a task to be done provides a handler for the kinds of errors it is prepared 
to handle. If an exception that the requestor has not expressed interest in is thrown, 
the requestor itself fails.  

Exceptions can – and often do – carry information. A catch-clause is associated 
with a try-block. An exception propagated up the call stack until caught. An un-
caught exception causes program termination. A thread can transfer a thrown ex-
ception (that it is not willing to handle) to another (calling) thread. 

For hard-real-time programming (and only for that), this exception-based error 
handling must be abandoned for a lower-level error-handling style. The reason is 
that it is hard to provide good real-time guarantees for exception propagation. 
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6 Containers 

How do you store a lot of data? We place it in user-defined containers, such as vectors, 
lists, and maps. The archetypical C++ container is the vector. Here is a simple first  
Vector: 

 
template<typename T>  // T is the element type 
class Vector { 
public:  
    Vector(int  n);  // constructor: initialize to n  elements 
    Vector(initializer_list<T>) ; // constructor: initialize with element list 
    ~Vector();   // destructor: deallocate elements 
    int size() ;   // number of elements 
    T& operator[](int i);  // access the ith element 
    void push_back(const T& x); // add x as a new element at the end      
T* begin();   // fist element 
    T* end();   // one-beyond-last element 
private:  
    int sz;   // number of elements 

  T* elem;   // pointer to sz elements of type T 
}; 

 
T* means “pointer to T” and T& means “reference to T.” Given that declaration, we 
can allocate and manipulate elements of an arbitrary type, T: 

 
void f(Vector<string>& vs) 
{ 
      Vector<int> sizes; 
      for (auto  x : vs)  // loop through all elements of vs 
           sizes.push_back(x.size()); 
      if (0<vs.size()) 
           vs[0] = "Whatever!"; 
 // …  
} 
 

The range-for loop uses Vector’s begin() and end() members to determine its range. 
We might call f() like this: 

 
int main() 
{ 
      f({"Wheeler", "Wilkes", "Radcliffe", "Appleton","Rutherford"}); 
      Vector<string> places(10); 
      places[2] = "Cambridge"; 
      f(v); 
} 
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The declaration of Vector separates the class into two parts, the public interface and 
the private implementation (so far, just a representation). The implementation of the 
Vector consists of the definitions of the member functions. In particular, the construc-
tors and the destructor manage a Vector’s resource, its elements: 

 
 

template<typename T> 

Vector<T>::Vector(int n) // make a vector with n elements of default value 

   :sz(n) 

{ 

   if (sz<0) throw std::runtime_error{“negative Vector size”}; 

   elem = new T[sz]; // sz uninitialized memory slots 

   std::uninitialized_fill(elem,elem+sz,T{}); // initialize to default 
} 
 
 

The standard technique is to throw an exception if a constructor cannot establish its 
invariant. Here the invariant is that elem points to sz elements of type T allocated on 
the free store. The std:: is used to indicate facilities provided by the ISO C++  
standard library (so we don’t have to do it ourselves). A constructor handling {} lists 
is defined as taking an argument of the standard-library type initializer_list: 

 
 
template<typename T> 
Vector<T>::Vector(std::initializer_list<T> lst) // elemens from the list 
   :sz{lst.size()}, elem{new T[sz]} 
{ 
   std::uninitialized_copy(lst.begin(), lst.end(), elem); 
} 
 
 

The destructor releases resources acquired: 
 
template<typename T> 
Vector<T>::~Vector() 
{ 
    delete[] elem; 
} 
 

This Vector is pretty basic, but is illustrates several fundamental C++ techniques and 
their supporting language features. Containers and resource management are not built 
into the language or into a run-time support system. Instead, only the minimal  
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facilities for dealing with objects and fixed-sized sequences of objects in memory are 
“built-in.” Everything else is “user-defined” and often provided by libraries written in 
C++. The standard library vector, map, set, and list are examples of containers built 
using the techniques presented here: 
 

• classes for separating interfaces from implementations, 

• constructors for establishing invariants, including acquiring resources, 

• destructors for releasing resources, 

• templates for parameterizing types and algorithms with types 

• mapping of source language features to user-defined code specifying their mean-
ing, e.g. [] for subscripting, the for-loop, new/delete for construction/destruction 
on the free store, and the {} lists. 

• use of half-open sequences, e.g. [begin():end()), to define for-loops and general 
algorithms. 

• Use of standard-library facilities to simplify specification and implementation 

 
Importantly, this abstraction from “memory” to “containers of objects” carries no 
overheads beyond the code necessarily executed for memory management, initializa-
tion, and error checking. 

Note that 

• There is no data stored in a Vector object beyond the two named members 

• There is no requirement that the element type should be part of a hierarchy. The only 
requirements on a template argument are imposed by its use; this is “duck typing.” 

• The operations on a Vector are not required to be dynamically resolved (virtual). 
Simple operations, such as size() and [], are typically inlined. 

 
In other words, these language features and techniques (“abstraction mechanisms”) 
are light weight, aimed for use in demanding systems programming and infrastructure 
implementation tasks. I could, of course, have built a few key abstractions, such as 
vector and string, into the language. The reason not to do that is to allow the pro-
grammer to define a much larger and varied set of abstractions without losing the 
flexibility and efficiency needed for the most demanding systems programming  
tasks. 
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7 Copy and Move 

To complete a class, we have to consider if and how objects can be copied and moved 
around. As defined above, Vector cannot be copied: 

 
Vector capitals { “Helsinki”, “København”, “Riga”, ”Tallinn” }; 
Vector c2 = capitals; // error: no copy defined for Vector 
 

By default, you can copy only objects with “simple representations.” When I defined 
a destructor for Vector, I implied that I did not consider the representation Vector 
simple: the elem pointer represents ownership. Let us define copy: 

 
template<typename T> 
Vector<T>::Vector(const Vector& v) // copy constructor 
   : sz{v.sz}, elem{new T[v.sz]}  
{ 
   std::uninitialized_copy(v.begin(),v.end(), elem); 
} 
 

 
This defines copy initialization. In addition, we can define assignment of one Vector 
by another: 

 
template<typename T> 
Vector<T> Vector<T>::operator=(Vector<T>& v)   // copy assignment 
{ 
    Vector<T> tmp {v}; // copy v 
    delete[] elem; 
    elem = tmp.elem;  // “steal” tmp’s representation 
    tmp.elem = nullptr; 
    sz = tmp.elem; 
    tmp.sz = 0; 
    return *this; 
} 
 

I chose to have “copy” mean “copy all elements” because that is the intuitive meaning 
of assignment, fits best with classical mathematical notions, and is what the C++ 
standard provides for containers. 

Copying elements can be costly for large containers, so choosing copy semantics 
implies a logical or a performance problem. How do we get a Vector out of a func-
tion? Consider: 
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Vector<int*> find_all(Vector<int>& v, int val) 
// find all occurrences of val in v 

{ 
    Vector<int*> res; 
    for (int& x : v) 
        if (x==val) 
           res.push_back(&x); // add the address of the element to res 

      return res; 
} 
 

The member function push_back() is one of the most useful standard-library  
container functions. It adds an element to the end of a container, increasing the con-
tainer’s size by one. Here, I have omitted its definition here to avoid getting side 
tracked. The find_all algorithm can be use like this: 
 

void  test() 
{ 
    Vector<int> lst { 1,2,3,1,2,3,4,1,2,3,4,5 }; 
    for (int* p :  find_all(lst,3)) 
        cout << "address: " << p << ", value: " << *p << "\n"; 
 // … 
} 
 

This should work, and it does, but the cost involved in copying the elements out of 
find_all() can be significant. In particular, I might use something like find_all() to 
locate large numbers of elements in Vectors of millions of elements. This makes 
people search for alternatives to returning a container “by value,” such as passing a 
vector to be filled as an argument, returning a pointer to a result stored on the free 
store, or plugging in a garbage collector. These alternatives all have serious logical or 
performance problems. Fortunately, there is a much simpler and more general solu-
tion: Note that I didn’t want to copy anything; I just wanted to transfer (move) the 
result vector out of find_all(). We can define move operations in a way very similar 
to the way we define copy operations. Move operations “steal” the representation of 
an object, leaving behind an “empty” object: 

 
 
template<typename T> 
Vector<T>::Vector(const Vector&& v)   // move constructor 
    : sz{v.sz}, elem{v.elem}  // grab v’s elements 
{ 
    v.elem = nullptr;  // make v empty 
    v.sz = 0; 
} 
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template<typename T> 

Vector<T> Vector<T>::operator=(Vector<T>&& v) // move assignment 

{ 

    delete[] elem; // delete old elements 

    elem = v.elem; // grab v’s elements 

    sz = v.sz; 

    v.elem = nullptr; // make v empty 

    v.sz = 0; 

    return *this; 

} 
 
The && means “rvalue reference” and the effect is that only rvalues can be used as 
arguments to move operations. Rvalues are objects that will not be used again, such as 
a local variable used as the return value. 

By using the move constructor rather than the copy constructor to return the value 
from find_all(), that return is efficient even if the returned Vector happens to have a 
million elements. 

For this to work, we have to declare the copy and move operations in the definition 
of Vector: 

 

template<typename T> // T is the element type 

class Vector { 

public:  

     // … 

     Vector(const Vector&);   // copy constructor 

     Vector(Vector&&);   // move constructor 

     Vector& operator=(const Vector&);  // copy assignment 

     Vector& operator=(Vector&&);  // move assignment 

     // … 

}; 
 
 
If a class provides both move and copy operations, move is preferred for rvalues and 
copy for lvalues [10]. All the standard library containers, including vector and string, 
have both copy and move operations. This implies that for real program, all the mod-
erately clever and complicated code in the last two sections have already been done 
for the programmer. What is left is the much simpler use of vector, etc. 
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8 RAII 

Systems manipulate resources. We must manage many kinds of resources, such as 
files, sockets, locks, threads, and database transactions. A resource is anything that a 
program acquires from another part of the system and must (explicitly or implicitly) 
release back to its owner after use. An unused and unreleased resource is called a 
leak. Memory is an important example of a resource. If resources are not properly 
released, the system’s performance will suffer and eventually a long-running system 
will fail for lack of usable memory. How do we prevent resource leaks? 

The constructor/destructor technique used for Vector generalizes to any scoped use 
of a resource and the move technique handles transfers of ownership between scopes. 
The key idea is that a resource is always owned by a local (scoped) object. Such a 
local object is sometimes called a resource handle (e.g. file handle), an owner, or 
simply an interface (e.g., a Vector is the interface to its elements). The handle’s con-
structor acquires the resource and the handle’s destructor releases it. Consider a  
standard-library lock used to ensure exclusive access to some shared data: 

 
std::mutex m; // a system resource 
int sh;  // shared data 
 
void f() 
{ 
    // … 
    std::unique_lock lck(m); // grab (acquire) the mutex 
    sh+=1;   // manipulate shared data 
}     // implicitly release the mutex 

 
This technique is usually called RAII (“Resource Acquisition Is Initialization”) and is 
widely used in modern C++. 

Looking at a simple example, it is tempting to think that a pair of lock()/unlock() 
functions would be as good or better than using an object of the manager type 
unique_lock. In practice, it is not so. A handler has a destructor, so you cannot forget the 
release operation. But how could anyone forget something as simple as and unlock()? Or 
forget an fclose(), a free(), or a delete? Well, people do, so resource leaks in  
undisciplined code are common (in any language). There are several reasons, including: 

• Often, a resource doesn’t look like a resource. For example, a File* is just a pointer 
to the compiler and a casual reader and nothing (except the manual) says that 
fclose() must be called to avoid the leak of a file handle. 

• Often, several resources need to be acquired and their patterns of acquisition and 
release vary. 

• Error handling typically requires that a resource is released only if acquired and 
that related resources are released in some specific order. 

• Complex control structures (especially when several functions are involved) ob-
scure acquisition and release patterns. 
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Consider a simple example: 
 
 

// unsafe, naïve use: 

void f(const char* p) 

{ 

    FILE* f = fopen(p,"r"); // acquire 

    // use f 

    fclose(f);   // release 

} 
 

 
This seems innocent enough, but if the “use f” code contains a return statement, a  
C-style longjmp(), or an exception throw, we never get to the fclose() and we have a 
leak. This can easily happen if the “use f” code is long or complicated. People often 
try to compensate with code that catches exceptions: 

 

 

// naïve fix: 

void f(const char* p) 

{ 

    FILE* f = 0; 

    try { 

 f = fopen(p, "r"); 

 // use f 

    } 

    catch (…) {  // handle every exception 

 if (f) fclose(f); 

 throw; // re-throw; let a caller handle this exception 

    } 

    if (f) fclose(f); 

} 
 
 

It is easy to devise a prettier syntax (e.g., Java’s finally), but the fundamental problem 
is that any variant of this technique requires the programmer’s attention in each place 
a resource is used. We may open files in dozens of places in a program and in each 
place the programmer has to remember that fopen() acquires a file, be prepared to 
deal with a failure, and remember to release it. Using return values to handle errors, 
rather than exceptions, doesn’t reduce the complexity. 
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The solution is to explicitly represent the file handle as a resource: 
 

 class File_handle { // belongs in some support library 
    FILE* p; 
 public: 
     File_handle(const char* pp, const char* r) 
  { p = fopen(pp,r); if (p==0) throw File_error{pp,r}; } 
     File_handle(const string& s, const char* r) 
  { p = fopen(s.c_str(),r); if (p==0) throw File_error{pp,r}; } 
 
       ~File_handle() { fclose(p); } // destructor: close file 
 
       // copy and/or move operations 
      // access functions 
 }; 
 

Now we can simplify the original code to: 
 

 void f(string s) 
 { 
    File_handle fh {s, "r"}; 
    // use fh 
 } 
 
The handle class, here File_handle, needs only be defined once and put in a library. 
For example, unique_lock, the handle for mutexes, is defined in the standard library. 

Using such handles, multiple resources are released in the reverse order of acquisi-
tion. That is almost always correct. Acquiring a few resources, but failing to acquire 
all that are needed is handled correctly without programmer intervention. That is cru-
cial for errors in constructors of complex data structures, such as objects from a com-
plex class hierarchy or elements of a container. 

Generally, a handle can be moved, but not copied, so move operations need to be 
provided. For example: 

 
class File_handle { // belongs in some support library 

    FILE* p; 
 public: 
     // … 
 
     // move operations: 
     File_handle(File_handle&& h) : p{h.p}  { h.p=nullptr; }  
     File_handle& operator=(File_handle&& h) { p=h.p;  h.p=nullptr; }  
 
     // access functions 
 }; 

Given that, we can pass a File_handle around (cheaply). 
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Memory is not the only resource, so a simply adding a garbage collector is not a 
solution, at least not a complete solution. 

 

9 Class Hierarchies 

C++ allows for the definition and use of class hierarchies. The scheme is fairly con-
ventional, but general. It allows for multiple inheritance both of interface classes (ab-
stract classes) and of classes with implementation. The layout of objects is minimal 
and obvious. The mechanism for virtual function calls is minimal, obvious, and runs 
in constant time. The resulting compactness, speed, and predictability are essential for 
many real-time uses. The (classical) Circle-and-Shape example from “Memory and 
Objects” is fairly typical. A class can be derived from another (as Circle was from 
Shape). The resulting class is called a derived class and – if publicly derived – is a 
subtype of the other class, called its base. 

The protection model is that 
 

• public members and bases of a class can be accessed by all 

• protected members and bases of a class can be accessed only by members of a 
derived class 

• private members and bases of a class can be accessed only by members of that 
class 

To avoid confusion and maintenance problems, I recommend using protected only 
for functions and bases. 

Abstract classes, like Shape, provide the most stable interfaces because they reveal 
very little about implementation details (such as object sizes), which are supplied in 
derived classes, such as Circle. 

C++ does not provide a universal base class. I consider such a class an unnecessary 
implementation-oriented artifact that imposes avoidable space and time overheads. 
Also, a universal “Object” base encourages underspecified (overly general) interfaces 
that let errors that could be detected at compile time through to run time. Typically, 
C++ uses parameterization where another language might use a common  
base class and require implicit or explicit type conversion to determine the exact  
derived class. 
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10 Algorithms 

A function template that implements an algorithm for a variety of types is conven-
tionally called an algorithm. The C++ standard library provides many algorithms, 
such as sort() and find(). For example: 

 
void f(vector<int>& v, list<string>& lst) 
{ 
   std::sort(v.begin(),v.end()); 
 
   // find “Aarhus” in lst: 
   auto p = std::find(lst.begin(),lst.end(),"Aarhus"); 
   if (p!=lst.end()) { // found: *p==“Aarhus” 
  // … 
   } 
   else {         // not found *p!=“Aarhus” 
         // … 
   } 
      // … 
} 

 
Standard-library algorithms, such as sort() and find(), take half-open sequences of 
elements, presented as a pair of iterators, as arguments. An iterator is something that 
points to an element of a sequence. To get to the next element of a sequence, we use 
++ and to access the element pointed to, we use *. 

Note that I did not name the type of p. Instead, I said auto, which gives a variable 
the type of its initializer. This is often a useful shorthand and can be a significant help 
in generic programming. Here, it saved me from typing list<string>::iterator. Inte-
restingly, auto is the oldest feature of C++11: I implemented it in 1983, but had to 
take it out for reasons of C compatibility. 

We could implement find like this: 
 
template<typename Iter, typename Value> 
Iter find(Iter first, Iter last, Value val) 
{ 
    while (first!=last && *first!=val) 

 ++first; 
    return first; 
} 

 
That is, find() compares val to each element in the sequence until it finds one that is 
equal. If you like the terse C-style syntax, you’ll find the body of find() beautiful. If 
not, you should still appreciate that find() works for a wide variety of data structures 
and a wide variety of element types with no overhead compared to hand-crafted code 
for a specific container and value pair. Returning the end of the sequence to indicate 
“not found” is a standard-library convention. 
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Algorithms are typically rendered much more useful by parameterizing them with 
operations. For example, find() would be much more useful if instead of simply find-
ing an element of a given value, it found an element that met some user-supplied cri-
terion. The “find” that does that is called find_if(). For example: 

 
void g(vector< string>& vs) 
{ 
   auto p = std::find_if(vs.begin(),vs.end(),Less_than{"Griffin"}); 
   if (p!=vs.end()) { // found: *p<”Griffin” 
        // … 
   } 
   else {  // not found *p>=”Griffin” 
 // … 
   } 
   // … 
} 

 
Less_than is a function object; that is, an object of type Less_than can be called like 
a function. We can define find_if() similarly to find(); we just replace the comparison 
with a call of the predicate: 

 
template<typename Iter, typename Value> 
Iter find_if(Iter first, Iter last, Predicate p) 
{ 
     while (first!=last && !p(*first)) 

 ++first; 
     return first; 
} 

 
That is, find_if calls the predicate for each element in the sequence. In our example, 
p(*first) means Less_than{"Griffin"}(*first) which in turn means *first<"Griffin", 
assuming that Less_than has an obvious definition, such as: 

 
struct Less_than { 
   String s; 
   Less_than(const string& ss) :s{ss} {} // the value to compare against 
   bool operator(const string& v) const { return v<s; } // the comparison 
}; 

 
The general function-object notation can be verbose, but we can let the language write 
the function object for us by using the lambda notation: 

 
auto p = std::find_if(vs.begin(),vs.end(), 

[](const string& v) { return v<"Griffin"; } ); 
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Function objects (incl. lambdas) are very efficient and general because they are easily 
inlined and can carry information. In particular, simple function objects tend to signif-
icantly outperform indirect calls to simple functions. They are the basic parameteriza-
tion mechanism of the standard library. 

If the sequence notation gets too cumbersome, we can define algorithms over con-
tainers. For example: 

 
namespace MySTL { 
 template<class C> 

void sort(C& c) { std::sort(c.begin(),c.end(); } 
// … 

 } 
 
Given that, I can write sort(v) for a container v, rather than sort(v.begin(),v.end()). 
Notation matters more than we usually like to believe. 

Templates are the language-technical basis for generic programming in C++. Simi-
larly, class hierarchies are the language-technical basis for Object-oriented program-
ming in C++. These two programming styles (“paradigms”, if you must) are not 
meant to be disjoint. Rather, they are meant to be used in combination. For example, 
vector<Shape*> is a container of a run-time polymorphic type. Any use will neces-
sarily involve both generic and object-oriented techniques. For example, consider this 
variant of the classical “draw all shapes example”: 

 
template<typename Cont> 
void draw_all(Cont& c) 
{ 
     for_each(c.begin(),c.end(), [](Shape* p) { p->draw(); } 
} 

 
Much of the distinction between object-oriented programming and generic program-
ming is an illusion based on a focus on language features and incomplete support for a 
synthesis of techniques. 

11 Type Functions 

Templates, as used to parameterize vector with its element type in “Containers,” can be 
seen as generators. A function template generates functions and a class template gene-
rates classes. Thus a template can be understood as a function from a set of arguments to 
a function or a type. For example, vector<T> is a function that produces a vector of Ts 
from the type T. The evaluation of such a type function is called template instantiation. 
Template instantiation is Turing complete [11]. Template arguments are typically types 
or integers. 

This view of templates as type functions gains great practical importance when ap-
plied to functions that associate properties to types. For example, elements in a con-
tainer have a type. We would like to name that type for every data structure we  
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consider a container, independently of whether its designer planned for that. For start-
ers, we can define a struct that defines a name value_type for every container that 
has a member type called value_type: 

 
template<typename Cont> 
struct container_traits { 
   using value_type = typename Cont::value_type; 
   // … 
}; 
  
 
template<typename T> 
using Value_type = typename container_traits<T>::value_type; 

 
For example, Value_type<std::vector<int>> is int. Given container_traits, we can 
define Value_type for types that do not have a member called value_type. For exam-
ple, for any pointer, T*, the value type is T: 

 
template<typename T> 
struct container_traits<T*> { 
   using value_type = T; 
   // … 
}; 

 
Technically, this is a specialization of container_traits for pointers. Specialization is 
the language-technical basis for template metaprogramming [12]. Now, Val-
ue_type<int*> is int. We have provided a type function Value_type that provides the 
type of a contained element for every data structure we consider a container. As a 
user, the implementation details are immaterial, and we can just write 

 Value_type<X> a; 

Traits are widely used in the implementation of the standard library.  
There is an obvious weakness in my description of container_traits: I said “a type 

that I consider a container” rather than precisely specifying the requirements for being 
a container. In other words, the arguments to a template are unconstrained and only 
their instantiations are type checked. This is “Duck tying” (“if it walks like a duck and 
quacks like a duck, it’s a duck”) and leads to late (link-time) type checking and ap-
pallingly poor error messages.  

Designing a system of requirements (called a concept in C++) is still a research 
topic. A concept design for C++0x [13] failed to meet the needs of C++’s large and 
diverse user community and concepts is an area of active research [14-17]. The de-
mands of compile-time efficiency (within a few percent of unconstrained templates), 
run-time efficiency (no slower than templates with unconstrained arguments), ease of 
use by non-experts, no verbosity, ability to handle type conversion, ability to interope-
rate with unconstrained templates, and ease of conversion of pre-concept C++ pro-
grams makes this a challenging task. 
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12 Concurrency 

C++ must support the forms of concurrency offered by the hardware and operating 
system on which it runs. Something else may make it a better platform for specific 
applications, but not supporting “the system’s” notion of concurrency would disquali-
fy C++ as a systems programming language. Consequently, ISO standard C++ sup-
ports a conventional threads-and-locks model of concurrency. I consider threads-and-
locks an unfortunate low-level view, but higher level concurrency models can be effi-
ciently built as libraries on top of what the standard offers. C++ provides support for 
lock-free programming for cases where you have to get really close to the hardware 
[18]. 

What the standard offers differs from earlier C and C++ thread implementations in 
being type safe. Consider a simple example of a function, f, and a function object, F, 
being run on separate threads: 

 
void f(vector<double>&); // function 
 
struct F {   // function object 
    vector<double>& v; 
    F(vector<double>& vv) :v{vv} { } 
    void operator()(); 
};  
 
void code(vector<double>& vec1, vector<double>& vec2) 
{ 
    std::thread t1 {f,vec1}; // f(vec1) 
    std::thread t2 {F{vec2}}; // F{vec2}()  
    t1.join(); 
    t2.join();  
    // use vec1 and vec2 
} 

 
For simplicity, I have assumed that f and F modify their arguments. Note how t1’s 
constructor takes the function to be called followed by its arguments. It will accept 
any function as long as its arguments type checks using what is called variadic tem-
plates. However, here the simplicity of the interface is more important than the  
implementation technology. 

I consider that style of concurrency clumsy, with endless opportunity for confusion 
and avoidable overheads. However, It does not require regression to type-unsafe the C-
style void** and macros common in older threads programming and is supported with a 
variety of synchronization mechanisms (e.g., mutexes, locks, condition variables). 
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In addition, the standard library supports futures to enable a style of concurrency 
without explicit use of threads and locks. For example: 

 

double comp(vector<double>& v)  // spawn many tasks 

{  

     auto b = v.begin(); 

     auto sz = v.size(); 

 

     auto f0 = std::async(std::accumulate, b, b+sz/4, 0.0); 

     auto f1 = std::async(std::accumulate, b+sz/4, b+sz/2, 0.0); 

     auto f2 = std::async(std::accumulate, b+sz/2, b+sz*3/4, 0.0); 

     auto f3 = std::async(std::accumulate, b+sz*3/4, v.end(), 0.0); 

 

     return f0.get()+f1.get()+f2.get()+f3.get(); 

} 
 
Here, the “thread launcher” std::async launches threads as needed to evaluate 
std::accumulate. Each call of async returns a handle, called a future, from which the 
result can be obtained by a call of get(). If a task launched by async hasn’t completed 
by the call of get(), the calling thread waits. This programming model is much cleaner 
than the more general threads-and-locks model for the independent tasks for which it 
is intended. 

13 Type Safety 

C++ is not guaranteed to be statically type safe. A language designed for general and 
performance critical systems programming with the ability to manipulate hardware 
cannot be.  It provides facilities for manipulating hardware at a low level that can 
easily be misused to break the type system. Examples are untagged unions, explicit 
type conversions (casts), arrays without (guaranteed) range checks, and the ability to 
deallocate a free store (heap) object while holding on to a pointer allowing for post-
allocation access. It would be nice to isolate the type violations in a few clearly  
delimited sections of code, but history precludes that. Don’t use these facilities out-
side the implementation of higher-level facilities (such as vector). The ISO C++ stan-
dard library contains a rich set of such abstractions (e.g., string, vector, map, set, and 
thread), so that you don’t have to define them yourself. 
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14 Challenges 

Obviously, C++ is not perfect. For the future, we face several challenges: 

• How to make programmers prefer modern C++ styles over low-level (C-style) 
code, which is far more error-prone and harder to maintain, yet no more efficient. 

• How to make C++ a better language given the Draconian constraints of C and C++ 
compatibility. 

• How to improve and complete the techniques and models (incompletely and  
imperfectly) embodied in C++. 

In particular, I would like to: 

• Close more type loopholes (in particular, find a way to prevent misuses of delete 
without spoiling RAII) 

• Simplify concurrent programming (in particular, provide some higher-level con-
currency models as libraries) 

• Simplify generic programming (in particular, introduce simple and effective con-
cepts) 

• Simplify programming using class hierarchies (in particular, eliminate use of the 
visitor pattern) 

• Provide better support for combinations of object-oriented and generic program-
ming styles. 

• Make exceptions usable for hard-real-time projects (that will most likely be a tool 
rather than a language change) 

• Find a good way of using multiple address spaces (as needed for distributed com-
puting); this would most likely involve defining a more general module mechanism 
that would also address dynamic linking, and more. 

• Provide many more domain-specific libraries 
• Develop a more precise and formal specification of C++ (e.g. see [19,8,7]) 

Inside C++ is a smaller, cleaner, and even more powerful language struggling to get 
out. And no, that language is not C, C#, D, Haskell, Java, ML, Lisp, Scala, Smalltalk, 
or whatever. Whatever that language is, it must be better than C++ at light-weight 
abstraction in even the most demanding infrastructure applications. 
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Abstract. We investigate the decidability of the state reachability problem in
finite-state programs running under weak memory models. In [3], we have shown
that this problem is decidable for TSO and its extension with the write-to-write
order relaxation, but beyond these models nothing is known to be decidable. More-
over, we have shown that relaxing the program order by allowing reads or writes
to overtake reads leads to undecidability. In this paper, we refine these results by
sharpening the (un)decidability frontiers on both sides. On the positive side, we
introduce a new memory model NSW (for non-speculative writes) that extends
TSO with the write-to-write relaxation, the read-to-read relaxation, and support
for partial fences. We present a backtrack-free operational model for NSW, and
prove that it does not allow causal cycles (thus barring pathological out-of-thin-air
effects). On the negative side, we show that adding the read-to-write relaxation to
TSO causes undecidability, and that adding non-atomic writes to NSW also causes
undecidability. Our results establish that NSW is the first known hardware-centric
memory model that is relaxed enough to permit both delayed execution of writes
and early execution of reads for which the reachability problem is decidable.

1 Introduction

The memory consistency model (or simply, the memory model) of a shared-memory
multiprocessor is a low-level programming abstraction that defines when and in what or-
der writes performed by one processor become visible to other processors. The simplest
memory model, sequential consistency [16], requires that the operations performed by
the processors should appear as if these operations are interleaved in a consistent global
order. Despite its simplicity and appeal, most contemporary hardware platforms support
weak (relaxed) memory models for performance reasons [2,13].

The effects of weak memory models can be counterintuitive and difficult to under-
stand even for very small programs. Not surprisingly, relaxed memory models are an ac-
tive research area today. Much progress has been made to aid programmers, in the form
of verification or model-checking algorithms [8,15,26,4], testing tools [11,18], analyses
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that check whether programs are exposed to specific relaxations [7,9,20], fence inser-
tion tools [14,15,17], verified compilation [10,24,23], and formal models that closely
approximate commercial multiprocessors [21,22,25].

Nevertheless, many foundational questions about weak memory models remain. For
instance, given a finite-state concurrent program under weak memory model, what is the
complexity of deciding if a particular erroneous state can be reached? What is the most
relaxed model for which the safety verification problem is decidable? Understanding
the answers to these questions is crucial for model checking safety properties of pro-
grams under a relaxed memory model and for checking if a program exhibits the same
behavior under different memory models.

w→ r (Write-to-read order). The effect of a write may be delayed past a subsequent read.
This relaxation enables the use of per-processor write buffers. Specifically, when execut-
ing a write, a processor may buffer the value to be written in its local buffer and continue
executing before the buffered value becomes globally visible.

w→ w (Write-to-write order). A processor may swap the order of two writes. For instance,
if using a write buffer as described above, writes may exit the buffer in a different order
than they entered.

r → r/w (Read-to-read/write order). A processor may change the order of a read and a
subsequent read or write. This enables out-of-order execution techniques that help to
hide latency of memory accesses. We further distinguish between r → r (read-to-read)
and r→ w (read-to-write) relaxations.

RLWE (Read local writes early). A processor may read its own writes even if they are not
globally visible yet (i.e. before the exit the buffer). For example, if a processor executes
a read from a location for which there are pending writes in the local buffer, it can imme-
diately forward the value of the last such write from the buffer to the read.

RRWE (Read remote writes early). A processor may read other processors’ writes even if
they are not globally visible yet. For example, a write in a local buffer may be directly
forwarded to some remote processors before it exits the buffer.

RWF (read-read and write-write fences). A processor may issue a read-read (write-write)
fence to prevent reordering of reads (writes) that precede the fence with reads (writes)
that succeed it.

Fig. 1. Definition Acronyms that represent relaxations/features, following the terminology in [2]

Memory Model Name Reach. Problem
{w→ r, RLWE} TSO decidable [3]
TSO∪{w→ w} - decidable [3]
TSO∪{w→ w, RWF} PSO decidable [new]
PSO∪{r→ r} NSW decidable [new]
TSO∪{r→ r/w} - undecidable [3]
TSO∪{r→ w} - undecidable [new]
NSW∪{RRWE} - undecidable [new]

Fig. 2. Summary of previously known and unknown
results about the decidability of the reachability
problem on weak memory models. The acronyms
are defined in Fig. 1.

In prior work [3], we have pre-
sented some early decidability results
for relaxed memory models. In this pa-
per, we refine these results with a pre-
cise study of relaxations that lead to
the undecidability of memory models.
Fig. 1 describes the relaxations stud-
ied in this paper and Fig. 2 summarizes
our results.

Our results show (perhaps surpris-
ingly) that relaxations that are com-
monly considered as counter-intuitive
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by programmers coincide with those that lead to undecidability. For instance, we show
that adding the read-to-write relaxation to TSO (total store order) results in an undecid-
able memory model. In such a relaxation, a processor eagerly makes a write visible to
other processors before a prior read has completed. Such speculative writes can result
in causal cycles, a well known memory model hazard [12,19]. On the other hand, a
memory model that avoids this relaxation but otherwise remains general by allowing
read-to-read, write-to-read, and write-to-write relaxations together with read-read and
write-write fences is actually decidable. We call this memory model NSW (non specu-
lative writes) and study its properties. Finally, we show that adding non-atomic writes
to NSW leads to undecidability. Such non-atomic writes can lead to counter-intuitive
IRIW (independent reads of independent writes) effects [6].

Along the same vein, we show that NSW, which is the most relaxed model known to
be decidable, exhibits the following desirable properties:

– NSW enables significant optimizations; specifically, (1) it permits a write to be
moved down (later) in the program execution past any other read or write (by de-
laying it in a buffer), and (2) it permits reads to be moved up (earlier) in the program
execution, before any read or write (even before a read on whose value it depends).

– The performance impact of prohibiting the read-to-write relaxation (which is the
only ordering relaxation remaining in NSW) can be ameliorated by write buffers:
even if we disallow writes to become visible to other processors (i.e. exit the write
buffer) before all preceding reads have completed, we may still allow writes to enter
into the buffer while older reads are still pending.

– Since NSW does not permit writes to become visible to other processors before all
older loads by the same processor have completed, causal cycles and out-of-thin-air
behaviors are impossible. We formalize and prove this fact in Section 3.6.

– In operational memory models, reordering of dependent memory accesses is usu-
ally modeled by nondeterministically guessing the read value and validating it later.
In some sense, such models are not very constructive as they may require backtrack-
ing if a guess can not be validated later on. We discovered a way to eliminate all
such guesses from our operational model for NSW, obtaining an alternative opera-
tional model that is backtrack-free (Section 5).

– The relaxations in NSW do not depend on any notion of data/control-dependencies.
Not only does this greatly simplify the formalism, but it also avoids subtle sound-
ness problems with compiler optimizations that may break dependencies [5].

To establish that the state reachability problem for NSW is decidable, we proceed in
two steps. First, we define an operational model for NSW where reads do not need to
be stored, but still allowing the precise simulation of all their possible reorderings due
to the read-to-read relaxation (section 5). The key idea for tackling this issue consists,
roughly speaking, in using a buffer storing the history of all the past memory states,
in addition to informations about the most recent value read by each process on each
variable. The whole model has actually three levels of buffers, each of them related
to one of the considered relaxations (write-to-write, write-to-read, and finally read-to-
read). We think that this step has its own interest from the point of view of modeling
and of understanding the effects of each of the considered relaxations, regardless from
the decidability issue. Then, in a second step (section 6), we prove that the defined
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operational model can be transformed, while preserving state reachability, into a system
that is monotonic w.r.t. a well quasi-ordering on the set of its configurations. This allows
to deduce that the model has a decidable state reachability problem, using [1]. Both
steps are nontrivial and are based on new and quite subtle constructions.

2 Preliminary Definitions and Notations

Let k ∈ N such that k ≥ 1. Then, we denote by [k] the set {1, . . . ,k}. Let Σ be a finite
alphabet. We denote by Σ∗ the set of all words over Σ, and by ε the empty word. The
length of a word w ∈ Σ∗ is denoted by length(w). (We assume that length(ε) = 0.) For
every i∈ [length(w)], let w(i) denote the symbol at position i in w. For a∈ Σ and w∈Σ∗,
we write a ∈ w if a appears in w, i.e., ∃i ∈ [length(w)] such that a = w(i).

Given a sub-alphabet Θ ⊆ Σ and a word u ∈ Σ∗, we denote by u|Θ the projection of
u over Θ, i.e., the word obtained from u by erasing all the symbols that are not in Θ.

Let k ≥ 1 be an integer and E be a set. Let e = (e1, . . . ,ek) ∈ Ek be a k-dim vector
over E . For every i ∈ [k], we use e[i] to denote the i-th component of e (i.e., e[i] = ei).
For every j ∈ [k] and e′ ∈ E , we denote by e[ j ← e′] the k-dim vector e′ over E defined
as follows: e′[ j] = e′ and e′[l] = e[l] for all l �= j.

Let E and F be two sets. We denote by [E → F ] the set of all mappings from E to
F . Assume that E is finite and that E = {e1, . . . ,ek} for some integer k ≥ 1. Then, we
sometimes identify a mapping g ∈ [E → F ] with a k-dim vector over F .

3 Weak Memory Models

3.1 Shared Memory Concurrent Systems

Let D be a finite data domain, and X = {x1, . . . ,xm} a finite set of variables valued in D.
Let M denote the set Dm, i.e., the set of all possible valuations of the variables in X .

For a given finite set of process identities I, let Ω(I,X ,D) be the set of operations of
the form: (1) “no operation”: nop, (2) read: r(i, j,d), (3) write: w(i, j,d), (4) atomic
read-write : arw(i, j,d,d′), (5) read fence: rfence(i), and (6) write fence: wfence(i),
where i ∈ I, j ∈ [m], and d,d′ ∈ D. Intuitively, r(i, j,d) (resp. w(i, j,d)) means that
process i reads (resp. writes) the data d from (resp. to) the variable x j. The semantics of
atomic read-writes and of read/write fences will be explained in section 3.2.

A concurrent system over D and X is a tuple N = (P1, . . . ,Pn) such that for every
i ∈ [n], Pi = (Pi,Δi) is a finite-state process where (1) Pi is a finite set of control states,
and (2) Δi ⊆ Pi×Ω({i},X ,D)×Pi is a finite set of labeled transitions.

Let P = P1× . . .×Pn. For convenience, we write p
op−−→i p′ instead of (p,op, p′) ∈ Δi,

for any p, p′ ∈ Pi and op ∈ Ω({i},X ,D). We denote by Ω(N) ⊆ Ω([n],X ,D) the set
of operations used in N . Given an operation ω = op(i, j,d) with op ∈ {r,w}, i ∈ [n],
j ∈ [m], and d ∈ D, let proc(ω) = i, var(ω) = j, and data(ω) = d.

3.2 Memory Models

The executions of a concurrent system are obtained by interleaving the operations
issued by its different processes. In the Sequential Consistency (SC) model, the order
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between operations of a same process is preserved. Relaxations of this program or-
der lead to the definition of various weak memory models. However, fences (i.e., bar-
riers) can be used to impose the serialization of some operations at some execution
points. An operation arw(i, j,d,d′) is equivalent to the atomic execution of the sequence
r(i, j,d);w(i, j,d′), with the additional assumption that this operation is never reordered
with any other operation of the same process. Therefore, this operation can emulate a
full fence, i.e., a fence such that any two operations by the same process occurring
before and after (in program order) the full fence cannot be swapped. The operation
wfence(i) (resp. rfence(i)) is a fence for writes (resp. reads) only, i.e., writes (resp.
reads) that occur before and after a write fence (resp. read fence) cannot be swapped.

3.3 A Semantics Based on Rewrite Rules

We consider memory models corresponding to a set of program order relaxations
defined by permutation rules between the operations. Given read/write operations
op1,op2 ∈ {w, r}, relaxing the op1 to op2 order consists in allowing that operations
of the class op2 are allowed to overtake operations of the class op1 in a computation,
provided that these operations are issued by the same process, and that they are acting
on different variables. This corresponds to defining a set of rewrite rules:

op1(i, j,d)op2(i,k,d
′) ↪→ op2(i,k,d

′)op1(i, j,d) (1)

for any i ∈ [n], j,k ∈ [m], j �= k, and d,d′ ∈ D.
In addition to permutations between reads and writes, we consider that reads and

write fences issued by the same process can always be swapped, and the same holds
concerning writes and read fences. Then, we consider the following set of rewrite rules
RWF defining the semantics of read/write fences: For any i ∈ [n], j ∈ [m], d ∈ D,

wfence(i)r(i, j,d) ↪→ r(i, j,d)wfence(i) (2)

r(i, j,d)wfence(i) ↪→ wfence(i)r(i, j,d)

rfence(i)w(i, j,d) ↪→ w(i, j,d)rfence(i)

w(i, j,d)rfence(i) ↪→ rfence(i)w(i, j,d)

We also consider the following set RLWE (Read Local Write Early) of rewrite rules:

w(i, j,d)r(i, j,d) ↪→ w(i, j,d) (3)

for any i ∈ [n], j ∈ [m], d ∈D. These rules say that a read that occurs after a write of the
same value on the same variable by the same process can be validated immediately.

Then, we consider that a memory model M is defined by the choice of a set of rewrite
rules defining the allowed relaxations of the program order. For instance, we define in
this framework the two well known models TSO and PSO as follows:

TSO = RWF∪RLWE∪{w→ r}
PSO = RWF∪RLWE∪{w→ r, w→ w}

Clearly, TSO can be simulated under PSO by inserting a wfence before each write
operation. Notice that using read fences in TSO and PSO is not relevant since reads
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cannot be swapped in these models. Similarly, using write fences in TSO is not relevant.
But the possibility of using write fences in PSO is important. Without write fences, it
is not possible to simulate TSO under PSO.

Given a process Pi of N , and two control states p, p′ ∈ Pi, a computation trace of
Pi from p to p′ is a finite sequence τ = ω0 · · ·ω�−1 ∈ Ω({i},X ,D)∗ such that there are
p0 · · · p� ∈ P∗

i such that p= p0, p′ = p�, and for every j ∈ {0, . . . , �−1}, (p j,ωi, p j+1)∈
Δi. The set of computation traces of Pi from p to p′ is denoted by T (Pi, p, p′).

Let R be a set of rewrite rules over traces defining a memory model M. Given a
rewrite rule ρ = α ↪→ β, where α,β ∈ Ω(N)∗, and a computation trace τ ∈ Ω(N)∗,
we define a rewriting relation ↪→ρ between traces as follows: τ ↪→ρ τ′ if τ = τ1ατ2

and τ′ = τ1βτ2 for some τ1,τ2 ∈ Ω(N)∗. As usual, ↪→∗
ρ denotes the reflexive-transitive

closure of ↪→ρ. These definitions are generalized in the obvious way to sets of rules
and sets of computation traces. Given a set of rewrite rules R, the closure of a set of
traces T , denoted by [T ]R, is the smallest set containing T and which is closed under
the application of the rules in R, i.e., [T ]R = {τ′ ∈ Ω(N)∗ : τ ∈ T ∧ τ ↪→∗

R τ′}.
Given two traces τ1 and τ2, the shuffle of the two traces is the set of traces ob-

tained by interleaving the elements of τ1 and τ2 while preserving the original order
between elements of each trace. Formally, the operator ‖ is defined inductively as fol-
lows: (1) ε‖τ = τ‖ε = τ, and (2) ω1τ1‖ω2τ2 = ω1(τ1‖ω2τ2)∪ω2(ω1τ1‖τ2) for every
ω1,ω2 ∈ Ω(N), and for every τ,τ1,τ2 ∈ Ω(N)∗. The definition can be extended in a
straightforward manner to a finite number of traces.

Given two vectors of control states p,p′ ∈ P, the set of computation traces in N from
p to p′ in the memory model M (defined by R), denoted by TM(N ,p,p′), is defined by

[T (P1,p[1],p′[1])]R ‖ . . . ‖ [T (Pn,p[n],p′[n])]R

We define a relation [ 〉 between memory states corresponding to the execution of oper-
ations in Ω(N). Given d,d′ ∈ M, we have, for every i ∈ [n] and for every j ∈ [m]:

– d[w(i, j,d)〉d′ if d′ = d[ j ← d],
– d[r(i, j,d)〉d′ if d[ j] = d and d = d′,
– d[arw(i, j,d,d′)〉d′ if d[ j] = d and d′ = d[ j ← d′],
– d[op〉d′ with op ∈ {nop,wfence(i), rfence(i)}, if d = d′.

We extend this definition to sequences of operations, and therefore to computation
traces. A state of N is a pair 〈p,d〉 where p ∈ P and d ∈ M. For a given memory
model M, we define a reachability relation ReachMN between states of N as follows. Let

s = 〈p,d〉 and s′ = 〈p′,d′〉 be two states of N . We consider that ReachMN(s,s′) holds if

there exists a trace τ ∈ TM(N ,p,p′) such that d[τ〉d′.

3.4 The State Reachability Problem

The state reachability problem for a memory model M consists in, given a concurrent
system N and two states s and s′ of N , checking whether ReachMN(s,s′) holds. We have:

Theorem 1 ([3]). The state reachability problem for TSO is decidable.



32 M.F. Atig et al.

We also proved in [3] the decidability of the state reachability problem for a model with
both w → w and w → r relaxations, but without considering write fences. Therefore,
the so-called PSO in [3] is incomparable with TSO (since write fences are necessary to
simulate TSO under that model), and is strictly less expressive (w.r.t. the set of compu-
tation traces) than the PSO as defined in this paper. We show also in [3] that the state
reachability problem is undecidable for the model where all four read/write relaxations
are considered. We prove, using a reduction of Post’s Correspondence Problem, the
following stronger result:

Theorem 2. The state reachability problem for TSO ∪{r→ w} is undecidable.

3.5 NSW: A Model with Non Speculative Writes

We have seen in Section 3.4 that including the r → w relaxation to TSO results in
a memory model with an undecidable state reachability problem. Motivated by this,
we introduce a memory model called NSW (for Non Speculative Writes) obtained by
discarding this relaxation, i.e., by considering the following set of rules:

NSW = RLWE∪RWF∪{w→ r, w→ w, r→ r}

Clearly, the NSW model subsumes TSO and PSO, and since it allows out-of-order reads,
it is actually a strictly more relaxed model than PSO. Notice that PSO can be simulated
under NSW by inserting a rfence after each read operation. We show later that the state
reachability problem problem for NSW is decidable. In the next section, we discuss
another desirable property of the NSW memory model.

3.6 Absence of Causality Cycles in NSW

Let po denote the program order relation corresponding to the order in which operations
of each thread are issued by the program. Then, one can define a dependency relation
between operations of a same process that reflects the data and control dependencies.
We adopt here a conservative definition by considering that all operations occurring
after a read operation, in the program order, are dependent from that read. Formally,
this corresponds to the following dependency relation.

dep= po∩ ({r}×{r,w,arw}) (4)

Second, we define a read-from relation, denoted rf, that associates with each read event
of the computation a write event such that w(i,k,d) →rf r( j,k,d) if the r( j,k,d) op-
eration issued by process P j takes the value d that has been written by the operation
w(i,k,d) issued by process Pi on the variable xk. Then, the causality relation corre-
sponding to the considered computation is defined by c = dep ∪ rf.

x = y = 0
P1 P2

(1) r(x,1) (3) r(y,1)
(2) w(y,1) (4) w(x,1)

x = y = 1

It can be seen that under the model SC ∪{r→w}, there are
programs having computations with a cyclic causality relation.
An example of such a program is given on the right. It is
clear that under the SC model, the four operations of this pro-
gram cannot belong to a same computation from x = y = 0 to
x= y= 1. However, using the r→w relaxation, it is possible by
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permuting (1) and (2), to execute the four operations in the following order
(2),(3),(4),(1). This computation contains the causality cycle: (2) →rf (3) →dep

(4)→rf (1)→dep (2). We prove that by discarding the r→ w relaxation, NSW avoids
causal cycles.

Theorem 3. Every computation of any concurrent system under the NSW model has
an acyclic causality relation.

Notice that since this theorem relies on the conservative definition of dependency
given above (4), it also holds for any refinement of the dependency relation.

4 An Operational Model for NSW

We provide an operational model for NSW where configurations are formed by a vector
of control states, one per process, a memory state giving the valuation of the shared
variables, and an event structure where pending operations, issued by the different pro-
cesses but not yet executed, are stored. This event structure defines a partial order be-
tween these operations reflecting the constraints imposed by the memory model on the
order of their execution. We start by defining the notion of event structure. Then, we
define a first operational model where the stored operations can be reads, writes, or
write fences. (Nop’s, atomic read-writes, and read fences do not need to be stored.)

4.1 Event Structures

Let E be an enumerable set of of events. An event structure over an alphabet Σ is a
tuple S = (E,�,λ) where E is a finite subset of E , �⊆ E ×E is a partial order over
E , and λ : E → Σ is a mapping associating with each event a symbol in Σ.

Given an event e ∈ E\E and a symbol a ∈ Σ, we denote by S� [e ← a] the structure
(E ∪{e},�,λ′) such that λ′(e) = a and λ′(e′) = λ(e′) for all e′ ∈ E . Given an event
e ∈ E , we denote by S� e the structure (E ′ = E \ {e},� |E ′ ,λ|E ′). Moreover, given
e,e′ ∈ E , we denote by S⊕ e � e′ the event structure (E,(� ∪{(e,e′)})∗,λ). These
notations can be generalized to sets (of events and transitions) in the obvious way.

Given a concurrent system N = (P1, . . . ,Pn), an event structure S over N is an event
structure over Ω(N). Given i ∈ [n] and j ∈ [m], let E(i, j) = {e ∈ E : ∃d ∈ D. ∃op ∈
{w, r}. λ(e) = op(i, j,d)}. An event structure over Ω(N) is well-formed if, for every i
and j, the relation � |E(i, j)

is a total order. We assume in the rest of the paper that all

event structures over N are well-formed. This condition corresponds to the fact that
read/write operations on the same variable should not be reordered.

Let Ê(i, j) = E(i, j) ∪ {e ∈ E : λ(e) = wfence(i)}. For every i ∈ [n] and j ∈ [m],
let RE(i, j) = {e ∈ E : ∃d ∈ D. λ(e) = r(i, j,d)}, and let WE(i, j) = {e ∈ E : ∃d ∈
D. λ(e) = w(i, j,d)}. For every e ∈ E , we use data(e) to denote data(λ(e)).

4.2 An Operational Model with Stored Reads

We associate with the concurrent system N a transition system (Conf N,⇒N) where
Conf N is a set of configurations, and ⇒N ⊆ Conf N ×Conf N is a transition relation
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between configurations. A configuration of N (an element of Conf N) is any triple
(p,d,S) where p ∈ P, d ∈ M, and S is an event structure over N . The transition re-
lation ⇒N is the smallest relation such that for every p,p′ ∈ P, for every d,d′ ∈ M,
and for every S = (E,�,λ), S ′ = (E ′,�′,λ′) two event structures over N , we have
(p,d,S)⇒N (p′,d′,S ′) if there is an i ∈ [n], and there are p, p′ ∈ Pi, such that p[i] = p,
p′ = p[i ← p′], and one of the following cases hold:

1. Nop: p nop−−−→i p′, d = d′, and S = S ′.

2. Write: p
w(i, j,d)−−−−−→i p′, d = d′, and ∃e ∈ E \E such that S ′ = ((S� [e ←w(i, j,d)])⊕

{e′ � e : e′ ∈ max(Ê(i, j))}.

3. RLWE: p
r(i, j,d)−−−−→i p′, d = d′, S ′ = S, WE(i, j) �= /0 with em = max(WE(i, j)), �e ∈

RE(i, j). em � e, and data(em) = d.

4. Read: p
r(i, j,d)−−−−→i p′, d = d′, either WE(i, j) = /0 or data(max(WE(i, j))) �= d, and

∃e, f ∈ E \E such that S ′= ((S� {[e ← r(i, j,d)], [ f ← wfence(i)]})⊕ ({e′ � e :
e′ ∈ max(E(i, j))}∪{e � f})).

5. ARW: p
arw(i, j,d,d′)−−−−−−−→i p′,

⋃m
�=1 Ê(i,�) = /0, d[ j] = d, d′ = d[ j ← d′], and S = S ′.

6. Read fence: p
rfence(i)−−−−−→i p′,

⋃m
j=1 RE(i, j) = /0, d = d′, and S= S ′.

7. Write fence: p
wfence(i)−−−−−−→i p′, d = d′, and ∃e ∈ E \ E such that S ′ = ((S� [e ←

wfence(i)])⊕{e′ � e : ∃k. 1 ≤ k ≤ m and e′ ∈ max(Ê(i,k))}).
8. Memory update: p = p′, and there is an event e such that e is a minimal of �,

λ(e) = w(i, j,d) for some d ∈ D, d′ = d[ j ← d], and S ′= S� e.
9. Read validation: p = p′, d′ = d, and there is an event e such that e is a minimal of

�, λ(e) = r(i, j,d), d[ j] = d, and S ′= S� e.
10. Write fence elimination: p = p′, d′ = d, and there is an event e such that e is a

minimal of �, λ(e) = wfence(i), and S ′= S� e.

Let us explain each case. A write operation w(i, j,d) is simply added to the structure
by introducing a new event e labelled with this operation, which is inserted after all
write fences issued by Pi as well as all the write/read operations of Pi on x j.

A read operation r(i, j,d) can be validated immediately (point 3) if S still contain a
write of Pi on x j (and there is no read of Pi on xi after this write), and the last of such
an operation writes precisely the value d on x j. Otherwise, (in point 4) a read operation
r(i, j,d) is simply added to the structure S after all reads/writes of Pi on x j. Notice, that
the event associated with this read operation is not ordered w.r.t. write fences that are
maximal in S (i.e., the read is allowed to overtake such write fences). Moreover, a new
write fence is inserted after the read. This ensures that, as long as this read has not been
validated, it cannot be overtaken by any write.

An atomic read-write operation, which acts as a fence on all operations of the process
Pi, can be executed only when all events before it have been executed. A read fence
issued by Pi is executed immediately (it is not stored in S) if there is no reads in S
issued by Pi. A write fence is inserted in S after all the events issued by Pi.

Writes are removed from S and used to update the main memory when these
operations correspond to minimal events of S. Similarly, reads are validated w.r.t. the
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main memory and removed from S if they correspond to minimal events. Finally, a
write fence can simply be removed from S when it becomes minimal.

Let S/0 denote the empty event structure. Then, we have:

Theorem 4. For every states s and s′, we have ReachNSW
N (s,s′) iff (s,S/0)⇒∗

N (s′,S/0).

5 From Event Structures to FIFO Buffers

We provide in this section a model for NSW using FIFO buffers where reads and fences
are never stored. We proceed in two steps. First, we provide an alternative operational
model for NSW where reads can be immediately validated using informations about the
sequence of states that the memory had in the past. The history of the memory states is
stored in an additional FIFO buffer. Then, we show that it is also possible to get rid of
wfences by converting event structures into two-level structures of write buffers.

5.1 Eliminating Reads from Event Structures

We present hereafter a new operational model where reads are validated using an ad-
ditional buffer storing memory states, called history buffer. The idea is the following.
Consider a read operation r(i, j,d) issued by process Pi that can be validated during a
computation from a write operation w(k, j,d) issued by process Pk. Then, if at the mo-
ment r(i, j,d) is issued w(k, j,d) has not yet been issued, it is actually possible for Pi to
wait until Pk producesw(k, j,d). The reason is that issuing w(k, j,d) by Pk can’t depend
from the actions of Pi after r(i, j,d), because otherwise, this would mean that there is a
read by Pk before w(k, j,d) which needs (i.e., is causally dependent from) a write of Pi

occurring after r(i, j,d). But this would imply the existence of a causality cycle, which
contradicts the fact that such cycle do not exist in NSW computations due to the fact that
writes cannot overtake reads (see Thm. 3). Therefore, it is always possible to consider
computations where reads are validated w.r.t. writes that have been issued in the past.
However, since some actions must exit the event structure of the system configuration
(due to fences), we need to maintain the history of all past memory states in a buffer.

Then, we use a buffer such that the last element represents actually the current state of
the memory, and where the other elements represent the precedent states of the memory
in the order they have been produced. Notice that a history buffer is never empty since
it must contain at least one element representing the state of the memory.

Now, since reads can be swapped, their validation can use writes that might be issued
in a different order. However, reads by the same process on a same variable must be
done in a coherent way, i.e., they should read from states occurring in the same order.
To ensure that, we introduce pointers π(i, j) on the history buffer defining for each
process Pi and each variable x j the oldest memory state that can be observed. Then, to
validate a read on x j by Pi, we should find a memory state that occurs after π(i, j) in
the buffer where x j has the right value. Actually, to simplify the construction, we allow
that a pointer can move in a nondeterministic way toward the tail of the buffer (i.e., the
most recent element). Then, to validate an operation r(i, j,d), we simply require that
the value of x j in the element pointed by π(i, j) is precisely d. Also, when a write event
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w(i, j,d) exits the event structure and is used to update the memory, the pointer π(i, j)
is moved to the last element of the history buffer (i.e., the current state of the memory)
since this is the only value of x j that is visible to Pi.

Notice that the relevant part of the history buffer at any moment is formed by the
elements between the last element (current state of the memory) and the oldest element
that is pointed by π.

To give the formal description of our model, we need to introduce some definitions
concerning buffers and their manipulation. An event structure (E,�,λ) is totally or-
dered when � is a total order. We use such structures to encode FIFO buffers. Given a
buffer B= (E,�,λ) over an alphabet Σ, and a symbol a∈ Σ, let add(B,a) be the buffer
(E ′,�′,λ′) such that (1) E ′=E∪{e} for some e∈E\E , (2) if E = /0 then �′= {(e,e)},
otherwise �′= (�∪{(max(E),e)})∗, and (3) λ′= λ∪ [e �→ a]. Then, if λ(min(B)) = a,
let remove(B,a) be the buffer (E ′,�′,λ′) such that (1) E ′ = E \ {min(E)}, (2) �′=�

|E ′ , and (3) λ′ = λ|E ′ . We also define the predicate Empty which is true when the buffer
has an empty set of events. When the buffer B is not empty, we denote by tail(B) (resp.
head(B)) the element λ(max(E)) (resp. λ(min(E))).

Given a concurrent system N , a history buffer of memory states is a tuple H = (E,�
,λ,π) where (E,�,λ) is a buffer over M (the set of all memory states) such that E �= /0,
and π : [n]× [m]→ E is a mapping associating with each process and each variable an
event in E . We say that a history buffer is unitary if H is reduced to a singleton (i.e.,
π(i, j) = max(E) for all i ∈ [n] and j ∈ [m]).

Then, we are ready to define the transition system of the new model. A configuration
is a tuple 〈p,S ,H 〉 where, as in the previous model p ∈ P is a vector of control states
of each of the processes and S is an event structure, and where H is a history buffer
over M. The new transition relation �N is the smallest relation s.t. for every p,p′ ∈ P,
S = (E,�,λ),S ′= (E ′,�′,λ′) two event structures over N , and H = (B,π) and H ′ =
(B′,π′) two history buffers over M, where B= (H,�H ,λH) and B′ = (H ′,�H′ ,λH′) are
two buffers over M, we have 〈p,S ,H〉�N 〈p′,S ′,H ′〉 if there is an i ∈ [n], and there
are p, p′ ∈ Pi, such that p[i] = p, p′ = p[i ← p′], and one of the following cases holds:

1. Nop: p nop−−−→i p′, S = S ′, and H = H ′.

2. Write: p
w(i, j,d)−−−−−→i p′, H =H ′, and ∃e∈E \E such that S ′= ((S� [e←w(i, j,d)])⊕

{e′ � e : e′ ∈ max(Ê(i, j))}.

3. Write fence: p
wfence(i)−−−−−−→i p′, H = H ′, and ∃e ∈ E\ E such that S ′= ((S� [e ←

wfence(i)])⊕{e′ � e : ∃k. 1 ≤ k ≤ m and e′ ∈ max(Ê(i,k))}).
4. RLWE: p

r(i, j,d)−−−−→i p′, S = S′, H = H ′, WE(i, j) �= /0, and data(max(WE(i, j))) = d.
5. Move pointer: p = p′, S = S′, B= B′, and ∃ j ∈ [m]. ∃e ∈ H. π(i, j) �H e and π′ =

π[(i, j)← e].

6. Read: p
r(i, j,d)−−−−→i p′, S = S′, H = H ′, WE(i, j) = /0, and ∃d ∈ M such that

λH(π(i, j)) = d and d[ j] = d.

7. Read fence: p
rfence(i)−−−−−→i p′, S= S′, H = H ′, and π(i, j) = max(H) for every j ∈ [m].

8. ARW: p
arw(i, j,d,d′)−−−−−−−→i p′, S= S′,

⋃m
�=1 Ê(i,�) = /0, π(i, �) = max(H) for every � ∈ [m],

there is a d = tail(B) such that d[ j] = d and B′ = add(B,d[ j ← d′]), and π′ =
π[(i, �)← max(H ′)]�∈[m].
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9. Memory update: p = p′, ∃e ∈ min(E) such that λ(e) = w(i, j,d) for some j ∈ [m]
and d ∈D, S ′= S�e, B′ = add(B,d) where d= tail(H)[ j ← d], and π′ = π[(i, j)←
max(H ′)].

10. Write fence elimination: p = p′, H = H ′, d′ = d, and ∃e ∈ min(E) such that λ(e) =
wfence(i), and S ′= S� e.

Theorem 5. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′

be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
(s,S/0)⇒∗

N (s′,S/0) if and only if 〈p,S/0,H〉�∗
N 〈p′,S/0,H ′〉.

5.2 Eliminating Write Fences from Event Structures

We show in this section that we can avoid storing write fences and to convert event
structures into write buffers. The idea is the following. We observe that the projection
of the event structure on the events of a same process is, roughly speaking, a sequence
of partial orders, each of these partial orders corresponding to the set of write events
occurring between two successive write fences. These partial order have also the prop-
erty that they are unions of m total orders, each of them corresponding to the set of
writes to a same variable. These total orders can naturally be manipulated using m
FIFO buffers WB(i,1), . . . ,W B(i,m). Then, to simulate the whole sequence of partial or-
ders corresponding the events of a process, we need to reuse the same buffers after each
write fence, while ensuring that all writes occurring before the write fence are executed
before all those occurring after it. The solution for that is to introduce for each process
Pi an additional buffer WB(i,m+1) used to flush the buffers W B(i,1), . . . ,WB(i,m) after
each write fence without imposing that their content is directly written in the memory.

Then, the architecture of our model is as follows. Each process Pi has two levels
of buffers, a first level with m write buffers storing the writes for each variable, and a
second level with one buffer used to serialize the writes before committing them to the
main memory. Then, we have the history buffer, the last element of which represents
the current state of the memory, and the rest of its elements represent the history of all
past memory states. Pointers on this buffer allow to each process to know what is the
oldest value it can read on each variable.

We give hereafter the formal definition of our model. A configuration in this model

is a tuple of the form 〈p,(W B(i, j))
j∈[m+1]
i∈[n] ,H〉 where p ∈ P, for every i ∈ [n] and ev-

ery j ∈ [m + 1], WB(i, j) is a write buffer, and H is a history buffer over M. Then,
we define the transition relation →N between configurations as the smallest relation

such that for every p,p′ ∈ P, for every two vectors of store buffers (WB(i, j))
j∈[m+1]
i∈[n]

and (WB′
(i, j))

j∈[m+1]
i∈[n] , where WB(i, j) = (B(i, j),�(i, j),λ(i, j)) and W B′

(i, j) = (B′
(i, j),�

′
(i, j)

,λ′(i, j)) for all i and j, and for every two history buffers H = (B,π) and H ′ = (B′,π′),
where B = (H,�H ,λH) and B′ = (H ′,�H′ ,λH′) are two buffers over M, we have

〈p,(W B(i, j))
j∈[m+1]
i∈[n] ,H〉 →N 〈p′,(WB′

(i, j))
j∈[m+1]
i∈[n] ,H ′〉 if there are i ∈ [n], and p, p′ ∈ Pi,

such that p[i] = p, p′ = p[i ← p′], WB(k, j) = WB(k, j) for every k ∈ [n] \ {i} and every
j ∈ [m+ 1], and one of the following cases holds:
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1. Nop: p nop−−−→i p′, WB(i, j) =WB′
(i, j) for every j ∈ [m+ 1], and H = H ′.

2. Write: p
w(i, j,d)−−−−−→i p′, H = H ′, W B(i,k) = WB′

(i,k) for every k ∈ ([m+ 1] \ { j}, and

WB′
(i, j) = add(WB(i, j),w(i, j,d)).

3. Write fence: p
wfence(i)−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(i,s) =WB′

(i,s) for all

s ∈ [m+ 1], and H = H ′.
4. Transfer write: p = p′, H = H ′, ∃ j ∈ [m]. WB(i,k) = WB′

(i,k) for every k ∈ ([m] \
{ j}), and ∃ω = head(WB(i, j)). WB′

(i, j) = remove(W B(i, j),ω) and WB′
(i,m+1) =

add(WB(i,m+1),ω).

5. RLWE from W B(i, j), j ∈ [m]: p
r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = W B′

(i,k) for every
k ∈ [m+ 1], and data(tail(W B(i, j))) = d.

6. RLWE from WB(i,m+1): p
r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = WB′

(i,k) for every k ∈
[m+ 1], Empty(WB(i, j)), the set W(i,m+1) = {e ∈ B(i,m+1) : ∃d′ ∈ D. λ(i,m+1)(e) =
w(i, j,d′)} is not empty, and data(max(W(i,m+1)) = d.

7. Read: p
r(i, j,d)−−−−→i p′, H = H ′, WB(i,k) = WB′

(i,k) for every k ∈ [m + 1],
Empty(W B(i, j)), the set W(i,m+1) defined above is empty, and ∃d ∈ M such that
λH(π(i, j)) = d and d[ j] = d.

8. Move pointer: p = p′, B = B′, WB(i,k) = WB′
(i,k) for every k ∈ [m+ 1], and ∃ j ∈

[m]. ∃e ∈ H. π(i, j)�H e and π′ = π[(i, j)← e].

9. ARW: p
arw(i, j,d,d′)−−−−−−−→i p′, Empty(WB(i, j)) and Empty(WB′

(i, j)) for every j ∈ [m+ 1],
π(i, �) = max(H) for every � ∈ [m], there is a d = tail(B) such that d[ j] = d and
B′ = add(B,d[ j ← d′]), and π′ = π[(i, �)← max(H ′)]�∈[m].

10. Read fence: p
rfence(i)−−−−−→i p′, WB(i,k) = W B′

(i,k) for every k ∈ [m+ 1], H = H ′, and
π(i, �) = max(H) for every � ∈ [m].

11. Memory update: p = p′, WB(i,k) = WB′
(i,k) for every k ∈ [m], head(WB(i,m+1)) =

w(i, j,d) for some j ∈ [m] and d ∈ D, W B′
(i,m+1) = remove(W B(i,m+1),w(i, j,d)),

B′ = add(B,d) where d = tail(H)[ j ← d], and π′ = π[(i, j)← max(H ′)].

Theorem 6. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′ be two
unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then, (s,S/0)⇒∗

N
(s′,S/0) if and only if 〈p,S/0,H〉 →∗

N 〈p′,S/0,H ′〉, where S/0 denotes an [n]× [m+ 1]-dim
vector of empty write buffers.

It is worth noting that for PSO, i.e., when read fences are systematically inserted after
reads, the operational model we define has always a history buffer of size 1 (i.e., reduced
to the memory state). Notice that still we need two levels of write buffers for PSO due
to the use of write fences. For TSO, write buffers for each variable (WB(i, j) for j ∈ [m])
are not needed since writes are immediately followed by write fences. This coincides
with the operational model defined, e.g., in [3].
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6 The State Reachability Problem of NSW

We show hereafter that the state reachability problem of NSW is decidable. For that,
we use the framework defined in [1] which establishes that state reachability can be
solved using backward reachability analysis in the following case: Given a well quasi-
ordering (WQO) � on configurations1, if the system is monotonic w.r.t. �, i.e., larger
configurations w.r.t. � can always simulate smaller ones, then backward reachability in
this system is guaranteed to terminate if it starts from �-upward closed sets, i.e., sets
that whenever they contain a configuration c, they also contain all �-larger one than c.

To define such ordering, we observe that a value in the memory written by some
process might be overwritten by other write operations by the same process before any
other process has had time to read it. Therefore, the effect of a write operation sent by
a process to its store buffer may never be used, and this would suggest that we should
define � to reflect the subword relation between the buffer contents. However, this in-
tuition cannot be exploited directly. As we will see below, NSW’s are not monotonic
in general w.r.t. such as subword-based relation. To circumvent this problem, we intro-
duce another model called NSW+ obtained from the NSW, where, roughly, serialization
buffers W(i,m+1) contain memory states (corresponding to cumulated effects of write op-
erations) instead of write operations and we associate one history buffer per process, and
we show that (1) the state reachability problem in a given NSW is reducible to the one
in its corresponding NSW+, and (2) every NSW+ is monotonic w.r.t. a subword-based
relation on buffers. Notice that the translation from NSW to NSW+ preserves reacha-
bility but the resulting model from this translation is not bisimilar to the original one
(and therefore monotonicity can not be transferred).

Informal Introduction to NSW+: We explain hereafter how a NSW+ model is defined
starting from a given NSW. Let us first see why NSW’s are not monotonic w.r.t. the
subword relation, i.e., considering that the buffers in NSW are lossy is not sound. More
precisely, while it can be shown that it is possible to consider safely that the write buffers
WB(i, j) for all i ∈ [n] and j ∈ [m] as well as the history buffer are lossy, the serialization
buffers WB(i,m+1) for i ∈ [n] cannot be simply turned to lossy buffers. Consider first a
sequence of write operations w(i, j,d′)w(i, j,d) in the write buffer WB(i, j), for some
j ∈ [m], where w(i, j,d) is the oldest operation. Since both operations are on the same
variable x j, losing the operationw(i, j,d), i.e., replacing this sequence by just w(i, j,d′),
yields a valid computation corresponding to compaction of the two operations. Indeed,
it is possible to overwrite the value d by d′ before that any process is able to read
d. Therefore, it is possible to lose any operation in a write buffer corresponding to
a variable, except the last operation. This is especially important for the read-local-
write-early operation. Then, by considering the last symbol in each write buffer WB(i, j)
as a strong symbol (can not be lost), and turning W B(i, j) to a lossy channel does not
introduce computations that are not possible in the original program. Observe that the
number of possible such strong symbols is finite (one per write buffer WB(i, j)).

Consider now a sequence of memory states d ·d′ in the history buffer H , where d′

is the oldest state. Then, losing the memory state d′ in Mi is similar to considering that

1 Recall that a well quasi-ordering � over a set E is an ordering such that for every infinite
sequence e1,e2, . . . of elements of E, there exist two integers i < j such that ei � e j.
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this state has not been observed by Pi. This is perfectly valid since processes observe
the states of the memory in an asynchronous way, and therefore they may miss some
states. However, memory states in H that are pointed by some pointer π(i, j) should not
be lost, and they must be considered as strong symbol. Indeed, without these pointed
states, reads cannot be validated. In addition, we also should not lose the tail of H
(which corresponds to the current memory state) since it is used to compute the next
memory state. Then, pointed elements as well as the last element of the history buffer
must be considered as strong symbols (again the number of such symbols is finite).

It remains to consider the case of the serialization write buffer WB(i,m+1). Consider
a sequence of operations w(i, j,d′)w(i,k,d) in WB(i,m+1). Since these two operations
are on different variables, losing w(i,k,d) does not correspond to the compaction of
the two operations. To encode the compaction (or the summary) of such a sequence
of operations, we need to use a vector of values defining the last written value to each
variable by the operations in the sequence. Then, an idea is to replace the content of
WB(i,m+1) = ω� · · ·ω1 by the sequence of summaries σ� · · ·σ1 where σi is the summary
of the sequence ωi · · ·ω1. For instance, in our example, the sequence of summaries is
(x j = d′,xk = d)(xk = d). Then, losing (xk = d) does not correspond to losing the effect
of the operation w(i,k,d) since this effect is still visible in (x j = d′,xk = d). Assume
now that (xk = d) has not been lost and has been updated to the main memory. This
value of xk in the main memory can be over-written by a write operation (xk = d′′)
(d′′ �= d) of a different process from Pi. Then, when the system decides to update (x j =
d′,xk = d) to the main memory, we should not reset the value of xk to d (since the write
operation (xk = d) has already taken effect). This shows that WB(i,m+1) (under NSW+)
must contain a valid sequence of memory states (that will be used to update the memory
in the future). Then, we can formulate a similar argument as in the case of the history
buffer to allow some of the memory states in W B(i,m+1) to be lost.

However, in order to have a valid sequence of memory states, the serialization buffer
WB(i,m+1) under NSW+ should simulate the contributions of the other processes. There-
fore, it has to insert in WB(i,m+1) the memory states resulting from writes performed by
other processes. This implies that the system should guess in advance in which order the
write operations will be updated to the main memory. This is performed under NSW+

as follows: (1) a write is removed from some write buffer W B(k, j) (chosen nondeter-
ministically), (2) a new memory state is then computed from the last state added to
WB(k,m+1), and (3) this new state is added to all the serialization buffers. Observe that a
memory state in WB(i,m+1) resulting from a write operation of a process Pk (with k �= j)
should not be detected by Pi (since it has not been yet committed to the main memory).

Observe that the execution of each process is totally determined by the sequence of
memory states and its local configuration (i.e., its control state, its store buffer contents,
and its serialization buffer content). Therefore, under NSW+, each process Pi has its
own private copy of the history buffer H i (without any need of synchronization with
the other threads) since it has already the sequence of memory states in its serialization
buffer. Now, if a memory state is at the head of the serialization buffer WB(i,m+1) of
the process Pi, then this state will be removed from all this buffer and one copy is
transferred to its history buffer H i.
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Formal definition of NSW+: A configuration of NSW+ is a tuple of the form

〈p,(W B(i, j))
j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 where p and (WB(i, j))

j∈[m]
i∈[n] are defined as in the previous

section, (WB(i,m+1))i∈[n] are write buffers over F = {w(i, j,d) : j ∈ [m]∧d ∈ M}, and
H i are history buffers over M. Then, we define the transition relation �→N as the smallest

relation such that for every p,p′ ∈ P, for every two vectors of buffers (WB(i, j))
j∈[m+1]
i∈[n]

and (WB′
(i, j))

j∈[m+1]
i∈[n] , where WB(i, j) = (B(i, j),�(i, j),λ(i, j)) and W B′

(i, j) = (B′
(i, j),�

′
(i, j)

,λ′(i, j)) for all i ∈ [n] and j ∈ [m+1], and for every two vectors of history buffers
(
H i =

(Bi,πi)
)

i∈[n] and
(
H ′

i = (B′
i,π′i)

)
i∈[n], where Bi = (Hi,�Hi ,λHi) and B′

i = (H ′
i ,�H′

i
,λH′

i
)

are two buffers over M for all i ∈ [n], we have 〈p,(W B(i, j))
j∈[m+1]
i∈[n] ,(H i)i∈[n]〉 →N

〈p′,(W B′
(i, j))

j∈[m+1]
i∈[n] ,(H ′

i)i∈[n]〉 if there are i ∈ [n], and p, p′ ∈ Pi, such that p[i] = p,

p′ = p[i ← p′], Hk = Hk for all k ∈ [n]\ {i}, and one of the following cases holds:

1. Nop: p
nop−−−→i p′, WB(k, j) =WB′

(k, j) for all k ∈ [n] and j ∈ [m+ 1], and H i = H ′
i.

2. Write: p
w(i, j,d)−−−−−→i p′, H i = H ′

i, WB(k,�) =WB′
(k,�) for every (k, �) ∈ ([n]× [m+1])\

{(i, j)}, and WB′
(i, j) = add(W B(i, j),w(i, j,d)).

3. Write fence: p
wfence(i)−−−−−−→i p′, Empty(WB(i, j)) for all j ∈ [m], WB(k,�) = WB′

(k,�) for

all k ∈ [n] and � ∈ [m+ 1], and H i = H ′
i.

4. Transfer write: p = p′, H i = H ′
i, ∃ j ∈ [m]. WB(k,�) = WB′

(k,�) for all (k, �) ∈
([n]× [m] \ {(i, j)}), and ∃ω = head(WB(i, j)). WB′

(i, j) = remove(WB(i, j),ω) and

for every k ∈ [n], WB′
(k,m+1) = add(W B(k,m+1),w(i, j,d′)) where d[ω〉d′ and if

Empty(W B(i,m+1)) then d = tail(Bi) else w(t, �,d) = tail(WB(i,m+1)) with t ∈ [n]
and � ∈ [m].

5. RLWE from WB(i, j), j ∈ [m]: p
r(i, j,d)−−−−→i p′, H i =H ′

i, W B(k,�) =WB′
(k,�) for all k∈ [n]

and � ∈ [m+ 1], and data(tail(W B(i, j))) = d.

6. RLWE from WB(i,m+1): p
r(i, j,d)−−−−→i p′, H i = H ′

i, WB(k,�) = WB′
(k,�) for all

(k, �) ∈ [n]× [m + 1], Empty(WB(i, j)), the set W(i,m+1) = {e ∈ B(i,m+1) : ∃d′ ∈
M. λ(i,m+1)(e) = w(i, j,d′)} is not empty, and λ(i,m+1)(max(W(i,m+1)) = w(i, j,d)
such that d[ j] = d.

7. Read: p
r(i, j,d)−−−−→i p′, H i = H ′

i, WB(k,�) = W B′
(k,�) for every (k, �) ∈ [n]× [m+ 1],

Empty(W B(i, j)), the set W(i,m+1) defined above is empty, and ∃d ∈ M such that
λHi(πi(i, j)) = d and d[ j] = d.

8. Move pointer: p = p′, Bi = B′
i, WB(k,�) =WB′

(k,�) for every (k, �) ∈ [n]× [m+1], and

∃ j ∈ [m]. ∃e ∈ Hi. πi(i, j)�Hi e and π′i = πi[(k, j)← e]k∈[n].

9. ARW: p
arw(i, j,d,d′)−−−−−−−→i p′, WB(k,�) =W B′

(k,�) for all (k, �) ∈ [n]× [m], Empty(WB(i, j))

and Empty(W B′
(i, j)) for every j ∈ [m + 1], πi(i, �) = max(Hi) for every � ∈ [m],

there is a d = tail(Bi) such that WB′
(k′,m+1) = add(W B(k′,m+1),w(i, j,d′)) for all

k′ ∈ ([n] \ {i}), d[ j] = d, B′
i = add(Bi,d′), and π′i = πi[(k, �)← max(H ′

i )]k∈[n],�∈[m]

where d′ = d[ j ← d′].
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10. Read fence: p
rfence(i)−−−−−→i p′, WB(k,�) =WB′

(k,�) for every (k, �) ∈ [n]× [m+1], H i =

H ′
i, and πi(i, �) = max(Hi) for every � ∈ [m].

11. Memory update: p = p′, WB(k,�) = WB′
(k,�) for every (k, �) ∈ ([n]× [m] \ {(i,m+

1)}), there exist t ∈ [n], j ∈ [m] and d ∈ M such that head(W B(i,m+1)) = w(t, j,d),
WB′

(i,m+1) = remove(WB(i,m+1),w(t, j,d)), B′
i = add(Bi,d), and π′i = πi[(k, j) ←

max(H ′
i )]k∈[n] if t = i, otherwise π′i = πi.

We prove that the state reachability problem for a concurrent system N under NSW can
be reduced to its corresponding one for N under NSW+.

Theorem 7. Let s = (p,d) and s′ = (p′,d′) be two states of N , and let H and H ′

be two unitary history buffers over M such that tail(H) = d and tail(H ′) = d′. Then,
〈p,S/0,H〉 →∗

N 〈p′,S/0,H ′〉 iff 〈p,S ′/0,H, . . . ,H〉 �→∗
N 〈p′,S ′/0,H ′, . . . ,H ′〉 where S/0 and

S ′/0 denotes an [n]× [m+ 1]-dim vector of empty buffers.

The state reachability problem for NSW+: We show in the following that the state
reachability problem is decidable for the NSW+ model. As mentioned earlier, we es-
tablish this fact by proving that NSW+’s are monotonic w.r.t. a particular WQO �.

Let N be an NSW+, and let us define the relation � on the configura-

tions of N . Consider two configurations c = 〈p,(W B(i, j))
j∈[m+1]
i∈[n] ,(Hk)k∈[n]〉 and c′ =

〈p′,(W B′
(i, j))

j∈[m+1]
i∈[n] ,(H ′

k)k∈[n]〉, where W B(i, j) = (B(i, j),�(i, j),λ(i, j)) and WB′
(i, j) =

(B′
(i, j),�

′
(i, j),λ

′
(i, j)) for all i and j, and Hk = (Bk,πk) and H ′

k = (B′
k,π

′
k) with Bk =

(Hk,�Hk ,λHk ) and B′
k = (H ′

k,�H′
k
,λH′

k
) for all k ∈ [n]. Then, we consider that c � c′ if

1. c and c′ have the same vector of control states, i.e., p = p′,
2. the content of WB(i, j) is a subword of the content WB′

(i, j), while the sequences

of operations in WB(i, j) and W B′
(i, j) corresponding the last operations performed

every process on each of the variables are the same, i.e., for every i ∈ [n] and
j ∈ [m+ 1], there is an injection g(i, j) from B(i, j) to B′

(i, j) such that: (a) for every

e1,e2 ∈ B(i, j), λ′(i, j)(g(i, j)(e1)) = λ(i, j)(e1) and e1 �(i, j) e2 implies g(i, j)(e1)�(i, j)

g(i, j)(e2), and (b) for every k ∈ [n] and � ∈ [m], if E(k,�) = {e ∈ B(i, j) : λ(i, j)(e) ∈
{w(k, �,d′),w(k, �,d′) |d′ ∈ M,d′ ∈ D}} and E ′

(k,�) = {e ∈ B′
(i, j) : λ′(i, j)(e) ∈

{w(k, �,d′),w(k, �,d′) |d′ ∈ M,d′ ∈ D}}, then g(i, j)(max(E(k,�))) = max(E ′
(k,�)),

3. the content of Hk is a subword of the content H ′
k, while the last memory states

added to Hk and H ′
k are the same, and the memory states pointed by πk(i, j) and by

π′k(i, j) are equal for every i and j, i.e., for every k ∈ [n] there is an injection gk from
Hk to H ′

k such that: (a) for every e1,e2 ∈ Hk, λH′
k
(gk(e1)) = λHk (e1) and e1 �Hk e2

implies gk(e1)�H′
k

gk(e2), (b) for every i ∈ [n] and j ∈ [m], gk(πk(i, j)) = π′k(i, j),
and (c) gk(max(Hk)) = max(H ′

k).

By Higman’s lemma (the subword relation is a well quasi-ordering) and standard com-
position properties of well quasi-orderings, it is easy to prove the following fact.

Lemma 8 (WQO). The relation � is a WQO on the set of NSW+-configurations of N .

Then, we can prove the following important fact:
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Lemma 9 (Monotonicity). For every configurations c1,c2,c′1 of a N such that c1 �→N
c2 and c1 � c′1, there exists a configuration c′2 such that c′1 �→∗

N c′2 and c2 � c′2.

From [1], we know that in order to show the decidability of the state reachability prob-
lem for NSW+, we only need to show that:

Lemma 10 (Effectiveness). Given a finite set M of �-minimals of a �-upward closed
set C, the (finite) set of �-minimals of preN(C) is effectively computable from M.

Then, from the three lemmas above and [1], we deduce the following fact:

Theorem 11. The state reachability problem for NSW+ is decidable.

As a corollary of Theorem 7 and Theorem 11, we obtain our main result:

Corollary 12. The state reachability problem for NSW is decidable.

7 Nonatomic Writes Cause Undecidability

x = y = 0
P1 P2 P3 P4

(1) r(x,1) (4) r(y,1) (7) w(x,1) (8) w(y,1)
(2) rfence (5) rfence
(3) r(y,0) (6) r(x,0)

x = y = 1

Fig. 3. The IRIW (Independent Reads of Indepen-
dent Writes) Litmus Test. P3 writes 1 to x and P4
writes 1 to y. In parallel, P1 observes that x has
been modified before y, whereas P2 observes that
y is modified before x.

So far, we have considered only mod-
els that do not contain the RRWE (read
remote writes early) relaxation. In this
section, we show that adding RRWE
to NSW makes the reachability prob-
lem undecidable. The RRWE relax-
ation allows a processor to read other
processors’ writes even if they are not
globally visible yet. This makes writes
non-atomic and can be detected by the
IRIW litmus test (Fig. 3). IRIW is not
possible in NSW as defined earlier.
However, if we change the model to allow a read operation of Pi from a variable x j

to be validated by the last write issued by Pk (with k �= i) on x j, although this write has
not been yet committed, it becomes possible.

An Operational Model An operational model for NSW with the RRWE relaxation can
be defined as an extension of the one defined in Sec. 4. The idea is to add to the event
structure S= (E,�,λ) a mapping σ : [n]× [m]→ E ∪{⊥}, with ⊥ /∈ E , that associates
with each process and variable, either a pointer on some event of the structure, or ⊥
when it is not defined. The pointer σ(i, j) defines an event e such that every future read
operation of Pi on the variable x j should not take its value from a write event that is
�-smaller than e. The intuition is that the validation of successive reads by the same
process on a same variable should be done in a coherent way, i.e., the writes from which
they read their values should occur in the same order. If σ(i, j) points to some event e
in the event structure, then e corresponds to the write event from which the last read
performed by the process Pi on the variable x j took its value. The fact that σ(i, j) = ⊥
means that either Pi has never read a value from x j, or the last write operation on x j

(issued by some other process) that has validated a read of Pi has already been updated.
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Then, to validate a read operation of Pi on x j using the RRWE, an event e must be
found such that (1) e does not occur before the event e′ = σ(i, j) or any read/write event
of Pi on x j, and (2) e is the last write operation on x j of Pk different from Pi. If this is
the case, then σ(i, j) is updated to e and constraints are added to ensure that (i) e should
be executed after the event e′ and any read/write event of Pi on x j, and (ii) e should be
executed before all writes/reads by Pi on x j coming after the validated read operation.
When a write event is executed and exits the event structure S, if this write event is
pointed by σ(i, j), then σ(i, j) is set to ⊥. Pi can perform a RLWE on x j only if the
event associated to the last write operation of Pi on x j does not occur before σ(i, j).

An atomic read-write operation arw(i, j,d,d′) can be executed only when no pending
reads on the same variable still exist in the structure S, i.e., σ(i, j) =⊥. The reason is that
operations on the same variable cannot be reordered. Finally, all the other operations are
defined as in Sec. 4 while keeping the pointers unchanged.

As an example, consider the IRIW litmus test (Fig. 3). Starting from(x = 0,y = 0)
and an empty event structure S, the execution of the writes (7) and (8) by P3 and P4 adds
two events e1 and e2 to S labeled by w(3,x,1) and w(4,y,1), respectively. Then, P1 and
P2 can execute their reads (1) and (4) that are validated using the RRWE relaxation,
and set the pointers σ(1,x) and σ(2,y) to e1 and e2. At this point, (2) and (5) can be
executed, and then, the reads (3) and (6) can be validated w.r.t. the content of the main
memory. Finally, the writes corresponding to e1 and e2 in S are committed to the main
memory, and this yields the memory state (x = 1,y = 1).

We can prove by a reduction of Post’s Correspondance Problem the following fact:

Theorem 13. The state reachability problem for NSW∪{RRWE} is undecidable.

8 Conclusion and Future Work

We have sharpened the decidability boundary of the reachability problem for weak
memory models by (1) introducing a model NSW which supports many important
relaxations (delay writes, perform reads early, allow partial fences) yet has a decid-
able reachability problem, and (2) showing that the read-write relaxation and the non-
atomic-stores-relaxation are problematic (cause non-decidability) if added to TSO or
NSW, respectively. Besides decidability, our work contributes in clarifying the effects
and the power of common relaxations existing in weak memory models. It provides
an insight on the formal models needed to reason about these relaxations, which can
be useful for other formal algorithmic verification approaches, including approximate
analyses. Notice that the models we introduce in Sections 4 and 5 can be also consid-
ered in the case of an infinite data domain, and the relationship between them still holds
in the same manner. It is only when we address the decidability issue that we need to
restrict ourselves to a finite data domain.

Future work may address the question of further sharpening the boundary by con-
sidering finer distinctions of the r→ w relaxation, say by making it conditional on the
absence of control- or data-dependencies. Moreover, we would like to explore the effect
of non-atomic stores in more detail, such as whether it causes undecidability in weaker
forms (e.g. if caused by static memory hierarchies) or if added to TSO rather than NSW.
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Abstract. CompCert is a formally verified compiler that generates com-
pact and efficient PowerPC, ARM and x86 code for a large and realis-
tic subset of the C language. However, CompCert foregoes using Static
Single Assignment (SSA), an intermediate representation that allows
for writing simpler and faster optimizers, and is used by many com-
pilers. In fact, it has remained an open problem to verify formally a
SSA-based compiler middle-end. We report on a formally verified, SSA-
based, middle-end for CompCert. Our middle-end performs conversion
from CompCert intermediate form to SSA form, optimization of SSA
programs, including Global Value Numbering, and transforming out of
SSA to intermediate form. In addition to provide the first formally veri-
fied SSA-based middle-end, we address two problems raised by Leroy [13]:
giving a simple and intuitive formal semantics to SSA, and leveraging the
global properties of SSA to reason locally about program optimizations.

1 Introduction

Static Single Assignment. Static single assignment (SSA) form [7] is an in-
termediate representation where variables are statically assigned exactly once.
Thanks to the considerable strength of this property, the SSA form simplifies
the definition of many optimizations, and improves their efficiency, as well as the
quality of their results. It is therefore not surprising that many modern compil-
ers, including GCC and LLVMC [14], rely heavily on SSA form, and that there
is a vast body of work on SSA. However, the simplicity of SSA form is decep-
tive, and designing a correct SSA-based middle-end compiler has been fraught
with difficulties. In fact, it has been a significant challenge to design efficient,
semantics-preserving, algorithms for converting programs into SSA form, or op-
timizing SSA programs, or even transforming programs out of SSA form.

Verified Compilers. Compiler correctness aims at giving a rigorous proof
that a compiler preserves the behavior of programs. After 40 years of a rich
history, the field is entering into a new dimension, with the advent of realistic and
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Fig. 1. The SSA Middle-end

mechanically verified compilers. This new generation of compilers was initiated
with CompCert [13], a compiler that is programmed and verified in the Coq
proof assistant and generates compact and efficient assembly code for a large
fragment of the C language. Leroy’s CompCert has been rightfully acclaimed
as a tour de force, but it foregoes relying on an SSA-based middle end. In [13],
Leroy reports:

Since the beginning of CompCert we have been considering using SSA-
based intermediate languages, but were held off by two difficulties. First,
the dynamic semantics for SSA is not obvious to formalize. Second, the
SSA property is global to the code of a whole function and not straight-
forward to exploit locally within proofs.

add adds: “A typical SSA-based optimization that interests us is global value
numbering”. However verifying GVN is a significant challenge, and its formal
verification has remained beyond current state-of-the-art in certified compilers.

Static Single Assignment Meets Verified Compilers. The thesis of our
work is that a compiler can be realistic, verified and still rely on a SSA form. To
support our thesis, we provide the first verified SSA-based middle-end. Rather
than programming and proving a verified compiler from scratch, we have pro-
grammed and verified a SSA-based middle-end compiler that can be plugged
into CompCert at the level of RTL. Fig. 1 describes the overall architecture. Our
middle-end performs four phases: (i) normalization of RTL program; (ii) trans-
formation from RTL form into SSA form; (iii) optimization of programs in SSA
form, including Global Value Numbering (GVN) [1]; (iv) transformation of pro-
grams from SSA form to RTL form; and relies on CompCert for the transforma-
tion from C to RTL programs prior to SSA conversion, and from RTL programs
to assembly code after conversion out of SSA—our point is to program a realistic
and verified SSA-based middle-end, rather than to demonstrate that SSA-based
optimizations dramatically improve the efficiency of generated code.

We validate our compiler middle-end with a mix of techniques directly inher-
ited from CompCert. We resort to translation validation [19,18]—increasingly
favored by CompCert [24,25]—for converting programs into SSA form and for
GVN. Specifically, we program in Coq verified checkers that validate a posteriori
results of untrusted computations, and we implement in OCaml efficient algo-
rithms for these computations; we rely on Cytron et al algorithm [7] for comput-
ing minimal SSA form, and on Alpern et al iteration strategy [1] for computing a
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numbering in GVN. In contrast, the normalization of the RTL program, and the
conversion out of SSA are directly programmed and proved in Coq. In addition,
our work addresses the two issues raised by Leroy [13]. First, we give a simple
and intuitive operational semantics for SSA; the semantics follows the informal
description given in [7], and does not require any artificial state instrumentation.
Second, we define on SSA programs two global properties, called strictness and
equational form, allowing to conclude reasonably directly that the substitutions
performed by GVN and other optimizations are sound.

Summarizing, our work provides the first verified SSA-based middle-end, the
first formal proof of an SSA-based optimization, as well as an intuitive semantics
for SSA. It thus serves as a good starting point for further studies of verified and
realistic SSA-based compilers.

Contents. The paper is organized as follows: Section 2 provides a brief primer
on SSA and CompCert. Section 3 defines the SSA language used by our middle-
end. Conversion to and out of SSA forms are presented in Section 4 and 5
respectively. Section 6 presents SSA-based optimizations. We conclude with ex-
perimental results in Section 7 and related work in Section 8.

Throughout the paper, we use Coq syntax for our definitions and results.
Statements occasionally involve some notions that are not introduced formally.
In such cases, names are generally chosen to be self-explanatory (for instance,
not_wrong_program); in other cases, we forego giving precise definitions as
they are not needed to understand the paper (for instance, the types chunk
and addressing are unspecified in the definition of state). Our formalization
makes an extensive use of inductive definitions, which are introduced in Coq us-
ing the keyword Inductive. Inductive definitions are used both for introducing
new datatypes, e.g. the type of RTL instructions in Fig. 4, and for introduc-
ing inductive relations, e.g. the operational semantics of RTL instructions in
Fig. 4. In the latter case, the declarations are written according to the pattern
Inductive R : A →B →Prop := | Rule1: ∀ a b, ... →R a b | Rule2:....

2 Background

Static Single Assignment Form. is an intermediate representation in which
variables are statically assigned exactly once, thus making explicit in the program
syntax the link between the program point where a variable is defined and read.

Converting into SSA Form is easy for straighline code: one simply tags each vari-
able definition with an index, and each variable use with the index correspond-
ing to the last definition of this variable. For example, [x := 1; y := x + 1;x :=
y − 1; y := x] is transformed into [x0 := 1; y0 := x0 + 1;x1 := y0 − 1; y1 := x1].
The transformation is semantics-preserving, in the sense that the final values of
x and y in the first snippet coincide with the final values of x1 and y1 in the
second snippet. On the other hand, one cannot transform arbitrary programs
into semantically equivalent programs in SSA form solely by tagging variables:
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Fig. 2. Example programs. Programs b), c) are SSA forms of a). Programs b) is in
naive form and c) in minimal form.

one must insert φ-functions to handle branching statements. Fig. 2 shows a
program a), and a program b) that corresponds to a SSA form of a). In program
a), the value of variable x read at node 9 either comes from the definition of x
at entry or at node 6. In program b), these two definitions of x are renamed into
the unique definition of x0 and x2 and merged together by the φ-function of x3

at entry of node 9. The precise meaning of a φ-block depends on the numbering
convention of the predecessor nodes of each junction point. In Fig. 2 b) we make
explicit this numbering by labelling the CFG edges. For example, node 3 is
the first predecessor of point 9 and node 6 is the second one. The semantics of
φ-functions is given in the seminal paper by Cytron et al [7]:

“If control reaches node j from its kth predecessor, then the run-time support
remembers k while executing the φ-functions in j. The value of φ(x1, x2, . . .) is just
the value of the kth operand. Each execution of a φ-function uses only one of the
operands, but which one depends on the flow of control just before entering j. ”

There may be several SSA forms for a single control-flow graph program;
Fig. 2 b) and c) gives alternative SSA forms for program a). As the number of φ-
functions directly impacts the quality of the subsequent optimizations—as well as
the size of the SSA form—it is important that SSA generators for real compilers
produce a SSA form with a minimal number of φ-functions. Implementations of
minimal SSA generally rely on the notion of dominance frontier to choose where
to insert φ-functions. A node i in a CFG dominates another node j if every
path from then entry of the CFG to j contains i. The dominance is said to be
strict if additionally i �= j. A tree can encode the dominance relation between
the nodes of the CFG. For a node i of a CFG, the dominance frontier DF (i) of
i is defined as the set of nodes j such that i dominates at least one predecessor
of j in the CFG but does not strictly dominates j itself. The notion is extended
to a set of nodes S with DF (S) =

⋃
i∈S DF (i). The iterated dominance frontier

DF+(S) of a set of nodes S is limi→∞ DF i(S), where DF 1(S) = DF (S) and
DF i+1(S) = DF (S∪DF i(S)). Formally, a program is in minimal-SSA form when
a φ-function of an instance xi of an original variable x appears in a junction point
j iff j belongs to the iterated dominance frontier of the set of definition nodes
of x in the original program. For instance, program c) in Fig. 2 is in minimal-
SSA form. However, one can achieve more compact SSA forms by observing
that, at any junction point, dead variables need not be defined by a φ-function.
The intuition is captured by the notion of pruned-SSA form: a program is in
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Fig. 3. Common sub-expression elimination (CSE) using GVN

pruned-SSA form if it is in minimal-SSA form and for each φ-function of an
instance xi of an original variable x at a junction point j, x is live at j in the
original program (there is a path from j to a use of x that does not redefine x).

SSA-Based Optimizations. The SSA form simplifies the definition of many com-
mon optimizations; for instance, copy propagation algorithms can just walk
through a SSA program, identify statements of the form x := y, and replace
every use of x by y. Furthermore, several optimizations are naturally formu-
lated on SSA. One typical SSA-based optimization is Global Value Numbering
(GVN) [1], which assigns to variables an identifying number such that variables
with the same number will hold equal values at execution time. The effectiveness
of GVN lies in its ability to compute efficiently numberings that identify as many
variables as possible. Advanced algorithms [1,5] allow to compute efficiently such
numberings. We briefly explain one such numbering in Section 6.

Fig. 3 illustrates how GVN can be used to eliminate redundant computation.
The left program is the original code; in this program, for each i, xi and yi are
assigned the same value number. Hence, the evaluation of y1+1 (resp. y1+2) is a
redundant computation when assigning y2 (resp. y3), and one can transform the
program into the semantically equivalent one shown on the right of the figure.
The strength of the analysis lies in its ability to reason about φ-functions, which
allows it to infer the equality x2 = y2. This is only possible because numbering
is global to the whole program; in fact, any block-local analysis would fail to
discover the equality x2 = y2.

CompCert. is a realistic formally verified compiler that generates PowerPC,
ARM or x86 code from source programs written in a large subset of C. Com-
pCert formalizes the operational semantics of dozen intermediate languages, and
proves for each phase a semantics preservation theorem. Preservation theorems
are expressed in terms of program behaviors, i.e. finite or infinite traces of ex-
ternal function calls (a.k.a. events) that are performed during the execution of
the program, and claim that individual compilation phases preserve behaviors.
A consequence of the theorems is that for any C program p that does not go
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wrong, and target program tp output by the successful compilation of p by the
compiler compcert_compiler, the set of behaviors of p contains all behaviors
of the target program tp. The formal theorem is:
Theorem compcert compiler correct: ∀ (p: C.program) (tp: Asm.program),

(not wrong program p ∧ compcert compiler p = OK tp)→
(∀ beh, exec asm program tp beh → exec C program p beh).

This paper focuses on the CompCert middle-end where most of the existing opti-
misations are performed (currently: constant propagation, removal of redundant
cast, tail call detection, local value numbering and a register allocation phase
that includes copy propagation). These operate on a Register Transfer Language
(RTL), whose syntax and semantics is given in Fig. 4. A RTL program is defined
as a set of global variables, a set of functions, and an entry node. Functions are
modelled as records that include a function signature fn_sig, a CFG fn_code
of instructions over pseudo-registers. The CFG is not a basic-block graph: it par-
tially maps each CFG node to a single instruction, and we stick to this important
design choice of CompCert. As explained by Knoop et al [10], it allows for sim-
pler implementations of code manipulations and simplifies correctness proofs of
analyses or transformations, without impacting too much their efficiency.

The RTL instruction set includes arithmetic operations (Iop), memory loads
(Iload) and stores (Istore), function calls (Icall), conditional (Icond) and
unconditional jumps (Inop), and a return statement (Ireturn)— for brevity,
we do not discuss here jumptables and other kinds of function calls: call to
a function pointer stored in a register, tail calls, and built-in functions. All
instructions take as last argument a node pc denoting the next instruction to
be executed; additionally, all instructions but Inop take as arguments pseudo-
registers of type reg, memory chunks, and addressing modes.

The type of states is defined as the tagged union of regular states, call states
and return states (Fig. 4). We focus on regular states, as we only expose here the
intra-procedural part of the language. A regular semantic state (State) is a tuple
that contains a call stack (representing the current pending function calls), the
current function description and stack pointer (to the stack data block, a part of
the global memory where variables dereferenced in the C source program reside),
the current program point, the registers state (a mapping of local variables to
values) and the global memory. The semantics also includes a global environment
mapping function names and global variables to memory addresses; it is never
modified during a program execution, and thus ommitted in our presentation.

The operational behavior of programs is modelled by the relation step be-
tween two semantic states (see Fig. 4), and a trace of events; all instructions
except function calls do not emit any event, hence the transitions that they
induced are tagged by the empty event trace ε. We briefly comment on the
rules: (Inop pc′) branches to the next program point pc′. (Iop op args res pc′)
performs the arithmetic operation op over the values of registers args (written
rs##args), stores the result in res (written rs#res← v), and branches to pc′.
The instruction (Iload chk addr args res pc′) loads a chk memory quantity
from the address determined by the addressing mode addr and the values of the
args registers, stores the quantity just read into res, and branches to pc′.
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Inductive instr :=
| Inop (pc: node)
| Iop (op: operation) (args: list reg) (res: reg) (pc: node)
| Iload (chk:chunk) (addr:addressing) (args: list reg) (res: reg) (pc: node)
| Istore (chk:chunk) (addr:addressing) (args:list reg) (src: reg) (pc: node)
| Icall (sig: signature) (fn:ident) (args: list reg) (res: reg) (pc: node)
| Icond (cond: condition) (args: list reg) (ifso ifnot: node)
| Ireturn (or: option reg).

Inductive state :=
| State (stack: list stackframe) (* call stack *)

(f: function) (* current function *)
(sp: val) (* stack pointer *)
(pc: node) (* current program point *)
(rs: regset) (* register state *)
(m: mem) (* memory state *)

| Callstate (stack: list stackframe) (f: fundef) (args: list val) (m: mem)
| Returnstate (stack: list stackframe) (v: val) (m: mem).

Inductive step: state → trace → state → Prop :=
| ex Inop: ∀ s f sp pc rs m pc’,

fn code f pc = Some(Inop pc’)→
step (State s f sp pc rs m) ε (State s f sp pc’ rs m)

| ex Iop: ∀ s f sp pc rs m pc’ op args res v,
fn code f pc = Some(Iop op args res pc’) →
eval operation sp op (rs##args) m = Some v→
step (State s f sp pc rs m) ε (State s f sp pc’ (rs#res←v) m)

| ex Iload: ∀ s f sp pc rs m pc’ chk addr args res a v,
fn code f pc = Some(Iload chk addr args res pc’)→
eval addressing sp addr (rs##args) = Some a→
Mem.loadv chk m a = Some v→
step (State s f sp pc rs m) ε (State s f sp pc’ (rs#res←v) m)

Fig. 4. Syntax and semantics of RTL (excerpt)

3 The SSA Language

We describe the syntax and operational semantics of the language SSA that
provides the SSA form of RTL programs. We equip the notion of SSA program
with a well-formedness predicate capturing essential properties of SSA forms.

SSA Programs. Our definition of SSA program distinguishes between RTL-like
instructions and φ-functions; the distinction avoids the need for unwieldy map-
pings between program points when converting to SSA, and allows for a smooth
integration in CompCert. Fig. 5 introduces the syntax of SSA. SSA functions
operate on indexed registers of type SSA.reg = RTL.reg ∗ idx, and include an
additional field fn_phicode mapping junction points to φ-blocks. The latter
are modelled as lists of φ-functions of the form (Iphi args res), where res is
an indexed register, and args a list of indexed registers.

Next, we define structural constraints that allow giving an intuitive semantics
to SSA programs. First, we require that the domain of the function fn_phicode
be the set of junction points. Second, we require that all φ-functions in a φ-
block have the same number of arguments as the number of predecessors of that
block. Third, we require that all predecessors of a junction point be (Inop pc)
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instructions. This is a mild constraint, that can be ensured systematically on
RTL programs through normalization, and that will carry over to their SSA
forms. Fig. 6 shows the RTL program from Fig. 2 after normalization.

Finally, we consider two essential properties of SSA forms: unique
definitions and strictness. The unique definitions property states that each reg-
ister is uniquely defined, whereas the strictness property states that each vari-
able use is dominated by the (unique) definition of that variable. While the
two properties are closely related, none implies the other; the program [y0 :=
x0;x0 := 1] satisfies the unique definitions property but is not in strict form
whereas the program [x0 := 1;x0 := 2; y0 := x0] is strict but does not satisfy
the unique definitions property. To formalize these properties, one first defines
the type of paths in a CFG, and predicates dom and sdom for dominance and
strict dominance. Then, one must define the two predicates def, use of type
SSA.function→ SSA.reg→ node→ Prop such that proposition def f x pc (re-
spectively use f x pc) holds iff the register x is defined (resp. used) at node pc
in the (RTL-like or φ-) code of the function f. The definition of use is complex
because variables may be used in φ-functions: the widely adopted convention is
to view φ-functions as lazily evaluated, their ith argument thus being used at the
ith predecessor of the instruction. For example, in the SSA program of Fig. 6,
variable x2 is defined at node 6 and used at node 8, the 2nd predecessor of the
junction point 9 where x2 appears as 2nd argument of the φ-function. A use in
the regular code is more straightforward: a variable is used by an instruction if it
appears on its right-hand side. Using def and use, one can then state the unique
definition and strictness properties, and well-formedness. Formally, we say that
a SSA function is well-formed if it satisfies the following predicate:
Record wf ssa function (f:SSA.function) : Prop := {

fn ssa: unique def f;
fn strict: ∀ x u d, use f x u→ def f x d→ dom f d u;
fn wf block: block nb args f;
fn block at jp: ∀ jp, join point jp f↔ fn phicode f jp �= None;
fn normalized: ∀ jp pc, join point jp f→ In jp (succs f pc)→

fn code f pc = Some (Inop jp);}.

where predicates unique_def and block_nb_args respectively capture that a
function satisfies the unique definitions property and the structural constraint
about arguments. In the sequel, we show that conversion to SSA yields well-
formed programs. Besides, our SSA-based optimizations will assume that the
input SSA programs are well-formed; in turn, we prove for each of them that
output programs are well-formed.

Semantics. The notion of SSA state is similar to the notion of RTL state, except
that the type of registers and current function are modified into SSA.reg and
SSA.function respectively. The small-step operational semantics is defined on
SSA programs that satisfy the structural constraints introduced in the previous
paragraph. Formally, we define SSA.step as a relation between pairs of (SSA)
states and a trace of events. The definition follows the one of RTL.step, except
for instructions of the form (Inop pc′), where one distinguishes whether pc′ is
a junction point or not. In the latter case, the semantics coincide with the RTL
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Inductive instr := ...

Inductive phiinstr :=
| Iphi (args: list SSA.reg)

(res: SSA.reg).

Definition phiblock:= list phiinstr.

Record function := {
fn sig: signature; signature
fn params: list SSA.reg; parameters
fn stacksize: Z; activation record size
fn code: code; code graph
fn phicode: phicode; φ-blocks graph
fn entrypoint: node}. entry node

Inductive step: SSA.state → trace → SSA.state → Prop :=
| ex Inop njp: ∀ s f sp pc rs m pc’,

fn code f pc = Some(Inop pc’)→
¬ join point pc’ f→
step (State s f sp pc rs m) ε (State s f sp pc’ rs m)

| ex Inop jp: ∀ s f sp pc rs m pc’ phib k,
fn code f pc = Some(Inop pc’)→
join point pc’ f→
fn phicode f pc’ = Some phib →
index pred f pc pc’ = Some k→
step (State s f sp pc rs m) ε (State s f sp pc’ (phistore k rs phib) m)

Fixpoint phistore k rs phib : nat → SSA.regset → phiblock → SSA.regset :=
match phib with
| nil => rs
| (Iphi args res)::phib =>
match nth error args k with
| None => rs
| Some arg => (phistore k rs phib)#res ← (rs#arg)

end end.

Fig. 5. Syntax and semantics of SSA (excerpt)

semantics, i.e. the program point is updated in the semantic state. If on the
contrary pc′ is a junction point, then one executes the φ-block attached to pc′

before the control flows to pc′. Executing φ-blocks on the way to pc′ avoids the
need to instrument the semantics of SSA with the predecessor program point,
and crisply captures the intuitive meaning given to φ-blocks by Cytron et al (see
Section 2). Note in particular that the normalization ensures the predecessor of
a junction point is an Inop instruction. This greatly simplifies the definition of
the semantics, and subsequently the proofs about SSA programs.

Following conventional practice, φ-blocks are given a parallel (big-step) se-
mantics. This is formally embedded in the rule for phistore (Fig. 5). When
reaching a join point pc′ from its kth predecessor, we update the register set rs
for each register res assigned in the φ-block phib with the value of register arg
in rs (written rs#arg), where arg is the kth operand in the φ-function of res
(written nth_error args k = Some arg). With the same notations, phistore
satisfies, on well-formed SSA functions, a parallel assignment property:
∀ arg res, In (Iphi args res) phib →

nth error args k = Some arg → (phistore k rs phib)#res = rs#arg

4 Translation Validation of SSA Generation

Modern compilers typically follow the algorithm by Cytron et al [7] to generate a
minimal SSA form of programs in almost linear time w.r.t. the size of the program.
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pc (Γ pc x) (Γ pc y) (live pc)
0 0 0 {x}
1 0 0 {x}
2 0 1 {x, y}
3 0 2 {x, y}
4 0 2 {x, y}
5 0 3 {x, y}
6 0 0 {x}
7 0 2 {x}
8 2 0 {x}
9 3 0 {x}

0 if x  >= 0

1 y := 0

2 Inop

3 if y < x   

4 y := 1+ y

5 Inop 7 Inop

6 x := 1

8 Inop

9 return x

x := (x  ,x  )23 0

0 if x >= 0

1 y := 0

2 Inop

3 if y < x   

4 y := 1+ y

5 Inop 7 Inop

6 x := 1

8 Inop

9 return x

0

1

2

2 0

23 3

Gen SSA

y  := (y  ,y  )
2 13

2

1

2

1

Fig. 6. A RTL program, its pruned SSA form and the corresponding type information

The algorithm proceeds in four steps: (i) it computes the dominator tree of the
CFG using the Lengauer and Tarjan algorithm [12]; (ii) it builds the dominance
frontier using a bottom-up traversal of the dominator tree; (iii) for each variable,
it places φ-functions using iterated dominance frontier; (iv) at last, it uses a top-
down traversal of the dominator tree to rename each def and use of RTL variables
with correct indexes. Programming efficiently the algorithm in Coq and proving
formally its correctness is a significant challenge—even verifying formally Step (i)
requires to formalize a substantial amount of graph theory. Instead, we provide
a new validation algorithm that checks in linear time that a SSA program is a
correct SSA form of an input RTL program. The algorithm is complete w.r.t.
minimal SSA form, and can be enhanced by a liveness analysis to handle pruned
and semi-pruned SSA forms. In order to be used in a certified compiler chain,
we also show that our validator preserves behaviors.

Translation validation of SSA conversion is performed in two passes. The first
pass performs a structural verification on programs: given a RTL function f
and a SSA function tf, it verifies that tf satisfies all clauses of well-formedness
except strictness, and that the code of f can be recovered from its SSA form tf
simply by erasing φ-blocks and variable indices—the latter property is captured
formally by the proposition structural_spec f tf. The second pass relies on a
type system to ensure strictness and semantics-preservation. Overall the pseudo-
code of the validator is:
let SSA validator (f: RTL.function) (tf: SSA.function): bool :=
if (check blocks are wf tf) (* ensures block_are_wf tf *)

&& (check blocks are at jp tf) (* ensures block_at_jp tf *)
&& (check normalized tf) (* ensures normalization *)
&& (check unique def tf) (* ensures unique_def tf *)
&& (check structural spec f tf) (* ensures structural_spec f tf *)

then (is well typed f tf) else false

where is_well_typed f tf is the predicate stating that the function is well-
typed w.r.t. our type system for SSA form.

Type System. The basic idea of our type system is to track for each vari-
able its last definition; this is achieved by assigning to all program points a
local typing, i.e., an element of ltype = RTL.reg→ idx; we let γ range over
local typings. Then, the global typing of an SSA function tf is an element of
gtype = node→ RTL.reg→ idx; we let Γ range over global typings. The type
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Definition use ok (uses:list SSA.reg)(γ:ltype):= ∀ r i, In (r,i) uses→ γ r=i.

Inductive wt instr: ltype → SSA.instr → ltype → Prop :=
| wt Inop: ∀ γ s, {γ} Inop s {γ}
| wt Istore: ∀ γ chk addr args s src,

use ok (src::args) γ → {γ} Istore chk addr args src s {γ}
| wt Icond: ∀ γ cond args s1 s2,

use ok args γ → {γ} Icond cond args s1 s2 {γ}
| wt Ireturn some: ∀ γ r, use ok [r] γ → {γ} Ireturn (Some r) {γ}
| wt Ireturn none: ∀ γ, {γ} Ireturn None {γ}
| wt Iop: ∀ γ op args s r i,

use ok args γ → i �= dft → {γ} Iop op args (r,i) s {γ[r← i]}
| wt Iload: ∀ γ chk addr args s r i,

use ok args γ → i �= dft → {γ} Iload chk addr args (r,i) s {γ[r← i]}
| wt Icall: ∀ γ sig args s id r i,

use ok args γ → i �= dft → {γ} Icall sig id args (r,i) s {γ[r← i]}

Fig. 7. Typing rules for instructions

system is structured in three layers. The lowest layer checks that RTL-like in-
structions make a correct use of variables. The middle layer checks that CFG
edges are well-typed. Finally, the third layer of the type system defines the no-
tion of well-typed function. Throughout this section, we use Fig. 6 as a running
example (an RTL program, its pruned SSA form and its type mapping).

Liveness. As explained in Section 2, liveness information can be used to minimize
the number of φ-functions in a SSA program; specifically, φ-blocks only need to
assign live variables (in Fig. 6, the variable y is live at node 3, and x is live at node
9).Hence, our type system is parametrizedbya functionlivethatmodels a liveness
analysis. Formally, we require that the live function satisfy two properties (for a
function f, their conjunction is denoted by (wf_live f live)): (i) if a variable is
used at a program point, then it should be live at this point and (ii) a variable that
is live at a given program point is, at the predecessor point, either live or assigned.

Our type system is able to handle different SSA forms through appropriate
instantiations of live. Our formalization provides support for minimal SSA and
pruned SSA forms, respectively by defining live respectively as the trivial over-
approximation (for each point, it is the set of all the RTL variables), and the
result of a standard liveness analysis. One could also support semi-pruned forms,
by instantiating live as the result of the block-local liveness analysis of [4].

The Type System for Instructions checks that RTL-like instructions make of
correct use of variables, and that they do not redefine parameters; its formal
definition is given in Fig. 7. Judgments are of the form {γ} ins {γ′}; intuitively,
the judgment is valid if each variable x is used in ins with the index (γ x), and
γ′ maps each variable to its last definition after execution of ins. The typing
rules are formalized as an inductive relation wt_instr; we briefly comment on
some rules. Several rules correspond to instructions that do not define variables,
so the input and output local typings are equal. For such rules, one simply checks
that the instruction makes a correct use of the variables (through use_ok). The
typing rule for (Inop pc) states that for every local typing γ, (Inop pc) makes
a correct use of variables. The typing rule for Icond checks that the variables
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used in the guard are consistent with the local typing input (in Fig. 6, the uses
of x0 and y2 at node 3 are consistent with the intput local typing: (Γ 3 x) = 0
and (Γ 3 y) = 2). In the case of the instruction Iop, which defines the variable
(r, i), the output local typing is γ[r← i], i.e. the input local typing updated for
the initial variable r. From this program node onwards, the new version for r is
the one indexed with i, and this is the one that should be used later on, until
another version for r is defined (in Fig. 6, the definition of x2 at node 6 makes
the local typing change for variable x between nodes 6 and 8). Note that each
time a variable is defined, we demand its index to be different from the index dft
assigned to parameters at the onset of the program (in the example, the default
index is 0). This prevents that a parameter is redefined during execution, which
would violate the unique definition property.

Typing Rules for Edges and Functions. The typing rules for edges ensure that
φ-blocks make a correct use of definitions w.r.t. a global typing Γ . There are
two rules—modelled by the clauses of the inductive relation wt_edge in Fig. 8.
The first rule considers the case where the edge does not end in a junction
point; in this case, typing the edge is equivalent to typing the corresponding
instruction. The second rule considers the case where the edge ends in a junction
point: the typing rule checks the φ-block attached to it—structural constraints
impose that the instruction is an Inop, so we do not need to type-check the
instruction. Hypothesis USES ensures the φ-arguments args passed to φ-functions
are consistent w.r.t. all incoming local typings: its kth argument should be the
version of the initial variable brought by the kth predecessor of the join point
(we omit the formal definition of phiuse_ok). Hypothesis ASSIG ensures the φ-
block is compatible with the output local typing; Hypothesis NASSIG ensures that
variables not assigned in the φ-block are either dead, or the incoming indices are
the same. In Fig. 6, the φ-function for x makes correct uses of it because its first
argument x0 matches (Γ 7 x) = 0 and x2 matches (Γ 8 x) = 2. The local typing
at node 9 takes into account the definition of x3 in the block by setting (Γ 9 x)
to 3. Moreover, no φ-function is required for y at node 9 since y �∈ (live 9), and
no φ-function is required for x at node 3, since (Γ 2 x) = (Γ 5 x).

Finally, a function is well-typed w.r.t. global typing Γ if the local typing in-
duced by Γ at the entry node fn_entrypoint is consistent with the parameters,
and all edges and return instructions are well-typed.1

Implementation. For the sake of clarity, we have described a non-executable
type checker which assumes that structural constraints are satisfied. The Coq
implementation of the type system is in fact a bit more complex. In particular,
it performs type inference rather than type checking; for efficiency reasons, the
algorithm performs a single, linear scan of the program, and checks the list of
arguments of φ-functions only once per junction point, rather than once per
incoming edge for a given join point. On the benchmarks given in Section 7, our
efficient implementation is ten times faster than a naive type checker derived
from the non-executable type system.
1 Return instructions do not correspond to any edge.
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Inductive wt edge (f:SSA.function)(Γ:gtype)(live:Regset.t):node→ node → Prop:=
| wt edge not jp: ∀ i j ins
(NOTJP : fn code f i = Some ins ∧ fn phicode f j = None)
(WTI : {Γ i} ins {Γ j}),
(wt edge f Γ live i j)

| wt edge jp: ∀ i j ins block
(JP: fn code f i = Some ins ∧ fn phicode f j = Some block)
(USES:∀ args r k, In (Iphi args (r,k)) block → phiuse ok r args (preds f j) Γ)
(ASSIG: ∀ r k, assigned (r,k) block → r ∈ live ∧ (Γ j r) = k ∧ k �= dft)
(NASSIG: ∀ r, (∀ k, ¬ (assigned (r,k) block))→ (Γ i r = Γ j r) ∨ r �∈ live),
(wt edge f Γ live i j).

Definition wt function (f:SSA.function)(Γ:gtype)(live:node→ Regset.t):Prop:=
(∀ i j, is edge f i j→ wt edge f Γ (live j) i j)
∧ (∀ i or, fn code f i = Some (Ireturn or)→ {Γ i} Ireturn or {Γ i})
∧ (∀ p, In p (fn params f)→ ∃ r, p = (r, Γ (fn entrypoint f) r)).

Fig. 8. Typing rules for edges and functions

Properties of the Validator

Strictness. All SSA programs accepted by the type system are strict. It follows
that only well-formed SSA functions will be accepted by the validator.

Theorem wt strict: ∀ f tf Γ live,
wf live f live → wt function tf Γ live →
∀ (xi : SSA.reg) (u d : node), use tf xi u→ def tf xi d→ dom tf d u.

The proof of wt_strict relies on two auxiliary lemmas about local typings
in well-typed functions. The first lemma states that if a variable (x, i) is used
at node pc, then it must be that (Γ pc x = i). The second lemma states that
whenever (Γ pc x = i), the definition point of variable (x, i) dominates pc.

Soundness. The validator is sound in the sense that if it accepts a RTL program
f and an SSA form tf, then all behaviors of tf are also behaviors of f. Since
CompCert already shows the general result that a lock-step forward simulation
implies preservation of behaviors, it is sufficient to exhibit such a simulation:

Theorem validator correct : ∀ (prog:RTL.program) (tprog:SSA.program),
SSA validator prog tprog = true →
∀ s1 t s2, RTL.step s1 t s2→
∀ s1’, s1 � s1’→ ∃ s2’, SSA.step s1’ t s2’ ∧ s2 � s2’.

where the binary relation � between semantic states of RTL and SSA carries
the invariants needed for proving behavior preservation. For instance, two reg-
ular states are related by � if their memory states, stack pointers, and pro-
gram counters are equal, their function descriptions are suitably related, e.g.
by structural_spec, and their register states rs and rs′ agree, i.e. satisfy
(agree (Γ pc) rs rs′ (live pc)), where

Definition agree (γ:ltype) (rs:RTL.regset) (rs’:SSA.regset) (live:Regset.t):=
∀ r, r ∈ live → rs#r = rs’#(r, γ r).
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Agreement is at the heart of the proof. It captures the semantics of local typings
by making explicit how, at a given program point, variables of f should be
interpreted in terms of the new variables in tf. The definition of � is completed
by defining equivalence of stackframes; this relation basically lifts to the callstack
all the invariants enforced by � (see [6] for the formal definition of �).

Completeness. An essential property of our type system is that it accepts all
the SSA programs that are output by the algorithm by Cytron et al [7]. The
idea of the proof is as follows (provided in [6]). First, one defines for each RTL
normalized program f a global typing Γ . Second, we show that all instructions of
the program tf output by our implementation are typable. Then, we show that
all edges are typable if we omit the constraints about correct use; the proof relies
crucially on the fixpoint characterization of the iterated dominance frontier, as
given in work of Cytron et al [7]. Finally, one shows that all constraints about
correct use are satisfied, and hence the program tf is typable with Γ .

5 Conversion out of SSA

We have programed and verified a simple de-SSA algorithm that transforms SSA
programs into RTL programs—so that they can be further processed by Com-
pCert back end. The idea is to substitute each φ-function with one variable copy
at each predecessor of junction points. Thanks to the single-instruction graph of
RTL, replacing φ-functions with copies ensures soundness of the transformation,
since critical edges are automatically splitted by code insertion—a critical edge
is an edge whose entry has several successors and exit has several predecessors
(see [4]). Pleasingly, the representation of programs inherited from CompCert
deflates the penalty cost of splitting edges—on the contrary, algorithms that
operate on basic-block graphs carefully avoid edge splitting, at the cost of mak-
ing de-SSA algorithms significantly more complex. On the negative side, our
current implementation of de-SSA fails on SSA programs with non-parallel φ-
blocks, i.e. in which some variable is both used and defined. Minor future work
includes making de-SSA total, reusing the formalization of the parallel moves
algorithm [20]—which transforms a set of parallel moves into an equivalent se-
quence of elementary moves (using additional temporaries), and that is already
used in CompCert. Concerning the correctness of the transformation, we proceed
by giving a forward simulation between the SSA program and the RTL program
after de-SSA. The simulation requires the RTL program to perform several steps
to simulate a (big-step) execution of a φ-block by the initial SSA program.

6 Validation of SSA-Based Optimizations

In this section, we introduce the equation lemma that supports the view of
programs in SSA form as systems of equations. We then illustrate how to reason
about a simple SSA-based optimization, namely copy propagation. Finally, we
formalize and prove correct a GVN optimization.
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Equation Lemma. The SSA representation provides
an intuitive reading of programs: one can view the
unique definition of a variable as an equation, and by
extension one can view SSA programs as systems of
equations. For instance, the definitions of x3 and y1
respectively induce the two equations x3 = y1 +1 and
y1 = x3 + 1. There is however a pitfall: the two equa-
tions entail x3 = x3 + 2, and thus are inconsistent. In
fact, equations are only valid at program nodes domi-
nated by the definition that induce them, as captured
formally by the equation-lemma of SSA:
Lemma equation lemma : ∀ prog d op args x succ f m rs sp pc s,

wf ssa program prog →
reachable prog (State s f sp pc rs m)→
fn code f d = Some (Iop op args x succ)→
sdom f d pc→
eval operation sp op (rs##args) m = Some (rs#x).

where reachable is a predicate that defines reachable states. In practice, it is
often convenient to rely on a corollary that proves the validity of the defining
equation of x at program points where x is used – thus avoiding reasoning on the
dominance relation. The formal statement of the corollary is obtained by replac-
ing the hypothesis sdom f d pc by the hypothesis use f x pc; the proof of the
corollary intensively uses the strictness property of well-formed SSA programs.

We conclude with a succinct account of applying the corollary to prove the
soundness of copy propagation (CP)—recall that CP will search for copies x := y
and replace every use of x by a use of y. Suppose pc is a program point where
such a replacement has been done. Every time pc is reached during the program
execution, we are able to derive, using the corollary, that rs#y = rs#x, where
rs is the current register state because (i) y is the right hand side of the definition
of x and (ii) pc was a use point of x in the initial program. On non-SSA forms,
the reasoning is more involved since one has to prove that the reaching definition
for x is unique at pc, and that no redefinition of y can occur in between.

Global Value Numbering. Our implementation of GVN is made of two com-
ponents. The first one is an efficient but untrusted analysis, written in OCaml, for
computing numberings of SSA programs. From an abstract interpretation point
of view, the analysis—which follows [1]—computes a fixpoint in the abstract
domain of congruence partitions, where partitions are modelled as mappings
N : reg→ reg that map a register to the canonical register of its equivalence
class, and ordered w.r.t. reverse inclusion of equivalence kernels—recall that
the equivalence kernel of N is the relation ∼ defined by x ∼ y if and only if
N x = N y. Viewing the result of the analysis as a post-fixpoint is the key to
our second component, a validator that checks whether a numbering N is indeed
a post-fixpoint of the analysis on a program p, and if so returns an optimized
SSA program tp. The validator is programmed in Coq, and is accompanied with
a proof that optimized programs preserve the behaviors of the original programs.
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Inductive ≡N : reg → reg → Prop :=

| GVN refl : ∀ x, ≡N x x
| GVN Iop : ∀ x y pc1 pc2 op args1 args2 pc1’ pc2’

fn code f pc1 = Some(Iop op args1 x pc1’)→ same number N args1 args2 →
fn code f pc2 = Some(Iop op args2 y pc2’)→ ≡N x y

| GVN Phi : ∀ x y pc args x args y
fn phicode f pc = Some phib → same number N args x args y →
(Iphi args x x) ∈ phib → (Iphi args y y) ∈ phib → ≡N x y.

Definition GVN spec (N:reg → reg) : Prop :=

(∀ x y, N x = N y→ param f x→ param f y→ x=y)∧(∀ x y, N x = N y→ ≡N x y).

Fig. 9. Valid numbering

The notion of valid numbering is formally defined in Fig. 9. First, we define for
each numbering N the relation ≡N as the smallest reflexive relation identify-
ing: (i) registers whose assignments share the same operator and corresponding
arguments are equivalent w.r.t. N (predicate same_number); (ii) registers that
are defined in the same φ-block with equivalent arguments.Then, for a number-
ing N to be valid (see GVN_spec), its equivalence kernel must not contain a pair
of distinct function parameters and it must moreover be included in ≡N . The
latter ensures the intended post-fixpoint property.

The crux of the correctness proof of the GVN validator is the correctness
lemma for a valid numbering: if N is a valid numbering for f, and rs is a
register state that can be reached at node pc, and x and y are two registers
whose definition strictly dominate pc, then N x = N y entails that rs holds
equal values for x and y:
Lemma valid numbering correct : ∀ prog s sp pc rs m,

wf ssa program prog → GVN spec N→
reachable prog (State s f sp pc rs m)→ gamma N pc rs.

where gamma is defined by
Definition gamma (N:reg → reg) (pc:node) (rs: regset) : Prop :=
∀ x y: reg, def sdom f x pc→ def sdom f y pc→ N x = N y→ rs#x = rs#y.

and def_sdom f x pc states that the definition of x in f strictly dominates pc.
Let us illustrate this property with Fig. 3; registers x2 and y2 share the same
numbering; they are indeed equal just after the assignment of y2 but not before.

Next, we describe the Coq implementation for optimizing SSA programs. The
implementation takes as input a numbering N , and a partial mapping crep that
takes as input a register x and node pc and returns, if it exists, a register y such
that x and y are related by the equivalence kernel of N , and the definition of y
strictly dominates pc. For efficiency reasons, we do not check the correctness of
crep a priori, but lazily during the construction of the optimized program. The
optimizer proceeds as follows: first, it checks whether N satisfies the predicate
GVN_spec. Then, for each assignment (Iop op args x pc) of the original SSA
program, the optimizer checks whether crep provides a canonical representative
y for x at node pc. If so, it checks whether the definition of y strictly dominates
pc; this is achieved by means of a dominance analysis, computed directly inside
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Coq with a standard dataflow framework a la Kildall. Provided y is validated,
we can safely replace the previous instruction by a move from y to x.

We conclude by commenting briefly on the soundness proof of the
transformation. It follows a standard forward simulation proof where the cor-
rectness of the numbering is proved at the same time as the simulation itself.
Noticeably, the CFG normalization turned out to be extremely valuable for this
proof. Indeed, consider a step from node pc to node pc′: we have to prove that
(gamma N pc′ rs) holds, asumming (gamma N pc rs). We reason by case analy-
sis: if the instruction at pc is not an Inop instruction, we know by normalization
that pc′ is not a junction point. In this case, (def_sdom f x pc′) is equivalent
to (def_sdom f x pc) ∨ (def f x pc) which is particularly useful to exploit the
hypothesis that (gamma N pc rs) holds.

7 Implementation and Experimental Results

We have plugged in Compcert 1.8.2 our SSA middle-end made of (i) a Coq
normalization (ii) an Ocaml SSA generator and its Coq validator; (iii) an Ocaml
GVN inference tool and its Coq validator; (iv) a Coq de-SSA transformation.
Our formal development adds 15.000 lines of Coq code and 1.000 lines of Ocaml
to the 80.000 lines of Coq and 1.000 lines of Ocaml provided in CompCert. It
does not add any axioms to CompCert. We use the Coq extraction mechanism
to obtain a SSA-based certified compiler, that we evaluate experimentally using
the CompCert benchmarks. These include around 75.000 lines of C code, and
fall into three categories of programs (from 20 to 5.000 LoC): small computation
kernels, a raytracer, and the theorem prover Spass2. Below we briefly comment
on three key points: efficiency of the SSA validator; effectiveness of the GVN
optimizer; efficiency of generated code.

SSA Validator. In order to be practical, validators must be more efficient than
state-of-the-art implementations of the transformations that they validate. At
first sight, this criterion may seem too demanding for SSA, since generation into
SSA form is performed in almost linear time. However, experimental results are
surprisingly good: overall converting a program into SSA form takes approx-
imately twice longer than type-checking the output program. In more detail,
the times for SSA generation—specialized to pruned SSA—distribute as follows:
(i) 9% for normalization of RTL; (ii) 37% for liveness analysis of RTL (the live-
ness analysis is provided in the CompCert distribution); (iii) 35% for conversion
to SSA using the untrusted OCaml implementation (based on state-of-the-art
algorithms); (iv) 19% for validation using the verified validator. This distribu-
tion appears to be uniform on all benchmarks except on the biggest functions
where the liveness analysis exhibits a non-linear complexity.

GVN Optimizer. We measure the effectiveness of our GVN analyzer by per-
forming a GVN-based CSE right after (Local Value Numbering) LVN-based CSE

2 Spass is the largest (69.073 LoC), we only use it to evaluate the compilation time.
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Fig. 10. Execution times of generated code

implemented by CompCert, counting how many additional Iop instructions are
optimized by this additional CSE phase. To keep the comparison fair, we allow
CompCert CSE to optimize around function calls—this is disabled in CompCert
to keep the register pressure low. The overall improvement is significative: our
global CSE optimizes an additional 25% of Iop.

Generated Code. To assess the efficiency of the generated code, we have com-
piled the benchmarks with three compilers: CompCert, our version of CompCert
extended with a SSA middle-end (CompCertSSA), and gcc − O1. Fig. 10 gives
the execution times relative to Compcert (shorter bars mean faster) on Pow-
erPC. The test suite is too small to draw definite conclusions, but the results are
encouraging. Our version of CompCert performs slightly better than CompCert.
We expect that performance improves significantly by enhancing our middle-end
with additional optimizations, and by relying on an SSA-based register allocator.

8 Related Work

Machine-Checked Formalizations. Blech et al [3] use the Isabelle/HOL
proof assistant to verify the generation of machine code from a representation
of SSA programs that relies on term graphs. While graph-based representations
may be useful for the untrusted parts of our compiler, they increase the com-
plexity of the formal SSA semantics, and make it a greater challenge to verify
SSA-based optimizations. They do not provide an algorithm to convert into SSA
form, and leave as future work proving the correctness of SSA-based optimiza-
tions. Mansky and Gunter [15] use Isabelle/HOL to formalize and verify the
conversion of CFG programs into SSA form. However, their transformation may
yield non-minimal SSA, and does not aim extraction into efficient code. More-
over, it is not clear whether their semantics of SSA can be used to reason about
optimizations. Zhao et al [26] formalize the LLVM intermediate representation
in Coq. They define and relate several formal semantics of LLVM, including
a static and dynamic semantics. They show how simple code motions can be



A Formally Verified SSA-Based Middle-End 65

validated with a simulation relation based on symbolic evaluation, and plan
to extend the method to other transformations such as dead code elimination
or constant propagation. Finally, there are several machine-checked accounts of
Continuation Passing Style translations, e.g. [8], closely related to conversion to
SSA form [2].

Translation Validation and Type Systems. Menon et al [17] propose a
type system that can be used to verify memory safety of programs in SSA form,
but their system does not enforce the SSA property. Matsuno and Ohori [16]
define a type system equivalent to SSA: every typable program is given a type
annotation makeing explicit def-use relations. Their type system is similar to
ours except they type check one program w.r.t. annotations while we type check
a pair of a RTL and a SSA program. They show that common optimizations such
as dead code elimination and CSE are type-preserving. But they do not prove the
semantics preservation of the optimizations. Stepp et al [21] report on a trans-
lation validator for LLVM. Their validator uses Equality Saturation [22], which
views optimizations as equality analyses. Their tool does not validate GVN.
Tristan et al [23] independently report on an a translation validator for LLVM’s
inter-procedural optimizations. This tool supports GVN, but is currently not
certified.

9 Conclusion and Future Work

Our work shows that verified and realistic compilers can rely on a SSA-based
middle-end that implements state-of-the-art algorithms, and opens the way for
a new generation of verified compilers based on SSA. A priority for further work
is to achieve a tighter integration of our middle-end into CompCert. There are
three immediate objectives: (i) enhancing our SSA middle-end to handle memory
aliases as done by CompCert RTL-based middle-end, (ii) implementing a SSA-
based register allocator [9], and (iii) verifying more SSA-based optimizations,
including lazy code motion [11]—we expect that our implementation of GVN
will provide significant leverage there. Eventually, it should be possible to shift
all CompCert optimisations into the SSA middle-end. In the longer term, it
would be appealing to apply our methods to LLVM, building on [23,21,26].

Acknowledgments. We thank Xavier Leroy for his thoughtful feedback.
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Abstract. When distributed clients query or update shared data, eventual con-
sistency can provide better availability than strong consistency models. However,
programming and implementing such systems can be difficult unless we establish
a reasonable consistency model, i.e. some minimal guarantees that programmers
can understand and systems can provide effectively.

To this end, we propose a novel consistency model based on eventually con-
sistent transactions. Unlike serializable transactions, eventually consistent trans-
actions are ordered by two order relations (visibility and arbitration) rather than
a single order relation. To demonstrate that eventually consistent transactions can
be effectively implemented, we establish a handful of simple operational rules
for managing replicas, versions and updates, based on graphs called revision di-
agrams. We prove that these rules are sufficient to guarantee correct implemen-
tation of eventually consistent transactions. Finally, we present two operational
models (single server and server pool) of systems that provide eventually consis-
tent transactions.

1 Introduction

Eventual Consistency [17] is a well-known workaround to the fundamental problem
of providing CAP [9] (consistency, availability, and partition tolerance) to clients that
perform queries and updates against shared data in a distributed system. It weakens
traditional consistency guarantees (such as linearizability) in order to allow clients to
perform updates against any replica, at any time. Eventually consistent systems guaran-
tee that all updates are eventually delivered to all replicas, and that they are applied in a
consistent order.

Eventual consistency is popular with system builders. One reason is that it allows
temporarily disconnected replicas to remain fully available to clients. This is particu-
larly useful for implementing clients on mobile devices [20]. Another reason is that it
does not require updates to be immediately performed on all server replicas, thus im-
proving scalability. In more theoretical terms, the benefit of eventual consistency can
be understood as its ability to delay consensus [16].

However, eventual consistency is a weak consistency model that breaks with tradi-
tional approaches (e.g. serializable operations) and thus requires developers to be more
careful. The essential problem is that updates are not immediately applied globally, thus
the conditions under which they are applied are subject to change, which can easily
break data invariants. Many eventually consistent systems address this issue by pro-
viding higher-level data types to programmers. Still, the semantic details often remain
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sketchy. Experience has shown that ad-hoc approaches to the semantics and implemen-
tation of such systems can lead to surprising behaviors (e.g. a shopping cart where
deleted items reappear [7]). To take eventual consistency to its full potential, we need
answers to the following questions:

– How can we provide consistency guarantees that are as strong as possible without
forsaking lazy consensus?

– How can we effectively understand and implement systems that provide those guar-
antees?

In this paper, we propose a two-pronged solution that addresses both questions, based on
(1) a notion of transactions for eventual consistency, and (2) a general implementation
technique based on revision diagrams.

Eventually consistent transactions differ significantly from traditional transactions,
as they are not serializable. Nevertheless, they uphold traditional atomicity and isolation
guarantees. Even better, they exhibit some strong properties that simplify the life of
programmers and are not typically offered by traditional transactions: (1) transactions
cannot fail and never roll back, and (2) all code, even long-running tasks, can run inside
transactions without compromising performance.

We first present an abstract, concise specification of eventually consistent transac-
tions. This formalization uses mathematical techniques (sets of events, partial orders,
and equivalence relations) that are commonly used in research on relaxed memory mod-
els and transactional memory. Our definition provides immediate insight on how even-
tual consistency is related to strong consistency: the only difference is that eventual
consistency uses two separate order relations (visibility order and arbitration order)
rather than a single order over transactions.

We then proceed to describe a more concrete and operational implementation tech-
nique based on revision diagrams [6]. Revision diagrams provide implementors with
a simple set of rules for managing updates and replicas. Revision diagrams make the
fork and join of versions explicit, which determines the visibility and arbitration of
transactions. We prove a theorem that guarantees that any system following the revision
diagram rules provides eventually consistent transactions according to the abstract def-
inition. We also illustrate the use of revision diagrams by presenting two simple system
models (one using a single server, and one using a server pool).

Overall, we make the following contributions:

– We introduce a notion of eventually consistent transactions and give a concise and
abstract definition.

– We present a systematic approach for building systems that support such transac-
tions, based on revision diagrams. We present a precise, operational definition of
revision diagrams.

– We prove a theorem stating that the revision diagram rules are sufficient to guar-
antee eventual consistency. The proof is nontrivial as it depends on deep structural
properties of revision diagrams.

– We illustrate the use of revision diagrams by presenting two operational system
models, using a single server and a server pool, respectively.
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2 Formulation

To get started, we need to establish some precise terminology. Perhaps the very first
question is: what is a database? At a high abstraction level, databases are no different
than abstract data types, which are semantically defined by the operations they support
to update them and retrieve data. Taking cues from common definitions of abstract data
types, we define:

Definition 1. A query-update interface is a tuple (Q, V, U) where Q is an abstract set
of query operations, V is an abstract set of values returned by queries, and U is an
abstract set of update operations.

Note that the sets of queries, query results, and updates are not required to be finite (and
usually are not). Query-update interfaces can apply in various scenarios, where they
may describe abstract data types, relational databases, or simple random-access mem-
ory, for example. For databases, queries are typically defined recursively by a query
language.

Example 1. Consider random-access memory that supports loads and stores of bytes
in a 64-bit address space A = {a ∈ N | 0 < a ≤ 264}. For that example we define
Q = {load(a) | a ∈ A}, V = {v ∈ N | 0 < v ≤ 28} and U = {store(a, v) | a ∈
A and v ∈ V }.

This example is excellent for illustration purposes (we will revisit it throughout), and
it provides an explicit connection between our results and previous work on relaxed
memory models and transactional memory. Of course, most databases also fit in this
abstract interface where the queries are SQL queries and the update operations are SQL
updates like insertion and deletion.

So far, our interfaces have no inherent meaning. The most direct way to define the
semantics of queries and updates is to relate them to some notion of state:

Definition 2. A query-update automaton (QUA) for the interface (Q, V, U) is a tuple
(S, s0) where S is a set of states with (1) an initial state s0 ∈ S, (2) an interpretation
q# of each query q ∈ Q as a function S → V , and (3) an interpretation u# of each
update operation u ∈ U as a a function S → S.

Example 2. The random-access memory interface described in Example 1 above can be
represented by a QUA (S, s0) whereS is the set of total functionsA → V , and where s0
is the constant function that maps all locations to zero, and where load(a)#(s) = s(a)
and store(a, v)#(s) = s[a �→ v].

QUAs can naturally support abstract data types (e.g. collections, or even entire docu-
ments) that offer higher-level operations (queries and updates) beyond just loads and
stores. Such data types are often important when programming against a weak consis-
tency model [18], since they can ensure that the data representation remains intact when
handling concurrent and potentially conflicting updates.

The following two characteristics of QUAs are important to understand how they
relate to other definitions of abstract data types:
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– There is a strict separation between query and update operations: it is not possible
for an operation to both update the data and return information to the caller.

– All updates are total functions. It is thus not possible for an update to ’fail’; how-
ever, it is of course possible to define updates to have no effect in the case some
precondition is not satisfied.

For instance, in our formalization, we would not allow a classic stack abstract data type
with a pop operation for two reasons, (1) pop both removes the top element of the stack
and returns it, so it is neither an update nor a query, and (2) pop is not total, i.e. it can
not be applied to the empty stack.

This restriction is crucial to enable eventual consistency, where the sequencing and
application of updates may be delayed, and updates may thus be applied to a different
state than the one in which they were originally issued by the program.

2.1 Clients and Transactions

Things become more interesting and challenging once we consider a distributed system.
We call the participants of our system clients. Clients typically reside on physically
distinct devices, but are not required to do so. When clients in a distributed system
issue queries and updates against some shared QUA, we need to define what consistency
programmers can expect. This consistency model should also address the semantics of
transactions, which provide clients with the ability to perform several updates as an
atomic “bundle”.

We formally represent this scenario by defining a set C of clients. Each client, at its
own speed, issues a sequence of transactions. Supposedly, each client runs some form
of program (the details of which we leave unspecified for simplicity and generality).
This program determines when to begin and end a transaction, and what operations to
perform in each transaction, which may depend on various factors, such as the results
returned by queries, or external factors such as user inputs.

For uniformness, we require that all operations are part of a transaction. This as-
sumption comes at no loss of generality: a device that does not care about transactions
can simply issue each operation in its own transaction.

Since all operations are inside transactions, we need not distinguish between the end
of a transaction and the beginning of a transaction. Formally, we can thus represent
the activities on a device as a stream of operations (queries or updates) interrupted by
special yield operations that mark the transaction boundary.1

We can thus fully describe the interaction between programs executing on the clients
and the database by the following three types of operations:

1. Updates u ∈ U issued by the program,
2. Pairs (q, v) representing a query q ∈ Q issued by the program, together with a

response v ∈ V by the database system,
3. The yield operations issued by the program.

1 We call this operation yield() since it is semantically similar to a yield we may encounter on a
uniprocessor performing cooperative multittasking: such a yield marks locations where other
threads may read and modify the current state of the data, while at all other locations, only the
current thread may read or modify the state.
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Definition 3. A history H for a set C of clients and a query-update interface (Q, V, U)
is a map H which maps each client c ∈ C to a finite or infinite sequence H(c) of
operations from the alphabet Σ = U ∪ (Q × V ) ∪ {yield}.

Note that our history does not a priori include a global ordering of events, since such an
order is not always meaningful when working with relaxed consistency models. Rather,
the existence of certain orderings, subject to certain conditions, is what determines
whether a history satisfies a consistency model or not.

Notation and Terminology. To reason about a history H , it is helpful to introduce the
following auxiliary terminology. We let EH be the set of all events in H , by which we
mean all occurrences of operations in Σ \ {yield} in the sequences H(c) (we consider
yield to be just a marker within the operation sequence, but not an event).

For a client c, we call a maximal nonempty contiguous subsequence of events in
H(c) that does not contain yield a transaction of c. We call a transaction committed if
it is succeeded by a yield operation, and uncommitted otherwise. We let TH be the set
of all transactions of all clients, and committed(TH) ⊆ TH the subset of all committed
transactions. For an event e, we let trans(e) ∈ TH be the transaction that contains e.
Moreover, we let committed(EH) ⊆ EH be the subset of events that are contained in
committed transactions. We conclude by giving definitions related to ordering events
and transactions:

– Program order. For a given history H , we define a partial order <p over events in
H such that e <p e′ iff e appears before e′ in some sequence H(c).

– Apply in order. For a history H , for a state s ∈ S, for a subset of events E′ ⊂ EH ,
and for a total order < over the events in E′, we let apply(E′, <, s) be the state
obtained by applying all updates appearing in E′ to the state s, in the order specified
by <.

– Factoring. We define an equivalence relation ∼t (same-transaction) over events
such that e ∼t e

′ iff trans(e) = trans(e′). For any partial order ≺ over events, we
say that ≺ factors over ∼t iff for any events x and y from different transactions,
x ≺ y implies x′ ≺ y′ for any x, y such that x ∼t x′ and y ∼t y′. This is
an important property to have for any ordering ≺, since if ≺ factors over ∼t, it
induces a corresponding partial order on the transactions.

2.2 Sequential Consistency

Sequential consistency posits that the observed behavior must be consistent with an
interleaving of the transactions by the various devices. We formalize this interleaving
as a partial order over events (rather than a total order as more commonly used) since
some events are not instantly ordered by the system; for example, the relative order of
operations in uncommitted transactions may not be fully determined yet.

Definition 4. A history H is sequentially consistent if there exists a partial order< over
the events in EH that satisfies the following conditions for all events e1, e2, e ∈ EH :
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– (compatible with program order) if e1 <p e2 then e1 < e2
– (total order on past events) if e1 < e and e2 < e then either e1 < e2 or e2 < e1.
– (consistent query results) for all (q, v) ∈ EH , v = q#(apply ({e ∈ (H) | e <

q}, <, s0)). This simply says that a query returns the state as it results from apply-
ing all past updates to the initial state.

– (atomicity) < factors over ∼t.
– (isolation) if e1 /∈ committed(EH) and e1 < e2, then e1 <p e2. That is, events in

uncommitted transactions precede only events on the same client.
– (eventual delivery) for all committed transactions t ∈ committed(TH), there exist

only finitely many transactions t′ ∈ TH such that t �< t′.

Sequential consistency fundamentally limits availability in the presence of network par-
titions. The reason is that any query issued by some transaction t must see the effect of
all updates that occur in transactions that are globally ordered before t, even if on a
remote device. Thus we cannot conclusively commit transactions in the presence of
network partitions.

2.3 Eventual Consistency

Eventual consistency relaxes sequential consistency by allowing queries in a transaction
t to see only a subset of all transactions that are globally ordered before t. It does so by
distinguishing between a visibility order (a partial order that defines what updates are
visible to a query), and an arbitration order (a partial order that determines the relative
order of updates).

Definition 5. A history H is eventually consistent if there exist two partial orders <v

(the visibility order) and <a (the arbitration order) over events in H , such that the
following conditions are satisfied for all events e1, e2, e ∈ EH :

– (arbitration extends visibility) if e1 <v e2 then e1 <a e2.
– (total order on past events) if e1 <v e and e2 <v e, then either e1 <a e2 or

e2 <a e1.
– (compatible with program order) if e1 <p e2 then e1 <v e2.
– (consistent query results) for all (q, v) ∈ EH , v = q#(apply({e ∈ H) | e <v

q}, <a, s0)). This says that a query returns the state as it results from applying all
preceding visible updates (as determined by the visibility order) to the initial state,
in the order given by the arbitration order.

– (atomicity) Both <v and <a factor over ∼t.
– (isolation) if e1 /∈ committed(EH) and e1 <v e2, then e1 <p e2. That is, events in

uncommitted transactions are visible only to later events by the same client.
– (eventual delivery) for all committed transactions t ∈ committed(TH), there exist

only finitely many transactions t′ ∈ TH such that t �<v t′.

The reason why eventual consistency can tolerate temporary network partitions is that
the arbitration order can be constructed incrementally, i.e. may remain only partially
determined for some time after a transaction commits. This allows conflicting updates
to be committed even in the presence of network partitions.

Note that eventual consistency is a weaker consistency model than sequential con-
sistency. We can prove this statement as follows.



Eventually Consistent Transactions 73

Lemma 1. A sequentially consistent history is eventually consistent.

Proof. Given a history H that is sequentially consistent, we know there exists a par-
tial order < satisfying all conditions. Now define <v=<a=<; then all conditions for
eventual consistency follow easily.

2.4 Eventual Consistency in Related Work

Eventual consistency across the literature uses a variety of techniques to propagate up-
dates (e.g. general causally-ordered broadcast [18,19], or pairwise anti-entropy [15]).
All of these techniques are particular implementations that specialize our general defi-
nition of visibility as a partial order. As for the arbitration order, we found that two main
approaches prevail. The most common one is to use (logical or actual) timestamps:
Timestamps provide a simple way to arbitrate events. Another approach (sometimes
combined with timestamps) is to make updates commutative, which makes arbitration
unnecessary (i.e. we can pick an arbitrary serialization of the visibility order to satisfy
the conditions in Def. 5).

We show in the next section (Section 3) how to arbitrate updates without using times-
tamps or requiring commutativity, a feature that sets our work apart. We prefer to not
use timestamps because they exhibit the write stabilization problem [20], i.e. the inabil-
ity to finalize the effect of updates while older updates may still linger in disconnected
network partitions. Consider, for example, a mobile user called Robinson performing
an important update, but getting stranded on a disconnected island before transmitting
it. When Robinson reconnects after years of exile, Robinson’s update is older than (and
may thus alter the effect of) all the updates committed by other users in the meantime.
So either (1) none of these updates can stabilize until Robinson returns, or (2) after
some timeout we give up on Robinson and discard his update. Clearly, neither of these
solutions is satisfactory. A better solution is to abandon time stamps and instead use
an arbitration order that simply orders Robinson’s update after all the other updates.
In fact, this is the outcome we achieve when using revision diagrams, as explained in
Section 3.

3 Revision Consistency

Our definition of eventual consistency (Def. 5) is concise and general. By itself, it is
however not very constructive, insofar that it does not give practical guidelines as to
how a system can efficiently and correctly construct the necessary ordering (visibility
and arbitration). We now proceed to describe a more specific implementation technique
for eventually consistent systems, based on the notion of revision diagrams introduced
in [6].

Revision diagrams show an extended history not only of the queries, updates, and
transactions by each client, but also of the forking and joining of revisions, which are
logical replicas of the state (Fig. 1). A client works with one revision at a time, and
can perform operations (queries and updates) on it. Since different clients work with
different revisions, clients can perform both queries and updates concurrently and in
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isolation (i.e. without creating race conditions). Reconciliation happens during join op-
erations. When a revision joins another revision, it replays all the updates performed in
the joined revision at the join point.2 After a revision is joined, no more operations can
be performed on it (i.e. clients may need to fork new revisions to keep enough revisions
available).

3.1 Revision Diagrams

Revision diagrams are directed graphs constructed from three types of edges (successor,
fork, and join edges, or s-, f - and j-edges for short), and five types of vertices (start,
fork, join, update, and query vertices). A start vertex represents the beginning of a revi-
sion, s-edges represent successors within a revision, and fork/join edges represent the
forking and joining of revisions.
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Fig. 1. Examples of Valid Revision Diagrams

We pictorially represent revision diagrams using the following conventions

– Use · for start, query, and update vertices
– Use • and ◦ for fork and join vertices, respectively
– Use vertical down-arrows for s-edges
– Use horizontal-to-vertical curved arrows for f -edges
– Use vertical-to-horizontal curved arrows for j-edges

A vertex x has a s-path (i.e. a path contanining only s-edges) to vertex y if and only
if they are part of the same revision. Since all s-edges are vertical in our pictures,

2 This replay operation is conceptual. Rather than replaying a potentially unbounded log, ac-
tual implementations can often use much more space- and time-efficient merge functions, as
explained in Section 4.
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vertices belonging to the same revision are always aligned vertically. For any vertex
x we let S(x) be the start vertex of the revision that x belongs to. For any vertex x
whose start vertex S(x) is not the root, we define F (x) to be the fork vertex such that

F (x)
f−→ S(x) (i.e. the fork vertex that started the revision x belongs to). We call a

vertex with no outgoing s- or j-edges a terminal; terminals are the last operation in a
revision that can still perform operations (has not been joined yet), and thus represent
potential extension points of the graph.

We now give a formal, constructive definition for revision diagrams.

Definition 6. A revision diagram is a directed graph constructed by applying a (pos-
sibly empty or infinite) sequence of the following construction steps (see Fig 2(a)) to a
single initial start vertex (called the root):

Query. Choose some terminal t, create a new query vertex x, and add an edge t
s−→ x.

Update. Choose some terminal t, create a new update vertex x, and add an edge t
s−→ x.

Fork. Choose some terminal t, create a new fork vertex x and a new start vertex y, and

add edges t
s−→ x and x

f−→ y.
Join. Choose two terminals t, t′ satisfying the join condition F (t′) →∗ t, then create

a new join vertex x and add edges t
s−→ x and t′

j−→ x.

The join condition expresses that the terminal t (the “joiner”) must be reachable from
the fork vertex that started the revision that contains t′ (the “joinee”). This condition
makes revision diagrams more restricted than general task graphs. See Fig 2(b) for some
examples of invalid diagrams where the join condition does not hold at construction of
the join nodes.

(a) (b)
(shortcut) (parent join)
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��·

��

•
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��
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��x ◦
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�� ��·
��

·
��

t′ ·
		

· t
��◦ x

��·

Fig. 2. (a) (left) Visualization of the construction rules for revision diagrams in Def. 6. (b) (right)
Examples of invalid revision diagrams. Both diagrams are not possible since they violate the join
property at the creation of the join node x. Note that in the right diagram, F (t′) is undefined on
the main revision and therefore F (t′) →∗ t does not hold.

The join condition has some important, not immediately obvious consequences. For
example, it implies that revision diagrams are always semilattices (for a proof of this



76 S. Burckhardt et al.

nontrivial fact see [6]). Also, it ensures some diagram properties (Lemmas 2 and 3)
that we need to prove our main result (Thm. 1). Futhermore, it still allows more general
graphs than strict series-parallel graphs [21], which allow only the recursive serial and
parallel composition of tasks (and are also called fork-join concurrency in some con-
texts, which is potentially misleading). For instance, the right-most revision diagram
in Fig. 1 is not a series-parallel graph but it is a valid revision diagram. While series-
parallel graphs are easier to work with than revision diagrams, they are not flexible
enough for our purpose, since they would enforce too much synchronization between
participants.

Also, note that fork and the join are fundamentally asymmetric: the revision that
initiates the fork (the “forker”) continues to exist after the fork, but also starts a new re-
vision (the “forkee”), and similarly, the revision that initiates the join (the “joiner”) can
continue to perform operations after the join, but ends the joined revision (the “joinee”).

3.2 Graph Properties

We now examine some properties of the revision diagrams, for better visualization, and
because we need some technical properties in our later proofs. Most statements are
easily proved by induction over the construction rules in Def. 6; if not, we mention how
to prove them.

Revision diagrams are connected, and all vertices are reachable from the root vertex.
There can be multiple paths from the root to a given vertex, but exactly one of those is
free of j-edges.

Definition 7. For any vertex v in a revision diagram, let the root-path of v be the unique
path from the root to v that does not contain j-edges.

The join condition does not make revision diagrams necessarily planar, i.e. when
drawing revision diagrams, it is not always possible to avoid crossing lines (see the third
diagram in Fig. 1 for an example). However, it is always possible to choose horizontal
coordinates for the vertices such that (1) vertices in the same revisions are vertically
aligned, and (2) revisions are horizontally arranged such that forkers are left of forkees,
and (3) joiners are left of joinees. The existence of such an order is not immediately
obvious; for example, such a layout is not possible for the incorrect revision diagram at
the right in Fig. 2(b). The following lemma formalizes the claims (1,2,3) above (where
the preorder ≤l corresponds to a relation on vertices that compares their horizontal
coordinates):

Lemma 2. [Layout Preorder] In any revision diagram, there exists a preorder ≤l on
vertices3 such that

S(x) = S(y) ⇔ (x ≤l y) ∧ (y ≤l x) (1)

x
f−→ y ⇒ x ≤l y (2)

x
j−→ y ⇒ y ≤l x (3)

3 A preorder is a reflexive transitive binary relation. Unlike partial orders, preorders are not
necessarily antisymmetric, i.e. they may contain cycles.
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We include the proof in the full version [4]. For proving our main result later on, we
need to establish another basic fact about revision diagrams. We call a path direct if
all of its f-edges (if any) appear after all of its j-edges (if any). The following lemma
(which appears as a theorem in [6], and for which we include a proof in [4] as well)
shows that we can always choose direct paths:

Lemma 3 (Direct Paths.). Let x, y be vertices in a revision diagram. If x →∗ y, there
exists a direct path from x to y.

3.3 Query and Update Semantics

We now proceed to explain how to determine the results of a query in a revision di-
agram. The basic idea is to (1) return a result that is consistent with applying all the
updates along the root path, and (2) if there are join vertices along that path, they sum-
marize the effect of all updates by the joined revision.

·
��•
�� 



store(a, 1) ·

��

· store(a, 2)

��
· store(b, 2)

��store(a, 2); store(b, 2) ◦
��

load(a) ·

Fig. 3. A labeled revision diagram. The path-result of the bottom vertex is now the query applied
to its root-path: load(a)#(store(b, 2)#(store(a, 2)#(store(a, 1)#(s0)))) = 2.

For example, consider the diagram in Fig. 3. This is an example of a revision di-
agram labeled with the operations of the random access memory example described
in Example 2. The join vertex is labeled with the composition of all update opera-
tions of the joinee. The path-result of the final query node load(a) can now be eval-
uated by applying to the composition of all update operations along the root-path:
load(a)#(store(b, 2)#(store(a, 2)#(store(a, 1)#(s0)))) = 2.

We can define this more formally. To reduce the verbosity of our definitions, we
assume a fixed query-update interface (Q, V, U) and QUA (S, s0) for the rest of this
section.

Definition 8. For any vertex x, we let the effect of x be a function x◦ : S → S defined
inductively as follows:

– If x is a start, fork, or query vertex, the effect is a no-op, i.e. x◦(s) = s.
– If x is an update vertex for the update operation u, then the effect is that update,

i.e. x◦(s) = u#(s).
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– If x is a join vertex, then the effect is the composition of all effects in the joined
revision, i.e. if y1, . . . , yn is the sequence of vertices in the joined revision (i.e. y1
is a start vertex, yi

s−→ yi+1 for all 1 ≤ i < n, and yn
j−→ x), then x◦(s) =

y◦n(y
◦
n−1(. . . y

◦
1(s))).

We can then define the expected query result as follows.

Definition 9. Let x be a query vertex with query q, and let (y1, . . . , yn, x) be the root
path of x. Then define the path-result of x as q#(y◦n(y

◦
n−1(. . . y

◦
1(s0))).

3.4 Revision Diagrams and Histories

We can naturally relate histories to revision diagrams by associating each query event
(q, v) ∈ EH with a query vertex, and each update event u ∈ EH with a update vertex.
The intention is to validate the query results in the history using the path results, and
to keep transactions atomic and isolated by ensuring that their events form contiguous
sequences within a revision.

Definition 10. We call a revision diagram a witness for the history H if it satisfies the
following conditions:

1. For all query events (q, v) in EH , the value v matches the path-result of the query
vertex.

2. If x, y are two successive non-yield operations in H(c) for some c, then they must
be connected by a s-edge.

3. If x is the last event of H(c) for some c and not a yield, then it must be a terminal.
4. If x, y are two operations preceding and succeeding some yield in H(c) for some

c, then there must exist a path from x to y. In other words, the beginning of a
transaction must be reachable from the end of the previous transaction.

We call a history H revision-consistent if there exists a witness revision diagram.

To ensure eventual delivery of updates, we need to somehow make sure there are enough
forks and joins. To formulate a liveness condition on infinite histories, we define “ne-
glected vertices” as follows:

Definition 11. We call a vertex x in a revision diagram neglected if there exists an
infinite number of vertices y such that there is no path from x to y.

We are now ready to state and prove our main result.

Theorem 1. Let H be a history. If there exists a witness diagram for H such that no
committed events are neglected, then H is eventually consistent.

Note that this theorem gives us a solid basis for implementing eventually consistent
transactions: an implementation can be based on dynamically constructing a witness re-
vision diagram and as a consequence guarantee eventual consistent transactions. More-
over, as we will see in Section 4, implementations do not need to actually construct
such witness diagrams at runtime but can rely on efficient state-based implementations.
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The proof of our Theorem (in Section 3.5 below) constructs partial orders <v, <a

from the revision diagram by (1) specifying x <v y iff there is a path from x to y in the
revision diagram, and (1) specifying <a to order all events in a joined revision to occur
in between the joiner terminal and the join vertex. Note that the converse of Thm. 1 is
not true, not even if restricted to finite histories (we include a finite counterexample in
the full version [4]). Also Note that the most difficult part of the proof is the safety, not
the liveness, since the proof that <a is a partial order extending <v depends on the join
condition in a nontrivial way.

3.5 Proof of Thm 1

We devote the rest of this section to this proof, which requires some deeper insight into
structural properties of revision diagrams. First, however, we need some definitions,
notations, and lemmas.

A revision diagrams is a connected graph. However, if we remove all f -edges from
the picture, it may decompose into several components. We define a join-component to
be a maximal component connected by s and j edges only. We say x ∼j y if they are in
the same join component, and let J(x) = {y | x ∼j y}. It is easy to see that each join-
component contains exactly one terminal. For a vertex x, we let T (x) be the terminal
of J(x) (note that T (x) is the unique terminal reachable from x by a path containing j
and s edges only).

Definition 12. Define the binary relation →a on vertices by adding the following edges
during the construction of a revision diagram as in Def. 6:

– (Query, Update, Fork) for all y ∈ J(t), add y →a x
– (Join) for all y ∈ J(t) and y′ ∈ J(t′), add edges y →a x, y′ →a x, and y →a y′.

Lemma 4. For any revision diagram, →a as defined above is a partial order over all
vertices in the diagram satisfying (1) when restricted to any one join-component,→a is
a total order (2) →a does not cross join-components.

Lemma 5. For vertices x, y in a revision diagram and a preorder ≤l as guaranteed by
Lemma 2, x →∗ y implies T (x) ≤l T (y).

We include proofs for both lemmas in [4]. The first one is a simple induction, the second
one is a bit more intricate and uses the path properties guaranteed by Lemma 3 and the
layout preorder guaranteed by Lemma 2.

We are now ready to prove Theorem 1. Given a history H and a witness revision
diagram, define two binary relations

<v = →∗ and <a = (<v ∪ →a)
∗.

By Lemma 6 below, <a and <v are partial orders. We can then prove the remaining
claims as follows:

– (arbitration extends visibility) By Lemma 6 below.
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– (total order on past events) if e1 <v e and e2 <v e, then by Lemma 3 there exist
direct paths for e1 →∗ e and for e2 →∗ e. If either path is a prefix of the other,
e1 and e2 are ordered by <v and thus by <a. If not, they must combine in a join
vertex, implying that e1 ∼j e2, which implies (by Lemma 4) that they are ordered
by <a.

– (compatible with program order) By conditions 2 and 4 of Def. 10.
– (consistent query results) We can show inductively (over Def. 6) that for any vertex
x, the combined effect of the vertices on the root path (as in Def. 8) to x is equal
to the combined effect of all updates {x′ | x′ <v x} ordered by <a. This is trivial
for all but the join case. In the join case, Def. 12 orders all all updates in the joinee
after updates in the joiner which is consistent with interpreting them as an effect of
the join vertex.

– (atomicity) By condition 2 we know there can be no intervening forks or joins. This
implies that both → and <a factor over ∼t.

– (isolation) By condition 3.
– (eventual delivery) Assume the condition is violated. Then there exists a committed

transaction t ∈ committed(TH) and an infinite number of transactions t1, t2, . . .
such that for all i, t �<v ti. Since transactions can not be empty, we can pick vertices
x ∈ t and xi ∈ ti, with x �<v xi for all i. But that implies that x is neglected,
contradicting the condition in the theorem.

The only thing left to prove is the lemma below, which arguably contains the most inter-
esting part of the proof. In particular, it shows how consequences of the join condition
(specifically, Lemmas 2 and 5) are used in the construction of an arbitration order <a

that satisfies <v⊆<a as required for eventual consistency.

Lemma 6. Given some revision diagram, define binary relations <v=→∗ and <a=
(<v ∪ →a)

∗. Then both <v and <a are partial orders, and <v⊆<a.

Proof. Clearly, <v is a partial order (since revision diagrams are acyclic) and <v⊆<a.
The interesting part is to show that <a is antisymmetric (i.e. x <a y and y <a x implies
x = y). We prove this by showing that (→a ∪ →) is acyclic. Consider some minimal
cycle. Since →a is transitive, and both →a and → are acyclic on their own, it must be
of the following form (where n ≥ 1):

x1 →∗ y1 →a x2 →∗ y2 →a . . . →a xn →∗ yn →a x1

By Lemma 4 this implies

x1 →∗ y1 ∼j x2 →∗ y2 ∼j . . . →a xn →∗ yn ∼j x1

using the preorder guaranteed by Lemma 2 and Lemma 5, we get

T (x1) ≤l T (y1) = T (x2) ≤l T (y2) . . . T (xn) ≤l T (yn) = T (x1)

But by Lemma 2 such an ≤l-cycle implies that all vertices are in the same revision
which is a contradiction.
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4 System Implementation

Revision diagrams can help to develop efficient implementations since they provide
a solid abstraction that decouples the consistency model from actual implementation
choices. In this section, we describe some implementation techniques that are likely
to be useful for that purpose. We present three sketches of client-server systems that
implement eventual consistency.

It is usually not necessary for implementations to store the actual revision diagram.
Rather, we found it highly convenient to work with state representations that can di-
rectly provide fork and join operations.

Definition 13. A fork-join QUA (FJ-QUA) for a query-update interface (Q, V, U) is a
tuple (Σ, σ0, f , j ) where (1) (Σ, σ0) is a QUA over (Q, V, U), (2) f : Σ → Σ × Σ,
and (3) j : Σ ×Σ → Σ.

If we have a fork-join QUA, we can simply associate a Σ-state with each revision, and
then perform all queries and updates locally on that state, without communicating with
other revisions. The join function of the FJ-QUA, if implemented correctly, guarantees
that all updates are applied at the join time. We can state this more formally as follows.

Definition 14. For a FJ-QUA (Σ, σ0, f , j ) and a revision diagram over the same inter-
face (Q, V, U), define the state σ(x) of each vertex x inductively by setting σ(r) = σ0

for the initial vertex r, and (for the construction rules as they appear in Def. 6)

– (Query) Let σ(x) = σ(t)
– (Update) Let σ(x) = u#(σ(t))
– (Fork) Let (σ(x), σ(y)) = f (σ(t))
– (Join) Let σ(x) = j (σ(t), σ(t′))

Definition 15. A FJ-QUA (Σ, σ0, f , j ) implements the QUA (S, s0) over the same in-
terface if and only if for all revision diagrams, for all vertices x, the locally computed
state σ(x) (as in Def. 14) matches the path result (as in Def. 9).

Example 3. Consider the QUA representing random access memory as defined in Ex-
ample 2. We can implement this QUA using an FJ-QUA that maintains a “write-set” as
follows:

Σ = S × P(A)
σ0 = (s0, ∅)

load(a)#(s,W ) = s(a)
store(a, v)#(s,W ) = (s[a �→ v],W ∪ {a})

f (s,W ) = ((s,W ), (s, ∅))

j ((s1,W1), (s2,W2)) = (s′,W1 ∪W2) where s′(a) =
{
s1(a) if a /∈ W2

s2(a) if a ∈ W2

The write set (together with the current state) provides sufficient information to con-
ceptually replay all updates during join (since only the last written value matters). Note
that the write set gets cleared on forks.
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Since we can store a log of updates inside Σ, it is always possible to provide an
FJ-QUA for any QUA (we show this construction in detail in the full version [4]).
However, more space-effective implementations are often possible for QUAs since logs
are typically compressible. We include several finite-state examples of FJ-QUAs in [4]
as well.

4.1 System Models

If we have a FJ-QUA, we can implement eventually consistent systems quite easily. We
now present two models that demonstrate this principle.

4.2 Single Synchronous Server Model

We first present a model using a single server. We define the set of devices I = C ∪{s}
where C is the set of clients and s is the single server. We store on each device i a state
from the FJ-QUA, that is, we define R : I ⇀ Σ. To keep the transition rules simple,
we use the notation R[i �→ σ] to denote the map R modified by mapping i to σ, and we
let R(c �→ σ) be a pattern that matches R, c, and σ such that R(c) = σ. Each client can
perform updates and queries while reading and writing only the local state:

UPDATE(c, u):
σ′ = u#(σ)

R(c �→ σ) → R[c �→ σ′]
QUERY(c, q, v):

q#(σ) = v

R(c �→ σ) → R

As for synchronization, all we need is two rules, one to create a new client (forking the
server state), and one to perform the yield on the client (joining the client state into the
server, then forking a fresh client state from the server):

SPAWN(c):

c /∈ domR f (σ) = (σ1, σ2)

R(s �→ σ) → R[s �→ σ1][c �→ σ2]

YIELD(c):

j (σ1, σ2) = σ3 f (σ3) = (σ4, σ5)

R(s �→ σ1)(c �→ σ2) → R[s �→ σ4][c �→ σ5]

Thanks to Theorem 1, we can precisely argue why this system is eventually consistent.
By induction over the transitions, we can show that each state σ appearing in R corre-
sponds to a terminal in the revision diagram, and each transition rule manipulates those
terminals (applying fork, join, update or query) in accordance with the revision diagram
construction rules. In particular, the join condition is always satisfied since all forks and
joins are performed by the same server revision. Transactions are not interrupted by
forks or joins, and no vertices are neglected: each yield creates a path from the freshly
committed vertices into the server revision, from where it must be visible to any new
clients, and to any client that performs an infinite number of yields.

An interesting observation is that, if the fork does not modify the left component
(i.e. for all σ ∈ Σ, f(σ) = (σ, σ′) for some σ′), the server is effectively stateless, in the
sense that it does not store any information about the client. This is a highly desirable
characteristics for scalability, and in our experience it is well worth to go through some
extra length in defining FJ-QUAs that have this property.
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4.3 Server Pool Model

The single server model still suffers some drawbacks. For one, clients performing a yield
access both server and client state. This means clients block if they have no connection.
Also, a single server may not scale to large numbers of clients.

We can fix both of these issues by using a server pool rather than a single server,
i.e. we let the set of devices be I = C ∪ S where S is a set of server identifiers. Using
multiple servers not only improves scalability, but it helps with disconnected operation
as well: if we keep one server next to each client (e.g. on the same mobile device), we
can guarantee that the client does not block on yield. Servers themselves can perform a
sync operation (at any convenient time) to exchange state with other servers.

However, we need to keep additional information in each device to ensure that the
join condition is maintained. We do so by (1) storing on each client c a pair (σ, n) where
σ is the revision state as before, and n is a counter indicating the current transaction, and
(2) storing on each server s a triple (σ, J, L) where σ is the revision state as before, J
is the set of servers that s may join, and L is a vectorclock (a partial function (I → N))
indicating for each client the latest transaction of c that s may join.

The transitions that involve the client are then as follows:

UPDATE(c,u):

σ′ = u#(σ)

R(c �→ (σ, n)) → R[c �→ (σ′, n)]

QUERY(c, q, v):

q#(σ) = v

R(c �→ (σ, L)) → R

SPAWN(c):

c /∈ domR f (σ) = (σ1, σ2) L′ = L[c �→ 0]

R(s �→ (σ, J, L)) → R[s �→ (σ1, J, L
′)][c �→ (σ2, 0)]

YIELD(s, c):

L(c) = n L′ = L[c �→ n+ 1] j (σ1, σ2) = σ3 f (σ3) = (σ4, σ5)

R(s �→ (σ1, J, L))(c �→ (σ2, n)) → R[s �→ (σ4, J, L
′)][c �→ (σ5, n+ 1)]

The servers can perform forks and joins without involving clients. On joins, servers join
the state, take the union of the sets J of joinable servers, and merge the vector clocks
(defined as taking the pointwise maximum).

FORK(s1, s2):

s2 /∈ domR f (σ) = (σ1, σ2) J ′ = J ∪ {s2}
R(s1 �→ (σ, J, L)) → R[s1 �→ (σ1, J

′, L)][s2 �→ (σ2, J, L)]

JOIN(s1, s2):

s2 ∈ J1 σ′ = j (σ1, σ2) J ′ = J1 ∪ J2 L′ = merge(L1, L2)

R(s1 �→ (σ1, J1, L1))(s2 �→ (σ2, J2, L2)) → R[s1 �→ (σ′, J ′, L′)][s2 �→ ⊥]
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Again, we can use Theorem 1 to reason that finite executions of this system are
eventually consistent (for infinite executions we need additional fairness guarantees as
discussed below). Again, all states σ stored in R correspond to terminals in a revision
diagram and are manipulated according to the rules. This time, the join condition is
satisfied because of the following invariants: (1) if the set J of server s1 contains s2,
then s1’s terminal is reachable from the fork vertex that forked s2’s revision, and (2)
if L(c) = n for server s, and client c’s transaction counter is n, then s’ terminal is
reachable from the fork vertex that forked c’s revision.

Since the transition rules do not contain any guarantees that force servers to synchro-
nize with each other, it is possible to construct infinite executions that violate eventual
consistency. Actual implementations would thus likely add a mechanism to guarantee
that updates eventually reach the main revision, and that clients that perform an infinite
sequence of transactions receive versions from the main revision infinitely often.

5 Related Work

For a high-level comparison of our work with various notions of eventual consistency
appearing in the literature, see Section 2.4. Briefly stated, our work is set apart by its
unique use of revision diagrams to determine both arbitration and visibility, rather than
separately using a causally consistent partial order for visibility, and timestamps for
arbitration.

There is of course a large body of work on transactions. Most academic work consid-
ers strong consistency (serializable transactions) only, and is thus not directly applicable
to eventual consistency. Nevertheless there are some similarities, to pick a few:

– [10] provides insight on the limitations of serializable transactions, and proposes
similar workarounds as used by eventual consistency (timestamps and commutative
updates). However, transactions remain tentative during disconnection.

– Snapshot isolation [8] relaxes the consistency model, but transactions can still fail,
and can not commit in the presence of network partitions.

– Coarse-grained transactions [11,14] share with our work the use of abstract data
types to facilitate concurrent transactions.

– Automatic Mutual Exclusion [1], like our work, uses yield statements to separate
transactions.

Previous work on revisions [2,6,3,5] introduces revision diagrams and conflict resolu-
tion. In this paper we feature a simpler, more direct definition using graph construc-
tion rules. Also, we pursue a different goal (eventually consistent transactions in a dis-
tributed system, rather than deterministic parallel programming). In particular, eventu-
ally consistent transactions exhibit pervasive nondeterminism caused by factors that are
by definition outside the control of the system, such as network partitions. Also, this
paper is the first to give a single, simple formalization of merge functions (FJ-QUAS
are optimized implementations of QUAs).

Research on persistent data types [13] is related to our definition of FJ-QUAs insofar
it concerns itself with efficient implementations of data types that permit retrieval and
mutations of past versions. However, it does not concern itself with apects related to
transactions or distribution.
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Prior work on operational transformations [19] can be understood as a specialized
form of eventual consistency where updates are applied to different replicas in different
orders, but are themselves modified in such a way as to guarantee convergence. This
specialized formulation can provide highly efficient broadcast-based real-time collabo-
ration, but poses significant implementation challenges [12].

If we consider transactions with single elements only, it is sensible to compare our
work with related work on conflict-free replicated data types (CRDTs) [18] and Bayou’s
weakly consistent replication [20].

– Our definition is strictly more general than CRDTs [18] in the following sense:
From any state-based CRDT we can obtain a FJ-QUA by using the same state
and initial state, the same query and update functions, a fork function that creates
a new replica and then merges the forker state, and a join function that uses the
merge. Note that the definition of strong eventual consistency in [18], just like ours,
requires that updates can be applied to any state.

– In Bayou [20], and in the Concurrent Revisions work[6], users can specify how to
resolve conflicting updates by writing custom merge functions. At first sight, this
may appear more general that QUAs. However, by performing a simple automatic
transformation of the QUA and the client program, we can support merge functions
for conflict resolution purposes. The reason is that QUAs already allow updates
to perform any desired total function. We describe this transformation in the full
version [4].

6 Conclusion and Future Work

We have proposed eventually consistent transactions as a consistency model that (1)
generalizes earlier definitions of eventual consistency and (2) shows how to make some
strong guarantees (transactions never fail, all code runs in transactions) to compensate
for weak consistency. We have shown that revision diagrams provide a convenient way
to build correct implementations of eventual consistency, by relying on just a handful
of simple rules that are easily visualized using diagrams.

In future work, we would like to extend the study of the programming model, inves-
tigate a selection of basic FJ-QUAs, and ways to combine them. Furthermore, we would
like to understand whether stronger consistency guarantees are possible for subclasses
of eventually consistent transactions, and whether such classes can be automatically
recognized or synthesized.
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McDirmid and Benjamin Wood for inspired discussions, helpful examples, and con-
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Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Unfortunately, it is only appropriate for se-
quentially consistent memory models, while the hardware and software platforms
that algorithms run on provide weaker consistency guarantees. In this paper, we
present the first definition of linearizability on a weak memory model, Total Store
Order (TSO), implemented by x86 processors. We establish that our definition is
a correct one in the following sense: while proving a property of a client of a con-
current library, we can soundly replace the library by its abstract implementation
related to the original one by our generalisation of linearizability. This allows ab-
stracting from the details of the library implementation while reasoning about the
client. We have developed a tool for systematically testing concurrent libraries
against our definition and applied it to several challenging algorithms.

1 Introduction

Concurrent software developers nowadays rely heavily on libraries of concurrency pat-
terns and high-performance concurrent data structures, such as java.util.concurrent for
Java and Intel’s Threading Building Blocks for C++. The algorithms implemented by
these libraries are very efficient, with the downside being that they are notoriously dif-
ficult to design and implement. More surprisingly, it is often difficult to understand
even what it means for them to be correct! Correctness of concurrent libraries is com-
monly formalised by the notion of linearizability [11], which fixes a certain correspon-
dence between the library and its abstract specification, the latter usually sequential,
with methods implemented atomically. Unfortunately, the classical definition of lin-
earizability is only appropriate for sequentially consistent (SC) memory models, in
which accesses to shared memory occur in a global-time linear order. At the same time,
most multiprocessors (x86 [15], Power [17], ARM [1]) and programming languages
(Java [12], C++ [2]) provide weaker memory models that allow more efficient imple-
mentations at the expense of exhibiting counterintuitive behaviours in some cases.

In this paper, we present the first definition of linearizability on a weak memory
model, Total Store Order (TSO), implemented by x86 processors [15] (Section 4). We
show that our definition is a correct one in the sense that it validates what we call the Ab-
straction Theorem: while proving a property of a client of a concurrent library, we can
soundly replace the library by its abstract implementation related to the original one by
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our generalisation of linearizability (Theorem 4, Section 5). The abstract implementa-
tion is usually simpler than the original one, with commands executing at a coarser grain
of atomicity. The Abstraction Theorem thus formalises the intuitive requirement for a
good definition of linearizability, which is that the library should provide an illusion of
such a simpler atomic implementation. It also has a practical value as a compositional
verification technique: it allows abstracting from the details of the library implementa-
tion while reasoning about its client, despite subtle interactions between the two caused
by the weak memory model. As a corollary of the Abstraction Theorem, we establish
that the proposed notion of linearizability is compositional (Corollary 5, Section 5).

To demonstrate that our notion of linearizability is appropriate for practical concur-
rent algorithms, we have developed a tool for systematically testing such algorithms
against the definition and applied it to several examples (Section 6). We have also
proved the linearizability of one of the algorithms formally (Theorem 3, Section 4). The
algorithms considered are challenging to reason about and to specify, as they sometimes
exhibit behaviours not reproducible on a sequentially consistent memory model.

The TSO Memory Model. The most intuitive way to explain the TSO memory model
is operationally (Section 2), using an abstract multiprocessor machine in which every
CPU has a store buffer. The buffer holds write requests that were issued by the CPU,
but have not yet been flushed into the shared memory. A command that would like
to write to a location in memory stores the corresponding write request in the store
buffer of the CPU executing it, thus avoiding the need to block the CPU while the write
completes.The CPU may decide to flush a store buffer entry into the main memory at
any time, subject to maintaining the FIFO ordering of the buffer: the oldest write will be
flushed first. A command that would like to read from a location in memory returns the
value stored in the newest entry for this location in the store buffer of the CPU executing
it; if such an entry does not exist, it accesses the memory directly.

The behaviour of programs running on TSO can sometimes be counterintuitive. For
example, consider two memory locations x and y initially holding 0. On standard x86
processors, if two CPUs respectively write 1 to x and y and then read from y and x, as
in the following program, it is possible for both to read 0 in the same execution:

x = y = 0;

x = 1; b = y; ‖ y = 1; a = x;

{a = b = 0}

This outcome cannot happen on a sequentially consistent machine, where both reads
and writes access the memory directly. On TSO, it happens when the reads from y

and x occur before the writes to them have propagated from the store buffers of the
corresponding CPUs to the main memory. To exclude such behaviours, TSO proces-
sors provide special instructions, called memory barriers, that force the store buffer of
the corresponding CPU to be flushed completely before executing the next instruction.
Adding memory barriers after the writes to x and y in the above program would make
it produce only SC behaviours. However, barriers incur a performance penalty.

Technical Challenges. The presence of store buffers leads to subtle interactions be-
tween a library and its client that make it challenging to define linearizability. Showing
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linearizability requires us to provide, for every execution of the concrete library imple-
mentation, an execution of the abstract library interacting with the client in a similar
way (in a certain technical sense). Interactions between the library and the client are
usually defined in terms of histories, which, in the classical definition, are sequences
of calls to and returns from the library, along with the values passed. In the case of
TSO, however, this would not describe all interactions between the two components,
since one of them can exhibit a side effect on the other via a store buffer. For example,
a memory barrier inside a library method will flush entries written there by client as
well as library code. More subtly, write commands in a library method can insert en-
tries into the store buffer without ensuring that they get flushed by the time the method
returns. For this reason, on TSO, the method return point does not characterise the time
by which the effects of these writes will be visible to the client (see the seqlock example
in Section 4). To define the notion of linearizability on TSO that validates the Abstrac-
tion Theorem and is compositional, we thus need histories to describe the information
relevant to the client about how the library uses store buffers. The classical notion of
linearizability [11], which is not aware of store buffers, cannot specify this.

Main Ideas. Our main insight lies in identifying the additional information that we
need to record in histories to get a definition of linearizability on TSO validating the
Abstraction Theorem. Namely, the contents of a store buffer can be viewed as a sand-
wich consisting of blocks of entries inserted there by an invocation of a library method
or a fragment of the client code between two such invocations. We show that the be-
haviour of the library with regards to the store buffer that can affect the client is com-
pletely described by the moments of time at which the first and the last elements of
any given library layer in the sandwich get flushed. Roughly speaking, the time when
a library layer starts to get flushed defines an assumption the library makes about the
client: since store buffers are FIFO, the library requires the previous client layer in the
buffer to be flushed completely before this. The time by which a library layer is flushed
completely represents a guarantee the library provides to the client: this action enables
the next client layer to be flushed starting from this point of time.

To specify this, we enrich histories with additional actions denoting the times when
a layer of entries inserted by every library method invocation starts to get flushed and
is flushed completely. Linearizability then requires preserving the order between some
of these actions in a history of the concrete library implementation when providing a
matching history of the abstract library implementation. As we show, this is sufficient
to establish the Abstraction Theorem.

The proposed definition of linearizability on TSO requires a novel way of specifying
libraries. In the classical definition, the specification of a library method often consists
of one atomic action. Since on TSO writes can be delayed in the store buffer, such
a specification according to our notion of linearizability is often given by two atomic
actions: one that atomically writes entries into the store buffer, and one that flushes
them into the memory, possibly after the method returns. The resulting specification
captures the effects of using the store buffer visible to the client, yet is simpler than the
implementation: it ensures that all the locations written to by a library method will be
written to the memory atomically, albeit at some later time. We provide examples of
such specifications in Section 4 and [5, Appendix B].
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2 TSO semantics

In this section, we present the operational semantics of the TSO memory model, fol-
lowing [15], along with our modifications to it needed to define linearizability.

Notation. We write A+ and A∗ for the sets of all nonempty, respectively, possibly
empty finite sequences of elements of a set A. We denote the empty sequence with
ε and the concatenation of sequences α1 and α2 with α1α2. When we deal with se-
quences of sequences, for clarity we sometimes put an element of a sequence that is
itself a sequence into brackets 〈·〉. For example, α1 〈β〉α2 denotes a sequence contain-
ing another sequence β as one of its elements. We write g[x : y] for the function that
has the same value as g everywhere, except for x, where it has the value y. We write

for an expression whose value is irrelevant and implicitly existentially quantified. We
denote the powerset of a set X with P(X), and the disjoint union of sets with �.

Programming Language. We consider a machine with n CPUs, indexed by CPUid =
{1, . . . , n} and a shared memory. The machine executes programs of the following
form:

L ::= {m = Cm | m ∈ M} C(L) ::= let L in C1 ‖ . . . ‖ Cn

A program consists of a declaration of a library L, implementing a set of methods M ⊆
Method, and its client, specifying a command Ct to be run by the (hardware) thread in
each CPU t. For the above program we let sig(L) = M . To simplify presentation, we
assume that the program is stored separately from the memory.

It is technically convenient for us to abstract from a particular syntax of thread and
method bodies Ct and Cm and represent them using control-flow graphs. Namely,
assume a set of primitive commands PComm (defined below). A control-flow graph
(CFG) over the set PComm is a tuple (N, T, start, end), consisting of the set of pro-
gram positions N , the control-flow relation T ⊆ N × PComm × N , and the initial
and final positions start, end ∈ N . The edges of the CFG are annotated with primitive
commands from PComm.

We represent a program C(L) by a collection of CFGs: the client command Ct for
a CPU t is represented by (Nt, Tt, startt, endt), and the body Cm of a method m by
(Nm, Tm, startm, endm). We often view this collection of CFGs for C(L) as a single
graph consisting of the node set N =

⊎n
t=1 Nt �

⊎
m∈sig(L)Nm and the edge set T =⊎n

t=1 Tt �
⊎

m∈sig(L) Tm.

Machine Configurations. The set of possible configurations Config of our machine is
defined in Figure 1. The special configuration � results from the machine executing an
illegal instruction, such as dereferencing a non-existent memory location. An ordinary
configuration (pc, θ, b, h,K) ∈ Config consists of several components. The first one
pc ∈ CPUid → Pos gives the current instruction pointer of every CPU. When a CPU
executes client code, its instruction pointer defines the program position of the client
command being executed. Otherwise, it is given by a pair whose first component is
the program position of the current library command, and the second one is the client
position to return to when the library method finishes executing (one return position is
sufficient, since, as explained below, we disallow nested method calls).
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Loc = N Val = Z Heap = Loc ⇀fin Val
Pos = N � (N ×N) Reg = {r1, . . . , rm} RegBank = Reg → Val
Buff = ((Loc× Val)+ ∪ {lock, call, ret})∗
Config = {�} ∪ ((CPUid → Pos)× (CPUid → RegBank)×

(CPUid → Buff)× Heap× P(CPUid))

Fig. 1. The set of machine configurations

Each CPU in the machine has a set of registers Reg, whose values are defined by
θ ∈ CPUid → RegBank. The machine memory h ∈ Heap is represented as a finite
partial function from existing memory locations to the values they store. The component
K ∈ P(CPUid) defines the set of active CPUs that can currently execute a command
and is used to implement atomic execution of certain commands.

The component b ∈ CPUid → Buff describes the state of all store buffers in the
machine, each represented by a sequence of write requests with newest coming first.
The contents of store buffers in our configurations differ from those prescribed by the
TSO memory model [15] in two ways.

First, in TSO every entry in a store buffer is represented by a single location-value
pair, whereas we use a sequence of those. In our semantics, all the locations in such a
sequence are written to the memory atomically. This functionality is not provided by the
hardware; we use it for expressing the semantics of library specifications, which might
include atomic blocks performing several writes (see the seqlock example in Section 4).

Second, to formulate linearizability, we need to maintain some auxiliary information
about executions, recorded by call, ret and lock entries in a store buffer. The marker
lock is used to implement atomic commands performing several writes to different lo-
cations in memory. The markers call and ret get added to the buffer upon a call to or a
return from the library, respectively, and thus delimit entries added by library method
invocations and client code. They are used to generate additional actions in histories of
interactions between the client and the library needed to define linearizability on TSO.
We note that, despite store buffers in our configurations including call and ret markers,
the semantics we define below corresponds to the standard TSO one, in the sense that
erasing the markers from store buffers in all configurations of a given execution yields
a valid execution in the standard TSO semantics.

Primitive Commands. The set of primitive commands is defined as follows:

PComm= Local�Read�Write�{m |m∈Method}�{lock, unlock, xlock, xunlock}.

Here Local, Read and Write are unspecified sets of commands such that:

– commands in Local access only CPU registers;
– commands in Read read a single location in memory and write its contents into the

register r1;
– commands in Write write to a single location in memory.

We also have library method calls and the commands lock and unlock that lock the
machine, allowing several commands to be executed atomically, and unlock it. We as-
sume that parameters and return values of methods are passed via CPU registers. If a
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client needs to preserve register values when calling a library method, it can save them
in memory before the call and restore them when the method returns. The xlock and
xunlock commands act as lock and unlock, except they have a built-in memory barrier,
flushing the store buffer of the CPU executing the command. We call a sequence of
commands bracketed by lock and unlock, or xlock and xunlock, an atomic block.

For every command c ∈ Local � Read �Write, we assume a transformer:

– fc : RegBank → P(RegBank) for c ∈ Local defining how the command changes
the registers of the CPU executing it;

– fc : RegBank→ P(Loc) for c ∈ Read defining the location read;
– fc : RegBank → P(Loc × Val) for c ∈ Write defining the location and the value

written.

Note that we allow the execution of primitive commands to be non-deterministic. As in
this paper we are dealing with low-level programs, we do not assume a built-in allocator,
and thus do not consider commands for memory (de)allocation as primitive.

We place certain restrictions on CFGs over the above set PComm. Namely, we as-
sume that on any path in a CFG, (x)lock and (x)unlock commands alternate correctly.
In particular, we disallow nested (x)lock instructions. We assume that every method
called in the program is defined, and we disallow nested method calls as well as method
calls inside atomic blocks.

Let E,F denote expressions over the set of registers Reg, and �E�r the result of
evaluating the expression E in the register bank r. Then we can define sample primitive
commands

havoc ∈ Local, assume(E) ∈ Local, read(E) ∈ Read, write(E,F ) ∈ Write

with the following semantics:

fhavoc(r) = RegBank; fassume(E)(r) = {r}, if �E�r �= 0;
fread(E)(r) = {�E�r}; fassume(E)(r) = ∅, if �E�r = 0;
fwrite(E,F )(r) = {(�E�r, �F �r)}.

The read and write commands have the expected meaning. The havoc command as-
signs arbitrary values to all registers. The assume(E) command acts as a filter on
states, choosing only those where E evaluates to non-zero values. Using assume(E),
a conditional branch on the value of E can be implemented with the CFG edges
(v, assume(E), v1) and (v, assume(!E), v2), where !E denotes the C-style negation.

Given the above commands, a memory barrier can be implemented as
“xlock; xunlock”. We can also implement the well-known atomic compare-and-swap
(CAS) operation. A CAS takes three arguments: a memory address addr, an expected
value v1 and a new value v2. It atomically reads the memory address and updates it
with the new value when the address contains the expected value; otherwise, it does
nothing. In our language, we define CAS(addr, v1, v2) as syntactic sugar for the
control-flow graph representation of:

xlock;

if (*addr == v1) { *addr = v2; xunlock; return 1; }

else { xunlock; return 0; }
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Actions and Traces. Transitions in our operational semantics are labelled using actions
of the form

ϕ ∈ Act ::= (t, read(x, u)) | (t,write(x, u)) | (t, flush(x, u)) | (t, flush(call)) |
(t, flush(ret)) | (t, lock) | (t, unlock) | (t, xlock) | (t, xunlock) |
(t, call m(r)) | (t, ret m(r))

where t ∈ CPUid, x ∈ Loc, u ∈ Val, m ∈ Method and r ∈ RegBank. Here
(t,write(x, u)) corresponds to enqueuing a pending write of u to the location x into
the store buffer of CPU t, (t, flush(x, u)) to flushing a pending write of u to the loca-
tion x from the store buffer of t into the shared memory, (t, flush(call)) or (t, flush(ret))
to discarding a call or ret marker from the head of a store buffer. The last two actions
record moments of time when entries in a store buffer written by a given library method
invocation start to get flushed and are flushed completely, which are needed in the for-
mulation of linearizability as we explained in Section 1. The rest of the actions have the
expected meaning. Since parameters and return values of library methods are passed
via CPU registers, we record their values in call and return actions.

We call a (finite or infinite) sequence of actions a trace and adopt the standard nota-
tion: λ(i) is the i-th action in the trace λ, |λ| is the length of the trace λ (|λ| = ω if λ is
infinite), and λ|t is the projection of λ to actions by CPU t.

Program Semantics. The operational semantics of a program C(L) is defined by the
transition relation −→C(L): Config×Act∗ × Config in Figure 2. We remind the reader
that T in the figure is the control-flow relation of C(L). To handle transitions inside the
library code, we lift it to program positions N � (N ×N) as follows:

T̂ = T ∪ {((v, v0), c, (v′, v0)) | (v, c, v′) ∈ T ∧ v0 ∈ N}.

The LOCAL rule handles the execution of commands that access registers only. These
and other commands can only be executed by a CPU t if it is included into the set of
active CPUs, represented by the last component of a configuration.

A write by a CPU to a location in memory does not happen immediately; instead, a
pair of the location and the value to be written is added to the tail of the corresponding
store buffer (WRITE). Recall that the newest entry comes first in the store buffer. When
the location being written does not exist, the write command faults (WRITE-�).

The READ rule uses lookup(α, h, x) to find the value stored for the address x in the
store buffer α of the CPU executing the command or the memory h:

lookup(α, h, x) =

⎧⎪⎪⎨⎪⎪⎩
u, if α = α1 〈β1 (x, u)β2〉α2 and

α1, β1 do not contain entries for x;
h(x), if x ∈ dom(h) and α does not contain entries for x;
�, otherwise.

If there are entries for x in the store buffer, the read takes the value in the newest one;
otherwise, it looks up the value in memory. If the location being read does not exist,
lookup returns �. According to READ, the value read is stored in the register r1.
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t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Local r′ ∈ fc(r)

pc[t : ρ], θ[t : r], b, h,K
ε−→C(L) pc[t : ρ′], θ[t : r′], b, h,K

LOCAL

(ρ, c, ρ′) ∈ T̂ c ∈Write (x, u) ∈ fc(r) x ∈ dom(h)

pc[t : ρ], θ[t : r], b[t : α], h,K
(t,write(x,u))−−−−−−−−→C(L) pc[t : ρ′], θ[t : r], b[t : (x, u)α], h,K

WRITE

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Write (x, u) ∈ fc(r) x �∈ dom(h)

pc[t : ρ], θ[t : r], b, h,K
ε−→C(L) �

WRITE-�

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Read x ∈ fc(r) u = lookup(α, h, x) �= �
pc[t : ρ], θ[t : r], b[t : α], h,K

(t,read(x,u))−−−−−−−→C(L) pc[t : ρ′], θ[t : r[r1 : u]], b[t : α], h,K
READ

t ∈ K (ρ, c, ρ′) ∈ T̂ c ∈ Read x ∈ fc(r) lookup(α, h, x) = �
pc[t : ρ], θ[t : r], b[t : α], h,K

ε−→C(L) �
READ-�

(ρ, lock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : α], h,CPUid
(t,lock)−−−−→C(L) pc[t : ρ′], θ, b[t : lockα], h, {t}

LOCK

(ρ, unlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : (x1, u1) . . . (xl, ul) lockα], h, {t} (t,unlock)−−−−−→C(L)

pc[t : ρ′], θ, b[t : 〈(x1, u1) . . . (xl, ul)〉α], h,CPUid

UNLOCK

pc, θ, b[t : α 〈(x1, u1) . . . (xl, ul)〉], h,CPUid
(t,flush(xl,ul))...(t,flush(x1,u1))−−−−−−−−−−−−−−−−−−−→C(L)

pc, θ, b[t : α], h[xl : ul] . . . [x1 : u1],CPUid

FLUSH

β ∈ {call, ret}
pc, θ, b[t : αβ], h,CPUid

(t,flush(β))−−−−−−→C(L) pc, θ, b[t : α], h,CPUid
FLUSH-MARKER

(ρ, xlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : ε], h,CPUid
(t,xlock)−−−−−→C(L) pc[t : ρ′], θ, b[t : ε], h, {t}

XLOCK

(ρ, xunlock, ρ′) ∈ T̂

pc[t : ρ], θ, b[t : (x1, u1) . . . (xl, ul)], h, {t} (t,flush(xl,ul))...(t,flush(x1,u1))(t,xunlock)−−−−−−−−−−−−−−−−−−−−−−−−−−→C(L)

pc[t : ρ′], θ, b[t : ε], h[xl : ul] . . . [x1 : u1],CPUid

XUNLOCK

(v,m, v′) ∈ T

pc[t : v], θ[t : r], b[t : α], h,CPUid
(t,call m(r))−−−−−−−→C(L)

pc[t : (startm, v′)], θ[t : r], b[t : callα], h,CPUid

CALL

pc[t : (endm, v′)], θ[t : r], b[t : α], h,CPUid
(t,ret m(r))−−−−−−−→C(L)

pc[t : v′], θ[t : r], b[t : retα], h,CPUid

RET

Fig. 2. Operational TSO semantics
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A CPU executing lock makes itself the only active CPU, preventing the others
from executing commands1 (LOCK). The commands executed within the correspond-
ing atomic block, i.e., until the CPU calls unlock (UNLOCK) are thus not interleaved
with commands of other CPUs. A lock command also adds a lock marker to the tail
of the store buffer, thus delimiting the write requests issued within the atomic block.
The corresponding unlock command then uses the lock marker to gather these write
requests into a single buffer entry. Since we prohibit method calls inside atomic blocks,
this entry does not contain call or ret markers.

A CPU may at any point decide to flush the entry at the head of the store buffer into
memory (FLUSH). All the writes in the entry are flushed at the same time, thus ensuring
that writes made in an atomic block take effect atomically. A CPU can also discard
the marker at the head of the store buffer (FLUSH-MARKER). Although this does not
modify the memory, we use the corresponding action, recorded in the transition relation,
to formulate linearizability (Section 4). For technical reasons, it is convenient for us to
prohibit flushes inside an atomic block delimited by lock and unlock. Thus, the FLUSH

and FLUSH-MARKER require the set of active CPUs to be CPUid.
The xlock command (XLOCK) can only be executed when the store buffer is empty

and thus forces the CPU to flush its store buffer beforehand using FLUSH and FLUSH-
MARKER. For this reason, it does not need to insert a lock marker into the buffer: by the
end of the atomic block the buffer will only contain writes issued inside it. The xunlock
command flushes all these entries into the memory (XUNLOCK).

The rules CALL and RET handle calls to and returns from methods. Upon a method
call, the return point is saved as a component in the new thread position, a call marker
is added to the tail of the store buffer, and the method starts executing from the cor-
responding starting node of its CFG. Upon a return, the return point is read from the
current program position, and a ret marker is added to the tail of the store buffer. Note
that configurations in CALL and RET rules have CPUid as the set of active CPUs, since
we prohibit method calls inside atomic blocks.

We note that the store buffers arising in executions of C(L) as defined in Figure 2 are
not arbitrary elements of Buff, but satisfy certain properties: e.g., call and ret markers in
them alternate correctly, and they contain at most one lock marker. We formalise such
properties in [5, Appendix A].

Implementations of the TSO memory model usually guarantee that store buffers are
fair, in the sense that, eventually, every write request in a buffer will be flushed into the
memory. Our results can be extended to accommodate this constraint; however, we do
not handle it in this paper so as not to obfuscate presentation.

A computation of C(L) is a sequence of transitions using −→C(L). For a compu-
tation τ , we let trace(τ) be the trace obtained by concatenating all the annotations
of transitions in τ . In the following, we assume that program properties of interest are

linear-time properties over sets of program traces. We denote with
λ−→∗

C(L) the reflexive
and transitive closure of −→C(L), where λ is obtained by concatenating the transition
annotations.

1 The semantics of TSO [15] locks only the memory bus in this case, which allows other CPUs
to execute local commands affecting only their registers. For simplicity, we chose to disallow
all commands.
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Let I ⊆ Heap be the set of initial heaps that the program C(L) expects to execute
from. We define the set of its initial configurations as

Σ0(I)= {(pc0, θ0, b0, h0,CPUid) | ∀t∈CPUid. pc0(t)= startt ∧ b0(t)= ε ∧ h0 ∈ I}.

We define the semantics �C(L)�I of C(L) executing from I as the set of computations
with initial configurations from Σ0(I). We say that the program C(L) is safe for I , if it

is not the case that σ0
λ−→∗

C(L)� for some λ and σ0 ∈ Σ0(I). Informally, a program is
safe when it accesses only allocated memory. Safety can be established using existing
logics for reasoning about programs running on TSO [16,20].

3 Library-Local and Client-Local Semantics

Consider a library L and a program C(L) using this library:

L = {m = Cm | m ∈ M}, C(L) = let L in C1 ‖ . . . ‖ Cn.

To formulate the definition of linearizability and the Abstraction Theorem, we need to
give a semantics to parts of C(L): the library L considered in isolation from its client
and the client C considered in isolation from the implementation of the library it uses.
In this section, we specialise the semantics of programs in Section 2 to such library-
local and client-local semantics describing all possible behaviours of the corresponding
components.

Let us lift the operation of the disjoint union of heaps to sets of heaps pointwise:

∀I1, I2 ⊆ Heap. I1 ◦ I2 = {h1 � h2 | h1 ∈ I1 ∧ h2 ∈ I2}.

We assume that the set I of initial heaps of C(L) satisfies I = Ic ◦ Il for some Ic, Il ⊆
Heap such that for any hc ∈ Ic and hl ∈ Il, hc�hl is defined. Here Ic and Il are meant
to represent parts of initial heaps used by the client C and the library L, respectively;
the initial heaps of C(L) are obtained as the ◦-combination of these.

Recall that n is the number of CPUs in our machine. To give a library-local semantics
to L, we consider the program MGC(L) = let L in Cmgc

1 ‖ . . . ‖ Cmgc
n , where Cmgc

t

has the CFG

({vtmgc}, {(vtmgc, havoc, v
t
mgc), (v

t
mgc,m, vtmgc) | m ∈ sig(L)}, vtmgc, v

t
mgc).

The program MGC(L) is the most general client of the library L, whose hardware
threads on every CPU repeatedly invoke library methods in any order and with any
parameters possible. The latter are passed via registers, set arbitrarily by the havoc
command. The set of computations �MGC(L)�Il thus includes all library behaviours
under any possible client (this fact is formalised in Lemma 6, Section 5).

In practice, a library often tolerates only calls from clients adhering to a certain
policy. For example, a spinlock implementation might expect client calls to acquire

and release methods to alternate. We can take this into account by restricting the
most general client appropriately. While libraries in our examples do rely on the client
satisfying such constraints, to simplify presentation we do not formalise them here.
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To define the client-local semantics of the client C, we consider the program

CM (·) = let {m = Cstub
m | m ∈ M} in C1 ‖ . . . ‖ Cn

where the body Cstub
m of every method m has the CFG ({vmstart}, {(vmstart, havoc, vmend)},

vmstart, v
m
end). That is, every method in CM (·) is implemented by a stub that returns im-

mediately after having been called, scrambling all the registers. Since return values of
library methods are stored in registers, the set of computations �CM (·)�Ic generates all
executions of the client assuming any behaviour of the library it uses.

Note that both library-local and client-local semantics allow store buffer entries of
the corresponding component to be flushed non-deterministically while the other com-
ponent is running, since this is possible in the semantics of the whole program. Simi-
larly, we add call and ret markers to the store buffer when calling a method stub in the
client-local and library-local semantics.

We say that a client C, respectively, a library L is safe for Ic, respectively, Il, if so
is CM (·), respectively, MGC(L) (see Section 2). As we have noted before, the safety
of a library or a client can be established using logics for TSO [16,20]. Note that in the
client-local or the library-local semantics, the program runs on the state owned by the
corresponding component and faults when accessing memory locations not belonging
to it. Thus, the safety of the client and the library ensures that they cannot corrupt each
other’s state. We rely crucially on this in establishing the Abstraction Theorem for the
notion of linearizability we propose. It can also be shown that, when the client C and
the library L are safe, so is the complete program C(L) (Lemma 6, Section 5).

4 Linearizability on TSO

When defining linearizability, we are not interested in internal steps recorded in library
computations, but only in the interactions of the library with its client. We record such
interactions using histories, which are traces including only actions from the following
subset of Act:

HAct ::= (t, call m(r)) | (t, ret m(r)) | (t, flush(call)) | (t, flush(ret))
where t ∈ CPUid, m ∈ Method, r ∈ RegBank. Recall that here r records the values of
registers of the CPU that calls a library method or returns from it, which serve as param-
eters or return values. We define the history history(τ) corresponding to a computation
τ of the program C(L) by projecting trace(τ) to actions from HAct.

In contrast to histories used in the classical definition of linearizability [11],
ours include two new types of actions needed for defining linearizability on TSO:
(t, flush(call)) and (t, flush(ret)), denoting times when the CPU t flushes a call or a
ret marker from its store buffer. We first formulate our definition, and then explain the
motivation behind it.

Definition 1. The linearizability relation is a binary relation ! on histories de-
fined as follows: H ! H ′ if ∀t ∈ CPUid. H |t = H ′|t and there is a bijection
π : {1, . . . , |H |} → {1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and

(i < j ∧ (H(i) = ( , ret ) ∨H(i) = ( , flush(ret)))
∧ (H ′(j) = ( , call ) ∨H ′(j) = ( , flush(call)))) ⇒ π(i) < π(j).
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That is, a history H ′ linearizes a history H when it is a permutation of the latter preserv-
ing the order of certain types of actions. We lift the notion of linearizability to libraries
using the library-local semantics of Section 3.

Definition 2. For libraries L1 and L2 safe for Il and such that sig(L1) = sig(L2), we
say that L2 linearizes L1, written L1 ! L2, if

∀H1 ∈ history(�MGC(L1)�Il). ∃H2 ∈ history(�MGC(L2)�Il). H1 ! H2.

Thus, L2 linearizes L1 if every behaviour of the latter under the most general client may
be reproduced in a linearized form by the former.

Discussion. A good definition of linearizability has to allow replacing a library im-
plementation with its specification while keeping client behaviours reproducible (as
formalised by the Abstraction Theorem in Section 5). However, linearizability itself
is defined between libraries considered in isolation from their clients. In Definition 2,
this is achieved by considering executions of libraries under their most general clients
(Section 3), which can only refer to store buffer entries inserted by write commands
in library code. When a library is used by a client, the store buffer mixes entries in-
serted by the two components. As we noted in Section 1, in this case the library can
affect the client via the store buffer, e.g., by executing a memory barrier or leaving an
unflushed entry blocking newer client entries from being flushed. The ( , flush(call))
and ( , flush(ret)) actions in histories record the necessary information about library
behaviour of this kind, as we now explain.

Recall the analogy from Section 1, where we viewed the contents of a store buffer as
a sandwich consisting of blocks of entries inserted there by an invocation of a library
method or a fragment of client computation between two such invocations. The call
and ret markers delimit the layers in this sandwich. For example, at some point in an
execution of C(L), the store buffer of some CPU might have the following contents:

ret (x5, u5) call (x4, u4) ret (x3, u3) (x2, u2) call (x1, u1), (1)

where the leftmost end contains the newest entry. From the call and ret markers, we can
immediately conclude that the write to x1 was inserted by the client before calling a
library method, the writes to x2 and x3 were by the library method invocation, the write
to x4 was again by the client, and the write to x5 was by the next method invocation on
this CPU.

The most general client exercises the library methods under all possible input pa-
rameters, but does not perform writes by itself. For this reason, a store buffer in the
most general client of a library never has entries between a call marker and an older
ret marker (we formalise this in [5, Appendix A]). For example, a computation of the
most general client of the library with the same library method invocations as in the one
producing (1) might have the store buffer

ret (x5, u5) call ret (x3, u3) (x2, u2) call, (2)

which contains only library entries from (1). Thus, when considering a library in isola-
tion from its client in defining linearizability, the call and ret markers let us determine
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the places in the store buffer where client entries might be located in a corresponding
execution of a complete program.

Consider an execution of the most general client of a library in which the CPU flushes
a library entry (e.g., (x3, u3) in (2)). Since store buffers are FIFO, in the correspond-
ing execution of a particular client with the same library behaviour, this will assume
that the client entries in the store buffer older than it have been flushed (e.g., (x1, u1)
in (1)). Conversely, flushing a library entry (e.g., (x3, u3) in (1)) preceding a client one
(e.g., (x4, u4) in (1)) will guarantee that the client entry can now be flushed. For the
Abstraction Theorem to hold, in Definition 2 we need to make sure that the executions
of the most general clients producing histories H1 and H2 make the same assumptions
and give the same guarantees concerning times when client entries are flushed. This is
the reason for including flushes of call and ret markers into histories. The position of a
(t, flush(call)) action in a history produced by the most general client defines a moment
of time by which, in a complete program, all older client writes in the store buffer of t
must be flushed for the library to be able to flush the entries from the layer following
the call marker. The position of a (t, flush(ret)) action defines a moment starting from
which the client entries from the layer following the ret marker may be flushed. In our
definition of linearizability, we require that the two histories considered have the same
history actions describing how store buffers are modified during the execution. Hence,
in two executions corresponding to the histories, libraries make the same assumptions
and give the same guarantees concerning the use of store buffers.

Like the classical definition of linearizability, ours requires preserving the order be-
tween non-overlapping library method invocations; two invocations do not overlap in a
history if the return of one precedes the call of the other. This is needed for the Abstrac-
tion Theorem to hold, since the client code executed in between two non-overlapping
method invocations can notice their order. To handle TSO correctly, our definition also
takes into account intervals during which all the writes of a library method invocation
were being flushed: it requires preserving the order between two such non-overlapping
intervals or non-overlapping interval of this kind and a library method invocation.
This is expressed by preserving the order of ( , flush(ret)) preceding ( , flush(call)),
( , flush(ret)) preceding ( , call ), and ( , ret ) preceding ( , flush(call)). The require-
ment is again needed to validate the Abstraction Theorem.

We note that our definition of linearizability is flexible in the following sense: it
puts restrictions on times when call and ret markers are flushed, but not on how many
ordinary entries a given method invocation inserts into the store buffer. For example,
this allows us to relate a library implementation writing to some part of the memory
accessed only by a given CPU to its specification that does not write to any local state.

Example. Even though we formalise our results for programs represented by their
CFGs, for readability in our examples we use a C-like language. Its programs can be
translated to CFGs in the standard way. We assume that global variables are allocated
at fixed addresses in memory, and local variables are stored in CPU registers.

Figure 3 presents a simplified version of a seqlock [3]—an efficient implementa-
tion of a readers-writer protocol based on version counters used in the Linux kernel.
Two memory addresses x1 and x2 make up a conceptual register that a single hardware
thread can write to, and any number of other threads can attempt to read from. A version
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word x1 = 0, x2 = 0;

word c = 0;

write(in word d1, in word d2) {

c++;

x1 = d1; x2 = d2;

c++;

}

read(out word d1, out word d2) {

word c0;

do {

do { c0 = c; } while (c0 % 2);

d1 = x1; d2 = x2;

} while (c != c0);

}

Fig. 3. Seqlock implementation Lseqlock

word x1 = 0, x2 = 0;

write(in word d1, in word d2) { lock; x1 = d1; x2 = d2; unlock; }

read(out word d1, out word d2) { lock; d1 = x1; d2 = x2; unlock; }

Fig. 4. Seqlock specification L�
seqlock. Here nondet() represents a non-deterministic choice.

number is stored at c. The writing thread maintains the invariant that the version num-
ber is odd during writing by incrementing it before the start of and after the finish of
writing. A reader checks that the version number is even before attempting to read (oth-
erwise it could see an inconsistent result by reading while x1 and x2 are being written).
After reading, the reader checks that the version has not changed, thereby ensuring that
no write has overlapped the read. Note that neither the write nor the read operation
includes a memory barrier, which means that writes to x1, x2 and c may not be visible
to readers immediately.

We give a specification to seqlock using the abstract implementation in Figure 4.
Instead of using a version counter, this implementation just locks the machine while
reading from or writing to x1 and x2. According to the semantics of Section 2, the writes
to x1 and x2 performed by write are stored in a single entry of the corresponding
store buffer and are written to the shared memory atomically. This specifies that the
implementation of a seqlock indeed ensures the illusion of atomicity. However, we also
need our specification to capture the effect of the library executing on a weak memory
model—the fact that the writes to x1 and x2, although executed atomically, may still be
delayed due to the presence of store buffers. This is because the delay can be noticed
by certain clients and can result in a non-SC behaviour. For example, using a seqlock,
we can reproduce the example from Section 1 yielding non-SC behaviour as shown in
Figure 4. To capture this, the specification of write ensures atomicity by a pair of lock
and unlock commands, which do not flush the writes to the memory immediately.

Thus, we have two atomic actions associated with the abstract write method: one
that writes to the store buffer and the other that flushes the writes to the memory, pos-
sibly after the method returns. This is different from the classical definition of lineariz-
ability on a sequentially consistent memory model [11], which requires methods in the
specification to be implemented by one atomic action.
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x1 = x2 = y = 0;

write(1, 1); y = 1;

b = y; read(&a1, &a2);

{a1 = b2 = b = 0}

Fig. 5. A client of Lseqlock producing a non-SC behaviour

As the following theorem shows, the abstract implementation L�
seqlock in Figure 4

indeed linearizes the concrete one Lseqlock in Figure 3.

Theorem 3. Lseqlock ! L�
seqlock.

The proof is given in [5, Appendix A]; here we discuss it informally. The proof is
similar to proofs of classical linearizability using linearization points [11], although
here methods of the abstract implementation contain more than one atomic action. We
consider the most general clients of the concrete and the abstract implementations of the
library running alongside each other. For every execution of the client of the concrete
library, we construct the corresponding execution of the client of the abstract one by
firing transitions of the latter at certain times during the execution of the former.

For example, the abstract read method is executed when the corresponding concrete
one reads x2 for the last time. The code of the abstract write method is executed when
the concrete one writes to x2. Finally, a store buffer entry containing writes to x1 and
x2 by the abstract write method is flushed together with the second write to c by
the corresponding concrete method invocation. To prove that this flush in the abstract
implementation does not contradict the FIFO ordering of store buffers, we maintain
an invariant relating the contents of the store buffers in the concrete and the abstract
seqlock implementations.

Programs Producing Only SC Behaviours. By this time, the reader may wonder
whether it is always necessary to expose the behaviour of a library with respect to
store buffers in its specification. After all, many programs running on TSO only pro-
duce SC behaviours, and there are ways of effectively checking this [14,6,7]. Therefore,
a valid question is whether we can use the usual definition of linearizability for libraries
producing only SC behaviours when they are used by clients also behaving SC. Unfor-
tunately, in general the answer is no. This is because, even if the most general client
of a library MGC(L) and its client Csig(L)(·) only produce SC behaviours when con-
sidered in isolation, this may not be the case for the complete program C(L) due to
interactions of the two components via the store buffer. For example, the most general
client of a single seqlock produces only SC behaviours, as it satisfies the triangular race
freedom criterion of [14]. However, Figure 4 shows that if we use a seqlock together
with a client that also happens to be SC by itself, we can get non-SC behaviours. This is
not surprising: a seqlock is meant to ensure the atomicity of writes to and reads from a
pair of locations, but it is not meant to make these reads and writes strongly consistent.
Thus, the classical definition of linearizability is not sufficient to specify libraries even
when constraining separate components of a program to behave SC.
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5 Abstraction Theorem

We now justify that the notion of linearizability proposed in Section 4 is a correct one
by establishing the Abstraction Theorem that allows abstracting an implementation of
a library with its specification while reasoning about its client.

For a computation τ of C(L) obtained from the semantics of Section 2, we denote
with client(τ) the projection of its trace λ = trace(τ) to actions relevant to the client,
i.e., executed by the client code or corresponding to flushes of client entries in store
buffers. Formally, we include an action ϕ such that λ = λ′ϕλ′′ into the projection if:

– ϕ is included into history(τ); or
– ϕ is not a flush action and is outside an invocation of a library method, i.e., it is

not the case that λ|t = λ1 (t, call )λ2ϕλ3, where λ2 does not contain a (t, ret )
action; or

– ϕ corresponds to a flush of a client entry in a store buffer, i.e., it is not the case that
λ|t = λ1 (t, flush(call))λ2ϕλ3, where λ2 does not contain a (t, flush(ret)) action.

We lift client to sets of computations pointwise.
The Abstraction Theorem states that the behaviour of a client of a concurrent library

will stay reproducible on TSO if we replace the library by its abstract implementation
related to the original one by our definition of linearizability.

Theorem 4 (Abstraction). Consider C(L1) and C(L2) such that C is safe for Ic, L1

and L2 are safe for Il and L1 ! L2. Then C(L1) and C(L2) are safe for I = Ic ◦ Il
and client(�C(L1)�I) ⊆ client(�C(L2)�I).
We provide a proof outline below and give the complete proof in [5, Appendix A]. The
requirement that the client C be safe in the theorem is required to replace one library
implementation with another: it ensures that C cannot access the internals of the library
implementation.

From Theorem 4 it follows that, while reasoning about a client C(L1) of a library
L1, we can soundly replace L1 with a simpler library L2 linearizing L1: if a linear-
time property over client actions holds over C(L2), it will also hold over C(L1). Note
that the abstract implementation is usually simpler than the original one (in most cases
implemented using atomic blocks, like the one in Figure 4), which eases the proof of the
resulting program. Thus, the proposed notion of linearizability and Theorem 4 enable
compositional reasoning about programs running on TSO: they allow decomposing the
verification of a whole program into the verification of its constituent components. We
give an example of using this technique in Section 6.

The following corollary of Theorem 4, proved in [5, Appendix A], states that, like the
classical notion of linearizability [11], ours is compositional: if several non-interacting
libraries are linearizable, then so is their composition. Formally, consider libraries
L1, . . . , Lk with disjoint sets of declared methods and sets of initial heaps I1, . . . , Ik
such that

∀{i1, . . . , il} ⊆ {1, . . . , k}. ∀h1 ∈ Ii1 , . . . , hl ∈ Iil . h1 � . . . � hl is defined.

We let the compositionL of L1, . . . , Lk be the library implementing all of their methods
and having the set of initial heaps I1 ◦ . . . ◦ Ik .
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Corollary 5 (Compositionality). Consider libraries L1, . . . , Lk and L�
1, . . . , L

�
k such

that Lj and L�
j are safe for Ij , j = 1..k. Let L and L� be the compositions of the

respective sets of libraries. If Lj ! L�
j for j = 1..k, then L ! L�.

Proof Outline for Theorem 4. The proof of Theorem 4 relies on the following lemmas,
proved in [5, Appendix A]. The first lemma shows that a computation of C(L) generates
two computations in the client-local and library-local semantics with the same history.

Lemma 6 (Decomposition). If Csig(L)(·) and MGC(L) are safe for Ic and Il, respec-
tively, then C(L) is safe for Ic ◦ Il and

∀τ ∈ �C(L)�(Ic ◦ Il). ∃η ∈ �Csig(L)(·)�Ic. ∃ξ ∈ �MGC(L)�Il.
history(η) = history(ξ) ∧ client(τ) = client(η).

The following lemma presents the core of the transformation used to convert a compu-
tation of C(L1) into one of C(L2) in Theorem 4: it shows that a computation of a most
general client can be transformed into another of its computations with a given history
linearized by the history of the original one.

Lemma 7 (Rearrangement). Consider a libraryL safe for Il and histories H,H ′ such
that H ! H ′. Then

∀τ ′ ∈ �MGC(L)�Il. history(τ ′) = H ′ ⇒ ∃τ ∈ �MGC(L)�Il. history(τ) = H.

Finally, the following lemma states that any pair of client-local and library-local com-
putations agreeing on the history can be combined into a valid computation of C(L).

Lemma 8 (Composition). If Csig(L)(·) and MGC(L) are safe for Ic and Il, respec-
tively, then

∀η ∈ �Csig(L)(·)�Ic. ∀ξ ∈ �MGC(L)�Il. history(η) = history(ξ) ⇒
∃τ ∈ �C(L)�(Ic ◦ Il). client(τ) = client(η).

Most of the proof of the Decomposition Lemma (Lemma 6) deals with maintaining
a splitting of the state of C(L) into the parts owned by the client and the library, in-
cluding store buffer entries. The resulting partial states then define the computations
of Csig(L)(·) and MGC(L). Conversely, the Composition Lemma (Lemma 8) composes
the states of Csig(L)(·) and MGC(L) into states of C(L) to construct an execution of
the latter. The proof of the Rearrangement Lemma (Lemma 7) transforms τ ′ into τ by
repeatedly permuting transitions in the computation according to a certain strategy to
make its history equal to H .

Proof of Theorem 4. Lemma 6 implies that C(L) is safe. We now need to transform
a computation τ1 ∈ �C(L1)�I of C(L1) into a computation τ2 ∈ �C(L2)�I with the
same client trace projection: client(τ1) = client(τ2). To this end, we use the semantics
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of Section 3, which defines the interpretation of L1, L2, Csig(L1)(·) and their composi-
tions. Namely, to transform τ1 into τ2, we first apply Lemma 6 to generate two compu-
tations from τ1—a library-local computation ξ1 ∈ �MGC(L1)�Il and a client-local one
η ∈ �Csig(L1)(·)�Ic—such that client(τ1) = client(η) and history(τ1) = history(η) =
history(ξ1). Note that the computation η of C thus constructed excludes the internal
library actions. Since L1 ! L2, for some computation ξ2 ∈ �MGC(L2)�Il, we have
history(ξ1) ! history(ξ2). By Lemma 7, ξ2 can be transformed into a computation
ξ′2 ∈ �MGC(L2)�Il such that history(ξ′2) = history(ξ1) = history(η). We then use
Lemma 8 to compose the library-local computation ξ′2 with the client-local one η into a
computation τ2 ∈ �C(L2)�I such that client(τ2) = client(η) = client(τ1). �

6 Checking Linearizability on TSO

We have implemented a tool called LINTSO for systematically testing concurrent li-
braries for our notion of linearizability. Our intention in implementing the tool is
twofold. First, the tool allows developers of concurrent libraries to find violations of
linearizability quickly. The second (and more important) goal is to use the tool to per-
form a sanity check of our definition of linearizability by making sure that real-world
algorithms that are commonly accepted as correct are linearizable with respect to it.

LINTSO is similar in spirit to the LINE-UP tool for checking linearizability on a
sequentially consistent memory model [4]. It takes as input a concrete and an abstract
implementation of a library (such as the ones in Figures 3 and 4) along with a (bounded)
test harness that calls into the library. LINTSO then composes the input with an oper-
ational model of TSO such that sequentially consistent behaviors of the resulting pro-
gram emulate TSO behaviors of the input. This allows LINTSO to use existing model
checkers, such as CHESS [13], to systematically enumerate the behaviors of the harness
and the library on TSO.

In a first phase, LINTSO exhaustively generates all histories of the input harness
calling into the abstract version of the library. In a subsequent phase, LINTSO system-
atically enumerates the TSO behaviors of the harness and the concrete version of the
library. For every such behavior, LINTSO uses the linearizability condition to check if
the behavior is consistent with respect to some history observed in the first phase. Any
violation is reported as an error.

If the enumeration in the second phase completes, then LINTSO guarantees that the
abstract implementation linearizes the concrete one for the given harness. If the number
of possible computations in this phase is too large, a subset of them can be considered
by bounding the number of context switches [13]. Obviously, this does not provide a
complete guarantee of linearizability, as only (possibly a subset of computations of) one
of the infinitely many harnesses is considered.

In our experiments we considered the following concurrent algorithms that were
identified as challenges in [14]:

– seqlock, the readers-writer lock we discussed in Section 4;
– simple spinlock, which does not provide fairness guarantees;
– ticketed spinlock, ensuring fairness using a variant of the Bakery algorithm;
– initialisation using double-checked locking.
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We provide their code and specifications in [5, Appendix B]. The seqlock and the spin-
lock implementations are used in various versions of the Linux kernel [3]. The above
algorithms are optimised for the TSO memory model and, when used in certain ways,
can exhibit behaviours that cannot be reproduced on a sequentially consistent memory
model. In fact, the correctness of the spinlock implementations was a subject of debate
among Linux developers [14].

In more detail, the simple and ticketed spinlocks do not execute a memory barrier
after writing a value into the lock data structure saying that the lock is free. According
to the semantics of TSO, this does not violate mutual exclusion: delaying the write in
the store buffer can only lead to CPUs that want to acquire the lock waiting longer. As
in the case of a seqlock (Figure 4), the specification of a spinlock captures the fact that
the lock release can be delayed.

The initialisation using double-checked locking first checks if an object is initialised
by reading a corresponding flag without acquiring the lock for the object. Since the read
is not preceded by a memory barrier, on TSO this can cause it to return ‘uninitialised’
even after the object has been in fact initialised. This does not violate the correctness of
the algorithm, since the flag is then re-checked with the lock held.

For simple harnesses of the above examples, consisting of up to 3 threads, each per-
forming up to 3 operations, LINTSO performed the check in a matter of minutes. The
specification histories were generated exhaustively, and the implementation histories for
computations up to a maximum of two preemptions (the CHESS default). In all cases,
the tool did not detect any errors. As a further sanity check, we introduced simple er-
rors in the examples, e.g., by replacing xunlock with an unlock in the concrete version.
LINTSO was able to find all of them.

We used Theorem 4 to modularise checking the linearizability of the intialisation
using double-checked locking. Namely, Theorem 4 allowed us to consider the specifi-
cation of the spinlock used in this example, instead of a particular implementation. This
cut down the number of interleavings to be analysed and made the analysis more effi-
cient. Additionally, it allowed us to prove the linearizability of the algorithm regardless
of the particular spinlock implementation used (e.g., the simple or ticketed spinlock).
This is just one example of using the Abstraction Theorem to verify concurrent pro-
grams compositionally.

7 Related Work and Conclusion

All the definitions of linearizability proposed for various settings so far [11,8,10,9]
have assumed a sequentially consistent memory model. This paper is the first to de-
fine a notion of linearizability on a weak memory model and show that it validates the
Abstraction Theorem (Theorem 4). Our result is based on a novel insight about what
information should be kept in histories to specify interactions between the library and
the client due to the weak memory model. Even though in this paper we considered
only one weak memory model—TSO, implemented by x86 processors [15]—our in-
sights form a starting point for investigating weaker memory models, such as those of
Power [17] and ARM [1] processors, and the C++ language [2].
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Our work lays the foundation for future correctness proofs for implementations of
concurrent algorithms in operating system kernels [3] and language run-times [2]. In
particular, we hope that it should be possible to develop a logic for establishing the
proposed notion of linearizability formally, based on existing logics for proving safety
properties on TSO [20,16] and linearizability on sequentially consistent memory mod-
els [18,19]. This should make proofs such as that of Theorem 3 easier to carry out.

We also intend to investigate definitions of linearizability on weak memory models
in cases when the library and the client interact in more complicated ways. For example,
in this paper we did not consider the transfer of data structure ownership between the
library and the client, assuming that they communicate only by passing values of a
primitive type. We believe that our approach to handling weak memory can be married
with a previous generalisation of linearizability for ownership transfer on a sequentially
consistent memory model [9].

Acknowledgements. We thank Scott Owens, Ian Wehrman and the anonymous review-
ers for comments that helped to improve the paper. Yang was supported by EPSRC.
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Abstract. Indistinguishability properties are essential in formal verifi-
cation of cryptographic protocols. They are needed to model anonymity
properties, strong versions of confidentiality and resistance to offline
guessing attacks, and can be conveniently modeled using process equiva-
lences. We present a novel procedure to verify equivalence properties for
bounded number of sessions. Our procedure is able to verify trace equiv-
alence for determinate cryptographic protocols. On determinate proto-
cols, trace equivalence coincides with observational equivalence which
can therefore be automatically verified for such processes. When proto-
cols are not determinate our procedure can be used for both under- and
over-approximations of trace equivalence, which proved successful on ex-
amples. The procedure can handle a large set of cryptographic primitives,
namely those which can be modeled by an optimally reducing convergent
rewrite system. Although, we were unable to prove its termination, it has
been implemented in a prototype tool and has been effectively tested on
examples, some of which were outside the scope of existing tools.

1 Introduction

Cryptographic protocols are distributed programs which rely on the use of cryp-
tography to secure electronic transactions such as those that arise in electronic
commerce and wireless communication. They are also being applied in new do-
mains such as in Internet voting—legally binding political elections in Estonia,
Norway and Switzerland offer the possibility for Internet voting in 2011. This has
led to increasing demands on the complexity of desired security properties, lead-
ing to more complex cryptographic protocols. Given the socio-economic-political
consequences and the history of incorrect design of cryptographic protocols, the
need for formal proofs of correctness of protocols has been widely recognized.
Formal reasoning about cryptographic protocols is challenging as one has to
reason against all potentially malicious behavior—all communication between
protocol participants is assumed to be under the control of an adversary.

In order to make the task of formal analysis amenable to automation, usually
the assumption of black-box cryptography and unbounded computational power
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of the adversary is made. This adversarial model is often called the Dolev-Yao
model and is derived from Dolev and Yao’s seminal paper [29]. It has proved
extremely successful, and there are several automated tools [10,6,31] that can
automatically check trace-properties such as (weak forms of) confidentiality and
authentication. While trace-based properties are certainly important, many cru-
cial security properties can only be expressed in terms of indistinguishability
(or equivalence). They include strong flavors of confidentiality [11]; resistance to
guessing attacks in password based protocols [8]; and anonymity properties in
private authentication [3], electronic voting [26,7], vehicular networks [24] and
RFID protools [5,15]. More generally, indistinguishability allows to model se-
curity by the means of ideal systems, which are correct by construction [4,25].
Indistinguishability properties of cryptographic protocols are naturally modeled
by the means of observational and testing equivalences in cryptographic exten-
sions of process calculi, e.g., the spi [4] and the applied-pi calculus [2]. While we
have good tools for automated verification of trace properties, the situation is
different for indistinguishability properties.

State-of-the-Art. Hüttel [34] showed undecidability of observational equivalence
in the spi calculus, even for the finite control fragment, as well as decidability
for the finite, i.e., replication-free, fragment of the spi calculus. The decidabil-
ity result however only holds for a fixed set of cryptographic primitives and
does not yield a practical algorithm. Current results [12] allow to approximate
observational equivalence for an unbounded number of sessions. However, this
approximation does not suffice to conclude for many applications, e.g., [26,5].
Our approach overcomes these limitations for some applications in [26]. We still
cannot conclude for the e-passport example in [5], albeit for a different reason:
our procedure does not currently handle else branches in protocols.

Symbolic bisimulations have also been devised for the spi [14,13,39] and ap-
plied pi calculus [27,35] to avoid unbounded branching due to adversary inputs.
However, only [27,39] and [14] yield a decision procedure, again only approxi-
mating observational equivalence. The results of [27] have been further refined
to show a decision procedure on a restricted class of simple processes [23]. They
rely on a procedure deciding the equivalence of constraint systems, introduced
by Baudet [8], for the special case of verifying the existence of guessing at-
tacks. Baudet’s procedure allows arbitrary cryptographic primitives that can be
modeled as a subterm convergent rewrite systems [1]. An alternate procedure
achieving the same goal was proposed by Chevalier and Rusinowitch [19]. How-
ever, both procedures are highly non-deterministic and do not yield a reasonable
algorithm that could be implemented. Therefore, Cheval et al. [17] have designed
a new procedure and a prototype tool to decide the equivalence of constraint
systems, but only for a fixed set of primitives. Tools have also been implemented
for checking testing equivalence [30], open bisimulation [39] and trace equiva-
lence [18] for a bounded number of sessions but again only for a limited set of
primitives. One may note that [18] is the only decision procedure to consider
negative tests (else branches), crucial in several case studies [5,3].
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Our Contribution. We introduce a new procedure for verifying equivalence prop-
erties for processes specified in a cryptographic process calculus (without repli-
cation). Our main contributions are as follows.

– Our procedure checks for two equivalences which over- and under-
approximate the standard notion of trace equivalence ≈t for cryptographic
protocols: the under-approximation can be used to prove protocols correct
while the over-approximation can be used to rule out incorrect protocols.

– Cortier and Delaune [23] have shown that observational equivalence coin-
cides with ≈t for the class of determinate processes. They also give a decision
procedure for a strict sub-class of determinate processes, namely, simple pro-
cesses. We show that for determinate processes the coarser relation coincides
with ≈t, and our procedure can be used to verify observational equivalence
for the whole class of determinate processes.

– A novelty of our procedure is that it is based on a fully abstract model-
ing of symbolic traces in first-order Horn clauses. This is in contrast to the
constraint-solving techniques employed in [39,17,18,8,19] for verifying under-
approximations of observational equivalence. Techniques based on Horn
clauses have been extensively used, e.g., in [10,40,33], for an unbounded
number of sessions. Of these tools, only ProVerif [10,12] can verify an equiv-
alence property, which is an under-approximation of observational equiva-
lence. Horn clause modeling of an unbounded number of sessions of security
protocols may allow false attacks. In contrast, we show our modeling of a
bounded number of sessions for determinate protocols to be precise.

– Our modeling is fully abstract for arbitrary cryptographic primitives that
can be modeled as a convergent rewrite system which has the finite variant
property. Not only this strictly includes the class of primitives that can be
modeled as subterm convergent rewrite systems, but this also allows us to
handle a larger class of cryptographic primitives than [39,17,18,8,19,10]. For
example, this allows us to handle trapdoor commitment as used by Okamoto
for electronic voting in [38]. Although we were unable to prove termination
of our procedure, we conjecture it to terminate for the class of cryptographic
primitives that can be modeled as subterm convergent rewrite systems. Our
conjecture is supported by experimental evidence.

– Our procedure is implemented in the AKiSs (Active Knowledge in Security
protocols) prototype tool and used among others to give the first automated
proof of anonymity for the electronic voting protocol presented in [32].

Technical proofs are given in an accompanying technical report [16].

2 Preliminaries

Terms. Let F be a signature, i.e., a finite set of function symbols and ar a
function that assigns to each function symbol a natural number, its arity. A
function symbol of arity 0 is called a constant. Given a set of atoms A and a
signature F , we denote by TF ,A the set of terms built inductively from A by
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applying functions symbols in F . Given sets of atoms A1,A2, . . . ,An, we denote
the set TF ,∪1≤i≤nAi by TF ,A1,A2,...An . We assume that we have the following
countably infinite pairwise disjoint sets: a set N of private names, M of public
names, a set C of public channel names, a set W of parameters, and a set X of
message variables. Intuitively, elements of the set N represent nonces generated
by honest principals of a protocol, elements of M represent nonces available
both to the adversary and to the honest participants and elements of C represent
names of public channels (e.g. the name of a public network). Elements of W
are pointers used by the adversary to refer to messages output by the honest
participants in a protocol. We fix an enumeration w1, w2, . . . of the elements of
W . We let x, y, z range over X . We also define the following set of terms:

– Terms denotes the set of all terms TF ,N ,M,W,X .
– Messages denotes the set of messages TF ,N ,M.
– SMessages denotes the set of symbolic messages TF ,N ,M,X .

If t is a term, we denote by vars(t) the set of variables appearing in t, by
names(t) the set of names (public or private) appearing in t. The functions
vars , names are extended to sequences and sets of terms as expected.

Example 1. Consider the signature F = {enc, dec, pair, fst, snd} . The term t =
pair(enc(a, k1, r1), enc(b, k2, r2)) models the pair of the asymmetric encryptions
of public names a and b with keys k1, resp. k2 and randomness r1, resp. r2.

A substitution is a partial function σ : W∪X → Terms. We restrict substitutions
to map elements of W to elements of Messages and elements of X to elements
of SMessages. The domain of σ shall be denoted by dom(σ). We denote by σ[X ]
the substitution whose domain is restricted to X . We only consider substitutions
with finite domains. As usual, a substitution extends homomorphically to terms
and we write tσ for the term obtained by applying σ to t.

Rewriting and Unification. Two terms s and t are (syntactically) unifiable if
there exists a substitution σ such that sσ = tσ. We denote by mgu(s, t) their
most general unifier. We assume that the reader is familiar with basic notions
of rewriting and only briefly introduce our notations. A rewrite system R is a
set of rewrite rules of the form � → r where �, r ∈ Terms, names(l, r) = ∅ and
vars(r) ⊆ (�). We write t →R u when a term t can be rewritten in one step
to u. →∗

R denotes the transitive and reflexive closure of →R. We only consider
convergent rewrite systems and denote by t↓R the normal form of a term t. Two
terms s and t are said to be equal modulo R, written s =R t, if s↓R = t↓R. Given
a substitution σ, σ↓R is the substitution such that dom(σ↓R) = dom(σ) and for
all u ∈ dom(σ), σ↓R(u) = σ(u)↓R. We shall omit R when clear from the context.

Example 2. Let F be the signature in Example 1. Consider the rewrite sys-
tem R = {dec(enc(x, y, z), y) → x, fst(pair(x, y)) → x, snd(pair(x, y)) → y}.
The first rule models that a message can be decrypted, provided decryption
uses the same key (represented by variable y) as encryption. The last two rules
model projection of the first and second component of a pair. We have that
t = fst(pair(dec(enc(a, k, r), k), b)) →R fst(pair(a, b)) →R a = t↓R.
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We recall the notion of complete set of variants for a convergent rewrite system
[22]:

Definition 1. A set of substitutions variants(t1, . . . , tk) is called a complete
set of variants of terms t1, . . . , tk if for any substitution ω there exist σ ∈
variants(t1, . . . , tk) and a substitution τ such that for all 1 ≤ j ≤ k we have
that ω[vars(tj)]↓ = (σ↓τ)[vars(tj)] and (tjω)↓ = (tjσ)↓τ .
Intuitively, the set of variants of t represents a pre-computation such that any
instance of t in normal form is syntactically equal to an instance of tσi↓ for some
i, without the need to apply further rewrite steps. A rewrite system has the
finite variant property if for any finite sequence of terms a finite, complete set
of variants exists. An algorithm for computing complete sets of variants which
is correct whenever the rewrite system is optimally reducing [37] is presented in
[21]. Optimally reducing rewrite systems include subterm convergent systems [1]
(and hence the classical Dolev Yao theories for encryption, signatures and hash
functions), as well as a theory for modeling blind signatures. Complete sets of
variants can be used to compute finite complete sets of unifiers modulo R [21],
which are formally defined in [16] and denoted by mguR. We assume, henceforth,
that rewrite systems in this paper have the finite variant property.

Frames, Deducibility and Static Equivalence. We will use the notion of a frame [2]
to represent messages which have been recorded by an attacker.

Definition 2. A frame ϕ is a substitution {w1 �→ t1, . . . , wn �→ tn} where ti ∈
Messages (1 ≤ i ≤ n).

Please note, in our definition, every frame ϕ with |dom(ϕ)| = n has dom(ϕ) =
{w1, . . . , wn}. The set of all frames is denoted as Frames. The adversary can use
the messages learnt from the run of a protocol to construct new messages. This
is modeled as the deducibility relation.

Definition 3. Any term in TF ,M,W is said to be a recipe. We say that a message
t is deducible from ϕ with a recipe r (written as ϕ %r t) if t ∈ Messages and
rϕ =R t. We write Recipes for the set TF ,M,W .

Example 3. Consider the signature F and the rewrite system R in Example 2.
Let ϕ = {w1 �→ enc(s, k, r), w2 �→ k} where s, k, r ∈ N are private names. We
have that ϕ %dec(w1,w2) s. Note that dec(w1, k) �∈ Recipes as k ∈ N . If s were
public instead of being private (ie, s ∈ M instead of s ∈ N ) then we also have
that ϕ %s s; as public names are always deducible.

Static equivalence captures indistinguishability of sequences of messages:

Definition 4. Let r1, r2 ∈ Recipes. A test r1
?
= r2 holds in a frame ϕ (written

(r1 = r2)ϕ) if ϕ %r1 t and ϕ %r2 t for some t, i.e., r1 and r2 are recipes for the
same term in ϕ.

A frame ϕ1 is statically included in ϕ2 (written ϕ1 !s ϕ2) iff for all r1, r2 ∈
Recipes we have that (r1 = r2)ϕ1 implies (r1 = r2)ϕ2. Two frames ϕ1 and ϕ2

are statically equivalent (written ϕ1 ≈s ϕ2) iff ϕ1 !s ϕ2 and ϕ2 !s ϕ1.
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Example 4. Let a, b ∈M and r, k, k′ ∈ N . We have that {w1 �→ enc(a, k, r), w2 �→
k} �≈s {w1 �→ enc(b, k, r), w2 �→ k} because the test (dec(w1, w2) = a) dis-
tinguishes the two frames. However, {w1 �→ enc(a, k, r), w2 �→ k′} ≈s {w1 �→
enc(b, k, r), w2 �→ k′}. Moreover, we have that {w1 �→ a, w2 �→ b} !s {w1 �→
a, w2 �→ a} while {w1 �→ a, w2 �→ a} �!s {w1 �→ a, w2 �→ b}.

3 A Cryptographic Process Calculus

We model cryptographic protocols using a simple process calculus which has
similarities with the applied pi-calculus [2].

Syntax. We model a bounded number of instances of a cryptographic protocol
as a finite set of traces. Traces are defined using sequences of actions generated
by the following grammar:

a ::= in(c, x) | out(c, t) | [s
?
= t]

where x ∈ X , s, t ∈ SMessages, c ∈ C. A trace T is a sequence of actions T =
a1.a2. . . . .an. As usual, a receive action in(c, x) acts as a binding construct for x.
We assume the usual definitions of free and bound variables for traces. We also
assume that each variable is bound at most once. A trace is ground if it does
not contain any free variables. The set of ground traces shall be represented as
GndTraces. A set of traces P = {T1, . . . , Tn} is said to be a process. A process is
ground if all of its traces are ground. We identify traces with singleton processes.

Remark 1. We do not have an ν operator: the binding happens implicitly by
the use of private names in N . We have also not explicitly included the parallel
operator | and the choice operator +. One could include these and generate the
corresponding set of traces. Thus, there is no loss in expressivity. However, an
explicit enumeration of the traces can result in an exponential number of traces.

Semantics. The semantics of a process is defined using the semantics of its traces.
The semantics of a trace is given in terms of a labeled transition system T. We
assume that all interactions between protocol participants are mediated by the
adversary. The labeled transition system records the interaction of the protocol
participants with the adversary. The set of labels of T is defined using the set
Recipes. Recall that the set Recipes is the set TF ,M,W (see Section 2). The set
of labels, Labels, is { in(c, r),out(c), test | r ∈ Recipes, c ∈ C }.

The labeled transition system T is a subset of (GndTraces×Frames)×Labels×
(GndTraces×Frames). We write (T, ϕ)

�−→ (T ′, ϕ′) whenever ((T, ϕ), �, (T ′, ϕ′)) ∈
T. The frame in the transition system is used to record the messages that the

protocol participants have sent in the past. The relation
�−→ is defined as follows:

Receive

ϕ �r t

(in(c, x).T, ϕ)
in(c,r)−−−−→ (T{x �→ t}, ϕ)

Test

s =R t

([s
?
= t].T, ϕ)

test−−−→ (T, ϕ)

Send

(out(c, t).T, ϕ)
out(c)−−−−→ (T, ϕ ∪ {w|dom(ϕ)|+1 �→ t})
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The label in(c, r) indicates a message sent by the adversary over the channel c
and r is the recipe that adversary uses to create this message. The label out(c)
indicates a message sent over the public channel c and transition rule Send

records the message sent in the frame. Finally, the rule Test is an internal action.

We write (T, ϕ)
�
=⇒ (T ′, ϕ′) when either (T, ϕ)

test∗,�,test∗−−−−−−−−→ (T ′, ϕ′) and � �=
test or (T, ϕ)

test∗−−−→ (T ′, ϕ′) and � = test, where test∗ denotes an arbitrary num-

ber of test actions. We also write (T0, ϕ0)
�1,...,�n−−−−−→ (Tn, ϕn) when (T0, ϕ0)

�1−→
(T1, ϕ1) . . .

�n−→ (Tn, ϕn) (and similarly for the ⇒ relation) and say that �1 . . . �n

is a run of (T0, ϕ0). If P is a process, we write (P, ϕ)
�1,...,�n−−−−−→ (T ′, ϕ′) (resp.

�1,...,�n
=====⇒ (T ′, ϕ′)) if there exists a trace T ∈ P such that (T, ϕ)

�1,...,�n−−−−−→ (T ′, ϕ′)

(resp. (T, ϕ)
�1,...,�n
=====⇒ (T ′, ϕ′)).

Process Equivalences. We will now define different flavors of trace equivalence
which will be useful in this paper. We first recall the standard definition of trace
equivalence in cryptographic process algebras.

Definition 5. (Trace equivalence) A ground process P is said to be trace-

included in a ground process Q (written P !t Q) if whenever (P, ∅) �1,...,�n
=====⇒

(T, ϕ) then there exist T ′, ϕ′ such that (Q, ∅) �1,...,�n
=====⇒ (T ′, ϕ′) and ϕ ≈s ϕ

′. Two
processes P and Q are trace-equivalent (written P ≈t Q) if P !t Q and Q !t P .

We will also define two other notions of trace equivalence, one coarser and one
more fine-grained. We start by describing the coarser trace equivalence.

Definition 6. Given ground processes P and Q, we say that P !ct Q if when-

ever (P, ∅) �1,...,�n
=====⇒ (T, ϕ) then there exist T ′, ϕ′ such that (Q, ∅) �1,...,�n

=====⇒ (T ′, ϕ′)
and φ !s φ

′. We say that P ≈ct Q if P !ct Q and Q !ct P .

The following example illustrates the difference between ≈t and ≈ct.

Example 5. Let P and Q be the ground processes defined as follows: P =
{ out(c, a).out(c, a) } andQ = { out(c, a).out(c, a),out(c, a).out(c, b) }. Clearly
P !ct Q. Observe also that Q !ct P . This is because {w1 �→ a, w2 �→ b} !s

{w1 �→ a, w2 �→ a}. Thus, P ≈ct Q. But P �≈t Q.

We show, however, that these two notions coincide for the class of determinate
processes. In the context of the applied pi calculus determinate processes were
previously studied by Cortier and Delaune in [23].

Definition 7. (Determinate process) A ground process P is determinate if

whenever (P, ∅) �1,...,�n
=====⇒ (T, ϕ) and (P, ∅) �1,...,�n

=====⇒ (T ′, ϕ′) then ϕ ≈s ϕ
′.

Intuitively, determinate processes are processes in which the adversary’s static
knowledge at any instance is completely determined by its past interaction with
the protocol participants. Note that any ground trace is determinate.

As already mentioned above, it was demonstrated in [23] that trace equiv-
alence coincides with observational equivalence for determinate processes. We
show that ≈t and ≈ct also coincide for this class of processes.
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Theorem 1. If P and Q are ground processes then P ≈t Q implies P ≈ct Q.
Furthermore, if P and Q are determinate, then P ≈ct Q implies P ≈t Q.

We introduce a more fine-grained notion of trace equivalence, denoted ≈ft .

Definition 8. Given ground processes P and Q, we say that P !ft Q whenever
for all trace T ∈ P there exists a trace T ′ ∈ Q such that T ≈t T

′. We say that
P ≈ft Q if P !ft Q and Q !ft P .

It follows directly form the definition that ≈ft⊂≈t. The difference between these
two relations is illustrated by the following example.

Example 6. Let P and Q be ground processes defined as follows:

P = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(a, k)].out(c, k),
out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(b, k)].out(c, k)}

Q = { out(c, enc(a, k)).out(c, enc(b, k)).in(c, x).[x = enc(dec(x, k), k)].out(c, k)}

where k ∈ N is a private name and a, b are constants. The test
x = enc(dec(x, k), k) simply checks whether x is an encryption with key k.
It is not difficult to see that P ≈t Q but P �≈ft Q.

Our procedure is able to check ≈ct (and hence ≈t) for determinate processes.
For non-determinate processes, we can check ≈ft and an over-approximation of
≈ct (see [16] for details) in order to under- and over-approximate ≈t: as traces
are determinate a procedure for checking ≈ct can be used to verify ≈ft .

4 Modeling Traces as Horn Clauses

Our procedure is based on a fully abstract modeling of a trace into first-order
Horn clauses. We give the details of this modeling; we start by giving some
definitions that we need for defining the predicates used in the logic.

Symbolic Labels and Symbolic Runs. We define the set of symbolic labels as

SLabels = {in(c, t),out(c), test | t ∈ SMessages, c ∈ C}

and the set of symbolic runs as the set of finite sequences of symbolic labels (see
Figure 1). The empty sequence is denoted by ε. We will often be lazy and write
(empty space) for ε. Intuitively, a symbolic label stands for a set of possible
labels, and a symbolic run stands for a set of possible runs of the protocol.

Symbolic Recipes. We assume a set Y of recipe variables disjoint from X . The set
of terms TF ,M,W,Y shall be called symbolic recipes and denoted by SRecipes. We
use capital letters X,Y, Z to range over Y. Intuitively, a symbolic recipe stands
for a set of recipes. We can extend the definition of substitutions to include
variables from Y in its domain: we only consider substitutions that map variables
in Y to SRecipes. A ground substitution must map variables in Y to Recipes. The
notions of mgu and mguR is extended to symbolic recipes as expected.
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Predicates. The predicates used in our modeling and the semantics of the predi-
cates are given in Figure 1. The predicates are interpreted over a triple– a trace
T , a frame ϕ and a substitution σ. We have four kinds of predicates, all of which
have a symbolic run as an argument. Intuitively, the reachability predicate rw
says that each run represented by w is possible. The intruder knowledge predi-
cate kw(R, t) says that whenever a run represented by w happens, the (symbolic)
message t can be constructed by the intruder using the (symbolic) recipe R. The
identity predicate iw(R,R′) says that whenever the (symbolic) run SR happens,
the (symbolic) recipes R and R′ are recipes for the same (symbolic) term. The
reachable identity predicate riw(R,R′) is a short form for the conjunction of the
predicates rw and iw(R,R′).

Formulas and Statements. We consider first-order formulas built using the above
predicates and the usual connectives (conjunction, disjunction, negation, impli-
cation, existential and universal quantification). As in the case of predicates, a
formula is interpreted over a triple consisting of a trace T , a frame ϕ and a sub-
stitution σ; and the semantics is defined as expected. For ground formulas we
do not need the substitution σ and when a formula f is ground we simply write
(T, ϕ) |= f to denote that this formula holds for (T, ϕ). If moreover, dom(ϕ) = ∅,
we simply write T |= f for (T, ∅) |= f .

Symbolic Runs (	 ∈ SLabels):
u, v, w := ε | 	, w

Predicates (w ∈ SRuns, R ∈ SRecipes, t ∈ SMessages):
rw (Reachability predicate)
kw(R, t) (Intruder knowledge predicate)
iw(R,R′) (Identity predicate)
riw(R,R′) (Reachable identity predicate)

Semantics (	i ∈ SLabels, R ∈ SRecipes, t ∈ SMessages, T ∈ GndTraces, ϕ ∈ Frames,
σ a ground substitution):

(T, ϕ0, σ) |= r�1,...,�i if (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that 	iσ =R Liϕi−1 for all 1 ≤ i ≤ n

(T, ϕ0, σ) |= k�1,...,�i(R, t) if when (T, ϕ0)
L1−−→ (T1, ϕ1)

L2−−→ . . .
Ln−−→ (Tn, ϕn)

such that 	iσ =R Liϕi−1 for all 1 ≤ i ≤ n
then ϕn �Rσ tσ

(T, ϕ0, σ) |= i�1,...,�i(R,R′) if there exists t s.t.
(T, ϕ0, σ) |= k�1,...,�i(R, t) and
(T, ϕ0, σ) |= k�1,...,�i(R

′, t)
(T, ϕ0, σ) |= ri�1,...,�i(R,R′) if (T, ϕ0, σ) |= r�1,...,�i and (T, ϕ0, σ) |= i�1,...,�i(R,R′)

Fig. 1. Predicates

We now identify a subset of the formulas, which we shall call statements.
Statements shall take the form of Horn clauses.
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Definition 9. A statement is a Horn clause of the form H ⇐ B1, . . . , Bn where:

1. H ∈ {r�1,...,�k , k�1,...,�k(R, t), i�1,...,�k(R,R′), ri�1,...,�k(R,R′)}
2. For each 1 ≤ i ≤ n,Bi = k�1,...,�ji (Xi, ti)

for some �1, . . . , �k ∈ SLabels, t ∈ SMessages, R,R′ ∈ SRecipes, ji ≤ k, t1, . . . ,
tn ∈ SMessages and X1, . . . , Xn ∈ Y. Furthermore X1, . . . , Xn are distinct vari-
ables and if H = k�1,...,�k(R, t) then vars(t) ⊆ vars(t1, . . . , tn).

As usual, we implicitly assume that in a Horn clause all variables are universally
quantified. Hence, all statements are closed formulas.

The Set of Seed Statements. Our procedure is based on a fully abstract modeling
of a trace in first-order Horn clauses. In this section, given a trace T we define
a set of statements seed(T ) that serve as a starting point for the modeling. We
also establish that seed(T ) is a sound and (partially) complete abstraction of the
trace T. In order to formally define seed(T ), we start by fixing some conventions.

Let T = a1.a2. . . . .an be a ground trace. We assume the following naming
conventions: (i) if ai is a receive action then ai = in(ci, xi); (ii) xi �= xj for any
i �= j; (iii) if ai is a send action then ai = out(ci, ti); (iv) if ai is a test action

then ai = [si
?
= ti]. Moreover, for each 1 ≤ i ≤ n, let �i ∈ SLabels be as follows:

�i =

⎧⎨⎩
in(ci, xi) if ai = in(ci, xi)
out(ci) if ai = out(ci, ti)

test if ai = [si
?
= ti]

.

For each 0 ≤ m ≤ n, let the sets R(m), S(m) and T (m) respectively denote the
indices of the receive actions, send actions and test actions amongst a1, . . . , am.
Formally, R(m) = {i | 1 ≤ i ≤ m, ai = in(ci, xi)}, S(m) = {i | 1 ≤ i ≤
m, ai = out(ci, ti)} and T (m) = {i | 1 ≤ i ≤ m, ai = [si

?
= ti]} Given a set

of public names M0 ⊆ M, set of seed statements associated to T and M0,
denoted seed(T,M0), is defined to be the set of statements given in Figure 2. If
M0 = M, then seed(T,M) is said to be the set of seed statements associated
to T and in this case we write seed(T ) as a shortcut for seed(T,M). While
constructing seed(T,M), we apply mguR to all tests. In addition, we also apply
finite variants. This allows us to get rid of rewriting in our procedure.

For a set of statements K, we denote by H(K) the least Herbrand
model of K ∪ {k�1,...,�n+1(X, x) ⇐ k�1,...,�n(X, x)}n∈N ∪ {i�1,...,�n+1(X1, X2) ⇐
i�1,...,�n(X1, X2)}n∈N. We show that as far as reachability predicates and in-
truder knowledge predicates are concerned, the set seed(T ) is a complete
abstraction T .

Theorem 2. Let T be a ground trace.

– (Soundness.) For any f ∈ seed(T ) ∪H(seed(T )) we have that T |= f .

– (Completeness.) If (T, ∅) L1,...,Lm−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T )),
and (ii) if ϕ %R t then kL1ϕ↓,...,Lmϕ↓(R, t↓) ∈ H(seed(T )).
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r�1στ↓,...,�mστ↓ ⇐ {k�1στ↓,...,�j−1στ↓(Xj , xjστ↓)}j∈R(m)

for all 0 ≤ m ≤ n
for all σ ∈ mguR({sk = tk}k∈T (m))
for all τ ∈ variants(	1σ, . . . , 	mσ)

k�1τ↓,...,�mτ↓(w|S(m)|, tmτ↓) ⇐ {k�1τ↓,...,�j−1τ↓(Xj , xjτ↓)}j∈R(m)

for all m ∈ S(n)
for all τ ∈ variants(	1, . . . , 	m, tm)

k(c, c) ⇐
for all public names c ∈M0

k�1,...,�m(f(Y1, . . . , Yk), f(y1, . . . , yk)τ↓) ⇐ {k�1,...,�m(Yj , yjτ↓)}j∈{1,...,k}
for all 0 ≤ m ≤ n
for all function symbols f of arity k
for all τ ∈ variants(f(y1, . . . , yk)).

Fig. 2. Seed statements

Remark 2. Note that the set seed(T ) is only partially complete as we have not
shown above that if ϕ %R t and ϕ %R′

t then iL1ϕ↓,...,Lmϕ↓ ∈ H(seed(T )). We
will shortly show how the completeness of seed(T ) can be built upon to achieve
a) full abstraction of T and b) procedures for checking equivalences ≈ct and !ft .

5 Procedure for Deciding Trace Equivalence

We now present a procedure for verifying trace equivalence. At a high level, this
consists of the following two steps that we will detail later.

1. A saturation procedure which constructs a set of simple statements from the
set seed(T ) which we will call solved statements. The saturation procedure
ensures that the set of solved statements is a complete abstraction of T .

2. Given two ground processes P and Q, we saturate the set of seed statements
for traces of P and Q and then use the solved statements to decide whether
P and Q are trace equivalent.

5.1 Knowledge Bases and Saturation

The saturation procedure manipulates a set of statements called a knowledge
base.

Definition 10. Given a statement f = H ⇐ B1, . . . , Bn,

– f is said to be solved if for all 1 ≤ i ≤ n, Bi = k�1,...,�ji (Xi, xi) for some
variables xi ∈ X , Xi ∈ Y.

– f is said to be well-formed if whenever it is solved and H = k�1,...,�k(R, t),
we have that t �∈ X .



Automated Verification of Equivalence Properties 119

Resolution

f ∈ K, g ∈ Ksolved,

f =
(
H ⇐ kuv(X, t), B1, . . . , Bn

)
g =

(
kw(R, t′) ⇐ Bn+1, . . . , Bm

)
σ = mgu(ku(X, t), kw(R, t′)) t �∈ X

K = K ⊕ h where h =
(
(H ⇐ B1, . . . , Bm)σ

)

Equation

f, g ∈ Ksolved, f =
(
ku(R, t) ⇐ B1, . . . , Bn

)
g =

(
ku′v′(R′, t′) ⇐ Bn+1, . . . , Bm

)
σ = mgu(ku( , t), ku′( , t′))

K = K ⊕ h where h =
(
(iu′v′(R,R′) ⇐ B1, . . . , Bm)σ

)

Test

f, g ∈ Ksolved, f =
(
iu(R,R′) ⇐ B1, . . . , Bn

)
g =

(
ru′v′ ⇐ Bn+1, . . . , Bm

)
σ = mgu(u, u′)

K = K ⊕ h where h =
(
(riu′v′(R,R′) ⇐ B1, . . . , Bm)σ

)

Fig. 3. Saturation rules

A set of well-formed statements is called a knowledge base. If K is a knowl-
edge base, we define Ksolved = {f ∈ K | f is solved } to be the knowledge base
restricted to the solved statements.

Given an initial knowledge base K, the saturation procedure produces another
knowledge base sat(K) as follows. First, new statements are generated. Then the
knowledge base is updated with the new statements. This two-step process con-
tinues until a fixed-point is achieved. We describe the two steps in the procedure.

Generating New Statements. Given a knowledge base K, new statements f are
generated by applying the rules in Figure 3.

Update. The first step while updating the knowledge base by f is to convert f
into a canonical form.

Definition 11. Given a solved deduction statement f , we define its canonical
form to be the statement f⇓ obtained by first applying Rule Rename as many
times as possible and then applying Rule Remove as many times as possible:

Rename

H ⇐ ku(X,x), kuv(Y, x), B1, . . . , Bn

(H ⇐ ku(X,x),B1, . . . , Bn){Y �→ X}

Remove

H ⇐ ku(X,x), B1, . . . , Bn x �∈ vars(H)

H ⇐ B1, . . . , Bn

For any other type of statement, the canonical form f⇓ is defined to be f .

It is easy to see that any fact f can be converted into a canonical form. After a
canonical form has been obtained, we perform another check before f⇓ can be
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added to the knowledge base. Intuitively, this check ensures that we add enough
identity predicates in the knowledge base. We need the following definition for
the update rule.

Definition 12. The set of consequences of a knowledge base K, denoted
cons(K), is the smallest set such that:

Axiom

kuv(R, t) ⇐ ku(R, t), B1, . . . , Bm ∈ cons(K)

Res

H ⇐ B1, . . . , Bn ∈ K σ a substitution
B1σ ⇐ C1, . . . , Cm ∈ cons(K), . . . , Bnσ ⇐ C1, . . . , Cm ∈ cons(K)

Hσ ⇐ C1, . . . , Cm ∈ cons(K)

Given a knowledge base K and a statement f , the update of K by f , denoted
K⊕f , is defined to be K∪{f⇓} if the head of f is not of the form k�1,...,�k(R, t).
Otherwise, let

f⇓ = k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn)

and K ⊕ f =

– K ∪ {f⇓} if f is solved and for any R′ we have that k�1,...,�k(R
′, t) ⇐

k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) �∈ cons(Ksolved).
– K ∪ {i�1,...,�k(R,R′) ⇐ {k�1,...,�ij (Xj , tj)}j∈{1,...,n}} if f is solved and R′ is

such that k�1,...,�k(R
′, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈

cons(Ksolved).
– K ∪ {f⇓} if f is not solved.

Note that update is not a function, namely that there may be several
R′, i1, . . . , in such that k�1,...,�k(R

′, t) ⇐ k�1,...,�i1 (X1, t1), . . . , k�1,...,�in (Xn, tn) ∈
cons(Ksolved). However, we need to compute only one such R′.

Initial Knowledge Base. One question that naturally arises is what is the initial
knowledge base for the saturation procedure. Given a ground trace T , the initial
knowledge base for the saturation procedure is defined as follows.

Definition 13. Given a set of statements S, the initial knowledge base associ-
ated to S, denoted Ki(S), is defined to be the empty knowledge base updated by
the set S, i.e., Ki(S) = ∅ ⊕f∈S f . If T is a ground trace, we write Ki(T ) for
Ki(seed(T )).

Observe that Ki(T ) depends on the order in which statements in seed(T ) are
updated. The exact order, however, is not important and our results hold regard-
less of the order chosen. The saturation procedure takes Ki(T ) as an input and
produces a knowledge base sat(Ki(T )). The reason for choosing Ki(T ) instead
of seed(T ) as the starting point of the saturation procedure is that seed(T ) may
not be a knowledge base, i.e., may contain non well-formed statements. The set
Ki(T ) is, however, a knowledge base.

Proposition 1. Given a ground trace T , the set Ki(T ) is a knowledge base.
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Soundness and Completeness of the Saturation Procedure. We shall
now show that the set of solved statements in sat(Ki(T )) is a sound and complete
abstraction of a ground trace T . Given a set of statementsK we denote byHe(K)
the smallest set of ground terms such that

– H(K) ⊆ He(K),
– He(K) is closed under congruence rules for each iw(R,R′) ∈ He(K), and
– iw is monotonic in w, i.e., iu(R,R′) ∈ He(K) implies iuv(R,R′) ∈ He(K).

A formal definition is given in [16].

Theorem 3. Let T be a ground trace and let K = sat(Ki(T )).

– (Soundness.) For any f ∈ K ∪He(K) we have T |= f .

– (Completeness.) If (T, ∅) L1,...,Ln−−−−−−→ (S, ϕ) then (i) rL1ϕ↓,...,Lnϕ↓ ∈ He(Ksolved),
(ii) if ϕ %R t then kL1ϕ↓,...,Lnϕ↓(R, t↓) ∈ He(Ksolved), and (iii) if ϕ %R t and

ϕ %R′
t, then iL1ϕ↓,...,Lnϕ↓(R,R′) ∈ He(Ksolved).

Effectiveness of the Saturation Procedure. We have shown that the set of
solved statements in sat(Ki(T )) form a sound and complete abstraction for the
trace T. However this set is infinite and may not be effectively computable. This
may be because of following reasons.

– The set seed(T ) for a ground trace T is infinite. Hence the saturation pro-
cedure may continue forever. We will, however, shortly show that for the
saturation procedure we only need to consider the saturation of the set
Ki(seed(T,M0)) where M0 is the set of public names occurring in T (see
Lemma 1). The set sat(Ki(T )) can then be computed from this set. Since
the set Ki(seed(T,M0)) is finite, this means that all intermediate knowledge
bases in the saturation procedure are finite.

– For the update rule, we have to check that given a knowledge base K, term
t, labels �1, . . . , �k, indices 1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and
recipe variables X1, . . . , Xn ∈ Y, whether

∃R. k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1), . . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved).

Furthermore, if the check succeeds then we have to compute one such R. We
will show that can be achieved if K is finite (see Lemma 2).

– The saturation procedure may itself not terminate even if the initial knowl-
edge base is finite. As pointed out in the Introduction, we conjecture that
the saturation procedure terminates for subterm convergent rewrite systems,
but were unable to show the termination.

The following lemma allows us to compute the sat(Ki(T )) from the set
sat(Ki(seed(M0, T ))) where M0 is the set of public names occurring in T.

Lemma 1. Let T be a ground trace and MT ⊆ M be the public names occur-
ring in T . Let KM = {{k(m,m) ⇐}m∈M ∪ {i(m,m) ⇐}m∈M ∪ {ri(m,m) ⇐
}m∈M}.Then sat(Ki(T )) = sat(Ki(seed(MT , T ))) ∪KM.
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The following lemma implies that the update step terminates if we only have a
finite number of solved statements in the knowledge base.

Lemma 2. Given a finite set of statements K, term t, labels �1, . . . , �k, indices
1 ≤ i1, . . . in ≤ k, variables x1, . . . , xn ∈ X and recipe variables X1, . . . , Xn ∈
Y, it is decidable if there is an R such that k�1,...,�k(R, t) ⇐ k�1,...,�i1 (X1, x1),
. . . , k�1,...,�in (Xn, xn) ∈ cons(Ksolved). If the answer to the decision procedure is
“Yes”, then we can compute one such R.

5.2 Algorithm for Checking Equivalence

Once we constructed saturated knowledge bases for the seed statements for
ground determinate processes P0 and P1, we can check trace equivalence ≈ct.
The algorithm for checking ≈ct for determinate processes, automatically gives
an algorithm for checking ≈ft for non-determinate processes. It suffices to check
for T !ct P for a ground trace T and ground determinate process P . This basi-
cally involves checking two tests which are summarized in Figure 4. We briefly
describe them below.

– Reach checks whether all sequence of actions executable by T are also exe-
cutable by P . To do this, we carry out the following operations for each state-

ment rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}
)
∈ {sat(seed(T ))}solved. (a) First we

pick fresh constants c1, . . . , ck for each of the variables occurring in l1, . . . , ln
and fix a bijection σ between them. (b) Next for each 1 ≤ i ≤ n s.t. li
is in(di, ti), we construct one recipe Ri such that kl1σ,...,li−1σ(Ri, tiσ) ∈
H({sat(seed(T ))}solved). Such an Ri exists thanks to the completeness of the
saturation procedure. We let Mi = in(di, Ri). (c) For each 1 ≤ i ≤ n s.t.

li = test or out(di) we let Mi = li. (d) We check if (P, ∅) M1,...,Mn
======⇒ (T ′, ϕ).

If all the Reach tests pass then we go to test Identity. Otherwise we
declare T to be not trace-contained in P .

– The test Identity checks that all the equality tests that hold after an
execution of T hold after a similar execution in P . In order to do this,
we carry out the following operations for each statement ril1,...,ln(R,R′) ⇐
{kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved. We construct M1, . . . ,Mn as

in the Reach test and check if there is a T ′ such that (P, ∅) M1,...,Mn
======⇒ (T ′, ϕ)

and the recipes R{Xi �→ xiσ } and R′{Xi �→ xiσ } are equal in frame ϕ.

Note that performing the tests requires deciding if, given t, and w, kw(R, t) ∈
H(K) for some recipe R for a knowledge base K containing only solved state-

ments. This is similar to checking if
(
kw(R, t) ⇐

)
∈ cons(K).

Theorem 4. Let T be a ground trace and let P be a ground determinate process.
Let K be the set of solved statements from a saturated knowledge base associated
to T . Then T !ct P iff all the tests in Figure 4 hold.
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Reach

(
rl1,...,ln ⇐ {kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T ))}solved) for all i s.t. li = in(di, ti)
Mi = li if li ∈ {test,out( )} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅) M1,...,Mn=======⇒ (T ′, ϕ)

Identity

(
ril1,...,ln(R,R′) ⇐ {kwi(Xi, xi)}i∈{1,...,m}

)
∈ {sat(seed(T ))}solved

c1, . . . , ck fresh constants
σ : vars(l1, . . . , ln) → {c1, . . . , ck} is a bijection

kl1σ,...,li−1σ(Ri, tiσ) ∈ H({sat(seed(T ))}solved) for all i s.t. li = in(ti)
Mi = li if li ∈ {test,out( )} Mi = in(di, Ri) if li = in(di, ti)

(P, ∅) M1,...,Mn
=======⇒ (T ′, ϕ) such that (Rω = R′ω)ϕ where ω = {Xi �→ xiσ}

Fig. 4. Tests for checking trace inclusion

6 Prototype and Case Studies

We implemented the procedure for checking equivalence in a prototype, AKiSs

(Active Knowledge in Security protocols). AKiSs is written in OCaml and has
about 2000 lines of source code, including code for computing complete sets of
finite variants and complete sets of equational unifiers. For protocol specifica-
tion, we allow for an operator interleave which models parallel composition of
processes and an operator sequence for modeling protocols structured in phases.

We used AKiSs to verify the equivalences in Examples 5 and 6. Using AKiSs

we were able to verify strong secrecy for Denning-Sacco-Blanchet [11] and
Needham-Schroeder-Lowe (NSL) [36], resistance to guessing attacks in the EKE
protocol [9], and, more interestingly, anonymity of the FOO [32] and Okamoto [38]
electronic voting protocols.1 To our knowledge, AKiSs is the only tool that can
verify FOO and Okamoto automatically. We briefly discuss the salient points of
these examples below. AKiSs along with all the discussed examples is available
on: http://www.lsv.ens-cachan.fr/~ciobaca/akiss/. Details of the model-
ing can also be found in [16].

Strong Flavors of Confidentiality. The strong secrecy property was introduced
by Blanchet in [11] and we rephrase it here in our setting. Let P be a protocol
with x as the only free variable of P. Then x is said to be strongly secret if

in(c, x1).in(c, x2).(P{x �→ x1}) ≈t in(c, x1).in(c, x2).(P{x �→ x2}).
1 Please note that as defined in [38], modeling of Okamoto’s protocol requires private
channels. As we do not have private channels in our calculus, we transform the
protocol so that every message sent by honest participants on a private channel is
sent encrypted under a key not known to the adversary

http://www.lsv.ens-cachan.fr/~ciobaca/akiss/
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Intuitively, the attacker cannot distinguish the processes using variables x1 and
x2 even though it can choose arbitrary (public) values for these variables. The
definition generalizes to multiple variables in the expected way. We illustrate this
property on a Denning-Sacco-Blanchet protocol. Informally, the protocol can be
described as follows.

A → B : aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb))
B → A : enc(x, k)

A sends to B a fresh symmetric session key k together with A’s and B’s public
keys. This is signed with A’s secret key and (asymmetrically) encrypted with B’s
public key. Upon receiving this message, B decrypts it, checks the signature and
uses the fresh session key to symmetrically encrypt a secret x. We used AKiSs

to verify this protocol for strong secrecy of x (with one session of A and B).
This protocol is determinate, and hence we used ≈ct to verify the protocol. The
verification succeeds as expected.

A variant of the protocol [11] consists in letting A also send out a secret y
encrypted with k changing the first message to

A → B : pair(aenc(sign(pair(pk(ska), pair(pk(skb, k))), ska), pk(skb)), enc(y, k))

In this case the protocol does not respect strong secrecy of x, y as, by choosing
x1 = y1 and x2 �= y2, the attacker can distinguish the two situations by testing
the equality of the encryptions of x and y. This attack is again found by AKiSs.
AKiSs also verifies strong secrecy of the nonce generated by the responder in
the Needham-Schroeder-Lowe (NSL) [36] protocol. Once again, the modeling of
NSL leads to determinate processes, and we used ≈ct for our verification.

We also used AKiSs to verify the above protocols for real-or-random secrecy.
This property is useful to model resistance to offline guessing attacks in password
protocols [8]. We show that the EKE protocol [9] is resistant to offline guessing
attacks. As EKE also leads to determinate processes, we used the ≈ct relation.

Anonymity for Electronic Voting Protocol. A voting protocol must respect voter
privacy: the adversary should not be able to learn how each voter voted. AKiSs

can automatically verify voter privacy in the FOO electronic voting protocol [32]
and the Okamoto protocol [38]. Voter privacy is naturally modeled as an equiva-
lence property [26,7]: it is not possible to distinguish the situation where honest
voter A votes ‘yes’ and honest B votes ‘no’ from the situation that A votes ‘no’
and B votes ‘yes’. Note that our modeling of the protocols is exactly the same as
in [26]. We assume that only voters A and B are honest while all other entities
are dishonest. An arbitrary number of dishonest voters are however subsumed
by the attacker and need not be modeled directly. Both the protocols do not
lead to determinate processes. Therefore, we proved the relation ≈ft . To our
knowledge, no other tool can handle this automatically. We are aware of two
other attempts for verifying the FOO protocol. Using ProVerif [11], Delaune
et al. [28], verify a transformation of the protocol. However, the soundness of
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this transformation has never been proven. Chothia et al. [20] verify a different
notion of anonymity (also based on process equivalence) using the μCRL tool.
However, the attacker they consider is only an observer that cannot interact with
the protocol participants, yielding a finite state system.

Efficiency. On a standard modern laptop, AKiSs takes a few minutes (e.g. 3
mins for FOO) to carry out the above verification. The use of a multi-core server
already reduces these timings by about 40%. We expect that some optimizations
of the saturation procedure and the use of more efficient data structures will di-
minish these times significantly. Most of the computational effort goes into the
saturation of the traces. Interleaving individual roles of a protocol introduces an
exponential blowup on the number of traces and saturations to perform. How-
ever, it would be straightforward to scale to larger protocols and more sessions
by parallelizing the saturation of these traces (e.g. on clusters of machines).

7 Conclusion and Future Work

We present a novel Horn-clause resolution based procedure for verifying equiv-
alence properties for a bounded number of sessions of cryptographic protocols.
This approach is validated by implementing it in the tool AKiSs, and we are
able to handle examples which are out of the scope of existing tools.

There are several directions for future work. The implementation of the tool
should be optimized and more examples from electronic voting, RFID protocols
and auction protocols which all have requirements stated in terms of equivalences
should be analyzed. We would also like to take disequalities into account. It will
allow to verify processes with else branches, important in a number of practical
examples, e.g., passport protocols discussed in [5]. Another direction would be
to extend the procedure to allow AC (Associative/Commutative) operators in
order to treat protocols based on exclusive-or or Diffie-Hellman exponentiations.
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Abstract. The existing call-by-need λ calculi describe lazy evaluation
via equational logics. A programmer can use these logics to safely as-
certain whether one term is behaviorally equivalent to another or to
determine the value of a lazy program. However, neither of the existing
calculi models evaluation in a way that matches lazy implementations.

Both calculi suffer from the same two problems. First, the calculi never
discard function calls, even after they are completely resolved. Second,
the calculi include re-association axioms even though these axioms are
merely administrative steps with no counterpart in any implementation.

In this paper, we present an alternative axiomatization of lazy evalu-
ation using a single axiom. It eliminates both the function call retention
problem and the extraneous re-association axioms. Our axiom uses a
grammar of contexts to describe the exact notion of a needed compu-
tation. Like its predecessors, our new calculus satisfies consistency and
standardization properties and is thus suitable for reasoning about be-
havioral equivalence. In addition, we establish a correspondence between
our semantics and Launchbury’s natural semantics.

Keywords: call-by-need, laziness, lambda calculus.

1 A Short History of the λ Calculus

Starting in the late 1950s, programming language researchers began to look
to Church’s λ calculus [6] for inspiration. Some used it as an analytic tool to
understand the syntax and semantics of programming languages, while others
exploited it as the basis for new languages. By 1970, however, a disconnect had
emerged in the form of call-by-value programming, distinct from the notion of
β and normalization in Church’s original calculus. Plotkin [25] reconciled the
λ calculus and Landin’s SECD machine for the ISWIM language [16] with the
introduction of a notion of correspondence and with a proof that two distinct
variants of the λ calculus corresponded to two distinct variants of the ISWIM
programming language: one for call-by-value and one for call-by-name.

In the early 1970s, researchers proposed call-by-need [12, 14, 28], a third kind
of parameter passing mechanism that could be viewed as yet another variant
of the ISWIM language. Call-by-need is supposed to represent the best of both
worlds. While call-by-value ISWIM always evaluates the argument of a function,
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the call-by-name variant evaluates the argument every time it is needed. Hence,
if an argument (or some portion) is never needed, call-by-name wins; otherwise
call-by-value is superior because it avoids re-evaluation of arguments. Call-by-
need initially proceeds like call-by-name, evaluating a function’s body before
the argument—until the value of the argument is needed; at that point, the
argument is evaluated and the resulting value is used from then onward. In
short, call-by-need evaluates an argument at most once, and only if needed.

Since then, researchers have explored a number of characterizations of call-
by-need [8, 11, 13, 15, 23, 24, 26]. Concerning this paper, three stand out.
Launchbury’s semantics [17] specifies the meaning of complete programs with a
Kahn-style natural semantics. The call-by-need λ calculi of Ariola and Felleisen
[2–4], and of Maraist, Odersky, and Wadler [4, 20, 21] are equational logics in
the spirit of the λ calculus.

The appeal of the λ calculus has several reasons. First, a calculus is sound
with respect to the observational (behavioral) equivalence relation [22]. It can
therefore serve as the starting point for other, more powerful logics. Second,
its axioms are rich enough to mimic machine evaluation, meaning programmers
can reduce programs to values without thinking about implementation details.
Finally, the λ calculus gives rise to a substantial meta-theory [5, 7] from which
researchers have generated useful and practical results for its cousins.

Unfortunately, neither of the existing by-need calculi model lazy evaluation
in a way that matches lazy language implementations. Both calculi suffer from
the same two problems. First, unlike the by-name and by-value calculi, the by-
need calculi never discard function calls, even after the call is resolved and the
argument is no longer needed. Lazy evaluation does require some accumulation
of function calls due to the delayed evaluation of arguments but the existing
calculi adopt the extreme solution of retaining every call. Indeed, the creators of
the existing calculi acknowledge that a solution to this problem would strengthen
their work but they could not figure out a proper solution.

Second, the calculi include re-association axioms even though these axioms
have no counterpart in any implementation. The axioms are mere administrative
steps, needed to construct β-like redexes. Hence, they should not be considered
computationally on par with other axioms.

In this paper, we overcome these problems with an alternative axiomatization.
Based on a single axiom, it avoids the retention of function calls and eliminates
the extraneous re-association axioms. The single axiom uses a grammar of con-
texts to describe the exact notion of a needed computation. Like its predecessors,
our new calculus satisfies consistency and standardization properties and is thus
suitable for reasoning about behavioral equivalence. In addition, we establish an
intensional correspondence with Launchbury’s semantics.

The second section of this paper recalls the two existing by-need calculi in
some detail. The third section presents our new calculus, as well as a way to
derive it from Ariola and Felleisen’s calculus. Sections 4 and 5 show that our
calculus satisfies the usual meta-theorems and that it is correct with respect to
Launchbury’s semantics. Finally, we discuss some possible extensions.
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2 The Original Call-by-Need λ Calculi

The original call-by-need λ calculi are independently due to two groups: Ariola
and Felleisen [2, 3] and Maraist, et al. [20, 21]. They were jointly presented at
POPL in 1995 [4]. Both calculi use the standard set of terms as syntax:

e = x | λx.e | e e (Terms)

Our treatment of syntax employs the usual conventions, including Barendregt’s
standard hygiene condition for variable bindings [5]. Figure 1 specifies the calcu-
lus of Maraist et al., λmow, and λaf, Ariola and Felleisen’s variant. Nonterminals
in some grammar productions have subscript tags to differentiate them from
similar sets elsewhere in the paper. Unsubscripted definitions have the same
denotation in all systems.

vm = x | λx.e

C = [ ] | λx.C | C e | eC

(λx.C[x]) vm = (λx.C[vm]) vm (V)
(λx.e1) e2 e3 = (λx.e1 e3) e2 (C)

(λx.e1)((λy.e2) e3) = (A)

(λy.(λx.e1) e2) e3

(λx.e1) e2 = e1, x /∈ fv(e1) (G)

v = λx.e

aaf = v | (λx.aaf) e

Eaf = [ ] | Eaf e | (λx.Eaf) e | (λx.Eaf[x])Eaf

(λx.Eaf[x]) v = (λx.Eaf[v]) v (deref)

(λx.aaf) e1 e2 = (λx.aaf e2) e1 (lift)

(λx.Eaf[x]) ((λy.aaf) e) = (assoc)

(λy.(λx.Eaf[x]) aaf) e

Fig. 1. Existing call-by-need λ calculi (left: λmow, right: λaf)

In both calculi, the analog to the β axiom—also called a basic notion of re-
duction [5]—replaces variable occurrences, one at a time, with the value of the
function’s argument. Value substitution means that there is no duplication of
work as far as argument evaluation is concerned. The function call is retained
because additional variable occurrences in the function body may need the ar-
gument. Since function calls may accumulate, the calculi come with axioms that
re-associate bindings to pair up functions with their arguments. For example,
re-associating (λx.(λy.λz.z) vy) vx vz in λaf exposes a deref redex:

(λx.(λy.λz.z) vy) vx vz
lift→ (λx.(λy.λz.z) vy vz) vx

lift→ (λx.(λy.(λz.z) vz) vy) vx

The two calculi differ from each other in their timing of variable replacements.
The λmow calculus allows the replacement of a variable with its value anywhere in
the body of its binding λ. The λaf calculus replaces a variable with its argument
only if evaluation of the function body needs it, where “need” is formalized via
so-called evaluation contexts (Eaf). Thus evaluation contexts in λaf serve the
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double purpose of specifying demand for arguments and the standard reduction
strategy. The term (λx.λy.x) v illustrates this difference between the two calculi.
According to λmow, the term is a V redex and reduces to (λx.λy.v) v, whereas in
λaf, the term is irreducible because the x occurs in an inner, unapplied λ, and
is thus not “needed.”

Also, λmow is more lenient than λaf when it comes to re-associations. The λaf

calculus re-associates the left or right hand side of an application only if it has
been completely reduced to an answer, but λmow permits re-association as soon
as one nested function layer is revealed. In short, λmow proves more equations
than λaf, i.e., λafλafλaf ⊂ λmowλmowλmow.

In λaf, programs reduce to answers:

evalaf(e) = done iff there exists an answer aaf such that λafλafλaf % e = aaf

In contrast, Maraist et al. introduce a “garbage collection” axiom into λmow to
avoid answers and to use values instead. This suggests the following definition:

evalmow(e) = done iff there exists a value vm such that λmowλmowλmow % e = vm

This turns out to be incorrect, however. Specifically, let evalname be the analo-
gous call-by-name evaluator. Then evalaf = evalname but evalmow �= evalname.
Examples such as (λx.λy.x)Ω confirm the difference.

In recognition of this problem, Maraist et al. use Ariola and Felleisen’s axioms
and evaluation contexts to create their Curry-Feys-style standard reduction se-
quences. Doing so reveals the inconsistency of λmow with respect to Plotkin’s
correspondence criteria [25]. According to Plotkin, a useful calculus corresponds
to a programming language, meaning its axioms (1) satisfy the Church-Rosser
and Curry-Feys Standardization properties, and (2) define a standard reduction
function that is equal to the evaluation function of the programming language.
Both the call-by-name and the call-by-value λ calculi satisfy these criteria with
respect to call-by-name and call-by-value SECD machines for ISWIM, respec-
tively. So does λaf with respect to a call-by-need SECD machine, but some of
λmow’s axioms cannot be used as standard reduction relations.

Finally, the inclusion of G is a brute-force attempt to address the function call
retention problem. Because G may discard arguments even before the function is
called, both sets of authors consider it too coarse and acknowledge that a tighter
solution to the function call retention issue would “strengthen the calculus and
its utility for reasoning about the implementations of lazy languages” [4].

3 A New Call-by-Need λ Calculus

Our new calculus, λneed, uses a single axiom, βneed. The new axiom evaluates the
argument when it is first demanded, replaces all variable occurrences with that
result, and then discards the argument and thus the function call. In addition,
the axiom performs the required administrative scope adjustments as part of the
same step, rendering explicit re-association axioms unnecessary. In short, every
reduction step in our calculus represents computational progress.
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Informally, to perform a reduction, three components must be identified:

1. the next demanded variable,
2. the function that binds that demanded variable,
3. and the argument to that function.

In previous by-need calculi the re-association axioms rewrite a term so that the
binding function and its argument are adjacent.

Without the re-association axioms, finding the function that binds the de-
manded variable and its argument requires a different kind of work. The fol-
lowing terms show how the demanded variable, its binding function, and its
argument can appear at seemingly arbitrary locations in a program:

• (λx.(λy.λz.x) ey) ex ez
• (λx.(λy.λz.y) ey) ex ez
• (λx.(λy.λz.z) ey) ex ez

Our βneed axiom employs a grammar of contexts to describe the path from a
demanded variable to its binding function and from there to its argument.

The first subsection explains the syntax and the contexts of λneed in a gradual
fashion. The second subsection presents the βneed axiom and also shows how to
derive it from Ariola and Felleisen’s λaf calculus.

3.1 Contexts

Like the existing by-need calculi, the syntax of our calculus is that of Church’s
original calculus. In λneed, calculations evaluate terms e to answers A[v], which
generalize answers from Ariola and Felleisen’s calculus:

e = x | λx.e | e e (Terms)

v = λx.e (Values)

a = A[v] (Answers)

A = [ ] | A[λx.A] e (Answer Contexts)

Following Ariola and Felleisen, the basic axiom uses evaluation contexts to spec-
ify the notion of demand for variables:

E = [ ] | E e | . . . (Evaluation Contexts)

The first two kinds, taken from λaf, specify that a variable is demanded, and that
a variable in the operator position of an application is demanded, respectively.

Since the calculus is to model program evaluation, we are primarily interested
in demanded variables under a λ-abstraction. This kind of evaluation context is
defined using an answer context A:

E = . . . | A[E] | . . . (Another Evaluation Context)
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Using answer contexts, this third evaluation context dictates that demand exists
under a λ if a corresponding argument exists for that λ. Note how an answer
context descends under the same number of λs as arguments for those λs. In
particular, for any term A[λx.e1] e2, e2 is always the argument of λx.e1. The
third evaluation context thus generalizes the function-is-next-to-argument re-
quirement found in both call-by-name and call-by-value. The generalization is
needed due to the retention of function calls in λneed.

Here are some example answer contexts that might be used:

A0 = (λx.[ ]) ex︸ ︷︷ ︸
A1 = (λx. (λy.[ ]) ey︸ ︷︷ ︸) ex︸ ︷︷ ︸
A2 = (λx. (λy. (λz.[ ]) ez︸ ︷︷ ︸) ey︸ ︷︷ ︸) ex︸ ︷︷ ︸

An underbrace matches each function to its argument. The examples all juxta-
pose functions and their arguments. In contrast, the next two separate functions
from their arguments:

A3 = (λx.λy.λz.[ ]) ex︸ ︷︷ ︸ ey ez︸ ︷︷ ︸︸ ︷︷ ︸
A4 = (λx.(λy.λz.[ ]) ey︸ ︷︷ ︸) ex ez︸ ︷︷ ︸︸ ︷︷ ︸

To summarize thus far, when a demanded variable is discovered under a λ, the
surrounding context looks like this:

A[E[x]]

where both the function binding x and its argument are in A. The decomposition
of the surrounding context into A and E assumes that A encompasses as many
function-argument pairs as possible; in other words, it is impossible to merge
the outer part of E with A to form a larger answer context.

To know which argument corresponds to the demanded variable, we must find
the λ that binds x in A. To this end, we split answer contexts so that we can
“highlight” a function-argument pair within the context:

∧
A = [ ] | A[

∧
A] e (Partial Answer Contexts–Outer)

∨
A = [ ] | A[λx.

∨
A] (Partial Answer Contexts–Inner)

Using these additional contexts, any answer context can be decomposed into

∧
A[A[λx.

∨
A[ ]] e]
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where e is the argument of λx.
∨
A[ ]. For a fixed function-argument pair in an

answer context, this partitioning into
∧
A, A, and

∨
A is unique. The

∧
A subcontext

represents the part of the answer context around the chosen function-argument

pair; the
∨
A subcontext represents the part of the answer context in its body; and

A here is the subcontext between the function and its argument. Naturally we

must demand that
∧
A composed with

∨
A is an answer context as well so that the

overall context remains an answer context. The following table lists the various
subcontexts for the example A4 for various function-argument pairs:

A4 = (λx.(λy.λz.[ ]) ey) ex ez
∧
A = [ ] ez (λx.[ ]) ex ez [ ]
A = [ ] [ ] (λx.(λy.[ ]) ey) ex
∨
A = (λy.λz.[ ]) ey λz.[ ] [ ]

A4 =
∧
A[A[λx.

∨
A] ex]

∧
A[A[λy.

∨
A] ey ]

∧
A[A[λz.

∨
A] ez ]

Now we can define the fourth kind of evaluation context:

E = . . . |
∧
A[A[λx.

∨
A[E[x]]]E], where

∧
A[

∨
A] ∈ A (Final Eval. Context)

This final evaluation context shows how demand shifts to an argument when a
function parameter is in demand within the function body.

3.2 The βneed Axiom and a Derivation

Figure 2 summarizes the syntax of λneed as developed in the preceding section.1

In this section we use these definitions to formulate the β axiom for our calculus.

e = x | λx.e | e e (Terms)

v = λx.e (Values)

a = A[v] (Answers)

A = [ ] | A[λx.A] e (Answer Contexts)
∧
A = [ ] | A[

∧
A] e (Partial Answer Contexts–Outer)

∨
A = [ ] | A[λx.

∨
A] (Partial Answer Contexts–Inner)

E = [ ] | E e | A[E] | ∧
A[A[λx.

∨
A[E[x]]]E], (Evaluation Contexts)

where
∧
A[

∨
A] ∈ A

Fig. 2. The syntax and contexts of the new call-by-need λ calculus, λneed

Here is the single axiom of λneed:

∧
A[A1[λx.

∨
A[E[x]]]A2 [v]] =

∧
A[A1[A2[

∨
A[E[x]]{x :=v}]]], (βneed)

where
∧
A[

∨
A] ∈ A

1 We gratefully acknowledge Casey Klein’s help with the A production.
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A βneed redex determines which parameter x of some function is “in demand”
and how to locate the corresponding argument A2[v], which might be an answer
not necessarily a value. The contexts from the previous section specify the path
from the binding position (λ) to the variable occurrence and the argument. A
βneed reduction substitutes the value in A2[v] for all free occurrences of the func-
tion parameter—just like in other λ calculi. In the process, the function call is
discarded. Since the argument has been reduced to a value, there is no duplica-
tion of work, meaning our calculus satisfies the requirements of lazy evaluation.
Lifting A2 to the top of the evaluation context ensures that its bindings remain
intact and visible for v.

Here is a sample reduction in λneed, where −→ is the one-step reduction:

((λx.(λy.λz.z y x)λy.y)λx.x)λz.z (1)

−→ (λx.(λy.(λz.z)y x)λy.y)λx.x (2)

−→ (λx.((λz.z)λy.y)x)λx.x (3)

−→ (λx.(λy.y)x)λx.x (4)

The “in demand” variable is in bold; its binding λ and argument are underlined.
Line 1 is an example of a reduction that involves a non-adjoined function and
argument pair. In line 2, the demand for the value of z (twice underlined) triggers
a demand for the value of y; line 4 contains a similar demand chain.

v = λx.e (Values)

aaf = Aaf[v] (Answers)

Aaf = [ ] | (λx.Aaf) e (Answer Contexts)

Eaf = [ ] | Eaf e | Aaf[Eaf] | (λx.Eaf[x])Eaf (Evaluation Contexts)

(λx.Eaf[x]) v = Eaf[x]{x :=v} (β′
need)

(λx.Aaf[v]) e1 e2 = (λx.Aaf[v e2]) e1 (lift′)

(λx.Eaf[x]) ((λy.Aaf[v]) e) = (λy.Aaf[(λx.Eaf[x]) v]) e (assoc′)

Fig. 3. A modified calculus, λaf-mod

To furnish additional intuition into βneed, we use the rest of the section to
derive it from the axioms of λaf. The λaf-mod calculus in figure 3 combines λaf

with two insights. First, Garcia et al. [13] observed that when the answers in λaf’s
lift and assoc redexes are nested deeply, multiple re-associations are performed
consecutively. Thus we modify lift and assoc to perform all these re-associations
in one step.2 The modified calculus defines answers via answer contexts, Aaf, and
the modified lift′ and assoc′ axioms utilize these answer contexts to do the multi-
step re-associations. Thus programs in this modified calculus reduce to answers

2 The same modifications cannot be applied to C and A in λmow because they allow
earlier re-association and thus not all the re-associations are performed consecutively.
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Aaf[v]. Also, the Aaf answer contexts are identical to the third kind of evaluation
context in λaf-mod and the new definition of Eaf reflects this relationship.

Second, Maraist et al. [19] observed that once an argument is reduced to
a value, all substitutions can be performed at once. The β′

need axiom exploits
this idea and performs a full substitution. Obviously β′

need occasionally performs
more substitutions than deref. Nevertheless, any term with an answer in λaf

likewise has an answer when reducing with β′
need.

Next an inspection of the axioms shows that the contractum of a assoc′ redex
contains a β′

need redex. Thus the assoc′ re-associations and β′
need substitutions

can be performed with one merged axiom:3

(λx.Eaf[x])Aaf[v] = Aaf[Eaf[x]{x :=v}] (β′′
need)

The final step is to merge lift′ with β′′
need, which requires our generalized answer

and evaluation contexts. A näıve attempt may look like this:

A1[λx.E[x]]A2[v] = A1[A2[E[x]{x :=v}]] (β′′′
need)

As the examples in the preceding subsection show, however, the binding oc-
currence for the “in demand” parameter x may not be the inner-most binding
λ once the re-association axioms are eliminated. That is, in comparison with
βneed, β

′′′
need incorrectly assumes E is always next to the binder. We solve this

final problem with the introduction of partial answer contexts.

4 Consistency, Determinism, and Soundness

If a calculus is to model a programming language, it must satisfy some essen-
tial properties, most importantly a Church-Rosser theorem and a Curry-Feys
standardization theorem [25]. The former guarantees consistency of evaluation;
that is, we can define an evaluator function with the calculus. The latter implies
that the calculus comes with a deterministic evaluation strategy. Jointly these
properties imply the calculus is sound with respect to observational equivalence.

4.1 Consistency: Church-Rosser

The λneed calculus defines an evaluator for a by-need language:

evalneed(e) = done iff there exists an answer a such that λneedλneedλneed % e = a

To prove that the evaluator is indeed a (partial) function, we prove that the
notion of reduction satisfies the Church-Rosser property.

Theorem 1. evalneed is a partial function.

Proof. The theorem is a direct consequence of lemma 1 (Church-Rosser).

3 Danvy et al. [8] dub a β′′
need redex a “potential redex” in unrelated work.
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Our strategy is to define a parallel reduction relation for λneed [5]. Define →
to be the compatible closure of a βneed reduction, and →→ to be the reflexive,
transitive closure of →. Additionally, define ⇒ to be the relation that reduces
βneed redexes in parallel.

Definition 1 (⇒).

e ⇒ e
∧
A[A1[λx.

∨
A[E[x]]]A2[v]] ⇒

∧
A′[A′

1[A
′
2[

∨
A′[E′[x]]{x :=v′}]]],

if
∧
A[

∨
A] ∈ A,

∧
A′[

∨
A′] ∈ A,

∧
A ⇒

∧
A′, A1 ⇒ A′

1,

A2 ⇒ A′
2,

∨
A ⇒

∨
A′, E ⇒ E′, v ⇒ v′

e1 e2 ⇒ e′1 e
′
2, if e1 ⇒ e′1, e2 ⇒ e′2

λx.e ⇒ λx.e′, if e ⇒ e′

The parallel reduction relation ⇒ relies on notion of parallel reduction for con-
texts; for simplicity, we overload the relation symbol to denote both relations.

Definition 2 (⇒ for Contexts).

[ ] ⇒ [ ]
A1[λx.A2] e ⇒ A′

1[λx.A
′
2] e

′, if A1 ⇒ A′
1, A2 ⇒ A′

2, e ⇒ e′

A[
∧
A] e ⇒ A′[

∧
A′] e′, if A ⇒ A′,

∧
A ⇒

∧
A′, e ⇒ e′

A[λx.
∨
A] ⇒ A′[λx.

∨
A′], if A ⇒ A′,

∨
A ⇒

∨
A′

E e ⇒ E′ e′, if E ⇒ E′, e ⇒ e′

A[E] ⇒ A′[E′], if A ⇒ A′, E ⇒ E′
∧
A[A[λx.

∨
A[E1 [x]]]E2] ⇒

∧
A′[A′[λx.

∨
A′[E′

1[x]]]E
′
2],

if
∧
A[

∨
A] ∈ A,

∧
A ⇒

∧
A′, A ⇒ A′,

∨
A ⇒

∨
A′, E1 ⇒ E′

1, E2 ⇒ E′
2

Lemma 1 (Church-Rosser). If e →→ e1 and e →→ e2, then there exists a term
e′ such that e1 →→ e′ and e2 →→ e′.

Proof. By lemma 2, ⇒ satisfies a diamond property. Since ⇒ extends →, →→ is
also the transitive-reflexive closure of⇒, so→→ also satisfies a diamond property.

Lemma 2 (Diamond Property of ⇒). If e ⇒ e1 and e ⇒ e2, there exists e′

such that e1 ⇒ e′ and e2 ⇒ e′.

Proof. The proof proceeds by structural induction on the derivation of e ⇒ e1.

4.2 Deterministic Behavior: Standard Reduction

A language calculus should also come with a deterministic algorithm for applying
the reductions to evaluate a program. Here is our standard reduction:

E[e] �−→ E[e′], where e βneed e′

Our standard reduction strategy picks exactly one redex in a term.
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Proposition 1 (Unique Decomposition). For all closed terms e, e either is
an answer or e = E[e′] for a unique evaluation context E and βneed redex e′.

Proof. The proof proceeds by structural induction on e.

Since our calculus satisfies the unique decomposition property, we can use the
standard reduction relation to define a (partial) evaluator function:

evalsrneed(e) = done iff there exists an answer a such that e →�−→ a

where →�−→ is the reflexive, transitive closure of �−→. Proposition 1 shows evalsrneed
is a function. The following theorem confirms that it equals evalneed.

Theorem 2. evalneed = evalsrneed

Proof. The theorem follows from lemma 3, which shows how to obtain a standard
reduction sequence for any arbitrary reduction sequence. The front-end of the
former is a series of standard reduction steps.

Definition 3 (Standard Reduction Sequences R).

• x ⊂ R
• λx.e1 ( · · · ( λx.em ∈ R, if e1 ( · · · ( em ∈ R
• e0 ( e1 ( · · · ( em ∈ R, if e0 �−→ e1 and e1 ( · · · ( em ∈ R
• (e1 e

′
1)(· · ·((em e′1)((em e′2)(· · ·((em e′n) ∈ R, if e1(· · ·(em, e′1(· · ·(e′n ∈ R.

Lemma 3 (Curry-Feys Standardization). e →→ e′ iff there exists e1 ( · · · (
en ∈ R such that e = e1 and e′ = en.

Proof. Replace →→ with ⇒s, and the lemma immediately follows from lemma 4.

The key to the remaining proofs is a size metric for parallel reductions.

Definition 4 (Size of ⇒ Reduction).

e ⇒ e = 0

(e1 e2) ⇒ (e′1 e′2) = e1 ⇒ e′1 + e2 ⇒ e′2
λx.e ⇒ λx.e′ = e ⇒ e′

r = 1 +
∧
A ⇒

∧
A′ + A1 ⇒ A′

1 +
∨
A[E[x]] ⇒

∨
A′[E′[x]] +

A2 ⇒ A′
2 +#(x,

∨
A′[E′[x]])× v ⇒ v′

where r =
∧
A[A1[λx.

∨
A[E[x]]]A2[v]] ⇒

∧
A′[A′

1[A
′
2[

∨
A′[E′[x]]{x :=v′}]]]

#(x, e) = the number of free occurrences of x in e

The size of a parallel reduction of a context equals the sum of the sizes of the
parallel reductions of the subcontexts and subterms that comprise the context.

Lemma 4. If e0 ⇒ e1 and e1 ( · · ·(en ∈ R, there exists e0 (e′1 ( · · ·(e′p (en ∈ R.

Proof. By triple lexicographic induction on (1) length n of the given standard
reduction sequence, (2) e0 ⇒ e1 , and (3) structure of e0.

4

4 We conjecture that the use of Ralph Loader’s technique [18] may simplify our proof.
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4.3 Observational Equivalence

Following Morris [22] two expressions e1 and e2 are observationally equivalent,
e1 ) e2, if they are indistinguishable in all contexts. Formally, e1 ) e2 if and
only if evalneed(C[e1]) = evalneed(C[e2]) for all contexts C, where

C = [ ] | λx.C | C e | eC (Contexts)

An alternative definition of the behavioral equivalence relation uses co-induction.
In either case, λneed is sound with respect to observational equivalence.

Theorem 3 (Soundness). If λneedλneedλneed % e1 = e2, then e1 ) e2.

Proof. Following Plotkin, a calculus is sound if it satisfies Church-Rosser and
Curry-Feys theorems.

5 Correctness

Ariola and Felleisen [3] prove that λaf defines the same evaluation function as
the call-by-name λ calculus. Nakata and Hasegawa [23] additionally demonstrate
extensional correctness of the same calculus with respect to Launchbury’s natural
semantics [17]. In this section, we show that λneed defines the same evaluation
function as Launchbury’s semantics. While our theorem statement is extensional,
the proof illuminates the tight intensional relationship between the two systems.

5.1 Overview

The gap between the λneed standard reduction “machine” and Launchbury’s
natural semantics is huge. While the latter’s store-based natural semantics uses
the equivalent of assignment statements to implement the “evaluate once, only
when needed” policy, the λneed calculus exclusively relies on term substitutions.
To close the gap, we systematically construct a series of intermediate systems
that makes comparisons easy, all while ensuring correctness at each step. A first
step is to convert the natural semantics into a store-based machine [27].

To further bridge the gap we note that a single-use assignment statement is
equivalent to a program-wide substitution of shared expressions [10]. A closely
related idea is to reduce shared expressions simultaneously. This leads to a par-
allel program rewriting system, dubbed λ‖. Equipped with λ‖ we get closer to
λneed but not all the way there because reductions in λneed and λ‖ are too coarse-
grained for direct comparison. Fortunately, it is easy to construct an intermediate
transition system that eliminates the remainder of the gap. We convert λneed to
an equivalent CK transition system [9], where the program is partitioned into
a control string (C) and an explicit context (K) and we show that there is a
correspondence between this transition system and λ‖.

Figure 4 outlines our proof strategy pictorially. The four horizontal layers
correspond to the four rewriting systems. While λneed and λ‖ use large steps to



140 S. Chang and M. Felleisen

store machine

ψ
��

� �� � := ��

�
�
�
�
�

� ��

����������� � ��

λ‖
� β‖ ��

CK transitions

ξ
��
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��
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���
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���
�
�

λneed
� βneed ��

Fig. 4. Summary of correctness proof technique

progress from term to term, the machine-like systems take several small steps.
The solid vertical arrows between the layers figure indicate how mapping func-
tions relate the rewriting sequences and the dashed arrows show how the smaller
machine steps correspond to the larger steps of λneed and λ‖:

• The ψ function maps states from the store-based machine to terms in the
λ‖ world. For every step in the natural-semantics machine, the resulting
operation in λ‖ is either a no-op or a β‖ reduction, with assignment in the
store-machine being equivalent to program-wide substitution in λ‖.

• Similarly, the ξ function maps states of the CK transition system to the
λ‖ space and for every CK transition, the resulting λ‖ operation is also
either a no-op or a β‖ reduction, with the transition that descends under a
λ-abstraction being equivalent to substitution in λ‖.

• Finally, the φ function maps states of the CK transition system to λneed

terms and is used to show that the CK system and λneed are equivalent. For
every CK transition, the equivalent λneed operation is either a no-op or a
βneed reduction.

Syntax

SL = 〈e, FLs, Γ 〉 (States)
FLs = FL, . . . (List of Frames)
FL = (arg e) | (var x) (Frames)
Γ = (x �→e, . . .) (Heaps)

Transitions

〈e1 e2, FLs, Γ 〉 ckh�−→ 〈e1, ((arg e2), FLs), Γ 〉 (push-arg-ckh)

〈λx.e1, ((arg e2), FLs), Γ 〉 ckh�−→ 〈e1{x :=y}, FLs, (Γ, y �→e2)〉 , y fresh (descend-lam-ckh)

〈x, FLs, (Γ, x �→ e)〉 ckh�−→ 〈e, ((var x), FLs), Γ 〉 (lookup-var-ckh)

〈v, ((var x), FLs), Γ 〉 ckh�−→ 〈v, FLs, (Γ, x �→ v)〉 (update-heap-ckh)

Fig. 5. The natural semantics as an abstract machine
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Subsections 5.2 and 5.3 present the store-based machine and the parallel
rewriting semantics, respectively, including a proof of equivalence. Subsection 5.4
presents the CK system and subsection 5.5 explains the rest of the proof.

5.2 Adapting Launchbury’s Natural Semantics

Figure 5 describes the syntax and transitions of the store machine.5 It is dubbed
CKH because it resembles a three-register machine [9]: a machine state SL is
comprised of a control string (C), a list of frames (K) that represents the control
context in an inside-out manner, and a heap (H). The . . . notation means “zero of
more of the preceding kind of element.” An (arg e) frame represents the argument
in an application and the (var x) frame indicates that a heap expression is
the current control string. Parentheses are used to group a list of frames when
necessary. The initial machine state for a program e is 〈e, (), ()〉. Computation
terminates when the control string is a value and the list of frames is empty.

The push-arg-ckh transition moves the argument in an application to a new
arg frame in the frame list and makes the operator the next control string.
When that operator is a λ-abstraction, the descend-lam-ckh transition adds its
argument to the heap,6 mapped to a fresh variable name, and makes the body of
the operator the new control string. The lookup-var-ckh transition evaluates an
argument from the heap when the control string is a variable. The mapping is
removed from the heap and a new (var x) frame remembers the variable whose
corresponding expression is under evaluation. Finally, when the heap expression
is reduced to a value, the update-heap-ckh transition extends the heap again.

5.3 Parallel Rewriting

The syntax of the parallel λ-rewriting semantics is as follows:

e‖ = e | e‖x (Terms)

v‖ = v | v‖x (Values)

E‖ = [ ] | E‖ e‖ | E‖x (Evaluation Contexts)

This system expresses computation with a selective parallel reduction strategy.
When a function application is in demand, the system substitutes the argument
for all free occurrences of the bound variable, regardless of the status of the
argument. When an instance of a substituted argument is reduced, however, all
instances of the argument are reduced in parallel. Here is a sample reduction:

(λx.x x) (I I)
‖�−→ (I I)x (I I)x

‖�−→ Ix Ix
‖�−→ I

5 To aid comparisons, we slightly alter Launchbury’s rules (and the resulting machine)
to use pure λ terms. Thus we avoid Launchbury’s preprocessing and special syntax.

6 The notation (Γ, x �→e) is a heap Γ , extended with the variable-term mapping x �→e.
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The λ‖ semantics keeps track of arguments via labeled terms e‖x, where labels
are variables. Values in λ‖ also include labeled λ-abstractions. Reducing a labeled
term triggers the simultaneous reduction of all other terms with the same label.
Otherwise, labels do not affect program evaluation.

We require that all expressions with the same label must be identical.

Definition 5. A program e‖ is consistently labeled (CL) when for any two sub-
terms e‖

x1
1 and e‖

x2
2 of e‖, x1 = x2 implies e‖1 = e‖2.

In the reduction of λ‖ programs, evaluation contexts E‖ determine which part
of the program to reduce next. The λ‖ evaluation contexts are the call-by-name
evaluation contexts with the addition of the labeled E‖x context, which dictates
that a redex search goes under labeled terms. Essentially, when searching for a
redex, terms tagged with a label are treated as if they were unlabeled.

The parallel semantics can exploit simpler evaluation contexts than λneed

because substitution occurs as soon as an application is encountered:

E‖[((λx.e‖1)�y) e‖2]
‖�−→

⎧⎪⎨⎪⎩
E‖[e‖], if [ ] is not under a label in E‖
E‖[e‖]{{z⇐E‖2[e‖]}}, if E‖[ ] = E‖1[(E‖2[ ])z ]

and [ ] is not under a label in E‖2

(β‖)

where e‖ = e‖1{x :=e‖w2 }, w fresh

On the left-hand side of β‖, the program is partitioned into a context and a

β-like redex. A term e�y may have any number of labels and possibly none. On
the right-hand side, the redex is contracted to a term e‖1{x := e‖w2} such that
the argument is tagged with an unique label w. Obsolete labels �y are discarded.

There are two distinct ways to contract a redex: when the redex is not under
any labels and when the redex occurs under at least one label. For the former,
the redex is the only contracted part of the program. For the latter, all other
instances of that labeled term are similarly contracted. In this second case, the
evaluation context is further subdivided as E‖[ ] = E‖1[(E‖2[ ])z], where z is the
label nearest the redex, i.e., E‖2 contains no additional labels. A whole-program
substitution function is used to perform the parallel reduction:

e‖x1{{x⇐e‖}} = e‖x

e‖x1{{y⇐e‖}} = (e‖1{{y⇐e‖}})x, x �= y

(λx.e‖1){{x⇐e‖}} = λx.(e‖1{{x⇐e‖}})
(e‖1 e‖2){{x⇐e‖}} = (e‖1{{x⇐e‖}} e‖2{{x⇐e‖}})

otherwise, e‖1{{x⇐e‖}} = e‖1

Rewriting terms with β‖ preserves the consistent labeling property.

Proposition 2. If e‖ is CL and e‖
‖�−→ e‖′, then e‖′ is CL.
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The ψ function reconstructs a λ‖ term from a CKH machine configuration:

ψ : SL → e‖ψ(〈e, ((var x), FLs), Γ 〉) = ψ(〈x, FLs, (x �→e, Γ )〉)
ψ(〈e1, ((arg e2), FLs), Γ 〉) = ψ(〈e1 e2, FLs, Γ 〉)

ψ(〈e, (), Γ 〉) = e{{Γ}}

The operation e{{Γ}}, using overloaded notation, replaces all free variables in e
with their corresponding terms in Γ and tags them with appropriate labels.

Lemma 5 demonstrates the bulk of the equivalence of the store machine and
λ‖.7 The rest of the equivalence proof is straightforward [9].

Lemma 5. If 〈e, FLs, Γ 〉 ckh�−→ 〈e′, FLs′, Γ ′〉, then either:

1. ψ(〈e, FLs, Γ 〉) = ψ(〈e′, FLs′, Γ ′〉)
2. ψ(〈e, FLs, Γ 〉)

‖�−→ ψ(〈e′, FLs′, Γ ′〉)

5.4 A Transition System for Comparing λneed and λ‖

The CK layer in figure 4 mediates between λ‖ and λneed. The corresponding
transition system resembles a two-register CK machine [9]. Figure 6 describes
the syntax and the transitions of the system.8

Syntax

S = 〈e, Fs〉 (States)
Fs = F, . . . (List of Frames)
F = (arg e) | (lamx) | (bodxFsFs) (Frames)

Transitions

〈e1 e2, Fs〉 ck�−→〈e1, ((arg e2), Fs)〉 (push-arg-ck)

〈λx.e, Fs〉 ck�−→〈e, ((lamx), Fs)〉 (descend-lam-ck)
if balance(Fs) > 0

〈x, (Fs1, (lamx), Fs2, (arg e), Fs)〉 ck�−→〈e, ((bodxFs1 Fs2), Fs)〉 (lookup-var-ck)

if φF (Fs1) ∈
∨
A[E], φF (Fs2) ∈ A,φF (Fs) ∈ E[

∧
A],

∧
A[

∨
A] ∈ A

〈v, (Fs3, (bodxFs1 Fs2), Fs)〉 ck�−→〈v, (Fs1{x :=v}, Fs3, Fs2, Fs)〉 (βneed-ck)
if φF (Fs3) ∈ A

Fig. 6. A transition system for comparing λneed and λ‖

States consist of a subterm and a list of frames representing the context. The
first kind of frame represents the argument in an application and the second

7 The lemma relies on an extension of the typical α-equivalence classes of terms to
include variables in labels as well.

8 The CK transition system is a proof-technical device. Unlike the original CK ma-
chine, ours is ill-suited for an implementation.
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frame represents a λ-abstraction with a hole in the body. The last kind of frame
has two frame list components, the first representing a context in the body of
the λ, and the second representing the context between the λ and its argument.
The variable in this last frame is the variable bound by the λ expression under
evaluation. The initial state for a program e is 〈e, ()〉, where () is an empty list
of frames, and evaluation terminates when the control string is a value and the
list of frames is equivalent to an answer context.

The push-arg-ck transition makes the operator in an application the new con-
trol string and adds a new arg frame to the frame list containing the argument.
The descend-lam-ck transition goes under a λ, making the body the control
string, but only if that λ has a corresponding argument in the frame list, as
determined by the balance function, defined as follows:

balance : Fs → Z
balance(Fs3, (bodxFs1 Fs2), Fs) = balance(Fs3)

balance(Fs) = #arg-frames(Fs)− #lam-frames(Fs)
Fs contains no bod frames

The balance side condition for descend-lam-ck dictates that evaluation goes
under a λ only if there is a matching argument for it, thus complying with the
analogous evaluation context. The balance function employs #arg-frames and
#lam-frames to count the number of arg or lam frames, respectively, in a list
of frames. Their definitions are elementary and therefore omitted.

The lookup-var-ck transition is invoked if the control string is a variable,
somewhere in a λ body, and the rest of the frames have a certain shape consistent
with the corresponding parts of a βneed redex. With this transition, the argument
associated with the variable becomes the next control string and the context
around the variable in the λ body and the context between the λ and argument
are saved in a new bod frame. Finally, when an argument is an answer, indicated
by a value control string and a bod frame in the frame list—with the equivalent
of an answer context in between—the value gets substituted into the body of the
λ according to the βneed-ck transition. The βneed-ck transition uses a substitution
function on frame lists, Fs{x :=e}, which overloads the notation for regular term
substitution and has the expected definition.

Figure 7 defines metafunctions for the CK transition system. The φ function
converts a CK state to the equivalent λneed term, and uses φF to convert a list
of frames to an evaluation context.

Now we can show that an evaluator defined with
ck�−→ is equivalent to evalsrneed.

The essence of the proof is a lemma that relates the shape of CK transition
sequences to the shape of λneed standard reduction sequences. The rest of the
equivalence proof is straightforward [9].

Lemma 6. If 〈e, Fs〉 ck�−→〈e′, Fs′〉, then either:

1. φ(〈e, Fs〉) = φ(〈e′, Fs′〉)
2. φ(〈e, Fs〉) �−→ φ(〈e′, Fs′〉)
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φ : S → e

φ(〈e, Fs〉) = φF (Fs)[e]

φF : Fs → E

φF (()) = [ ]

φF ((lamx), Fs) = φF (Fs)[λx.[ ]]

φF ((arg e), Fs) = φF (Fs)[[ ] e]

φF ((bodxFs1 Fs2), Fs) =

φF (Fs)[φF (Fs2)[λx.φF (Fs1)[x]] [ ]]

ξ : S → e‖

ξ(〈e, Fs〉) = ξF (Fs, e)

ξF : Fs× e‖ → e‖

ξF ((), e‖) = e‖
ξF (((arg e‖1), Fs), e‖) = ξF (Fs, e‖ e‖1)

ξF (((bodxFs1 Fs2), Fs), e‖) =

ξF ((Fs1, (lamx), Fs2, (arg e‖), Fs), x)

ξF (((lamx), Fs1, (arg e‖1), Fs2), e‖) =

ξF ((Fs1, Fs2), e‖{x :=e‖
y
1})

φF (Fs1) ∈ A, y fresh

Fig. 7. Functions to map CK states to λneed (φ) and λ‖ (ξ)

Finally, we show how the CK system corresponds to λ‖. The ξ function defined
in figure 7 constructs a λ‖ term from a CK configuration.

Lemma 7. If 〈e, Fs〉 ck�−→〈e′, Fs′〉, then either:

1. ξ(〈e, Fs〉) = ξ(〈e′, Fs′〉)
2. ξ(〈e, Fs〉) ‖�−→ ξ(〈e′, Fs′〉)

5.5 Relating All Layers

In the previous subsections, we have demonstrated the correspondence between
λ‖, the natural semantics, and the λneed standard reduction sequences via lem-
mas 5 through 7. We conclude this section with the statement of an extensional
correctness theorem, where evalnatural is an evaluator defined with the store ma-
chine transitions. The theorem follows from the composition of the equivalences
of our specified rewriting systems.

Theorem 4. evalneed = evalnatural

6 Extensions and Variants

Data Constructors Real-world lazy languages come with data structure con-
struction and extraction operators. Like function arguments, the arguments to
a data constructor should not be evaluated until there is demand for their val-
ues [12, 14]. The standard λ calculus encoding of such operators [5] works well:

cons = λx.λy.λs.s x y, car = λp.p λx.λy.x, cdr = λp.p λx.λy.y

Adding true algebraic systems should also be straightforward.
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Recursion Our λneed calculus represents just a core λ calculus and does not
include an explicit letrec constructor for cyclic terms. Since cyclic programming
is an important idiom in lazy programming languages, others have extensively
explored cyclic by-need calculi, e.g., Ariola and Blum [1], and applying their
solutions to our calculus should pose no problems.

7 Conclusion

Following Plotkin’s work on call-by-name and call-by-value, we present a call-
by-need λ calculus that expresses computation via a single axiom in the spirit of
β. Our calculus is close to implementations of lazy languages because it captures
the idea of by-need computation without retaining every function call and with-
out need for re-associating terms. We show that our calculus satisfies Plotkin’s
criteria, including an intensional correspondence between our calculus and a
Launchbury-style natural semantics. Our future work will leverage our λneed

calculus to derive a new abstract machine for lazy languages.

Acknowledgments. We thank J. Ian Johnson, Casey Klein, Vincent St-Amour,
Asumu Takikawa, Aaron Turon, Mitchell Wand, and the ESOP 2012 reviewers
for their feedback on early drafts. This work was supported in part by NSF
Infrastructure grant CNS-0855140 and AFOSR grant FA9550-09-1-0110.

References

1. Ariola, Z., Blom, S.: Cyclic Lambda Calculi. In: Ito, T., Abadi, M. (eds.) TACS 1997.
LNCS, vol. 1281, pp. 77–106. Springer, Heidelberg (1997)

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda-calculus. Tech. Rep. CIS-TR-
94-23, University of Oregon (1994)

3. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program. 7,
265–301 (1997)

4. Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need
lambda calculus. In: Proc. 22nd Symp. on Principles of Programming Languages,
pp. 233–246 (1995)

5. Barendregt, H.P.: Lambda Calculus, Syntax and Semantics. North-Holland (1985)
6. Church, A.: The Calculi of Lambda Conversion. Princeton University Press (1941)

7. Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland (1958)
8. Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized Interpreters for Call-

by-Need Evaluation. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 240–256. Springer, Heidelberg (2010)

9. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009)

10. Felleisen, M., Friedman, D.P.: A syntactic theory of sequential state. Theor. Com-
put. Sci. 69(3), 243–287 (1989)

11. Friedman, D.P., Ghuloum, A., Siek, J.G., Winebarger, O.L.: Improving the lazy
Krivine machine. Higher Order Symbolic Computation 20, 271–293 (2007)



The Call-by-Need Lambda Calculus, Revisited 147

12. Friedman, D.P., Wise, D.S.: Cons should not evaluate its arguments. In: Proc. 3rd
Intl. Colloq. on Automata, Languages and Programming. pp. 256–284 (1976)

13. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. In:
Proc. 36th Symp. on Principles of Programming Languages, pp. 153–164 (2009)

14. Henderson, P., Morris Jr., J.H.: A lazy evaluator. In: Proc. 3rd Symp. on Principles
of Programming Languages, pp. 95–103 (1976)

15. Josephs, M.B.: The semantics of lazy functional languages. Theor. Comput.
Sci. 68(1) (1989)

16. Landin, P.J.: The next 700 programming languages. Comm. ACM 9, 157–166
(1966)

17. Launchbury, J.: A natural semantics for lazy evaluation. In: Proc. 20th Symp. on
Principles of Programming Languages, pp. 144–154 (1993)

18. Loader, R.: Notes on simply typed lambda calculus. Tech. Rep. ECS-LFCS-98-381,
Department of Computer Science, University of Edinburgh (1998)

19. Maraist, J., Odersky, M., Turner, D.N., Wadler, P.: Call-by-name call-by-value,
call-by-need, and the linear lambda calculus. In: Proc. 11th Conference on Math-
ematical Foundations of Programminng Semantics, pp. 370–392 (1995)

20. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus
(unabridged). Tech. Rep. 28/94, Universität Karlsruhe (1994)

21. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8, 275–317 (1998)

22. Morris, J.H.: Lambda Calculus Models of Programming Languages. Ph.D. thesis,
MIT (1968)

23. Nakata, K., Hasegawa, M.: Small-step and big-step semantics for call-by-need. J.
Funct. Program. 19(6), 699–722 (2009)

24. Peyton Jones, S.L., Salkild, J.: The spineless tagless g-machine. In: Proc. 4th Conf.
on Functional Programming Lang. and Computer Architecture, pp. 184–201 (1989)

25. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1, 125–159 (1975)

26. Purushothaman, S., Seaman, J.: An adequate operational semantics for sharing in
lazy evaluation. In: Proc. 4th European Symp. on Program, pp. 435–450 (1992)

27. Sestoft, P.: Deriving a lazy abstract machine. J. Func. Program. 7(3), 231–264
(1997)

28. Wadsworth, C.P.: Semantics and Pragmatics of the Lambda Calculus. Ph.D. thesis,
Oxford University (1971)



A Compositional Specification Theory

for Component Behaviours

Taolue Chen1, Chris Chilton1, Bengt Jonsson2, and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We propose a compositional specification theory for reason-
ing about components that interact by synchronisation of input and out-
put (I/O) actions, in which the specification of a component constrains
the temporal ordering of interactions with the environment. Such a the-
ory is motivated by the need to support composability of components, in
addition to modelling environmental assumptions, and reasoning about
run-time behaviour. Models can be specified operationally by means of
I/O labelled transition systems augmented by an inconsistency predi-
cate on states, or in a purely declarative manner by means of traces.
We introduce a refinement preorder that supports safe-substitutivity of
components. Our specification theory includes the operations of parallel
composition for composing components at run-time, logical conjunction
for independent development, and quotient for incremental development.
We prove congruence properties of the operations and show correspon-
dence between the operational and declarative frameworks.

Keywords: specification theory, compositionality, components, I/O au-
tomata, interface automata, logic LTS, refinement, conjunction, quotient.

1 Introduction

An important paradigm for developing complex reactive systems is component-
based design, where systems are composed from components, which themselves
can be realised by smaller components. Component-based design can be supported
by a specification theory, which allows the mixing of specifications and implemen-
tations, admits refinement, and provides composition operators. A specification
theory suitable for components should be equipped with a refinement preorder
which is substitutive, to facilitate component reuse. As a minimum, the composi-
tion operators should include structural parallel composition, for inferring compo-
nent interactions at run-time; conjunction, to facilitate independent development
constrained by several specifications; and quotienting, which supports incremen-
tal development in the following sense: given a specification of the full system,
together with components implementing part of that system, quotienting allows
one to find the coarsest specification of the remaining portion of the system to be
implemented. Further useful operators include: disjunction, which finds a com-
mon specification that a collection of components implement; and hiding, which
supports abstraction of components.
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In this paper, we consider systems of components that interact by synchroni-
sation of input and output actions, in which outputs are non-blocking. A speci-
fication should describe properties on the ordering of a component’s interactions
with its environment; it should also describe the assumptions on the environ-
ment under which these properties are guaranteed, thereby supporting assume-
guarantee reasoning. A number of proposals for such specification theories have
been put forward. As detailed in the survey of related work below, we find that
they suffer from limitations or unnecessary complications.

The main contribution of our paper is a comprehensive, compositional speci-
fication theory for components that generalises existing frameworks by support-
ing all the above-mentioned operators, while retaining conceptual simplicity and
strong algebraic properties of the operations. The framework permits the mixing
of abstract component specifications and I/O labelled transition systems (called
Logic IOLTSs), without restricting to determinism as in [1]. Our refinement is
based on traces, hence admitting a simpler formulation than similar notions
based on e.g. alternating simulation [2] or modalities [3,4], so is more amenable
to language-theoretic constructs. From this formulation, we demonstrate that
the induced mutual refinement is a congruence for the operators.

In contrast to existing I/O automata [5] and interface automata [2], we are
able to express: (1) assumptions on the input provided by the environment; (2)
underspecification, meaning that it is uncertain what the allowable interactions
are; and (3) various (run-time) errors, including communication mismatch, bad
behaviour, or divergence (an infinite amount of internal computation without
any visible interaction). We show that all these features can be expressed us-
ing only the single concept of inconsistency, which we have adapted from the
Logic LTSs of Lüttgen and Vogler [6,7], where input and output actions are not
distinguished. Inconsistency is a property of states or interaction traces, which
represents the possibility of some abnormal condition. Once an inconsistency has
occurred, there is no escaping from it. Following the lead of CSP [8], we thus
allow for chaotic behaviour to ensue once an inconsistency has arisen.

Related Work. Our specification theory, in particular Logic IOLTSs, is in-
spired by the Logic LTS framework due to Lüttgen and Vogler [6], a composi-
tional theory that admits as specifications LTSs without I/O distinctions. Their
inconsistency predicate is induced from inequality of ready-sets, rather than com-
munication mismatches as in our case. Refinement is based on ready-simulation;
alphabetised parallel and conjunction are considered, but not quotient.

The operational component model in our framework has been greatly influ-
enced by I/O automata [5] and interface automata [2]: both are based on I/O
LTSs, with the proviso that I/O automata must be input-enabled, meaning that
each state of the automaton is willing to accept any input. We differ from I/O
automata by not imposing input-enabledness and from interface automata by
working with an explicit representation of inconsistencies. Another difference
is refinement, which for interface automata is defined in terms of alternating
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simulation, rather than traces; the original definition in [2] is simplified in [9], but
works only for input-deterministic interface automata. It should be noted that,
unlike [2,9], we use an associative variant of parallel composition, which combines
an input and output into an output (as in [10]). Furthermore, we provide a defi-
nition of conjunction corresponding to shared refinement of interface automata,
which substantially generalises that of [11] for synchronous components. More-
over, our quotienting operator on Logic IOLTSs generalises that in [12] defined
only for deterministic components.

There are a number of process-algebraic frameworks that deal with asyn-
chronous I/O interaction. We mention a characterisation of I/O automata by
De Nicola and Segala [13], which is actually a generalisation (and also applica-
ble to interface automata), since the inconsistent process Ω allows to distinguish
between good and bad inputs. Similarly to our approach, refinement in [13] is
given by trace containment, but does not extend to inconsistent trace contain-
ment. This is because we allow a Logic IOLTS to become inconsistent after
emitting an output, whereas a process can only become inconsistent through re-
ceiving a bad input. Finally, we remark that [13] supports a number of operators
of a specification theory, but does not deal with conjunction or quotient.

Our work is also related to the ioco theory in model based testing [14]. The
ioco relation is similar to our refinement, but lacks compositionality of operators,
so is not well-suited to a specification theory for components.

There have been several CSP-based frameworks that deal with asynchronous
communication; of these, the receptive process theory (RPT) [15] utilises a model
of concurrency similar to ours in that outputs are non-blocking. RPT also con-
siders quotient (referred to as factorisation), but for the restricted class of delay-
insensitive networks [16] that differ from our setting.

A further class of component-based modelling formalisms is based on may/
must modalities. A specification theory for components has been devised in [17]
based on modalities [3,4], but the definition of quotient is more restrictive than
ours. Larsen et al. have made an effort in relating modal transition systems
with interface automata [1]. The approach of modal I/O automata is based on
a game-like definition of refinement, which we claim to be more complex than
ours, see, e.g., the discussion of parallel composition in [4]. The framework in [4]
can support reasoning about liveness properties which our framework does not
(although they both support reasoning of safety properties). However, our frame-
work can be easily extended by introducing quiescent states, and additionally
considering containment of quiescent traces to reason about liveness.

Outline. The paper begins by introducing declarative specifications in Section 2,
before considering operational specifications in Section 3. We focus on three com-
position operators: parallel, conjunction and quotient; omitting disjunction and
hiding for reasons of space. The paper ends with a statement of full-abstraction
results in Section 4. Proofs can be found in the accompanying technical report
[18].
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2 A Declarative Theory of Components

In this section, we model components abstractly by means of declarative spec-
ifications. We introduce a substitutive refinement preorder together with three
compositional operators on declarative specifications.

A declarative specification comes equipped with an interface, together with
a set of behaviours over the interface. The interface is represented by a set of
input actions and a set of output actions, which are necessarily disjoint, while
the behaviour is characterised by traces.

Definition 1 (Declarative specification). A declarative specification P is
a tuple 〈AI

P ,AO
P , TP , FP〉 in which AI

P and AO
P are disjoint sets referred to as

inputs and outputs respectively (the union of which is denoted by AP), TP ⊆ A∗
P

is a non-empty set of permissible traces, and FP ⊆ A∗
P is a set of inconsistent

traces. The trace sets must satisfy the constraints:

1. FP ⊆ TP
2. If t ∈ TP and i ∈ AI

P , then ti ∈ TP
3. TP is prefix closed
4. If t ∈ FP and t′ ∈ A∗

P , then tt′ ∈ FP .

Outputs are under the control of the component, whereas inputs are issued by
the environment. This means that, after any successful interaction between the
component and the environment, the environment can issue any input i, even if
it will be refused by the component. Naturally, if i is refused by the component
after the trace t, we deem ti to be an inconsistent trace, since a communication
mismatch has occurred. Given this treatment of inputs, we say that our theory
is not input-enabled, even though TP is closed under input-extensions.

Example 1. A drinks machine dispenses either a tea or a coffee after a coin
has been inserted. The drinks machine has sufficient water to produce only
2 drinks, after which a further coin insertion renders the machine inopera-
ble. This behaviour can be encoded by the declarative specification DM =
〈{£}, {t, c}, T, F1 ∪ F2〉, where:

– T = {ε,£,£(c+ t),£(c+ t)£,£(c+ t)£(c+ t)} ∪ F1 ∪ F2

– F1 = £(c+ t)£(c+ t)£(£ + c+ t)∗ insertion of third coin after two dispen-
sations

– F2 = (ε+£(c+t))££(£+c+t)∗ insertion of second coin before dispensation.

From hereon let P , Q and R be declarative specifications with signatures 〈AI
P ,

AO
P , TP , FP〉, 〈AI

Q,AO
Q, TQ, FQ〉 and 〈AI

R,AO
R, TR, FR〉 respectively.

2.1 Refinement

As refinement corresponds to safe substitutivity, for Q to be used in place of P
we require that Qmust exist safely in any environment that P can exist in safely.
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Whether an environment is safe for a specification depends on the sequences of
message exchanges afforded by the component. If an environment can prevent a
component from performing an inconsistent trace, then the environment is said
to be safe.

We do not insist that a component Q must have the same interface as the
component P to be refined. Instead Q must be accepting of at least all of P ’s
inputs, while restricting to a subset of P ’s outputs. This can be formalised by
the covariant relationship AI

P ⊆ AI
Q on inputs and the contravariant constraint

AO
Q ⊆ AO

P on outputs.
In order to establish that refinement holds, we perform a weak form of alpha-

bet equalisation on the inputs of the component to be refined. We refer to this
operation as lifting. Informally, lifting extends the trace sets of P by explicitly
refusing any input in AI

Q \ AI
P , after which it allows for arbitrary behaviour.

Definition 2 (Lifting). Let P be a declarative specification, and let AI
Q be a set

of input actions. The lifting of trace sets TP and FP to AI
Q, written as TP ↑ AI

Q
and FP ↑ AI

Q respectively, is defined as:

– TP ↑ AI
Q = TP ∪ {tit′ : t ∈ TP , i ∈ AI

Q \ AI
P and t′ ∈ (AI

Q ∪ AP)∗}
– FP ↑ AI

Q = FP ∪ {tit′ : t ∈ TP , i ∈ AI
Q \ AI

P and t′ ∈ (AI
Q ∪ AP)∗}.

Recall that an environment is safe for a component if the environment can pre-
vent the component from performing an inconsistent trace. As outputs are under
the control of the component itself, a safe environment must refuse to issue an
input on any trace from which there is a sequence of output actions after the
input that allows the trace to become inconsistent.

Under such an arrangement, for each declarative specification P we can de-
fine the safe declarative specification E(P) containing all of P ’s permissible and
inconsistent traces, but also satisfying the additional property: if t ∈ TP and
there exists t′ ∈ (AO

P )∗ such that tt′ ∈ FP , then t ∈ FE(P). This has the effect of
forcing all inconsistent traces to become inconsistent on the environment’s issue
of a bad input. If the environment respects this safe specification, by not issuing
any input that results in an inconsistent trace, then the component can never
encounter an inconsistent trace. Note that if ε ∈ FE(P) then there is no environ-
ment that can prevent P from performing an inconsistent trace. However, for
uniformity we still refer to E(P) as the safe specification of P .

Definition 3 (Safe specification). Let P be a declarative specification. The
most general safe specification for P is a declarative specification E(P) =
〈AI

P ,AO
P , TE(P), FE(P)〉, where TE(P) = TP ∪ FE(P) and FE(P) = {tt′ ∈ A∗

P :
t ∈ TP and ∃t′′ ∈ (AO

P )∗ · tt′′ ∈ FP}.
We can now define our substitutive refinement preorder. From the safe speci-
fication associated with an arbitrary declarative specification, it is easy to see
whether a declarative specification can be substituted safely in place of another.
Note that FQ ⊆ FP ↑ AI

Q would be too strong to use for the last clause, as we
are only interested in trace containment up to the point where an environment
can issue a bad input.
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Definition 4 (Refinement). For declarative specifications P and Q, Q is said
to be a refinement of P, written Q 	dec P, iff:

1. AI
P ⊆ AI

Q
2. AO

Q ⊆ AO
P

3. TE(Q) ⊆ TE(P) ↑ AI
Q

4. FE(Q) ⊆ FE(P) ↑ AI
Q.

As refinement is based on an extension of language inclusion, its complexity is in
P, assuming regularity of the trace sets. Note that lifting maintains regularity.

Equivalence of declarative specifications in our framework is defined in terms
of mutual refinement.

Definition 5 (Equivalence). Let P and Q be declarative specifications. Then
P and Q are said to be equivalent, written P ≡dec Q, iff P 	dec Q and Q 	dec P.

Lemma 1 (Preorder). Refinement is both reflexive and transitive.

2.2 Parallel Composition

The parallel composition operator on declarative specifications yields a declara-
tive specification representing the combined effect of its operands running asyn-
chronously. We do not consider synchronous parallel composition, as this does
not make sense when dealing with non-blocking output actions. To preserve the
effect that a single output from a component can be received by multiple compo-
nents in the environment, we must define the parallel composition to repeatedly
broadcast an output: this means that an input a? and output a! combine to
form an output a! (as in certain variants of I/O automata), rather than a hidden
action τ as is the case in Milner’s CCS.

Not all declarative specifications can be composed with one another; we re-
strict to those that are said to be composable. P and Q are composable for
parallel composition only if AO

P ∩ AO
Q = ∅. This restriction is meaningful if we

consider inputs on an interface as buttons and outputs as lights. Given two dis-
tinct components, it is not possible for them to share a common light, whereas
it is possible to push their buttons at the same time. In practice, issues of com-
posability can be avoided by employing renaming, if this is considered to be
appropriate.

Definition 6 (Parallel composition). Let P and Q be declarative specifica-
tions such that AO

P and AO
Q are disjoint. Then P || Q is the declarative specifi-

cation 〈AI
P||Q,AO

P||Q, TP||Q, FP||Q〉, where:

– AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO
P||Q = AO

P ∪ AO
Q

– TP||Q = {t ∈ A∗
P||Q : t � AP ∈ TP and t � AQ ∈ TQ} ∪ FP||Q

– FP||Q = {tt′ ∈ A∗
P||Q : t � AP ∈ FP and t � AQ ∈ TQ, or t � AP ∈ TP and

t � AQ ∈ FQ}.
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Informally, a trace is permissible in P || Q if its projection onto AP is a trace
of P and its projection onto AQ is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

We demonstrate the following result, a corollary of which is that mutual re-
finement is a congruence for parallel, subject to composability.

Theorem 1 (Compositionality of parallel). Let P, Q and R be declarative
specifications such that P and R are composable for parallel composition, and
AI

Q ∩ AO
R ⊆ AI

P ∩ AO
R. If Q 	dec P, then Q || R 	dec P || R.

2.3 Conjunction

The conjunction operator on declarative specifications can be thought of as find-
ing a common implementation for a number of properties, each of which are rep-
resented by declarative specifications. Naturally, any implementation of these
properties should be a refinement of each of the properties to be implemented.
The conjunction (or shared refinement) of two declarative specifications P and
Q is the coarsest declarative specification that refines both P and Q. Thus con-
junction is the meet operator on the refinement preorder.

As for parallel composition, conjunction can only be performed on composable
components. P and Q are composable for conjunction only if the sets AI

P ∪AI
Q

and AO
P ∪ AO

Q are disjoint.

Definition 7 (Conjunction). Let P and Q be declarative specifications such
that AI

P∪AI
Q and AO

P∪AO
Q are disjoint. Then P∧Q is the declarative specification

〈AI
P∧Q,AO

P∧Q, TP∧Q, FP∧Q〉, where:

– AI
P∧Q = AI

P ∪ AI
Q

– AO
P∧Q = AO

P ∩ AO
Q

– TP∧Q = TP ↑ AI
Q ∩ TQ ↑ AI

P
– FP∧Q = FP ↑ AI

Q ∩ FQ ↑ AI
P .

Conjunction has strong connections with the logical ‘and’ operator in Boolean
algebra, as shown below. Mutual refinement is a congruence for conjunction,
subject to composability.

Theorem 2 (Properties of conjunction).

– Conjunction is the greatest lower bound operator for 	dec

– R 	dec P and R 	dec Q iff R 	dec P ∧Q
– P ∧Q ≡dec Q iff Q 	dec P.

Theorem 3 (Compositionality of conjunction). Let P, Q and R be declar-
ative specifications such that P is composable with R for conjunction. If Q 	dec

P, then Q∧R 	dec P ∧R.
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2.4 Quotient

The final operation that we consider on the specification theory is that of quo-
tienting, which has strong connections to synthesis. Given a specification for a
system R, together with a component P implementing part of R, the quotient
yields the coarsest specification for the remaining part of R to be implemented.
Thus, the parallel composition of the quotient with P should be a refinement of
the system-wide specification R. Therefore, quotient can be thought of as the
adjoint of parallel composition.

As P is a sub-component of R, we make the reasonable assumption that
AP ⊆ AR. Moreover, a necessary condition for the existence of the quotient
is that AO

P ⊆ AO
R, otherwise refinement will fail on the alphabet containment

checks.

Definition 8 (Quotient). Let P and R be declarative specifications such that
AO

P ⊆ AO
R and AP ⊆ AR. The quotient of P from R is the specification R/P

with signature 〈AI
R/P ,AO

R/P , TR/P , FR/P〉, where:

– AI
R/P = AO

P ∪ AI
R

– AO
R/P = AO

R \ AO
P

– TR/P = {t ∈ A∗
R : ∀t′ a prefix of t · L(t′) and ∀t′′ ∈ AI

R/P
∗ · L(tt′′)}

– FR/P = {t ∈ A∗
R : (t � AP ∈ TP =⇒ t ∈ FE(R)) and ∀t′ a prefix of t·L(t′)}

– L(t) = (t � AP ∈ FP =⇒ t ∈ FE(R)) and (t � AP ∈ TP =⇒ t ∈ TR).

The alphabet of the quotient contains all of the actions from AR and AP so that
R/P can fully control P and emulate the behaviour of R. Yet still, simple exam-
ples reveal that there may not exist a component Q over an interface consisting
of inputs AI

R/P and outputs AO
R/P such that P || Q 	dec R. Unfortunately,

the existence of the quotient cannot be ascertained by a syntactic check on the
alphabets of P and R.

In Definition 8 we referred to R/P as a specification, but not a declarative
specification. As the following theorem shows, if TR/P is non-empty (a condition
of being a declarative specification), then the quotient exists.

Theorem 4 (Existence of quotient). Let P and R be declarative specifi-
cations such that AO

P ⊆ AO
R and AP ⊆ AR. Then there exists a declarative

specification Q with input actions AI
R/P and output actions AO

R/P such that
P || Q 	dec R iff TR/P �= ∅.
The next two theorems show that R/P satisfies the required properties of quo-
tient when TR/P is non-empty, and that quotient is well-behaved with respect
to refinement.

Theorem 5 (Properties of quotient). Let P and R be declarative specifica-
tions such that AO

P ⊆ AO
R and AP ⊆ AR. If TR/P �= ∅, then P || (R/P) 	dec R

and for any declarative specification Q over inputs AI
R/P and outputs AO

R/P such
that P || Q 	dec R it holds that Q 	dec R/P.
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Theorem 6 (Compositionality of quotient). Let P, Q and R be declarative
specifications such that Q 	dec P.

– If Q/R and P/R are defined, then Q/R 	dec P/R.
– If R/Q and R/P are defined, and (AI

Q∩AO
R)\AP = ∅, then R/Q �dec R/P.

3 An Operational Theory of Components

In this section we take an operational view of components, by specifying their al-
lowable interactions in terms of Logic IOLTSs, an I/O version of labelled transition
systems augmented by an inconsistency predicate on states. We remain faithful to
the trace-based substitutive preorder, and cast refinement at the operational level
in terms of declarative refinement. For any operational model, we can derive an
equivalent declarative specification, meaning that the observable safe interactions
between the models and an arbitrary environment are indistinguishable.

To support a compositional theory of components, we define the operations
of parallel composition, conjunction and quotient directly on our operational
models. We further show that compositionality results for the operators on the
declarative framework carry over to the operational framework as well.

An explicit definition of implementation is not provided for our models, al-
though there are a number of candidates. One such suggestion for the char-
acterisation of implementations would be the set of specifications in which no
inconsistent states are reachable. We leave this for the user to decide.

We can now define the operational models formally. For a set A, write Aτ as
shorthand for A∪ {τ}, where it is assumed that τ �∈ A.

Definition 9 (IOLTS). An I/O labelled transition system (IOLTS) P is a
tuple 〈SP,AI

P,AO
P ,−→P〉, where SP is a (possibly infinite) collection of processes

(states), AI
P and AO

P are disjoint sets referred to as the inputs and outputs (the
union of which we denote by AP), and −→P⊆ SP × Aτ

P × SP is the transition
relation.

Note that since we do not insist on our components being fully input-enabled
(unlike I/O automata [5]), meaning that at any stage a component can refuse
to accept an input issued by the environment or another component, we must
extend IOLTSs to reason about potential communication mismatches that occur
during interactions. We accomplish this by augmenting IOLTSs with an incon-
sistency predicate for tracking mismatches. The resulting model, called a Logic
IOLTS, takes its inspiration from the Logic LTSs of Lüttgen and Vogler [6,7],
although we have a different interpretation of inconsistency.

Definition 10 (Logic IOLTS). A Logic IOLTS P is a tuple 〈SP,AI
P,AO

P ,−→P,
FP〉 in which 〈SP,AI

P,AO
P ,−→P〉 is an IOLTS, and FP ⊆ SP is an inconsistency

predicate on states satisfying the property: if p ∈ SP can diverge (meaning there
is an infinite sequence of τ-transitions emanating from p), then p ∈ FP.
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The inconsistency predicate annotates states that correspond to run-time errors
such as communication mismatches, underspecification, or divergent behaviour.
Regardless of why a state is inconsistent, we assume that on encountering an
inconsistency, unspecified behaviour can ensue. Consequently, inconsistent states
are resemblant of the process CHAOS from CSP [8].

Figure 1 shows a number of Logic IOLTSs represented pictorially. We adopt
the convention of enclosing the transition system within a box corresponding
to the interface of the component. Labelled arrows pointing at the interface
correspond to inputs, whereas arrows emanating from the interface correspond to
outputs. As a matter of clarity, we only represent the states that are reachable by
a sequence of transitions from the process we are interested in. States annotated
with an F are deemed to be inconsistent.

We introduce nomenclature for handling stability and hidden τ -transitions.
A relation ε=⇒P⊆ SP × SP is defined by p

ε=⇒P p′ iff p( τ−→P)∗p′. Generalising
ε=⇒P for visible actions a ∈ A, we obtain p

a=⇒P p′ iff there exist pa and p′a
such that p ε=⇒P pa

a−→P p
′
a

ε=⇒P p
′, and p

�a=⇒P p
′ iff there exists pa such that

p
a−→P pa

ε=⇒P p
′. The extension to words w = a1 . . . an is defined in the natural

way by p w=⇒P p
′ iff p

a1=⇒P . . .
an=⇒P p

′.
Furthermore, for a compositional operator ⊕, and sets A and B, we write

A ⊕ B for the set {a ⊕ b : a ∈ A and b ∈ B}. This allows us to use a process-
algebraic notation for states.

From hereon, let P = 〈SP,AI
P,AO

P ,−→P, FP〉, Q = 〈SQ,AI
Q,AO

Q ,−→Q, FQ〉
and R = 〈SR,AI

R,AO
R ,−→R, FR〉 be three Logic IOLTSs, and let pP, qQ and rR

be processes in the Logic IOLTSs P, Q and R respectively.

3.1 Refinement

In keeping with the declarative framework, we wish refinement to correspond to
safe-substitutivity. Hence, we cast refinement at the operational level in terms
of refinement at the declarative level. To do this, we define a mapping �·�∗
from operational models to declarative models (Definition 13) that preserves the
environments that the models can interact harmoniously with.

An essential feature of operational refinement is that the mapping from op-
erational to declarative models preserves the safe traces of the component. For
a declarative specification P , a trace t is said to be immediately-safe iff t is
permissible, but not inconsistent (i.e., t lies within TP \ FP ). If t is contained
within TP \ FE(P), we say that t is safe. The calculation of the safe traces for
a Logic IOLTS is slightly more involved, because it is necessary to deal with
non-determinism and τ -transitions.

Definition 11 (Immediately-safe states). The set of immediately-safe states
that a process pP can be in after following the trace t is given by hpP

(t), where
hpP

: A∗
P −→ 2SP is defined as:

– hpP
(ε) =

{
∅ if pP

ε=⇒P p
′ with p′ ∈ FP

{p′ ∈ SP : p ε=⇒P p
′} otherwise
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– hpP
(to) =

{
∅ if ∃p′ ∈ hpP

(t) such that p′ �o=⇒P p
′′ with p′′ ∈ FP

{p′′ ∈ SP : ∃p′ ∈ hpP
(t) · p′ �o=⇒P p

′′} otherwise
when o ∈ AO

P

– hpP
(ti) =

{
∅ if ∃p′ ∈ hpP

(t) such that p′ �i=⇒P p
′′ with p′′ ∈ FP, or p′ � i−→P

{p′′ ∈ SP : ∃p′ ∈ hpP
(t) · p′ �i=⇒P p

′′} otherwise
when i ∈ AI

P.

Definition 12 (Safe traces). A trace t of pP is immediately-safe iff hpP
(t) �= ∅

and is safe iff hpE(P)(t) �= ∅, where E propagates inconsistencies backwards over
output and τ transitions. The set of immediately-safe traces of pP is denoted
IST (pP), while the set of safe traces is denoted ST (pP).

An immediately-safe trace t of a process p characterises a permissible exchange
between p and an arbitrary environment, such that t will never encounter an
inconsistent state under any resolution of p’s non-determinism. Relating this
intuition to Definitions 11 and 12, suppose p and the environment can safely
communicate on the trace t. If from some state that p is in after following t
it can perform an output o, and every o it can output will never make the
system inconsistent, then the environment must be willing to accept that output.
Conversely, the environment can only safely issue an input i after t if i can be
accepted from every state the process is in after following t, without making the
system inconsistent. We must impose these restrictions to account for the fact
that the process cannot be expected to know how to resolve its non-determinism
prior to its communication with the environment.

Definition 13 (Model mapping). The model mapping function �·�∗ from
Logic IOLTSs to declarative specifications is defined by �pP�∗ = 〈AI

P,AO
P , T�pP�∗ ,

F�pP�∗〉, where:

– T�pP�∗ = {t : pP
t=⇒P} ∪ F ∪ FI

– F�pP�∗ = F ∪ FI
– F = {tt′ : pP

t=⇒P p
′, p′ ∈ FP and t′ ∈ A∗

P}
– FI = {tit′ : pP

t=⇒P p
′, i ∈ AI

P, p′ � i−→P and t′ ∈ A∗
P}.

Theorem 7 (Model mapping preserves safe traces). For an arbitrary
process pP, IST (pP) = T�pP�∗ \ F�pP�∗ and ST (pP) = T�pP�∗ \ FE(�pP�∗).

Having defined a mapping from operational to declarative models, we can now
define operational refinement in the obvious way.

Definition 14 (Operational refinement). Process qQ is said to be a refine-
ment of process pP, written qQ 	op pP, iff �qQ�∗ 	dec �pP�∗.
Lemma 2 (Operational preorder). Refinement is reflexive and transitive.

Under the assumption of finiteness, we note that refinement checking is PSpace-
complete. This is similar to traces refinement in CSP, where the worst-case is
rarely observed in practice.
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Fig. 1. Refinement of Logic IOLTSs

Definition 15 (Operational equivalence). Processes pP and qQ are said to
be equivalent, written pP ≡op qQ, iff qQ 	op pP and pP 	op qQ.

Looking at the refinements in Figure 1, from q1 the environment can safely issue
a, after which it must be willing to accept c. Clearly a can be safely accepted by
p1, and as p2 does not issue a c output the environment will be perfectly happy.
Moreover, as the environment is not permitted to issue a b in q1 there is no harm
in p1 being able to handle this behaviour. Hence p1 	op q1. Now, r1 	op s1 as
r1 is willing to accept the input a from the environment, which is not the case
in s1. This is because we cannot trust s1 to resolve its non-determinism on a in
an optimistic way by always moving to s2.

Example 2. To formally check p1 	op q1, it is necessary to resort to the definition
of refinement on declarative specifications (Definition 4). It can easily be checked
that all of the conditions of that definition hold by considering the sets below,
obtained by computing the model mapping of the processes p1 and q1.

– F�p1�∗ = FE(�p1�∗) = (a+ b)(a+ b)+

– F�q1�∗ = FE(�q1�∗) = (a+ ac)a(a+ c)∗

– T�p1�∗ = (a+ b)∗

– T�q1�∗ = {ε, a, ac} ∪ (a+ ac)a(a+ c)∗

– X ↑ AI
P = X ∪ (ε + a + ac + (aa + aca)(a + c)∗)b(a + b + c)∗ for X ∈

{F�q1�∗ , T�q1�∗}.

3.2 Error-Completion

In order to simplify the definitions of the operators in our specification theory
for the operational framework, we introduce the error-completion of a Logic
IOLTS. This is a transformation that leaves the mapping from a Logic IOLTS
to a declarative specification unchanged.
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The error-completion of a Logic IOLTS provides an explicit operational rep-
resentation for the inconsistent traces that would arise in mapping the Logic
IOLTS to its corresponding declarative specification. Consequently, an error-
completed Logic IOLTS is closed under input extensions. It is this property that
simplifies the definitions of the operators in our framework. We do not say that
an error-completed Logic IOLTS is input-enabled, however, as we can distinguish
good inputs from bad inputs.

Definition 16 (Error-completion). Let P be a Logic IOLTS, and assume
fP �∈ SP. The error-completion of P is a Logic IOLTS P⊥ = 〈SP⊥ ,AI

P,AO
P ,−→P⊥ ,

FP⊥〉, where:

– SP⊥ = SP ∪ {fP}
– −→P⊥= −→P ∪ {(f, a, f) : f ∈ FP⊥ and a ∈ AP} ∪ {(s, a, fP) : a ∈ AI

P and
�s′ · s a−→P s

′}
– FP⊥ = FP ∪ {fP}.

As remarked, the error-completion of a Logic IOLTS preserves the mapping from
Logic IOLTSs to declarative specifications, as the next lemma shows. Note that
the corresponding declarative specifications are equal, rather than declaratively
equivalent.

Lemma 3 (Error-completion respects mappings). For any process pP,�pP�∗ = �pP⊥�∗.
Besides simplifying the definition of the compositional operators in our specifi-
cation theory, error-completion of a Logic IOLTS also simplifies the definition of
the model mapping function.

Lemma 4 (Simplified model mapping). Let p be a process in Logic IOLTS
P⊥. Then �p�∗ = 〈AI

P,AO
P , T�p�∗ , F�p�∗〉, where:

– T�p�∗ = {t : p t=⇒P⊥}
– F�p�∗ = {tt′ : p t=⇒P⊥ p′ t′=⇒P⊥ and p′ ∈ FP⊥}.

3.3 Parallel Composition

As for declarative specifications, the parallel composition of Logic IOLTSs yields
a Logic IOLTS representing the combined effect of its operands running asyn-
chronously. We insist that any given output should be under the control of one
component only. Therefore Logic IOLTSs P and Q are composable for parallel
composition only if AO

P ∩ AO
Q = ∅.

Definition 17 (Parallel composition). Let P and Q be Logic IOLTSs com-
posable for parallel composition. Then the parallel composition of P and Q is a
Logic IOLTS P || Q = 〈S,AI ,AO,−→, F 〉, where:
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Fig. 2. Example of parallel composition on Logic IOLTSs

– S = SP⊥ || SQ⊥
– AI = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q )

– AO = AO
P ∪AO

Q
– −→ is the smallest relation satisfying the following rules:

P1. If p a−→P⊥ p′ with a ∈ Aτ
P \ AQ, then p || q a−→ p′ || q

P2. If q a−→Q⊥ q′ with a ∈ Aτ
Q \ AP, then p || q a−→ p || q′

P3. If p a−→P⊥ p′ and q a−→Q⊥ q′ with a ∈ AP ∩AQ, then p || q a−→ p′ || q′.
– F = (SP⊥ || FQ⊥) ∪ (FP⊥ || SQ⊥).

Conditions P1 to P3 ensure that the parallel composition of Logic IOLTSs inter-
leave on independent actions and synchronise on common actions. For P3, given
the parallel composability constraint, synchronisation can take place between an
output and an input, or two inputs. Figure 2 shows how the parallel composition
operator works in practice, although we omit non-enabled input transitions to
inconsistent states. In particular, the example demonstrates how inconsistencies
can be introduced through non-input enabledness, as in state r6 corresponding
to p6 || q2.

Reassuringly, parallel composition of Logic IOLTSs yields a Logic IOLTS. The
following theorem shows the relationship between parallel composition on Logic
IOLTSs and parallel composition on declarative specifications.

Theorem 8 (Parallel correspondences). Let P and Q be Logic IOLTSs
composable for parallel composition. For processes pP and qQ, it holds that�pP || qQ�∗ = �pP�∗ || �qQ�∗.
3.4 Conjunction

In keeping with conjunction of declarative specifications, Logic IOLTSs P and
Q are composable for conjunction only if the sets AI

P ∪ AI
Q and AO

P ∪ AO
Q are

disjoint.
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Fig. 3. Example of conjunction on Logic IOLTSs

Definition 18 (Conjunction). Let P and Q be Logic IOLTSs composable for
conjunction. Then the conjunction of P and Q is a Logic IOLTS P∧Q = 〈S,AI

P∪
AI

Q,AO
P ∩ AO

Q ,−→, F 〉, where:

– S = SP⊥ ∧ SQ⊥
– −→ is the smallest relation satisfying the following rules:

C1. If a ∈ AO
P ∩ AO

Q , p a−→P⊥ p′ and q a−→Q⊥ q′, then p ∧ q a−→ p′ ∧ q′
C2. If a ∈ AI

P ∩ AI
Q, p a−→P⊥ p′ and q a−→Q⊥ q′, then p ∧ q a−→ p′ ∧ q′

C3. If a ∈ AI
P \ AI

Q and p a−→P⊥ p′, then p ∧ q a−→ p′ ∧ fQ

C4. If a ∈ AI
Q \ AI

P and q a−→Q⊥ q′, then p ∧ q a−→ fP ∧ q′
C5. If p τ−→P⊥ p′, then p ∧ q τ−→ p′ ∧ q
C6. If q τ−→Q⊥ q′, then p ∧ q τ−→ p ∧ q′

– F = FP⊥ ∧ FQ⊥ .

The idea behind the definition of conjunction for p ∧ q is that p and q must
synchronise on common actions, interleave on τ -transitions, and on encountering
independent input actions behave like the respective component to which the
action belongs. On encountering a state p ∧ q in which one of p ∈ FP or q ∈ FQ

holds, let it be p, we know that whatever the behaviour of p ∧ q it will always
be a refinement of p. So the most general refinement of p ∧ q will actually be
q. This is supported by the fact that inconsistent states in the error-completed
Logic IOLTS admit arbitrary behaviour.

Figure 3 shows the conjunction of processes p1 and q1 in the Logic IOLTSs P
and Q (although for clarity we omit inputs leading to inconsistent states). In state
r1 corresponding to p1 ∧ q1, the b-output transitions of p1 and q1 synchronise.
Independent output actions such as the a-transition in p1 are not permitted
to proceed, because it would not be the case that r1 could be used safely in
place of q1 if this transition were to be permitted. State r2 can evolve into r3
by synchronising the c-inputs of p3 and q2, while it can also evolve into r4 by
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proceeding on the independent input e of q2. From this point, r4 behaves like q3,
because e is an input-violation of p3. Similar reasoning applies to r3’s evolution
into r5 by receiving the d-input.

As for parallel composition, there is a correspondence between conjunction at
the operational and declarative levels.

Theorem 9 (Conjunction correspondences). Let P and Q be Logic IOLTSs
composable for conjunction. For processes pP and qQ, it holds that �pP ∧ qQ�∗ =�pP�∗ ∧ �qQ�∗.
3.5 Quotient

Non-determinism and τ -transitions arising in Logic IOLTSs make the definition
of quotient more involved than the other operators we have considered on op-
erational models. To ensure that the quotient is the coarsest specification, it is
necessary to track the non-determinism of the system-wide specification and its
partial implementation. This is because the non-determinism can affect the safe
traces of a Logic IOLTS.

As for declarative specifications, we only compute the quotient of process pP

from rR when AO
P ⊆ AO

R and AP ⊆ AR. The quotient is the coarsest specification
q over an interface consisting of inputs AO

P ∪AI
R and outputs AO

R \AO
P such that

pP || q 	op rR. If such a q exists, we denote it by rR/pP.
Before defining the quotient-construction, we introduce some functions and

predicates that simplify the presentation.

Definition 19. For Logic IOLTS P, set of states S ⊆ SP⊥ and action a ∈ AP,
define:

– succε
P(S) = {s′ : s ε=⇒P⊥ s′ with s ∈ S}

– succa
P(S) = {s′ : s �a=⇒P⊥ s′ with s ∈ S}.

Definition 20 (Quotient Logic IOLTS). Let P and R be Logic IOLTSs such
that AO

P ⊆ AO
R and AP ⊆ AR. The quotient of P from R is the Logic IOLTS

R/P = 〈SR/P,AI
R/P,AO

R/P,−→, FR/P〉, where:

– SR/P = {R/P : R ⊆ SR⊥ and P ⊆ SP⊥}
– AI

R/P = AO
P ∪ AI

R

– AO
R/P = AO

R \ AO
P

– −→ is the smallest relation satisfying the following rules:
Q1. R′/P ′ a−→ succa

R(R′)/succa
P(P ′) providing:

(a) a ∈ AI
P ∩ AI

R implies succa
R(R′) ∩ FE(R) = ∅

(b) a ∈ AO
P ∩ AO

R implies succa
R(R′) ∩ FE(R) = ∅ and succa

P(P ′) �= ∅
(c) a ∈ AI

P ∩ AO
R implies succa

P(P ′) ∩ FP = ∅ and succa
R(R′) �= ∅

Q2. R′/P ′ a−→ succa
R(R′)/P ′ providing:

(a) a ∈ AI
R \ AP implies succa

R(R′) ∩ FE(R) = ∅
(b) a ∈ AO

R \ AP implies succa
R(R′) �= ∅.
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P p1

p2 p3

p4

b

b

a

a b

R r1

r2

r3

b

a

a b

R/P

q1 {r1}/{p1}F

q2 {r2}/{p2, p3}F

b

a b

Fig. 4. Example showing non-existence of quotient on Logic IOLTSs

– R′/P ′ ∈ FR/P iff at least one of the following rules holds:
F1. R′ = ∅ or P ′ = ∅
F2. FE(R⊥) ∩R′ �= ∅ or FP⊥ ∩ P ′ �= ∅
F3. R′/P ′ a−→ R′′/P ′′ with a ∈ AI

R/P and R′′/P ′′ ∈ FR/P.

Definition 21 (Quotient). Let P and R be Logic IOLTSs such that AO
P ⊆ AO

R

and AP ⊆ AR. The quotient of process pP from process rR, written rR/pP, is
the process succε

R(rR)/succε
P(pP) in the Logic IOLTS R//P obtained from R/P by

removing all transitions immediately leading to a state in FR/P, and removing
all states R/P such that R/P ∈ FR/P and R �∈ FE(R). If succε

R(rR)/succε
P(pP) is

not contained in R//P, then the quotient is not defined.

As for declarative specifications, the quotient of pP from rR may not exist. The
following theorem shows that definedness of the quotient according to the pre-
vious definition coincides precisely with the existence of such a quotient.

Theorem 10 (Existence of quotient). Let P and R be Logic IOLTSs such
that AO

P ⊆ AO
R and AP ⊆ AR. Then rR/pP is defined (i.e. rR ∈ FE(R) or rR/pP �∈

FR/P) iff there exists a process q in a Logic IOLTS with inputs AI
R/P and outputs

AO
R/P such that pP || q 	op rR.

Consequently, the constraint rR �∈ FE(R) and rR/pP ∈ FR/P gives a precise char-
acterisation of whether the quotient exists or not. When the quotient does exist,
it behaves in exactly the same way as for declarative specifications.

Theorem 11 (Quotient correspondences). Let P and R be Logic IOLTSs
such that AO

P ⊆ AO
R and AP ⊆ AR. If rR/pP �∈ FR/P or rR ∈ FE(R), then�rR/pP�∗ = �rR�∗/�pP�∗.

Figure 4 provides an example in which processes p1 and r1 have no quotient.
This tallies with Theorem 10, as we have {r1}/{p1} ∈ FR/P when r1 �∈ FE(R). On
the other hand, quotients exist for the processes p1 and r1 of Figures 5 and 6.
This is also supported by Theorem 10, as {r1}/{p1} �∈ FR/P for the processes in
both figures.
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P p1

p2 p3

p4

a
a

b

a b

R r1

r2

r3

a

b

a b

R/P

q1 {r1}/{p1}

q2

{r2}/{p2, p3}

a

a b

R//P

q1 r1/p1

q2

{r2}/{p2, p3}

a

a b

Fig. 5. Example of quotient on Logic IOLTSs with no inconsistencies

P p1

p2 p3

p4

a
a

b

a b

R r1

r2

r3

a

b

a b

R/P

q1 {r1}/{p1}

F q2

{r2}/{p2, p3}

a

a b

R//P

q1 r1/p1

F q2

{r2}/{p2, p3}

a b

Fig. 6. Example of quotient on Logic IOLTSs with inconsistencies

For Figure 6, the quotient is the single consistent state {r1}/{p1}. This is
because in going from R/P to R//P we remove the transition labelled by the
output a between the processes {r1}/{p1} and {r2}/{p2, p3}, as the latter state
is inconsistent. Maintaining this transition would yield an invalid quotient as
p1 || (r1/p1) would be inconsistent when r1 is consistent. It is safe to discard
this transition only because it is an output. Recalling the definition of 	op, for
safe-substitutivity it is perfectly safe to suppress outputs on the left that would
have occurred on the right.

4 Full-Abstraction Results

In this section we present full-abstraction results that relate our declarative and
operational equivalences based on trace containment to a simple equivalence,
which ensures that an inconsistent process must have an inconsistent specifica-
tion. The result is shown by employing a testing scenario where processes are
placed in parallel with an arbitrary composable process in order to establish
their equivalence with regard to the observation of consistency.
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Definition 22 (Declarative inconsistency equivalence). Let P and Q be
declarative specifications. Declarative inconsistency equivalence, denoted by ≡F

dec,
is given by P ≡F

dec Q iff AI
P = AI

Q, AO
P = AO

Q and ε ∈ FP ⇐⇒ ε ∈ FQ.

Declarative equivalence can be established by placing each process in parallel
with arbitrary composable tester processes and observing whether the simple
inconsistency equivalence is maintained.

Theorem 12. Let P and Q be declarative specifications. Then:

P ≡dec Q iff ∀R · AO
R ∩ (AO

P ∪ AO
Q) = ∅ =⇒ E(P || R) ≡F

dec E(Q || R).

From this characterisation of ≡dec, we obtain a full-abstraction result with re-
spect to parallel composition and ≡F

dec. Our definition of full-abstraction is taken
from [19] (Definition 16), which means that ≡dec is the coarsest congruence with
respect to the operators of our specification theory and ≡F

dec.

Corollary 1 (Declarative full-abstraction). Declarative equivalence ≡dec is
fully-abstract with respect to parallel, conjunction, quotient and ≡F

dec.

We can now present analogous results for our operational models.

Definition 23 (Operational inconsistency equivalence). Let pP and qQ
be processes of Logic IOLTSs P and Q. Operational inconsistency equivalence,
denoted by ≡F

op, is given by pP ≡F
op qQ iff AI

P = AI
Q, AO

P = AO
Q and pP ∈ FP ⇐⇒

qQ ∈ FQ.

Theorem 13. Let pP and qQ be processes of Logic IOLTSs P and Q. Then:

pP ≡op qQ iff ∀rR · AO
R ∩ (AO

P ∪ AO
Q ) = ∅ =⇒ E(pP || rR) ≡F

op E(qQ || rR),

where E applied to processes in Logic IOLTSs propagates the inconsistency pred-
icate backwards over all output and τ labelled transitions.

Corollary 2 (Operational full-abstraction). Operational equivalence ≡op is
fully-abstract with respect to parallel, conjunction, quotient and ≡F

op.

5 Conclusion and Future Work

We have developed a compositional specification theory for components that
may be modelled operationally, closely mirroring actual implementations, or in
an abstract manner by means of declarative specifications. Both frameworks ad-
mit a simple refinement relation, defined in terms of traces, which corresponds
to safe-substitutivity. We define asynchronous parallel composition, conjunction
and quotient, and prove that the induced equivalence is a congruence for these
operations. It is straightforward to extend our framework with disjunction and
hiding. The simplicity of our formalism facilitates reasoning about the temporal
ordering of interactions needed for assume-guarantee inference. Although not
considered in this paper, our framework supports reasoning about safety prop-
erties in the context of assume-guarantee. Liveness properties may also be con-
sidered, but this requires the introduction of quiescence or infinite behaviours,
the latter being achieved with the help of ω-automata techniques.
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Probabilistic Abstract Interpretation
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Abstract. Abstract interpretation has been widely used for verifying properties
of computer systems. Here, we present a way to extend this framework to the case
of probabilistic systems.

The probabilistic abstraction framework that we propose allows us to system-
atically lift any classical analysis or verification method to the probabilistic set-
ting by separating in the program semantics the probabilistic behavior from the
(non-)deterministic behavior. This separation provides new insights for designing
novel probabilistic static analyses and verification methods.

We define the concrete probabilistic semantics and propose different ways to
abstract them. We provide examples illustrating the expressiveness and effective-
ness of our approach.

1 Introduction

As programs get larger and larger, it has become untractable to verify their properties
and/or correctness by hand or testing. Formal methods have thus been developed in
order to be able to verify program properties automatically, at least in part. One of them
is abstract interpretation which has proved successful both in solving hard problems
and scaling up nicely.

When probabilities come into play, the verification of program properties is even
more difficult. Our work precisely tackles this issue, that is verifying properties of prob-
abilistic programs. We propose a formal, general and modular framework, extending
the classical abstract interpretation framework to take probabilities into account, allow-
ing for crafting of new analyses, as well as lifting of existing non-probabilistic analyses
to the probabilistic setting.

Probabilities come into play because of program randomness (such as calls to a
random number generator rand()) and input randomness (for which a distribution may
be known). Usually, all this randomness is forgotten for non-determinism. It is sound
but loses a lot of information. So our goal here is to use hypotheses on randomness to
be able to infer more precise probabilistic program properties.

The goals of having probabilistic static analyses are various, let alone the fact that
we can actually verify some probabilistic properties on the program. A couple of more
original examples of interesting applications are to enable compilers to gain access to
more useful information to decide register allocations or cache/scratchpad allocations,
or to provide useful information about branching for Just In Time compilers without
having to do any profiling or execution, among many other applications.

There is a lot of work on probabilistic program construction and verification meth-
ods [13, 15, 19, 23], probabilistic model-checking [11], probabilistic abstract model-
checking [2, 27, 29], probabilistic abstract interpretation [21, 25, 28], with, in the case of

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 169–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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model-checking and abstract interpretation, existing applications to biological pathways
[1, 3, 18]. One of our objectives is to unify and generalize these frameworks.

2 The Abstract Interpretation Framework

Abstract interpretation is a theory of approximation. Applied to semantics of computer
programs, it allows oneself for generic design of static analyses [5].

The concrete semantics S �P� of a program P is, by hypothesis, an element S �P� ∈ D,
where D is a fixed semantics domain. It is often expressed as a least fixpoint S �P� =
lfp� FP where the concrete transformer is FP : D −→ D and� is the concrete semantic
partial order on D.

Semantic properties of programs are elements of the concrete domain 〈℘ (D) , ⊆〉
where ⊆ is logical implication. A program P is said to verify a property Γ ∈ ℘ (D)
iff S �P� ∈ Γ ⇐⇒ {S �P�} ⊆ Γ, which is often undecidable or intractable so that
approximations are necessary for total automation.

A partially ordered abstract domain 〈A, �〉 is considered and linked to the concrete

domain by means of a Galois connection 〈℘ (D) , ⊆〉 −−−→←−−−α
γ 〈A, �〉 defined such that

∀P ∈ ℘ (D) : ∀Q ∈ A : α(P) � Q ⇐⇒ P ⊆ γ(Q). For example the interval

abstraction is 〈℘ (�) , ⊆〉 −−−→←−−−α
γ 〈I(�), �I〉 with I(�) � {⊥} ∪ {[a, b] | a � b}, α(∅) � ⊥,

and α(S ) = [min S ,max S ] when S � ∅ where min� � −∞, max� � +∞, and �I

is interval inclusion. In a Galois connection one adjoint uniquely determines the other
(which we often leave implicit). Galois connections are used for the sake of simplicity
although not necessary (a concretization function γ may be sufficient [7]). The only
way to know what is the meaning of verifying an abstract property Q ∈ A is to evaluate
the concretization function γ. Indeed, by definition it means that S �P� ⊆ γ(Q), i.e. P
verifies the property γ(Q).

Static analysis consists in computing an abstract semantics S �P�� of the program
that is less precise but still sound S �P� ⊆ γ(S �P��) (and sometimes even complete for
a given class of properties when it loses no essential information for proofs). Thus the
program P is said to satisfy an abstract property Q ∈ A iff S �P�� � Q (which implies
S �P� ⊆ γ(S �P��) since γ is increasing and⊆ transitive). An adequate cost/precision ratio
consists in choosing 〈A, �〉 and S �P�� to be algorithmically tractable hence imprecise
so incomplete but nevertheless precise enough so that S �P�� � Q implies S �P� ⊆ γ(Q).
Soundness is always guaranteed along the way by the framework.

3 Probabilistic Concrete Semantics

Our approach relies on basic concepts of classical abstract interpretation that we re-
called in Sect. 2 and probability theory [16].

In this section, we introduce how we describe the semantics of probabilistic programs
(or systems). It is a very general way of associating a semantics with any probabilistic
system. That is, it is not tied to a particular description of probabilities nor to a specific
programming language but rather allows for a precise construction of semantics for any
probabilistic situation.
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3.1 Definition

We look at probabilistic systems as a superposition of (non)-deterministic systems. That
is, when a probabilistic program is run we consider that it can be any element of a
specific set of (non)-deterministic programs chosen by a random experience. It is as if
all the random choices that will be made in the subsequent execution are decided by
an oracle at startup (although a program knows only during the course of its execution
about which random choices have been made up to the current execution point and
ignores the later ones1).

Definition 1 (Probabilistic semantics). A probabilistic semantics Sp�P� ∈ Dp �
Ω � D of a program P is a measurable function of a probability space 〈Ω, E, μ〉
into a semantics domain D (considered as a measurable space 〈D, O〉 with observable
semantic properties in O ⊆ ℘ (D)). ��
By observable, we mean that semantic properties in O will be the ones we eventually
have probabilistic information upon.

The meaning of the probabilistic semantics Sp�P� is that when a scenario ω ∈ Ω is
picked (randomly according to μ), then the execution of the program P yields the (non)-
deterministic semantics Sp�P�(ω) ∈ D. That is, ω embodies all the possible random
choices that the program will have to make during its execution. D can be any non-
probabilistic semantics domain (e.g. the powerset of maximal execution traces as in Ex.
4 below or any of its abstractions [4] such as the prefix trace semantics in Ex. 1). This
definition covers most probabilistic models of computation found in the literature such
as program semantics [17], Markov decision processes [2, 3, 10, 11, 22, 29], etc.

Example 1. Suppose the program P starts by tossing a coin x = random(1,2), and
then executes other statements. The prefix trace semantics of P would be described
by Ω = {ω1, ω2} and Sp�P� ∈ Dp = Ω � D, where D = ℘ (S+) is the
set of finite sequences of states and the observable properties are simply ℘ (D), de-
fined as Sp�P�(ω1) = { prefix traces of P starting with x = 1 } and Sp�P�(ω2) =
{prefix traces of P starting with x = 2}. Then the definition of μ would tell what is the
probability of scenarios ω1 and ω2. For a non-biased coin, μ would be defined by
μ({ω1}) = 1/2, μ({ω2}) = 1/2, μ(∅) = 0, μ(Ω) = 1. ��
Example 2 (Markov chains). Markov chains can be formalized in our framework by
takingΩ = [0, 1]N (sequences of elements in [0,1]) with the uniform Lebesgue measure.
For a specific sequence un ∈ Ω, the execution of the Markov chain is as follows.

From a state s0, at step i ≥ 0, where multiple states s1, . . . , sk of the Markov chain can
be chosen for the next step and where the probability of going to state sa is pa ∈ [0, 1].
By definition,

∑
1≤a≤k pa = 1, so [0, 1] can be divided in k segments S a each of length

pa. Now, choose si+1 = sa such that ui ∈ S a. ��
Definition 2 (Probability of a program property). The probability that a program P
has propertyΦ ∈ O is Pr(Sp�P� ∈ Φ) = Sp�P�(μ)(Φ). ��
Example 3. The semantics Sp�P� ∈ Dp = ΩP � DP of P as shown in Fig. 1 can
be defined with DP � �

3 denoting the final value of the variables x, y and z and

1 This is usually formalized by a filtration in measure theory/probabilities.
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P ω Sp�P�(ω) μ({ω})

x = 1 1
2
⊕ x = 2;

y = 0 x
3
⊕ y = 1;

if (y = 0) then
z = 2 1

4
⊕ z = 4

else
z = 1 1

5
⊕ z = 3

←−x ←−y ←−z 〈1, 0, 2〉 1
2 · 1

3 · 1
4 =

1
24←−x ←−y −→z 〈1, 0, 4〉 1

2 · 1
3 · 3

4 =
1
8

←−x −→y ←−z 〈1, 1, 1〉 1
2 · 1

3 · 1
5 =

1
30

←−x −→y −→z 〈1, 1, 3〉 1
2 · 1

3 · 4
5 =

2
15−→x ←−y ←−z 〈2, 0, 2〉 1

2 · 2
3 · 1

4 =
1

12−→x ←−y −→z 〈2, 0, 4〉 1
2 · 2

3 · 3
4 =

1
4

−→x −→y ←−z 〈2, 1, 1〉 1
2 · 2

3 · 1
5 =

1
15

−→x −→y −→z 〈2, 1, 3〉 1
2 · 2

3 · 4
5 =

4
15

Fig. 1. Program P and its probabilistic concrete semantics

ΩP �
{
ω ∈ {←−x ,−→x } · {←−y ,−→y } · {←−z ,−→z , ε} · {←−z ,−→z , ε} ∣∣∣ |ω| = 3

}
where ←−x (resp. −→x ) denotes

the left (resp. right) branch of the first probabilistic choice on x, ←−y (resp. −→y ) denotes
the left (resp. right) branch of the second probabilistic choice on y, and ←−z and −→z (resp.←−
z and

−→
z ) denotes the left or right branch of the third (resp. fourth) probabilistic choice

on z. Note that the second probabilistic choice depends on the value of x.

We suppose that any scenario is observable, so observable properties are simply
℘ (ΩP), and

∑
ω∈ΩP μ({ω}) = 1. The probability that z = 3 is 2

5 since Φ = {〈x, y,
z〉 ∈ �3 | z = 3} and Pr(Sp�P� ∈ Φ) = 2

15 +
4

15 =
2
5 . ��

3.2 Fixpoint Semantics

This formalization allows us to give an easy definition of probabilistic semantics as
fixpoints. Indeed, let Fω : D −→ D denote the fixpoint semantic transformer for
the (non)-deterministic program P(ω) such that Sp�P�(ω) = lfp� Fω. Now define the
lifted operator Fp : (Ω→ D) −→ (Ω→ D) as Fp(λω . Xω) � λω . Fω(Xω). It easily
follows from the definition that Sp�P� = lfp�̇ Fp. Thus, we can use the usual abstract
interpretation framework since semantics are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let 〈D, �〉 be a cpo, 〈Ω, E, μ〉 where
E ⊆ ℘ (Ω) is a probabilistic space, F�P� : Ω −→ D −→ D be a pointwise contin-
uous transformer for program P. The probabilistic fixpoint semantics of P is Sp�P� �
lfp�̇ Fp�P� where �̇ is the pointwise extension of � and the probabilistic transformer is
Fp�P�(sP)ω � F�P�(ω)(sP(ω)) such that Fp�P� : Dp −→ Dp. ��
Lemma 1. Under the conditions of Def. 1 and 3, Sp�P� � lfp�̇ Fp�P� =

λω . lfp� F�P�(ω) is a probabilistic semantics. ��
Example 4 (Probabilistic maximal trace semantics). Let 〈Ω, E, μ〉 be a probability
space, Σ be a set of states, Σ+ be the non-empty finite sequences of states, Σ∗ � Σ+∪{ε}
where ε is the empty trace, Σ∞ be infinite sequences of states, Σ+∞ � Σ+ ∪ Σ∞, and
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Σ∗∞ � Σ∗∪Σ∞. The probabilistic maximal trace semantics is S +∞p �P� ∈ Ω � ℘ (Σ+∞).
For each scenario ω, S +∞p �P�ω describes a finite maximal or infinite execution of pro-
gram P and, following [4], can be defined in fixpoint form.

Define sequencing as X � Y � X∞∪{σsσ′ | σs ∈ X+∧ sσ′ ∈ Y} where X∞ � X∩Σ∞
and X+ � X ∩ Σ+ and the restriction Y�X � {sσ′ ∈ Y | ∃σ : σs ∈ X+} so that
X � Y = X � (Y�X). This is extended pointwise to (X � Y)ω � X(ω) � Y(ω). For a while
language, we would have (� � {tt, ff}, ff ⇒ tt)

S +∞p �skip�ω � {ss | s ∈ Σ}
S +∞p �x := e�ω � {

ss[x :=E�e�(ω)s]
∣∣∣ s ∈ Σ

}2
, E�e� : Ω � (Σ −→ Σ)

S +∞p �C1;C2� � S +∞p �C1� � S +∞p �C2�
S +∞p �b�ω � {

s
∣∣∣ E�b�(ω)s

}3
, E�b� : Ω � (Σ −→ �)

S +∞p �if b then C1 else C2� � S +∞p �b� � S +∞p �C1� ∪̇ S +∞p �¬b� � S +∞p �C2�
S +∞p �while b do C� � lfp�̇ λX . S +∞p �b� ∪̇ S +∞p �¬b� � S +∞p �C� � X

where � is the computational ordering on infinite traces of [4] (such that (X � Y) �
(X+ ⊆ Y+ ∧ X∞ ⊇ Y∞) and �̇ is the pointwise extension of �. We do not specify the
dependence on ω which would also be possible as e.g. in the Semantics 2 of [17]. ��

3.3 Probabilistic Concrete Transformers

Observe that in Def. 3, probabilistic transformers are defined pointwise. A transformer
F : Dp −→ Dp is the lifting of the non-deterministic transformer for each scenario:
for all sP ∈ Dp, F(sP)(ω) = Fω(sP(ω)).

It follows that the different probabilistic transformers Fω do not need to share any
common properties. But if they do (e.g. they describe two slightly different paths in the
control flow graph of the probabilistic program), it can be exploited by the analysis.

In particular, this framework implies the very important fact that transformers that
do not correspond to probabilistic statements have a particular form: all the Fω are the
same. Indeed, this can be understood by the fact that the evolution of the program after
a particular non-probabilistic statement does not depend on what scenario has been
chosen at the beginning of the execution.

Example 5. If the statement after x = random(1,2) is x = x+1 and has G as its trans-
former, then for any ωi, Gωi has just the effect of incrementing the value of x by one,
regardless of the fact that x took the value 1 or 2. ��
However, the Fω are distinct in full generality (e.g. it is the case for x = random(1,2)).

3.4 Examples of Probabilistic Semantics

Since each possible (non)-deterministic semantics of the probabilistic program is an
outcome of a scenario, the framework totally separates the probabilistic behavior (on

2 The valuation E�e�s of a pure expression e in state s does not depend on ωwhen the expression
e is not random (i.e. does not use any random variable and/or statement).

3 The valuation E�b�s of a pure condition b in state s does not depend on ω when the condition
b is not random.
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the Ω and μ side) from the (non)-deterministic semantic one (located in theD part). As
we will see later, it allows for independent and fruitful abstractions.

Example 6 (Trace to transition system abstraction and profiling). For all s, s′ ∈ Σ,

consider the abstractions 〈Ω � ℘ (Σ+∞), ⊆̇〉 −−−−→←−−−−
αs

γs 〈�, ⇐〉 where
−−−−→
reach(s) �

{σsσ′ | σ ∈ Σ∗ ∧ σ′ ∈ Σ∗∞} and αs(sP) � (∃ω ∈ Ω : sP(ω) ∈ −−−−→
reach(s)) as

well as 〈Ω � ℘ (Σ+∞), ⊆̇〉 −−−−−−→←−−−−−−
α〈s, s′ 〉

γ〈s, s′〉 〈�, ⇐〉 where −−−→succ(s, s′) � {σss′σ′ | σ ∈
Σ∗ ∧ σ′ ∈ Σ∗∞} and α〈s, s′〉(sP) � (∃ω ∈ Ω : sP(ω) ∈ −−−→succ(s, s′)). The property that
a state s ∈ Σ is definitely reached is reach(s) � αs(S +∞p �P�) which has probability

Prs � Pr(reach(s)). The property that a transition 〈s, s′〉 ∈ Σ2 is definitely chosen is
succ(s, s′) � α〈s, s′〉(S +∞p �P�) which has probability Pr〈s, s′〉 � Pr(succ(s, s′)). We have
Prs =

∑
s′∈Σ Pr〈s, s′〉. The probability attached to a transition 〈s, s′〉 ∈ Σ2 is the prob-

ability of choosing this transition knowing that execution has reached state s which is
the conditional probability Pr〈s, s′〉|s � Pr(succ(s, s′) | reach(s)) = Pr〈s, s′ 〉

Prs

when state s

is reachable. In practice, this conditional probability can often be estimated by statisti-
cal profiling. This probabilistic transition system is the abstract probabilistic semantics
of probabilistic programs that exhibit discrete probabilistic choices considered in many
papers such as [11, 13, 15, 23]. ��
Example 7 (Trace to control flow graph abstraction). Continuing Ex. 4 and 6, consider
the case of states which are pairs 〈c, m〉 of a control state c ∈ Γ and a memory state

m ∈ M where Γ is finite. Consider the abstraction 〈℘ (Σ × Σ) , ⊆〉 −−−−→←−−−−
αG

γG 〈℘ (Γ × Γ) ,

⊆〉 of states 〈c, m〉 by their control state c, αG(S ) � {〈c, c′〉 | ∃m,m′ ∈ M : 〈〈c,
m〉, 〈c′, m′〉〉 ∈ S }. The control flow graph (CFG) abstraction αG ◦ ατ collects con-
trol transitions along traces of T . Similar to Ex. 6, the probability attached to an arc
〈c, c′〉 ∈ Γ2 is the probability of choosing this arc knowing that control has reached
c which is the conditional probability Pr〈c, c′〉|c � Pr(succ(c, c′) | reach(c)) when c is
reachable. Compilers construct over-approximations of this CFG syntactically (not tak-
ing e.g. conditionals hence code unreachability into account) and often unsoundly (e.g.
considering equiprobability of branches or using profiling). ��
Ex. 8 below shows that instead of the trace semantics of Ex. 4 we could have considered
as well any denotational, predicate transformer, or axiomatic semantics in the abstract
interpretation hierarchy of semantics [4].

Example 8 (Probabilistic abstract semantics). Let 〈Ω, E, μ〉 be a probability space and
lfp�̇ Fp�P� where Fp : Cp −→ Cp be the probabilistic concrete fixpoint semantics
based on the classical concrete semantics lfp� Fω where 〈C, �〉 is a cpo and Fω : C
−→ C for all ω ∈ Ω. Consider the classical abstraction 〈C, �〉 −−−→←−−−α

γ 〈A, �〉. Let lfp�̇ F�p

where F�p : Ap −→ Ap be the probabilistic abstract fixpoint semantics based on the

classical sound abstract semantics lfp� Fω � γ(lfp� F�ω) where 〈A, �〉 is a cpo and
F�ω : A −→ A. Then lfp�̇ Fp �̇ γP(lfp�̇ F�p) so that the probabilistic lifting of a sound
classical abstraction is sound in the sense that in scenario ω, the abstract semantics is
(lfp�̇ F�p)(ω) = lfp� F�ω. ��



Probabilistic Abstract Interpretation 175

D semantics domain

℘ (D) semantic property domain

Dp � Ω � D probabilistic semantics domain

DV
p ⊆ Dp downsized probabilistic semantic domain

℘
(
Dp

)
= ℘ (Ω � D) probabilistic property domain

℘
(
DV

p

)
⊆ ℘

(
Dp

)
downsized probabilistic property domain

℘ (D)p � Ω � ℘ (D) collecting semantics domain

℘ (D)V
p ⊆ ℘ (D)p downsized collecting semantic domain

℘
(
℘ (D)V

p

)
properties of collecting semantics domain

I⊆̇(℘ (D)V
p ) downset properties of collecting semantics domain

℘
(
℘ (D)V

p

) /
≡̈ probabilistic concrete collecting semantics domain

Fig. 2. Concrete and abstract semantics domains

In practice, the simple abstractions considered in Ex. 8 are not powerful enough, in
particular because Ω is in general infinite and needs further abstractions and we want to
consider more general probabilistic properties as defined in next Sect. 4.

4 Probabilistic Concrete Collecting Semantics

The concrete/abstract semantics domains introduced here are summarized in Fig. 2.

4.1 Definition

Concrete properties of programs are elements of the usual concrete domain: the power-
set of the program semantics domain, denoted by ℘

(
Dp

)
= ℘ (Ω � D). The logical

implication order is ⊆.

Definition 4 (Probabilistic concrete collecting semantics). Under the conditions of
Def. 1, the probabilistic concrete property domain is the complete lattice 〈℘

(
Dp

)
, ⊆,

∅, Dp, ∪, ∩〉. The probabilistic collecting semantics of a program P is its strongest
probabilistic property {Sp�P�} [6]. ��
The probabilistic concrete property domain ℘

(
Dp

)
allows us to express any particular

probabilistic property.

Example 9 (Probability of a program property). The probabilistic property of verifying
a non-probabilistic property Γ ∈ ℘ (D) with probability at least 0.7 is:

Φ =
{
sP ∈ Dp

∣∣∣ Pr(sP ∈ Γ) ≥ 0.7
}
=

{

sP ∈ Dp

∣∣∣∣∣

∫

Ω

χΓ(sP(ω))dμ(ω) ≥ 0.7

}

. ��

The probabilistic concrete property domain ℘
(
Dp

)
also makes it possible to express

program properties that are specifically probabilistic, as illustrated by the following
examples 10 and 11.
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Example 10 (Game gain expectation). Assume a gambling program P allows the owner
to win or lose some money at the end of its execution. The win or loss amount for a
specific program semantics is given by a measurable function κ : D � �, � having
the σ-algebra ℘ (�). Then it is straightforward to define the property that a probabilistic
program is on expectation a winning strategy:

Φ′ =
{

sP ∈ Dp

∣∣∣ �(κ ◦ sP) > 0
}
=

{

sP ∈ Dp

∣∣∣∣∣

∫

Ω

κ(sP(ω))dμ(ω) > 0

}

. ��

Example 11 (Probabilistic temporal logics). The probabilistic μ-calculus of [22] or the
linear-time probabilistic temporal logic of [12] describe probabilistic properties of ex-
ecution traces. So their semantics can be described by (abstractions of) elements of
℘ (Ω � Σ∞). ��
Of course, we basically have no effective way to automatically compute an integral on
an arbitrary space Ω. This is not a problem since Def. 4 is a concrete semantics which
is not required to be computable nor decidable in any way. This undecidability problem
will be tackled by considering abstract semantics.

4.2 Downsizing the Concrete Collecting Domain

Allowing semantics to be any measurable function ensures a good expressivity but may
be too precise. It is often preferable not to distinguish between similar situations. In-
deed, making concrete semantics too verbose makes abstractions less precise, because
abstract transformers take meaningless concrete semantics into account. It will become
clearer when we design abstract transformers in Sect. 5.3.

Example 12. In the case of Ex. 1 of the non-biased coin above, swapping the values of
Sp�P�(ω1) and Sp�P�(ω2) is impactless: both objects have exactly the same behavior.
What changes is that the scenarios do not have the same meaning in both cases: in the
first case ωi stands for the situation when x = i whereas it stands for the situation when
x = 3 − i in the other one. ��

To overcome this issue, we simply abstract away similar situations by restricting the
concrete domain to the relevant semantics. It is not possible to define relevant formally
as it depends on the specific instance of the framework. Therefore, we assume that there
exists a sanity checker: it is a characteristic function V : Dp −→ {0, 1} that decides
whether a semantics in Dp is valid, i.e. is actually of interest. The sanity checker V
defines the corresponding set DV

p � {sP ∈ Dp | V(sP) = 1}.
Thus, the valid/real concrete semantics domain is ℘

(
DV

p

)
instead of℘

(
Dp

)
. Actually,

Dp is a particularDV
p with V accepting everything.

This process of downsizing a domain ℘
(
DV ′

p

)
to a domain ℘

(
DV

p

)
when DV

p ⊆
DV ′

p (i.e. V is more restrictive than V ′) is a simple abstraction where the abstraction

αV,V ′(S ) � {sP ∈ S | V(sP) = 1} for S ⊆ DV ′
p simply forgets every semantics that is not

in DV
p . It is a Galois connection:

〈℘
(
DV ′

p

)
, ⊆〉 −−−−−→−→←−−−−−−−

αV,V′

γV,V′ 〈℘
(
DV

p

)
, ⊆〉 .
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Thus, for any sanity checker V , ℘
(
DV

p

)
is an abstraction of ℘

(
Dp

)
. The more restric-

tive is the sanity checker, the more precise the subsequent abstractions will be (see the
abstraction of transformers in Sect. 5.3).

5 Probabilistic Abstract Semantics

We explore here three directions to abstract the probabilistic concrete collecting seman-
tics of Sect. 4. The first one (I) in Sect. 5.1 is to abstract on the semantics side, i.e.
abstract D (this is where it is possible to plug existing non-probabilistic analyses). The
second (II) in Sect. 5.2 is to abstract the scenario space Ω by losing some precision
on the probabilistic part of the semantics. Finally, the third axis (III) in Sect. 5.3 is to
abstract the measurable functions representing the semantics by their distributions.

It is a comprehensive description of the way to lift any non-probabilistic analysis
to the probabilistic setting. For instance, we can then obtain information such as “x ∈
[1, 4] with probability 0.7” instead of “x is always in [1, 4]” which may not be provable
without probabilistic hypotheses.

5.1 (I) Abstracting the Semantics

Given a classical abstract interpretation 〈℘ (D), ⊆〉 −−−→←−−−α
γ 〈A, �〉 such as the inter-

val abstraction, we now describe a way to lift any such non-probabilistic analysis to
the probabilistic setting. The probabilistic properties considered in Sect. 4 belong to
℘
(
DV

p

)
⊆ ℘ (Ω � D) where classical properties ℘ (D) on which to apply classical

abstractions do not appear explicitly. So we have to abstract ℘
(
DV

p

)
into a probabilistic

collecting semantics domain in which classical properties ℘ (D) appear explicitly.

An Inadequate Solution. An immediate solution is to take the classical collecting
semantics on each scenario, leading to measurable functions in the set ℘ (D)p �
Ω � ℘ (D) where the σ-algebra taken on ℘ (D) is the powerset of the one on D.
The natural logical order between these objects is the pointwise order

∀s, s′ ∈ ℘ (D)V
p , s ≤ s′ iff s ⊆̇ s′ .

Indeed, ≤means that a probabilistic semantic property is more precise than another one
if it is the case on every scenario.

However, the problem is now that we cannot reason on ℘ (D)p � Ω � ℘ (D) in
classical logical terms with the logical implication ⊆ because elements are not sets but
functions. And there is no simple order that works with further abstractions.

Probabilistic Collecting Semantics. So, to express properties of these objects, as
above, we turn to the powerset ℘

(
℘ (D)p

)
= ℘ (Ω � ℘ (D)), where the implication

order is the inclusion order ⊆ on the sets. This leads to the consideration of properties
of the pointwise collecting semantics so that we can manipulate properties of semantic
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properties. For example, the strongest property of a program semantics Sp�P� ∈ Dp =

Ω � D is
{
λω . {Sp�P�ω}}. It is interesting to note that while this step is implicit in

the non-probabilistic case4 (see Sect. 5.2), it is essential in the probabilistic setting.
The concrete collecting domain may have to be downsized as in Sect. 4.2 by consid-

ering ℘ (D)V
p which is the restriction of ℘ (D)p to functions that are coherent with V in

the straightforward sense, i.e. any concretization verifies V .
The correspondence between the downsized probabilistic property domain and the

properties of the collecting semantics domain is given by the easily proven Galois con-
nection

〈℘
(
DV

p

)
, ⊆〉 −−−−→←−−−−

αD

γD 〈℘
(
℘ (D)V

p

)
, ⊆〉

where αD and γD are defined for all S ∈ ℘
(
DV

p

)
and T ∈ ℘

(
℘ (D)V

p

)
as:

αD(S )�
{
tP ∈ ℘ (D)V

p

∣∣∣ ∃sP ∈ S : ∀ω ∈ Ω : tP(ω) = {sP(ω)}
}
=

{
λω ∈Ω . {sP(ω)}

∣∣∣ sP ∈ S
}

γD(T )�
{
sP ∈ DV

p

∣∣∣ ∃tP ∈ T : ∀ω ∈ Ω : sP(ω) ∈ tP(ω)
}
.

And actually, the only question we are interested in is to know whether a collecting
semantics C ∈ ℘ (D)V

p satisfies a property S ∈ ℘
(
℘ (D)V

p

)
or any more precise property,

that is C ∈ ↓ S where ↓ S �
{
s′ ∈ ℘ (D)V

p

∣∣∣ ∃s ∈ S , s′ ⊆̇ s
}

is the downward closed
set of S (or downset) for ⊆̇. It shows that the properties of interest are downward closed
sets I⊆̇

(
℘ (D)V

p

)
in ℘

(
℘ (D)V

p

)
themselves ordered by ⊆.

The correspondence between 〈℘
(
℘ (D)V

p

)
, ⊆〉 and 〈I⊆̇

(
℘ (D)V

p

)
, ⊆〉 is a straightfor-

ward Galois connection 〈℘
(
℘ (D)V

p

)
, ⊆〉 −−−−→←−−−−

α↓

γ↓ 〈I⊆̇
(
℘ (D)V

p

)
, ⊆〉 defined by α↓(S ) �

↓ S = {s′ ∈ ℘ (D)V
p | ∃s ∈ S , s′ ⊆̇ s}, and accordingly γ↓(I) � {s | ∀s′ ∈ ℘ (D)V

p : (s′ ⊆̇
s) =⇒ s′ ∈ I}. The proof is left to the reader.

C ∈ ↓ S can also be expressed as ∀s ∈ C : ∃s′ ∈ S : s ⊆̇ s′. This leads to define a
pre-order ⊆̈ where the Hoare preorder �̈ is defined for any �̇ as follows

∀S , S ′ ∈ ℘
(
℘ (D)V

p

)
, S �̈ S ′ iff ∀s ∈ S : ∃s′ ∈ S ′ : s �̇ s′ .

To get a partial order, it is necessary to quotient by the associated equivalence relation
S ≡̈ S ′ � S �̈ S ′ ∧ S ′ �̈ S . In the rest of the paper, we denote by [S ]≡ � {S ′ | S ′ ≡ S }
the equivalence class of the element S for the equivalence relation ≡, or simply [S ]
when the relation ≡ is obvious from the context.

We have 〈I⊆̇(℘ (D)V
p ), ⊆〉 −−−−→−→←←−−−−−

α̈I

γ̈I 〈℘
(
℘ (D)V

p

) /
≡̈⊆ , ⊆̈〉 meaning that the complete

downset lattice of initial segments 〈I⊆̇(℘ (D)V
p ), ⊆〉 is Galois-isomorphic to the com-

plete lattice 〈℘
(
℘ (D)V

p

) /
≡̈⊆ , ⊆̈〉 where α̈I(I) � [I]≡̈⊆ and γ̈I([S ]≡̈⊆) � {s | ∃s′ ∈ S :

s ⊆̇ s′}. The proof is left to the reader.

4 When Ω = {•}, ℘ (Ω � D) is isomorphic to ℘ (D), so we essentially get ℘ (℘ (D)) which, in
the classical case, is often abstracted into ℘ (D) by 〈℘ (℘ (D)) , ⊆〉 −−−−→←−−−−

α∪

γ∪ 〈℘ (D) , ⊆〉 where

α∪(P) � ⋃
P and γ∪(Q) � ℘ (Q), which amounts to taking initial segments for the order ⊆.

See Sect. 5.2 for more details.
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The two visions 〈I⊆̇(℘ (D)V
p ), ⊆〉 −−−−→−→←←−−−−−

α̈I

γ̈I 〈℘
(
℘ (D)V

p

) /
≡̈, ⊆̈〉 are equivalent, but we find

the “⊆̈-approach” much more intuitive for the rest of this paper. It accounts to looking at
sets of properties simply as “what may happen is over-approximated by these elements”
instead of “everything that can happen is to be found in this set”.

Example 13. Consider Ω and the interval property Γ = {λω . x ∈ [1, 10]} (i.e. the set
of mesurable functions where for each scenario ω, x is in [1, 10]) where � is interval
inclusion. Let the program semantics be Sp�P� = {λω . x ∈ [3, 3], λω . x ∈ [7, 7]}.
The fact that program “P satisfies property Γ” is

[
Sp�P�] �̈ [Γ], i.e. Sp�P� �̈ Γ or

equivalently ∀s ∈ Sp�P� : ∃s′ ∈ Γ : s �̇ s′ that is ∀s ∈ Sp�P� : ∃s′ ∈ Γ : ∀ω ∈ Ω :
s(ω) � s′(ω) which holds since [3, 3] � [1, 10] and [7, 7] � [1, 10]. Note that we do
not have the inclusion {Sp�P�} ⊆ Γ, so the Hoare order is really what is meaningful for
us. ��
In particular, a set with only  is larger than any other one. The above explanations
justify the following definition.

Definition 5 (Probabilistic concrete collecting semantics domain). The probabilistic
concrete collecting semantics domain is

〈℘
(
℘ (D)V

p

) /
≡̈, ⊆̈〉 . ��

This will be the base domain for the abstractions we describe below, coming from the
Galois connection

〈℘
(
DV

p

)
, ⊆〉 −−−−→←−−−−

αD

γD 〈℘
(
℘ (D)V

p

)
, ⊆〉 −−−−−−−→←−−−−−−−

α̈I ◦α↓

γ↓ ◦ γ̈I 〈℘
(
℘ (D)V

p

) /
≡̈⊆ , ⊆̈〉

such that lem. 2 below is satisfied.
Lemma 2. Given a probabilistic propertyΦ ∈ ℘ (D)V

p , we have

α̈I ◦ α↓ ◦ αD(Φ) =
[{
λω . {sP(ω)} ∣∣∣ sP ∈ Φ

}]

≡̈⊆
. ��

Proof. α̈I ◦ α↓ ◦ αD(Φ)

= α̈I ◦ α↓
({

tP ∈ ℘ (D)V
p

∣∣∣ ∃s′P ∈ Φ : ∀ω ∈ Ω : tP(ω) = {s′P(ω)}
}) �def. αD and

℘ (D)V
p �

= α̈I
({

sP ∈ ℘ (D)V
p

∣∣∣ ∃tP ∈ ℘ (D)V
p : ∃s′P ∈ Φ : ∀ω ∈ Ω : tP(ω) = {s′P(ω)} ∧ ∀ω ∈ Ω :

sP(ω) ⊆ tP(ω)
}) �def. α↓, ℘ (D)V

p and ⊆̇�
=

[{
sP ∈ ℘ (D)V

p

∣∣∣ ∃s′P ∈ Φ : ∀ω ∈ Ω : sP(ω) ⊆ {s′P(ω)}
}]

≡̈⊆
�set theory and def. α̈I�

=
[{
λω . ∅

}
∪

{
λω . {s′P(ω)} ∣∣∣ s′P ∈ Φ

}]

≡̈⊆�since sP(ω) ⊆ {s′P(ω)} implies sP(ω) = ∅ or sP(ω) = {s′P(ω)}�
=

[{
λω . {s′P(ω)} ∣∣∣ s′P ∈ Φ

}]

≡̈⊆
�def. ≡̈⊆.� ��

Example 14 (Probabilistic maximal trace collecting semantics). Continuing Ex. 4, the
probabilistic maximal trace semantics is S +∞p �P� ∈ Ω � D where D � ℘ (Σ+∞) so

that the probabilistic maximal powertraces collecting semantics is S {{+∞}}p �P� � α̈I ◦
α↓ ◦ αD({S +∞p �P�}) proving, by Lem. 2, that

S {{+∞}}p �P� = [{
λω . {S +∞p �P�(ω)

}}]

≡�
∈ ℘ (
Ω � ℘

(
℘
(
Σ+∞

))) /
≡̈. ��
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Lemma 3. A probabilistic semantics sP ∈ Dp satisfies a probabilistic property Φ ∈
℘ (D)V

p if and only if sP ∈ γD(Φ) if and only if α̈I ◦ α↓ ◦ αD({sP}) ⊆̈
[{
Φ
}]

≡̈⊆
. ��

The proof is straightforward from the definitions and is left to the reader.

Example 15 (Probability of trace properties). Continuing Ex. 4, the probability that the
trace semantics S +∞p �P� satisfies an observable property Φ ∈ F ⊆ ℘ (℘ (Σ+∞)) (such as
determinism Φ = {{σ} | σ ∈ Σ+∞}) is given by the distribution S +∞p �P�(μ) : F −→
[0, 1] such that S +∞p �P�(μ)Φ = Pr

(
S +∞p �P� ∈ Φ)

= Pr
(
∀ω : S +∞p �P�(ω) ∈ Φ

)
=

Pr
(
S +∞p �P�(ω) ∈ {λω .Φ′ | Φ′ ⊆ Φ}

)
= Pr

(
S +∞p �P�(ω) ∈ ↓{λω .Φ}

)
which, by Lem.

3, is

Pr
(

α̈I ◦ α↓ ◦ αD({sP}) ⊆̈
[{↓{λω .Φ}}

]

≡̈�

)

= Pr
(

α̈I ◦ α↓ ◦ αD({sP}) ⊆̈
[{
λω .Φ}]

≡̈�

)

=

∫

Ω

χ[{
λω .Φ

}]

≡̈�

(α̈I ◦ α↓ ◦ αD ◦ S +∞p �P�(ω))dμ(ω).
��

Semantics Abstraction. Now that we gained access to semantic properties, we can
generalize 〈℘ (D) , ⊆〉 to any concrete domain 〈C, ≤〉. We assume that we have a Ga-

lois connection with an abstract domain A: 〈C, ≤〉 −−−→←−−−α
γ 〈A, �〉 as mentioned above.

However, it is required that C and A are measurable spaces (as before, their σ-algebra
express observable behaviors), and that α and γ are measurable functions.

The semantics abstraction is now by composition. Thus, noting Cp = Ω � C and
Ap = Ω � A, the concrete and abstract semantics domains are 〈℘

(
Cp

) /
≡≤ , ≤̈〉 and

〈℘
(
Ap

) /
≡� , �̈〉.

The abstraction is defined by composition in terms of elements of Cp and Ap, and it
is then lifted to powersets and equivalence classes to be coherent with the domains just
mentioned. So, for sP ∈ Cp, α ◦ sP ∈ Ap and conversely, if tP ∈ Ap, then γ ◦ tP ∈ Cp.
It defines the Galois connection

〈℘
(
Cp

) /
≡̈≤ , ≤̈〉 −−−−→←−−−−

α̈α

γ̈α 〈℘
(
Ap

)
/ ≡̈�, �̈〉

pointwise where

α̈α � λ [S ] .
[{
λω .α ◦ sP(ω)

∣∣∣ sP ∈ S
}]

≡̈�
γ̈α � λ [T ] .

[{
sP ∈ Cp

∣∣∣ ∃t ∈ T, sP ≤̇ γ ◦ t
}]

≡̈≤

(it is easy to verify that these functions are well-defined, i.e. they do not depend on the
representent picked for [S ] and [T ], and that they are properly measurable).

Example 16 (Set of traces to traces abstraction). Continuing Ex. 4 and 14, consider

the abstraction of sets of traces into traces 〈℘ (℘ (Σ+∞)) , ⊆〉 −−−−→←−−−−
α∪

γ∪ 〈℘ (Σ+∞) , ⊆〉 with

α∪(S ) � ⋃
S and γ∪(T ) = ℘ (T ) as first performed in most classical static analyses.

The probabilistic trace collecting semantics is
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S {+∞}p �P� � α̈α∪ (S {{+∞}}p �P�) ∈ ℘ (
Ω � ℘

(
Σ+∞

)) /
≡̈⊆

= α̈α∪
([{
λω . {S +∞p �P�(ω)

}}]

≡̈⊆
) �def. S {{+∞}}p �P� in Ex. 14�

=

[{
λω .α∪(sP(ω))

∣∣∣∣ sP ∈
[{
λω . {S +∞p �P�(ω)

}}]

≡̈⊆
}]

≡̈⊆
�def. α̈α∪�

=
[{
λω .α∪

({
S +∞p �P�(ω)

})}]

≡̈⊆
�def. ≡̈⊆�

=
[{
λω . S +∞p �P�(ω)

}]

≡̈⊆
�def. α∪� ��

Example 17 (Traces to reachability abstraction). Continuing Ex. 4, 14, and 16, con-

sider the reachability abstraction 〈℘ (Σ+∞) , ⊆〉 −−−−→←−−−−
αr

γr 〈℘ (Σ) , ⊆〉 such that αr(T ) �
{s ∈ Σ | ∃σ, σ′ : σsσ′ ∈ T } collecting states along traces of T . Applying the above
semantics abstraction, the probabilistic reachability semantics is

S r
p�P� � α̈αr (S

{+∞}
p �P�) ∈ ℘ (

Ω � ℘
(
Σ+∞

)) /
≡̈

= α̈αr

([{
λω . S +∞p �P�(ω)

}]

≡̈⊆
) �def. S {+∞}p �P� in Ex. 16�

=

[{
λω .αr(sP(ω))

∣∣∣∣ sP ∈
[{
λω . S +∞p �P�(ω)

}]

≡̈⊆
}]

≡̈⊆
�def. α̈αr �

=
[{
λω .αr

(
S +∞p �P�(ω)

)}]

≡̈⊆
�def. ≡̈⊆�

=
[{
λω . {s ∈ Σ | ∃σ, σ′ : σsσ′ ∈ S +∞p �P�(ω)}

}]

≡̈⊆
�def. αr�

The probabilistic reachability semantics is therefore the downward closed set of the
function taking each scenario to the minimal reachability abstraction of its behavior.

��
Example 18 (Probability of invariance properties). Continuing the trace to reachability
abstraction example 17, the probability that a program invariant I ∈ ℘ (Σ) holds during
execution (assuming that the abstract property I is properly measurable) is

S +∞p �P�(μ)(γr(I))

� Pr(S +∞p �P� ∈ γr(I)) �def. 2 of property probability�
= Pr(α̈I ◦ α↓ ◦ αD(S +∞p �P�) ⊆̈ [{γr(I)}]≡̈⊆ ) �Lem. 3�
= Pr(α̈αr

◦ α̈I ◦ α↓ ◦ αD(S +∞p �P�) ⊆̈ [{λω . I}]≡̈⊆ ) �Galois connexion αr, γr�
= Pr(S r

p�P� ⊆̈ [{λω . I}]≡̈⊆ ) �def. S r
p�P� in Ex. 17.�

Therefore we can define the invariant probability semantics Si�P� � λ I . Pr(S +∞p �P� ∈
γr(I)) = Pr(S r

p�P� ⊆̈ [{λω . I}]). An axiomatic definition of the abstract semantics
Si�P� can be calculated from the definition of S +∞p �P� in Ex. 4 using standard abstract
interpretation techniques. For example

Si�skip�I � Pr(S +∞p �skip� ∈ γr(I)) �def. Si�skip��
= Pr({ss | s ∈ Σ} ∈ γr(I)) �def. S +∞p �skip��
= Pr(s ∈ I) =

∫

Ω

χI dμ �def. γr and distributions�
Si�C1;C2�I � Pr(S +∞p �C1;C2� ∈ γr(I)) �def. Si�C1;C2��

= Pr(S +∞p �C1� � S +∞p �C2� ∈ γr(I)) �def. S +∞p �C1;C2��
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= Pr(S +∞p �C1� ∈ γr(I) ∧ S +∞p �C2� ∈ γr(I)) �def. � and γr�
= Pr(S +∞p �C1� ∈ γr(I)) × Pr(S +∞p �C2� ∈ γr(I)) �Probability theory�
= Si�C1�I × Si�C2�I �def. Si�C��
and similarly for other commands using fixpoint abstraction [6, Th. 7.1.0.4-(3)] for
loops. ��
The series of examples 4, 14, 16, 17, and 18 shows that the probabilistic abstract in-
terpretation framework is compositional in that the abstraction of an abstraction is an
abstraction. Sec. 5.2 below makes the link with classical static analysis approaches.

5.2 (II) Abstracting the Scenario Space Ω

Definition. The scenario space Ω is chosen arbitrarily among all the measured spaces
that could describe the random behavior at hand. Several Ω spaces could describe the
same probabilistic system, or we might want to “group” several scenarios together be-
cause they look the same from the level of details we need.

Satisfyingly enough, it is possible to change the Ω space by a simple abstraction. Let
Ω be a measurable space with a distribution μ, and Ω′ be a set. Suppose there exists
a surjective mapping q : Ω � Ω′, then it is possible to abstract a probabilistic
semantics expressed over Ω by one over Ω′.

First, we define the observable events onΩ′ as the smallest set making q measurable.
We note Ap(Ω) � Ω � A for the probabilistic semantics domain over Ω and 〈A, �,
�〉. Then

〈℘
(
Ap(Ω)

) /
≡̈, �̈〉 −−−−−−→−→←−−−−−−−

αΩ,Ω′

γΩ,Ω′ 〈℘
(
Ap(Ω′)

) /
≡̈, �̈〉

where

γΩ,Ω′ �
[
λ [S ] .

{
sP ∈ Ap

∣∣∣ ∃s′P ∈ S ′ : ∀ω ∈ Ω : sP(ω) � s′P(q(ω))
}]

≡̈�
αΩ,Ω′ �

[
λ [S ′] .

{
λω′ ∈Ω′ . �ω∈q−1({ω′}) s(ω)

∣∣∣ s ∈ S
}]

≡̈�
and it can be verified that these definitions do not depend on the chosen representants S
and S ′.

The law μ′ on Ω′ is the image of the law μ by q, i.e. for all measurable sets X′ ⊆
Ω′, μ′(X′) = μ(q−1(X′)).

Non-Determinism as an Abstraction. Merging scenarios by using a surjective q that
identifies their image amounts to forgetting the probabilistic information on them, and
seeing them just as a “new scenario”. It means that when in the new compound scenario,
the program can actually non-deterministically be in either one of the initial scenarios.
That is why all their semantics are joined in the αΩ,Ω′ definition, and the probability of
the new scenario is the sum of the probabilities of the source ones.

Thus, non-determinism is simply expressible in our framework by theΩ-abstraction.
And while non-determinism is expressible between some scenarios, all the other proba-
bilistic informations about the other scenarios are kept unchanged and used. Moreover,
the non-determinism impacts as little as possible because the new compound scenario
still behaves well with respect to the rest of the semantics.
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Classical Abstract Interpretation as an Abstraction. Along those lines, it is natural
to find classical abstract interpretation as a limitΩ-abstraction: forgetting all probabilis-
tic information in the semantics should give back the classical abstract interpretation
framework.

It is exactly what happens if Ω′ is taken as a singleton Ω• = {•} with the trivial
probability measure on it (in this case, the semantics describes anything that can happen
as the join of all possible outcomes, without knowing what is the probability for each
actual behavior). We call this abstraction the “safe abstraction”.

〈℘
(
Ap(Ω)

) /
≡̈� , �̈〉 −−−−−−→−→←−−−−−−−

αΩ,{•}

γΩ,{•} 〈℘
(
Ap(Ω•)

) /
≡̈� , �̈〉

where Ap(Ω•) � {•} � A is isomorphic to A, and so 〈℘
(
Ap(Ω•)

) /
≡̈� , �̈〉 is order-

isomorphic to 〈℘ (A)
/
≡̈� , �̈〉.

In classical abstract interpretation, we are usually just interested in properties such
as S �P�� � Q. It means that when we have a semantics that can be any element of
QP ∈ ℘ (A), we say that the most precise abstract state describing it is �QP. It amounts
to applying the following join-abstraction

〈℘ (A)
/
≡̈, �̈〉 −−−−→−→←−−−−−

α�

γ� 〈A, �〉

where

α� � λ [S ] .
⊔

Q∈S

Q and γ� � λQ . [↓Q]≡̈ .

This Galois connection abstracts the probabilistic abstract interpretation framework
back to the classical abstract interpretation framework, an abstraction which is not al-
ways expressible in other more specific frameworks e.g. [24, 26, 25].

5.3 (III) Abstracting Probabilistic Semantics by Distributions

Law-Abstraction. Starting from the abstract probabilistic semantics of Sect. 5.1

Sp�P�� ∈ Ap � Ω � A, where 〈A, �〉 is a cpo,

we have the semantic properties in the domain
[
↓{Sp�P��}]≡̈� ∈ ℘

(
Ap

) /
≡̈� .

In this semantics, the dependencies between scenarios and the associated abstract se-
mantics have been preserved. But this is something that we may not desire for static
analysis because it would lead to combinatorial explosion. One solution considered
in Sect. 5.2 is to abstract the scenario space Ω. Another abstraction is to consider
the distribution of the abstract semantics, that is, the function giving the probability
of any observable abstract property. Remembering only the distribution from a mea-
surable function is actually an abstraction. Note that usual probabilistic analysis tools
start actually from (abstractions of) this level of abstraction to build their analysis e.g.
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[1, 3, 13, 15, 21, 28, 29], lacking the insight and soundness justifications that we devel-
oped above.

The order between the laws should reflect the intuition we have on lattices and logical
implication. The information that we need from the distribution is actually restricted to
downward closed sets because we want to answer questions like “What is Pr(Sp�P�� �
Q) ?”, which is given by the function λQ . Sp�P��(μ)(↓Q) (where ↓ is this time the
classical downward operator in the lattice A).

Thus, we say that a law ν ∈ LA (LA denotes the set of probability laws on A,
LA ⊆ ℘ (A) −→ [0, 1]) is more precise than another one ν′ if it puts more weight on
the bottom of the abstract lattice A. That is, the logical order between laws on A is

ν � ν′ ⇐⇒ ∀Q ∈ A : ν(↓Q) ≥ ν′(↓Q)

The idea behind this logical order is essential to the understanding of the whole ap-
proach. As usual, logical orders should reflect that smaller abstract properties imply
greater ones. Here, the intuition on the order ν � ν′ is that ν assigns a higher probabil-
ity than ν′ to more precise properties in 〈A, �〉, so more precise properties have better
chances to hold.

Classically, it is safe to approximate x ∈ [1, 10] by x ∈ [1, 20]. It is just less precise,
because [1, 10] ⊆ [1, 20]. In the probabilistic case, the analogous situation would be
“x ∈ [1, 10] is true with probability one”, approximated by “x ∈ [1, 10] with probability
1/2 and x ∈ [1, 20] with probability 1/2”. Of course, the former situation is more precise
than the second one, and this is reflected by the � order.

Formally, the � order checks that anywhere in the lattice, the most precise law is at
least as precise as the other one, with at least as much probability.

It is interesting to note that as we mentioned before, if Ω is shrunk to a singleton Ω•,
the only valid probabilities for properties are 0 and 1, and the � order boils down to �
between abstract states and gives back the classical abstract interpretation framework.

The order � is then lifted to the powersets by using the Hoare order once again, with
N,N′ ⊆ LA

N �̈ N′ ⇐⇒ ∀ν ∈ N : ∃ν′ ∈ N′ : ν � ν′ .
In fact, we take for LA a subset of the laws on A because some laws do not have a
meaning for the semantics at hand. If a non-biased coin is tossed, it makes no sense
to speak of having tails with probability 1/3. It is not a proper abstract semantics. To
circumvent this issue, we restrict from now on LA to the elements l that have at least
one corresponding function, i.e. a function in Ap such that f (μ) = l.

We are now ready to define the Galois connection that unifies all of this

〈℘
(
Ap

) /
≡̈� , �̈〉 −−−−→←−−−−

αL

γL 〈℘ (LA)
/
≡̈� , �̈〉

where αL � λ [S ]≡̈� . [{s(μ) | s ∈ S }]≡̈� and γL � λ [N]≡̈� . [
{s ∈ Ap | s(μ) ∈ N}

]

≡̈� . As

usual, it is easily shown that these functions are well-defined regardless of the chosen
representant of the equivalence classes.
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Example 19 (Probabilistic constant propagation). Consider the very simple probabilis-
tic program P : x = 0 2

3
⊕ x = 1 whose abstract probabilistic semantics is defined

by Ω = {ω0, ω1} and the constant propagation lattice A � {⊥, } ∪ � ordered by
∀z ∈ � : ⊥ � z �  as

Sp�P��(ω0) = 0, μ({ω0}) = 2
3 , Sp�P��(ω1) = 1, μ({ω1}) = 1

3 .

The strongest probabilistic program property is
[
↓ Sp�P��]≡̈ =

[{
λω . �ω = ω0 � {⊥, 0} � {⊥} � ω = ω1 � {⊥, 1} � {⊥} �

}]

≡̈

The order �̈ is such that e.g. [λω . {⊥, 0}]≡̈ �̈ [λω . {⊥, 0, }]≡̈ since 0 �  . We have
[{ν}]≡̈� = αL

([
↓{Sp�P��}]≡̈

)
and ν ≺ ν′ as follows (assuming Z ⊆ (� \ {0, 1}) ∪ { })

-1 2 0 1 11
1/3 

00

2/3 

1 

1 22222

T 

T 

0 0 

P {⊥, Z} {⊥, 0, Z} {⊥, 1, Z} {⊥, 0, 1, Z}
ν(↓ P) 0 2

3
1
3 1

ν′(↓ P) 0 0.5 0.2 1 ��

Example 20. The final distribution of the constant and parity analysis of a simplified
version P’ of the probabilistic program P of Ex. 3 is provided below

x = 0 2
3
⊕ x = 1;

if (x = 0) then
y = 2 1

4
⊕ y = 4

else
y = 1 1

5
⊕ y = 3

Program P’

x = 0 x = 1 y even y odd 

x = 0 
y even 

x = 0 
y odd 

x = 1 
y even 

x = 1 
y odd 

0

2/3 

x = 1
1/3 

y odddd
1/3 2/3 

1 

0

2/3 

x = 11
1/3 

T 

T ��
Example 21. Note that it is not a paradox to have in the abstract, for example :

Pr (x ∈ [0, 10]) > Pr (x ∈ [0, 5]) + Pr (x ∈ [5, 10])

Indeed the analysis may not have managed to infer the exact value of Pr (x ∈ [0, 5]) by
lack of completeness, but only an under-estimation. ��
In practice, distributions need only to be considered for atoms of atomic lattices (x
= 0, y even 2

3
⊕ x = 1, y odd in Ex. 20) and more generally only for the join-

irreducible elements. Further examples based on sets of probability distributions are
given in [21].

Law-Abstraction Transformers. Along with the abstract domain that we just de-
scribed, it is essential to construct the corresponding abstract transformers.
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They are operators that take as input a (set of) semantic properties distribution and
transform it according to their corresponding statement, over-approximating the con-
crete semantics of the statement.

Let us say that a statement S has a corresponding concrete transformer FS : Dp −→
Dp defined as FSp(λω . Xω) � λω . FSω(Xω), following Sec. 3.2.

It follows from this definition that for any s ∈ DV
p , the distribution of s is transformed

by FS in the following way, where Φ ⊆ D

Pr
(
FS(s) ∈ Φ

)
=

∫

Ω

χ
Φ

(
FSω(s(ω))

)
dμ(ω) =

∫

Ω

χ
(FSω )−1(Φ)

(s(ω))dμ(ω) (1)

i.e. to know the probability that a semantic property is verified after applying a trans-
former, we measure the probability of the scenarios leading to that property after the
transformation.

In the general case, this integral cannot be simplified. In particular, it cannot be
expressed generally as a function of the input distribution s only. As a consequence,
there is no straightforward way to go from a concrete transformer to an abstract one
that transforms elements of 〈℘ (LA)

/
≡̈� , �̈〉, other than by using the classical formula:

(FS)� = α ◦ FS ◦ γ where α and γ are the appropriate abstraction and concretization
functions that link the abstract domain to the most concrete one.

In practice, one has to design the transformers by hand, making sure that they are
over-approximations of the above mentioned optimal abstract transformers. Note that
this is a process that was made silently in the related works, but taking them as axioms
without proving their soundness in respect to the concrete semantics (see e.g. Sect. 7.4
and 7.5).

We see here that the precision of the sanity checker V (see Sect. 4.2) is crucial to
the precision of the abstract transformers. Indeed, the smaller the set FS ◦ γ, the more
precise (FS)� is. It makes sense: if (FS)� has to be sound with respect to the “right”
concrete semantics and some “useless” ones, it is less precise than if it just has to
account for the right ones. That is why defining precise sanity checkers is so important
to easily craft sound and precise abstract transformers.

But the issue is not as problematic as it may seem. Indeed, in the vast majority of
cases, equation (1) can be further simplified to only depend upon the distribution of s.

When the transformer corresponds to a non-random statement, then by definition the
operators Fω are all equal as seen in Ex. 5, and the equation boils down to

Pr
(
FS(s) ∈ Φ

)
=

∫

Ω

χ
Φ

(
FS(s(ω))

)
dμ(ω) =

∫

Ω

χ
Φ
(FS(ω))ds(μ)(ω)

where “ds(μ)(ω)” denotes that the integral is taken according to the probability measure
of s. Thus the new distribution is now computed as a simple function of the distribution
of s, an information that is kept in the abstract state in the 〈℘ (LA)

/
≡̈� , �̈〉 domain.

Of course, to apply to the 〈℘ (LA)
/
≡̈� , �̈〉 domain, this process has to be lifted point-

wise to sets (and thus equivalence classes) — it is straighforward.

Example 22. Suppose that x is a random integer variable in a fixed program, the state-
ment x++ would have such an abstract transformer. Indeed, the action of the statement
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does not depend on the actual value of x. In any scenario, it increments the value of
x by one. Evaluating the above integral, we see that, for instance, the probability of x
being 4 after the transformer is the probability of x being 3 before, which is exactly
what we expect. ��

As we just saw, it is far easier to define abstract transformers for non-random state-
ments than for random ones. So how should we craft transformers for random state-
ments?

First, let us note it is a good thing that non-random transformers are seamlessly
lifted to the probabilistic case. It is certainly desirable. On the other hand, building the
abstract transformers for random statements requires more knowledge because we have
to create a function as precise as possible verifying the soundness equation, without
formal indication on how to do it. It looks pretty normal after all, because handling
probabilistic behaviors must necessarily imply more work at some point.

That being said, our experience is that in most practical instantiations of the frame-
work, there will not be that many probabilistic constructs to find transformers for (typi-
cally, just calls to rand()-like functions). For these statements, the probabilistic behav-
ior is well-known, and sound abstract transformers are pretty straightforward to build.

6 Iterating in the Abstract and Branch Prediction

The goal of this section is to show how to instrumentalize all the theory that has been de-
veloped so far to build a probabilistic static analyzer. Essentially, it boils down to build-
ing as precise abstract transformers as possible for classic programming languages con-
structs such as conditional and loops. Once this is done, it just remains to use classical
abstract interpretation based fixpoint approximation through custom iteration schemes,
e.g. [9].

6.1 Conditionals

Knowing the semantic properties distribution after a conditional requires to know as
precisely as possible the probability that the condition is actually true or false. It is
intuitively clear: the more a branch is likely to be executed, the more it will have an
impact on the final outcome.

Formally, assume that Q ∈ A, ls ∈ LA is the law of a semantics s ∈ DV
p , S is the

statement “if b then C1 else C2”, and assume that the probability that the condi-
tion b is true when evaluated is fixed and equal to pb, then for any Φ ∈ ℘ (A)

�S�(ls)(Φ) = Pr(�S�(s) ∈ Φ) �def. distribution�
= Pr

(�C1�(s) ∈ Φ ∧ �b�(s)
)
∨ (�C2�(s) ∈ Φ ∧ �¬b�(s))

= Pr
(�C1�(s) ∈ Φ ∧ �b�(s)

)
+ Pr

(�C2�(s) ∈ Φ ∧ �¬b�(s)
) �probability theory�

= pb × Pr
(�C1�(s) ∈ Φ | �b�(s)

)
+ (1 − pb) × Pr

(�C2�(s) ∈ Φ | �¬b�(s)
) �cond. prob.�

The abstract transformer of statement S depends heavily on pb. Unfortunately, it may
be the case that the analysis cannot determine the exact value of pb. There can be two
main reasons for that
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–Lack of precision: the evaluation of the condition may involve variables that we do
not have precise enough information about. Moreover, as we do not have always the
optimal abstract transfer functions, we are likely to lose precision along the way: the
probability that we know for a condition to be true is unfortunately just a minora-
tion (because, for example, the analyzer could show that the condition is met with
probability only 0.5 instead of 0.7 by lack of completeness).

–Measurability: the condition is not probabilistic, or we do not have the necessary prob-
abilistic setting to determine it (it may have been abstracted away by an Ω-abstraction
from Sect. 5.2). Indeed, the previous calculus is valid only if the events �b�(s) (b is
true) and �¬b�(s) (b is false) are observable. Otherwise, the value of pb is not even
defined.

Whatever the cause of the uncertainty may be, we end up with pb being unknown
in a set pb ∈ Pb ⊆ [0, 1]. At this point, the best is to separately analyze the
branches of the conditional and compute P1(Φ) = Pr

(�C1�(s) ∈ Φ | �b�(s)
)

and P2(Φ)
= Pr

(�C2�(s) ∈ Φ | �¬b�(s)
)
. Then the set of possible outcome distributions is {l ∈ LA

| ∃p ∈ Pb : ∀Φ ∈ ℘ (A) : l(Φ) = pP1(Φ) + (1 − p)P2(Φ)}.
In the same spirit, if P1 and/or P2 cannot be accurately determined, then their values

belong to some subsets of [0, 1] that we try to compute as precisely as possible.
This process must then be lifted to sets (and then easily to equivalence classes) to

accomodate the abstract domain 〈℘ (LA)
/
≡̈� , �̈〉.

6.2 Loops

As usual, loops are even more difficult to analyze. It combines the issues of evaluating
conditional probabilities with the need to evaluate the number and effects of iterating
through the loop.

We describe here a few strategies to design abstract transformers for while loops.
There are many others that could apply to more specific cases, but we will remain
as general as possible to give a good overview. We assume we have the statement S:
“while b do C”.

The General Case. In the favorable case, the probability of entering the loop after
i ≥ 0 iterations is known, and we denote it by ploop(i). Following the same idea than in
the case of the conditional, we have

�S�(ls)(Φ) = Pr(�S�(s) ∈ Φ) �def. distribution�
= Pr(�S�(s) ∈ Φ ∧ 0 iteration) + Pr(�S�(s) ∈ Φ ∧ ≥ 1 iterations) �dichotomy�
= Pr(�S�(s) ∈ Φ ∧ 0 iteration) + Pr(�S�(s) ∈ Φ ∧ 1 iterations) + Pr(�S�(s) ∈ Φ ∧
≥ 2 iterations) �dichotomy�= . . .

=
∑

i≥0

Pr(�S�(s) ∈ Φ ∧ i iterations) �converges because positive terms and sum ≤ 1�
=

∑

i≥0

ploop(i) × Pr(�S�(s) ∈ Φ | i iterations) �cond. prob.�
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The nice thing here is that the computation of the iterations is separate for each number
of iterations. For i ≥ 0 iterations, the transformer of the loop is simply the composi-
tion of the conditional evaluation and the body execution i times. The second term that
accounts for the probability that the loop actually does not terminate cannot be a pri-
ori eliminated, although it can sometimes be ruled out if the analysis does have more
information on the context.

As in the conditional case, the crux of the matter is to obtain as good evaluations as
possible for ploop(i) and the body transformer.

Non-Probabilistic Loops. If the truth of the condition b of the loop is not a measurable
semantic property, then the analysis cannot determine what is the probability to enter
the loop. Thus ploop(i) is only known to be anything in [0, 1], and the analysis has to
contain the set of all corresponding possible probabilistic measures.

As usual, custom widening operators may have to be used to guarantee termination
depending on the underlying abstract domain.

An Example of an Ad-Hoc Loop Transfer Function. We now present a particular
case of a loop transformer that may apply in a variety of cases, as an example to show
how to craft specific loop abstract transformers for specific situations.

Suppose that the analyzer knows that the loop always terminates and that ploop(i)
decreases as i increases, but that it cannot deduce from the body of the loop how it does
so. In that case, the above equation is of no practical use. One way would be to go with
the transfer function from 6.2 as it is sound, but it can be quite imprecise.

The approach we choose here is to unroll the loop for N > 0 iterations and over-
approximate anything that can happen after. Reusing the above calculus, we have

�S�(ls)(Φ) = Pr(�S�(s) ∈ Φ) �def. distribution�
=

∑

i≥0

ploop(i) × Pr(�S�(s) ∈ Φ | i iterations) �conditional probability�

=

N∑

i=0

ploop(i) × Pr(�S�(s) ∈ Φ | i iterations)+
∑

i>N

ploop(i) × Pr(�S�(s) ∈ Φ | i iterations)

By hypothesis, for all i > N, ploop(i) ≤ ploop(N). So we deduce that
∑

i>N

ploop(i) × Pr(�S�(s) ∈ Φ | i iterations) ≤ ploop(N)

In that case, the transfer function for the first iterations is thus calculated by simply
composing the body transfer function and the conditional N times, we note it lN . Then
to take the second term into account, the set of resulting distributions is {l ∈ LA | ∀Φ ∈
℘ (A) : |l(Φ) − lN(Φ)| ≤ ploop(N)}. The soundness is guaranteed by the above calculus.

Note that the transformer could be made more precise because the uncertainty applies
only to properties that are impacted by the execution of the body, we do not take that
into account in the above definition.

This approach can be made even more precise as N need not be fixed in advance: the
loop can be iterated until the probability of going through it again is less than a specified
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cutoff ε > 0 (so that the source of imprecision ploop(N) is tightly bounded) ; and if it is
not witnessed after a specified number of iterations Nmax, then the above mechanism is
used.

7 Related Work: Some Well-Known Techniques as Probabilistic
Abstractions

7.1 Markov Chains/Decision Processes

Markov chains are random discrete transitions systems with a finite or countable num-
ber of possible states such that the next state depends only on the current state and not on
the past or the future. Assuming in Ex. 4 that S +∞p �P� is a stationary stochastic process
(all executions do terminate) on a countable state space Σ (for simplicity on the non-
negative integers), the Markov chain with the transition matrix [succ(s, s′)]s,s′∈Σ has the
same steady-state behavior, and similar short-term statistics [20, Proposition A.1.1]. In
case of non-stationarity (non-termination), alternatives are to add history (considering
states in Σ′ � Σ+) or to define Pr〈s, s′〉 � limn→∞ 1

n Pr(S +∞p �P� ∈ {σss′σ′ | σs ∈
Σ+ ∧ s′σ′ ∈ Σ+∞}}). So every process is (almost) Markov, which justifies this standard
abstraction of probabilistic program semantics [22].

7.2 Probabilistic Model Checking

Probabilistic model checking [11] is often based on the Markov chain abstraction of
Sect. 7.1. The fundamental notion of probabilistic reachability for Markov decision
processes can be generalized to programs by considering the abstraction α(X) � λ s .
Pr(S +∞p �P��{s} ∩ γr(X) � ∅) of the maximal trace semantics similar to Ex. 17. It is

further abstracted by the probability interval abstraction αm(X) � min{α(X)s | s ∈ Σ}
and αM(X) � max{α(X)s | s ∈ Σ} which is computable for finite systems [3, Sect. 6],
[10, Sect. 3], [11, Sect. 4], or their reduced product [29, Sect. 3], etc. However programs
generally have an unbounded concrete semantics so a (traditional) finite abstraction is
often too imprecise [8]. This is the main reason for considering infinitary abstractions
in this paper.

7.3 Quantitative Abstraction

[24, 26] propose a formulation of abstract interpretation on Hilbert spaces for real or
complex quantitative abstractions of distribution-based semantics which can be refor-
mulated using abstraction (2) of traces (e.g. where states are sets of λ-terms and transi-
tions are reductions of these λ-terms). However, they do not stick to the usual soundness
notion [26, Sect.5.2]: they are interested in behaviors on expectations and the “strict”
soundness that we enforced from the beginning has to be relaxed using more permissive
concretization functions.
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7.4 Probabilistic Strongest Postcondition Semantics

Following Ex. 4, we let 〈Ω, E, μ〉 be a probability space. The probabilistic semantics
postulated in [14] is a distribution transformer abstracting the probabilistic maximal
trace semantics S +∞p �P� : Ω � Σ+∞.

Given a distribution δ ∈ LΣ of the initial states, the abstraction αs : (Ω � ℘ (Σ+∞))
−→ (LΣ −→ LΣ) of X ∈ ℘ (Σ+∞) is the distribution of the final states, if any, so that

αs(λω . X(ω))δs′ �
∑

s∈Σ
δ(s) × Pr(∃σ : sσs′ ∈ X+) (2)

The abstract semantics is Ss�P� � αs(S +∞p �P�). For example

αs(S +∞p �skip�)δs′ = αs({ss | s ∈ Σ})δs′ �def. S +∞p �skip��
=

∑

s∈Σ
δ(s) × Pr(s = s′) = δ(s′) �def. αs so that Ss�skip�δ = δ�

αs(S +∞p �if c then A else B�)δs′

=
∑

s∈Σ
δ(s) × Pr(∃σ : sσs′ ∈ {sσ′ | E�c�s ∧ sσ′ ∈ S +∞p �A�+} ∪ {sσ′ | E�¬c�s ∧ sσ′ ∈

S +∞p �B�+})
�def. αs and S +∞p �if c then A else B��

=
∑

s∈Σ
δ(s)× (Pr(E�c�s)×Pr(∃σ : sσs′ ∈ S +∞p �A�+)+ (1−Pr(E�c�s))×Pr(∃σ : sσs′ ∈

S +∞p �B�+})) �probability law�
=

∑

s∈Σ
δ(s) × (c × Pr(∃σ : sσs′ ∈ S +∞p �A�+) + (1 − c) × Pr(∃σ : sσs′ ∈ S +∞p �B�+))

�by [14] implicitly assuming that Pr(E�c�s) = c where c ∈ �∗�
= c × αs(S +∞p �A�)δs′ + (1 − c) × αs(S +∞p �B�)δs′ �def. αs�
proving that Ss�if c then A else B� = c × Ss�A� + (1 − c) × Ss�B� pointwise and
similarly for other commands using fixpoint abstraction [6, Th. 7.1.0.4-(3)] for loops.

These theorems are, up to logical notations, the axioms postulated in [14]. The prob-
abilistic strongest postcondition abstraction in equation (2) is frequently used as col-
lecting semantics for forward static analysis e.g. [21] for Markov decision processes.

7.5 Probabilistic Weakest Precondition Semantics

Whereas [14] is a forward abstraction as explained in Sect. 7.4, [15, 23] is the corre-
sponding backward abstraction providing probabilistic weakest preconditions

αw(X)δs �
∑

s′∈Σ
Pr(∃σ : sσs′ ∈ X+) × δ(s′) (3)

The abstract semantics is Sw�P� � αw(S +∞p �P�). For example

Sw�C1;C2�δ = αw(S +∞p �C1;C2�)δ �def. Sw�P��
= λ s . ∑

s′∈Σ
Pr(∃σ : sσs′ ∈ S +∞p �C1�+ � S +∞p �C2�+) × δ(s′) �def. αw and S +∞p �C1;C2��



192 P. Cousot and M. Monerau

= λ s .
∑

s′∈Σ
Pr(∃σ′, s′′, σ′′ : sσ′s′′ ∈ S +∞p �C1�+ ∧ s′′σs′ ∈ S +∞p �C2�+) × δ(s′)

�def. � with sσs′ = sσ′s′′σs′�
= λ s . ∑

s′∈Σ
Pr(∃σ : sσs′ ∈ S +∞p �C1�+)×

⎛
⎜⎜⎜⎜⎜⎝

∑

s′′∈Σ
Pr(∃σ′′ : s′σ′′s′′ ∈ S +∞p �C2�+) × δ(s′′)

⎞
⎟⎟⎟⎟⎟⎠

�conditional probabability�
= λ s .αw(S +∞p �C1�)(λ s′ .

∑

s′′∈Σ
Pr(∃σ′′ : s′σ′′s′′ ∈ S +∞p �C2�+) × δ(s′′))(s) �def. αw�

= λ s .αw(S +∞p �C1�)(αw(S +∞p �C2�)(δ))(s) �def. αw�
= λ s . Sw�C1�(Sw�C2�(δ))(s) �def. Sw�C��
= Sw�C1� ◦ Sw�C2�(δ) �def. ◦�
which is the definition of Sw�C1;C2� postulated in [15, Sect. 4]. The probabilistic choice
C1 p⊕C2 requires additional hypotheses as in Sect. 7.1 while iteration is handled by fix-
point abstraction [6, Th. 7.1.0.4-(3)]. The probabilistic weakest precondition abstraction
(3), or at least its discrete equivalent, is frequently used as collecting semantics for back-
ward static analysis e.g. [22, 29] for Markov decision processes and further abstracted
by the probabilistic intervals of Sect. 7.2.

8 Future Work and Conclusion

We have introduced new principles of probabilistic abstract interpretation for design-
ing probabilistic semantics and static analysis methods. The framework is very general,
highly expressive so as to set forth any probabilistic and computational situation. The
framework separates probabilities (μ) from semantics (Sp�P�) so the probabilistic and
semantics abstractions are self-reliant. Their abstractions can each be fine-tuned inde-
pendently by easy adaptation of standard proof and static analysis methods.

Future work includes the case of absence of a best abstraction, the study of relational
law-abstractions, improvement of branch prediction, implementation and experiments.
It will also be essential to develop precise widening operators and abstract transformers
to keep enough precision during the fixpoint calculation.

Work supported in part by the CMACS NSF Expeditions in Computing award
0926166.
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Communicating Automata
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Abstract. Communicating finite state machines (CFSMs) represent processes
which communicate by asynchronous exchanges of messages via FIFO channels.
Their major impact has been in characterising essential properties of communica-
tions such as freedom from deadlock and communication error, and buffer bound-
edness. CFSMs are known to be computationally hard: most of these properties
are undecidable even in restricted cases. At the same time, multiparty session
types are a recent typed framework whose main feature is its ability to efficiently
enforce these properties for mobile processes and programming languages. This
paper ties the links between the two frameworks to achieve a two-fold goal. On
one hand, we present a generalised variant of multiparty session types that have
a direct semantical correspondence to CFSMs. Our calculus can treat expres-
sive forking, merging and joining protocols that are absent from existing session
frameworks, and our typing system can ensure properties such as safety, bound-
edness and liveness on distributed processes by a polynomial time type checking.
On the other hand, multiparty session types allow us to identify a new class of CF-
SMs that automatically enjoy the aforementioned properties, generalising Gouda
et al’s work [12] (for two machines) to an arbitrary number of machines.

1 Introduction

Multiparty Session Types The importance that distributed systems are taking today
underlines the necessity for precise specifications and full correctness guarantees for
interactions (protocols) between distributed components. To that effect, multiparty ses-
sion types [3, 14] are a type discipline that can enforce strong communication safety for
distributed processes [3, 14], via a choreographic specification (called global type) of
the interaction between several peers. Global types are then projected to end-point types
(called local types), against which processes can be statically type-checked. Well-typed
processes are guaranteed to interact correctly, following the global protocol. The tool
chain (projection and type-checking) is decidable in polynomial time and automatically
guarantees properties such as type safety, deadlock freedom, and progress. Multiparty
session types are thus directly applicable to the design and implementation of real dis-
tributed programming languages. They are used for structured protocol programming
in contexts such as security [8, 22], protocol optimisations for distributed objects [21]
and parallel algorithms [17], and have recently lead to industrial projects [19, 20].

Communicating Automata. or Communicating Finite State Machines (CFSMs) [5],
are a classical model for protocol specification and verification. Before being used in
many industrial contexts, CFSMs have been a pioneer theoretical formalism in which

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 194–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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distributed safety properties could be formalised and studied. Building a connection
between communicating automata and session types allows to answer some open ques-
tions in session types which have been asked since [13]. The first question is about
expressiveness: to which class of CFSMs do session types correspond? The second
question concerns the semantical correspondence between session types and CFSMs:
how do the safety properties that session types guarantee relate to those of CFSMs? The
third question is about efficiency: why do session types provide polynomial algorithms
while general CFSMs are undecidable?

A First Answer. to these questions has been recently given in the binary case: a two-
machine subclass (which had been studied by Gouda et al. in 1984 [12] and later by
Villard [23]) of half-duplex systems [7] (defined as systems where at least one of the
two communication buffers between two parties is always empty) has been found to
correspond to binary session types [13]. This subclass, compatible deterministic two-
machine without mixed states [12] (see § 3 and § 6), automatically satisfies the safety
properties that binary session types can guarantee. It also explains why binary session
types offer a tractable framework since, in two-machine half-duplex systems, safety
properties and buffer boundedness are decidable in polynomial time [7]. However, in
half-duplex systems with three machines or more, these problems are undecidable (The-
orem 36 [7]). This shows that an extension to multiparty is very challenging, leading to
two further questions. Can we use a multiparty session framework [14] to define a new
class of deadlock-free CFSMs with more than two machines? How far can we extend
global session type languages to capture a wider class of well-behaved CFSMs, still
preserving expected properties and enabling type-checking processes and languages?

Our Answer. is a theory of generalised multiparty session types, which can automat-
ically generate, through projection and translation, a new class of safe CFSMs, which
we call multiparty session automata (MSA). We use MSA as a semantical interpreta-
tion of types to prove the safety and liveness of expressive multiparty session mobile
processes, allowing complexly structured protocols, including the Alternating Bit Pro-
tocol, to be simply represented. Our generalised multiparty session type framework can
be summarised by the following diagram:

Generalised
Global Type

Projection ��
Local Types

≈
CFSMs (MSA)

Type checking ��
General

Multiparty
Processes

Generalised Global Types. This paper proposes a new global type syntax which en-
compasses previous systems [3, 14] with extended constructs (join and merge) and gen-
eralised graph syntax. Its main feature is to explicitly distinguish the branching points
(where choices are made) from the forking points (where concurrent, interleaved inter-
action can take place). Such a distinction is critical to avoid the state explosion and to
directly and efficiently type session-based languages and processes.

Fig. 1 illustrates our new syntax on a running example, named Trade. For the intu-
ition, Trade is also represented as a BPMN-like [4] activity diagram, where ’+’ is for
exclusive gateways and ’|’ for parallel ones, following session type conventions.

This scenario (from [6, § 7.3]) comprehensively combines recursion, fork, join,
choice and merge. It models a protocol where a seller S relies on a broker B to ne-
gotiate and sell an item to a client C. The seller sends a message Item to the broker, the
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GTrade = def
x0 = S→ B : Item〈string〉;x1

x5 +x1 = x2
x2 = x3 +x6
x3 = B→ C : Offer〈nat〉;x4
x4 = C→ B : Counter〈nat〉;x5
x6 = x7 | x8
x7 = B→ S : Final〈nat〉;x9
x8 = B→ C : Result〈nat〉;x10

x9 | x10 = x11
x11 = end in x0

Fig. 1. Trade Example: Global Type and CFSM

broker then has a choice between entering the negotiation loop Offer-Counter with the
client as many times as he chooses, or finishing the protocol by concurrently sending
both messages Final and Result to the seller and the client respectively.

GTrade is called a global type as it represents the choreography of the interactions
and not just a collection of local behaviours. It is of the form def G̃ in x0 where G̃
represents the transitions between states, and where x0 is the initial state of all the
participants. A transition of the form x0 = S→ B : Item〈string〉;x1 corresponds to the
emission of a message Item carrying a value of type string from S to B, followed by the
interactions that happen in x1. A transition x2 = x3 + x6 denotes a choice (done by one
of the participants, here B) between following with x3 or x6. A transition x6 = x7 | x8

describes that the interaction should continue concurrently with the actions of x7 and
of x8. In a symmetric way, a transition x5 + x1 = x2 merges two branches that are
mutually exclusive, while a transition x9 | x10 = x11 joins two concurrent interaction
threads reaching points x9 and x10 into a single thread starting from x11.

Local Types and CFSMs. We build the formal connection between multiparty session
types, CFSMs and processes by first projecting a global type to the local type of each
end-point. We then show that the local types are implementable as CFSMs. This de-
fines a new subclass of CFSMs, named Multiparty Session Automata, or MSA, that are
not limited to two machines or to half-duplex communications, and that automatically
satisfy distributed safety and progress.

To illustrate this relationship between local types and MSA, we give in Fig. 1 the
CFSM representation of Trade: on the left is the seller S, at the centre the broker B, on
the right the client C. These communicating automata correspond to the collection of
local behaviours represented by the local types (shown later in Ex. 3.1). Each automaton
starts from an initial state S0, B0 or C0 and allows some transitions to be activated.
Transitions can either be outputs of the form SB!Item where SB indicates the channel
between the seller S and the broker B and where Item is the message label; or inputs
of the symmetric form SB?Item. When a sending action happens, the message label is
appended to the channel’s FIFO queue. Activating an input action requires the expected
label to appear on top of the specified queue.
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Our Contributions. are listed below, with the corresponding section number:

– We introduce new generalised multiparty (global and local) session types that solve
open problems of expressiveness and algorithmic projection posed in [6] (§ 2).

– We give a CFSM interpretation of local types that defines a formal semantics for
global types and allows the standardisation of distributed safety properties between
session type systems and communicating automata (§ 3).

– We define multiparty session automata, a new communicating automata subclass
that automatically satisfy strong distributed safety properties, solving open ques-
tions from [7, 23] (§ 3).

– We develop a new typing system for multiparty session mobile processes gener-
alised with choice, fork, merge and join constructs (§ 4, § 5.1), and prove that typed
processes conform the safety and liveness properties defined in CFSMs (§ 5.2).

– We compare our framework with existing session type theories and CFSMs re-
sults (§ 6). Our framework (global type well-formedness checking, projection, type-
checking) is notably polynomial in the size of the global type or mobile processes.

The long version [18] provides proofs, auxiliary definitions and examples.

2 Generalised Multiparty Sessions

2.1 Global Types for Generalised Multiparty Sessions

This subsection introduces new generalised global types, whose expressiveness encom-
passes previous session frameworks. 1The new features are flexible fork, choice, merge
and join operations for precise thread management.

G ::= def G̃ in x Global type

G ::= x = p→ p′ : l〈U〉;x′ Labelled messages
| x = x′ | x′′ Fork
| x = x′+x′′ Choice

U ::= 〈G〉 | bool | nat | · · · Sorts

| x | x′ = x′′ Join
| x+x′ = x′′ Merge
| x = end End

A global type G = def G̃ in x0 describes an interaction between a fixed number of
participants. The prescribed interaction starts from x0, which we call the initial state,
and proceeds according to the transitions specified in G̃. The state variables x in G̃
represent the successive distributed states of the interaction. Transitions can be labelled
message exchanges x = p → p′ : l〈U〉;x′ where p and p′ denote the sending and re-
ceiving participants (process identities), U is the payload type of the message and l its
label. This transition specifies that p can go from x to the continuation x′ by sending
message l, while p′ goes from x to x′ by receiving it. All other participants can go from
x to x′ for free. Sort types U include shared channel types 〈G〉 or base types.x = x′+x′′

represents the choice (made by exactly one participant) between continuing with x′ or
x′′ and x = x′ | x′′ represents forking the interactions, allowing the interleaving of ac-
tions at x′ and x′′. These forking threads are eventually collected by joining construct
x′ | x′′ = x. Similarly choices are closed by merging construct x′+ x′′ = x, where two
mutually exclusive paths share a continuation. x = end denotes session termination.

1 We omit the delegation for space reason. Its inclusion is straightforward, see [18].
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The motivation behind this choice of graph syntax is to support general graphs. A
traditional global type syntax tree, with operators fork | and choice +, even with recur-
sion [3, 6, 10, 14], is limited to series-parallel graphs.

Example 2.1 (Generalised Global Types)). We now give several example, with their
graph representation. We keep this representation informal throughout this paper (al-
though there is an exact match with the syntax: variables are edges and transitions are
nodes). The examples are numbered 1–7, with increasing complexity.

1.
G1 = def x0 = Alice→ Bob : Msg〈nat〉;x1

x1 = end in x0

2.

G2 = def x0 = x1 +x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Alice→ Bob : Film〈string〉;x4

x3 +x4 = x5
x5 = end in x0

3.

G3 = def x0 = x1 | x2
x1 = Alice→ Bob : Book〈string〉;x3
x2 = Bob→ Alice : Film〈string〉;x4

x3 | x4 = x5
x5 = end in x0

4.
G4 = def x0 +x2 = x1

x1 = Alice→ Bob : Msg〈string〉;x2 in x0

6.

G6 = def x0 = x1 +x3
x1 = Alice→ Bob : Book〈string〉;x2
x2 = Bob→ Carol : Item〈nat〉;x4
x3 = Alice→ Carol : Film〈string〉;x5

x4 +x5 = x6
x6 = Carol→ Bob : Order〈string〉;x7
x7 = end in x0

7.

GAB = def x0 = x1 | x2
x1 +x3 = x4
x2 +x5 = x6

x4 = Alice→ Bob : Msg1〈string〉;x7
x7 = x8 | x9
x8 = Bob→ Alice : Ack1〈unit〉;x10

x6 | x9 = x11
x11 = Alice→ Bob : Msg2〈string〉;x12
x12 = x13 | x14
x13 = Bob→ Alice : Ack2〈unit〉;x5

x10 | x14 = x3 in x0

1. A simple one-message (Msg of type nat) is exchanged between Alice and Bob.
2. A protocol with a simple choice between messages Book and Film.
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3. Alice and Bob concurrently exchange the messages Book and Film.
4. A protocol where Alice keeps sending successive messages to Bob (recursion is

written using merging).
5. The Trade example from § 1 (Fig. 1) shows how choice, recursion and parallelism

can be integrated to model a three party protocol.
6. G6 features an initial choice between directly contacting Carol or to do it through

Bob. Note that without the last interaction from Carol to Bob (in x6), if the chosen
path leads to x3, Bob enters a deadlock, waiting forever for a message from Alice.

7. GAB gives a representation of the Alternating Bit Protocol. Alice repeatedly sends
to Bob alternating messages Msg1 and Msg2 but will always concurrently wait for
the acknowledgement Acki to send Msgi. This interaction structure requires a gen-
eral graph syntax and is thus not representable in any existing session type frame-
work, and is difficult in other formalisms (see § 6). We emphasise the fact that, not
only it is representable in our syntax, but our framework is able to demonstrate its
progress and safety and enforce it on realistic processes.

2.2 Well-formed Global Types

This subsection defines three well-formedness conditions for global types.

Sanity Conditions. within global types prevent possible syntactic confusions about
which continuations to follow at any given point. A global type G = def G̃ in x0 satisfies
the sanity conditions if it satisfies the following conditions.

1. (Unambiguity) Every state variable x except x0 should appear exactly once on the
left-hand side and once on the right-hand side of the transitions in G̃.

2. (Unique start) x0 appears exactly once, on the left-hand side.
3. (Unique end) end appears at most once.
4. (Thread correctness) The transitions G̃ define a connected graph where threads

are always collected by joins.

G¬thr = def x0 = x1 +x2
x1=Alice→Bob :Book〈string〉;x3
x2=Alice→Bob :Film〈string〉;x4

x3 |x4=x5
x5=Bob→ Alice : Price〈nat〉;x6
x6=end in x0

The conditions (1–3) are self-explanatory.
(Thread correctness) aims at verifying connex-
ity, the ability to reach end (liveness) and that
global types should always join states that oc-
cur concurrently and only them: this prevents
both deadlocks and state explosion (see [18] for
the polynomial verification algorithm). In G¬thr (written above), an illegal join waits for
two mutually exclusive messages: as a consequence, Bob is in a deadlock, waiting for
both Book and Film to arrive from Alice.

Local Choice is essential for the consistency of a global type with respect to choice
(branching). For G = def G̃ in x0, we need to check that each choice is clearly la-
belled, local to a participant (the choice of which branch to follow should be made by
a unique participant) and propagated to the others. To this effect, we define a function
Rcv(G̃)(x) below, which computes the set of all the participants that will be expect-
ing at least one message starting from state x. Additionally, Rcv(G̃)(x) returns the la-
bel l of the received message and the merging points x̃ encountered. We say that the
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equality Rcv(G̃)(x1) = Rcv(G̃)(x2) holds if ∀(p : l1 : x̃1) ∈ Rcv(G̃)(x1),∀(p : l2 : x̃2) ∈
Rcv(G̃)(x2), l1 �= l2∨ x̃1, x̃2 share a non-null suffix (i.e. the two branches have merged).
Note that G6 in Ex. 2.1 satisfies this condition (the Rcv sets of both branches contain
Bob and Carol).

Rcv(G̃)(x) = Rcv(G̃, /0, /0)(x) (remembers recursive calls and receivers)

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ ∈ p̃ or if x | x′′ = x′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = {p′ : l : x̃}∪Rcv(G̃, x̃,p′p̃)(x′) if x = p→ p′ : l〈U〉;x′ ∈ G̃∧p′ /∈ p̃

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃, p̃)(x′)∪Rcv(G̃, x̃, p̃)(x′′) if x = x′+x′′ ∈ G̃ or x = x′ | x′′ ∈ G̃

Rcv(G̃, x̃, p̃)(x) = /0 if x+x′ = x′′ ∈ G̃∧x′′ ∈ x̃ or if x = end ∈ G̃

Rcv(G̃, x̃, p̃)(x) = Rcv(G̃, x̃x′′, p̃)(x′′) if x′+x = x′′ ∈ G̃∧x′′ /∈ x̃

G¬loc = def x0 = x1 +x2
x1=Alice→Bob :Book〈string〉;x3
x2=Bob→Alice :Film〈string〉;x4

x3+x4=x5
x5=end in x0

To guarantee that choices are local to a partici-
pant, we also define a function that asserts that,
for a choice x = x1 + x2 ∈ G̃, a unique sender p
is active in each branch x1 and x2. This is writ-
ten ASend(G̃)(x) = p and is undefined if there is
more than one active sender (i.e. if the choice is
not localised at a unique participant p) (the definition is in [18]). As an example, we
give above an illegal global type G¬loc where Alice and Bob are respectively the active
sender of branches x1 and x2: as both branches do not agree, the mutual exclusion of
Book and Film can be violated.

Definition 2.1 (Local Choice). A global type G = def G̃ in x0 satisfies the local choice
conditions if for every transition x = x′ + x′′ ∈ G̃, we have (1) (Choice awareness)
Rcv(G̃)(x′) = Rcv(G̃)(x′′); and (2) (Unique sender) ∃p,ASend(G̃)(x) = p.

Linearity. In order to avoid processes with race-conditions, we impose that no partic-
ipant can be faced with two concurrent receptions where messages can have the same
label. This condition, linearity, is enforced by comparing the results of Lin(G̃)(x1) and
Lin(G̃)(x2) whenever a forking transition x = x1 | x2 is in G̃. The Lin function works in
a similar way on message labels as the Rcv function on message receivers (linearity is
to forks what choice awareness is to choice) and it thus omitted here. As an example,
linearity would prevent the labels Msg1 and Msg2 from both being renamed Msg0 in
GAB (since they can be received concurrently and thus confused), but would allow the
two labels of G3 to be identical (they are received by two different parties). Note that
the linearity condition incidentally prevents the unbounded creation of threads.

Definition 2.2 (Linearity). A global type G = def G̃ in x0 satisfies the linearity condi-
tion if, for every transition x = x′ | x′′ ∈ G̃, we have Lin(G̃)(x′) = Lin(G̃)(x′′).

Well-formedness. We say that a global type G= def G̃ in x0 is well-formed, if it satisfies
the sanity, local choice and linearity conditions. These conditions are related to similar
CFSM properties, as discussed in § 3.2. We can easily check that global types from
Ex. 2.1 are well-formed. Since Rcv, ASend and Lin can be computed in polynomial
time in the size of G by a simple syntax graph traversal, we have:

Proposition 2.1 (Well-formedness Verification). Given G, we can determine whether
G is well-formed or not in polynomial time.
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3 Multiparty Session Automata (MSA) and their Properties

This section starts by defining local types, details the translation from local types into
CFSMs, and shows that these CFSMs guarantee the properties given in § 3.3. We call
this class of communicating systems multiparty session automata (MSA).

3.1 Local Types and the Projection Algorithm

Local types represent the actions of session end-points that each process implementa-
tion must follow. As for global types, a local type T follows the shape of a state machine
definition: local types are of the form def T̃ in x0.

T ::= def T̃ in x local type
T ::= x =!〈p, l〈U〉〉.x′ send | x = x′ ⊕x′′ internal choice | x = x′ | x′′ fork

| x =?〈p, l〈U〉〉.x′ receive | x = x′ & x′′ external choice | x | x′ = x′′ join
| x = x′ indirection | x+x′ = x′′ merge | x = end end

The local type for send (!〈p, l〈U〉〉) corresponds to the action of sending to p a message
with label l and type U , while receive (?〈p, l〈U〉〉) is the action of receiving from p a
message with label l and type U . Other behaviours are the indirection (nop), internal
choice, external choice, merge, fork, join and end. Note that merge is used for both
internal and external choices.

We define the projection of a well-formed global type G to the local type of partici-
pant p (written G � p) below. The projection is straightforward: x= p→ q : l〈U〉;x′ is an
output from p’s viewpoint and an input from q’s viewpoint; otherwise it creates an in-
direction link from x to x′ (i.e. this message exchange is invisible). Choice x = x′+ x′′

is projected to the internal choice if p is the unique (thanks to the local choice well-
formedness condition of definition 2.1) participant deciding on which branch to choose;
otherwise the projection gives an external choice. For local types, we also define a con-
gruence relation ≡ over T̃ which eliminates the indirections (T̃ ,x = x′ ≡ T̃ [x/x′]) and
locally irrelevant choices, and removes the unused local threads. See [18].

def G̃ in x � p = def G̃ �G̃ p in x

x = p→ p′ : l〈U〉;x′ �G̃ p = x =!〈p′, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′ = x =?〈p, l〈U〉〉.x′
x = p→ p′ : l〈U〉;x′ �G̃ p′′ = x = x′ (p /∈ {p,p′})

x | x′ = x′′ �G̃ p = x | x′ = x′′

x = x′ | x′′ �G̃ p = x = x′ | x′′

x = x′+x′′ �G̃ p = x = x′ ⊕x′′

(if p= ASend(G̃)(x))
x = x′+x′′ �G̃ p = x = x′ & x′′

(otherwise)
x+x′ = x′′ �G̃ p = x+x′ = x′′

x = end �G̃ p = x = end

Proposition 3.1 (Projection). Given a well-formed G, the computation of G � p is lin-
ear in the size of G.

Example 3.1 (Trade Example). We illustrate our projection algorithm by showing the
result of the projection of the global type GTrade from § 1 to the three local types of the
seller TTradeS, the broker TTradeB and the client TTradeC. Local type congruence rules are
used to simplify the result. When comparing with the CFSMs of Fig. 1, one can observe
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the similarities but also that local types make the interaction structure clearer and more
compact thanks to more precise type constructs (⊕, & and |).

TTradeS = def x0= !〈SB, Item〈string〉〉.x1
x1=?〈BS,Final〈nat〉〉.x10

x10=end in x0

TTradeC = def x5+x0=x2
x2=x3 & x6
x3=?〈BC,Offer〈nat〉〉.x4
x4= !〈CB,Counter〈nat〉〉.x5
x6=?〈BC,Result〈nat〉〉.x10

x10=end in x0

TTradeB = def x0=?〈SB, Item〈string〉〉.x1
x5 +x1=x2

x2=x3⊕x6
x3= !〈BC,Offer〈nat〉〉.x4
x4=?〈CB,Counter〈nat〉〉.x5
x6=x7 | x8
x7= !〈BS,Final〈nat〉〉.x9
x8= !〈CB,Result〈nat〉〉.x10

x9 | x10=x11
x11=end in x0

3.2 Communicating Finite State Machines

In this subsection, we give some preliminary notations (following [7]) and definitions
that are relevant to establishing the CFSM connection to local types.

Definitions. ε is the empty word. A is a finite alphabet and A∗ is the set of all finite
words over A. |x| is the length of a word x and x.y or xy the concatenation of two
words x and y. Let P be a set of process identities fixed throughout the paper: P⊆
{Alice,Bob,Carol, . . . ,A,B,C, . . . ,S, . . .}.

Definition 3.1 (CFSM). A communicating finite state machine is a finite transition
system given by a 5-tuple M = (Q,C,q0,A,δ ) where (1) Q is a finite set of states; (2)
C = {pq ∈P2 | p �= q} is a set of channels; (3) q0 ∈ Q is an initial state; (4) A is a finite
alphabet of messages, and (5) δ ⊆ Q×(C×{!,?}×A)×Q is a finite set of transitions.

In transitions, pq!a denotes the sending action of a from process p to process q, and
pq?a denotes the receiving action of a from p by q. π ,π ′, ... range over actions. A
state q ∈ Q whose outgoing transitions are all labelled with sending (resp. receiving)
actions is called a sending (resp. receiving) state. A state q∈Q which does not have any
outgoing transition is called a final state. If q has both sending and receiving outgoing
transitions, then q is called mixed.

A path in M is a finite sequence of q0, . . . ,qn (n ≥ 1) such that (qi,π ,qi+1) ∈ δ
(0 ≤ i ≤ n− 1), and we write q π−→q′ if (q,π ,q′) ∈ δ . M is connected if for every state
q �= q0, there is a path from q0 to q. Hereafter we assume each CFSM is connected.

A CFSM M = (Q,C,q0,A,δ ) is deterministic if for all states q ∈ Q and all actions
π , (q,π ,q′),(q,π ,q′′) ∈ δ imply q′ = q′′.2

Definition 3.2 (CS). A (communicating) system S is a tuple S = (Mp)p∈P of CFSMs
such that Mp = (Qp,C,q0p,A,δp).

2 “Deterministic” often means the same channel should carry a unique value, i.e. if (q,c!a,q′) ∈
δ and (q,c!a′,q′′) ∈ δ then a = a′ and q′ = q′′. Here we follow a different definition [7] in
order to represent branching type constructs.
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Let S = (Mp)p∈P such that Mp = (Qp,C,q0p,A,δp) and δ = �p∈Pδp. A configuration
of S is a tuple such that s = (�q;�w) with �q = (qp)p∈P with qp ∈ Qp and �w = (wpq)p �=q∈P
with wpq ∈ A∗. A configuration s′ = (�q′;�w′) is reachable from another configuration
s = (�q;�w) by the firing of the transition t, written s → s′ or s t−→s′, if there exists a ∈ A
such that either:
1. t = (qp,pq!a,q′p) ∈ δp and (a) q′

p′ = qp′ for all p′ �= p; and (b) w′
pq = wpq.a and

w′
p′q′ = wp′q′ for all p′q′ �= pq; or

2. t = (qq,pq?a,q′q) ∈ δq and (a) q′
p′ = qp′ for all p′ �= q; and (b) wpq = a.w′

pq and
w′
p′q′ = wp′q′ for all p′q′ �= pq.

The condition (1-b) puts the content a to a channel pq, while (2-b) gets the content a
from a channel pq. The reflexive and transitive closure of → is →∗. For a transition
t = (s,π ,s′), we write �(t) = π . We write s1

t1 · · · tm−−−→sm+1 for s1
t1−→s2 · · · tm−→sm+1. We use

the metavariable ϕ to designate sequences of transitions of the form t1 · · · tm. The initial
configuration of the system is s0 = (�q0;�ε) with �q0 = (q0p)p∈P. A final configuration of
the system is s f = (�q;�ε) with all qp ∈�q final. A configuration s is reachable if s0 →∗ s
and we define the reachable set of S as RS(S) = {s | s0 →∗ s}.

Properties Let S be a communicating system, t one of its transitions and s = (�q;�w) one
of its configurations. The following definitions follow [7, Definition 12].
1. s is stable if all its buffers are empty, i.e., �w =�ε .
2. s is a deadlock configuration if �w =�ε and each qp is a receiving state, i.e. all ma-

chines are blocked, waiting for messages.
3. s is an orphan message configuration if all qp ∈�q are final but �w �= /0, i.e. there is at

least an orphan message in a buffer.
4. s is an unspecified reception configuration if there exists q ∈P such that qq is a

receiving state and (qq,pq?a,q′q) ∈ δ implies that |wpq| > 0 and wpq �∈ aA∗, i.e qq
is prevented from receiving any message from buffer pq.

The set of receivers of transitions s1
t1 · · · tm−−−→sm+1 is defined as Rcv(t1 · · · tm) = {q | ∃i ≤

m, ti = (si,pq?a,si+1)}. The set of active senders are defined as ASend(t1 · · · tm) = {p |
∃i ≤ m, ti = (si,pq!a,si+1)∧ ∀k < i. tk �= (sk,p

′p?b,sk+1)} and represent the partici-
pants who could immediately send from state s1. These definitions match the global
types ones. A sequence of transitions (an execution) s1

t1−→s2 · · · sm
tm−→sm+1 is said to be

k-bounded if all channels of all intermediate configurations si do not contain more than
k messages.

Definition 3.3 (Properties). Let S be a communicating system.
1. S satisfies the local choice property if, for all s ∈ RS(S) and s ϕ1−→s1 and s ϕ2−→s2, there

exists ϕ ′
1,ϕ

′
2,s

′
1,s

′
2 such that s1

ϕ ′
1−→s′1 and s2

ϕ ′
2−→s′2 with Rcv(ϕ1ϕ ′

1) = Rcv(ϕ2ϕ ′
2) and

ASend(ϕ1ϕ ′
1) = ASend(ϕ2ϕ ′

2).
2. S is deadlock-free (resp. orphan message-free, reception error-free) if s ∈ RS(S), s

is not a deadlock (resp. orphan message, unspecified reception) configuration.
3. S is strongly bounded if the contents of buffers of all reachable configurations form

a finite set.
4. S satisfies the progress property if for all s ∈ RS(S), s −→∗ s′ implies s′ is either

final or s′ −→ s′′; and S satisfies the liveness property3 if for all s ∈ RS(S), there
exists s −→∗ s′ such that s′ is final.

3 The terminology follows [6].
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3.3 Multiparty Session Automata (MSA)

We now give a translation from local types to CFSMs, specifying the sequences of ac-
tions in a local type as transitions of a CFSM. We use the following notation to keep
track of local states:

X ::= x | X | X X[ ] ::= | X[ ] | X | X | X[ ]
We also define an equivalence relation≡T̃ that identifies two states if one of them allows
the actions of the other:

X | X′ ≡T̃ X′ | X X | (X′ | X′′)≡T̃ (X | X′) | X′′

x = x′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ | x′′ ∈ T̃
X[x]≡T̃ X[x′ | x′′]

x | x′ = x′′ ∈ T̃
X[x | x′]≡T̃ X[x′′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ & x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x = x′ ⊕x′′ ∈ T̃
X[x]≡T̃ X[x′]

x = x′ ⊕x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x]≡T̃ X[x′′]

x+x′ = x′′ ∈ T̃
X[x′]≡T̃ X[x′′]

Definition 3.4 (Translation from Local Types to MSA). Let T = def T̃ in x0 be the
local type of participant p projected from G. The automaton corresponding to T is
A(T) = (Q,C,q0,A,δ ) where:

– Q is defined as the set of states X built from the recursion variables {xi} of T. Q is
defined up to the equivalence relation ≡T̃ .

– C = {pq | p,q ∈ G}; q0 = x0; and A is the set of {l ∈ G}

– δ is defined by:
(X[x],(pp′!l),X[x′]) ∈ δ if x =!〈p′, l〈U〉〉.x′ ∈ T̃
(X[x],(p′p?l),X[x′]) ∈ δ if x =?〈p′, l〈U〉〉.x′ ∈ T̃

We call Multiparty Session Automata (MSA), communicating systems S of the form
(A(G � p))p∈G when G is a well-formed global type.

The generation of an MSA from a global type G is exponential in the size of G. It
is however polynomial in the absence of parallel composition. Note that neither well-
formedness nor type-checking requires the explicit generation of MSAs.

MSA Examples. The following shows local types (projections from Ex. 2.1) and their
corresponding automata. The Trade example from Fig. 1 and Ex. 3.1 is another com-
plete example of MSA.

1.
G1 � Alice = def x0 = !〈Bob,Msg〈nat〉〉.x1

x1 = end in x0

2.

G2 � Bob = def x0 = x1&x2
x1 = ?〈Alice,Book〈string〉〉.x3
x2 = ?〈Alice,Film〈string〉〉.x4

x3 +x4 = x5
x5 = end in x0

3.

G3 � Alice = def x0 = x1 | x2
x1 = !〈Bob,Book〈string〉〉.x3
x2 = ?〈Bob,Film〈string〉〉.x4

x3 | x4 = x5
x5 = end in x0
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1. The MSA of the projection of G1 to Alice has two states and one transition.
2. Since Bob is receiving Alice’s messages, the projection of G2 to Bob gives an

external choice. The automaton has two nodes x0 (equivalent to x1 and x2) and x5

(equivalent to x3 and x4), and two transitions between these nodes.
3. G3 has two concurrent communications. It results in an automaton for Alice with

four nodes, reflecting the interleavings of the concurrent interactions.

3.4 Properties of MSAs

This subsection proves that MSA satisfy the properties defined in definition 3.3. We
qualify executions of the form s ϕ1−→s1

ϕ2−→s2 with s ∈ RS(S) such that ϕ1 is an alter-
nation of sending and corresponding receive actions (i.e. the action pq!a is immedi-
ately followed by pq?a) and ϕ2 is only sending actions as being stable-outputs. The
key property is Lemma 3.1(3), whose proof is non-trivial and relies on Lemma 3.1(2)
and well-formed conditions of global types (except choice awareness in definition 2.1).
Then Lemma 3.1(4) (the existence of stable executions [7]) directly leads to unspecified
reception error-freedom and orphan message freedom. For the deadlock-freedom, we
require choice awareness of Lemma 3.1(1), ensured by the same condition in definition
2.1. Theorem 3.2 uses the results from [9, § 3]; in Theorem 3.3, progress is proved from
Theorem 3.1, while liveness directly uses the thread correctness condition.

Lemma 3.1 (Properties of MSAs). Suppose S is a MSA.
1. (local choice) S satisfies a local choice condition.
2. (diamond property) Suppose s ∈ RS(S) and s t1−→s1 and s t2−→s2 where (1) t1 and t2 are

both inputs; or (2) t1 is an output and t2 is an input, then there exists s′ such that
s1

t ′1−→s′ and s2
t ′2−→s′ where �(t1) = �(t ′2) and �(t2) = �(t ′1).

3. (stable-outputs decomposition) Suppose s ∈ RS(S). Then there exists s0
ϕ1−→·· · ϕn−→s

where each ϕi is stable-outputs.
4. (stable) Suppose s0

ϕ1−→·· · ϕn−→s with ϕi stable-outputs. Then there exists an execution
ϕ ′−→ such that s ϕ ′−→s3 and s3 is stable, and there is a 1-buffer execution s0

ϕ ′′−→s3.

Theorem 3.1 (Safety Properties). A MSA S is free from unspecified reception errors,
orphan messages and deadlock.

Theorem 3.2 (Strong Boundedness). Consider a MSA S, generated from the local
types of G. If all actions that are within a cycle in G are also part of causal input-
output cycle (IO-causality) [9, 14],4 then S is strongly bounded.

Theorem 3.3 (Progress and Liveness). A MSA S satisfies the progress property. If a
MSA S is generated from the local types of G and G contains end, then S satisfies the
liveness property.

4 General Multiparty Session Processes

This section introduces general multiparty session processes . Our new system handles
(1) new external and internal choice operators that allow branching with different re-
ceivers and merging with different senders; and (2) forking and joining threads which
are not verifiable by standard session type systems [3, 6, 14].

4 It is formally defined in [9, 14] and [18].
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Syntax. The syntax of processes is defined below.

v ::= a | true | false | ... values

P ::= def P̃ in X definition

P ::= process transition
| x(x̃) = x〈G〉.x′(ẽ) init

| x(x̃) = x[p](y).x′(ẽ) request

| x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) send

| x(x̃) = x?〈p, l(y)〉.x′(ẽ) receive

| x(x̃) = x′(ỹ) | x′′(z̃) parallel

| x(x̃) =if e then x′(ẽ′) else x′′(ẽ′′) conditional

| x(x̃) = x′(x̃) & x′′(x̃) external choice

| x(ỹ) | x′(z̃) = x′′(x̃) join

| x(x̃)+x′(x̃) = x′′(x̃) merge

| x(x̃) = (νa) x′(ax̃) new name

| x(x̃) = 0 null

e ::= v | x | e∧ e | ... expression

h ::= /0 | h · (p,q, l〈v〉) messages

X ::= state
| x(ṽ) thread

| X | X parallel

| (νa)X restriction
| 0 null

N ::= network
| P def

| N || N parallel

| (νa)N new name
| 0 null
| (νs)N new session
| s : h queue

| a〈s〉[p] invitation

A process always starts from a definition P = def P̃ in x(ṽ), where the parameters of
x in P̃ are to be instantiated by ṽ. The form of process actions P̃ follows global and
local types and rely on a functional style to pass values around continuations. Variables
x̃ in x(x̃) occurring on the left-hand side of a process action are binding variables on
the right-hand side. Variables y in request and receive are also binding (e.g. in x(x,z) =
z?〈p, l(y)〉.x′(x,y,z), the final z is bound by z in x(x,z), while y is bound by the input).

A session is initialised by a transition of the form x(x̃) = x〈G〉.x′(ẽ) where G is a
global type. It attributes a global interaction pattern defined in G to the shared channel
a that x gets substituted to. The variables in ẽ are all bound by x̃. After a session ini-
tialisation, participants can accept the session with x(x̃) = x[p](y).x′(ẽ) (as long as x is
substituted by the same share channel a as the initialisation), starting the interaction: the
variables in ẽ are bound by x̃ and by y, which, at run-time, receives the session channel.

The sending action x!〈p, l〈e〉〉 allows in session x to send to p a value e labelled by a
constant l. The reception x?〈p, l(y)〉.x′(ẽ) expects from p a message with a label l. The
message payload is then received in variable y, which binds in x′(ẽ).

x(x̃) = x′(ỹ) | x′′(z̃) represent forking threads (i.e. P |Q): ỹ and z̃ are subsets of x̃. The
conditional (if e then x′(ẽ′) else x′′(ẽ′′) ) and the external choices (x′(x̃) & x′′(x̃)) are
extensions of the traditional selection and branching actions of session types. The join
action collects parallel threads, while the merge action collects internal and external
choices. Note that external choice, fork, join and merge only allow a restricted use of
bound variables for continuations. x(x̃) = (νa)x′(ax̃) creates a new shared name a. 0 is
an inactive agent. For simplicity, we omit the action of leaving a session.

The process states X are defined from the state variables present in P̃. The network
N is a parallel composition of definition agents, with restrictions of the form (νa)N.

Once a session is running, our operational semantics uses run-time syntax not di-
rectly accessible to the programmer. X | X′ and (νa)X are for example only accessible
at run-time. Session instances are represented by session restriction (νs)P. The message
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buffer s : h stores the messages in transit for the session instance s. A session invitation
a[p]〈s〉 invites participant p to start the session s announced on channel a.

A network which only consists of shared name restrictions and parallel compositions
of def P̃ in x(�v) is called initial.

Operational Semantics. We define the operational semantics for processes and net-
works below. We use the following labels to organise the reduction of processes.

α,β ::= τ | s[p,q]!l〈v〉 | s[p,q]?l〈v〉 | a〈G〉 | a〈p〉[s]
The rules are divided into two parts. The first part corresponds to a transition relation
of the form P̃ % X α−→X′ representing that a process in a state X can move to state X′

with action α . The second part defines reductions within networks (with unlabelled
transitions N −→ N′). e ↓ v denotes the evaluation of expression e to v.

x[ṽ/x̃] = a ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x〈G〉.x′(ẽ) % x(ṽ)
a〈G〉−−−→ x′(ṽ′)

[INIT]
x[ṽ/x̃] = a ẽ[ṽ/x̃][s/y] ↓ ṽ′

x(x̃) = x[p](y).x′(ẽ) % x(ṽ)
a〈s〉[p]−−−−→ x′(ṽ′)

[ACC]

x[ṽ/x̃] = s[q] e[ṽ/x̃] ↓ v ẽ[ṽ/x̃] ↓ ṽ′

x(x̃) = x !〈p, l〈e〉〉.x′(ẽ) % x(ṽ)
s[q,p]!l〈v〉−−−−−−→ x′(ṽ′)

[SEND]

x[ṽ/x̃] = s[q] ẽ[ṽ/x̃][v/y] ↓ ṽ′

x(x̃)=x?〈p, l(y)〉.x′(ẽ) % x(ṽ)
s[p,q]?l〈v′〉−−−−−−→x′(ṽ′)

[RCV]
a �∈ ṽ

x(x̃)=(νa)x′(ax̃) % x(ṽ) τ−→ (νa)x′(aṽ)
[NEW]

e[ṽ/x̃] ↓ true ẽ′[ṽ/x̃] ↓ ṽ′

x(x̃)=if e then x′(ẽ′) else x′′(ẽ′′) % x(ṽ) τ−→ x′(ṽ′)
[IFT]

P̃,x(x̃) = x′(x̃) & x′′(x̃) % x′(ṽ) α−→ X
P̃,x(x̃) = x′(x̃) & x′′(x̃) % x(ṽ) α−→ X

[EXT] P̃ % X α−→ X′

def P̃ in X α−→ def P̃ in X′ [DEF] P τ−→ P′

P −→ P′ [TAU]

P
s[p,q]!l〈v〉−−−−−−→ P′

P || s : h −→ P′ || s : h · (p,q, l〈v〉)
[PUT] P

s[p,q]?l〈v〉−−−−−−→ P′

P || s : (p,q, l〈v〉) ·h −→ P′ || s : h
[GET]

P
a〈G〉−−−→ P′ p0, . . . ,pk ∈ G s �∈ fn(P′)

P −→ (νs)(P′ || s : ε || a〈s〉[p0] || . . . || a〈s〉[pk])
[INITN ] P

a〈s〉[p]−−−−→ P′

P || a〈s〉[p]−→ P′ [ACCN ]

Rule [SEND] emits a message from p to q, substituting variables x̃ by ṽ and evaluating
e to v. Rule [RCV] inputs a message and instantiates y to the received value v. Rule [INIT]

initiates a session, while rule [ACC] emits a signal which signifies the process’s readiness
to participate in a session. Rule [IFT] internally selects the first branch with respect to the
value of e ([IFF] is similarly defined). Rule [NEW] creates a new shared name. Rule [EXT]

is the external choice, which invokes either the left or right state variable, depending on
which label α is received.

Rules [DEF] and [TAU] promote processes to the network level. [INITN ] is used in com-
bination with [INIT]. It creates an empty queue s : ε together with invitations for each
participant. Rule [ACCN ] consumes an invitation to participate to the session if someone
has been signalled ready (via [ACC]). Other contextual rules are standard (we omit the
structure rules, ≡). We write −→∗ for the multi-step reduction.

Example 4.1 (Trade Example). We write here an implementation of the Trade example
from § 1. The reader can refer to Fig. 1 and Ex. 3.1 for the global and local types.
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PS = def x(x,y) = x〈GTrade〉.x′(x,y)
x′(x,y) = x[S](z).x0(y,z)
x0(y,z) = z ! 〈B, Item〈y〉〉.x1(z)

x1(z) = z? 〈B,Final(y)〉.x10(z,y)
x10(z,y) = 0 in x(a,“HGG”)

PC = def x(x, i) = x[C](z).x0(i,z)
x5(i,z)+x0(i,z) = x2(i,z)

x2(i,z) = x3(i,z) & x6(i,z)
x3(i,z) = z?〈B,Offer(y)〉.x4(i,z,y)

x4(i,z,y) = z !〈B,Counter〈i〉〉.x5(i+5,z)
x6(i,z) = z?〈B,Result(y)〉.x10(y,z)

x10(y,z) = 0 in x(a,50)

PS and PC, respectively correspond to the seller S and client C. PS initiates the session
by announcing GTrade on shared name a. According to rule [INITN ], it creates a session
name s, a message buffer and invitations for S, B and C. PS then joins the session as the
seller S, the variable z being used to contain the session name. PS proceeds with x0(y,z)
where y is the string “HGG” and z the session name. The execution of x0(y,z) sends a
message Item with payload “HGG” in the message buffer. PC starts in x(a,50) where a is
the shared name and 50 the price it is ready to offer initially. It joins the session as the
client C, gets in variable z the session name s and continues with x0(i,z). The message
Offer is then countered as many times needed with a slowly increased proposed price.

5 Properties of Generalised Multiparty Session Processes

5.1 Typing Generalised Multiparty Session Processes

Environments. We use u to denote a shared channel a and its variable x and c to denote
a session channel s[p] or its variable. The grammar of environments are defined as:

Γ ::= /0 | Γ ,u : U Δ ::= /0 | Δ ,c : T Σ ::= /0 | Σ ,x : Ũ

Γ is the standard environment which associates variables to sort types and shared names
to global types. Δ is the session environment which associates channels to session types.
Σ keeps tracking state variable associations. We write Γ ,u : U only if u �∈ dom(Γ ).
Similarly for other variables.

Judgements. The different judgements that are used are:
Γ % e : U Expression e has type U under Γ
Γ % P�Σ [] Σ ′ Left/right variables in P have types Σ /Σ ′ under Γ
Γ % P�Δ Process P has type Δ under Γ
Γ , P̃ % X�Δ State variable X has type Δ under Γ and P̃
Γ % N�Δ Network N has type Δ under Γ

Typing Rules. We only list two typing rules. There is one main difference with existing
multiparty typing system: to type a process P, we need to gather for every session
the typing constraints of the transitions P̃ in P, keeping track of associations such as
x1 =!〈p, l〈U〉〉.x2. We rely on an effective use of “matching” between local types and
inferred transitions to keep the typing system for initial processes simple.

ỹ : Ũ % ẽ : Ũ ′ ỹ : Ũ % x : 〈G〉 ∀i,Ti = T′
i �x=x′

% x(ỹz̃) = x〈G〉.x′(ẽz̃)�x : Ũ T̃ [] x′ : Ũ ′ T̃′ [INIT]

ỹ : Ũ % ẽ : Ũ ′ ỹ : Ũ % x : 〈G〉 ∀i,Ti = T′
i �x=x′ T = G � p

% x(ỹz̃) = x[p](y).x′(ẽz̃y)�x : Ũ T̃ [] x′ : Ũ ′ T̃′T
[REQ]
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In the rules, ỹ and z̃ correspond to sorts and session types, respectively. Rule [INIT] types
the initialisation. ỹ should cover x and variables in ẽ appearing in the right hand side.
The type system records that every zi should have type T�x=x′, which means that we
record x=x′ at the head of T (formally defined as: def x=x′, T̃ in x if T = def T̃ in x′).
Rule [REQ] is similar except we record the introduced projected session type T = G � p.

Proposition 5.1 (Decidability). Assuming the new and bound names and variables in
N are annotated by types, type checking of Γ % N terminates in polynomial time.

5.2 Properties of Typed Multiparty Session Processes

This subsection shows that typed processes enjoy the same properties as MSAs defined
in definition 3.3. The correspondence with CFSMs makes the statements of the proper-
ties of processes formally rigorous and eases the proofs.

Let � range over transition labels for types: � ::= τ | !〈p, l〈U〉〉 | ?〈p, l〈U〉〉. We de-
fine below a labelled transition relation between types T �−→T′, defined modulo structure
rules (for join and merge) and type equality.

def T̃ in x ≡ def T̃ ′ in x (T̃ = T̃ ′) ,EQ-
def x1 +x2 = x, T̃ in xi ≡ def x1 +x2 = x, T̃ in x (i = 1 or i = 2) ,MERGE-

def x1 | x2 = x, T̃ in x1 | x2 ≡ def x1 | x2 = x, T̃ in x ,JOIN-

def x =!〈p, l〈U〉〉.x′, T̃ in x
!〈p,l〈U〉〉−−−−−→ def x =!〈p, l〈U〉〉.x′, T̃ in x′ ,SEND�-

def x =?〈p, l〈U〉〉.x′, T̃ in x
?〈p,l〈U〉〉−−−−−→def x =?〈p, l〈U〉〉.x′, T̃ in x′ ,RECV�-

def x = x1 ⊕x2, T̃ in x τ−→ def x = x1 ⊕x2, T̃ in xi (i = 1 or i = 2) ,COND-
def T̃ in x1

�−→ def T̃ in x′1
def x = x1 & x2, T̃ in x1

�−→ def x = x1 & x2, T̃ in x′1
,CHOICE-

def T̃ in x1
�−→ def T̃ in x′1

def T̃ in x1 | X2
�−→ def T̃ in x′1 | X2

,PAR-
T1

!〈q,l〈U〉〉−−−−−→ T′
1 T2

?〈p,l〈U〉〉−−−−−→ T′
2

(s[p] : T1,s[q] : T2,Δ )−→ (s[p] : T′
1,s[q] : T′

2,Δ )
[COM]

The sending and receiving actions occur when the state variable x points to sending and
receiving types (Rules ,SENDl - and ,RECVl -). Others are contextual rules. We also use the
labelled transition relation between environments, denoted by (Γ ,Δ) α−→(Γ ′,Δ ′) where
the main rule is ,COM- which represents the reduction between a message queue and a
process at the network level. Other omitted rules are straightforward.

The following theorem, which is often called type soundness, states that if a process
(resp. network) emits a label (resp. performs a reduction), then the environment can do
the corresponding action, and the resulting process and the environment match.

Theorem 5.1 (Subject Congruence, Transition and Reduction).
1. Suppose Γ , P̃ % X�Δ and P̃ % X ≡ X′. Then Γ , P̃ % X′�Δ . Similarly for P and N.
2. Γ , P̃ % X�Δ and P̃ % X α−→X′ imply Γ ′, P̃ % X′�Δ ′ with (Γ ,Δ) α−→(Γ ′,Δ ′).
3. Γ % P�Δ and P α−→P′ imply Γ ′ % P′�Δ ′ with (Γ ,Δ) α−→(Γ ′,Δ ′).
4. Γ % N�Δ and N −→ N′ imply Γ % N′�Δ ′ with Δ −→∗ Δ ′.

We also use the following one-to-one correspondence between local state automata and
local types. We write �̃−→ for �1−→·· · �n−→. We use the notation �=⇒ for ( τ−→)∗ �−→( τ−→)∗ and
similarly for �̃=⇒. The proof is straightforward by the definition in § 3.3.

Theorem 5.2 (CFSMs and Local Types). (G � p) �̃=⇒ iff A(G � p) �̃−→.
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We say P has a type error if expressions in P contain either a type error for a value
or constant in the standard sense (e.g. (true+ 7)) or a reception error (e.g. the sender
sends a value with label l0 while the receiver does not expect label l0). The following
theorem is derived by Theorems 5.1 and 5.2.

Theorem 5.3 (Type Safety). Suppose Γ % N. For any N′ such that N −→∗ N′, N′ has
no type error.

Using Theorem 3.2, boundedness is derived as Theorem 5.4.

Theorem 5.4 (Boundedness). Suppose for all G in Γ , A({G � pi}1≤i≤n) with p1, ...,pn

∈ G is strongly bounded. Then for all N′ such that Γ % N and N −→∗ N′, the reachable
contents of a given channel buffer is finite.

This result can be extended to other variants such as existential boundedness or K-
boundedness [12] by applying the global buffer analysis on 〈G〉 from [9].

5.3 Advanced Properties in a Single Multiparty Session

We now focus on advanced properties guaranteed when only a single multiparty session
executes. We say N is simple [14, 24] if N0 −→∗ N such that N0 ≡ P1 || · · · || Pn and Γ %
N0 where each Pi is either an initiator def x0(x) = x〈G〉.x1,x1 = 0 in x0(a) or an acceptor
def x0(x) = x[p](y).x1, P̃ in x0(a)where P̃ does not contain any initiator, acceptor or name
creator. This means that, once the session is started, all processes continue within that
session without any interference by other sessions. In a simple network, we can guarantee
the following completeness result (the reverse direction of Theorem 5.1).

Theorem 5.5 (Completeness). Below we assume X, P and N are sub-terms of deriva-
tions from a simple network. Then: Γ , P̃ %X�Δ and (Γ ,Δ) α−→(Γ ′,Δ ′) imply P̃%X α−→X′

with Γ ′, P̃ % X′�Δ ′. Similarly P and N satisfy the reversed direction of Theorem 5.1.

We say N is a deadlock if all processes are blocked, waiting for messages. Formally N
is a deadlock if there exists N′ such that N −→∗ N′ = (νs)(s : /0 || P′

1 || · · · || P′
n) || N′′

and for all 1≤ j ≤ n, if P′
j

α j−→P′′
j then α j = s[p,q]?l〈v〉 (i.e., P′

j is an input process). The
following theorem can be proved by the deadlock-freedom of MSA (Theorem 3.1) and
Completeness (Theorem 5.5) with Theorem 5.2.

Theorem 5.6 (Deadlock Freedom). Suppose Γ % N is simple. Then there is no reduc-
tion such that N −→∗ N′ and N′ is a deadlock.

Below (1), is by Theorem 5.5 and (2) is by Theorems 5.2 and 5.5 with (1).

Theorem 5.7. (1) (Progress) Suppose Γ % N is simple. Then for all N −→∗ N′, either
N′ ≡ 0 or N′ −→N′′. (2) (Liveness) Suppose a : 〈G〉 %N and A({G � pi}1≤i≤n) satisfies
liveness with p1, ...,pn ∈ G. Assume N −→∗ (νs)(s : h || P1 || P2 || · · · || Pn) such that
a : 〈G〉 % P j � s[p j] : T j . Then there exits a reduction such that N −→∗ 0.

Thanks to the strong correspondence that typing enforces between processes behaviours
and automata, we have proved that all the good properties enjoyed by MSA generated
by a global type G also hold in the processes typed by the same G.
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6 Related Work
The relationship with other ses-
sion types and CFSMs is sum-
marised in the diagram. The out-
side box represents communicat-
ing automata, with the undecid-
able separation between deadlock-
free and deadlocking machines.
Within it, we represent the known
inclusions between session and
CFSMs systems. First, binary (two
party) session types [13] corre-
spond to the set of compatible half-
duplex deterministic two-machine systems without mixed states [12, 23] (compatible
means that each send is matched by a receive, and vice-versa). This is not the case for the
MSA generated from secure session specifications [8], which satisfy strong sequentiality
propertiesandaremultiparty.Theycanhoweverbeshowntoberestrictedhalf-duplex in[7,
§ 4.1.2] (i.e. atmostonequeueisnon-empty).Theoriginalmultipartysession types [3,14],
which correspond to our system when parallel composition is disallowed, are a subset of
the natural multiparty extension of half-duplex system [7, § 4.1.2] where each pair of ma-
chines is linked by two buffered channels, one in each direction, such that at most one
is non-empty. Our MSA can have mixed states and are not half-duplex, as shown in G3

(Ex. 2.1 (3), both Alice and Bob can fill both buffers concurrently).From this picture are
omitted Gouda et al.’s pioneering work [12] and Villard’s extension [16] of [23] to unre-
liable systems, which proves that safety properties and boundedness are still decidable.
These works [12, 16, 23] only treat the two-machine case.

Finally, we mention two related works by Castagna et al. [6] and Bultan et al. [1, 2]. The
first two papers [1, 6] focus on proving the semantical correspondence between global
and local descriptions. In Castagna et al. [6], global choreographies are described by a
language of types with general fork (∧), choice (∨) and repetition (G)∗ (which represents
a finite loop of zero or more interactions of G). Note that these global types of [6] use
series-parallel syntax trees and are thus limited by the lack of support for general joins
and merges. This prevents many examples, such as the Alternating Bit Protocol GAB in
Ex. 2.1 (7), the Trade example from § 1 and G6 in Ex. 2.1 (6), from being algorithmi-
cally projectable (i.e. implementable). In [1], on the other hand, global specifications are
given by a finite state machine with no special support for parallel composition. In both
cases, their systems do not treat the extended causality between sends and receives (the
OO-causality and II-causality at different channels [14]). They also do not give a prac-
tical (language-based) framework, from types to processes to tackle real programs. In
terms of results, [6] proposes well-formedness conditions under which local types cor-
respond to global types, while [1] describes a sound and complete decision algorithm for
realising (i.e. projecting) a choreography specification. Our work avoid this theoretical
completeness question by using sufficient well-formedness conditions and by directly
giving a global type semantics in terms of local automata. Recently, [2] extends [1] to
tackle the synchronisability problem (equivalent to our Lemma 3.1 (3)). They however
do not go as far as deadlock-freedom, progress and liveness.
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When comparing these works with ours, the main differences are: (1) unlike [23] and
ours, [1, 6] only investigate the relationship between global and local specifications, not
from types (contracts) to programs or processes to ensure safety properties; (2) while
the semantical tools are close (formal languages, finite state machines), there are sub-
tle differences concerning buffer-boundedness [1, 2], finite recursion [6] and causality
[1, 2, 6]; (3) Bultan et al. [1, 2] do not propose any global description language, while
Castagna et al.’s language [6] is not rich enough compared to ours; and (4) the algorith-
mic projectability in [6] is more limited than ours, and [1, 2] only propose exponential
decision results, limiting their applicability.
Message Sequence Graphs (MSGs). In terms of expressiveness, a very compara-
ble system is the extension of Message sequence charts (MSCs) to Message Sequence
Graphs (MSGs). MSGs are finite transition systems where each state embeds a single
MSC. Many variants of MSGs are investigated in the literature [11] in order to provide
efficient conditions for verification and implementability, i.e. projectability to CFSMs.
Some of these conditions in MSGs are similar to ours: for example, our local choice
condition corresponds to the local choice condition with additional data of [11, Def. 2].
A detailed comparison between MSGs and global types is given in [6, § 7.1].

In general MSGs are however incomparable with our framework because MSGs’
transition system is global and non-deterministic. We aim our global type language
to be more compact, precise and suitable for programming. For example, extending the
Alternating Bit Protocol GAB to three parties can be easily done in our system (see [18]),
while it can only be written in a complex extension of MSGs, called Compositional
MSGs (CMSGs). The main benefit of our type-based approach is that there is no gap
between specifications and programs: we can instantly check the properties of programs
by static type-checking. More investigation on global types and MSGs properties would
however bring mutual benefits by identifying the expressiveness differences.

7 Conclusion and Future Work

We have introduced a new framework of multiparty session types which is tightly linked
to CFSMs, and showed that a new class of CFSMs, that we called multiparty session
automata (MSA), generated from global types, automatically satisfy safety and liveness
properties, extending the results in [12] to multiple machines. We use MSA to define
and prove precise safety and liveness properties for well-typed mobile processes. The
syntax of our session types and processes brings expressiveness to new levels (general
fork, choice, merging and joining) that have not been reached by existing systems [3, 6,
14], while keeping a polynomial tool chain. Our general choice is already included into
Scribble 1.0 [20], an industrial language to describe application-level protocols among
communicating systems based on the multiparty session type theory.

Future work include finding a characterisation of MSA that is independent of session
types, investigating model checking for MSA to justify typed bisimulations [15], relat-
ing MSA with models of true concurrency, including Mazurkiewicz traces, extending
MSA to parameterisation [24], multiroles [10] and multiparty contracts [16, 23].
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Abstract. A behavioral contract in a higher-order language may invoke meth-
ods of unknown objects. Although this expressive power allows programmers to
formulate sophisticated contracts, it also poses a problem for language designers.
Indeed, two distinct semantics have emerged for such method calls, dubbed lax
and picky. While lax fails to protect components in certain scenarios, picky may
blame an uninvolved party for a contract violation.

In this paper, we present complete monitoring as the fundamental correctness
criterion for contract systems. It demands correct blame assignment as well as
complete monitoring of all channels of communication between components.
According to this criterion, lax and picky are indeed incorrect ways to monitor
contracts. A third semantics, dubbed indy, emerges as the only correct variant.

Keywords: higher-order programming, behavioral contracts, contract checking.

1 Blame Correctness Is Not Enough

Programmers embrace Eiffel-style contracts [7] because they can write them in the
language itself and they understand them as executable boolean expressions. Conven-
tionally, programmers use contracts to supplement method signatures with relatively
simple conditions: a non-empty list expected here; a positive number promised there; a
field whose value is always a string of a specific length. They also understand that the
contract system checks these conditions when a method is called and/or when a call
returns. If the condition evaluates to false, it is either the method’s or the caller’s fault.

In a higher-order contract system [4], such as the one for Racket [5], programmers
can also specify conditions on functions and objects. Here is an example:

;; contract for the derivative function
;; for some natural number n and reals δ, ε:
(->d ([f (0<real<1? . -> . 0<real<1?)])

(fp (0<real<1? . -> . real?))
#:post-cond
(for/and ([i (in-range 0 n)])
(define x (random-number))
(define slope (/ (- (f (- x ε)) (f (+ x ε))) (∗ 2 ε)))
(<= (abs (- slope (fp x))) δ)))

� Supported in part by AFOSR grant FA9550-09-1-0110 and the DARPA CRASH program.
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It specifies a computational differentiation operator d/dx for functions on the unit in-
terval. The specification promises to map a function f to a function fp that computes a
number close to the slope of f at x.

Due to Rice’s theorem, it is impossible to check such contracts directly. Instead con-
tracted functions are wrapped in a monitor that checks the promised property every time
it is used during the remainder of the computation. Since such a use may take place after
the function returns in a third-party component, the naive understanding of first-order
contracts and blame assignment does not apply here.

Thus higher-order values inject several new elements into the realm of contracts.
First, it is now important to explicitly think of components as contract parties. These
parties agree on monitoring properties for values that flow back and forth across com-
ponent boundaries. Second, blame assignment requires tracking of contracts and parties
because the producer is not necessarily the last function called. In the above example,
d/dx returns a higher-order value with the requirement to call it on reals between 0 and
1, but a call involving some negative real may take place much later. Third, contracts
are no longer predicates on flat values but may involve calls to unknown functions. For
instance, the post-condition for d/dx tests whether the result fp satisfies the desired
“slope property” for f on some randomly chosen numbers.

Calls to unknown functions pose a challenge for contract designers. To this day it
is unclear how a correct contract system should deal with such calls. Take a second
look at the above example. Its contract uses random-number, which, as it turns out,
may produce complex numbers in Racket. Depending on the semantics of contracts,
the example behaves in one of three ways:

1. Findler and Felleisen [4] consider contracts a part of the specification and thus
“correct by definition.” According to their lax semantics, the post condition passes
the random number to f and fp. If these functions handle complex numbers, fine;
otherwise, execution fails in an unpredictable manner.

2. Blume and McAllester [1] propose an alternative picky semantics. According to
their proposal, the contracts for f and fp prohibits their application to complex
numbers, and their reuse catches contract-internal problems [6].

3. In prior work [3], we show, however, that picky may blame the wrong party for a
contract violations and may thus point programmers in the wrong direction in their
search for bugs. A variant of picky, dubbed indy, is shown to be blame correct.

Sadly, blame correctness cannot differentiate between lax and indy. Since lax may trig-
ger crashes in the presence of precise specifications, it is clearly not correct. Worse,
blame correctness admits contract systems that ignore contracts completely.

We conjecture that a programmer would like the guarantee that the values produced
by their components are never used in violation to the interface specifications and, con-
versely, that their components are not handed values that do not live up to the promises
of the specifications. In response, we present a generalization of blame correctness,
called complete monitoring. We take the ownership-and-obligation framework of blame
correctness and extend it so that a component may not manipulate values that it does
not create or that have not been transferred from other components via a—possibly
vacuous—contract. In short, a complete contract system monitors all value flows across
component boundaries.



216 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

The next section introduces our technical framework, which we exploit to to present
informally complete monitors in section 3 and subsequently define them formally in
section 4. This latter section also presents our main result, the complete monitoring
theorem. Sections 5 and 6 illustrate the additional benefits of complete monitors with
two examples. Finally, the last section discusses related work.

2 Beyond Blame Correctness

CPCF [2,3] extends a conventional, typed and higher-order functional language, with
contracts for base values and first-class functions:

Types τ = o | τ→τ | con(τ)
o = I | B

Contracts κ = flat(e) | κ �→ κ | κ d�→(λx.κ)
Terms e = v | x | e e | µx:τ.e | e+e | e−e | e∧e | e∨e

| zero?(e) | if e e e | monl,l
l (κ,e)

Values v = c | λx:τ.e
Base Values c = 0 | 1 | − 1 | . . . | tt | ff

Contracts for flat values, flat(e), employ predicates that may use the full expressive
power of CPCF. Contracts for functions, κ1 �→ κ2, consist of a pre-condition contract κ1

for the argument to the function and a post-condition contract κ2 for its result. Depen-
dent function contracts, κ1

d�→(λx.κ2), bind the argument to the function to x and make
it visible in κ2. They thus express how the result may depend on the argument.

A contract κ can be attached to a term e using the monitor construct monk,l
j (κ,e).

Monitors carry three labels: k, l and j.1 Labels are identifiers for the high-level com-
ponents that make up a program. A monitor splits a program into three components,
dubbed the contract parties: a server named k, a client named l, and a contract named j,
which may coincide with k or l in a programming language. Intuitively a monitor makes
sure that any interaction between the server module and the client module is in accor-
dance with the contract. In CPCF, e plays the role of the server module and the context
of monk,l

j (κ,e) the role of the client. The contract κ is what they agree on concerning
the exchange of values.

Component labels play an important role in case a contract failure is detected dur-
ing contract checking. They are used to pinpoint the contract violator. CPCF syntax is
extended with intermediate terms for contract checking:

e = ... | errorl
l | checkl

l(e,v)

Findler and Felleisen [4] show that the above constructs are sufficient to build a seman-
tics for checking higher-order contracts. However, since the goal of our investigation is
to verify that the contract system obliges values to meet their specifications as they flow
from one component into another, we add the idea of ownership for terms and values
to the semantics. We use it to keep track of value migration. Ownership of a term e

1 The labels correspond to source locations or component names in an implementation.



Complete Monitors for Behavioral Contracts 217

by a component l is expressed with the ownership annotation |e|l . Ownership captures
formally that a component owns a value (term) if it can affect or manipulate its flow. In
a reduction semantics, the flow of values is modeled via substitution (βv). Hence, our
semantics must attach a new ownership annotation to every value that is substituted for
a variable. In CPCF, this means we must treat every function application as a potential
boundary crossing. Thus when an annotated value occurs in a function body, its occur-
rence signals the presence of a foreign value and marks a boundary. In sum, the initial
owner of a value is its creator but as the value flows through function application, it
accumulates more owners, one for each boundary it crosses with the top-most to be the
most recent owner.

In addition to ownership, we ensure correct blame assignment by keeping track not
only of the owner of each value but also the responsible party for the specifications that
are checked against a value upon a component boundary crossing. The obligations of
a contract party l are the set of ground-type sub-contracts of a contract κ for which l
is responsible. Intuitively, the contract system should not blame a party if the party’s
obligations are satisfied. For a function contract we know that the client is responsi-
ble for the pre-condition and the server responsible for the post-condition. For any flat
contract, the server is responsible. Generalizing this approach gives us a way to deter-
mine the responsible parties for each flat sub-contract of a given contract using type
theory terminology: the server is responsible for all flat contracts in positive positions
and the client is responsible for all flat contracts in negative positions. CPCF turns obli-
gations into explicit annotations on flat contracts. Thus ,flat(e)-l̄ denotes that the set
of parties l̄ is responsible for the given flat contract.

Here is CPCF with the annotations for ownership and obligations:

Contracts κ = ,flat(e)-l̄ | κ �→ κ | κ d�→(λx.κ)
Terms e = ... | |e|l
Values v = ... | |v|l

With obligations and ownership we reify dynamic boundary crossings via syntactic an-
notations and the specifications that need to be checked. If this independent instrumen-
tation coincides in the source code with the monitors and blame labels that the contract
system utilizes and the reductions preserve this property, we know that the contract
system monitors all communication between components.

Synchronization of ownership and monitors means that the owner of the context of
a monitor is the same as the label at the client position of the monitor and the owner of
the guarded term is the same as the label in the server position of the monitor. Due to
the presence of run-time terms, there is one more case where the labels of the contract
system have to agree with ownership. CPCF uses checkk

j(e,v) to check flat contracts.
This implies that the checking code e is owned by the contract party j. We consider this
construct as another point where values change components and the owner of e must be
the contract party.

Synchronization of obligations and blame labels means that the label at the server
position of a monitor is a member of the obligations annotations on positive ground-
type subcontracts of the monitor’s contract and similarly for the client label and negative
ground-type subcontracts.
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In principle, ownership and obligations could be just observers of the reduction se-
quence that do not affect evaluation. However, to prove that the contract system allows
values to migrate from one component to another only when they are under its control,
we use ownership to impose restrictions on value flows between components. We en-
force a single owner policy that disallows mixing terms with different owners. Instead
our reduction relation ensures that foreign values within a component are wrapped in
contract checks or that the contract system has completely verified all (flat) specifica-
tions during the absorption of a foreign value into a component.

Reduction Rules El [· · · ] m→ El [· · · ]

||n1||l + ||n2||l . n where n1 +n2 = n
||n1||l −||n2||l . n where n1 −n2 = n
zero?(||0||l) . tt

zero?(||n||l) . ff if n �= 0
||v1||l ∧||v2||l . v where v1 ∧ v2 = v
||v1||l ∨||v2||l . v where v1 ∨ v2 = v
if ||tt||l e1 e2 . e1
if ||ff||l e1 e2 . e2

||λx.e||l ||v||l . |{|v|l/x}e|l
µx.e . {|µx.e|l/x}e

mon
k,l
j (κ1 �→ κ2,v) . λx.monk,l

j (κ2,v mon
l,k
j (κ1,x))

mon
k,l
j (,flat(e)-l̄′ , ||c||l′) . checkk

j(e c,c)

checkk
j(||tt|| j,v) . v

checkk
j(||ff|| j,v) . errork

j

El [errork
j]

m→ errork
j

Eval. Contexts El = El e | v El | El +e | v+El | El −e | v−El | El ∧e
| v∧El | El ∨e | v∨El | zero?(El) | if El e e

| mon
l,k
j (κ,Elo) | monl′,k

j (κ,El) | |Elo |l | |El |l′

| checkk
l (E

lo ,v) | checkk
l′(E

l ,v)
Elo = [ ] | Elo e | v Elo | Elo +e | v+Elo | Elo −e

| v−Elo | Elo ∧e | v∧Elo | Elo ∨e | v∨Elo

| zero?(Elo) | if Elo e e

Fig. 1. CPCF semantics enforces the single-owner policy

To implement this policy, we require all terms in a redex to have a single owner. Put
differently, our semantics does not perform operations on values that have ownership
annotations with different owners. We use ||e||l to denote that e may have no ownership
annotations but if it has one then the owner label is l for all such annotations:

||e||l = |...|e|l ...|l where for all labels k and terms e′, e �= |e′|k.
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The single owner policy becomes critical for defining the reduction semantics for CPCF.
A component should be able to perform an operation if and only if it is the owner of all
the arguments of the redex. This implies that either the arguments inherit their implicit
ownership annotation from the context or that they come with an explicit ownership
annotation that matches with the owner of the context. We model implicit ownership
with labeled evaluation contexts; see figure 1.

The reduction relation of figure 1 implements the single owner policy by reducing
redexes only if the label of the hole matches the owner of the pieces of the redex. For
instance the rule for function application is more restrictive than the original rule for
CPCF [3]. The latter allows the function and the argument to have different and multiple
owners. In contrast, the new rule fires only if l, the owner of the component, is also the
only owner of the function and the argument. The argument is substituted in the body of
the function, annotated with the common owner so that it keeps its ownership annotation
no matter where it lands in the function body. The context absorbs the body of the
function, which thus obtains the context’s ownership annotation. Since the function and
the context have the same owner, however, the body of the function retains its original
owner. This rationale explains all the rules, including the rules for monitors where the
client label must be the same as the label of the context. When the reduction rules
create new values, as in the case of primitives operators, the context becomes directly
responsible for the new value and thus no additional ownership annotation is necessary.
Finally, the checkk

j(e,v) rules enable executing checking code e that originates from
j inside l, the owner of the hole. Doing so ensures that the check term is treated as
a component boundary and the result of e must be owned by j in order for check to
reduce. If the check fails, and an error is raised and blames the initial owner k of v.

Values retain their owner as long as they move inside the same component. They
change owner only when flat contract checking succeeds. When the check succeeds,
the contract system gives permission to the surrounding component l to absorb c, and
c changes hands between k and l.

The reduction rules concerning monitors for dependent function contracts come in
three flavors: l(ax), p(icky) and i(indy). Here are their formal definitions:

El [monk,l
j (κ1

d�→(λx.κ2),v)]
l→El [λx.monk,l

j ({x/cx}κ2,v mon
l,k
j (κ1,x))]

El [monk,l
j (κ1

d�→(λx.κ2),v)]
p→El [λx.monk,l

j ({monl,k
j (κ1,x)/cx}κ2,v mon

l,k
j (κ1,x))]

El [monk,l
j (κ1

d�→(λx.κ2),v)]
i→El [λx.monk,l

j ({monl, j
j (κ1,x)/cx}κ2,v mon

l,k
j (κ1,x))]

The intuition behind these rules is explained at the end of the section.
The reductions employ a special function {e/cx}κ2 for substituting a term e for x in

a post-condition κ2 of a dependent contract:

{e/cx},flat(|e′|l′)-l̄ = ,flat({|e|l′/x}|e′|l′)-l̄

{e/cx}(κ1 �→ κ2) = {e/cx}κ1 �→ {e/cx}κ2

{e/cx}(κ1
d�→(λx.κ2)) = {e/cx}κ1

d�→(λx.κ2)

{e/cx}(κ1
d�→ (λy.κ2)) = {e/cx}κ1

d�→(λy.{e/cx}κ2) where x �= y
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The substitution in the post-condition implements a hidden application of λx.κ2 to v.
The special substitution function makes sure that the argument is wrapped with an own-
ership annotation for the owner of λx.κ2, which is also the owner of the contract [3].

Γ; l � e

Γ; l � c

Γ; l � e1 Γ; l � e2

Γ; l � e1 e2

Γ; l � e1 Γ; l � e2 Γ; l � e3

Γ; l � if e1 e2 e3

Γ; l � e1

Γ; l � zero?(e1)

Γ; l � e1 Γ; l � e2

Γ; l � e1+e2

Γ; l � e1 Γ; l � e2

Γ; l � e1−e2

Γ; l � e1 Γ; l � e2

Γ; l � e1∧e2

Γ; l � e1 Γ; l � e2

Γ; l � e1∨e2

Γ�{x : l}; l � e

Γ; l � λx.e

Γ�{x : l}; l � e

Γ; l � µx.e
Γ; l � e

Γ; l � |e|l
Γ(x) = l

Γ; l � x

Γ;k � e k �= l
Γ;{k};{l}; j � κ

Γ; l � mon
k,l
j (κ, |e|k)

Fig. 2. Well-formed source programs

As mentioned, ownership annotations and obligations may not appear at arbitrary
places in a program. To ensure the correctness of these annotations, we use a static
well-formedness judgment, Γ; l � e, for source programs e. The interesting cases in
source syntax are the ones concerning variables, variable bindings, ownership annota-
tions and contract monitors, and they appear at the bottom of figure 2. The occurrence
of a free variable in a term is one of the ways foreign values can flow into a component.
The environment Γ keeps track of the origin of values bound to variables. It records the
owner of the spot where a binder for a variable is introduced. To ensure that components
are free of foreign terms we force the single owner policy, i.e., ownership annotations
inside a component must carry the same owner label as the component. We can em-
bed foreign code in a component under the protection of the contract system, that is, a
component can contain foreign terms as long as they are wrapped in a monitor anno-
tation and they are explicitly marked as foreign terms with an appropriate ownership
annotation. In such cases the client label on the monitor must match the owner of the
surrounding component and the server label must coincide with the explicit ownership
annotation on the guarded term. Note that this also allows the embedding of free vari-
ables as long as they are monitored. Furthermore, the rule forces the client and blame
labels on monitors in the source code to be different to emphasize that monitors are
used on the boundaries between different components in the source code.

The rule for well-formed monitors requires that the contract is well-formed, i.e.,
that obligations inside of a contract are properly attributed. Figure 3 shows the rules
for well-formed contracts. The judgment Γ; k̄; l̄; j � κ has three label-related parts. The
first, k̄, includes the set of parties responsible for the flat contracts on positive positions
in κ. The second, l̄, corresponds to the parties responsible for the negative positions.
Finally, j is the owner of the contract code. The initial values of these labels are drawn
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Γ; k̄; l̄; j � κ

Γ; j � e

Γ; k̄; l̄; j � ,flat(|e| j)-k̄

Γ; l̄; k̄; j � κ1
Γ; k̄; l̄; j � κ2

Γ; k̄; l̄; j � κ1 �→ κ2

Γ; l̄; k̄∪{ j}; j � κ1
Γ�{x : j}; k̄; l̄; j � κ2

Γ; k̄; l̄; j � κ1
d�→(λx.κ2)

Fig. 3. Well-formed contracts

from the monitor expression, and they are propagated by a structural traversal of κ
to its pieces. The server label is initially the only member of the labels responsible
for the positive pieces of the contracts while the client label is the only member of
the parties responsible for the negative pieces. Also the contract label of the monitor
is appointed as owner party of the contract’s code. In the case of function contracts,
the set of responsible parties are reversed in the pre-condition [4] and for dependent
function contracts the contract party j is added to the set of labels responsible for the
pre-condition. In the latter case, we record in the environment the variable x that binds
the argument in the post-condition with the contract party as its owner. After all, x is a
binder that belongs to the contract’s code. Finally, for flat contracts the rules require that
the obligation annotations on the contract coincide with the set of parties responsible
for the positive pieces of the contract and that the party j is explicitly marked as the
owner of the contract code.

Note: This semantics of CPCF differs from the semantics of our previous work. The
main deviation is the introduction of the single owner policy. It helps us prove complete
monitoring, a deep notion of correctness for a contract system that subsumes blame
correctness.

In our previous result, ownership and obligations are used to verify that whenever a
contract error is raised, its witness value is owned by the party that is blamed and that
the party failed to satisfy one of its obligations. The picky semantics fails to live up to
this standard [3]. The problem with picky is due to the way the semantics decorates the
monitor that protects the argument in the post-condition of a dependent contract on a
function f . More specifically, the monitor holds the server of f responsible for invalid
uses of the argument inside the contract despite the fact that the server does not have
control over the flow of values in the contract.

The indy semantics eliminates this shortcoming of picky. It treats the contract as a
separate party that is responsible for the use of values that flow in the contract. Thus
the semantics injects monitors that protect the argument and hold the contract itself
responsible for any use of the argument in the post-condition of a dependent contract.
The obligations of the contract party are the flat contracts in negative position of the pre-
conditions of dependent contracts, which also explains why we use sets of labels for the
obligation annotations. A flat contract can be part of the obligations of the contract party
and, also, of the client or the server.

Our blame correctness criterion, though, is not strong enough to decide whether lax
is preferable to indy, or vice versa, as both of them are blame correct. In fact it ad-
mits contract systems that permit uncontrolled flow of values between components. The
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problem lies with the way the original semantics of CPCF treats ownership. It allows
for components to mix freely and for values to acquire multiple owners as they cross
boundaries. For instance a term |e|l can show up without any restrictions as a sub-term
of a term |e′|k. Similarly a value |...|v|l1 ...|ln comes with multiple owners as the annota-
tions keep track of the whole history of migrations from one module to another. These
annotations do not affect evaluation, however, because it ignores them and proceeds as
if they are not there.

Our new semantics turn ownership into a computational device that is exploited to
enforce the single owner policy. This change enables us to state when a contract system
is a complete monitor for all specified properties. End note
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Fig. 4. Monitoring in pictures
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3 Complete Monitors with Pictures

While we can use the CPCF model to articulate a formal criterion of monitoring com-
pleteness, it can also provide an intuitive understanding of the idea. In this section, we
present three pictures of contract monitoring that employ some of the elements of the
CPCF model and introduce complete monitors on this basis.

The first picture in figure 4 illustrates how the contract system monitors the contract
of d/dx without its #:post-cond clause. The client owns f and applies d/dx to it.
Pictorially, it ships f to the server over the d/dx channel. The contract system monitors
the channel and attaches the appropriate pieces of the contract to f. Thus the server
component receives a wrapped version of f. The wrapper checks that the argument and
the result of any application to f are real numbers between 0 and 1. The result of the
application, fp, returns to the client component via a similar channel.

Our pictures use shapes to express ownership of values. Thus f comes in an ellipsis
to match the shape of the client and fp is in a rectangle, like the server component that
creates the function. If the client were to pass fp back to the server to create the second
derivative of f, the value would come in an ellipsis around the rectangle and the contract
wrapper. In other words, wrapping shapes within shapes illustrates how the semantics
uses ownership to keep track of a value’s provenance.

Similarly, shapes on the input-output arrows mark obligations. In particular, the flat
contracts that guard channels have the same shape as the component responsible for sat-
isfying them. The characterization holds for both components and higher-order values
that flow back and forth and receive wrappers.

In a graphical form, our picture suggests that if the initial program is well-formed,
meaning it separates the client and the server component with a properly formed con-
tract boundary, a complete contract system preserves a two-part invariant. The first part
dictates that each value has the same shape as its origin and, if the origin differs from the
current host component, then the contract system guards the value with contracts. The
second part adds that the host component is responsible for meeting the pre-condition
for the uses of the foreign value and the origin component is responsible for the post-
condition.

Even though the invariant seems easy to maintain, adding back the #:post-cond
clause shows that doing so poses subtle challenges. Concretely, a post condition clause
consists of a piece of code and thus introduces a new component. In a real-world lan-
guage such as Racket, this new component could exist within the server module, the
client module, or as a third-party component all by itself [3, §2.3]. No matter where it
exists, it hosts both f and fp, and this co-habitation is the source of all subtleties.

The new component connects to the d/dx channels with its own branch channels and
can thus absorb the values from these channels. As the second picture of figure 4 shows,
the lax semantics allows f and fp to enter the new component before they flow through
the monitors—meaning no guards are attached to these new channels. Since f and fp
have different owners, at least one of the values must be considered a foreign value and,
as such, inhabits the component without the necessary guard.

In contrast to lax, picky protects these additional channels of communication, too.
Figure 4 explains this idea with forks in the channels behind the monitors that protect
the channels. Unfortunately, the obligations for the flat contracts in the #:post-cond
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component do not agree with the second part of the completeness invariant. That is,
at least one of the two values inhabits the new component as a foreign value but is
protected by misshaped contracts.

As the next section shows, the third contract monitoring system, dubbed indy, ad-
dresses both parts of the invariant across the entire computation. Technically, our frame-
work serves as an independent specification of the contract system and excludes scenar-
ios such as the two above by halting computation when the single-owner policy breaks.

4 Complete Monitors Formally

The CPCF semantics enforces the single owner policy. If a redex does not respect it, the
evaluation gets stuck. Since embeddings of foreign terms in a component are wrapped
with contract monitors, such stuck states are evidence that a value has leaked from one
component to another without the contract system’s approval. If a contract system can
eliminate all such stuck states and force programs to reduce to a value or to diverge or to
raise a contract error, then the contract system insulates the components of the program
and regulates exchanges of values between them. We call such a contract system a
complete monitor.

Definition 1 (Complete Monitors for CPCF). A contract semantics m specifies a
complete monitor if for all well typed terms e0 such that ∅; lo � e0,

– e0
m→∗ v or,

– for all e1 such that e0
m→∗ e1 there exists e2 such that e1

m→ e2 or,
– e0

m→∗ e1
m→∗ errork

j and there is at least an e1 of the form El [monk,l
j (,flat(e)-l̄ ,v)]

and for all such terms e1, v = |v1|k and k ∈ l̄ .

Complete monitoring takes advantage of the ownership and obligation annotations to
verify that well-formed programs do not get stuck. In addition if a contract error is
raised indicating contract j failed, then for all checks of flat contracts from j, the owner
k of the guarded value is identical to the server label on the contract monitor and the flat
contract is part of the obligations of k. Clearly, this gives more guarantees than blame
correctness.

At first glance complete monitoring appears too weak to establish the correctness
of a contract system; it simply guarantees that when a value crosses a boundary, the
contract system attaches some contract to it and that if a contract violation is detected,
blame is assigned to the party that contributed the witness value. What complete mon-
itoring does not require is that the contract system (1) attaches the proper contracts to
migrating values and (2) checks flat contracts. Point 1 concerns the decomposition of
compound contracts, i.e., a contract system must check the pieces of a compound value
(for example, functions) with the proper pieces of their contracts (for example, domain
and range). In CPCF, this property comes for free with type soundness which forces the
proper distribution of compound contracts over their pieces to retain type safety. As for
point 2, it is necessary to ensure that a contract system actually executes the applica-
tion of the predicate to the witness value. Again, this is obvious in the case of CPCF
and it is easy to check in general. In short, complete monitoring is the main ingredient
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language designers must check if they wish to implement a correct contract system; the
remaining properties can be validated by inspection.

We show now that indy is a complete monitor while lax is not. The proof of com-
plete monitoring follows a subject reduction technique similar to those of type sound-
ness [10]. The first subsection presents the construction of the subject, progress and
preservation, and how these results imply completeness for indy. The second subsec-
tion presents how we construct a counter-example showing the incompleteness of lax
and picky.

4.1 Indy Is a Complete Monitor

The judgments for well-formed terms and well-formed contracts imply both the single
owner policy for components and the agreement between monitor labels, ownership and
obligation annotations for monitors. They are too weak, however, for the proof because
they do not cover all intermediate terms. The semantics of CPCF uses a superset of the
source language of CPCF to deal with errors and contract checks. Moreover, evaluation
constructs monitor terms that are not well-formed according to our rules. Fortunately
this is only temporary; after some reduction steps, the terms become well-formed again.

In order to account for the extra intermediate terms, we generalize well-formedness
for terms and contracts. The generalized judgment for well-formed terms in most cases
is almost the same as the corresponding source code judgment. Figure 5 shows only the
extra/modified rules.

Γ; l � e

Γ; l � errork
j

Γ; j � e Γ; l � v

Γ; l � checkk
j(e,v)

Γ;k � e Γ;{k};{l}; j � κ

Γ; l � mon
k,l
j (κ,e)

Fig. 5. Well-formed intermediate terms

According to section 2 a monitor in the source code is well-formed if its negative
label matches the owner of the monitor, its contract is well-formed and the guarded
term is explicitly annotated as property of the server. For intermediate terms this last
condition is too strict. The reduction rules for monitors of function contracts and de-
pendent function contracts result in monitors where the protected term is a variable or
an application. Because this happens in a restricted way a fixed number of steps yield
monitors where the guarded term comes with the correct ownership annotation.

We capture these cases with the judgment of loosely well-formed terms Γ; l � e;
see figure 6 for the definition. A term with an ownership annotation with label l is
both well-formed and loosely well-formed if the owner of the term is l. A variable is
loosely well-formed if the environment verifies that the variable shows up in the same
component l as its owner. After all, the variable is going to be substituted with a value
of shape |v|l . An application is loosely well formed if the operator has form |e1|l , the
operand is well-formed under l, and l is also the owner of the application. After the
application is performed the resulting term is owned by l.
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As for Γ; l � checkk
j(e,v), well-formedness requires that e is loosely well-formed

under j and v well-formed under l, the owner of the check. The second part is necessary
because v is going to be embedded in the component l as is if the check succeeds. The
first is required because the contract check e establishes a component boundary sepa-
rating l from j. Our approach demands that all such boundaries are indicated explicitly
with ownership annotations. However, when the check is first created, e is an applica-
tion with shape |e1| j v. Again, after, the application the ownership annotations appear
at the right place and until then loose well-formedness suffices to admit the term.

Γ; l � e

Γ; l � e

Γ; l � |e|l
Γ(x) = l

Γ; l � x
Γ; l � e1 Γ; l � e2

Γ; l � |e1|l e2

Fig. 6. Loosely well-formed terms

The judgment for well-formed contracts requires a minor change:

Γ; j � e k̄ ⊆ k̄′

Γ; k̄; l̄; j � ,flat(|e| j)-k̄′

The rule for flat contracts is weakened so that it requires the parties responsible for the
positive pieces of the contract to be a subset of the obligations of the flat contract rather
than the same set.

Now we are ready to prove indy correct.

Theorem 1. i→ is a complete monitor.

The proof is direct consequence of two major lemmas: progress and preservation. A
well-formed typed, term reduces to another term unless is a value or a contract error.

Lemma 1. (Progress) For all e such that ∅; l � e, e = v or e = errork
j or e i→ e0.

If a well-formed term reduces according to indy, it reduces to a well-formed term.

Lemma 2. (Preservation) For all e and e0 such that ∅; lo � e and e i→ e0, ∅; lo � e0.

4.2 Neither Lax Nor Picky Is a Complete Monitor

In contrast to indy, lax is not a complete monitor.
As an example where lax does not manage to live up to complete monitoring, con-

sider the following program.

Π0
l = mon

k,lo
l (κl , |λh1.h1 λx.5 (λg.g 1)|k) (λ f .λh2.h2 λx.6)
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where
κl = ((,P?l-lo �→ ,P?l-k) d�→(λ f .κ1

l )) �→ ,P?l-k

κ1
l = ((,P?l-k �→ ,P?l-lo) d�→(λg.κ2

l )) �→ ,P?l-k

κ2
l = ,flat(|λx.zero?( f 1−g 0)|l)-k

P?l = flat(|λx.x > 0|l).
For all l ∈ L if k �= lo, then ∅; lo � Π0

l . The constraint on k and lo comes from the rules
for well-formed source terms and captures the intuition that contracts are used as the
interface between different components.

Π0
l is a not a unique program but rather a schema of programs. Label l can be any

label including k and lo. Also Π0
l is not interesting in terms of computation. What makes

it an example worth considering is its contract κl and more specifically its flat sub-
contract κ2

l . Note that κ2
l invokes f on a positive number and g on 0. In addition the

value bound to f , fv = λx.5, comes from the client lo while the value bound to g,
gv = λx.6, originates from the server k. We start by showing that l must equal lo in
order to satisfy complete monitoring. The reduction of Π0

l eventually applies fv to 1.
After the substitution of fv for f in κ2

l we get

κ†
l = ,flat(|λx.zero?(|| fv|lo |l 1−g 0)|l)-k.

In order for the lax system to satisfy the complete monitoring condition, κ†
l must remain

well formed:
{ f : l,g : l};{k};{}; l � κ†

l .

This judgment, however, demands that { f : l,g : l}; l � || fv|lo |l , which in turn requires
that l must be equal to lo. If so, the contract looks like this:

κ†
lo
= ,flat(|λx.zero?(|| fv|lo |lo 1−g 0)|lo)-k.

The next few steps of the reduction process produce a state that is inconsistent with
complete monitoring. Specifically, κ2

l also applies gv to 0:

κ††
lo
= ,flat(|λx.zero?(|| fv|lo |lo 1−||gv|k|lo 0)|lo)-k.

And this last contract disagrees with the subject because k cannot equal lo. More specif-
ically

{ f : lo,g : lo};{k};{}; lo �� κ††
lo

since { f : lo,g : lo}; lo �� ||gv|k|lo .
Our example shows that independently of the choice of l, Π0

l does not respect preser-
vation under the lax semantics. As a consequence lax can violate the single owner pol-
icy. Indeed Π0

lo
l→∗ Elo [||gv|k|lo 0]. This last state is a stuck state as it involves the ap-

plication of a function that has multiple owner tags, i.e., it has crossed contract-free
boundaries between distinct components.

Theorem 2. l→ is not a complete monitor.

The same example shows that picky CPCF is not a complete monitor.

Theorem 3.
p→ is not a complete monitor.
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5 Mutation Needs Complete Monitors

The principle of complete monitoring provides guidance for the addition of linguistic
features to CPCF. Concretely, consider the addition of reference cells, i.e., sharable,
mutable data. Doing so requires both a notation for contracts on cells and also a mech-
anism that monitors all channels of communication between components that exchange
cells.

We investigate this setting via CPCF!, an imperative variant of CPCF. The source
syntax of CPCF!, figure 7, extends the source syntax of CPCF with the standard oper-
ators of a language with mutable cells. CPCF! also comes with contracts for mutable
cells, ref/c(κ). Intuitively the contract specifies that the protected cell should conform
at any point with κ. CPCF!, just like CPCF, is typed. The type system and its soundness
impose no challenges, and are omitted.

Types τ = . . . | ref(τ)
Contracts κ = . . . | ref/c(κ)
Terms e = . . . | ref(e) | get(e) | set(e,e)

Values v = . . . | loc | γ
Guards γ = G{v (κ l l l)}

Fig. 7. CPCF! syntax (left) and intermediate syntax (right)

The additions to the source syntax demand additions to the definitions of well-formed
terms and contracts. The first are straightforward requiring that the arguments of the
operators related to store are well-formed under the same owner as the operator:

Γ; l � e
Γ; l � ref(e)

Γ; l � e
Γ; l � get(e)

Γ; l � e1 Γ; l � e2

Γ; l � set(e1,e2)

The second addition poses a small challenge. The same component can read from, and
write to, a mutable cell. Thus the distinction between clients and servers of the contents
of the cells collapses. To reflect this insight, the rule for well-formed contracts on cells
merges the parties responsible for the negative and positive pieces of the contract when
assigning obligations for the contract that protects the contents of a cell. All parties l̄
and k̄ have the obligation to treat the contents according to the contract both as clients
and servers:

Γ; l̄ k̄; l̄ k̄; j � κ
Γ; k̄; l̄; j � ref/c(κ)

Mutable cells are represented at run-time as memory locations loc. To enforce contract
checks on the contents of memory locations we have to delay checking until a compo-
nent tries to read the location. For that reason we introduce guards G{v (κ k l j)} as
intermediate terms. They are contract monitors similar to mon

k,l
j (κ,e). The difference is

that in contrast with monitors, guards are values, and thus they attach themselves per-
manently around locations when the locations cross component boundaries. Figure 7
shows the intermediate syntax for CPCF! that extends the intermediate syntax of CPCF.
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The definition of the reduction relation for CPCF! demands some preparation. Loca-
tions require the presence of the addition of a store, which changes the shape of states.
They now have two parts: e and σ. The reduction relation describes now transitions
between such states: El [e],σ m→ El [e′],σ′. Moreover we derive additional evaluation
contexts from the new operators just like for the primitive operators in CPCF.

Now we are ready for the reduction relation of CPCF!. The reduction rules for CPCF
become also reduction rules for CPCF! after adding the same store on both sides of each
rule. The additional operations on mutable data, figure 8, are straightforward when they
are performed directly on store locations. They only fire when the context owns the
location in order to guarantee that a component can read or write to properly acquired
cells. Things become interesting when a component other than the creator and owner of
the location tries to access or modify the location’s contents. Doing so requires a guard
G{v (κ k l j)}. Guards are the result of a monitor of a contract ref/c(κ) on a value v.
They contain the guarded value, the contract κ and the labels that decorate the monitor.
A get(||γ||l) opens the guard γ and delegates the get operation to the value that resides
in γ. Moreover it wraps the result with a monitor built out of the contract and the labels
from γ. This ensures that the contract is checked when the host component tries to use
the value obtained from the location.

Writing a value v′ to a mutable cell via a guard γ is also delegated to the value that
resides in γ; v′ is wrapped with the appropriate contract monitor. However, in this case
the semantics must take into account two other factors. First, a set operation creates
a flow of values in the opposite direction than a get operation. Thus the server for the
new content of the location should be the client for the old one and vice versa. Second,
the result of set should be the same guard γ as the one applied on the operation. This
ensures that the location remains protected. To achieve this, the reduction rule reverses
the labels on the monitor of the term that is written in the location and wraps the whole
operation with a monitor that is going to reproduce γ. Finally the rule expands the
operation into a function application so that v′ becomes explicitly decorated with the
label of the host component before written to the location.

El [ref(v)],σ m→ El [loc],σ′

where loc /∈ dom(σ) and σ′ = σ�{loc �→ v}
El [get(||loc||l)],σ m→ El [|v|l],σ

where σ = σ′ �{loc �→ v}
El [set(||loc||l,v′)],σ m→ El [|loc|l],σ′

where σ = σ′′ �{loc �→ v} and σ′ = σ′′ �{loc �→ v′}
El [monk,l

j (ref/c(κ),v)],σ m→ El [G{v (κ k l j)}],σ
El [get(||γ||l)],σ m→ El [|monk,l

j (κ,get(v))|l ],σ
where γ = G{v (κ k l j)}

El [set(||γ||l, ||v′||l)],σ m→ El [|(λx.monk,l
j (ref/c(κ),set(v,monl,k

j (κ,x)))) v′′|l ],σ
where γ = G{v (κ k l j)} and v′′ = |v′|l

Fig. 8. Operations on mutable data
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Proving that CPCF! is a complete monitor follows the same pattern as for CPCF. We
first adapt the definition of complete monitoring to a store semantics.

Definition 2 (Complete Monitors for CPCF!). A contract semantics m specifies a
complete monitor if for all well typed terms e0 such that ∅; lo � e0,

– e0,∅
m→∗ v,σ1 or,

– for all terms e1 and stores σ1 such that e0,∅
m→∗ e1,σ1 there exists term e2 and

store σ2 such that e1,σ1
m→ e2,σ2 or,

– e0,∅
m→∗ e1,σ1

m→∗ errork
j,σ2 and there is at least an e1 such that e1 is of the form

El [monk,l
j (,flat(e)-l̄ ,v)] and for all such terms e1, v = |v1|k and k ∈ l̄.

Then we generalize well-formedness for source code and contracts to intermediate
terms and prove preservation and progress main lemmas. The subject consists of two
new judgments, Σ;Γ; l � e and Σ;Γ; k̄; l̄; j � κ.

The most important modification to the corresponding subject in CPCF is the intro-
duction of store ownership, which establishes that the store is well-formed. The store
ownership relates locations and owners. A store is well-formed if its contents are well-
formed under the owner store ownership points to.

for all loc ∈ dom(σ), Σ;∅;Σ(loc) � σ(loc)
Σ ∼ σ

This is necessary for the same reason that store typing is necessary to prove type sound-
ness for languages with mutable data: it admits circularity in the store.

The generalized judgment for well-formed terms and contracts is almost the same
as the corresponding well-formed judgments in CPCF. The differences are the addi-
tional rules for store operations and that together with the environment, it propagates
the ownership typing. There are also rules for guards and locations:

Σ(loc) = l

Σ;Γ; l � loc

Σ;Γ;k � v Σ;Γ;{k, l};{k, l}; j � κ
Σ;Γ; l � G{|v|k (κ k l j)}

A location is well-formed only under the owner that is associated with in the store
ownership. Well-formed guards are only those where the guarded value is explicitly
annotated as owned by the component with the positive label (k) in the guard. Further-
more, the contract κ must be also well-formed. The last label ( j) serves as the owner of
the contract’s code. Since guards are used to protect locations and locations can be used
by components both for writing and reading both the negative label l and positive label
k must be responsible for the positive and negative pieces of κ.

Furthermore we need to extend the CPCF rules for loosely well-formed terms with
store ownership. We also add two rules due to store related operations:

Σ;Γ; l � e

Σ;Γ; l � get(|e|l)
Σ;Γ; l � e1 Σ;Γ; l � e2

Σ;Γ; l � set(|e1|l ,e2)

The get and set operators are loosely well-formed if the term in the position of the mu-
table cell is tagged with the owner of the operation. The reduction semantics guarantees
that reducing the operation produces a term explicitly owned by l.

We can now show that the indy semantics is a complete monitor for CPCF!.

Theorem 4. i→ is a complete monitor.
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6 Complete Monitors Enable Typed-Untyped Interaction

Typed Racket [8] enables mixing typed modules with untyped Racket modules. Type-
like contracts prevent untyped code from violating the type discipline when interacting
with typed code. Tobin-Hochstadt and Felleisen [8] define and prove the soundness of
this approach in a multi-lingual setting via a so-called Blame Theorem, a name due
to Wadler and Findler [9], which establishes that a program execution can only raise
contract violations due to the untyped part.

To prove type soundness for an imperative version of this system we create an un-
typed sister language of CPCF!, UCPCF!, with a shared term syntax, and prove the
corresponding blame theorem exploiting complete monitoring for CPCF!. As CPCF!
has only base types, function types, and reference types, it suffices to consider only the
corresponding contracts:

κ = ,I-l̄ | ,B-l̄ | κ �→ κ | ref/c(κ)

This restriction enables a series of additional simplifications in our framework. First,
flat contracts contain only built-in predicates and not arbitrary code. Thus their code
is not the property of any specific party. This decision is reflected in simpler rules for
well-formed flat contracts:

Γ; k̄; l̄; j � ,I-k̄ Γ; k̄; l̄; j � ,B-k̄

Second, the omission of dependent function contracts makes the distinction between
lax, picky and indy irrelevant. We use → without any subscript to denote the reduction
relation for UCPCF!.

Third, checking of flat contracts does not require the special check construct:

El [monk,l
j (,I-l̄′ , ||n||l′)],σ → El [n],σ

El [monk,l
j (,I-l̄′ , ||c||l′)],σ → El [errork

j ],σ if c �= n

El [monk,l
j (,B-l̄′ , ||c||l′)],σ → El [c],σ if c ∈ {tt,ff}

El [monk,l
j (,B-l̄′ , ||c||l′)],σ → El [errork

j ],σ if c /∈ {tt,ff}

The untyped nature of UCPCF! obliges us to extend the reduction relation of the lan-
guage. Type soundness for CPCF! allowed us to ignore redexes like ||v1||l ||v2||l where
v1 is not a function. In UCPCF! such states can occur. We deal with them by introducing
dynamic type errors errorl

T where l is the owner of the hole in which the ill-formed
redex occurs.

This change must be propagated to our definition of complete monitoring. The defi-
nition of the property includes an extra case for run-time type errors.

Definition 3 (Complete Monitors for UCPCF!). A contract semantics m specifies a
complete monitor if for all terms e0 such that ∅; lo � e0,

– e0,∅
m→∗ v,σ or,

– e0,∅
m→∗ errorl

T ,σ or
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– for all terms e1 and stores σ1 such that e0,∅
m→∗ e1,σ1 there exists term e2 and

store σ2 such that e1,σ1
m→ e2,σ2 or,

– e0,∅
m→∗ e1,σ1

m→∗ errork
j,σ2 where j �= T , and there is at least an e1 such that

e1 is of the form El [monk,l
j (,I-l̄′ ,v)] or e1 is of the form El [monk,l

j (,B-l̄′ ,v)] and for

all such e1, v = |v1|k and k ∈ l̄ .

The addition of run-time type errors does not eliminate all stuck states. The single owner
policy still must hold for a redex to reduce. We can show, though, that these stuck states
are not reachable and establish that → is a complete monitor for UCPCF!.

Since CPCF! and UCPCF! share the same source code syntax, there is a subset of
UCPCF! programs that are well-typed under CPCF!’s sound type system. We use S ,G %
e : τ to express that a term e has type τ given type environment G and store typing S .
For simplicity we assume that there are only two component labels, u for untyped code
and t for typed code. We can extend CPCF!’s type system to allow for embedding of
untyped UCPCF! code:

S ,G % e

S ,G % mon
u,t
j (κ,e) : T [[κ]]

S ,G % v

S ,G % G{v (κ u t j)} : T [[κ]]

The meta-function T maps a contract to the corresponding type. For flat contracts,
T [[,I-k̄]] = I and T [[,B-k̄]] = B.

The judgment S ,G % e denotes that any typed code embedded in untyped code is
well-typed. The judgment structurally decomposes e. Things become more interesting
when a sub-term is typed:

S ,G % e : T [[κ]]
S ,G % mon

t,u
j (κ,e)

S ,G % v : T [[ref/c(κ)]]
S ,G % G{v (κ t u j)}

Free variables and locations in typed code can only originate from typed code. This
goes hand in hand with the idea that a well-formed term can only refer to variables and
locations of the same owner as the term and writing and reading foreign mutable cells
can be done only through guards.

We can now state and prove the Blame Theorem.

Theorem 5. (Blame Theorem) For all UCPCF! terms e0 such that ∅,∅% e0 and ∅;u�
e0, e0 �→∗ errort

j .

In our setting the proof of the theorem benefits greatly from complete monitoring as
it allows us to reduce the space of the proof cases. For instance when typed code re-
trieves values from the store, complete monitoring guarantees that those are either the
property of typed code and thus, from type soundness for CPCF!, they are well-typed,
or they come from the untyped code and thus they are wrapped in a contract monitor.
This observation reduces the proof cases essentially to only those that create new con-
tract monitors. There we utilize the subject introduced in this section to make sure that
the new monitors that contain terms from the typed party are protecting the code with
contracts that correspond to their type.

In essence the proof of the Blame Theorem says that typed terms e can only show up
inside monitors of the form mon

t,u
j (κ,e) and that for some S and G , S ,G % e : T [[κ]].
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Since type safety guarantees that type errors errort
T do not emerge in any case, we

must only rule out contract errors blaming the typed code. From complete monitoring,
this requires a failure of a contract check of the form mon

t,u
j (κ, ||c||t) where κ is a flat

contract. However, this is impossible since ∅,∅ % c : T [[κ]] and by the semantics for
flat contract monitors and the translation of contracts to types no such check can fail.
Thus no error blaming the typed code ever occurs.

7 Related Work

Our results are based on decades-long research in behavioral contract systems and track-
ing of provenance. A review of and comparison with results in these fields can be found
in the related work section of Dimoulas et al. [3].

Here we focus on the critically important work of Zdancewic et al. [11]. They use
the idea of principals for proving type abstraction. In their semantics, each component
is a different principal that allows other principals to access its data only through ab-
stract operators. If a principal tries to manipulate directly data that it does not own, the
evaluation gets stuck. In the type system foreign data is given an abstract type. Thus if
the type system is sound all stuck states are unreachable.

While Zdancewic et al. directly inspire our single owner policy, our semantics is
unrelated to theirs and we apply the idea to define and prove a novel property of contract
systems instead of type systems.
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Abstract. We formalize delimited control with multiple prompts, in
the style of Parigot’s λμ-calculus, through a series of incremental exten-
sions by starting with the pure λ-calculus. Each language inherits the
semantics and reduction theory of its parent, giving a systematic way to
describe each level of control.

Keywords: Delimited control, dynamic variables, shift, reset, multiple
prompts.

1 Introduction

Control operators have become an integral part of modern programming lan-
guages. In particular, the flexible abstraction of continuation-based control is
becoming more mainstream in high-level languages. The classic control operator
is call-with-current-continuation, or call/cc, which has appeared in languages such
as Scheme and Ruby. call/cc allows the programmer to capture the surrounding
context of an expression, creating a continuation that serves as a return point
to “the rest of the program” from where call/cc was called. This style of control
abstraction is called abortive, since invoking a continuation captured by call/cc
aborts the computation currently in progress, and immediately returns to the
context stored in the continuation. Even though call/cc is a very flexible con-
trol operator, it has limits. For example, call/cc alone is not enough to simulate
mutable state in an otherwise state-free language.

Compared to abortive control, delimited control provides a more powerful
abstraction. The difference of delimited control is that the continuation behaves
like a normal function, so that multiple continuations may be composed together.
In addition, the scope of the control operator can be managed by setting a
prompt, limiting the context that can be captured. The shift and reset operators,
as presented by Danvy and Filinski [5], are expressive enough to simulate mutable
state. In fact, Filinski [11,12] showed that the combination of shift and reset is
enough to give a direct style encoding for any effect written in monadic style, as
well as several layered effects.

An interesting extension of delimited control is the addition of multiple prompts
that can each delimit a different portion of the context. Dybvig, Peyton Jones,
and Sabry [8] define a general framework for delimited control in the presence of
multiple prompts, in which higher-level control operators may be defined. They

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 234–253, 2012.
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provide an operational semantics and a monadic translation into a pure λ-calculus
extendedwith stacks, aswell as an implementation of themonadic effect inHaskell.
A direct implementation of delimited control with multiple prompts in OCaml is
given by Kiselyov [14]. In addition, Kiselyov, Shan, and Sabry [15] give a language
that combines both delimited control and dynamic variables, showing that the two
effects interact in subtle ways. Garcia et al. [13] showed that delimited control with
multiple prompts can represent call-by-need evaluation.

The goal of this paper is to provide a reduction theory for delimited control
with multiple prompts. Ariola et al. have formalized abortive and delimited con-
trol [2] in the style of Parigot’s call-by-value λμ, leading to a calculus called
λμt̂p. We use λμt̂p as a reference point since it has a well-understood reduction
theory that directly expresses the operational semantics. By extending λμt̂p with
multiple prompts, we clearly delineate the reduction of delimited control with
multiple prompts in a way that is not apparent in the usual presentations based
on operational semantics. Our approach is to build up to the expressive power of
shift and shift0 with multiple prompts in incremental steps, while using interme-
diate languages as stepping stones. We start with the pure λ-calculus and make
small extensions to each language that are compatible with the previous seman-
tics. Separate concerns, such as binding and capture, are explicitly apparent in
the syntax of the language. The end result is a calculus that expresses delimited
control with multiple prompts, which arises naturally from the representation of
the semantics. Our contributions are:

– A better understanding of the dynamic nature of the prompt, in the con-
text of delimited control with a single prompt. We express this in terms of
an intermediate language with one dynamic variable that avoids recursive
bindings.

– A set of small, incremental extensions of λμt̂p, providing more expressive
languages that are compatible with the existing semantics. Each extension
enables direct encodings of additional, useful language constructs, and arises
as a natural extension of a less expressive language or intermediate language.

– A reduction theory for control with multiple prompts that is sound with
respect to the continuation passing style (CPS) semantics and expressive
enough to lead to the final answer. This reduction theory is compatible with
the one of λμt̂p.

The overall strategy of the paper is as follows. In Sections 2, 3, 4, 6, 7, and
9, we define our languages of interest. We start with the λ-calculus (in 2), and
extend it with control (λμ in 3) and then with delimited control (λμt̂p in 4).
Then, we branch out in two separate directions, extending λμt̂p with multiple

prompts (λμ̂ in 6) and also transparent prompts (λμt̂p
↑
in 7). Finally, we bring

λμ̂ and λμt̂p
↑
together, giving us a language of delimited control and multiple

prompts (λμ̂↑ in 9). We present the semantics of the new languages in three
different ways: first as a CPS transformation from the source language to the
pure λ-calculus, then as a set of reduction rules, and finally as an operational
semantics. The CPS transformation implements a big-step evaluator for the
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language written in the λ-calculus, and is used as our primary reference point
for the definition of the semantics. The reduction rules are a set of local program
transformations in the source language that correspond to reductions performed
in the CPS transformed program. The operational semantics arise as both a
restriction on the reduction rules and as the equivalent small-step evaluator for
the CPS transformation, and is derived by defunctionalizing the continuation of
the CPS [19,4]. We wrap up these sections with a discussion on expressiveness
by encoding control operators in the language. In Sections 5 and 8 we present
two intermediate languages which are used as stepping stones for defining the
CPS transformations of our primary languages, and provide a good framework
for designing extensions.

2 Lambda Calculus: λ

The syntax of λ-calculus includes variables, function abstraction, and function
application. Unless otherwise specified, we let the set of Values be V ::= x | λx.t.

t ∈ Term ::= V | t1 t2 V ∈ V alue ::= x | λx.t

In this paper we are going to focus on the call-by-value setting, which restricts
substitution to values, as described by the βv reduction rule: (λx.t) V → t{V/x}.
An alternative way of presenting the semantics is to perform a translation which
hard-wires the evaluation strategy into the term itself. The transformation is
called continuation passing style (CPS); it splits a program into the current
work to be done and the rest of the computation, which is called a continuation.
The call-by-value CPS transform of the λ-calculus is defined as follows:

Cλ�x�k = k x Cλ�λx.t�k = k λx.Cλ�t� Cλ�t1 t2�k = Cλ�t1�λf.Cλ�t2�λs.f s k

Variables and functions are both values, so during evaluation they are just passed
to the current continuation. The only non-value case, where actual computation
occurs, is in the function application step. First, the function is evaluated, and
its value is bound to f in the top continuation. Second, the argument is evaluated
and its value is bound to s in the next continuation. Finally, with values for both
terms, the function value is applied to the argument value, and the computation
continues with the original continuation k.

In the output of this transformation, terms are maps from continuations, k, to
final answers. Continuations, then, are maps from values to final answers. This
means that the CPS translation of a term does not execute by itself, it must
be given some initial continuation in order to begin the process of evaluation.
Following the sequent calculus tradition, we add the counterpart of this initial
continuation to the syntax, which explicitly marks the top-level, or final return
point of the whole program. We name this continuation ∗ and specify that run-
ning a term consists of coupling that term with ∗, written as [∗]t, which we call
a command. Operationally, the command [∗]t is interpreted as evaluating the
term t in the empty context. We extend the syntax of our call-by-value calculus
with two new syntactic categories:
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c ∈ Command ::= [q]t q ∈ CoTerm ::= ∗ t ∈ Term ::= V | t1 t2

We also extend our previous CPS transform Cλ with clauses for commands and
the constant ∗.

Cλ�[q]t� = Cλ�t� Cλ�q� Cλ�∗� = λx.x

The interpretation of the command [q]t is to evaluate the term t in the context
q, which means to pass the continuation represented by q to the term. The initial
continuation ∗ just returns the value it is given without modifying it.

3 Lambda Calculus with Control: Parigot’s λμ

Felleisen [9] extended the call-by-value lambda calculus with continuation ab-
straction. This allows a term to store its evaluation context as a special function
and to reinstall this context by invoking that function. The function representing
a continuation never returns to the call site. Here, we instead follow Parigot’s
approach [18] because it provides a reduction theory which more accurately
simulates the operational semantics [1]. In Parigot’s λμ, continuations are not
functions. Similarly to the the top-level, continuations belong to a separate syn-
tactic category of co-terms. Intuitively, terms are producers of values, whereas
continuations are consumers of values. The invocation of a continuation is a
command. The syntax of λμ extends the class of terms and co-terms as follows:

c ∈ Command ::= [q]t t ∈ Term ::= V | t1 t2 | μα.c q ∈ CoTerm ::= α | ∗

We define the CPS semantics of λμ by extending Cλ for the new syntax:

Cλμ�μα.c�k = (λα.Cλμ�c�) k Cλμ�α� = α

The reduction semantics is then given by the following reduction rules:

(λx.t) V → t{V/x} E1[μα.c] → c{[α](E1[t])/[α]t} [q]μα.c → c{q/α}

Where the one-step evaluation context E1 is defined as: E1 ::= � t | V �.
The term μα.c propagates its evaluation context piece-by-piece to each invo-
cation of α in c, until it reaches the top of its surrounding command. The
rule makes use of a new notion of substitution, called structural substitution;
c{[α](E1[t])/[α]t} should be read as: substitute each occurrence of [α]t in com-
mand c with [α](E1[t]). When iterated, these two rules perform the big-step
capturing reduction that substitutes the entire evaluation context up to the top
of the command. The operational semantics of λμ is:

[∗]E[(λx.t) V ] �→ [∗]E[t{V/x}] [∗]E[μα.c] �→ c{[∗]E[t]/[α]t}

Where the evaluation context is: E ::= � | E t | V E. The operational semantics
is sound and complete with respect to the CPS transform: Cλμ�[∗]t� �→→ V iff
[∗]t �→→ [∗]V .
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Expressiveness. Parigot’s λμ equipped with the top-level constant ∗ gives us
the ability to express the call/cc (K) and the abort (A) control operators. One
can also express Felleisen’s C operator, which is definable in terms of call/cc and
abort.

K = λh.μα.[α]h (λx.μ .[α]x) A t = μ .[∗]t
C = λh.K (λk.A (h k)) = λh.μα.[∗]h (λx.μ .[α]x)

(1)

4 Delimited Control: λμt̂p

Delimiting control means temporarily re-defining the top-level in a program,
limiting the extent to which the evaluation context may be captured. Examples
of delimited control are the shift (S) and reset (#) operators given in the seminal
paper of Danvy and Filinski [5]. Felleisen [10,9] also extended his control theory
with a reset operator which he calls prompt. The prompt operator is shown to
be necessary in providing a fully abstract model of λ-calculus [20].

In [2], it is shown that delimited control can be explained by replacing the
top-level constant ∗ with the rebindable dynamic continuation variable t̂p. The
syntax of λμt̂p is:

c ∈ Comm. ::= [q]t t ∈ Term ::= V | t1 t2 | μq.c q ∈ CoTerm ::= α | t̂p (2)

The dynamic nature of t̂p is due to the fact that in a function like λx.μ .[t̂p]x,
the binding of t̂p is taken from the environment active at the call site and not
in the environment active when the function is defined. This dynamic nature is
captured by adding the following reduction rule to the reduction theory of λμ:

μt̂p.[t̂p]V → V

4.1 Continuation Passing Style (C2
λμt̂p

)

We extend the Cλμ transform to give Cλμt̂p, the CPS transform for λμt̂p.

Cλμt̂p�μt̂p.c�k = k (Cλμt̂p�c�) Cλμt̂p�t̂p� = λx.x

Here, t̂p takes the place of the old constant ∗. However, now we also have a bind-
ing form for t̂p. When t̂p is bound over a command, the current continuation
is set aside and that command is run to completion. Then, when the command
has produced an answer value, that value is fed to the original continuation and
that context is restored. Unfortunately, the above translation of μt̂p.c is not in
CPS form, since the term Cλμt̂p�c� is an application instead of a value. One can
remedy the situation by taking the output from Cλμt̂p and running it through
the CPS transform Cλ [5]. The composition of the two CPS transforms gives
us C2

λμt̂p
, a double CPS transform. There is no change to the clauses inherited
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from Cλμ since they were already in full CPS form. The only difference is in the
translation of t̂p:

C2
λμt̂p�μt̂p.c�k = λγ.C2

λμt̂p�c�λx.k x γ C2
λμt̂p�t̂p� = λx.λγ.γ x

The CPS transform of a term is now a function requiring both a continuation
k and a meta-continuation γ. In addition, continuations now take both a value
and a meta-continuation as parameters. Here, the initial value for the meta-
continuation is γι which is initialized to λx.x.

Notice that we are now in the same situation as we were with the pure λ-
calculus. The CPS translation of both terms and commands take an extra ar-
gument, but this fact is not reflected in the syntax of λμt̂p. To reconcile the
difference between the CPS transform and the source language, we extend the
syntax of λμt̂p in the same way we extended the pure λ-calculus. We add a
second-order command, or meta-command, which explicitly names the meta-
continuation of the underlying first-order command. Since we can only mark the
initial meta-continuation of a command, we add the constant �, which is the
meta-top-level of the program. Thus, we extend the syntax of λμt̂p given in (2)
with meta-commands:

q2 ∈ CoTerm2 ::= � c2 ∈ Command2 ::= [q2]c

The double CPS translation of meta-commands and the meta-top-level � follow
the same pattern as commands and the top-level in the pure λ-calculus:

C2
λμt̂p�[q2]c� = C2

λμt̂p�c� C2
λμt̂p�q2� C2

λμt̂p��� = λx.x

The standard way to evaluate the CPS form of term t in this system is to provide
the initial continuation λx.λγ.γ x and the initial meta-continuation λx.x, which
translates to evaluating the meta-command [�][t̂p]t. If the meta-command is
reduced to [�][t̂p]V , then the value V is the final answer.

Expressiveness. The rebindable top-level is the additional power that allows
us to encode shift (S) and reset (#) in λμt̂p:

#t = μt̂p.[t̂p]t S = λh.μα.[t̂p]h (λx.μt̂p.[α]x)

The above encoding resembles Filinski’s encoding [11] of S and # in terms of
Felleisen’s C and # operators. One can also encode a slightly different abort
operator, At̂p, which aborts up to the nearest binding of t̂p. This operator is
expressible in terms of shift alone.

At̂p t = S λ .t = μ .[t̂p]t (3)

The behavior of this operator is different from the original abort, in that it does
not exit the program completely, but only removes the context up to the nearest
binding of t̂p.
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Unbound t̂p. It is important to note that in the above definition of λμt̂p, the
t̂p variable is always bound throughout the entire execution of the program. In a
sense, the meta-continuation, which is responsible for giving the current binding
for t̂p, already comes with t̂p bound to the true top-level of the program. Next,
we analyze the impact of this choice.

Example 1. The following example shows the successful evaluation of a meta-
command with an unbound use of t̂p, which is equivalent to the shift expression
Sλ .9 = μα.[t̂p](λ .9) (λx.μt̂p.[α]x).

[�][t̂p]μα.[t̂p]((λ .9) (λx.μt̂p.[α]x))→→[�][t̂p]9

C2
λμt̂p�[�][t̂p]9� = C2

λμt̂p�t̂p� 9 C2
λμt̂p��� = C2

λμt̂p��� 9 = 9

Alternative Initial Conditions. But what if we want to begin evaluation
with t̂p initially unbound? To do this, we will need to add the true top-level of
the program, ∗, back to our grammar along with a different meta-top-level in
which t̂p is considered unbound. Our syntax of λμt̂p becomes:

c2 ∈ Command2 ::= [q2]c t ∈ Term ::= V | t1 t2 | μα̃.c
c ∈ Command ::= [q]t q ∈ CoTerm ::= α̃ | ∗
q2 ∈ CoTerm2 ::= • α̃ ∈ CoV ar ::= α | t̂p

Note that we now have both notions of abort as defined in (1) and (3). At̂p

removes the context up to the nearest binding of t̂p, whereas A removes the
context of the entire rest of the program.

The C2
λμt̂p

transform is extended with clauses for the new top-level and meta-

top-level. The meaning of the constant ∗ is easy to define, but • is more tricky.

C2
λμt̂p�∗� = λx.λγ.x C2

λμt̂p�•� = γ0 where γ0 free

When ∗ is invoked with a value, the program immediately exits with that value
as a final answer. The meta-continuation is thrown away because the current
binding of t̂p is not needed. If the t̂p continuation is given a value without being
bound, then the program gets stuck; since t̂p was not defined there is not enough
information to continue. We need to map this stuck state down to the target
language of C2

λμt̂p
: the pure λ-calculus. A natural way to do this is to make •,

the meta-top-level in which t̂p is unbound, a free variable. Then, invoking an
unbound t̂p with a value is translated to a stuck term.

The reduction semantics of λμt̂p is extended with one more rule to reduce an
invocation of ∗ under a binding for t̂p.

μt̂p.[∗]V → μ .[∗]V

The meaning of [∗]V is to throw away the bindings of t̂p in γ and return with the
value V as the final answer. Therefore, we can throw away an adjacent binding
of t̂p by turning it into an abort.
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Example 2. Let’s revisit the previous example using ∗ and • to initialize execu-
tion instead of t̂p and �.

[•][∗]μα.[t̂p]((λ .9) (λx.μt̂p.[α]x))→→[•][t̂p]9
C2
λμt̂p�[•][t̂p]9� = C2

λμt̂p�t̂p� 9 C2
λμt̂p�•� = C2

λμt̂p�•� 9 = γ0 9

Since t̂p was not initialized we get an error, represented by the stuck term γ0 9.

The reduction rules of λμt̂p are sound and complete with respect to Cλμt̂p.

Theorem 1. If C2
λμt̂p

�[•][∗]t�→→V then [•][∗]t→→[•][∗]V .

If M → M ′ then C2
λμt̂p

�M� = C2
λμt̂p

�M ′�.
Where the meta-syntactic variable M ranges over terms, commands, and meta-
commands. Here and throughout the paper, equality between terms in the λ-
calculus are up to βη reduction.

Even though we replaced � with • in our language, we haven’t actually lost
anything. We can regain the original initial conditions by providing a binding
for t̂p at the top of the program.

Theorem 2. C2
λμt̂p

�[•][∗]μt̂p.c� = C2
λμt̂p

�[�]c�

5 Intermediate Languages of Dynamic Binding: λt̂p, λt̂p
b

Ariola et al. [2] showed how the CPS of λμt̂p can be factored into a state-passing
transformation to λμ extended with subtraction combined with a translation to
λ-calculus with pairs. In order to better understand the dynamic nature of the
prompt binding, we investigate an alternative decomposition. We start by trans-
lating away the control effects from λμt̂p (Cλμt̂p), leaving behind the dynamic

binding of t̂p. We then translate away the dynamic binding by first adopting a
typical environment passing translation (Dλt̂p). This however leads to an incor-

rect interpretation of the dynamic nature of t̂p. We thus propose another way of
translating the dynamic binding that models the behavior of the prompt (D

λt̂p
b).

5.1 Translating Control (Cλμt̂p)

We start with a CPS transform from λμt̂p to an intermediate language with one
dynamic variable, λt̂p, with the following syntax:

c ∈ Closure ::= [e]t t ∈ Term ::= V | t1 t2 | t̂p
x̃ ∈ V ar ::= x | t̂p V ∈ V alue ::= x | λx̃.t

Where e is the empty Environment •. The Cλμt̂p transform defines the call-by-
value application and the context capturing behavior of μα̃.c while using the
dynamic variable in λt̂p to manage the binding of t̂p.
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Cλμt̂p�[q2]c� = [Cλμt̂p�q2�]Cλμt̂p�c� Cλμt̂p�x�k = k x

Cλμt̂p�[q]t� = Cλμt̂p�t� Cλμt̂p�q� Cλμt̂p�λx.t�k = k λx.Cλμt̂p�t�
Cλμt̂p�α� = α Cλμt̂p�t1 t2�k = Cλμt̂p�t1�λf.Cλμt̂p�t2�λs.f s k

Cλμt̂p�t̂p� = λx.t̂p x Cλμt̂p�μα̃.c�k = (λα̃.Cλμt̂p�c�) k
Cλμt̂p�∗� = λx.x Cλμt̂p�•� = •

Note that Cλμt̂p�t̂p� is η-expanded. Otherwise, in the translation of [t̂p]μα.c one

would obtain (λα.Cλμt̂p�c�) t̂p. Since t̂p is not a value, the dynamic binding would
be looked up when α is defined, instead of when it is called. To better understand
the reason consider the following example.

Example 3. In [∗]μt̂p.[t̂p]μα.[α]((μt̂p.[α]I) x), notice that α is invoked with a
value under a rebinding of t̂p. The renaming of t̂p for α is captured by the more
recent binding, as shown by the reduction:

[∗]μt̂p.[t̂p]μα.[α]((μt̂p.[α]I) x) → [∗]μt̂p.[t̂p]((μt̂p.[t̂p]I) V )

If we instead adopt the transform Cλμt̂p�t̂p� = t̂p then we would have to bind α

to the current value of t̂p, which is ∗.

5.2 Translating Dynamic Binding (Dλt̂p)

For a first attempt at defining the dynamic binding of t̂p, we try a simple
environment-passing style transform, Dλt̂p, where the environment is just the

value currently bound to t̂p. In the case that t̂p isn’t bound, as in the initial
environment •, we use the free variable γ0. That is, we have Dλt̂p�•� = γ0. The
rest of the transform is:

Dλt̂p�[e]t� = Dλt̂p�t� Dλt̂p�e� Dλt̂p�λx.t�γ = λx.λγ′.Dλt̂p�t�γ′

Dλt̂p�x�γ = x Dλt̂p�λt̂p.t�γ = λv.λγ′.Dλt̂p�t�v
Dλt̂p�t̂p�γ = γ Dλt̂p�t1 t2�γ = (Dλt̂p�t1�γ) (Dλt̂p�t2�γ) γ

This transform is equivalent to a simplified version of Moreau’s calculus of dy-
namic binding [17] with only one dynamic variable.

Unfortunately, this definition of dynamic binding does not properly capture
the meaning of the rebindable top-level since it creates vicious cycles, as shown
in the reduction of Dλt̂p ◦ Cλμt̂p�[t̂p]μt̂p.[t̂p]x�γ:
(λv.λγ′.v x v) (λy.λγ′.γ′ y γ′) γ → (λy.λγ′.γ′ y γ′) x (λy.λγ′.γ′ y γ′) → . . .

This does not match the reductions of λμt̂p, since one has: [t̂p]μt̂p.[t̂p]x → [t̂p]x.
In Moreau’s [17] framework, this corresponds to the reduction:

dlet t̂p = (λy.t̂p y) in t̂p x→→dlet t̂p = (λy.t̂p y) in(λy.t̂p y) x→→ . . .
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Remark 1. One can understand the dynamic abstraction λt̂p.t in terms of a
static abstraction and dynamic let, as λv.dlet t̂p = v in t, where the transform
of dlet is Dλt̂p�dlet t̂p = v in t�γ = Dλt̂p�t�v.
5.3 Backtracking the Environment (D

λt̂p
b)

We see vicious cycles arise because dynamic binding allows for self-reference. In
order to evaluate the application t̂p V , we (1) lookup the value f most recently
bound to t̂p, and (2) evaluate f V in the current environment where f is still
bound. The root of our problem is in step (2). Instead, we want to evaluate f V
in a different environment where that same f isn’t bound. In particular, we want
to backtrack to the environment that was active just before f was bound to t̂p.
To do this, we restrict the grammar of λt̂p so that t̂p can only be used as an

immediate application, giving us λt̂p
b
.

t ∈ Term ::= V | t1 t2 | t̂p t

We then modify Dλt̂p to match the restricted grammar. In particular, we change

dynamic binding and application of t̂p to backtrack to a previous environment.

D
λt̂pb

�λt̂p.t�γ = λv.λγ′.D
λt̂pb

�t�γ′[t̂p �→ v] γ[t̂p �→ v] = λx.v x γ

D
λt̂pb

�t̂p t�γ = γ(t̂p) (D
λt̂pb

�t�γ) γ(t̂p) = γ

When we bind a value v to t̂p, we wrap v in a function that will return to the pre-
vious dynamic environment when applied. Since values bound to t̂p are equipped
with their own environment, we do not need to pass the current dynamic envi-
ronment to the application t̂p V . Compare the new translation of t̂p V with the
original one: Dλt̂p�t̂p V �γ = γ V γ. Notice that the restriction on how t̂p is used
allows us to eliminate the self-application of the environment γ. With the new
backtracking definition of dynamic binding, we no longer create the same cycle
as before in the reduction of D

λt̂p
b ◦ Cλμt̂p�[t̂p]μt̂p.[t̂p]x�γ:

(λv.λγ′.v x γ′) (λy.λγ′.γ′ y) γ → (λy.λγ′.γ′ y) x γ → γ x = �t̂p x�γ
When we compose the two phases together, we get the derived translation D

λt̂p
b ◦

Cλμt̂p, which is exactly the same as our original translation C2
λμt̂p

.

Theorem 3. D
λt̂pb

◦ Cλμt̂p = C2
λμt̂p

Remark 2. Note that the definition of ∗ in C2
λμt̂p

is exactly the environment-

passing style translation of the initial continuation λx.x. The backtracking be-
havior we present here is also necessary to express exceptions with dynamic
variables. A similar encoding was given by Moreau[17] using an abort operator
to reinstall the right environment.
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6 Control with Multiple Prompts: λμ̂ via λ̂b

We want to extend λμt̂p with a multiple prompts so that binding prompt α̂ does
not interfere with prompt β̂ and vice versa. This is different from the nested
definition of resets in the CPS hierarchy [7]. Unfortunately, this means that we
cannot use the iterated layered CPS approach to define our prompts. However,
now that we have factored the transform for λμt̂p into two passes that flow
through an intermediate language with dynamic binding, it is easy to extend
the calculus to have multiple prompts by simply using an intermediate language
with multiple dynamic variables, λ̂b, whose syntax is:

c ∈ Closure ::= [e]t t ∈ Term ::= V | t1 t2 | x̂ t

x̃ ∈ V ar ::= x | x̂ V ∈ V alue ::= x | λx̃.t

Where e is the empty environment •. The definition of λ̂b uses the same

environment-passing style translation as λt̂p
b
. The only thing that needs to change

from λt̂p
b
to λ̂b is dynamic binding and lookup. Now that there is more than one

variable, we may have to search through the environment for the variable that we
want.

γ(x̂) = γ �̂x� γ[x̂ �→ v] = λp. if p ≡ �̂x� thenλx.v x γ elseγ p

Here the quotation brackets, �·�, reify the dynamic variables into terms in the
target language. These terms must all be distinct and have decidable equality.

The language of control with multiple prompts, λμ̂, is a simple extension of
λμt̂p with multiple dynamic top-level binders.

c2 ∈ Command2 ::= [q2]c t ∈ Term ::= V | t1 t2 | μα̃.c
c ∈ Command ::= [q]t q ∈ CoTerm ::= α̃ | ∗
q2 ∈ CoTerm2 ::= • α̃ ∈ CoV ar ::= α | α̂

The semantics of λμ̂ is just the composed transform Dλ̂b ◦Cλμ̂, exactly as in Sec-
tion 5.3 except that multiple dynamic variables are used by Cλμ̂, with one unique
variable for each different prompt. The reduction rules for multiple prompts are
a generalization of the reduction rules for single prompt t̂p.

μα̂.[α̂]V → V μα̂.[β̂]V → μ .[β̂]V μα̂.[∗]V → μ .[∗]V

Where α̂ �= β̂. Just like how invocation of ∗ throws away the dynamic envi-
ronment, invocation of the prompt β̂ will throw away portions of its dynamic
environment until the correct binding is found. Then the usual η-reduction of
prompts is available to resolve the invocation of the prompt.

To define the operational semantics for λμ̂, we first give the evaluation con-
texts for λμ̂, which can be derived from a defunctionalization [19,4] of the con-
tinuation and environment used in the Dλ̂b ◦ Cλμ̂ transform.

E ::= � | E t | V E F ::= [q]E E2 ::= � | F [μα̂.E2] F 2 ::= [q2]E2
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The context E is just the standard call-by-value evaluation context for the pure
λ-calculus. The meta-context E2 drills down through any number of dynamic
bindings for continuation variables. Both F and F 2 are convenient shorthand
for a (meta-)context embedded in a (meta-)command, and correspond exactly
with the continuation and meta-continuation in the CPS transform for λμ̂.

The operational rules are derived from the fine-grained reduction rules using
the call-by-value contexts for λμ̂ to restrict where they may apply.

F 2[F [(λx.t) V ]] �→ F 2[F [t{V/x}]] F 2[F [μα.c]] �→ F 2[c{F [t]/[α]t}]
F 2[F [μα̂.E2

α̂[[α̂]V ]]] �→ F 2[F [V ]] [q2]E2[[∗]V ] �→ [q2][∗]V

Where E2
α̂ does not contain a binding for α̂. The reduction rules for λμ̂ are

sound with respect to the transform Dλ̂b ◦ Cλμ̂, and the operational semantics is
complete with respect to the transform. Also, since the operational semantics are
just a coarse, limited form of the reduction rules, it follows that the reductions
are complete with respect to the operational semantics and that the operational
semantics is sound with respect to the transform.

Theorem 4. If M → M ′ then Dλ̂b ◦ Cλμ̂�M� = Dλ̂b ◦ Cλμ̂�M ′�.
If Dλ̂b ◦ Cλμ̂�[•][∗]t� �→→ V then [•][∗]t �→→ [•][∗]V . If c2 �→ c′2 then c2→→c′2.

Expressiveness. With multiple prompts, we get the ability to set multiple
points in the program that we can abort to at will, giving us the multi-prompt
reset (#α̂) and abort (Aα̂) operators.

#α̂t = μα̂.[α̂]t Aα̂t = μ .[α̂]t

We can also encode exception handling with multiple independent exceptions.

raise e t = (λx.Aê Exnx) t

thandle e x ⇒ u = case#êOK tof OK x ⇒ x | Exnx ⇒ u

The expression raise e t evaluates t and then aborts to the dynamically nearest
handler for e with an exception. The handling expression thandle e x ⇒ u
attempts to evaluate t. If t successfully results in a value (represented as OK v),
then value v is returned. Otherwise, if an exception for e is raised (represented
as Exn v), then u is evaluated with the raised value v bound to x.

7 Delimited Control with Transparent Prompts: λμt̂p
↑

We now take a break from λμ̂ and multiple prompts, and return to λμt̂p in order
to examine an alternate extension. Another important delimited control operator
to consider is shift0 (S0) [16]. The difference between shift and shift0 is that when
shift captures its immediate context, it leaves the nearest delimiting reset in place,
whereas shift0 removes the nearest reset after capturing its context. As discussed



246 P. Downen and Z.M. Ariola

previously in Section 4, shift and reset have encodings in λμt̂p. However, to
capture the additional behavior of shift0 we need to extend λμt̂p with the ability
to render the binding of a prompt transparent, making it immediately disappear
and letting underlying terms see through to their surrounding context. The new
command ↑t̂p t represents lifting the unevaluated term t through the most recent

binding of t̂p and embedding the term in that context. The syntax of λμt̂p
↑
is:

c2 ∈ Command2 ::= [q2]c t ∈ Term ::= V | t1 t2 | μα̃.c
c ∈ Command ::= [q]t | ↑t̂p t q ∈ CoTerm ::= α̃ | ∗
q2 ∈ CoTerm2 ::= • α̃ ∈ CoV ar ::= α | t̂p

We define a CPS for λμt̂p
↑
in the style of Materzok and Biernacki’s [16] definition

of shift0. This is an extension of the basic Cλμ transform.

C
λμt̂p

↑�μt̂p.c�k = C
λμt̂p

↑�c� k C
λμt̂p

↑�↑t̂p t� = C
λμt̂p

↑�t� C
λμt̂p

↑�t̂p� = λx.λk.k x

Note that the translation of μt̂p.c in C
λμt̂p↑ is different from the one in Cλμt̂p.

Rather than always running the command to completion, and then passing the
result to the bound continuation k, we pass k as an extra argument to the
command. A continuation bound to t̂p is set aside and carried along in the
command as an extra argument. Then, in the case of [t̂p]V , the list of extra
arguments is accessed and V is returned to the most recent one. On the other
hand, in the case of ↑t̂p t, the continuation most recently bound to t̂p is accessed
and used to evaluate t.

For the purpose of comparison with C2
λμt̂p

, we run the output of C
λμt̂p↑ through

the CPS transform Cλ, which gives us the double CPS transform C2
λμt̂p

↑ .

C2
λμt̂p

↑�μt̂p.c�k = λγ.C2
λμt̂p

↑�c�λt.t k γ

C2
λμt̂p↑

�↑t̂p t�γ = γ C2
λμt̂p↑

�t� C2
λμt̂p↑

�t̂p� = λx.λγ.γ λk.k x

The small difference in the binding of t̂p becomes immediately apparent in the
type of the meta-continuation. In λμt̂p, the meta-continuation takes values to

final answers. In λμt̂p
↑
, on the other hand, the meta-continuation takes terms

to final answers. The more general type allows the translation of ↑t̂p t to pass t
unevaluated to the meta-continuation. The translation of [t̂p]V now has to com-
pensate for this extra generality. When the t̂p continuation is given a value x and
meta-continuation γ, it wraps that value up in the trivial term that immediately
returns x, and passes the new term to γ.

We can also define the transformation in terms of λt̂p
b
, as in Section 5. Ex-

tending the meta-continuation becomes a binding to the dynamic variable t̂p,
and application of the meta-continuation becomes application of t̂p.

Cλμt̂p↑�μt̂p.c�k = (λt̂p.Cλμt̂p↑�c�) (λt.t k)
C
λμt̂p↑�↑t̂p t� = t̂p C

λμt̂p↑�t� C
λμt̂p↑�t̂p� = λx.t̂p λk.k x



A Systematic Approach to Delimited Control with Multiple Prompts 247

Notice the difference between the two uses of t̂p. In [t̂p]t, resolution of the t̂p vari-
able is delayed in a function that is passed to the term t, which may be captured
by the time the continuation is used. In contrast, ↑t̂p t, directly applies t̂p to a
term, immediately resolving the dynamic binding in the current environment.

Reduction of the new command is similar to [t̂p]t, but with different priorities
between the continuation and the term. In μt̂p.[t̂p]t, t̂p is η-reduced only when t

is a value. The opposite occurs with μt̂p. ↑t̂p t, where t̂p is η-reduced immediately,
before t can be fully reduced to a value.

μt̂p.[t̂p]V → V μt̂p. ↑t̂p t → t

As before, operational rules are given by deriving the evaluation context from
the continuation and meta-continuation used in C

λμt̂p↑ , restricting where reduc-
tion may apply.

E ::= � | E t | T E F ::= [q]E E2 ::= � | F [μt̂p.E2] F 2 ::= [q2]E2

With the evaluation contexts, the operational rules are just a coarse-grained
representation of the fine-grained reduction rules.

F 2[F [(λx.t) V ]] �→ F 2[F [t{V/x}]] F 2[F [μα.c]] �→ F 2[c{F [t]/[α]t}]
F 2[F [μt̂p.[t̂p]V ]] �→ F 2[F [V ]] F 2[F [μt̂p. ↑t̂p t]]] �→ F 2[F [t]]

[q2]E2[[∗]V ] �→ [q2][∗]V

The reduction rules and operational semantics are sound and complete with
respect to the transform C2

λμt̂p
↑ as in Section 6.

Theorem 5. If M → M ′ then C2
λμt̂p

↑�M� = C2
λμt̂p

↑�M ′�.
If C2

λμt̂p↑
�[•][∗]t� �→→ V then [•][∗]t �→→ [•][∗]V . If c2 �→ c′2 then c2→→c′2.

Expressiveness. To encode shift0 (S0) in λμt̂p
↑
, we need to use ↑t̂p to make the

nearest binding of t̂p transparent to its body. For comparison, we repeat shift’s
encoding:

#t = μt̂p.[t̂p]t S = λh.μα.[t̂p]h (λx.μt̂p.[α]x) S0 = λh.μα. ↑t̂p h (λx.μt̂p.[α]x)

We can derive the operational rules for the three control operators from the

operational semantics of λμt̂p
↑
. The two-part definition of evaluation contexts

mirrorsMaterzok and Biernacki’s[16] presentation of S0 using contexts and trails.
The derived rules show that the only difference between shift and shift0 is the
presence or absence of the reset after capture.

E ::= � | E t | V E D ::= � | D[E[#�]]

D[E[(λx.t) V ]] �→ D[E[t{V/x}]] D[E[#V ]] �→ D[E[V ]]

D[E′[#E[S0 V ]]] �→ D[E′[V (λx.#E[x])]] D[E[S V ]] �→ D[V (λx.#E[x])]
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8 Intermediate Language of Dynamic Unbinding: λt̂p
⇐

Recall that in Section 5, we had to ensure that the dynamic binding was non-
cyclic in order to properly model prompts. We accomplished this by backtracking
to a previous version of the dynamic environment whenever t̂p was applied to

a value. While the backtracking semantics of λt̂p
b
and λ̂b can also be used to

encode shift0 and multiple prompt abort, it does not scale well beyond that. The
only time we can backtrack the environment is when we have a value to pass to
a dynamic variable. Instead, we can generalize the effect by allowing a form of

dynamic backtracking over a term. We modify λt̂p
b
with the ability to undo a

binding over an unevaluated term t, giving us λt̂p
⇐
.

c ∈ Closure ::= [e]t t ∈ Term ::= V | x ⇐ t̂p in t | t1 t2

x̃ ∈ V ar ::= x | t̂p V ∈ V alue ::= x | λx̃.t

Where e is the empty environment •. The new term, x ⇐ t̂p in t, has the effect
of undoing the most recent binding of t̂p in the current environment, exposing
the previous dynamic environment to the term t while rebinding the value to
x. In essence, x ⇐ t̂p in t is the reverse effect of a dynamic binding. The direct
application t̂p V can be expressed notationally by the new term: f ⇐ t̂p in f V .

The translation of λt̂p
⇐

is a modification of the basic environment-passing
style transform D

λt̂p
b . We must change how the environment is represented in

order to express the additional effect on the dynamic environment. We could im-
plement Dλt̂p

⇐ in a concrete way, representing the environment as a list structure
to store a history of dynamic bindings.

Dλt̂p
⇐�λt̂p.t�γ = λv.λγ′.Dλt̂p

⇐�t�γ[t̂p �→ v] γ[t̂p �→ v](t̂p) = 〈v, γ〉
Dλt̂p

⇐�x ⇐ t̂p in t�γ = let 〈x, γ′〉 = γ(t̂p) inDu�t�γ′

Here, binding t̂p to a new value v in an environment γ just stores that binding
as the most recent one in γ, while looking up the binding of t̂p returns both the
value as well as the dynamic environment that was previously active before t̂p
was bound. The term x ⇐ t̂p in t uses the extra information returned by lookup
to evaluate t using the previous environment.

By refunctionalizing [6] the concrete list structure of the environment, we get
a translation from λt̂p

⇐
to the pure λ-calculus.

Dλt̂p⇐�λt̂p.t�γ = λv.λγ′.Dλt̂p⇐�t�γ[t̂p �→ v] γ(t̂p) = γ

Dλt̂p
⇐�x ⇐ t̂p in t�γ = γ(t̂p) λx.Du�t� γ[t̂p �→ v] = λq.q v γ

Looking up the current binding of t̂p is just an application of the current environ-
ment. The two return values are implemented by having lookup take a continua-
tion which accepts both the value bound to t̂p as well as the previous environment.
With the new syntax for rolling back the dynamic environment, we can translate

λμt̂p
↑
into λt̂p

⇐
in a more concise way, where k is bound directly to t̂p.
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Cu
λμt̂p

↑�μt̂p.c�k = (λt̂p.C
λμt̂p↑�c�) k

Cu
λμt̂p↑

�↑t̂p t� = k ⇐ t̂p in C
λμt̂p

↑�t�k Cu
λμt̂p↑

�t̂p� = λx.k ⇐ t̂p in k x

9 Delimited Control with Multiple Prompts: λμ̂↑ via λ̂⇐

With just the simple addition of multiple prompts, we still don’t have enough
expressive power in λμ̂ to encode shift and reset with multiple prompts. The
dilemma is that in the presence of multiple prompts, a shift up to prompt α̂ not
only captures its immediate context up to the nearest reset, but also captures
all contexts bound behind non-matching resets until it finds a reset for α̂. The
continuation that shift captures will then restore the captured context as well
as seamlessly inserting a partial meta-context in place. In order to express the
full power of shift with multiple prompts, we will need some way of directly
manipulating the meta-context. This is reminiscent of the way shift0 removes
the most recent binding of t̂p and exposes that context to an underlying term.
So in order to fully express shift with multiple prompts, we need to incorporate
both multiple prompt binding from Section 6 as well as transparent prompts
from Section 7. In other words we need to merge multiple dynamic variables
from λ̂b in Section 6 with the ability to roll back the dynamic environment from
λt̂p

⇐
in Section 8.

9.1 Dynamic Unbinding with Multiple Variables: λ̂⇐

The shift operator with multiple prompts only captures a prefix of the meta-
context, up to the binding of a specific prompt. What we need is a way to roll
back the dynamic environment up to a given binding, while also remembering all
the information that would otherwise be discarded. That is, we need to extend
the dynamic unbinding effect from x ⇐ x̂ in t to give us both the value that was
stored in x̂ as well as a trace of all the changes to the environment after x̂ was
bound. This trace is just a prefix of the current environment, and can be used
later to replay the changes over a future state of the environment, extending it
with all the dynamic bindings that were removed.

We merge both λ̂ and λt̂p
⇐
, by combining both multiple dynamic variables

and reversal of dynamic binding, giving us λ̂⇐.

c ∈ Closure ::= [e]t e ∈ Environment ::= •
t ∈ Term ::= V | t1 t2 | 〈Δ,x〉 ⇐ x̂ in t | [Δ]t x̃ ∈ V ar ::= x | x̂

The new class of variables, Δ, ranges over environment prefixes. Intuitively, the
term 〈Δ,x〉 ⇐ x̂ in t undoes the most recent binding of x̂, binding the value
stored in x̂ to x while also capturing the prefix of the environment more recent
than x̂ into Δ. Then, the term t is evaluated in the dynamic environment that
was in place immediately before x̂ was bound. Closure under the prefix, [Δ]t,
extends the surrounding environment with all the dynamic bindings stored in Δ.
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Like before, the direct application x̂ V can be notationally defined with the more
general prefix-capturing form: 〈 , f〉 ⇐ x̂ in f V .

The semantics of λ̂⇐, like λt̂p
⇐
, requires a redefinition of the dynamic environ-

ment. When we query the environment, we now must remember the previously
active environment as well as the prefix of bindings that were skipped over in
order to find the requested variable. Like in Section 8, we first define the new
environment in a concretely, using lists to implement environments and prefixes
and tuples to return multiple values.

Dλ̂⇐�〈Δ,x〉 ⇐ x̂ in t�γ = let 〈Δ,x, γ′〉 = γ(x̂) inDλ̂⇐�t�γ′

Dλ̂⇐�[Δ]t�γ = (Δ@Dλ̂⇐�t�) γ
γ[x̂ �→ v](x̂) =〈[], v, γ〉
γ[ŷ �→ v](x̂) = let 〈Δ,u, γ′〉 = γ(x̂)

in 〈Δ[ŷ �→ v], u, γ′〉

[]@t = t

Δ[x̂ �→ v]@t = Δ@(λγ.t γ[x̂ �→ v])

Dynamic variable lookup now builds up the prefix of bindings that are skipped
over in order to find the correct variable. This prefix of bindings can then be
used elsewhere to extend a term’s dynamic environment. Note that when a prefix
extends a term, the bindings in that prefix are more recent than the surrounding
dynamic environment and are bound in exactly the same order in which they
originally occurred.

Taking the concrete implementation, we can derive the pure λ-calculus en-
coding by refunctionalizing the data structures. The environment prefix is now
a function mapping terms to terms which implements the extension operation
from before. Multiple return values are emulated by taking a continuation that
accepts each of the three return values separately.

Dλ̂⇐�〈Δ,x〉 ⇐ x̂ in t�γ = γ(x̂) λΔ.λx.Dλ̂⇐ �t� Dλ̂⇐�[Δ]t�γ = Δ Dλ̂⇐�t� γ

γ(x̂) = γ �̂x� γ[x̂ �→ v] = λp. if p ≡ �̂x� thenλq.q (λt.t) v γ

elseλq.γ p λδ.q (λt.δ λγ′.t γ′[x̂ �→ v])

9.2 Capture Up to a Prompt: λμ̂↑

We are now finally ready to define the full calculus with capture up to an arbi-
trary prompt. λμ̂↑ extends λμ̂ with the ability to capture a prefix of the meta-
context up to a prompt, and then later extend the current meta-context with
that prefix.

c2 ∈ Command2 ::= [q2]c t ∈ Term ::= V | t1 t2 | μα̃.c
c ∈ Command ::= [q]t | μ2Δ ↑α̂.t | [Δ]c q ∈ CoTerm ::= α̃ | ∗
q2 ∈ CoTerm2 ::= • α̃ ∈ CoV ar ::= α | α̂

The command μ2Δ ↑α̂.t captures a portion of its meta-context as Δ, up to
the nearest binding of the prompt α̂. Then, that portion of the meta-context
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is removed and the most recent binding of α̂ becomes unbound. t is then evalu-
ated in the context formerly bound to α̂ and the remaining meta-context.

The CPS translation from λμ̂↑ to λ̂⇐ is a merging of Cλμ̂ and Cu
λμt̂p↑

. The new

syntactic forms in λμ̂↑ can be defined in terms of the intermediate language λ̂⇐.
Capturing a portion of the meta-context up to α̂ translates to capturing a prefix
of the dynamic environment while unbinding α̂, and extending the meta-context
becomes extending the dynamic environment. Like in Cu

λμt̂p↑
, the invocation of

a prompt is changed due to the change in the way dynamic variable lookup is
performed. The CPS transform for λμ̂↑ is an extension of the basic Cλμ transform.

Cλμ̂↑�μ2Δ ↑α̂.t� = 〈Δ,α〉 ⇐ α̂ inCλμ̂↑�t�α
Cλμ̂↑�[Δ]c� = [Δ]Cλμ̂↑�c� Cλμ̂↑�α̂� = λx.〈 , α〉 ⇐ α̂ inα x

The final derived transform shares a resemblance with the one given by Dybvig
et al. [8]. However, since we only treat shift/shift0-like operators, the environment
is an ordered list of bindings, rather than an arbitrary marked stack.

The reduction rules for capture up to a prompt must incrementally move
a prefix of the meta-context into the underlying term. Rather than move the
complete context bound to a prompt all at once, we can use the ordinary μ-
abstraction to capture that context and move it inward to where it is needed.
By using an ordinary μ-abstraction, we can capture the context formerly bound
to β̂ one step at a time.

μα̂.μ2Δ ↑α̂.t → t{c/[Δ]c} μβ̂.μ2Δ ↑α̂.t → μβ.μ2Δ ↑α̂.t{[Δ][β]μβ̂.c/[Δ]c}

When under a non-matching prompt β̂, μ2Δ ↑α̂.tmust take the context currently
bound to β̂ and rebind it to β̂ wherever Δ is invoked in t. This can be done by
giving the context a fresh static name with a static μ-abstraction, and binding
β̂ to that continuation variable inside of Δ. The static μ-abstraction is then able
to reduce further, incrementally absorbing its context and filling in the renewed
bindings for β̂ inside Δ. If instead μ2Δ ↑α̂.t is under a binding of the prompt α̂,
then t is placed in the context bound to α̂ and Δ is eliminated in t, since there
is no more prefix for it to capture.

The operational semantics for λμ̂↑ is an extension of the semantics for λμ̂.
The evaluation contexts and operational rules for λμ̂ hold for λμ̂↑. We only need
to include the additional rule for the command μ2Δ ↑α̂.t.

E ::= � | E t | V E F ::= [q]E E2 ::= � | F [μα̂.E2] F 2 ::= [q2]E2

F 2[F [μα̂.E2
α̂[μ

2Δ ↑α̂.t]]] �→ F 2[F [t{E2
α̂[c]/[Δ]c}]]

Where E2
α̂ does not contain a binding for α̂. Like with λμ̂ the reduction rules

and operational semantics are sound and complete with respect to the transform
Dλ̂⇐ ◦ Cλμ̂↑ .

Theorem 6. If M → M ′ then Dλ̂⇐ ◦ Cλμ̂↑�M� = Dλ̂⇐ ◦ Cλμ̂↑�M ′�.
If Dλ̂⇐ ◦ Cλμ̂↑�[•][∗]t� �→→ V then [•][∗]t �→→ [•][∗]V . If c2 �→ c′2 then c2→→c′2.
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Expressiveness. With capture of the dynamic environment up to a givenprompt,
we can encode the full behavior of both shift and shift0 with multiple prompts:

Sα̂
0 = λh.μβ.μ2Δ ↑α̂.h (λx.μα̂.[Δ][β]x) #α̂t = μα̂.[α̂]t

Sα̂ = λh.μβ.μ2Δ ↑α̂.μα̂.[α̂]h (λx.μα̂.[Δ][β]x)

Sα̂ h captures the current context as well as the dynamic prefix up to the most
recent binding of the prompt α̂, which is kept in place. Then, h is given a
function which, when applied, will evaluate its argument in the captured context
and dynamic prefix under a new binding of α̂. Sα̂

0 is like Sα̂ except that after
capturing the dynamic prefix, the prompt α̂ is unbound and the context bound
to α̂ is exposed to the given function. The only difference in their encodings is
that Sα̂ replaces the reset of α̂ after capturing the meta-context, while Sα̂

0 does
not.

Using the operational semantics from Section 9.2, we can derive the opera-
tional semantics for our encoding of the #α̂, Sα̂, and Sα̂

0 control operators.

E ::= � | E t | V E D ::= � | D[E[#α̂�]]

D[E[(λx.t) V ]] �→ D[E[t{V/x}]] D[E[#α̂V ]] �→D[E[V ]]

D[E[#α̂D′[E′[Sα̂ V ]]]] �→ D[E[#α̂V (λx.#α̂D′[E′[x]])]] where#α̂ /∈ D′

D[E[#]D′[E′[Sα̂
0 V ]α̂]] �→ D[E[V (λx.#α̂D′[E′[x]])]] where#α̂ /∈ D′

10 Conclusion

We have provided a calculus which allows us to study delimited control with
multiple prompts. To do this, we used an intermediate language of dynamic
binding in order to define the semantics of multiple prompts. Kiselyov et al. [15]
have also investigated the relationship between dynamic binding and delimited
control by giving a language that gives the programmer access to both. Interest-
ingly, their approach is the opposite of ours. They directly define the dynamic
binding in terms of delimited control with multiple prompts. On the other hand,
we use the conceptually simpler notion of dynamic binding as a stepping stone
for understanding delimited control with multiple prompts.

Our interest in delimited control with multiple prompts came from the de-
sire of formalizing a call-by-need abstract machine. Both call-by-value and call-
by-name λ-calculi can be presented in the sequent calculus style as abstract
machines, where the active redex is always at the top of the term [3]. With call-
by-need, however, the active redex can become buried under bindings of delayed
terms during evaluation. As discussed by Garcia et al. [13], call-by-need can be
represented in terms of delimited control with multiple prompts. In that spirit,
we want to achieve a deeper understanding of the equational theory of delimited
control in the presence of more than one prompt, aiming at formalizing clas-
sical lazy evaluation in the sequent setting. As future work, we plan to tackle
completeness of the equational theory with respect to the CPS semantics. We
are also interested in understanding the type theory that arises from the CPS
semantics.
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A Calculation-based Framework for Systematic Parallel
Programming with MapReduce�
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Abstract. MapReduce, being inspired by the map and reduce primi-
tives available in many functional languages, is the de facto standard
for large scale data-intensive parallel programming. Although it has suc-
ceeded in popularizing the use of the two primitives for hiding the details
of parallel computation, little effort has been made to emphasize the
programming methodology behind, which has been intensively studied
in the functional programming and program calculation fields. We show
that MapReduce can be equipped with a programming theory in calcula-
tional form. By integrating the generate-and-test programing paradigm
and semirings for aggregation of results, we propose a novel parallel pro-
gramming framework for MapReduce. The framework consists of two
important calculation theorems: the shortcut fusion theorem of semir-
ing homomorphisms bridges the gap between specifications and efficient
implementations, and the filter-embedding theorem helps to develop par-
allel programs in a systematic and incremental way. We give nontrivial
examples that demonstrate how to apply our framework.

1 Introduction

MapReduce [6], the de facto standard for large scale data-intensive applications,
is a remarkable parallel programming model, allowing for easy parallelization
of data intensive computations over many machines in a cloud. It is used rou-
tinely at companies such as Yahoo!, Google, Amazon, and Facebook. Despite its
abstract interface that effectively hides the details of parallelization, data dis-
tribution, load balancing, and fault tolerance, developing efficient MapReduce
parallel programs remains as a challenge in practice.

As a concrete example, consider the known statistics problem of inferring
a sequence of hidden states of a probabilistic model that most likely causes a
sequence of observations [13] (see details in Section 6). This problem is important
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in natural language processing and error code correction, but it is far from
easy for one to come up with an efficient MapReduce program to solve it. The
problem becomes more difficult, if we would like to find the most likely sequence
with additional requirements such that the sequence should contain a specific
state exactly five times, or that the sequence should not contain a specific state
anywhere after another. The main difficulty in programming with MapReduce
is that nontrivial problems are usually not in a simple divide-and-conquer form
that can be easily mapped to MapReduce without producing an exponential
number of intermediate candidates. Moreover, the inputs may not just form a
simple set of elements as in MapReduce; rather they are often structured as lists.

The MapReduce framework was inspired by the map and reduce (fold) primi-
tives available in many functional languages. Although it has successfully
popularized the use of these two primitives for hiding the details of parallel
computation, little effort has been made to emphasize the programming method-
ology behind, which has been intensively studied in functional programming and
program calculation [1, 3, 8, 14, 22]. This lack of programming methodology for
MapReduce has led to publication of too many papers about MapReduce appli-
cations [18], each addressing a solution to one specific problem, even if quite a
lot of problems follow a common pattern and can be solved generally.

To remedy this situation, we will show that MapReduce can be equipped with
a programming theory in calculational form [3, 15, 24], which can be applied to
give efficient solutions to a wide class of problems. For illustration, we consider
a general class of problems which can be specified in the following generate-test-
and-aggregate (GTA for short) form (here, ◦ denotes function composition):

aggregate ◦ test ◦ generate

Problems that match this specification can be solved by first generating possible
solution candidates, then keeping those candidates that pass a test of a certain
condition, and finally selecting a valid solution or making a summary of valid
solutions with an aggregating computation. For example, the above statistics
problem may be informally specified by generating all possible sequences of state
transitions, keeping those that satisfy a certain condition, and selecting one that
maximizes the products of probabilities (see Section 6).

Like other programming theories in calculational form [15, 24], the big chal-
lenges in the development of our calculation theory are to decide a structured
form such that any program in this form is guaranteed to be efficiently paral-
lelized, and to show how a specification can be systematically mapped to the
structured form. To this end, we refine the specification with constraints on each
of its components.

– The generator should be parallelizable in a divide-and-conquer manner and
polymorphic over semiring structures, guaranteeing that the final program
can be coded with MapReduce efficiently.

– The condition for the test should be defined structurally in terms of a list
homomorphism.
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– The aggregator should be a semiring computation (semiring homomorphism),
guaranteeing that the aggregating computation is structured in a way that
matches with the generator.

These constraints, as will be seen later, can be satisfied for practical problems
such as the statistics problem mentioned above. An interesting result of this pa-
per is that any specification that satisfies these constraints can be automatically
mapped to an efficient parallel program in, but not limited to, MapReduce.

In this paper, by integrating the generate-and-test programing paradigm and
semirings for result aggregation, we propose a novel parallel programming frame-
work that is centered on two calculation theorems, the semiring fusion theorem
and the filter embedding theorem. These two calculation theorems play an im-
portant role for the systematic development of efficient parallel programs in
MapReduce for a problem that is specified by a semiring-polymorphic gener-
ator, a test with a homomorphic predicate, and a semiring homomorphism as
aggregator. Our main technical contributions can be summarized as follows.

– We propose a new formalization of GTA problems in the context of parallel
computation based on the semiring fusion theorem. We show how a generator
can be specified as a list homomorphism polymorphic over semirings, an
aggregator can be specified as a semiring homomorphism, and fusion of their
composition can be done for free and results in an efficient homomorphism
parallelizable by MapReduce.

– We propose a new systematic and incremental development of parallel pro-
grams for more complicated GTA problems based on the filter embedding
theorem. The filter-embedding theorem allows a semiring homomorphism
to absorb preceding tests yielding a new semiring homomorphism. We give
nontrivial examples that demonstrate how to apply our framework.

The rest of the paper is organized as follows. We start with background on lists,
monoids, homomorphisms, and MapReduce in Section 2. Then, after exemplify-
ing our approach to specify parallel programs by means of the knapsack problem
in Section 3, we focus on two important calculation theorems, the shortcut fusion
theorem for semiring homomorphisms in Section 4, and the filter embedding the-
orem in Section 5. We discuss a more complex application in Section 6. Finally,
we discuss related work in Section 7 and conclude in Section 8.

2 Background: Lists, Monoids and MapReduce

The notation in this paper is reminiscent of Haskell [2]. Function application is
denoted by a space and the argument may be written without brackets, so that
(f a) means f(a) in ordinary notation. Functions are curried: they always take
one argument and return a function or a value, and the function application
associates to the left and binds more strongly than any other operator, so that
f a b means (f a) b and f a⊗b means (f a)⊗b. Function composition is denoted
by ◦, and (f ◦ g) x = f (g x ) according to its definition. Binary operators can be
used as functions by sectioning as follows: a ⊕ b = (a⊕) b = (⊕b) a = (⊕) a b.
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2.1 Lists, Monoids, and Homomorphisms

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [ ] for the empty list,
[x ] for the singleton list with element x , and xs ++ ys for the concatenation of
two lists xs and ys . For example, the term [1] ++ [2] ++ [3] denotes a list with
three elements, often abbreviated as [1, 2, 3]. We write [A ] for the type of lists
with elements of type A.

Definition 1 (Monoid). Given a set M and a binary operator / on M , the
pair (M ,/) is called a monoid if and only if / is associative and has an identity
ı� ∈ M:

(a / b)/ c = a / (b / c)
ı� / a = a = a / ı�

For example, ([A ],++) is a monoid: ++ is associative and [ ] is its identity.
Homomorphisms are structure preserving mappings. In the case of monoids

they respect the binary operation and its identity.

Definition 2 (Monoid Homomorphism). Given two monoids (M ,/) and
(M ′,/′), a function hom :M → M ′ is called monoid homomorphism from (M ,/)
to (M ′,/′) if and only if:

hom ı� = ı�′

hom (x / y) = hom x /′ hom y

For example, the function sum for summing up all elements in a list is a monoid
homomorphism from ([Z],++) to (Z,+):

sum [ ] = 0
sum [x ] = x
sum (xs ++ ys) = sum xs + sum ys

There is more than one monoid homomorphism from ([Z],++) to (Z,+) but the
property sum [x ] = x characterizes sum uniquely, because [A ] is the free monoid
over A: for every result monoid, a list homomorphism (monoid homomorphism
from lists) is characterized uniquely by its result on singleton lists.

List homomorphisms are relevant to parallel programming because associa-
tivity allows to distribute the computation evenly among different processors or
even machines by the well-known divide-and-conquer parallel paradigm [5, 22].

2.2 MapReduce

MapReduce [6] is a parallel programming technique, made popular by Google,
used for processing large amounts of data. Such processing can be completed in a
reasonable amount of time only by distributing the work to multiple machines in
parallel. Each machine processes a small subset of the data. We will not discuss
the details of MapReduce in this paper.
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List homomorphisms fit well with MapReduce, because their input list can
be freely divided and distributed among machines. In fact, it has been shown
recently that list homomorphisms can be efficiently implemented using MapRe-
duce [19]. Our approach builds on such an implementation which is orthogonal
to our work. Therefore, if we can derive an efficient list homomorphism to solve
a problem, we can solve the problem efficiently with MapReduce, enjoying its
advantages such as automatic load-balancing, fault-tolerance, and scalability.

Some readers might feel that there is a mismatch between a typical MapRe-
duce computation and computations in GTA style, because the size of the re-
sults generated by map in the former is often proportional to the size of the
input data while the latter appears to have much larger intermediate results.
This mismatch is a strength of our approach: based on a naively-designed GTA
specification our calculation theorems can provide an efficient MapReduce im-
plementation with intermediate results proportional to the size of the input, i.e.,
efficient list homomorphisms. Our approach makes MapReduce applicable to ap-
plications appearing not to match the MapReduce pattern. As a consequence, it
allows programmers to implement MapReduce algorithms by providing an often
simpler specification in GTA form.

3 Running Example: The Knapsack Problem

In this section we give a simple example of how to specify parallel algorithms in
GTA form. We give a clear but inefficient specification of the knapsack problem
following this structure and use it throughout Sections 4 and 5 to show how to
transform such specifications into efficient parallel programs.

The knapsack problem is to fill a knapsack with items, each of certain value
and weight, such that the total value of packed items is maximal while adhering
to a weight restriction of the knapsack. For example, if the maximum total weight
of our knapsack is 5kg and there are three items (�2000, 1kg), (�3000, 3kg),
and (�4000, 3kg) then the best we can do is pick the selection (�2000, 1kg),
(�4000, 3kg) with total value �6000 and weight 4kg because all selections with
larger value exceed the weight restriction.

The function knapsack , which takes as input a list of value-weight pairs (both
positive integers) and computes the maximum total value of a selection of items
not heavier than a total weight w , can be written as a composition of three
functions:

knapsack = maxvalue ◦ filter ((	 w) ◦ weight) ◦ sublists

– The function sublists is the generator. From the given list of pairs it computes
all possible selections of items, that is, all 2n sublists if the input list has
length n.

– The function filter ((	 w) ◦ weight) is the test. It discards all generated
sublists whose total weight exceeds w and keeps the rest.

– The function maxvalue is the aggregator. From the remaining sublists ad-
hering to the weight restriction it computes the maximum of all total values.
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The function sublists can be defined as follows:

sublists [ ] = �[ ]�
sublists [x ] = �[ ]� � �[x ]�
sublists (xs ++ ys) = sublists xs ×++ sublists ys

The result of sublists is a bag of lists which we denote using � and �. The
symbol � denotes bag union and ×++ the lifting of list concatenation to bags,
concatenating every list in one bag with every list in the other. The function
sublists is a monoid homomorphism: ×++ is associative and �[ ]� is its identity.

The function filter filters a bag according to the given predicate. We pass as
predicate the composition of the function weight that adds all weights in a list
and the function (	 w) that checks the weight restriction. Like sublists, weight
is a monoid homomorphism:

weight [ ] = 0
weight [(v ,w)] = w
weight (xs ++ ys) = weight xs + weight ys

Finally, maxvalue computes the maximum of summing up the values of each list
in a bag using the maximum operator ↑.

maxvalue �� = −∞
maxvalue �[ ]� = 0
maxvalue �[(v ,w)]� = v
maxvalue (b � b′) = maxvalue b ↑maxvalue b′

maxvalue (b ×++ b′) = maxvalue b +maxvalue b′

Regarding the last equation, remember that the lifted list concatenation ×++
appends each list in one bag with each in the other, and, therefore, the maximum
total value of the concatenated lists is the sum of the maximum total values of
the lists in each bag. This observation relies on distributivity of + over ↑, a
property that we will revisit in the next section.

4 Semiring Fusion

In this section we show how to derive efficient parallel programs from specifica-
tions in generate-and-aggregate form:

aggregate ◦ generate

This form is a simplified version of GTA form, missing the test. We define spe-
cific kinds of generators and aggregators that allow such specifications to be
implemented efficiently and provide a theorem that shows how to calculate effi-
cient parallel implementations. Such a calculation can turn an exponential-time
specification into a linear-time implementation.



260 K. Emoto, S. Fischer, and Z. Hu

4.1 Semirings and Their Homomorphisms

The specification for the function maxvalue in Section 3 shows that it is a monoid
homomorphism with respect to two different monoids over the same set (bags of
lists). We now consider an algebraic structure that relates two such monoids.

Definition 3 (Semiring). A triple (S ,⊕,⊗) is called a semiring if and only if
(S ,⊕) and (S ,⊗) are monoids, and additionally ⊕ is commutative, ⊗ distributes
over ⊕, and ı⊕ is a zero of ⊗:

a ⊕ b = b ⊕ a
a ⊗ (b ⊕ c) = (a ⊗ b)⊕ (a ⊗ c)
(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)
ı⊕ ⊗ a = ı⊕ = a ⊗ ı⊕

We have already seen two semirings in Section 3:

– (Z−∞, ↑,+) is a semiring because both ↑ and + are associative, commuta-
tive and have identities −∞ and 0, respectively, where Z−∞ = Z∪{−∞}.
Moreover, + distributes over ↑ and −∞ is a zero of +.

– (�[A ]�,�,×++) is a semiring for every set A because � is associative and
commutative and ×++ is associative. Moreover, �� and �[ ]� are the identities
of � and ×++, respectively. Interestingly, ×++ distributes over � and, clearly,�� is a zero of ×++. Readers who verify distributivity of ×++ will make crucial
use of the ability to reorder bag elements.

Definition 4 (Semiring Homomorphism). Given two semirings (S ,⊕,⊗)
and (S′,⊕′,⊗′), a function hom : S → S′ is a semiring homomorphism from
(S ,⊕,⊗) to (S′,⊕′,⊗′) if and only if it is a monoid homomorphism from (S ,⊕)
to (S′,⊕′) and a monoid homomorphism from (S ,⊗) to (S′,⊗′).

The maxvalue function presented in Section 3 is a semiring homomorphism from
(�[Z−∞ × Z−∞ ]�,�,×++) to (Z−∞, ↑,+). It additionally satisfies the property
maxvalue �[(v ,w)]� = v which characterizes it uniquely because bags of lists
over a set A form the free semiring.

Lemma 1 (Free Semiring). Given a set A, a semiring (S ,⊕,⊗), and a func-
tion f :A → S there is exactly one semiring homomorphism h : �[A ]� → S from
(�[A ]�,�,×++) to (S ,⊕,⊗) that satisfies h �[x ]� = f x . 12
The unique homomorphism can be thought of as applying f to each list element,
then accumulating the results in each list using the operator ⊗, and finally
accumulating those results using the operator ⊕.

4.2 Polymorphic Generators

We now return to the generator sublists defined in Section 3. This function
almost exclusively uses the semiring operations of the semiring �[A ]� and their
identities. The only exception is �[x ]� constructed from an element x ∈ A.
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We can generalize sublists by parameterizing it with operations ⊕ and ⊗ of an
arbitrary semiring (and their identities) as well as an embedding function that
constructs semiring elements from elements of a (potentially) different type:

sublists⊕,⊗ f [ ] = ı⊗
sublists⊕,⊗ f [x ] = ı⊗ ⊕ f x
sublists⊕,⊗ f (xs ++ ys) = sublists⊕,⊗ f xs ⊗ sublists⊕,⊗ f ys

This function is called polymorphic over semirings because it can construct a
result in an arbitrary semiring determined by the passed semiring operators and
embedding function. It is a generalization of sublists because

sublists = sublists�,×++ (λx → �[x ]�)
The anonymous function passed as argument constructs a singleton bag contain-
ing a singleton list with the argument x .

Definition 5 (Polymorphic Semiring Generator). A function

generate⊕,⊗ : (A → S ) → [A ] → S

that is polymorphic over an arbitrary semiring (S ,⊕,⊗) is called a polymorphic
semiring generator.

The function sublists⊕,⊗ is a polymorphic semiring generator and, being a
monoid homomorphism for any semiring, it can be executed in parallel. We
could also pass the operations of the semiring Z−∞ to compute a result in Z−∞.

sublists↑,+ (λ(v ,w) → v) : �[Z−∞ × Z−∞ ]� → Z−∞

What does this function compute? Theorem 1, which is a variant of short-cut
fusion for semiring homomorphisms, casts light on this question.

Theorem 1 (Semiring Fusion). Given a set A, a semiring (S ,⊕,⊗), a semir-
ing homomorphism aggregate from (�[A ]�,�,×++) to (S ,⊕,⊗), and a polymor-
phic semiring generator generate, the following equation holds:

aggregate ◦ generate�,×++ (λx → �[x ]�)=generate⊕,⊗ (λx → aggregate �[x ]�)
Proof. Free Theorem1 [26].

We can use Theorem 1 to see what sublists↑,+ (λ(v ,w) → v) computes.

maxvalue ◦ sublists
= maxvalue ◦ sublists�,×++ (λ(v ,w) → �[(v ,w)]�)
= sublists↑,+ (λ(v ,w) → maxvalue �[(v ,w)]�)
= sublists↑,+ (λ(v ,w) → v)

1 The proof can be automated using an online tool: http://www-ps.iai.uni-bonn.de/
cgi-bin/free-theorems-webui.cgi

http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/free-theorems-webui.cgi
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This derivation shows that sublists↑,+ (λ(v ,w) → v) computes the maximum
of all total values of sublists of the input list, but—unlike the intuitive formu-
lation at the beginning of the equation chain—efficiently. While the run time
of maxvalue ◦ sublists is exponential in the length of the input list (because
the result of sublists has exponential size), the run time of the derived version
sublists↑,+ (λ(v ,w) → v) is linear in the length of the input list (it adds up all
positive values in the input).

Of course, this is of little use for solving the knapsack problem posed in
Section 3 because the input list in this problem contains only positive values
and maxvalue ◦ sublists, thus, computes the total value of all available items.

For solving the knapsack problem, it is crucial to compute the maximum value
only of those sublists of the input list which adhere to the weight restriction. We
need to account for the test that implements this restriction which is the topic
of the next section.

5 Filter Embedding

We cannot apply Theorem 1 to transform specifications of the form

aggregate ◦ test ◦ generate

because the intermediate test goes in the way of fusing the aggregator with
the generator. We now show how specific instantiations of test allow to rewrite
specifications like above into the form

postprocess ◦ aggregate ′ ◦ generate

where aggregate ′ is a semiring homomorphism derived from aggregate and test ,
and postprocess maps the result type of aggregate ′ to the result type of aggregate.
This form then allows to fuse aggregate ′ with generate to derive an efficient
implementation.

This transformation is possible if

test = filter (ok ◦ hom)

is a filter where the predicate is a composition of a monoid homomorphism
hom : [A ] → M into a finite monoid M and a function ok :M → Bool that maps
elements of M to Booleans.

Before we describe the general theorem in Section 5.2, we develop the under-
lying ideas by deriving an efficient implementation from the knapsack specifica-
tion. This development may seem to require some clever insights but users of
our approach do not need to follow the same path when transforming their own
specifications. We chose to present the ideas using a concrete example first, to
make them seem less clever in the subsequent generalization. Others can simply
apply our general theorem to their specifications rather than repeating our de-
velopment for each specification on their own. We can even provide an API that
supports specifications in GTA form and implements them as efficient parallel
programs automatically.
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5.1 Developing Intuitions by Example

In Section 3 we have specified the knapsack function as follows:

knapsack = maxvalue ◦ filter ((	 w) ◦ weight) ◦ sublists

This specification is almost of the form we require:

– maxvalue, the aggregator, is a semiring homomorphism and
– the predicate used for filtering is a composition of the monoid homomor-

phism weight and the function (	 w) that maps the result of weight into the
Booleans.

However, the result type of weight is N which is an infinite monoid, not a finite
one. We can remedy the situation by defining Mw = {0, . . . , w + 1} and

weightw [ ] = 0
weightw [n ] = (w + 1) ↓ n
weightw (ms ++ ns) = weightw ms +w weightw ns
where m +w n = (w + 1) ↓ (m + n)

The operator +w implements addition but limits the result by computing the
minimum with w + 1 by using the minimum operator ↓. For non-negative argu-
ments it is associative and 0 is its identity. Consequently, weightw is a monoid
homomorphism into the finite monoid (Mw,+w) for all weight restrictions w .

To transform the function maxvalue ◦ filter ((	 w) ◦ weightw) into the form
postprocessw ◦ maxvaluew we need to invent a semiring to use as result type
of maxvaluew. The idea is to compute simultaneously for all weights in Mw the
maximum value of lists with exactly that weight. The function postprocessw then
computes the maximum over all values associated to weights 	 w .

We use w = 5 as an example, so semiring elements can be represented as
7-tuples over Z−∞. The function postprocess5 is defined as follows:

postprocess5 (v0, v1, v2, v3, v4, v5, v6) = v0 ↑ v1 ↑ v2 ↑ v3 ↑ v4 ↑ v5

It computes the maximum of all values vi associated with weights i 	 5. The
entry v6 for the weight 6 accumulates the maximum value corresponding to all
weights 
 6 because +w cuts off greater sums.

We now turn Z7
−∞ into a semiring (Z7

−∞, ↑7,+7). To compute the maximum
value associated to each weight of two 7-tuples, we use the underlying maximum
operation on values.

(v0, v1, v2, v3, v4, v5, v6) ↑7 (v ′
0, v

′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6) =

(v0 ↑ v ′
0, v1 ↑ v ′

1, v2 ↑ v ′
2, v3 ↑ v ′

3, v4 ↑ v ′
4, v5 ↑ v ′

5, v6 ↑ v ′
6)

This operator clearly inherits associativity and commutativity from the under-
lying maximum operator and its identity is

(−∞,−∞,−∞,−∞,−∞,−∞,−∞)
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The operator +7 is more interesting. From two 7-tuples that associate max-
imum values to each weight in M5 it computes another 7-tuple that associates
maximum values to the combined weights. For example, to find the maximum
value associated to the weight 3, it computes the maximum of all sums of values
associated to weights that sum up to 3 (we omit the part for larger weights):

(v0, v1, v2, v3, v4, v5, v6) +
7 (v ′

0, v
′
1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6) =

(v0 + v ′
0

, (v0 + v ′
1) ↑ (v1 + v ′

0)
, (v0 + v ′

2) ↑ (v1 + v ′
1) ↑ (v2 + v ′

0)
, (v0 + v ′

3) ↑ (v1 + v ′
2) ↑ (v2 + v ′

1) ↑ (v3 + v ′
0)

, ...)

This operator is associative and its identity is

(0,−∞,−∞,−∞,−∞,−∞,−∞)

We now define maxvalue5 as the (cf. Lemma 1) semiring homomorphism that
satisfies the following equation:

maxvalue5 �[(v ,w)]� = (val 0, val 1, val 2, val 3, val 4, val 5, val 6)
where val i = if i ≡ (w ↓ 6) then v else −∞

When applied to a singleton bag that contains a list with exactly one item,
maxvalue5 associates to almost all weights the value −∞ with one exception:
the value of the given item is associated to its weight (or to the weight 6 if it is
heavier).

Our Main Theorem 3 below, now implies that for w = 5

knapsack = postprocess5 ◦ sublists↑7,+7 (λ(v ,w) → maxvalue5 �[(v ,w)]�)
The run time of the transformed version of knapsack is O(nw2) if there are n
items and the weight restriction is w. As sublists↑7,+7 is a monoid homomorphism
we can execute it in parallel, say using p processors, which leads to the run
time O((log p+ n

p )w
2). This complexity resembles the run time of other parallel

algorithms to solve the knapsack problem. The standard sequential algorithm
has run time O(nw).

Unlike existing algorithms to solve the knapsack problem, our approach can
be generalized to other specifications in GTA form. The knapsack function is
a special case well suited to highlight the ideas behind our approach, which we
now generalize.

5.2 The Generalized Theorem

We now generalize the ideas of Section 5.1 to support

– arbitrary polymorphic semiring generators,
– arbitrary filters with homomorphic predicates, and
– arbitrary semiring homomorphisms as aggregators.
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In Section 5.1 we have used a semiring of 7-tuples storing maximum values
corresponding to each weight in M5. In general, if we have a finite monoid M
and a semiring S , then the set

SM = {{fm}m∈M |fm ∈ S}

of families of elements in S indexed by M is a semiring too. Indexed families
are a generalization of tuples and we write fm for the element in S indexed by
the value m ∈ M if f ∈ SM is an indexed family. We give definitions of indexed
families by defining their value in S for each m ∈ M .

Lemma 2 (Lifted Semiring). Given a finite monoid (M ,/) and a semiring
(S ,⊕,⊗) the triple (SM ,⊕M ,⊗M ) where

(f ⊕M f ′)m = fm ⊕ f ′m
(f ⊗M f ′)m =

⊕
k,l∈M
k�l=m

(fk ⊗ f ′l )

is a semiring and

(ı⊕M )m = ı⊕
(ı⊗M )m = if m ≡ ı� then ı⊗ else ı⊕

Proof. The monoid laws for ⊕M follow directly from those of ⊕. We leave the
proof of the laws for ⊗M to interested readers.

The definition of ⊕M uses the underlying ⊕ operator just like the definition
of ↑7 in Section 5.1 uses ↑. The operator ⊗M , like +7, computes for each m
the maximum of all sums of values associated to weights that add up to m if
we instantiate / and ⊗ with + and ⊕ with ↑. The identities also reflect their
specific counterparts from Section 5.1.

Intuitively, given a monoid homomorphism hom : [A ] → M , a semiring homo-
morphism aggregate : �[A ]� → S , and a bag of lists ls , we can associate to ls an
indexed family f ls ∈ SM that describes for each m ∈ M the result of applying
aggregate to a bag of exactly those lists l ∈ ls that satisfy hom l = m:

f ls
m = aggregate (filter ((m ≡) ◦ hom) ls)

Considering different instantiations for ls , we can observe the following identities:

f
��
m = ı⊕
f

�[ ]�
m = if m ≡ ı� then ı⊗ else ı⊕
f ls�ls′
m = f ls

m ⊕ f ls′
m

f
ls×++ls′
m =

⊕
k,l∈M
k�l=m

(f ls
k ⊗ f ls′

l )

They reflect the definitions of the semiring operations for SM and their identities.
Because of these homomorphic equations for f ls , we can compute f ls using a
semiring homomorphism aggregateM that satisfies
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(aggregateM�[x ]�)m
= f

�[x ]�
m

= aggregate (filter ((m ≡) ◦ hom) �[x ]�)
= if hom [x ] ≡ m then aggregate �[x ]� else ı⊕

According to Lemma 1 this semiring homomorphism is unique.

Definition 6 (Lifted Homomorphism). Given a set A, a finite monoid
(M ,/), a monoid homomorphism hom from ([A ],++) to (M ,/), a semiring
(S ,⊕,⊗), and a semiring homomorphism aggregate from (�[A ]�,�,×++) to
(S ,⊕,⊗), the function

aggregateM : �[A ]� → SM

is the unique semiring homomorphism from (�[A ]�,�,×++) to (SM ,⊕M ,⊗M )
that satisfies

(aggregateM�[x ]�)m = if hom [x ] ≡ m then aggregate �[x ]� else ı⊕

The function aggregateM generalizes the function maxvalue5 by using aggregate
and ı⊕ instead of maxvalue and −∞.

Once we have computed f ls , we can use a function ok :M → Bool to combine
all results f ls

m for m ∈ M with ok m = True to get the result of

aggregate (filter (ok ◦ hom) ls) =⊕
m∈M

ok m=True

(aggregate (filter ((m ≡) ◦ hom) ls))

According to this equation, we can partition the bag of accepted lists according
to elements of M and aggregate them individually because aggregate is a semir-
ing homomorphism. The postprocessor defined next combines such individual
aggregations.

Definition 7 (Postprocessor). Given sets M (finite) and S and a function
ok :M → Bool the function postprocessM ok : SM → S is defined as follows:

postprocessM ok f =
⊕

m∈M
ok m=True

fm

It is clearly a generalization of postprocess5 which computes the maximum of all
values associated to weights 	 5.

We can now prove the theorem which constitutes the second half of our ap-
proach. It clarifies how to embed an arbitrary filter with a homomorphic predi-
cate into an arbitrary semiring homomorphism.

Theorem 2 (Filter Embedding). Given a set A, a finite monoid (M ,/),
a monoid homomorphism hom from ([A ],++) to (M ,/), a semiring (S ,⊕,⊗),
a semiring homomorphism aggregate from (�[A ]�,�,×++) to (S ,⊕,⊗), and a
function ok :M → Bool the following equation holds:

aggregate ◦ filter (ok ◦ hom) = postprocessM ok ◦ aggregateM
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Proof. The following calculation combines previous observations and definitions
to show the claimed identity.

aggregate (filter (ok ◦ hom) ls)
= { Partition, individual aggregation }⊕

m∈M
ok m=True

(aggregate (filter ((m ≡) ◦ hom) ls))

= { Definition of f ls , and Definition 7 }
postprocessM ok f ls

= { Definition 6, homomorphic equations for f ls }
postprocessM ok (aggregateM ls)

Our main result combines the theorems from Sections 4 and 5. It allows, under
certain conditions, to transform specifications in GTA form into efficient parallel
algorithms.

Main Theorem 3 (Filter-embedding Semiring Fusion). Given a set A, a
finite monoid (M ,/), a monoid homomorphism hom from ([A ],++) to (M ,/),
a semiring (S ,⊕,⊗), a semiring homomorphism aggregate from (�[A ]�,�,×++)
to (S ,⊕,⊗), a function ok : M → Bool, and a polymorphic semiring generator
generate, the following equation holds:

aggregate ◦ filter (ok ◦ hom) ◦ generate�,×++ (λx → �[x ]�)
= postprocessM ok ◦ generate⊕M ,⊗M

(λx → aggregateM �[x ]�)
Proof. Combining Theorems 1 and 2.

Filter-embedding Semiring Fusion is not restricted to parallel algorithms. It can
be used to calculate efficient programs from specifications that use arbitrary
polymorphic semiring generators.

It is worth noting that it is possible to remove the finiteness requirement
for monoids and define a lifted semiring of finite mappings of unbounded and
unknown size. We require the finiteness only in order to be able to describe the
complexity of the resulting parallel algorithms more accurately.

If the generator happens to be a list homomorphism, like sublists, then as-
sociativity of list concatenation allows the resulting program to be executed in
parallel by distributing the input list evenly among available processors. The
complexity of a derived program using sublists as generator is linear in the size
of the input list and quadratic in the size of the range M of the homomorphic
predicate because the semiring multiplication of the lifted semiring SM , which is
used to combine all list elements, can be implemented by ranging over M ×M .

6 A More Complex Application

In this section we describe how to use our framework to derive an efficient parallel
implementation for a practical problem in statistics. We further demonstrate how
to extend the derived basic program incrementally.
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6.1 Finding a Most Likely Sequence of Hidden States

We now revisit the statistics problem mentioned in Section 1 which is to find
a sequence of hidden states of a probabilistic model that most likely causes a
sequence of observed events. For example, for speech recognition, the acoustic
signal could be the sequence of observed events, and a string of text the sequence
of hidden states.

Given a sequence x = (x1, . . . , xn) of observed events, a set S of states in a
hidden Markov model, probabilities Pyield(xi | zj) of events xi being caused by
states zj ∈ S, and probabilities Ptrans(zi | zj) of states zi appearing immediately
after states zj , the objective is to find a sequence z = (z0, . . . , zn) of hidden
states that is most likely to cause the sequence x of events such that every zi
causes xi for i > 0 and z0 is an initial state. This problem can be formalized by
the following expression.

argmax
z∈Sn+1

( n∏
i=1

Pyield(xi | zi)Ptrans(zi | zi−1)
)

To derive an efficient parallel algorithm to solve this problem, we transform this
expression to fit in our framework.

To eliminate the index i− 1, we let the expression range over pairs of hidden
states in S × S and introduce a predicate trans to restrict the considered lists
of state pairs. Intuitively, trans y is True if and only if the given sequence y of
state pairs describes consecutive transitions

((z0, z1), (z1, z2), . . . , (zn−2, zn−1), (zn−1, zn))

and False otherwise. Introducing the function

prob (x, (s, t)) = Pyield(x | t)Ptrans(t | s)

the expression above can be transformed into the following equivalent expression.

argmax
y∈(S×S)n

trans y=True

( n∏
i=1

prob (xi, yi)
)

In a first step, we specify only the maximum probability in GTA form. We show
how to compute a state sequence corresponding to this probability by using a
different aggregator later.

Representing sequences of states and events as lists, we can write the trans-
formed specification as follows.

maxLikeliness = maxprob ◦
filter (trans ◦map (λ(x , (s , t)) → (s , t))) ◦
assignTrans�,×++ (λx → �[x ]�)

The polymorphic semiring generator assignTrans⊕,⊗ is defined as the unique
monoid homomorphism from ([X ],++) to the multiplicative monoid (T ,⊗) of
an arbitrary semiring (T ,⊕,⊗) that satisfies
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assignTrans⊕,⊗ f [x ] = reduce⊕ [f (x , (s , t)) | s ← S , t ← S ]

Here, reduce⊕ is a monoid homomorphism from ([T ],++) to (T ,⊕) that satisfies
reduce⊕ [x ] = x . Intuitively, assignTrans�,×++ (λx → �[x ]�) produces a bag of
event sequences where all possible combinations of state transitions are attached.

The predicate trans is defined as not ◦ (� ≡) ◦ reduce� where reduce� is a
monoid homomorphism from ([S × S ],++) to the finite monoid ((S × S )�, ()
and (S × S )� is (S × S )∪{ı�,�}. Here, � is a zero of ( and

(s , t) ( (u, v) = if t ≡ u then (s , v) else �
Intuitively, reduce� returns the boundaries of a given sequence of state transitions
if they are consecutive (ı� if the sequence is empty) and � otherwise.

The aggregator maxprob is the unique semiring homomorphism from (�[X ×
(S × S )]�,�,×++) to ([0, 1], ↑, ∗)2 that satisfies

maxprob �[(x , (s , t))]� = prob (x , (s , t))

Intuitively, it computes all total probabilities of state sequences causing the
observed event sequence by multiplying the individual probabilities given by
prob and then computes the maximum of all total probabilities.

The range of reduce� has size |S|2 +2, thus, applying Theorem 3 to the spec-
ification of maxLikeliness yields an implementation with the total cost O(n|S|4)
if n denotes the length of an input event sequence. As assignTrans is a monoid
homomorphism we can execute it in parallel, say using p processors, which leads
to the run time O((log p + n

p )|S|4). For a given probabilistic model, where S is
fixed, the result is a linear-time parallel algorithm. This is in contrast to the
specification which would generate an intermediate result of size |S|2n. Interest-
ingly, the derived program is equivalent to a program obtained by parallelizing
the Viterbi algorithm [12,13] using matrix multiplication over a semiring [21].

Computing Sequences of States. We can compute both the maximum prob-
ability and the corresponding state sequences using an alternative aggregator
maxprobSeq which can replace maxprob above and is characterized by

maxprobSeq �[(x , (s , t))]� = (prob (x , (s , t)), �[t ]�)
The result is an element in the semiring ([0, 1]×�[S ]�, ↑′, ∗′) where the identities
of ↑′ and ∗′ are (0, ��) and (1, �[ ]�), respectively, and the semiring operations are
defined as follows:

(a, x ) ↑′ (b, y) = if a > b then (a, x ) else if a < b then (b, y) else (a, x � y)
(a, x ) ∗′ (b, y) = (a ∗ b, x ×++ y)

The bag in the second component of the result contains all most likely sequences.
In practice, we may use non-deterministic choice to compute one of them, though
operators with non-deterministic choice do not satisfy the semiring laws, so the
specification and the implementation might pick different results.

2 To avoid confusion, note that [0, 1] is the unit interval, that is, the set of all real
numbers x such that 0 ≤ x ≤ 1, not the list of the two elements.
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6.2 Incremental Refinement

By using Theorem 2 multiple times, it is possible to implement specifications
with multiple filters, not only one.

For example, we can compute the most likely sequence of hidden states sat-
isfying certain conditions, such as “state s is used exactly five times,” or “state
t does not appear anywhere after state s.” Our framework guarantees an effi-
cient implementation also for these restricted problems if the conditions can be
defined by a homomorphic predicate.

For the first condition we use the monoid homomorphism countw p into
(Mw,+w) characterized by countw p [x ] = if p x then 1 else 0. It computes the
number of list elements that satisfy the given predicate p. Based on countw we
can define the predicate fixedTimes which only allows sequences of states that
contain a given state s exactly w times:

fixedTimes s w = (w ≡) ◦ countw (λ(x , (t , u)) → s ≡ u)

To check the second condition whether a state t occurs anywhere after a state
s we can define a monoid homomorphism after s t into ((Bool ×Bool )�, �) that
returns a pair of Booleans that indicate whether the argument list contains the
states s and t , or � if t occurs anywhere after s .3 Here, after is characterized by

after s t [(x , (u, v))] = (s ≡ v , t ≡ v),

� is a zero of � and (s1, t1) � (s2, t2) = if s1 ∧ t2 then � else (s1 | s2, t1 | t2).
Based on after we can express a test which only allows sequences of states that
do not contain a given state t after s as not ◦ (� ≡) ◦ after s t .

Since both homomorphisms have finite ranges, we can get linear-time parallel
algorithms for the restricted problems. We can even combine both predicates or
add similar conditions such as “state s is used more than k times,” or “state s
is used at most k times” and still get an efficient parallel implementation.

In general, the most difficult task for programmers specifying GTA algorithms
is the design of predicates for filtering, while basic generators and aggregators
can be reused for many problems. To guarantee the efficiency of programs de-
rived by our calculation theorems, a user has to design a predicate based on a
finite monoid. One approach to design such a predicate is to use a regular ex-
pression or monadic second order logic expression [25], relying on the fact that a
finite monoid can be derived from a finite automaton. For example, an additional
condition ”we cannot choose items K and J at the same time” to the knapsack
problem can be specified by a regular expression (. ∗ K. ∗ J. ∗ |. ∗ J. ∗ K.∗) com-
posed with the negation function not.

7 Related Work

The research on parallelization via derivation of list homomorphisms has gained
great interest [5, 11, 22]. The main approaches include the third homomorphism

3 (Bool × Bool)� = (Bool × Bool)∪{�} and ı� = (False,False).
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theorem based method [10, 20], function composition based method [4, 7, 14],
and matrix multiplication based method [21]. Our work is a continued effort in
this direction, giving a new approach based on semiring homomorphisms, which
is in sharp contrast to the existing work based on monoid homomorphisms. By
introducing bags of lists as well as semirings and the GTA form, our method eases
defining effectively-parallelizable specifications for practical problems such as the
knapsack problem, the discussed statistical problems, and querying problems,
because the GTA form with bag of lists is a natural form of specifications for
these combinatorial problems. Basically, specifications of these problems are too
complex to be handled by the mentioned previous approaches. The previous work
cannot directly help users to solve these problems, because it requires users to
make parallelizable sequential specifications that are almost equivalent to the
efficient programs our proposed method derives. However, previous approaches
are still useful to build a parallelizable GTA specification which requires its
components (generators and predicates) to be parallel programs.

There has been a lot of work about using MapReduce to parallelize various
kinds of problems [17]. Some formal work has been devoted to the study of a
computation model of MapReduce (compared to the PRAM model of compu-
tation) [16]. However, little work has been done on systematic construction of
MapReduce programs. We tackle this problem via semiring homomorphisms.

Our shortcut fusion theorem for semiring fusion is much related to the known
shortcut deforestation [8, 23] which is based on a free theorem [26] and is prac-
tically useful for optimization of sequential programs. Different from the tradi-
tional shortcut deforestation focusing on the data constructors of the interme-
diate data structure that are passed from one function to another, our shortcut
fusion focuses on the semiring operations in the intermediate data structure. It
is this semiring structure that allows for flexible rearrangement of computation
for efficient parallel execution.

Goodman [9] extended the CYK parsing algorithm by substituting various
semirings for the Boolean semiring, so that one can reuse the algorithm for
various computations such as counting the number of parsings, computing the
probability of generating the given string, and finding the best k-parsing. We
can reuse his semirings in our GTA form for computing similar variations.

8 Conclusion

We propose a calculation-based framework for the systematic development of
efficient MapReduce programs in the form of GTA algorithms. The core of the
framework consists of two calculation theorems for semiring fusion and filter
embedding. Semiring fusion connects a specification in GTA form and an effi-
cient implementation by a free theorem, while filter embedding transforms the
composition of a semiring homomorphism and a test into another semiring ho-
momorphism which enables incremental development of parallel algorithms. Our
approach allows to develop efficient parallel algorithms by combining simpler ho-
momorphisms (for generation, testing, and aggregation) into more complex ones,
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which is easier than defining the efficient parallel algorithms directly. In contrast
to existing approaches, our theorems allow to modify an efficient algorithm by
adding homomorphic filters in the “naive world” which is easier than modifying it
in the “efficient world”. Our new framework is not only theoretically interesting,
but also practically significant in solving nontrivial problems.

For example, we have shown how to derive an efficient parallel implementa-
tion of a known statistics problem and found that it is equivalent to an existing
algorithm for the same problem. This result shows that our approach gener-
alizes existing techniques and provides a common framework to express them.
We expect that our approach can be applied to typical “big-data” problems,
like finding patterns in historical financial data, and plan to investigate such
applications as future work.

Moreover, we plan to implement the developed programming theory as a do-
main specific language or a library, for example upon Hadoop [27], so that typical
MapReduce problems can be tackled using our GTA approach. Our theorems
can be easily mechanized because of their simple calculational form.
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Abstract. State-space reduction techniques, used primarily in model-checkers,
all rely on the idea that some actions are independent, hence could be taken in
any (respective) order while put in parallel, without changing the semantics. It
is thus not necessary to consider all execution paths in the interleaving seman-
tics of a concurrent program, but rather some equivalence classes. The purpose
of this paper is to describe a new algorithm to compute such equivalence classes,
and a representative per class, which is based on ideas originating in algebraic
topology. We introduce a geometric semantics of concurrent languages, where
programs are interpreted as directed topological spaces, and study its properties
in order to devise an algorithm for computing dihomotopy classes of execution
paths. In particular, our algorithm is able to compute a control-flow graph for con-
current programs, possibly containing loops, which is “as reduced as possible” in
the sense that it generates traces modulo equivalence. A preliminary implemen-
tation was achieved, showing promising results towards efficient methods to ana-
lyze concurrent programs, with very promising results compared to partial-order
reduction techniques.

Introduction

Formal verification of concurrent programs is traditionally considered as a difficult
problem because it might involve checking all their possible schedulings, in order to
verify all the behaviors the programs may exhibit. This is particularly the case for
checking for liveness or reachability properties, or in the case of verification methods
that imply traversal of some important parts of the graph of execution, such as model-
checking [4] and abstract testing [6]. Fortunately, many of the possible executions are
equivalent (we say dihomotopic) in the sense that one can be obtained from the other by
permuting independent instructions, therefore giving rise to the same results. In order
to analyze a program, it is thus enough (and much faster) to analyze one representative
in each dihomotopy class of execution traces.

We introduce in this paper a new algorithm to reduce the state-space explosion during
the analysis of concurrent systems. It is based on former work of some of the authors,
most notably [24] where the notion of trace space is introduced and studied, and also
builds up considerably on the geometric semantics approach to concurrent systems,
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H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 274–294, 2012.
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as developed in [13]. Some fundamentals of the mathematics involved can be found
in [19]. The main contributions of this article are the following: we develop and improve
the algorithms for computing trace spaces of [24] by reformulating them in order to
devise an efficient implementation for them, we generalize this algorithm to programs
which may contain loops and thus exhibit an infinite number of behaviors, we apply
these algorithms to a toy shared-memory language whose semantics is given in the style
of [12], but in this paper, formulated in terms of d-spaces [19], and we report on the
implementation and experimentation of our algorithms on trace spaces – an industrial
case-study using those methods is also detailed in [3].

Stubborn sets [25], sleep sets and persistent sets [15] are among the most popu-
lar methods used for diminishing the complexity of model-checking using transition
systems; they are in particular used in SPIN [1], with which we compare our work ex-
perimentally in Section 2.5. They are based on semantic observations using Petri nets
in the first case and Mazurkiewicz trace theory in the other one. We believe that these
are special forms of dihomotopy-based reduction as developed in this paper when cast
in our geometric framework, using the adjunctions of [18]. Of course, the trace spaces
we are computing have some acquaintance with traces as found in trace theory [7]:
basically, traces in trace theory are points of trace spaces, and composition of traces
modulo dihomotopy is concatenation in trace theory. Trace spaces are more general in
that they consider general directed topological spaces and not just partially commutative
monoids; they also include all information related to higher-dimensional (di-)homotopy
categories, and not just the fundamental category, as in trace theory. Trace spaces are
also linked with component categories, introduced by some of the authors [14,17], and
connected components of trace spaces can also be computed using the algorithm intro-
duced in [16].

Contents of the paper. We first define formally the programming language we are con-
sidering (Section 1.1) as well as an associated geometric semantics, (Section 1.2). We
then introduce an algorithm for computing an effective combinatorial representation of
trace spaces as well as an efficient implementation of it (Section 2), and extend this
algorithm in order to handle program containing loops (Section 3). Finally, we discuss
various applications, in particular to static analysis (Section 3.5) and possible extensions
of the algorithm and conclude.

1 Geometric Semantics of Concurrent Processes

1.1 A Toy Shared-Memory Concurrent Language

In this paper, we consider a toy imperative shared-memory concurrent language as
grounds for experimentation. In this formalism, a program can be constituted of mul-
tiple subprograms which are run in parallel. The environment provides a set of re-
sources R, where each resource a ∈ R can be used by at most κa subprograms at the
same time, the integer κa ∈ N being called the capacity of the resource a. In particular,
a mutex is a resource of capacity 1.

Whenever a program wants to access a resource a, it should acquire a lock by perform-
ing the action Pa which allows access to a, if the lock is granted. Once it does not need
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the resource anymore, the program can release the lock by performing the action Va, fol-
lowing again the notation set up by Dijkstra [8]. If a subprogram tries to acquire a lock
on a resource a when the resource has already been locked κa times, the subprogram is
stuck until the resource is released by an other subprogram. In order to be realistic even
though simple, the language considered here also comprises a sequential composition
operator ., a non-deterministic choice operator + and a loop construct (−)∗, with similar
semantics as in regular languages (it should be thought as a while construct), as well
as a parallel composition operator | to launch two subprograms in parallel.

Programs p are defined by the following grammar:

p ::= 1 | Pa | Va | p.p | p|p | p + p | p∗

Programs are considered modulo a structural congruence ≡ which imposes that oper-
ators ., + and | are associative and admit 1 as neutral element. A thread is a program
which does not contain the parallel composition operator |.

1.2 Geometric Semantics

We introduce here a semantics based on (directed) topological spaces. The geometric
semantics will allow a different representation of n pairwise independent actions (as the
surface of an n-cube) and n truly concurrent actions as the full n-cube.

We denote by I = [0, 1] ⊆ R the standard euclidean interval. A path p in a topo-
logical space X is a continuous map p : I → X , and the points p(0) and p(1) are
respectively called the source and target of the path. Given two paths p and q such that
p(1) = q(0), we define their concatenation as the path p · q defined by

(p · q)(t) =
{

p(2t) if 0 	 t 	 1/2
q(2t − 1) if 1/2 	 t 	 1

A topological space can be equipped with a notion of “direction” as follows [19]:

Definition 1. A directed topological space (or d-space for short) X = (X, dX) con-
sists of a topological space X together with a set dX of paths in X (the directed paths)
such that

1. constant paths: every constant path is directed,
2. reparametrization: dX is closed under precomposition with (non necessarily sur-

jective) increasing maps I → I , which are called reparametrizations,
3. concatenation: dX is closed under concatenation.

A morphism of d-spaces f : X → Y , a directed map, is a continuous function f : X →Y
which preserves directed paths, in the sense that f(dX) ⊆ dY .

The category of d-spaces is complete and cocomplete [19]. This allows us to abstractly
define some constructions on d-spaces, which extend usual constructions on topological
spaces, that we detail here explicitly by describing the associated directed paths.

– The terminal d-space � is the space reduced to one point.
– The cartesian product X ×Y of two d-spaces X and Y has d(X ×Y ) = dX ×dY .
– The disjoint union X�Y of two d-spaces X and Y is such that d(X�Y ) = dX�dY .
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– The amalgamation X [x = y] of two points x and y in a d-space X is the d-space X
where x and y have been identified, together with the expected set of directed paths.

– Given a d-space X and a topological space Y ⊆ X , the subspace Y can be canon-
ically equipped with a structure of d-space by dY = {p ∈ dX / p(I) ⊆ Y }.

The geometric semantics of a program is defined using those constructions as follows:

Definition 2. To every program p, we associate a d-space Gp together with a pair of
points bp, ep ∈ Gp, respectively called beginning and end, and a resource function
rp : R × Gp → Z which indicates the number of locks the program holds at a given
point. The definition of these is done by induction on the structure of p as follows:

G1 = �, b1 = ∗, e1 = ∗, r1(a, x) = 0
GPa = �I , bPa = 0, eVa = 1, GVa = �I , bVa = 0, eVa = 1,

rPa (b, x) =
{

−1 if b = a and x > 0
0 if b �= a or x = 0

rVa (b, x) =
{

1 if b = a and x = 1
0 if b �= a or x < 1

Gp.q = (Gp � �I � Gq)[ep = 0, 1 = bq], Gp+q = (Gp � Gq)[bp = bq, ep = eq],
bp.q = bp, ep.q = eq, bp+q = bp, ep+q = eq ,

rp.q(a, x) =
{

rp(a, x) if x ∈ Gp

rp(a, ep) + rq(a, x) if x ∈ Gq

rp+q(a, x) =
{

rp(a, x) if x ∈ Gp

rq(a, x) if x ∈ Gq

Gp|q = Gp × Gq , Gp∗ = Gp[bp = ep],
bp|q = (bp, bq), ep|q = (ep, eq), bp∗ = bp, ep∗ = bp,
rp|q(a, (x, y)) = rp(a, x) + rq(a, y) rp∗ (a, x) = rp(a, x)
Given a program p, the forbidden region is the d-space Fp ⊆ Gp defined by

Fp = {x ∈ Gp / ∃a ∈ R, κa + rp(a, x) < 0 or rp(a, x) > 0}
The geometric realization of a process p, is defined as the d-space Hp = Gp \ Fp.

We sometimes write 0 and ∞ for the beginning and the end points respectively of a
geometric realization, and say that a path p : �I → Gp is total when it has 0 as source
and ∞ as target. It is easy to show that the geometric semantics of a program is well-
defined in the sense that two structurally congruent programs give rise to isomorphic
geometric realizations.

Example 1. The processes

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va

respectively have the following geometric realizations, which all consist of a space with
some “holes”, drawn in gray, induced by the forbidden region:

bp

ep

bp

ep

bp

ep

The space in the middle is sometimes called the “Swiss flag” because of its form and is
interesting because it exhibits both a deadlock and an unreachable region [13].
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2 Computing Trace Spaces

2.1 Trace Spaces

In topology, two paths p and q are often considered as equivalent when q can be ob-
tained by deforming continuously p (or vice versa), this equivalence relation being
called homotopy. The corresponding variant of this relation in the case of directed topo-
logical spaces is called dihomotopy and is formally defined as follows. In the cate-
gory of d-spaces, the object �I is exponentiable, which means that for every d-space Y ,
one can associate a d-space Y

�I such that there is a natural bijection between mor-
phisms X × �I → Y and morphisms X → Y

�I . The underlying space of Y
�I is the set

of functions �I → Y with the compact-open topology (also called uniform convergence
topology), and the directed paths h : �I → Y

�I are the functions such that t �→ h(t)(u)
is increasing for every u ∈ �I . Finally, two paths are said to be dihomotopic when one
can be continuously deformed into the other:

Definition 3. The dihomotopy is defined as the smallest equivalence relation on paths
such that two directed paths p, q : �I → X are dihomotopic when there exists a directed
path h : �I → X

�I with p as source and q as target.

Example 2. In the geometric semantics of the program Pb.Vb.Pa.Va | Pa.Va, the two
paths above the hole are dihomotopic, whereas the path below is not dihomotopic to the
two others:

Pb Vb Pa Va

Pa

Va

The intuition underlying the geometric semantics is that two dihomotopic paths cor-
respond to execution traces differing by inessential commutations of instructions, thus
giving rise to the same result.

Given two points x and y of a d-space X , we write X(x, y) for the subset of X
�I

consisting of dipaths from x to y. A trace is the equivalence class of a path modulo sur-
jective reparametrization, and a scheduling is the equivalence class of a trace modulo
dihomotopy. We write �T (X)(x, y) for the trace space obtained from X(x, y) by iden-
tifying paths equivalent up to reparametrization, and simply �T (X) for �T (X)(0, ∞). In
particular, we have �T (X)(x, y) �= ∅ if and only if there exists a directed path in X
going from x to y.

In this section, we reformulate the algorithm for computing the trace space �T (X) up
to dihomotopy equivalence, originally introduced in [24], in order to achieve an efficient
implementation of it. For simplicity, we restrict here to spaces which are geometric
realizations of programs of the form

p = p0 | p1 | . . . | pn−1 (1)

where the pi are built up only from 1, concatenation, resource locking and resource
unlocking (extending the algorithm to programs which may contain loops requires sig-
nificant generalizations which are described in Section 3). In this case, the geometric
realization is of the form
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Gp = �In \
l−1⋃
i=0

Ri

where �In denotes the cartesian product of n copies of �I , and each Ri =
∏n−1

j=0
�Ii

j is a
rectangle. We suppose here that each Ri is homothetic to the n-dimensional open rect-
angle, i.e. each directed interval �Ii

j is of the form �Ii
j =]xi

j , yi
j[, and generalize this at

the end of the section. The restrictions on the form of the programs are introduced here
only to simplify our exposition: programs with choice can be handled by computing the
trace spaces on each branch and program with loops can be handled by suitably unfold-
ing the loops so that all the possible behaviors are exhibited (a detailed presentation of
this is given in Section 3, which will enable to handle the full language). We suppose
fixed a program with n threads and l forbidden open rectangles, and consistently use
the notations above.

Example 3. The geometric realization of the programs

Pa.Va.Pb.Vb|Pa.Va.Pb.Vb and Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

are respectively

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x0
1

y0
1

x1
1

y1
1

and
t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

2.2 The Index Poset

Let us come back to the second program of Example 3. We will determine the different
traces, and their relationships in the trace space, by combinatorially looking at the way
they can turn around holes. To see this in that example, we extend each hole in parallel
to the axes, below or leftwards from the holes, until they reach the boundary of the state
space. These new obstructions impose traces to go the other way around each hole:
the existence of deadlocks, given these new constraints in the trace space allows us to
determine whether traces going one way or the other around each hole exist. In fact,
this combinatorial information precisely computes all of the trace space [24].

In the second program of Example 3, there are four possibilities to extend once each
of the two holes:

t0

t1

t0

t1

t0

t1

t0

t1

(2)

Notice that there exists a total path in the first three spaces (as depicted above), whereas
there is none in the last one.
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A simple way to encode the combinatorial information about the extension of holes
is through boolean matrices. We write Ml,n for the poset of l × n matrices, with l rows
(the number of holes Ri) and n columns (the dimension of the space, i.e. the number
of threads in the program), with coefficients in Z/2Z, with the pointwise ordering such
that 0 	 1: we have M 	 N whenever

∀(i, j) ∈ [0 : l[×[0 : n[, M(i, j) 	 N(i, j) (3)

where [m : n[ denotes the set {m, . . . , n − 1} of integers and M(i, j) denotes the
(i, j)-th coefficient of M . We also write MR

l,n for the subposet of Ml,n consisting of
matrices whose row vectors are all different from the zero vector, and MC

l,n for the
subposet of Ml,n consisting of matrices whose column vectors are all unit vectors
(containing exactly one coefficient 1).

Given a matrix M ∈ Ml,n, we define XM as the subspace of X obtained by extend-
ing downwards each forbidden rectangle Ri in every direction j′ different from j for
every j such that M(i, j) = 1. Formally,

XM = �In \
⋃

M(i,j)=1

R̃i
j

where R̃i
j =

∏j−1
j′=0[0, yi

j′ [×]xi
j , yi

j[× ∏n−1
j′=j+1[0, yi

j′ [, see (2) and Example 4 below.

In order to study whether there is a total path in the space associated to a matrix, we
define a map Ψ : Ml,n → Z/2Z by Ψ(M) = 1 iff �T (XM ) = ∅, i.e. there is no total
path in XM . A matrix M is dead when Ψ(M) = 1 and alive otherwise. The map Ψ can
easily be shown to be order preserving.

Definition 4. We write

D(X) = {M ∈ MC
l,n / Ψ(M) = 1}

for the set of (column) dead matrices and

C(X) = {M ∈ MR
l,n / Ψ(M) = 0}

for the set of alive matrices (with non-empty rows), which is called the index poset – it
is implicitly ordered by the relation (3).

Example 4. In the example above, the three extensions of holes (2) are respectively
encoded by the following matrices:(

1 0
1 0

) (
0 1
1 0

) (
0 1
0 1

) (
1 0
0 1

)

The last matrix is dead and the three others are alive. The last matrix being dead indi-
cates that there is no way a trace can pass left of the upper left hole and carry on passing
below the lower right hole.

A reason why the matrices in the index poset are convenient objects to study the
schedulings is that they are topologically very simple [24]:
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Proposition 1. For any matrix M ∈ MR
l,n, the space XM (x, y) is either empty or

contractible: any two paths with the same source x and target y are dihomotopic. In
particular, for any matrix M ∈ C(X), the space XM (0, ∞) is always contractible.

Our main interest in the index poset is that it enables us to compute the schedulings
(i.e. maximal paths modulo dihomotopy) of the space: these schedulings are in bijection
with alive matrices in C(X) modulo an equivalence relation called connexity, which is
defined as follows. Given two matrices M, N ∈ Ml,n, their intersection M ∧ N is
defined as the matrix M ∧ N such that (M ∧ N)(i, j) = min(M(i, j), N(i, j)).

Definition 5. Two matrices M and N are connected when their intersection does not
contain any row filled with 0.

The dihomotopy classes of total paths in X can finally be computed thanks to the fol-
lowing property:

Proposition 2. The connected components of C(X) are in bijection with schedulings
in X .

Example 5. Consider the program p = q|q|q where q = Pa.Va. The associated trace
space Xp is a cube minus a cube (as shown in Example 8). The matrices in C(Xp) are(

1 0 0
) (

0 1 0
) (

0 0 1
) (

0 1 1
) (

1 0 1
) (

1 1 0
)

and they are all (transitively) connected. For instance,
(
0 1 1

)∧(
1 0 1

)
=

(
0 0 1

)
. The

program p thus has exactly one total scheduling, as expected.

Intuitively, alive matrices describe sets of dihomotopic total paths (Proposition 1)
and the fact that two matrices have non-zero rows in their intersection means that there
are paths which satisfy the constraints imposed by both matrices, i.e. the two matrices
describe the same dihomotopy class of total paths.

2.3 Computing Dihomotopy Classes

The computation of the dihomotopy classes of total paths in the geometric semantics X
of a given program will be performed in three steps:

1. we compute the set D(X) of dead matrices,
2. we use D(X) to compute the index poset C(X),
3. we deduce the homotopy classes of total paths by quotienting C(X) by the connex-

ity relation.

These steps are detailed below.
Given a subset I of [0 : l[ and an index j ∈ [0 : n[, we write yI

j = min{yi
j / i ∈ I}

(by convention y∅
j = ∞). Given a matrix M ∈ Ml,n, we define the set of non-zero

rows of M by R(M) = {i ∈ [0 : l[ / ∃j ∈ [0 : n[, M(i, j) �= 0}. It can be shown that a
matrix M is dead if and only if the space XM contains a deadlock. From the characteri-
zation of deadlocks in geometric semantics given in [11], the following characterization
of dead matrices can therefore be deduced:
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Proposition 3. A matrix M ∈ MC
l,n is in D(X) iff it satisfies

∀(i, j) ∈ [0 : l[×[0 : n[, M(i, j) = 1 ⇒ xi
j < y

R(M)
j (4)

Example 6. In the example below with l = 2 and n = 2, the matrix M =
(

0 1
1 0

)
is

dead (we suppose that xi
j = 1 + i(j + 1) and yi

j = 3 + i(j + 1) − j):

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

x0
1 = 1 < 2 = y

{0,1}
1

x1
0 = 2 < 3 = y

{0,1}
0

The above proposition enables us to compute the set of dead matrices, for instance
by enumerating all matrices and checking whether they satisfy condition 4 (a more
efficient method is described in Section 2.4). From this set, the index poset C(X) can
be determined using the following property:

Proposition 4. A matrix M ∈ Ml,n is not in C(X) iff there exists a matrix N ∈ D(X)
such that N 	 M . In other words, M ∈ C(X) iff for every matrix N ∈ D(X) there
exists indexes i ∈ [0 : l[ and j ∈ [0 : n[ such that M(i, j) = 0 and N(i, j) = 1.

Notice that the poset C(X) is downward closed (because Ψ is order preserving) and one
is naturally interested in the subset Cmax(X) of maximal matrices in order to describe it.
Proposition 4 provides a simple-minded algorithm for computing (maximal) matrices
in C(X). We write D(X) = {D0, . . . , Dp−1}. We then compute the sets Ck of maximal
matrices M such that for every i ∈ [0 : k[ we have Di �	 M . We start from the set
C0 = {1} where 1 is the matrix containing only 1 as coefficients. Given a matrix M ,
we write M¬(i,j) for the matrix obtained from M by replacing the (i, j)-th coefficient
by 1 − M(i, j). The set Ck+1 is then computed from Ck by doing the following for all
matrices M ∈ Ck such that Dk 	 M :

1. remove M from Ck,
2. for every (i, j) such that Dk(i, j) = 1,

– remove every matrix N ∈ Ck such that N 	 M¬(i,j),
– if there exists no matrix N ∈ Ck such that M¬(i,j) 	 N , add M¬(i,j) to Ck.

The set Cmax(X) is obtained as Cp. If we remove the second point and replace it by

2’. for every (i, j) such that Dk(i, j) = 1 and M¬(i,j) ∈ MR
l,n, add M¬(i,j) to Ck.

we compute a set Cp such that Cmax(X) ⊆ Cp ⊆ C(X), which is enough to compute
connected components and has proved faster to compute in practice.
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Example 7. Consider again Example 3. The algorithm starts with

C0 =
{

M0 =
(

1 1
1 1

)}

For C1, we must have D0 �	 M0 so we swap any of the two ones in the first row:

C1 =
{

M1 =
(

0 1
1 1

)
, M2 =

(
1 0
1 1

)}

Similarly for C2, we have to swap the bits on the second row so that D1 �	 Mi:

C2 =
{

M3 =
(

0 1
0 1

)
, M4 =

(
0 1
1 0

)
, M5 =

(
1 0
0 1

)
, M6 =

(
1 0
1 0

)}

Finally, we have D2 �	 Mi, excepting D2 	 M5, so we swap the bits in position (1, 1)
and in position (2, 2):

M ′
5 =

(
0 0
0 1

)
	 M3 M ′′

5 =
(

1 0
0 0

)
	 M6

Since we are only interested in maximal matrices, we end up with C3 = {M6, M4, M3}.
The trace spaces corresponding to those matrices are the three first depicted in (2). None
of those matrices being connected, the trace space up to dihomotopy consists of exactly
3 distinct points.

Other implementations of the algorithm can be obtained by reformulating the compu-
tation of Cmax(X) as finding a minimal transversal in a hypergraph, for which efficient
algorithms have been proposed [21].

We have supposed up to now that the forbidden region was a union of rectangles Ri,
each such rectangle being a product of open intervals �Ii

j =]xi
j , yi

j [. The algorithm given
above can easily be generalized to the case where the rectangles Ri can “touch the
boundary” in some dimensions, i.e. the intervals �Ii

j are either of the form ]xi
j , yi

j[ or
[0, yi

j[ or ]xi
j , ∞] or [0, ∞]. For example, the process Pa.Va|Pa.Va|Pa.Va, with κa = 1,

generates such a forbidden region. We write B ∈ Ml,n for the boundary matrix, which
is the matrix such that B(i, j) = 0 whenever xi

j = 0 (i.e. the i-th interval touches the
lowest boundary in dimension j) and B(i, j) = 1 otherwise. The matrices of D(X) are
the matrices M ∈ Mn,l of the form M = N ∧ B, for some matrix N ∈ MC

n,l, which
satisfy (4) and such that

∀j ∈ C(M), y
R(M)
j = ∞ (5)

where C(M) is the set of indexes of null columns of M .

2.4 An Efficient Implementation

In order to compute the set D(X) of dead matrices, the general idea is to enumerate all
the matrices M ∈ MC

l,n and check whether they satisfy the condition (4). Of course, a
direct implementation of this idea would be highly inefficient since there are ln matrices
in MC

l,n. In order to improve this, we try to detect “as soon as possible” when a matrix



284 L. Fajstrup et al.

let rec compute_dead j m rows yrows =
if j = n then dead := m :: !dead else

for i = 0 to l − 1 do
try

let changed_rows = not (Set.mem i rows) in
let rows = Set.add i rows in
let m = Array.copy m in
if bounds(i,j) = 1 then m.(j) ←None else m.(j) ←Some i;
(match m.(j) with

| Some i → if xi
j � yrows.(j) then raise Exit

| None → if yrows.(j) �=∞ then raise Exit);
let yrows =

let j′ = j in
if not changed_rows then yrows else

Array.mapi (fun j yrj →
if yrj � yi

j then yrj else
match m.(j) with

| None →
if j � j′ && yi

j �=∞ then raise Exit ; yi
j

| Some i →
if xi

j � yi
j then raise Exit ; yi

j

) yrows
in
compute_dead (j+1) m rows yrows

with Exit → ()
done

Fig. 1. Algorithm for computing dead matrices

does not satisfy the condition: we first fix the coefficient in the first column of M and
check whether it is possible for a matrix with this first column to be dead, then we fix
the second column and so on. In fact, we have to check that every coefficient (i, j)
such that M(i, j) = 1 satisfies xi

j < y
R(M)
j . Now, suppose that we know some of the

coefficients (i, j) for which M(i, j) = 1. We therefore know a subset I ⊆ R(M) of
the non-zero rows. If for one of these coefficients we have xi

j 
 yI
j , we know that the

matrix cannot satisfy the condition (4) because xi
j 
 yI

j 
 y
R(M)
j . A similar reasoning

can be held for condition (5).
The actual function computing the dead matrices is presented in Figure 1, in pseudo-

OCaml code. This recursive function fills j-th column of the matrix M (whose columns
with index below j are supposed to be already fixed) and performs the check: it tries
to set the i-th coefficient to 1 (and all the others to 0) for every i ∈ [0 : l[. If a matrix
beginning as M (up to the j-th column) cannot be dead, the computation is aborted
by raising the Exit exception. When all the columns have been computed the matrix is
added to the list dead of dead matrices. Since a matrix M ∈ MC

l,n has at most one
non-null coefficient in a given column, it will be coded as an array of length n whose
j-th element is either None when all the elements of the j-th column are null, or Some i
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when the i-th coefficient of the j-th column is 1 and the others are 0. The argument
rows is the set of indexes of known non-null rows of M and yrows is an array of
length n such that yrows.(j)= yrows

j . The matrix bounds is the matrix previously
noted B used to perform the check (5). Notice that the algorithm takes advantage of the
fact that when the coefficient i chosen for the j-th column is already in rows (i.e. when
the variable changed_rows is false) then many computations can be spared because
the coefficients yrows

j are not changed.
Once the set of dead matrices computed, the set C(X) of alive matrices is then com-

puted using the naive algorithm of Section 2.3, exemplified in Example 7. We have also
implemented a simple hypergraph transversal algorithm [2] but it did not bring signifi-
cant improvements, more elaborate algorithms might give better results though. Finally,
the representatives of traces are computed as the connected components (in the sense of
Proposition 2) of C(X), in a straightforward way. An explicit sequence of instructions
corresponding to every representative M can easily be computed: it corresponds to the
sequence of instructions crossed by any increasing total path in the d-space XM .

2.5 An Example: The n Dining Philosophers

In order to illustrate the performances of our algorithm, we present below the compu-
tation times for the well-known n dining philosophers program [9] whose schedulings
are in O(2n), hence is pushing any algorithm that would determine the essential sched-
ules to its (exponential) limits. It is constituted of n processes pk in parallel, using n
mutexes ai, defined by pk = Pak

.Pak+1 .Vak
.Vak+1 , where the indexes on mutexes ai

are taken modulo n. Such a program generates 2n − 2 distinct schedulings, which our
program finds correctly. The table below summarizes the execution time and memory
consumption for our tool ALCOOL (programmed in OCaml), as well as for the model
checker SPIN [1] implementing partial order reduction techniques. Whereas SPIN is
not significantly slower, it consumes much more memory and starts to use swap from
n = 12 (thus failing to give an answer in a reasonable time for n > 12). Notice that
the implementation of SPIN is finely tuned and also benefits from gcc optimizations,
whereas there is room for many improvements in ALCOOL. In particular, most of the
time is spent in computing dead matrices and the algorithm of Section 2.4 could be im-
proved by finding a heuristic to suitably sort holes so that failures to satisfy condition (4)
are detected earlier. The present algorithm is also significantly faster than some of the
author’s previous contribution [16]: for instance, it was unable to generate these max-
imal dipaths because of memory requirements, for n philosophers with n > 8 (in the
benchmarks of [16], it was taking already 13739s, on a 1GHz laptop computer though,
to generate just the component category for 9 philosophers).

n sched. ALC. (s) ALC. (MB) SP. (s) SP. (MB)
10 1022 5 4 8 179
11 2046 32 9 42 816
12 4094 227 26 313 3508
13 8190 1681 58 ∞ ∞
14 16382 13105 143 ∞ ∞
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Since the size of the output is generally exponential in the size of the input, there is
no hope to find an algorithm which has less than an exponential worst-case complexity
(which our algorithm clearly has). However, since our goal is to program actual tools
to very concurrent programs, practical improvements in the execution time or memory
consumption are really interesting from this point of view. We have of course tried
our tool on many more examples, which confirm the improvement trend, and shall be
presented in a longer version of the article.

3 Programs with Loops

3.1 Paths in Deloopings

One of the most challenging part of verifying concurrent programs consists in verifying
programs with loops since those contain a priori an infinite number of possible execu-
tion traces. We extend here the previous methodology and, given a program containing
loops, we compute a (finite!) automaton whose accepted paths describe the schedulings
of the program: this automaton, can thus be considered as a control flow graph of the
concurrent program. Of course, we are then able to use the traditional methods in static
analysis, such as abstract interpretation, to study the program (this is briefly presented
in Section 3.5). This section builds on some ideas being currently developed by Fa-
jstrup [10], however most of the properties presented in this section are entirely new. To
the best of our knowledge, this is the first works in which geometric methods are used in
order devise a practical algorithm to handle programs containing loops. A particularly
interesting feature of our method lies in the fact that it consider the broad “geometry
of holes” and can thus associate a small control flow graph to a given program, see
Section 3.4.

In the following, we suppose fixed a program of the form p = p0|p1| . . . |pn−1 as
in (1), with n threads. We write

p∗ = p∗
0 | p∗

1 | . . . | p∗
n−1

for the associated “looping program”. Our goal in this section is to describe the schedul-
ings of such a program p∗ (the restriction on the form of the programs considered here
was only done to simplify our presentation and the methodology can be extended to
handle all well-bracketed programs generated by the grammar, without any essential
technical difficulty added). Following Section 1.2, its geometrical semantics consists of
an n-dimensional torus with rectangular holes. As previously, for simplicity, we sup-
pose that these holes do not intersect the boundaries, i.e. that p satisfies the hypothesis
of Section 2.1. Given an n-dimensional vector v = (v0, . . . , vn−1) with coefficients
in N, the v-delooping of p, written pv, is the program pv0

0 |pv1
1 | . . . |pvn−1

n−1 , where p
vj

j

denotes the concatenation of vj copies of pj . A scheduling in p is a scheduling in the
previous sense (i.e. a total path modulo homotopy) in pv for some vector v.

Example 8. Consider the program p = q|q|q of Example 5, where q = Pa.Va. Its
geometric realization Xp is pictured on the left, and its (3, 2, 2)-delooping Xp(3,2,2) is
pictured on the right.
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t0

t1

t2

t0

t1

t2

Given two spaces X and Y which are hypercubes with holes (which is the case for
the geometric realizations of the programs we are considering here), we write X ⊕j Y
for the space obtained by identifying the j-th target face of the hypercube X with the
j-th source face of the hypercube Y , and call it the j-gluing of X and Y . Formally,
this can be defined as in Section 1.2 as X ⊕j Y = X � Y/ ∼, where the relation ∼
identifies points x ∈ X and y ∈ Y such that xj = ∞, yj = 0 and xj′ = yj′ for every
dimension j′ �= j, and directed paths are defined in a similar fashion. Notice that, by
definition, there is a canonical embedding of X (resp. Y ) into X ⊕j Y , which will allow
us to implicitly consider X (resp. Y ) as a subspace of X ⊕j Y in the following.

Example 9. The (3, 2, 2)-delooping of Example 8 is

Xp(3,2,2) = (Y ⊕1 Y ) ⊕2 (Y ⊕1 Y ) with Y = Xp ⊕0 Xp ⊕0 Xp

More generally, any v-delooping pv of a program p of the form (1) can be obtained by
gluing copies Xw

p of Xp, indexed by a vector w such that for every dimension i with
0 	 i < n, we have 0 	 wi < vi (what we will simply write 0 	 w < v).

Given two scheduling matrices M and N encoding extensions of holes of such a
program p (cf. Section 2.2), we reuse the notation and write M ⊕j N for the obvious
matrix coding extension of holes in the space Xp ⊕j Xp. At this point, it is crucial to
notice that the holes described by N in the second copy of Xp can have an effect on
the first copy of Xp (when they are extended to 0 in the direction j), what we call the
j-shadow of N , and write XN |j

.

Example 10. With the program p of Example 8, consider the matrices M = (1 0 0)

and N = (0 0 1). We have M ⊕0 N =
(

1 0 0
0 0 1

)
, the space XM⊕0N is pictured on the

left, and the 0-shadow XN |0 of N is pictured on the right:

t0

t1

t2

t0

t1

t2

The above example makes clear that the space corresponding to a scheduling M ⊕j N
is of the form XM⊕jN = (XM ∩ XN |j

) ⊗j XN , i.e. the holes in the first copy come
either from M or from shadows of N . Moreover, the holes in the space XN |j

are hy-

percubes which are products of intervals of the form
∏

0�j<n
�Ij , where each interval �Ij

is of the form ]xi
j , yi

j [ or [0, yi
j[ or [0, ∞], with 0 	 i < l. The shadows can therefore
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be coded as matrices (using a slightly different coding from the one used up to now,
the precise way they are coded being quite irrelevant) and we write N |j for the matrix
coding the j-shadow of n, which can easily be computed from N and j. A scheduling
matrix M can obviously be seen as a particular “shadow”, enabling us to use the same
notation for both, and we write M ∪ N for the union of two shadows M and N , so that
XM∪N = XM ∩XN . Finally, given a shadow M , the algorithm described in Section 2.3
can easily be adapted to the new coding in order to determine whether the space XM is
alive.

3.2 The Shadow Automaton

The trace space of a program p∗ is not finite in the general case. We show here that it
can however be described as the set of paths of an automaton that we call the shadow au-
tomaton: this automaton provides us with a finite presentation of the set of
schedulings.

Consider the v-delooping pv of a program p. The space Xpv consists of the gluing of
copies of Xp indexed by vectors w such that 0 	 w < v and similarly, a scheduling M
of Xpv consists of the gluing of matrices Mw. Clearly, if some submatrix Mw is dead
then the whole matrix M is dead:

Lemma 1. If a matrix M is alive then all its submatrices Mw are alive.

However, the converse is not true because a scheduling Mw might create a deadlock
with the shadows coming from matrices above it. For instance in Example 8, the ma-
trix M = (1 0 0) ⊕0 (0 1 1) is not alive because the space XM(0,0,0) induced by the
submatrix M (0,0,0) is contained in the space XN , where N = (1 1 1) is a dead matrix:

t0

t1

t2

In order to generate all the possible schedulings Mw visited by a total path in Xpv , we
therefore have to take in account the shadows dropped by scheduling of copies of Xp in
its future. We will construct an automaton which will consider the visited schedulings
of the path, starting from the end, and maintains the shadow they produce on the next
state in a given direction j, so that we can compute the possible previous matrices in
direction j such that the whole matrix is not dead. Formally,

Definition 6. The shadow automaton of a program p is a non-deterministic automaton
whose

– states are shadows
– transitions N

j,M �� N ′ are labeled by a direction j (with 0 	 j < n) and a

scheduling M

defined as the smallest automaton
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– containing the empty scheduling ∅
– and such that for every state N ′, for every direction j and for every scheduling M

such that the scheduling M ∪ N ′ is alive, and M is maximal with this property,

there is a transition N
j,M �� N ′ with N = (M ∪ N ′)|j .

All the states of the automaton are both initial and final.

Example 11. Consider the program p = q|q with q = Pa.Va whose geometric seman-
tics is a square with a square hole. The associated shadow automaton is

1, ��

1,
��

0,

��

1,

��

1,
��

0,

��

0,

�� 0,��

For instance the transition
0, �� is computed as follows: we take the shadow

M = ∪ = and compute its shadow in direction 0, i.e. on the left, to compute

the source of the transition. This shadow is , namely: .

The interest of the automaton lies in the fact that fully describes the possible schedulings
crossed by a total path in a scheduling of a delooping Xpv :

Theorem 1. Suppose that M is a scheduling of Xpv , obtained by gluing schedul-
ings Mw of Xp. Then there exists a total path in XM going through the subspaces
XMw0 , XMw1 , . . . , XMwm in this order, such that wk and wk+1 only differ by one co-
ordinate jk (i.e. the path exits from XMwk through its jk-th face), if and only if there
exists a path labeled as follows in the shadow automaton:

N0
j,Mw0

�� N1
j0,Mw1

�� N2 ... Nm

jm−1,Mwm

�� Nm+1

for some states Ni and dimension j.

Example 12. With the program p of Example 11, the following paths in the (2, 2)-de-
looping

t0

t1

t0

t1

are respectively witnessed by the following paths of the shadow automaton:

1, �� 1, �� 0, �� 0, �� 0, �� 1, ��
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3.3 Reducing the Size of the Shadow Automaton

The size of the shadow automaton grows very quickly when the complexity of the trace
space grows. For instance, for the program p of Example 8, the shadow automaton
has already 19 states and 80 transitions. We describe here some ways to reduce the
automaton while preserving Theorem 1. Namely, we should remark that the automaton
is not minimal in the following sense. By Proposition 1, given a scheduling M two total
paths XM are necessarily homotopic: an alive scheduling thus describes an homotopy
class of total paths. By Theorem 1, the schedulings “visited” by a total path in Xpv are
described by a path in the shadow automaton, therefore every homotopy class of total
paths in Xpv is described by at least one path in the scheduling automaton. The shadow
automaton is not minimal in the sense that generally, an homotopy class is described by
more than one path in the scheduling automaton.

Determinization. First, our non-deterministic automaton can be determinized using
classical algorithms of automata theory, which in practice greatly reduce their size:
the determinized automaton for the program of Example 8 has only 4 states and 24
transitions.

Example 13. The determinized automata for Examples 11 and 8 are respectively:

I
_,

��

_,

��
0_, ��

1,
�� 1

0,

��
_,��

I

_,M1

��

�� _,M2





0

1,M0
��

��

2,M0

��
1_,M1 ��

0,M1

  

2,M1 �� 21,M2
��

0,M2

!!

_,M2��

with
M0 = M1 = M2 =

where “_” means any direction j. The state I is initial and all the states are final.

Quotient under connexity. A way to further reduce the automaton consists in quotient-
ing the scheduling matrices labeling the arrows of the automaton under the connexity
relation of Definition 5 before determinizing the automaton, which is formally justified
by Proposition 2.

Example 14. The shadow automaton corresponding to the program Example 8 quo-
tiented under connexity, determinized and minimized is simply the automaton I _,M��
where M = M1 = M2 = M3 up to connexity (the matrices Mi are those defined in
Example 13).

We are currently investigating further conditions in order to construct the minimal au-
tomaton describing the trace space associated to a looping program, but the conditions
mentioned above are already providing us with promisingly small automata.



Trace Spaces: An Efficient New Technique for State-Space Reduction 291

3.4 Preliminary Implementation and Benchmark

A preliminary implementation of the computation of the shadow automaton was done.
The algorithm implemented is currently quite simple, but we plan to generalize the
algorithm of Section 2.4 soon, which is not complicated from a theoretical point of
view but much more involved technically, in order to achieve better performances. Most
experiments lead so far are already promising and make it clear that taking in account
the geometry of the state-space enables us to reduce, sometimes drastically, the size of
the control flow graph corresponding to the program to be analyzed.

Example 15. The two-phase locking protocol is a simple discipline for distributed data-
bases, in which the processes first lock all the mutexes for the resources they are going
to use and free all of them in the end [20]. This can be modeled as a program qn,l

consisting of n copies of the process p = Pa1 . . . . Pal
.Va1 . . . . Val

in parallel (each of
these process is using l resources). For instance, the geometric semantics of q2,2 = p|p
is shown below. Notice that this state space is equivalent to a space with only one hole
up to dihomotopy. More generally, given l 
 1, it can be shown that the geometric
semantics of qn,l is equivalent to qn,1, which our algorithm is able to take into ac-
count! Namely, the size of the shadow automaton associated to q∗

n,l only depends on n
whereas the number of states of the automaton produced by SPIN is exponential in l
(with n fixed). Below are presented the size (states, transitions) of the non-deterministic
automaton (s, t), determinized automaton (s′,t′) and SPIN’s automaton (sSPIN, tSPIN)
for the two-phase locking process described in Example 15, for some values of n and l.

t0

t1

n l s t s′ t′ sSPIN tSPIN
2 1 3 8 3 10 58 65
2 2 3 8 3 10 112 129
2 3 3 8 3 10 180 209
3 1 19 90 4 24 171 218
3 2 19 90 4 24 441 602
3 3 19 90 4 24 817 1128

3.5 An Application to Static Analysis

Now that we have the reduced shadow automaton, we can explain how one can perform
static analysis by abstract interpretation [5] on concurrent systems, in an economic
way. The systematic design and proof of correctness of such abstract analysis is left for
a future article, the aim of this section is to give an intuition why the computations of
Section 3 are relevant to static analysis by abstract interpretation. The idea is to asso-
ciate, to each node n of the shadow automaton, a set of values An that program variables
can take if computation follows a transition path whose last vertex is n. Among the ac-
tions the program can take along this scheduling, we consider only the greedy ones,
that is the ones which execute all possible actions permitted by the dihomotopy class of
schedulings ending by n.

Suppose that we want to analyze the program

p∗ =
(

Pa. (a := a − 1) .Va

)∗∣∣∣(Pa.
(

a := a

2

)
.Va

)∗
(6)
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What are the possible sets of values reached, for a, starting with a ∈ [0, 1]? The as-
sociated shadow automaton Sp has been determined in Example 13 (this automaton is
reduced) together with relations, that we will not be using in this article, yet. In many
ways, this reduced shadow automaton plays the role of a compact control flow graph

for the program we are analyzing. Calling M0 = and M1 = , XM0 has the effect
on environment: a := a/2 and XM1 has as effect: a := a − 1.

We are now in a position to interpret the arrows of the shadow automaton as simple
abstract transfer functions and produce a system of equations for which we want to
determine a least-fixed point, to get the invariant of the program at the (multi-)control
point which is the pair of the heads of the loops of each process. The interpretation
on the shadow automaton now gives (ignoring the initial state I in that picture, for
simplicity’s sake) can be graphically pictured as:

0[a:=a−1]
"" [a:= a

2 ] �� 1[a:=a−1]
�� [a:= a

2 ]


Given the abstract transfer functions on each edge of the shadow automaton, we pro-
duce as customary the abstract semantic equations, one per node, by joining all transfer
functions correspond to ingoing edges to that node:(

A0
A1

)
= F

(
A0
A1

)
=

(
I ∪ (A0 − 1) ∪ (A1 − 1)

I ∪ A1
2 ∪ A0

2

)
(7)

This set of semantic equations can be seen as a least-fixed point equation, that we can
solve using any of our favorite tool, for instance Kleene iteration and widening/nar-
rowing, on any abstract domain, such as the domain of intervals as in the example
below. The least-fixed point formulation that we are looking for is thus A∞ =

∨
[0,1] F ,

where F is the function defined in (7) and I = [0, 1]. A Kleene iteration on this mono-
tonic function F on the lattice of intervals over R reveals that A∞

0 = A∞
1 =] − ∞, 1].

We have presented this example in order to show how the reduced shadow automa-
ton can be used in order to use usual static analysis methods on concurrent programs,
avoiding state-space explosion as much as possible. It has the advantage of being short,
however it does not really show the main interest of our technique: the scheduling au-
tomaton allows us to take in account properties which tightly depend on the way the
synchronizations constraint the executions of the programs.

4 Conclusion and Future Work

We have presented an algorithm in order to compute a finite presentation of the trace
space of concurrent programs, which may contain loops. An application to abstract in-
terpretation has also described but remains to be implemented. In order to give a simple
presentation of the algorithm, we have restricted ourselves here to programs of a simple
form (in particular, we have omitted non-determinism). We shall extend our algorithm
to more realistic programming languages in a subsequent article. Our approach can also
be applied to languages with other synchronization primitives (monitors, send/recv,
etc.), for which there are simple geometric semantics available. There are also many
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possible general improvements of the algorithm; the most appealing one would per-
haps be to find a way to have a more modular way of computing the total schedulings
by combining locally computed schedulings in �T (X)(x, y) with varying endpoints x
and y. In a near future, the schedulings provided by the algorithm will be used by our
tool ALCOOL to analyze concurrent programs using abstract interpretation, thus pro-
viding one of the first tools able to do such a static analysis on concurrent programs
without forgetting most of the possible synchronizations during their execution.

On the theoretical side, we envisage to study in details and use the structure of the
index poset C(X) which contains much more information than only the schedulings
of the program. Namely, it can be equipped with a structure of prodsimplicial set [22]
(a structure similar to simplicial sets but whose elements are products of simplexes),
whose geometric realization provides a topological space which is homotopy equiva-
lent to the trace space �T (X) [24]. This essentially means that C(X) contains all the
geometry of the trace space and we plan to try to benefit from all the information it pro-
vides about the possible computations of a program. Our ALCOOL prototype actually
implements this computation – using a combinatorial presentation of the prodsimplicial
sets known as simploidal sets [23] – which will be reported elsewhere.
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Abstract. We propose a process algebra for wireless mesh networks that
combines novel treatments of local broadcast, conditional unicast and
data structures. In this framework, we model the Ad-hoc On-Demand
Distance Vector (AODV) routing protocol and (dis)prove crucial prop-
erties such as loop freedom and packet delivery.

1 Introduction

Wireless Mesh Networks (WMNs) have recently gained considerable popular-
ity and are increasingly deployed in a wide range of application scenarios, in-
cluding emergency response communication, intelligent transportation systems,
mining, video surveillance, etc. WMNs are essentially self-organising wireless
ad-hoc networks that can provide broadband communication without relying
on a wired backhaul infrastructure. This has the benefit of rapid and low-cost
network deployment. WMNs can be considered a superset of Mobile Ad-hoc
Networks (MANETs), where a network consists exclusively of mobile end user
devices such as laptops or smartphones. In contrast to MANETs, WMNs typi-
cally also contain stationary infrastructure devices called mesh routers. However,
this distinction is not relevant for the purpose of this paper; what matters is that
both MANETs and WMNs share the characteristic of highly dynamic network
topologies, due to node mobility and the variable nature of wireless links.

In WMNs, a routing protocol is used to establish and maintain network con-
nectivity through paths between source and destination node pairs. As a con-
sequence, the routing protocol is one of the key factors determining the perfor-
mance and reliability of WMNs. Traditionally, the main tools for evaluating and
validating network protocols are simulation and test-bed experiments. The key
limitations of these approaches are that they are very expensive, time consuming
and non-exhaustive, i.e., they only cover a very limited set of network scenarios.
As a result, protocol errors and limitations are still found many years after the
definition and standardisation; for example, see [14].

Formal methods have a great potential in helping to address this problem, and
can provide valuable tools for design, evaluation and verification of WMN routing
protocols. The overall goal is to reduce the “time-to-market” for better (new or
modified) WMN protocols, and to increase the reliability and performance of
the corresponding networks.

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 295–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we propose a process algebra that provides a step towards this
goal. It combines novel treatments of data structures, conditional unicast and
local broadcast, and allows formalisation of all important aspects of a routing
protocol. All these features are necessary to model “real life” WMNs. Data
structures are used to store and maintain information, e.g. routing tables. The
conditional unicast construct allows us to model that a node in a network sends
a message to a particular neighbour, and if this fails, for example because the
receiver has moved out of transmission range, error handling is initiated. Finally,
the local broadcast primitive, which allows a node to send messages to all its
immediate neighbours, models the wireless broadcast mechanism implemented
by the physical and data link layer of wireless standards relevant for WMNs.
Our formalisation assumes that any broadcast message is received by all nodes
within transmission range.1 This abstraction enables us to interpret a failure of
guaranteed message delivery as an imperfection in the protocol, rather than as
a result of a chosen formalism not allowing guaranteed delivery.

To demonstrate the use of our algebra, in [6] we use it to formally model and
reason about the Ad-Hoc On-Demand Distance Vector (AODV) routing pro-
tocol [16]—we outline this work here. AODV is one of the most relevant and
widely used routing protocols in WMNs. Our model covers the complete core
functionality of AODV and abstracts from timing and optional features only.
The process algebra proposed in this paper allows us to prove critical protocol
properties of AODV, such as loop freedom. We also use our model to show limi-
tations of AODV, e.g. that AODV does not guarantee that messages are always
delivered to their destinations, even if a stable route exists (cf. Section 3.4).

2 A Process Algebra for Wireless Routing Protocols

In this section we propose AWN, a process algebra for the specification of WMN
routing protocols such as AODV. It models a WMN as an encapsulated parallel
composition of network nodes. On each node several sequential processes may be
running in parallel. Network nodes communicate with their direct neighbours—
those nodes that are in transmission range—using either broadcast or unicast.
Due to mobility of nodes and variability of wireless links, nodes can move in or
out of transmission range. The encapsulation of the entire network inhibits com-
munications between network nodes and the outside world, with the exception
of the receipt and delivery of data packets from or to clients 2 of the modelled
protocol that may be hooked up to various nodes.

1 In reality, communication is only half-duplex: a network node cannot receive mes-
sages while sending and hence messages can be lost. However, the CSMA protocol
used at the link layer—not modelled here—keeps the probability of packet loss due
to two nodes (within range) sending at the same time rather low. Since we are ex-
amining imperfect protocols, we first of all want to establish how they behave under
optimal conditions. For this reason we abstract from probabilistic reasoning by as-
suming no message loss at all, rather than working with a lossy broadcast formalism
that offers no guarantees that any message will ever arrive.

2 The application layer that initiates packet sending and awaits receipt of a packet.
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2.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by the values of certain
data variables that are maintained by that process. To this end, we assume a
data structure with several types, variables ranging over these types, operators
and predicates. First order predicate logic yields terms (or data expressions) and
formulas to denote data values and statements about them. Our data structure
always contains the types DATA, MSG, IP and P(IP) of application layer data,
messages, IP addresses—or any other node identifiers—and sets of IP addresses.

In addition, we assume a set of process names. Each process name X comes
with a defining equation

X(var1, . . . , varn)
def
= p ,

in which n ∈ IN, the vari are variables and p is a sequential process expres-
sion defined by the grammar below. It may contain the variables vari as well
as X . However, all occurrences of data variables in p have to be bound.3 The
choice of the underlying data structure and the process names with their defining
equations can be tailored to any particular application of our language.

The sequential process expressions are given by the following grammar:

SP ::= X(exp1, . . . , expn) | [ϕ]SP | [[var := exp]]SP | SP+ SP |
α.SP | unicast(dest,ms).SP � SP

α ::= broadcast(ms) | groupcast(dests,ms) | send(ms) |
deliver(data) | receive(msg)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, dest, dests, data and ms data expressions of types IP,
P(IP), DATA and MSG, respectively, and msg a data variable of type MSG.

Given a valuation of the data variables by concrete data values, the sequential
process [ϕ]p acts as p if ϕ evaluates to true, and deadlocks if ϕ evaluates to
false. In case ϕ contains free variables that are not yet interpreted as data val-
ues, values are assigned to these variables in any way that satisfies ϕ, if possible.
The sequential process [[var := exp]]p acts as p, but under an updated valua-
tion of the data variable var. The sequential process p+ q may act either as
p or as q, depending on which of the two processes is able to act at all. In a
context where both are able to act, it is not specified how the choice is made.
The sequential process α.p first performs the action α and subsequently acts
as p. The action broadcast(ms) broadcasts (the data value bound to the ex-
pression) ms to the other network nodes within transmission range, whereas
unicast(dest,ms).p � q is a process that tries to unicast the message ms to

3 An occurrence of a data variable in p is bound if it is one of the variables vari, a
variable msg occurring in a subexpression receive(msg).q, a variable var occurring in
a subexpression [[var := exp]]q, or an occurrence in a subexpression [ϕ]q of a variable
occurring free in ϕ. Here q is an arbitrary sequential process expression.
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Table 1. Structural operational semantics for sequential process expressions

ξ,broadcast(ms).p broadcast(ξ(ms))−−−−−−−−−−−→ ξ, p

ξ,groupcast(dests,ms).p groupcast(ξ(dests),ξ(ms))−−−−−−−−−−−−−−−−→ ξ, p

ξ,unicast(dest,ms).p � q
unicast(ξ(dest),ξ(ms))−−−−−−−−−−−−−−→ ξ, p

ξ,unicast(dest,ms).p � q ¬unicast(ξ(dest))−−−−−−−−−−−→ ξ, q

ξ, send(ms).p send(ξ(ms))−−−−−−−→ ξ, p

ξ,deliver(data).p
deliver(ξ(data))−−−−−−−−−−→ ξ, p

ξ, receive(msg).p receive(m)−−−−−−−→ ξ[msg := m], p (∀m ∈ MSG)

ξ, [[var := exp]]p τ−→ ξ[var := ξ(exp)], p

∅[vari := ξ(expi)]
n
i=1, p

a−→ ζ, p′

ξ,X(exp1, . . . , expn)
a−→ ζ, p′

(X(var1, . . . , varn)
def
= p) (∀a ∈ Act)

ξ, p a−→ ζ, p′

ξ, p + q a−→ ζ, p′
ξ, q a−→ ζ, q′

ξ, p + q a−→ ζ, q′
ξ

ϕ→ ζ

ξ, [ϕ]p τ−→ ζ, p
(∀a ∈ Act)

the destination dest; if successful it continues to act as p and otherwise as
q. In other words, unicast(dest,ms).p is prioritised over q; only if the action
unicast(dest,ms) is not possible, the alternative q will happen. It models an
abstraction of an acknowledgment-of-receipt mechanism that is typical for uni-
cast communication but absent in broadcast communication, as implemented by
the link layer of relevant wireless standards such as IEEE 802.11. The process
groupcast(dests,ms).p tries to transmit ms to all destinations dests, and pro-
ceeds as p regardless of whether any of the transmissions is successful. Unlike
unicast and broadcast, the expression groupcast does not have a unique coun-
terpart in networking. Depending on the protocol and the implementation it can
be an iterative unicast, a broadcast, or a multicast; thus groupcast abstracts
from implementation details. The action send(ms) synchronously transmits a
message to another process running on the same node; this action can occur only
when this other sequential process is able to receive the message. The sequential
process receive(msg).p receives any message m (a data value of type MSG) either
from another node, from another sequential process running on the same node
or from the client hooked up to the local node. It then proceeds as p, but with
the data variable msg bound to the value m. The submission of data from a
client is modelled by the receipt of a message newpkt(d, dip), where the function
newpkt generates a message containing the data d and the intended destination
dip. Data is delivered to the client by deliver(data).

The internal state of a sequential process described by an expression p is
determined by p, together with a valuation ξ associating values ξ(var) to vari-
ables var maintained by this process. Valuations naturally extend to ξ-closed
expressions—those in which all variables are either bound or in the domain of ξ.
The structural operational semantics of Table 1 is in the style of Plotkin [17]
and describes how one internal state can evolve into another by performing
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Table 2. Structural operational semantics for parallel process expressions

P a−→ P ′

P 〈〈Q a−→ P ′ 〈〈Q
(∀a �= receive(m))

Q a−→ Q′

P 〈〈Q a−→ P 〈〈Q′
(∀a �= send(m))

P receive(m)−−−−−−−→ P ′ Q send(m)−−−−−→ Q′

P 〈〈Q τ−→ P ′ 〈〈Q′
(∀m ∈ MSG)

an action. The set Act of actions consists of broadcast(m), groupcast(D,m),
unicast(dip,m), ¬unicast(dip), send(m), deliver(d), receive(m) and internal
actions τ , for each choice of m∈ MSG, dip∈ IP, D∈P(IP) and d∈ DATA. Here,
¬unicast(dip) denotes a failed unicast. Moreover ξ[var := v] denotes the val-
uation that assigns the value v to the variable var, and agrees with ξ on all
other variables. The empty valuation ∅ assigns values to no variables. Hence
∅[vari := vi]

n
i=1 is the valuation that only assigns the values vi to the variables

vari for i = 1, . . . , n. The rule for process names in Table 1 (Line 9) says that a
process, named X , has the same transitions as the body p of its defining equa-
tion. (See [6] for details.) Finally, ξ

ϕ→ ζ says that ζ is an extension of ξ, i.e., a
valuation that agrees with ξ on all variables on which ξ is defined, and evaluates
other variables occurring free in ϕ, such that the formula ϕ holds under ζ. All
variables not free in ϕ and not evaluated by ξ are also not evaluated by ζ.

2.2 A Language for Parallel Processes

Parallel process expressions are given by the grammar

PP ::= ξ, SP | PP 〈〈 PP ,

where SP is a sequential process expression and ξ a valuation. An expression ξ, p
denotes a sequential process expression equipped with a valuation of the variables
it maintains. The process P 〈〈 Q is a parallel composition of P and Q, running
on the same network node. As formalised in Table 2, an action receive(m) of P
synchronises with an action send(m) of Q into an internal action τ . These receive
actions of P and send actions of Q cannot happen separately. All other actions of
P and Q occur interleaved in P 〈〈Q. The variables of sequential processes running
on the same node are maintained separately, and thus cannot be shared.

Though 〈〈 is a restricted version of synchronisation, which only allows informa-
tion flow “in one direction”, it reflects reality of WMNs. Usually two sequential
processes run on the same node: P 〈〈Q. The main process P deals with all proto-
col details of the node, e.g., message handling and maintaining the data such as
routing tables. The process Q manages the queueing of messages as they arrive;
it is always able to receive a message even if P is busy. The use of message queue-
ing in combination with 〈〈 is crucial, since otherwise incoming messages would
be lost when the process is busy dealing with other messages4, which would not
be an accurate model of what happens in real implementations.

4 Assuming that one employs the optional augmentation of Section 2.5.
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Table 3. Structural operational semantics for node expressions

P broadcast(m)−−−−−−−−−→ P ′

ip :P :R R : *cast(m)−−−−−−−−→ ip :P ′ :R

P groupcast(D,m)−−−−−−−−−−−→ P ′

ip :P :R R∩D : *cast(m)−−−−−−−−−−→ ip :P ′ :R

P unicast(dip,m)−−−−−−−−−→ P ′ dip ∈ R

ip :P :R
{dip} : *cast(m)−−−−−−−−−−→ ip :P ′ :R

P ¬unicast(dip)−−−−−−−−−→ P ′ dip �∈ R

ip :P :R τ−→ ip :P ′ :R

P deliver(d)−−−−−−→ P ′

ip :P :R ip :deliver(d)−−−−−−−−→ ip :P ′ :R

P receive(m)−−−−−−−→ P ′

ip :P :R {ip}¬∅ : arrive(m)−−−−−−−−−−−→ ip :P ′ :R

P τ−→ P ′

ip :P :R
τ−→ ip :P ′ :R

ip :P :R ∅¬{ip} : arrive(m)−−−−−−−−−−−→ ip :P :R

ip :P :R connect(ip,ip′)−−−−−−−−−→ ip :P :R ∪ {ip′} ip :P :R disconnect(ip,ip′)−−−−−−−−−−−→ ip :P :R− {ip′}

2.3 A Language for Networks

We model network nodes in the context of a WMN by node expressions of the
form ip :PP :R. Here ip∈ IP is the address of the node, PP is a parallel process
expression, and R∈P(IP) is the range of the node—the set of nodes that are
currently within transmission range of ip.

A partial network is then modelled by a parallel composition ‖ of node ex-
pressions, one for every node in the network, and a complete network is a partial
network within an encapsulation operator [ ] that limits the communication of
network nodes and the outside world to the receipt and the delivery of data
packets to and from the application layer attached to the modelled protocol in
the network nodes. This yields a grammar for network expressions:

N ::= [M ] M ::= ip : PP : R | M‖M .

The operational semantics of node and network expressions of Tables 3 and 4
uses transition labels R :*cast(m), H¬K : arrive(m), connect(ip, ip′),
disconnect(ip, ip′), ip :newpkt(d, dip), ip :deliver(d) and τ . Again, m∈ MSG,
d∈ DATA, R∈P(IP), and ip, ip′ ∈ IP. Moreover, H,K ∈ P(IP) are sets of IP ad-
dresses. The action R :*cast(m) casts a message m that can be received by the
set R of network nodes. We do not distinguish whether this message has been
broadcast, groupcast or unicast—the differences show up merely in the value of
R. Recall that D∈P(IP) denotes a set of intended destinations, and dip∈ IP a
single destination. A failed unicast attempt on the part of its process is modelled
as an internal action τ on the part of a node expression. The action send(m) of
a process does not give rise to any action of the corresponding node—this ac-
tion of a sequential process cannot occur without communicating with a receive
action of another sequential process running on the same node.

The action H¬K : arrive(m) states that the message m simultaneously ar-
rives at all addresses ip∈H , and fails to arrive at all addresses ip∈K. The rules of
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Table 4. Structural operational semantics for network expressions

M R : *cast(m)−−−−−−−−→ M ′ N H¬K : arrive(m)−−−−−−−−−−−→ N ′

M‖N R : *cast(m)−−−−−−−−→ M ′‖N ′ N‖M R : *cast(m)−−−−−−−−→ N ′‖M ′

(
H ⊆ R

K ∩R = ∅
)

M
H¬K : arrive(m)−−−−−−−−−−−→ M ′ N

H′¬K′ : arrive(m)−−−−−−−−−−−−→ N ′

M‖N (H∪H′)¬(K∪K′) : arrive(m)−−−−−−−−−−−−−−−−−−→ M ′‖N ′

M
R : *cast(m)−−−−−−−−→ M ′

[M ] τ−→ [M ′]

M
{ip}¬K : arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−−→ M ′

[M ] ip :newpkt(d,dip)−−−−−−−−−−−→ [M ′]

M
a−→ M ′

M‖N a−→ M ′‖N
N

a−→ N ′

M‖N a−→ M‖N ′
M

a−→ M ′

[M ] a−→ [M ′]

⎛
⎝∀a∈

⎧⎨
⎩

ip :deliver(d), τ
connect(ip, ip′)

disconnect(ip, ip′)

⎫⎬
⎭
⎞
⎠.

Table 4 let an R :*cast(m)-action of one node synchronise with an arrive(m)
of all other nodes, where this arrive(m) amalgamates the arrival of message
m at the nodes in the transmission range R, and the non-arrival at the other
nodes. The rules for arrive(m) in Table 3 state that arrival of a message at a
node happens if and only if the node receives it, whereas non-arrival can happen
at any time. This embodies our assumption that, at any time, any message
that is transmitted to a node within range of the sender is actually received by
that node. (The eighth rule in Table 3, having no premises, may appear to say
that any node ip has the option to disregard any message at any time. However,
the encapsulation operator (below) prunes away all such disregard-transitions
that do not synchronise with a cast action for which ip is out of range.)

Internal actions τ and the action ip :deliver(d) are simply inherited by node
expressions from the processes that run on these nodes, and are interleaved in
the parallel composition of nodes that makes up a network. Finally, we allow ac-
tions connect(ip, ip′) and disconnect(ip, ip′) for ip, ip′ ∈ IP modelling a change
in network topology. These actions can be thought of as occurring nondetermin-
istically, or as actions instigated by the environment of the modelled network
protocol. In this formalisation node ip′ may be in the range of node ip, meaning
that ip can send to ip′, even when the reverse does not hold. For some appli-
cations, in particular the one to AODV in [6], it is useful to assume that ip′ is
in the range of ip if and only if ip is in the range of ip′. This symmetry can be
enforced by adding the following rules to Table 3

ip :P :R connect(ip′,ip)−−−−−−−−−→ ip :P :R ∪ {ip′} ip :P :R disconnect(ip′,ip)−−−−−−−−−−−→ ip :P :R− {ip′}

ip �∈ {ip′, ip′′}
ip :P :R connect(ip′,ip′′)−−−−−−−−−−→ ip :P :R

ip �∈ {ip′, ip′′}
ip :P :R disconnect(ip′,ip′′)−−−−−−−−−−−−→ ip :P :R

and replacing the last three rules for (dis)connect actions by

M a−→ M ′ N a−→ N ′

M‖N a−→ M ′‖N ′
M a−→ M ′

[M ] a−→ [M ′]

(
∀a ∈

{
connect(ip, ip′)

disconnect(ip, ip′)

})
.
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The main purpose of the encapsulation operator is to ensure that no messages
will be received that have never been sent. In a parallel composition of network
nodes, any action receive(m) of one of the nodes ip manifests itself as an action
H¬K : arrive(m) of the parallel composition, with ip∈H . Such actions can hap-
pen (even) if within the parallel composition they do not communicate with an
action *cast(m) of another component, because they might communicate with a
*cast(m) of a node that is yet to be added to the parallel composition. However,
once all nodes of the network are accounted for, we need to inhibit unmatched
arrive actions, as otherwise our formalism would allow any node at any time to
receive any message. One exception are those arrive actions that stem from an
action receive(newpkt(data, dip)) of a sequential process running on a node,
as those actions represent communication with the environment.

The encapsulation operator passes through internal actions, as well as delivery
of data packets at destination nodes, this being an interaction with the outside
world. *cast(m)-actions are declared internal actions at this level; they cannot
be steered by the outside world. The connect and disconnect actions are passed
through in Table 4, thereby placing them under control of the environment; to
make them nondeterministic, their rules should have a τ -label in the conclusion,
or alternatively the actions connect(ip, ip′) and disconnect(ip, ip′) should be
thought of as internal. Finally, actions arrive(m) are simply blocked by the
encapsulation—they cannot occur without synchronising with a *cast(m) —
except for {ip}¬K : arrive(newpkt(d, dip)) with d∈ DATA and dip∈ IP. This ac-
tion represents a new data packet d that is submitted by a client of the modelled
protocol to node ip, for delivery at destination dip.

2.4 Results on the Process Algebra

Our process algebra admits translation into one without data structures (al-
though we cannot describe the target algebra without using data structures):
the idea is to replace processes ξ, p by Tξ(p), where Tξ is defined inductively by

Tξ(broadcast(ms).p) = broadcast(ξ(ms)).Tξ(p),
Tξ(receive(msg).p) =

∑
m∈MSG receive(m).Tξ[msg:=m](p),

Tξ(X(exp1, . . . , expn)) = Xξ(exp1),...,ξ(expn)
, etc.

This requires the introduction of a process name X�v for every substitution in-
stance �v of the arguments of X . The resulting process algebra has a structural
operational semantics in the de Simone format, generating the same transition
system—up to strong bisimilarity, ↔—as the original. It follows that ↔, and
many other semantic equivalences, are congruences on our language [19].

Theorem 2.1. Strong bisimilarity is a congruence for all operators of our
language.

This is a deep result that usually takes many pages to establish (e.g., [20]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [19]. 12
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Theorem 2.2. 〈〈 is associative, and ‖ is associative and commutative, up to ↔.

Proof. The operational rules for these operators fit a format presented in [5],
guaranteeing associativity up to ↔. The ASSOC-de Simone format of [5] ap-
plies to all transition system specifications (TSSs) in de Simone format, and
allows 7 different types of rules (named 1–7) for the operators in question. Our
TSS is in De Simone format; the three rules for 〈〈 of Table 2 are of types 1, 2
and 7, respectively. To be precise, it has rules 1a for a ∈ Act \ {receive(m) |
m∈ MSG}, rules 2a for a ∈ Act \ {send(m) | m∈ MSG}, and rules 7(a,b) for
(a, b) ∈ {(receive(m), send(m)) | m∈ MSG}. Moreover, the partial communi-
cation function γ : Act × Act ⇀ Act is given by γ(receive(m), send(m)) = τ .
The main result of [5] is that an operator is guaranteed to be associative, pro-
vided that γ is associative and six conditions are fulfilled. In the absence of rules
of types 3, 4, 5 and 6, five of these conditions are trivially fulfilled, and the
remaining one reduces to

7(a,b) ⇒ (1a ⇔ 2b) ∧ (2a ⇔ 2γ(a,b)) ∧ (1b ⇔ 1γ(a,b)) .

Here 1a says that rule 1a is present, etc. This condition is met for 〈〈 because
the antecedent holds only when taking (a, b) = (receive(m), send(m)) for some
m∈ MSG. In that case 1a is false, 2b is false, and 2a, 2τ , 1b and 1τ are true.
Moreover, γ(γ(a, b), c) and γ(a, γ(b, c)) are never defined, thus making γ trivially
associative. The argument for ‖ being associative proceeds likewise. Here the only
nontrivial condition is the associativity of γ, given by

γ(R :*cast(m), H¬K :arrive(m)) = γ(H¬K : arrive(m), R :*cast(m))

= R :*cast(m) ,

provided H ⊆ R and K ∩R = ∅, and

γ(H¬K : arrive(m), H ′¬K ′ : arrive(m)) = (H ∪H ′)¬(K ∪K ′) : arrive(m) .

Commutativity of ‖ follows by symmetry. 12

2.5 Optional Augmentation to Ensure Non-blocking Broadcast

Our process algebra, as presented above, is intended for networks in which each
node is input enabled [11], meaning that it is always ready to receive any mes-
sage, i.e., able to engage in the transition receive(m) for any m ∈ MSG. In our
model of AODV [6] we ensure this by equipping each node with a message queue
that is always able to accept messages for later handling—even when the main
sequential process is currently busy. This makes our model non-blocking, mean-
ing that no sender can be delayed in transmitting a message simply because one
of the potential recipients is not ready to receive it.

However, the operational semantics does allow blocking if one would (mis)use
the process algebra to model nodes that are not input enabled. This is a logical
consequence of insisting that any broadcast message is received by all nodes
within transmission range.
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Since the possibility of blocking can be regarded as a bad property of broad-
cast formalisms, one may wish to take away the expressiveness of the language
that allows modelling a blocking broadcast. This is the purpose of the following
optional augmentations of our operational semantics.

The first possibility is the addition of the rule
P

receive(m)−−−−−−−�→
ip:P :R

{ip}¬∅ : arrive(m)−−−−−−−−−−−→ip:P :R
.

It states that a message may arrive at a node ip regardless whether the node
is ready to receive it; if it is not ready, the message is simply ignored, and the
process running remains in the same state.

A variation on the same idea, elaborated in [6, Sect. 4.5], stems from the
Calculus of Broadcasting Systems [18]. It consists in eliminating the negative
premise in the above rule in favour of discard actions, thereby remaining within
the de Simone format of structural operational semantics. Either of these two
optional augmentations of our semantics gives rise to the same transition system.
Moreover, when modelling networks in which all nodes are input enabled—as
we do in [6]—the added rule for node expressions will never be used, and the
resulting transition system is the same whether we use augmentation or not.

2.6 Illustrative Example

To illustrate the use of our process algebra AWN, we consider a network of two
nodes a and b (a, b ∈ IP) on which the same process is running, although starting
in different states. The process describes a simple (toy-)protocol: whenever a new
data packet for destination dip “appears”,5 the data is broadcast through the
network until it finally reaches dip. A node alternates between broadcasting, and
receiving and handling a message. The data stemming from a message received
by node ip will be delivered to the application layer if the message is destined
for ip itself. Otherwise the node forwards the message. Every message travelling
through the network and handled by the protocol has the form mg(data, dip),
where data ∈ DATA is the data to be sent and dip ∈ IP is its destination. The
behaviour of each node can be modelled by:

X(ip; data, dip)
def
= broadcast(mg(data, dip)).Y(ip)

Y(ip)
def
= receive(m).([m=mg(data, dip) ∧ dip=ip] deliver(data).Y(ip)

+ [m=mg(data, dip) ∧ dip�=ip] X(ip; data, dip)) .
If a node is in a state X(ip; data, dip), where ip ∈ IP is the node’s stored value
of its own IP address, it will broadcast mg(data, dip) and continue in state Y(ip),
meaning that all information about the message is dropped. If a node in state
Y(ip) receives a messagem—a value that will be assigned to the variable m—it has
two ways to continue: process [m=mg(data, dip) ∧ dip=ip] deliver(data).Y(ip)
is enabled if the incoming message has the form mg(data, dip) and the node
itself is the destination of the message (dip=ip). In that case the data distilled
from m will be delivered to the application layer, and the process returns to
Y(ip). Alternatively, if [m=mg(data, dip) ∧ dip�=ip], the process continues as

5 In this small example, we assume that new data packets just appear “magically”; of
course one could use the message newpkt(data,dip) instead.
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X(ip; data, dip), which will then broadcast another message with contents data
and dip. Note that calls to processes use expressions as parameters.

Let us have a look at three scenarios. First, assume that the nodes a and b are
within transmission range of each other; node a in state X(a; d, b), and node b in
Y(b). This is formally expressed as [a :X(a; d, b) :{b} ‖ b :Y(b) :{a}], although for
compactness of presentation, below we just write [X(a; d, b) ‖ Y(b)]. In this case,
node a broadcasts the message mg(d, b) and continues as Y(a). Node b receives
the message, delivers d (after evaluation of the message) and continues as Y(a).
Formally, we get transitions from one state to the other:

[X(a; d, b) ‖ Y(b)] a:*cast(mg(d,b))−−−−−−−−−−→ τ−→ b:deliver(d)−−−−−−−→ [Y(a) ‖ Y(b)].
Here, the τ -transition is the action of evaluating the first of the two guards of a
process Y, and we left out the two intermediate expressions.

Second, assume that the nodes are not within transmission range, with the
initial process of a and b the same as above; formally [a : X(a; d, b) : ∅ ‖ b :Y(b) : ∅].
As before, node a broadcasts mg(d, b) and continues in Y(a); but this time the
message is not received by any node; hence no message is forwarded or delivered
and both nodes end up running process Y.

For the last scenario, we assume that a and b are within transmission range
and that they have the initial states X(a; d, b) and X(b; e, a). Without the aug-
mentation of Section 2.5, the network expression [X(a; d, b) ‖ X(b; e, a)] admits no
transitions at all; neither node can broadcast its message, because the other node
is not listening. With the optional augmentation, assuming that node a sends
first:

[X(a; d, b) ‖ X(b; e, a)] a:*cast((mg(d,b))−−−−−−−−−−→ [Y(a) ‖ X(b; e, a)]
b:*cast(mg(e,a))−−−−−−−−−−→ τ−→ a:deliver(e)−−−−−−−→ [Y(a) ‖ Y(b)].

Unfortunately, node b is initially in a state where it cannot receive a message, so
a’s message “remains unheard” and b will never deliver that message. To avoid
this behaviour, and ensure that both messages get delivered, as happens in real
WMNs, a message queue can be introduced (see Section 3.2). Using a message
queue, the optional augmentation is not needed, since any node is always in a
state where it can receive a message.

3 Routing Protocols

The features of our process algebra were largely determined by what we needed
to enable a complete and accurate formalisation of wireless network protocols
and their properties.

We use the proposed algebra to formally model and reason about the Ad hoc
On-demand Distance Vector (AODV) routing protocol [16]. Due to lack of space,
we can only briefly report on our formalisation and the properties proved. All
details can be found in [6].

Since routing protocols for WMNs are based on common concepts in wireless
networks in general, such as local broadcast, we do expect that our process
algebra can easily be used to model other wireless network protocols.
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Fig. 1. Example network topology

3.1 Ad-Hoc On-Demand Distance Vector Routing Protocol

AODV [16] is a widely-used routing protocol designed for MANETs, and is one of
the four protocols currently standardised by the IETF MANET working group6.
It also forms the basis of new WMN routing protocols, including the upcoming
IEEE 802.11s wireless mesh network standard [10].

AODV is a reactive protocol: routes are established only on demand. A
route from a source node s to a destination node d is a sequence of nodes
[s, n1, . . . , nk, d], where n1, . . . , nk are intermediate nodes located on the path
from s to d. Its basic operation can best be explained using a simple example
topology shown in Fig. 1(a), where edges connect nodes within transmission
range. We assume node s wants to send a data packet to node d, but s does not
have a valid routing table entry for d. Node s initiates a route discovery mecha-
nism by broadcasting a route request (RREQ) message, which is received by s’s
immediate neighbours a and b. We assume that neither a nor b knows a route
to the destination node d.7 Therefore, they simply re-broadcast the message, as
shown in Fig. 1(b). Each RREQ message has a unique identifier which allows
nodes to ignore duplicate RREQ messages that they have handled before.

When forwarding the RREQ message, each intermediate node updates its
routing table and adds a “reverse route” entry to s, indicating via which next
hop the node s can be reached, and the distance in number of hops. Once the
first RREQ message is received by the destination node d (we assume via a), d
also adds a reverse route entry in its routing table, saying that node s can be
reached via node a, at a distance of 2 hops.

Node d then responds by sending a route reply (RREP) message back to
node s, as shown in Fig. 1(c). In contrast to the RREQ message, the RREP is
unicast, i.e., it is sent to an individual next hop node only. The RREP is sent
from d to a, and then to s, using the reverse routing table entries created during
the forwarding of the RREQ message. When processing the RREP message, a
node creates a “forward route” entry into its routing table. For example, upon
receiving the RREP via a, node s creates an entry saying that d can be reached
via a, at a distance of 2 hops. At the completion of the route discovery process,
a route has been established from s to d, and data packets can start to flow.

In the event of link and route breaks, AODV uses route error (RERR) mes-
sages to inform affected nodes. Sequence numbers are another important aspect

6 http://datatracker.ietf.org/wg/manet/charter/
7 In case an intermediate node knows a route to d, it directly sends a route reply back.

http://datatracker.ietf.org/wg/manet/charter/
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Table 5. Data structure

Type Variables Description
IP ip, dip, oip, rip, sip, nhip node identifiers
SQN sn, dsn, rsn sequence numbers
K dsk sequence-number-status flag
F flag route validity
IN hops hop counts
R r routing table entries
RT rt routing tables
RREQID rreqid request identifiers
P pending-request flag
STORE store store of queued data packets
MSG msg messages
[MSG] msgs message queues
P(IP) pre sets of identifiers (precursors, destinations, . . . )
IP ⇀ SQN dests sets of destinations with sequence numbers
P(IP× RREQID) rreqs sets of request identifiers with originator IP

Constant/Predicate Description
0 : SQN, 1 : SQN unknown, smallest sequence number
< ⊆ SQN × SQN strict order on sequence numbers
kno, unk : K constants to distinguish known and unknown sqns
val, inv : F constants to distinguish valid and invalid routes
pen, non-pen : P constants to distinguish (non-)pending RREQs
[ ] : [MSG] empty queue

Operator Description

setP : STORE× IP × P → STORE set the pending-request flag
( , , , , , , ) : generates a routing table entry

IP×SQN×K×F× IN×IP×P(IP)→ R
inc : SQN → SQN increments the sequence number
sqn : RT × IP → SQN returns the sequence number of a particular route
flag : RT × IP ⇀ F returns the validity of a particular route
dhops : RT× IP ⇀ IN returns the hop count of a particular route
nhop : RT × IP ⇀ IP returns the next hop of a particular route
precs : RT× IP ⇀ P(IP) returns the set of precursors of a particular route
vD, kD : RT → P(IP) returns the set of valid, known destinations
addpreRT : RT × IP × P(IP) ⇀ RT adds a set of precursors to an entry inside a table
update : RT × R ⇀ RT updates a routing table with a route (if fresh enough)
invalidate : RT × (IP ⇀ SQN) → RT invalidates a set of routes within a routing table
rrep : IN×IP× SQN × IP × IP → MSG generates a route reply
rerr : (IP ⇀ SQN) × IP → MSG generates a route error message

of AODV, and are used to indicate the freshness of routing table entries for the
purpose of preventing routing loops.

3.2 A Formal Model of AODV

Our formalisation of AODV is a faithful rendering of the IETF’s specification [16]
with the exception of time and any optional features. Additionally, we model
the submission, forwarding and delivery of data packets—this is not part of the
AODV standard, but crucial to trigger the route discovery process of AODV.

In this section we give an overview of the formal model, setting out the details
only for the RREP message handling. Full details are available in [6, Sect. 6].

Table 5 lists the types and operators needed for the formalisation presented
in this section. For example, RT is the type of routing tables—modelled as
set of entries (dip, dsn, dsk,flag, hops, nhip, pre), each providing information on a
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route of length hops with ultimate destination dip. The next hop address on
that route is nhip. The value dsn is a sequence number, intended to describe
the “freshness” of this entry, with dsk a Boolean indicating whether or not that
number is known to be an up-to-date indicator of the freshness of the entry.
The values flag and pre, respectively, describe the validity of the entry, and its
precursors—a set of nodes that “rely” on it to ensure the validity of their own
entries. In a routing table rt there is at most one entry for each destination
dip; sqn(rt, dip) denotes the sequence number of that entry and likewise for the
operators flag and dhops. Another example is update(rt, r), which updates a
routing table rt with an entry r. This is one of the major activities of AODV.
It adds r := (dip, dsn, dsk,flag, hops, nhip, pre) to the routing table rt if no entry
for dip is present. The existing entry is overwritten by r if the latter’s sequence
number is larger (dsn > sqn(rt, dip)) or, in case of equal sequence numbers, the
existing entry is invalid, or the new hop count smaller (dsn = sqn(rt, dip) ∧
(flag(rt, dip) = inv ∨ hops < dhops(rt, dip))).

A network is modelled as a parallel composition of its constituent nodes.8

For all nodes of a network—characterised by a set IP⊆ IP of unique identifiers
ip ∈ IP—the node expression ip : P : R is initialised with the parallel process

P := ξ, AODV(ip, rt, sn, rreqs, store) 〈〈 ζ, QMSG(msgs) .

The sequential process AODV(ip, rt, sn, rreqs, store) deals with the detailed
message handling of the node, manages its routing table rt, stores its own
sequence number in sn, records all route requests seen so far in rreqs and
maintains in store packets to be sent. The process QMSG(msgs) manages the
queueing of messages as they arrive; it is always able to receive a message even if
AODV is busy updating rt, forwarding requests etc. Whenever a message arrives
QMSG(msgs) appends it to the queue msgs, passing it on to AODV whenever it
can. The composition 〈〈 is crucial here to express this “buffering mechanism”
occurring in actual implementations of AODV.

Any node is initialised with its own identifier stored in the variable ip, an
empty routing table, the sequence number 1, and empty sets of seen route re-
quests and stored data packets. Also the queue of received messages is empty.

The process AODV receives messages from QMSG and then, depending on their
types, delegates the response to the appropriate process : PKT (for data), RREQ
(for requests), RREP (for replies) and RERR (for errors). In this paper we give only
the specification of RREP (cf. Process 1); the specifications of the other processes
can be found in [6, Sect. 6].

Usually, RREP updates the routing table with information from the route reply
message rrep(hops, dip, dsn, oip, sip), meaning that it is a reply to a former
request initiated by oip for destination dip, that it was sent by (1-hop neighbour)
sip, and that it takes hops hops from sip to dip. The sequence number dsn

measures the “freshness” of this information. In case the current node is oip,
receipt of this message establishes a route from oip to dip. Only when the new
information leads to an actual update of the routing table (Line 2), and the

8 Here, associativity and commutativity of ‖ (Theorem 2.2) is essential.
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Process 1. RREP handling

RREP(hops , dip , dsn , oip , sip ; ip , rt , sn , rreqs , store)
def
=

1. /*routing that describes the handling of a received route reply*/
2. [ rt �= update(rt, (dip, dsn, kno, val, hops+1, sip, ∅)) ] /*the routing table has to be updated*/
3. (
4. [[rt := update(rt, (dip, dsn, kno, val, hops + 1, sip, ∅))]]
5. [ oip = ip ] /*this node is the originator of the corresponding RREQ*/
6. [[store := setP(store, dip, non-pen)]] /*set queue-flag to non-pending*/
7. /*a packet may now be sent; this is done in the process AODV*/
8. AODV(ip,sn,rt,rreqs,store)
9. + [ oip �= ip ] /*this node is not the originator; forward RREP*/

10. (
11. [ oip ∈ vD(rt) ] /*valid route to oip*/
12. /*add next hop towards oip as precursor and forward the route reply*/
13. [[rt := addpreRT(rt, dip, {nhop(rt, oip)})]]
14. [[rt := addpreRT(rt, nhop(rt, dip), {nhop(rt, oip)})]]
15. unicast(nhop(rt,oip),rrep(hops + 1,dip,dsn,oip,ip)) .
16. AODV(ip,sn,rt,rreqs,store)
17. � /*If the packet transmission is unsuccessful, a RERR message is generated*/
18. [[dests := {(rip, inc(sqn(rt, rip))) | rip ∈ vD(rt) ∧ nhop(rt, rip) = nhop(rt, oip)}]]
19. [[rt := invalidate(rt, dests)]]
20. [[pre :=

⋃{precs(rt, rip) | (rip, ∗) ∈ dests}]]
21. [[dests := {(rip, rsn) | (rip, rsn) ∈ dests ∧ precs(rt, rip) �= ∅]]
22. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
23. + [ oip �∈ vD(rt) ] /*no valid route to oip*/
24. AODV(ip,sn,rt,rreqs,store)
25. )
26. )
27. + [ rt = update(rt, (dip, dsn, kno, val, hops+1, sip, ∅)) ] /*the routing table is not updated*/
28. (
29. [ oip = ip ] /*this node is the originator of the corresponding RREQ*/
30. [[store := setP(store, dip, non-pen)]] /*set queue-flag to non-pending*/
31. AODV(ip,sn,rt,rreqs,store)
32. + [ oip �= ip ] /*this node is not the originator; drop RREP*/
33. AODV(ip,sn,rt,rreqs,store)
34. )

current node is not the final destination oip of the route reply (Line 9), the
RREP message will be forwarded (Line 15). In case the unicast is unsuccessful
(Line 17), the link connecting the current node to nhop(rt, oip) must be broken
and the process initiates the procedure for error reporting (Lines 18–22). This
involves determining which other nodes are “interested” in that link, because it
contributes to their routes. Those interested nodes are stored in the precursor lists
inside rt and an error message is sent to the nodes it finds there via the action
groupcast. Before that, the node marks as invalid all routes in its routing table
which use the failed link, and increments their sequence numbers (Lines 18–19).

3.3 Invariants

All processes except QMSG maintain the five data variables ip, sn, rt, rreqs and
store. Next to that QMSG maintains the variable msgs. Hence, these 6 variables
can be evaluated at any time. Moreover, every node expression in the transition
system looks like

ip : (ξ, P 〈〈 ζ, QMSG(msgs)) : R ,
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where P is a state either in the process AODV, PKT, RREQ, RREP or RERR. Hence
the state of the transition system for a node ip is determined by the process P ,
the range R, and the two valuations ξ and ζ. If a network consists of a (finite) set
IP ⊆ IP of nodes, a reachable network expression N is an encapsulated parallel
composition of node expressions—one for each ip ∈ IP. To distil current infor-
mation about a node from N , we define the following projections for valuation
ξ and range R:

Rip
N :=R, where ip : (∗, ∗ 〈〈 ∗, ∗) :R is a node expression of N ,

ξipN := ξ, where ip : (ξ, ∗ 〈〈 ∗, ∗) : ∗ is a node expression of N .

For example, ξipN (rt) evaluates the current routing table maintained by node ip
in the network expression N .

Proposition 3.1. If a route reply is sent by a node ipc, different from the des-
tination of the route, then the content of ipc’s routing table must be consistent
with the information inside the message, i.e., if

N R:*cast(rrep(hopsc,dipc,dsnc,∗,ipc))−−−−−−−−−−−−−−−−−−−−−−−→ N ′

then dipc ∈ kD(ξ
ipc
N (rt)), sqn(ξ

ipc
N (rt), dipc)= dsnc, dhops(ξ

ipc
N (rt), dipc)= hopsc,

and flag(ξ
ipc
N (rt), ipc)= val.

Proof. We have to check all cases where a route reply is sent. Here we restrict
ourselves to RREP; the entire proof can be found in [6, Prop. 7.10(b)]. A route re-
ply occurs only in Line 15, where a message ξ(rrep(hops+1, dip, dsn, oip, ip))
is unicast. Here ξ is the current valuation ξipN .

Hence hopsc := ξ(hops)+1, dipc := ξ(dip), dsnc := ξ(dsn), ipc := ξ(ip) = ip

and ξ
ipc
N = ξ. Using (ξ(dip), ξ(dsn), kno, val, ξ(hops)+1, ξ(sip), ∅) as new entry,

the routing table is updated at Line 4. With exception of its precursors, which
are irrelevant here, the routing table does not change between Lines 4 and 15;
nor do the values of the variables hops, dip and dsn. Line 2 guarantees that
during the update in Line 4, the new entry is inserted into the routing table, so

sqn(ξ(rt), ξ(dip)) = ξ(dsn) = dsnc

dhops(ξ(rt), ξ(dip)) = ξ(hops) + 1 = hopsc
flag(ξ(rt), ξ(dip)) = ξ(val) = val . 12

The classical notion of loop freedom is a term that informally means that “a
packet never goes round in cycles without (at some point) being delivered”.
This dynamic definition is not only hard to formalise, it is also too restrictive a
requirement for AODV. There are situations where packets are sent in cycles, but
which are not considered “bad”. This can happen when the destination is highly
mobile and the packet “follows” the destination and keeps travelling through
the network. Therefore, the sense of loop freedom is much better captured by
a static invariant, saying that at any given time the collective routing tables of
the nodes do not admit a loop.
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To this end we define the routing graph of network expression N with re-
spect to destination dip by RN (dip) :=(IP, E), where all nodes of the net-
work form the set of vertices and there is an arc (ip, ip′) ∈ E iff ip �= dip and
(dip, ∗, ∗, val, ∗, ip′, ∗)∈ ξipN (rt).

An arc in a routing graph states that ip′ is the next hop on a valid route to dip
known by ip; a path in a routing graph describes a route towards dip discovered
by AODV. We say that a network expression N is loop free if the corresponding
routing graphs RN (dip) are loop free, for all dip∈ IP. A routing protocol, such
as AODV, is loop free iff all reachable network expressions are loop free.

To prove loop freedom of AODV, we first establish a useful invariant.

Theorem 3.2. Along a path towards a destination dip in the routing graph of
a reachable network expression N , until it reaches either dip or a node without
a valid routing table entry to dip, either the sequence number strictly increases,
or this number stays the same and the hop count strictly decreases.

dip ∈ vD(ξipN (rt)) ∩ vD(ξnhipN (rt)) ∧ nhip �= dip

⇒ sqn(ξipN(rt), dip) < sqn(ξnhipN (rt), dip) ∨ (
sqn(ξipN(rt), dip) = sqn(ξnhipN (rt), dip)

∧ dhops(ξipN(rt), dip) > dhops(ξnhipN (rt), dip)
)

,

where N is a reachable network expression and nhip := nhop
ip
N (dip) is the IP

address of the next hop.

The proof uses Proposition 3.1; it can be found in [6].
From this, we immediately conclude that AODV is loop free.
More precisely, our AWN-specification of AODV is loop free. It is our belief

that, up to the abstraction of time and any optional features presented in [16],
it reflects precisely the intention and the meaning of the RFC. However, when
formalising AODV, we came across ambiguities, which yield different possible
interpretations. Such interpretations can be seen as variants of AODV and, as
we discovered, only a few of them are loop free. Since loop freedom is a sine qua
non for routing protocols like AODV, we endeavour to resolve the ambiguities
as much as possible by discarding the interpretations that lead to loops.

We briefly explain one of the problems found. A crucial requirement in the
proof of Theorem 3.2 is that sequence numbers in routing table entries are never
decreased, and increased upon invalidating the entry. Following the RFC liter-
ally, a “node initiates processing for a RERR message”9, “if it receives a RERR
from a neighbor”9. For every destination to be invalidated the “destination se-
quence number”9 is “copied from the incoming RERR”9. We have shown that
this copying in combination with self-entries (entries for ip in ip’s own routing
table)10 violate the above requirement and yield loops; a detailed example is
given in [6]. In our specification this behaviour does not occur since we slightly
modified the invalidation procedure [6, Sect. 5] to ensure an increase of sequence
number for an invalidated entry, in the spirit of Section 6.2 of the RFC.

9 Section 6.11 of the RFC [16].
10 In our model we allow self-entries, since they are not explicitly forbidden; they also

occur in real implementations, e.g., Kernel AODV [1]; they are forbidden by others
such as AODV-UU [2].
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3.4 Formalising Temporal Properties

Our formalism enables verification of correctness properties. While some prop-
erties, such as loop freedom, are invariants on the routing tables, others require
reasoning about the temporal order of transitions. We use Computation Tree
Logic (CTL) to specify and discuss one such property, namely packet delivery.

CTL uses the path quantifiers A and E, and the temporal operators G,F,X,
and U. The (state) formula Aφ is satisfied in a state if all paths starting in
that state satisfy φ, while Eφ is satisfied if some path satisfies φ. The (path)
formulas Gφ,Fφ and Xφ mean that φ holds globally in all states, in some state,
and in the next state of a path, respectively. The until φUψ means that, until
a state occurs along the path that satisfies ψ, property φ has to hold. In CTL
a temporal operator is always immediately preceded by a path quantifier. Here
CTL is interpreted on the unfolding into a tree of the transition system generated
by our operational semantics.

The property of packet delivery says that if a client submits a packet, it will
eventually be delivered to the destination. However, in a WMN it is not guar-
anteed that this property holds, since nodes can get disconnected, e.g. due to
node mobility. A useful formulation has to be weaker. AODV should guarantee
packet delivery only if an end-to-end route exists long enough. More precisely,
AODV should guarantee delivery of a packet submitted by a client at node oip
with destination dip, when oip is connected to dip and afterwards no link in the
network gets disconnected. This means that for any pair oip and dip, and any
data d, the following should hold:

AG(oip : newpkt(d, dip) ∧ connected∗(oip, dip))
⇒ AF(disconnect(∗, ∗) ∨ (dip : deliver(d))) .

oip :newpkt(d, dip) models submission of a new packet at oip, dip :deliver(d)
that the destination receives it, and disconnect(∗, ∗) the action of disconnect-
ing. We treat these transitions as predicates, with the understanding that along
a path the state immediately succeeding such a transition satisfies it. The pred-
icate connected∗(oip, dip) is true if there are exist nodes ip0, . . . , ipn such that

ip0 = oip, ipn = dip and ipi ∈ R
ipi−1

N . for i=1, . . . , n.
Surprisingly, AODV does not satisfy this property. One cause is that AODV

nodes do not forward route replies from which they do not learn anything new.
However, the information may be vital for the potential recipients of the for-
warding. See [6, Sect. 8] for further discussion of a counterexample.

4 Related Work

Several process algebras for MANETs have been proposed: CBS# [15], CWS [13],
CMAN [8], CMN [12], the ω-calculus [20] and RBPT [7]. All these languages, as
well as ours, feature a form of local broadcast, in which a single message, sent
by one node, can be received by other nodes within transmission range, given an
arbitrary topology. In CWS the topology is fixed, whereas the other formalisms
deal with arbitrary changes in topology.
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The latter four formalisms model a lossy broadcast, in which a potential
receiver may lose a message; in CBS# and CWS, any node within range must
receive a message m sent to it, provided the node is ready to receive it, i.e., in a
state that admits a transition receive(m). This proviso makes all these calculi
non-blocking, meaning that no sender can be delayed in sending a message simply
because one of the potential recipients is not ready to receive it.

The syntax of CBS# and CWS does not permit the construction of meaningful
nodes that are always ready to receive a message. Hence our model is the first
that assumes that any message is received by a potential recipient within range.
It is this feature that allows us to evaluate whether a protocol satisfies the packet
delivery property. Any routing protocol formalised in any of the other formalisms
would automatically fail to satisfy such a property.

Besides this ensured broadcast, the novel conditional unicast operator chooses
a continuation process dependent on whether the message can be delivered. This
operator is essential for the correct formalisation of AODV. In practice such an
operator may be implemented by means of an acknowledgement mechanism;
however, this is done at the link layer, from which the AODV specification [16],
and hence our formalism, abstracts. One could formalise a conditional unicast as
a standard unicast in the scope of a priority operator [4]; however, our operator
prioritises, while allowing an operational semantics within the de Simone format.

Although our treatment of data structures follows the classical approach of
universal algebra, and is in the spirit of formalisms like μCRL [9], we have not
seen a process algebra that freely mixes in imperative programming constructs
like variable assignment. Yet this helps to properly capture AODV and other
routing protocols.

Our formalisation of AODV [6], which is partly shown here, has grown from
elaborating a partial formalisation of AODV in [20]. The features of our process
algebra were largely determined by what we needed to enable a complete and
accurate formalisation of this protocol. We conjecture that the same formalism
is also applicable to a wide range of other wireless protocols.

Loop freedom is a crucial property of network protocols, commonly claimed
to hold for AODV [16]. In [6] we show that several interpretations of AODV—
consistent ways to revolve the ambiguities in the RFC—fail to be loop free, while
proving loop freedom of others. A preliminary draft of AODV has been shown to
be not loop free (for other reasons) in [3]. In [21] a proof sketch of loop freedom
for a restricted version of AODV is given, using an interactive theorem prover.

5 Conclusion and Outlook

We have proposed a novel algebra covering major aspects of WMN routing pro-
tocols. We have accurately modelled the core of AODV, a widely used protocol
of practical relevance. In contrast to other works, our model covers the crucial
aspect of data handling, such as maintaining routing table information. We have
formalised and proven some of AODV’s general properties. Our model provides,
in combination with abstraction from lower network layers, a practical and pow-
erful tool for WMN protocol specification, evaluation and verification.
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Our analysis of AODV uncovered several ambiguities in the RFC [16]. Finding
ambiguities and unexpected behaviour is not uncommon for RFCs in general.
This shows that the specification of a reasonably rich protocol such as AODV
cannot be described precisely and unambiguously by simple (English) text only;
formal methods are indispensable for this purpose.

More detailed analysis requires the addition of time and probability: the for-
mer to cover aspects such as AODV’s handling (deletion) of stale routing table
entries and the latter to model the probability associated with lossy links.
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Abstract. GPUs are becoming a primary resource of computing power. They
use a single instruction, multiple threads (SIMT) execution model that executes
batches of threads in lockstep. If the control flow of threads within the same batch
diverges, the different execution paths are scheduled sequentially; once the con-
trol flows reconverge, all threads are executed in lockstep again. Several thread
batching mechanisms have been proposed, albeit without establishing their se-
mantic validity or their scheduling properties. To increase the level of confidence
in the correctness of GPU-accelerated programs, we formalize the SIMT execu-
tion model for a stack-based reconvergence mechanism in an operational seman-
tics and prove its correctness by constructing a simulation between the SIMT se-
mantics and a standard interleaved multi-thread semantics. We also demonstrate
that the SIMT execution model produces unfair schedules in some cases. We dis-
cuss the problem of unfairness for different batching mechanisms like dynamic
warp formation and a stack-less reconvergence strategy.

1 Introduction

Since the introduction of general purpose programming frameworks for graphics pro-
cessing units (GPUs) a few years ago, GPUs are capable of accelerating many other
kinds of data-parallel algorithms aside from graphics computations. Speedups of one or
two orders of magnitude compared to CPU-based implementations have been achieved
for applications in the fields of molecular dynamics, medical imaging, seismic imag-
ing, fluid dynamics, and many others [8, 21]. GPUs are well suited for such massively
parallel problems because of their high computational power and memory bandwidth.
CPUs, on the other hand, are more optimized for sequential code containing many data-
dependent branch instructions. The model of computation of GPUs is therefore unlike
the traditional one of CPUs, even though they are converging [17].

GPUs typically launch thousands of threads to execute a data-parallel program. Each
thread executes the program on different input data akin to the single program, mul-
tiple data (SPMD) principle. NVIDIA GPUs based on the FERMI architecture pro-
cess up to 512 threads in parallel, with thousands more being idle and waiting to be
scheduled later on [21]. Instead of executing each thread individually, however, the
hardware transparently batches several threads together for improved efficiency. The
threads of a batch always execute the same instruction in lockstep on a single instruc-
tion, multiple data (SIMD) unit, i.e., in parallel on different operands [24]. As threads
are batched dynamically at runtime, GPUs based on NVIDIA’s FERMI architecture or
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on AMD’s GRAPHICS CORE NEXT design have no explicit support for SIMD vectors in
their instruction sets [16, 23], which distinguishes them from classical SIMD architec-
tures [14]. NVIDIA uses the term single instruction, multiple threads (SIMT) to describe
the SPMD- and SIMD-like execution model of their hardware [24].

A batch of threads that is executed in lockstep is called a warp or wavefront by
NVIDIA and AMD, respectively. Current NVIDIA hardware always uses a warp size of
32 threads, whereas AMD’s GRAPHICS CORE NEXT architecture has a wavefront size
of 64 [16, 24]. The SIMT design promises significant performance benefits especially
for graphics applications [14], but is in general not well-suited for code that heavily
relies on data-dependent control flow instructions: If the control flow of threads of the
same warp diverges, execution of the warp is serialized for each unique path, disabling
the threads that did not take the path. The hardware must therefore track the threads’
activation states and schedule all paths for execution one after another. Once all paths
complete, the threads reconverge and proceed in lockstep again. It is desirable to recon-
verge threads as soon as possible for performance reasons, as otherwise many hardware
units remain unused [24]. There are several different mechanisms to handle divergent
control flow on a SIMT architecture [4], which differ in thread scheduling and per-
formance; in particular, FERMI uses a stack-based reconvergence mechanism based on
immediate post-dominators, enabling full C++ support on the GPU [5, 20].

The growing complexity of GPU-based software potentially increases the number of
software errors, while at the same time the more wide-spread adoption requires a higher
level of confidence in program correctness. For formal proofs of correctness, however,
not only a precise understanding but also a formal foundation of the underlying SIMT
execution model is required. We therefore provide a formal semantics for NVIDIA’s
stack-based reconvergence mechanism. To keep the formalization concise, it is based
on a high-level programming language, disregarding much of NVIDIA’s technical en-
vironment (a full discussion based on the assembly-level language PTX including the
memory model can be found in [9]). We analyze the semantic validity of this execution
model by comparing it to a standard interleaved multi-thread semantics: We construct
and prove a simulation that demonstrates that each warp execution including serializa-
tions on control-flow divergences corresponds to an interleaved multi-thread execution.
In this sense, the SIMT execution model is correct with respect to the interleaving
semantics. However, there is a difference between the two models regarding fairness
of execution. In the interleaving model, generally weak fairness is assumed such that
every enabled thread will eventually take a step. In contrast, FERMI’s stack-based re-
convergence mechanism does not guarantee such a fairness condition, rather its unfair
scheduling of divergent threads prevents some otherwise valid programs from termi-
nating in certain corner cases. We discuss the issue of unfairness for both NVIDIA’s
mechanism and for alternative SIMT implementations and provide a sufficient criterion
for detecting such situations.

Overview. Section 2 gives a brief overview of the hardware architecture and introduces
NVIDIA’s SIMT execution model with the help of an example. Section 3 presents the
formalization of this execution model. The interleaved multi-thread semantics and their
simulation of the SIMT behavior are given in Sect. 4. Section 5 then discusses the issue
of unfairness and Sect. 6 summarizes our findings and gives an outlook to future work.
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2 SIMT Hardware Model

To set the context for the remainder of the paper, we give an overview of the FERMI

architecture and its programming model, omitting all graphics-related details. We fo-
cus on NVIDIA’s Compute Unified Device Architecture (CUDA – particularly, batches
of threads are referred to as warps), as it is representative for other GPU programming
frameworks and hardware designs: The underlying principles also apply to DirectCom-
pute, the Open Computing Language (OPENCL), and AMD’s GPUs [1, 13, 16, 22, 24].
Hennessy and Patterson [11] provide a more detailed introduction to CUDA and FERMI

and contrast FERMI’s design with traditional vector and SIMD architectures.

2.1 Hardware Architecture and Programming Model

CUDA programs launch parallel compute kernels on the GPU. Kernels are typically ex-
ecuted by thousands of threads in parallel, organized into a hierarchy: A grid represents
a set of threads executing the same kernel in a data-parallel fashion similar to the SPMD
principle. Grids are divided into thread blocks, each of which is assigned to a particular
SIMT core by the hardware. Threads belonging to the same block communicate via a
special on-chip memory on the SIMT core. Threads of different thread blocks share data
using the GPU’s global memory, which is not guaranteed to be consistent. The SIMT
core splits thread blocks into warps, which comprise a fixed number of scalar threads
that are executed in lockstep by an array of scalar processors on the SIMT core.

GPUs have multiple SIMT cores that execute warps as SIMD groups on the scalar
processors. Typically, there are more warps allocated on a SIMT core than can be exe-
cuted in parallel. This enables the GPU to hide high-latency memory operations: Instead
of using advanced hardware mechanism such as prediction and out-of-order execution,
GPUs exploit the massive parallelism of the thread hierarchy by interleaving the execu-
tion of different warps; switching between warps incurs no overhead. Different warps
are executed independently, hence there is no performance gain or penalty when they
are executing common or disjoint code paths.

The focus of this paper is divergence and reconvergence within a warp, so we mainly
consider one single warp only; Sect. 5.2 discusses alternative SIMT implementations,
some of which take multiple warps into consideration to improve efficiency.

2.2 SIMT Control Flow

SIMT cores execute warps in lockstep, that is, each thread of a warp executes the same
instruction in parallel on different operands. In this way, instruction fetch and decoding
costs are amortized over all threads of a warp and memory operations performed by
threads of the same warp can often be coalesced into fewer memory accesses, which is
likely to result in significant performance benefits [14, 24]. To support a wide variety
of programs, however, the SIMT cores must be able to deal with diverging control flow
that occurs when at least two threads of the same warp take different paths due to a
data-dependent control flow instruction. Earlier GPU designs serialized the execution
of the remainder of the program once the control flow diverges. Serialization with-
out a reconvergence mechanism results in a low utilization of processing resources for
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branch-heavy programs and performance drops by a factor proportional to the warp size
in the worst case [19]. Consequently, today’s GPU architectures implement mechanisms
for reconverging threads once their control flows return to a common path. Our focus
in this paper is the formalization of an operational semantics for NVIDIA’s stack-based
reconvergence mechanism as outlined by Hennessy and Patterson [11] and explained in
detail in one of NVIDIA’s US patent applications [5]. Neither AMD nor NVIDIA provide
any official information on their SIMT implementations.

2.3 Stack-Based SIMT Reconvergence

The main idea of a stack-based reconvergence mechanism is to store information about
control flow divergence and reconvergence in a reconvergence stack. Possible causes
for divergence are branches and loops with conditions depending on thread-specific
data as well as loops and function calls with bodies containing data-dependent break
or return statements. Whenever the control flow might diverge, a token is pushed onto
the reconvergence stack. Tokens store both the continuation of a potentially divergent
instruction and the threads participating in its execution. Once the control flows recon-
verge (or the execution of the branch, loop, or function call completes without causing
any divergence at all), the topmost token is popped off the stack and the SIMT core uses
the information contained in the token to continue the execution of the program.

The reconvergence stack belongs to the execution state of a warp, also comprising a
program counter (PC), an active mask, and a disable mask. The active mask indicates
which threads are active and participate in the execution of the instruction referred to
by the warp’s PC. Inactive threads do not execute the instruction and their respective
scalar processors remain idle. The disable mask records the disable state of each thread:
b or r indicate that the thread executed a break or return instruction, respectively,
whereas 0 means that the thread is not disabled. Only threads with a disable state of
0 can be reactivated when a token is popped off the stack, thereby guaranteeing the
correct handling of nested control flow instructions within a compute kernel.

Each token on the reconvergence stack is of a specific type and comprises an ac-
tive mask and a program counter. Once a token is popped off the stack, the token’s PC
indicates the next instruction to be executed by the warp, the active mask determines
which threads are activated or deactivated, and the token type affects the update oper-
ations performed on the warp’s current active and disable masks. The type of a token
is either div or sync for branches, brk for loops, or call for function calls. A div token
stores all the information required for the execution of the second path of a branch af-
ter the first path terminates, while sync and brk tokens mark the reconvergence points
of branches and while loops (i.e., their continuations), respectively. It seems that the
reconvergence point of a control flow statement always corresponds to the statement’s
immediate post-dominator [5, 20], which denotes the first instruction that must be ex-
ecuted by all divergent (and still active) threads before they return from the current
function. The return address of a function call is stored in the corresponding call token
on the reconvergence stack, hence no function call stack is required to store return ad-
dresses (such a stack would only be necessary to push and pop function arguments).
Tokens of types brk and call are also used to determine all instructions a thread must
skip after executing a break or return.
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The execution state of a warp is stored directly on the SIMT core, but older entries
of the stack may be spilled to global memory if necessary, making operations on the
stack potentially time-consuming. In fact, the disable mask is merely an optimization
that eliminates the need to modify the stack when threads are deactivated [5].

Example 1. We demonstrate how NVIDIA’s SIMT implementation handles nested con-
trol flow instructions by means of Prog. 1’s compute kernel main; the kernel serves
no real purpose other than an illustrative one. Note that when Prog. 1 is run on a GPU,
the actual execution is likely to differ from what is described below, as the compiler
performs (semantics preserving) control flow optimizations to minimize the overhead
incurred by operations on the reconvergence stack; particularly, the compiler will most
certainly inline the call to func.

Table 1 depicts the evolution of the warp’s execution state as the kernel is being exe-
cuted. The active mask is shown as a bit field with a value of 1 at position n indicating
that the thread with id n is active; the disable mask is also given in a similar bit field
like fashion. The rightmost column represents the reconvergence stack with the topmost
token on the left. Each consecutive pair of rows shows how the instruction pointed to
by the PC in between them manipulates the warp’s execution state. Figure 1 shows the
control flow graph of the while loop in function func of Prog. 1, highlighting the
immediate post-dominators of the loop at line 4 and the branch at line 5.

We assume a warp size of four for illustration purposes, with all four threads being
active initially (in situations where the number of threads executing a kernel is not a
multiple of the warp size, there are underpopulated warps with idle scalar processors).
The global pointer variables a and b are assumed to be shared arrays of length four,
acting as the kernel’s input and output parameters; we avoid function parameters and
return values to simplify matters, even though they are supported by CUDA, OPENCL,
and DirectCompute. We assume that the values of the arrays a and b are 0, 1, 1, 1 and
0, 1, 1, 3 for indices 0 to 3, respectively. For each thread executing the kernel, the thread-
local variable tid contains the unique id of the thread (0 for the first thread, 1 for the
second one, and so on), which is used to index into the arrays.

Execution of the compute kernel begins at line 14 where all threads of the warp call
func in lockstep. A call token is pushed onto the stack, with its program counter set to
the return address of the call, i.e., 15. The token’s active mask marks all four threads as
active, meaning that all four threads should eventually execute the return at line 15.

Execution continues at line 3 where all threads initialize their local variables i and
j. Subsequently, the while loop is encountered and a brk token is pushed onto the
stack. The loop condition evaluates to false for thread 0, hence the corresponding bit
in the active mask is set to 0 and the thread does not participate in the execution of
the loop. Next, the remaining threads push a sync token onto the stack because of the
if instruction at line 5. The token’s PC is set to the instruction at line 9, which is
the reconvergence point where all threads taking one of the two paths of the branch
should be executed in lockstep again. As thread 0 is not active when the if instruction
is encountered, its bit in the sync token’s active mask is not set. The branch statement
also causes a div token to be pushed onto the stack, as threads 1 and 2 take the else-
path and thread 3 takes the then-path; if no divergence had occurred, the stack would
remain unchanged. Execution of both paths is serialized, with current NVIDIA hardware
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1 __shared int *a, *b;

2 void func() {
3 int i = a[tid], j = b[tid];
4 while (i > 0) {
5 if (j > 2 * i)
6 b[tid] += i;
7 else
8 break;
9 --i;

10 }
11 return;
12 }

13 void main() {
14 func();
15 return;
16 }

Program 1. A compute kernel with nested control flow
instructions

4

5

6 8

9

11

i > 0

j > 2 * i j <= 2 * i

i <= 0

Fig. 1. Control flow graph of
the while statement in Prog. 1;
immediate post-dominators are
highlighted

Table 1. Evolution of the warp’s execution state during the execution of Prog. 1

PC Active Mask Disabled Mask Top of Stack
1111 0000 – –

14 1111 0000 (call, 1111, 15) –
3 1111 0000 (call, 1111, 15) –
4 0111 0000 (brk, 1111, 11) (call, 1111, 15)
5 0110 0000 (div, 0001, 6) (sync, 0111, 9) . . .
8 0001 0bb0 (sync, 0111, 9) (brk, 1111, 11) . . .
6 0001 0bb0 (brk, 1111, 11) (call, 1111, 15)
9 0001 0bb0 (brk, 1111, 11) (call, 1111, 15)
4 1111 0000 (call, 1111, 15) –

11 1111 0000 – –
15 1111 0000 – –

executing the else-path first. Thus, thread 3 is disabled and threads 1 and 2 continue
execution at line 8. The div token stores the information required to execute the then-
path once the else-path is completed. For this reason, the token’s PC is set to point to
the instruction of the then-path at line 6 and its active mask has only thread 3 activated.

Threads 1 and 2 execute the break statement at line 8. Their bits in the active mask
are cleared and their disable states are set to b. Consequently, there no longer are any
active threads, so the warp pops the div token off the stack that causes thread 3 to execute
the then-path of the branch at line 6. After the execution of the assignment, the end of
the then-path is reached, causing the sync token to be popped off the stack. Execution
now resumes at line 9; however, the warp cannot just use the token’s active mask, as
threads 1 and 2 executed a break and should therefore not participate in the execution
of the loop anymore. To support such arbitrary nested control flow instructions within
a compute kernel, the token’s active mask is combined with the warp’s disable mask,
resulting in threads 1 and 2 to remain disabled in this case because their disable states
have not yet been reset to 0.
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Thread 3 returns to the beginning of the loop at line 4. As the condition evaluates
to false, there no longer are any active threads and the warp subsequently pops the
brk token off the stack. A token of type brk resets a disable state of b of all threads
that are active in the token’s active mask. Hence, all four threads execute the return
instruction at line 11 that causes the threads to jump to the function’s return address by
popping the call token off the stack. They execute the next return statement at line
15, which completes the execution of the compute kernel. ��

During the compilation of a compute kernel written in a structured programming
language like CUDA-C, branches and loops are replaced by unstructured conditional
jumps. The compiler preserves the structural information by adding special flags and
instructions into the assembly-level code, allowing the hardware to efficiently deter-
mine the immediate post-dominators [5, 23]. Our formalization of the SIMT execution
model disregards these low-level implementation details and focuses on a structured
programming language instead. A formal semantics of the SIMT behavior based on
NVIDIA’s assembly-level language PTX can be found in [9].

3 Formalization of the SIMT Execution Model

We formalize the SIMT behavior as discussed in the preceding section in an operational
semantics for a C-like high-level language. We focus on the main ideas of the mecha-
nism and omit other hardware supported features such as indirect branches and function
calls, as these can be reduced to sequences of their direct counterparts [5]. Due to the
stack-based reconvergence mechanism, we base our formalization of the SIMT seman-
tics on an instruction stack that unifies the treatment of statements from the structured
programming language and the warp management tokens.

3.1 Basic Domains and Language Grammar

We assume a syntactic category Var of variable identifiers with typical element x (all
metavariables may occur in an arbitrarily adorned form) and a syntactic category Func
of function identifiers, of which f will be a typical element. We also assume a syntactic
category Expr of (side effect-free arithmetical) expressions over Var , ranged over by
e, which we do not specify more precisely.

Our programming language is a simple while-language with function calls; we dis-
tinguish between statements, statement lists, and programs. The grammar of (C-like)
statements and statement lists is as follows:

Stm � s ::= ; | x = e;

| if (e) S1 else S2

| while (e) S | while (e) S | break;
| f(); | return;

Stms � S ::= s | s S
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Stm does not include a separate sequential composition but relies on statement lists
instead. The statements while and while are required to distinguish between the
first iteration of a loop and subsequent iterations, which do not generate further brk
tokens. The domain Prog ⊆ Stms of programs, ranged over by P , singles out those
statement lists that do not contain while and have break; only within while loops.
A function environment ϕ ∈ FuncEnv = Func → Prog maps each function identifier
to a program.

Statement lists are executed by threads θ taken from a domain of thread identifiers
Thread ; the domain of all subsets of Thread is ranged over by Θ. Threads can share
variables or have their own local copies depending on the initialization of the threads’
variable environments. A variable environment ν ∈ VarEnv = Var → Addr of a
thread assigns an address from the domain Addr to each variable in a program. A thread
environment η ∈ ThreadEnv = Thread → VarEnv maps a thread to its variable
environment. We assume a memory type Mem = Addr → Val , ranged over by μ,
holding integer values Val = Z that is accessible by all threads (we disregard caching).

3.2 Warp Configurations and Transitions

The execution state of a warp consists of an instruction stack comprising statements
and tokens, an active mask, and a disable mask. In contrast to the informal description
in Sect. 2.3, our formal model does not maintain a separate reconvergence stack.

A thread is considered active if it is contained in the warp’s active mask Θ ⊆ Thread ;
we write Θ+ for an active mask with at least one active thread, i.e., Θ+ �= ∅. A disable
mask Δ is defined as a function in DisableMask = Thread → DisableState, which
maps a thread to its disable state δ that is either 0, b, or r. Token types are denoted by t
and have a value of either div, sync, brk, or call. A token τ = tΘ comprises a token type
t and an active mask Θ. Warp instruction stacks are given by

WStack � W ::= ε | s W | τ W ,

combining tokens and statements. In contrast to Sect. 2.3, a token’s continuation is not
given by a program counter but rather as the remainder of the instruction stack.

A warp configuration ϕ, η � W, Θ, Δ, μ consists of a static and a dynamic part,
separated by �. The former comprises a function environment ϕ and a thread envi-
ronment η, whereas the latter contains a warp instruction stack W , an active mask
Θ, a disable mask Δ, and a memory μ. An initial warp configuration is of the form
ϕ, η � P callΘ, Θ, {Θ �→ 0}, μ where P is a program, Θ is an arbitrary subset of
threads and μ is an arbitrary memory. For reasons of uniformity, we assume that there
always is a call token at the bottom of the stack which corresponds to the invocation of
the compute kernel. A warp transition ϕ, η � W, Θ, Δ, μ ⇒w W ′, Θ′, Δ′, μ′ describes
a step transforming a warp configuration into another warp configuration, not repeating
the static parts of the configurations.

3.3 Warp Operational Semantics

The warp operational semantics is the smallest binary relation ⇒w on warp configu-
rations which is closed under the rules in Table 2. These are, in fact, rule schemes where
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Table 2. Operational semantics of a warp

(skipw) ;, Θ+ ⇒w ε, Θ+

(assignw) η � x = e;, Θ+, μ ⇒w ε, Θ+, μ{η(Θ+)(x) �→ E�e� η(Θ+) μ}
(ifw) η � if (e) S1 else S2, Θ+, μ ⇒w

S2 divact(Θ+,e,η,μ) S1 syncΘ+ , Θ+ \ act(Θ+, e, η, μ), μ

(whilew) η � while (e) S, Θ+, μ ⇒w S while (e) S brkΘ+ , act(Θ+, e, η, μ), μ

(whilew) η � while (e) S, Θ+, μ ⇒w S while (e) S, act(Θ+, e, η, μ), μ

(breakw) break; [S] τ, Θ+, Δ ⇒w τ, ∅, Δ{Θ+ �→ b}
(callw) ϕ � f();, Θ+ ⇒w ϕ(f) callΘ+ , Θ+

(returnw) return; [S] τ, Θ+, Δ ⇒w τ, ∅, Δ{Θ+ �→ r}
(tokenw) τ, Θ1, Δ1 ⇒w ε, Θ2, Δ2 where (Θ2, Δ2) = enable(Δ1, τ )

(inactw) S τ, ∅ ⇒w τ, ∅

warp transitions are obtained by replacing the metavariables with suitable instances.
We use the following notational conventions: We only give the initial segment of the
instruction stack W that is of relevance for the given rule; the remainder of W is omitted
and remains unchanged. Similarly, we drop all other irrelevant parts of an operational
judgement that remain unchanged. For example, the rule

ϕ, η � f(); W, Θ+, Δ, μ ⇒w ϕ(f) callΘ+ W, Θ+, Δ, μ

is abbreviated as follows, where Θ+ is not omitted (even though it remains unchanged)
as it has to be stored in the call token and the rule may only be applied to warp configu-
rations with a non-empty set of active threads:

ϕ � f();, Θ+ ⇒w ϕ(f) callΘ+ , Θ+ .

The operational rules in Table 2 process the instruction stack of a warp configuration
disregarding all possible compiler or hardware optimizations. The skip operation ; is
simply popped off the instruction stack; like all other rules except for (tokenw) and
(inactw), it can only be applied to warp configurations with at least one active thread.

To execute an assignment x = e;, all active threads use the function E�−� :
Expr → VarEnv × Mem → Val to evaluate e before any of them write to x, thereby
avoiding potential nondeterminism. However, the order of conflicting writes (that is,
η(θ1)(x) = η(θ2)(x) but E�e� η(θ1) μ �= E�e� η(θ2) μ for two active threads θ1, θ2 ∈
Θ) is undefined [24]; this is modeled by the nondeterminism in the instantiation of the
rule (assignw): μ{η(Θ+)(x) �→ E�e� η(Θ+) μ} abbreviates the memory update

μ{η(θ1)(x) . . . η(θn)(x) �→ E�e� η(θ1) μ . . . E�e� η(θn) μ}
for some arbitrary order of threads θi ∈ Θ+.

An if statement pushes two tokens onto the stack: The sync token marks the re-
convergence point where all active threads Θ+ are reactivated again; provided that they
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do not execute a break or return instruction in the meantime. The div token stores
the information needed to execute the then-path of the branch once the execution of the
else-path is completed. The rule (ifw) uses the function

act(Θ, e, η, μ) = {θ ∈ Θ | E�e� η(θ) μ �= 0}
to determine the set of threads for which expression e evaluates to true (i.e. non-zero).

A while statement at the top of the instruction stack is replaced by a sequence of
instructions: First, a brk token storing the continuation for all threads exiting the loop
is pushed onto the stack. Second, a corresponding while statement is created, which
does not generate another brk token once it is encountered. Finally, the statement list
forming the while statement’s body is pushed onto the stack. Whether there are any
threads for which the loop condition holds is again determined by the function act .

A break or return statement deactivates all active threads and sets their disable
state to b or r, respectively. [S] denotes a possibly empty statement list, so either break
and return are directly followed by a token τ or all statements up to the next token
on the stack are skipped.

A call to a function f places the program ϕ(f) on the top of the stack. The call token
that is pushed onto the stack beforehand stores the currently active threads Θ+, all of
which are reactivated once the warp begins to execute the continuation of the call token.

When a token is popped off the instruction stack, the warp’s active and disable masks
are updated. The reactivation of an inactive thread depends on the type of the token and
the thread’s disable state. For instance, a thread with a disable state of r may only be
reactivated if the token is of type call. The predicate

awaits(δ, t) ↔ (δ = b → t = brk) ∧ (δ = r → t = call)

establishes this relationship between disable states and token types. The function enable
clears the disable states of all threads for which awaits holds. Furthermore, it replaces
the warp’s active mask with the one of the token, removing all threads with a disable
state other than 0. Formally, we define enable as

enable(Δ1, tΘ) = ({θ ∈ Θ | Δ2(θ) = 0}, Δ2)
where Δ2 = Δ1{{θ ∈ Θ | awaits(Δ1(θ), t)} �→ 0} .

Particularly, enable only changes the disable states of threads that are contained in
the token’s active mask, otherwise threads would be reactivated too soon; this has al-
ready been illustrated in Ex. 1. For another example, consider a thread θ that executes a
return statement in the else-path of a branch, while the other threads Θ of the warp
call another function f ′ when they later execute the if-path of the branch. Once the con-
trol flow returns from f ′, θ’s disable state remains unchanged because θ is not active in
the call token corresponding to the invocation of f ′. Hence, when the sync token of the
branch is subsequently popped, θ is removed from the token’s active mask before it is
copied into the warp’s execution state because its disable state is still set to r.

The rule (inactw) is used to skip all statements up to the topmost token on the stack
if the warp’s active mask is empty. Such a situation typically arises when the condition
of a while statement evaluates to false for all active threads or when a token does not
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activate any threads at all. The latter occurs when all threads return from a function call
within an if-statement, for example. In that case, the rule (inactw) skips all statements
up to the next token, which is then dealt with by the rule (tokenw). Once the last token is
popped of the stack, the compute kernel terminates, as the last token on the instruction
stack is the call token corresponding to the invocation of the compute kernel.

Example 2. We apply our formal semantics of the SIMT execution model to the com-
pute kernel main of Prog. 1. As in Ex. 1, we illustrate active and disable masks as bit
fields and omit the memory as well as the function and thread environments for reasons
of brevity (observe that our formal model treats indexed array accesses such as b[tid]
as regular variables; we assume that the thread environment is initialized such that no
variables are shared). The following shows the derivation sequence of Prog. 1 begin-
ning with the while statement at line 4 and ending just before the execution of the
return statement at line 11. Again considering only four threads as in Ex. 1, the first
warp configuration is given as while (i > 0) . . . return; W, 1111, 0000 with
W = call1111 return; call1111 denoting the remainder of the instruction stack; W
contains two call tokens that correspond to the invocations of func and main. Recall
that the values of the shared arrays a and b are 0, 1, 1, 1 and 0, 1, 1, 3 for indices 0 to 3,
respectively.

while (i > 0) . . . return; W, 1111, 0000
while===⇒w if (j > 2 * i) b[tid] += i; else break; --i;

while (i > 0) . . . brk1111 return; W, 0111, 0000
if===⇒w break; div0001 b[tid] += i; sync0111 --i;

while (i > 0) . . . brk1111 return; W, 0110, 0000
break===⇒w div0001 b[tid] += i; sync0111 --i;

while (i > 0) . . . brk1111 return; W, 0000, 0bb0
token===⇒w b[tid] += i; sync0111 --i;

while (i > 0) . . . brk1111 return; W, 0001, 0bb0
assign===⇒w sync0111 --i; while (i > 0) . . . brk1111 return; W, 0001, 0bb0
token===⇒w --i; while (i > 0) . . . brk1111 return; W, 0001, 0bb0
assign===⇒w while (i > 0) . . . brk1111 return; W, 0001, 0bb0
while

===⇒w if (j > 2 * i) b[tid] += i; else break; --i;
while (i > 0) . . . brk1111 return; W, 0000, 0bb0

inact===⇒w brk1111 return; W, 0000, 0bb0
token===⇒w return; W, 1111, 0000

The application of the rule (whilew) pushes the entire body of the while statement onto
the instruction stack again, even though there no longer are any active threads. However,
the body of a while statement consists of statements only, hence no new tokens are
pushed onto the stack. The rule (inactw) is therefore able to skip all statements on the
stack up to the brk token. When the rule (tokenw) pops the brk token off the stack, the
function enable reactivates all threads with a disable state of b. In contrast, the threads
remain disabled when the div and sync tokens are encountered. ��
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The following lemma summarizes a few invariants of reachable warp configurations.
A warp configuration w is reachable if a finite sequence of warp transitions transforms
some initial warp configuration into w; a warp transition is reachable if the warp con-
figuration on its left hand side is reachable.

As can be seen by inspecting the operational rules for warps in Table 2, no token
intervenes a div token and a sync token and the active mask of a sync token comprises
both the currently active threads and the active mask of the previous div token. Simi-
larly, each while statement is directly followed by a brk token and the currently active
threads are contained in the brk token’s active mask. By induction and observing that
no warp rule alters previously pushed tokens, the active mask of a token τ1 is a subset
of the active mask of another token τ2 lower on the stack, if neither token is of type div.
Analogously, the warp’s current active mask always is a subset of the active masks of
all tokens on the stack; except for div tokens, which always disable all active threads. A
full proof of this lemma can be found in the accompanying technical report [10].

Lemma 1. Let ϕ, η � W, Θ, Δ, μ be a reachable warp configuration.
1. If W = divΘ′ W0, then W0 = S syncΘ′′ W1 and Θ ∪ Θ′ ⊆ Θ′′.
2. If W = while (e) S W0, then W0 = brkΘ′ W1 and Θ ⊆ Θ′.
3. If W = W1 t1,Θ1 W2 t2,Θ2 W3 and t1 �= div �= t2, then Θ1 ⊆ Θ2.
4. If W = W1 tΘ′ W2, then Θ ∩ Θ′ = ∅ if t = div or Θ ⊆ Θ′ otherwise.

4 Simulating SIMT Execution by Interleaved Multi-Threading

The formalization of the SIMT execution model in the preceding section allows us to
formally establish its semantic validity by constructing a simulation relation between
the warp semantics and a standard interleaved multi-thread semantics. The simulation
shows that the SIMT execution model is correct in the sense that warps execute control
flow instructions in a way that can be reproduced by a certain schedule of the interleaved
thread semantics.

4.1 Interleaved Multi-Thread Semantics

The concepts of active masks, disable masks, and divergence do not apply to individual
threads. However, threads still depend on an instruction stack that comprises statements
and contexts c. Similar to the tokens in a warp’s instruction stack, contexts denote the
thread’s continuations once a loop is exited or a break or return statement is exe-
cuted. Thread instruction stacks are defined as follows, with contexts c being either brk
or call:

TStack � T ::= ε | s T | c T .

A thread configuration ϕ, ν � T, μ consists of a function environment ϕ, a variable
environment ν, a thread instruction stack T , and a memory μ. A thread transition ϕ, ν�
T, μ ⇒t T ′, μ′ transforms a thread configuration into another thread configuration.

The rules of our thread operational semantics ⇒t are given in Table 4, where we
reuse our notational conventions for warps. It is a fairly standard small-step seman-
tics (see e.g. [26]), so we only remark the following: Contexts that reach the top of the
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Table 4. Operational semantics of a single thread

(skipt) ; ⇒t ε

(assignt
rd) ν � x = e;, μ ⇒t x = v;, μ where E�e� ν μ = v

(assignt
wr) ν � x = v;, μ ⇒t ε, μ{ν(x) �→ v}

(ift
tt) ν � if (e) S1 else S2, μ ⇒t S1, μ if E�e� ν μ �= 0

(ift
ff) ν � if (e) S1 else S2, μ ⇒t S2, μ if E�e� ν μ = 0

(whilet
tt) ν � while (e) S, μ ⇒t S while (e) S brk, μ if E�e�ν μ �= 0

(whilet
ff) ν � while (e) S, μ ⇒t ε, μ if E�e�ν μ = 0

(whilet
tt) ν � while (e) S, μ ⇒t S while (e) S, μ if E�e�ν μ �= 0

(whilet
ff) ν � while (e) S, μ ⇒t ε, μ if E�e�ν μ = 0

(breakt) break; [S] brk ⇒t ε

(callt) ϕ � f(); ⇒t ϕ(f) call

(returnt) return; T¬call call ⇒t ε

(contextt) c ⇒t ε

instruction stack are simply discarded by the rule (contextt). When a thread encounters
a break or return statement, it skips all statements up to the next brk or call context
on the stack, respectively. T¬call denotes a possibly empty list of instructions that does
not contain any call contexts.

Multiple threads interleave execution. An interleaved thread configuration ϕ, η�ς, μ
uses a thread stack function ς : Thread → TStack to determine the instruction stack
of each thread participating in the execution. An interleaved thread transition ϕ, η �
ς, μ ⇒i ς ′, μ′ describes a step transforming an interleaved thread configuration into
another interleaved thread configuration by selecting an arbitrary thread and executing
a thread transition. With the help of our notational conventions for warps, the rule for
our interleaved thread semantics ⇒i is given as:

ϕ, η(θ) � ς(θ), μ ⇒t T, μ′

ϕ, η � ς, μ ⇒i ς{θ �→ T }, μ′ .

The thread semantics handles assignments in two steps: The rule (assignt
rd) evaluates

the expression before the rule (assignt
wr) performs the actual memory update; if there

was only one rule for assignments, the interleaved thread semantics would be unable to
simulate the SIMT execution model. For instance, consider a statement x = x + 1
for some shared variable x. As a warp executes all of its n active threads in lockstep,
the value of x is incremented by 1 in total. With only one assignment rule for threads,
the interleaved thread semantics would always increment x by n. With the two rules
for assignment, however, the interleaved semantics nondeterministically increments x
by l with 1 ≤ l ≤ n, depending on the order in which the threads apply the rules
(assignt

rd) and (assignt
wr). The simulation of the SIMT behavior therefore applies the
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rule (assignt
rd) to all active threads before any of them applies the rule (assignt

wr); in the
example, this guarantees that x is incremented by 1.

4.2 Simulation Relation

Figure 2 shows the intended simulation relation between the warp semantics and the
interleaved thread semantics: Any reachable warp transition shall be matched by a finite
sequence of zero, one, or more interleaved thread transitions (written as ⇒i,∗). Based
on the simulation of one single warp transition, we extend the simulation to sequences
of reachable warp transitions, meaning that all warp executions are correct with regard
to the interleaved thread semantics.

ϕ, η � πΘ(W, Δ), μ
i,∗�#����� ����� πΘ′(W ′, Δ′), μ′

ϕ, η � W, Θ, Δ, μ
w�#

γ

��

W ′, Θ′, Δ′, μ′

γ

��

Fig. 2. Simulation of a reachable warp transition by a sequence of interleaved thread transitions

The simulation depends on the mutually recursive projection functions πθ, π¬θ :
WStack × DisableState → TStack defined in Table 5 for each θ ∈ Thread that trans-
form a warp instruction stack into a thread instruction stack. πθ projects active threads,
whereas π¬θ is used for inactive ones. The former simply outputs all statements it en-
counters, replaces all brk and call tokens by brk and call contexts, removes all sync and
div tokens as they have no meaning for an individual thread, and deactivates the thread
whenever a div token is encountered by calling π¬θ . In the definition of πθ, the active
masks of the tokens on the stack do not have to be considered because of Lem. 1(4). For
an inactive thread, π¬θ skips all instructions until it encounters an activation token, i.e.,
a token that reactivates the thread. The function actToken determines whether a given
token is a thread’s activation token:

actTokenθ(tΘ, δ) ↔ θ ∈ Θ ∧ awaits(δ, t) .

The projection functions πθ and π¬θ are combined into the curried thread stack func-
tion πΘ : (WStack × DisableMask) → Thread → TStack with

πΘ(W, Δ)(θ) =
{

πθ(W, Δ(θ)) if θ ∈ Θ

π¬θ(W, Δ(θ)) otherwise ,

parameterized by Θ, which is used by the conversion function γ of Fig. 2 to turn warp
configurations into interleaved thread configurations.

The existence proof for the simulation relation relies on a series of lemmata that
relate warp configurations to interleaved thread configurations. The full proofs of the
lemmata can be found in the accompanying technical report [10].

The first lemma establishes a relationship between the functions actToken and
enable, ensuring that a warp correctly activates inactive threads: It only activates in-
active threads when it reaches their activation token and conversely, inactive threads are
reactivated once their activation token is encountered.
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Table 5. Definitions of the projection functions

πθ(ε, δ) = ε

πθ(s W, δ) = s πθ(W, δ)
πθ(callΘ W, δ) = call πθ(W, δ)
πθ(brkΘ W, δ) = brk πθ(W, δ)

πθ(syncΘ W, δ) = πθ(W, δ)
πθ(divΘ W, δ) = π¬θ(W, δ)

π¬θ(ε, δ) = ε

π¬θ(s W, δ) = π¬θ(W, δ)

π¬θ(τ W, δ) =
{

πθ(W, 0) if actTokenθ(τ, δ)
π¬θ(W, δ) otherwise

Lemma 2. Let ϕ, η � W, Θ, Δ, μ be a reachable warp configuration, θ /∈ Θ, and τ a
token in W . Then actTokenθ(τ, Δ(θ)) is true if and only if enable(Δ, τ) = (Θ′, Δ′)
with θ ∈ Θ′.

Using Lem. 2, we can show that all inactive threads of a reachable warp configura-
tion simulate an arbitrary operational warp transition by simply remaining idle. This is
because the instruction stacks of inactive threads remain unchanged.

Lemma 3. Let ϕ, η � W, Θ, Δ, μ ⇒w W ′, Θ′, Δ′, μ′ be a reachable warp transition
and let θ /∈ Θ. Then πΘ(W, Δ)(θ) = πΘ′(W ′, Δ′)(θ).

For the active threads in a reachable warp configuration, we would also like to pro-
ceed by focusing on a single thread, showing that each single active thread can simu-
late a warp transition. Assignments, however, are a special case that requires all active
threads to be considered, as the order of conflicting writes to the same memory address
is undefined. Lemma 4 therefore covers the simulation of assignments separately where
⇒i,+ denotes a finite sequence of one or more interleaved thread transitions. Lemma 5
covers the remaining cases focusing solely on one active thread; ⇒t,= denotes zero or
one thread transitions.

Lemma 4. Let ϕ, η � W, Θ, Δ, μ ⇒w W ′, Θ′, Δ′, μ′ be a reachable warp transition
using the rule (assignw). Then ϕ, η � πΘ(W, Δ), μ ⇒i,+ πΘ′(W ′, Δ′), μ′.

Lemma 5. Let ϕ, η � W, Θ, Δ, μ ⇒w W ′, Θ′, Δ′, μ′ be a reachable warp transition
not using the rule (assignw) and let θ ∈ Θ. Then ϕ, η(θ) � πΘ(W, Δ)(θ), μ ⇒t,=

πΘ′(W ′, Δ′)(θ), μ′.

The combination of Lemmata 3, 4, and 5 proves that there always exists a sequence
of interleaved thread transitions to simulate some arbitrary reachable warp transition.
This result is summarized in the following proposition, completing the proof of the
simulation relation shown in Fig. 2.

Proposition 1. Let ϕ, η � W, Θ, Δ, μ ⇒w W ′, Θ′, Δ′, μ′ be a reachable warp transi-
tion. Then ϕ, η � πΘ(W, Δ), μ ⇒i,∗ πΘ′(W ′, Δ′), μ′.

The full simulation result follows from Prop. 1 by induction: All sequences of reach-
able warp transitions can be simulated by sequences of interleaved thread transitions.
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Theorem 1 (Simulation of the SIMT Execution Model). Let ϕ, η�W, Θ, Δ, μ ⇒w,∗

W ′, Θ′, Δ′, μ′ be a sequence of reachable warp transitions. Then ϕ, η � πΘ(W, Δ), μ
⇒i,∗ πΘ′(W ′, Δ′), μ′.

From Thm. 1 it follows directly that all threads simulating the execution of a warp ter-
minate once the warp terminates, that is, they have fully executed the program. Lemma 3
shows that the instruction stacks of inactive threads do not change, hence ensuring that
inactive threads do not skip any instructions. Additionally, Lemmata 2 and 3 guaran-
tee that inactive threads are not left behind if the warp pops their activation token off
the stack. However, the SIMT execution model cannot ensure that all inactive threads
will eventually be reactivated, even though the call token at the bottom of the stack
is an activation token for all threads: In some cases, there are tokens on the instruc-
tion stack that are never reached again; the instruction stack is continuously modified
without shrinking below a certain threshold. Theorem 1 holds even for non-terminating
programs, hence the interleaved thread semantics is still able to simulate the warp ex-
ecution. Obvious reasons for non-termination are bugs causing non-terminating loops
or infinite recursion; there is, however, a more fundamental problem with the SIMT
execution model: unfairness.

5 Unfairness of the SIMT Execution Model

Divergent threads within a warp must be scheduled and executed one after another.
Today’s GPUs use an unfair scheduling strategy in the sense that one of the diver-
gent paths is fully executed before execution of the second path begins; if the first one
does not terminate, the second one is not executed at all. For some programs, this un-
fair scheduling strategy makes it impossible for the warp to eventually terminate, even
though in the interleaved semantics all weakly fair schedules terminate (where weak
fairness means that no thread is left behind indefinitely).

The SIMT execution model is not part of CUDA’s or OPENCL’s specification [13,
24]; instead, it is considered an implementation detail that programmers can “essen-
tially ignore” for “the purposes of correctness” according to NVIDIA [24, p. 62]. Our
findings in the preceding section support this statement insofar as they formally show
that warps execute control flow instructions as if each thread executed them individ-
ually in some schedule. The correctness of the SIMT execution model (in the sense
of simulatability) is therefore unaffected by fairness considerations. On the other hand,
unfairness potentially affects program termination and thus program correctness, which
may be the reason for the qualifying “essentially” in NVIDIA’s statement.

5.1 Programs Affected by the Unfairness Problem

We first illustrate the problem of unfairness with two example programs before dis-
cussing it more generally: Suppose that in Prog. 2, the variable lock is shared among
all threads of the warp with an initial value of 0, whereas tid stores the id of each
thread. Execution of the program terminates if the interleaved thread semantics chooses
a fair schedule; namely, it eventually executes the thread with id 0, causing the condi-
tion of the loop to evaluate to false for all other threads, which then terminate. A warp,
on the other hand, schedules the else-path before allowing thread 0 to set lock to 1.
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The loop therefore never terminates, thereby preventing the program from terminating.
If the hardware were to execute the if-path first or if the conditional statement were
reversed, the program would successfully terminate.

Program 3 (with lock and tid as above) also does not terminate when executed
by a warp, although the unfairness has a different cause in this case. As the warp first
encounters the loop, the condition evaluates to true for all threads except for thread 0. As
the warp chooses the immediate post-dominator of the loop as the reconvergence point,
thread 0 is not allowed to continue execution. Instead, the warp continuously executes
the remaining threads, which never leave the loop as thread 0 never increments the
value of lock. Again, a fair interleaved schedule would eventually allow each thread
to increment lock, resulting in a successful termination of the program.

Programs affected by the unfairness problem are uncommon in practice. Particularly,
Prog. 2 uses shared variables without any means of synchronization in both paths of an
if statement, which is generally considered bad programming practice. Even if the
code was not affected by the unfairness problem, it exploits the implicit knowledge
about the sequential execution of the paths and might therefore break on future hardware
if this assumption is no longer valid. Busy-loops like the one in Prog. 3 are often used
in an attempt to implement global synchronization mechanisms that all NVIDIA GPUs
are currently lacking [24]. Global synchronization is in fact impossible to implement,
though not because of unfairness issues: A compute kernel might be executed by more
threads than the hardware is capable of allocating concurrently, hence threads at the
synchronization point might be waiting for threads that do not even exist yet and cannot
be allocated, resulting in a deadlock.

The following lemma provides a sufficient criterion for programs that are unaffected
by the unfairness problem. It is based on a new kind of thread transition �t

η defined as

ϕ, η(θ) � T, μ ⇒t T ′, μ′

ϕ, η(θ) � T, μ �t
η T ′, μ′′ where ∀a ∈ Addr . a /∈ saddr(η) → μ′′(a) = μ′(a)

with saddr(η) denoting the set of addresses shared among the threads of thread en-
vironment η. Such a thread transition makes arbitrary changes to the contents of all
shared addresses. If all possible sequences of �t

η transitions terminate for all threads,
the warp execution is guaranteed to terminate as well. Assume for a contradiction that
the warp execution does not terminate. Then by Thm. 1 there is an infinite sequence of
⇒t transitions with a corresponding infinite sequence of �t

η for at least one thread.

Lemma 6. Let ϕ, η � P callΘ, Θ, {Θ �→ 0}, μ0 be an initial warp configuration. If
there is no infinite sequence ϕ, η(θ) � P call, μ0 �t

η T1, μ1 �t
η T2, μ2 �t

η . . . for all
θ ∈ Θ, then ϕ, η � P callΘ, Θ, {Θ �→ 0}, μ0 ⇒w,∗ ε, Θ′, Δ′, μ′.

Lemma 6 is only a sufficient condition for warp termination, but not a necessary one
as exemplified by Prog. 4. Assuming that the shared variable next is initialized to 0,
tid stores each thread’s id, and the warp size is 32, the warp execution terminates:
The condition of the if statement eventually evaluates to true for all threads, so next
is equal to 32 at some point and the loop terminates. By contrast, a sequence of �t

η

transitions that always resets next to 0 obviously never terminates.
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if (tid == 0)
lock = 1;

else
while (lock != 1) {}

Program 2. Unfair scheduling
of divergent branches

while (lock != tid) {}
// ...
++lock;

Program 3. Reconverging at
the immediate post-dominator
results in unfair schedules

while (next != 32) {
if (tid == next)

++next;
}

Program 4. Lem. 6 is not a
necessary condition for warp
termination

In practice, however, infinite sequences of �t
η transitions are rarely caused by shared

variables: Most compute kernels do not use shared variables in a way that affects loops
or recursion and graphics APIs have only recently introduced shared variables or atomic
operations for some shader types [12, 22].

5.2 Unfairness of Alternative SIMT Execution Models

Several alternative implementations of the SIMT execution model have been proposed,
be it for performance reasons or generality [4, 6, 7, 18]. A stack-less approach, for
instance, replaces the warp’s reconvergence stack by a set of program counters, one for
each thread and updated appropriately, that the warp uses to handle reconvergence. We
formalize this stack-less warp semantics ⇒w as follows, where the abstract function
schedule : (Thread → TStack) → 2Thread selects a set of threads with the same PC,
that is, a set of threads for which ∀θ, θ′ ∈ schedule(ς) . ς(θ) = ς(θ′) holds:

(ϕ, η(θ) � ς(θ), μ ⇒t T ′
θ, μ′

θ)θ∈Θ

ϕ, η � ς, μ ⇒w ς{(θ �→ T ′
θ)θ∈Θ}, μ{(a �→ μ′

θ(a))θ∈Θ,a∈Addr}
where schedule(ς) = Θ

Collange [4] suggests a similar stack-less approach. By contrast, however, our stack-
less semantics ⇒w does not consider (function call) stack pointers when selecting the
next PC to execute, as that only affects performance but does not influence correctness
or fairness. As reconvergence is based on equality of program counters, the fairness of
⇒w and Collange’s approach depends on the fairness of the choice function schedule.
Particularly, Collange’s lowest program counter scheduling policy makes the overall
mechanism unfair.

Fung et al. propose a stack-less technique for more than one warp: dynamic warp
formation [7]. The SIMT core dynamically regroups all of its threads with the same
PC into one or more warps. Fairness depends on the warp scheduling policy; of the
five suggested policies, only DTime selecting the oldest warp is generally fair. Thread
block compaction [6] is another approach proposed by Fung et al. It reintroduces the
reconvergence stack, albeit at the thread block level. The stack is used for block-wide
synchronization at divergent branches and reconvergence points; divergent warps are
regrouped into non-divergent ones, restoring the original warp groupings upon encoun-
tering the reconvergence point. Due to the synchronization, thread block compaction
suffers from the unfairness problem.

Meng et al. [18] propose dynamic warp subdivision where warps are dynamically sub-
divided on branch (or memory) divergence. Each so-called warp-split is individually
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scheduled, therefore execution of divergent paths is interleaved. Additionally, threads
might reconverge at some point past the immediate post-dominator, reuniting the warp-
splits. Their approach consequently has the potential of solving the unfairness prob-
lem; in practice, however, unfairness is still an issue as warp subdivision is only al-
lowed on statically determined “appropriate” branches in order to avoid undesirable
over-subdivision.

6 Conclusions and Future Work

The single instruction, multiple threads execution model used by today’s GPUs groups
threads into batches that execute a compute kernel in lockstep, requiring a special mech-
anism to efficiently and correctly handle divergent control flow. Our formalization of
the SIMT execution model allows us to prove its correctness in the sense that each
SIMT execution corresponds to a standard interleaved multi-thread execution for some
schedule. SIMT execution potentially affects program termination, however, as diver-
gent threads are scheduled in an unfair way. Some alternative implementations of the
SIMT execution model also exhibit this unwanted behavior.

As more and more GPU-accelerated algorithms are used in safety- or security-
critical applications such as medical imaging [8, 21], the importance of formally verified
program correctness increases. In particular, GPUs are capable of accelerating model
checking algorithms that in turn are used in formal analyses of various problems in a
wide range of application domains [2, 3]. Our work establishes the semantic validity of
the underlying SIMT execution model, contributing to the development of formal ver-
ification tools and mechanisms for GPU-based applications. We plan to use a theorem
prover to verify correctness and other properties of GPU-based programs.

Several research papers propose changes to the SIMT execution model in order to
improve efficiency and performance. While the main point of interest is performance
for the time being, new mechanisms should also explore the possibilities of solving the
unfairness problem to avoid unexpected non-termination, especially since the current
trend is the unification of the CPU and GPU programming models: For example, the
CUDA 4.1 compiler is based on the LLVM compiler infrastructure [15] with the intention
of allowing CUDA programs to run on either the GPU or the CPU [25]. In order to make
the verification of program correctness independent of the execution model, we plan to
study stronger criteria for the preservation of termination and other liveness properties
when the underlying hardware uses the SIMT execution model instead of a weakly
fair multi-thread semantics. Furthermore, it might be worthwhile to check whether our
findings can be generalized to the SIMD execution models found in some contemporary
CPU architectures.
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Abstract. A lock placement describes, for each heap location, which
lock guards the location, and under what circumstances. We formalize
methods for reasoning about lock placements, making precise the interac-
tions between the program, the heap structure, and the lock placement.

1 Introduction

Most concurrent software uses locks as a primitive for ensuring mutual exclusion
between threads. While it is correct to say that the key characteristic of a lock
is that it may be held by only one thread at a time, such a description fails to
capture the higher-level purposes for which programmers use locks. Universally,
locks are used to protect data, guaranteeing that only one thread operates on
particular parts of the store at a time. The association between locks and the data
they protect is, however, implicit, and in the presence of mutable data structures
it is not even clear how to describe the relationship between a possibly changing
set of locks and the changing heap the locks protect.

This paper investigates what it means for locks to protect data. So far as we are
aware, there are no proposals in the literature for even stating the relationship
between locks and the data they protect that capture the range of ways in
which locks are used in practice. In particular, we are interested in explaining
speculative locks and the common case in which updates to the heap change
which data locks protect. We believe ours is the first proposal to address these
issues.

To explain our results, we begin with a slightly informal, simple, obviously
correct, but impractical locking protocol. We assume the heap consists of a graph
of objects (nodes), each of which has a set of fields (edges) that point to other
objects. We also assume that concurrent operations are expressed as transactions
that execute atomically (e.g., atomic blocks). Every heap edge has a logical lock.
Each transaction t must obey a standard two-phase locking protocol:

– Acquire all logical locks of every edge read or written by t.
– Perform the reads and writes of t.
– Release all of t’s logical locks.
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It is a classic result [8] that any interleaving of such transactions is serializable
(equivalent to some sequential schedule of the transactions). However in practice
acquiring a separate lock for every field of every object touched by a transaction
is exorbitantly expensive. Thus, practical locking protocols use fewer locks. For
example, a tree data structure might have a single lock at the root, or a hash
table may have one lock per hash bucket, with no locks on the bucket contents.

The key insight is that the programmer has made an optimization: many
logical locks are represented by a single physical lock. We can still think of a
transaction as acquiring all of the logical locks required, but now instead of
acquiring the lock on the actual edge e it must instead acquire the physical lock
ψ(e) assigned to the edge by a lock placement ψ, which is a mapping from logical
locks to the physical locks that implement them. For example, in the tree case
ψ(e) = ρ for every edge in the tree, where ρ is the tree’s root. For the hash table,
ψ(e) = li, where the i-th bucket has an associated physical lock li for every field
e in the i-th bucket. If the same physical locks represents multiple logical locks
then transactions need only acquire the single physical lock to obtain access to
multiple heap locations.

Lock placements capture common idioms for programming with locks:

– Locking at different granularities corresponds to different lock placements.
For example, each element of a tree may have its own lock, or there may be
a single coarse-grained lock. Lock placements make explicit which locations
are guarded by the same lock, and where that lock is placed.

– It is sometimes beneficial to place the lock guarding an object o in a field
of o itself, which means that o cannot be locked without first accessing o
in an unlocked state. Lock placements can describe such speculative locking,
allowing us to reason about transactions that make use of it.

– Which locks guard which fields often changes over time. As a simple example,
consider a heap in which all nil fields are guarded by a global lock, and all
non-nil fields are guarded by a speculative lock in the object the field points
to. When a nil field is assigned an object the global lock is split and no longer
guards the field, and when a pointer field is assigned nil that field is merged
into the global lock. Lock placements can depend on the state of the heap
and so naturally capture lock splitting and merging.

We develop our results incrementally, beginning with flat “heaps” that are just
a set of global variables with no pointers (Section 2). In this simple setting
we formalize the key notions of lock placements and stability, we give a proof
system for showing that transaction traces are well-locked, and we prove that well-
locked transactions are serializable. We then consider heaps that are mutable
trees (Section 3), where the main complication is that logical locks are now
named by heap paths, which may be updated concurrently. Finally, we consider
a class of mutable DAG heaps (Section 4) based on decompositions [13]; sharing
complicates lock placements as there may be multiple access paths to an object.

For space reasons, all proofs are in the technical report [12]. Because our focus
is on formalizing lock placements, we do not consider liveness properties, such as
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m ∈ M memory locations l ∈ L, L ⊆ L locks, lock sets
b ::= F | T booleans ω ::= m �→ b heap assertions

ψ ⊆ M → 2L×Φ lock placements Φ � φ ::= b | ω | φ ∨ φ | φ ∧ φ guards
t ::= wr(m, b) | obs(m) = b | rd(m) = b | lock l | unlock l transaction ops.

Fig. 1. Locations, Lock Placements, Transaction Operations

deadlock, or optimizations, such as early release, since these issues are orthogonal
to the ones we explore. The standard techniques for ensuring deadlock-freedom
apply, including both static techniques (imposing a total ordering on locks) and
dynamic techniques (using a contention manager to resolve deadlocks at run-
time).

2 Flat Maps

We first consider a simple class of heaps defined over a fixed set of memory
locations M. A flat map heap is a set of mappings {m �→ b}m∈M from each
location m ∈ M to a boolean value b. Let L be a fixed set of physical locks; in
this section we assume that memory locations and locks are disjoint. For ease
of exposition we consider only exclusive locks — that is, if a transaction holds a
lock then no other transaction may acquire concurrent access to the same lock.

A common correctness criterion for concurrent transactions is serializability.
Informally a concurrent execution of a set of transactions is serializable if the
reads and writes transactions make to the heap are equivalent to the reads and
writes in some serial schedule of the same transactions. Serializability ensures
we can reason about programs as if only one transaction executes at a time.

A transaction T is a sequence t1t2 . . . of the atomic transaction operations
given in Figure 1: a possibly unstable read of location m yielding b (rd(m) = b), a
logical observation of location m yielding b (obs(m) = b), a write of b to location
m (wr(m, b)), a lock of a physical lock l (lock l), or an unlock of physical lock l
(unlock l). With the exception of the rd and obs operations the concrete semantics
of transaction operations are standard; the details are in the technical report [12].
We assume the execution of operations is sequentially consistent.

The transaction language distinguishes between between high-level obs oper-
ations, which are observations of the state of memory that affect the outcome of
a transaction and for which the locking protocol must ensure serializability, and
low-level rd operations, which do not directly affect the outcome of a transaction
and need not be serializable. A transaction may freely perform a rd operation
on any location at any time, regardless of the locks that it holds, however there
is no guarantee that the value read will remain stable; a read is stable only if no
concurrent transaction may write to the same location and invalidate the value
that was read. If a transaction holds locks that ensure that the value returned by
a rd operation is stable and cannot be altered by concurrent transactions, then a
transaction may logically obs the result of the read operation and use that value
to perform computation. The distinction between stable and unstable reads is
key to reasoning about speculative locking (Section 2.1).
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1: lock l 1: lock l1 9: unlock l1 1: lock l1 9: obs(m4) = F
2: rd(m1) = T 2: rd(m1) = T 10:unlock l0 2: rd(m1) = T 10:unlock l4
3: obs(m1) = T 3: obs(m1) = T 3: obs(m1) = T 11:unlock l3
4: rd(m3) = F 4: rd(m3) = F 4: lock l3 12:unlock l1
5: obs(m3) = F 5: obs(m3) = F 5: rd(m3) = F
6: rd(m4) = F 6: lock l0 6: obs(m3) = F
7: obs(m4) = F 7: rd(m4) = F 7: lock l4
8: unlock l (a) 8: obs(m4) = F (b) 8: rd(m4) = F (c)

Fig. 2. Transaction traces that observe the values of locations m1, m3, and m4 under
(a) coarse, (b) intermediate, and (c) fine-grained lock placements

2.1 Lock Placements

We associate a logical lock with every heap location m ∈M. Whenever a trans-
action observes or changes the value of a memory location it must hold the
associated logical lock. It is inefficient to attach a distinct lock to every memory
location; instead we use a smaller set of physical locks (or simply locks) L to
implement logical locks; a lock placement maps logical locks to physical locks.
Different placement functions describe different granularities of locking.

Formally, a lock placement ψ for a boolean heap is a mapping from each
location m ∈M to a guarded set of locks that protect it. Each entry in ψ(m) is
a pair of a lock l ∈ L and a guard φ, which is a condition under which l protects
m. A guard is a boolean combination of heap assertions m �→ b; for a given
memory location each lock may only appear at most once on the left hand side
of a guarded lock pair, and the set of guards must be mutually exclusive, and
total, that is, exactly one guard is true for any given heap state.

For example, suppose M = {m0, . . . ,mk−1}. Different placements allow us to
describe a range of different locking granularities:

– A coarse-grain locking strategy protects every memory location with the
same lock, that is, set L = {l} and set ψ(mi) = {(l,T)} for all i. To observe
or write to any memory location a transaction must hold lock l.

– An medium-grain locking strategy stripes memory locations across a small
set of locks. Set L = {l0, . . . , lp−1}, and then set ψ(mi) = {(l(i mod p),T)} for
all i. To observe or write to memory location mi, we must hold lock l(i mod p).

– A fine-grain strategy associates a distinct lock with every memory location.
Set L = {l0, . . . , lk−1} and set ψ(mi) = {(li,T)} for all i. To observe or write
to memory location mi we must hold lock li.

Figure 2 shows three variants of a transaction that reads memory locations m1,
m3 and m4 (chosen arbitrarily for the example), observing values T, F, and
F respectively. The figure shows a variant of the transaction for each locking
granularity, using p = 2 physical locks in the medium-grain case.

A speculative lock placement is a placement in which the identity of a lock that
protects a memory location depends on the memory location itself. For example
a simple speculative placement ψs is as follows. Let L = {lf , lt} and M = {m}.
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(a) 1: rd(m) = T (b) 1: rd(m) = T 7: obs(m) = F (c) 1: lock lf
2: lock lt 2: lock lt 8: unlock lf 2: lock lt
3: rd(m) = T 3: rd(m) = F 3: rd(m) = T
4: obs(m) = T 4: unlock lt 4: wr(m,F)
5: unlock lt 5: lock lf 5: unlock lt

6: rd(m) = F 6: unlock lf

Fig. 3. Traces that read and write location m under the speculative lock placement ψs

Set ψs(m) = lf if m �→ F, or lt if m �→ T Under this placement, lock lf protects
memory location m if m contains the value F, whereas lock lt protects memory
location m if m contains the value T.

A more realistic example of speculative lock placement is motivated by trans-
actional predication [2] which uses a speculative placement of STM metadata.
We use a collection M = {m1, . . . ,mk} of memory locations to model a con-
current set. Location mi has value T if value i is present in the set. We use
L = {l⊥, l1, . . . , lk} and the placement ψ(mi) = l⊥ if mi �→ F, or li if mi �→ T.

The speculative placement allows us to attach a distinct lock to every entry
present in the set, without also requiring that we keep around a distinct lock for
every entry that is absent from the set. Two transactions that operate on keys
present in the set only contend on the same lock if they are accessing the same
key. Transactions that operate on keys that are absent will however contend on
l⊥; this strategy is effective if we expect sets to have at most a small fraction
of all possible elements at any one time. If necessary, we can reduce contention
on absent entries to arbitrarily low levels by striping the logical locks protecting
absent entries across a set of physical locks l1⊥, l

2
⊥, . . . as discussed earlier.

It may not be immediately obvious how to acquire a lock on a memory location
when we do not know which lock to take without knowing the value of the
memory location. The key to this apparent circularity is that a transaction can
use unstable reads to guess the identity of the correct lock; once the transaction
has acquired the lock it can redo the read to verify that its guess was correct. If
the transaction guesses correctly, then the second read is stable. If the transaction
guesses incorrectly it can release the lock and repeat the process. Figure 3(a)
shows a transaction that observes the state of m under the speculative lock
placement ψs. If another transaction had raced, we might have had to retry the
read, as shown in Figure 3(b). Finally, to perform an update, we must hold both
locks, as shown in Figure 3(c); otherwise by changing m we might implicitly
release a lock that another transaction holds on the state of m.

2.2 Well-Locked Transactions

We represent the state of a transaction as two sets: the observation set Ω and a
lock set L. The observation set Ω is a set of heap assertionsm �→ b that represent
a transaction’s local view of the heap. The lock set L is a set of physical locks held
by the transaction. Every heap assertion in the observation set must be stable;
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FLock l /∈ L
Ω,L 	ψ lock l;Ω,L ∪ {l}

FUnlock l ∈ L L′ = L \ {l} Ω′ = �Ω | L′;ψ�
Ω,L 	ψ unlock l;Ω′, L′

FRdUnstable

Ω′ = Ω ∪ {m �→ b} ¬lockedψ(m,Ω′, L)

Ω,L 	ψ rd(m) = b;Ω,L

FRdStable

Ω′ = Ω ∪ {m �→ b} lockedψ(m,Ω′, L)

Ω,L 	ψ rd(m) = b;Ω′, L

FObserve

(m �→ b) ∈ Ω

Ω,L 	ψ obs(m) = b;Ω,L

FWrite m ∈ domΩ Ω′ = Ω[m �→ b](∀m′, l, φ. (l, φ) ∈ ψ(m′) ∧m ∈ domφ =⇒ l ∈ L
)

Ω,L 	ψ wr(m, b);Ω′, L

Fig. 4. Well-locked transaction operations: Ω,L 	ψ t;Ω′, L′

informally, the facts in the observation set are logically locked and cannot be
invalidated by a concurrent interfering transaction. We write Ω[m �→ b] to denote
the result of adding or updating the heap observation m �→ b to Ω, replacing any
existing observations about m. The predicate lockedψ(m,Ω,L) holds for heap
location m if a transaction with heap observations Ω and locks L has logically
locked location m under lock placement ψ, where Ω  φ denotes entailment:

lockedψ(m,Ω,L) = ∃(l, φ) ∈ ψ(m). l ∈ L ∧Ω  φ
The judgement Ω,L ψ t;Ω′, L′ defined in Figure 4 characterizes well-locked

operations. The judgment holds if whenever a transaction with observations Ω
and holding locks L executes operation t, then on completion of the operation
the transaction has new observations Ω′ and locks L′. Given the set of physical
operations that a transaction performs, the well-lockedness judgement computes
the set of stable observations of the transaction, and ensures that a transaction
only logically observes and writes locations on which it holds logical locks.

The (FLock) rule allows a transaction to acquire a lock l if the transaction
does not already have l in its set of locks L; acquiring a lock has no affect on
the observation set Ω. The (FUnlock) rule allows a transaction to release any
lock l in its lock set L; any facts in Ω that were protected by l are no longer
stable, so the rule uses the stabilization operator to compute a new stable set of
observations Ω′. The stabilization of a set of observations Ω0 under locks L and
placement ψ, written �Ω0 | L;ψ�, is the limit of the monotonic sequence:

Ωi+1 = {m �→ b ∈ Ωi | lockedψ(m,Ωi, L)}
Note that the limit always exists, because Ω0 is finite (since it is constructed by
a finite transaction execution) and the empty set is always a fixed point of the
equation if no larger set is. A set of observations Ω is stable under locks L and
placement ψ if Ω is its own stabilization, that is, Ω = �Ω | L;ψ�.

Rule (FObserve) states that a transaction may logically observe any sta-
ble fact from its stable observation set Ω. The (FRdUnstable) rule allows a
transaction to perform a speculative read on a memory location on which the
transaction does not hold a lock; however since the result may not be stable
the rule does not update the set Ω. To enable reasoning about speculation, the
determination whether the read is stable or not occurs in a context that includes
the read of m; since we assume that reads are atomic, there is an instant in time
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at which both the old stable facts in Ω and the newly read value of m hold,
and it is in that context that we determine stability. The (FRdStable) rule
allows a transaction to read memory locations on which it holds a lock; since
such a read is stable the rule updates the set of observations Ω with the newly
read information about the heap. Finally the (FWrite) rule requires that a
transaction can only update a location m if it holds the lock on m; furthermore
the lock for any location m′ for which m appears in a guard must also be held
by the transaction—hence no transaction can destabilize the observations of an-
other transaction. The last condition together with lockedψ(m,Ω,L) imply that
lockedψ(m,Ω′, L) holds, which is why the latter is not listed as a precondition
of the rule.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li and observation sets Ωi such that
L0 = Lk = ∅, Ω0 = Ωk = ∅, and Ωi−1, Li−1 ψ ti;Ωi, Li for 1 ≤ i ≤ k.

As an example of applying the rules, consider again the speculative read trans-
action shown in Figure 3(b). Let Ωi and Li denote the lock sets of the transaction
after line i. Initially we have Ω0 = ∅ and L0 = ∅. The read on line 1 is unstable,
so Ω1 = ∅ and L1 = ∅. The lock on line 2 adds an entry to the lock set lt, so
Ω2 = ∅ and L2 = {lt}. The read on line 3 yields m �→ F, however the read
would only be stable if lockedψ(m, {m �→ F}, {lt}) holds, which it does not; once
again we have Ω3 = ∅ and L3 = {lt}. Lines 4 and 5 update the lock set; we
have Ω4 = Ω5 = ∅, L4 = ∅, and L5 = {lf}. The read on line 6 once again yields
m �→ F, but this time the predicate lockedψ(m, {m �→ F}, {lf}) holds and the
read is stable, yielding Ω6 = {m �→ F} and L6 = {lf}. The logical observation
of m �→ F on line 7 is permitted by the judgement since we know m �→ F is
part of the stable heap; the observation and lock sets are unchanged (Ω7 = Ω6,
L7 = L6). Finally, line 8 releases lock lf , so we have L8 = ∅. The assertion about
m in Ω7 is no longer stable, so the stabilization operator removes it from the
observation set, finally yielding Ω8 = ∅.

2.3 Serializability of Well-Locked Transactions

A schedule s for a set of transactions T1, . . . ,Tk is a permutation of the con-
catenation of all transactions in the set, such that each transaction Ti is a
subsequence of s. Formally, a schedule is valid if it corresponds to an execution
of the concrete semantics (see the technical report [12] for details). Informally,
validity requires the execution respect the mutual exclusion property of locks,
and memory accesses must accurately reflect the state of the global heap. A
schedule is serial if operations of different transactions are not interleaved.

Lemma 1. Let s be a valid schedule of well-locked transactions {T1, . . . ,Tk}.
Let Ωj

i and Lj
i be the set of observations and locks of transaction i after schedule

step j. Let hj be the heap after schedule step j. Then for all time steps j the
lock sets {Lj

i}k
i=1 are disjoint, and the observation sets {Ωj

i }k
i=1 are stable, have

disjoint domains, and heap hj is an extension of each {Ωj
i }k

i=1.
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The disjointness of observation sets in Lemma 1 follows from the exclusivity of
physical locks. If we allowed shared/exclusive locks, then we would also need to
allow observation sets to overlap on values protected by shared locks.

A well-locked transaction T = (ti)k
i=1 is logically two-phase if the domains

of the observation sets of the transaction have a growing phase and a shrinking
phase, that is, there exists some j such that for all i where 1 ≤ i ≤ j, we have
domΩi−1 ⊆ domΩi and for all i where j < i ≤ k we have domΩi−1 ⊇ domΩi.

A logical schedule ŝ is the subsequence of a schedule s consisting of all the
obs and wr operations. Two operations conflict if they access the same memory
location m. Two schedules s1 and s2 are conflict-equivalent if the logical schedule
ŝ1 can be turned into the logical schedule ŝ2 by a sequence of swaps of adjacent
non-conflicting operations.

Lemma 2. Any valid schedule of a set of well-locked, logically two-phase trans-
actions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

2.4 Shared/Exclusive Logical Locks

A limitation of the protocol just presented is that locks are exclusive — hold-
ing a lock gives a transaction sole access to an edge, even if the transaction
only wants to read the edge. Lock placement is a separate issue from whether
non-exclusive locks exist for reading. Exclusive locks are sufficient to illustrate
all of the important features of our techniques and have the advantage of not
introducing the extra and extraneous complications of supporting non-exclusive
access. However, non-exclusive locks are important, and so we briefly illustrate
how to extend our approach to locks providing shared read access.

To allow shared access to fields we relax the requirement that guards must be
mutually exclusive, thereby allowing each logical lock to map to many physical
locks at the same time. Under the relaxed definition of placement, a transaction
has shared access to a memory location m if it holds at least one of the locks
that protect m, whereas a transaction has exclusive access to m if it holds all of
the locks that protect m. Formally, a transaction has shared access to a memory
location m if lockedψ(m,Ω,L) holds. We also define a new predicate

exclusiveψ(m,Ω,L) = ∀(l, φ) ∈ ψ(m). l ∈ L ∨Ω  ¬φ
which holds for heap location m if a transaction with heap observations Ω and
locks L has an exclusive logical lock on location m under lock placement ψ.

To show serializability, we need to add an additional precondition to the
(FWrite) rule requiring that a transaction have exclusive access to any memory
location it writes. The statement of the proof of Lemma 1 must be altered since
different observation sets may share fields on which they hold a shared lock—
only the exclusively held fields must be disjoint between transactions. Finally we
must update the definition of a two-phase transaction to ensure that transactions
only release exclusive access to a field in the shrinking phase of a transaction.
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f, f ,F fields x, y, ρ object names e ::= nil | x expressions
ω ::= x.f �→ e heap assertions ψ ⊆ 2f → 2f placements

t ::= wr(x.f , e) | obs(x.f) = e | rd(x.f) = e | x = new() | lock x | unlock x trans. ops.

Fig. 5. Tree transactions

3 Mutable Tree-Structured Heaps

In Section 2 we described a locking protocol for flat heaps with a fixed set of
memory locations and locks. In this section we extend our results to dynamically
allocated, mutable tree-shaped heaps with a placement function based on paths.

A tree heap h consists of a set of objects, each with a unique name, usually
denoted x or y. Every object has a fixed set of fields F . Each object field x.f con-
tains a pointer either to some object y or nil. The heap contains a distinguished
root object, named ρ. In a quiescent state, that is, in the absence of running
transactions, we require that the heap be a forest.

We associate a logical lock with every field of every object in the heap. Unlike
the flat heaps of Section 2 we do not assume that we have a separate set of
physical locks distinct from the set of memory locations; instead, following the
practice of languages such as Java, we require that every heap object can function
as a physical lock, and we use a lock placement function to describe a policy for
mapping the logical locks attached to fields onto the physical locks (the objects).
To define the lock placement, we use access paths from the root ρ to name both
the fields we want to protect and the objects whose physical locks protect them.

We extend the set of transaction operations of Section 2 to read from and
write to fields of objects, to handle dynamic allocation of new objects, and to
apply lock and unlock operations to objects rather than a separate set of locks.
The transaction operations, shown in Figure 5, are: write an expression e (either
an object y or nil) to field f of object x (wr(x.f , e))), a possibly unstable read
of field f of object x yielding result e (rd(x.f) = e), a stable observation of field
f of object x yielding e (obs(x.f) = e), allocation of a fresh object (x = new()),
locking an object (lock x), and unlocking an object (unlock x).

3.1 Lock Placements

We name edges in the heap as a non-empty field path (a sequence of field names)
f = f1f2 . . . from the root, ending in the edge in question. Since the path names
a field in the heap, the path must be non-empty. We also name objects using
fields, except that the path ends at the object the field points to; note that in
the case of objects the empty path names the root of the heap. A lock placement
ψ is a function from non-empty paths to paths, which maps every edge in a heap
to an object whose attached physical lock protects it.

Consider heaps with fields drawn from the set F = {a, b}. We can protect ev-
ery edge of the heap with a single coarse-grain lock by setting ψ1(f) = ε for all f .
If we want different locks for the a and b subtrees, we can use the lock placement

ψ2(f) = a if a ≺ f , b if b ≺ f , and ε if f = a or f = b (1)
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where g ≺ f denotes that g is a prefix of f . For example, in Figure 6(a), under
placement ψ2 the lock at ρ protects the edges ρx and ρy, the lock at x protects
the edges xz and xu, and the lock at y protects the edge yv.

(a) ρ

x y

nil vz u

a b

a b a b

(b) ρ

nil y

nil v

a b

a b

Fig. 6. Examples of tree heaps. Nodes
represent objects, whereas edges represent
fields. Node ρ is the root object

If for an edge f the placement path
ψ(f) leads to nil in the heap, we use the
lock on the object preceding the edge
to nil in the placement path. For ex-
ample, consider Figure 6(b) under the
placement ψ2. According to the place-
ment, the lock that protects the edge
named by path ab is ψ2(ab) = a, how-
ever edge a from the root ρ points to
nil. Instead, we use the lock on the
longest non-nil prefix of ψ2(ab), namely
ρ itself.

(a) lock ρ (b) lock ρ unlock w (c) rd(ρ.b) = y unlock w
rd(ρ.b) = y rd(ρ.b) = y unlock y lock y unlock y
obs(ρ.b) = y obs(ρ.b) = y unlock ρ rd(ρ.b) = y
lock y lock y obs(ρ.b) = y
w = new () rd(y.a) = nil rd(y.a) = nil
wr(y.a, w) w = new () w = new ()
unlock y lock w lock w
unlock ρ wr(y.a, w) wr(y.a, w)

Fig. 7. Three transaction traces that add a new outgoing edge labelled a from node y
to the tree of Figure 6(b) under the lock placements (a) ψ2, (b) ψ3, and (c) ψ4

Modifications to the heap may implicitly alter the mapping from logical locks
to physical locks. If a transaction updates an edge, then the transaction must
hold all logical locks whose mapping to physical locks may change both before
and after the update. For example consider again the lock placement ψ2 in the
context of the tree heap shown in Figure 6(b). According to the placement the
lock on ρ protects the edge a from the root; however since edge a points to nil,
edges on any path that begins with a are also protected by the lock at a. If a
transaction were to set ρ.a to point to a fresh vertex w, the lock at w would
now protect the edges on paths that begin with a; the transaction has split the
logical roles of the lock at ρ before the write between the lock at ρ and the lock
on new node w. Whenever a transaction splits or merges locks (e.g., by setting
the field ρ.a to nil again), it must hold every lock involved.

Figure 7(a) shows a trace of a transaction that adds a new edge labeled a
from object y to a fresh object w to the heap of Figure 6(b) under placement
ψ2. The transaction acquires two locks, namely the lock at ρ that protects the
edge from ρ to y, and the lock at y that protects the entire subtree rooted at y.
We need not hold a lock on w when adding w into the tree since no path in the
range of the placement function is a suffix of the path to the updated edge ba.
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If we desire finer-grained locking, we can use a lock attached to every object
to protect the fields of that object by using the placement function ψ3(gf) =
g for any g, f . The lock placement ψ3 places the lock that protects each edge f
on the object at the head of the edge. Figure 7(b) shows a trace of a transac-
tion that again adds the edge labeled a from node y to a fresh node w to the
heap of Figure 6(b), this time under lock placement ψ3. Unlike the transaction
of Figure 7(a), we need to ensure that by adding the new edge the write does
not implicitly change the mapping from edges to locks. The well-lockedness con-
ditions, which we introduce shortly, require that a transaction hold all physical
locks which may map to different logical locks before and after a write. The op-
eration rd(y.a) = nil verifies that there is no existing subtree of y reachable via
edge a. Before the update the lock at y protects every possible edge reachable
from y.a, however after the write the lock y only protects the edge y.a itself,
whereas the lock at w protects everything reachable from node w. Hence we
must hold lock w when performing the write, since adding the edge splits the
lock at y. (In general one must hold locks when connecting objects into the heap,
however in this specific case, since the write which links w to the heap is the
last write in the transaction it would be possible to optimize away the lock and
unlock.)

Finally, if we set ψ4(f) = f we obtain a speculative placement where each edge
is protected by a lock at its target. Figure 7(c) once again shows a transaction
that adds a fresh edge labeled a to node w, this time using placement ψ4. The
transaction begins with a speculative read to guess that the identity of the object
whose lock protects ρ.b is y. After locking y, the transaction performs the read
again; since the read still returns y, the read is stable since the transaction
already holds lock y. The transaction then performs a read of y.a which returns
nil. The value of the placement function for edge y.a is ψ(ba) = ba, however since
edge ba points to nil, the lock on the longest non-nil prefix of ba protects ba, in
this case path b (node y). Since we hold the lock on y already, we know that the
read of y.a is also stable. Finally, the transaction must hold the lock on w when
adding it to the heap to maintain the invariant that a transaction must hold
all physical locks whose logical/physical mapping changes as a consequence of a
write.

3.2 Well-Locked Transactions

We represent a transaction’s state by three sets. As before, L is the set of locks
that transaction holds, and Ω is a set of stable heap observations of the form
x.f �→ e. We do not require Ω be a forest; a transaction may create any heap
shapes it desires within its local heap. However, the forest invariant must be
restored when the transaction releases objects in its local heap back into the
global heap. Enforcing this condition is the purpose of the set Γ . An object x
is a member of Γ if the transaction has shown that there is no globally visible
path from the root to x (i.e., the transaction has locked the edge to x). The well-
lockedness rules for tree heaps ensure that there is at most one globally-visible
edge to any node and hence the globally-visible part of the heap is a forest. At
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TLock x /∈ L
Ω, Γ, L �ψ lock x;Ω,Γ, L ∪ {x}

TUnlock x ∈ L L′ = L \ {x}
(Ω′, Γ ′) = �Ω;Γ | L′;ψ� forest(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L �ψ unlock x;Ω′, Γ ′, L′

TNew Ω′ = Ω ∪ {x.f �→ nil | f ∈ F}
x /∈ domΩ x /∈ Γ Γ ′ = Γ ∪ {x}

Ω,Γ, L �ψ x = new();Ω′, Γ ′, L

TObserve (x.f �→ e) ∈ Ω
Ω,Γ, L �ψ obs(x.f) = e;Ω,Γ, L

TRdUnstable

x.f /∈ domΩ Ω′ = Ω ∪ {x.f �→ e}
¬lockedψ(x.f,Ω′, Γ, L)

Ω,Γ, L �ψ rd(x.f) = e;Ω,Γ, L

TRdStable x.f /∈ domΩ Ω′ = Ω ∪ {x.f �→ e}
lockedψ(x.f,Ω′, Γ, L) Γ ′ =

{
Γ if e = nil
Γ ∪ {y} if e = y

Ω, Γ, L �ψ rd(x.f) = e;Ω′, Γ ′, L

TWrite x.f ∈ domΩ Ω′ = Ω[x.f �→ e](∀g,h. (Ω � g ∼ x) ∧ gf � ψ(h) =⇒ pathlockedψ(h, Ω, L) ∧ pathlockedψ(h, Ω′, L)
)

Ω,Γ, L �ψ wr(x.f, e);Ω′, Γ, L

Fig. 8. Well-locked tree operations: Ω,Γ,L 	ψ t;Ω′, Γ ′, L′

the start of every transaction Γ is the empty set. Transactions add entries to Γ
by discovering global edges to nodes and transferring them into their local heap
Ω; entries are removed from Γ when pointers to objects are released from the
stable heap Ω back into the global heap.

The path alias judgement Ω  f ∼ x holds if f is a path in Ω from the root
to location x; that is, if |f | = k, then there is a sequence of vertices v = v0v1 · · ·
such that (ρ.f0 �→ v0) ∈ Ω, (vi−1.fi−1 �→ vi) ∈ Ω for all 1 < i < k − 1, and
vk−1.fk−1 �→ x. We write f ∈ Ω if the path f from the root vertex exists in Ω,
that is, Ω  f ∼ x holds for some object x.

The restriction of a path f to a local heap Ω, written f |Ω , is defined as
f |Ω = f if f ∈ Ω, or g if ∃g, h. gh � f ∧Ω  nil ∼ gh.

The restriction of path f is either f itself if present in the heap, or the longest
prefix of the path present in the heap where no edge points to nil. The restriction
of a path is undefined if the path f leaves the stable local heap Ω.

We hold the lock on an edge reached via a path if we hold the corresponding
lock placement, restricted to the heap:

pathlockedψ(f , Ω, L) ::= ∃x ∈ L. Ω  ψ(f)|Ω ∼ x

We hold the lock on a field f of an object x under observations Ω, objects Γ
and locks L, written lockedψ(x.f ,Ω, Γ, L), if we hold a lock on field f on every
path in the local heap, and furthermore there are no paths to x outside the local
heap. Formally,

lockedψ(x.f ,Ω, Γ, L) ::= x ∈ Γ ∧ ∀g. (Ω  x ∼ g =⇒ pathlockedψ(gf,Ω, L))
If the local heap Ω contains cycles, observe that there may be infinitely many
paths g and the predicate is well-defined in this case. To verify the absence of
paths to x from outside the local heap, it is sufficient to check that x ∈ Γ ,
because any object y �∈ Γ is outside the local heap and thus has no stable
fields and cannot form part of a path to x. Further, the definition of the locked
predicate implies that if there is no path from the root ρ to node x, then the
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fields of x are locked for any transaction with x ∈ Γ ; thus newly allocated objects
can be added to Γ without taking a lock since they are disconnected from the
global heap.

The judgement Ω,Γ, L ψ t;Ω′, Γ ′, L′ defined in Figure 8 captures the class
of well-locked tree operations. If the judgement holds, then a transaction that
executes operation t under stable observation set Ω, objects Γ , and lock set L
yields a new stable observation set Ω′, objects Γ ′ and lock set L′. The (TNew)

rule states that all of the fields of a newly allocated object x point to nil, and
since there can be no path to x in the heap all of x’s fields are stable and x ∈ Γ .
As before, the (TLock) rule allows a transaction to acquire a lock it does not
yet hold and has no affect on either Ω or Γ .

In the (TUnlock) rule, the stabilization operator is slightly more involved
than in the case of flat heaps, because we must compute not just the stable set
of heap facts, but also the set of objects for which the transaction has locked the
incoming path: if an edge x.f �→ y drops out of the stable observation set because
a lock is released, the transaction can no longer assume it holds locks on all of
the paths to object y. The stabilization (Ω′, Γ ′) of a local heap Ω0 and global
heap Γ0 under locks L and placement ψ, written (Ω′, Γ ′) = �Ω0;Γ0 | L;ψ�, is
the limit of the monotonically decreasing sequence:

Ωi+1 = {x.f �→ e ∈ Ωi | lockedψ(x.f,Ωi, Γi, L)} Γi+1 = Γi \ {y | x.f �→ y ∈ Ωi \Ωi+1}

Rule (TUnlock) requires that transactions maintain the forest condition

forest(Ω,Ω′, Γ, Γ ′) ::= ∀y.
(
|{x.f | (x.f �→ y) ∈ Ω \Ω′}| =

{
1 if y ∈ Γ \ Γ ′
0 otherwise

)
.

The forest condition ensures that a transaction may only release a pointer to a
node y into the global heap if there are no other references to y in the global
heap (y ∈ Γ ). Furthermore, the condition also ensures that a transaction cannot
release two or more pointers to the same location y into the global heap.

The rules (TObserve), (TRdUnstable), and (TRdStable) are similar to
the rules in Section 2, updated to reflect that the heap now involves objects and
fields. Note that (TRdStable) adds the object that is the target of the read to
Γ in the case that the field is not nil.

The most interesting rule is (TWrite). Writing a field x.f �→ y not only
changes the paths to y, it changes the paths to every object reachable from y.
Thus, as a result of a single field update, the placements may change for y and
edges reachable from y. Furthermore, fields no longer reachable from x.f after
the update also may have altered lock placements. For this reason a transaction
must hold locks on every edge reachable from x.f both before and after the
update. These conditions are necessary for safety, but need not be burdensome
if the lock placement has a suitable granularity. For example, if the subtrees
rooted at x and y are locked by the locks at x and y respectively, the update
requires two locks.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li, observation sets Ωi, and object sets Γ i such that L0 = Lk = ∅, Ω0 = ∅,
Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 ψ ti;Ωi, Γ i, Li for 1 ≤ i ≤ k. A well-locked
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transaction must begin with all three sets Ω, Γ , L empty. Furthermore at the
end of the transaction the set of locks L must be empty again, and hence a
transaction must release all of its locks. We do not require that Ω or Γ be empty
at the conclusion of a transaction; however since the transaction may not hold
any locks on termination, any part of the heap that is stable and in Ω with an
empty lock set cannot be reachable from the global heap and is garbage.

Lemma 3. Let s be a valid schedule of a set of well-locked transactions
{T1, . . . ,Tk}. Let Ωj

i , Γ
j
i , and Lj

i be the set of observations, objects, and locks
of each transaction after schedule step j. Let hj be the heap after schedule step
j, and suppose h0 is a forest. Then for all time steps j:
– the lock sets {Lj

i}k
i=1 are disjoint, the sets {Γ j

i }k
i=1 are disjoint,

– the observation sets {Ωj
i }k

i=1 are stable, have disjoint domains, and heap hj

is an extension of each {Ωj
i }k

i=1, and
– the global heap hj less edges present in the local heaps {Ωj

i }k
i=1 is a forest.

Further if x ∈ Γ j
i then all pointers to x are in some local heap Ωj

i′ .

Finally, we have a logical serializability lemma analogous to Lemma 2, which
can be extended to shared/exclusive locks as for flat heaps:

Lemma 4. Any valid schedule of a set of well-locked, logically two-phase tree
transactions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

4 Transactions on DAGs of Bounded Degree

At the core of the locking protocol of Section 3 is the invariant that the global
heap is a forest. Since lock placements are defined using access paths, for sound-
ness the locking protocol must show that a transaction holds locks that protect
an edge on every possible path. In a forest there is at most one path between
nodes.

In this section we show how to relax the forest restriction and apply lock
placements to a class of directed acyclic graph heaps with a bounded number of
paths to each node. The technical machinery developed so far remains almost
unchanged, with the exception that the forest condition is replaced by a condition
that allows for more paths to an object. One hurdle, however, is that we need
some way to describe the aliasing patterns in the heap, for otherwise it is not
possible to define what it means to be sound for any locking protocol. We use
a recent proposal for describing a large class of heaps with sharing [13], which
describe decomposition heaps whose shape matches a static description given by
a decomposition heap shape. We stress that our results are not limited to the
class of heaps described in [13]; our techniques could be applied analogously to
any number of other methods for describing the possible shapes of the heap. The
point is that we need some description of the sharing patterns in the heap, and
one good choice is to use decomposition heaps.
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(a) (b)
ρ

ŷ ẑ

ŵ

v̂

âpid b̂ns

ĉns d̂pid

êcpu

ρ

y1 y2 z1 z2

w1 w2 w3

v1 v2 v3

a1 a2 b1 b2

c1 c2 c1 d1 d2 d3

e1 e2 e3

Fig. 9. (a): A decomposition heap shape, and (b):
a decomposition heap that is an instance of decom-
position heap shape (a)

A decomposition heap shape
ĥ is a rooted, connected, di-
rected acyclic graph (V̂ , Ê) con-
sisting of a set of vertices V̂ =
{û, v̂, . . . } and a set of edges
Ê ⊆ V̂ × F̂ × V̂ labeled
with field names drawn from a
set F̂ . We require that every
edge in a decomposition shape
have a unique field label. Fig-
ure 9(a) gives a decomposition
heap shape describing the data
structures of a simple process

scheduler. Every process has associated fields pid (process id), ns (name space),
and the process’ assigned cpu; a pair of a pid and a ns uniquely identify a pro-
cess. To find the cpu of a particular process, we can first look up the the process
id by following edge âpid and then the process’ name space by following edge
ĉns, or we can first look up the name space by following edge b̂ns and then the
process id by following edge d̂pid. For a given pair of process id and name space,
the shared node ŵ in the decomposition shape assures us we will get the same
result regardless of which path we take.

A decomposition shape is a static description of a class of heaps. Let in(v̂) be
the set of field names incoming to v̂ in a decomposition and let out(v̂) be the set
of outgoing field names. A heap (V,E) is an instance of a decomposition d̂ if
– every vertex in V is an instance vi of some vertex v̂ ∈ V̂ ,
– every edge (ui, fj, vk) ∈ E is an instance of some (û, f̂ , v̂) ∈ Ê, and
– every vertex vi has exactly one instance fi of every incoming edge f̂ ∈ in(v̂).

These conditions are a relaxation of usual definition of a valid instance [13],
but suffice for our purposes. The last condition provides a bound on the in-
degree of a vertex, which is the key to applying path-based lock placements to
decomposition heaps. Figure 9(b) shows a heap that is an instance of the process
scheduler decomposition shape of Figure 9(a). The nodes are objects in memory.
Every edge f̂ from a vertex û to a vertex v̂ of the decomposition shape has a
corresponding set of edges {f1, f2, · · · } outgoing from any instance ui of û in
a decomposition heap. Intuitively, each vertex (object) u has a container data
structure called f that contains references to a set of instances of v̂. For example
in Figure 9(b), the root object ρ has a set of process id’s (the ai) and a set
of name spaces (the bi). Note how the decomposition shape in Figure 9(a) is
replicated across a number of different instances in Figure 9(b) with the stated
sharing properties.

The well-lockedness rules defined below quantify over all suffixes of a path f . To
keep our transaction-language small, we require that the set of possible instances
fi of each abstract edge f̂ be drawn from a bounded set; that is i ∈ {1, . . . , k} for
some k. The bounded set restriction can be lifted by extending the transaction
language with an iteration operation that allows a transaction to iterate over all
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(a) 1: lock ρ 9: wr(y2.c7, w4) (b) 1: rd(ρ.a2) = y2 9: rd(y2.c7) = nil
2: rd(ρ.a2) = y2 10:wr(z2.d5, w4) 2: lock y2 10:rd(z2.c5) = nil
3: rd(ρ.b2) = z2 11:unlock ρ 3: rd(ρ.a2) = y2 11:w4 = new ŵ
4: obs(ρ.a2) = y2 4: obs(ρ.a2) = y2 12:wr(y2.c7, w4)
5: obs(ρ.b2) = z2 5: rd(ρ.b2) = z2 13:wr(z2.d5, w4)
6: rd(y2.c7) = nil 6: lock z2 14:unlock z2
7: rd(z2.d5) = nil 7: rd(ρ.b2) = z2 15:unlock y2
8: w4 = new ŵ 8: obs(ρ.b2) = z2

Fig. 10. Example transactions that add a new node w4 with access paths a2c7 and b2d5

to the decomposition heap instance shown in Figure 9(b), under (a) lock placement
ψ1(f) = ε, and (b) lock placement ψ3(f) = ai if ai � f , and bj if bj � f .

instances of an edge from a vertex; the addition of iteration allows the rules to
conclude the a fact holds for all instances of an abstract edge f̂ .

The transaction operations on DAGs are similar to those on trees (Section 3).
The operations (Figure 11), are: write an expression e (either nil or some vk to
field fj of object ui (wr(ui.fj, e))), a possibly unstable read of field fj of object
ui yielding result e (rd(ui.fj) = e), a logical observation of field fj of object ui

yielding e (obs(ui.fj) = e), allocation of a fresh object of type v̂ (vi = new v̂),
locking an object (lock vi), and unlocking an object (unlock vi).

4.1 Lock Placements

Lock placements are defined exactly as in the tree case: ψ is a function from
non-empty heap paths to paths, which maps every edge in a heap to an object
whose lock protects it. Because edges may now have multiple paths that reach
them, a transaction must hold locks on all paths to an edge to perform a stable
read or to write the edge.

We now illustrate some of the possibilities for lock placements on decomposi-
tion heaps. For our standard first example, by setting ψ1(f) = ε for all f we can
use a single lock at the root of the heap to protect every edge in a decomposition
instance. Figure 10(a) shows a well-locked transaction that adds a fresh instance
of ŵ, namely w4, to the heap of Figure 9(b) under lock placement ψ1. Acquiring
the lock on ρ protects the entire heap graph; the transaction then adds w4 under
both the access path a2c7 and b2d5.

Another possibility is to use the placement ψ2(f) = ε if f ∈ {ai, bi, aicj , aidj},
aicj if f = aicjek, and bidj if f = bidjek which uses a lock at the root to protect
instances of edges â, b̂, ĉ, and d̂, and locks at instances of node ŵ to protect
instances of edge ê. Instances of edge ê can be reached by two different paths,
and thus to observe ê a transaction must acquire locks on both paths.

Finally, we can use a speculative lock placement. We could protect instances
of edges â and b̂ using speculative locks placed at their targets, and use locks at
y and z to protect edges ĉ, d̂, and ê, via the lock placement ψ3(f) = ai if ai �
f , and bj if bj � f . Figure 10(b) again shows a transaction that adds a fresh
instance w4 of node ŵ, this time under the speculative lock placement ψ3.
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ψ ⊆ 2f̂ → 2f̂ placements ui, vj ,V object names û, v̂ vertices

e ::= nil | vi expressions ω ::= ui.f �→ e heap assertions f̂ , f̂ , fi, f fields
t ::= wr(ui.f , e) | obs(ui.f) = e | rd(ui.f) = e | vi = new v̂ | lock vi | unlock vi ops.

Fig. 11. Decomposition transactions

4.2 Well-Locked Transactions

As in the case of tree heaps we represent the state of a transaction using three
sets: Ω (the local stable heap), L (the held set of locks), and Γ . Sets Ω and L
are defined as for trees, but we extend the definition of Γ to DAGs with sharing.

The purpose of Γ is to track objects for which the transaction holds locks
on incoming edges. In particular, if a transaction does not hold locks on some
incoming edges to an object o, then there may be a path from the global heap
to o and the transaction cannot rely on the stability of o’s fields. Thus Γ is
the transaction’s view of the global heap and what other transactions might be
able to do to objects of interest to the transaction. The global heap view Γ is
a mapping from each vertex vi in the heap to the subset of the incoming edge
labels of the decomposition in(v̂) known to be absent from the global heap (i.e.,
either non-existent or locked by the transaction). We maintain the invariant that
in the global heap there is at most one edge to any instance of a decomposition
vertex v̂ labeled with an instance of each f̂ ∈ in(v̂). If Γ (vi) = ∅, then vi may
have an instance of each incoming edge in in(f̂) in the global heap. If Γ (vi) = {f̂}
then v has no incoming edge in the global heap labeled with an instance of f̂ . If
Γ (v) = in(v̂) then v has no incoming edges from the global heap.

As before, we hold the lock on an edge reached via a path if we hold the path’s
corresponding lock placement, restricted to the heap:

pathlockedψ(f , Ω, L) ::= ∃vi ∈ L. Ω  g ∼ vi ∧ ψ(f)|Ω = g,
where fΩ is the restriction of path f to heap Ω, defined in Section 3.

The judgement Ω,Γ  exposed(x) holds if there may be a path to vertex x in
the heap that does not lie entirely in the stable observation set Ω; the judgement
is defined by the inference rules:

Γ (vk) �= in(v̂)

Ω,Γ 	 exposed(vk)

Ω,Γ 	 exposed(ui) ∧ (ui.fj �→ vk) ∈ Ω

Ω,Γ 	 exposed(vk)

We hold the lock on a field x.f if we hold a lock on that field on every path in
the local heap, and there are no paths to x outside the local heap:

lockedψ(vi.fj , Ω, Γ, L) ::= ¬exposed(vi) ∧ ∀g. (Ω 	 g ∼ vi =⇒ pathlockedψ(gfj , Ω, L))

The judgement Ω,Γ, L ψ t;Ω′, Γ ′, L′ defined by the rules in Figure 12 describes
the class of well-locked decomposition operations, analogous to the class of well-
locked tree operations of Section 3. The judgement holds if a transaction exe-
cuting operation t under local heap Ω, global heap approximation Γ , and locks
L yields an updated local heap Ω′, global heap approximation Γ ′, and lock set
L′. The (DNew) rule states that the fields of a newly allocated object vi point
to nil; furthermore there can be no heap paths to a freshly allocated object so
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DNew Ω′ = Ω ∪ {vi.fj �→ nil | f̂ ∈ out(v̂)}
vi /∈ domΩ Γ ′ = Γ [vi �→ in(v̂)] vi /∈ domΓ

Ω, Γ, L �ψ vi = new v̂;Ω′, Γ ′, L

DLock vi /∈ L
Ω, Γ, L �ψ lock vi;Ω,Γ, L ∪ {vi}

DUnlock vi ∈ L L′ = L \ {vi}
(Ω′, Γ ′) = �Ω;Γ | L′;ψ� balias(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L �ψ unlock vi;Ω
′, Γ ′, L′

DObserve (ui.fj �→ e) ∈ Ω
Ω,Γ, L �ψ obs(ui.fj) = e;Ω,Γ, L

DRdUnstable

ui.fj /∈ domΩ
Ω′ = Ω ∪ {ui.fj �→ e}
¬lockedψ(ui.fj , Ω

′, Γ, L)
Ω,Γ, L �ψ rd(ui.fj) = e;Ω,Γ, L

DRdStable ui.fj /∈ domΩ
Ω′ = Ω ∪ {ui.fj �→ e} lockedψ(ui.fj , Ω

′, Γ, L)

Γ ′ =
{

Γ if e = nil
Γ [vi �→ Γ (vi) ∪ {f̂}] if e = vi

Ω,Γ, L �ψ rd(ui.fj) = e;Ω′, Γ ′, L

DWrite ui.fj ∈ domΩ Ω′ = Ω[ui.fj �→ e](∀g,h. (Ω � g ∼ ui) ∧ gf � ψ(h) =⇒ pathlockedψ(h, Ω, L) ∧ pathlockedψ(h, Ω′, L)
)

Ω,Γ, L �ψ wr(ui.fj , e);Ω
′, Γ, L

Fig. 12. Well-locked decomposition operations: judgement Ω,Γ,L 	ψ t;Ω′, Γ ′, L′

assertions about the fields of vi are stable and Γ (vi) = in(v̂). The (DLock) rule
allows a transaction to acquire a lock that it does not hold at any time.

The (DUnlock) rule allows a transaction to release any lock that it holds;
the rule applies the stabilization operation to remove any newly unstable facts
from Ω. Similar to the tree case, the stabilization (Ω′, Γ ′) of a local heap Ω0 and
global heap Γ0 under locks L and placement ψ, written (Ω′, Γ ′) = �Ω0;Γ0 | L;ψ�,
is the limit of the monotonically decreasing sequence:

Ωi+1 = {uj .fk �→ e ∈ Ωi | lockedψ(uj .fk, Ωi, Γi, L)}
Γi+1 = Γi \ {vk �→ f̂ | ui.fj �→ vk ∈ Ωi \Ωi+1}

To ensure there is at most instance of any edge f̂ ∈ in(v̂) in the global heap,
the rule requires the bounded alias condition balias(Ω,Ω′, Γ, Γ ′), defined as

∀vk. |{ui.fj | (ui.fj �→ vk) ∈ Ω \Ω′}| = 1, if f̂ ∈ Γ (vk) \ Γ ′(vk) or 0, otherwise.

The bounded alias condition ensures that a transaction may only release an
edge with abstract label f̂ to a node vk into the global heap if there are no other
edges to vk labeled f̂ in the global heap (f̂ ∈ Γ (vk)). The condition also forbids
releasing two pointers with the same label f̂ to the same node vk into the heap.

Rule (DObserve) states that a transaction may logically observe stable heap
facts. The (DRdUnstable) rule allows a transaction to read a value specula-
tively at any time, however unstable reads do not update Ω or Γ . A transaction
may perform a stable read of a pointer if it holds the appropriate lock, transfer-
ring the pointer from the global heap into Ω and updating Γ accordingly. Finally,
a transaction may write to a field if it holds the associated lock and holds locks
on any edges whose logical/physical mapping may change due to the update.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets
Li, observation sets Ωi, and global heap sets Γ i such that L0 = Lk = ∅, Ω0 = ∅,
Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 ψ ti;Ωi, Γ i, Li for 1 ≤ i ≤ k.
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Lemma 5. Let s be a valid schedule of well-locked transactions {T1, . . . ,Tk}.
Let Ωj

i , Γ
j
i , and Lj

i be the set of observations, global heaps, and locks of each
transaction after schedule step j. Let hj be the heap after schedule step j, and
suppose the part of h0 reachable from the root is a tree. Then for all time steps
j:
– the lock sets {Lj

i}k
i=1 are disjoint, and the non-alias sets {Γi}k

i=1 are disjoint,
– the observation sets {Ωj

i }k
i=1 are stable, disjoint, and heap hj is an extension

of each {Ωj
i }k

i=1, and
– Let heap h be the heap hj less edges present in the local heaps {Ωj

i }k
i=1. Then

for every vertex v ∈ h and edge label f̂ ∈ in(v̂) either there is exactly one
edge labeled with an instance of f̂ pointing to v in h, or f̂ ∈ Γ j

i for some i
and there are no edges labeled with an instance of f̂ pointing to v in h.

Finally, we have a logical serializability lemma similar to Lemma 2 and Lemma 4,
which can be extended to shared/exclusive locks using the approach in
Section 2.4.

Lemma 6. Any valid schedule of well-locked, logically two-phase decomposition
transactions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

5 Related Work

Two-phase locking was originally introduced in the context of transactions op-
erating over abstract entities, each with its own associated lock [8]. The core
technical idea of this paper is that we can use two-phase locking to show seri-
alizability of a wide class of locking strategies by adding a layer of indirection
between logical locks, which are the entities that are the subject of the original
two-phase locking protocol, and the physical locks that implement them. Other
authors have also advocated more logical notions of locking [5].

Various authors have investigated techniques for inferring locks to implement
atomic sections [16,14,7,11,3,4,20]. A related problem is automatically optimizing
programs with explicit locking by combining multiple locks into one [6]. A key
part of this class of work is constructing a mapping from program objects to
the locks that protect them, similar to our lock placement language. The lock
placements we propose are much more flexible; in particular existing formalisms
cannot handle the class of path placements we propose in this paper, such as
speculative locks, or lock placements that vary with heap updates. A possible
future application of our methods is extending lock inference techniques to take
advantage of the additional expressive power of our techniques.

A novel feature of our proposal is that we can reason about speculative lock
placements. Speculative locking is used in practice in highly concurrent libraries
and has appeared in the literature in the context of software transactional mem-
ory [2]. Although we present our ideas in the context of pessimistic locks, the
same idea can also be used to reason about speculative placements of STM
metadata.
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A variety of locking protocols have been proposed in the literature that ex-
tend two-phase locking to handle dynamically changing heaps and to allow early
release. Examples include the dynamic tree and DAG locking protocols [1] and
domination locking [9]. Existing protocols use the lock on each object to protect
that object’s fields, whereas our work investigates a more flexible space of map-
pings. We do not address early release as it is orthogonal to the issues of lock
placement.

The concept of a stable set and stabilization is related to rely-guarantee logic
[15] and its developments [19]. Concurrent extensions of separation logic, such
as Concurrent Separation Logic [17], RGSep [18] and work on storable locks [10]
allow local reasoning about programs with shared mutable state that is accessed
concurrently. Our work complements work on direct reasoning about concurrent
code; we propose a locking protocol, parameterized by a lock placement, by
which we can show conflict-serializability for code that obeys the protocol.

6 Conclusion

We have formalized lock placements, showing that such diverse concepts as lock
granularity, speculative locks, lock splitting and merging, and dynamically chang-
ing lock assignments can all be expressed using a lock placement that maps each
heap field to a lock that guards it. We described a series of proof systems for
showing that transaction traces are well-locked and therefore serializable, applied
to flat heaps, tree-structured heaps, and to DAG heaps with bounded degree.
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Abstract. We settle three basic questions that naturally arise when
verifying multi-stage functional programs. Firstly, does adding staging
to a language compromise any equalities that hold in the base language?
Unfortunately it does, and more care is needed to reason about terms
with free variables. Secondly, staging annotations, as the name “annota-
tions” suggests, are often thought to be orthogonal to the behavior of a
program, but when is this formally guaranteed to be true? We give ter-
mination conditions that characterize when this guarantee holds. Finally,
do multi-stage languages satisfy useful, standard extensional facts—for
example, that functions agreeing on all arguments are equivalent? We
provide a sound and complete notion of applicative bisimulation, which
establishes such facts or, in principle, any valid program equivalence.
These results greatly improve our understanding of staging, and allow
us to prove the correctness of quite complicated multi-stage programs.

1 Introduction

Multi-stage programming (MSP) allows programmers to write generic code with-
out sacrificing performance; programmers can write code generators that are
themselves generic but are staged to generate specialized, efficient code. Generic
codes are excellent targets for verification because they are verified only once and
used many times, improving modularity of the correctness proof. However, few
formal studies have considered verifying generators written with MSP, and MSP
research has predominantly focused on applications that confirm performance
benefits [5,4,12,8,6] and on type systems [28,17,32,16,29,30].

A key assumption behind the use of MSP is that it enhances performance while
preserving the structure of the code, and that it therefore does not interfere much
with reasoning [18,4]. The power function is a good example of MSP preserving
structure, presented here in MetaOCaml syntax.

let rec power n x = if n = 1 then x else x * power (n-1) x

let rec genpow n x = if n = 1 then x else .<.~x * .~(genpow (n-1) x)>.

let stpow n = .!.<fun z → .~(genpow n .<z>.)>.
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The power function subsumes all functions of the form fun x → x*x*...*x but
incurs recursive calls each time it is called. Staging annotations can eliminate this
overhead by unrolling the recursion in genpow. Brackets .<e>. delay an expres-
sion e. An escape .~e must occur within brackets and causes e to be evaluated
without delay. The e should return a code value .<e′>., and e′ replaces .~e. For
example if n = 2, the genpow n .<z>. in stpow returns a delayed multiplication
.<z*z>.. This is an open term, but MetaOCaml allows manipulation of open
terms under escapes. Run .!e compiles and runs the code generated by e, so
stpow 2 evaluates to the closure fun z → z*z, which has no recursion. These
annotations in MetaOCaml are hygienic (i.e., preserve static scoping [9]), but
are otherwise like LISP’s quasiquote, unquote, and eval [20].

This example is typical of MSP usage, where a staged program stpow is meant
as a drop-in replacement for the unstaged program power. Note that if we are
given only stpow, we can reconstruct the unstaged program power by erasing
the staging annotations from stpow—we say that power is the erasure of stpow.
Given the similarity of these programs, if we are to verify stpow, we naturally
expect stpow ≈ power to hold for a suitable equivalence (≈) and hope to get
away with proving that power satisfies whatever specifications it has, in lieu of
stpow. We expect power to be easier to tackle, since it has no staging annotations
and should therefore be amenable to conventional reasoning techniques designed
for single-stage programs. But three key questions must be addressed before we
can apply this strategy confidently:

Conservativity. Do all reasoning principles valid in a single-stage language carry
over to its multi-stage extension?

Conditions for Sound Erasure. In the power example, staging seems to preserve
semantics, but clearly this is not always the case: if Ω is non-terminating, then
.<Ω>. �≈ Ω for any sensible (≈). When do we know that erasing annotations
preserves semantics?

Extensional Reasoning. How, in general, do we prove equivalences of the form
e ≈ t? It is known that hygienic, purely functional MSP satisfies intensional
equalities like β [27], but are too weak to prove such properties as extensionality
(i.e., functions agreeing on all inputs are equivalent). Extensional facts like this
are indispensable for reasoning about functions, like stpow and power.

This paper settles these questions, focusing on the untyped, purely functional
case with hygiene. We work without types to avoid committing to the particulars
of any specific type system, since there are multiple useful type systems for MSP
[28,29,30]. It also ensures that our results apply to dynamically typed languages
[9]. Hygiene is widely accepted as a safety feature, and it ensures many of the nice
theoretical properties of MSP, which makes it easy to reason about programs,
and which we exploit in this study. We believe imperative MSP is not yet ready
for an investigation like this. Types are essential for having sane operational
semantics without scope extrusion [16], but there is no decisive solution to this
problem, and the jury is still out on many of the trade-offs. The foundations
for imperative hygienic MSP does not seem to have matured to the level of the
functional theory that we build upon here.
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1.1 Contributions

We extend previous work on the call-by-name (CBN) multi-stage λ calculus, λU

[27], to cover call-by-value (CBV) as well (Section 2). In this calculus, we show
the following results.

Unsoundness of Reasoning Under Substitutions. Unfortunately, the answer to
the conservativity question is “no.” Because λU can express open-term manip-
ulation (see genpow above), equivalences proved under closing substitutions are
not always valid without substitution, for such a proof implicitly assumes that
only closed terms are interesting. We illustrate clearly how this pathology occurs
using the surprising fact (λ .0) x �≈ 0, and explain what can be done about it
(Section 3). The rest of the paper will show that a lot can be achieved despite
this drawback.

Conditions for Sound Erasure. We show that reductions of a staged term are
simulated by equational rewrites of the term’s erasure. This gives simple termi-
nation conditions that guarantee erasure to be semantics-preserving (Section 4).
Considering CBV in isolation turns out to be unsatisfactory, and borrowing CBN
facts is essential in establishing the termination conditions for CBV. Intuitively,
this happens because annotations change the evaluation strategy, and the CBN
equational theory subsumes reductions in all other strategies whereas the CBV
theory does not.

Soundness of Extensional Properties. We give a sound and complete notion of
applicative bisimulation [1,10] for λU . Bisimulation gives a general extensional
proof principle that, in particular, proves extensionality of λ abstractions. It also
justifies reasoning under substitutions in some cases, limiting the impact of the
non-conservativity result (Section 5).

Throughout the paper, we emphasize the general insights about MSP that we
can gain from our results. The ability to verify staged programs fall out from
general principles, which we will demonstrate using the power function as a
running example. A technical report [14] gives proof details and discussions that
we cut out due to space limitations. This paper is intelligible by itself, but we
note throughout the paper what additional information to expect in the report.

The most substantial additional material in the report is a correctness proof of
the longest common subsequence (LCS) algorithm, meant for readers who wish
to see how the erasure idea fares on more complex programs than power. LCS uses
a sophisticated code-generation scheme that requires let-insertion coupled with
continuation-passing style (CPS) and monadic memoization [26]. These features
make an exact description of the generated code hard to pin down; nonetheless,
a proof similar to that of power can be adapted fairly straightforwardly.

2 The λU Calculus: Syntax, Semantics, and Equational
Theory

This section presents the multi-stage λ calculus λU . This is a simple but ex-
pressive calculus that models all possible uses of brackets, escape, and run in
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Levels 	,m ∈ N Variables x, y ∈ Var Constants c, d ∈ Const

Expressions e, t ∈ E ::= c | x | λx.e | e e | 〈e〉 | ˜e | ! e
Exact Level lv : E → N where

lv x
def
= 0 lv c

def
= 0

lv(λx.e)
def
= lv e

lv(e1 e2)
def
= max(lv e1, lv e2)

lv〈e〉 def
= max(lv e− 1, 0)

lv(˜e)
def
= lv e + 1

lv(! e)
def
= lv e

Stratification e�, t� ∈ E� def
= {e : lv e ≤ 	}

Values u0, v0 ∈ V 0 ::= c | λx.e0 | 〈e0〉
u�+1, v�+1 ∈ V �+1 ::= e�

Programs p ∈ Prog
def
= {e0 : FV(e0) = ∅}

Contexts C ∈ Ctx ::= • | λx.C | C e | e C | 〈C〉 | ˜C | !C

Fig. 1. Syntax of λU , parametrized in a set of constants Const

MetaOCaml’s purely functional core, sans types. The syntax and operational
semantics of λU for both CBN and CBV are minor extensions of previous work
[27] to allow arbitrary constants. The CBN equational theory is more or less as
in [27], but the CBV equational theory is new.

Notation. A set S may be marked as CBV (Sv) or CBN (Sn) if its definition
varies by evaluation strategy. The subscript is dropped in assertions and defini-
tions that apply to both evaluation strategies. Syntactic equality (α equivalence)
is written (≡). The set of free variables in e is written FV(e). For a set S, we
write Scl to mean {e ∈ S : FV(e) = ∅}.

2.1 Syntax and Operational Semantics

The syntax of λU is shown in Figure 1. A term is delayed when more brackets
enclose it than do escapes, and a program must not have an escape in any non-
delayed region. We track levels to model this behavior. A term’s exact level lv e
is its nesting depth of escapes minus brackets, and a program is a closed, exactly
level-0 term. A level-0 value (i.e., a value in a non-delayed region) is a constant, an
abstraction, or a code value with no un-delayed region. At level � > 0 (i.e., inside
� pairs of brackets), a value is any lower-level term. Throughout the article, “the
set of terms with exact level at most �”, written E�, is a much more useful concept
than “the set of terms with exact level exactly �”. When we say “e has level �” we
mean e ∈ E�, whereas “e has exact level �” means lv e = �. A context C is a term
with exactly one subterm replaced by a hole •, and C[e] is the term obtained
by replacing the hole with e, with variable capture. Staging annotations use the
same nesting rules as LISP’s quasiquote and unquote [9], but we stress that they
preserve scoping: e.g., 〈λx.˜(λx.〈x〉)〉 ≡ 〈λx.˜(λy.〈y〉)〉 �≡ 〈λy.˜(λx.〈y〉)〉.

A term is unstaged if its annotations are erased in the following sense; it is
staged otherwise. The power function is the erasure of stpow modulo η
reduction.
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Evaluation Contexts (Productions marked [φ] apply only if the guard φ is true.)
(CBN) E�,m ∈ ECtx�,mn ::= •[m = 	] | λx.E�,m[	 > 0] | 〈E�+1,m〉 | ˜E�−1,m[	 > 0]

| ! E�,m | E�,m e� | v� E�,m[	 > 0] | c E�,m[	 = 0]

(CBV) E�,m ∈ ECtx�,mv ::= •[m = 	] | λx.E�,m[	 > 0] | 〈E�+1,m〉 | ˜E�−1,m[	 > 0]

| ! E�,m | E�,m e� | v� E�,m

Substitutable Arguments a, b ∈ Arg ::= v0 (CBV) a, b ∈ Arg ::= e0 (CBN)

Small-steps e� 	
�

t� where:

SS-β

(CBN)

(λx.e0) t0 	
0

[t0/x]e0

SS-βv

(CBV)

(λx.e0) v0 	
0

[v0/x]e0

SS-δ
(c, d) ∈ dom δ

c d 	
0

δ(c, d)

SS-E

˜〈e0〉 	
1

e0

SS-R

! 〈e0〉 	
0

e0

SS-Ctx

em 	m tm

E�,m[em] 	
�
E�,m[tm]

Fig. 2. Operational semantics of λU , parametrized in an interpretation (partial) map
δ : Const× Const ⇀ {v ∈ V 0

cl : v ≡ ‖v‖}

Definition 1 (Erasure). Define the erasure ‖e‖ by

‖x‖ def≡ x ‖c‖ def≡ c

‖e1 e2‖
def≡ ‖e1‖ ‖e2‖

‖λx.e‖ def≡ λx.‖e‖

‖〈e〉‖ def≡ ‖e‖

‖˜e‖ def≡ ‖e‖

‖! e‖ def≡ ‖e‖

The operational semantics is given in Figure 2; examples are provided below.
Square brackets denote guards on grammatical production rules; for instance,
ECtx�,mn ::= •[m = �] | . . . means • ∈ ECtx�,mn iff m = �. An �,m-evaluation
context E�,m takes a level-m redex and yields a level-� term. Redex contractions
are: β reduction at level 0, δ reduction at level 0, run-bracket elimination at
level 0, and escape-bracket elimination at level 1. CBN uses SS-β and CBV uses
SS-βv. All other rules are common to both evaluation strategies.

Small-steps specify the behavior of deterministic evaluators. Every term de-
composes in at most one way as E�,m[t] where t is a level-m redex, and the
small-step reduct is unique if it exists. The δ reductions are given by a partial
map δ : Const × Const ⇀ {v ∈ V 0

cl : v ≡ ‖v‖}, which is undefined for ill-formed
pairs like δ(not, 5). We assume constant applications do not return staged terms.

The difference between CBV and CBN evaluation contexts is that CBV can
place the hole inside the argument of a level-0 application, but CBN can do
so only if the operator is a constant. This difference accounts for the fact that
CBV application is always strict at level 0, while CBN application is lazy if the
operator is a λ but strict if it is a constant. At level> 0, both evaluation strategies
simply walk over the syntax tree of the delayed term to look for escapes, including
ones that occur inside the arguments of applications.

Notation. We write λU
n % e �

�
t for a CBN small-step judgment and λU

v % e �
�
t

for CBV. We use similar notation for (⇓), (⇑), and (≈) defined below. For any
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relation R, let R∗ be its reflexive-transitive closure. The metavariables a, b ∈ Arg
will range over substitutable arguments, i.e., e0 for CBN and v0 for CBV.

For example, p1 ≡ (λy.〈40+ y〉) (1 + 1) is a program. Its value is determined by
(�
0
), which works like in conventional calculi. In CBN, λU

n % p1 �
0
〈40+(1+1)〉.

The redex (1+1) is not selected for contraction because (λy.〈40+y〉) • �∈ ECtx0,0n .
In CBV, (λy.〈40 + y〉) • ∈ ECtx0,0, so (1 + 1) is selected for contraction: λU

v %
p1 �

0
(λy.〈40 + y〉) 2 �

0
〈40 + 2〉.

Let p2 ≡ 〈λz.z (˜[(λ .〈z〉) 1])〉, where we used square brackets [ ] as paren-
theses to improve readability. Let e0 be the subterm inside square brackets. In
both CBN and CBV, p2 decomposes as E [e0], where E ≡ 〈λz.z (˜•)〉 ∈ ECtx0,0,
and e0 is a level-0 redex. Note the hole of E is under a binder and the redex
e0 is open, though p2 is closed. The hole is also in argument position in the
application z (˜•) even for CBN. This application is delayed by brackets, so
the CBN/CBV distinction is irrelevant until the delay is canceled by !. Hence,
p2 �

0
〈λz.z (˜〈z〉)〉 �

0
〈λz.z z〉.

As usual, this “untyped” formalism can be seen as dynamically typed. In
this view, ˜ and ! take code-type arguments, where code is a distinct type from
functions and base types. Thus 〈λx.x〉 1, 〈˜0〉, and ! 5 are all stuck. Stuckness
on variables like x 5 does not arise in programs for conventional languages be-
cause programs are closed, but in λU evaluation contexts can pick redexes under
binders so this type of stuckness does become a concern; see Section 3.

Remark. Binary operations on constants are modeled by including their par-
tially applied variants. To model addition we take Const ⊇ Z∪{+}∪{+k : k ∈ Z}
and set δ(+, k) = +k, δ(+k, k

′) = (the sum of k and k′). For example, in prefix
notation, (+ 3 5) �

0
(+3 5) �

0
8. Conditionals are modeled by taking Const ⊇

{(), true, false, if} and setting δ(if, true) = λa.λb.a () and δ(if, false) =
λa.λb.b (). Then, e.g., if true (λ .1) (λ .0) �

0
(λa.λb.a ()) (λ .1) (λ .0) �

0
∗ 1.

Definition 2 (Termination and Divergence). An e ∈ E� terminates to
v ∈ V � at level � iff e �

�
∗ v, written e ⇓� v. We write e ⇓� to mean ∃v. e ⇓� v. If

no such v exists, then e diverges (e ⇑�). Note that divergence includes stuckness.

The operational semantics induces the usual notion of observational equivalence,
which relate terms that are interchangeable under all program contexts.

Definition 3 (Observational Equivalence). e ≈ t iff for every C such that
C[e], C[t] ∈ Prog, C[e] ⇓0⇐⇒ C[t] ⇓0 holds and whenever one of them terminates
to a constant, the other also terminates to the same constant.

2.2 Equational Theory

The equational theory of λU is a proof system containing four inference rules:
compatible extension (e = t =⇒ C[e] = C[t]), reflexivity, symmetry, and tran-

sitivity. The CBN axioms are λU
n

def
= {β,EU , RU , δ}, while CBV axioms are
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λU
v

def
= {βv, EU , RU , δ}. Each axiom is shown below. If e = t can be proved from

a set of axioms Φ, then we write Φ % e = t, though we often omit the Φ % in def-
initions and assertions that apply uniformly to both CBV and CBN. Reduction
is a term rewrite induced by the axioms: Φ % e −→ t iff e = t is derivable from
the axioms by compatible extension alone.

Name Axiom Side Condition
β (λx.e0) t0 = [t0/x]e0

βv (λx.e0) v0 = [v0/x]e0

EU ˜〈e〉 = e
RU ! 〈e0〉 = e0

δ c d = δ(c, d) (c, d) ∈ dom δ

For example, axiom βv gives λU
v % (λ .0) 1 = 0. By compatible extension under

〈•〉, we have 〈(λ .0) 1〉 = 〈0〉, in fact 〈(λ .0) 1〉 −→ 〈0〉. Note 〈(λ .0) 1〉 ��
0

〈0〉 because brackets delay the application, but reduction allows all left-to-right
rewrites by the axioms, so 〈(λ .0) 1〉 −→ 〈0〉 nonetheless. Intuitively, 〈(λ .0) 1〉 ��

0
〈0〉 because an evaluator does not perform this rewrite, but 〈(λ .0) 1〉 −→ 〈0〉
because this rewrite is semantics-preserving and a static analyzer or optimizer
is allowed to perform it.

Just like the plain λ calculus, λU satisfies the Church-Rosser property, so
every term has at most one normal form (irreducible reduct). Church-Rosser also
ensures that reduction and provable equality are more or less interchangeable,
and when we investigate the properties of provable equality, we usually do not
lose generality by restricting our attention to the simpler notion of reduction.

Theorem 4 (Church-Rosser Property). e = e′ ⇐⇒ ∃t. e −→∗ t ←−∗ e′.

Provable equality is an approximation of observational equivalence. The con-
tainment (=) ⊂ (≈) is proper because (≈) is not semi-decidable (since λU is
Turing-complete) whereas (=) clearly is. There are several useful equivalences
in (≈) \ (=), which we will prove by applicative bisimulation. Provable equality
is nonetheless strong enough to discover the value of any term that has one, so
the assertion “e terminates (at level �)” is interchangeable with “e reduces to a
(level-�) value”.

Theorem 5 (Soundness). (=) ⊂ (≈).

Theorem 6. If e ∈ E�, v ∈ V �, then e ⇓� v =⇒ (e −→∗ v ∧ e = v) and
e = v ∈ V � =⇒ (∃u ∈ V �.u = v ∧ e −→∗ u ∧ e ⇓� u).

The CBN version of the equational theory given here is not identical to [27],
but generalizes the EU rule from ˜〈e0〉 = e0 to ˜〈e〉 = e. This minor gener-
alization comes in handy for eliminating redundant escapes and brackets. An
example is found in the proof that substitution preserves (≈):

Proposition 7. e ≈ t =⇒ [a/x]e ≈ [a/x]t.
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Proof. The idea is to plug e, t into the context (λx.•) a and to apply β/βv to
get [a/x]e = (λx.e) a ≈ (λx.t) a = [a/x]t. However, β/βv does not apply if e, t
are not level 0, so we have to make them level 0. Take � = max(lv e, lv t). Then

(λx.〈〈· · · 〈e〉 · · ·〉〉) a ≈ (λx.〈〈· · · 〈t〉 · · ·〉〉) a , (1)

where e and t are each enclosed in � pairs of brackets. Now β/βv applies, and
we get 〈〈· · · 〈[a/x]e〉 · · ·〉〉 ≈ 〈〈· · · 〈[a/x]t〉 · · ·〉〉. Escaping both sides � times gives

˜˜· · · ˜〈〈· · · 〈[a/x]e〉 · · ·〉〉 ≈ ˜˜· · · ˜〈〈· · · 〈[a/x]t〉 · · ·〉〉 . (2)

Then applying the EU rule � times gives [a/x]e ≈ [a/x]t. The old EU rule
˜〈e0〉 = e0 would apply only once here because the level of the 〈〈· · · 〈[a/x]e〉 · · ·〉〉
part increases—so the generalization is strictly necessary. 12

Theorem 7 shows that applying substitutions to an equivalence does not com-
promise its validity. This fact plays a role in the completeness proof of applicative
bisimulation (to be introduced in Section 5), but we will leave those details to
the technical report. The more interesting, and surprising, fact is that the con-
verse fails in λU

v—we cannot in general conclude e ≈ t from ∀a. [a/x]e ≈ [a/x]t.
We will discuss this issue in Section 3.

Remark. RU and β/βv cannot be generalized in a similar fashion as they in-
volve demotion—moving a term from one level to another. If we generalized RU

to ! 〈e〉 = e, the e on the left appears in more brackets than on the right, so on
the left we need more escapes than on the right to un-delay a subterm of e. For
instance, if t is some divergent level-0 term, 〈! 〈˜t〉〉 = 〈˜t〉 is an instance of the
generalized RU rule, but 〈! 〈˜t〉〉 ⇓0 while 〈˜t〉 ⇑0. The correct RU rule avoids this
problem by restricting e to level 0, thus ! 〈e0〉 = e0. The technical report proves
that equational rules entailing unrestricted demotion are always unsound.

3 Closing Substitutions Compromise Validity

Here is a striking example of how reasoning in λU differs from reasoning in
single-stage calculi. Traditionally, CBV calculi admit the equational rule

(βx) (λy.e0) x = [x/y]e0 .

Plotkin’s seminal λV [22], for example, does so implicitly by taking variables to
be values, defining x ∈ V where V is the set of values for λV . But βx is not ad-
missible in λU

v . For example, the terms (λ .0) x and 0 may seem interchangeable,

but in λU
v they are distinguished by the program context E def≡ 〈λx.˜[(λ .〈1〉) •]〉:

〈λx.˜[(λ .〈1〉) ((λ .0) x)]〉 ⇑0 but 〈λx.˜[(λ .〈1〉) 0]〉 ⇓0 〈λx.1〉 . (3)

(Once again, we are using [ ] as parentheses to enhance readability.) The term on
the left is stuck because x �∈ V 0 and x ��

0
. Intuitively, the value of x is demanded
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before anything is substituted for it. If we apply a substitution σ that replaces
x by a value, then σ((λ .0) x) = σ0, so the standard technique of reasoning
under closing substitutions is unsound. Note the βx redex itself need not contain
staging annotations; thus, adding staging to a language can compromise some
existing equivalences, i.e., staging is a non-conservative language extension.

The problem here is that λU
v can evaluate open terms. Some readers may

recall that λV reduces open terms just fine while admitting βx, but the crucial
difference is that λU evaluates (small-steps) open terms under program contexts
whereas λV never does. Small-steps are the specification for implementations,
so if they can rewrite an open subterm of a program, implementations must be
able to perform that rewrite as well. By contrast, reduction is just a semantics-
preserving rewrite, so implementations may or may not be able to perform it.

Implementations of λU
v including MetaOCaml have no runtime values, or data

structures, representing the variable x—they implement x �∈ V 0. They never
perform (λ .0) x �

0
0, for if they were forced to evaluate (λ .0) x, then they

would try to evaluate the x as required for CBV and throw an error. Some
program contexts in λU do force the evaluation of open terms, e.g., the E given
above. We must then define a small-step semantics with (λ .0) x ��

0
0, or else

we would not model actual implementations, and we must reject βx, for it is
unsound for (≈) in such a small-step semantics. In other words, lack of βx is an
inevitable consequence of the way practical implementations behave.

Even in λV , setting x ∈ V is technically a mistake because λV implemen-
tations typically do not have runtime representations for variables either. But
in λV , whether a given evaluator implements x ∈ V or x �∈ V is unobservable.
Small-steps on a λV program (which is closed by definition) never contract open
redexes because evaluation contexts cannot contain binders. Submitting pro-
grams to an evaluator will never tell if it implements x ∈ V or x �∈ V . Therefore,
in λV , there is always no harm in pretending x ∈ V . A small-step semantics with
x ∈ V gives the same (≈) as one with x �∈ V , and βx is sound for this (≈).

Now, the general, more important, problem is that reasoning under substitu-
tions is unsound, i.e., ∀σ. σe ≈ σt =⇒� e ≈ t. The lack of βx is just an example of
how this problem shows up in reasoning. We stress that the real challenge is this
more general problem with substitutions because, unfortunately, βx is not only
an illustrative example but also a tempting straw man. Seeing βx alone, one may
think that its unsoundness is some idiosyncrasy that can be fixed by modifying
the calculus. For example, type systems can easily recover βx by banishing all
stuck terms including βx redexes. But this little victory over βx does not justify
reasoning under substitutions, and how or whether we can achieve the latter is a
much more difficult question. It is unclear if any type systems justify reasoning
under substitutions in general, and it is even less clear how to prove that.

Surveying which refinements (including, but not limited to the addition of
type systems) for λU let us reason under substitutions and why is an important
topic for future study, but it is beyond the scope of this paper. In this paper,
we focus instead on showing that we can achieve a lot without committing to
anything more complicated than λU . In particular, we will show with applicative
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bisimulation (Section 5) that the lack of βx is not a large drawback after all, as
a refined form of βx can be used instead:

(Cβx) λx.C[(λy.e0) x] = λx.C[[x/y]e0] ,

with the side conditions that C[(λy.e0) x], C[[x/y]e0] ∈ E0 and that C does not
shadow the binding of x. Intuitively, given just the term (λy.e0) x, we cannot
tell if x is well-leveled, i.e., bound at a lower level than its use, so that a value is
substituted for x before evaluation can reach it. Cβx remedies this problem by
demanding a well-leveled binder. As a special case, βx is sound for any subterm in
the erasure of a closed term—that is, the erasure of any self-contained generator.

4 The Erasure Theorem

In this section we present the Erasure Theorem for λU and derive simple termi-
nation conditions that guarantee e ≈ ‖e‖.

4.1 Theorem Statement

The theorem statement differs for CBN and CBV. Let us see CBN first. The in-
tuition behind the theorem is that all that staging annotations do is to describe
and enforce an evaluation strategy. They may force CBV, CBN, or some other
strategy that the programmer wants, but CBN reduction can simulate any strat-
egy because the redex can be chosen from anywhere.1 Thus, erasure commutes
with CBN reductions (Figure 3(a)). The same holds for provable equalities.

Theorem 8 (CBN Erasure). If λU
n % e −→∗ t then λU

n % ‖e‖ −→∗ ‖t‖. Also,
if λU

n % e = t then λU
n % ‖e‖ = ‖t‖.

How does this Theorem help prove equivalences of the form e ≈ ‖e‖? The theo-
rem gives a simulation of reductions from e by reductions from ‖e‖. If e reduces
to an unstaged term ‖t‖, then simulating that reduction from ‖e‖ gets us to
‖‖t‖‖, which is just ‖t‖; thus e −→∗ ‖t‖ ←−∗ ‖e‖ and e = ‖e‖. Amazingly,
this witness ‖t‖ can be any reduct of e, as long as it is unstaged! In fact, by
Church-Rosser, any t with e = ‖t‖ will do. So staging is correct (i.e., semantics-
preserving, or e ≈ ‖e‖) if we can find this ‖t‖. As we will show in Section 4.2,
this search boils down to a termination check on the generator.

Lemma 9 (CBN Correctness). (∃t. λU
n % e = ‖t‖) =⇒ λU

n % e = ‖e‖.

CBV satisfies a property similar to Theorem 8, but the situation is more subtle.
Staging modifies the evaluation strategy in CBV as well, but not all of them can
be simulated in the erasure by CBV reductions, for βv reduces only a subset

1 This only means that reductions under exotic evaluation strategies are semantics-
preserving rewrites under CBN semantics. CBN evaluators may not actually perform
such reductions unless forced by staging annotations.
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λU
n % e −−−−→∗ t

‖−‖
⏐⏐� ⏐⏐�‖−‖

λU
n % ‖e‖ −−−−→∗ ‖t‖
(a) CBN erasure.

λU
v % e −−−−→∗ t

‖−‖
⏐⏐� ⏐⏐�‖−‖

λU
n % ‖e‖ −−−−→∗ ‖t‖
(b) CBV erasure.

λU
v %

λU
n

�
e c∥∥∥

λU
v % ‖e‖ d

(c) CBV correctness lemma.

Fig. 3. Visualizations of the Erasure Theorem and the derived correctness lemma

of β redexes. For example, if Ω ∈ E0 is divergent, then (λ .0) 〈Ω〉 −→ 0 in
CBV, but the erasure (λ .0) Ω does not CBV-reduce to 0 since Ω is not a value.
However, it is the case that λU

n % (λ .0) Ω −→ 0 in CBN. In general, erasing
CBV reductions gives CBN reductions (Figure 3(b)).

Theorem 10 (CBV Erasure). If λU
v % e −→∗ t then λU

n % ‖e‖ −→∗ ‖t‖. Also,
if λU

v % e = t then λU
n % ‖e‖ = ‖t‖.

This theorem has similar ramifications as the CBN Erasure Theorem, but with
the caveat that they conclude in CBN despite having premises in CBV. In par-
ticular, if e is CBV-equal to an erased term, then e = ‖e‖ in CBN.

Corollary 11. (∃t. λU
v % e = ‖t‖) =⇒ λU

n % e = ‖e‖.

CBN equalities given by this corollary may at first seem irrelevant to CBV pro-
grams, but in fact if we show that e and ‖e‖ CBV-reduce to constants, then the
CBN equality can be safely cast to CBV equality. Figure 3(c) summarizes this
reasoning. Given e, suppose we found some c, d that satisfy the two horizontal
CBV equalities. Then from the top equality, Theorem 11 gives the left vertical
one in CBN. As CBN equality subsumes CBV equality, tracing the diagram
counterclockwise from the top right corner gives λU

n % c = d in CBN. Then the
right vertical equality c ≡ d follows by the Church-Rosser property in CBN.
Tracing the diagram clockwise from the top left corner gives λU

v % e = ‖e‖.

Lemma 12 (CBV Correctness). If λU
v % e = c and λU

v % ‖e‖ = d, then
λU
v % e = ‖e‖.

Thus, we can prove e = ‖e‖ in CBV by showing that each side terminates to
some constant, in CBV. Though we borrowed CBN facts to derive this lemma,
the lemma itself leaves no trace of CBN reasoning.

4.2 Example: Erasing Staged Power

Let us show how the Erasure Theorem applies to stpow. First, some techni-
calities: MetaOCaml’s constructs are interpreted in λU in the obvious man-
ner, e.g., let x = e in t stands for (λx.t) e and let rec f x = e stands for
let f = Θ(λf.λx.e) where Θ is some fixed-point combinator. We assume λU has
integers and booleans. For conciseness, we treat top-level bindings genpow and
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stpow like macros, so ‖stpow‖ is the erasure of the recursive function to which
stpow is bound with genpow inlined, not the erasure of a variable named stpow.

As a caveat, we might want to prove stpow ≈ power but this goal is not
quite right. The whole point of stpow is to process the first argument without
waiting for the second, so it can disagree with power when partially applied, e.g.,
stpow 0 ⇑0 but power 0 ⇓0. We sidestep this issue for now by concentrating on
positive arguments, and discuss divergent cases in Section 5.2.

To prove k > 0 =⇒ stpow k = power k for CBN, we only need to check that
the code generator genpow k terminates to some .<‖e‖>.; then the .! in stpow

will take out the brackets and we have the witness required for Theorem 9. To
say that something terminates to .<‖e‖>. roughly means that it is a two-stage
program, which is true for almost all uses of MSP that we are aware of. This use
of the Erasure Theorem is augmented by the observation ‖stpow‖ = power—these
functions are not syntactically equal, the former containing an η redex.

Lemma 13. λU
n % ‖stpow‖ = power

Proof. Contract the η expansion by (CBN) β. 12

Proposition 14 (Erasing CBN Power). ∀k ∈ Z+. λU
n % stpow k = power k.

Proof. Induction on k gives some e s.t. genpow k .<x>. = .<‖e‖>., so

stpow k = .!.<fun x → .~(genpow k .<x>.)>.

= .!.<fun x → .~.<‖e‖>.>. = fun x → ‖e‖

hence stpow k = ‖stpow‖ k = power k by Lemmas 9 and 13. 12

The proof for CBV is similar, but we need to fully apply both stpow and its era-
sure to confirm that they both reach some constant. The beauty of Theorem 12
is that we do not have to know what those constants are. Just as in CBN, the
erasure ‖stpow‖ is equivalent to power, but note this part of the proof uses Cβx.

Lemma 15. λU
n % ‖stpow‖ ≈ power

Proof. Contract the η expansion by Cβx. 12

Proposition 16 (Erasing CBV Power). For k ∈ Z+ and m ∈ Z, λU
v %

stpow k m ≈ power k m.

Proof. We stress that this proof works entirely with CBV equalities; we have no
need to deal with CBN once Theorem 12 is established. By induction on k, we
prove that ∃e. genpow k .<x>. = .<‖e‖>. and [m/x]‖e‖ ⇓0 m′ for some m′ ∈ Z.
We can do so without explicitly figuring out what ‖e‖ looks like. The case k = 1
is easy; for k > 1, the returned code is .<x * ‖e′‖>.where [m/x]‖e′‖ terminates
to an integer by inductive hypothesis, so this property is preserved. Then

stpow k m = .!.<fun x → .~(genpow k .<x>.)>. m

= .!.<fun x → ‖e‖>. m = [m/x]‖e‖ = m′ ∈ Const.

Clearly power k m terminates to a constant. By Theorem 15, ‖stpow‖ k m also
yields a constant, so by Theorem 12, stpow k m = ‖stpow‖ k m ≈ power k m. 12
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These proofs illustrate our answer to the erasure question in the introduction.
Erasure is semantics-preserving if the generator terminates to 〈‖e‖〉 in CBN, or
if the staged and unstaged terms terminate to constants in CBV. Showing the
latter requires propagating type information and a termination assertion for the
generated code. Type information would come for free in a typed system, but it
can be easily emulated in an untyped setting. Hence we see that correctness of
staging generally reduces to termination not just in CBN but also in CBV—in
fact, the correctness proof is essentially a modification of the termination proof.

4.3 Why CBN Facts Are Necessary for CBV Reasoning

So far, we have let erasure map CBV equalities to the superset of CBN equalities
and performed extra work to show that the particular CBN equalities we derived
hold in CBV as well. A natural, alternative idea is to find a subset of CBV
reductions that erase to CBV reductions. This alternative approach does work
[31,14], but we show here that it only works in simple cases.

The problem with erasing CBV reductions is that the argument in a βv redex
may have a divergent erasure. If we restrict βv to

(βv⇓) (λx.e0) v0 = [v0/x]e0 provided λU
v % ‖v0‖ ⇓0 ,

which checks that the argument’s erasure terminates, then reductions under the

axiom set λU
v⇓

def
= {βv⇓, EU , RU , δ} erase to CBV reductions. But βv⇓ is much too

crude, for it cannot reduce (λy.e0) 〈x〉 (note x ⇑0) and fails to handle programs
as simple as stpow. A natural solution is to check carefulness under substitutions:

(βv⇓/σ) (λx.e0) v0 = [v0/x]e0 provided λU
v % σ‖v0‖ ⇓0 .

Ignoring some technical details, if we let λU
v⇓/σ

def
= {βv⇓/σ,EU , RU , δ} for any

substitution σ : Var ⇀
fin

V 0, then λU
v⇓/σ % e = t implies λU

v % σe = σt. This

observation suffices to verify stpow (see the technical report for a demonstration).
However, careful reductions quickly become unwieldy in the face of binders.

For instance, if we write let x = e in t as a shorthand for (λx.t) e, clearly

.!.<let y = 0 in let x = y in .~((λz.z) .<x+y>.)>.

is equivalent to its erasure. To prove this, we might observe that βv⇓/[0, 0/x, y] %
(λz.z) .<x+y>. = .<x+y>.; however, the “compatible extension”,

λU
v⇓/[0, 0/x, y] % let x = y in .~((λz.z) .<x+y>.) = . . . ,

does not hold because the x in λU
v⇓/[0, 0/x, y] cannot refer to the x bound in the

object term (else we would have to give up hygiene).
In general, we must reason under different substitutions in different scopes,

and it is tricky to propagate the results obtained under λU
v⇓/σ to an outer context

where some variables in σ may have gone out of scope. While it may not be
possible to pull off the bookkeeping, we find ourselves fighting against hygiene
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rather than exploiting it. In this sense, restricting CBV reductions gives a less
useful approach than appealing to CBN reasoning results, especially for programs
that generate nested binders. The longest common subsequence found in the
technical report is an example of such a generator.

5 Applicative Bisimulation

This section presents applicative bisimulation [1,10], a well-established tool for
analyzing higher-order functional programs. Bisimulation is sound and complete
for (≈), and justifies Cβx (Section 3) and extensionality, allowing us to handle
the divergence issues ignored in Section 4.2.

5.1 Proof by Bisimulation

Intuitively, for a pair of terms to applicatively bisimulate, they must both termi-
nate or both diverge, and if they terminate, their values must bisimulate again
under experiments that examine their behavior. In an experiment, functions are
called, code values are run, and constants are left untouched. Effectively, this
is a bisimulation under the transition system consisting of evaluation (⇓) and
experiments. If eRt implies that either e ≈ t or e,t bisimulate, then R ⊆ (≈).

Definition 17 (Relation Under Experiment). Given a relation R ⊆ E×E,

let R̃
def
= R ∪ (≈). For � > 0 set u R�

† v iff uR̃v. For � = 0 set u R0
† v iff either:

– u ≡ v ∈ Const,
– u ≡ λx.e and v ≡ λx.t for some e, t s.t. ∀a.([a/x]e)R̃([a/x]t), or

– u ≡ 〈e〉 and v ≡ 〈t〉 for some e, t s.t. eR̃t.

Definition 18 (Applicative Bisimulation). An R ⊆ E×E is an applicative
bisimulation iff every pair (e, t) ∈ R satisfies the following: let � = max(lv e, lv t);
then for any finite substitution σ : Var ⇀

fin
Arg we have σe ⇓�⇐⇒ σt ⇓�, and if

σe ⇓� u ∧ σt ⇓� v then u R�
† v.

Theorem 19. Given R ⊂ E×E, define R• def
= {(σe, σt) : eRt, (σ : Var ⇀

fin
Arg)}.

Then R ⊆ (≈) iff R• is an applicative bisimulation.

This is our answer to the extensional reasoning question in the introduction: this
theorem shows that bisimulation can in principle derive all valid equivalences,
including all extensional facts. Unlike in single-stage languages [1,13,10], σ ranges
over non-closing substitutions, which may not substitute for all variables or may
substitute open terms. Closing substitutions are unsafe since λU has open-term
evaluation. But for CBV, bisimulation gives a condition under which substitution
is safe, i.e., when the binder is at level 0 (in the definition of λx.e R0

† λx.t). In

CBN this is not an advantage as ∀a.[a/x]eR̃[a/x]t entails [x/x]eR̃[x/x]t, but
bisimulation is still a more approachable alternative to (≈).

The importance of the substitution in λx.e R0
† λx.t for CBV is best illustrated

by the proof of extensionality, from which we get Cβx introduced in Section 3.
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Proposition 20. If e, t ∈ E0 and ∀a. (λx.e) a ≈ (λx.t) a, then λx.e ≈ λx.t.

Proof. Take R
def
= {(λx.e, λx.t)}•. To see that R is a bisimulation, fix σ, and note

that σλx.e, σλx.t terminate to themselves at level 0. By Barendregt’s variable
convention [2], x is fresh for σ, thus σλx.e ≡ λx.σe and σλx.t ≡ λx.σt. We must
check [a/x]σe ≈ [a/x]σt: by assumption σ[a/x]e ≈ σ[a/x]t, and one can show
that σ and [a/x] commute modulo (≈). Hence by Theorem 19, λx.e ≈ λx.t. 12

Corollary 21 (Soundness of Cβx). If C[(λy.e0) x], C[[x/y]e0] ∈ E0 and C
does not bind x, then λx.C[(λy.e0) x] ≈ λx.C[[x/y]e0].

Proof. Apply both sides to an arbitrary a and use Theorem 20 with β/βv. 12

The proof of Theorem 20 would have failed in CBV had we defined λx.e R0
†

λx.t ⇐⇒ eR̃t, without the substitution. For when e ≡ (λ .0) x and t ≡ 0,
the premise ∀a.[a/x]e ≈ [a/x]t is satisfied but e �≈ t, so λx.e and λx.t do not
bisimulate with this weaker definition. The binding in λx.e ∈ E0 is guaranteed to
be well-leveled, and exploiting it by inserting [a/x] in the comparison is strictly
necessary to get a complete (as in “sound and complete”) notion of bisimulation.

Howe’s method [13] is used to prove Theorem 19, but adapting this method
to λU is surprisingly tricky because λU ’s bisimulation must handle substitutions
inconsistently: in Theorem 18 we cannot restrict our attention to σ’s that sub-
stitute away any particular variable, but in Theorem 17, for λx.e R0

† λx.t, we
must restrict our attention to the case where substitution eliminates x. Prov-
ing Theorem 19 entails coinduction on a self-referential definition of bisimula-
tion; however, Theorem 17 refers not to the bisimulation whose definition it is
a part of, but to a different bisimulation that holds only under substitutions
that eliminate x. To solve this problem, we recast bisimulation to a family of
relations indexed by a set of variables to be eliminated, so that the analogue of
Theorem 17 can refer to a different member of the family. Theorem 19 is then
proved by mutual coinduction. See the technical report for more details.

Remark. Extensionality is a common addition to the equational theory for the
plain λ calculus, usually called the ω rule [21,15]. But unlike ω in the plain λ
calculus, λU functions must agree on open-term arguments as well. This is no
surprise since λU functions do receive open arguments during program execution.
However, we know of no specific functions that fail to be equivalent because of
open arguments. Whether extensionality can be strengthened to require equiv-
alence only under closed arguments is an interesting open question.

Remark. The only difference between Theorem 18 and applicative bisimulation
in the plain λ calculus is that Theorem 18 avoids applying closing substitutions.
Given that completeness can be proved for this bisimulation, it seems plausible
that the problem with reasoning under substitutions is the only thing that makes
conservativity fail. Hence it seems that for closed unstaged terms, λU ’s (≈)
could actually coincide with that of the plain λ calculus. Such a result would
make a perfect complement to the Erasure Theorem, for it lets us completely
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forget about staging when reasoning about an erased program. We do not have
a proof of this conjecture, however. Conservativity is usually proved through a
denotational semantics, which is notoriously difficult to devise for hygienic MSP.
It will at least deserve separate treatment from this paper.

5.2 Example: Tying Loose Ends on Staged Power

In Section 4.2, we sidestepped issues arising from the fact that stpow 0 ⇑0 whereas
power 0 ⇓0. If we are allowed to modify the code, this problem is usually easy
to avoid, for example by making power and genpow terminate on non-positive ar-
guments. If not, we can still persevere by finessing the statement of correctness.
The problem is partial application, so we can force stpow to be fully applied
before it executes by stating power ≈ λn.λx.stpow n x.

Lemma 22. Let e′ ≈⇑ t′ mean e′ ≈ t′∨(σe′⇑�∧σt′⇑�) where � = max(lv e′, lv t′).
For a fixed e, t, if for every σ : Var ⇀

fin
Arg we have σe ≈⇑ σt, then e ≈ t.

Proof. Notice that {(e, t)}• is an applicative bisimulation. 12

Proposition 23 (CBN stpow is Correct). λU
n % power ≈ λn.λx.stpow n x.

Proof. We just need to show ∀e, t ∈ E0. power e t ≈⇑ stpow e t, because then
∀e, t ∈ E0. ∀σ : Var ⇀

fin
Arg. σ(power e t) ≈⇑ σ(stpow e t), whence power ≈

λn.λx.stpow n x by Theorem 22 and extensionality. So fix arbitrary, potentially
open, e, t ∈ E0, and split cases on the behavior of e. As evident from the following
argument, the possibility that e, t contain free variables is not a problem here.
[If e ⇑0 or e ⇓0 u �∈ Z+] Both power e t and stpow e t diverge.
[If e ⇓0 m ∈ Z+] Using Theorem 14, power e = power m ≈ stpow m = stpow e,

so power e t ≈ stpow e t. 12

Proposition 24 (CBV stpow is Correct). λU
v % power ≈ λn.λx.stpow n x.

Proof. By the same argument as in CBN, we just need to show power u v ≈⇑
stpow u v for arbitrary u, v ∈ V 0.
[If u �∈ Z+] Both power u v and stpow u v get stuck at if n = 0.
[If u ∈ Z+] If u ≡ 1, then power 1 v = v = stpow 1 v. If u > 1, we show that the

generated code is strict in a subexpression that requires v ∈ Z. Observe that
genpow u .<x>. ⇓0 .<e>. where e has the form .<x * t>.. For [v/x]e ⇓0 it is
necessary that v ∈ Z. It is clear that power u v ⇓0 requires v ∈ Z. So either
v �∈ Z and power u v ⇑0 and stpow u v ⇑0, in which case we are done, or v ∈ Z
in which case Theorem 16 applies. 12

Remark. Real code should not use λn.λx.stpow n x, as it re-generates and
recompiles code upon every invocation. Application programs should always use
stpow, and one must check (outside of the scope of verifying the function itself)
that stpow is always eventually fully applied so that the η expansion is benign.
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6 Related Works

Taha [27] first discovered λU , which showed that functional hygienic MSP admits
intensional equalities like β, even under brackets. However, [27] showed the mere
existence of the theory and did not explore how to use it for verification, or how to
prove extensional equivalences. Moreover, though [27] laid down the operational
semantics of both CBV and CBN, it gave an equational theory for only CBN
and left the trickier CBV unaddressed.

Yang pioneered the use of an “annotation erasure theorem”, which stated
e ⇓0 〈‖t‖〉 =⇒ ‖t‖ ≈ ‖e‖ [31]. But there was a catch: the assertion ‖t‖ ≈ ‖e‖
was asserted in the unstaged base language, instead of the staged language—
translated to our setting, the conclusion of the theorem was λ % ‖t‖ ≈ ‖e‖
and not λU % ‖t‖ ≈ ‖e‖. In practical terms, this meant that the context of
deployment of the staged code could contain no further staging. Code generation
must be done offline, and application programs using the generated ‖t‖ must be
written in a single-stage language, or else no guarantee was made. This interferes
with combining analyses of multiple generators and precludes dynamic code
generation by run (.!). Yang also worked with operational semantics, and did
not explore in depth how equational reasoning interacts with erasure.

This paper can be seen as a confluence of these two lines of research: we com-
plete λU by giving a CBV theory with a comprehensive study of its peculiarities,
and adapt erasure to produce an equality in the staged language λU .

Berger and Tratt [3] devised a Hoare-style program logic for the typed

language Mini-ML�
e . They develop a promising foundation and prove strong

properties about it such as relative completeness, but concrete verification tasks
considered concern relatively simplistic programs. Mini-ML�

e also prohibits ma-
nipulating open terms, so it does not capture the challenges of reasoning about
free variables, which was one of the main challenges to which we faced up.
Insights gained from λU should help extend such logics to more expressive lan-
guages, and our proof techniques will be a good toolbox to lay on top of them.

For MSP with variable capture, Choi et al. [7] recently proposed an alternative
approach with different trade-offs than ours. They provide an “unstaging” trans-
lation of staging annotations into environment-passing code. Their translation is
semantics preserving with no proof obligations but leaves an unstaged program
that is complicated by environment-passing, whereas our erasure approach leaves
a simpler unstaged program at the expense of additional proof obligations. It
will be interesting to see how these approaches compare in practice or if they
can be usefully combined, but for the moment they seem to fill different niches.

7 Conclusion and Future Work

We addressed three basic concerns for verifying staged programs.We showed that
staging is a non-conservative extension because reasoning under substitutions is
unsound in a MSP language, even if we are dealing with unstaged terms. De-
spite this drawback, untyped functional MSP has a rich set of useful properties.
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We proved that simple termination conditions guarantee that erasure preserves
semantics, which reduces the task of proving the irrelevance of annotations on a
program’s semantics to the better studied problem of proving termination. We
showed a sound and complete notion of applicative bisimulation for this setting,
which allows us to reason under substitution in some cases. In particular, the
shocking lack of βx in λU

v is of limited practical relevance as we have Cβx instead.
These results improve our general understanding of hygienic MSP. We bet-

ter know the multi-stage λ calculus’ similarities with the plain λ calculus (e.g.,
completeness of bisimulation), as well as its pathologies and the extent to which
they are a problem. The Erasure Theorem gives intuitions on what staging an-
notations can or cannot do, with which we may educate the novice multi-stage
programmer. This understanding has brought us to a level where the proof of a
sophisticated generator like LCS is easily within reach.

This work may be extended in several interesting directions. We have specif-
ically identified some open questions about λU : which type systems allow rea-
soning under substitutions, whether it is conservative over the plain λ calculus
for closed terms, and whether the extensionality principle can be strengthened
to require equivalence for only closed-term arguments.

Devising a mechanized program logic would also be an excellent goal. Berger
and Tratt’s system [3] may be a good starting point, although whether to go with
Hoare logic or to recast it in equational style is an interesting design question.
A mechanized program logic may let us automate the particularly MSP-specific
proof step of showing that erasure preserves semantics. The Erasure Theorem
reduces this problem to essentially termination checks, and we can probably
capitalize on recent advances in automated termination analysis [11].

Bisimulation is known to work for single-stage imperative languages, though
in quite different flavors from applicative bisimulation [19]. Adapting them to
MSP would make the emerging imperative hygienic MSP languages [16,24,30]
susceptible to analysis. The Erasure Theorem does not apply as-is to imperative
languages since modifying evaluation strategies can commute the order of effects.
Two mechanisms will be key in studying erasure for imperative languages—one
for tracking which effects are commuted with which, and one for tracking mutual
(in)dependence of effects, perhaps separation logic [23] for the latter. In any case,
investigation of imperative hygienic MSP may have to wait until the foundation
matures, as noted in the introduction.

Finally, this work focused on functional (input-output) correctness of staged
code, but quantifying performance benefits is also an important concern for a
staged program. It will be interesting to see how we can quantify the performance
of a staged program through formalisms like improvement theory [25].
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Abstract. Separation logic formalizes the idea of local reasoning for
heap-manipulating programs via the frame rule and the separating con-
junction P ∗ Q, which describes states that can be split into separate
parts, with one satisfying P and the other satisfying Q. In standard sep-
aration logic, separation means physical separation. In this paper, we
introduce fictional separation logic, which includes more general forms of
fictional separating conjunctions P ∗ Q, where ∗ does not require phys-
ical separation, but may also be used in situations where the memory
resources described by P and Q overlap. We demonstrate, via a range
of examples, how fictional separation logic can be used to reason locally
and modularly about mutable abstract data types, possibly implemented
using sophisticated sharing. Fictional separation logic is defined on top of
standard separation logic, and both the meta-theory and the application
of the logic is much simpler than earlier related approaches.

Keywords: Separation Logic, Local Reasoning, Modularity.

1 Introduction

Separation logic is a kind of Hoare logic for local reasoning about programs with
shared mutable state. Locality is achieved by use of the ∗ connective and the
frame rule:

{P} C {Q}
{P ∗R} C {Q ∗R}

Recall that in standard separation logic, P ∗ R is satisfied by a heap if it can
be split into two separate (disjoint) parts satisfying P and R respectively. The
frame rule expresses that if command C is well-specified with precondition P
and postcondition Q, then C will preserve any disjoint invariant R, intuitively
(and formally in standard models) because of physical heap separation.

In many situations, however, physical separation is too strong a requirement –
we would like to be able to reason locally using ∗-connectives and frame rules in
situations where we do not have physical separation, but where we do have some
form of logical or fictional separation1. The key idea is that fictional separation
should allow us to reason separately about updates to shared resources, as long
as the updates follow some kind of discipline to guarantee that updates to one

1 The term “fictional separation” is derived from the phrase “fiction of disjointness”,
which, to the best of our knowledge, was introduced by Philippa Gardner [8].
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side of the ∗ do not affect the truth of the other side. Permission accounting
models [5,4,10] provide a familiar simple instance of this idea: they allow us to
reason separately about shared heaps as long as we do not update but only read
those heaps. In recent work on separation logic for concurrency [7,11] and for
abstraction [8,9], it is possible to describe more elaborate patterns of sharing.
We return to this when we discuss related work in Section 7.

In this paper we introduce fictional separation logic and demonstrate, via
examples, how the logic can be used to reason locally and modularly about
mutable abstract data types, possibly implemented using sophisticated sharing.

Before turning to the technical presentation, we consider a simple example.

Example: Bit Pair. Consider a small library for manipulating pointers to bit
pairs. It has a constructor, destructor and some accessors that conform to the
following specification in standard higher-order separation logic [2]:

∃B1, B2 : loc × bool → P(heap).

{emp} bp new() {B1(ret, false) ∗B2(ret, false)} ∧
{B1(p, ) ∗B2(p, )} bp free(p) {emp} ∧
∀i ∈ {1, 2}. (∀b. {Bi(p, b)} bp geti(p) {Bi(p, b) ∧ ret = b}) ∧

{Bi(p, )} bp seti(p, b) {Bi(p, b)}.

Note the use of existential quantification over representation predicates B1 and
B2; they correspond to what Parkinson and Bierman call abstract predicates [18].
The special variable ret in postconditions denotes the return value. As usual, the
underscore is used for an existentially-quantified variable.

Implementing this näıvely and verifying the implementation is straightforward
in standard separation logic. Simply let the constructor allocate two consecutive
heap cells and let the accessors dereference either their p parameter or p+1. For
the verification, instantiate Bi(p, b) to (p+ (i− 1)) �→ b.

But this implementation uses at least twice as much heap space as necessary.
The least we could do is to allocate only one (integer) heap cell and store the pair
of bits in its least significant bits. A possible implementation is the following,
where / denotes integer division, and % denotes modulo:

bp new() { p := alloc 1; [p] := 0; return p }
bp free(p) { free p }
bp get1(p) { x := [p]; return x % 2 }
bp get2(p) { x := [p]; return x / 2 }
bp set1(p,b) { x := [p]; [p] := b + x/2∗2 }
bp set2(p,b) { x := [p]; [p] := 2∗b + x%2 }

The original specification is unfortunately unprovable for this implementation,
even though the two implementations have completely identical behaviour when
observed by a client that cannot inspect their internal memory.

The problem is that the abstract module specification is not sufficiently ab-
stract since it requires that the constructor creates two heap chunks that are



Fictional Separation Logic 379

physically disjoint. In other words, the abstract module specification reveals
patterns of sharing or, as is the case here, lack of sharing, that really ought to be
internal to the module implementation. Moving to a heap model with bit-level
separation will not solve the essence of this problem. Indeed, a third implemen-
tation could store the two bits in an integer that is divisible by 3 when B1 is true
and divisible by 5 when B2 is true. In this case, the fictional separation comes
from arithmetic properties of the integers.

In fictional separation logic, we existentially quantify not only over representa-
tion predicates B1 and B2, but also over the choice of separation algebra, Σ, and
an interpretation map I (explained below). The abstract module specification
then looks like this:

∃Σ : sepalg . ∃I : Σ 	 heap. ∃B1, B2 : loc × bool → P(Σ).

I. {emp} bp new() {B1(ret, false) ∗B2(ret, false)} ∧
I. {B1(p, ) ∗B2(p, )} bp free(p) {emp} ∧
∀i ∈ {1, 2}. (∀b. I. {Bi(p, b)} bp geti(p) {Bi(p, b) ∧ ret = b}) ∧

I. {Bi(p, )} bp seti(p, b) {Bi(p, b)}.

The intention is that the interpretation map I should explain how elements of
the separation algebra Σ are represented by predicates on physical heaps.

Note that the Hoare triples are now prefixed by I – we refer to such a predicate
I. {P} C {Q} as an indirect Hoare triple. The intention is that I records (1)
which separation algebra P and Q should be interpreted over, and (2) how P and
Q are translated into physical heap predicates, such that the triple meaningfully
corresponds to a suitably translated triple in standard separation logic.

This module specification does not reveal information about sharing or lack of
sharing, because Σ and I are abstract, i.e., existentially quantified. Client code
can now be verified relative to this abstract module specification and since, as we
will show, fictional separation logic supports the standard proof rules (and some
additional rules), the verification of client code is as easy as it is in standard
separation logic. We return to this example in Section 3.2 and show how both
implementations of bit pairs satisfy the above abstract specification. We will
consider an example of client code verification in Section 4.1.

Outline. The remainder of this paper is organized as follows. We first present
some formal preliminaries in Section 2 and then go on to present four sections
on fictional separation logic. In each of these sections, we first describe some
theory and then present examples that demonstrate how to use the theory in
program verification. Basic fictional separation logic and the indirect triple are
defined in Section 3. In Section 4 we define separating products of interpretations,
which allow clients to use several modules at the same time, and in Section 5 we
define a notion of indirect entailment and show how to use it to define fractional
permissions within fictional separation logic. We discuss how to stack several
levels of abstraction in Section 6, and we conclude and discuss related work in
Section 7. To focus on the core ideas, we present fictional separation logic for
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a simple sequential imperative programming language with procedures, but it
should be clear that the ideas are applicable to richer programming languages.

Proofs and further examples can be found in the online appendix [14].

2 Formal Preliminaries

2.1 Abstract Assertion Logic

The meaning of separation logic assertions is often parametrized on a separation
algebra (SA) [6], which is an abstraction of the heap model. There are several
competing definitions of separation algebra in the literature [6,10,12]; we use the
one from [12]:2

Definition 1. A separation algebra is a partial commutative monoid (Σ, ◦, 0).
We write σ

.
= σ1 ◦ σ2 when the σ1 ◦ σ2 is defined and has value σ.

Given a separation algebra (Σ, ◦, 0), the powersetP(Σ) forms a complete boolean
BI algebra, i.e., a model of the assertion language of classical separation logic,
where the connectives are defined in the standard way [6]:

� � Σ ⊥ � ∅
P ∧Q � P ∩Q P ∨Q � P ∪Q

∀x : A. P (x) �
⋂
x:A

P (x) ∃x : A. P (x) �
⋃
x:A

P (x)

P ⇒ Q � {σ | σ ∈ P ⇒ σ ∈ Q} emp � {0}
P ∗Q � {σ | ∃σ1, σ2. σ .

= σ1 ◦ σ2 ∧ σ1 ∈ P ∧ σ2 ∈ Q}
P −∗ Q � {σ2 | ∀σ1. ∀σ .

= σ1 ◦ σ2. σ1 ∈ P ⇒ σ ∈ Q}

As usual, entailment is defined as P % Q � P ⊆ Q. We refer to the elements of
P(Σ) as (semantic) assertions.

2.2 Programming Language

The logic we will introduce in the next section is mostly independent of the
underlying programming language, but we will fix a particular language here
for clarity. It is a simple imperative language in the style of [20], extended with
simple procedures:

C ::= x := e | [e] := e | x := [e] | x := alloc e | free e

| C;C | if e then C else C | while e do C | call x := f(ē)

2 The original definition of SA [6] also required cancellativity : that if σ′ .
= σ ◦ σ1 and

σ′ .
= σ ◦ σ2 then σ1 = σ2. This is too restrictive for our purposes, so we do not

include it in the general definition of a SA.
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The commands are, respectively, assignment, heap write, heap read, allocation,
deallocation, sequencing, conditional, loop and function call. The argument to
alloc specifies how many consecutive heap locations should be allocated.

There is no module system at the language level. When we talk about a
module in this paper, it simply refers to a collection of functions.

The operational semantics of the language is defined in a standard way, using
the following memory model:

C : cmd (see above)

x, y : var � string

f : func name � string

l : loc � N

program � func name
fin
⇀ var∗ × cmd × expr

v : val � loc � {null} � Z � {true, false}
s : stack � var → val

e : expr � stack → val

h : heap � loc
fin
⇀ val

Verification always takes place in an implicit global context of type program
that maps each function name to a parameter list, function body and return
expression. The only type of syntactic entities in this paper is cmd . Assertions,
specifications, inference rules, and even programming language expressions, are
semantic. If desired, a syntactic system could be built on top of this, but it would
serve no purpose in this paper.

As usual, heap is a separation algebra with composition being the union of
disjoint maps and the identity being the empty map. In addition to the con-
nectives from Section 2.1, the separation algebra of heaps also has the points-to
assertion: l �→ v � {[l �→ v]}. We make this more precise in Section 2.4.

2.3 Specification Logic

A specification S : spec is a logical proposition about the program under consid-
eration. The specification logic has the connectives (�,⊥,∧,∨, ∀, ∃,⇒) as oper-
ators on spec and entailment (%) as a relation on spec. These interact according
to the standard rules of intuitionistic logic.

We assume that there is a definition of the Hoare triple {P} C {Q} : spec.
Intuitively, if S % {P} C {Q}, then under the assumptions of S, if the command
C runs in a state satisfying P , it will not fault, and if it terminates, the resulting
state satisfies Q. The Hoare triple is assumed to satisfy the standard structural
and command-specific rules of separation logic [20].

The definition of spec and the Hoare triple, as well as the proofs that they
satisfy the rules of separation logic, are standard and not important here. See,
e.g., [1] for a definition of spec that allows for (mutually) recursive procedures
and is formalized in Coq.

The assertions P,Q used in the Hoare triple are of type asn(heap), where
asn(Σ) � stack → P(Σ). Connectives and rules for P(Σ) can be lifted pointwise
to asn(Σ), so we will conflate the two in the following.
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2.4 Constructing Separation Algebras

In this subsection we record some simple ways of constructing separation alge-
bras, which will be useful in the following.

Given a set A and a SA (Σ, ◦, 0), we write A fin→ Σ for the set of total maps
f : A → Σ for which only a finite number of values a : A have f(a) �= 0. That
is, f has finite support. The set A fin→ Σ is itself a SA with composition being
pointwise and only defined when the composition in Σ is defined at every point.

We let [a �→ σ] be the map in A fin→ Σ which maps a to σ and every other
element to 0. Observe that [a �→ 0] is the constant 0 map.

For f : A fin→ Σ, define supp(f) = {a | f(a) �= 0}.
A permission algebra (PA) [6] is a partial commutative semigroup; i.e., it is

like a SA but may not have a unit element. The product of two PAs (SAs) is
also a PA (SA); composition is pointwise, and it is defined only when defined on
both components. Any set A can be seen as the empty PA (A∅) by letting the
composition be undefined for all operands. Moreover, any set A can be seen as
the equality PA (A=) by letting the composition have x ◦ x .

= x for all x and
making it undefined for non-equal operands. Finally, any PA Π can be made
into a SA Π⊥ by adding a unit element.

In this terminology, the SA of heaps is heap = loc fin→ val∅⊥.

3 Fictional Separation Logic

The basic idea of fictional separation logic is that assertions are not just expressed
in a single separation algebra, chosen in advance to match the programming
language, but instead each module may define its own domain-specific SA. Each
such SA is interpreted into another SA and eventually to the SA of heaps. Given
separation algebras (Σ, ◦Σ, 0Σ) and (Σ′, ◦Σ′ , 0Σ′), an interpretation I is of type

Σ 	 Σ′ � {I : Σ → P(Σ′) | I(0Σ) = {0Σ′}}.

The side condition is not strictly necessary but will ease presentation later.3

The logic revolves around the indirect triple, defined as

I. {P} C {Q} � ∀φ. {∃σ ∈ P. I(σ ◦ φ)} C {∃σ ∈ Q. I(σ ◦ φ)}.

Here I is an interpretation map of type Σ 	 heap, and P,Q : asn(Σ), for the
same SA Σ. The triple and the all-quantifier on the right-hand side are the ones
from the standard specification logic (Section 2.3).

As mentioned in Section 2.3, we implicitly lift operators and constants from
P(Σ) into asn(Σ). In the definition above, the (∈) operator has been lifted in
this way for brevity. Following usual practice, there is also an implicit assump-
tion that the partial composition is well-defined. Written out in full detail, the
precondition on the right hand side above is the following element of asn(heap):

λs : stack . {h | ∃σ ∈ P (s). ∃σ′ .
= σ ◦ φ. h ∈ I(σ′)}.

3 It simplifies the rule CreateL from Figure 1.
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The postcondition is similar, only with Q instead of P .
The quantification over all possible abstract frames φ bakes the frame rule

into the indirect triple definition, much as in [3], except that here the frame is
in a more abstract SA.

The standard specification logic structural rules of Consequence, Exists
and Frame hold for the indirect triple. For brevity we just show the frame rule:

modifies(C) ∩ fv(R) = ∅ S % I. {P} C {Q}
S % I. {P ∗R} C {Q ∗R} Frame

Here, modifies(C) is the set of program variables possibly assigned to by C [20].
The usual rules for control flow commands (if, while, call and (;)) also hold.
Proofs and a discussion of the conjunction rule are in the online appendix [14].

The unit interpretation on Σ is simply 1Σ � λσ : Σ. {σ}; it is used to relate
the standard separation logic triple to the indirect triple, as expressed by the
following rule:4

S % 1heap. {P} C {Q}
S % {P} C {Q} Basic

We typically drop the subscript on 1Σ since it can be inferred from the context.

3.1 Proof Patterns

In this subsection we include a couple of rules and lemmas that are often useful
for reasoning about examples in fictional separation logic.

In practice, pre- and postconditions are often singletons, possibly conjoined
with a pure assertion, i.e., one that either contains every σ or no σ. The following
rule relates that special case to standard separation logic. The validity of this
rule follows easily from the definition of the indirect triple.

p, q pure S % ∀φ. {I(σ ◦ φ) ∧ p} C {I(σ′ ◦ φ) ∧ q}
S % I. {{σ} ∧ p} C {{σ′} ∧ q} Enter1

The name of this rule, like all other rules in this paper, suggests reading it from
the bottom up; i.e., given a proof obligation matching its conclusion, “enter” the
abstract scope by exchanging the conclusion for its premise.

We will see in examples that interpretation functions often follow a particular
pattern. The following lemma records useful facts about this pattern. It uses the
iterated separating conjunction [20] operator (∀∗), defined as

∀∗ a ∈ {a1, . . . , an}. P (a) � P (a1) ∗ . . . ∗ P (an).

Lemma 1. If I : (A fin→ Σ) 	 heap with I(f) = ∀∗ a ∈ supp(f). P (a, f(a)), then

a. I(f) ∗ I(g) 6% I(f ◦ g) if supp(f) ∩ supp(g) = ∅.
b. I(f) ∗ I(g) % I(f ◦ g) if ∀a. (P (a, ) ∗ P (a, ) % ⊥).
c. If p, q are pure, then the following rule is valid.

S % ∀φ. {I([a �→ σ◦φ]) ∧ p} C {I([a �→ σ′◦φ]) ∧ q}
S % I. {{[a �→ σ]} ∧ p} C {{[a �→ σ′]} ∧ q}

4 Double lines mean that the rule can be used both from top to bottom and vice-versa.
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3.2 Example: Bit Pair

We now return to the example of bit pairs from Section 1 and explain how to
prove that the implementation with sharing meets the abstract module spec-
ification. (It is obvious how the näıve implementation meets the specification:
choose I to be 1heap and apply Basic.)

Choose the witnesses of the existentials as follows (we convert freely between
bool and {0, 1}).

Σ = loc fin→ ({1, 2} fin→ bool∅⊥)
I(f) = ∀∗ p ∈ supp(f). supp(f(p)) = {1, 2} ∧ p �→ (f(p)(1) + 2 · f(p)(2))

Bi(p, b) = {[p �→ [i �→ b]]}

Composition and unit in Σ follows from the constructions in Section 2.4. This
resembles the SA used for object-oriented languages, where each object may
have several fields.

The intuition behind the choice of I is that by requiring the support at each
point to be the full set, i.e., {1, 2}, we can control what we expect to find in
the frame φ. For a function such as bp get1, this means that since B1(p, b) is
assumed in the precondition, we are sure to find B2(p, b

′) in the frame, for some
b′. Showing that the frame is preserved then amounts to showing that the frame
also contains B2(p, b

′) after executing the function body – and showing that any
other p′ �= p mentioned in the frame is unaffected, but we will see below that
Lemma 1 on pointwise interpretation functions makes that easy.

We now have to show that the implementation of each function matches its
specification with this choice of witnesses for the existentials. This is straightfor-
ward, because every function in this example has a specification that matches a
combination of Enter1 and Lemma 1. These rules reduce the proof obligations
to statements in standard separation logic.

First note that the following saturation lemma holds for the interpretation
map for bit pairs:

I([ �→ [i �→ b]◦φ]) % ∃b′. φ = [3−i �→ b′].

We present here the proof of bp get1. Let C = (x := [p]), i.e., the body of bp get1.

(trivial)
∀b2. {p �→ (b+ 2 · b2)} C {p �→ (b + 2 · b2) ∧ x%2 = b}

(definition)∀b2. {I([p �→ [1 �→b, 2 �→b2]])} C {I([p �→ [1 �→b, 2 �→b2]]) ∧ x%2 = b}
Saturation∀φ. {I([p �→ [1 �→b]◦φ])} C {I([p �→ [1 �→b]◦φ]) ∧ x%2 = b}

Lemma 1c
I. {{[p �→[1 �→b]]}} C {{[p �→[1 �→b]]} ∧ x%2 = b}

(definition)
I. {B1(p, b)} C {B1(p, b) ∧ x%2 = b}

Notice that the overhead of showing that the abstract specification is met is
fairly small and straightforward.
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3.3 Example: Monotonic Counter

A monotonic counter is an integer stored in the heap with operations for reading
it and incrementing it but not for decrementing it. The implementation could
look like this:

mc new() { c := alloc 1; [c] := 0; return c }
mc read(c) { x := [c]; return x }
mc inc(c) { x := [c]; [c] := x+1 }

Reasoning about monotonic counters was posed as a verification challenge by
Pilkiewicz and Pottier [19]. They discussed the challenge in a type-and-capability
system, so the presentation is somewhat different than for separation logic, but
the idea is the same. The counter should have a representation predicateMC (c, i)
that can be freely duplicated; i.e., MC (c, i) % MC (c, i) ∗MC (c, i). It should be
possible to frame out one of the copies while the other copy is used to call the
increment function; when the first copy is later framed back in, it can soundly
be used to call the read function since its postcondition only guarantees that the
returned value is at least the value from the representation predicate.

The specification in fictional separation logic looks like this:

∃Σ : sepalg . ∃I : Σ 	 heap. ∃MC : loc × Z → P(Σ).

(∀c, j. ∀i ≤ j. (MC (c, j) 6% MC (c, j) ∗MC (c, i))) ∧
I. {emp} mc new() {MC (ret, 0)} ∧
(∀i. I. {MC (c, i)} mc read(c) {MC (c, i) ∧ ret ≥ i}) ∧
(∀i. I. {MC (c, i)} mc inc(c) {MC (c, i+ 1)}).

The fact about MC has several corollaries that are useful for clients:

MC (c, i) 6% MC (c, i) ∗MC (c, i)
i ≤ j ∧MC (c, j) % MC (c, i) ∗ �

MC (c, i) ∗MC (c, j) % MC (c,max (i, j))

Compared to the solution by Pilkiewicz and Pottier, this solution has several
advantages. Our solution can be specified and verified without changing the
implementation to account for limitations in the verification system [19, end of
Sect. 4]. Moreover, it can be verified in the simple system of fictional separation
logic, whereas there exists no soundness proof yet for the very complicated type
system used by Pilkiewicz and Pottier.

To verify our specification against the implementation shown above, choose
the existentials as follows:

Σ = loc fin→ Z⊥ where composition in Z is max

I(f) = ∀∗ c ∈ supp(f). ∃j ≥ f(c). c �→ j

MC (c, i) = {[c �→ i]}

The property about MC is straightforward to verify in the assertion logic. Veri-
fication of the three functions is shown in the online appendix [14].
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S � I ∗ J. {P L} C {QL}
S � I. {P} C {Q} CreateL

S � I. {P} C {Q}
S � I ∗ J. {P L} C {QL} ForgetL

S � I ∗ J. {P L} C {Q×�}
S � I ∗ 1. {P L} C {Q×�} LeakL

p pure

(p ∧ P )×Q #� p ∧ (P ×Q)
Prod-Pure

Fig. 1. Selected inference rules for separating products, using notation P L 
 P×emp

There are some limitations in the specification. There can be no function to
deallocate a counter because its representation predicate can be freely shared.
The absence of deallocation means that this specification is more suited for
a garbage-collected language. Also, the specification does not guarantee that
consecutive calls to mc read will return the same value; it would be valid to
implement mc read such that it has the side effect of incrementing the counter.
These limitations are also present in the specification by Pilkiewicz and Pottier.

4 Clients and Separating Products

To allow clients of multiple libraries to know about more than one separation
algebra and interpretation function, we introduce separating products of inter-
pretations.

Given interpretations I1 : Σ1 	 Σ and I2 : Σ2 	 Σ, their separating product
I1 ∗ I2 has type Σ1×Σ2 	 Σ and is defined as

I1 ∗ I2 � λ(σ1, σ2). I1(σ1) ∗ I2(σ2).

Figure 1 shows a collection of inference rules about separating products. At
the bottom of a proof tree, just above application of Basic, a client should
use CreateL for each module that will be used. In that rule, P L � P × emp,
where (×) is simply the Cartesian product lifted into asn . To write that out,
P1 × P2 � λs. {(σ1, σ2) | σ1 ∈ P1(s) ∧ σ2 ∈ P2(s)}.

The CreateL rule requires the command C to clean up the state abstracted
by J completely; i.e., that state must satisfy emp in the postcondition. When
this is not possible, for example in the Monotonic Counters example, we can
instead use the LeakL rule.

Before calling a library function, a client will, as usual, have to frame out
irrelevant facts. There, it can be useful to know that (P ∗Q)L 6% P L ∗ QL and
that P × Q 6% P L ∗ QR, where PR � emp × P . After applying the frame rule,
the client can then ignore the irrelevant separation algebras using the ForgetL
rule, which is just the CreateL rule inverted.

Pure assertions can move in and out of products as described by the Prod-

Pure rule. There are of course rules CreateR, ForgetR and LeakR sym-
metric to the ones in Figure 1, and further structural rules can be defined to
handle commutativity and associativity with separating products.
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4.1 Example: Client of Two Modules

Assume we have a client program C that uses both the bit pair and the mono-
tonic counter modules, and we want to show that it has precondition emp and
postcondition �. We suggest � in the postcondition because there is no deallo-
cation function for monotonic counters as mentioned earlier.

The standard pattern for this is to assume the module specifications at the
bottom of the tree and then move from the standard triple to the appropriate
indirect triple by applying Basic once and then Create or Leak for each
module, reading from the bottom up. Abbreviate the bit pair and monotonic
counter specifications, minus the existentials, as Sbp and Smc respectively. The
bottom of the proof for C then looks like this.

Sbp ∧ Smc % Ibp ∗ Imc. {emp × emp} C {emp ×�}
LeakL

Sbp ∧ Smc % Ibp ∗ 1. {emp × emp} C {emp ×�}
CreateR

Sbp ∧ Smc % 1. {emp} C {�}
Basic

Sbp ∧ Smc % {emp} C {�}
∃L

(∃Σ, Ibp, B1, B2. Sbp) ∧ (∃Σ, Imc,MC. Smc) % {emp} C {�}

The bottom proof step applies the standard existential-left rule from sequent
calculus twice.

If C uses the heap directly, not just through the two modules, it should apply
Create once more to get the interpretation Ibp ∗ Imc ∗ 1 on the indirect triple.

Further up in the proof tree, there will eventually be a point where it is
necessary to call a function belonging to one of the modules, e.g., the bit pairs.
The following pattern is used to ignore irrelevant modules during the call.

S % Ibp. {P} call f {Q}
ForgetL

S % Ibp ∗ Imc. {P L} call f {QL}
Frame

S % Ibp ∗ Imc. {P L ∗R1
L ∗R2

R} call f {QL ∗R1
L ∗R2

R}
Consequence

S % Ibp ∗ Imc. {(P ∗R1)×R2} call f {(Q ∗R1)×R2}

Note that this kind of reasoning will not be so explicit in practice; a simple tool
can easily elide these steps.

In this section we considered a generic client; see the online appendix [14] for
a concrete example client using bit pairs and monotonic counters.

4.2 Example: Wrapper

This example demonstrates how a module can extend the abstraction of another
module by using a separating product. We will see that this example gives a com-
pelling argument against solving the fiction-of-disjointness problem by letting the
client carry around an explicit but opaque frame as done in [16, Chapter 5].



388 J.B. Jensen and L. Birkedal

Consider first the following specification of a collection data structure.

SColl(Σ : sepalg , I : Σ 	 heap,Coll : loc × Pfin(val ) → P(Σ)) � ∀c, V.
(Coll (c, ) ∗ Coll (c, ) % ⊥) ∧
I. {emp} coll new() {Coll(ret, ∅)} ∧
I. {Coll(c, V )} coll free(c) {emp} ∧
I. {Coll(c, V )} coll clone(c) {Coll(c, V ) ∗ Coll (ret, V )} ∧
I. {Coll(c, V )} coll contains(c, v) {Coll(c, V ) ∧ ret = (v ∈ V )} ∧
I. {Coll(c, V )} coll add(c, v) {Coll(c, V ∪ {v})} ∧
I. {Coll(c, V )} coll remove(c, v) {Coll(c, V \ {v})}.

This is a standard specification of a finite collection, except for the coll clone
function. This function could be implemented by simply copying the contents of
the collection to a new data structure; in standard separation logic, that would
be the only possible implementation because of the (∗) in the postcondition.

In fictional separation logic, it might also be implemented by using copy on
write – the reference-counting technique in which the contents are initially shared
between two collections and only copied when the need arises because one of them
is modified [17]. The purpose of including coll clone here is to have a reason why
this library should be specified with fictional separation logic.

Consider now a wrapper module of indirect references to collections. The
implementation could be this:

wcoll new(c) { w := alloc 1; [w] := c; return w }
wcoll contains(w,v) { c := [w]; return coll contains(c,v) } . . .

Functions wcoll add, wcoll remove and wcoll free would be implemented analo-
gously to wcoll contains, forwarding the call. A more useful wrapper module
would, of course, add some functionality, such as caching the last query to
wcoll contains or counting the number of calls to wcoll add, but the essence re-
mains the same.

We can give the following specification to this code.

∀Σ, I,Coll . SColl(Σ, I,Coll) ⇒
∃WColl : loc × Pfin(val ) → P(heap×Σ). ∀V.
1 ∗ I. {Coll (c, V )R} wcoll new(c) {WColl (ret, V )} ∧
1 ∗ I. {WColl (w, V )} wcoll contains(w, v) {WColl (w, V ) ∧ ret = (v ∈ V )} ∧ ...

Observe that this is an example of one specification depending on another, by
being universal in the parameters of the SColl specification from above. (See [1]
for more general cases of this design pattern, in standard higher-order separation
logic.) For the example implementation above, the proof of the specification
should instantiate the existential as WColl (w, V ) = ∃c. w �→ c × Coll (c, V ). As
a side remark, this specification could be made more abstract, so that it would
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reveal less implementation detail, by hiding the use of the 1-interpretation behind
an existential.

The specification of the constructor, wcoll new, is an example of ownership
transfer: ownership of memory described by an abstract predicate (Coll (c, V ))
is transferred from the caller to the module. The specification intentionally does
not reveal whether the transfer happened simply by storing a pointer, as in our
example implementation, or whether the constructor allocated a new collection
(or another container data structure), manually copied the contents of the given
collection to that, and then freed the given collection.

For comparison, to mimic this in standard separation logic, one could take
inspiration from Krishnaswami’s design pattern [16, Chapter 5] and let the rep-
resentation predicate of the collection module describe all the collections that
may share data; i.e., H : Pfin(loc × Pfin(val )) → P(heap). The constructor spec-
ification would then be along the lines of the following, where � denotes union
of sets of tuples with disjoint first components, and Coll ′(c, V ) � {(c, V )}.

{H (Coll ′(c, V ) � φ)} wcoll new(c) {∃σ. H (σ � φ) ∗WColl ′(ret, σ, V )}.

This specification allows the same implementation freedom as the fictional sep-
aration logic version does, and the caller is guaranteed that the abstract frame
φ is preserved. But it is a completely undesirable specification in practice be-
cause the WColl ′ predicate can never be detached from the H predicate that it
may share data with. This means that all the accessor functions must have both
WColl ′ and H in their pre- and postconditions. Even worse, clients need to keep
track of the opaque σ that links the two together.

5 Indirect Entailment

There is no restriction that a physical heap can only be in the image of a single
abstract σ. Therefore we can sometimes change abstract pre- and postconditions
in a more powerful way than what the rule of consequence allows; we present an
application of this idea in the next subsection. First, we define indirect entail-
ment :

P |=I Q � ∀φ.
(
(∃σ ∈ P. I(σ ◦ φ)) % (∃σ ∈ Q. I(σ ◦ φ))

)
.

We can now state the indirect rule of consequence:

P |=I P ′ S % I. {P ′} C {Q′} Q′ |=I Q

S % I. {P} C {Q} ROC-Indirect

Its correctness is immediate from the definitions.
The definition of indirect entailment is quite similar to the indirect triple. In

fact, if I : Σ 	 heap for some Σ, then P |=I Q if and only if % I. {P} skip {Q}.
For any I, the relation (|=I) is reflexive and transitive and is a superrelation

of (%). Judgements P |=I Q can also be studied as a kind of degenerate assertion
logic; in that case, the standard natural-deduction introduction and elimination
rules for (�,⊥,∨, ∃) hold, and so do (⇒)-introduction and (∧, ∀)-elimination. It
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is also possible to reason locally on both sides of a separating conjunction, and
the existential-left rule holds; i.e.,

P |=I P ′ Q |=I Q′

P ∗Q |=I P ′ ∗Q′
∀x. (P (x) |=I Q)

∃x. P (x) |=I Q

We discuss more rules for (|=I) in the online appendix [14].

5.1 Example: Fractional Permissions

Permission accounting [5,4,10] is a solution to simple sharing problems where
just read-only data is shared. The points-to predicate is generalized to carry a
permission, so l

z�→ v denotes a z-permission to access heap location l. If z is a
read-only permission, then there are no write permissions to l available to others,
and therefore its value stays v. If z is a write permission, then there are no other
read or write permissions for l available to others.

A write permission can be split across the ∗ into several read-only permissions.
If it is known that all read-only permissions have been accounted for, then they
can be re-assembled into a write permission. Permissions are clearly useful for
sharing data read-only between threads in concurrent programs, but it also has
uses in a sequential setting [13,15].

We will now show how fractional permissions, a particular permission account-
ing scheme, can be encoded in fictional separation logic. This allows us to use
fractional permissions where we need it, without having fractional permissions
in the base logic! A permission z is a rational number satisfying 0 < z ≤ 1. The
write permission is 1, and all smaller numbers are read-only permissions. We will
define the assertion l

z�→ v such that the splitting and joining of permissions can
be described by the following inference rule.

Fractions

l
z1�→ v1 ∗ l

z2�→ v2 6% v1 = v2 ∧ z1 + z2 ≤ 1 ∧ l � z1+z2−−−−→ v1

We first define the SA of heaps with fractional permissions as usual [4]:

Σfp � Ptr fin→ (Val= × Perm)⊥, where

Perm � {z : Q | 0 < z ≤ 1}

z1 � z2 �
{
z1 + z2 if z1 + z2 ≤ 1

undefined otherwise

Since (Perm ,�) is a permission algebra, Σfp is a separation algebra (see Sec-

tion 2.4). We define the fractional points-to predicate by l
z�→ v � {[l �→ (v, z)]}

and can then easily verify the Fractions rule.
To make use of all this, we define an interpretation I fp : Σfp 	 heap. The idea is

the same as for the interpretation function in the bit pair example (Section 3.2):
assume we have the full knowledge (permission) for each described heap location.

I fp(f) � ∀∗ l ∈ supp(f). ∃v. f(l) = (v, 1) ∧ l �→ v.
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We can now prove a specification of the heap read command for fractional per-
missions. For clarity, let us just consider the case where the variable name being
assigned to is fresh (formally we treat free variables as in [1]):

x /∈ fv (e, e′)

% I fp. {e z�→ e′} x := [e] {e z�→ e′ ∧ x = e′}

Let us sketch the proof of this rule. We first expand the definition of the fractional
points-to predicate in the conclusion:

% I fp. {{[e �→ (e′, z)]}} x := [e] {{[e �→ (e′, z)]} ∧ x = e′}.

By applying Lemma 1c, we can reduce this to the proof obligation

% ∀φ. {I fp([e �→ (e′, z) ◦ φ])} x := [e] {I fp([e �→ (e′, z) ◦ φ]) ∧ x = e′},

which is now a statement in standard separation logic that can be discharged
using a saturation lemma like in Section 3.2. Intuitively, I fp in the precondition
gives us the points-to predicate needed for applying the standard read rule. The
postcondition requires us to prove that I fp holds for the same parameter, which
is easy since the heap did not change.

We can also prove the write and allocation rules using the above approach, but
we will instead show how to use indirect entailment to get even simpler proofs.
The following indirect bi-entailment expresses that having the full permission to
a location (z = 1) is the same as having a standard points-to predicate for it:

(l
1�→ v)L =||=Ifp∗1 (l �→ v)R

With this lemma, proved in the online appendix [14], the write and allocation
rules follow almost immediately from their standard separation logic versions.
For instance, the fractional write rule is derived as follows.

Basic, Write-std

% 1. {e �→ } [e] := e′ {e �→ e′}
ForgetR

% I fp ∗ 1. {(e �→ )R} [e] := e′ {(e �→ e′)R}
ROC-Indirect

% I fp ∗ 1. {(e 1�→ )L} [e] := e′ {(e 1�→ e′)L}
CreateL

% I fp. {e 1�→ } [e] := e′ {e 1�→ e′}

6 Stacking

Intuitively, fictional separation logic allows us to pretend we are working in a
high-level memory model Σ if we show how to interpret that high-level memory
model down to heap. It is then natural to investigate whether we can stack an
even higher-level memory model Σ′ on top of that construction and interpret Σ′

down to Σ. Of course, this should generalize to arbitrary levels of stacking.
In this section, we present a theory of stacking that allows this while interact-

ing well with the features introduced in previous sections and not being a burden
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on the logic when not in use. It is important to stress that it is in many cases
possible for one module to depend on and extend the abstraction of another
module without using stacking; c.f. the wrapper example in Section 4.2.

The most basic way to combine two interpretations is to compose them as
relations. Given interpretations I : Σ1 	 Σ2 and J : Σ2 	 Σ3, their relational
composition (I ; J) has type Σ1 	 Σ3 and is defined as

I ; J � λσ1. ∃σ′
2 ∈ I(σ1). J(σ

′
2).

That is, σ3 ∈ (I ; J)(σ1) if and only if ∃σ′
2 ∈ I(σ1). σ3 ∈ J(σ′

2).
We can show the following rule for working with relational composition:

S % ∀φ. J. {∃σ ∈ P. I(σ ◦ φ)} C {∃σ ∈ Q. I(σ ◦ φ)}
RelComp

S % (I ; J). {P} C {Q}
Reading the rule from the bottom up, RelComp allows peeling off the top layer
of a multi-layered interpretation, making its frame explicit. This is desirable
when verifying an implementation that extends upon the J-interpretation using
I. Perhaps J is opaque at the point where this rule is applied.

Relational composition masks the J-interpretation to the outside; in particu-
lar, it masks the frame in Σ2 that goes into J , which means that the converse
of RelComp does not hold. In many situations, including the next example, we
want to give specifications that expose both the Σ1-algebra and the Σ2-algebra
in order to be useful to clients that do not have their data exclusively in Σ1. This
discussion motivates our definition of the stacking composition. Given interpre-
tations I : Σ1 	 Σ2 and J : Σ2 	 Σ3, their stacking I 
 J has type Σ1×Σ2 	 Σ3

and is defined as
I 
 J � (I ∗ 1) ; J.

With this definition, we now get a generalization of RelComp in the form of
the following rule, which holds in both directions:

S % ∀φ. J. {∃σ ∈ P1. I(σ ◦ φ) ∗ P2} C {∃σ ∈ Q1. I(σ ◦ φ) ∗Q2}
StackComp

S % I 
 J. {P1×P2} C {Q1×Q2}
The special case of this rule where P2 = Q2 = emp is similar to RelComp.

The special case where P1 = Q1 = emp leads to a rule that is more like a stacking
version of Forget and Create (Section 4).

There is a generalization of the Enter1 rule to stacking:

S % ∀φ. J. {I(σ ◦ φ) ∗ P} C {I(σ′ ◦ φ) ∗Q}
Enter1Stack

S % I 
 J. {{σ} × P} C {{σ′} ×Q}
This rule is simply a special case of StackComp. Notice that (I 
 1) = (I ∗ 1),
so these inference rules can also be applied to separating products in some cases.

A module may use stacking internally but hide that fact if the stacking does
not need to be visible to its clients. This can be achieved by collapsing the
stacking composition to a relational composition by the following rule:

S % I 
 J. {P L} C {QL}
StackRel

S % (I ; J). {P} C {Q}
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6.1 Example: Abstract Fractional Permissions

We saw the example of fractional permissions in Section 5.1, where the points-
to predicate was extended to carry a permission. With stacking, we can use
essentially the same construction to extend the Coll predicate from Section 4.2
to carry a permission. Just like the heap-read command could execute with any
partial permission, while heap write required full permission, we can prove that
coll clone and coll contains can execute with any partial permission, while the
other functions require full permission.

Formally, we can prove the validity of the following specification.

∀Σ, I,Coll . SColl(Σ, I,Coll ) ⇒
∃Σ′ : sepalg . ∃I ′ : Σ′ 	 Σ.

∃FColl : Perm × loc × Pfin(val ) → P(Σ′). ∀V, V ′, c, z, z′.

(FColl z(c, V ) ∗ FColl z
′
(c, V ′) 6% V = V ′ ∧ z + z′ ≤ 1 ∧ FColl z+z′

(c, V )) ∧
(FColl 1(c, V )L =||=I′�I Coll (c, V )R) ∧
I ′ 
 I. {FColl z(c, V )L} coll contains(c, v) {FColl z(c, V )L ∧ ret = (v ∈ V )} ∧
I ′ 
 I. {FColl z(c, V )L} coll clone(c) {FColl z(c, V )L ∗ FColl 1(ret, V )L}.

The elements of the specification are all the same as for the standard fractional
permissions in Section 5.1. It is written such that the stacking is revealed to
clients, allowing them to use the fractional and non-fractional collections together
and convert between them using the indirect bi-entailment in the specification.
There is thus no need for specifying fractional versions of the remaining functions
since the indirect bi-entailment allows reusing the original specifications.

Notice that we can define FColl and prove fractional versions of all the func-
tions without knowing their implementation or how Coll , I or Σ are defined.
In particular, the implementations of coll clone and coll contains are allowed to
modify the underlying heap, but they still appear read-only through the indirect
specification.

If it is not necessary for fractional and non-fractional collections to coexist
and share footprints from the perspective of clients, the StackRel rule could
be used to hide the stacking in this specification. Then the specification can
be made to look as simple as the original specification in Section 4.2 by hiding
(I ′ ; I) behind an existential.

We can verify the specification by choosing the existentials as follows:

Σ′ = loc fin→ (Pfin(val )= × Perm)⊥
I ′(f) = ∀∗ c ∈ supp(f). ∃V. f(c) = (V, 1) ∧ Coll (c, V )

FColl z(c, V ) = {[c �→ (V, z)]}

This is very similar to the original fractional permissions example, and the proofs
are also similar.
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7 Discussion and Related Work

Simplicity has been a major goal for this theory, particularly in three places:
(1) clients of a module that uses fictional separation internally should be able
to reason with the same ease as in standard separation logic; (2) the overhead
in verifying an implementation with fictional separation should be minimal; and
(3) correctness of the meta-theory should be easy to prove. The three goals are
listed in order of importance since they represent tasks to be carried out by a
decreasing number of people.

We believe that the first simplicity goal has been achieved in most situations,
though clients of multiple modules with complex stacking patterns may benefit
from tool support for composing the interpretations. The second goal has been
achieved in the sense that it is easy to verify examples like those presented in this
paper and, moreover, the separation algebras needed can be assembled from stan-
dard constructions. The third goal has been reached through judicious choice of
definitions, especially by defining the indirect triple in terms of the standard triple
– it has been possible to conduct all meta-theoretical proofs without unfolding the
definition of the standard triple [14]. Because we work directly in the semantics
of the logic, it should be natural to encode this theory in the Coq proof assistant,
extending our existing Coq formalization of separation logic [1].

A major inspiration for fictional separation logic has been the design pattern
used by Krishnaswami [16, Chapter 5] for specifying data structures with fictional
disjointness in standard separation logic. The technique is to define a per-module
custom separation logic (not separation algebra) and let the client manage the
abstract frame,which is explicitly present in every function specification. Fictional
separation logic makes the essential part of this design pattern formal, allowing
the abstract frame to be managed implicitly by the indirect triple and enabling
a general and comprehensive theory on these custom separation logics, instead of
scattering the theory across modules on an ad-hoc basis. See also the discussion
in Section 4.2. We ignore Krishnaswami’s concept of a ramification operator since
it would make the resulting logic too different from separation logic.

The work on locality-breaking transformations (LBT) for context logic, a kind
of non-commutative separation logic, by Dinsdale-Young, Gardner and Wheel-
house [8,9] can also be seen as a formalization of Krishnaswami’s design pattern,
though they were developed independently. LBT is in the field of program re-
finement, which means that not only are pre- and postconditions of a triple
transformed across abstraction layers, like in fictional separation logic, but the
command is also transformed. Despite that difference, the intuition and proof
obligations are similar to fictional separation logic: verifying a module implemen-
tation involves showing that all atomic operations preserve an abstract frame
from a per-module context algebra. Reasoning in LBT is fundamentally in two
stages, though: a client program and proof are always created at the high level
and are subsequently transformed to the low level outside the logic. In fictional
separation logic, moving between the levels is done within the logic itself, and the
separation algebras are first-class entities in the logic. Hence, as we have seen, we
can take advantage of all the features in the specification logic, e.g., to hide the
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definition of a separation algebra behind an existential quantifier. The soundness
proofs of the meta-theory in [9] are much more complicated than ours, despite
their much less expressive specification logic; it appears to be caused by their
proof-theoretic approach to soundness as opposed to our semantic approach.

In terms of what examples can be encoded, fictional separation logic is quite
close to the concurrent abstract predicates (CAP) framework [7,11] restricted to
sequential programs. CAP has been developed for reasoning about concurrent
programs in which several threads may work on the same shared memory; when
restricting attention to sequential programs, CAP thus allows to specify and
reason about modules that are implemented using sharing. The CAP approach,
seen from our perspective, is to fix one particular separation algebra for all mod-
ules, which is sufficiently powerful to handle most cases of sharing. The algebra
is specialized to each module by giving a per-module protocol definition, with
access to the various stages in the protocol controlled by permission accounting.
These explicit protocols, describing what atomic modifications may be performed
on shared memory regions, give verification tasks a completely different flavour
and intuition compared to fictional separation logic. In a sequential setting, the
two systems are therefore very different solutions to the same problem. Concur-
rent abstract predicates is fundamentally rooted in a concurrent setting, though,
which complicates the proof system. In particular, program verification requires
showing stability of all intermediate pre- and postconditions in a proof.

Future work includes extending fictional separation logic to richer program-
ming languages. Our preliminary investigations suggest that it is straightforward
to extend the logic to a language with function pointers, by using the idea of
nested triples [21] to specify such pointers. In fictional separation logic we will,
of course, use indirect nested triples. To make it possible to call a function f
with a function argument that uses an interpretation stacked on top of f ’s own
interpretation, one can specify both f and its argument through a stacking of
interpretations.

We are also interested in extending fictional separation logic to a concurrent
language in order to find out whether it can retain its simplicity.

Acknowledgements. We would like to thank Jesper Bengtson, Thomas Dins-
dale-Young, Filip Sieczkowski, Kasper Svendsen, Peter Sestoft and Jacob Thams-
borg for helpful feedback and discussions.

References

1. Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying Object-Oriented
Programs with Higher-Order Separation Logic in Coq. In: van Eekelen, M., Geu-
vers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38.
Springer, Heidelberg (2011)

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM Transactions on Programming Languages and
Systems 29(5) (2007)



396 J.B. Jensen and L. Birkedal

3. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for algol-like languages. Logical Methods in Computer
Science 2(5:1) (August 2006)

4. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: Proceedings of POPL, pp. 259–270 (2005)

5. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

6. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Proceedings of LICS (2007)

7. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current Abstract Predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

8. Dinsdale-Young, T., Gardner, P., Wheelhouse, M.: Abstraction and Refinement for
Local Reasoning. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 199–215. Springer, Heidelberg (2010)

9. Dinsdale-Young, T., Gardner, P., Wheelhouse, M.: Abstraction and refinement for
local reasoning (February 2011); journal submission

10. Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at Separation Algebras and
Share Accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177.
Springer, Heidelberg (2009)

11. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: Proceedings of POPL (2011)

12. Gotsman, A., Berdine, J., Cook, B.: Precision and the conjunction rule in concur-
rent separation logic. In: Proceedings of MFPS (2011)

13. Haack, C., Hurlin, C.: Resource usage protocols for iterators. In: Proceedings of
IWACO (2008)

14. Jensen, J.B., Birkedal, L.: Fictional separation logic: Appendix (2011),
http://itu.dk/~jobr/research/fsl-appendix.pdf

15. Jensen, J.B., Birkedal, L., Sestoft, P.: Modular verification of linked lists with views
via separation logic. Journal of Object Technology 10, 2:1–2:20 (2011)

16. Krishnaswami, N.R.: Verifying Higher-Order Imperative Programs with Higher-
Order Separation Logic. Ph.D. thesis, Carnegie Mellon University (2011)

17. Meyers, S.: More Effective C++: 35 New Ways to Improve Your Programs and
Designs, 1st edn. Addison-Wesley Professional (1996)

18. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: Proceedings
of POPL, pp. 247–258 (2005)

19. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of TLDI
(2011)

20. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of LICS, pp. 55–74 (2002)

21. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare Triples and
Frame Rules for Higher-Order Store. In: Grädel, E., Kahle, R. (eds.) CSL 2009.
LNCS, vol. 5771, pp. 440–454. Springer, Heidelberg (2009)

http://itu.dk/~jobr/research/fsl-appendix.pdf


Validating LR(1) Parsers

Jacques-Henri Jourdan1,2, François Pottier2, and Xavier Leroy2
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Abstract. An LR(1) parser is a finite-state automaton, equipped with
a stack, which uses a combination of its current state and one lookahead
symbol in order to determine which action to perform next. We present
a validator which, when applied to a context-free grammar G and an
automaton A, checks that A and G agree. Validating the parser pro-
vides the correctness guarantees required by verified compilers and other
high-assurance software that involves parsing. The validation process is
independent of which technique was used to construct A. The validator
is implemented and proved correct using the Coq proof assistant. As an
application, we build a formally-verified parser for the C99 language.

1 Introduction

Parsing remains an essential component of compilers and other programs that
input textual representations of structured data. Its theoretical foundations are
well understood today, and mature technology, ranging from parser combinator
libraries to sophisticated parser generators, is readily available to help imple-
menting parsers.

The issue we focus on in this paper is that of parser correctness : how to
obtain formal evidence that a parser is correct with respect to its specification?
Here, following established practice, we choose to specify parsers via context-free
grammars enriched with semantic actions.

One application area where the parser correctness issue naturally arises is
formally-verified compilers such as the CompCert verified C compiler [1]. Indeed,
in the current state of CompCert, the passes that have been formally verified
start at abstract syntax trees (AST) for the CompCert C subset of C and extend
to ASTs for three assembly languages. Upstream of these verified passes are
lexing, parsing, type-checking and elaboration passes that are still in need of
formal verification in order to attain end-to-end verification. The present paper
addresses this need for the parsing pass. However, its results are more generally
applicable to all high-assurance software systems where parsing is an issue.

There are many ways to build confidence in a parser. Perhaps the simplest
way is to instrument an unverified parser so that it produces full parse trees,
and, at every run of the compiler, check that the resulting parse tree conforms
to the grammar. This approach is easy to implement but does not establish
completeness (all valid inputs are accepted) or unambiguity (for each input,
there is at most one parse tree). Another approach is to apply program proof
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= not verified, not trusted

Fig. 1. General architecture

directly to a hand-written or generated parser. However, such a proof is tedious,
especially if the parser was automatically generated, and must be re-done every
time the the parser is modified. Yet another approach, developed by Barthwal
and Norrish [2,3], is to formally verify, once and for all, a parser generator,
guaranteeing that whenever the verified generator succeeds, the parser that it
produces is correct with respect to the input grammar. However, Barthwal and
Norrish’s proof is specific to a particular parser generator that only accepts SLR
grammars. It so happens that the ISO C99 grammar we are interested in is not
SLR. Before being applicable to CompCert, Barthwal and Norrish’s work would,
therefore, have to be extended in nontrivial ways to a richer class of grammars
such as LALR.

In this paper, we develop a fourth approach: a posteriori verified validation of
an LR(1) automaton produced by an untrusted parser generator, as depicted in
Fig. 1. After every run of the parser generator (that is, at compile-compile time),
the source grammar G, the generated automaton A, and auxiliary information
acting as a certificate are fed in a validator, which checks whether A recognizes
the same language as G. If so, the build of the compiler proceeds; if not, it is
aborted with an error.

The first contribution of this paper is the algorithm that performs this valida-
tion. It is relatively simple, and, to the best of our knowledge, original. It applies
indifferently to many flavors of LR(1) automata, including LR(0) (a degenerate
case), SLR [4], LALR [5], Pager’s method [6], and canonical LR(1) [7]. The
second contribution is a soundness proof for this algorithm, mechanized using
the Coq proof assistant, guaranteeing with the highest confidence that if the
validation of an automaton A against a grammar G succeeds, then the automa-
ton A and the interpreter that executes it form a correct parser for G. The last
contribution is an experimental assessment of our approach over the ISO C99
grammar, demonstrating applicability to realistic parsers of respectable size.

In summary, the approach to high-confidence parsing developed in this paper
is attractive for several reasons: (1) it provides correctness guarantees about an
LR(1) parser as strong as those obtained by verifying a LR(1) parser generator;
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(2) only the validator needs to be formally verified, but not the parser generator
itself, reducing the overall proof effort; (3) the validator and its soundness proof
are reusable with different parser generators and different flavors of LR(1) pars-
ing; (4) existing, mature parser generators such as Menhir [8] can be used with
minimal instrumentation, giving users the benefits of the extensive diagnostics
produced by these generators.

This paper is organized as follows. In §2, we review context-free grammars,
LR(1) automata, and their meaning. In §3, we establish three properties of au-
tomata, namely soundness (§3.1), safety (§3.2) and completeness (§3.3). Safety
and completeness are true only of some automata: we present a set of conditions
that are sufficient for these properties to hold and that can be automatically
checked by a validator. After presenting some facts about our Coq implementa-
tion (§4), we discuss its application to a C99 parser in the setting of CompCert
(§5). We conclude with discussions of related work (§6) and directions for future
work (§7).

Our modifications to Menhir are available as part of the standard release [8].
Our Coq code is not yet part of the CompCert release, but is available online [9].

2 Grammars and Automata

2.1 Symbols

We fix an alphabet of terminal symbols a and an alphabet of non-terminal sym-
bols A, where an alphabet is a finite set. A symbol X is either a terminal symbol
or a non-terminal symbol. We write α for a sentential form, that is, a finite
sequence of symbols.

2.2 Grammars

We fix a grammar G, where a grammar consists of:

1. a start symbol S;
2. an alphabet of productions p;
3. for every symbol X , a type �X�.
The first two components are standard. (The syntax of productions will be pre-
sented shortly.) The third component, which is not usually found in textbooks,
arises because we are interested not in recognition, but in parsing: that is, we
would like not only to decide whether the input is valid, but also to construct
a semantic value. In other words, we would like to consider that a grammar
defines not just a language (a set of words) but a relation between words and
semantic values. However, before we do so, we must answer the question: what is
the type of semantic values? It should be decided by the user, that is, it should
be part of the grammar. Furthermore, one should allow distinct symbols to carry
different types of semantic values. For instance, a terminal symbol that stands
for an identifier might carry a string, while a non-terminal symbol that stands
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for an arithmetic expression might carry an abstract syntax tree, that is, a value
of a user-defined inductive type. If we were to force the user to adopt a single
universal type of semantic values, the user’s code would become polluted with
tags and dynamic tests, and it would not be possible for the user to argue that
these tests cannot fail. For this reason, for every symbol X , we allow the user
to choose the type �X� of the semantic values carried by X . (In Coq, �X� has
type Type.) By abuse of notation, if α is a (possibly empty) sequence of symbols
X1 . . .Xn, we write �α� for the tuple type �X1� × . . .× �Xn�.

How are semantic values constructed? The answer is two-fold. The semantic
values carried by terminal symbols are constructed by the lexer: in other words,
they are part of the input that is submitted to the parser. The semantic values
carried by non-terminal symbols are constructed by the parser: when a produc-
tion is reduced, a semantic action is executed. Let us now examine each of these
two aspects in greater detail.

The input of the parser is a stream of tokens, where a token is a dependent
pair (a, v) of a terminal symbol a and a semantic value v of type �a�. We assume
that this stream is infinite. There is no loss of generality in this assumption:
if one wishes to work with a finite input stream, one can complete it with an
infinite number of copies of a new “end-of-stream” token. In the following, we
write w for a finite sequence of tokens and ω for an infinite stream of tokens.

A production p is a triple of the form A −→ α {f}. (Above, we have writ-
ten that productions form an alphabet, that is, they are numbered. We abuse
notation and elide the details of the mapping from productions-as-numbers to
productions-as-triples.) The left-hand side of a production is a non-terminal
symbol A. The right-hand side consists of a sentential form α and a semantic
action f of type �α� → �A�. The semantic action, which is provided by the
user, indicates how a tuple of semantic values for the right-hand side α can be
transformed into a semantic value for the left-hand side A. In our approach, the
semantic action plays a dual role: on the one hand, it is part of the grammar, and
plays a role in the definition of the semantics of the grammar; on the other hand,
it is used, at runtime, by the parser. The semantic action is a Coq function and
is supplied by the user as part of the grammar. (The parser generator Menhir
views semantic actions as pieces of text, so no modification is needed for it to
support Coq semantic actions instead of Objective Caml semantic actions.)

2.3 Semantics of Grammars

The semantics of grammars is usually defined in terms of a relation between
symbols X and words w, written X −→ w, pronounced: “X derives w”. As
announced earlier, we extend this relation with a third parameter, a semantic
value v of type �X�. Thus, we write X

v−→ w, pronounced: “X derives w pro-
ducing v”. The inductive definition of this relation is as follows:

a
v−→ (a, v)

A −→ X1 . . . Xn {f} is a production

∀i ∈ {1, . . . , n} Xi
vi−→ wi

A
f(v1,...,vn)−→ w1 . . . wn
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This semantics is used when we state that the parser is sound and complete with
respect to the grammar (Theorems 1 and 3).

2.4 Automata

We fix an automaton A, where an automaton consists of:

1. an alphabet of states σ, with a distinguished initial state, written init;
2. an action table;
3. a goto table;
4. for every non-initial state σ, an incoming symbol, written incoming(σ).

A non-initial state is a state other than init.
An action table is a total mapping of pairs (σ, a) to actions. The idea is, if σ is

the current state of the automaton and a is the terminal symbol currently found
at the head of the input stream, then the corresponding action instructs the
automaton what to do next. An action is one of shift σ′ (where σ′ is non-initial),
reduce p (where p is a production), accept, and reject. In particular, the situation
where the action table maps (σ, a) to shift σ′ can be thought of graphically as
an edge, labeled a, from σ to σ′.

Remark 1. Our description of the action table as a mapping of pairs (σ, a) to
actions appears to imply that the parser must peek at the next input token a
before it can decide upon the next action. This might seem perfectly acceptable:
because we have assumed that the input stream is infinite, there always is one
more input token. In practice, however, more care is required. There are situa-
tions where the input stream is effectively infinite and nevertheless one must not
allow the parser to systematically peek at the next token. For instance, the input
stream might be connected to a keyboard, where a user is entering commands.
If the parser has been asked to recognize one command, then, upon finding the
end of a command, it should terminate and report success without attempting
to read one more token: otherwise, it runs the risk of blocking until further
keyboard input is available!

In order to address this problem, we allow our automata to sometimes take a
default action without peeking at the next input token. We adopt the following
convention: if, for a certain state σ and for all terminal symbols a, the entries
found at (σ, a) in the action table are identical, then the automaton, when in
state σ, determines which action should be taken without consulting the input
stream1.

1 Of course, it would be inefficient to näıvely test whether one entire column of the
action table contains identical entries. In reality, Menhir produces (and our Coq
code uses) a two-level action table, where the first level is indexed only by a state σ
and indicates whether there exists a default action, and the second level (which is
consulted only if there is no default action) is indexed by a state σ and a terminal
symbol a.
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A goto table is a partial mapping of pairs (σ,A) to non-initial states. If the
goto table maps (σ,A) to σ′, then the automaton can take a transition from σ
to σ′ after recognizing a word that derives from A. This can be thought of
graphically as an edge, labeled A, from σ to σ′. This table is a partial mapping:
a state σ may have no outgoing edge labeled A.

A well-formed LR automaton has the property that, for every non-initial
state σ, all of the edges that enter σ carry a common label. (The initial state
init has no incoming edges.) We refer to this label as the incoming symbol of σ.
Although we could have our validator reconstruct this information, we ask the
user to supply it as part of the description of the automaton. We require that
this information be consistent with the action and goto tables, as follows. If the
action table maps (σ, a) to shift σ′, then we require incoming(σ′) = a. Similarly,
if the goto table maps (σ,A) to σ′, then we require incoming(σ′) = A. We
encode these requirements directly in the types of the action and goto tables,
using dependent types, so we do not need to write validation code for them.

2.5 Semantics of Automata

We give semantics to automata by defining an interpreter for automata. The
interpreter is a function named parse(·, ·). Its first (and main) argument is a
token stream ω. We need an auxiliary argument, the “fuel”, which is discussed
further on.

The interpreter maintains a stack s, which is a list of dependent pairs of a non-
initial state σ and a semantic value v of type �incoming(σ)�. Indeed, incoming(σ)
is the (terminal or non-terminal) symbol that was recognized prior to entering
state σ, and v is a semantic value associated with this symbol. We write s(σ, v)
for a stack whose top cell is the pair (σ, v) and whose tail is the stack s. At the
beginning of a run, the stack is empty. At every moment, the current state of
the automaton is the state found in the top stack cell if the stack is non-empty;
it is the initial state init if the stack is empty2.

In several places, the interpreter can generate an internal error, revealing a
flaw in the automaton. Indeed, it is sometimes much easier to write an interpreter
that can encounter an internal error, and prove a posteriori that this situation
never arises if the automaton satisfies certain properties, than to define a priori
an interpreter than never encounters an internal error. In other words, instead
of hardwiring safety (that is, the absence of internal errors) into the definition
of the interpreter, we make it a separate theorem (Theorem 2).

We use an error monad to deal with internal errors. In this paper, we use � to
denote an internal error. By abuse of notation, we elide the “return” operation
of the error monad. Thus, the interpreter produces either � or a parse result
(defined below).

We also need a way of dealing with the possibility of non-termination. Again,
it is not possible to prove a priori that the interpreter terminates. When an

2 In many textbooks, one does not consider semantic values, so the stack is a list of
states; at the beginning of a run, the stack is a singleton list of the state init; the
stack is never empty, so the current state is always the one found on top of the stack.
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LR automaton reduces a unit production (of the form A −→ A′) or an epsilon
production (of the form A −→ ε), the size of the stack does not decrease. There
do exist automata, as per the definition of §2.4, whose interpretation does not
terminate. It is not clear, at present, what property one could or should require
of the automaton in order to ensure termination. (We discuss this issue in §7.)

We adopt a simple and pragmatic approach to this problem: in addition to
the token stream, the interpreter requires an integer argument n, which we refer
to as the fuel. In the main loop of the interpreter, each iteration consumes one
unit of fuel. If the interpreter runs out of fuel, it stops and reports that it was
not able to terminate normally. We write out-of-fuel for this outcome.

Thus, a parse result is one of: out-of-fuel, which was explained above; reject,
which means that the input is invalid; and parsed v ω, which means that the
input is valid, that the semantic value associated with the prefix of the input
that was recognized is v, and that the remainder of the input is ω. (The value v
has type �S�, where S is the start symbol of the grammar. The value ω is a
token stream.)

In summary, the interpreter accepts a token stream and a certain amount of
fuel and produces either � or a parse result, as defined above.

The interpreter works in a standard manner. At each step, it looks up the
action table at (σ, a), where σ is the current state of the automaton and (a, v)
is the next input token. Then,

1. if the action is shift σ′, the input token (a, v) is consumed, and the new
cell (σ′, v) is pushed onto the stack. Because incoming(σ′) = a holds, it is
possible to cast the value v from the type �a� to the type �incoming(σ′)�:
this is required for this new stack cell to be well-typed.

2. if the action is reduce A −→ X1 . . . Xn {f}, the interpreter attempts to
pop n cells off the stack, say (σ1, v1) . . . (σn, vn), and dynamically checks that
incoming(σi) = Xi holds for every i ∈ {1, . . . , n}. If the stack does not have
at least n cells, or if this check fails, then an internal error occurs. Otherwise,
thanks to the success of these dynamic checks, each of the semantic values vi
can be cast from the type �incoming(σi)� to the type �Xi�. Thus, the tuple
(v1, . . . , vn) admits the type �X1 . . . Xn�, and is a suitable argument for the
semantic action f . The application of f to this tuple yields a new semantic
value v of type �A�. There remains for the interpreter to consult the goto
table at the current state and at the non-terminal symbol A. If this entry in
the goto table is undefined, an internal error occurs. Otherwise, this entry
contains a state σ′, and (after another cast) the new cell (σ′, v) is pushed
onto the stack.

3. if the action is accept, the interpreter attempts to pop one cell off the stack,
say (σ, v), and checks that incoming(σ) = S holds, where S is the start
symbol of the grammar. Thus, the value v can be cast to the type �S�.
(This can be thought of as reducing a special production S′ −→ S.) The
interpreter then checks that the stack is now empty and terminates with the
parse result parsed v ω, where ω is what remains of the input stream.

4. if the action is reject, the interpreter stops with the parse result reject.
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In summary, there are four possible causes for an internal error: a dynamic check
of the form incoming(σ) = X may fail; an attempt to pop a cell off the stack
fails if the stack is empty; an attempt to consult the goto table fails if the desired
entry is undefined; an attempt to accept fails if the stack is nonempty.

3 Correctness Properties and Validation

We now show how to establish three properties of the automaton A with respect
to the grammar G. These properties are soundness (the parser accepts only valid
inputs), safety (no internal error occurs), and completeness (the parser accepts
all valid inputs). By design of our interpreter, the first property is true of all
automata, whereas the latter two are true only of some automata. For safety
and for completeness, we present a set of conditions that are sufficient for the
desired property to hold and that can be automatically checked by a validator.

3.1 Soundness

The soundness theorem states that if the parser accepts a finite prefix w of the
input stream ω, then (according to the grammar) the start symbol S derives w.
More precisely, if the parser accepts w and produces a semantic value v, then v
is the value associated with this particular derivation of w from S, that is, the
relation S

v−→ w holds.

Theorem 1 (Soundness). If parse(ω, n) = parsed v ω′ holds, then there exists

a word w such that ω = wω′ and S
v−→ w.

No hypotheses about the automaton are required, because the situations where
“something is wrong” and soundness might be endangered are detected at run-
time by the interpreter and lead to internal errors. In other words, we have
shifted most of the burden of the proof from the soundness theorem to the
safety theorem.

In order to prove this theorem, it is necessary to establish an invariant stating
that the symbols associated with the states found in the stack derive the input
word that has been consumed. For this purpose, we introduce a new predicate,
written s =⇒ w, which relates a stack s with a token word w. It is inductively
defined as follows:

ε =⇒ ε
s =⇒ w1 incoming(σ)

v−→ w2

s(σ, v) =⇒ w1w2

Then, the main soundness invariant can be stated as follows: if the parser has
consumed the input word w and if the current stack is s, then s =⇒ w holds.

3.2 Safety

The safety theorem states that if the automaton passes the safety validator
(which we describe further on) then the interpreter never encounters an internal
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error. A validator is a Coq term of type bool, which has access to the grammar,
to the automaton, and to certain additional annotations that serve as hints (and
which we describe below as well). Thus, the safety theorem takes the following
form:

Theorem 2 (Safety). If the criteria enforced by the safety validator are satis-
fied, then parse(ω, n) �= � for every input stream ω and for every integer “fuel” n.

All of the causes of internal errors that were previously listed (§2.5) have to do
with a stack that does not have the expected shape (e.g., it has too few cells)
or contents (e.g. some cell contains a semantic value of inappropriate type, or
contains a state for which no entry exists in the goto table). Thus, in order to
ensure safety, we must have precise control of the shape and contents of the
stack.

Recall that a stack s is a sequence of pairs (σ1, v1) . . . (σn, vn). In what fol-
lows, it is convenient to abstractly describe the structure of such a stack in two
ways. First, we are interested in the underlying sequence of symbols: we write
symbols(s) for the sequence of symbols incoming(σ1) . . . incoming(σn). Second,
we are interested in the underlying sequence of states: we write states(s) for
the sequence of singleton sets {init}{σ1} . . . {σn}. (We use singleton sets here
because we will shortly be interested in approximating these singleton sets with
larger sets of states Σ.)

A key remark is the following: the sequences symbols(s) and states(s) are not
arbitrary. They follow certain patterns, or, in other words, they respect a certain
invariant. This invariant will be sufficient to guarantee safety.

How do we find out what this invariant is? Two approaches come to mind:
either the safety validator could reconstruct this invariant by performing a static
analysis of the automaton (this would require a least fixed point computation),
or the parser generator could produce a description of this invariant, which
the safety validator would verify (this would require checking that a candidate
fixed point is indeed a fixed point). We somewhat arbitrarily adopt the latter
approach. The former approach appears viable as well, especially if one exploits
a pre-existing verified library for computing least fixed points.

Thus, the annotations that the safety validator requires (and that the parser
generator must produce) form a description of the safety invariant. For each
non-initial state σ, these annotations are:

1. a sequence of symbols, written pastSymbols(σ);
2. a sequence of sets of states, written pastStates(σ).

(There is a redundancy, which we discuss in §7.) These annotations are meant to
represent approximate (conservative) information about the shape and contents
of the stack. In order to explain their meaning, let us now define the safety
invariant in terms of these annotations.

We begin by defining the relations that exist between abstract descriptions of
the stack and concrete stacks. We need two such relations. The suffix ordering
between two sequences of symbols is defined in the usual way: that is, Xm . . . X1

is a suffix of X ′
n . . . X

′
1 if and only if m ≤ n holds and Xi = X ′

i holds for every
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i ∈ {1, . . . ,m}. The suffix ordering between two sequences of sets of states is
defined in the same manner, up to pointwise superset ordering: that is, Σm . . . Σ1

is a suffix of Σ′
n . . . Σ

′
1 if and only if m ≤ n and Σi ⊇ Σ′

i holds for every
i ∈ {1, . . . ,m}.

Equipped with these suffix orderings, which serve as abstraction relations, we
can define the safety invariant. This is a predicate over a stack, written safe s.
It is inductively defined as follows:

safe ε

pastSymbols(σ) is a suffix of symbols(s)
pastStates(σ) is a suffix of states(s)

safe s

safe s(σ, v)

A stack s(σ, v) is safe if (a) the annotations pastSymbols(σ) and pastStates(σ)
associated with the current state σ are correct approximate descriptions of the
tail s of the stack and (b) the tail s is itself safe. Less formally, pastSymbols(σ)
and pastStates(σ) are static descriptions of a suffix of the stack (i.e., the part
of the stack that is closest to the top). The rest of the stack, beyond this stat-
ically known suffix, is unknown. Nevertheless, this information is sufficient (if
validation succeeds) to show that internal errors cannot occur: for instance, it
guarantees that, whenever we attempt to pop k cells off the stack, at least k
cells are present.

Now, in order to ensure that safe s is indeed an invariant of the interpreter,
the validator must check that the annotations pastSymbols(σ) and pastStates(σ)
are consistent. Furthermore, the validator must verify a few extra conditions
which, together with the invariant, ensure safety. The safety validator checks
that the following properties are satisfied:

1. For every transition, labeled X , of a state σ to a new state σ′,
– pastSymbols(σ′) is a suffix of pastSymbols(σ)incoming(σ),
– pastStates(σ′) is a suffix of pastStates(σ){σ}.

2. For every state σ that has an action of the form reduce A −→ α {f},
– α is a suffix of pastSymbols(σ)incoming(σ),
– If pastStates(σ){σ} is Σn . . . Σ0 and if the length of α is k, then for every

state σ′ ∈ Σk, the goto table is defined at (σ′, A). (If k is greater than n,
take Σk to be the set of all states.)

3. For every state σ that has an accept action,
– σ �= init,
– incoming(σ) = S,
– pastStates(σ) = {init}.

Thanks to the finiteness of the alphabets, these conditions are clearly and
efficiently decidable.

These conditions do not depend in any way on the manner in which lookahead
is exploited to determine the next action. In other words, an LR(1) automaton
is safe if and only if the underlying non-deterministic LR(0) automaton is safe.
Thus, the safety validator is insensitive to which method was used to construct
the LR(1) automaton.
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3.3 Completeness

The completeness theorem states that if the automaton passes the completeness
validator (which we describe further on), if a prefix w of the input is valid, and
if enough fuel is supplied, then the parser accepts w and constructs a correct
semantic value. (The theorem also allows for the possibility that the parser might
encounter an internal error. This concern was dealt with in §3.2, so we need not
worry about it here.)

Theorem 3 (Completeness). If the criteria enforced by the completeness val-

idator are satisfied and if S
v−→ w holds, then there exists n0 such that for all ω

and for all n ≥ n0, either parse(wω, n) = � or parse(wω, n) = parsed v ω.

The Coq version of this result is in fact more precise. We prove that a suitable
value of n0 is the size of the derivation tree for the hypothesis S

v−→ w, and we
prove that this is the least suitable value, that is, n < n0 implies parse(wω, n) =
out-of-fuel .

In order to guarantee that the automaton is complete, the validator must
check that each state has “enough” permitted actions for every valid input to
be eventually accepted. But how do we know, in a state σ, which actions should
be permitted? We can answer this question if we know which set of LR(1) items
is associated with σ. Recall that an item is a quadruple A −→ α1 • α2 [a],
where A −→ α1α2 {f} is a production and a is a terminal symbol. The intuitive
meaning of an item is: “we have recognized α1; we now hope to recognize α2 and
find that it is followed with a; if this happens, then we will be able to reduce the
production A −→ α1α2 {f}”.

Our items are relative to an augmented grammar, where a virtual production
S′ −→ S has been added. This means that we can have items of the form
S′ −→ • S [a] (these appear in the initial state of the automaton) and items of
the form S′ −→ S • [a] (these appear in the final, accepting state).

The parser generator knows which set of items is associated with each state
of the automaton. We require that this information be transmitted to the com-
pleteness validator. (One could instead reconstruct this information, and one
would not even need to prove the correctness of the algorithm that reconstructs
it; but it is not clear what one would gain by doing so.)

With this information, the validator carries out two kinds of checks. First, it
checks that each state σ has “enough” actions: that is, the presence of certain
items in items(σ) implies that certain actions must be permitted. Second, it
checks that the sets items(σ) are closed and consistent : that is, the presence of
certain items in items(σ) implies that certain items must be present in items(σ)
(this is closure) and in items(σ′), where σ′ ranges over the successor states of σ
(this is consistency).

The definition of the closure property, which appears below, relies on the
knowledge of the “first” sets, which in turn requires the knowledge of which
non-terminal symbols are “nullable”. It is well-known that “first” and “nullable”
form the least fixed point of a certain system of positive equations. Again, we
could have the validator compute this least fixed point; instead, we require that
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it be transmitted from the parser generator to the validator, and the validator
just checks that it is a fixed point.

In summary, the annotations that the completeness validator requires (and
that the parser generator must produce) are:

1. for each state σ, a set of items, written items(σ).
2. for each non-terminal symbol A, a set of terminal symbols first(A);
3. for each non-terminal symbol A, a Boolean value nullable(A).

The properties that the completeness validator enforces are:

1. “first” and “nullable” are fixed points of the standard defining equations.
2. For every state σ, the set items(σ) is closed, that is, the following implication

holds:

A −→ α1 •A′α2 [a] ∈ items(σ)
A′ −→ α′ {f ′} is a production

a′ ∈ first(α2a)

A′ −→ • α′ [a′] ∈ items(σ)

3. For every state σ, if A −→ α• [a] ∈ items(σ), where A �= S′, then the action
table maps (σ, a) to reduce A −→ α {f}.

4. For every state σ, if A −→ α1 • aα2 [a′] ∈ items(σ), then the action table
maps (σ, a) to shift σ′, for some state σ′ such that:

A −→ α1a • α2 [a′] ∈ items(σ′)

5. For every state σ, if A −→ α1 • A′α2 [a′] ∈ items(σ), then the goto table
either is undefined at (σ,A′) or maps (σ,A′) to some state σ′ such that:

A −→ α1A
′ • α2 [a′] ∈ items(σ′)

6. For every terminal symbol a, we have S′ −→ • S [a] ∈ items(init).
7. For every state σ, if S′ −→ S • [a] ∈ items(σ), then σ has a default accept

action.

These conditions are clearly decidable. In order to achieve reasonable efficiency,
we represent items in a compact way: first, we group items that have a common
LR(0) core; second, we use a natural number to indicate the position of the
“bullet”. Thus, in the end, we manipulate triples of a production identifier p,
an integer index into the right-hand side of p, and a set of terminal symbols.
Furthermore, we use the standard library FSets [10], which implements finite
sets in terms of balanced binary search trees, in order to represent sets of items.

The various known methods for constructing LR(1) automata differ only in
how they decide to merge, or not to merge, certain states that have a common
LR(0) core. The completeness validator is insensitive to this aspect: as long as
no conflict arises due to excessive merging, an arbitrary merging strategy can be
employed.
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There is a relatively simple intuition behind the proof of Theorem 3. Suppose
an oracle gives us a proof of S

v−→ w, that is, a parse tree. Then, the parser,
confronted with the input w, behaves in a very predictable way: it effectively
performs a depth-first traversal of this parse tree. When the parser performs
a shift action, it visits a (terminal) leaf of the parse tree; when it performs a
reduce action, it visits a (non-terminal) node of the parse tree. At any time,
the parser’s stack encodes the path that leads from the root of the tree down
to the current node of the traversal, and holds the semantic values associated
with parse tree nodes that have been fully processed, but whose parent has not
been fully processed yet. At any time, the unconsumed input corresponds to the
fringe of the part of the parse tree that has not been traversed yet.

This invariant allows us to prove that the parser cannot reject the input wω.
Instead, it keeps shifting and reducing until it has traversed the entire parse
tree. At this point, it has consumed exactly w, and it must accept and produce
exactly v. Note that there is no need to implement an “oracle”. We simply prove
that if there exists a parse tree, then the parser behaves as if it were traversing
this parse tree, and accepts at the end.

In order to make this intuition precise, we define an invariant that relates
the stack, the unconsumed input, and a path in the parse tree provided by the
“oracle”. The definition of this invariant is quite technical, but can be summed
up as follows. There exists a path in the “oracle” parse tree such that:

1. The path begins at the root of the parse tree.
2. For each node in this path, the children of this node can be divided in three

consecutive segments (or, at the last node in the path, in two segments):
– children that have already been visited: the semantic value associated

with each of these children is stored in a stack cell;
– the child that is being visited (absent if we are at the bottom of the

path): this child is the next node in the path;
– children that will be visited in the future: their fringes correspond to

segments of the unconsumed input stream.
3. The unconsumed input begins with the concatenation of the fringes of the

“unvisited children” of all nodes in the path.
4. The sequence of all stack cells is in one-to-one correspondence with the con-

catenation of the sequences of “visited children” of all nodes in the path.
5. As per the previous item, each stack cell (σ, v) is associated with a certain

child y of a certain node x in the path. Then, the semantic value carried by
the node y must be precisely v. Furthermore, if the node x is labeled with the
production A −→ α1Xα2 and if the child y corresponds to the symbol X ,
then the item A −→ α1X • α2 [a] appears in items(σ), where a is the first
symbol in the partial fringe that begins “after” the node x.

During parsing, this path evolves in the following ways:

1. Between two actions: if the first unvisited child of the last node of the path
exists and is not a terminal leaf, then the next action of the automaton
will take place under this child. It is then necessary to extend the path: this
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child becomes the last node of the path. This extension process is repeated
as many times as possible.

2. When shifting: if the first unvisited child of the last node exists and is a
terminal leaf, then the next action must be a shift action. This child is
considered visited and transferred to the first segment of children of the last
node. The path itself is unchanged.

3. When reducing: if the last node of the path has no unvisited child, then the
next action must be a reduce action for the production that corresponds to
this node. Then, the path is shortened by one node: that is, if x and y are
the last two nodes in the path, then x becomes the last node in the path,
and y becomes the last visited child of x.

3.4 Unambiguity

It is easy to prove the following result.

Theorem 4. Suppose there exists a token. If the criteria enforced by the safety
and completeness validators are satisfied, then the grammar is unambiguous.

The proof goes as follows. Suppose that the automaton is safe and complete.
Suppose further that, for some word w, both S

v1−→ w and S
v2−→ w hold. By the

safety hypothesis, the parser never encounters an internal error �. Thus, by the
completeness hypothesis, given a sufficiently large amount of fuel, the parser,
applied to wω (where ω is arbitrary), must produce v1, and by a similar argu-
ment, must produce v2. However, our automata are deterministic by definition:
parse is a function. Thus, v1 and v2 must coincide.

4 Coq Formalization

All of the results presented in this paper were mechanized using the Coq 8.3pl1
proof assistant. The Coq formalization is fairly close to the definitions, theorems
and proofs outlined in this paper.

We use of dependent types to support semantic values and semantic actions
whose types are functions of the corresponding symbols and productions. This
enables us to support user-supplied semantic actions with essentially no proof
overhead compared with a “pure” parser that only produces a parse tree.

We make good use of Coq’s module system: the validator and the interpreter
are functors parameterized over abstract types for terminal and non-terminal
symbols. The only constraints over these two types of symbols are that they
must be finite (so that it is possible to decide universal quantifications over
symbols) and they must come with a decidable total order (so that they can be
used in conjunction with the FSets library).

The Coq formalization is pleasantly small: about 2500 lines, excluding com-
ments. The executable specifications of the safety validator and the completeness
validator are about 200 lines each. The proofs of soundness, safety, and complete-
ness account for 200, 500, and 700 lines, respectively.
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5 Experimentation on a C99 Parser

The grammar. Our starting point is the context-free grammar given in Annex A
of the ISO C99 standard [11]. We omit the productions that support unpro-
totyped “K&R-style” function definitions, since such old-style definitions are
considered “an obsolescent feature” [11, section 6.11.7] and are not supported
by subsequent passes of the CompCert compiler.

Both this slightly simplified C grammar and the original ISO C99 grammar
are ambiguous. There are three distinct sources of ambiguity.

The first source of ambiguity is the classic “dangling-else” problem, which
introduces a shift-reduce conflict in the LR(1) automaton. We eliminated this
conflict by a slight modification to the grammar, distinguishing two non-terminal
symbols for statements: one that prohibits if statements without an else part,
and the other that permits them.

The second source of ambiguity is the well-known problem with typedef names
(identifiers bound to a type by a typedef declaration), which must be distin-
guished from other identifiers. For example, “a * b;” is to be parsed as a dec-
laration of a variable b of type “pointer to a” if a is a typedef name, but stands
for the multiplication of a by b otherwise. To avoid major ambiguities in the
grammar, it is mandatory to use two distinct terminal symbols, typedef-name
and variable-name, and rely on the lexer to classify identifiers into one of these
two terminal symbols. The traditional way of doing so, affectionately referred to
as “the lexer hack”, is to have the semantic actions of the parser maintain a ta-
ble of typedef names currently in scope, and to have the lexer consult this table
to classify identifiers. We were reluctant to perform such side effects within the
semantic actions of our verified parser. Instead, like Padioleau [12], we interpose
a “pre-parser” between the lexer and the verified parser, whose sole purpose
is to keep track of typedef names currently in scope and classify identifiers as
either typedef-name or variable-name in the token stream that feeds the verified
parser. For simplicity of implementation, the pre-parser is actually a full-fledged
but unverified C99 parser that implements the standard “lexer hack” scheme.

The third and last source of ambiguity is also related to typedef names, but
more subtle. Consider the declaration “int f(int (a));” where a is a typedef
name. It can be read as “a function f with one parameter named a of type int”,
but also as “a function f with one anonymous parameter of function type a →
int”. The original ISO C99 standard leaves this ambiguity open, but Technical
Corrigendum 2 specifies that the second interpretation is the correct one [11,
clause 6.7.5.3(11)]. Again, we rely on our pre-parser to correctly resolve this
ambiguity (via well-chosen precedence annotations) and to ensure that identifiers
in binding positions are correctly classified as typedef names (if previously bound
by typedef and not to be redeclared, as in the example above) or as variable
names (in all other cases, even if previously bound by typedef).

Generating the parser. We use the Menhir parser generator [8] modified to pro-
duce not only an LR(1) automaton but also a representation of the source gram-
mar as well as the various annotations needed by the validator. All outputs are
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produced as Coq terms and definitions that can be directly read into Coq. The
modifications to Menhir are small (less than 500 lines of Caml code) and reside
in just one new module.

Our modified C99 grammar comprises 87 terminal symbols, 72 non-terminal
symbols, and 263 productions. The LR(1) automaton generated by Menhir using
Pager’s method contains 505 states. (The grammar is in fact LALR, and the
automaton produced by Menhir is indeed identical to the LALR automaton
that would be produced by an LALR parser generator.) The generated Coq file
is approximately 4.5 Mbytes long, of which 6% correspond to the automaton,
2% to the description of the grammar, and the remaining 92% are annotations
(item sets, mostly).

Validating the parser. Running the validator on this output, using Coq’s built-
in virtual machine execution engine (the Eval vm_compute tactic), takes 19
seconds: 4s to validate safety and 15s to validate completeness3. Coq takes an
additional 32s to read and type-check the file generated by Menhir, for a total
processing time of 51s. While not negligible, these validation times are acceptable
in practice. In order to further reduce the validation time, one could probably use
improved data structures or extract the validator to natively-compiled OCaml
code; but there is no pressing need.

Running the parser. With some elbow grease, we were able to replace CompCert
1.9’s unverified parser (an LALR automaton produced by OCamlYacc) with our
new verified parser. The verified parser runs about 5 times slower than the old
one, increasing overall compilation times by about 20%. There are two major
reasons for this slowdown. One is that we effectively parse the input twice: once
in the pre-parser, to track typedef names, and once “for good” in the verified
parser. Another reason is that the interpreter that executes the verified parser is
written in Coq, then extracted to Caml, and performs redundant runtime checks
compared with OCamlYacc’s execution engine, which is coded in C and performs
no runtime checks whatsoever. (We discuss the issue of redundant checks in §7.)

6 Related Work

Although parsing is a classic and extremely well-studied topic, the construction
of verified parsers seems to have received relatively little interest.

Pottier and Régis-Gianas [13] show that, for a fixed LR(1) automaton, the in-
ductive invariant that describes the stack and guarantees safety (§3.2) can be ex-
pressed as a generalized algebraic data type (GADT). They show that if one con-
structs a parser by specializing the interpreter for this automaton, then a type-
checker equipped with GADTs can verify the safety of this parser. In addition to
a safety guarantee, this approach yields a performance gain with respect to an
ML implementation, because the weaker type system of ML imposes the use of
redundant tags and dynamic checks (e.g. stack cells must be redundantly tagged

3 All timings were measured on a Core i7 3.4GHz processor, using a single core.
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with nil or cons). Here, the interpreter is generic, and, even though it is provably
safe, it does perform redundant dynamic checks. (We discuss this issue in §7.)

Barthwal and Norrish [2] and Barthwal [3] use the HOL4 proof assistant to
formalize SLR [4] parsing. For a context-free grammar, they construct an SLR
parser, and are able to prove it sound and complete: the guarantees that they
obtain are analogous to our Theorems 1 and 3. Like us, they omit a proof that
the parser terminates when presented with an illegal input. (We discuss this issue
in §7.) Although their parsers are executable, they are probably not efficient, be-
cause the parser construction and parser execution phases are not distinguished in
the usual manner: in particular, while the parser is running, states are still repre-
sented as sets of LR(1) items. Because Barthwal and Norrish formalize the parser
construction process, their formalization is relatively heavyweight and represents
over 20 000 lines of definitions and proofs. In contrast, because we rely on a val-
idator, our approach is more lightweight (2500 lines). It is also more versatile: we
can validate LR(1) automata constructed by any means, including LR(0), SLR,
LALR, Pager’s method, and Knuth’s canonical LR(1) construction. We believe
that this versatility is important in practice: for instance, we have verified that the
C99 grammar is LALR but not SLR. One disadvantage of our approach is that
we cannot exclude the possibility that the parser generator (which is not verified)
fails or produces an incorrect automaton. Fortunately, this problem is detected at
validation time. In our application to CompCert, it is detected when CompCert
itself is built, that is, before CompCert is distributed to its users.

Parsing Expression Grammars (PEGs) are a declarative formalism for
specifying recursive descent parsers. Ford [14,15] and other authors [16] have
investigated their use as an alternative to the more traditional and better es-
tablished context-free grammars. Koprowski and Binsztok [17] formalize the se-
mantics of PEGs, extended with semantic actions, in Coq. They implement a
well-formedness check, which ensures that the grammar is not left-recursive.
Under this assumption, they are able to prove that a straightforward (non-
memoizing) PEG interpreter is terminating. The soundness and completeness
of the interpreter are immediate, because the interpreter is just a functional ver-
sion of the semantics of PEGs, which is originally presented under a relational
form. Wisnesky et al. [18] implement a verified packrat parser (that is, a PEG
parser that achieves linear time and space complexity via memoization) using
the experimental programming language Ynot, which is itself embedded within
Coq. Because Ynot is a Hoare logic for partial correctness, the parser is not
proved to terminate.

We are definitely not the first to embrace a posteriori validation as an effec-
tive way to obtain correctness guarantees for compilers and program generators.
This idea goes back at least to Samet’s 1975 Ph.D. thesis [19] and was further
developed under the name translation validation by Pnueli et al. [20] and by
Necula [21]. Tristan and Leroy exploit the idea that formally-verified validators
for advanced compiler optimizations provide soundness guarantees as strong as
direct compiler verification [22]. Another example of a formally-verified validator
is the JVM bytecode verifier of Klein and Nipkow [23].
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7 Conclusions and Future Work

The approach to high-assurance parsing that we have developed, based on a
posteriori validation of an untrusted parser generator, appears effective so far.
The validation algorithms are simple enough that they could be integrated into
production parser generators and used as sanity checkers and debugging aids,
even in contexts where strong assurance is not required.

This work can be extended in several directions, including proving additional
properties of our LR(1) parser, improving its efficiency, and extending our work
to more expressive parsing formalisms. We now review some of these directions.

We have not proved that our parser terminates. Completeness (Theorem 3)
implies that it terminates when supplied with a valid input. However, there re-
mains a possibility that it might diverge when faced with an invalid input. In
fact, we have proof that the properties enforced by the safety and completeness
validators are not sufficient to ensure termination. So, more requirements must
be enforced, but we are not sure, at present, what these requirements should
be. Aho and Ullman prove that canonical LR(1) parsers terminate [24, Theo-
rem 5.13]. Their argument exploits the following property of canonical LR(1)
parsers: “as soon as [the consumed input and] the first input symbol of the re-
maining input are such that no possible suffix could yield a sentence in L(G), the
parser will report error”. This property, however, is not true of non-canonical
LR(1) parsers. By merging several states of the canonical automaton that have
a common LR(0) core, the non-canonical construction methods introduce spuri-
ous reductions: a non-canonical automaton can perform a few extra reductions
before it detects an error. Thus, Aho and Ullman’s proof does not seem to apply
to non-canonical LR(1) parsers.

We have not proved that our parser does not peek one token past the end of
the desired input. We claim that this property holds: the automata produced by
Menhir use default actions for this purpose (see Remark 1 in §2.4). However, at
present, we cannot even state this property, because it is an intensional property
of the function parse: “if parse(ω, n) = parsed v ω′, then ω′ has not been forced”.
In order to allow this property to be stated, one approach would be to reformulate
the parser so that it no longer has access to the token stream, but must instead
interact explicitly with the producer of the token stream, by producing “peek”
or “discard” requests together with a continuation.

We have defined a “cautious” interpreter, which can in principle encounter
an internal error, and we have proved, after the fact, that (if the safety valida-
tor is satisfied, then) this situation never arises. This allows us to separate the
definition of the interpreter and the safety argument. A potentially significant
drawback of this approach is that it entails a performance penalty at runtime:
even though we have a proof that the dynamic checks performed by the cautious
interpreter are redundant, these checks are still present in the code, and slow
down the parser. An anonymous reviewer pointed out that, without modifying
any of our existing code, it should be possible to define an “optimistic” inter-
preter, which performs no runtime checks, and is subject to the precondition that
the cautious interpreter does not fail. Sozeau’s “Program” extensions [25] could
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be used to facilitate the construction of this optimistic interpreter. In the end,
only the optimistic interpreter would be executed, and the cautious interpreter
would serve only as part of the proof. We would like to thank this reviewer for
this attractive idea, which we have not investigated yet.

Some of the hints that we require are redundant. In particular, pastSymbols
(§3.2) is entirely redundant, since it can in fact be deduced from pastStates and
incoming. This redundancy is due to historical reasons, and could be eliminated.
This might help speed up the type-checking and validation of the annotations.

Beyond LR(1) parsing, we believe that validation techniques can apply to
other parsing formalisms. It would be particularly interesting to study GLR, for
which we hope that our validators could be re-used with minimal changes.

Our experience with the C99 grammar agrees with common wisdom on the
importance of supporting precedence and associativity declarations in order to
keep parser specifications concise and readable. It is well-known how to take these
declarations into account when generating LR(1) automata, but the resulting
automata are no longer complete with respect to the grammar. How could we
modify our definition of the meaning of a grammar so as to take precedence
declarations into account? How could we then extend our validation algorithms?

References

1. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52, 107–115 (2009)

2. Barthwal, A., Norrish, M.: Verified, Executable Parsing. In: Castagna, G. (ed.)
ESOP 2009. LNCS, vol. 5502, pp. 160–174. Springer, Heidelberg (2009)

3. Barthwal, A.: A formalisation of the theory of context-free languages in higher
order logic. PhD thesis, Australian National University (December 2010)

4. DeRemer, F.L.: Simple LR(k) grammars. Communications of the ACM 14(7),
453–460 (1971)

5. Anderson, T., Eve, J., Horning, J.J.: Efficient LR(1) parsers. Acta Informatica 2,
12–39 (1973)

6. Pager, D.: A practical general method for constructing LR(k) parsers. Acta Infor-
matica 7, 249–268 (1977)

7. Knuth, D.E.: On the translation of languages from left to right. Information &
Control 8, 607–639 (1965)

8. Pottier, F., Régis-Gianas, Y.: The Menhir parser generator,
http://gallium.inria.fr/~fpottier/menhir/

9. Jourdan, J.H., Pottier, F., Leroy, X.: Coq code for validating LR(1) parsers,
http://www.eleves.ens.fr/home/jjourdan/parserValidator.tgz
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Abstract. We present an extension of System F with types for term-
level equations. This internalization of the rich equational theory of the
polymorphic lambda calculus yields an expressive core language, suitable
for formalizing features such as Haskell’s rewriting rules mechanism or
Extended ML signatures.

1 Introduction

Abstraction, modularity and information hiding are fundamental principles of
software engineering and language design. Yet programming against an interface
is often difficult, as conventional type systems can express only the most basic
of the many assumptions and guarantees made by a module. The problem is
that too much information is hidden, or only present in informal, ambiguous
documentation. Dependent types allow much richer interfaces but come with
their own costs, including a significant increase in the complexity of the language.
Hoare-style program logics also allow much more expressive interfaces, but as
well as being highly complex are arguably too decoupled from the underlying
programming language; logics have their own syntax and typing cannot exploit
logical specifications.

Compilers face problems similar to those of developers. If an optimizing com-
piler respects the modular structure of a program, it loses vital information that
it could use to generate better code. But looking through abstractions to im-
plementations is expensive and non-modular. Some compilers produce enriched
interfaces for compiled modules that summarize the results of static analyses
but the connection between this metadata and the program is often somewhat
ad hoc, making it hard to soundly exploit the extra information in non-trivial
transformations of client code.

In this paper, we address the question of how to incorporate more precise mod-
ule specifications into a language via an extension of System F, the paradigmatic
calculus for studying data abstraction. We restrict attention to specifications of
a particular form, viz. equations between terms, understood as contextual equiv-
alences. Equations are made part of the type system, making precise how they
may be scoped, passed around and exploited. In this regard, our system resem-
bles a restricted form of dependent types. However, equations are not actually
proved within the language. A denotational model makes precise what semantic
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conditions must be verified in order to establish equalities; various techniques,
from automatic analyses to interactive manual proofs, could be soundly used to
check the conditions. This aspect resembles the treatment of entailment check-
ing as a delegated semantic side-condition in Hoare-style program logics. The
contributions of the paper may be summarized as follows:

– We extend the type system of F with a type of term-level equations.
– We illustrate how expressive this language is by encoding some of patterns

of programming with dependent types and GADTs.
– We give a very simple parametric [20,22] relational semantics to our extended

language.
– We prove that our extended language is type-safe and terminating.
– We illustrate how the addition of equations enables useful new reasoning pat-

terns in parametricity proofs, such as proofs of the equivalence of existential
ML-style module interfaces with Church-style datatype encodings.

2 Informal Overview

This section describes our language, F=, semi-formally, and gives examples of its
use. The grammar is shown in Figure 1. The types of F= are the usual ones of
System F, extended with a new type former e ≡A e′, which asserts the equality
of e and e′ at type A. Since types now contain terms, and in particular term-level
variables, we change the syntax of the function type from A → B to (x : A) → B,
so that function arguments of type A can be referenced within B. This resembles
the dependent product of dependent type theory, and ensures that the argument
of a function can be mentioned in any returned equality types.

The terms of the language include those of System F, including variables x;
type abstractions Λα. e and type applications e [A]; and term abstractions λx. e
and term application e e′. We defer giving the precise typing rules until Section 3,
but they very closely resemble their counterparts in System F.

There are also two new term-level constants: • and abort. The term • is the
sole inhabitant of the equality type e ≡A e′ when the equation holds (the type is
uninhabited otherwise). We remark that • does not provide any intrinsic evidence
of the equality — the right to introduce a • arises as a semantic side-condition.
The absence of evidence keeps the term language very simple, since the • is
merely a placeholder for the reflection of a fact in the semantic model back into
the language’s type system. The abort constant allows equational information to
influence typing: it has arbitrary type, but only if the context is (semantically)
inconsistent. One can thus do deep semantic proofs to justify complicated equa-
tions, inject those into the types, and then use simple syntactic means to handle
the plumbing which pushes facts around to other parts of the program.

Figure 2 presents the notational abbreviations that we use in the remainder
of the paper. These are mostly well-known Church encodings, but note particu-
larly the weak sum type ∃x : A. B. We’ll also assume standard syntactic sugar
(e.g. projections, case analysis) associated with these abbreviations in examples.
(The model we present in Section 3 can be used to show that these suggestive
abbreviations actually have the intended semantics.)
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Types A ::= α | ∀α. A | (x : A) → B | e ≡A e′

Terms e ::= Λα. e | e [A] | λx. e | e e′ | • | abort | x
Values v ::= Λα. e | λx. e | •
Contexts Γ ::= · | Γ, α | Γ, x : A

Fig. 1. Syntax

A → B = (x : A) → B, when x �∈ FV(B)
∀x : A. B = (x : A) → B
∀x1 : A1, . . . , xn : An. B = ∀x1 : A1. . . .∀xn : An. B
A×B = ∀α. (A → B → α) → α
1 = ∀α. α → α
∃x : A. B = ∀α. ((x : A) → B → α) → α
∃x1 : A1, . . . , xn : An. B = ∃x1 : A1. . . .∃xn : An. B
∃α. A = ∀β. (∀α. A → β) → β
A + B = ∀α. (A → α) → (B → α) → α
⊥ = ∀α. α
¬A = A → ⊥

Fig. 2. Type Abbreviations

2.1 Examples

Refined Typings. Equations allow extra constraints to be imposed on argu-
ments and extra guarantees to be given for results. For example, a function that
should only be called with commutative binary operations on a type A might be
given a type like

(f : A → A → A) → (∀a : A, a′ : A.f a a′ ≡A f a′ a) → A

For producing values together with assertions of their equational properties, one
makes use of existential packages. For example, a function yielding idempotent
unary operations on A from arguments of type B could be typed as

B → (∃f : A → A.∀a : A.f (f a) ≡A f a)

Clients can project both the underlying value and the equational information
from such packages and use them to justify their own equations.

Datatype Encodings. More useful examples of F= involve enriching the sig-
natures of modules, encoded using second-order existential types in the standard
way [17,21]. We now give a few examples of how one can type abstract datatypes
in F=, encapsulating types, operations on those types and algebraic properties
satisfied by those operations.

Booleans We begin by giving an F= encoding of an interface to the Booleans.
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1 ∃bool,
2 true : bool,
3 false : bool,
4 if : ∀α. bool → α → α → α.
5 ∀α, a : α, a′ : α. if [α] true a a′ ≡α a ×
6 ∀α, a : α, a′ : α. if [α] false a a′ ≡α a′

The signature exposes constructors and eliminators for the boolean type, to-
gether with their β-theory as equational properties. A natural question is how
this module type relates to the traditional Church encoding of booleans. One
can certainly give an implementation of the abstract datatype in terms of that
encoding, in which bool is instantiated with ∀α. α → α → α. More surpisingly
perhaps, as we will show more formally in Section 4, the extended module type
uniquely characterizes the booleans, and F= allows clients to exploit the conse-
quences of this semantic fact. Note that the interface does not explicitly state any
of the properties which ordinarily characterize datatypes, such as the disjointness
of true and false, or that they are the only constructors for the boolean type.
However, the presence of the eliminator and its equational theory, plus para-
metricity, are sufficient to derive these properties: parametricity ensures that
true and false are the only way to construct the booleans, and furthermore,
they must be disjoint, or else we could use the equational theory of if to derive
a contradiction.

Natural Numbers As an example of a non-finite type, we can give an interface
for the type of natural numbers:

1 ∃nat,
2 z : nat,
3 s : nat → nat,
4 iter : ∀α. α → (α → α) → nat → α.
5 ∀α, i, f. iter [α] i f z ≡α i ×
6 ∀α, i, f, x. iter [α] i f (s x) ≡α f(iter [α] i f x)

This interface says that we have an abstract type nat, with constructors z and
s . We have an eliminator iter , and two equations explaining how to eliminate
zero and successor.

This signature does not expose the representation of nat, nor does it specify
the implementation of iter . We are free to implement the natural numbers in
any way we like – for example, with a binary (rather than unary) representation.
Furthermore, in Section 4 we will prove that this signature is isomorphic to the
Church encoding of the natural numbers, which means that any implementation
of this type actually is an implementation of the natural numbers.

Lists Here is a possible interface for the type of lists of booleans.

1 ∃Listbool,
2 nil : Listbool,
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3 cons : bool → Listbool → Listbool,
4 map : (bool → bool) → Listbool → Listbool,
5 fold : ∀α. α → (bool → α → α) → Listbool → α,
6 map id bool ≡Listbool idListbool ×
7 ∀f. map f nil ≡Listbool nil ×
8 ∀f, b, bs. map f (cons b bs) ≡Listbool cons (f b) (map f bs) ×
9 ∀f, g : bool → bool. (map f) ◦ (map g) ≡Listbool map (f ◦ g) ×
10 ∀α, a, f. fold [α] a f nil ≡α a ×
11 ∀α, a, f, b, bs. fold [α] a f (cons b bs) ≡α f b (fold [α] a f bs)

This example illustrates that the interface does not have to precisely match the
constructors of the Church encoding for lists — in this interface, we include the
map operation. However, since the interface tells us what the behavior of map
is, we can still prove that all values of list type can be built up just from nil and
cons .

This lets us greatly extend the interface to a module, without having to give
up natural reasoning principles for it. For example, suppose we extend lists with
a left fold operator, characterized by the following signature:

12 foldl : ∀α. α → (bool → α → α) → Listbool → α
13 ∀α, i, f. foldl [α] i f nil ≡α i
14 ∀α, i, f, b, bs. foldl [α] i f (cons b bs) ≡α foldl [α] (f b i) f bs

With this definition in hand, clients can establish things like the fact that if a
function is associative and commutative, then the left and right folds coincide
— a fact which we can encode in types:

15 assocA(f) � ∀a1, a2, a3. f (f a1 a2) a3 ≡A f a1(f a2 a3)

16 commA(f) � ∀a1, a2. f a1 a2 ≡A f a2 a1

17 ∀α, f, i, bs. assocα(f) → commα(i) → fold f i bs ≡α foldl f i bs

Here we exploit the usual Curry-Howard pun, using the function type to do the
duty of a logical implication. The proof of the equation above goes by induction
on the nil/cons structure of lists, which is only possible because we can prove
that this structure exists via parametricity.

2.2 Applications

Deforestation of Higher-Order Programs. Consider the following sequence
of equational rewrites.

(map not) ◦ (map not) = map (not ◦ not)
= map id bool

= idListbool

This is a standard example of deforestation [15], in which two intermediate
data structures (a negated list and a double-negated list) are not generated, in
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order to save memory usage. Deforestation offers many interesting examples,
since it appeals to equational properties which go well beyond simple inlining
and other forms of compile-time β-reduction.

However, now consider the following expression h:

h � λmap. (map not) ◦ (map not)

The question is, can the body of h be simplified? In general, the answer will
be no — unless we can prove that only map functionals satisfying the right
equational properties flow into the lambda, we are not justified in rewriting this
expression. Hence we are in the somewhat ironic position that deforestation —
an optimization invented to make higher-order programming more efficient — is
often inapplicable in client programs which make use of higher-order functions.

One way around this difficulty would be if we could prove the soundness
of these transformations in open contexts, where we don’t know exactly which
lambda-terms might flow into a higher-order program. By adding the necessary
information as type data to the programming language, we can rely on the
necessary equational properties to hold without having to make the concrete
bindings of terms like map and not visible.

So by rewriting h to pass in the desired properties, we can ensure that a
rewriting is performable in an open context :

h : ((map : bool → bool) → Listbool → Listbool)
→ map idbool ≡Listbool→Listbool idListbool
→ ∀f, g : bool → bool. (map f) ◦ (map g) ≡Listbool→Listbool map (f ◦ g)
→ Listbool → Listbool

h � λmap. λpf. λpf ′. (map not) ◦ (map not)

Here, we do not need to know what the actual implementation ofmap is, since we
have stipulated that the function hmust be called only with functions which have
the equational properties we need them to satisfy, and hence we can conclude
that h is equivalent to id.

GADT-style Encodings and Making Unsafe Operations Safe. Gener-
alized algebraic data types [11] extend ordinary algebraic datatypes with index
information permitting static types to contain information about the specific
data constructors used to build them. This lets programmers use dynamic run-
time tests to gain additional information about the static type of terms. Since
our type system lets us directly place information about terms into types, many
of these encodings can be fit into our framework.

Concretely, consider the following specification of an option type.

1 ∃optionA,
2 none : optionA,
3 some : A → optionA,
4 case : ∀α. optionA → α → (A → α) → α.
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5 ∀α. (v : α) → (f : A → α) → case [α] none v f ≡α v ×
6 ∀α. (a : A) → (v : α) → (f : A → α) → case [α] (some a) v f ≡α f a

This specification follows the pattern of the boolean and list types earlier, con-
taining the none and some constructors as well as the case eliminator for them,
plus equations describing the β-theory of case.

We can use this specification to write refined case programs which return
type-level evidence of equalities. First, we define a variant case function that
returns not only a value, but also a proof that the returned value is equal to the
input.

case ′ : (x : optionA) → (x ≡optionA none) + (∃a : A. x ≡optionA some a)

case ′ � λx. case [. . .] (inl •) (λa. inr (a, •))

As can be seen from the type, case ′ takes an option and returns a sum type. If
the argument is none, it returns the left branch containing the static fact that
the argument is none, and if the argument is a some, then it returns a value a
such that some a is equal to the argument of case. All of the equality type terms
are witnessed by • terms.

valOf : (x : optionA) → ¬(x ≡optionA none) → A

valOf � λx. λpf. case [A] abort (λa. a)

This operator takes an option and a proof that it is not equal to none. This lets
us pass abort as an argument in the untaken branch, since we know the case can
only be reduced when it has a proof that its argument is not none.

As before, these operations are provably correct only when injectivity and dis-
jointness hold, and again, these properties are provable from the interface speci-
fication. As a result, we can define these apparently-unsafe operators outside the
body of the module, since our program valOf only relies on the equational prop-
erties specified in the interface, and not on the specifics of the implementation.

3 Syntax and Semantics

Before proceeding to the metatheory, we give a high-level overview of the struc-
ture of this section.

1. We give the syntax of terms and types, and an untyped operational semantics
for our programming language. This language contains an abort construct
which can get stuck.

2. We define a “pre-typing” relation, which judges whether terms and types are
syntactically well-formed. Unlike a true type system, our pretyping system
is (by design) unsound: there are no restrictions on the use of the abort
connective.

3. However, the pretyping relation offers enough structure that we can define
a binary logical relation giving semantics to each of the type constructors,
by structural induction on the pretyping relation.
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v ⇓ v

e0 ⇓ λx. e′0 [e1/x]e
′
0 ⇓ v

e0 e1 ⇓ v

e0 ⇓ Λα. e′0 [A/α]e0 ⇓ v

e0 [A] ⇓ v

Fig. 3. Operational Semantics

Γ � ok Γ � A Γ � e : A

·� ok

Γ � ok

Γ, α � ok

Γ � ok Γ �A

Γ, x : A � ok

Γ � ok α ∈ Γ

Γ � α

Γ, α � A

Γ � ∀α. A

Γ � A Γ, x : A � B

Γ � (x : A) → B

Γ � A Γ � e : A Γ � e′ : A

Γ � e ≡A e′

Γ, x : A � e : B

Γ � λx. e : (x : A) → B

Γ � e : (x : A) → B Γ � e′ : A

Γ � e e′ : [e/x]B

Γ,α � e : A

Γ � Λα. e : ∀α. A

Γ � e : ∀α. B Γ �A

Γ � e [A] : [A/α]B

Γ � ok x : A ∈ Γ

Γ � x : A

Γ � e ≡A e′

Γ � • : e ≡A e′
(Danger1)

Γ �A

Γ � abort : A
(Danger2)

Fig. 4. Pretyping Relation

4. Then, we give the true typing relation, which refines the pretyping relation to
include semantic side-conditions on equality formation and the use of abort.

5. Finally, we prove the identity extension lemma for the true typing relation.

Readers familiar with PER models for System F (e.g., [6]) will find this proof
structure quite familiar. We begin with an untyped model of computation as
a universe, and then define a semantics of types as relations on the universe
by induction on the derivation of the pretyping relation. The main technical
novelty in our approach is that our types may contain terms, and we thus need
to interpret types in a context containing interpretations of the terms.

The operational semantics for our programming language is given in Figure 3,
and is a standard call-by-name semantics. There is no evaluation rule for the
constant •, since it has no explicit elimination form. There is no reduction rule
for abort — this term creates a stuck computation, since it indicates unreachable
code.

In Figure 4, we give the pretyping rules. We have three judgements:
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– The Γ � ok judgement judges whether a context is well-formed, and
– the Γ �A judgement judges whether a type A is well-formed in context Γ ,

and
– the Γ �e : A judgement judges whether a term e is well-formed with respect

to pretype A in context Γ .

All three of these judgements are mutually-recursive, since the equality type
e ≡A e′ contains terms, and its well-formedness rule asserts that e and e′ must
have pretype A. The rules mostly resemble F’s rules, with the variation that
both term and type applications need to perform a substitution (rather than
solely type application, as in ordinary System F).

The two surprising rules of the system are Danger1 and Danger2, which
are the rules for introducing the equality type and the abort keyword. As a result,
the pretype system is obviously unsound, since we can freely introduce the stuck
term abort wherever we like.

Of course, we will eventually refine these two rules so that equalities can only
be used to introduce true equalities, and abort can only be used in contexts
under which we can prove that evaluation can never reach that point. Do note,
however, that in this setting, it is the existence of abort which gives the equality
type its force. There are no elimination rules for equality types, and so the only
way that programs can make use of equalities is to exploit the equations in
context to write abort at certain places.

Now, we state the basic syntactic substitution properties of the calculus.

Theorem 1. (Syntactic Substitution) Suppose Γ �A and Γ � e : B. Then

– If Γ, α, Γ ′ � ok then Γ, [A/α]Γ ′ � ok.
– If Γ, α, Γ ′ �B then Γ, [A/α]Γ ′ � [A/α]B.
– If Γ, α, Γ ′ � e′ : C then Γ, [A/α]Γ ′ � [A/α]e′ : [A/α]C.
– If Γ, x : A,Γ ′ � ok then Γ, [e/x]Γ ′ � ok.
– If Γ, x : A,Γ ′ �B then Γ, [e/x]Γ ′ � [e/x]B.
– If Γ, x : A,Γ ′ � e′ : C then Γ, [e/x]Γ ′ � [e/x]e′ : [e/x]C.

The proofs of these theorems are a routine structural induction.
To add semantic side-conditions to the Danger1 and Danger2 rules, we

need to give a relational semantics of types, since we need to be able to compare
terms for equality. In Figure 6, we give the logical relation defining the relational
interpretation of types, as a structural recursion over the pretyping derivations
Γ �A. For each type constructor, we give the relation defining equality at that
type. Furthermore, since we are defining our relations by induction on the struc-
ture of the pretyping derivation Γ � A, we also parameterize this relation by a
grounding substitution γ.

The two key judgements in this relation begin with Env(Γ � ok), which de-
fines the set of well-formed grounding substitutions for the environment Γ . As
a context consists of a sequence of type variables α and term variables x : A,
the grounding substitutions consist of sequences of triples (A,A′, R) of closed
types and the relations between the terms of those types, which ground the type



426 N.R. Krishnaswami and N. Benton

(·)0 = ·
(γ, (e, e′)/x)0 = γ0, (e/x)
(γ, (A,A′, R)/α)0 = γ0, (A/α)

(·)1 = ·
(γ, (e, e′)/x)1 = γ1, (e

′/x)
(γ, (A,A′, R)/α)1 = γ1, (A

′/α)

γ(e) = (γ0(e), γ1(e))
γ(A) = (γ0(e), γ1(A))

Fig. 5. Operations on Relational Substitutions

variables α, and pairs of expressions (e, e′) which lie in the relation for A to
ground each term variable.

As γ is a relational substitution, we also need operations to extract ordinary
substitutions from it. These operations are defined in Figure 5. Given γ, the sub-
stitution γ0 takes the left components of the relational substitution, and γ1 takes
the right components. We write γ(e) as shorthand for the pair (γ0(e), γ1(e)), and
similarly we write γ(A) for (γ0(A), γ1(A)).

The environment relation is used mutually-recursively to define the relation
Val(Γ � A)(γ), which relates pairs of closed values of type A in the context Γ
closed by the substitution γ. This definition follows the usual pattern of logical
relations: type variables α look up the appropriate relation in the context γ, and
the value relation for function space (x : A) → B relates two functions f and g
if they take related arguments to related results.

The interpretation of the universal quantifier ∀α. B says that two terms are
related if for all value relations between pretypes A and A′ the type application
preserves the relation. By quantifying over relations between arbitrary values,
we avoid recursively mentioning the definition of the logical relation, and thereby
avoid circularity. This is a syntactic version of the techniques used in PER
models of polymorphism: fixing a universe ahead of time lets us consider the
intersection of all relations on that universe, without running afoul of the ap-
parent circularity of impredicative quantification.

Finally, we define the value relation for equality types Val(Γ � e ≡A e′)(γ)
as the pair (•, •), but only if the pair (γ0(e), γ1(e

′)) is in the relation for A.
Otherwise the relation is empty. This gives the semantic sense in which the
equality type is an equality type: it is a type containing a single unit value when
the equality is true, and is the empty type when it is not.

We also include the definition Exp(Γ �A)(γ), which are pairs of expressions
reducing to values related by Val(Γ � A)(γ). This is an auxiliary definition
simplifying the definitions of values and environments.

Having fixed the semantics of types, we give the true typing rules in Figure 7.
As before, we have three mutually-recursive judgements, Γ % ok, for well-formed
contexts, Γ % A, for well-formed types, and Γ % e : A for well-typing. All of
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the typing rules precisely mirror the pretyping rules, with the exception of the
equality and abort rules.

Val(Γ � α)(γ) = let (A,B,R) = γ(α) in R
Val(Γ � (x : A) → B)(γ) =⎧⎪⎪⎨

⎪⎪⎩
〈λx. e, λx. e′〉

∣∣∣∣∣∣∣∣

·� λx. e : γ0((x : A) → B) and
·� λx. e′ : γ1((x : A) → B) and
∀e0, e′0 ∈ Exp(Γ �A)(γ).
〈[e0/x]e, [e′0/x]e′〉 ∈ Exp(Γ, x : A � B)(γ, 〈e0, e′0〉 /x)

⎫⎪⎪⎬
⎪⎪⎭

Val(Γ � ∀α. B)(γ) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
〈Λα. e, Λα′. e′〉

∣∣∣∣∣∣∣∣∣∣∣∣

·� Λα. e : γ0(∀α. B) and
·� Λα. e′ : γ1(∀α. B) and
∀A,A′, R.
·�A and ·� A′ and
R ⊆ {〈v, v′〉 | ·� v : A and ·� v′ : A′} and
〈[A/α]e, [A′/α′]e′〉 ∈ Exp(Γ, α � B)(γ, (A,A′, R)/α)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Val(Γ � e0 ≡A e1)(γ) = {〈•, •〉 | 〈γ0(e0), γ1(e1)〉 ∈ Exp(Γ � A)(γ)}

Exp(Γ � A)(γ) =⎧⎨
⎩〈e0, e1〉

∣∣∣∣∣∣
·� e0 : γ0(A) and ·� e1 : γ1(A) and

∃v0, v1. γ0(e0) ⇓ v0 and γ1(e1) ⇓ v1 and
〈v0, v1〉 ∈ Val(Γ � A)(γ)

⎫⎬
⎭

Env(·� ok) = {〈〉}
Env(Γ, x : A � ok) = {(γ, 〈e, e′〉 /x) | γ ∈ Env(Γ � ok) and (e, e′) ∈ Exp(Γ � A)(γ)}
Env(Γ, α � ok) ={

(γ, (A,A′, R)/α)

∣∣∣∣ γ ∈ Env(Γ � ok) and ·�A and ·� A′ and
R ⊆ {〈v, v′〉 | ·� v : A and ·� v′ : A′}

}

Fig. 6. Relational Semantics

Each of these has a semantic side-condition controlling when they can be
used. These side-conditions mean that the type-checking problem is not decid-
able, since potentially arbitrary mathematical reasoning may be needed to show
that the rule applies. However, the soundness theorem for the language ensures
that once the side-conditions are discharged, then evaluation cannot alter the
typability of of the program under reduction.

The premise of the equality rule contains the non-syntactic premise that Γ |=
e = e′ : A. This means that in all semantic environments γ ∈ Env (Γ � ok), the
pair (γ0(e), γ1(e

′)) must lie in the expression relation for the type A. This means
that the two expressions must be equivalent to introduce an equality type.

Similarly, the premise of the abort rule is that Γ |= ⊥ must hold, which means
that there are no environments in Env (Γ � ok). This means that the context Γ
is a contradictory one, with no environments that can satisfy it.

Now, we can prove a semantic version of the substitution theorem.
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Theorem 2. (Semantic Substitution)

– Suppose Γ �A and (γ, γ(A)/α, γ′) ∈ Env(Γ, α, Γ ′ � ok). Then
• (γ, γ′) ∈ Env(Γ, [A/α]Γ ′ � ok)
• If (v, v′) ∈ Val(Γ, α, Γ ′ � e)(B)(γ, γ(A)/α, γ′), then
(v, v′) ∈ Val(Γ, [A/α]Γ ′ � [A/α]B)(γ, γ′).

• If (e, e′) ∈ Exp(Γ, α, Γ ′ � e)(B)(γ, γ(A)/α, γ′), then
(e, e′) ∈ Exp(Γ, [A/α]Γ ′ � [A/α]B)(γ, γ′).

– Suppose Γ � e : A and (γ, γ(e)/x, γ′) ∈ Env(Γ, x : A,Γ ′ � ok). Then
• (γ, γ) ∈ Env(Γ, [e/x]Γ ′ � ok).
• If (v, v′) ∈ Val(Γ, x : A,Γ ′ � e)(A)(γ, γ(e)/x, γ′),
then (v, v′) ∈ Val(Γ, [e/x]Γ ′ � [e/x]A)(γ, γ′).

• If (e, e′) ∈ Exp(Γ, x : A,Γ ′ � e)(A)(γ, γ(e)/x, γ′),
then (e, e′) ∈ Exp(Γ, [e/x]Γ ′ � [e/x]A)(γ, γ′).

These theorems follow from induction on the context and type pre-well-formedness
judgements. We can use these theorems to prove Reynolds’ abstraction theorem
for our language.

Theorem 3. (Abstraction Theorem) If Γ % e : A, then Γ |= e = e : A.

This theorem follows from a structural induction on the typing derivation, making
use of the semantic substitution principles. Normalization and type-preservation
follow immediately.

Corollary 1. (Normalization) If · % e : A, then ∃v such that e ⇓ v.

Corollary 2. (Type Preservation) If · % e : A and e ⇓ v, then · % v : A.

It is worth noting that the type preservation lemma is exact — the type of the
result is exactly the same as the type of the original. We do not need any notion
of type equality beyond the same syntactic equality (modulo α) that System F
needed.

4 Existential Representations of Inductive Datatypes

A surprising feature of the examples in Section 2 is that we gave an apparently
existential encoding of inductive datatypes such as the booleans. This is a little
surprising, since the Church encodings of these types in System F are universal.

As a concrete example, recall the Church encoding of the boolean type.

– The type of Church booleans cbool = ∀α. α → α → α.
– Truth is defined as Λα. λa. λa′. a.
– Falsity is defined as Λα. λa. λa′. a′.
– The conditional is if : cbool → ∀α. α → α → α � λb. b.

Contrast this with the interface we gave for the boolean type:
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Γ |= e = e′ : A Γ |= ⊥

Γ |= e0 = e1 : A ⇐⇒ ∀γ ∈ Env(Γ � ok). (γ0(e0), γ1(e1)) ∈ Exp(Γ � A)(γ)
Γ |= ⊥ ⇐⇒ Env(Γ � ok) = ∅

Γ � ok Γ � A Γ � e : A

· � ok

Γ � ok

Γ, α � ok

Γ � ok Γ � A

Γ, x : A � ok

Γ � ok α ∈ Γ

Γ � α

Γ, α � A

Γ � ∀α. A

Γ � A Γ, x : A � B

Γ � (x : A) → B

Γ � A Γ � e : A Γ � e′ : A

Γ � e ≡A e′

Γ, x : A � e : B

Γ � λx. e : (x : A) → B

Γ � e : (x : A) → B Γ � e′ : A

Γ � e e′ : [e/x]B

Γ,α � e : A

Γ � Λα. e : ∀α. A

Γ � e : ∀α. B Γ � A

Γ � e [A] : [A/α]B

Γ � e ≡A e′ Γ |= e = e′ : A

Γ � • : e ≡A e′
Γ � A Γ |= ⊥

Γ � abort : A

Γ � ok x : A ∈ Γ

Γ � x : A

Fig. 7. Typing

1 B ≡
2 ∃bool
3 true : bool,
4 false : bool,
5 if : ∀α. bool → α → α → α.
6 ∀α, a : α, a′ : α. if [α] true a a′ ≡α a ×
7 ∀α, a : α, a′ : α. if [α] false a a′ ≡α a′

Unlike the Church encoding, the interface completely conceals the representation
type of the booleans, as well as the implementations of truth, falsity and if-then-
else. The only constraint we place in the interface is to require the β-theory of
the booleans to hold.

Now we will show that these two implementations of the booleans are actually
the same. To do this, first note that we somehow need to compare an arbitrary
element of the existential type to a particular set of elements of the Church
type. Luckily, we have precisely the tools we need with the equality types of our
calculus. The Church booleans can be represented as elements of the type
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1 B′≡
2 ∃ true : cbool,
3 false : cbool,
4 true ≡cbool Λα. λa. λa

′. a ×
5 false ≡cbool Λα. λa. λa

′. a′

By using equality types, we ensure that we have a tuple whose first element is
Church truth and whose second element is Church falsity.

This gives us the material we need to prove the following theorem:

Theorem 4. (Equivalence of Boolean Types) We have an isomorphism between
the types B and B′.

Proof. To show this holds, we wil give explicit maps i : B → B′ and j : B′ → B.
Then we will show that · |= i ◦ j = id : B′ and that · |= j ◦ i = id : B. We give
the definitions below, using the syntax for tuples and existentials for clarity.

i : B → B′ � λb. 〈Λα. λa. λa′. a, Λα. λa. λa′. a′, •, •〉

j : B′ → B � λb′.

let t = Λα. λa. λa′. a in
let f = Λα. λa. λa′. a′ in
let if = Λα. λx. λy. λb. b [α] x y in
pack 〈cbool, t, f, if , •, •〉

The B → B′ direction ignores its argument, and simply returns the obvious tuple
inhabiting B′. The B′ → B direction also ignores its argument, and returns an
instance of the existential representation which uses the Church booleans as the
representation type.

Therefore, each composition is a constant function, and so showing that it
is equivalent to the identity function means showing that all elements of B are
equivalent, and similarly for B′. The case forB′ is easy, and the interesting case fo
B reduces to the problem of showing that any element of the existential boolean
type is equivalent to element using the Church booleans as its representation
type.

This follows from unwinding the definitions. To do this, we introduce a rela-
tion that (unsurprisingly) relates Church truth to the true value of the hidden
existential type, and Church falsity to the false value of the hidden existential
type. Then, the equations for the hidden existential implementation of B can be
used to show that the hidden implementation of if is equivalent to the Church
implementation.

Similarly, we can relate (an extended version of) the existential natural number
interface given in Section 2 with the Church encoding churchnat =
∀α. α → (α → α) → α.

1 N ≡
2 ∃nat
3 z : nat,
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4 s : nat → nat,
5 pred : nat → optionnat,
6 iter : ∀α. nat → α → (α → α) → α.
7 pred z ≡optionnat none ×
8 ∀n. pred (s n) ≡optionnat some n ×
9 ∀α, i, f. iter [α] z i f ≡α i ×
10 ∀n, α, i, f. iter [α] (s n) i f ≡α f (iter [α] n i f)

1 N ′≡
2 ∃z : churchnat,
3 s : churchnat → churchnat,
4 − : z ≡, Λα. λi. λf. i
5 − : s ≡churchnat→churchnat λn. Λα. λi. λf. f (n α i f)

We can then prove the equivalence of these two types.

Theorem 5. (Equivalence of Natural Number Types) There exists an isomor-
phism between N and N ′.

Proof. The proof of this theorem follows exactly the same pattern as for the
booleans. Ultimately we will end up showing that arbitrary elements of N are
equivalent to the representation using the Church natural numbers. To do this,
we will also need to define the predecessor function pred on the Church naturals,
which is a linear time operation.

The most interesting thing about this theorem is not the proof, which is stan-
dard, but rather the fact that we extended the natural number interface with
the predecessor pred . The fact that the representation of natural numbers is
completely hidden in the existential style means that we can (for example) use
a representation of the natural numbers in which the predecessor is cheap to
compute. This contrasts with the explicit unary representation of the Church
encoding, in which the predecessor is necessarily linear time. As a result, we can
relate this slow implementation to fast ones without any difficulties.

This all relies critically on the equations. In the absence of equations specifying
the behavior of the predecessor, there is no way to have this constructor while
ensuring that the type really does represent the natural numbers object, since
there could be many implementations which are type-correct (in F) but lack the
necessary equational properties. However, with equations we can add operations
for efficiency without ruining the reasoning properties of the datatype, by cutting
down the set of reasonable implementations until only ones equivalent to the
intended datatype are possible. (We made extensive use of this in our list example
in Section 2.)

This is why we have not proven a general representation theorem for all poly-
nomial datatypes. While a representation theorem does not seem hard to come
by in the case where the constructors and fold-style eliminators constitute the
interface, it seems that we should consider a representation theorems in the
more interesting case in which the interfaces are augmented with extra opera-
tions that improve the computational efficiency of implementation. However, it
remains unclear to us what such interfaces should be, in general.
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5 Related Work

5.1 System R and Plotkin-Abadi Logic

The two most prominent systems for reasoning about parametricity are System
R [1,4] and Plotkin-Abadi logic [19]. These logics can be viewed as program
logics a la Hoare logic, in that they fix a programming logic (System F), and
then give a logical system for reasoning about terms in that language.

Our language can be understood as an attempt to take a small fragment
of these logics, and then reflect them back into the types of F. This naturally
suggests two directions. First, might it be worthwhile to add more of these logics
to the type system of F=? In this first paper, we wished to illustrate just how
much is achievable with a very modest addition to the type theory of System F,
but the extension is a very natural question.

In particular, all of the semantic side-conditions have been discharged by work-
ing directly with the relational semantics. By building a logic for parametricity,
we could potentially use it to give a proof system for equalities and aborts. How-
ever, the presence of abort in our language means that such a logic could not be
a simple replay of the developments of [1] or [19], though.

5.2 Dependent Types

The appearance of terms in types in our calculus is rather reminiscent of sys-
tems of dependent types, such as Martin-Löf type theory [16] or the calculus
of constructions [10]. Indeed, the realizability semantics we use for F= is quite
similar to the semantics of extensional type theories such as Nuprl [9]. Further-
more, we share with extensional type theory the property that typechecking is
not syntax-directed: our proof term for equality, •, does not contain the evidence
of equality. This is similar to the equality reflection property of extensional type
theory, in which proof terms for introducing equalities may depend on proposi-
tional equality proofs not evident in the proof term.

However, the semantics of our equality type is a bit different from the equality
of dependent type theory. In type theory the elimination form for the equality
type e ≡A e′ is used to cast terms of type B[e] into ones of type B[e′]. As
a result, actually deriving a contradiction (i.e., a terms of type ⊥) from an
impossible equality (e.g., a proof of 0 ≡N 1) requires using a large elimination to
turn contradictions into proofs of falsity.

In our setting, we instead admit the use of the abort keyword in any inconsis-
tent context, which allows us to make use of contradictions without having to
explicitly support large eliminations.

5.3 The Haskell Rules Mechanism

The GlasgowHaskell compiler contains a mechanism called rules [12], which allow
programmers to specify equational rewrite rules (such as (map f) ◦ (map g) �→
map (f ◦g)) as part of library interfaces. However, these rewrite rules are restricted
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to referring to top-level module identifiers, and rewriting cannot be applied to an
expression unless the term in question refers to exactly the same variables as the
rules definition referred to. This restriction means that rules — which were a fea-
ture whose purpose is to lower the cost of good higher-order style — are much less
effective when applied to higher-order code (where operators such asmapmayflow
in as arguments to functions).

Our type theory illustrates that it is possible to integrate Haskell-style rules
into a simple type theory treating rewrite rules as first-class types. One partic-
ularly interesting direction to investigate is adding rules to type classes, which
would permit stating the equational assumptions about polymorphic terms. E.g.,
Haskell’s Functor typeclass has a method with type

fmap : Functor F ⇒ (α → β) → F α → F β

It is intended that fmap is functorial — that is, that fmap id = id , and that
(fmap f) ◦ (fmap g) = fmap (f ◦ g). By placing these equations into the Functor
interface and verifying the typeclass instances, they could even be used to drive
optimizations of client code.

5.4 Extended ML

One of the earliest serious attempts to extend a functional language with equa-
tional specifications was the Extended ML [13] project. In this work, SML
module signatures were extended with algebraic signatures stating the intended
equational properties of the abstract datatypes.

This work was quite ambitious, and it involved a rather large fragment of ML
including features such as exceptions and non-termination. Furthermore, the con-
cept of algebraic signature was generalized well beyond equational properties to
include full logical predicates. However, the technical ambition of this approach
meant that its semantics were never fully settled (the question of polymorphism
was especially vexing, as was the specification of imperative ML code).

In this paper, we have avoided effects to maximize the force of parametric-
ity. This lets us specify quite sophisticated properties (e.g., initiality) with a
bare minimum of additional syntactic and semantic machinery. One especially
nice feature of our work is that the presence of equation makes it very natural
to connect Church-style datatype encodings with the existential style of data
abstraction more common in ML (and exploited by EML).

These days, there are quite well-developed semantic frameworks in place to
model polymorphic languages with features like nontermination, recursive types,
and higher order state [18,7]. However, in spite of this machinery, it is simply
an unavoidable fact that fewer equations hold when effects are present. To what
extent the reduced of validity equational reasoning limits the use of equality
types is unclear. One approach to this problem may be to encapsulate effects
in a monadic type, and then use other techniques (such as Hoare logic [14]) to
reason about the monadic code.
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6 Future Work

There are two strands of future work. First, there is the theoretical strand.
The first question is whether our termination result can be strengthened into
a strong normalization result, which would require a more sophisticated logical
relation [2].

Second, it may be possible to give a logic for this calculus along the lines of
Plotkin-Abadi logic, and then use the rules of that calculus to give proof terms
for the equality type. This would make typechecking decidable, and might make
an interesting basis for a dependent type theory with parametricity, along the
lines of [5]. While this is a challenging problem, the extreme simplicity of our
semantics offers reasonable grounds for hope.

ML-style modules support the “strong” dot-notation elimination form [8],
whereas our existential encoding uses F-style existentials with a“weak” let-
binding eliminator. Recently, Rossberg, Russo and Dreyer have shown [21] how
to translate ML-style modules into System F, and it would be interesting to
study if a similar translation could take ML signatures extended with equations
and translate into F=.

On a practical note, how can equation types be profitably employed in opti-
mizations? Connecting equations to optimizations is an intriguing problem.

Finally, our type system emits proof obligations at each introduction of an
equality or use of an abort. It would be useful to ship these proof obligations off
to a theorem prover such as Coq. Doing so will require a certain amount of care,
since parametricity is essential to the arguments we make, and we will need to
make use of recent work [3] on representing the semantics of polymorphism in
type theory.
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Abstract. This paper presents GMeta: a generic framework for first-
order representations of variable binding that provides once and for all
many of the so-called infrastructure lemmas and definitions required in
mechanizations of formal metatheory. The key idea is to employ datatype-
generic programming (DGP) and modular programming techniques to
deal with the infrastructure overhead. Using a generic universe for rep-
resenting a large family of object languages we define datatype-generic
libraries of infrastructure for first-order representations such as locally
nameless or de Bruijn indices. Modules are used to provide templates: a
convenient interface between the datatype-generic libraries and the end-
users of GMeta. We conducted case studies based on the POPLmark
challenge, and showed that dealing with challenging binding constructs,
like the ones found in System F<:, is possible with GMeta. All of
GMeta’s generic infrastructure is implemented in the Coq theorem
prover. Furthermore, due to GMeta’s modular design, the libraries can
be easily used, extended, and customized by users.
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1 Introduction

A key issue in mechanical developments of formal metatheory for programming
languages concerns the representation and manipulation of terms with variable
binding. There are two main approaches to address this issue: first-order and
higher-order approaches. In first-order approaches variables are typically en-
coded using names or natural numbers, whereas higher-order approaches such
as higher-order abstract syntax (HOAS) use the function space in the meta-
language to encode binding of the object language.

Higher-order approaches are appealing because issues like capture-avoidance
and alpha-equivalence can be handled once and for all. This is why such ap-
proaches are used in logical frameworks such as Hybrid (Momigliano et al. 2008),
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term type

term
Variables bsubstterm×term bsubstterm×type

Parameters fsubstterm×term fsubstterm×type

type
Variables bsubsttype×term bsubsttype×type

Parameters fsubsttype×term fsubsttype×type

Fig. 1. Possible variations of substitutions for parameters and variables for a language
with two syntactic sorts (term and type) in the locally nameless style

Abella (Gacek 2008), or Twelf (Pfenning and Schürmann 1999); and have also
been advocated (Despeyroux et al. 1995; Chlipala 2008) in general-purpose the-
orem provers like Coq (Coq Development Team 2009).

The main advantage of first-order approaches, and the reason why they are
so popular in theorem provers like Coq, is that they are close to pen-and-paper
developments and they do not require special support from the theorem prover.

However, the main drawback of first-order approaches is that the tedious
infrastructure required for handling variable binding has to be repeated each
time for a new object language. For each binding construct in the language,
there is a set of infrastructure operations and associated lemmas that should
be implemented. In the locally nameless style (Aydemir et al. 2008) and locally
named (McKinna and Pollack 1993) styles we usually need operations like sub-
stitution for parameters (free variables) and for (bound) variables as well some
associated lemmas. For de Bruijn indices (de Bruijn 1972) we need similar in-
frastructure, but for operations such as substitution and shifting instead.

Often, the majority of the total number of lemmas and definitions in a for-
malization consists of basic infrastructure. Figure 1 illustrates the issue using a
simple language with two syntactic sorts (types and terms) supporting binding
constructs for both type and term variables and assuming a locally nameless
style. In the worst case scenario, 8 different types of substitution are needed.
We need substitutions for parameters and variables, and for each of these we
need to consider all four combinations of substitutions using types and terms.
While not all operations are necessary in formalizations, many of them are.
For example, System F<:, which is the language described in the POPLMark
challenge (Aydemir et al. 2005), requires 6 out of the 8 substitutions. Because
for each operation we need to also prove a number of associated lemmas, solu-
tions to the POPLMark challenge typically have a large percentage of lemmas
and definitions just for infrastructure. In the solution by Aydemir et al. (2008),
infrastructure amounts to 65% of the total number of definitions and lemmas
(see also Figure 10). In realistic formalizations the situation is often not better:
Rossberg et al. (2010) report a combinatorial explosion of infrastructure lemmas
and operations as the number of syntactic sorts and binding constructs increases.

Importantly, considering only homogeneous operations (like bsubstterm×term),
which perform substitutions of variables on terms of the same sort (term),
is insufficient. Generally we must also consider heterogeneous operations, like
bsubsttype×term, where the sort of variables being substituted (type) is not of
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(∗@Iso type iso {
Parameter type fvar ,
Variable type bvar ,
Binder type all

}∗)
Inductive type :=
| type fvar : N → type
| type bvar : N → type
| type top : type
| type arrow : type → type → type
| type all : type → type → type .

(∗@Iso term iso {
Parameter term fvar ,
Variable term bvar ,
Binder term abs ,
Binder term tabs binds type

}∗)
Inductive term :=
| term fvar : N → term
| term bvar : N → term
| term app : term → term → term
| term abs : type → term → term
| term tapp : term → type → term
| term tabs : type → term → term .

Fig. 2. Syntax definitions and GMeta isomorphism annotations for a locally nameless
style version of System F<: in Coq

the same as the terms which are being substituted into (term). Languages like
System F have type abstractions in terms (ΛX.e) and require operations like
bsubsttype×term and fsubsttype×term for substituting type variables in terms.

1.1 Our Solution

To deal with the combinatorial explosion of infrastructure operations and lem-
mas, we propose the use of datatype-generic programming (DGP) and modular
programming techniques. The key idea is that, with DGP, we can define once
and for all the tedious infrastructure lemmas and operations in a generic way
and, with modules, we can provide a convenient interface for users to instantiate
such generic infrastructure to their object languages.

This idea is realized in GMeta: a generic framework for first-order repre-
sentations of variable binding implemented in Coq1. In GMeta, a DGP uni-
verse (Martin-Löf 1984) is used to represent a large family of object languages
and includes constructs for representing the binding structure of those languages.
The universe is independent of the particular choice of first-order representations:
it can be instantiated, for example, to locally nameless or de Bruijn representa-
tions. GMeta uses that universe to provide libraries with the infrastructure for
various first-order representations.

The infrastructure is reused by users through so-called templates. Templates
are functors parameterized by isomorphisms between the object language and
the corresponding representation of that language in the universe. By instanti-
ating templates with isomorphisms, users get access to a module that provides
infrastructure tailored for a particular binding construct in their own object lan-
guage. For example, for System F<:, the required infrastructure is provided by
3 modules which instantiate GMeta’s locally nameless template:

1 We also have an experimental Agda implementation.



GMeta: A Generic Formal Metatheory Framework 439

Module Mterm×term := LNTemplate term iso term iso.
Module Mtype×type := LNTemplate type iso type iso.
Module Mtype×term := LNTemplate type iso term iso.

Each module corresponds to one of the 3 combinations needed in System F<:,
and contains the relevant lemmas and operations. By using this scheme we can
deal with the general case of object languages with N syntactic sorts, just by
expressing the combinations needed in that language. Moreover GMeta can also
provide some more specialized templates for additional reuse and it is easy for
users to define their own types of infrastructure and customized templates.

Since isomorphisms can be mechanically generated from the inductive defini-
tion of the object language, provided a few annotations, GMeta also includes
optional tool support for generating such isomorphisms automatically. Figure 2
illustrates these annotations for System F<:. Essentially, the keyword Iso intro-
duces an isomorphism annotation, while the keywords Parameter, Variable and
Binder provide the generator with information about which constructors corre-
spond, respectively, to the parameters, variables or binders. Therefore, at the
cost of just a few annotations or explicitly creating an isomorphism by hand,
GMeta provides much of the tedious infrastructure boilerplate that would con-
stitute a large part of the whole development otherwise.

1.2 Contributions

Our main contribution is to investigate how DGP techniques can deal with the
infrastructure overhead required by formalizations using first-order representa-
tions. More concretely, the contributions of this paper are:

– Sound, generic, reusable and extensible infrastructure for first-order repre-
sentations : The main advantages of using DGP are that it allows a library-
based approach in which 1) the infrastructure can be defined and verified
once and for all within the meta-logic itself; and 2) extending the infrastruc-
ture is easy since it just amounts to extending the library.

– Heterogeneous generic operations and lemmas : Of particular interest is the
ability of GMeta to deal with binding constructs involving multiple syntac-
tic sorts, such as binders found in the System F family of languages, using
heterogeneous generic operations and lemmas.

– Case studies using the POPLmark challenge: To validate our approach in
practice, we conducted case studies using the POPLmark challenge. Com-
pared to other solutions, our approach shows significant savings in the num-
ber of definitions and lemmas required by formalizations.

– Coq implementation and other resources : The GMeta framework Coq im-
plementation is available online2 along with other resources such as tutorials
and more case studies.

2 http://ropas.snu.ac.kr/gmeta/

The implementation is based on Coq Version 8.2pl2.

http://ropas.snu.ac.kr/gmeta/
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style savings

STLC GMeta vs Aydemir et al. LN 52%

F<:
GMeta vs Aydemir et al. LN 38%
GMeta vs Vouillon dB 35%

Fig. 3. Savings in various formalizations in terms of numbers of definitions and lemmas

2 Case Studies

In order to verify the effectiveness of GMeta in reducing the infrastructure
overhead, we conducted case studies using locally nameless and de Bruijn repre-
sentations. Since the results in terms of savings were similar, and due to space
limitations, we mainly discuss the locally nameless case studies in this paper. The
details of the de Bruijn case studies can be found on GMeta’s online webpage.
Our two case studies are a solution to the POPLmark challenge parts 1A+2A,
and a formalization of the STLC.

GMeta can reduce the infrastructure overhead because it provides reuse of
boilerplate definitions and lemmas. By boilerplate we mean the following:

– Common operations: operations such as sets of parameters and (bound) vari-
ables, term size or different forms of substitution-like operations (such as
substitutions for parameters and variables in the locally nameless style; or
shifting in the de Bruijn style).

– Lemmas about common operations: lemmas about properties of the common
operations, such as several forms of permutation lemmas about substitutions.

– Lemmas involving well-formedness: many lemmas about common operations
only hold when a term is well-formed under a certain environment. Since
well-formedness is a notion that appears in many systems and it is often
mechanical, we consider such lemmas boilerplate.

The biggest benefit of GMeta is that it significantly lowers the overheads re-
quired in mechanical formalizations by providing reuse of the basic infrastruc-
ture. Figure 3 shows the savings that GMeta achieved relative to the reference
solutions by Aydemir et al. (2008) and Vouillon (2007). Note that in GMeta

only user-defined code is counted. In all case studies more than 35% of the total
numbers of definitions were saved. We conducted case studies in both System
F<: and STLC. A more detailed discussion and evaluation is given in Section 6.

3 GMeta Design

This section gives a general overview of GMeta’s design and discusses the tech-
niques used by us to make GMeta convenient to use.

As depicted in Figure 4, the GMeta framework is structured into 5 layers
of modules. The structure is hierarchical, with the more general modules at the
top and the more specific modules at the bottom.
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Fig. 4. A simplified modular structure overview of GMeta

– DGP Layer: The core DGP infrastructure is defined at the top-most layer.
The main component is a universe that acts as a generic language that the
lower-level modules use to define the infrastructure lemmas and definitions.

– Representation Layer: This layer is where the generic infrastructure lem-
mas and definitions for particular first-order representations are defined.
GMeta currently supports locally nameless and de Bruijn representations.
However, the DGP library can be extended to cover locally-named ap-
proaches (McKinna and Pollack 1993; Sato and Pollack 2010) and other rep-
resentations.

– Isomorphism Layer: This layer provides simple module signatures for iso-
morphisms that serve as interfaces between the object language and its rep-
resentation in the generic language. The adequacy of the object language
representation follows from the isomorphism laws.

– Templates Layer: This layer provides templates for the basic infrastruc-
ture lemmas and definitions required by particular meta-theoretical devel-
opments. Templates are ML-style functors parameterized by isomorphisms
between the syntactic sorts of object languages and their corresponding rep-
resentations in the generic language. In Figure 4 we show only LNTemplate
and dBTemplate , which are the fundamental templates providing reuse for
the general infrastructure.

– End User Layer: End users will use GMeta’s libraries to develop metathe-
ory for particular object languages, for example, the simply typed lambda
calculus (STLC) or System F<: used in our case studies.

The two top layers will be discussed in detail in Sections 4 and 5. They are the
most interesting from a technical point of view. More information about other
layers and a tutorial are available in GMeta’s webpage.

3.1 Making GMeta Convenient to Use

To provide convenience to the user, GMeta employs several techniques. Although
DGP plays a fundamental role in the definition of the core libraries of GMeta (at
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fsubstterm×term : N → term → term → term
fsubstterm×term k u t = toterm ([k → (fromterm u)] (fromterm t))

bsubstterm×term : N → term → term → term
bsubstterm×term k u t = toterm ({k → (fromterm u)} (fromterm t))

fsubstterm×type : N → type → term → term
fsubstterm×type k u t = toterm ([k → (fromtype u)] (fromterm t))

bsubstterm×type : N → type → term → term
bsubstterm×type k u t = toterm ({k → (fromtype u)} (fromterm t))

bsubsttype×type : N → type → type → type
bsubsttype×type k u t = totype ([k → (fromtype u)] (fromtype t))

wfterm : term → Prop

wftype : type → Prop

thbfsubst perm core : ∀(t : term) (u, v : type) (m k : N),
wftype u ⇒ bsubstterm×type k (bsubsttype×type m u v) (fsubstterm×type m u t)

= fsubstterm×type m u (bsubstterm×type k v t)

Fig. 5. Some representations of a template with two sorts: terms and types

the DGP and representation layers), end users should not need knowledge about
DGP for uses of GMeta. However, this is not trivial to achieve because, among
other things, end-user proofs generally require unfolding infrastructure operations
like substitution, and those operations are written in a datatype-generic way, in a
form which is alien to users that do not know about DGP.

Automatically Generated Isomorphisms. GMeta uses automatically gen-
erated isomorphisms between the user-defined object language and a correspond-
ing representation of that language of the generic universe. Since information
about the binding structure of the language is required to generate isomor-
phisms, GMeta uses a small annotation language. (see Figure 2 for an example
of the annotation language).

Templates. GMeta uses templates to solve the problem of interfacing with
the infrastructure DGP libraries.

As already illustrated in Figure 1, a simple language with two syntactic sorts
(terms and types) needs two isomorphisms (fromterm, toterm) and (fromtype, totype)
between the generic language and the object language. What we mean by isomor-
phism is explained in the next paragraph about special tactics. In Figure 5, it is
demonstrated how the two isomorphisms are used to get an instantiation where
several variants of substitution, and well-formedness in the locally nameless style
become available for free. The templates include also many lemmas about the
operations and some of the lemmas may be true only for well-formedness expres-
sions. For example, the lemma thbfsubst perm core describes a permutability of
two kinds of substitutions where well-formed types (wftype) are involved.

The general form of parameter substitution in the locally nameless template
is as follows:
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Module LNTemplate (isoS1 : Iso, isoS2 : Iso).
. . .

fsubstS2×S1 : N → S1 → S2 → S2

fsubstS2×S1 k u t = toS2 ({k → (fromS1 u)} (fromS2 t))

Essentially, S1 and S2 are supposed to be the types of the syntactic sorts used in
object language. These types come from the isomorphisms isoS1 and isoS2 , which
are the parameters of LNTemplate. Definitions like {· → ·}T · are simply using
the isomorphism (through the operations toS1 , toS2 , fromS1 and fromS2) to interface
with generic operations like {· → ·} · (see Figure 9) defined in the representations
layer.

Because of the isomorphisms between the user’s object language and the repre-
sentation of that language in the universe, users do not need to interact directly with
the generic universe. Instead, all that a user needs to do is to instantiate the tem-
plates with the automatically generated isomorphisms. In Section 1.1, we already
described how this technique is used to generate the infrastructure for SystemF<:.

Special Tactics. When proving lemmas for their own formalizations, users may
need to unfold operations which are defined in terms of corresponding generic
operations. For example, the following lemma is a core lemma in formalization
of in the solution to the POPLMark challenge by Aydemir et al. (2008).

Lemma typing subst : ∀E F U t T z u,
(E ++ (z ,U ) :: F )  t : T ⇒ F  u : U ⇒
(E ++ F )  ([z → u]T t) : T .

Proof.
intros ; dependent induction H ; gsimpl .
...
grewrite tbfsubst permutation var wf ; eauto.
...

Qed.

The details of the Coq proof are not relevant. What is important to note
is: 1) the key difference to the original proof by Aydemir et al. (2008) is
that two different tactics (gsimpl and grewrite) are used; and 2) the lemma
tbfsubst permutation var wf and the operation [· → ·]T · are provided by
GMeta’s templates.

If the user would try to use simpl (the standard Coq tactic to unfold and
simplify definitions) directly, the definition of [· → ·]T · would be unfolded and
he would be presented with parts of the definition of [· → ·] · (See Figure 9).
However, this is clearly undesirable since the expected definition at this point is
one similar to a manually defined operation for the object language in hand.

Our solution to this problem is to define some Coq tactics (such as gsimpl
and grewrite) that specialize operations and lemmas such as [· → ·]T · and
tbfsubst permutation var wf using the isomorphisms provided by the user, and
the isomorphism and adequacy laws shown in Figure 6.
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toS2 (fromS2 t) = t
fromS2 (toS2 t) = t

fromS2 ([k → u]T t) = [k → (fromS2 u)] (fromS2 t)

Fig. 6. Isomorphism and adequacy laws

4 DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to define universes of
datatypes, and shows how to adapt a conventional universe of datatypes to sup-
port binders and variables. In our presentation we assume a type theory extended
with inductive families, such as the Calculus of Inductive Constructions (CIC)
(Paulin-Mohring 1996) or extensions of Martin-Löf type-theory (Martin-Löf 1984)
with inductive families (Dybjer 1997).

4.1 Inductive Families

Inductive families are a generalization of conventional datatypes that
has been introduced in dependently typed languages such as Epigram
(McBride and McKinna 2004), Agda (Norell 2007) or the Coq theorem prover.
They are also one of the inspirations for Generalized Algebraic Datatypes
(GADTs) (Peyton Jones et al. 2006) in Haskell.

We adopt a notation similar to the one used by Epigram to describe inductive
families. For example we can define a family of vectors of size n as follows:

Data

A : 	 n : Nat

VectorA n : 	
where

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)

In this definition the type constructor for vectors has two type arguments. The
first argument specifies the type A of elements of the vector, while the second
argument n is the size of the vector. We write parametric type arguments in
type constructors such as VectorA using a subscript. Also, if a constructor is not
explicitly applied to some arguments (for example vs a as is not applied to n),
then those arguments are implicitly passed.

4.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined generically
for whole families of datatype definitions. Inductive families are useful to DGP
because they allow us to define universes (Martin-Löf 1984) representing whole
families of datatypes. By defining functions over this universe we obtain generic
functions that work for any datatypes representable in that universe.
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Data Rep = 1 | Rep + Rep | Rep × Rep | K Rep | R

Data

r, s : Rep

�s�r : 

where

() : �1�r

s : Rep v : �s�

k v : �K s�r

s1, s2 : Rep v : �s1�r

i1 v : �s1 + s2�r

s1, s2 : Rep v : �s2�r

i2 v : �s1 + s2�r

s1, s2 : Rep v1 : �s1�r v2 : �s2�r

(v1, v2) : �s1 × s2�r

v : �r�

r v : �R�r

Data

s : Rep

�s� : 

where

s : Rep v : �s�s

in v : �s�

Fig. 7. A simple universe of types

A Simple Universe. The universe that underlies GMeta is based on a sim-
plified version of the universe for regular tree types by Morris et al. (2004).
Morris et al.’s universe is expressive enough to represent recursive types us-
ing μ-types (Pierce 2002). However, the presentation of the universe of regular
tree types is complicated by the use of telescopes (Altenkirch and Reus 1999;
McBride and McKinna 2004) for managing μ binders. For presentation purposes
and to avoid distractions related to the use of telescopes (which are orthogonal
to our purposes), we will use instead a simplified version of regular tree types in
which only a single top-level recursive type binder is allowed. This precludes the
ability to encode mutually recursive datatypes, which is possible in Morris et
al.’s universe. Nevertheless, we have experimental versions of GMeta (both in
Coq and Agda) on our online webpage that use the full universe and do support
mutually recursive datatypes.

Figure 7 shows the simple universe that is the basis for GMeta. The datatype
Rep (defined using the simpler ML-style notation for datatypes) describes the
“grammar” of types that can be used to construct the datatypes representable in
the universe. The three first constructs represent unit, sum and product types.
The K constructor allows the representation of constants of some representable
type. The R constructor is the most interesting construct: it is a reference to the
recursive type that we are defining. For example, the type representations for
naturals and lists of naturals are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

The interpretation of the universe is given by two mutually inductive families �·�r
and �·�, while the data constructors of these two families provide the syntax to
build terms of that universe. The parametric type r in the subscript in �·�r , is the
recursive type that is used when interpreting the constructor R. For illustrating
the data constructors of terms of the universe, we first define the constructors
nil and cons for lists:
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Data Rep = . . . | E Rep | B Rep Rep

Q : 
 (* Binder type *) V : 
 (* Variable type *)

Data

r, s : Rep

�s�r : 

where . . .

s : Rep v : �s�

e v : �E s�r

s1, s2 : Rep q : Q v : �s2�r

λs1q.v : �B s1 s2�r

Data

s : Rep

�s� : 

where . . .

s : Rep v : V

var v : �s�

Fig. 8. Extending universe with representations of binders and variables

nil : �RList�
nil = in (i1 ())

cons : �RNat� → �RList� → �RList�
cons n ns = in (i2 (k n, r ns))

When interpreting �RList�, the representation type r in �·�r stands for 1 +
K RNat × R. The constructor k takes a value of some interpretation for a
type representation s and embeds it in the interpretation for representations of
type r. For example, when building values of type �RList�, k is used to embed a
natural number in the list. Similarly, the constructor r embeds list values in a
larger list. The in constructor embeds values of type �r�r into a value of inductive
family �r�, playing the role of a fixpoint. The remaining data constructors (for
representing unit, sums and products values) have the expected role, allowing
sum-of-product values to be created.

Generic Functions. The key advantage of universes is that we can define
(generic) functions that work for any representable datatypes. A simple example
is a generic function counting the number of recursive occurrences on a term:

size : ∀(r : Rep). �r� → N

size (in t) = size t
size : ∀(r , s : Rep). �s�r → N

size () = 0
size (k t) = 0
size (i1 t) = size t
size (i2 t) = size t
size (t , v) = size t + size v
size (r t) = 1 + size t

To define such generic function, two-mutually inductive definitions are needed.
Note that r and s (bound by ∀) are implicitly passed in the calls to size.

4.3 A Universe for Representing First-Order Binding

We enrich our universe to deal with binders and variables. Figure 7 is insuffi-
cient to define generic functions such as substitution and free variables requiring
structural information about binders and variables. Figure 8 shows the addi-
tional definitions required to support representations of binders, variables, and
also deeply embedded terms. The data constructor B of the datatype Rep pro-
vides the type for representations of binders. The type Rep is also extended with
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a constructor E which is the representation type for deeply embedded terms.
This constructor is very similar to K. However, the fundamental difference is
that generic functions should go inside the terms represented by deeply embed-
ded terms, whereas terms built with K should be treated as constants by generic
functions.

The abstract types Q and V represent the types of binders and variables.
Depending on the particular first-order representations of binders these types
will be instantiated differently.

We illustrate the instantiations of Q and V for 4 of the most popular first-
order representations in a table. The last column of the table shows how the
lambda term λx. x y can be encoded in the different approaches. For the nominal
approach there is only one sort of variables, which can be represented by a
natural number. In this representation, the binders hold information about the
bound variables, thus the type Q is the same type as the type of variables V .

Q V λx. x y
Nominal N N λx. x y
De Bruijn � N λ. 0 1
Locally nameless � N + N λ. 0 y
Locally named N N + N λx. x a

In the de Bruijn style, the variables
are denoted positionally with respect
to the current enclosing binder. Thus
the type Q is just the unit type
and the type V is a natural number.
The locally nameless approach can be
viewed as a variant of the de Bruijn
style. The difference to the de Bruijn
style is that parameters and (bound) variables are distinguished. Therefore in
the locally nameless style the type V is instantiated to a sum of two natural
numbers. Finally, in the locally named style, there are also two sorts of variables
and bound variables are represented as in the nominal style. Thus the type Q is a
natural number and the type V is a sum type of two naturals. Note that we cur-
rently do not support the locally named and nominal style approaches in GMeta

as these styles would require special care with issues like alpha-equivalence.
The inductive family �·�r is extended with two new data constructors. The

constructor e is similar to the constructor k and is used to build deeply embedded
terms. The other constructor uses the standard lambda notation λs1q.v to denote
the constructor for binders. The type representation s1 is the representation of
the syntactic sort of the variables that are bound by the binder, whereas the type
representation s2 is the representation of the syntactic sort of the body of the
abstraction. We use s1 = R to denote that the syntactic sort of the variables to
be bound is the same as that of the body. This distinction is necessary because
in certain languages the syntactic sorts of variables to be bound and the body of
the abstraction are not the same. For example, in System F , type abstractions
in terms such as ΛX.e bind type variables X in a term e.

The inductive family �·� is also extended with one additional data constructor
for variables. This constructor allows terms to be constructed using a variable
instead of a concretely defined term.
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Instantiation of Q and V : Q = � and V = N + N.

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N → �r1 � → �r2 � → �r2 �
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x)) = var (inl x)
{k → u} (var (inr y)) = if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N → �r1 � → �s�r2 → �s�r2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr3 �.t) = if (r3 ≡ R ∧ r1 ≡ r2 ) ∨ (r3 �≡ R ∧ r1 ≡ r3 )

then λr3�.({(k + 1) → u} t) else λr3�.({k → u} t)
{k → u} (r t) = r ({k → u} t)

Heterogeneous substitution for parameters in the following form are similarly defined:

[· → ·] · : ∀(r1 r2 : Rep). N → �r1 � → �r2 � → �r2 �

Example of a heterogeneous lemma:

subst fresh : ∀(r1 , r2 : Rep) (t : �r1 �) (u : �r2 �) (m : N), m /∈ (fvr2 t) ⇒ [m → u] t = t

Fig. 9. Generic definitions for the locally nameless approach

5 Generic Operations and Lemmas

This section shows how generic operations and lemmas defined over the universe
presented in Section 4 can be used to provide much of the basic infrastructure
boilerplate for the languages representable in the universe.

5.1 Locally Nameless

Figure 9 presents generic definitions for the locally nameless approach. In this
approach binders do not bind names, and (bound) variables and parameters
(free variables) are distinguished. Thus, as discussed in Section 4.3, the types Q
and V are, respectively, the unit type3 and a sum of two naturals. Using these
instantiations for Q and V , the operation for instantiating a (bound) variable
with a term can be defined in a generic way. Also, generic lemmas can be defined
using the generic operations. The statement for subst fresh – which states that
if a parameter does not occur in a term, then substitution of that parameter is
the identity – is shown as an example of such generic lemmas.

As explained in Section 4, generic operations are defined over terms of the
universe by two mutually-inductive operations defined over the �·� and �·�r
3 For convenience, we use � for both the unit type and the unique term of that type.
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(mutually-)inductive families. Note that our generic definition for substitution4

effectively deals with all the possible combinations for defining a substitution in
a multi-sorted syntax.

In the definition of substitutions the most interesting cases are variables and
binders. In the case of variables, the condition r1 ≡ r2 is necessary to check
whether the parameter (or variable) and the term to be substituted have the
same representation. Note the use of (≡) to compare type representations: the
universe supports decidable equality, which is crutial for the definition of opera-
tions. The subscript r3 keeps the information about which kind of variables is to
be bound. When r3 = R, the binding is homogeneous, that is, the variable to be
bound and the body of the binder have the same representation. For example,
the term-level abstraction in terms (λx : T.e) of System F is homogeneous. An
example of heterogeneous binding is the type-level abstraction in terms (ΛX.e)
of System F . In this case r3 is the representation for System F types. Variable
substitution happens when the bound variable and the terms to be substituted
have the same representation. Note that, in the case of homogeneous binding
(r3 ≡ R), we compare r1 with r2 , not with r3 , because the bound variable and
the body of the binder have the same representation r2 .

The main advantage of representing the syntax of languages with our generic
universe is, of course, that all generic operations are immediately available. For
instance, the 8 substitution operations mentioned in Section 1 can be recovered
through suitable instantiations of the type representations r1, r2, r3 in the two
generic substitutions presented in this section.

5.2 De Bruijn

A key advantage of our modular approach is that we do not have to commit to
using a particular first-order representation. Instead, by suitably instantiating
the types Q and V , we can define the generic infrastructure for our own favored
first-order representation. For example we can use GMeta to define the generic
infrastructure for de Bruijn representations. In de Bruijn representations, binders
do not bind any names, therefore the type Q is instantiated with the unit type.
Also, because there is only one sort of (positional) variable, the type V is instan-
tiated with the type of natural numbers. The implementation of heterogeneous
generic shifting follows a pattern similar to that used in the generic operations
for the locally nameless style for dealing with homogeneous and heterogeneous
binders. The variable and binder cases implement the expected behavior for the
de Bruijn indices operations and all the other cases are limited to traversal code.
For more details we refer to the GMeta homepage.

6 Discussion and Evaluation

In this section we present the results of the case studies that we conducted.
The discussion of these results is done in terms of three criteria proposed by
4 Note that the notation for substitutions follows Aydemir et al. (2008).
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Definitions Infrastructure Core Overall
(lemma + def.) (lemma + def.) inf. overhead total ratio

STLC Aydemir et al. 11 13 + 3 4 + 0 17 31 55%
(locally nameless) GMeta 7 4 + 0 4 + 0 1 15 7%
System F<: Aydemir et al. 20 48 + 7 17 + 1 60 93 65%
(locally nameless) GMeta 13 26 + 1 17 + 1 25 58 43%
System F<: Vouillon 27 24 + 0 50 + 0 41 101 41%
(de Bruijn) GMeta 12 1 + 0 52 + 0 3 65 5%

Fig. 10. Formalization of POPLmark challenge (part 1A+2A) and STLC in Coq using
locally nameless approach and de Bruijn approach with and without GMeta

Aydemir et al. (2005) (reasonable overheads, cost of entry and transparency) for
evaluating mechanizations of formal metatheory.

Reasonable Overheads. The biggest benefit of GMeta is that it significantly
lowers the overheads required in mechanical formalizations by providing reuse of
the basic infrastructure. Figure 10 presents the detailed numbers obtained in our
case studies. We follow Aydemir et al. by dividing the whole development into
three parts: definitions, infrastructure and core. The numbers on those columns
correspond to the number of definitions and lemmas used for each part. The def-
initions column presents the number of basic definitions about syntax, whereas
the core column presents the number of main definitions and lemmas of the for-
malization (such as, for example, progress and preservation). The infrastructure
column is the most interesting because this is where most of the tedious boiler-
plate lemmas and definitions are. The column boilerplate counts the number of
such definitions and lemmas across the formalizations. Although, for the most
part, boilerplate comes from the infrastructure part, some boilerplate also exists
in the definitions part. This explains why GMeta is able to reduce the number
of definitions and lemmas in the two parts. The numbers in bold face are the
numbers that were presented by Aydemir et al. (2008). However those numbers
did not reflect the real total number of definitions and lemmas in the solutions.
For example, in the infrastructure part only the lemmas were counted. Since
we are interested in all the boilerplate, our numbers reflect the total number of
definitions and lemmas in each part.

In comparison with Aydemir et al.’s reference solutions, the proofs in our
approach follow essentially the structure of the original proofs. One minor dif-
ference is that instead of some standard Coq tactics, a few more general tactics
provided by GMeta should be used. Because this is the only significant dif-
ference, the proofs in the GMeta solution and Aydemir et al.’s solution have
comparable sizes. This means that most proofs will still be comparable in size
although a small number of proofs will be either shorter or longer.

Cost of Entry. One important criterion for evaluating mechanical formaliza-
tions of metatheory is the associated cost of entry. That is, how much does a user
need to know in order to successfully develop a formalization? We believe that
the associated cost of entry of GMeta is comparable to first-order approaches
like the one by Aydemir et al. (2008).
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One aspect of GMeta that (arguably) requires less knowledge when com-
pared to Aydemir et al. (2008) is that the end-user does not need to know how
to prove many basic infrastructure lemmas, since those are provided by GMeta’s
libraries.

Finally, we should mention that one advantage of generative approaches such
as LNgen (Aydemir and Weirich 2009) is that the cost-of-entry, in terms of using
the lemmas and definitions provided by LNgen, is a bit lower than in GMeta.
This is because the generated infrastructure is directly defined in terms of the
object language and the lemmas and definitions can be used as if they had
been written by hand. In GMeta, the end-user, while not required to know
about DGP, still needs to be aware of some special simplification tactics and,
occasionally, he may need to apply adequacy lemmas by hand.

Transparency. The transparency criterion is intended to evaluate how easy it
is for humans to understand particular formalization techniques. The issue of
transparency is largely orthogonal to GMeta because it usually measures how
particular representations of binding (such as locally nameless or de Bruijn),
and lemmas and definitions using that approach, are easy to understand by
humans. Since we do not introduce any new representation, transparency remains
unchanged (the same representation, lemmas and definitions are used).

7 Related Work

Generative Approaches. Closest to our work are generative approaches like
LNgen, which uses an external tool, based on Ott (Sewell et al. 2010) speci-
fications, to generate the infrastructure lemmas and definitions for a particu-
lar language automatically. One advantage of generative approaches is that the
generated infrastructure is directly defined in terms of the object language. In
contrast, in GMeta, the infrastructure is indirectly defined in terms of generic
definitions. This is not entirely ideal, but it is possible to handle the situation
in a reasonably effective way in GMeta using tactics (see Section 3.1).

There are two main advantages of a DGP approach over generative approaches:
verifiability; and extensibility. Although a generator allows defining once-and-for
all the infrastructure, it would not be a simple task to verify once-and-for all
that the generator always generates correct (well-typed) infrastructure. With a
generator, we can only verify whether each particular generated set of infras-
tructure is correct. Another advantage of a libary-based approach is that it is
easy to extend. If we wanted to add a new lemma, we would just need to extend
a module with a new generic function. With a generator, this would amount to
directly changing the generator code. Although there is also a cost to extending
libraries, we believe that it is usually easier than changing the generator code.

It is also interesting to compare GMeta and LNgen in terms of which types
of infrastructure they can reuse and how hard it is to reuse such infrastructure.
The main advantage of LNgen is that dealing with inductive relations is easy.
In GMeta, lemmas involving well-formedness require some more effort to be
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reused. A solution for this problem would be to extend the isomorphism gener-
ator to deal with inductive relations as well. On the other hand, the strength of
GMeta lies in its extensibility. For example, sometimes there are domain-specific
infrastructure lemmas like thbfsubst perm core in Figure 5. Dealing with such a
infrastructure is in conflict with the general-purpose nature of LNgen.

DGP and Binding. DGP techniques have been used before for dealing with
binders using a well-scoped de Bruijn index representation (Altenkirch and Reus
1999; McBride and McKinna 2004). Chlipala (2007) used an approach inspired
by proof by reflection techniques (Boutin 1997) to provide several generic op-
erations on well-typed terms represented by well-scoped de Bruijn indices.
Licata and Harper (2009) proposed a universe in Agda that permits defini-
tions that mix binding and computation. The obvious difference is that GMeta

works with traditional (non-well-scoped) first-order representations instead of
well-scoped de Bruijn indices. This difference of representation means that the
universes and generic functions have to deal with significantly different issues and
that they are quite different in nature. More fundamentally, Chlipala’s (2007)
and Licata and Harper’s (2009) work can be viewed as trying to develop new
ways to formalize metatheory in which many of the invariants hold by construc-
tion, that would have to be proved otherwise. This is different from our goal: we
are not proposing new ways to formalize metatheory, rather we wish to make
well-established ways to formalize metatheory with first-order representations
less painful to use.

DGP techniques have also been widely used in conventional functional
programming languages (Jansson and Jeuring 1997; Hinze and Jeuring 2003;
Rodriguez et al. 2008), and Cheney (2005) explored how to provide generic op-
erations such as substitution or collecting free variables using nominal abstract
syntax.

Our work is inspired by the use of universes in type-theory (Martin-Löf 1984;
Nordström et al. 1990). The basic universe construction presented in Figure 7
is a simple variation of the regular tree types universe proposed by Morris et al.
(2004, 2009) in Epigram. Nevertheless the extensions for representing variables
and binders presented in Figure 8 are new. Dybjer and Setzer (1999, 2001)
showed universe constructions within a type-theory with an axiomatization of
induction-recursion. Altenkirch and McBride (2003) proposed a universe captur-
ing the datatypes and generic operations of Generic Haskell (Hinze and Jeuring
2003) and Norell (2008) shows how to do DGP with universes in Agda (Norell
2007).

Verbruggen et al. (2008, 2009) formalized a Generic Haskell (Hinze and Jeuring
2003) DGP style in Coq, which can also be used to do generic programming. This
approach allows conventional datatypes to be expressed, but it cannot be used to
express meta-theoretical generic operations since there are no representations for
variables or binders.

Other Techniques for First-Order Approaches. Aydemir et al. (2009) in-
vestigated several variations of representing syntax with locally nameless
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representations aimed at reducing the amount of infrastructure overhead in lan-
guages like System F<:. One advantage of these techniques is that they are very
lightweight in nature and do not require additional tool support. However, while
the proposed techniques are effective at achieving significant savings, they re-
quire the abstract syntax of the object language to be encoded in a way different
from the traditional locally nameless style, potentially collapsing all syntactic
sorts into one. In contrast, GMeta allows the syntax to be encoded in the tra-
ditional locally nameless style, while at the same time reducing the infrastructure
overhead through its reusable libraries of infrastructure.

Higher-Order Approaches and Nominal Logic. Approaches based on
higher-order abstract syntax (HOAS) (Pfenning and Elliot 1988; Harper et al.
1993) are used in logical frameworks such as Abella (Gacek 2008), Hy-
brid (Momigliano et al. 2008) or Twelf (Pfenning and Schürmann 1999). In
HOAS, the object-language binding is represented using the binding of the meta-
language. This has the important advantage that facts about substitution or
alpha-equivalence come for free since the binding infrastructure of the meta-
language is reused. It is well-known that in Coq it is not possible to use the usual
HOAS encodings, although Despeyroux et al. (1995) and Chlipala (2008) have
shown how weaker variations of HOAS can be encoded in Coq. Popescu et al.
(2010) investigate how formalizations using HOAS can avoid standard problems
by being encoded on top of first-order representations. Approaches like GMeta

or LNgen are aimed at recovering many of the properties that one expects from
a logical framework for free.

Nominal logic (Pitts 2003) is an extension of first-order logic that allows
reasoning about alpha-equivalent abstract syntax in a generic way. Variants of
nominal logic have been adopted in the Nominal Isabelle (Urban 2005). However,
because Coq does not have a nominal variant, this approach cannot be used in
Coq formalizations.

8 Conclusion

There are several techniques for formalizing metatheory using first-order repre-
sentations, which typically involve developing the whole of the infrastructure by
hand each time for a new formalization. GMeta improves on these techniques
by providing reusable generic infrastructure in libraries, avoiding the repetition
of definitions and lemmas for each new formalization. The DGP approach used
by GMeta not only allows an elegant and verifiable formulation of the generic
infrastructure which is appealing from the theoretical point of view, but also
shows itself useful for conducting realistic formalizations of metatheory.
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Abstract. Expansion is an operation on typings (i.e., pairs of typing
environments and result types) defined originally in type systems for the
λ-calculus with intersection types in order to obtain principal (i.e., most
informative, strongest) typings. In a type inference scenario, expansion
allows postponing choices for whether and how to use non-syntax-driven
typing rules (e.g., intersection introduction) until enough information has
been gathered to make the right decision. Furthermore, these choices can
be equivalent to inserting uses of such typing rules at deeply nested posi-
tions in a typing derivation, without needing to actually inspect or mod-
ify (or even have) the typing derivation. Expansion has in recent years
become simpler due to the use of expansion variables (e.g., in System E).

This paper extends expansion and expansion variables to systems with
∀-quantifiers. We present System Fs, an extension of System F with ex-
pansion, and prove its main properties. This system turns type inference
into a constraint solving problem; this could be helpful to design a mod-
ular type inference algorithm for System F types in the future.

1 Introduction

1.1 Background and Motivation

Polymorphism and Principal Typings. Many practical uses of type systems re-
quire polymorphism, i.e., the possibility to reuse a generic piece of code with
different types. Type systems most commonly provide polymorphism through
∀-quantifiers, like in the Hindley-Milner (HM) type system [16] and in System F
[19,7], but can also use other methods like intersection types [3]. Systems with
∀-quantifiers assign general type schemes that can be instantiated to more spe-
cific types; for example, the identity function can be typed with ∀a.(a → a), and
then used with types int → int or real → real when applied respectively to an
integer or a real. Systems with intersection types list the different usage types of
a term; if the identity function is applied exactly twice in a code fragment, once
to an integer and once to a real, then its type will be (int → int) ·∩ (real → real).

Type systems with ∀-quantifiers are very popular, but they often lack principal
typings [26], i.e., strongest, most informative typings (a typing is usually a pair
of a type environments and a result type). Wells [26] proved that HM and System
F do not have principal typings. It is important not to confuse this notion with
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the (weaker) one of “principal types” defined for the HM type system in which
typable terms admit a strongest result type for each fixed type environment.
Principal typings are crucial for compositional type inference, where types for
terms are found using only the analysis results of the immediate sub-components,
which can be inspected independently and in any order. Compositional type in-
ference helps in performing separate analysis of program modules, and therefore
helps with separate compilation. Note that the Damas-Milner algorithm [4] for
HM is not fully compositional: to give a type for a let-binding let x = e1 in e2,
the algorithm must infer first a type for e1, and then use the result to type e2.

Expansion and Expansion Variables. In contrast, type systems with intersection
types usually have principal typings [3]. In such systems, admissible typings are
obtained from a principal one using expansion (in addition to substitution and
weakening). We present this mechanism through an example, taken from [2].
Consider the following λ-terms:

M1 = λx.x (λy.y z) M2 = λg.λx.g (g x)

One can compute the following principal typings for these terms in the type
system of Coppo, Dezani, and Veneri [3].

M1 : 〈z : a % (((a → b) → b) → c)︸ ︷︷ ︸
T1

→ c〉

M2 : 〈∅ % ((e → f) ·∩ (d → e)) → (d → f)︸ ︷︷ ︸
T2

〉

Following [2], we write M : 〈A % T 〉 for the assignment of type T under type
environment A (often written A % M : T in the literature). To type the applica-
tion M1 M2, we must somehow “unify” T1 and T2. We cannot do this by simple
type substitutions, replacing type variables by types; we have a clash between
type (a → b) → b and type (e → f) ·∩ (d → e). We cannot unify these types
by removing the intersection, using idempotence T ·∩ T = T ; we would have
to solve the equation a → b = b, which does not have a solution in absence of
recursive types.

This inference problem can be solved by introducing an intersection in the
typing of M1, using expansion.

M1 : 〈z : a1 ·∩ a2 % (((a1 → b1) → b1 ·∩ (a2 → b2) → b2) → c) → c〉

We can then unify the two types as required by applying the substitution e :=
a1 → b1, f := b1, d := a2 → a1 → b1, b2 := a1 → b1, c := (a2 → a1 → b1) → b1

The expansion operation simulates on typings the use of an intersection in-
troduction typing rule at a nested position in the typing derivation. The above
expansion on the typing of M1 transforms the typing derivation on the left in
the figure below into the derivation on the right (we write @ for the application
typing rule, λ and ·∩ for respectively abstraction and intersection introductions),
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λx.

@ 		����

x((a→b)→b)→c λy.

@ 

��
ya→b za

−→

λx.

@
���

����

xT→c ·∩



���

��

λy. λy.

@ ���� @ ����

ya1→b1 za1 ya2→b2 za2

where T = ((a1 → b1) → b1) ·∩ ((a2 → b2) → b2).
Earlier definitions of expansion [3,20] are quite difficult to follow and to im-

plement. Expansion variables (or E-variables) were introduced by Kfoury and
Wells in System I [8] to simplify expansion application. The construct has then
been improved in System E [1]. An E-variable e is a placeholder for unknown
uses of typing rules such as ·∩-introduction. For example, the following typing
derivation for M1

λx.

@
			�����

xe ((a→b)→b)→c e

λy.

@ 

��
ya→b za

generates this typing:

M1 : 〈z : e a % (e ((a → b) → b) → c) → c〉

Note that the variable e is introduced in the result type as well as in the type
environment. One can then perform the previous expansion by replacing e by
the expansion term (a := a1, b := b1) ·∩ (a := a2, b := b2), which introduces
an intersection ·∩ at the e position and applies a different substitution for each
branch of the intersection. We then obtain the desired typing with intersection,
given above.

Motivation. The idea behind expansion is fairly general, even if it has been
defined only in systems with intersection types. It allows postponing the uses
of non-syntactic typing rules, i.e., rules that are not driven by the syntax of
terms, such as ·∩-introduction, but also ∀-introduction and ∀-elimination. This
is helpful in type inference scenarios: constructor introductions or eliminations
can be delayed until all necessary information has been gathered. In the above
example, we introduce an intersection in the typing of M1 only when we have
to, when applying M1 to M2. We want to bring this possibility of delaying
the choice of uses of typing rules to type system with ∀-quantifiers, to see how
(compositional) type inference could benefit from this property. We present an
extension of System F with an expansion mechanism, called System Fs. Before
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going into the details of its syntax in Section 2, we first informally introduce
System Fs and point out the main differences between its expansion mechanism
and the one of System E.

1.2 Overview of System Fs

Quantifier Introduction. Assume that we have the following typings for the terms
M1 and M2 given above.

M1 : 〈z : a % (((a → b) → b) → c)︸ ︷︷ ︸
T1

→ c〉

M2 : 〈∅ % (∀e.((d → e) → e)) → (d → d → f) → f︸ ︷︷ ︸
T2

〉

Suppose we have forgotten M1 and M2 (e.g., we have already compiled them
and discarded the source code), and we want to type the application M1 M2. We
need to “unify” T1 and T2. We cannot unify (a → b) → b and ∀e.((d → e) → e)
using only type substitutions, because of the ∀-quantifier. This ∀-quantifier is
necessary, because the term g is used twice in M2 with different usage types. We
can solve this problem by introducing in T1 a ∀-quantifier over b, the scope of
which encompasses (a → b) → b. To this end, we introduce an expansion variable
s at the required position in the typing of M1 (we use s instead of e to avoid
confusion with the E-variables of System E).

M1 : 〈z : a % (s{a} ((a → b) → b) → c) → c〉

Unlike expansion variables in System E, s is not introduced in the type environ-
ment; the application of s to the typing is asymmetric. We discuss the role of the
superscript {a} below. A ∀-quantifier over b can be introduced at the position
we want by replacing s by the expansion term ∀b. This operation corresponds
to the following transformation on derivation trees

λx.

@ �������

xs
{a} ((a→b)→b)→c s{a}

λy.

@ ����
ya→b za

−→

λx.

@ 		�����

x(∀b.((a→b)→b))→c ∀b.
λy.

@ 

��
ya→b za

and generates the typing

M1 : 〈z : a % (∀b.((a → b) → b) → c) → c〉

as wished. We can then unify ∀b.((a → b) → b) → c with T2, by substituting d
for a and (d → d → f) → f for c. The key point is we can get the new typing
without needing to build the typing derivation (or have any memory of M1).
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When we introduce a ∀-quantifier, we forbid any quantification over type
variables that are free in the type environment. To take this into account, we
keep the set of free variables of the environment as a parameter of the E-variable.
For example, when we introduce s in the typing of M1, a is the only free variable
occurring in the environment; we remember the set {a} in s{a}. This prevents
any illegal quantification from happening; replacing s by the expansion ∀a does
not introduce a quantification over a in this case and leaves the typing judgement
unchanged.

Subtyping. E-variables can be used to perform subtyping as well. Consider
System F ∀-elimination as a subtyping relation: ∀a.T1 ≤ [a := T2]T1. Let
A = choose : ∀a.(a → a → a), id : ∀a.(a → a) and suppose we want to type
the application M = choose id under A (this example is taken from [11]). We
can derive the typing 〈A % (∀a.(a → a)) → (∀a.(a → a))〉 for M ; however if we
want to apply M to a term of type b → b, we have to redo the type inference on
M to obtain the needed typing 〈A % (b → b) → (b → b)〉.

To avoid this, we add an E-variable s on top of the type of id; we obtain
the following typing derivation (nodes marked with a type represent uses of
subtyping, i.e., in our case, instantiations of ∀-quantifiers)

@
���

�
����

�

T → T → T s∅

choose∀a.(a→a→a) id∀a.(a→a)

with T = s∅ ∀a.(a → a), giving typing

M : 〈A % (s∅ ∀a.(a → a)) → (s∅ ∀a.(a → a))〉

If we want to apply M to a term M ′ of type b → b, we utilize expansion to
introduce the use of subtyping ∀a.(a → a) ≤ b → b at the s position in the
typing tree. In the process, the type T → T → T is updated into (b → b) →
(b → b) → (b → b). We obtain

@ ���������
�

(b → b) → (b → b) → (b → b) b → b

choose∀a.(a→a→a) id∀a.(a→a)

with typing M : 〈A % (b → b) → (b → b)〉, and we can then type M M ′. In
fact, the expansion mechanism for subtyping introduction does not depend on
the definition of ≤, and therefore we keep System Fs parametric in its subtyping
relation.

1.3 Summary of Contributions

We define System Fs and present its principal properties. Improvements over
previous work are as follows:
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x ∈ TermVar ::= xi
a, b ∈ TypeVar ::= ai

s ∈ ExpVar ::= si
B ∈ Pfin(TypeVar)

M ∈ Term ::= x | λx.M | M1 @M2

T ∈ Type ::= a | T1 → T2 | ∀a.T | sB T
S ∈ Substitution ::= a := T, S | s := L, S | �
L ∈ Expansion ::= � | ∀a.L | sB L | L:T

Δ ∈ Constraint ::= � | T1 � T2 | Δ1 ∧Δ2 | ∃a.Δ | sBT Δ
A ∈ TypeEnv ::= ∅ | A, x : T
Q ∈ Skeleton ::= xA | λx.Q | Q1 @Q2 | ∀a.Q | sB Q | Q:T

Fig. 1. Syntax grammars and metavariable conventions

1. System Fs is the first type system with an expansion mechanism for ∀-
quantifiers, where we can delay ∀-introduction and uses of subtyping with
expansion.

2. System Fs extends the notion of expansion; we introduce a new expansion
mechanism with its corresponding (asymmetric) E-variables, which differ
greatly from the ones of System E [1].

3. We prove that we can generate all System Fs judgements from a initial
skeleton, an incomplete typing derivation with constraints that need to be
solved. This property is a (weaker) form of principality (Theorem 5.4).

4. System Fs is parametric in its subtyping relation; by using different subtyp-
ing relations (such as System F type application or Mitchell’s relation [17]),
one can change the typing power of System Fs without modifying the typing
rules or judgements.

5. System Fs turns type inference into a type constraint solving problem. We
believe it can be helpful to reason about modular type inference, even if we
do not provide a constraint solving algorithm yet.

Proofs are available in an accompying research report [14].

2 Syntax

Fig. 1 defines the grammars and metavariable conventions of the entities used
in this paper. Let i, j, m, n range over natural numbers. Given a set X , we
write Pfin(X) for the set of finite subsets of X . We distinguish between the
metavariables x, a, s, and the concrete variables xi, ai, si. The (non-standard)
symbol @ used for application helps in reading skeletons, and we keep it for
terms for consistency. We explain the role of constraints (Δ) and skeletons (Q)
in Section 3, and the syntax of expansion terms (L) and substitutions (S) in
Section 4.

Precedence. To reduce parenthesis usage, we define precedence for operators
and operations defined later (such as substitution and expansion applications
[S]T and �L�BT ) in the following order, from highest to lowest: sB T , ∀a.T ,
[S]T , �L�BT , T1 → T2. For example, [S]T1 → sB T2 = ([S]T1) → (sB T2) and
∀a.a → ∀a.a = (∀a.a) → (∀a.a). Furthermore, the function type constructor is
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xA � x : 〈A � A(x)〉/� (var)
Q � M : 〈A, x : T1 � T2〉/Δ

λx.Q � λx.M : 〈A � T1 → T2〉/Δ
(abs)

Q1 � M1 : 〈A � T1 → T2〉/Δ1 Q2 � M2 : 〈A � T1〉/Δ2

Q1 @Q2 � M1 @M2 : 〈A � T2〉/(Δ1 ∧Δ2)
(app)

Q � M : 〈A � T 〉/Δ a /∈ ftv(A)

∀a.Q � M : 〈A � ∀a.T 〉/∃a.Δ (∀-I) Q � M : 〈A � T 〉/Δ ftv(A) ⊆ B

sB Q � M : 〈A � sB T 〉/sBT Δ
(s-I)

Q � M : 〈A � T1〉/Δ
Q:T2 � M : 〈A � T2〉/(Δ ∧ (T1 � T2))

(�)

Fig. 2. Typing rules

right-associative, so that T1 → T2 → T3 = T1 → (T2 → T3), and the application
is left-associative, so that M1 @M2 @M3 = (M1 @M2)@M3.

Equalities and α-conversion. We allow α-conversion of bound variables in types
(where ∀a.T binds a), skeletons (where λx.Q binds x and ∀a.Q binds a), and
constraints (where ∃a.Δ binds a). Note that a is not bound in the expansion
term ∀a.L, and therefore it cannot be α-converted.

We equate types up to reordering of adjacent ∀-quantifiers (so ∀a1.∀a2.2T =
∀a2.∀a1.T ), and suppression of dummy quantifiers (if a is not free in T , then
∀a.T = T ). We also enforce the following equalities on constraints

∃a.(Δ1 ∧Δ2) = (∃a.Δ1) ∧ (∃a.Δ2) Δ ∧Δ = Δ Δ ∧� = Δ
sBT (Δ1 ∧Δ2) = (sBT Δ1) ∧ (sBT Δ2) Δ1 ∧Δ2 = Δ2 ∧Δ1

Δ1 ∧ (Δ2 ∧Δ3) = (Δ1 ∧Δ2) ∧Δ3 ∃a.Δ = Δ if a is not free in Δ

Auxiliary Notations and Functions. Let fv(M) be the set of free variables of M ,
defined in the usual way. The free type variables of a type, an expansion, and a
substitution are defined as follows.

ftv(a) = {a} ftv( �) = ∅
ftv(T1 → T2) = ftv(T1) ∪ ftv(T2) ftv(L:T ) = ftv(L) ∪ ftv(T )
ftv(∀a.T ) = ftv(T ) \ {a} ftv(∀a.L) = ftv(L) ∪ {a}
ftv(sB T ) = ftv(T ) ∪B ftv(sB L) = ftv(L) ∪B

ftv(�) = ∅
ftv(a := T, S) = {a} ∪ ftv(T ) ∪ ftv(S)
ftv(s := L, S) = ftv(L) ∪ ftv(S)

3 Typing Rules

A type environmentA (defined in Fig. 1) is a list of assignments which maps term
variables to types. When writing a non-empty environment, we allow omitting
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the leading symbols “∅,”. A type environment is well-formed iff it does not
mention twice the same term variable. Henceforth, we consider only well-formed
type environments. For A = x1 : T1, . . . , xn : Tn, we define A(xi) = Ti for
i ∈ {1 . . . n}, ftv(A) =

⋃
i∈{1...n} ftv(Ti), and support(A) = {x1 . . . xn}.

The typing rules of System Fs (Fig. 2) derive judgements of the form Q �
M : 〈A % T 〉/Δ, where constraints that need to be solved (by type inference) are
accumulated in Δ. A constraint of the form T1�T2 is called atomic. By including
constraints in judgements, we can use the same rules for type checking and type
inference. If the constraint is solved w.r.t. some subtyping relation, then the
judgement acts as a regular typing judgement, assigning typing 〈A % T 〉 to the
untyped term M .

A skeleton Q is just a proof term, a compact piece of syntax which represents
a complete typing derivation. A skeleton Q is valid iff there exist M , A, T , and
Δ such that Q � M : 〈A % T 〉/Δ. Henceforth, we consider only valid skeletons.
All components of a judgement Q � M : 〈A % T 〉/Δ are uniquely determined by
Q, therefore we can define functions rtype and tenv such that rtype(Q) = T and
tenv(Q) = A. Skeletons replace typing derivation trees in formal statements. For
example, λx.(xx:∀a.a):(∀a.a)→b @xx:∀a.a represents the following derivation.

x : 〈x : ∀a.a % ∀a.a〉/�
x : 〈x : ∀a.a % (∀a.a) → b〉/(∀a.a� (∀a.a) → b) x : 〈x : ∀a.a % ∀a.a〉/�

x@ x : 〈x : ∀a.a % b〉/(∀a.a� (∀a.a) → b)

λx.x@ x : 〈∅ % (∀a.a) → b〉/(∀a.a� (∀a.a) → b)

In examples, we sometimes omit skeletons and constraints when they are not
relevant, writing M : 〈A % T 〉 iff there exists Q, Δ such that Q � M : 〈A % T 〉/Δ.

Remark 3.1. A variable skeleton xA remembers a type environment A and not
simply the type of x to be able to type a variable x in a term λx.M such that
x /∈ fv(M). For example, we have λx.yx:a,y:b � λx.y : 〈y : b % a → b〉/�.

We could have used λ-terms with only type annotations on bindings, like many
other systems, but our skeletons are also useful because they uniquely represent
entire typing derivations (judgement trees). We also prefer our skeletons because
a goal for future work is a system containing both System E and System Fs

(cf. Section 8), and our format of skeleton is better suited for the intersection
introduction typing rule of System E, as discussed in [27].

Rules (var), (abs), and (app) are classic. The subtyping rule (�) generates a new
atomic constraint, the meaning of which depends on the chosen subtyping rela-
tion (cf. solvedness definition in Section 6.1). Rule (∀-I) introduces a ∀-quantifier
over a, provided that a is not free in A. Note that a may occur free in Δ; we use
an existential quantifier ∃a.Δ to bind it, as solvedness requires Δ to be solved
for some a (cf. Section 6.1), and not for all possible instantiations of a, as a
∀-binder would suggest.

Rule (s-I) introduces an expansion variable s to mark a position in the deriva-
tion tree where a ∀-quantifier can be added or where subtyping can be used.
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� ��BW = W � ��BT Δ = Δ

�sB
′
L�BW = sB∪B′

(�L�B
′
W ) �sB

′
L�BT Δ = sB∪B′

�L�BT (�L�BT Δ)

�∀a.L�BW =

{∀a.�L�BW if a /∈ B
�L�BW otherwise

�∀a.L�BT Δ =

{∃a.�L�BT Δ if a /∈ B
�L�BT Δ otherwise

�L:T2�BT1 = T2 �L:T2�BT1
Δ = (�L�BT1

Δ) ∧ ((�L�BT1)� T2)
�L:T2�BQ = (�L�BQ):T2

Fig. 3. Expansion application

Because a quantification over a free variable of A is not allowed (rule (∀-I)), the
E-variable remembers an over-approximation B of ftv(A), which is used by the
expansion mechanism to prevent any illegal ∀-introduction from happening. The
type T mentioned in sBT Δ can be used during expansion to generate an atomic
constraint T � T ′ if needed. We explain the expansion mechanism in detail in
the next section.

Remark 3.2. The rule (var) may also introduce E-variables, as for example in

xx:s
∅ a � x : 〈x : s∅ a % s∅ a〉/�. In this case, performing expansion at the position

of s does not correspond to a use of rules (∀-I) or (�), and the set B of type

variables remembered by s can be any set. Indeed we can derive xx:s
B a � x :

〈x : sB a % sB a〉/� for any B.

Remark 3.3. In rule (s-I), we can remember a set bigger than ftv(A) for subject
reduction to hold. For example, consider the following judgement

Q � (λx.y)@ λx.x : 〈y : b % s{a,b} b〉/s{a,b}b �

with Q = (λx.s{a,b} yx:a→a,y:b)@ λx.xx:a,y:b. The term (λx.y)@ λx.x reduces to
y, and to derive

s{a,b} yy:b � y : 〈y : b % s{a,b} b〉/s{a,b}b �,

we have to be able to mention a even if it does not appear in y : b.

4 Substitution and Expansion

4.1 Expansion Application

The syntax of expansion terms is given in Fig. 1. Let W range over types and
skeletons. Fig. 3 defines the application of expansion to types, skeletons, and con-
straints. When applied to a type or a skeleton, the expansion mechanism relies
on a set of type variables B, used in introductions of E-variable and ∀-quantifier;
when applied to a constraint, it requires an extra parameter (a type) to generate
an appropriate atomic constraint if needed. Each construct of expansion terms
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Metavariables [S]xA = x[S]A

v ::= a | s [S]λx.Q = λx.[S]Q
Φ ::= T | L [S](Q1 @Q2) = ([S]Q1)@([S]Q2)

Substitution application [S](sB Q) = �[S]s�ftv([S]B)[S]Q
[�]a = a [S]∀a.Q = ∀a.[S]Q if a /∈ ftv(S)

[�]s = s∅ � [S](Q:T ) = [S]Q:[S]T

[v := Φ, S]v = Φ
[v := Φ, S]v′ = [S]v′ if v �= v′ [S](T1 � T2) = [S]T1 � [S]T2

[S]� = �
[S](sB T ) = �[S]s�ftv([S]B)[S]T [S](sBT Δ) = �[S]s�

ftv([S]B)
[S]T [S]Δ

[S]∀a.T = ∀a.[S]T if a /∈ ftv(S) [S]∃a.Δ = ∃a.[S]Δ if a /∈ ftv(S)
[S](T1 → T2) = [S]T1 → [S]T2 [S](Δ1 ∧Δ2) = ([S]Δ1) ∧ ([S]Δ2)

Fig. 4. Substitution application

corresponds to the application of a non-syntactic typing rule, except for the null
expansion �, which leaves unchanged the entities it is applied to.

E-variable and ∀-quantifier expansions behave the same on types, skeletons,
and constraints. Applied with parameter B, the expansions sB

′
L and ∀a.L first

execute L and then introduce an E-variable s (with set B ∪B′ of variables that
cannot be quantified) and a quantifier over a (iff a /∈ B), respectively. When
applied to all parts of a judgementQ � M : 〈A % T 〉/Δ, we must have ftv(A) ⊆ B
for these operations to be sound w.r.t. rules (s-I) and (∀-I) (cf. Lemma 4.1).

The expansion L:T2 first applies L and then performs subtyping with T2, as
we can see in the skeleton case. When applied to a type, only the subtyping
step matters, and we simply obtain T2. Finally, the constraint case Δ requires
an extra parameter T1 to generate a new atomic constraint. In practice, T1 will
be the result type of the judgement Q � M : 〈A % T1〉/Δ from which Δ comes.
When L:T2 is applied to the above judgement, L is applied first, in particular to
the type T1. To take this into account, the generated constraint is (�L�BT1)�T2

(and not simply T1 � T2).
Expansion is sound w.r.t. to the type system of System Fs.

Lemma 4.1. If Q � M : 〈A % T 〉/Δ and ftv(A) ⊆ B, then �L�BQ � M :
〈A % �L�BT 〉/�L�BTΔ.

Expansion operates only at the top-level of the typing judgement in Lemma 4.1;
in order to expand at a deeply nested position, we have to replace an E-variable
s by an expansion L, as explained in the next section.

4.2 Substitution Application

Substitutions (defined in Fig. 1) are lists of assignments that map type variables
to types (a := T ) and E-variables to expansions (s := L), ended by the symbol�. Application of substitutions to type variable sets B and type environments A
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is pointwise. Given a finite set of types {T1 . . . Tn}, we define ftv({T1 . . . Tn}) as⋃
i∈{1...n} ftv(Ti). Fig. 4 defines application of substitutions to variables, types,

skeletons, and constraints.
A substitution S generates a type T (resp. an expansion L) when applied to

a type variable a (resp. to an E-variable s). A substitution may contain several
assignments for the same variable, as in S = (a := T1, a := T2,�); in this case,
only the first one is considered. We choose this design for simplicity; an alter-
nate solution would be to syntactically prevent repetitions in the substitution
definition, but the definition would then become more complex for no obvious
gain.

The application of substitutions to types sB T is the most important case.

[S](sB T ) = �[S]s�ftv([S]B)[S]T

The substitution S is first applied to s, which gives us an expansion L = [S]s,
which is then applied to the type [S]T . We remember that B is (an over-
approximation of) the set of free type variables that cannot be quantified over,
because they appear in the type environment at the time the variable s is intro-
duced. If S replaces a variable a ∈ B by a type T ′, then T ′ now appears in the
type environment, and its free variables cannot be quantified over. This explains
why we have to apply the expansion �[S]s�ftv([S]B)[S]T with the set ftv([S]B)
and not simply with the set B. The application of S to skeletons sB Q and to
constraints sBT Δ follows the same pattern.

Example 4.2. Let M = λx.x@ y. We have

M : 〈y : a % s{a} ((a → b) → b)〉

Applying S1 = (a := a1 → a2,�) to this typing gives us

M : 〈y : a1 → a2 % s{a1,a2} (((a1 → a2) → b) → b)〉

Then applying S2 = (s := ∀b. �,�) gives us

M : 〈y : a1 → a2 % ∀b.(((a1 → a2) → b) → b)〉

Note that the substitution (s := ∀a′. �,�) would have left the last judgement
unchanged if a′ ∈ {a1, a2}, and would have introduced a dummy quantifier if
a′ /∈ {b, a1, a2}. We can achieve the same effect as doing S1 before S2 by applying
the substitution S = (a := a1 → a2, s := ∀b. �,�) to the initial judgement.

Example 4.3. Let T = ∀a.(a → a). We have

λx.s∅ ((xx:T ):T→T
@ xx:T ) � λx.x@ x : 〈∅ % T → s∅ T 〉/s∅T (T � T → T )

Applying substitution S = (s := �:b→b
,�) gives us

λx.((xx:T ):T→T
@ xx:T ):b→b � λx.x@ x : 〈∅ % T → b → b〉/Δ

where Δ = (T � b → b) ∧ (T � T → T ). Subtyping has been introduced at a
nested position (under the λ), generating the expected constraint T �b → b.
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C � x � sftv(C) xC
C, x : a � M � Q s /∈ allvar(Q) B = ftv(tenv(λx.Q))

C � λx.M � sB (λx.Q)

C � M1 � Q1 C � M2 � Q2 Q = Q
:rtype(Q2)→a
1 @Q2 B = ftv(tenv(Q))

(allvar(Q1) ∩ allvar(Q2)) \ ftv(C) = ∅ {a, s} ∩ (allvar(Q1) ∪ allvar(Q2)) = ∅
C � M1 @M2 � sB Q

C � M � Q support(C) = fv(M)

� M � Q

Fig. 5. Initial skeletons of a term

Substituting a variable s by an expansion L makes s disappear. As a result,
one can use the null expansion � to delete an E-variable s from a type sB T . If
S = (s := �,�), then [S](sB T ) = � ��B[S]T = [S]T (the occurrences of s in T
are also removed). An expansion L can be applied at the location of a variable s
without making s disappear using the substitution S = (s := s∅L,�). Indeed we
have [S](sB T ) = �s∅L�B [S]T = sB �L�B [S]T . The substitution � is the identity
substitution; it leaves variables, types, skeletons, and constraints unchanged.
For example, for E-variables, we have [�](sB T ) = �s∅ ��B [�]T = sB [�]T . The
remaining cases of substitution application are straightforward descending cases.
The resulting operation is sound w.r.t. System Fs type system.

Theorem 4.4. If Q � M : 〈A % T 〉/Δ then [S]Q � M : 〈[S]A % [S]T 〉/[S]Δ.

5 Initial Skeletons

In this section, we prove that we can generate all System Fs judgements for a
term M from an initial skeleton built from M .

We first show that we can obtain relevant skeletons; a skeleton Q such that
Q � M : 〈A % T 〉/Δ is relevant if fv(M) = support(A). In words, the type
environment of a relevant skeleton does not mention more term variables than
necessary. A variable environment C is a type environment which assigns type
variables to expression variables and such that for all x, y such that x �= y, we
have C(x) �= C(y). We write allvar(Q) for the set of free type and E-variables
occurring in Q. Fig. 5 defines a judgement % M � Q, which means that Q is
an initial skeleton for M . The main ideas behind this construct are as follows:
first, we type each variable in fv(M) with a distinct type variable (using the
environment C mentioned in the auxiliary judgement C % M � Q). Then we
introduce a (fresh) E-variable at every possible position in the skeleton. Finally,
we use subtyping to ensure that a term in a function position in an application
has an arrow type. Two initial skeletons for the same term are equivalent up
to renaming of their variables, as stated in the lemma below (where we call an
expansion of the form sB � an E-expansion).
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Lemma 5.1. Let Q1, Q2 such that % M � Q1 and % M � Q2. There exists
a substitution S which maps type variables to type variables and E-variables to
E-expansions such that Q1 = [S]Q2.

Example 5.2. Let M = λx.x@ x. Then

Q = s∅3 λx.s
{a0}
2 ((s

{a0}
0 xx:a0):(s

{a0}
1 a0→a1) @ s

{a0}
1 xx:a0)

is an initial skeleton for M and we have

Q � M : 〈∅ % s∅3 (a0 → s
{a0}
2 a1)〉/Δ

with Δ = s3
∅
a0→s

{a0}
2 a1

s2
{a0}
a1 ((s

{a0}
0 a0 � s

{a0}
1 a0 → a1) ∧ s0

{a0}
a0 � ∧ s1

{a0}
a0 �).

Roughly, the variables (si) can be used to introduce ∀-quantifiers or subtyping
at their respective positions. For example, let T = ∀a.(a → a) and S = (a0 :=

T, a1 := T, s0 := �, s1 := �, s2 := �:b→b
, s3 := ∀b. �,�). Applying S to the

above typing judgement, we obtain

∀b.λx.((xx:T ):T→T
@ xx:T ):b→b � M : 〈∅ % ∀b.(T → b → b)〉/[S]Δ

with [S]Δ = ∃b.((T � T → T ) ∧ (T � b → b)).

In the following, we use a predicate refl to check that a constraint is built from
atomic constraints of the form T � T . The formal definition is

refl(�) refl(T � T )
refl(Δ)

refl(∃a.Δ)

refl(Δ)

refl(sBT Δ)

refl(Δ1) refl(Δ2)

refl(Δ1 ∧Δ2)

A reflexive constraint is always solved w.r.t. a reflexive subtyping relation (see
solvedness definition in the next section). From any initial skeleton of M , we can
obtain all relevant skeletons for M .

Lemma 5.3. Let % M � Q. Let Q′ relevant such that Q′ � M : 〈A % T 〉/Δ.
There exists S such that [S]Q � M : 〈A % T 〉/(Δ ∧Δ′) with Δ′ reflexive.

Note that in the above lemma, we do not have [S]Q = Q′, and we obtain an
approximation of Δ. By construction, an initial skeleton Q uses subtyping at
each application node to generate an atomic constraint. Applying S turns these
constraints into reflexive ones, but it cannot completely remove them. Therefore,
[S]Q is similar toQ′ up to these uses of (reflexive) subtyping at application nodes.

To generate all possible typing derivations, we add a weakening rule to be
able to extend a type environment.

Q � M : 〈A1 % T 〉/Δ support(A1) ∩ support(A2) = ∅
QA2 � M : 〈A1, A2 % T 〉/Δ

Theorem 5.4. Let % M � Q. If Q′ � M : 〈A % T 〉/Δ, then there exists S, A′

such that ([S]Q)A
′
� M : 〈A % T 〉/(Δ ∧Δ′), with Δ′ reflexive.
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We emphasize that initial skeletons are quite different from principal typings:
initial skeletons are not typing derivations, because they contain unsolved con-
straints, and all terms, even non typable ones, have an initial skeleton. To obtain
a principal typing from the initial skeleton, we need to solve the constraints in a
principal manner; we conjecture that it is not possible, i.e., System Fs does not
have principal typings, for the same reason as for System F [26].

Nevertheless, we think that initial skeletons can be useful for modular type
inference. First, note that we do not have to remember the skeleton itself or the
term; the typing and constraint contain all the information we need. Besides,
constraint solving can be divided into solution preserving steps, which produce
an equivalent constraint, and solution reducing steps, where some information
is lost. It is always possible to safely perform solution preserving steps, and one
can periodically check if it is possible to apply solution reducing steps to find at
least one solved typing. The best intermediate representation might be a typing
on which all known solution preserving steps have been performed, together with
(at least) one solution reducing step of that typing’s constraint. We do not know
in practice how many steps will be solution preserving versus solution reducing.

An example use of System Fs is to look for a subsystem of System F in which
to do compositional type inference. System Fs is a good framework in which
to perform such a search, by considering various different restrictions of System
Fs until one is found with the right properties. Because all possible System F
derivations can be obtained from System Fs initial skeletons, we know in advance
that the framework has the right amount of power. Such subsystems could also
be characterized by a constraint solving algorithm. Instead of searching for a
subsystem by varying the typing rules, we could vary the constraint solving al-
gorithm, and when a nice algorithm is found, we could try to find a corresponding
restriction directly stated on the typing rules.

6 Solvedness and Subject Reduction

6.1 Solvedness and System F

A constraint Δ is solved w.r.t. a subtyping relation ≤ if its atomic constraints
are solved w.r.t. ≤. Formally, we define the predicate solved, as follows.

solved(�,≤)
T1 ≤ T2

solved(T1 � T2,≤)

solved(Δ1,≤) solved(Δ2,≤)

solved(Δ1 ∧Δ2,≤)

solved(Δ,≤)

solved(∃a.Δ,≤)

solved(Δ,≤)

solved(sBT Δ,≤)

A skeleton is solved if its constraint is solved. Solved skeletons correspond to
typing derivations in the traditional sense.

We can express System F in System Fs by using the following relation ≤F.

∀a.T1 ≤F [a := T2,�]T1 (∀-E)
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Because of the equality involving dummy quantifiers, the relation ≤ is reflexive;
indeed for a /∈ ftv(T ), we have T = ∀a.T ≤F T . Clearly, System Fs equipped
with ≤F extends System F. Conversely, it is easy to see that a term typable in
System Fs is typable in F once we erase all the E-variables.

Proposition 6.1. A term is typable in System F iff it is typable in System Fs

with ≤F.

6.2 Subject Reduction

We now present the subject reduction result of System Fs with ≤F w.r.t. call-
by-value semantics. Let V range over values, i.e. V ::= x | λx.M . We write
[x := M1]M2 for the usual capture-avoiding substitution of terms. We define

small-step call-by-value evaluation M
cbv−→ M ′ as the smallest relation on terms

verifying the following rules:

(λx.M)@V
cbv−→ [x := V ]M

M1
cbv−→ M ′

1

M1 @M2
cbv−→ M ′

1@M2

M
cbv−→ M ′

V @M
cbv−→ V @M ′

Theorem 6.2. If Q � M : 〈A % T 〉/Δ, solved(Δ,≤F), and M
cbv−→ M ′, then

there exists Q′, Δ′ such that Q′ � M ′ : 〈A % T 〉/Δ′ and solved(Δ′,≤F).

We prove Theorem 6.2 by defining a transformation on Q so that skeletons in
a function position of an application, such as Q1 in Q1@Q2, are turned into
λ-abstraction skeletons. A substitution lemma then allows us to simulate β-
reduction by replacing the occurrences of a variable skeleton xA in a skeleton
λx.Q′

1 by Q2. This proof technique depends on the subtyping relation being used.
We conjecture it can be adapted to various relations (such as Mitchell’s [17]), but
nevertheless we look for a more generic proof technique (less dependant on the
subtyping relation). We prove subject reduction only for call-by-value evaluation
for simplicity; we conjecture that subject reduction also holds for call-by-need
and call-by-name semantics, and for reduction in arbitrary contexts.

7 Related Work

7.1 Expansion

A full survey on expansion and expansion variables can be found in [2]; we only
discuss here the main differences between System Fs and System E, the type
system with expansion most closely related to our work. System E E-variables are
introduced on top of skeletons, type environments, result types, and constraints,
while System Fs E-variables are not inserted on top of type environments (rule
(s-I)). System Fs expansion mechanism deals with subtyping, while System E
expansion does not. In System E, an E-variable e defines a namespace. In type
T1 = a → e a, the variable a outside e is not connected to the one in the scope of
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e; applying substitution (a := T2,�) to T1 gives T2 → e a. This is due to the fact
that substitutions are a special case of System E expansions (see [2] for further
details). It also makes composition of expansions and substitutions easier. In
System Fs, substitutions cannot be considered as expansions, because they are
applied to the whole typing judgement (Theorem 4.4), whereas the asymmetric
expansions of System Fs are not applied to the type environments (Lemma 4.1).
As a result, it would be unsound for System Fs E-variables to create namespaces.
It is difficult to have a symmetric expansion in System Fs, because subtyping does
not operate uniformly on typings (it is usually contravariant on the environment
and covariant on the result type). It is possible to design System Fs with two
kinds of E-variables (one, symmetric, to handle substitutions and ∀-introduction,
and one, asymmetric, for subtyping), but it would make the system much more
complex for no clear profit.

7.2 Type Inference in System F

Type inference in System F is undecidable [25]; however many different ap-
proaches have been conducted to circumvent this issue, by stratifying System F
using a notion of rank, or by using type annotations to constrain type inference
possibilities.

Giannini and Ronchi’s Type Constraints. In [6], Giannini and Ronchi Della
Rocca consider a syntax-directed version of System F. The authors define a
notion of typing scheme σ, with a syntax similar to the one of System F types,
except that quantifiers ∀u.T contain placeholders u (called sequence variables),
that can be replaced by a (possibly empty) set of type variables to give a System
F type. For each term M , they also define a principal typing scheme Π(M) =
〈D, σ,G, F 〉, where D is an environment that maps term variables to typing
schemes, and G and F are constraints on the typing schemes occurring in σ or
D that need to be satisfied. The set G contains subtyping constraints σ1 ≤F σ2,
and F prevents certain quantifications from happening by restricting the possible
values for the sequence variables u.

The principal typing scheme Π(M) is similar to our initial skeletons; if Π(M)
= 〈D, σ,G, F 〉 and Q � M : 〈A % T 〉/Δ (with Q an initial skeleton for M), then
D corresponds to A, σ to T , G to Δ, and F acts as the sets B that appear in E-
variables sBT . Any System F typing 〈A % T 〉 of M can be obtained from D, σ by
applying a substitution (from type variables to types and sequence variables to
set of type variables) which satisfies constraintsG and F . This result corresponds
to Theorem 5.4 in our system.

System Fs and the system of [6] differ mainly in their implementation. In
particular, we have a mechanism to postpone subtyping (i.e., ∀-elimination),
which does not have an equivalent in the system of Giannini and Ronchi. It seems
that they do not need such mechanism, but to compensate for it, they have to
generate more constraints when building their principal typing scheme Π(M).
We also believe that our system is easier to understand and easier to extend
with other type constructors. Finally, Giannini and Ronchi define a notion of
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rank over system F types (distinct from Leivant’s rank based on the presence
of polymorphism on the left of function types [13]), and provide for all n an
inference algorithm for each restriction of their system to types of rank lower
than n. We conjecture that this algorithm can be adapted to System Fs.

MLF and Its Variants. MLF [10,11] is a conservative extension of ML at least as
expressive as System F with principal types, i.e., result types whose instances
(w.r.t. the MLF type instance relation ≺) are exactly all possible result types for
a term. The type system also enjoys decidable type inference (with a simple cri-
terion on where type annotations are needed), and stability w.r.t. some program
transformations, such as for example β-reduction and η-expansion.

MLF types contain flexible quantifiers ∀(a 7 σ)σ′, which roughly represent
sets of System F types of the form [a := T ]T ′, where T and T ′ are instances of
the type schemes σ, σ′. For example, ∀(a 7 ∀b(b → b))(a → a) represents the
set {T → T | ∀b(b → b) ≺ T }. With flexible quantifiers, terms that do not have
a principal type in System F (w.r.t. the System F type instance relation) have a
principal type in MLF. Decidable type inference is obtained in MLF by requiring
type annotations on function parameters that are used two or more times with
different type instances, so that the type inference algorithm never has to guess
true polymorphism. Rigid bindings are used in MLF types and typing rules to
distinguish between inferred and annotated types. They are not necessary for
decidable type inference, and can be removed at the cost of additional type
annotations, as in HML [12].

Boxed Polymorphism. Boxed polymorphism [9,18] hides polymorphic types into
boxes, considered as regular simple types. Several type systems follow this prin-
ciple, such as PolyML [5], boxy types [24], and FPH [23]. We discuss only the
most recent system, FPH. FPH is a type system based on System F, where boxes
are used to mark where ∀-quantifiers have to be instantiated with polymorphic
types. Provided that type annotations are given at these boxed positions, FPH
type inference computes System F types (without any box) for terms. The system
aims for simplicity for the programmer: only System F types are exposed, and
writing type annotations does not require to think in term of boxes. Roughly,
type annotations are necessary for λ-abstractions and let-bindings with rich
types (i.e., types with quantifiers under arrow types). However, FPH is more
restrictive than MLF; more annotations are needed in general, and FPH terms
admit principal types only for “box-free” types, not in general.

MLF, FPH, and System Fs all aim for a modular type inference for System F
types. It is difficult to compare our work to these two systems, because we do not
propose a type inference algorithm for System Fs yet. In particular, assuming we
follow their approach, we do not know how many annotations would be necessary
to make System Fs type inference decidable. However, we can make the following
observations. First, MLF and FPH only infer result types, while our objective
is to also infer complete typing, in order to have a fully compositional type
inference algorithm. MLF has principal types (w.r.t. to their instance relation),
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while System Fs have initial skeletons, and FPH has principal types only for box-
free types (where ∀-quantified variables cannot be instantiated with polymorphic
types). MLF types more terms than System F, while FPH and System Fs type
the same terms as System F. Finally, FPH and System Fs are direct extensions
of System F, and the constructions specific to these systems (the boxes and E-
variables) can be kept away from the programmer most of the time (except in
type error reports). On the other hand, MLF types and type instance relation ≺
can be hard to understand, even in its simpler version HML.

To illustrate the differences between the three type systems, we consider the fol-
lowing example (taken from [11,23]). Let A = choose : ∀a.(a → a → a), id :
∀a.(a → a) and M = choose@ id. We can derive the following typing judgement
forM :

Fs : 〈A % s∅2 ((s
∅
1 ∀a.(a → a)) → (s∅1 ∀a.(a → a)))〉

MLF : 〈A % ∀(a 7 ∀b(b → b))(a → a)〉
FPH : 〈A % ∀b((b → b) → (b → b))〉

〈A % ∀b(b → b) → ∀b(b → b) 〉

FPH can infer two result types for M , depending on the presence or absence
of type annotations. These two incomparable types can be obtained from the
(principal) MLF type (ignoring the boxes), and also from the System Fs type,

by applying the substitution (s2 := ∀b. �, s1 := �:b→b
,�) for the first one, and

by simply erasing the E-variables for the second one.
Both System Fs E-variables and MLF flexible bindings factor several Sys-

tem F types and typing derivations that are incomparable in System F, as
shown with the choose@ id example. However, flexible bindings are more ex-
pressive and allow to type terms that are not typable in System F. Consider the
example (taken from [11]) let x = (choose@ id) in let z = x@ f in x@ g, where
f : ∀a.(a → a) → ∀a.(a → a), g : (b → b) → (b → b). The MLF type for
choose@ id given above can be instantiated into the incomparable types of f
and g. The term cannot be typed in System F nor in System Fs. Adding quan-
tification over E-variables would allow System Fs to type this term; we could
type choose@ id with ∀s.((s∅ ∀a.(a → a)) → (s∅ ∀a.(a → a))) and instantiate s
with different expansions to obtain the types of f and g. Adding quantification
over E-variables should not raise any issue; we conjecture that it would allow
System Fs to type as many terms as MLF. It would be interesting to see if there
exists an encoding of MLF types into System Fs types extended with quantified
E-variables, and conversely. We leave this topic to future work.

8 Conclusion and Future Work

System Fs is an extension of System F with expansion, an operation originally
defined in systems with intersection types. Expansion allows postponing the
introduction of ∀-quantifiers and subtyping uses at an arbitrary nested position
in a typing derivation. For any term M , we can generate an initial skeleton, from
which we can obtain any System Fs judgement for M . We now give some ideas
of follow-up on this work.



474 S. Lenglet and J.B. Wells

Type Inference Algorithm. To obtain decidable type inference in System Fs, a
first possibility is to use type annotations, as in MLF or FPH. The question
is then to know how many annotations are necessary compared to these two
systems. Another idea is to study the link between constraints solving and semi-
unification. Given a constraint T1 ≤ T2, the semi-unification problem consists
in finding S1, S2 so that [S2][S1]T1 = [S1]T2. Vasconcellos et al. [22] used semi-
unification to design and implement a type inference semi-algorithm for poly-
morphic recursion in Haskell. The authors claim that the algorithm terminates
most of the time in practice. Maybe similar results can be obtained for System
Fs as well. As discussed at the end of Section 5, System Fs can also be used to
look for a subsystem of System F allowing for compositional type inference.

Mixing∀-quantifiers and IntersectionTypes. Along-termgoal is combiningSystem
E and System F into one system (called System EF), with both ∀-quantifiers and
intersection types.With such a system, one could type a termwith only intersection
types, only System F types, or any combination of the two constructs, depending
on the user’s needs. Previous systems featuring both constructs (e.g. [15,21]) do not
use expansion variables; themain difficulty inmixing SystemE and SystemFs is to
make precise the interactions between the symmetric and asymmetric expansions.
Maybe it is possible to define a more general expansion mechanism which super-
sedes the existing ones, and combine the two kinds of expansion variables into a
single construct. A goal would be for System EF to have principal typings.

Because System E types all strongly normalizing terms, ∀-quantified types
would only be used when required by the user when performing type inference
in System EF. To this end, we could imagine various kinds of type annotations
to mark positions within terms where System F types are required. These anno-
tations could be complete types, such as λx∀a.(a→a).M , or just type templates,
such as λx(∀a.∗)→∗.M , meaning that the inferred type for x should be an ar-
row type, and the type of the argument should be a System F type. One could
imagine different kinds of annotations at various positions in the term; we would
like to see under which conditions (on both the annotations language and the
positions in the term) the inference for such a system becomes decidable. The
inference algorithm would then use intersection types by default, except for the
marked positions where ∀-quantified types are requested.
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Abstract. Self-adjusting computation is a language-based approach to
writing programs that respond dynamically to input changes by main-
taining a trace of the computation consistent with the input, thus also
updating the output. For monotonic programs, i.e. where localized input
changes cause localized changes in the computation, the trace can be
repaired efficiently by insertions and deletions. However, non-local input
changes can cause major reordering of the trace. In such cases, updating
the trace can be asymptotically equal to running from scratch.

In this paper, we eliminate the monotonicity restriction by generalizing
the updatemechanism to use trace slices, which are partial fragments of the
computation that can be reordered with some bookkeeping. We provide a
high-level source language for pure programs, equipped with a notion of
trace distance for comparing two runs of a programmodulo reordering. The
source language is translated into a low-level target language with intrinsic
support for non-monotonic update (i.e., with reordering). We show that
the translation asymptotically preserves the semantics and trace distance,
that the cost of update coincides with trace distance, and that updating
produces the same answer as a from-scratch run. We describe a concrete
algorithm for implementing change-propagation with asymptotic bounds
on running time. The concrete algorithm achieves running time bounds
which are within O(log n) of the trace distance, where n is the trace length.

1 Introduction

In many applications, small changes to the input data cause proportionally small
changes to the computation and output data. The broad goal of incremental com-
putation is to exploit this correlation by efficiently updating the output when the
input changes. Dynamic algorithms and data structures can be designed to take
advantage of the particular problem structure [7,9].The manual approach often
yields updates that are asymptotically faster than recomputing from scratch, but
carries inherent complexity and non-compositionality that makes the algorithms
difficult to design, analyze, and use.

Programming languages for incremental computation provide compile- and
run-time support to (semi-)automatically derive incremental programs from
static programs [8,16,17]. In particular, self-adjusting computation (SAC) is a
language-based approach that provides a general-purpose change-propagation
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mechanism to update the output [1]. Previous work shows that SAC can be effec-
tive in a reasonably broad range of domains, such as computational geometry [3],
invariant checking [18], and machine learning [5]. In many cases, self-adjusting
programs closely match or improve the asymptotic complexity achieved by al-
gorithmic techniques, and have even helped solve challenging open problems by
providing high-level reasoning for complex computations [4].

Self-adjusting programs construct and maintain a trace that records data and
control dependencies of the computation. The trace is initially built during a
run from scratch, recording the operations (e.g., that depend on the input or
identify possibility of reuse) in execution order. Change-propagation edits the
trace of the first run into the trace of the second run: input changes identify
parts of the computation affected that must be rebuilt, while unaffected parts
can be reused. This update takes time proportional to performing the new work
for the updated run and discarding stale work from the previous run; there is
no cost for work that is reused between runs.

Previous semantics and implementation techniques for SAC critically relied on
reusing subcomputations monotonically, i.e., in the same order that they appear
in a trace. For input changes that reorder subcomputations, however, existing
change-propagation mechanisms can be grossly inefficient. As an abstract ex-
ample, consider a computation that initially performs f(x); g(y). After a small
input change, the execution order might swap, yielding g(y); f(x) instead. Under
monotonic change-propagation, we could only reuse one of these functions: we
can reuse g(y) but would have to re-run f(x), or vice versa. If both calls are
expensive, neither choice will have an efficient update. In Section 2, we discuss a
concrete example where non-local input changes cause computation reordering,
and compare monotonic and non-monotonic change-propagation.

All previous work on SAC critically relies on monotonicity of change-
propagation to ensure correctness and efficiency. Relaxing this constraint would
make the technique effective for a broader class of computations, but requires
overcoming three key challenges: (1) Can change-propagation be generalized
to correctly support reordering? (2) How can we reason about the complexity
of non-monotonic change-propagation at the program level? (3) How can non-
monotonic change-propagation be realized efficiently? In this paper, we general-
ize SAC to support non-monotonic reuse where subcomputations may be reused
out of order and provide complete solutions to the three challenges.

We give a high-level, direct-style source language for pure programs (Src)
(Section 3) with tree-shaped traces of their execution. A formal notion of trace
distance quantifies dissimilarity between two runs modulo reordering and ab-
stractly measures change-propagation time. Under monotonic reuse, local trace
distance compares two runs head-to-head in execution order to account for their
differences; intuitively this is edit distance under insertions and deletions. Under
non-monotonic reuse, trace distance is supplemented by a global trace distance
that decomposes each run into a set of trace slices (traces with holes), pairs
subcomputations from each run, and adds their local trace distance; intuitively
this is local trace distance modulo reordering, akin to set difference.
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We translate the source languages into a low-level, continuation-passing target
language (Tgt in Section 4) with intrinsic support for non-monotonic change-
propagation. Since continuations capture the rest of the computation, a list-
shaped trace overapproximates the scope of operations that must be re-run due
to inconsistencies with input changes. Since a hole in a trace slice indicates com-
putation that has been reused out of order and the hole is labeled with its con-
tinuation, the computation can resume by running the continuation. Therefore
trace slices are essential for change-propagation to support non-monotonic (i.e.,
out-of-order) reuse while maintaining correctness. We prove the key consistency
theorem that non-monotonic change-propagation always yields results that are
consistent with a from scratch run. Moreover, we show that target-level global
trace distance coincides with the cost of non-monotonic change-propagation.
Finally, we also prove that greedy non-monotonic reuse yields asymptotically-
optimal change-propagation for a particular class of programs.

We relate the source and target languages by translation and prove that the
translation preserves the semantics and trace distance (Section 5).

Finally, we describe how to efficiently support non-monotonic SAC (Section 6).
Specifically, we give algorithms and data structures to implement trace slices and
non-monotonic change-propagation, such that the source-level trace distance can
be realized with a logarithmic factor overhead in the size of the trace. We defer
experimental evaluation to future work. Further discussion and technical details
are in the first author’s dissertation [11].

2 Overview

We illustrate how non-local input changes can cause computation reordering
with a pure, self-adjusting map program on lists:

�������� ’a cell = nil | :: �� ’a * ’a list
	
������ ’a list = ’a cell ref

�� map (f : ’a -> ’b) (l : ’a list) : ’b list =
���� ��� l �� nil => ��� nil

| h::t => ��� ((f h) :: (map f t))

We use write-once modifiable references (with put and get operations) for the
tail to identify where input changes require new computation, and memoizing
functions (declared by fun) to identify possible reuse across runs (Section 3).
Here we explain its change-propagation and trace distance under monotonic and
non-monotonic reuse. We revisit its formal trace distance in Section 3 and its
performance under the change-propagation algorithm in Section 6.

f(x) nosyA trace is a syntactic representation of a computation,
which we depict with hierarchical box diagrams of the form:
where the oval names the computation (e.g., f(x)), the inner rectangle is a hole
to be filled with subtraces (e.g., recursive calls) capturing the call order, and the
outer rectangle represents the local computation (i.e., between subcalls).

Monotonic SAC. Suppose we first map a function f on the list [1, . . . , n, k]. Next,
a meta-level mutator can change the input to [k, 1, . . . , n] by moving k to the
front, and change-propagate the first run to be consistent with the new input.
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The obvious way to change the input is
to splice k out of the list, reinsert it at the
front, and change-propagate. The first run
(top) is a from-scratch execution that con-
structs the trace: each rectangle represents
the local work (dereference the location, ap-
ply the function to the element, place the re-
sult in a new reference) with its nested recursive call. After changing the input
list, change-propagation (Subsection 4.1) uses the input change(s) to edit the
trace of the first run into the trace of the second run (bottom). Since the list’s
head element is k instead of 1, change-propagation greedily steals the corre-
sponding subtrace from the first run; this is a form of partial reuse (indicated
by dashed/orange) between runs because it’s the same local work but has dif-
ferent subcomputation. Assuming a monotonic reuse, change-propagation must
discard the prefix trace (1 · · ·n) from the first run in order to reuse the k sub-
trace, thus the work for (1 · · ·n) must be done afresh for the second run; this
work is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .obstructed from (i.e., not available for) reuse (indicated by . . . . . . . . . . .dotted/red)
between successive runs. Finally, the work for nil can be fully reused (indicated
by solid/green) between runs. Thus change-propagation takes O(n) time to up-
date the computation, which is no more efficient than running from scratch.

Moving the last element to the front is a non-local change that swaps the
relative order of execution between the computations for k and (1 · · ·n). This is
incompatible with monotonicity because work may only be reused if it occurs in
the same order in both runs. Geometrically, the reuse arrows between the two
traces cannot intersect.

Due to the complex semantics of change-propagation for the low-level Tgt
language, we prefer to reason with an abstract trace distance [12] for the Src lan-
guage, which quantifies the dissimilarities between runs. In Sections 4.3 and 5,
we show that trace distance asymptotically coincides with the time for change-
propagation. For monotonic reuse, local trace distance corresponds to an edit
distance between traces. Intuitively, the distance between two traces is propor-
tional to the partially reusable and . . . . . . . . . . . . . . . . .discarded/fresh computation.
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To improve change-propagation, we could
employ a different reuse policy that instead
performs the work for k afresh and reuses the
work for (1 · · ·n). Alternatively, we can factor
the move into: (1) delete k from the list and
change-propagate, then (2) reinsert it at the
front and change-propagate again. Thus the
bulk of the computation can be reused and
change-propagation only requires O(1) time
to splice k out for the second run and perform
the work afresh for the third run. Note that
the work for (1 · · ·n) and nil are reused monotonically. However, these solutions
aren’t robust enough to handle other changes such as swapping the first and
second halves of the list.
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Non-Monotonic SAC. In the non-monotonic
setting, reusing a subtrace doesn’t discard
its prefix and thus change-propagation can
reuse work out of order. Geometrically,
non-monotonicity allows the reuse arrows to
intersect, so . . . . . . . . . . .obstructed reuse lines from the
monotonic illustration become full or partial
reuse arrows.

Change-propagation can greedily steal the work for k without sacrificing the
prefix trace (1 · · ·n), again this is partial reuse because the element has a differ-
ent tail computation ((1 · · ·n) instead of nil). Next, the subtrace for (1 · · ·n)
from the first run can be (almost) fully reused, except for its differing tail list
(nil instead of k). Finally, the trace for nil can also be fully reused. In this ex-
ample reuse is maximized, thus change-propagation takes O(1) time to update
the computation, an asymptotic speedup over running from scratch. Unlike the
alternatives suggested above, non-monotonicity make change-propagation robust
enough to handle swapping larger list segments.

For non-monotonic reuse, trace distance is a hybrid of set difference and edit
distance. In particular, global trace distance (Subsection 3.2) allows decompos-
ing the trace of each run into trace slices (traces with holes) which are then
compared pairwise with local trace distance. In Section 3, we revisit this ex-
ample’s formal trace distance derivation. Briefly, each trace can be decomposed
into separate slices for (1 · · ·n), k, and nil. The similar slices of each run have
O(1) local distance because the (1 · · ·n) and k slices have to account for their
differing tails between runs but are otherwise identical. Thus the global distance
between runs is also O(1). Finally, the algorithmic overhead of non-monotonic
change-propagation (Section 6) is logarithmic in the size of the trace, so an
implementation would require O(log n) time to update.

3 The Src Language

The Src language serves to write pure direct-style programs that depend on input
data that differs across runs, and can be compiled into equivalent self-adjusting
Tgt programs (see Sections 4 and 5). The dynamic and cost semantics of Src
produces an execution trace that can be used to determine a trace distance that
quantifies differences between runs modulo reordering, which is asymptotically
matched by the change-propagation mechanism of Tgt.

The Src language is a pure call-by-value λ-calculus with ML-style references
(without update) to represent data that may change across runs.1 The follow-
ing grammar gives the syntax of types τ , expressions e, and values v, using
metavariables f and x for identifiers and � for locations.

τ ::= nat | τx → τ | τ ref e ::= v | caseN vn ez x .es | ef $ ex | put v | get vl
v ::= x | zero | succ v | fun f .x .e | 	

1 Src (and Tgt of Section 4) includes natural numbers for didactic purposes and can
easily be extended with products, sums, recursive types, etc..
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Function application has the usual β-reduction semantics and is additionally
recorded in the execution trace to help identify similarities between runs. The
τ ref type classifies references: put v creates a reference; get vl dereferences and
identifies the need for re-computation by recording data dependencies.

3.1 Static, Dynamic, and Cost Semantics

The typing judgement Σ;Γ % e : τ ascribes the type τ to the expression e in the
store and variable typing contexts Σ and Γ . For brevity, we only give the types of
the reference and suspension primitives: put : τ → τ ref and get : τ ref → τ .

The dynamic and cost semantics of Src are defined by the large-step evaluation
relation σ; e ⇓ T ′;σ′; v′; c′ to reduce expression e in store σ to value v′ in updated
store σ′ and yields an execution trace T ′ and a cost c′. A store σ is a finite
map from locations to values. The trace internalizes the shape of an evaluation
derivation and will be used to identify the similarity of computations. The cost
internalizes the size of a trace and will be used to relate the constant slowdown
due to implementing suspensions with references and compiling Src programs to
Tgt programs.

A trace T is a ε-terminated interleaving of actions A:
T ::= ε | A·T A ::= L | M(T ) L ::= putv↑� | get�→v M ::= appvf$vx⇓v

Local actions L identify where input changes cause two runs to differ because
the operation yields a different result, while memoizing actions M delimit the
trace T of an operation and identify where two runs perform similar computa-
tions. Therefore traces are necessary and sufficient to isolate the similarities and
differences between program runs, without having to capture pure computation
(e.g., case-analysis) because it is determined by the rest of the trace. Reference
actions include allocation (put) and dereference (get) labeled with the location �
and value v involved in the operation. The function application action (app) is
labeled with a function vf , argument vx, and result v.

For brevity, we only show the dynamic semantics of functions and references.

σ; ef ⇓ Tf ;σf ; fun f .x .e; cf σf ; ex ⇓ Tx; σx; vx; cx σx; [fun f .x .e/f ][vx/x ]e ⇓ T ′;σ′; v′; c′

σ; ef $ ex ⇓ Tf ·Tx·(app(fun f .x .e)$vx⇓v′
(T ′)·ε);σ′; v′; cf + cx + 1 + c′

	 /∈ domσ σ′ = σ[	 �→ v]

σ;put v ⇓ put
v↑�·ε;σ′; 	; 1

	 ∈ domσ σ(	) = v

σ;get 	 ⇓ get
�→v·ε;σ; v; 1

Evaluation extends the trace and increments the cost counter according to the
kind of reduction. A value reduces to itself, produces an empty trace, and has no
cost. A case-analysis reduces according to the branch prescribed by the scrutinee;
the trace and cost are unchanged since it is pure computation.

Function application reduces the function ef and argument ex to values and
then evaluates the redex. An application concatenates the function, argument,
and redex traces to represent the sequencing of work; the redex trace is delimited
by the memoizing function action to identify the scope of the function call; the
cost of the traces are added and incremented by 1 for the β-reduction.
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Allocation extends the store with a fresh location that is initialized with the
specified value and returns the location. Dereference returns the location’s value.
In each case, the trace is the singleton action of the primitive, and the work is 1.

3.2 Trace Distance

To reason about the effectiveness of monotonic self-adjusting computation, pre-
vious work developed a notion of trace distance to quantify the difference between
two runs [12]. Since traces approximate the shape of an evaluation derivation,
trace distance approximates a (higher-order) distance judgement on evaluation
derivations that quantifies the dis/similarities between two runs (modulo the
stores). Under monotonic reuse, the traces produced by the dynamic semantics
are compared in execution order and thus trace distance intuitively captures
their edit distance.

Under non-monotonic reuse, trace distance must be generalized to account
for reordering and thus trace distance is a hybrid of set difference and edit
distance. Intuitively, the difference between two runs can be obtained by glob-
ally decomposing each run into a set of subcomputations and locally comparing
subcomputations pairwise under some matching. More specifically, the global
decomposition of a computation slices a trace into a set of traces with holes,
and the local comparison of two traces alternates between searching for a point
where traces align (i.e., at memoizing actions) and synchronizing the two similar
traces until they again differ (i.e., at local actions).

Action slices B and trace slices S represent (possibly) partial computations,
analogous to how actions and traces represent full computations. Thus, mem-
oizing action slices delimit an optional trace slice Ṡ, which can be a present
subcomputation or an absent subcomputation that was reordered.

B ::= L | M(Ṡ) S ::= ε | B·S Ṡ ::= � | S
Note that a trace is also a trace slice with no holes. The notation S denotes a list
of slices and the metavariable U denotes a non-empty list of traces. A memoizing
action M(T ) can be decomposed into a (skeleton) action slice with a hole M(�)

and an extracted trace T . The slicing judgement S 8 S′, S
′
(alternatively, S 8

U ′) extends this operation to structurally traverse the slice S and decompose it

into a (skeleton) slice S′ with (nondeterministically) extracted slices S
′
:

L & L, •
S & S′, S

′

M(S) & M(S′), S
′

S & S′, S
′

M(S) & M(�), (M(S′)·ε, S′
)

M(�) & M(�), • ε & ε, •
B & B′, S

′
1 S & S′, S

′
2

B·S & B′·S′, (S
′
1, S

′
2)

Intuitively, if S 8 S′, S
′
, then S′ contains holes of the formMi(�) and S

′
consists

of trace slices Mi(Si)·ε representing the subcomputations of Mi extracted from
S. Thus, replacing the corresponding holes in S′ with Si would reconsistute S.
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Consider a trace slice S[M(T )] that contains a deeply-nested trace M(T ) that
could be stolen by non-monotonic memoization for out-of-order reuse. Intuitively,
S[M(T )] can be sliced into the trace M(T ) and a residual slice S[M(�)], where
the M(�) indicates what computation was stolen. Formally, this is captured by
the judgement S[M(T )] 8 S[M(�)],M(T )·ε, which can be derived by using the
first two rules to structurally traverse S[M(T )] until reaching the trace M(T ),
then using the third rule to extract the trace M(T ). Moreover, the premise of
the third rule allows further decomposing the trace T into sub-slices S.

The global distance S1 �� S2 = d between two slices S1 and S2 is obtained
by decomposing each slice into the same number of sub-slices (e.g., the Mi(Ssi)
above), matching sub-slices from each set (the notation i ∼ j is a bijective pairing
of indices), and adding up the local distance between each pair of sub-slices:

S1 & S′
1i S2 & S′

2j i ∼ j S′
1i � S′

2j = dij d =
∑
i∼j

dij

S1 �� S2 = d

Local distance is formally captured by the search distance S1 � S2 = d and
synchronization distance S1 9 S2 = d judgements:

ε� ε = 〈0, 0〉

search/l/L
S1 � S2 = d

L·S1 � S2 = 〈1, 0〉 + d ε� ε = 〈0, 0〉

synch/l
S1 � S2 = d

L·S1 � L·S2 = d

search/m/L
S1·S′

1 � S2 = d

M(S1)·S′
1 � S2 = 〈1, 0〉+ d

search/none/L
S′
1 � S2 = d

M(�)·S′
1 � S2 = 〈1, 0〉+ d

synch/m
S1 � S2 = d S′

1 � S′
2 = d′

M(S1)·S′
1 �M(S2)·S′

2 = d+ d′

search/synch
M1 ≈ M2 S1 � S2 = d S′

1 � S′
2 = d′

M1(S1)·S′
1 �M2(S2)·S′

2 = 〈1, 1〉+ d+ d′

synch/search
S1 � S2 = d

S1 � S2 = d

The search mode can switch to synchronization if it encounters similar program
fragments (as identified by memoizing application actions), and the synchroniza-
tion mode must switch to search mode if the trace actions differ at some point.
Intuitively, the trace distance measures the symmetric difference between two
traces (i.e., the size of trace segments that don’t occur in both traces). Con-
cretely, we quantify distance d = 〈c1, c2〉 between traces S1 and S2 as a pair
of costs, where c1 is the amount of work in S1 that isn’t shared with S2 and
c2 is the amount of work in S2 that isn’t shared with S1. We let d + d′ denote
pointwise addition for distance.

The search distance S1 � S2 = d accounts for traces that don’t match, but
switches to synchronization mode if it can align memoization actions. The search
distance between empty traces is zero. Skipping an action in search mode incurs
a cost of 1 in addition to the distance between the tail of the trace (search/*/L
rules, the right rules are omitted). Upon simultaneously encountering similar
memoizing actions M1(S1)·S′

1 and M2(S2)·S′
2 (search/synch rule), the search

distance can switch to synchronizing the bodies S1 and S2, while separately
searching for further synchronization of the tails S′

1 and S′
2. Two memoizing

actions are similar M1 ≈ M2 if they are both applications of the same function
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and argument (Mi = appvf$vx⇓vi); note that the return values need not coincide.
The cost of the synchronization and search are added to the cost of 1 for the
memoization match in each trace.

Turning to the synchronization distance, the S19S2 = d judgement attempts
to structurally match the two traces. Identical work in both traces incurs no
cost, but synchronization returns to search mode either nondeterministically or
when work cannot be reused because traces don’t match. Synchronization mode
is only meant to be used on traces generated by the evaluation of the same
expression under (possibly) different stores.

The synchronization distance between empty traces is zero. Encountering
identical local actions allows distance to remain in synchronization mode without
cost (synch/l rule). Synchronizing memoizing actions (synch/m rule) requires
the actions to be identical; this allows the bodies as well as the tails to be synchro-
nized separately and their distance compounded. Note that even if the bodies
don’t match completely and return to search mode, memoizing actions provide a
degree of isolation because tails can be matched independently. Synchronization
falls back to search mode (synch/search rule) nondeterministically or neces-
sarily when the actions differ (e.g., because actions don’t match).

The definition of Src trace distance is a relation because of nondeterminism in
how global distance slices the traces and when local distance alternates between
search and synchronization mode. While it is desirable to minimize the distance
between runs (and thus the update time), the dynamic semantics of Tgt has
nondeterministic allocation and memoization in order to avoid committing to
an implementation. We show that any distance derivable for Src programs is
preserved in Tgt (Corollary 1).

Example. Returning to the map example (Section 2), if � contains h::t, the trace
slice of map(�) has the form: appmap$�⇓�

′
(get�→h::t·appf$h⇓h′

(T f(h))·�·puth′::t′↑�′)
where the trace T f(h) of f(h) is assumed to have O(1) size, and � is a hole for the
recursive call map(t) = t′; we abbreviate such a slice as mh::t(�). Thus the traces for
the two runs from the example are, (abusing notation by confusing a location with
its contents): m1..n::k(mk::nil(mnil)) and mk::1(m1..n::nil(mnil)), where m1..n::h(�)
abbreviates m1::2(· · · mn::h(�) · · · ).

Under monotonic reuse, change-propagation can only do as well as the local
trace distance. We assume trace distance has a bias towards synchronizing the
right-hand trace (which corresponds to greedy reuse). This derivation shows
that trace distance is O(n), with the relevant portions underlined with the same
notation as in Section 2:

m
nil ' m

nil = 〈0, 0〉 synch

m
nil � m

nil = 〈O(1), O(1)〉 search/synch

m
nil � m

1..n::nil
. . . . . . . . (m

nil) = 〈O(1), O(n)〉 search/*/R

m
nil ' m

1..n::nil(mnil) = 〈O(1), O(n)〉 synch/search

m
k::nil(mnil)' m

k::1(m1..n::nil(mnil)) = 〈O(1), O(n)〉 synch

m
k::nil(mnil)� m

k::1(m1..n::nil(mnil)) = 〈O(1), O(n)〉 search/synch

m
1..n::k
. . . . . . . (m

k::nil(mnil))� m
k::1(m1..n::nil(mnil)) = 〈O(n), O(n)〉 search/*/L
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Read bottom up: (1) search discards m1..n::k with O(n) cost on the left; (2)
mk::nil and mk::1 match with O(1) cost, the synchronization is partial because
the tails differ; (3) search discards m1..n::nil with O(n) cost on the right; (4)
and finally mnil synchronizes with O(1) cost. Note that the memoizing action

for the application map$k appears at the head of both mk::m
nil

and mk::1, which
enables switching from search to synchronization mode (cf. rule memo/match
in the evaluation semantics of Tgt, Subsection 4.1). On the other hand, the local
action that fetches k from the store finds differing tails (mnil and 1), which re-
quire switching back to search mode (cf. rule change in the change-propagation
semantics of Tgt, Subsection 4.1).

Under non-monotonic reuse, change-propagation can do as well as the global
trace distance. This derivation decomposes each run into separate trace slices
for 1..n, k, and nil. Since the slices are nearly identical, their distance is O(1)
to account for the initial synchronization and the return to search mode for the
differing tails. Adding the local distances yields a global distance of O(1).

m
1..n::k(mk::nil(mnil)) & m

1..n::k(�), mk::nil(�), mnil

m
k::1(m1..n::nil(mnil)) & m

k::1(�), m1..n::nil(�), mnil

m
nil � m

nil = 〈O(1), O(1)〉
m
1..n::k(�)� m

1..n::nil(�) = 〈O(1), O(1)〉
m
k::nil(�)� m

k::1(�) = 〈O(1), O(1)〉
m
1..n::k(mk::nil(mnil))��

m
k::1(m1..n::nil(mnil)) = 〈O(1), O(1)〉

4 The Tgt Language

The Tgt language is a call-by-value λ-calculus that enforces a continuation-
passing style (CPS) discipline to help identify opportunities for reuse and com-
putations for re-execution. The language includes modifiable references to track
data dependencies and a memoization primitive to identify opportunities for
computation reuse across runs.2 The language is self-adjusting: its semantics
includes evaluation to reduce expressions to values, and change-propagation to
adapt computations to input changes. To support non-monotonic computation
reuse, the dynamic semantics receives a trace of a previous run that can be
sliced into subcomputations for reuse with reordering. Section 5 shows how Src
programs are CPS-compiled into equivalent self-adjusting Tgt programs.

The following grammar gives the syntax of types τ , expressions e, values v,
and adaptive commands κ.
τ ::= res | nat | τx → τ | τ mod e ::= v | caseN vn ez (x .es) | ef vx
v ::= x | zero | succ v | fun f .x .e | 	 | κ κ ::= halt v | memo e | put v vk | get vl vk

Reference commands have an explicit continuation vk identifying the computa-
tion that follows the command. The CPS discipline restricts a function applica-
tion ef vx to have a value argument. Modifiables τ mod are mutable references

2 Memoization in self-adjusting computation reuses computation between runs,
whereas classical memoization [15] reuses results within a single run.



486 R. Ley-Wild, U.A. Acar, and G. Blelloch

with commands put and get for allocation and dereference. The type res is an
opaque answer type, while halt is a continuation that injects a final value into
the res type. The dynamic semantics identifies opportunities for computation
reuse at memo commands, which enable replaying the trace of a previous run.

4.1 Static, Dynamic, and Cost Semantics

The typing judgement Σ;Γ % e : τascribes the type τ to the expression e in the
store and variable typing contexts Σ and Γ . For brevity, we only give the types
of the adaptive commands:

halt : τ → res memo : res → res

put : τ → (τ mod → res) → res get : τ mod → (τ → res) → res

The following rules give the dynamic and cost semantics of evaluation S;σ; e ⇓E

T ′;σ′; v′; d′(left) and change-propagation S;S;σ � T ′;σ′; v′; d′(right).

e ⇓ κ S; σ; κ ⇓K T
′
; σ

′
; v

′
; d

′

S; σ; e ⇓E T
′
; σ

′
; v

′
; d

′
S� = κ S, S; σ; κ ⇓K T

′
; σ

′
; v

′
; d

′

S;S;σ � T
′
; σ

′
; v

′
; d

′ change

|S| = c

S;σ; halt v ⇓K halt
v
; σ; v; 〈c, 1〉

|S| = c

S; halt
v
; σ � halt

v
; σ; v; 〈c, 0〉

memo/miss
S; σ; e ⇓E T

′
; σ

′
; v

′
; d

′

S; σ;memo e ⇓K memo
e·T ′

; σ
′
; v

′
; 〈0, 1〉 + d

′
S;S;σ � T

′
; σ

′
; v

′
; d

′

S; memo
e·S;σ � memo

e·T ′
; σ

′
; v

′
; d

′

memo/hit
S; e

m
� S

′
;Se S

′
;Se; σ � T

′
; σ

′
; v

′
; d

′

S; σ;memo e ⇓K memo
e·T ′

; σ
′
; v

′
; 〈1, 1〉 + d

′

� /∈ dom σ σl = σ[� �→ v]

S; σl; vk � ⇓E T
′
; σ

′
; v

′
; d

′

S; σ;put v vk ⇓K put
v↑�
vk

·T ′
; σ

′
; v

′
; 〈0, 1〉 + d

′

� /∈ dom σ σl = σ[� �→ v]

S;S; σl � T
′
; σ

′
; v

′
; d

′

S; put
v↑�
vk

·S;σ � put
v↑�
vk

·T ′
; σ

′
; v

′
; d

′

� ∈ dom σ σ(�) = v

S; σ; vk v ⇓E T
′
; σ

′
; v

′
; d

′

S; σ; get � vk ⇓K get
�→v
vk

·T ′
; σ

′
; v

′
; 〈0, 1〉 + d

′

� ∈ dom σ σ(�) = v

S;S;σ � T
′
; σ

′
; v

′
; d

′

S; get
�→v
vk

·S;σ � get
�→v
vk

·T ′
; σ

′
; v

′
; d

′

The large-step evaluation relation S;σ; e ⇓E T ′;σ′; v′; d′ (resp. S;σ;κ ⇓K

T ′;σ′; v′; d′) reduces the expression e (resp. the adaptive command κ) under
the store σ, yielding the value v′ and the updated store σ′. Evaluation also takes
a list of trace slices S from a previous run which are available for reuse, and
produces an execution trace T ′ of the current run and a pair of costs d′ = 〈c, c′〉
for work c discarded from the reuse trace slices and new work c′ performed for
the current run. The auxiliary evaluation relation e ⇓ v′ reduces an expression
e to a value v′ by the standard (and thus, elided) function and case-analysis
β-reductions; such evaluation is pure and independent of the store.

A Tgt trace T is a sequence of reference and memo actions A, ending in a halt
action. A trace slice S is a trace segment, possibly ending in a holee marker
that indicates the rest of the trace (corresponding to the run of e) was stolen for
out-of-order reuse. Note that a trace is also a trace slice without holes. S and U
range over lists and non-empty lists of trace slices; concatenation extends to the
first slice: A·(S, S) = (A·S, S).
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As ::= putv↑�vk
| get�→v

vk
A ::= As | memoe T ::= haltv | A·T

H ::= haltv | holee S ::= H | A·S S ::= • | S, S U ::= S, S

The halt v command yields a computation’s final value, with a cost of 1 for the
current run and a cost c = |S| summing the work discarded from the reuse trace
slices S, where the cost of a trace slice is the number of actions (except holes,
which don’t represent previous work) in the trace:

|holee| = 0 |haltv| = 1 |A·S| = 1 + |S|
An adaptive reference command uses the store (put and get rules) and passes
the result to the continuation; the trace is extended with the corresponding
action labeled by the location, value, and continuation, and incurs a cost of 1
for the current run. Note that it is acceptable (and, indeed, often desirable) for
the location � chosen by put to appear in the reuse trace slices because it can
enable subsequent memo-matching on work from the previous run involving � .

A memoized expression memo e in Tgt has no special behavior when eval-
uated from scratch (memo/miss rule): it evaluates the body e and extends
the trace with a memo action memoe, incurring a cost of 1 for the current run.
The memo/hit rule exploits the reuse trace from the previous evaluation and
switches to change-propagation if the same expression was memoized and eval-
uated in the previous run.

The memoization judgement S; e
m
� S′

1;S
′
e splits the reuse trace S into a

suffix trace slice S′
e that corresponds to a (partial) previous run of e (under a

(possibly) different store), and a prefix trace S′
1 of the work preceding S′

e with
an explicit holee end marker to indicate the stolen tail.

S; e
m
� S′;S′

e

A·S; e m
� A·S′;S′

e

hit

memo
e·Se; e

m
� hole

e;Se

S; e
m
� S

′
;S′

e

S, S; e
m
� S, S

′
;S′

e

S; e
m
� S′;S′

e

S, S; e
m
� S′, S;S′

e

Under monotonic memoization the prefix S′
1 would be discarded incurring a

cost of |S′
1|, but under non-monotonicity it remains available for later reuse.

Memoization extends to trace lists S; e
m
� S

′
;S′

e by memo-matching with one
trace from the list.

The change-propagation relation S;S;σ � T ′;σ′; v′; d′ replays the partial ex-
ecution trace S under the store σ, yielding the value v′ and the updated store
σ′, with an updated execution trace T ′ and a pair of costs d′ = 〈c, c′〉 for work c
discarded from S, S (viz. the . . . . . . . . . . .dotted/red work from the previous run’s trace) and
new work c′ performed for T ′ (viz. the . . . . . . . . . . . .dotted/red and dashed/orange work for

the new run’s trace); the additional reuse traces S are other computations from
the previous run that may be reused if change-propagation returns to evaluation.
Any work that can be replayed from the previous run is free (viz. the solid/green
work common to both traces). A halt action can be replayed to obtain the (un-
changed) final value, incurring the cost of discarding the additional reuse traces.
An adaptive action can be replayed without cost if the action is consistent with
the current store, the tail of the trace can be recursively change-propagated and
then extended with the same action. However, if a reference action is inconsistent
with the store (e.g., a specific location can’t be allocated or a dereference fetches
a different value), then change-propagation must switch back to evaluation. A
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trace slice S can be reified back into an adaptive command κ = :S;, the tail
trace slice S′ (if any) can be ignored because adaptive actions capture the rest
of the computation in the continuation:

�haltv� = halt v �holee� = memo e �memoe·S′� = memo e
�putv↑�vk

·S′� = put v vk �get�→v
vk

·S′� = get 	 vk

Thus, change-propagation can reify an inconsistent trace slice S and re-evaluate
the command, while keeping the trace S for possible reuse later (change rule).
Note that the reified put (resp. get) forgets the (stale) location (resp. value).
The change rule does not, however, require the action to be inconsistent; this
nondeterminism intentionally avoids committing to particular allocation and
memoization policies.

4.2 Consistency of Change-Propagation

Suppose we have a Tgt program e such that Σ; · % e : res and an initial store σ1
of type Σ �Σ1. We can evaluate e under the store σ1 and no reuse traces, yield-
ing the initial result v′1 and a trace T ′

1: •;σ1; e ⇓E σ′
1; v

′
1;T

′
1; d

′
1. After this initial

evaluation, we can consider another store σ2 of type Σ�Σ2 and update the out-
put of the evaluation with respect to this store by applying change-propagation
to T ′

1 under the store σ2: •;T ′
1;σ2 � T ′

2;σ
′
2; v

′
2; d

′
2. The consistency of change-

propagation asserts that the result and trace obtained by change-propagation are
identical to those obtained by from-scratch evaluation (i.e., without any reuse
traces). In the presence of non-monotonic memoization the reuse trace may be
sliced, so consistency must be generalized to deal with trace slices and employs
the auxiliary judgements S wfwrt e to mean S results from slicing a from-scratch
execution of e (•; ; e ⇓E T ′; ; ; and T ′; e m

� S;S′
e), and S wf to mean S wfwrt e

for some e. Consistency is a corollary of the following theorem by instantiating
S as the empty list and S′

1 as T ′
1.

Theorem 1 (Consistency of Change-Propagation). If S wf, S′
1 wfwrt e,

and S;S′
1;σ2 � T ′

2;σ
′
2; v

′
2; , then •;σ2; e ⇓E T ′

2;σ
′
2; v

′
2; .

If S wf and S;σ2; e ⇓E T ′
2;σ

′
2; v

′
2; , then •;σ2; e ⇓E T ′

2;σ
′
2; v

′
2; .

4.3 Trace Distance

In this section, we introduce a notion of trace distance and show that the cost of
change-propagation may be bounded by the distance between the input and the
result traces. The definition of distance is similar to Src, in Section 5 we show
that they are asymptotically the same.

The S 8 U ′ judgement splits a Tgt trace slice S into a non-empty list of slices
U ′ by (non-deterministically) replacing memo actions with holes.

H & H ; •
S & S′;S

′

A·S & A·S′;S
′

S & S′;S
′

memo
e·S & hole

e; memoe·S′, S
′
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The judgement extends to decomposing lists of slices U 8 U ′ by appending
the decomposition of each slice in the list. The judgement U

π
� U ′ means U ′ is

a permutation of U .
The global (search) distance U1��U2 = d of two slice lists U1 and U2 results

from slicing and permuting each list, and taking their local search distance.

U1 & U ′
1 U ′

1
π
� U ′′

1 U2 & U ′
2 U ′

2
π
� U ′′

2 U ′′
1 � U ′′

2 = d

U1 �� U2 = d

Since global distance accounts for computation reordering, the local search dis-
tance U1 �U2 = d accounts for differences between traces in order until it finds
matching memoization actions, then it can use the local synchronization distance
U19U2 = d to account for reuse between traces until they differ, at which point
it must return to search distance. The distance d = 〈c1, c2〉 quantifies the cost c1
of work in U1 that isn’t shared with U2 and the cost c2 of work in U2 that isn’t
shared with U1. Analogous to the dynamic semantics of Tgt, search distance
accounts for discarding old work on the left and performing new work on the
right, while synchronization distance reuses work between runs.

|H1| = c1 |H2| = c2

H1; •�H2; • = 〈c1, c2〉

h/L
|H1| = c1 S1;S1 � U2 = d

H1;S1, S1 � U2 = 〈c1, 0〉+ d haltv; • � haltv; • = 〈0, 0〉
S1;S1 � U2 = d

A·S1;S1 � U2 = 〈1, 0〉 + d
a/L

S1;S1 � S2;S2 = d

A·S1;S1 � A·S2;S2 = d

S1;S1 � S2;S2 = d

memoe·S1;S1 � memoe·S2;S2 = 〈1, 1〉 + d
memo/hit

U1 � U2 = d

U1 � U2 = d

The search distance between halt or hole actions is the length of each action.
Skipping an action incurs a cost of the length of the action for the corresponding
trace and forces distance to remain in search mode (*/L rules, the right rules
are omitted). Two identical memo actions incur a cost of 1 each and enable
switching from search to synchronization mode.

Synchronization distance, as in Src, is only meant to be used on traces gener-
ated by the evaluation of the same expression under (possibly) different stores
(though synchronization distance exists between any two traces). The synchro-
nization distance between halt actions is 〈0, 0〉, and assumes both actions return
the same value. Identical adaptive actions match without cost and allow distance
to continue synchronizing the tail. Synchronization may return to search mode,
either nondeterministically or because adaptive actions don’t match.

The following shows that the distance between a program’s trace T and some
traces S coincides with the cost of evaluating the program with reuse traces S.

Theorem 2 (Dynamic Semantics Coincides with Distance). If S wf, and
•;σ; e ⇓E T ′;σ′; v′; , then S �� T ′ = d iff S;σ; e ⇓E T ′;σ′; v′; d.

The following result shows that for pure computations with unique function
calls, greedy non-monotonic reuse is optimal in the sense that it achieves minimal
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trace distance. The uniqueness condition means that an application ef$ex with
a given function ef and argument ex occurs at most once during the execution.
This assumption is necessary because in the presence of duplicate calls and
nondeterministic allocation, greedily stealing a computation may unnecessarily
cause computation to become inconsistent. The purity assumption is necessary
because effects can introduce dependencies between computations that incur an
additional cost to reorder (see Section 6).

Theorem 3 (Optimality of Greediness). Given two pure computations with
unique function calls, greedy memo-matching is an optimal memoization policy
that change-propagates with asymptotically minimal distance.

Proof. By the uniqueness assumption, greedy memo-matching achieves maximal
reuse of the computation, whence the Tgt-level distance is minimized and in turn
the Src-level distance is minimized, up to a constant factor.

5 Translation

In this section, we describe a semantics- and trace distance-preserving translation
from Src to Tgt

To translate from Src to Tgt, we use an adaptive continuation-passing style
transformation. The explicit continuation helps identify the scope of inconsistent
store actions that need to be re-executed as well as identical memoized compu-
tations that can be reused. That translation was previously used for monotonic
self-adjusting computation with traces and local trace distance [12]; we exploit
its robustness to extend it to the non-monotonic setting by generalizing to trace
slices and global trace distance.

Program Translation. To establish the semantic connection, we define transla-
tion for types �τ src� = τ tgt, expressions �esrc� vtgtk = etgt with an explicit Tgt-level
continuation vtgtk , values �vsrc� = vtgt. The translation is a standard CPS conver-
sion except that store primitives are translated into Tgt store commands with
an explicit continuation vk, and the function translation threads the continua-
tion through the store and uses explicit memo operations before and after the
function body to isolate the function call from the rest of the computation.

The correctness and efficiency of the translation is captured by the fact that
well-typed Src programs are compiled into (statically and dynamically) equiv-
alent well-typed Tgt programs with the same asymptotic complexity for initial
runs (i.e., Tgt evaluation with an empty reuse trace), which are straightforward
adaptations of the proofs for the monotonic variant of Tgt.

Theorem 4 (Static and Dynamic Preservation). If Σ;Γ % e : τ , and�Σ� ; �Γ � , Γ ′ % vk : �τ� → res, then �Σ� ; �Γ � , Γ ′ % �e� vk : res.
If σ0; e0 ⇓ T ;σ1; v1; c0, and •; �σ1��σk; vk �v1� ⇓E Tk;σ2; v2; 〈 , c1〉, then •; �σ0��
σk; �e0� vk ⇓E T ′;σ2 � σe; v2; 〈 , Θ(c0 + c1)〉.
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Trace Translation. To establish the trace distance connection, we define a trace
translation �Ssrc� vtgtk U tgt

k = U tgt of a Src trace slice Ssrc using vtgtk as an initial
continuation and suffix slice list U tgt

k to produce a Tgt slice list U tgt corresponding
to the original computation (with explicit holes). The proof of global trace dis-
tance preservation requires establishing the preservation of local trace distance,
which in turn requires auxiliary translations for a trace slice Ssrc extracted from
a larger computation and for non-empty Src slice list U src.

Corollary 1 (Src/Tgt Distance Soundness). If S imp
1 �� S imp

2 = 〈 , c〉, then
S imp
1

�
id1 U

tgt
id1��


S imp
2

�
id2 U

tgt
id2 = 〈 , Θ(c)〉, where U tgt

idi is the identity trace.

Note that since Src and Tgt distance are quasi-symmetric, analogous results hold
of the left component of distance. This means that change-propagation has the
same asymptotic time-complexity as trace distance.

6 The Change Propagation Algorithm

Here we describe a concrete algorithm and associated data structures for effi-
ciently supporting the reordering of the trace. This goes into a level more detail
than the target semantics in Section 4 allowing an analysis of running time. We
use CPA to refer to the change propagation algorithm in contrast to the ab-
stract change propagation mechanism of Section 4. We use TDS to refer to the
concrete data structure used for traces generated during the run of the program
and updated by the CPA.

The main idea of the CPA is to traverse the trace in execution order while
identifying the parts of the trace that need to be rerun (the ⇓E and ⇓K rela-
tions in Subsection 4.1) and the parts that can be reused (the � relation in
Subsection 4.1). In particular it is important to skip over the part that can be
reused without incurring any cost. An important aspect is therefore to identify
after a memo hit the next place in the trace that does not match the previous
trace—i.e., the next inconsistency. Once this is identified the CPA also needs
to splice the part between the match and the inconsistency out of the previous
TDS and append it to the current TDS.

The TDS is based on a totally ordered timeline with a timestamp for each
action in the trace—i.e., all memo and reference actions. This timeline therefore
has a one-to-one correspondence to the trace in the target semantics. The TDS
also maintains for each modifiable reference the timestamps for all actions on
the reference, and for each get action it keeps the continuation that needs to
be rerun if the value of the reference is changed. To support reordering this
timeline needs to allow extraction and insertion of chunks of trace. As discussed
below, this can be implemented reasonably efficiently. Finally the TDS needs
to maintain a memo table mapping all memoized function calls and associated
arguments to the timestamp at which the call is made. Here we assume that if
there are multiple identical calls, only one is stored.
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Algorithm CPA (S, T , Q, ts)
��� ti = find the next element in Q greater than ts
�� �� ti is the end ���� T ++ S[ts,end]

���� ��� Tr = S[ts,ti)
S’ = S − Tr

(tm, Q′, Tn) = run continuation of ti until memo match in S’
tm is the timestamp of the memo match
Q′ is Q extended such that every put(	) during

the run adds all associated get(	)s to the queue
Tn is the new trace

T ’ = T ++ Tr ++ Tn

�� �� tm is the end ���� T ’
���� CPA (S’, T ’, Q′, tm)

Fig. 1. The non-monotonic change propagation algorithm

Figure 1 describes the non-monotonic CPA. The algorithm starts with an
input trace S (i.e., the list of trace slices S in the Tgt semantics, but the sepa-
ration into pieces is implicit) and generates an output trace T for the updated
run. The algorithm maintains a queue Q of the timestamps of inconsistent reads
(get actions for which the value of the corresponding reference has changed),
ordered by time. The queue is initialized to include all the get actions on any
input references that have changed. The time ts represents a finger (position) in
S which is the start of a piece of trace that is being reused. Initially, ts is at the
start of S; at each step (recursive call), the algorithm finds the next inconsistent
read past ts. If there is none, then there are no more inconsistencies and the
algorithm is done by appending the trace in S past the finger onto the end of
T . If the next inconsistent read is at time ti, CPA extracts the part of the trace
between ts (inclusive) and ti (exclusive) because it hasn’t changed since the last
run and can be reused by simply appending it to the output trace (skipping the
� replay transitions). This chunk is also removed from the input trace since we
don’t want to use the same part of the input trace more than once.

Since the read at ti is inconsistent (reads a different value from before) the
algorithm needs to rerun the continuation for that read. While the continuation
runs it looks for a memo match in S and stops when it finds one. This match
could be anywhere in S, and in particular out of order with respect to matches
found in previous steps. While running, whenever a change is made to a reference
that existed in the previous run (a write with a new value), the timestamps for
all the reads associated with that reference are added to Q′. Thus when the
rerun is completed, all inconsistent reads caused by the run are properly marked
in Q′ and all memoized function calls are placed in the memo table for future
reference. The rerun returns the timestamp tm of the memo match, as well as
the modified queue Q′ and the new trace segment Tn for the computation that
has just run. Now CPA can extend the original output trace T with the reusable
trace Tr and the new trace Tn. Thus on every step (except perhaps the last),
the algorithm adds one reused chunk of trace and one new chunk of trace to the
output trace. Only the new chunks require work.
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This algorithm implements the change propagation scheme described in Sec-
tion 4 and is therefore correct as long as it properly identifies the change rule
from the Tgt dynamic semantics—i.e., it properly identifies the next difference
in the trace. This identification is correct since the only way a get of a pure ref-
erence from the source language can become inconsistent (read a different value)
is if the original put has changed. These reference updates are all included in Q.
The important property is that any reordering among the reads does not affect
the values read since the write happens before all reads. Also the order of a read
and write cannot swap since that would be an invalid program and would not be
generated by any trace. This is not true for imperative source references, where
there can be interleaving between writes and reads and a reordering of traces
can swap the ordering of a read and write.

Now let’s consider the running time of CPA. Certainly all new computation
needs to be run but this is accounted for in the trace distance. The other costs
of the algorithm include the time for extracting and appending chunks of the
trace, the cost for the queue operations, and the cost for memo lookup and
associated insertion into the memo table. We use Tsplice(n) to indicate the time to
append or extract a chunk of trace for a trace of size n. Using balanced trees this
can easily be implemented in O(log n) time, and with some work comparisons
between timestamps in the trace can be made to work in O(1) time. We use
Tqueue(n) to indicate the time to insert or delete in the queue of size n. This
is easy to implement in O(log n) time per operation as long as the comparison
of time stamps is O(1) time. We assume the memo lookup uses standard hash
tables and therefore takes constant expected time per operation (either lookup
or insertion). Consider a computation in which the total new computation is c,
the total number of recursive calls of the CPA is l, the total trace distance just
counting reads is r, and the maximum of the sizes of the input and output traces
is n. The running time is then O(c+ lTsplice(n)+ (r+ l)Tqueue(n)). Relating this
to the trace distance measured by the semantics, change propagation for two
traces S1 and S2 such that S1 9� S2 = 〈c1, c2〉 will run in time O((c1 + c2)(1 +
Tsplice(n) + Tqueue(n))) = O((c1 + c2) log n).

Example. The Tgt trace of map has the form (abbreviations given below):

callmap$�⇓�
′︸ ︷︷ ︸·get�→h::t︸ ︷︷ ︸·callf$h⇓h′ ·T f(h)·retf$h⇑h′︸ ︷︷ ︸· �︸︷︷︸·puth′::t′↑�′︸ ︷︷ ︸·retmap$�⇑�′︸ ︷︷ ︸

h� · g · Fh · � · p · h�

where T f(h) is the body of f(h) and � is a hole for the recursive call map(t) = t′.3

The trace segments callg$x⇓a and retg$x⇑a represent the memoized function call
and return that result from translating a Src trace appg$x⇓a( ); they (1) enable
reusing the subsequent trace up to the next inconsistent action and (2) identify
an inconsistency (i.e., need to re-execute at the return) if the function is being
reused in a different calling context (i.e., returning to a different continuation).

3 For brevity, we omit the Tgt continuations on actions (e.g., a call has a continuation
argument, a return passes the result to the continuation).
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Next, we consider the CPA updating map. The table below shows the iterations
of CPA with the reuse trace S and the trace T of the new run as it is built.

iteration first run (S) second run (T )

1
1�gF 1 · · · n�g

.
Fnk�g

.
F knil� gp

nil� p
k�.p

n� · · · p1� k�g
.

2
1�gF 1 · · · n�g

.
Fn F knil� gp

nil� p
k�.p

n� · · · p1� F k

3
1�gF 1 · · · n�g

.
Fn nil� gp

nil� p
k�.p

n� · · · p1�.
1�gF 1 · · · n�g

.

4 Fn nil� gp
nil� p

k�.p
n� · · · p1�. Fn

5
nil� gp

nil�. . p
k�.p

n� · · · p1�.
nil� gp

nil� p
. . . .

6 p
k�.p

n� · · · p1�.
n� · · · p1�pk�

. . .

The queue Q consists of inconsistent reads (e.g., g) due to input changes and

inconsistent returns (e.g.,
n� and the return at the end of Fn) because the calling

context (i.e., caller) has changed. We use . . . . . . . . . . .dotted/red in S for inconsistent actions
and in T for new work (viz. Tn), dashed/orange in S for a partially inconsistent
trace and in T for partially reused work (viz. Tr ++ Tn), and solid/green in S
and T for the reused trace (viz. Tr).

The initial map on [1, . . . , n, k] produces the first trace S. Moving k to the front
changes the input to [k, 1, . . . , n], and Q is initialized with the now-inconsistent

get actions for k and n. In the first CPA iteration,
k� is reused and the following g

is re-run because it’s inconsistent and immediately followed by a memo-match in

F k; in S, the return
k� is marked inconsistent because of the new caller (originally

called from
n�, but now from the top-level) and the consumed trace segments are

removed (indicated by blanks in the next iteration). In the second iteration,
F k = callf$h⇓h

′ ·T f(h)·retf$h⇑h′
. . . . . . . . . . reuses the call and body, but re-runs the tail

because of the different tail computation (map$[1, . . .] instead of map$nil). The
third and fourth iterations likewise reuse the map and f calls for 1..n and mark
1� inconsistent because of the different caller. The fifth iteration reuses the call
and body for nil, but has to re-execute the return

nil� and p of n because of the
new caller. Finally, in the sixth iteration, the map returns of n..2 are reused, and

the returns
1� and

k� are re-run because they have new callers. The reuse trace S

is left over with unused remnants p
k�. and

1�. which must be discarded.

7 Related Work

Self-adjusting computation has been realized through several formal languages
and implementations. The first was a pure higher-order language with a modal
type system that was implemented both as a Standard ML library with a monad
and explicit destination-passing [2] and a Haskell library using several monads
to enforce the modal constraints [6]. Subsequent proposals included a direct-style



Non-monotonic Self-Adjusting Computation 495

higher-order language compiled into a continuation-passing style (CPS) higher-
order language implemented in the MLton Standard ML compiler [13], and a
low-level imperative language implemented as a compiler for C [10]. All of these
designs focus on strict languages with call-by-value (CBV) functions that eagerly
evaluate function arguments4 and none of them supported efficient reordering.
Approaches based on pure memoization (function caching) alone [16,14] allow
for incrementality with reordering; since they lack the fine-grained dependence
tracking of modifiable references, they can only provide coarse-grained reuse and
are inefficient for deeply-nested changes (e.g., changing the last element of a list).
Previous work introduced a cost semantics for self-adjusting computation with
updatable references and monotonic reuse, and showed analogous correctness
properties of change-propagation and compilation [12].

8 Conclusion and Future Work

Self-adjusting computation (SAC) combines dynamic dependence tracking and
memoization to effectively update a computation in response to input changes.
However, since previous approaches are based on updating a timeline of the
computation in monotonic (i.e., time-increasing) order and a greedy approach to
memo matching, they perform inefficiently when subcomputations are reordered.

We generalize SAC with non-monotonic reuse to support input changes that
affect the order of subcomputations. We give a high-level source language for
expressing pure self-adjusting programs equipped with a notion of trace dis-
tance to quantify the dissimilarity of computations under an input change. We
give a semantics- and trace distance-preserving translation to a low-level target
language and show that trace distance coincides asymptotically with change-
propagation (i.e., update). We also provide and analyze a new algorithm that
realizes the semantics of change-propagation with reordering, which incurs a log-
arithmic overhead. In future work, we will evaluate the algorithm and extend
non-monotonicity to other programming paradigms (e.g., updatable references
and laziness).
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Abstract. We present a machine-checked formalisation of the Java
memory model and connect it to an operational semantics for Java source
code and bytecode. This provides the link between sequential semantics
and the memory model that has been missing in the literature. Our
model extends previous formalisations by dynamic memory allocation,
thread spawns and joins, infinite executions, the wait-notify mechanism
and thread interruption. We prove the Java data race freedom guarantee
for the complete formalisation in a modular way. This work makes the
assumptions about the sequential semantics explicit and shows how to
discharge them.

1 Introduction

A memory model (MM) specifies how shared memory behaves under concurrent
programs. The most intuitive one is sequential consistency (SC) [15], which as-
sumes interleaving semantics, i.e., threads execute one at a time and all threads
immediately see all writes of all other threads. For efficiency reasons, modern
hardware implements only MMs weaker than sequential consistency to allow for
local caches and optimisations [1]. Similarly, many compiler optimisations that
are correct for sequential code lead to unexpected results in concurrent code.
Consider, e.g., the two threads in Fig. 1 that share locations x and y. Under se-
quential consistency, the result r1 == 2, r2 == 1 is impossible. However, if the
compiler or the hardware reorders the independent statements in each thread —
not being aware of the other thread — this outcome is in fact possible. Weak
MMs relax interleaving semantics such that such optimisations become correct.

For the typical programmer, weak MMs like the Java Memory Model (JMM)
[10,21] nevertheless provide intuitive SC semantics for an important class of pro-
grams – a property known as the data-race freedom (DRF) guarantee [2]: Two ac-
cesses to the same (non-volatile) location conflict if they originate from different
threads and at least one is a write. A data race occurs if two conflicting accesses
may happen concurrently, i.e., without synchronisation in between. Then, if no
SC execution contains data races, the JMM promises that the program behaves
like under SC semantics. In other words: If a programmer protects all accesses to
shared data via locks or declares the locations volatile or in another way makes

� This work was partially funded by DFG grants Sn11/10-1,2.

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 497–517, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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initially: x = y = 0;

1: r1 = x;
2: y = 1;

3: r2 = y;
4: x = 2;

1: (t1, R x 2)

2: (t1, W y 1)

3: (t2, R y 1)

4: (t2, W x 2)

Fig. 1. Example program with data races from [21] (left) and (part of) its JMM exe-
cution for the result r1 == 2, r2 == 1 (right)

sure there are no data races, she can forget about the MM and assume interleav-
ing semantics. In the above example, the read of x in l. 1 races with the write
in l. 4 (and similarly l. 3 and l. 2 for y), i.e., the DRF guarantee does not apply.

In practice, the DRF guarantee is the most relevant part of the JMM. For
type safety and security promises, the JMM also gives semantics to programs
with data races, which is the main cause for its complexity. While the DRF
guarantee is stated concisely and formally, only test cases [23] underpin these
promises about type safety and security, and it is unclear whether the JMM
actually provides the latter. Moreover, the JMM inadvertently and unnecessar-
ily disallows certain program transformations that Java virtual machines (JVM)
and the hardware regularly perform [9,26,29].1 Hence, it fails to provide enough
flexibility to compiler writers and implementors. Therefore, it is even more im-
portant that at least the DRF guarantee holds.

Given the technical complexity of the JMM and Java, it is crucial that all
claims are mechanically checked – as a series of false claims about the JMM and
their subsequent disproof demonstrates [21,9,26,29]. Moreover, such a JMM for-
malisation needs to be linked with a sequential semantics for Java, which several
authors [4,9,11] have criticised as missing. Since the proof of the DRF guarantee
makes assumptions about the sequential semantics, this is a prerequisite to show
that Java actually provides it.

To that end, we extend our previous work JinjaThreads [16,17,20], a formali-
sation of multithreaded Java in the proof assistant Isabelle/HOL [22] as part of
the Quis Custodiet project [25]. It models a substantial subset of multithreaded
Java source code and bytecode, defines an interleaving semantics, and verifies a
compiler from source code to bytecode — all assuming sequential consistency.

Contributions. In this work, we formalise the JMM in the proof assistant Is-
abelle/HOL [22], connect it to JinjaThreads, and prove the DRF guarantee. To
our knowledge, this is the first unified, machine-checked model for Java and the
JMM. All definitions and proofs have been checked by Isabelle and are available
online in the Archive of Formal Proofs [18]. The accompanying technical report
[19] contains high-level proofs for all theorems and further examples.

First, we present a consistent formalisation of the JMM based on the oper-
ational JinjaThreads semantics for Java source code and bytecode (§2). Our
model covers dynamic memory allocation, thread spawns and joins, infinite

1 It is inadvertent because the JMM’s designers claimed that it allows such transfor-
mations [21], but were later proven wrong [9,26]. It is unnecessary as neither the
DRF guarantee nor Java type safety nor its security promises would be broken.
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executions, the wait-notify mechanism and interruption, all of which previous
JMM formalisations [4,11] have omitted. Dynamic allocation and the special
treatment of memory initialisation in the JMM force us to deal with infinite
executions (see §1.1 for an informal JMM explanation).

Our model establishes a solid link between the semantics for sequential Java
and the JMM by associating Java statements with their JMM inter-thread ac-
tions. In novel examples, we show that the Java Language Specification (JLS)
[10] and the Java API define communication channels between threads that the
JMM does not cover. Covert channels make the behaviour of one thread depen-
dent on another thread’s without synchronisation or memory access. We extend
our model accordingly (§§2.1,2.2). Following [8,9], we interleave all threads and
reconstruct the fundamental notions of the JMM a posteriori (§2.3).

Second, we prove the DRF guarantee (§3) for source code and bytecode. Our
proof resolves the inconsistencies with initialisations of locations in previous
proofs [21,11]. To bridge the gap between the axiomatic JMM and the opera-
tional semantics, we identify the assumptions of the DRF proof (§3.1) and prove
that the semantics satisfies them (§3.2). Although these assumptions are intu-
itive, they surprisingly require a full subject reduction proof for sequentially
consistent executions. In particular, we explicitly construct sequentially consis-
tent executions for a given prefix by corecursion. Again, initialisations turn out
to be the main complication in the proofs.

1.1 An Informal Introduction to the JMM

In this section, we informally explain the ideas of the JMM – see §2 for the for-
malisation. Aiming for independence from concrete hardware and implementa-
tions, the JMM [10, §17.4] consists of axiomatic rules that determine a posteriori
whether a given execution is an allowed behaviour of a given program. To that
end, it abstracts concrete thread operations to (inter-thread) actions :

– reading (R) from, writing (W) to and initialising (I) heap-based locations,
– locking (L) and unlocking (U) a monitor,
– thread start (S) and finish (F),
– interrupting (Ir) a thread and observing that it has been interrupted (Ird),
– spawning (Sp) of and joining (J) on a thread, and
– external actions (E) – for I/O, for example.

Actions in the JMM only deal with heap locations, i.e., object fields and array
cells. Access to local variables, method parameters, and type information does
not generate any inter-thread actions and is thus unaffected by the JMM.

In a given execution, the actions of a single thread are totally ordered by the
sequence in which they would occur according to the intra-thread semantics, the
so-called program order. Being consistent with this total order, the happens-
before order provides a notion of time relative to a given action. It partitions the
other actions into three groups: those that must have happened before it, those
that must happen after it, and those that may happen concurrently. Synchro-
nisation actions, which are all inter-thread actions except for external actions
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and reads from and writes to non-volatile locations, introduce happens-before
relationships between actions of different threads.

The right-hand side of Fig. 1 shows the essential part of the execution with
the unexpected result using the following notation (see [19, Fig. 5] for the com-
plete execution): Statements are abstracted to their actions labelled with the
thread ID. The solid arrows represent program order, transitive relationships
are not shown. Dotted arrows used in later examples denote synchronisation
(synchronises-with relationships); as there is no synchronisation, happens-before
coincides with program order. Hence, l. 1 and l. 2 may happen “concurrently”
with l. 3 and l. 4. The dashed arrows denote the flow of values from writes to
reads. An execution assigns to each read action the write action it sees, e.g., l. 1
sees the write from l. 4.

The JMM requires that the write must not happen after the read. However,
if only happens-before determines visibility of write actions, values may appear
out of thin air. Consider, e.g.,

initially: x = y = 0;
1: r1 = x;
2: y = r1;

3: r2 = y;
4: x = r2;

1: (t1, R x 42)

2: (t1, W y 42)

3: (t2, R y 42)

4: (t2, W x 42)

The reads in ll. 1 and 3 may see the writes in ll. 4 and 2, resp., as they may
happen concurrently. If both writes write 42, both reads may read 42. Since the
program cannot normally produce 42, 42 appears out of thin air.

For type safety and security guarantees, it is vital that values do not appear
out of thin air [24]. To preclude this, the JMM adds a causality condition: Reads
that see concurrent writes must be committed, i.e., there must be a justifying ex-
ecution that writes the same value, but the read action sees a write that happens
before it. We omit the technical details in the presentation, as they are not rele-
vant for understanding this work, but we have formalised them similarly to previ-
ous work [4,11]. In the above example, causality forbids r1 == 42 because no ex-
ecution can produce the value 42 without performing both reads from concurrent
writes. The important thing to note is that at the basis of any sequence of justify-
ing executions, there is one in which all reads see writes that happen before them.

This is where initialisations come into play. The JMM assumes that all lo-
cations are initialised to their default value at the start of the execution. By
definition, these initialisations happen before any other action. Thus, there is al-
ways at least one suitable write that happens before a given read, which ensures
that such a basis for justifying executions exists.

The requirement that the JMM initialises heap locations at the start (instead
of when the location is allocated) has been one of the main complications in
our DRF proof – which previous formalisations have omitted. Since initialisation
actions originate from dynamic allocation, we must consider complete executions,
which may be infinite, instead of finite prefixes [4] – at least for the single-thread
semantics. Consider, e.g., the program and one of its (legal) executions in Fig. 2.
Note that the initialisation for the field f of the object created in l. 3 at location
l happens before all other actions although the single-thread semantics executes
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class A { int f; } initially: x = y = null

1: r1 = x;
2: if (r1 != null) r2 = r1.f;
3: r3 = new A();
4: y = r3;

5: r4 = y;
6: x = r4;

(t1, S)

1: (t1, R x l)

2: (t1, R l.f 0)

3: (t1, I l.f)

4: (t1, W y l)

(t2, S)

5: (t2, R y l)

6: (t2, W x l)

Fig. 2. Program with a legal execution in which a read sees the initialisation which
occurs later in the program text

it only after ll. 1 and 2. Suppose we take the prefix of this execution up to
l. 2. If (t1, I l.f) is not part of the prefix, the prefix is an ill-formed execution
because l. 2 sees no write. Hence, we must include the initialisation actions in
prefixes. As the single-thread semantics produces initialisation actions only at
allocations, we must run the program to completion, because we cannot decide
at intermediate states whether we have collected all initialisation actions. Thus,
our formalisation must deal with infinite executions.

1.2 Related Work

A lot of work has been devoted to hardware MMs, see [1] for an overview. Here,
we focus on programming language MMs.

Huisman and Petri [11] have formalised the JMM and the proof of the DRF
guarantee in Coq. They have already noted that initialisations break the proof,
but added an axiom to avoid the problem. They set out at the abstract level of
threads in isolation, without connection to an operational semantics.

Aspinall and Ševč́ık [4] have formalised parts of the JMM relevant for the DRF
guarantee and proved the latter in Isabelle/HOL — which we have found very
helpful in extending the DRF guarantee proof. Since they omit dynamic alloca-
tion, they need to consider only finite prefixes of executions, which considerably
simplifies their proofs, as they do not need to assume that sequentially consistent
continuations of executions exist. They do not provide an intra-thread semantics;
instead, they model a program as an unspecified predicate that checks whether
a trace of memory accesses and synchronisation operations represents a valid ex-
ecution of the thread. This does not suffice to model the hidden communication
channels between threads that the JLS specifies (see §§2.1, 2.2).

For a kernel language, Cenciarelli et al. [9] define an interleaving small-step
semantics that generates configuration structures of actions which an axiomatic
theory constrains. On paper, they show that they only generate behaviours that
the JMM allows, but it is unknown if they produce every allowed behaviour.

Torlak et al. [29] developed amodel checker for axiomaticmemorymodels.Using
whole-program analysis, they derive JMM executions from small Java programs
that are restricted to a small (finite) number of heap locations andfinite state; loops
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areunrolled.Thus, their algorithmcancompute all actions andmemoryallocations
in advance. They focus on checking small test cases rather than providing a full
semantics and proofs.

Jagadeesan et al. [13] define an operational semantics for weak MMs with
speculative computations similar to the JMM. Instead of validating executions
a posteriori, their semantics explicitly encodes permitted reorderings and specu-
lation. Yet, their model is neither machine-checked nor comparable to the JMM
for programs with data races and synchronisation.

Boyland [8] formalises in Twelf a semantics for a simple language with allo-
cation, synchronisation, volatiles, thread spawns and joins, which may raise an
error upon a data race. He shows that a program never raises such errors iff it is
data-race free in the JMM sense. For programs with data races, the semantics
misses many behaviours that the JMM allows, e.g., reorderings as in Figs. 1,2,
whereas our semantics deals with the full JMM.

The recent standard C++11 [12] considers programs with data races ill-formed
and assigns undefined semantics to them, but it offers finer shades of synchronisa-
tion than Java. Boehm and Adve [7] describe the MM and prove the DRF guar-
antee for programs which use only strong synchronisation primitives. They show
that such programs are characterised more intuitively as never having conflicting
accesses adjacent in any interleaving. For the JMM, this equivalence does not hold
since threads can communicate without introducing happens-before relationships
(§2.1). Batty et al. [6] have formalised the MM with a focus on rigorously defining
the semantics, but do not report on any proofs.

Ševč́ık et al. [27] have verified the CompCert compiler backend with respect to
the formal MM for x86 processors by Sewell et al. [28], which is the first formal
correctness proof for an optimising compiler backend w.r.t. a weak MM. They
expose the x86-TSO model in the programming language, which is considerably
stronger than the JMM and also provides a DRF guarantee.

2 From Sequential Java to the Java Memory Model

This section introduces JinjaThreads (§2.1) and connects it (§2.2) to our JMM
formalisation (§2.3). We discuss deviations from and suggestions for the original
JMM in §2.4.

2.1 Single-Thread Semantics

JinjaThreads is a complex model of Java that supports a broad spectrum of
concepts: local variables, objects and fields, inheritance, dynamic dispatch, re-
cursion, arrays and exception handling; for details see [14,16,17]. It uses a stack
of small-step semantics to give meaning to programs (Fig. 3). As source code and
bytecode share the same program structure except for method bodies, they share
most of the levels. The stack falls into two parts: the multithreaded semantics at
levels 4 to 6, which we defer to §2.2, and the sequential small-step semantics at
levels 1 to 3. Source code and bytecode differ only on level 2, which defines the
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semantics of the language primitives. For bytecode, this level consists of three
sub-levels 2a through 2c.

source code bytecode

6 JMM

5 complete interleavings

4 interleaved small-step

3 thread start & finish actions

statements call stacks c

2 & exception handling b

expressions single instruction a

1 native methods

Fig. 3. Stack of JinjaThreads source
code and bytecode semantics

Before we look at the individual lev-
els, we discuss the general form t %
〈x, T 〉 as−→ 〈x′, T ′〉 of the single-thread se-
mantics. Local states of thread t are de-
noted by x and x′, and T , T ′ are the
(global) type information that all threads
share (see §2.2). The multithreaded se-
mantics abstracts from the concrete steps
of the single-thread semantics and uses
only lists as of inter-thread actions. Re-
ductions can generate multiple actions in
one step. When the waitmethod suspends
the thread to the wait set, e.g., it also tests
for the monitor lock and for not being in-
terrupted. Reductions without actions, i.e., as = [], are called τ-moves.

Unfortunately, the actions from §1.1 are insufficient to correctly implement
the JLS, because the JLS (and the Java API) introduce other communication
channels between threads. Consider, e.g., the following program in which two
threads race for spawning the same thread:

initially: x = null;
1: r1 = new Thread();
2: x = r1;

3: r2 = x;
4: r2.start();

5: r3 = x;
6: r3.start();

(P1)

Suppose both reads in ll. 3 and 5 see the write at l.2. Then, either l. 4 or l. 6
must throw an IllegalThreadStateException, but not both. Hence, both l. 4
and l. 6 must be allowed to fail in some executions. Thus, the two right-most
threads may just start, read the address of the Thread object (then fail with
the exception, but the JMM has no action for that), and then finish. Hence,
if each thread were run in isolation, they both would be allowed to fail, too.
Since this contradicts the specification of the start method, there is a covert
communication channel.2

Therefore, we introduce the following additional inter-thread actions: (i) De-
tect that a thread has already been started (TS), (ii) wait in a monitor (Wait),
(iii) notification (N, NA), (iv) clearing an interrupt (CIr), (v) testing for a thread
not being interrupted (NIrd), and (vi) test whether the current thread does (not)
hold a lock (HL, NL). Technically, the last group is only a convenience, because
this way, a thread need not remember in its local state which locks it holds.

Now, let us return to the single-thread semantics. Most of Java concurrency
hides in (native) library methods, in particular in classes Thread and Object.

2 For start, the JMM specifies synchronisation only between a successful call and the
first action of the spawned thread [10, §17.4.4]. A JVM implementation might add
more synchronisation, but our semantics must not, since this might eliminate data
races from programs, i.e., it could wrongly certify programs with data races as DRF.
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t � 〈(ad,start), T 〉 [Sp ad (method C run)]−−−−−−−−−−−−−−−→ 〈unit, T 〉 Spawn

t � 〈(ad, start), T 〉 [TS ad]−−−−−→ 〈throw IllegalThreadStateException, T 〉 SpawnF

Fig. 4. Semantics of the methods start and isInterrupted for class Thread. All rules
have the preconditions typeof T ad = (C) and C :≤ Thread, which have been omitted.

Hence, we provide at the bottom of the stack a hard-wired semantics for some
native methods. We focus on concurrency-related methods such as wait, notify,
notifyAll in Object or start, join, interrupt in Thread, but also include
ordinary methods like hashCode.

Figure 4 gives a flavour of the semantics rules; the full definition can be found
online [18]. If address ad has type C (notation typeof T ad = ,C-) and C is a
subtype of Thread (notation C :≤ Thread), calling start on ad either (i) suc-
cessfully spawns the new thread ad whose initial state becomes C’s run method
Spawn, or (ii) fails with an IllegalThreadStateException SpawnF. The single-
thread semantics is non-deterministic here, but the reductions generate different
actions; the concurrent semantics ensures which of these actions can actually
happen. In particular, the new action TS in SpawnF is necessary.

The second level specifies the semantics for the language primitives. In source
code, this is a standard small-step semantics. In bytecode, sub-level 2a executes
single instructions, calls to native methods are delegated to level 1. Sub-level
2b adds exception handling, 2c joins everything together into the semantics of a
single thread.

All actions originate on level 2 except for thread start and finish actions
and those generated by native methods. For example, synchronized blocks or
monitorenter and monitorexit instructions generate lock and unlock actions,
field accesses via getfield and putfield produce read and write actions. Field
read expressions and instructions such as getfield non-deterministically read
any value, irrespective of the dynamic location type. Primitives like instanceof
that do not produce any action yield τ -moves. The shared type information
grows when objects and arrays are allocated and remains unchanged otherwise.

On level 3, we add artificial start and finish actions to each thread. This
ensures that the start action of a thread precedes all its other actions.

The semantics on level 3 defines the sequential small-step semantics, on which
levels 4 to 6 build. In the remainder, we use → to refer to either source code or
bytecode semantics of level 3.

2.2 Complete Interleavings

In this section, we build the multithreaded semantics on top of the sequential
(levels 4 and 5 in Fig. 3).

The JMM is only concerned about values, not types and array lengths. Checked
type casts, virtual method calls, and reading the length of an array are not part
of the inter-thread actions and thus not affected by the JMM; reading types and
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array lengths must always return the correct data [10, §17.4.5].3 However, since
objects and arrays are dynamically allocated, the type of an object at a given
address (or the type and length of an array at that address) is determined only
after allocation. For types and array lengths, we adopt sequential consistency,
i.e., allocations immediately update type information of all threads. This directly
solves a problem pointed out by Aspinall and Ševč́ık [4]: What does it mean for
an address being fresh for memory allocation?

Technically, the global type information T is like a global shared state that
contains only type information and array lengths, but no data values. Then, an
address is fresh in state T iff T contains no type information for it. Java’s type
safety then ensures that it has not yet been used in any thread, so we can safely
use it when allocating new memory.

Threads also communicate via types and array lengths – unnoticed by the
JMM. For example,

initially: x = 0; y = null;
1: r1 = x;
2: r2 = (r1 == 0 ? new A() : new B());
3: y = r2;

4: x = 1; 5: r3 = y;
6: r4 = r3.f();

(P2)

Suppose that classes A and B inherit from an interface I which declares a method
f() and that their objects may be allocated at the same address. Then, dynamic
dispatch at l. 6 tells the thread on the right about the left thread’s local variable
r1. However, from the JMM point of view, the thread on the right only reads
an address (in fact the same value in both cases), but behaves differently. An
analogous problem occurs if we use array lengths instead of types or declare x
and y as volatile.

Hence, threads cannot execute in isolation, as the JMM suggests. Instead,
we compute their interleavings with type information as shared state, which
guarantees sequential consistency. Our interleaving semantics also takes care of
mutual exclusion for locks and manages the monitor wait sets and notifications.

In the rest of this section, we formally define the interleaved semantics (level
4) and complete interleavings (level 5). Remember that we must consider com-
plete interleavings because the JMM treats initialisations specially (see §1.1).
Since threads in the single-thread semantics can only communicate via type in-
formation or inter-thread actions, the following is independent of the concrete
single-thread semantics.

A thread pool ts is a finite map from a thread’s ID to its local state x, the
multiset L of locks it holds, its interrupt status i, and its wait set status w (none,
waiting in a monitor, notified, interrupted, reacquiring the locks). We define the

interleaved small-step semantics 〈ts, T 〉 (t, as)
====⇒ 〈ts′, T ′〉 as

ts(t) = ,(x, L, i, w)- t % 〈x, T 〉 as−→ 〈x′, T ′〉 ts %t as
√

ts
t, as, x′
�−−−−−→ ts′

〈ts, T 〉 (t, as)
===⇒ 〈ts′, T ′〉

3 Although the JLS specifies that every array has a final field length [10, §6.4.5] that
stores its length, the JMM treats array lengths specially [10, §17.4.5].
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where , - denotes definedness of a finite map. The predicate ts %t as
√

checks
whether t may perform all actions in as in the current system state ts. It imple-
ments the wait-notify and interruption mechanism, and ensures mutual exclusion

for locks and that each thread is spawned at most once. ts
t, as, x′
�−−−−−→ ts′ inserts all

threads spawned in as into ts and updates t’s locks, wait set status, and local
state to x′, which yields ts′. For details, see [16,17].

A complete interleaving E is a potentially infinite list of pairs of thread ID
and inter-thread action. The relation 〈ts, T 〉 ⇓ E characterises all complete in-
terleavings E that start in 〈ts, T 〉, which we define as

〈ts, T 〉 ⇓E :⇔ ∃E′. 〈ts, T 〉 ↓ E′ ∧ E = concat(E′) (1)

where concat(E′) concatenates all lists in E′ and 〈ts, T 〉 ↓E′ (defined coinduc-
tively)4 collects the list of lists of inter-thread actions.

〈ts, T 〉 �⇒
〈ts, T 〉 ↓ []========== Stop

〈ts, T 〉 (t, as)
===⇒ 〈ts′, T ′〉 〈ts′, T ′〉 ↓ E′

〈ts, T 〉 ↓ obst(as) : E′====================================== Step

where 〈 , 〉 �⇒ characterises stuck configurations and obst(as) collects all JMM
inter-thread actions in as (as defined in §1.1) and pairs them with the thread ID
t. That is, it removes the additional actions from above, as they are irrelevant
for the JMM.

Note that the detour via a list of action lists is necessary. If we had de-
fined 〈ts, T 〉 ⇓E directly with the above coinductive rules Stop and Step (i.e.,
prepending obst(as) to E instead of consing), we could have derived every trace
E for a state 〈ts, T 〉 that can perform an infinite sequence of τ -moves, because
obst(as) = [] for all τ -moves. Our approach works fine since obst(as) : E is
productive and concatenating the infinite list of empty lists yields [].

The initial state 〈ts0, T0〉 for a program is specified by a class, a method
name, and the list of parameters it takes. Its thread pool ts0 consists of a single
thread t0 that holds no locks and is about to execute the specified method with
the given parameters. T0 has pre-allocated the t0 Thread object and certain
system exceptions. The list as0 of start-up actions contains t0’s start action and
initialisations for the fields of the pre-allocated objects.

For the JMM, we identify a program with the set E of complete interleavings
that start in the initial state, prefixed with as0. Formally:

E = {obst0(as0) ++E | 〈ts0, T0〉 ⇓E }

where ++ concatenates two lists. E contains many ill-formed executions, because
read operations may read arbitrary values (see §2.1), even not type-conforming
ones that no write operation of the program can ever produce. Since they have
no write-seen function, the JMM on level 6 discards them.

4 We use double bars to distinguish coinductive definitions from inductive ones.
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2.3 The Java Memory Model

In this section, we formally derive the orders of the JMM (level 6) from a com-
plete interleaving E ∈ E . For the intuition behind them, see [21,10,11,4]. The
JMM notions of well-formed and legal executions are standard [4,10], we only
explain them informally; [19] shows their formal definitions.

Since an action can occur multiple times in E, we use the index in E to assign
a unique identifier to an action. In the following, we identify an action with its
index, i.e., AE = {a ∈ N | a < |E|} denotes the set of actions for E. This already
provides the induced total order ≤E = ≤|AE

over AE , where R|A restricts the
binary relation R to elements from A. Since the JMM requires initialisation
actions5 to be ordered before the threads’ start actions, we introduce the (total)
execution order ≤E

eo on AE :

a ≤E
eo a

′ :⇔ if initE a then ¬ initE a′ ∨ a ≤E a′ else ¬ initE a′ ∧ a ≤E a′

where initE a predicates that a is an initialisation action in E.
The program order ≤E

po restricts ≤E
eo to actions of the same thread. The syn-

chronisation order ≤E
so restricts ≤E

eo to synchronisation actions. Synchronisation
actions are all initialisation actions, reads from and writes to volatile locations,
locking and unlocking, thread spawns and joins, thread start and finish actions,
and the interruption actions Ir and Ird. The synchronises-with order ≤E

sw re-
stricts ≤E

so to release-acquire pairs of actions. (a, a′) is a release-acquire pair iff

1. a unlocks monitor m and a′ locks m,
2. a writes to a volatile location that a′ reads,
3. a spawns a thread whose start action is a′,
4. a is a thread’s finish action on which a′ joins,
5. a is an initialisation action and a′ is a thread start action, or
6. a interrupts a thread t and a′ observes that t has been interrupted.

The happens-before order ≤E
hb is the transitive closure of ≤E

po and ≤E
sw. VE a

denotes the value that the write action a ∈ AE writes – initialisation actions
write default values (0, false, or null, resp.); for normal write actions, E contains
the value written.

An execution (E,ws) consists of a complete interleaving E and a write-
seen function ws on AE that assigns to every read action in AE the write
action it sees. This yields the JMM notion of an execution [10, §17.4.6] as
(E ,AE ,≤E

po,≤E
so, ws,VE ,≤E

sw,≤E
hb).

An execution is well-formed (written % (E,ws)
√
) iff every thread has a thread

start action that ≤E-precedes its other actions except for initialisation actions
(denoted E

√
start) and ws is a proper write-seen functions for all reads in E as

specified by the JMM well-formedness conditions 1 (each read sees a write to the
same location), 4 (≤E

hb consistency) and 5 (≤E
so consistency for volatiles) in [10,

§17.4.7]. (E,ws) meets conditions 2 (≤E
hb is a partial order) and 3 (intra-thread

consistency) by construction. E is well-formed iff % (E,ws)
√

for some ws.

5 When the single-thread semantics allocates memory, it produces initialisation actions
for the new locations. This records that the executing thread has generated them.
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A legal execution is a well-formed execution (E,ws) that is justified by a se-
quence of justifying executions (Ei, wsi). As §1.1 explains, it serves to ban values
appearing out of thin air. The concrete definition is tedious, but uninteresting
for the rest of this work. It can be found in [19].

2.4 Discussion of Our JMM Formalisation

Our formalisation shows how to connect a Java semantics with the JMM, which
has been missing in the literature [4,9,11]. The main insight is that action traces
of isolated threads do not suffice to obey the JLS and Java API. The examples
(P1) and (P2) present hidden communication channels between threads that the
JMM inter-thread actions do not capture – although they only use Java features
that the JMM mentions. To expose these channels, we have introduced new
actions – and our semantics shows that they suffice for the features that Jin-
jaThreads models except for type information and array lengths. We conjecture
that further actions for allocations would also lift this restriction (see below).

Most obviously, the JMM misses actions for thread interrupts. It predicates
that Thread.interrupt“synchronises-with the point where any other thread [...]
determines that [the thread] has been interrupted” [10, §17.4.4], but there are no
designated actions for neither thread interruption nor “that point”. Hence, we
have added the synchronisation actions Ir and Ird (§1.1), and their duals for non-
interruption CIr and NIrd (§2.1). Similarly, the API of class Thread requires new
actions to query a thread’s state, e.g., TS predicates that it has been started.
Previous JMM formalisations [4,8,11] did without these new actions, because
they omitted interruption and wait sets, but a realistic formalisation cannot.

The interesting question is which of these new actions should participate in
synchronisation and happens-before order. We follow the original JMM in that
only Ir synchronises with Ird; obst( ) removes the others. In particular, the others
do not synchronise with any action and need not be committed or justified.
Hence, they do not affect the writes that a read may see. We consider this
sensible, because we have found it very hard to construct programs that can
exploit such additional synchronisation to avoid data races (see, e.g., [19, P3]).
Typically, other schedules exhibit races in such programs. Counter-intuitively,
this may also disallow some behaviours, since adding synchronisation may allow
new behaviours for programs with data races [3,21].

We do not use actions to broadcast type information, but interleave the ex-
ecution to obtain sequential consistency for types. This also solves the problem
of finding a fresh address for memory allocation, as the shared type information
stores which addresses are fresh. Although complete interleavings introduce a
global notion of time, we do not use it to constrain the write that each read sees,
because the JMM order relations abstract from it.

However, we see two approaches to avoid the interleaving. One could include
actions for producing and querying type information for locations and array
lengths. In a well-formed execution, these actions have to be matched, but they
do not interact with other thread actions. Alternatively, one could partition the
address space by type and array length like in [13]. Then, however, every read
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of a reference value would implicitly transfer all type information associated
with it, which is unrealistic for implementations. In either approach, allocation
actions subsume initialisation actions such that allocation returns an arbitrary
address and the JMM ensures that every address is allocated at most once.

There are also a few technical changes to the JMM that we briefly review:
First, for the DRF guarantee, all initialisation actions must be synchronisation
actions, not only those for volatile locations, which follows Aspinall and Ševč́ık
[4]. In contrast to them [4], we do not need a special initialisation thread (which
might run infinitely in the case of an infinite execution), but assign initialisation
actions the thread’s ID which created the object. This change is relevant for the
final field semantics extension to the JMM, which requires to know which thread
created which object [10, §17.5.1].

Second, happens-before for the wait method arises not only from the asso-
ciated unlock and lock actions [10, §17.4.5], but also calling interrupt on the
waiting thread synchronises with throwing the InterruptedException. When
a thread in a wait set is both interrupted and notified, our semantics always
respects happens-before, although the JLS does not require this [10, §17.8.1].

Third, we do not model thread divergence actions. The JMM introduces them
to “model how a thread may cause all other threads to stall and fail to make
progress” [10, §17.4.2]. Our construction achieves the same via the coinductive
trace definition (Stop, Step), which then gets filtered for τ -moves (1). Thus, it
handles terminating, non-terminating and diverging executions uniformly.

Finally, JinjaThreads models neither final fields nor garbage collection and
finalisation. Hence, we do not model that part of the JMM [10, §17.5].

3 The Data Race Freedom Guarantee

The JMM promises that correctly synchronised programs exhibit only sequen-
tially consistent behaviours. First, we recapitulate the definitions and identify
the assumptions of this guarantee (§3.1). Next, we show that source code and
bytecode indeed satisfy these assumptions (§3.2); the proofs can be found [19].
In §3.3, we discuss our formalisation and its implications.

3.1 The DRF Guarantee

In this section, we formally state the DRF guarantee and prove it. Two actions of
an execution are conflicting if they are read or write actions to the same location
with at least one being a write. Two conflicting actions constitute a data race if
they are not ordered by happens-before.6

6 As the happens-before order approximates time, it serves to identify data races.
More intuitively, two conflicting actions race iff they can happen “concurrently” in
an execution, i.e., they are adjacent in an interleaving and the location is not marked
volatile. For simple models of happens-before, these are equivalent [7], but not for
Java with implicit communication channels between threads, see, e.g., [19, P3]. Still,
every data race in the latter sense is also one in the happens-before sense.
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An execution (E,ws) is sequentially consistent (SC) iff every read action
a ∈ AE sees the most recent write action, i.e., ws(a) ≤E

eo a, and a′ ≤E
eo ws(a) or

a ≤E
eo a

′ for all write actions a′ to the location that a reads from.7

The program E is correctly synchronised (data race free, DRF) iff no SC
execution in E contains a data race. Formally: Whenever E ∈ E , % (E,ws)

√
and

(E,ws) is SC, then a ≤E
hb a′ or a′ ≤E

hb a for all conflicting actions a, a′ ∈ AE .
For the DRF guarantee, it is important that we only have to check that SC

executions do not contain a data race. Otherwise, it would fail its purpose be-
cause the programmer would have to understand the whole JMM to see whether
his program is correctly synchronised and the DRF guarantee applies to it.

Our proof of the DRF guarantee (Thm. 1) adapts the others’ [21,4,11] to deal
with memory allocation and initialisations (see §3.3 for a discussion). The key
idea in all of them is that in a DRF program, a well-formed execution (E,ws)
is SC if every read sees a write that happens before it (Lem. 1) – which includes
program order. Then, the legality constraints ensure that all legal executions
are SC.

Lemma 1. Let E be correctly synchronised, E ∈ E such that % (E,ws)
√
. If

ws(a) ≤E
hb a for every read a in AE, then (E,ws) is sequentially consistent.

To exploit correct synchronisation in a proof of Lem. 1 by contradiction, one
first obtains a SC execution (E′, ws′) from (E,ws) as follows: E′ starts like E
until the first non-SC read a in E and continues SC from there on. Then, it
suffices to find a data race between a, ws(a), and ws′(a) in E′, and for this, we
use Lem. 2 to transfer happens-before relationships between E and E′ on their
common prefix.

Lemma 2 (≤hb-prefix lemma). Let E and E′ be two complete interleavings
such that their first n actions differ only in the values read or written, and let
a, a′ < n. If E′√

start and a ≤E
hb a

′, then a ≤E′
hb a′.

Theorem 1 (DRF guarantee). If the program P is correctly synchronised
and (E,ws) a legal execution, then (E,ws) is sequentially consistent.

The proof closely follows [4, Thm. 1], it uses Lem. 1. Both Thm. 1 and Lem. 1
implicitly rely on two assumptions about E :

A1 For every sequentially-consistent prefix of a well-formed execution (E,ws)
with E ∈ E , there is a well-formed complete interleaving E′ ∈ E with the
same prefix and a write seen-function ws′ such that (E′, ws′) is SC. If E
immediately continues with a read after the prefix, E′ also continues with a
read from the same location.

A2 Every execution initialises every location at most once.

7 The JMM only requires that ≤po is extended to a total order over all actions to
determine most recent writes [10, §17.4.3]. Aspinall and Ševč́ık [4] showed that,
to respect mutual exclusivity of locks, the total order must also extend ≤so. Our
execution order ≤eo extends both by construction.
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The first assumption ensures that E′ as required in the proof of Lem. 1 does
exist, the second is a standard well-formedness condition. In §3.2, we prove that
JinjaThreads source code and bytecode satisfy these by explicitly constructing
SC executions. Moreover, Lem. 2 requires that all initialisation actions synchro-
nise with thread start actions [19, P4], i.e., they are synchronisation actions.

3.2 Sequentially Consistent Completions

In the previous section, we have shown the DRF guarantee under two assump-
tions on the set E of complete interleavings. Now, we discharge them for source
code and bytecode by descending the stack of semantics (Fig. 3) and adapting
the assumptions. They act like an interface between the levels and ensure that
we can share the proofs for all levels that source code and bytecode share.

We start with complete interleavings. The JMM definition of SC is not
amenable to the coinductive definition of 〈 , 〉 ↓ as it relies on the notions
of write-seen function and most recent write, which are only defined for com-
plete interleavings. Therefore, we introduce a coinductive version of SC.

Let h denote a snapshot of a sequentially consistent heap, i.e., a finite map
from locations to values. The function mrw(h, a) updates the heap h if a is a
write or initialisation action, else leaves h unchanged. The function mrws folds
mrw over action lists. An action list as is sequentially consistent (SC’) for the
heap h (denoted h % as

√
sc) iff

h % []
√
sc

========
mrw(h, a) % as

√
sc a = R l v =⇒ h(l) = ,v-
h % a : as

√
sc

===============================================

i.e., the empty list is SC’ for all heaps, and a : as is SC’ for h iff as is SC’ for
the updated heap mrw(h, a) and if a reads the value v from location l, then the
heap h must store v at l.

The next theorem shows that ∅ % √
sc adequately models SC, where ∅ denotes

the empty map. Thus, we can use coinduction to show an execution being SC.

Theorem 2. Let initialisations ≤E-precede reads and E
√
start. Then, ∅ % E

√
sc

iff there is a ws such that % (E,ws)
√

and (E,ws) is SC.

This equivalence holds only if the initialisation of any location l occurs before
the first read from l in the complete interleaving. For example, the execution
[(t1, S), (t1,R l.x 0), (t1, I l.x 0)] is SC for ws(t1,R l.x 0) = (t1, I l.x 0), but not
SC’. The problem is real: Figure 2 shows a (non-SC) execution of a type-correct
program that violates this assumption. In order to exploit this equivalence, we
must show that initialisations ≤E-precede reads in SC prefixes of complete in-
terleaving (see below).

Prior to this, we construct a sequentially consistent completion scc(〈ts, T 〉, h)
that starts with a thread pool ts, global type information T , and a heap h. We
define scc by corecursion as follows, where ε denotes Hilbert’s choice operator.
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scc(〈ts, T 〉, h) :=
if 〈ts, T 〉 �⇒ then []

else let (t, as, ts′, T ′) = ε(t, as, ts′, T ′). 〈ts, T 〉 (t, as)
====⇒ 〈ts′, T ′〉 ∧ h % as

√
sc

in obst(as) : scc(〈ts′, T ′〉,mrws(h, as))

In order to prove anything about scc(〈ts, T 〉, h), we must make sure that the
predicate to the ε-operator is satisfiable for all reachable configurations. Hence,
we presume for now that the interleaving semantics satisfies the cut-and-update

property (C&U), namely whenever 〈ts, T 〉 (t,as′)
====⇒〈ts′, T ′〉 and wf(〈ts, T 〉, h), then

there are as′′, ts′′, and T ′′ such that (i) 〈ts, T 〉 (t,as′′)
====⇒〈ts′′, T ′′〉, (ii) h % as′′

√
sc,

and (iii) h % as′ ≈ as′′. The predicate wf ensures well-formedness of the state
and conformance of heap; for source code and bytecode, we define wf below and
prove that their semantics satisfy C&U. Conditions (i) and (ii) predicate that
non-stuck states always have a reduction with actions as that are SC’ w.r.t. the
current heap h; they suffice to prove that scc does compute an SC’ interleaving
(Lem. 3). Condition (iii) denotes that as′ and as′′ consist of the same actions
upto the first SC’ inconsistent read in as′ and as′′ continues with a read from
the same location. With this condition, given a complete interleaving that is SC’
up to a read r, we can cut the interleaving after r, change r to read the most
recent value, and continue the interleaving SC’.

Let us further assume that wf(〈ts, T 〉, h) holds for the initial state (ts0, T0)
with the initial heap h0 := mrws(∅, as0), and is preserved by all SC’ reductions.
Then, scc computes an SC’ execution (Lem. 3). By the equivalence of SC and
SC’ (Thm. 2), we can then discharge the main assumption of the DRF proof
(Thm. 3).

Lemma 3.
If wf(〈ts, T 〉, h), then 〈ts, T 〉↓scc(〈ts, T 〉, h) and h % concat(scc(〈ts, T 〉, h))√sc.

Theorem 3 (SC completion). Let E ∈ E, % (E,ws)
√
, (E,ws) be SC up to

a read action (t,R l v), say E = E1 ++ (t,R l v) :E2 with ws(r) being the most
recent write for all reads r ∈ AE1 . Then, there are E3, v

′, and ws′ such that
E∗ := E1 ++ (t,R l v′) : E3 ∈ E, % (E∗, ws′)

√
, and (E∗, ws′) is SC.

We have now replaced the assumptions A1 and A2 of §3.1 by the following,
which are simpler and no longer refer to JMM notions.

B1 Every execution initialises every location at most once.
B2 If a complete interleaving has an SC’ prefix as followed by a read from l, as

must initialise l.
B3 wf is preserved by SC’ reductions and wf(〈ts0, T0〉, h0) holds.
B4 The interleaving semantics satisfies C&U.

Next, we tackle these proof obligations. They naturally translate to the levels be-
low the interleaving semantics, so we do not expand on them in detail. The actual
proofs decompose the semantics on levels 4 down to 1, perform induction on the



Java and the Java Memory Model 513

semantics (source code) or case analysis on the individual instructions (bytecode),
resp., and lift everything back to level 4. Here, we only present themain arguments.

For B1, remember that only memory allocations generate initialisation
actions. When an allocation returns an address, it was fresh before, but after-
wards, it is allocated, i.e., not fresh. Hence, it suffices to prove that the semantics
correctly keeps track of all memory allocations in the inter-thread actions, as ini-
tialisation actions refer to the address.

For B2, not only must we show that the program cannot make up arbitrary
addresses, but also that it accesses only the declared fields of objects. To that
end, we define the well-formedness predicate wf(〈ts, T 〉, h) to denote that

(i) for all allocated addresses a, T contains type information and h contains
type-conforming values for all fields and array cells of a,

(ii) all addresses in thread-local states of ts and in h’s range are allocated, and
(iii) all thread-local states in ts are language-specifically well-formed.

For source code, the latter states that all values in the local store are of correct
type and the statement is runtime-typeable. For bytecode, the operand stack and
registers must conform to the well-typing as computed by the bytecode verifier.
Type correctness ensures that the semantics stays within the safe state space,
e.g., it does not get unexpectedly stuck or yields undefined behaviour about
which nothing can be proven.

Preservation for wf (assumption B3) relies on the JinjaThreads type safety
proofs [16,17,14]. The subject reduction proofs require that reads only return
type-conforming values. This holds because the semantics correctly keeps track
of all reads in the inter-thread actions, which are by assumption SC’, and the
heap contains only type-conforming values. By the type safety proofs, all values
written to the memory are type-conforming, too. Moreover, we show that the
single-thread semantics cannot generate new addresses other than via memory
allocation. Hence, wf ensures that addresses cannot appear out of thin air in an
SC’ execution. For the initial state, wf(〈ts0, T0〉, h0) holds by construction.

From this, B2 follows. By preservation, wf holds for the state after the prefix
as. Hence, type safety ensures that the read accesses an allocated location.

Finally, showing that the semantics satisfies C&U (assumption B4) is tedious,
but uninteresting because reads may return arbitrary values.

Theorem 4. The JMM DRF guarantee holds for source code and bytecode.

This follows from Thm. 1, 3 by the above argument that their assumptions hold.

3.3 Discussion

The DRF guarantee for Java (§3.1) has been formalised before [4,11] – in fact, we
employ the same key ideas in §3.1. The novel aspects are that (i) our JMM for-
malisation covers dynamic allocation with explicit initialisation actions and infi-
nite executions, and (ii) we identify the assumptions of the DRF guarantee on the
sequential semantics and discharge them for source code and bytecode. The key
insights are the following:
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1. Our new actions and different kinds of synchronisation do not affect the
DRF proof. This suggests that other means of synchronisation that we do
not cover, e.g., atomics in java.util.concurrent, do not affect it either.

2. We must find better ways to handle initialisations, as the JMM way severely
complicates the proofs.

3. Our proofs show that the treatment of initialisations is irrelevant for the
DRF guarantee, i.e., we are not constrained when searching for better ways.

Insight 3 a posteriori justifies Aspinall’s and Ševč́ık’s simpler approach of consid-
ering finite prefixes for the purpose of formalising the DRF guarantee. However,
it is still insufficient when dealing with the full JMM. For example, the JMM
allows the execution in Fig. 2, but not some of its prefixes.

Similarly, our DRF proof shows that it would be safe to restrict read opera-
tions to type-conforming values – for correctly synchronised programs. Subject
reduction and preservation proofs would become significantly easier. However, it
would disallow some legal executions of programs with data races such as Fig. 2.

Technical Considerations. Our work in §3.1 differs from [4,11,21] mainly in the
proof of the key Lem. 1. We adapt the others’ in two respects to deal with
initialisation actions. First, the others topologically sort ≤E

po [21] or ≤hb [4,11]

first to obtain ≤eo, and then take {a | a ≤E
eo r} as the prefix for the SC execu-

tion. Instead of through sorting, we obtain the induced total order ≤E from the
complete interleaving, which does not move initialisation actions to the program
start.

Second, Manson et al. [21] and Huisman and Petri [11] require a sequentially
consistent completion E′; so do we. However, the former ignore that different
initialisation actions in the suffix might change the ≤hb relation on the prefix.
The latter note this problem, but add an axiom that ≤hb remain unchanged. We
solve the issue by using ≤E instead of ≤E

eo. Hence, ≤hb on the prefix becomes
independent of later initialisations (Lem. 2). Aspinall and Ševč́ık [4] completely
avoid it by restricting their model to finite prefixes of executions – which causes
problems when dynamic allocation creates initialisations (§1.1).

Initialisations also complicate the construction of sequentially consistent com-
pletions. We failed to construct them directly, as due to the special treatment
of initialisations, ill-formed programs might not have such, see, e.g., [19, P5].
Hence, we would need appropriate constraints that the semantics preserves, but
the JMM notion of execution is unsuitable for preservation proofs. Instead, we
proved that sequential consistency w.r.t. happens-before is the same as for in-
terleaving semantics – if initialisations do not interfere (Thm. 2).8 Being oper-
ational, interleaving semantics is much more amenable to reduction invariants
and their preservation proofs than the JMM. While it is still challenging to show
properties about scc, most proofs follow the well-known pattern of preservation.

8 Interestingly, Batty et al. [5, §4] found that initialisations of atomics cause problems
in the DRF proof for C++11, too.
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Faithfulness of the Semantics. Aspinall and Ševč́ık [4] suggested to weaken le-
gality to enable more optimisation without sacrificing the DRF guarantee. Since
our proof follows theirs, our proof also works for their weaker notion of legality.
We have not formally checked that our semantics validates all JMM test cases
by Pugh et. al. [23]. Torlak et. al. [29] have shown that the original JMM does
not validate test cases 19 and 20, but the fix by Aspinall and Ševč́ık [4] does.
Since none of the test cases uses dynamic allocation, spawning nor interruption
of threads, nor wait and notify, our formalisation should perform equivalent
to the original JMM. With the fix by Aspinall and Ševč́ık, our formalisation also
validates test cases 19 and 20.

4 Conclusion and Future Work

Our machine-checked model of multithreaded Java spans from a realistic subset
of Java source and bytecode via statement and instruction-level operational se-
mantics to the axiomatic JMM. We have proven that our semantics provides the
DRF guarantee, the most important property of the JMM for programmers.

Our DRF result is not limited to Java. The key lemma 1 plays a similar
role in other DRF guarantee proofs, e.g., [2,7]. They all postulate sequentially
consistent completions of prefixes, which we have constructed formally for a
realistic language. For Java, this surprisingly requires a full subject reduction
theorem, but this need not be a restriction for other languages. C and C++,
e.g., assign such type-unsafe programs undefined semantics and exclude them
from the guarantee.

For this work, it was essential to separate the MM from the operational se-
mantics. This way, we were able to define the JMM and prove the DRF guarantee
on the abstract level of complete interleavings in about 2.5kLoc of definitions
and proof scripts. Similarly, this clear interface allows to reuse the same JMM
formalisation for both source code and bytecode. Still, connecting the opera-
tional semantics to the JMM and discharging the DRF assumptions was tedious
(7.2kLoc), since every lemma must be lifted over the whole stack of semantics.
In particular, the complete interleavings from §2.2 turned out very unwieldy as
they connect operational semantics with inductive and coinductive definition and
proof principles to the world of abstract orders. Consequently, we achieved only
little proof automation there; it was much better for the interleaving semantics
and the abstract JMM specification.

Initialisations and the special way the JMM handles them caused most com-
plications in our proofs. In this work, we willingly stayed as close to the JMM
as possible, but we will investigate simpler ways of initialising locations. More-
over, we have shown type safety only for SC executions, i.e., correctly synchro-
nised programs. Since the JinjaThreads compiler correctness proof relies on type
safety, we hope to show that every legal execution is type safe. Type safety of
the MM, when no explicit constraints trivially enforce it, is a necessary condi-
tion for the absence of out-of-thin-air values. This will hopefully provide a better
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understanding of this notion, which has so far only been illustrated by exam-
ples. Ultimately, it will be interesting to explore the tension between the safety
guarantees that a MM provides and the compiler transformations it allows.
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Abstract. There has been much recent interest in supporting determin-
istic parallelism in imperative programs. Structured parallel programming
models have used type systems or static analysis to enforce determinism
by constraining potential interference of lexically scoped tasks. But simi-
lar support for multithreaded programming, where threads may be ubiq-
uitously spawned with arbitrary lifetimes, especially to achieve a modular
and manageable combination of determinism and nondeterminism in mul-
tithreaded programs, remains an open problem.

This paper proposes a simple and intuitive approach for tracking
thread interference and capturing both determinism and nondetermin-
ism as computational effects. This allows us to present a type and effect
system for statically reasoning about determinism in multithreaded pro-
grams. Our general framework may be used in multithreaded languages
for supporting determinism, or in structured parallel models for sup-
porting threads. Even more sophisticated concurrency models, such as
actors, are often implemented on top of an underlying threading model,
thus the underlying ideas presented here should be of value in reasoning
about the correctness of such implementations.

1 Introduction

Concurrent programming is increasingly pervasive in mainstream software devel-
opment as we attempt to exploit the full power of modern multicore processors.
For developers working in heavily used languages such as C, C++, C# and Java,
threads provide the dominant model for concurrent programming. Threads are
a straightforward adaptation of the sequential model of computation to concur-
rent programs; programming languages require little or no syntactic changes to
support them and modern computers and operating systems have evolved to
efficiently support them. However, they discard the most essential and appeal-
ing properties of sequential computation: understandability, predictability, and
determinism [13]. Threads may interact and share data in a myriad of ways;
unanticipated thread interleavings and side effects can lead to subtle bugs and
wrong results [24]. It is widely acknowledged that multithreaded programming
is difficult and error-prone [21].
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Deterministic code is easier to debug and verify than nondeterministic code
for both testing and formal methods [13,25]. Moreover, many computational al-
gorithms are required to be deterministic—a given input is always expected to
produce the same output—even when used in nondeterministic contexts. For
example, most scientific computing, encryption/decryption, sorting, program
analysis, and processor simulation algorithms exhibit deterministic behavior [1].
There has been much recent interest in supporting deterministic algorithms in
multithreaded imperative programs. Programming models and type systems that
support deterministic parallelism are emerging and have been proved to be useful
in practice. Structured deterministic parallel models [1,26,2] enforce determin-
ism statically at compile time by disallowing interference between concurrent
computations (conflicting in their read and write sets); they typically rely on
lexically scoped task parallelism (e.g., the fork/join style [12]) to localise and
constrain potential interference of parallel tasks. While effective for applications
where parallelism is often regular, structured parallelism may restrict program-
ming styles thereby precluding many useful concurrency patterns which require
irregular parallelism—the world of client applications is not nearly as well struc-
tured and regular [24]. Moreover, it may be difficult to support these models in
mainstream programming languages where threads are used, because structured
tasks can suffer interference from independent threads which may be ubiqui-
tously spawned with arbitrary lifetimes. Reasoning statically about threads is a
challenging problem, because we have to capture potential interference amongst
all concurrent threads [13].

This paper proposes a simple and intuitive approach for type checking de-
terminism in multithreaded imperative programs. By tracking and controlling
what side effects may occur in parallel and how they may interfere with one
another, our type system can check that deterministic behaviour is preserved
in otherwise nondeterministic contexts. Programmers can freely assert that sec-
tions of code are deterministic, and have those assertions guaranteed by the type
checker. Thus deterministic algorithms will assuredly produce deterministic re-
sults even in a nondeterministic context, making multithreaded programs more
predictable and understandable. Our framework is general and may be used in
existing multithreaded programming languages for supporting determinism, or
in previous structured deterministic parallel models for supporting threads (e.g.
Deterministic Parallel Java’s region-based effect systems [1,2] can be extended
with our approach to support multithreaded programming).

We formalise our approach in a novel type and effect system, called Determin-
istic Effects, as an extension to Nielson et al.’s effect systems [18,19]. Our small
step operational semantics describes the concurrent behaviour of programs; cru-
cially, the operational semantics preserves the relative nesting of thread creations.
We prove that programmer-specified determinism for type correct multithreaded
programs is indeed guaranteed. Deterministic effects can help improve the design
and understanding of multithreaded software, such as in specifying or document-
ing concurrent behaviour for safety and optimisation. We envisage their use in in-
terface specifications, facilitating modular development of large-scale concurrent



520 Y. Lu et al.

programs.We also envisage static analyses for discovering determinism of expres-
sions in existing multithreaded programs.

2 Deterministic Effects at a Glance

In this section, we introduce the basic ideas of deterministic effects with sim-
ple examples by showing how to track computational effects (specifically, side
effects, though other effects may be possible, see Section 4.3) that may occur
concurrently, how to capture determinism in nondeterministic code, and how to
enforce programmer-specified deterministic expressions.

Deterministic effects capture the conflict between any two effects which may
occur concurrently, by tracking the effects of forked threads in a form that mimics
the tree structure of thread creation and then comparing these effects with the
effects of any subsequent expressions to detect potential interference in a flow-
sensitive manner. In general, earlier forks have more opportunity for interference
than later forks. In Section 2.1, we introduce the syntax and demonstrate the use
of deterministic effects to forbid all possible thread interference in a program.
Programs that are well-typed have purely deterministic behaviours.

However, there are algorithms that may not have deterministic input-output
behaviour. Real world applications are more likely composed of a mixture of de-
terministic and nondeterministic computations [2,25]. Achieving a manageable
combination of determinism and nondeterminism is an important open prob-
lem in multithreaded programming. In Section 2.2, by reasoning about thread
interference, we show how to infer determinism or nondeterminism of each ex-
pression in a possibly nondeterministic program. We extend our syntax with a
programmer-specified deterministic construct, which is essentially the same as
those used in [22,5], except that they check determinism dynamically at runtime
while we enforce it statically at compile time (see discussion in Section 4.2).
With this more liberal model, we show that we can allow arbitrary mixing of
deterministic and nondeterministic computations in a safe way—guaranteeing
desired determinism without unnecessarily restricting nondeterministic code.

2.1 Effects, Noninterference and Determinism

Our effect system extends Nielson et al.’s framework [18] for capturing interfer-
ence between threads. We use a simple lambda calculus, similar to that used in
[19,9,21,17], to provide the essential features of concurrent threads sharing access
to memory including memory references and fork expressions. We describe the
form of effects, and provide some simple examples to illustrate how to reason
about thread interference. Memory reads and writes give rise to conventional
sequential side effects based on regions determined by labels associated with
memory allocation expressions. Threads are spawned by fork expressions, and
their effects are represented separately from sequential side effects. By tracking
the effects of threads spawned by a computation separately from its sequential
continuation, we are able to use a flow-sensitive analysis to identify when the
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threads may interfere with the continuation. Despite its apparent simplicity, this
approach appears to be novel.

The basic syntax is given by:

v ::= c | fn x => e
e ::= v | x | e e | refπ e | !e | e := e | fork e

The expression syntax e includes values v (a family of integer constants c and
functions), a family of variables x, function application and the usual imperative
operations on reference cells (allocation, dereference and assignment). The allo-
cation expression refπ e creates a new reference in memory and initialises it to
the value of e, and the label (or abstract location) π uniquely identifies the cre-
ation point/allocation site. Common language constructs such as let, sequence
or recursion are not directly defined, because they are easily encoded. The let
expression let x = e1 in e2 becomes (fn x => e2) e1, and the sequence expres-
sion e1; e2 is let x = e1 in e2 where x does not occur free in e2. In examples,
we will use explicit let and sequence expressions as shorthands. Like [18], which
we extend, conditionals are omitted, as their treatment is standard. Recursive
functions can be encoded by references as shown in [9,17] and in Section 4.1.
Threads are introduced by fork e, which spawns a new thread for the evalua-
tion of e; the value of e is never used (this expression simply returns a zero when
evaluated [9,3]), so a thread is only used for side effects.

The syntax for types and effects is given by:

τ ::= int | τ
ϕ−→ τ | refρ τ

ϕ ::= {ε} | {fork ϕ} | ϕ ∪ ϕ | ∅
ε ::= !ρ | ρ :=
ρ ::= {π} | ρ ∪ ρ | ∅

The syntax for types includes a primitive integer type, as well as function and
reference type. The function type is annotated with effect information, ϕ, which
captures concurrent effects that may occur during the execution of the function
body. The reference type refρ τ records the type τ of values that can be stored
in the reference cell, and a region ρ where the cell may be created. The region
syntax is used to denote finite sets of creation points or labels, which is a standard
technique to distinguish cells created at different program points. The union
operator ∪ is assumed to be commutative, associative and idempotent, with ∅
as its identity; {π1} ∪ . . . ∪ {πn} may be written as {π1, . . . πn}. A side effect ε
identifies a read !ρ or a write ρ := to a region ρ.

A fork effect, fork ϕ, captures the effect of a forked thread. This allows us
to syntactically distinguish the effect of the current expression from other fork
effects arising from earlier forks, when determining thread interference. For ex-
ample, the effect {!{π1}, fork {{π2} :=}} describes a read effect !{π1} on the
current thread, and a write effect {π2} := on a thread spawned by the current
thread, as identified by the keyword fork . The order of side effects and fork ef-
fects in an effect set (ϕ) is not important, but we track expression compositions
flow-sensitively to identify potential interference between components (see ex-
amples below). In addition to π, we sometimes use !, “var pi”, to denote labels
for program points in our examples.
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We illustrate our ideas with a simple value setter example:

let val = refπ 0 in let set = (fn x => val := x) in
fork (set 2); !val // error

The types and effects for some of the expressions here, are

val : refπ int & ∅
set : int

{{π}:=}−−−−−→ int & ∅
set 2 : int & {{π} :=}
fork (set 2) : int & {fork {{π} :=}}
!val : int & {!{π}}

The type of the variable val is determined by the allocation expression used to
initialise it; the label π records the program point where the reference cell is
allocated. Evaluating read-only variables has no memory effect, ∅. The function
type of the variable set records its write effect on val for use in function appli-
cation. This is manifested in the effect of the expression set 2. The effect of the
dereference !val is the simple read effect {!{π}}.

In most type and effect systems, fork (set 2) has the same effect as set 2,
namely {{π} :=}. Hence they may not tell if this code is safe. For example, if
we swap the order of the dereference and fork above, as in

!val; fork (set 2) // ok

there is no interference. This illustrates what we mean by our system being flow
sensitive: in general, moving forks earlier in a sequential thread is more likely to
make a program illegal.

Since our system distinguishes an effect on one thread from that on an-
other, the effect of fork (set 2) is {fork {{π} :=}}—the fork effect captures
the write effect on location {π} and the fork indicates that it occurs on a dif-
ferent thread. For the original version of the example, the fork occurs before the
dereference. Our flow-sensitive type and effect system recognises that the write
effect {fork {{π} :=}} for the fork may occur concurrently with the read effect
{!{π}} on the current thread, and considers this illegal. The second version of the
example with reverse order of effects is legal in our system; we recognise that
the read effect has completed before the conflicting fork. In our type system,
this flow sensitivity is captured by checking sequential composition of effects for
noninterference in Table 2 in Section 3.

Now consider an example with a thread forked inside a function:

let x = refπ 0 in let y = ref� 0 in
let f = (fn z => fork (x := 1); y := 1) in

x := 2; f 0; y := 2 // ok

This example shows no interference in our effect system, but may not pass, for
example, type and effect systems for enforcing locking disciplines [9,3,21] which
would conservatively dictate all memory accesses must be protected by a lock.
Consider the effects recorded for the last three expressions. x := 2 is a sequential
expression with effect {{π} :=}. It can never interfere with any later expressions.
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f 0 may look like a sequential expression, but the body of f will fork a thread
to access the shared variable x. Clearly f 0 writes to ! and creates a thread
that writes to π; in our system its concurrent effect is {{!}:=, fork {{π} :=}}.
The effect of the third expression y := 2 is {{!} :=}. The last two expressions
do not interfere, because we only need to consider the concurrent part of the
effect of the earlier expression, which is {fork {{π} :=}}, and the overall effect
of the later expression, which is {{!} :=}. (The sequential part of the second
expression with effect {{!} :=} completes before the third expression starts.)
The write effects {fork {{π} :=}} and {{!} :=} do not interfere with each other
since they access different reference cells.

Unsurprisingly, threads that concurrently read the same memory location do
not interfere, as shown in the following example:

let x = refπ 1 in let y = ref� 2 in
let lim = (fn z => 100−!z) in

fork (lim x); fork (lim y); fork (lim x) // ok

The function lim reverses a count from 100; its type and effect is:

ref{π,�} int
{!{π,�}}−−−−−−→ int & ∅

These threads do not interfere with each other because concurrent reads on the
same memory region are considered safe. This example also shows the use of
regions (rather than single labels) in reference types so that function arguments
of reference type may be associated with multiple labels, in the absence of label
polymorphism (see Section 4.1).

2.2 Deterministic Effects with Nondeterministism

We have seen how to enforce determinism by forbidding all thread interference.
Programs which are well-typed, using our type rules, restrict concurrent compu-
tations to be purely deterministic. Now we introduce a more liberal model which
allows arbitrary interleaving of threaded expressions, no matter what their po-
tential interference may be. This provides a nondeterministic model of behaviour,
typical of how threading works in current languages. However we allow (and en-
force) explicit embedding of deterministic expressions. By tracking thread inter-
ference within expressions, we can capture the determinism or nondeterminism
of expressions as effects.

If a stand-alone expression exhibits no interference in its evaluation, then its
behaviour is deterministic. We say in that case the expression is weakly deter-
ministic. However, if that deterministic expression is evaluated in a concurrent
context in which other threads may interfere with it, the behaviour is no longer
guaranteed to be deterministic. In other words, determinism of expression evalu-
ation is not preserved by concurrent composition. This is partly in the nature of
shared memory concurrency, but is unfortunate—if we have a deterministic algo-
rithm we want to preserve its determinism even when it is embedded in a larger,
possibly nondeterministic computation. Our solution is to allow a programmer
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to express this desire by declaring an expression to be deterministic using det
(see extended syntax below). In that case, our system will firstly check that the
expression is weakly deterministic. In addition, our system will enforce its deter-
minism by insisting that any concurrent context where that expression appears
cannot interfere with it. We say such expressions are strongly deterministic.

In this section we show how we can relax our earlier model, to allow both
nondeterministic forms of expression, and also enforce strong determinism for
expressions so declared with the following extended syntax:

e ::= ... | det e

Based on thread interference, the levels of determinism on expressions are dis-
tinguished by our effects system (from the weakest to the strongest): nonde-
terministic, weakly deterministic and strongly deterministic. A nondeterministic
expression is allowed to contain interference, except that such interference does
not affect any of its subexpressions which are asserted to be strongly determin-
istic. An expression is weakly deterministic if it does not contain interference,
but may suffer interference from other threads; in other words, it is determinis-
tic by itself, but may not be if used in a nondeterministic context. A strongly
deterministic expression is weakly deterministic and must not be interfered with.

We start with a few examples before introducing our deterministic effect sys-
tem in the next section.

let x = refπ 0 in let y = ref� 1 in
fork(x := 1); fork(x := !y); det y := 2 // ok

The above program is nondeterministic, as it allows the value of y to interfere
with the value of x. This is legal in our type and effect system, since the value
of y, which is asserted as strongly deterministic, is not affected by its context.
The following program is illegal.

let x = refπ 0 in let y = ref� 1 in
fork(x := 1); fork(x := !y); det y :=!x // error

We can also allow threads to be forked within det expressions. In both of the
following examples, the fork expression may run concurrently with the last (non-
deterministic) expression. In both examples, the value of x is guaranteed to be
2, and that of y may be 0 or 2. In the second example, because the computation
for y is declared to be det this must be illegal. In that case the nondeterministic
write to x interferes with the read of x inside the det expression. Note that in
the first example, the read of x does not interfere with the write; this illustrates
the asymmetry of the noninterference relation.

let x = refπ 0 in let y = ref� 1 in
det fork(x := 2); y :=!x // ok

let x = refπ 0 in let y = ref� 1 in
det fork(y :=!x); x := 2 // error

Any purely deterministic program is a special case of this more flexible system,
in which the top-level program expression is declared to be det.
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Table 1. Static Semantics

[CONSTANT] Γ � c : int & ∅.⊥ [VARIABLE]
Γ (x) = τ

Γ � x : τ & ∅.⊥

[FUNCTION]
Γ, x �→ τ2 � e : τ1 & Δ x /∈ dom(Γ )

Γ � fn x => e : τ2
Δ−→ τ1 & ∅.⊥

[APPLICATION]
Γ � e1 : τ2

Δ3−−→ τ1 & Δ1 Γ � e2 : τ2 & Δ2 Δ1 ; Δ2 ; Δ3 = Δ

Γ � e1 e2 : τ1 & Δ

[REFERENCE]
Γ � e : τ & Δ

Γ � refπ e : ref {π} τ & Δ

[DEREFERENCE]
Γ � e : ref ρ τ & Δ1 Δ1 ; {!ρ}.⊥ = Δ

Γ �!e : τ & Δ

[UPDATE]
Γ � e1 : ref ρ τ & Δ1 Γ � e2 : τ & Δ2 Δ1 ; Δ2 ; {ρ :=}.⊥ = Δ

Γ � e1 := e2 : τ & Δ

[FORK]
Γ � e : τ & ϕ.θ

Γ � fork e : int & {fork ϕ}.θ [DET]
Γ � e : τ & ϕ.⊥

Γ � det e : τ & {det ϕ}.⊥

[SUBSUMPTION]
Γ � e : τ ′ & Δ′ τ ′ <: τ Δ′ � Δ

Γ � e : τ & Δ

3 A Deterministic Effect System

In this section, we formalise our approach in a type and effect system by using
the syntax introduced in the previous section. Since we now have the additional
det e expression, we need to extend the syntax for types and effects:

ϕ ::= ... | {det ϕ}
τ ::= ... | τ

Δ−→ τ

Δ ::= ϕ.θ
θ ::= ⊥ | �

The new form of effect for expressions is the deterministic effect Δ. We now
refer to ϕ as base effect. The additional part of an effect, θ, refers to the inferred
level of determinism for expressions—⊥ denotes a weakly deterministic effect
and � denotes a nondeterministic effect with ordering, ⊥ ≤ �, so that weakly
deterministic effects are more specific. An expression is strongly deterministic
if it is syntactically annotated with the keyword det—it must have a qualified
effect det ϕ which serves as a contract for the type system to ensure that any
concurrent context where this expression appears cannot interfere with it.

3.1 Static Semantics

Effect systems [16] generally can be viewed as a type system where typing judge-
ments have a more elaborate form, associating both a type and an effect with
expressions. For the syntax defined in Section 2, Table 1 presents our type system
for deterministic effects, using judgements of the form

Γ % e : τ & Δ
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Table 2. Composition and Sequencing Rules

[COMPOSITION]
ϕ1 ↪−→θ ϕ2 θ1 ≤ θ θ2 ≤ θ

ϕ1.θ1 ; ϕ2.θ2 = (ϕ1 ∪ ϕ2).θ

[C-EMP] ∅ ↪−→θ ϕ

[C-EFF] {ε} ↪−→θ ϕ

[C-UNI]
ϕ1 ↪−→θ ϕ ϕ2 ↪−→θ ϕ

ϕ1 ∪ ϕ2 ↪−→θ ϕ

[C-DUN]
{det ϕ1} ↪−→θ ϕ {det ϕ2} ↪−→θ ϕ

{det ϕ1 ∪ ϕ2} ↪−→θ ϕ

[C-DET-S]
ϕ1 ↪−→⊥ ϕ2

{det ϕ1} ↪−→⊥ ϕ2

[C-FOK-S]
ϕ1 �⊥ ϕ2 ϕ2 �⊥ ϕ1

{fork ϕ1} ↪−→⊥ ϕ2

[C-FOK-W]
ϕ1 �� ϕ2 ϕ2 �� ϕ1

{fork ϕ1} ↪−→� ϕ2

[C-DET-W]
ϕ1 �� ϕ2 ϕ2 �⊥ ϕ1

{det {fork ϕ1}} ↪−→� ϕ2

Table 3. Noninterference Rules

[N-R/R] {!ρ} �⊥ ϕ

[N-W/R]
ρ1 ∩ ρ2 = ∅

{ρ1 :=} �⊥ {!ρ2}

[N-W/W]
ρ1 ∩ ρ2 = ∅

{ρ1 :=} �⊥ {ρ2 :=}
[N-EFF] {ε1} �� {ε2}

[N-DEL]
ϕ1 �θ ϕ2

{det ϕ1}�θ ϕ2

[N-DER]
ϕ1 �⊥ ϕ2

ϕ1 �θ {det ϕ2}

[N-FOL]
ϕ1 �θ ϕ2

{fork ϕ1} �θ ϕ2

[N-FOR]
ϕ1 �θ ϕ2

ϕ1 �θ {fork ϕ2}

[N-UNL]
ϕ1 �θ ϕ ϕ2 �θ ϕ

ϕ1 ∪ ϕ2 �θ ϕ

[N-UNR]
ϕ �θ ϕ1 ϕ �θ ϕ2

ϕ �θ ϕ1 ∪ ϕ2

[N-EMP] ∅ �θ ϕ

where τ is the type associated with the expression e relative to a type environ-
ment Γ which provides the type for each free variable as in a standard type sys-
tem. The environment Γ is empty for top-level expressions which may therefore
have no free variables; environment extension is written as Γ, x �→ τ . The deter-
ministic effect Δ describes the base effects that may take place during evaluation
as well as its level of determinism (weakly deterministic or nondeterministic).

The rules in Table 1 infer typing judgements for each syntactic form of ex-
pression, together with the standard [SUBSUMPTION] rule using the definitions
for subtyping and subeffects in Table 4. In Table 1, the inferred base effect ϕ
is either empty, composed of effects of subexpressions, or generates new base
effects. The rules [CONSTANT], [FUNCTION] and [VARIABLE] all have empty effect.
The primitive side effects ({ε}.⊥) generated in [DEREFERENCE] and [UPDATE], as
well as empty effects, are weakly deterministic.

In [FUNCTION], function abstraction records the (potential) deterministic ef-
fect of its body as an effect annotation in its type; it extends the environment
for typing the body with a type for its variable (our types need not be unique).
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Table 4. Subtype and Subeffect Rules

[T-RFL] τ <: τ

[T-REF]
ρ1 ⊆ ρ2

ref ρ1 τ <: ref ρ2 τ

[T-FUN]
τ ′
1 <: τ1 τ2 <: τ ′

2 Δ � Δ′

τ1
Δ−→ τ2 <: τ ′

1
Δ′−−→ τ ′

2

[E-SUB]
ϕ1 � ϕ2 θ1 ≤ θ2

ϕ1.θ1 � ϕ2.θ2

[E-DET]
ϕ1 � ϕ2

ϕ1.⊥ � {det ϕ2}.θ
[F-EMP] ∅ � ϕ

[F-R/R]
ρ1 ⊆ ρ2

{! ρ1} � {! ρ2}

[F-R/W]
ρ1 ⊆ ρ2

{! ρ1} � {ρ2 :=}

[F-W/W]
ρ1 ⊆ ρ2

{ρ1 :=} � {ρ2 :=}
[F-FOK] ϕ � {fork ϕ}

[F-FOR]
ϕ1 � ϕ2

{fork ϕ1} � {fork ϕ2}

[F-DET]
ϕ1 � ϕ2

{det ϕ1} � {det ϕ2}

[F-UNI]
ϕ1 � ϕ′

1 ϕ2 � ϕ′
2

ϕ1 ∪ ϕ2 � ϕ′
1 ∪ ϕ′

2

The rules [APPLICATION], [REFERENCE], [DEREFERENCE], [UPDATE] and [FORK] in-
herit and sequentially compose deterministic effects from their subexpressions.
For example, the overall deterministic effect of [APPLICATION] is the sequential
composition of the deterministic effects of its function e1 and argument e2 eval-
uations, followed by the deterministic effect of the function body itself extracted
from the function type. The composition of Δ1; Δ2; Δ3 = Δ is a shorthand for
the composition of Δ1; Δ2 = Δ′ and Δ′; Δ3 = Δ. Sequential composition of ef-
fects is defined in [COMPOSITION] of Table 2 and requires sequential composability
of the component effects. This is where the test for noninterference of concur-
rent effects arises in our system. In [REFERENCE], the labelled creation point π is
recorded in the type of the introduced reference, so that later dereferences and
assignments can track its use.

Only four rules are involved in base effect generation: [DEREFERENCE], [UP-

DATE], [FORK] and [DET]. The reference accessing expressions, dereference and
update, compose the effect of the evaluation of their subexpressions, with the
side effects generated by memory access (indicated by the read !ρ or write ρ :=
in the rules). The effect of fork e is the effect of e qualified with the effect key-
word fork . As discussed already, this distinguishes effects of concurrent threads
from effects of the current thread; no other form of expression generates a fork
effect. The rule [DET] asserts that an expression det e is strongly deterministic,
provided that e is weakly deterministic and its inferred base effect det ϕ ensures
the expression cannot be interfered with by concurrent threads.

The type rules rely on effect composition, which in turn, as we shall see below,
relies on a test of sequential composability which is asymmetric in its first and
second effects. Consequently our type system is flow sensitive. In simple memory
effect systems, the effect of e1; e2 and of e2; e1 are the same—simply the union
of the two effects. For us, it is possible that e1; e2 is legal, whereas e2; e1 is not,
as illustrated by the two versions of the first example in Section 2.1.
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Sequential composition of deterministic effects, defined in Table 2, and the
associated notion of noninterference, in Table 3, lie at the heart of the type
system. We define the ordering ⊥ ≤ �, meaning that a deterministic expression
can be considered as a nondeterministic expression. To reduce the number of
rules, the symbol for sequential composition is parameterised with determinism:
Δ1 ↪−→θ Δ2 where θ could be either ⊥ or �. Now we define both deterministic
and nondeterministic compositions in the [COMPOSITION] rule. If the composition
is deterministic (i.e. the resulting effect is the union of effects ϕ1∪ϕ2 and⊥), then
both expressions must be at least weakly deterministic and the ↪−→⊥ symbol is
used to denote strong sequential composability. Otherwise, the ↪−→� symbol is
used to denote weak sequential composability which allows interference between
ϕ1 and ϕ2 and generates a nondeterministic combined effect (ϕ1 ∪ ϕ2).�.

The key role of [COMPOSITION] is to check that deterministic effects (thus
expressions) are indeed sequentially composable. The rest of rules in Table 2
define strong and weak sequential composability as a binary relation over base
effects ϕ. [C-EMP], [C-EFF], [C-UNI] and [C-DUN] are generic rules for both strong
and weak sequential composability. By rule [C-EFF] we assert that side effects {ε}
associated solely with the current thread, are sequentially composable with any
subsequent effect. This captures the idea that terminated computations cannot
interfere with later ones. [C-UNI] allows the combination of effects on the left pro-
vided that each of them is sequentially composable with the effect on the right.
The second union rule [C-DUN] preserves the det qualification over composition.
Strong sequencing rules forbid thread interference between two effects; therefore
it is safe to remove the det qualification in the strong sequencing rule [C-DET-S]. In
another strong sequencing rule [C-FOK-S], composing a fork effect {fork ϕ1} with
another ϕ2 requires the effect ϕ1 not to interfere (�⊥) with the overall effect
of ϕ2 and vice versa, because the thread may be running concurrently with the
second expression. On the other hand, the weak sequencing rule [C-FOK-W] allows
interference between threads by using �� (weak noninterference). [C-DET-W] is
special, as it allows a deterministic concurrent effect {det {fork ϕ1}} to be com-
posable with its following effect ϕ2 only if ϕ2 does not interfere with ϕ1; the last
pair of examples in Section 2 illustrate the use of this rule.

Table 3 defines strong and weak noninterference of concurrent effects; non-
interference is asymmetric. We consider strong noninterference ϕ1 �⊥ ϕ2 to
mean that the effect ϕ1 does not affect ϕ2. So reading shared memory does not
affect any writes to that memory, whereas a write can affect a read. [N-R/R] states
that a read effect interferes with nothing; [N-W/R] and [N-W/W] state that a write
effect does not interfere with other concurrent side-effect (read or write) only
if they access distinct regions. Weak noninterference rules, on the other hand,
are treated in a way that resembles weak sequencing; they are designed to allow
arbitrary interference amongst expressions, except for deterministic expressions.
[N-EFF] asserts that side effects do not weakly interfere with one another, imply-
ing they may occur in parallel. The remaining rules are generic for either strong
or weak noninterference. The difference between [N-DEL] and [N-DER] is impor-
tant. [N-DEL] asserts that a qualified det effect does not interfere with another
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Table 5. Operational Semantics

[R-APP]〈ς, (fn x => e) v〉 ∅−−→ 〈ς, [v/x]e〉

[R-REF]
ι /∈ dom(ς) ς ′ = ς, ιπ �→ v

〈ς, refπ v〉 ∅−−→ 〈ς ′, ι〉
[R-DRF] 〈ς, !ι〉 {!{ι}}−−−−→ 〈ς, ς(ι)〉

[R-UPD] 〈ς, ι := v〉 {{ι}:=}−−−−−→ 〈ς[ι �→ v], v〉

[R-FOK] 〈ς, fork e〉 ∅−−→ 〈ς, ê 0〉

[R-SEQ] 〈ς, v̂ e〉 ∅−−→ 〈ς, e〉
[R-CON] 〈ς, E[ê v]〉 ∅−−→ 〈ς, ê E[v]〉

[R-DET]
〈ς, e〉 ϕ−−→ 〈ς, e′〉

〈ς, det e〉 {det ϕ}−−−−−→ 〈ς, det e′〉
[R-DER] 〈ς, det v〉 ∅−−→ 〈ς, v〉

[R-CTX]
〈ς, e〉 ϕ−−→ 〈ς ′, e′〉

〈ς, E[e]〉 ϕ−−→ 〈ς ′, E[e′]〉

effect, providing the underlying effect does not. However, [N-DER] asserts that
an effect does not (either strongly or weakly) interfere with a det effect only if
it does not strongly interfere with it; this is essentially how strong determinism
is enforced by using the det qualification. [N-FOL] and [N-FOR] state that a fork
effect does not interfere with another effect provided their components do not
and vice versa. [N-UNL] and [N-UNR] state that a union of effects does not interfere
with another effect if its component do not and vice versa; [N-EMP] simply states
that the empty effect interferes with no effect.

We complete this section with subtyping and subeffecting rules in Table 4.
Subtyping is reflexive. As usual, function types are contravariant in arguments
and covariant in results. Both function types and reference types allow broad-
ening of effects or regions in moving to a supertype. [E-SUB] defines subeffecting
for deterministic effects Δ. A deterministic expression can be considered as a
nondeterministic expression. The [E-DET] rule is a special case, which states ϕ1

cannot be a subeffect of {det ϕ2} unless it is deterministic (as suggested by ⊥).
The [F-] rules define subeffecting for base effects ϕ; those defining subeffecting
for side effects are standard. [F-FOK] states that a fork effect is a supereffect of
its component; it loses any information about effects being on the same thread.
[F-FOR] states that a fork effect is monotonic on subeffecting, as does [F-DET] for
det. For our purposes, the key property for subeffecting is that an effect inherits
any noninterference enjoyed by a supereffect.

3.2 Dynamic Semantics and Properties

We define the dynamic behaviour of the core calculus, and demonstrate that the
actual effects arising from the evaluation of a well-typed expression are consistent
with its statically inferred effects. The syntax is extended to include features
required for the dynamic semantics, as follows:

e ::= ... | ê e v ::= ... | ιπ ρ ::= ... | {ι}

Unlike the more standard “list of threads” technique that does not preserve
the relative nesting of thread creations [9], our extended syntax for runtime
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Table 6. Auxiliary Definitions

[STORE]
dom(Σ) = dom(ς) ∀ι ∈ dom(ς) · Γ ;Σ � ς(ι) : Σ(ι) & Δ

Γ ;Σ � ς

[PARALLEL]
Γ ;Σ � e1 : τ1 & ϕ1.θ1 Γ ;Σ � e2 : τ2 & Δ2 {fork ϕ1}.θ1 ;Δ2 = Δ

Γ ;Σ � ê1 e2 : τ2 & Δ

[REG-IN] ιπ ∈ {π} [LOCATION]
Σ(ι) = τ

Γ ;Σ � ι : ref {ι} τ & ∅.⊥

[REG-OUT]
π �= #

ιπ /∈ {#} [EQ-IDE]
for all ι appears in e · ς(ι) = ς ′(ι)

〈ς, e〉 ∼= 〈ς ′, e〉

[EQ-LOC]

〈ς, ς(ι)〉 ∼= 〈ς ′, ς ′(ι′)〉
[ι′′/ι]〈ς, e〉 ∼= [ι′′/ι′]〈ς ′, e′〉 ι′′ does not appear in ς, ς ′, e or e′

〈ς, e〉 ∼= 〈ς ′, e′〉

[EQ-PAR]

∀i ∈ 1..n · 〈ς, ei〉 ∼= 〈ς ′, eσ(i)〉 where σ is a permutation of 1..n
〈ς, e〉 ∼= 〈ς ′, e′〉

〈ς, ê1 .. ên e〉 ∼= 〈ς ′, êσ(1) .. êσ(n) e′〉

expressions introduces a novel parallel construct ê e to allow us to represent an
expression together with its threading context, that is, the threads it has forked.
This expression is right-associative, the sequential continuation e, after forking
n threads e1 . . . en, is simply written as ê1 (ê2 . . . (ên e)) or just ê1 ê2 . . . ên e.
This expression records the tree structure of forked threads. For example ê1 e2
may evaluate to ̂̂e3 e4 e2 if e1 forks a thread e3 and continues with e4; again it

may further evaluate to ̂̂e3 e4 ê5 e6 if e2 forks a thread e5 and continues with e6.
Values now include runtime store locations ι; these are annotated with the

label π corresponding to the refπ expression from where the location was al-
located. For succinctness we omit the labels wherever they are not explicitly
required. Runtime regions are sets of locations. Runtime effects correspond to
accessing the store using locations; a runtime effect is a set of side effects on loca-
tions. The conventional form of evaluation contexts is used to define the order of
evaluation of subexpressions in compound terms. Except for parallel expressions
ê e, the evaluation context is deterministic in its selection of subexpression.

E ::= [ ] | E e | (fn x => e) E | refπ E | !E | E := e | ι := E | Ê e | ê E

The small step operational semantics in Table 5 uses this form of transition:

〈ς, e〉 ϕ−−→ 〈ς ′, e′〉

where ς is the global store, e is the expression to be evaluated. A store ς maps
locations to the values stored in them, and is initially empty at the beginning
of evaluation. The store may be extended by [R-REF]; store extension is written
as ς, ι �→ v. The effect of the evaluation ϕ identifies the effect of the small step
transition, which is either empty, ∅, or a singleton side effect, {ε}.
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All possible single step transitions between configurations are given, where the
initial state for a top-level expression e has an empty store. Like conventional
operational semantics for concurrent programs [9,1], each single step transition
is atomic and thread interleaving is modelled by choice of step. The only non-
determinism (modulo choice of new locations and structure on sequential terms;
such equivalence is formally defined by the [EQ-] rules in Table 6) offered by
these evaluation contexts arises from the two choices corresponding to the par-
allel construct ê e, as either the concurrent part or the sequential part may
undergo transitions, which is implicit in the rule [R-CTX], thus capturing thread
interleaving.

The rules [R-APP] through [R-UPD] build up base cases on evaluation in a single
thread. The [R-REF] transition captures the introduction of a new location into
the store, with label annotations corresponding to the ref construct. The only
transitions which directly have an effect are those for reads and writes of the
store, namely [R-DRF] and [R-UPD]. New threads are introduced via [R-FOK]; it
causes no direct effect but introduces a new thread (ê) whose effect corresponds
to the fork effect tracked in the static type system. The value that results from
the fork step is arbitrarily chosen to be 0. If a concurrent thread ê reduces to a
value v̂, there are no further reductions available for it. Such threads are effec-
tively garbage and are easily eliminated with [R-SEQ]. Similarly, [R-DER] simply
removes the keyword det from an expression when it finishes its evaluation. [R-

DET] preserves det on expressions so that subsequent evaluation must also be
deterministic; this is necessary in proving our determinism result, though it does
not affect the evaluation. In [R-CON] a forked thread ê is relocated outside of its
parent expression; this allows the return value to be used by the parent expres-
sion (e.g. a fork in an assignment needs to return a value for the assignment to
progress). It preserves the nesting of thread creations in our syntax.

To help formalise and prove the safety properties, we use standard store typing
for reference types [20] by extending the type judgements with an additional store
typing Σ, which maps locations to their types; store typing extension is written
as Σ, ι �→ τ . All expression typing judgements will have the form:

Γ ;Σ % e : τ & ϕ

The only rule that needs to use Σ is [LOCATION]. We do not rewrite other expres-
sion typing rules in Table 1, because they do not need to do anything interesting
with the store typing—just pass it from premise to conclusion.

Table 6 provides auxiliary definitions used by the operational semantics and
the theorems. The type rule for our intermediate form for concurrent expres-
sions ê1 e2, is given by [PARALLEL]. This records the fact that concurrent threads
have fork effects, and that their combined effect is given by the union of their
effects. The standard definition [STORE] asserts that a store is well-typed if the
value stored in every location has the type predicted by the store typing. In
[STORE], we also capture the property that locations created at different program
points must be different. We connect labels used in static semantics with the lo-
cations in dynamic semantics in [REG-IN] and [REG-OUT]. The [EQ-] rules define
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an equivalence on state: [EQ-IDE] is the induction base which allows us to restrict
attention to just that part of the store which affects the value of the expression;
[EQ-LOC] does location substitution which allows us to treat two locations holding
the same value as being identical; [EQ-PAR] does shuffling which allows reordering
of forked threads. For example, ι is regarded the same as ι′ if they contain the
same value, and ê1 ê2 e3 is regarded the same as ê2 ê1 e3, because the order of
forked threads is not important.

We extend the transitions to multi-step, which have the form

〈ς, e〉 ϕ
==⇒ 〈ς ′, e′〉

where ϕ is the union of effects of finitely many steps. We prove that for a termi-
nating program, well-typedness implies determinism in its final value. The main
result is a strong determinism theorem which states:

1. the evaluation of any deterministic sub-term (det e) cannot be affected by
reductions in the external context.

2. without interleaving with its context, the result of the evaluation of det e is
unique, independently of how the threads inside e interleave.

Theorem 1 (Strong determinism)
Given all reachable states 〈ς, E[det e]〉 such that Γ ;Σ % E[det e] : τ & Δ and

Γ ;Σ % ς, if 〈ς, det e〉 ϕ1
==⇒ 〈ς1, v〉 and 〈ς, E[det e]〉 ϕ2

==⇒ 〈ς2, E′[det e]〉, then

1. there exists 〈ς2, E′[det e]〉 ϕ3
==⇒ 〈ς3, E′[v′]〉 and 〈ς1, v〉 ∼= 〈ς3, v′〉.

2. for all 〈ς, det e〉 ϕ4
==⇒ 〈ς4, v′′〉, we have 〈ς1, v〉 ∼= 〈ς4, v′′〉.

4 Discussion

4.1 Extensions

This paper has presented a core calculus and effect system, based on the approach
of Nielson et al., to allow a focus on the novel features of our approach and formal
results. In this section, we review a number of existing techniques for improving
precision and expressiveness of effect systems, and how they can be extended to
our deterministic effects.

Thread-locality. Thread-local references cannot be aliased by other threads,
thus effectively reducing interference between threads. Type systems can be used
to restrict thread-local references. For example, the lexically scoped reference
construct newπ x := e1 in e2 in [18,19] creates a new reference variable x for
use in e2 and initialises it to the value of e1. With such a construct we can confine
the reference within its scope e2 (incidentally, [18,19] do not explicitly impose
such restrictions). Consider the following example adopted from [9]:

let f = (fn x => newπ y := 0 in y := x) in
let rec = ref� (fn x => x) in

rec := fn x => (fork f 0; !rec 0); !rec 0
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This example captures the essence of a server, which creates a thread to handle
each incoming request. The core of this example is a recursive function that
creates a new thread to allocate a reference cell y and use y in handling an
incoming request (we simply use an assignment to represent the handling, and
incoming requests are not modelled), and finally calls itself recursively to handle
the next incoming request. We confine the references created at π within its
lexical scope so that request handling threads have their own memory space
isolated from one another. The effect of !rec 0 is {fork {{π} :=}, !{!}}. Since
references created at π are always thread-local, the visible effect of !rec 0 is
{!{!}}. There is no interference present in this example.

More expressive type systems such as uniqueness [10,7] or ownership [6,3,14]
may be extended with our effect system to confine thread-local references in a
more flexible way. Besides type systems, escape analysis [23] and thread sharing
analysis [17] identify thread-local locations based on program analysis, and are
often used in data race detection and other static analysis tools.

Structured Parallelism Previous type systems for deterministic parallelism
[1,2] support structured parallel programs, which may be considered as a special
case where lifetimes of threads are restricted to lexical scopes. It is easy to
support such a fork/join construct, forkjoin e1 e2, in our deterministic effect
system, by a typing rule which simply checks if two tasks may interfere:

[FORKJOIN]

Γ � e1 : τ1 & ϕ1.θ1 Γ � e2 : τ2 & ϕ2.θ2
ϕ1 �⊥ ϕ2 ϕ2 �⊥ ϕ1 θ1 ≤ θ3 θ2 ≤ θ3

Γ � forkjoin e1 e2 : τ2 & (ϕ1 ∪ ϕ2).θ3

For example, here is a Fibonacci function encoded in our calculus using the
forkjoin expression (with conditionals and basic arithmetic):

let fib = ref (fn n => n) in
fib := fn n => ( if (n < 2) n

if (n >= 2) ( newπ x := 0 in new� y := 0 in
forkjoin (x := fib (n− 1)) (y := fib (n− 2)); x + y )

); !fib 10

Because task lifetime is constrained to the forkjoin construct, it does not in-
troduce fork effects, unlike fork. The rule simply requires that the two parallel
expressions do not interfere with one another (in this example, it is easy to see
their effects are disjoint). Unlike [1,2], we can mix structured parallelism with
threads; for example, the forkjoin expression may fork threads too. This gener-
ality does not compromise safety, because thread effects will be captured in the
resulting effect of the forkjoin expression.

Polymorphism. Hindley/Milner polymorphism, as found in Standard ML and
other functional languages, is a classical technique for increasing the precision
of types and effects. It allows us to distinguish the effects of two applications of
the same function. Let us consider the following example:

let count1 = refπ 0 in let count2 = ref� 0 in
let inc = (fn x => x := !x + 1) in

fork (inc count1 ); fork (inc count2 )
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According to the type rules presented in Section 3, the type of the function
variable x of inc is ref {π,�} int , so that the effect of inc is {!{π,!}, {π,!} :=
}. This example cannot type check because the threads have the same effect
{fork {!{π,!}, {π,!} :=}}, which includes a write side-effect, so the threads
are judged to interfere with one another. Of course we know that these threads
access different reference cells and hence do not actually interfere at runtime.

The treatment of polymorphism for our type and effect is standard and has
been given in [18,19], which allows us to achieve the extra precision required
to type check this example. Using polymorphism in the previous example, the
type of the variable x is ∀ζ.ref ζ int (where ζ is a region variable) and the ef-
fect of inc becomes ∀ζ.{!ζ, ζ :=}. After instantiation of the region variable, the
effects of the two threads can be distinguished as {fork {!{π}, {π} :=}} and
{fork {!{!}, {!} :=}} respectively, which clearly do not interfere. Polymor-
phism also makes type checking modular, which is useful for checking incomplete
programs. For example, without polymorphism, the type of inc may depend on
how it is used in the last two expressions. With polymorphism, the type of inc
is independent of its use so the function may be defined in a different module.

Effect Abstraction. Nielson et al.’s effect systems use simple abstraction to
model shared locations—effectively the label of the program point at which the
reference is created. Although our effect system extends their framework, the
general approach presented in this paper is largely independent of the specific
abstraction chosen. However in practice, stronger effect abstractions and speci-
fications are needed for precision and modularity.

The precision of effect reasoning relies on aliasing reasoning, which is one of
the main sources of imprecision in type and effect systems (in fact, any static
analysis). Because any sound type system must make conservative choices about
aliasing (for example, when two references may be aliases, we must conservatively
consider them as aliases), some good programs may not type check or may sig-
nal false warnings. It is particularly difficult to distinguish references created
from the same program point. Ownership [6,3,15] and region-based [16,1] effect
systems parameterise object types with owners or regions to enrich the type
structure. For instance, elements in a data structure may be distinguished if
they have different types (parameterised with different owners/regions). DPJ
[1] also suggests a special treatment for arrays, which relies on distinguishing
element types by their array indices. Moreover, these effect systems support ex-
plicit effect specifications, which enhance program reasoning, enable separate
compilation and facilitate modular software development. Our approach in this
paper naturally supports modularity, as the effect of an expression can be in-
ferred from only itself (i.e. independent to the context/environment, see more
discussion in Section 4.2). Ownership or region-based effects may be extended in
our framework to replace the simple label-based effects; we only need to adapt
some noninterference rules for supporting these new forms of effects.
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4.2 Related Work

Much work has addressed the challenges of shared-memory concurrent program-
ming. In this section we restrict attention to directly related work, including
determinism and effects systems. Traditionally, determinism can be guaranteed
for some restricted styles of parallel programming, such as data parallel or pure
functional. Recent times have seen increased support for deterministic paral-
lelism in imperative programs. Examples include the use of dynamic analysis
[22,5], type systems [25,1,2], static analysis [26] or separation logic [8].

Dynamic analysis allows programmers to assert desired deterministic sections
and enforce determinism by runtime checks. Dynamic approaches are generally
more flexible (e.g. [5] supports semantic determinism to tolerate some controlled
nondeterminism inside a deterministic section) and precise (e.g. less or no false
positives), but they often impose considerable runtime overhead and have limited
test coverage. Type systems, on the other hand, enforce determinism statically
at compile time; they typically capture errors earlier with no runtime cost, but
may report more false warnings. Type systems require annotations, which may
increase programming effort but are useful for program specification and docu-
mentation especially for modular development of large software.

Our type system is modelled on those of Nielson et al. [18,19]. In their systems
they have provided separate effects for spawned expressions (like fork for us);
their systems also track sequencing in effects. The key difference for our effects
are that we explicitly prohibit unwanted concurrent behaviours; we only allow an
effect sequenceΔ1;Δ2 to be formed when the effects are sequentially composable.
Our use of deterministic effects appears to be novel. Unlike related work on
determinism for other concurrency models [1,2], as befits a threading model, our
approach focuses on the effect of the current thread separately from the effect
of the threads that it has forked. These approaches treat the components of a
parallel expression symmetrically, and are flow-insensitive.

Type and effect systems for tracking noninterference in programs are useful
for facilitating program reasoning and verification in sequential programs [6],
for analysing behavior of concurrent processes in process algebras [11], and for
enforcing determinism in structured parallel programs [1]. Fractional capabili-
ties [4,25] provide similar support by treating a read capability as a fraction of
the write capability and distributing capabilities on memory locations at syn-
chronisation points to ensure that each thread must have sufficient capability
to read/write these locations. They can support determinism and synchronisa-
tion but inherently lack modularity, because in order to type a function, for
instance, the capability of the calling context (thread) must be known. On the
other hand, deterministic effects may be described independently of the context
in which they are used (flow-sensitivity is captured locally by sequential com-
posability), thus making modular reasoning about incomplete programs (e.g. a
function or a class) feasible. Furthermore, our approach can support a variety of
computational effects (not just reads/writes) and check for different interference
properties. For example, it may reason about deadlocks by capturing (ordered)
lock sets as effects and the inconsistency in lock ordering as interference.
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4.3 Future Work

With this work, we provide a sound and general framework which can be used
as a basis for studying more kinds of computational effects and interference
in multithreaded programs. Two interesting directions would be: higher level
mechanisms for expressing effects, and incorporating synchronisation.

Understanding and writing multithreaded code is difficult, partly because of
the lack of specification for concurrent behaviours. Programmers typically work
with large libraries of code whose concurrent behaviours (e.g. threading, synchro-
nisation, locks, etc.) are not precisely specified. Our framework may be extended
with existing object-oriented effect systems (e.g. ownership or regions) to allow
programmers to express their high-level design intentions via effect contracts on
methods. Moreover, the ability to statically determine if two parallel computa-
tions may interfere is critical in the design of concurrent software, for instance,
the degree of concurrency can be increased by reducing thread interference and
removing redundant synchronisation.

In this paper, we have not been concerned with synchronisation/locking which
adds little to the novelty of our model (deterministic and nondeterministic ef-
fects) and does not affect the results (strong and weak determinism). Instead
we have aimed to present a foundation of a simple and general formalism for
reasoning about multithreaded programming upon which we can build more
elaborate models, including for synchronisation. For example, by capturing lock
sets [9,21] as effects, our framework can be used to reason about data races [27]
and deadlocks, which may be characterised as two kinds of thread interference.
Type-based techniques for imposing locking disciplines can detect data races [9,3]
or deadlocks [3] by requiring a shared location to be consistently guarded by a
common lock, or locks to be acquired in a fixed order; typically they, pessimisti-
cally, assume maximal concurrency. With our thread-sensitive approach, it is
possible to improve the precision of reasoning about concurrency vulnerabilities.

5 Conclusion

Threads are the dominant model in use today for general concurrent program-
ming, but they are wildly nondeterministic and notoriously difficult to under-
stand and predict, even for expert programmers. This paper proposes a novel
approach for analysing thread interference and determinism in multithreaded
programs, and presents a simple type and effect system to demonstrate our ap-
proach which can guarantee the preservation of desired deterministic behaviour.
Deterministic effects may be used by tools or as interface specifications to assist
with modular development of multithreaded software. We believe that determin-
istic effects are simple and easy enough to understand for average programmers,
thus assisting them with difficult parts of multithreaded programming.

Acknowledgements. This research is supported by an Australian Research
Council Grant DP0987236.



A Type and Effect System for Determinism in Multithreaded Programs 537

References

1. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli,
R., Overbey, J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for
Deterministic Parallel Java. In: OOPSLA (2009)

2. Bocchino Jr., R.L., Heumann, S., Honarmand, N., Adve, S.V., Adve, V.S., Welc,
A., Shpeisman, T.: Safe nondeterminism in a deterministic-by-default parallel lan-
guage. In: POPL (2011)

3. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: OOPSLA (2002)

4. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded pro-
grams. In: FSE (2009)

6. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and disjointness of type
and effect. In: OOPSLA (2002)

7. Clarke, D., Wrigstad, T.: External Uniqueness is Unique Enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–201. Springer, Heidelberg (2003)

8. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: POPL (2011)

9. Flanagan, C., Abadi, M.: Types for Safe Locking. In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 91–108. Springer, Heidelberg (1999)

10. Hogg, J.: Islands: aliasing protection in object-oriented languages. In: OOPSLA
(1991)

11. Kobayashi, N.: Type Systems for Concurrent Programs. In: Aichernig, B.K. (ed.)
Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS,
vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

12. Lea, D.: A Java fork/join framework. In: Java Grande (2000)
13. Lee, E.A.: The problem with threads. IEEE Computer 39(5) (2006)
14. Lu, Y., Potter, J.: On Ownership and Accessibility. In: Hu, Q. (ed.) ECOOP 2006.

LNCS, vol. 4067, pp. 99–123. Springer, Heidelberg (2006)
15. Lu, Y., Potter, J.: Protecting representation with effect encapsulation. In: POPL

(2006)
16. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL (1988)
17. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual effects for version-

consistent dynamic software updating and safe concurrent programming. In: POPL
(2008)

18. Nielson, F., Nielson, H.R.: Type and Effect Systems. In: Olderog, E.-R., Steffen, B.
(eds.) Correct System Design. LNCS, vol. 1710, pp. 114–136. Springer, Heidelberg
(1999)

19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

20. Pierce, B.: Types and Programming Languages. The MIT Press (2002)
21. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-

ysis for race detection. In: PLDI (2006)
22. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A Dynamic Determinism

Checker for Multithreaded Programs. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 394–409. Springer, Heidelberg (2009)

23. Salcianu, A., Rinard, M.C.: Pointer and escape analysis for multithreaded pro-
grams. In: PPOPP (2001)



538 Y. Lu et al.

24. Sutter, H., Larus, J.: Software and the concurrency revolution. Queue 3(7) (2005)
25. Terauchi, T., Aiken, A.: A capability calculus for concurrency and determinism.

TOPLAS 30(5) (2008)
26. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic Verification of Deter-

minism for Structured Parallel Programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010)

27. Xie, X., Xue, J.: Acculock: Accurate and efficient detection of data races. In: CGO
(2011)



Linear Logical Relations for Session-Based Concurrency
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Abstract. In prior work we proposed an interpretation of intuitionistic linear
logic propositions as session types for concurrent processes. The type system ob-
tained from the interpretation ensures fundamental properties of session-based
typed disciplines—most notably, type preservation, session fidelity, and global
progress. In this paper, we complement and strengthen these results by develop-
ing a theory of logical relations. Our development is based on, and is remarkably
similar to, that for functional languages, extended to an (intuitionistic) linear type
structure. A main result is that well-typed processes always terminate (strong nor-
malization). We also introduce a notion of observational equivalence for session-
typed processes. As applications, we prove that all proof conversions induced by
the logic interpretation actually express observational equivalences, and explain
how type isomorphisms resulting from linear logic equivalences are realized by
coercions between interface types of session-based concurrent systems.

1 Introduction

Modern computing systems rely heavily on the concurrent communication of distrib-
uted software artifacts. Hence, to a large extent, guaranteeing their correctness amounts
to ensuring consistent dialogues between these artifacts—an extremely challenging task
given the complex interaction patterns they usually feature. Session-based concurrency
has consolidated as a foundational approach to communication correctness: dialogues
between participants are structured into sessions, the basic units of communication;
descriptions of the interaction patterns are then abstracted as session types [11], which
are statically checked against specifications. These specifications are usually given in
the π-calculus [16], so we obtain processes communicating through so-called session
channels connecting exactly two subsystems. The discipline of session types ensures
session protocols in which actions always occur in dual pairs: when one partner sends,
the other receives; when one partner offers a selection, the other chooses; when a session
terminates, no further interaction may occur. New sessions may be dynamically created
by invocation of shared servers. While concurrency arises in the simultaneous execution
of sessions, mobility is present in the exchange of session and server names.

In session-based concurrency, typing disciplines usually guarantee communication
correctness via (forms of) subject reduction and progress properties. The former states
that well-typed processes always evolve to well-typed processes (a safety property); the
latter says that well-typed processes will never run into a stuck state (a liveness prop-
erty). In addition to ensure that sets of interactions adhere to their prescribed behavior, it
is sensible to require such interactions to be finite: while from a global perspective sys-
tems are meant to run forever, at a local level we would like participants which always
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respond within a finite amount of time, and never engage into infinite internal compu-
tations. Termination (more commonly known as strong normalization in the functional
setting) is indeed a most desirable liveness property; in session-based concurrency, it
may substantially improve the correctness guarantees provided by subject reduction
and progress. Ensuring termination in concurrent calculi, however, is known to be hard:
in (variants of) the π-calculus, proofs require heavy constraints on the language and/or
its types, often relying on ad-hoc machineries (see [8] for a survey).

In the first part of this paper, we study termination in session-based concurrency.
The starting point is our interpretation of (intutionistic) linear logic propositions as
session types [4], which has provided the first purely logical account of session types.
In the interpretation, types are assigned to names (denoting communication channels)
and describe their session protocol. This way, an object of typeA�B denotes a session
that first inputs a session channel of typeA, and then behaves asB—another interactive
behavior. An object of type A ⊗ B denotes a session that first sends a session channel
of type A and then behaves as B. The !A type is interpreted as a type of a shared server
for sessions of type A. The additive product and sum are interpreted as branch and
choice session type operators, respectively. The type system distinguishes two kinds of
type environments: a linear part Δ and an unrestricted part Γ , where weakening and
contraction principles hold for Γ but not for Δ. A type judgment is then of the form
Γ ;Δ  P :: z:C, with Γ,Δ, and z:C having pairwise disjoint domains. We refer to
Γ ;Δ and z:C as the left- and right-hand side typings, respectively. Such a judgment
asserts: process P implements session C along channel z, provided it is placed in an
environment offering the sessions declared in Γ and Δ. The classic duality of session
types is retained via the multiplicative/additive nature of linear logic propositions. This
way, e.g., ⊗ and� are dual in that using a session of one type (in the left-hand side
typing) is equivalent to implementing a type of the other (in the right-hand side typing).

The interpretation establishes a tight correspondence between session types for the
π-calculus and intuitionistic linear logic: typing rules correspond to linear sequent cal-
culus proof rules and, moreover, process reduction may be simulated by proof con-
versions and reductions, and vice versa. As a result, we obtain subject reduction from
which session fidelity follows. The type system ensures global progress, beyond the
restricted progress on a single session property obtained in pure session type systems.
Examples illustrating the expressiveness of the type system can be found in [5,4].

Our main contribution is a simple theory of logical relations for session types. The
method of logical relations has proved to be extremely productive in the functional set-
ting; in fact, properties such as termination, various forms of equivalence, confluence,
parametricity can be established via logical relations. In this presentation, we use logical
relations to prove termination for session-typed processes. Although our interpretation
assigns types to names (and not to terms, as in the typed λ-calculus), quite remarkably,
we are able to define linear logical relations which are truly defined on the structure
of types—as in logical relations for the typed λ-calculus [23,24]. A salient aspect of
our proof is that it closely follows the principles of the (linear) type system. As hinted
at above, this is in sharp contrast with known proofs of termination in the π-calculus.
To our knowledge, ours is the first proof of termination of its kind in the context of
session-based concurrency.
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Certifying termination of session-typed interacting programs is very important in
practice. In server-client interactions, for instance, it is critical for clients to be sure that
running some piece of code provided by a server (say, code embedded in web pages of
a cloud application) will not cause it to get stuck indefinitely (as in a denial-of-service
attack, or just due to some bug). Furthermore, strengthening session-based type disci-
plines with termination guarantees should be highly beneficial for the increasingly grow-
ing number of implementations (libraries, programming language extensions) based on
session types foundations—see, e.g., [12,17,20].

In the second part of the paper, we present two applications of the basic theory,
which bear witness to its complementarity with the other properties derived from the
interpretation. The applications rely on a notion of typed observational equivalence,
which we define following the intuitive meaning of type judgements. The first appli-
cation concerns the proof conversions induced by the logic interpretation. In [4] a set
of such conversions was shown to correspond to either structural congruence or reduc-
tion in the π-calculus. The conversions we study here (not considered in [4]) cannot
be explained similarly: they induce forms of “prefix commutation” on typed processes
which appear rather counterintuitive. We prove soundness of the proof conversions with
respect to the observational equivalence, i.e., processes induced by proof conversions
are shown to be observationally equivalent. This result thus elegantly explains subtle
forms of causality that arise in the (interleaved) execution of concurrent sessions. In
our second application, we explain how type isomorphisms resulting from linear logic
equivalences are realized by coercions between interface types of session-based concur-
rent systems. We provide a simple behavioral characterization of these isomorphisms,
by relying on typed observational equivalence. Type isomorphisms can be seen as a val-
idation of our interpretation with respect to basic linear logic principles. For instance,
the apparent asymmetry in the interpretation ofA⊗B is clarified here via an appropriate
isomorphism. The two applications thus shed further light on the relationship between
linear logic propositions and structured communications. Termination is central to both
of them, intuitively because in the bisimulation game strong transitions can be matched
by weak transitions which are always finite.

The rest of the paper is structured as follows. Section 2 presents our process model,
a synchronous π-calculus with guarded choice. Section 3 recalls the type system de-
rived from the logical interpretation and main results from [4]. Section 4 presents linear
logical relations and the termination result. Section 5 introduces a typed observational
equivalence for processes. Section 6 discusses soundness of proof conversions and type
isomorphisms. Section 7 discusses related work and Section 8 collects final remarks.

2 Process Model: Syntax and Semantics

We introduce the syntax and operational semantics of the synchronous π-calculus [22]
extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (x, y, z, u, v), the set of
processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x.inl;P | x.inr;P | x.case(P,Q)
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The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction)
comprise the static fragment of any π-calculus. We then have x〈y〉.P (send name y on
x and proceed as P ), x(y).P (receive a name z on x and proceed as P with parameter y
replaced by z), and !x(y).P which denotes replicated (persistent) input. The forwarding
construct [x↔ y] equates names x and y; it is a primitive representation of a copycat
process, akin to the link processes used in internal mobility encodings of name pass-
ing [3]. Also, this construct allows for a simple identity axiom in the type system [25].
The remaining three operators define a minimal labeled choice mechanism, comparable
to the n-ary branching constructs found in standard session π-calculi (see, e.g., [11]).
Without loss of generality we restrict our model to binary choice. In restriction (νy)P
and input x(y).P the distinguished occurrence of name y is binding, with scope P . The
set of free names of a process P is denoted fn(P ). A process is closed if it does not con-
tain free occurrences of names. We identify process up to consistent renaming of bound
names, writing ≡α for this congruence. We write P{x/y} for the capture-avoiding sub-
stitution of x for y in P . While structural congruence expresses basic identities on the
structure of processes, reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q) is the least congruence relation on
processes such that

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(νx)0 ≡ 0 x �∈ fn(P ) ⇒ P | (νx)Q ≡ (νx)(P | Q)
(νx)(νy)P ≡ (νy)(νx)P [x↔y] ≡ [y↔x]

Definition 2.3. Reduction (P → Q) is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P ) → P{y/x} (x �= y) Q→ Q′ ⇒ P | Q→ P | Q′

P → Q⇒ (νy)P → (νy)Q P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q
x.inr;P | x.case(Q,R) → P | R x.inl;P | x.case(Q,R) → P | Q

By definition, reduction is closed under ≡. It specifies the computations a process per-
forms on its own. To characterize the interactions of a process with its environment,
we extend the early transition system for the π-calculus [22] with labels and transition
rules for the choice and forwarding constructs. A transition P

α→ Q denotes that P may
evolve to Q by performing the action represented by label α. Labels are given by

α ::= x(y) | x〈y〉 | (νy)x〈y〉 | x.inl | x.inl | x.inr | x.inr | τ

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/
right selections x.inl and x.inr. The bound output (νy)x〈y〉 denotes extrusion of a fresh
name y along (channel) x. Internal action is denoted by τ . In general, an action α (α)
requires a matching α (α) in the environment to enable progress, as specified by the
transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound
names, respectively, as usual. We denote by s(α) the subject of α (e.g., x in x〈y〉).
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(out)

x〈y〉.P x〈y〉−−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(id)
(νx)([x↔y] | P )

τ−→ P{y/x}
(par)

P
α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

α−→ Q

(νy)P
α−→ (νy)Q

(open)

P
x〈y〉−−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(lout)

x.inl;P
x.inl−−→ P

(rout)

x.inr;P
x.inr−−→ P

(lin)

x.case(P,Q)
x.inl−−→ P

(rin)

x.case(P,Q)
x.inr−−→ Q

Fig. 1. π-calculus Labeled Transition System

Definition 2.4 (Labeled Transition System). The relation labeled transition (P
α→ Q)

is defined by the rules in Fig. 1, subject to the side conditions: in rule (res), we require
y �∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we require
y �∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We write ρ1ρ2 for the composition of relations ρ1, ρ2. Weak transitions are defined as
usual: we write =⇒ for the reflexive, transitive closure of

τ−→. Given α �= τ , notation
α=⇒ stands for =⇒ α−→=⇒ and

τ=⇒ stands for =⇒. We recall some basic facts about
reduction, structural congruence, and labeled transition: closure of labeled transitions
under structural congruence, and coincidence of τ -labeled transition and reduction [22]:
(1) if P ≡ α−→ Q then P

α−→≡ Q, and (2) P → Q if and only if P
τ−→≡ Q.

3 Session Types as Dual Intutionistic Linear Logic Propositions

As anticipated in the introduction, the type structure coincides with intuitionistic linear
logic [10,2], omitting atomic formulas and the additive constants � and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A�B | A � B | A⊕B

Types are assigned to (channel) names, and are interpreted as a form of session types;
an assignment x:A enforces the use of name x according to disciplineA. A⊗B types a
session channel that first performs an output to its partner (sending a session channel of
type A) before proceeding as specified by B. Similarly, A�B types a session channel
that first performs an input from its partner (receiving a session channel of type A)
before proceeding as specified by B. Type 1 means that the session terminated, no
further interaction will take place on it; names of type 1 may still be passed around
in sessions, as opaque values. A�B types a session channel that offers its partner a
choice between anA behavior (“left” choice) and aB behavior (“right” choice). Dually,
A⊕ B types a session that either selects “left” and then proceeds as specified by A, or
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Γ ;x:A 	 [x↔z] :: z:A
(Tid)

Γ ;Δ 	 P :: T

Γ ;Δ,x:1 	 P :: T
(T1L)

Γ ; · 	 0 :: x:1
(T1R)

Γ ;Δ, y:A,x:B 	 P :: T

Γ ;Δ,x:A⊗B 	 x(y).P :: T
(T⊗L)

Γ ;Δ 	 P :: y:A Γ ;Δ′ 	 Q :: x:B

Γ ;Δ,Δ′ 	 (νy)x〈y〉.(P | Q) :: x:A⊗B
(T⊗R)

Γ ;Δ 	 P :: y:A Γ ;Δ′, x:B 	 Q :: T

Γ ;Δ,Δ′, x:A�B 	 (νy)x〈y〉.(P | Q) :: T
(T�L)

Γ ;Δ, y:A 	 P :: x:B

Γ ;Δ 	 x(y).P :: x:A�B
(T�R)

Γ ;Δ 	 P :: x:A Γ ;Δ′, x:A 	 Q :: T

Γ ;Δ,Δ′ 	 (νx)(P | Q) :: T
(Tcut)

Γ ; · 	 P :: y:A Γ, u:A;Δ 	 Q :: T

Γ ;Δ 	 (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A;Δ, y:A 	 P :: T

Γ, u:A;Δ 	 (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A;Δ 	 P{u/x} :: T

Γ ;Δ,x:!A 	 P :: T
(T!L)

Γ ; · 	 Q :: y:A

Γ ; · 	 !x(y).Q :: x:!A
(T!R)

Γ ;Δ,x:A 	 P :: T Γ ;Δ,x:B 	 Q :: T

Γ ;Δ,x:A⊕B 	 x.case(P,Q) :: T
(T⊕L)

Γ ;Δ 	 P :: x:A Γ ;Δ 	 Q :: x:B

Γ ;Δ 	 x.case(P,Q) :: x:A�B
(T�R)

Γ ;Δ,x:A 	 P :: T

Γ ;Δ,x:A�B 	 x.inl;P :: T
(T�L1)

Γ ;Δ 	 P :: x:A

Γ ;Δ 	 x.inl;P :: x:A⊕B
(T⊕R1)

Γ ;Δ,x:B 	 P :: T

Γ ;Δ,x:A�B 	 x.inr;P :: T
(T�L2)

Γ ;Δ 	 P :: x:B

Γ ;Δ 	 x.inr;P :: x:A⊕B
(T⊕R2)

Fig. 2. The Type System πDILL

else selects “right”, and then proceeds as specified by B. Type !A types a shared (non-
linearized) channel, to be used by a server for spawning an arbitrary number of new
sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments of the form x:A, where x is a
name and A a type, the names being pairwise disjoint. Two kinds of type environments
are subject to different structural properties: a linear part Δ and an unrestricted part Γ ,
where weakening and contraction principles hold for Γ but not for Δ. A type judgment
is of the form Γ ;Δ  P :: z:C where name declarations in Γ are always propagated
unchanged to all premises in the typing rules, while name declarations inΔ are handled
multiplicatively or additively, depending on the nature of the type being defined. The
domains of Γ,Δ and z:C are required to be pairwise disjoint. Such a judgment asserts:
P is ensured to safely provide a usage of name z according to the behavior specified by
type C, whenever composed with any process environment providing usages of names
according to the behaviors specified by names in Γ ;Δ. As shown in [4], in our case
safety ensures that behavior is free of communication errors and deadlock. A client Q
that relies on external services and does not provide any is typed as Γ ;Δ  Q :: −:1.
In general, a process P such that Γ ;Δ  P :: z:C represents a system providing
behavior C at channel z, building on “services” declared in Γ ;Δ. A system typed as
Γ ;Δ  R :: z:!A represents a shared server. Interestingly, the asymmetry induced by
the intuitionistic interpretation of !A enforces locality of shared names but not of linear
(session names), which exactly corresponds to the intended model of sessions.
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The rules of our type system πDILL are given in Fig. 2. We use T, S for right-
hand side singleton environments (e.g., z:C). Rule (Tid) defines identity in terms of
the forwarding construct. Since in rule (T⊗R) the sent name is always fresh, our typed
calculus conforms to an internal mobility discipline [3], without loss of expressiveness.
The composition rules (Tcut/Tcut!) follow the “composition plus hiding” principle [1],
extended to a name passing setting. Other linear typing rules for parallel composition
(as in, e.g., [13]) are derivable—see [4]. As we consider π-calculus terms up to struc-
tural congruence, typability is closed under ≡ by definition. πDILL enjoys the usual
properties of equivariance, weakening, and contraction in Γ . The coverage property also
holds: if Γ ;Δ  P :: z:A then fn(P ) ⊆ Γ ∪Δ∪{z}. In the presence of type-annotated
restrictions (νx:A)P , as usual in typed π-calculi [22], type-checking is decidable.

Session type constructors thus correspond directly to intuitionistic linear logic con-
nectives. By erasing processes, typing judgments in πDILL correspond to DILL, a
sequent formulation of Barber’s dual intuitionistic linear logic [2,6]. Below we only
provide some intuitions of this correspondence; see [4] for details.
DILL is equipped with a faithful proof term assignment, so sequents have the form

Γ ;Δ  D : C, where Γ is the unrestricted context,Δ the linear context,C a formula (=
type), andD the proof term that faithfully represents the derivation of Γ ;Δ  C. Given
the parallel structure of the two systems, if Γ ;Δ  D:A is derivable in DILL then there
is a process P and a name z such that Γ ;Δ  P :: z:A is derivable in πDILL. The
converse also holds: if Γ ;Δ  P :: z:A is derivable in πDILL there is a derivation D
that proves Γ ;Δ  D : A. This correspondence is made explicit by a translation from
faithful proof terms to processes: given Γ ;Δ  D : C, we write D̂z for the translation
of D such that Γ ;Δ  D̂z :: z:C. More precisely, we have typed extraction: we write
Γ ;Δ  D � P :: z:A, meaning “proof D extracts to P ”, whenever Γ ;Δ  D : A
and Γ ;Δ  P :: z:A and P ≡ D̂z . Typed extraction is unique up to structural con-
gruence. As processes are related by structural and computational rules, namely those
involved in the definition of ≡ and →, derivations in DILL are related by structural
and computational rules, that express certain sound proof transformations that arise in
cut-elimination. Reductions generally take place when a right rule meets a left rule for
the same connective, and correspond to reduction steps in the process term assignment.
Similarly, structural conversions in DILL correspond to structural equivalences in the
π-calculus, since they just change the order of cuts.

We now recall some main results from [4]: subject reduction and progress.
For any P , define live(P ) iff P ≡ (νñ)(π.Q | R), for some sequence of names ñ, a
process R, and a non-replicated guarded process π.Q.

Theorem 3.2 (Subject Reduction). If Γ ;Δ  P ::z:A and P→Q then Γ ;Δ  Q::z:A.

Theorem 3.3 (Progress). If ·; ·  P ::z:1 and live(P ) then exists aQ such thatP → Q.

4 Linear Logical Relations and Termination of Typed Processes

A process P terminates (written P⇓) if there is no infinite reduction path from P . Here
we introduce a theory of linear logical relations for session types, and use it to prove that
well-typed processes always terminate. The proof can be summarized into two steps:
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(i) Definition of a logical predicate on processes, by induction on the structure of types.
Processes in the predicate are terminating by definition. (ii) Proof that every well-typed
process is in the logical predicate.

We begin by stating an extension to ≡, which will be useful in our developments.

Definition 4.1. We write ≡! for the least congruence relation on processes which re-
sults from extending structural congruence ≡ (Def. 2.2) with the following axioms:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2.
(νu)(!u(y).P | (νv)(!v(z).Q | R))

≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))
3. (νu)(!u(y).Q | P ) ≡! P if u �∈ fn(P )

These axioms are called the sharpened replication axioms [22] and are known to
express sound behavioral equivalences up to strong bisimilarity in our typed setting.
Intuitively, (1) and (2) represent principles for the distribution of shared servers among
processes, while (3) formalizes the garbage collection of shared servers which cannot
be invoked by any process. Notice that ≡! was defined in [4] (Def 4.3), and noted !s.

Proposition 4.2. Let P and Q be well-typed processes.

1. If P −→ P ′ and P ≡! Q then there is Q′ such that Q −→ Q′ and P ′ ≡! Q
′.

2. If P
α−→ P ′ and P ≡! Q then there is Q′ such that Q

α−→ Q′ and P ′ ≡! Q
′.

Proposition 4.3. If P⇓ and P ≡! Q then Q⇓.

First Step: The Logical Predicate and its Closure Properties. We define a logical pred-
icate on well-typed processes and establish a few associated closure properties. More
precisely, we define a sequent-indexed family of sets of processes (process predicates)
so that a set of processes L[Γ ;Δ  T ] enjoying certain closure properties is assigned
to any sequent Γ ;Δ  T . The logical predicate is defined by induction on the structure
of sequents. The base case, given below, considers sequents with empty left-hand side
typing, where we abbreviate L[Γ ;Δ  T ] by L[T ]. We write P �−→ to mean that P
cannot reduce; it can perform visible actions, though.

Definition 4.4 (Logical Predicate - Base case). For any type T = z:A we inductively
define L[T ] as the set of all processes P such that P⇓ and ·; ·  P :: T and

P ∈ L[z:1] if ∀P ′.(P =⇒ P ′ ∧ P ′ �−→) ⇒ P ′ ≡! 0

P ∈ L[z:A�B] if ∀P ′y.(P
z(y)
=⇒ P ′) ⇒ ∀Q ∈ L[y:A].(νy)(P ′ | Q) ∈ L[z:B]

P ∈ L[z:A⊗B] if ∀P ′y.(P
(νy)z〈y〉

=⇒ P ′) ⇒
∃P1, P2.(P ′ ≡! P1 | P2 ∧ P1 ∈ L[y:A] ∧ P2 ∈ L[z:B])

P ∈ L[z:!A] if ∀P ′.(P =⇒ P ′) ⇒ ∃P1.(P ′ ≡! !z(y).P1 ∧ P1 ∈ L[y:A])

P ∈ L[z:A�B] if (∀P ′.(P z.inl=⇒ P ′) ⇒ P ′ ∈ L[z:A])

∧ (∀P ′.(P z.inr=⇒ P ′) ⇒ P ′ ∈ L[z:B])

P ∈ L[z:A⊕B] if (∀P ′.(P z.inl=⇒ P ′) ⇒ P ′ ∈ L[z:A])

∧ (∀P ′.(P z.inr=⇒ P ′) ⇒ P ′ ∈ L[z:B])
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Some comments are in order. First, observe how the definition of L[T ] relies on both
reductions and labeled transitions, and the fact that processes in the logical predicate
are terminating by definition. Also, notice that the use of ≡! in L[z:1] is justified by
the fact that a terminated process may be well the composition of a number of shared
servers with no potential clients. Using suitable processes that “close” the derivative of
the transition, in L[z:A�B] and L[z:A ⊗ B] we adhere to the linear logic interpreta-
tions for input and output types, respectively. In particular, in L[z:A ⊗ B] it is worth
observing how≡! is used to “split” the derivative of the transition, thus preserving con-
sistency with the separate, non-interfering nature of the multiplicative conjunction. The
definition of L[z:!A] is also rather structural, relying again on the distribution principles
embodied in ≡!. The definition of L[z:A�B] and L[z:A⊕B] are self-explanatory.

Below, we extend the logical predicate to arbitrary typing environments. Observe
how we adhere to the principles of rules (Tcut) and (Tcut!) for this purpose.

Definition 4.5 (Logical Predicate - Inductive case). For any sequent Γ ;Δ  T with a
non-empty left hand side environment, we define L[Γ ;Δ  T ] to be the set of processes
inductively defined as follows:

P ∈ L[Γ ; y:A,Δ  T ] if ∀R ∈ L[y:A].(νy)(R | P ) ∈ L[Γ ;Δ  T ]
P ∈ L[u:A,Γ ;Δ  T ] if ∀R ∈ L[y:A].(νu)(!u(y).R | P ) ∈ L[Γ ;Δ  T ]

We often rely on the following alternative characterization of the sets L[Γ ;Δ  T ].

Definition 4.6. Let Γ = u1:B1, . . . , uk:Bk, and Δ = x1:A1, . . . , xn:An be a non-
linear and a linear typing environment, resp. Letting I ={1, . . . , k} and J ={1, . . . , n},
we define the sets of processes CΓ and CΔ as:

CΓ
def
=

{ ∏
i∈I

!ui(yi).Ri | Ri ∈ L[yi:Bi]
} CΔ

def
=

{ ∏
j∈J

Qj | Qj ∈ L[xj :Aj ]
}

Because of the rôle of left-hand side typing environments, processes in CΓ and CΔ are
then logical representatives of the behavior specified by Γ and Δ, respectively.

Proposition 4.7. Let Γ and Δ be a non-linear and a linear typing environment, resp.
Then, for all Q ∈ CΓ and for all R ∈ CΔ, we have Q⇓ and R⇓. Moreover, Q �−→.

The proof of the following lemma is immediate from Definitions 4.5 and 4.6.

Lemma 4.8. Let Γ ;Δ  P ::T , with Γ=u1:B1, . . . , uk:Bk andΔ=x1:A1, . . . , xn:An.
We have: P ∈ L[Γ ;Δ  T ] iff ∀Q ∈ CΓ , ∀R ∈ CΔ, (νũ, x̃)(P | Q | R) ∈ L[T ].

The following closure properties will be of the essence in the second step of the
proof, when we will show that well-typed processes are in the logical predicate. We
first state closure of L[T ] with respect to substitution and structural congruence:

Proposition 4.9. Let A be a type. If P ∈ L[z:A] then P{x/z} ∈ L[x:A].

Proposition 4.10. Let P,Q be well-typed. If P ∈ L[T ] and P ≡ Q then Q ∈ L[T ].

The next proposition provides a basic liveness guarantee for certain typed processes.



548 J.A. Pérez et al.

Proposition 4.11. Let P ∈ L[z:T ] with T ∈ {A ⊗ B,A�B,A ⊕ B,A � B}. Then,
there exist α, P ′ such that (i) P

α=⇒ P ′, and (ii) if T=A ⊗ B then α = (νy)z〈y〉; if
T=A�B then α = z(y); if T=A⊕B then α = z.inr or α = z.inl; if T=A�B then
α = z.inr or α = z.inl.

We now extend Proposition 4.10 so as to state closure of L[T ] under ≡!.

Proposition 4.12. Let P,Q be well-typed. If P ∈ L[T ] and P ≡! Q then Q ∈ L[T ].

We now state forward and backward closure of the logical predicate with respect to
reduction; these are typical ingredients in the method of logical relations.

Proposition 4.13 (Forward Closure). If P ∈ L[T ] and P −→ P ′ then P ′ ∈ L[T ].

Proposition 4.14 (Backward Closure). If for all Pi such that P −→ Pi we have Pi ∈
L[T ] then P ∈ L[T ].

The final closure property concerns parallel composition of processes:

Proposition 4.15 (Weakening). Let P,Q be processes such that P ∈ L[T ] and Q ∈
L[−:1]. Then, P | Q ∈ L[T ].

Second Step: Well-typed Processes are in the Logical Predicate. We now prove that
well-typed processes are in the logical predicate. Because of the definition of the pred-
icate, termination of well-typed processes will follow as a consequence.

Lemma 4.16. Let P be a process. If Γ ;Δ  P :: T then P ∈ L[Γ ;Δ  T ].

Proof. By induction on the derivation of Γ ;Δ  P :: T , with a case analysis on the last
typing rule used. We have 18 cases to check; in all cases, we use Lemma 4.8 to show that
every M = (νũ, x̃)(P | G | D) with G ∈ CΓ and D ∈ CΔ, is in L[T ]. In case (Tid),
we use Proposition 4.9 (closure wrt substitution) and Proposition 4.14 (backward clo-
sure). In cases (T⊗L), (T�L), (Tcopy), (T⊕L), (T�L1), and (T�L2), we proceed in two
steps: first, using Proposition 4.13 (forward closure) we show that every M ′′ such that
M =⇒ M ′′ is in L[T ]; then, we use this result in combination with Proposition 4.14
(backward closure) to conclude that M ∈ L[T ]. In cases (T1R), (T⊗R), (T�R),
(T!R), (T⊕R1), and (T⊕R2), we show that M conforms to a specific case of Defini-
tion 4.4. Case (T1L) uses Proposition 4.15 (weakening). Cases (T⊗L), (T�L), (T⊕L),
and (T�L1) use the liveness guarantee given by Proposition 4.11. Cases (Tcopy), (T!L),
and (Tcut!) use Proposition 4.10 (closure under ≡). Cases (Tcut), (T�R), and (T!R)
use Proposition 4.12 (closure under ≡!). See [18] for details. "#

We now state the main result of this section: well-typed processes terminate.

Theorem 4.17 (Termination). If Γ ;Δ  P :: T then P⇓.

Proof. Follows from previously proven facts. By assumption, we have Γ ;Δ  P :: T .
Using this and Lemma 4.16 we obtain P ∈ L[Γ ;Δ  T ]. Pick any G ∈ CΓ , D ∈
CΔ: combining P ∈ L[Γ ;Δ  T ] and Lemma 4.8 gives us (νũ, x̃)(P | G | D) ∈
L[T ]. By using this, together with Definition 4.4, we infer (νũ, x̃)(P | G | D)⇓. Since
Proposition 4.7 ensures thatG⇓ andD⇓, this latter result allows us to concludeP⇓. "#
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5 An Observational Equivalence for Typed Processes

Here we introduce typed context bisimilarity, an observational equivalence over typed
processes. It is defined contextually, as a binary relation indexed over sequents. Rough-
ly, typed context bisimilarity equates two processes if, once coupled with all of their
requirements (as described by the left-hand side typing), they perform the same actions
(as described by the right-hand side typing). To formalize this intuition, we rely on a
combination of inductive and coinductive arguments. The base case of the definition
covers the cases in which the left-hand side typing environment is empty (i.e., the pro-
cess requires nothing from its context to execute): the bisimulation game is then defined
by induction on the structure of the (right-hand side) typing, following the expected be-
havior in each case. The inductive case covers the cases in which the left-hand side
typing environment is not empty: the tested processes are put in parallel with processes
implementing the behaviors described in the left-hand side typing.

Below, we use S to range over sequents of the form Γ ;Δ  T . In the following, we
write  T to stand for · ; ·  T . The definition of typed context bisimilarity relies on
type-respecting relations, which are indexed by sequents S.

Definition 5.1 (Type-respecting relations). A type-respecting binary relation over
processes, written {RS}S , is defined as a family of relations over processes indexed
by S. We often write R to refer to the whole family. We write Γ ;Δ  P RQ ::T to
mean that (i) Γ ;Δ  P :: T and Γ ;Δ  Q :: T , and (ii) (P,Q) ∈ RΓ ;Δ�T .

Definition 5.2 (Typed Context Bisimilarity). A symmetric type-respecting binary re-
lation over processes R is a typed context bisimulation if
Base Cases
Tau  P RQ ::T implies that for all P ′ such that P

τ−→ P ′, there exists a Q′ such
that Q =⇒ Q′ and  P ′RQ′ ::T

Input  P RQ ::x:A�B implies that for all P ′ such that P
x(y)−−−→ P ′, there exists a

Q′ such that Q
x(y)
=⇒ Q′ and for all R such that  R :: y:A,

 (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Output  P RQ ::x:A ⊗ B implies that for all P ′ such that P
(νy)x〈y〉−−−−−→ P ′, there

exists a Q′ such that Q
(νy)x〈y〉

=⇒ Q′ and for all R such that ·; y:A  R :: −:1,
 (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Replication  P RQ ::x:!A implies that for all P ′ such that P
x(z)−−−→ P ′, there exists

a Q′ such that Q
x(z)
=⇒ Q′ and, for all R such that ·; y:A  R :: −:1,

 (νz)(P ′ | R)R (νz)(Q′ | R) ::x:!A.
Choice  P RQ ::x:A�B implies both:

– If P
x.inl−−−→ P ′ then  P ′RQ′ ::x:A, for some Q′ such that Q

x.inl=⇒ Q′; and

– If P
x.inr−−−→ P ′ then  P ′RQ′ ::x:B, for some Q′ such that Q

x.inr=⇒ Q′.
Selection  P RQ ::x:A⊕B implies both:

– If P
x.inl−−−→ P ′ then  P ′RQ′ ::x:A for some Q′ such that Q

x.inl=⇒ Q′; and

– If P
x.inr−−−→ P ′ then  P ′RQ′ ::x:B for some Q′ such that Q

x.inr=⇒ Q′.
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Inductive Cases
Linear Names Γ ;Δ, y:A  P RQ ::T implies that

for all R such that  R :: y:A, then Γ ;Δ  (νy)(P | R)R (νy)(Q | R) ::T .
Shared Names Γ, u:A;Δ  P RQ ::T implies that for all R such that  R :: z:A,

then Γ ;Δ  (νu)(!u(z).R | P )R (νu)(!u(z).R | Q) ::T .

We write ≈ for the union of all typed context bisimulations, and call it typed context
bisimilarity.

In all cases, a strong action is matched with a weak transition. In proofs, we shall
exploit the fact that by virtue of Theorem 4.17 such a weak transition is always finite.
In the base case, the clauses for input, output, and replication decree the closure of the
tested processes with a processR that “complements” the continuation of the tested be-
havior; observe the very similar treatment for output and replication (whereR depends
on some behavior), and contrast it with that for input (where R provides the behav-
ior). Also, notice how all clauses but that for replication are defined coinductively for
the tested processes (in the sense that closed evolutions should be in the relation), but
inductively on the type indexing the relation—the clause for replication may be thus
considered as the only fully coinductive one. Also worth noticing is how the closures
defined in such clauses (and those defined by the clauses in the inductive case) follow
closely the spirit of (Tcut/Tcut!) rules in the type system.

Definition 5.2 immediately suggests a proof technique for typed context bisimilar-
ity. First, close the processes with representatives of their context, applying repeatedly
the inductive case until the left-hand side typing is empty. Then, following the usual
co-inductive proof technique, show a type-respecting relation containing the processes
obtained in the first step. The following results are useful to realize these intuitions.

We use K,K ′ to range over (process) contexts, i.e., processes with a hole [·]. In
particular, we use parallel contexts: contexts in which the hole can only occur in parallel.

Definition 5.3. Let Γ and Δ be non-empty typing environments. The set of parallel
contexts KΓ ;Δ is defined by induction on the typing environments as follows:

K ∈ K∅;∅ if K = [·]
K ∈ KΓ,u:B; Δ if K ≡ (νu)(K ′ | !u(y).R) for some K ′ ∈ KΓ ;Δ and  R :: y:B
K ∈ KΓ ; Δ,x:A if K ≡ (νx)(K ′ | S) for some K ′ ∈ KΓ ;Δ and  S :: x:A

Proposition 5.4. Let Γ = u1:B1, . . . , uk:Bk and Δ = x1:A1, . . . , xn:An be typing
environments. Letting I = {1, . . . , k} and J = {1, . . . , n}, we say that K ∈ KΓ ;Δ if

K ≡ (νũ, x̃)([·] |
∏
i∈I

!ui(yi).Ri |
∏
j∈J

Sj) with  Ri :: yi:Bi and  Sj :: xj :Aj

The following proposition allows us to move from an (inductive) proof under non-
empty typing environments Γ,Δ to a (coinductive) proof under empty environments,
with pairs of processes within parallel contexts in KΓ ;Δ.

Proposition 5.5. Γ ;Δ  P ≈ Q ::T implies  K[P ] ≈ K[Q] ::T , for every parallel
context K ∈ KΓ ;Δ.
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(νx)(D̂ | (νy)z〈y〉.(Ê | F̂ )) �c (νy)z〈y〉.((νx)(D̂ | Ê) | F̂ )

(νx)(D̂ | y(z).Ê) �c y(z).(νx)(D̂ | Ê)

(νx)(D̂ | y.inl; Ê) �c y.inl; (νx)(D̂ | Ê)

(νx)(D̂ | (νy)u〈y〉.Ê) �c (νy)u〈y〉.(νx)(D̂ | Ê)

(νx)(D̂ | y.case(Ê, F̂ )) �c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂ ))

(νu)((!u(y).D̂) | 0) �c 0

(νu)((!u(y).D̂) | (νz)x〈z〉.(Ê | F̂ )) �c (νz)x〈z〉.((νu)((!u(y).D̂) | Ê) |(νu)((!u(y).D̂) | F̂ ))

(νu)((!u(y).D̂) | y(z).Ê) �c y(z).(νu)((!u(y).D̂) | Ê)

(νu)((!u(z).D̂) | y.inl; Ê) �c y.inl; (νu)((!u(z).D̂) | Ê)

(νu)((!u(z).D̂) | y.case(Ê, F̂ )) �c y.case((νu)((!u(z).D̂) | Ê), (νu)((!u(z).D̂) | F̂ ))

(νu)((!u(y).D̂) | !x(z).Ê) �c !x(z).(νu)((!u(y).D̂) | Ê)

(νu)((!u(y).D̂) | (νy)v〈y〉.Ê) �c (νy)v〈y〉.(νu)((!u(y).D̂) | Ê))
(νw)z〈w〉.(R | (νy)x〈y〉.(P | Q)) �c (νy)x〈y〉.(P | (νw)z〈w〉.(R | Q))

x(y).z(w).P �c z(w).x(y).P

Fig. 3. A sample of process equalities induced by proof conversions

Definition 5.6. A type-respecting relationR is an equivalence if it enjoys the following
three properties:

– Reflexivity: Γ ;Δ  P :: T implies Γ ;Δ  P RP ::T ;
– Symmetry: Γ ;Δ  P RQ ::T implies Γ ;Δ  QRP ::T ;
– Transitivity:Γ ;Δ  P RP ′ ::T and Γ ;Δ  P ′RQ ::T implyΓ ;Δ  P RQ ::T .

Proposition 5.7. ≈ is an equivalence relation.

In our setting, a notion of congruence for type-respecting relations turns out to be
quite type-directed: both right- and left-hand side typings are quite explicit on the com-
positionality properties of processes. Defining such a notion is relatively straightfor-
ward: unsurprisingly, it mirrors the structure of the typing rules. For space reasons, we
elide the details; see [18] for the definition and proof that ≈ is indeed a congruence.

6 Soundness of Proof Conversions and Type Isomorphisms

We use typed context bisimilarity—together with termination, subject reduction, and
progress results—to clarify two issues derived from the logical interpretation: sound-
ness of proof conversions and observational characterizations of type isomorphisms.

Soundness of Proof Conversions. Derivations in DILL are related by structural and
computational rules that express sound proof transformations that arise in cut-elim-
ination. As mentioned in Section 3 (and fully detailed in [4]), in our interpretation re-
ductions and structural conversions in DILL correspond to reductions and structural
congruence in the π-calculus. There is, however, a group of conversions in DILL not
considered in [4] and which do not correspond to neither reduction or structural congru-
ence in the process side. We call them proof conversions: they induce a congruence on
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typed processes, denoted !c. In this section, we show soundness of !c with respect to
≈, that is, processes extracted from proof conversions are typed contextually bisimilar.

We illustrate the proof conversions and their associated π-calculus processes; Fig. 3
presents a sample of process equalities extracted from them. Each equality M !c N
is associated to appropriate right- and left-hand side typings; this way, e.g., the last
equality in Fig. 3—associated to two applications of rule (T⊗L)—could be stated as

· ;x:A⊗B, z:C ⊗D  x(y).z(w).P !c z(w).x(y).P :: T

where A,B,C,D are types and T is a right-hand side typing. For the sake of illus-
tration, however, in Fig. 3 these typings are elided, as we would like to stress on the
consequences of conversions on the process side. Proof conversions describe the inter-
play of two rules in a type-preserving way: regardless of the order in which the rules are
applied, they lead to typing derivations with the same right- and left-hand side typings,
but with syntactically different processes. We consider two kinds of proof conversions.
The first kind captures the interplay of left/right rules with Tcut/Tcut! rules; the first
twelve rows in Fig. 3 are examples (the first five involve (Tcut), the other seven involve
(Tcut!)). The second kind captures the interplay of left and right rules with each other;
typically they describe type-preserving transformations which commute actions from
non-interfering sessions inside a process (the last two rows in Fig. 3 are examples).

Let us comment on the fifth process equality in Fig. 3. It corresponds to the in-
terplay of rules (Tcut) and (T⊕L), under typing assumptions Γ ;Δ1  D̂ :: x:C,
Γ ;Δ2, y:A, x:C  Ê::T , and Γ ;Δ2, y:A, x:C  F̂ ::T . Letting Δ = Δ1, Δ2, we have:

Γ ;Δ, y:A⊕B  (νx)(D̂ |y.case(Ê, F̂ ))︸ ︷︷ ︸
(1)

!c y.case((νx)(D̂ |Ê), (νx)(D̂ | F̂ ))︸ ︷︷ ︸
(2)

:: T

with types T,A,B, andC, linear environmentsΔ1, Δ2, and non-linear environmentΓ .
Read from (1) to (2), this conversion can be interpreted as the “promotion” of the

choice at y, which causes D̂ to get “delayed” as a result. However, such a delay is seen
to be only apparent once we examine the individual typing of D̂ and the whole typing
derivation. The first typing assumption says that D̂ is able to offer behavior C at x (a
free name in D̂), as long as it is placed in a context in which the behaviors described
by names in Γ,Δ1 are available. The left-hand side typing for both processes says that
they can offer some behavior T , as long as the behaviors declared in Γ,Δ and behavior
A ⊕B at y are provided. Crucially, since x is private to (1), type T cannot correspond
to x:C. That is, even if D̂ is at the top-level in (1) its behavior is not immediately
available. Also because of the left-hand side typing, we know that (1) and (2) are only
able to interact with some selection at y; only then, D̂ will be able to interact with either
Ê or F̂ , whose behavior depends on the presence of behavior C at x. A conversion of
(1) into (2) could be seen as a “behavioral optimization” if one considers that (2) has
only one available prefix, while (1) has two parallel components.

For all proof conversions, the apparent phenomenon of “prefix promotion” induced
by proof conversions can be explained along the above lines. In our soundness result
(Theorem 6.2 below), the crucial point is capturing the fact that some top-level pro-
cesses may not be able to immediately exercise their behavior (cf. D̂ in (1) above). We
use the following notations on type-respecting relations. IΓ ;Δ�T stands for the relation



Linear Logical Relations for Session-Based Concurrency 553

{(P,Q) : Γ ;Δ  P :: T, Γ ;Δ  Q :: T } which collects pairs of processes with
identical left- and right-hand side typings. Based on the logical interpretation of types,
we introduce a notion of “continuation relation” for pairs of typed processes:

Definition 6.1. Using � to range over ⊗,� and � to range over ⊕,�, we define the
type-respecting relation W�x:A by induction on the right-hand side typing, as follows:

W�x:1 = I�x:1 W�x:A�B = I�x:B ∪W�x:B

W�x:!A = I�x:!A W�x:A�B = I�x:A ∪W�x:A ∪ I�x:B ∪W�x:B

This way, e.g., the continuation relation for  x:A⊗B is I�x:B ∪W�x:B: it contains
all pairs typed by  x:B (as processes of type x:A⊗B are to be typed by x:B after the
output action) as well as those pairs in the continuation relation for x:B.

Theorem 6.2 (Soundness of Proof Conversions). Let P,Q be processes such that (i)
Γ ;Δ  D � P :: T ; (ii) Γ ;Δ  E � Q :: T ; (iii)P !c Q. Then,Γ ;Δ  P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each
proof conversion. In the bisimulation game, we exploit termination of well-typed pro-
cesses (Theorem 4.17) to ensure that actions can be matched with finite weak transi-
tions, and subject reduction (Theorem 3.2) to ensure type preservation under reductions.

We detail the case for the first proof conversion in Fig. 3—see [18] for other cases.
This proof conversion corresponds to the interplay of rules (T⊗R) and (Tcut). We have
to show that Γ ;Δ M ≈ N :: z:A⊗B where

Δ = Δ1, Δ2, Δ3 Γ ;Δ1  D̂ :: x:C Γ ;Δ2, x:C  Ê :: y:A Γ ;Δ3  F̂ :: z:B (1)

M = (νx)(D̂ | (νy)z〈y〉.(Ê | F̂ )) N = (νy)z〈y〉.((νx)(D̂ | Ê) | F̂ )

Using Proposition 5.5, we have to show that for everyK ∈ KΓ ;Δ, we have  K[M ] ≈
K[N ] :: z:A ⊗ B. In turn, this implies exhibiting a typed context bisimulation R con-
taining the pair (K[M ],K[N ]). We define R = W�z:A⊗B ∪ S ∪ S−1, with

S = {(K1[M ′],K2[N ]) : M =⇒M ′, K1,K2 ∈ KΓ ;Δ}

andW�z:A⊗B is as in Definition 6.1. Notice that S is a type-respecting relation indexed
by  z:A ⊗ B. In fact, using the typings in (1)—with Γ = Δ = ∅—and exploiting
subject reduction (Theorem 3.2), it can be checked that for all (P,Q) ∈ S both  P ::
z:A⊗B and  Q :: z:A⊗B can be derived.

We now show that R is a typed context bisimulation. Pick any K ∈ KΓ ;Δ. Using
Proposition 5.4, we can assume K = (νũ, x̃)(KΓ | KΔ | [·]) where

– KΓ ≡ ∏
i∈I !ui(yi).Ri, with  Ri :: yi:Di, for every ui:Di ∈ Γ ;

– KΔ ≡ ∏
j∈J Sj , with  Sj :: xj :Cj , for every xj :Cj ∈ Δ.

Clearly, (K[M ],K[N ]) ∈ S, and so it is in R. Now, suppose K[M ] moves first:
K[M ] α−−→ M�

1 . We have to find a matching action α from K[N ], i.e., K[N ] α=⇒ N�
1 .

Since  K[M ] :: z:A⊗B, we have two possible cases for α:
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1. Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−−→ K ′
Γ and K[M ] τ−−→ K ′[M ]. However, this cannot be the case, as

by construction KΓ corresponds to the parallel composition of input-guarded
replicated processes which cannot evolve on their own.

(b) KΔ
τ−−→ K ′

Δ and K[M ] τ−−→ K ′[M ]. Then, for some l ∈ J , Sl
τ−−→ S′

l :

K[M ] τ−−→ (νũ, x̃)(KΓ | K ′
Δ | M) = K ′[M ] = M�

1

Now, context K is the same in K[N ]. Then KΔ occurs identically in K[N ],
and this reduction can be matched by a finite weak transition (Theorem 4.17):

K[N ] =⇒ (νũ, x̃)(KΓ | K ′′
Δ | N) = K ′′[N ] = N�

1

By subject reduction (Theorem 3.2),  S′
l :: xl:Cl; hence,K ′,K ′′ are inKΓ ;Δ.

Hence, the pair (K ′[M ],K ′′[N ]) is in S (as M =⇒M ) and so it is in R.
(c) M

τ−−→M ′ and K[M ] τ−−→ K[M ′]. Since M = (νx)(D̂ | (νy)z〈y〉.(Ê | F̂ )),
the only possibility is that there is a D̂1 such that D̂

τ−−→ D̂1 and M ′ =
(νx)(D̂1 | (νy)z〈y〉.(Ê | F̂ )). This way,

K[M ] τ−−→ (νũ, x̃)(KΓ | KΔ | M ′) = K[M ′] = M�
1

We observe thatK[N ] cannot match this action, butK[N ] =⇒ K[N ] is a valid
weak transition. Hence, N�

1 = K[N ]. By subject reduction (Theorem 3.2),
we infer that  K[M ′] :: z:A ⊗ B. We use this fact to observe that the pair
(K[M ′],K[N ]) is included in S. Hence, it is in R.

(d) There is an interaction betweenM andKΓ or betweenM andKΔ: this is only
possible by the interaction of D̂ with KΓ or KΔ on names in ũ, x̃. Again, the
only possible weak transition fromK[N ] matching this reduction is K[N ] =⇒
K[N ], and the analysis proceeds as in the previous case.

2. Case α �= τ . Then the only possibility, starting from K[M ], is an output action of
the form α = (νy)z〈y〉. This action can only originate in M :

K[M ]
(νy)z〈y〉−−−−−→ (νx̃, ũ)(KΓ | KΔ | (νx)(D̂ | (νy)(Ê | F̂ ))) = M�

1

Process K[N ] can match this action via the following finite weak transition:

K[N ]
(νy)z〈y〉

=⇒ (νx̃, ũ)(K ′
Γ | K ′

Δ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N�
1

Observe howN�
1 reflects the changes inK[N ] due to the possible reductions before

and after the output action. By definition of ≈ (output case), we consider the com-
position of M�

1 and N�
1 with any V such that y:A  V :: −:1. Using the typings in

(1) and subject reduction (Theorem 3.2), we infer both

M�
2 = (νx̃, ũ)(KΓ | KΔ | (νx)(D̂ | (νy)(Ê | V | F̂ ))) :: z:B

 N�
2 = (νx̃, ũ)(K ′

Γ | K ′
Δ | (νy)((νx)(D̂′ | Ê′ | V ) | F̂ ′)) :: z:B

Hence, the pair (M�
2 , N

�
2 ) is in W�z:A⊗B and so it is in R.
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Now suppose that K[N ] moves first: K[N ] α−−→ N�
1 . We have to find a matching action

α from K[M ]: K[M ] α=⇒ M�
1 . Similarly as before, there are two cases: either α = τ

or α = (νy)z〈y〉. The former is as detailed before; the only difference is that reductions
fromK[N ] can only be originated in KΔ; these are matched byK[M ] with finite weak
transitions originating in both K and in M . We thus obtain pairs of processes in S−1.
The analysis for the case for output mirrors the given above and is omitted. "#

Type Isomorphisms. In type theory, types A and B are called isomorphic if there are
morphisms (proofs in our case) πA of B  A and πB of A  B which compose to the
identity in both ways—see, e.g., [9]. We adapt this notion to our setting, using typed
context bisimilarity to account for isomorphisms in linear logic. (Below, we write P 〈x̃〉

for a process parametric on a sequence of names x1, . . . , xn.)

Definition 6.3 (Isomorphism). Two typesA andB are called isomorphic, notedA!B,
if, for any names x, y, z, there exist processes P 〈x,y〉 and Q〈y,x〉 such that:
(i) · ;x:A  P 〈x,y〉 :: y:B; (ii) · ; y:B  Q〈y,x〉 :: x:A;
(iii) · ;x:A  (νy)(P 〈x,y〉 | Q〈y,z〉) ≈ [x↔z] :: z:A; and
(iv) · ; y:B  (νx)(Q〈y,x〉 | P 〈x,z〉) ≈ [y↔z] :: z:B.

Thus, intuitively, if A,B are service specifications then by establishing A ! B one
can claim that having A is as good as having B, because we can build one from the
other using an isomorphism. Isomorphisms in linear logic can then be used to sim-
plify/transform service interfaces in the π-calculus. They can also help validating our
interpretation with respect to basic linear logic principles. As an example, let us con-
sider multiplicative conjunction ⊗. A basic linear logic principle is A ⊗ B  B ⊗ A.
Our interpretation of A ⊗ B may appear asymmetric as, in general, a channel of type
A ⊗ B is not typable by B ⊗ A. Theorem 6.4 below states the symmetric nature of ⊗
as a type isomorphism: symmetry is realized by a process which coerces any session
of type A⊗ B to a session of type B ⊗ A. Other sensible isomorphisms, such as, e.g.,
(A⊕B)�C ! (A�C) � (B�C), can be handled similarly.

Theorem 6.4. Let A,B be any type, as in Def 3.1. Then A⊗B ! B ⊗A.

Proof. We check conditions (i)-(iv) of Def. 6.3 for processes P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).(νn)y〈n〉.([x↔n] | [u↔y])
Q〈y,x〉 = y(w).(νm)x〈m〉.([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B  P 〈x,y〉::y:B⊗A and · ; y:B⊗A  Q〈y,x〉::x:A⊗B
is easy; rule (Tid) ensures that both typings hold for any A,B.
We then show (iii) and (iv). We sketch only the proof of (iii); the proof of (iv) is
analogous. Let M = (νy)(P 〈x,y〉 | Q〈y,z〉) and N = [x ↔ z]; we need to show
· ;x:A ⊗ B  M ≈N :: z:A ⊗ B. By Proposition 5.5, we have to show that for
every K ∈ K · ;x:A⊗B , we have  K[M ] ≈ K[N ] :: z:A ⊗ B. In turn, this im-
plies exhibiting a typed context bisimulation R containing (K[M ],K[N ]). Letting
S = {(R1, R2) : K[M ] =⇒ R1, K[N ] =⇒ R2}, we set R=W�z:A⊗B ∪ S ∪ S−1.
Following expected lines, R can be shown to be a typed context bisimulation. "#
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7 Related Work

Termination in the π-calculus using logical relations has been studied in [26,21]. Nei-
ther of these works considers session types; hence, the technical details of the logical
relations are very different, with semantic interpretations of types relying on constraints
on the syntax and the types of processes. Here we started from a well-established type
discipline for the π-calculus and showed termination of well-typed processes. In con-
trast, both [26,21] follow a somewhat opposite path, and aim at type disciplines that
guarantee termination. The interpretation of intuitionistic linear logic as session types
allows for intuitive logical relations, truly defined on the structure of types. In this sense,
our approach is more principled than in [26,21], as it is not an adaptation of the method,
but rather an instantiation of the method on our canonical linear type structure.

Another interpretation of session types as linear logic propositions is proposed in [7].
It is based on soft linear logic [15], and so the exponential “!” is treated following a non
canonical discipline that uses two different typing environments. Hence, typing rules
and judgements in [7] are rather different from ours. A bound on the length of reduc-
tions starting from well-typed-processes is obtained; the proof uses techniques from
Implicit Computational Complexity. Notions of observational equivalence and their ap-
plications are not addressed in [7]. Although here we do not provide a similar bound,
it is remarkable that our proof of termination follows only the principles and proper-
ties of [4]; in contrast to [7], our proof does not appeal to extraneous technical devices,
and preserves a standard, intuitive treatment of “!”. This is particularly desirable for
extensions/generalizations of our framework, such as the proposed in [25,19].

Loosely related to typed context bisimilarity is [27], where a form of linear bisim-
ilarity is proposed; following a linear type structure, it treats some visible actions as
internal actions, thus leading to an equivalence larger than standard bisimilarity which
is a congruence. The only work on behavioral equivalences for session-based concur-
rency we are aware of is [14]. It studies the behavioral theory of a π-calculus with
asynchronous session communication and an event inspection primitive for buffered
messages. The aim is to capture the distinction between order-preserving communi-
cations (inside already established connections) and non-order-preserving communica-
tions (outside established connections). Such a behavioral theory accounts for principles
for prefix commutation that appear similar to those induced by our proof conversions.
However, the origin and the nature of these commutations are quite different. In fact,
while in [14] prefix commutation arises from the distinction mentioned above, commu-
tations in our (synchronous) framework are due to causality relations captured by types.

8 Concluding Remarks

By relying on the principles established by an interpretation of linear logic as session
types [4], we have introduced a theory of logical relations for session-typed disciplines.
Our development is remarkably similar to that for functional languages; although in our
setting types are assigned to names (and not to terms), our linear logical relations are
defined on the structure of types, relying both on process reductions and labeled tran-
sitions. A main application of this theory is a proof that well-typed processes always
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terminate. This way, in addition to safety properties (nothing bad happens, cf. subject
reduction), we have shown that session-typed processes also enjoy an important liveness
property such as termination. Certifying termination of interacting concurrent systems
is indeed important, from foundational and practical standpoints. We developed two
applications of these results, which complement the results in [4]. Both of them rely
on a novel observational equivalence for typed processes. First, we have shown sound-
ness of proof conversions with respect to observational equivalence—an issue left open
in [4]. Second, we studied type isomorphisms resulting from linear logic equivalences
in our setting. The basic properties of the interpretation—especially, the combination of
subject reduction and termination—were of the essence in both applications. Ongoing
work concerns sound and complete axiomatizations of typed context bisilmilarity via
proof conversions. Having introduced the method of logical relations for session types,
we plan to explore it further for obtaining other results, such as parametricity.
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Abstract. We present a simple core type system, λ[ ]— pronounced
“lambda open box” — for a statically typed, hygienic, and multi-stage
lambda-calculus supporting evaluation under future-stage binders, open-
code manipulation, a first-class eval function, and mutable state. The
type system provides one type of lexically scoped code that precisely
accounts for the contexts in which code values can be inserted. In par-
ticular, this type can distinguish between open and closed code. We
show how to extend λ[ ] with subtype polymorphism over program con-
texts. The soundness and simplicity of λ[ ] demonstrate that the no-
tion of staging is orthogonal to features that have been presented as
instrumental in existing type systems for staged computation, such as
polymorphism, nameless term representations, explicit substitutions, and
delimited continuations.

1 Introduction

Staged computation enables programs to generate, combine, and execute code
values at runtime. Its ability to delay the execution of code values induces a
distinction between present-stage (or static) program parts (that are evaluated
normally) and future-stage (or dynamic) program parts (that yield code values).
Its ability to evaluate under future-stage binders makes staged computation
ideal for partial evaluation and program specialization, compilation, runtime
code generation, and macro expansion.

Code manipulation as a programming discipline dates back to the develop-
ment of the first Fortran compiler in the late 1950s [1]. In the early 1960s, Mc-
Carthy proposed S-expressions as a uniform representation of code (and other
data) in Lisp [15]. The work by the artificial-intelligence community in the 1970s
then established quasi quotations as the preferred syntactic constructs for build-
ing such S-expressions [3]. The development of offline partial evaluation in the
1980s demonstrated that quasi quotations (or similar binding-time annotations)
elegantly captures the notion of staged computation [5, 12]. In a couple of influ-
ential papers published in the mid 1990s, Davies [9] and Davies and Pfenning [10]
established the type-theoretical foundation for staged computation via connec-
tions to temporal and modal logics. In the decade that has followed Davies and
Pfenning’s work, much research have been aimed at designing static type sys-
tems that combine general-purpose features with support for staged computation
using quasi quotations as code-generation constructs [6, 14, 16, 22, 24, 26].

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 559–578, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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1.1 The Challenge

Statically typed languages that support staged computation must guarantee that
well-typed programs only generate, combine, and execute code values that are
themselves well typed. Languages that evaluate under future-stage binders de-
mand a careful treatment in the type system of potentially open code (that is,
code that contains free variables). This is particularly challenging in the pres-
ence of an eval function and of assignments to mutable state since (1) an eval
function must be passed closed code values only and (2) assignments enable
code values to escape the scope in which they are generated, which in turn en-
ables future-stage variables to escape their binder. Hence type systems for staged
computation must distinguish between open and closed code values and must
prevent future-stage variables from being captured by any binder but their own.

1.2 Our Contributions

We present λ[ ], a sound monomorphic type system for hygienic staged evaluation
that supports multiple stages, evaluation under future-stage binders, and open-
code manipulation. The type systems provides one type of code, which precisely
distinguishes open from closed code. The type system supports a first-class eval
function and first-class mutable cells. Mutable cells can contain (open as well
as closed) code and assignments can pass (open as well as closed) code across
binders. Yet, the type systems prevent future-stage variables from escaping their
scope by the means of assignments. We then extend λ[ ] with subtype polymor-
phism and show that the result, λ[ ]

<, is at least as expressive as the foundational
multi-stage calculi λ© [9] and λ� [10].

The type system of λ[ ] demonstrate that the notion of staging is orthogonal to
features that are instrumental in existing type systems for staged computation,
such as separate types for closed values [4, 16], polymorphism [25], nameless term
representations [8], explicit substitutions [19], and delimited continuations [13].
λ[ ] is the first type system for multi-stage programming that makes an explicit
eval function and mutable state coexist with hygienic evaluation under future
binders.

2 The Staged Type System λ[ ]

λ[ ] is a type system for monomorphic staged λ-calculi. It extends the simply-
typed λ-calculus with staging primitives ↑e and ↓e (similar to next and prev of
λ© [9] and to brackets 〈·〉 and escape ~ of the MetaML family of type systems,
and reminiscent of quasiquote and unquote of Lisp and Scheme [3]) and with
a single type of code [γ]t parametrized over a type environment γ and a type t.

In λ[ ], values of type [γ]t are code values: Intuitively, if an expression has
type [γ]t (and terminates), then it evaluates to (a representation of) a code
fragment that has type t under type environment γ. Thus, the code type [γ]t
precisely characterizes the contexts that code values can be inserted into. Indeed,
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by varying γ, this code type is able to characterize both closed and (potentially)
open code values. The code types of λ[ ] are contextual modal types but the
typing rules are different from those of recently developed contextual modal
type systems [19]. In terms of temporal logics, λ[ ] models linear (rather than
branching) time.

To support hygienic evaluation under future-stage binders, the typing judg-
ment of λ[ ] represents the context of a term by a linearly ordered sequence of
type environments,

γ0 · γ1 · . . . · γn−1 · γn ; γn+1 · . . . · γm−1 · γm,

of which the type environment to the left of the (unique) “;” is designated as
the current. The stage (or time, in the vocabulary of temporal logic) of a bound
variable equals the index of the environment that binds it. The stage of an
expression is the index of the current type environment. (Lower stages are “more
static” or “past”; higher stages are “more dynamic” or “future”.) An expression
can only access variables of the same stage. Hence variables at different stages
live in different namespaces. We let Γ range over sequences of type environment
not containing “;”. We use a single “ · ” to separate elements in a sequence.

When introducing a code value by ↑e at stage n, e is typed at stage n+1: If ↑e
is typed in context Γ ; γ ·Γ ′, then e is typed in context Γ · γ ;Γ ′. By the intuition
above, if the type of e is t, then ↑e has type [γ]t. Dually, when eliminating a
code value by ↓e at stage n+ 1, e is typed at stage n: If ↓e is typed in context
Γ · γ ;Γ ′, then e is typed in context Γ ; γ ·Γ ′. Following intuition again, if the
type of e is [γ]t, then ↓e has type t. The typing rules for code introduction and
elimination concisely sum up this explanation as follows.

Γ · γ ; Γ ′  e : t

Γ ; γ ·Γ ′  ↑e : [γ]t
([ ]-I)

Γ ; γ ·Γ ′  e : [γ]t
Γ · γ ; Γ ′  ↓e : t

([ ]-E)

The complete type system of λ[ ] is displayed in Fig. 1. The typing rules for vari-
ables, abstractions, and application closely mimic the simply-typed λ calculus.
They access only the current type environment and pass the remaining sequence
of past- and future-stage type environments unmodified to their subterms. The
type rules for the staging primitives insist that each ↓ appears under at least
one ↑. Without this requirement we would be forced to let a static occurrence
of ↓ act as an eval function, but we prefer to study staging using ↑ and ↓ on one
hand and an eval function on the other in isolation. We write ε for the empty
sequence of type environments and we let b and c range over an unspecified set
of base types and over type-indexed constants, respectively.

The typing rules of λ[ ] define a notion of staged lexical scope: A variable
is bound by the nearest enclosing definition at the same stage of that variable.
This notion extends to term variable that appears in type environments in types.
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Syntax:
(Types) t ::= b | t→ t | [γ]t

(Terms) e ::= c{t} | x | λx : t. e | e e | ↑e | ↓e
(Environments) γ ::= ∅ | γ, γ | x : t

(Sequences) Γ ::= γ · . . . · γ

Typing rules: Γ ; Γ ′ 	 e : t

Γ · γ ; Γ ′ 	 t :: ∗
Γ · γ ; Γ ′ 	 c{t} : t

(Const)
Γ · (x : t, γ) ; Γ ′ 	 x : t

(Var)

Γ · γ′ · γ ; Γ ′ 	 e : t

Γ · γ′ ; γ ·Γ ′ 	 ↑e : [γ]t
([ ]I)

Γ · (x : t, γ) ; Γ ′ 	 e : t′ Γ · γ ; Γ ′ 	 t :: ∗
Γ · γ ; Γ ′ 	 λx : t. e : t→ t′

(→I)

Γ · γ′ ; γ ·Γ ′ 	 e : [γ]t

Γ · γ′ · γ ; Γ ′ 	 ↓e : t
([ ]E)

Γ · γ ; Γ ′ 	 e1 : t2 → t Γ · γ ; Γ ′ 	 e2 : t2

Γ · γ ; Γ ′ 	 e1 e2 : t
(→E)

Kinding rules: Γ ; Γ ′ 	 t :: κ Γ ; Γ ′ 	 γ

Γ ; Γ ′ 	 b :: ∗ (Kb)
Γ · γ ; Γ ′ 	 γ′ Γ · γ ; Γ ′ 	 t :: ∗

Γ ; γ ·Γ ′ 	 [γ′]t :: ∗ (K[ ])

(x : t) ∈ γ, and
Γ · γ ; Γ ′ 	 t :: ∗

}
for (x : t) ∈ γ′

Γ · γ ; Γ ′ 	 γ′ (Kγ)
Γ ; Γ ′ 	 t0 :: ∗ Γ ; Γ ′ 	 t1 :: ∗

Γ ; Γ ′ 	 t0 → t1 :: ∗ (K→)

Fig. 1. The Type System of λ[ ]

Consequently, types that refer to unbound variables or that assert incorrect types
for its variables are invalid. The type system of λ[ ] characterizes valid types using
the kinding rules of Fig. 1. Most importantly, [γ]t is valid at stage n when both
γ and t are kind checked at stage n+ 1 since both the type t and any variable
bound by γ are future stage entities. For example, λx : t. λc : [x : t]t. c is not well
typed, since the x inside the asserted type of c is unbound. This x occurs at a
stage different from the x bound at the surrounding λ.

2.1 Staged Lexical Scope

Before we present the semantics of λ[ ], we need to extend the definitions of free
variables and substitution to a staged setting. This is particularly pertinent in
the approach to staged computation we propose, where variables at different
stages live in different namespaces.

Definition 1 (Free variables). The set of free stage-n variables in stage-m
terms, types, or environments are defined as follows.
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FVm
n (c{t}) = FVm

n (t)
FVm

m(x) = {x}
FVm

n (x) = { }, if m �= n

FVm
m(λx : t. e) = FVm

m(t) ∪ (
FVm

m(e) − {x})
FVm

n (λx : t. e) = FVm
n (t) ∪ FVm

n (e), if m �= n

FVm
n (e1 e2) = FVm

n (e1) ∪ FVm
n (e2)

FVm
n (↑e) = FVm+1

n (e)

FVm+1
n (↓e) = FVm

n (e)

FVm
n (b) = { }

FVm
n (t1 → t2) = FVm

n (t1) ∪ FVm
n (t2)

FVm
n ([γ]t) = FVm+1

n (γ) ∪ FVm+1
n (t)

FVm
n (∅) = { }

FVm
n (γ1, γ2) = FVm

n (γ1) ∪ FVm
n (γ2)

FVm
m(x : t) = {x}

FVm
n (x : t) = { }, if m �= n

The definition of free variables induces a notion of α-equivalence. λ[ ] then adheres
to the following conventions. We occasionally state Convention 2 as an explicit
side condition.

Convention 1 α-equivalent terms (or types) are interchangeable in all contexts.

Convention 2 (Barendregt [2]) Bound and free variables are assumed to be
different. (If necessary, Convention 1 can be used to rename the bound ones.)

Definition 2 (Substitution). The result of the capture-avoiding substitution
of the stage-0 term e′ for the stage-0 variable x in the stage-m term e is defined by

(c{t})m{e′/x} = c{t}
(x)0{e′/x} = e′

(x)m{e′/x} = x, if m �= 0
(λy : t. e)m{e′/x} = λy : t. (e)m{e′/x}

(e1 e2)m{e′/x} = (e1)m{e′/x} (e2)m{e′/x}
(↑e)m{e′/x} = ↑(e)m+1{e′/x}

(↓e)m+1{e′/x} = ↓(e)m{e′/x}

Notice that by Convention 2, x and y are different in the rule for substitution
under lambdas.

The operational semantics of λ[ ] is presented in Sect. 3.4.
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2.2 Properties of λ[ ]

The type system of λ[ ] in Fig. 1 is sound with respect to a standard hygienic
semantics of staging primitives. (The proof of soundness is outlined in Sect. 4.)
λ[ ] supports both a function run for immediate evaluation of code values and

mutable state. We defer the detailed treatment of these to Sect. 3 and give just
an outline here. We assume the existence of type-indexed families of constant
symbols run{[ ]t→t}, ref{t→t ref}, get{t ref→t}, and set{t ref→t→t}. Given their usual
semantics, these operations are type safe.

2.3 Examples

An implementation in λ[ ] of the classic staged power function is shown below.
(In this implementation, we have taken the liberty to use standard integer arith-
metic, monomorphic recursive let-expressions, and conditionals. They can all be
added straightforwardly to λ[ ].)

powgen : int → [ ](int → int) =
λn : int.

↑(λx : int.

↓(let rec powbt : int → [x:int]int → [x:int]int =
λn : int. λc : [x:int]int.

if n = 0 then ↑1 else ↑(↓c× ↓(powbt (n− 1) c))
in powbt n ↑x))

This example demonstrates the typical use of staged computation to imple-
mented partial evaluation: The staging primitives are used to define a binding-
time separated function powbt of type int → [x : int]int → [x : int]int and a gener-
ating extension powgen of type int → [](int → int). Evaluating powgen n yields the
textual representation of a function of type int → int that computes xn. For ex-
ample, powgen 3 yields ↑(λx : int. x×x×x×1) and run{[ ](int→int)→int→int} (powgen 3)
yields a function of type int → int that computes x3.

The following shows an example where a code value (↑x) with a free variable
(x) is passed across the future-stage λ of another variable (y) by the means of
an assignment. This example is well typed in λ[ ] since the free variable x does
not escape its scope. (To ease readability, the types of the constants have been
left out from this example.)

↑(λx : int.
↓(let c : [x : int]int = ref{··· } (↑1) in ↑(λy : t. ↓( set{··· } c (↑x) ; · · · ))))

On the other hand, the following classic attempt to pass a future-stage variable
beyond its own scope is correctly rejected by the type system.

let c : t = ref{··· } (↑1) in ↑(λx : int. ↓( set{··· } c (↑x); · · · ))

In this example, the type of ↑x is [x : int]int. Hence the type t of c must be
([x : int]int) ref. But at the let-binding of c, this type is not well kinded since it
refers to a unbound (future-stage) variable x.
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3 The Staged Type System λ
[ ]
<

As a type system for staged computation, λ[ ] is strikingly concise (as witnessed
by its definition in Fig. 1). But λ[ ] lacks the expressive power required by general-
purpose staged programming languages.

In this section, we first identify two examples representing lack of expres-
siveness in λ[ ]. We argue that subtype polymorphism provide the expressiveness
necessary to handle these examples. We therefore extend λ[ ] with a subtyping
fragment, in Sect. 3.1. We then define the evaluation fragment and the imperative
fragment of λ[ ]

<, in Secs. 3.2 and 3.3. All fragments provide orthogonal features
that can be added to λ[ ] independently of each other. Finally, in Sect. 3.4, we
define the operational semantics of λ[ ]

<.

Shortcoming 1. Consider the following term, which generates a closed code
value and then splices that value into a context containing a variable x.

let c = ↑1 in ↑(λx : t. ↓c)
This term in not typable in λ[ ]: The typing rule for ↓ insists that the current
type environment (in this example the one that declares x) must be identical to
the type environment of the code spliced in (in this example an empty one). In
λ[ ], a code value of type [γ]t can only be spliced into a context that provides
exactly the binding in γ. But recall the intuition that, if c has type [γ]t then it
denotes a representation of a term that has type t in type environment γ. Then
it seems clear that c also has type [γ′]t for an extended environment γ′ of γ.
Similar reasoning is found within type systems for object calculi, record types,
and other type systems with a built-in notion of subsumption.

To address this shortcoming, λ[ ]
< therefore extends λ[ ] with a rule of subsump-

tion that allows us to weaken a code type (such as the type of ↓c in the example
above) by adding unused bindings to its environment. This idea is formalized in
Sect. 3.1 below.

Shortcoming 2. Consider the following term that invokes run on a closed code
value under a context containing a variable x: (The term is incomplete; we
assume that the run is at stage 0.)

↑(λx : t. ↓(· · · run{··· } (↑1) · · · ))
This term in not typable λ[ ]: The ↑1 has type [x : t]int but run expects a closed
code value of type [ ]int. The typing rule for ↑ insists that the type environment
of the code generated is identical to the type environment used to type the
future-stage term under the ↑ (in this example the one that declares x). But
intuition tells us that if x is not used in the body of e, then the type of ↑e need
not mention x.

To address this shortcoming, λ[ ]
< also extends λ[ ] with a rule of subsumption

that allows us to strengthen a typing context (such as the one used when typing
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Additional Typing rules: Γ ; Γ ′ 	 e : t

Γ1 ; Γ ′
1 	 Γ2 ;Γ ′

2 Γ1 ; Γ ′
1 	 t1 : ∗ Γ2 ; Γ ′

2 	 e : t2 Γ1 ;Γ ′
1 ≤ Γ2 ;Γ ′

2 t2 ≤ t1

Γ1 ; Γ ′
1 	 e : t1

(≤)

Subtyping rules: t ≤ t′

t ≤ t
(S-Refl)

t1 ≤ t2 t2 ≤ t3
t1 ≤ t3

(S-Trans)

t1 ≤ t2
∀T :: κ. t1 ≤ ∀T ::κ. t2

(S-All)
t2 ≤ t1 t′1 ≤ t′2
t1 → t′1 ≤ t2 → t′2

(S-Arrow)

t1 ≤ t2
↑t1 ≤ ↑t2 (S-Up)

γ2 ≤ γ1 t1 ≤ t2
[γ1]t1 ≤ [γ2]t2

(S-Box)

t1 ≤ t2
↓t1 ≤ ↓t2 (S-Down)

t1 ≤ t2
x : t1 ≤ x : t2

(S-Bind)

γ ≤ ∅ (S-Width)
γ1 ≤ γ′

1 γ2 ≤ γ′
2

γ1, γ2 ≤ γ′
1, γ

′
2

(S-JoinCongr)

γ1, (γ2, γ3) ≤ (γ1, γ2), γ3
(S-JoinAssoc)

γ1, γ2 ≤ γ2, γ1
(S-JoinComm)

Fig. 2. The Subtype Fragment of λ
[ ]
<

↑1 in the example above) by removing unused bindings from its environments.
This idea is also formalized in Sect. 3.1 below.

In the rest of this article, we let V and L denote disjoint sets of term variables
and store locations, respectively. We let x and y range over V and � over L (with
primes and subscripts applied when necessary). We let ξ range over V ∪ L.

3.1 Subtype Polymorphism

Figure 2 contains the subtype fragment of λ[ ]
<. The subtype rules follows stan-

dard subtype rules for records and objects [20]. Notice that the code type is
contravariant in the type environment and covariant in the type. The subsump-
tion rule states that if we can type e with type environment γ, then we can also
type it with type environment that provides more variable bindings than γ. This
rule uses a pointwise extension of ≤ to sequences of type environments and the
following iterative well kindedness rule for sequences of environments.

; Γ ′
1  Γ2

Γ1 ; γ1 ·Γ ′
1  γ2 Γ1 ; γ1 ·Γ ′

1  Γ2

Γ1 · γ1 ; Γ ′
1  Γ2 · γ2

Lemma 1. If Γ ; Γ ′  t :: ∗ and t ≤ t′ then also Γ ; Γ ′  t′ :: ∗
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Additional syntax:

(Terms) e ::= · · · | ρθ. e
(Types) t ::= · · · | t ref
(Stores) θ = {〈�i, v0

i 〉 | 1 ≤ i ≤ k}

Additional typing rules: Γ ; Γ ′ 	 e : t

(γ, γ′) ; Γ ·Γ ′ 	 v0
i : ti 1 ≤ i ≤ k

(γ, γ′) ·Γ ; Γ ′ 	 e : t

γ, Γ ; Γ ′ 	 ρ{〈�1, v0
1〉, . . . , 〈�k, v0

k〉}. e : t
(ρ)

where γ′ = (�1 : t1 ref, . . . , �k : tk ref)

Fig. 3. The imperative fragment of λ
[ ]
<

3.2 Evaluation and Lifting

The evaluation and lifting fragment of λ[ ]
< introduces two (type-indexed families

of) constants, run{[ ]t→t} and lift{t→[ ]t}, that serve dual purposes: run maps a
future-stage value “back” to the present stage (called demotion) while lift maps
a present-stage term “forward” to a future stage (called promotion).

The type of run guarantees that the argument is a closed future-stage term.
It prevents, for example, the reduction run(↑x) �−→ x in which a future-stage x
percolates into the present stage. (See the reduction rule for run in Fig. 5 below.)

3.3 Mutable State

Figure 3 presents the type system for the imperative fragment of λ[ ]
<. Mutable

state is modeled syntactically using the approach pioneered by Felleisen and
Hieb [11] and further developed by Wright and Felleisen [28]. Stores θ are finite
sets of pairs containing cells and stage-0 values. As in Wright and Felleisen’s
work, we introduce a separate class of evaluation context, R, that order the im-
perative operations according to left-to-right, call-by-value evaluation. Figure 4
below defines all evaluation contexts.

The syntactic approach to mutable state lets us express garbage collection
on a store. Wright and Felleisen do not need to consider garbage collection, but
the rule that we present is standard [17]. It is necessary in the proof of Progress
(Lemma 11) for future-stage lambdas that contain ρ-terms. Here, garbage col-
lection allows the reduction λx : t. ρθ. vn+1 �−→ λx : t. vn+1, since the stage-n+ 1
value vn+1 cannot (by definition) contain cells �.

The typing rule of ρ-terms is similar to that of Wright and Felleisen. Cells
are treated as stage-0 variables and hence must be added to the left-most type
environment in the type judgment. We use the usual invariant subtype rule for
the type of references [20]:
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t1 ≤ t2 t2 ≤ t1
t1 ref ≤ t2 ref

(S-Ref)

We use the following extensions of the definition of free variables and substitution
for ρ-terms.

FVm
m(ρθ. e) = FVm

m(codom θ) ∪ (
FVm

m(e) − dom θ
)

FVn
m(ρθ. e) = FVn

m(codom θ) ∪ FVn
m(e), if m �= n

(ρθ. e)m{e′/x} = ρθ. (e)m{e′/x}
Notice that since the store contains stage-0 values only, it cannot contain free
variables.

Figure 3 explicitly restricts reduction to situations that do not result in future-
stage variables leaving their scope. For this purpose, we let BVm

n (Rm
n′) denote

the set of bound stage-n variables in the stage-m context Rm
n′ .

Definition 3 (Bound variables). BVm
n (Rm

n′) denotes the stage-n variables in
Rm

n′ bound by λs that “surround” the hole �, defined as follows.

BVm
n (�) = { }

BVm
n (Rm

n′ e) = BVm
n (Rm

n′ )
BVm

n (vm Rm
n′) = BVm

n (Rm
n′ )

BVm
n (↑Rm+1

n′ ) = BVm+1
n (Rm+1

n′ )

BVm+1
n (↓Rm

n′) = BVm
n (Rm

n′ )

BVm+1
m+1(λx : t.Rm+1

n′ ) = {x} ∪ BVm+1
m+1(Rm+1

n′ )

BVm+1
n (λx : t.Rm+1

n′ ) = BVm+1
n (Rm+1

n′ ), if m+ 1 �= n

In the definition of bound variables, m denotes the stage of the context while n
denotes the stage of the hole in that context.

3.4 Semantics of λ
[ ]
<

The reduction semantics of λ[ ]
< is defined by Figs. 4 and 5. Notice that the defi-

nition of values and contexts actually defines stage-indexed families of inductive
terms. As remarked by Taha [23], the style of inductive definition is slightly
unusual because it actually involves an infinite number of meta-variables. How-
ever, the values and contexts defined by these rules are still finite and admits
inductive reasoning.

In the reduction rules in Fig. 5, ⊕ denotes a disjoint union.

4 Formal Properties

In this section we outline a formal proof of the soundness of the type system λ
[ ]
<

with respect to its reduction semantics. The proof follows the standard approach
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(Values) v0 ::= λx : t. e | c{t} | �
vm ::= ↑vm+1

vm+1 ::= x | λx : t. vm+1 | vm+1 vm+1

vm+2 ::= ↓vm+1

(E-contexts) Emm ::= �
Emn ::= Emn e | vm Emn | ↑Em+1

n | ρθ.Emn
Em+1
n ::= ↓Emn | λx : t. Em+1

n

(S-contexts) Smm ::= �
Smn ::= λx : t.Smn | Smn e | vm+1 Smn | ↑Sm+1

n

Sm+1
n ::= ↓Smn

(R-contexts) Rm
n ::= � | Rm

n e | vmRm
n | ↑Rm+1

n

Rm+1
n ::= ↓Rm

n | λx : t.Rm+1
n

Fig. 4. Values and evaluation contexts of λ
[ ]
<

to soundness using a reduction semantics [28], but we need additional core results
do deal with open terms. In particular, we need to deal with bound variables
in addition to free variables, strengthening in addition to weakening, and with
demotion and promotion.

4.1 Standard Results

Lemma 2 (Decomposition). Let domn(γ0 · · · · · γm) = dom(γn).

(a) If D0 is a derivation of γ ·Γ ; Γ ′  E |Γ |
0 [e1] : t then there exists an environ-

ment γ1 with dom(γ1) ⊆ L, a stack Γ ′
1, a type t1, and a derivation D1 of

(γ, γ1) ; Γ ′
1  e1 : t1 such that D1 appears in D0 at the location corresponding

to the hole � in E |Γ |
0 .

(b) If D0 is a derivation of γ · γ′ ·Γ ; Γ ′  S|Γ |
0 [e1] : t then there exists an

environment γ′1, a stack Γ ′
1, a type t1, and a derivation D1 of γ · γ′1 ; Γ ′

1 
e1 : t1 such that D1 appears in D0 at the location corresponding to the hole
� in S0

0 .
(c) If D0 is a derivation of γ ·Γ ; Γ ′  R|Γ |

0 [e1] : t then there exists a stack
Γ ′

1 ⊇ Γ ′, a type t1, and a derivation D1 of γ ; Γ ′
1  e1 : t1 such that D1

appears in D0 at the location corresponding to the hole � in R|Γ |
0 and for

all n, domn(Γ ′
1) − domn(Γ ′) ⊆ BV0

n(R0
0).

The final part of case (c) states that the extra bindings in Γ ′
1 required to type

e1 can be traced back to bindings in the context. This is used in the proof of
Subject Reduction for case (Set), where it guarantees that the value to store
can be typed using the outer type environment of the surrounding ρ-expression,
which potentially provides fewer bindings.

The dual notion of decomposition is replacement:
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Reduction rules: e �−→ e′

e �−→ e′

E0
0 [e] �−→ E0

0 [e′]
(Ctx)

(λx : t. e) v0 �−→ (e)0{v0/x} (β)

↑S0
0 [↓↑v1] �−→ ↑S0

0 [v1] (↓↑)
run{t} (↑v1) �−→ v1 (Run)

lift{t} v
0 �−→ ↑v0 (Lift)

ref{t} v
0 �−→ ρ{〈�, v0〉}. � (Ref)

ρ{〈�, v0〉} ⊕ θ.R0
0[get{t} �] �−→ ρ{〈�, v0〉} ⊕ θ.R0

0[v
0] (Get)

if BV0
n(R0

0) ∩ FV0
n(v

0) = { }
ρ{〈�, v0

1〉} ⊕ θ.R0
0[set{t} � v

0
2 ] �−→ ρ{〈�, v0

2〉} ⊕ θ.R0
0[v

0
2 ] (Set)

if BV0
n(R0

0) ∩ FV0
n(v

0
2) = { }

ρθ1. ρθ2. e �−→ ρθ1 ⊕ θ2. e (Merge)

R0
0[ρθ. e] �−→ ρθ.R0

0[e] (ρ-Lift)

if BV0
n(R0

0) ∩ FVn(θ) = { } and R0
0 �= �

ρθ1 ⊕ θ2. e �−→ ρθ1. e (GC)

if θ2 �= { } and dom(θ2) ∩ FV0(θ1) = { }
and dom(θ2) ∩ FV0

0(e) = { }
Evaluation:

eval(e) = v0, if e �−→∗ v0

Convention 2 applies to case (Ref), where it forces � not to occur in v0.

The side conditions of rules (Get) and (Set) prevent free variables in the contractum
from being captured by the context. The side condition of (ρ-Lift) prevents variables
bound in the context from escaping their scope. These side conditions are explicit
instances of Convention 2.

The rule (GC) allows part of the store to be garbage collected, if its cells are not referred
to.

Fig. 5. Reduction semantics of λ
[ ]
<

Lemma 3 (Replacement).

(a) If D0 is a derivation of γ ·Γ ; Γ ′  E |Γ |
0 [e1] : t, D1 is a derivation of γ1 ; Γ ′

1 
e1 : t1, D1 appears in D0 at the location corresponding to the hole, and
γ1 ; Γ ′

1  e′1 : t1, then γ ·Γ ; Γ ′  E |Γ |
0 [e′1] : t.

(b) If D0 is a derivation of γ · γ′ ·Γ ;Γ ′  S|Γ |
0 [e1] : t, D1 is a derivation of

γ1 ;Γ ′
1  e1 : t1, D1 appears in D0 at the location corresponding to the hole,

and γ1 ; Γ ′
1  e′1 : t1, then γ · γ′ ·Γ ; Γ ′  S|Γ |

0 [e′1] : t.
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(c) If D0 is a derivation of γ ·Γ ; Γ ′  R|Γ |
0 [e1] : t, D1 is a derivation of

γ1 ; Γ ′
1  e1 : t1, D1 appears in D0 at the location corresponding to the

hole, and γ1 ; Γ ′
1  e′1 : t1, then γ ·Γ ; Γ ′  R|Γ |

0 [e′1] : t.

Notice that we only ever substitute away stage-0 term variables (for a stage-0
values) in the evaluation rules.

Lemma 4 (Weakening). If γ0 · · · · · γm ; γm+1 · · · · · γk  e : t and for each
0 ≤ i ≤ k, γi ⊆ γ′i and for each ξ ∈ dom(γ′i) − dom(γi), ξ �∈ FVm

i (e) then
γ′0 · · · · · γ′m ; γ′m+1 · · · · · γ′k  e : t.

Lemma 5 (Strengthening). If γ′0 · · · · · γ′m ; γ′m+1 · · · · · γ′k  e : t and for
each 0 ≤ i ≤ k, γi ⊆ γ′i and for each ξ ∈ dom(γ′i) − dom(γi), ξ �∈ FVm

i (e) then
γ0 · · · · · γm ; γm+1 · · · · · γk  e : t.

Strengthening is used in the proof of Subject Reduction, in the case (Set).

Lemma 6 (Substitution). If (x : t′, γ) ·Γ ; Γ ′  e : t and γ ; Γ ·Γ ′  e′ : t′

then γ ·Γ ; Γ ′  (e)|Γ |{e′/x} : t.

4.2 Results for Staging

The following two lemmas show that demotion and promotion yield well-typed
results: A well-typed value (but not necessarily an expression) at stage m+ 1 is
also well-typed at stage m. And conversely, a well-typed value at stage m is also
a well-typed value at stage m+ 1. These results are used in the proof of Subject
Reduction (Lemma 9).

Lemma 7 (Demotion). If Γ · γ · ∅ ;Γ ′  v|Γ |+1 : t then Γ · γ ; ∅ ·Γ ′  v|Γ |+1 : t.

Lemma 8 (Promotion). If Γ · γ ; ∅ ·Γ ′  v|Γ | : t then Γ · γ · ∅ ; Γ ′  v|Γ | : t.

4.3 Subject Reduction

In the following statement of Subject Reduction, we need a general outer type
environment γ (rather than an empty one) to account for cells in the store and
we need the future-stage Γ ′ to account for future-stage variables.

Lemma 9 (Subject reduction). If γ ; Γ ′  e : t and e �−→ e′ then γ ; Γ ′ 
e′ : t.

Proof. by induction on e �−→ e′, with an induction case corresponding to re-
duction rule (Ctx), and with base cases for the remaining reduction rules. We
make extensive use Decomposition (Lemma 2) and Replacement (Lemma 3). In
each case, we apply a Typing Inversion lemma to deduce the types of subterms
from the type of a term. This lemma is similar to that of Pierce [20, Sect. 15.3],
but needs to account for stages. Substitution (Lemma 6) is used in case (β) and
Demotion (Lemma 7) and Promotion (Lemma 8) are used in cases (Run) and
(Lift).
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4.4 Progress

We need the following definition of well-formed sequences of type environments.

Definition 4. A sequence of type environments, Γ ;Γ ′, is well-formed if it sat-
isfies the following rules.

 ε ;Γ ′ Γ · γ ; Γ ′  γ  Γ ; γ ·Γ ′

 Γ · γ ;Γ ′

Lemma 10. If  Γ · γ ·Γ ′ ; ε and Γ · γ ; Γ ′  t :: ∗ then  Γ · (x : t, γ) ·Γ ′ ; ε.

Lemma 11 (Progress). If ∅ ; ∅  e : t then either e = v0, e = ρθ. v0, or
e = E0

0 [e′] where e′ �−→ e′′. (Here ∅ denotes a sufficiently long sequence of ∅s.)

Proof. This follows as a corollary of a more general lemma that states that if
γ = (�1 : t1 ref, . . . , �k : tk ref) with γ ; Γ ·Γ ′  ti :: ∗ for any 1 ≤ i ≤ l and
 γ ·Γ ·Γ ′ ; ε and γ · ; Γ ′  e : t then either

(a) e = v|Γ | for some stage-|Γ | value v|Γ |,
(b) e = ρθ. v|Γ | for some θ and stage-|Γ | value v|Γ | ,
(c) e = E |Γ |

0 [e′] where e′ �−→ e′′ for some context E |Γ |
0 and terms e′ and e′′,

(d) e = R|Γ |
0 [get{t′} �],

(e) e = ρθ.R|Γ |
0 [get{t′} �] where � �∈ dom θ,

(f) e = R|Γ |
0 [set{t′} � v0], or

(g) e = ρθ.R|Γ |
0 [set{t′} � v0] where � �∈ dom θ.

Together, Subject Reduction and Progress establish type soundness of λ[ ]
<.

5 Relation with Existing Type Systems

We show that λ[ ] types at least the terms typable in Davies’s λ© and that λ[ ]
<

types at least the terms typable in Davies and Pfennings’s λS4. (In the following
subsections, we abuse notation by using the same meta variable for syntactic
categories in different calculi.)

The next and prev of λ© directly match ↑ and ↓ of λ[ ]
<. Conversely, the unboxn

of λS4 serves two purposes, namely as an iterated ↓ and as run. Hence the
translation of λS4 into λ

[ ]
< is slightly more involved than translation of λ©

into λ[ ]
<.

5.1 Relation to λ©

λ© extends the simply-typed λ-calculus as follows.
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Definition 5 (λ©).

(Types) t ::= b | t1 → t2 | ©t

(Terms) e ::= x | λx : t. e | e1 e2 | next e | prev e

(Environments) Γ ::= ∅ | x : tn, Γ

The typing judgment of λ©, Γ n e : t, is defined by the following typing
rules.

x : tn ∈ Γ
Γ n x : t

Γ n+1 e : t
Γ n next e : ©t

Γ n e : ©t

Γ n+1 prev e : t

x : tn, Γ n e : t′

Γ n λx : t. e : t→ t′
Γ n e1 : t2 → t Γ n e2 : t2

Γ n e1 e2 : t

The typing judgments of λ© carry one type environment Γ that tracks the stage
of variables by means of an integer staging annotation, x : tn. In λ[ ], this staging
information is implicitly given by the index into the stack where a variable is
found. Hence, we parametrize the translation from λ© into λ[ ] by a λ© type
environment and an integer that denotes the current stage.

Definition 6 (Translating λ© into λ[ ]). Given a λ© typing context Γ and
a non-negative integer n, we generate a λ[ ] type environment containing the
stage-n variables in Γ by

[[©]]Γm =
(
x : [[t]]Γm | x : tm ∈ Γ )

and we then translate λ© types and terms into λ[ ] types by

[[b]]Γm = b [[x]]Γm = x
[[t1 → t2]]Γm = [[t1]]Γm → [[t2]]Γm [[λx : t. e]]Γm = λx : [[t]]Γm. [[e]]

x:tm,Γ
m

[[©t]]Γm = [[[©]]Γm+1][[t]]Γm+1 [[e1 e2]]Γm = [[e1]]Γm [[e2]]Γm
[[next e]]Γm = ↑[[e]]Γm+1

[[prev e]]Γm+1 = ↓[[e]]Γm

Given a λ© typing context Γ and a pair of non-negative integers m,n, we gen-
erate a stack of λ[ ] type environment as follows.

[[Γ ]]m,n =

{
ε, if m > n

[[©]]Γm · [[Γ ]]m+1,n, otherwise

Finally, λ© type judgments are translated into λ[ ] as follows.

[[Γ m e : t]] = [[Γ ]]0,m ; [[Γ ]]m+1,k  [[e]]Γm : [[t]]Γm
where k = max{m |x : tm ∈ Γ}
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This translation makes it evident that ©t is a type of open code. The follow-
ing lemma shows that the translation preserves typing. The proof follows by
a straightforward induction on the derivation of the λ© judgment using, in
the case for abstractions, the observation that [[t]]x:tm,Γ

m = [[t]]Γm and hence also
[[e]]x:tm,Γ

m = [[e]]Γm.

Lemma 12. If Γ m e : t is derivable in λ© then [[Γ m e : t]] is derivable
in λ[ ].

5.2 Relation to λS4

λS4 is a variant of the modal type system λ� that replaces a combination of
unbox with a number of pop operations by a single unboxn operation [10].

Definition 7 (λS4).

(Types) t ::= b | t1 → t2 | �t
(Terms) e ::= x | λx : t. e | e1 e2 | box e | unboxn e

(Environments) Γ ::= ∅ | x : t, Γ

(Stacks) Ψ ::= ε | Ψ ;Γ

The typing judgment of λS4, Ψ ;Γ  e : t, is defined by the following typing
rules.

x : t ∈ Γ
Ψ ;Γ  x : t

Ψ ;Γ ; ∅  e : t
Ψ ;Γ  box e : �t

Ψ ;Γ  e : �t
Ψ ;Γ ;Γ1; · · · ;Γn  unboxn e : t

Ψ ; (x : t, Γ )  e : t′

Ψ ;Γ  λx : t. e : t→ t′
Ψ ;Γ  e1 : t2 → t Ψ ;Γ  e2 : t2

Ψ ;Γ  e1 e2 : t

We simplify the translation into λ[ ]
< by using constants run and lift that are not

explicitly type annotated. (This can be avoided by defining the translation on
typing judgments.) We also simplify lifting by assuming an implicit surrounding
↓. We thus write %e for ↓(lift e). More concretely, we use the following variants
of the typing rules of run and lifting, both of which are admissible in λ

[ ]
<. The

rule for lifting follows by a use of subsumption to strengthen the γ′ to ∅.

Γ · γ ; Γ ′  e : [ ]t
Γ · γ ; Γ ′  run e : t

Γ · γ ; ∅ ·Γ ′  e : t
Γ · γ · γ′ ; Γ ′  % e : t
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Definition 8 (Translating λS4 into λ
[ ]
<). We translate λS4 types, terms, and

judgments into λ[ ]
< by

[[b]] = b [[x]] = x
[[t1 → t2]] = [[t1]] → [[t2]] [[λx : t. e]] = λx : [[t]]. [[e]]

[[�t]] = [ ][[t]] [[e1 e2]] = [[e1]] [[e2]]
[[box e]] = ↑[[e]]

[[unbox0 e]] = run [[e]]
[[unboxn+1 e]] = %n ↓[[e]]

[[Ψ ;Γ  e : t]] = [[Ψ ]] · [[Γ ]] ; ∅  [[e]] : [[t]]

This translation makes it evident that �t is a type of closed code. The translation
is similar to the translation of λS4 into λi

let [6]. The following lemma shows that
the λ[ ]

< variant of an unboxn can remove the n topmost type environments. It
follows by induction on n using the subsumption rule to discard the top-most
assumptions.

Lemma 13. If Γ · γ ; ∅  e : [ ]t then Γ · γ · γ1 · · · · · γn+1 ; ∅  %n+1 ↓e : t.

We can then show that the translation of λS4 into λ[ ] preserves typing. The
proof follows by induction on the derivation of the typing judgment in λS4.

Lemma 14. If Ψ ;Γ  e : t is derivable in λS4 then [[Ψ ;Γ  e : t]] is derivable in
λ

[ ]
< with the above typing rules for the run and %.

6 Related Work

Traditionally, type systems for staged programming are classified according to
their ability to distinguish between open and closed code values. Davies’s λ© [9]
and Davies and Pfenning’s λ� [10] were the first type systems to introduce types
of code values and the notion of multiple stages. The type system of λ© cannot
distinguish between open and closed code. Hence λ© does not support an eval
function.

The type system of MetaML is based on λ© [26]. It provides a type of open
code and hence cannot guarantee that only closed code is executed. Moggi et al.
establish that guarantee by extending MetaML with an additional type of closed
code [16]. Benaissa et al. generalize this type system by introducing a type that
characterize closed values, not just closed code values, and then unifying the two
code types into one of open code [4]. Neither of these type systems deal with
mutable state. Calcagno et al. show that it is safe to store closed code values in
reference cells [6].

The type system of λ� only allows closed code values [10]. An eval function
can be encoded in λ�. However, λ� does not support evaluation under future-
stage λs. Hence, unlike approaches based on λ©, multi-stage programming in
λ� leaves residual administrative redexes in code values.
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Inspired by nominal logics, Nanevski proposes a variant of λ�, called ν�,
that allows code to contain free variables and that exposes these variables in the
type of code [18]. This calculus introduces explicit substitutions to eliminate free
variables. Nanevski et al. propose Contextual Modal Types in another variant
of λ� with explicit substitutions [19]. Both of these calculi enable multi-stage
programming that eliminates administrative redexes in code values.

Kim et al.’s λsim
open and λpoly

open also extend λ� by parameterizing code types
over type environments [14]. (Kim et al.’s type system generalizes a monomor-
phic type system previously presented by the present author [21].) But unlike
the Contextual Modal Type system of Nanevski et al., λsim

open and λpoly
open treats

variables symbolically. This opens up for both a hygienic future-stage λ∗ (via a
capture-avoiding substitution) and a non-hygienic future-stage λ (via a captur-
ing substitution). Unlike λ[ ], however, despite being hygienic λsim

open and λpoly
open

are not lexically scoped. For example, in these type systems a term such as
↑(λ∗x : bool. ↓(let = ↑(x + 1) in · · · )) is well typed despite the mismatching
types of x.

Taha and Nielsen’s λα combine open-code manipulation with an eval function
by introducing explicit classifiers that name type environments [25]. The code
type of λα is annotated by the classifier for the environment in which code can
be inserted. A type-level quantifier over classifiers is used to make (code) types
parametric in classifiers. In subsequent work, Calcagno et al. define the variant
λi
let which simplify this idea by eliminating explicit classifiers in terms [7]. Neither

of these calculi supports mutable state. We have addressed the warnings of Taha
and Nielsen [25, Sect. 1.4] by demonstrating that α-equivalence is compatible
with types that carry environments and that no negative side conditions on
environments are required.

Chen and Xi’s λcode introduce a code type parameterized over a type envi-
ronment and a type [8]. λcode is nameless: variables are represented by their
de Bruijn indices, both in terms and in types. Although the precise connection
between λ[ ] and λcode remains to be established, it seems that λcode is similar
to a nameless variant of λ[ ]. Chen and Xi do not discuss mutable state.

Kameyama et al.’s λ�1 extends a simple variant of λα with control effects [13].
λ�1 supports mutable state and an eval function. To prevent scope extrusion,
λ�1 prohibits the evaluation of future-state λs to have observable side effects.
In recent work, Westbrook et al. relax this requirement by characterizing terms
as weakly separable when they do not have observable side effects that involve
code values [27]. By requiring that escaped terms (i.e., the ↓e of λ[ ]) are weakly
separable, Westbrook et al. can guarantee that no code value (and hence no
future-stage variable) can leave the scope in which it is generated. In contrast
(as witnessed by the example at the end of Sect. 2.3), λ[ ] allows both escaped
terms and future-stage λs to have observable effects involving open code.

7 Conclusions

We have defined λ[ ], a core type system for staged computation that is sound and
hygienic and that supports open-code manipulation, a first-class eval function,
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and mutable state. We have also extended λ[ ] with subtype polymorphism. The
result is λ[ ]

<, a type system for staged computation that is at least as expressive
as existing type systems for staged computation, but strikingly simpler.
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Abstract. Gradual Ownership Types are a framework allowing programs to be
partially annotated with ownership types, while providing the same encapsulation
guarantees. The formalism provides a static guarantee of the desired encapsula-
tion property for fully annotated programs, and dynamic guarantees for partially
annotated programs via dynamic checks inserted by the compiler. This enables a
smooth migration from ownership-unaware to ownership-typed code.

The paper provides a formal account of gradual ownership types. The theo-
retical novelty of this work is in adapting the notion of gradual type system with
respect to program heap properties, which, unlike types in functional languages
or object calculi, impose restrictions not only on data, but also on the environment
the data is being processed in. From the practical side, we evaluate applicability
of Gradual Ownership Types for Java 1.4 in the context of the Java Collection
Framework and measure the necessary amount of annotations for ensuring the
owners-as-dominators invariant.

1 Introduction

Type systems for ownership in object-oriented languages provide a declarative way to
statically enforce a notion of object encapsulation in object-oriented programs. Object
ownership ensures that objects cannot escape from the scope of the object or collection
of objects that own them. Variants of ownership types allow a program to enjoy such
computational properties as data race-freedom [4], disjointness of effects [8], various
confinement properties [28] and effective memory management [5].

However, there are several obstacles to the adoption of ownership types. The first
is verbosity. One way to overcome this problem is to omit annotations and use type
inference instead. Unlike traditional type systems, ownership annotations are mostly
design-driven, thus full inference of ownership types is not particularly useful, since a
correct, trivial ownership typing always exists [12]. Therefore, inference is only practi-
cally applicable when some annotations are already provided to indicate the program-
mer’s intention. But even in the case of partially-annotated programs, ownership type
inference tends to produce an excessive amount of inferred annotations [21] or impre-
cise results due to the conservatism of the underlying analysis [20]. The second obstacle
is that ownership types are often too rigid to capture the dynamic evolution of an object
graph in real applications, and in some cases the imposed constraints need to be relaxed.

Adding ownership annotations into the code is similar to the migration from the
untyped to typed code, a topic of much research nowadays [15,17,26,27]. Complete
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absence of types facilitates the fast prototyping and rapid evolution of the system, so
one might need to introduce types into the code only when the demands for reliability
and performance of the program are established. Ownership types provide more fine-
grained safety guarantees. In this respect refactoring a program to employ them can
be considered as a migration from typed to “even more typed” code. This observation
leads to the idea of applying a gradual approach for an incremental migration.

This work is based on the ownership type system of Clarke and Drossopoulou [8],
which ensures the owners-as-dominators invariant. It is expressive enough to investi-
gate the concepts of interest and is close enough to a real language to guide the im-
plementation. Nevertheless our approach is idiomatic and can be applied to many other
ownership type systems. Overall, this paper makes the following contributions:

– A type system for a Java-like object-oriented language providing gradual ownership
types, enabling the migration from ownership-unaware to ownership-annotated
code.

– A type-directed program translation that ensures the dynamic preservation of the
ownership invariant when insufficient type annotations are provided; soundness
theorems and properties of the type-directed translation.

– An implementation of a translating compiler for full Java 1.4 that supports gradual
ownership types and provides hints for smooth program migration.

– A report on migrating classes from Java’s SDK to use gradual ownership types.
– A discussion on extending the described framework for different existing ownership

policies and an overview of possible design choices of the implementation.

2 Intuition and Overview

This section gives the essence of ownership types enforcing the owners-as-dominators
policy (OAD) and provides some intuition on the “gradualization” of the type system.

Ownership types are based on a nesting relation on objects (≺). At run-time, each
object o has an owner, i.e., another object o′, such that o ≺ o′. Nesting is a tree-shaped
partial order on objects with greatest element world. The OAD invariant is as follows:
Given an object o and its owner o′, every path in the object graph of a program from
the program roots along object fields that ends in o, contains o′. I.e., there are no fields
referring to o that bypass o′. This means that one object cannot refer to a second object
directly as a field, unless the first object is inside the second object’s owner.

Figure 1 gives an example of the class List using ownership types. The class carries
two ownership parameters: owner and data. The first parameter, owner, refers to the
List instance’s immediate, or primary, owner. The second parameter, data, refers, by
conventions of the type system, to some object outside or equal to owner. As usual, this
refers to the current instance itself. The same reasoning is applicable to two auxiliary
classes, Link and Iterator. In the List’s method add(), the programmer indicates, by
creating an instance of the class Link with owners this and data respectively, that this
particular instance of Link is nested within its creator instance List and the content of
the link can be accessed only through the owner referred to as data in List. The same
is true for the instance of the class Iterator.
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class List<owner, data> {

Link <this, data> head;

void add(Data <data> d) {

head = new Link<this, data>(head, d);
}

Iterator <this,data> makeIterator() {

return new Iterator<this, data>(head);
}

}
class Link<owner,data> {

Link <owner, data> next;

Data <data> data;

Link(Link <owner, data> next, Data <data> data) {

this.next = next; this.data = data;
}

}
class Iterator<owner, data> {

Link <owner, data> current;

Iterator(Link <owner, data> first) {

current = first;
}
void next() { current = current.next; }

Data <data> elem() { return current.data; }

boolean done() { return (current == null); }
}

owner
Data Data

data

List

Link Link

Iterator

World

Encapsulation Boundary
Illegal Reference
Reference
Owner

Fig. 1. A motivating example and the design intention: a list and its iterator code with structural
(underlined) and constraint (grayed) ownership annotations

Ownership information for our list example can be provided by only five annotations.
Three class parametrizations name the owners of the class instances and two allocation
sites provide concrete owners for created objects. These annotations, underlined in Fig-
ure 1, are structural: they declare the information about nesting of objects involved (i.e.,
this ≺ owner ≺ data ≺ world) and define the owners of new instances. The remain-
ing, constraint, annotations, grayed in the code, “propagate” ownership information
through the program, since mutable variables and fields are traditionally annotated with
types to keep information about objects they point to. We require the first kind of anno-
tations to be explicitly specified, because it (a) reflects the programmer’s intentions with
respect to the invariant and (b) enables a simpler implementation of run-time dynamic
checking—no ownership information needs to be inferred dynamically.

The runtime checking of conformance of an object’s ownership structure to the ex-
pectation is performed via dynamic type casts. This technique is typical for gradual
approaches: when an untyped value is coerced to a typed value, a dynamic check is per-
formed to ensure that the further interactions through this particular reference conform
to the target’s type contract, in this setting, its ownership type. However, the preserva-
tion of the OAD invariant requires not only conformance of actual and expected types,
but also checking that the nesting constraints are preserved—this information is lost
when ownership information is lost.
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The only place where the owners-as-dominators invariant can actually be broken is
by a bad field assignment, which makes field assignments good candidates for extra
run-time checks. Consider the following assignment:

receiver.f = result;

The correctness requirement for such an assignment demands that receiver ≺ o, where
o is an owner of the object referred to by result. If the declaration of the field f lacks
ownership information, there is a chance that the OAD invariant will be violated since
the type of f may no longer impose any nesting between receiver and result. This is
a sort of contract that should be checked dynamically. We call these boundary checks.

One can notice that dynamic type casts operate with objets’ ownership structures,
whereas boundary checks traverse a part of the heap and, therefore, are significantly
more expensive. However, performing type casts before boundary checks might help
to avoid most of them, since after the check we gain some extra knowledge of an ob-
ject’s structure. This observation leads us to a two-staged, typed-directed transforma-
tion, where each stage uses the available type information to perform one sort of check:
type conformance and nesting. In the following sections we develop a staged algorithm
for the correct translation. The first pass will insert dynamic casts and the second will
handle possible OAD violations by inserting boundary checks.

Defined, Unknown and Dependent Owners. An important part of the ownership type
system is the static representation of owners. The example in Figure 1 demonstrated
one usage of ownership class parameters. The following example exhibits the concept
of dynamic aliasing [8], which employs local final variables as local owners:

final List<p, world> list = new List<p, world>();
Iterator<list, world> iter = list.makeIterator();

Variable list denotes the owner of the iterator in iter. When list goes out of scope, the
type Iterator<list, world> and other types containing owner list become illegal.

Following gradual types we introduce a notion of the special unknown owner “?”.
Types annotated with “?” in a gradually-typed language defer the checking of types to
run-time via checks inserted by the compiler. In our system, types with no annotations
are just syntactic sugar for types with all ownership annotations unknown, e.g., List ≡
List<?,?>. The following code gives the essence of unknown owners:

List list; // ≡ List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = list; // inserted cast (List<p, world>)list

The first two assignments are valid since the type of list does not specify
which objects must own the instance referred by the variable. The last assign-
ment is valid too; however, it requires a dynamic cast, due to the type refinement
List<?, ?> ⇒ List<p, world> to make sure that the owners of list matches the
specification of newList.

Information lost due to unknown owners can be partially regained by tracking of de-
pendencies between immutable references and owners of objects they refer to. For this
purpose we introduce dependent owners, which record the origin of some owner argu-
ments, allowing one to check them for equality without knowledge about the nesting.
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1 class E<P> { D myD = ... }
2
3 class D<owner> {
4 E<owner> e;
5 void use(D<owner> arg) { ... }
6 void exploit(E<owner> arg) { this.e = arg; }
7 void test(E e) {
8 final D d = e.myD; // implicitly, d: D<dD.owner>
9 d.use(d); // type refinement, but no type cast required

10 d.exploit(e); // type refinement, dynamic type cast required
11 }
12 }

Fig. 2. Dependent owners in action

Figure 2 provides and example with dependent owners. Class E declares a field of type
D. However, information about the owner of the object referred to by field myD is lost
due to the missing ownership annotation in the field declaration on line 1. As a conse-
quence, the owner of variable d in line 8 is unknown. Nevertheless, since d is final, one
can see that the owner of the object referred by d is the same as the one expected as of
a parameter of the instance method d.use(). This knowledge is preserved by assigning
the type D<dD.owner> to variable d. This should be read as “d has the type D and the
owner of the object referred to is locally denoted as dD.owner”. The superscript D.owner
refers to the particular ownership parameter of the statically known type D. Thus, by
equality of owners, no extra dynamic check is required in line 9. Still, the owner of e

remains unknown, so the method call d.exploit() on line 10 is potentially dangerous
due to type refinement, and therefore the cast E<?>⇒ E<dD.owner> is required.1

3 The Language JO?

To investigate the meta-theory of gradual ownership types we define JO?, an impera-
tive Java-like language, extended with ownership types, and unknown and dependent
owners, based on the system JOE1 by Clarke and Drossopoulou [8].

3.1 Syntax

Figure 3 provides the full syntax of JO?. A program in JO? is a collection of classes.
A class definition describes a class named c, parametrized by the ownership param-
eters αi∈1..n with the superclass c′, whose ownership parameters are instantiated with
p j∈1..n′ .2 Methods have only one parameter for simplicity. Expressions in JO+

? are a-
normal form (ANF), i.e., all intermediate computations are named and assigned to the
immutable variables. Local variables can be used as owners, as long as they do not
escape the scope of a local stack frame.

1 We have chosen the term “dependent owners” because of similarity of the idea to the notion of
path-dependent types [22]—the value of the owner depends on the value of an object.

2 More expressive possibilities exist in the literature, for example, by allowing the programmer
to declare the expected relationship between owner parameters to a class [10].
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P ::= class j∈1..m programs
class ::= class c〈αi∈1..n〉 extends c′〈p j∈1..n′ 〉 {fdk∈1..m; methl∈1..u} class declarations
fd ::= t f field declarations
meth ::= t m(t x) {e} method declarations
e ::= x | let x = b in e expressions
b ::= x. f | x. f = x | x.m(x) | new c〈pi∈1..n〉 | null computations
v ::= ι | null values
E ::= /0 | E,x : t | E, ι : t | E, p ≺ p′ typing environments
B ::= /0 | B,α = k | B,x = v bindings

k ::= world | ι run-time owners
p,q ::= x | this | k | ? | α owners
t,s ::= c〈pi∈1..n〉 types
o ::= 〈c〈ki∈1..n〉, f �→ v〉 objects
H ::= ι �→ o heaps

x,y,z,this variables
ι heap locations
α formal owners
xc.i dependent owners
? unknown owners

defined(p) 
 (p �=?)∧ (p �= xc.i)

undefined(p) 
 ¬defined(p)
actual(p) 
 (p = world)∧ (p = ι)
arity(c) 
 n, s.t. class c〈αi∈1..n〉 ∈ P

owner(c〈〉) 
 world

owner(c〈pi∈1..n〉) 
 p1, where n > 0
owner j(c〈pi∈1..n〉) 
 p j, where 0 < j ≤ n
owners(c〈pi∈1..n〉) 
 p1 . . . pn

Fig. 3. Syntax of JO? and syntactic helper functions

Types and Owners. A type c〈pi∈1..n〉 consists of a class name c and a vector of own-
ership arguments pi∈1..n. Owners are represented syntactically by owner and term vari-
ables (α and x, respectively), dependent owners and run-time owners such as world
and heap locations (i.e, run-time object identifiers). xc.i denotes the dependent owner
corresponding to the i-th ownership parameter of the object referred to by the term vari-
able x, whose statically known class type is c. Dependent owners are not supposed to
be specified by the programmer. Instead, they are inferred by the compiler. We often
use an alternative notation c〈σ〉 for a type c〈pi∈1..n〉, assuming σ to be a substitution
{αi �→ pi | i ∈ 1..arity(c)}, and αi are formal ownership parameters of the class c.

To distinguish between different kinds of owners when checking the well-formedness
of types, we introduce several syntactic helper functions (Figure 3).

Objects and Heaps. In addition to having the class name and field values, an object
also has a binding for its owner parameters, either world or some non-null heap loca-
tions. A heap H is a partially defined map from locations to objects.

3.2 Environments and Owners

A typing environment E binds variables and heap locations with types and defines or-
dering assumptions on owners with respect to the nesting relation ≺. The bindings B
map formal owners to run-time owners and variables to values.

The dynamic semantics is defined in Section 5 in terms of an explicit binding of
free variables, rather than via substitution. The presence of binding environment in the
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E;B % p

(OWN-WORLD)

E;B % (
E;B % world

(OWN-VAR)

E;B % (
E;B % x : t

E;B % x

(OWN-VAL)

E;B % (
E;B % ι : t

E;B % ι

(OWN-?)

E;B % (
E;B % ?

(OWN-DEPENDENT)

E;B % x
i ∈ 1..arity(c)

E;B % xc.i

(OWN-IN)

E;B % (
p ≺ p′ ∈ E

E;B % p, p′

E;B % p ≺ p′ defined(p),defined(p′)

(IN-ENV)

p ≺ p′ ∈ E

E;B % p ≺ p′

(IN-REFL)

E;B % p

E;B % p ≺ p

(IN-TRANS)

E;B % p ≺ p′

E;B % p′ ≺ p′′

E;B % p ≺ p′′

(IN-VAR)

E;B % x : t
p = owner(t)
E;B % x ≺ p

E;B % p � p′

(SUB-LEFT)

E;B % p E;B % q
undefined(q)
E;B % p � q

(SUB-RIGHT)

E;B % p E;B % q
undefined(q)
E;B % q � p

(SUB-INCL)

E;B % p ≺ p′

E;B % p � p′

(SUB-WORLD)

E;B % p
E;B % p � world

Fig. 4. Well-formed owners and owner nesting

typing judgements of the form E;B % F for some succedent F does not affect the static
semantics of JO?, but we will need it to establish equalities between typing environ-
ments and dynamic bindings in the proof of the type preservation theorem.

A typing environment E is well-formed if ≺ is antisymmetric on {p | p ∈ dom(E)},
i.e, the environment does not introduce cycles in ownership. Well-formed environment-
binding pairs (E;B % () are omitted and can be found in the companion technical re-
port [25]. Informally, the pair E;B enables owners and types in E to be used modulo
equalities in the run-time binding environment B. To keep the presentation tractable,
we omit explicit mentioning of the rules dealing with such equalities. The well-formed
owner relation (E;B % p) is shown in Figure 4. The rules (OWN-DEPENDENT) and
(OWN-?) are novel for the gradual type system. A dependent owner is well-formed if
the corresponding variable is in scope and if i does not exceed the ownership-arity of
the class c. The definition of the nesting relation on owners (Figure 4, E;B % p ≺ p′)
captures only defined owners. It is then embedded into a more general consistent-inside
relation (E;B % p � p′), which deals also with dependent and unknown owners. Infor-
mally, no precise information about nesting can be retrieved from unknown or depen-
dent owners. Note that � is not transitive, so E;B % q � ? and E;B % ? � p do not
imply E;B % q � p for any defined p and q.

To state the OAD invariant we need a definition of a heap flattening. The notation Ĥ
is used also to flatten a heap H into a typing environment Ĥ.

Definition 1 (Heap flattening).

Ĥ � {(ι ≺ o),(ι : c〈o,ki∈2..n〉) | (ι �→ 〈c〈o,ki∈2..n〉, . . .〉) ∈ H}
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E;B % p ∼ p′ E;B % t ∼ t ′

(CON-REFL)

E;B % p

E;B % p ∼ p

(CON-RIGHT)

E;B % p E;B % q
undefined(q)

E;B % q ∼ p

(CON-LEFT)

E;B % p E;B % q
undefined(q)

E;B % p ∼ q

(CON-TYPE)

E;B % c〈pi∈1..n〉
E;B % c〈qi∈1..n〉
pi ∼ qi ∀ i ∈ 1..n

E;B % c〈pi∈1..n〉 ∼ c〈qi∈1..n〉

E;B % t E;B % t � t ′

(G-TYPE)

arity(c) = n
E;B % p1 � pi ∀i ∈ 1..n

E;B % c〈pi∈1..n〉

(GRAD-SUB)

E;B % c〈σ〉 ≤ c′〈σ′〉
E;B % c′〈σ′〉 ∼ c′〈σ′′〉
E;B % c〈σ〉 � c′〈σ′′〉

Fig. 5. Owner and type consistency; gradual subtyping

Definition 2 (Owners-as-Dominators Invariant [10]). OAD(H) � for all locations
ι, ι′ and run-time owners k,

H(ι) =
〈
c〈ki∈1..n〉, f �→ v

〉
fi �→ ι′ and H(ι′) = 〈t ′, . . .〉

owner(t ′) = k

⎫⎬⎭⇒ Ĥ; /0 % ι ≺ k

In words, if object ι references object ι′ via a field, ι must be inside the owner of ι′.

3.3 Type Consistency and Subtyping

Types can be constructed from any class using any owner in scope (including an un-
known owner “?”), as long as the correct number of arguments are supplied and the
owner (the first parameter), if present, is provably consistently-inside all other parame-
ters. The corresponding relation E;B % t is defined in Figure 5.

The type consistency relation answers the question: which pairs of static types could
possibly correspond to comparable run-time types? It allows the type checker to com-
pare types with dependent and unknown owners. We define the type consistency relation
∼ on types parametrized with partially known and dependent owners via the rules in
Figure 5 (the relation E;B % t ∼ t ′). The definition of the subtyping E;B % t ≤ t ′ is is
standard for parametrized object-oriented type systems, ownership parameters are in-
variant [8]. In order to eliminate non-determinacy from the type-checking algorithms
we need to construct a relation that combines two kinds of subsumption of types: type
consistency and subtyping. This relation is used then in type rules whenever an im-
plicit upcast is necessary [23]. Siek and Taha suggest a way to design such consistent-
subtyping relation (�) for the calculus Ob<: of Abadi and Cardelli [1]. If two types
t = c〈σ〉 and t ′ = c′〈σ′′〉 are related via the consistent-subtyping relation, i.e., t � t ′,
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E;B % b : t

(T-NEW)

E;B % c〈pi∈1..n〉
defined(pi) ∀i ∈ 1..n

E;B % new c〈pi∈1..n〉 : c〈pi∈1..n〉

(T-LKP)

E;B % z : c〈σ〉
Fc( f ) = t

E;B % z. f : σz(t)

(T-LET)

E;B % b : t
E,x : fill(x, t);B % e : s

E;B % let x = b in e : s

E % t ′ m(t y){e}
(T-UPD)

E;B % z : c〈σ〉 Fc( f ) = t
E;B % y : s

E;B % s � σz(t)

E;B % z. f = y : σz(t)

(T-CALL)

E;B % y : s M T c(m) = (y′, t → t ′)

E;B % z : c〈σ〉 E;B % s � σz(t)

σ′ ≡ σ�{y′ �→ y}
E;B % z.m(y) : σ′

z(t
′)

(METHOD)

E,y : fill(y, t) % e : s

E % s � t ′

E % t ′ m(t y){e}

Fig. 6. Selected typing rules of JO?. Grayed parts mark explicit consistent-subtyping checks that
may lead to the insertion of dynamic checks.

they can differ along both directions: the type consistency relation ∼ and the subtyping
relation ≤. This is illustrated by the diagram on the left:

c′〈σ′′〉

c〈σ〉

�
#$��������

c′〈σ′〉 ∼ �� c′〈σ′′〉

c〈σ〉
�

#$���������
≤

��

The “upper-left mediator” (the right part of the diagram) is a connecting link between
two types. This intuition is formalized via the rule (GRAD-SUB) in Figure 5.

3.4 Expression, Method and Class Typing

Typing rules for expressions are described in Figure 6, following the standard ap-
proach [23]. Type rules for variables and values are standard. m�m′ denotes the disjoint
union of finite maps m and m′, requiring that their domains are disjoint. σz is the sub-
stitution σ�{this �→ z} for any substitution σ. We use the mappings Fc and M T c for
retrieving types of fields and methods of a class c. In the rules (T-LET) and (METHOD),
the helper function fill converts declared types with unknown owners to types with de-
pendent owners to track owner dependencies.

fill(x,c〈pi∈1..n〉) � c〈qi∈1..n〉, where qi =

{
xc.i if pi = ?
pi otherwise.

The definition of well-formed classes ( % c) and programs ( % P;e) is standard.

4 Type-Directed Translation: The Language JO+
?

This section describes the type-based translation of programs in JO? to an extended
language, JO+

? , with run-time checks.
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4.1 Syntax of JO+
?

The syntax is extended for dynamic type casts and boundary checks.

b ∈ Comp ::= . . . | 〈t〉x | x. f ← y

The statement 〈t〉x ensures that the run-time type of an object referred to by x matches
the type t. The statement x. f ← y performs the check that a field reference from x to y via
the field f does not violate the ownership invariant and then performs the field update
atomically. Casts and checks are not supposed to be inserted by the programmer. They
are inserted instead by the compiler as described in Section 4.3.

4.2 Helper Relations

If two types are related via �, there is a freedom to choose the run-time semantics
of type casts, moving along either ∼ or ≤ axis. Following the rule (GRAD-SUB), we
compute the type c′〈σ′〉 that is on the same class-level as the target type c′〈σ′′〉 for the
upcast. The following lemma justifies this computation:

Lemma 1 (Inversion lemma for �). If E;B % t � t ′′, then there exists a type t ′ such
that E;B % t ≤ t ′ and E;B % t ′ ∼ t ′′.

To construct an “upper-left” mediator type we use an extra helper function t ↑ c that
computes a supertype of the type t at class c.

c〈σ〉 ↑ c � c〈σ〉
c′〈σ〉 ↑ c � d〈α j �→ σ(p j) j∈1..m〉 ↑ c

where class c′〈αi∈1..n〉 extends d〈p j∈1..m〉 and class d〈α j∈1..m〉 ∈ P.
t ↑ c〈 〉 � t ↑ c.

In words, the partially defined function ↑ pulls up the information from the substitution
σ of the initial type c〈σ〉 until it reaches the desired superclass c. If the class hierarchy
Object is reached without making a match, the function is undefined.

Lemma 2 (Basic properties of ↑). For all E, B, t, t ′,

1. (t ↑ t) = t
2. (E;B % t)∧ (E;B % t ′)∧ (t ↑ t ′ �=⊥)⇒ E;B % t ≤ (t ↑ t ′)
3. E;B % t � t ′ ⇒ E;B % (t ↑ t ′)∼ t ′.

The relation E % t � t ′ states that t satisfies all constraints imposed by known owners of
t ′. It is used to detect where type casts should be inserted.

Definition 3 (t is more defined than t ′).

E % t � t ′ � E % t � t ′ and ∀i qi �= ? ∨ pi �= qi

where (t ↑ t ′) = c〈pi∈1..n〉 and t ′ = c〈qi∈1..n〉
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E;B %C b : s

(T-CAST)

E;B % y : s E;B % t
E;B % s � t

E;B %C 〈t〉y : t

(T-UPD’)

E;B % z : c〈σ〉 Fc( f ) = t

E;B % s  σz(t) E;B % y : s

E;B %C z. f = y : σz(t)

E;B %C
B b : s

(T-CHECK)

E;B % z : c〈σ〉 Fc( f ) = t
E;B % y : s E;B % s  σz(t)

E;B %C
B z. f ← y : σz(t)

(T-UPD”)

E;B % z : c〈σ〉 Fc( f ) = t E;B % y : s

E;B % s  σz(t) specified(σz(t))

E;B %C
B z. f = y : σz(t)

Fig. 7. Selected typing rules of %C and %C
B

If the information about the first owner parameter of the type t of some class field is
not known statically, the OAD invariant cannot be guaranteed. In this case a boundary
check should be inserted. The predicate specified(t) is true iff a type t provides enough
static info about ist owners to ensure the OAD invariant preservation.

Definition 4 (t specifies its owner). specified(t)� p1 �= ?, where t = c〈pi∈1..n〉

The type rules for type casts and boundary checks are present in Figure 7. For JO+
? we

use different typing relations, namely, %C and %C
B . These two relations are similar to

% for JO?. The purpose of each of them is to ensure the specific safety conditions
after the corresponding stage of the translation (type cast and boundary check insertion,
respectively). One significant difference is that all the occurrences of � in the typing
of statements are now concentrated in the rule (T-CAST). In the rest of the �-rules are
replaced by � (grayed parts). The rule (T-CHECK) ensures the type conformance via �,
but not the preservation of the OAD invariant: this is postponed until run-time. The rule
(T-UPD”) is targeted to ensure the OAD invariant.

4.3 Type-Directed Program Translation

We adopt the idea of Siek and Taha [27] to define a type-directed type cast insertions

and extend it with the boundary check insertion relation (Figure 8, relations
C� and

B�,
respectively). First, type casts are inserted into a program whenever additional infor-
mation about types needs to be regained. Then the boundary check insertion translation
works on the program with inserted casts, so each step of the translation eliminates an
aspect of uncertainty caused by incomplete type annotations.

Figure 8 provides the definition of selected rules for the cast insertion relation that

specifies the translation. It is written E % e1
C� e2 : t for expressions and holds if, under

the assumptions from E , expression e1 is translated into expression e2 and the type of e1

is %-determined as t. In the same way it is defined for methods. The rules for classes and
a whole program are straightforward and omitted. No cast is inserted if the predicate �
holds on types being compared. For conditional insertions we define the helper function
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E % e
C	 e′ : t

(C-UPD)

E % z : c〈σ〉 Fc( f ) = t
E % s � σz(t) E % y : s

E,x : fill(x,σz(t)) % e1
C	 e2 : s′

E % let x = (z. f = y) in e1
C	

CE〈s,σz(t)〉(let x = (z. f = y) in e2) : s′

(C-CALL)

E % z : c〈σ〉 M T c(m) = (y′, t → t ′) E % y : s
E % s � σz(t) σ′ ≡ σ�{y′ �→ y}
E,x : fill(x,σ′

z(t
′)) % e1

C	 e2 : s′

E % let x = z.m(y) in e1
C	

CE〈s,σz(t)〉(let x = z.m(y) in e2) : s′

E % t ′ m(t y){e} C	 t ′ m(t y){e′}
(C-METHOD)

E % e1 : s E % s � t ′ e2 = F [z]

E,y : fill(y, t) % e1
C	 e2 : s

E % t ′ m(t y){e1}
C	

t ′ m(t y){F [CE〈s, t ′〉(z)]}

E % e
B	 e′ : t

(B-UPD)

E % z : c〈σ〉 Fc( f ) = t E % y : s
E % s  σz(t)

E,x : fill(x,σz(t)) % e1
B	 e2 : s′

E % let x = (z. f = y) in e1
B	

let x = B〈σz(t)〉(z. f = y) in e2 : s′

Fig. 8. Compilation of JO?: type-directed translation

C , which uses non-recursive local decomposition of an expression e via the context G
and optionally inserts type-casts:

CE〈t1, t2〉(e) � if (E % t1 � t2) then e else (let y′ = 〈t2〉y in G[y′])
where y′ is fresh, e = G[y]

G ::= [ ] | let x = z.m([ ]) in e | let x = (z. f = [ ]) in e

Boundary check insertion
B� is of the second stage of the whole translation (Figure 8).

The translation
B� works on top of the %C -well-typed program. The only type of the

statement that can be affected by
B� is a field update since it is only one that can pos-

sibly break the OAD invariant. The helper function B is defined to optionally replace
plain assignments with boundary-checked field assignments whenever insufficient type
information about primary owners is provided. For the rest of the statements, expres-

sions and methods,
B� is applied recursively.

B〈t〉(b) � let (z. f = y) = b in (if specified(t) then b else z. f ← y)
F ::= [ ] | let z = b in F

Definition 5. E % e � e′′ : t iff E % e
C� e′ : t and E % e′

B� e′′ : t for some e′ ∈ JO+
? .

Theorem 1 (Program translation is %C
B -sound.). E % e : t implies E % e � e′ : t for

some e′. Furthermore, E % e � e′ : t for some e implies E %C
B e′ : t.

The translation relation E % e1 � e2 : t can be extended to classes and programs in a
straightforward fashion. For instance, we denote % P1;e1 � P2;e2 if a program P2;e2 is
obtained from P1;e1 by the compositional type-directed translation.
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〈H ,B,e,K〉⇒〈H ′,B′,e′,K ′〉

(CAST-CHECK)

H ;B % t�t ′ B(y)=ι
H(ι)=〈s,...〉 Ĥ % s � t ′

H ;B % cast(t,y)

(E-CAST1)

B(y)=null ∨ H ;B % cast(t,y)

B′ = B[x �→ B(y)]

〈H ,B,let x=〈t〉y in e,K〉⇒〈H ,B′,e,K〉

(E-CAST2)

B(y) �=null H ;B � cast(t,y) K �=fail( )

e=(let x=〈t〉y in e′)

〈H ,B,e,K〉⇒〈H ,B,e,fail(K)〉

(BOUNDARY-CHECK)

B(x)=ι B(y)=ι′

H(ι′)=〈c〈k,...〉,...〉 Ĥ; /0 % ι ≺ k

H ;B % boundary(x,y)

(E-BOUNDARY1)

(B(y′)=null ∨ H ;B % boundary(y,y′))

B(y)=ι B(y′)=v H(ι)=o

H ′=H [ι �→ o[ f �→ v]] B′=B[x �→ v]

〈H ,B,let x=(y. f←y′) in e,K〉⇒〈H ′,B′,e,K〉

(E-BOUNDARY2)

B(y′) �=null H ;B � boundary(y,y′)

K �=fail( ) e=(let x=(y. f←y′) in e′)

〈H ,B,e,K〉⇒〈H ,B,e,fail(K)〉

Fig. 9. Small-step operational semantics of JO+
? (selected rules)

5 Operational Semantics of JO+
?

This section provides the definition of dynamic semantics of JO?. The selected rules
of the small-step operational semantics of JO? is presented in Figure 9 (the rest of the
rules is standard and can be found in the companion technical report [25]). The seman-
tics is in the form of a small-step CEK-like abstract machine with a single-threaded
store H, binding environment B and explicit continuations K [14]. A continuation K is,
informally, a serialized next step of computation.

K ::= mt | call(x : (t,σ),e,B,K) | fail(K)

The empty continuation mt corresponds to the empty control stack which is a case at the
beginning and at the correct end of program execution. call(x : (t,σ),e,B,K) describes
the discipline of popping the stack when a method ends its execution and its caller’s
local environment B should be restored with a result assigned to a variable x. Finally,
fail(K) denotes the result of failing casts and boundary checks.

To implement dynamic type casts, we first need a bit of machinery to relate syntactic
types with dynamic types extracted from the object heap during the program execution.
We define a helper relation H; B % t � t ′ to compute the dynamic type t ′ corresponding
to a static type t in dynamic environments H and B by instantiating owners as follows:

∀ i ∈ 1..n qi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
k if

⎧⎨⎩ pi = xc. j

H(B(x)) = 〈t, . . .〉
k = owner j(t ↑ c)

dependent owner

pi if actual(pi) run-time owner
B(pi) if defined(pi) formal owner or variable
? otherwise unknown owner

H;B % c〈pi∈1..n〉� c〈qi∈1..n〉

The test ι ≺ o in the rule (BOUNDARY-CHECK) can be performed at run-time by
checking whether o is ι or some transitive owner of ι—this information is retained via
the flattened heap Ĥ.
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6 Type Safety

In this section we sketch the type safety of JO? as a corollary of the correctness of the
type-guided program translation with respect to program typing and the type safety of
the extended language JO+

? with type casts and boundary checks. A complete formal
treatment with the definition of well-formed run-time states and proofs of theorems is
available in the accompanying technical report [25].

Proposition 1 (Compilation and gradual typing). E%P;e iff ∃P′,e′.E %P;e � P′;e′.

The preservation of the OAD invariant relies on three facts: (1) an initial configuration
of any program obeys the OAD invariant, (2) the subject reduction theorem guaran-
tees the type preservation for subsequent configurations, and (3) making a step from
any well-typed configuration obeying the OAD invariant, preserves the invariant. In the
remainder of this section we formalize these statements.

The operational formalism we use is a stack-based abstract machine (continuations
form a stack-like structure) with a heap, so we need to separate environments ro provide
typing for heap objects and references in stack frames.

E ::= /0 | E , ι : c〈ki∈1..n〉 | E , ι ≺ k heap environments
E ::= Nil | E •E stack environments

Below in this section we assume that static typing environments E defined in Section 3
contain only term and owner variables in their domain, but not heap locations. A stack
environment is well-formed if all its constituents are well-formed. The definition of a
well-formed run-time state (E ,E � 〈H,B,e,K〉), which is omitted, assumes the expres-
sion e to be well-typed (E ,E0;B %C

B e : t) and environments E and E well-formed. The
last ensures, in particular, that the heap H has no ownership-cycles (E % H).

Lemma 3 (Initial state typing). E ,E;B %C
B e : t iff E ,(E •Nil)� 〈H,B,e,mt〉 for some

initial heap H such that E % H.

Definition 6 (Heap environment extension). An environment E ′ is an extension of E
(written E ′ 8 E) if and only if E ⊆ E ′.

Definition 7 (Stack environment evolution). We say that a stack environment E trans-
forms to a stack environment E

′
(written E � E

′
) if one of the following holds:

– E
′
= E ′ •E for some E ′ (method call);

– E
′
= (E0,x : t)• tail(E) for some t and x /∈ dom(E0) (variable assignment);

– E
′
= (E1,x : t)• tail(tail(E)) for some t and x /∈ dom(E1) (method return).

Theorem 2 (Subject reduction in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉, E ,E �
S for some well-formed E ,E and S ⇒ S ′ then E ′,E

′ � S ′ for some well-formed E ′,E
′

such that E ′ 8 E and E � E
′
.

Theorem 3 ensures that for all well-formed states, if it is possible to make a next step,
then the OAD invariant is preserved for the heap component of the resulting state.



Gradual Ownership Types 593

Theorem 3 (OAD preservation in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉, E ;E �
S , OAD(H) and S ⇒ S ′ for some S ′ = 〈H ′, , , 〉 then OAD(H ′).

Definition 8 (Initial state). Assume P;e to be a program in JO+
? , H = {world �→ •},

B = {this �→ world} is an initial binding environment. Then the initial configuration
of P;e is init(e) = 〈H,B,e,mt〉.

Following [11], we introduce a class World with no owner parameters to represent
the object corresponding to the owner of world-annotated instances, and for the com-
pleteness we need to provide its type. Taking E = {world : World} and E = {this :
World} •Nil, we obtain /0 %C

B P;e ⇒ E ,E � init(e) by Lemma 3. Theorem 4 ends our
chain of safety statements.

Theorem 4 (Static type safety of JO?). If % P;e � P′;e′ and init(e′)⇒∗ S , then one
of the following statements holds:

(a) S = 〈H,B,v,mt〉 for some H,B and v (final state);
(b) NPE(S) (null-pointer error);
(c) ∃S ′ : S ⇒ S ′ (progress);
(d) S = 〈H,B,b, fail(K)〉, where b = 〈t〉y or b = z. f ← y for some H,B, t,y,z, f and K

(OAD violation attempt).

Combined Theorems 1, 3 and 4 state that the provided gradual type system ensures that
(a) during a compiled program execution no ownership invariant will be violated, and
(b) fully-annotated well-typed programs will be executed until the final or null-pointer
error state with no ownership invariant violation.

7 Implementation

A prototype compiler for Gradual Ownership Types has been implemented in the Jast-
Add framework as a small syntactic extension of the JastAddJ compiler for Java [13].
The extension is about 2,600 lines of code, not including tests, blank lines and com-
ments.3 Although generics were introduced in Java 5, we have chosen Java 1.4 as a host
language for the sake of simplicity. Parametric polymorphism is an orthogonal feature
to the ownership parametrization, but they can be unified [24].

The type analysis and type-directed translation are implemented as attributes in the
framework of reference attribute grammars [13]. The type analysis is built on top of
the standard Java type-checking algorithm, which is augmented to handle ownership-
parametrized types. The compiler uses several default conventions as well as manifest
ownership [10] to seamlessly embed the raw Java code into an ownership-aware en-
vironment. To be parametrized by some owners, a class or an interface requires all its
super classes and the interfaces it implements to carry ownership parameters. I.e., no
casts of ownership-parametrized types to raw types is allowed, since it could lead to
breakage of the OAD invariant [24]. The only one exception to this rule is handling of
Object class. We assume that two Object classes exist: one is ownership-parametrized

3 A prototype is available from http://people.cs.kuleuven.be/ilya.sergey/gradual/

http://people.cs.kuleuven.be/ilya.sergey/gradual/
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and the other is owned by world and considered as a special case of the first one.
Classes that inherit from parametrized classes or interfaces but do not declare own-
ership parameters are implicitly assumed to be owned by world, which is made the
owner of the supertypes. The type-directed translation is implemented as a source-to-
source transformation by erasing ownership types, augmenting classes with fields for
owner parameters and inserting run-time checks into the code of expressions. The com-
piler might also need to modify code that interacts with owner-parametrized classes, i.e,
some libraries might need to be recompiled.

Dependent Owners and Casts. Instead of transforming Java programs into ANF, we
operate with dependent owners in terms of source code locations corresponding to the
expression that computes an owned object. Any expression in the program can hereby
give rise to dependent owners, which potentially can be used in further checks. To avoid
management of all possible source locations, the compiler runs a simple static analysis
to determine which dependent owners might be used in the current context.

Inner Classes and Manifest Ownership. In Java a non-static inner class is nested in
the body of another class and contains an implicit reference to its enclosing class (outer
instance). An instance of such a class can be leaked and referred to through a field by
another object outside of its outer instance, which, again, breaks the desired invariant.
There are multiple suggestions on the problem of interoperation of inner classes and
different ownership policies [2,3]. We make outer instance’s ownership parameters le-
gal in the context of an inner class if the programmer passes them to the inner class as
owner arguments, i.e., by a sort of closure-conversion. However, most of the time one
does not intend an inner class to be parametrized, since it is something for the inter-
nal use, but it may be externally accessible. To solve this design problem, we employ
manifest ownership, a mechanism to allow owned classes without explicit owner type
parameters [10]. A manifest class does not have an explicit owner parameter, rather the
class’s owners are fixed, so all the objects of the class have the same owners.

8 Experience

We evaluated our approach by gradually porting several classes from the Java Collection
Framework (Java SDK version 1.4.2) into Gradual Ownership Types. Most traditional
collection classes that contain linked data structures implement internal logic to handle
their entries in the way it is described in the example in Figure 1. We assume that
internal entries should be dominated by their outer collection instances, so they are
not supposed to be exposed to the external objects. It makes them a good possible
candidate for ownership types and the owners-as-dominators policy. Our intention was
to ensure the OAD invariant holds for inner classes such as Entry of collection classes
such as LinkedList and TreeMap, without changing existing code, but only by adding
annotations. The questions we were trying to answer are:

– How many annotations (i.e., lines of code changed) are needed minimally?
– What is the execution time overhead with minimal annotations?
– How many annotations are needed for full static checking?
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The analysed code base consists of 46 source files, comprising about 8,200 lines of
code, not including blank lines and comments. The compiler provides hints for easily
migrating to ownership types by emitting static error messages and warnings. A static
error message is emitted whenever necessary annotations are omitted. A warning mes-
sage is displayed whenever dynamic casts or boundary checks are inserted.

LinkedList. The minimal amount of annotations to ensure the OAD invariant for
instances of the inner class Entry of LinkedList is 17, comprising 7 annotations to
the LinkedList class itself and 10 in five other classes. Class Iterator was owner-
parametrized to preserve the OAD invariant, as the inner class ListItr has access to
entries of the list. The correctly annotated class ListItr is defined as follows; the iter-
ator is owned by the instance of LinkedList (employing the manifest ownership):

class ListItr implements ListIterator<LinkedList.this>

We implemented a series of simple benchmarks consisting of multiple list updates and
iterations. These reveal that the minimal annotations cause average execution time per
update to double. However, the implementation of LinkedList allows full annotation.
By adding 17 extra annotations in the LinkedList class (i.e., 34 in total), one can reach
zero execution overhead and full static preservation of the OAD invariant.

TreeMap. For the best result in terms of performance and the invariant preservation
the TreeMap class requires 28 annotations, consisting of 26 annotations in the class itself
and two extra annotations in the interfaces Iterator and Map respectively. Because of
the static method buildFromSorted, which also operates with entries, it is impossible
to provide full static ownership guarantee without modifying the original code. The
possible solutions would be making the method non-static, or providing an extra final
method parameter as an alias for the potential owner. Alternative solution is to use
owner-polymorphic methods [9], which are not supported in the current formalism.
According to the set of stress benchmarks involving multiple updates and iterations,
even in the presence of some non-avoidable casts, the annotated TreeMap class exhibits
only 30% average execution time overhead per update.

Detected Object Leaks. Our compiler has helped to detect a place in the Collection
Framework with the possible “leak” of the inner Entry classes with respect to the OAD
invariant. The class ResourceBundleEnumeration declares a package-protected field of
type Iterator. Although this field is initialized with the iterator of the Set instance in
the constructor, it can be reassigned elsewhere in client code, which will lead to an OAD
invariant violation. Our compiler generates the code with necessary dynamic checks for
updates of this field to ensure the invariant dynamically. However, for the static OAD
guarantee a significant refactoring would be required.

9 Discussion

Several design choices were made in our approach to gradual ownership types. This
section discusses other alternatives.

Alternative Ownership Disciplines. In our work we used the owner-as-dominator
discipline as a base for applying the gradual technique. However, most of existing
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parametric ownership disciplines, such as multiple ownership [7] or ownership do-
mains [2], can be “gradualized” using similar approach with no changes in the part
related to type cast insertion. The difference between most of existing disciplines lies
in the definition of the heap invariant and relation between owners that should be pre-
served. In the present work it is ensured by the boundary check, and for any other par-
ticular system it might require specific tweaks in the definitions of the consistent-inside
relation, specified and the runtime semantics of boundary check.

Required Annotations. The present approach required that ownership parameters be
specified (explicitly or via default conventions) at all allocation sites, hence object own-
ers are all known at creation time. Two other possibilities were considered. The first
was to annotate field and method types, thereby annotating the interface of the ob-
ject. This approach unfortunately creates a significant overhead in the implementation,
which would require run-time tracking of object aliasing: whenever an object owner be-
comes known, for example, by assignment into a field whose owners are specified, all
other aliases to that object need to be checked for validity. Furthermore, the ownership
of objects with the same owner as the assigned object also need to be updated—objects
can have the same owner, even if this owner is not known; consider for example, the
Entry objects in a linked list. The required run-time modifications are likely to intro-
duce too much run-time overhead. The second approach was to allow annotations to
occur anywhere in the code. This approach is clearly best suited for programmers, but
it clearly also suffers the same problems as annotating just the interface.

Treatment of Libraries. Our approach essentially assumes that any library code that
needs to be owner-aware must be rewritten, but rewriting the library is a significant
overhead, the kind which gradual typing aims to avoid. Three alternative approaches
are possible. One is to ignore leaks of an object into ownership-unaware code, and
assume a weaker ownership invariant that amounts to saying that an object is protected
only within code compiled by our compiler. With this more pragmatic approach, library
code can more gradually be converted to owner-aware code and trusted library code can
‘safely’ be ignored. A second alternative is to implement the byte-code instrumentation
procedure that inserts the run-time checks to monitor field assignments in the code. The
third approach is to perform a static analysis of library (byte)code along the lines of Ma
and Foster’s work [19] to infer possible ownership annotations.

Boundary Checks. Boundary checks occur whenever an object is stored in a field of
a type with an unknown primary owner of another object in order to preserve the OAD
invariant. An alternative interpretation of such a type is that it does not care what the
owners are. This would allow expensive boundary checks to be omitted, keeping only
dynamic casts, at the expense of a weaker invariant. Such a system may be worth further
investigation.

10 Related Work

Our work is strongly based on the idea of gradual types by Siek and Taha [26,27],
which has been recently applied to Java-like generics [17] and modular typestate [30].
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The notion of blame control is known in the context of gradual types to provide bet-
ter debugging support [29]. Since dependent owners contain information about source
code locations, the information from labels makes it easy to track back the flow depen-
dencies and eliminate uncertainty by adding extra ownership annotations. This makes
dependent owners similar to blame labels. The idea of combining static and dynamic
type checking is also close to the work of Flanagan on hybrid types [15]. Hybrid types
may contain refinements in the form arbitrary predicates on underlying data. The type
checker attempts to satisfy the predicates statically using a theorem prover.

Gordon and Noble in the work on dynamic ownership introduce ConstraintedJava,
a scripting language that provides dynamic ownership checking [16]. The authors sug-
gest a dynamic ownership structure consisting of an owner pointer in every object. The
semantics of the language relies on a message-passing protocol with a specific kind of
monitoring, similar to our boundary checks.

Existential ownership types [18] offer variant subtyping of owners based on exis-
tential quantification [6]. This approach allows owner-polymorphic methods to be ele-
gantly implemented and it distinguishes objects with different and equal unknown own-
ers. Existential quantification also helps to implement effective run-time downcasts in
the presence of ownership types: a subtype’s inferred owners are treated as existentially
quantified [32]. The key difference between these approaches and ours is that existential
ownership expresses don’t care whereas gradual types express don’t know concerning
the unknown owners.

Algorithms for ownership inference address a similar problem to ours: take a raw
program and produce reasonable ownership annotations. The pioneering work on dy-
namic ownership types’ inference is Wren’s master’s thesis [31]. The work provides a
graph-theoretical background for run-time inference. The author formulates the system
of equations to assign annotations to particular object allocation sites, based on an ob-
ject graph’s evolution history. However, no proof of correctness of these equations is
provided. Milanova and Vitek [20] present a static analysis to infer ownership annota-
tions for the OAD invariant. The analysis is based on the context-insensitive points-to
analysis. A more general points-to analysis-based algorithm to infer ownership and
uniqueness is presented by Ma and Foster [19] via constraint-based points-to analy-
sis. The collected information about encapsulation properties is not however mapped
to a type system. Dietl et al. [12] present a static analysis to infer Universe Types, a
light-weight version of ownership types, according to a set of generated constraints.
Constraints of the type system are encoded as a boolean satisfiability problem.

11 Conclusion

Introducing ownership types into real-life programs is a long-standing problem. The
main causes are the verbosity of the formalism and its rigidity for some applications.
In this work we applied the notion of gradual types to ownership type systems and
the owners-as-dominators invariant for a Java-like language to seamlessly combine
static and dynamic invariant checks. The developed framework has been formalized
and proved to be correct [25]. We implemented Gradual Ownership Types as an exten-
sion of an existing Java compiler and evaluated it on a well-studied codebase.
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