
An Architecture for Information Exchange

Based on Reference Models

Heiko Paulheim1, Daniel Oberle2, Roland Plendl2, and Florian Probst2

1 Technische Universität Darmstadt
Knowledge Engineering Group
paulheim@ke.tu-darmstadt.de

2 SAP Research
{d.oberle,roland.plendl,f.probst}@sap.com

Abstract. The goal of reference models is to establish a common vocabu-
lary and recently also to facilitate semantically unambiguous information
exchange between IT systems. However, IT systems are based on imple-
mentation models that typically deviate significantly from the reference
models. This raises the need for a mapping mechanism, which is flexible
enough to cope with the disparities between implementation model and
reference model at runtime and on instance level, and which can be imple-
mented without altering the established IT system. We present an archi-
tecture that solves this problem by establishing methods for representing
the instances of an existing IT-System in terms of a reference model. Based
on rules, the concrete nature of the representation is decided at run time.
Albeit our approach is entirely domain independent, we demonstrate the
feasibility of our approach in an industrial case study from the Oil and Gas
domain, using the ISO 15926 ontology as a reference model and mapping
it to different Java and Flex implementation models.

1 Introduction

Semantic modeling techniques have evolved in the areas of knowledge represen-
tation [1], object orientation [2,3], and recently ontologies [4]. However, neither
software engineers nor knowledge engineers had considered enterprise applica-
tions for using semantic modeling techniques several decades ago. In the mean-
time, the complexity of enterprises as well as their need to exchange information
ad-hoc continues to grow leading to an increased awareness of the need for se-
mantically richer information. Since the early 1990s, the idea of modeling specific
aspects of an enterprise has led to the definition of various reference models where
semantic modeling techniques are used to formalize the concepts identified by
the different standards bodies [5]. The initial purpose of such standards was to
create a commonly accepted nomenclature for representing structural and opera-
tional aspects of enterprises. Once these standards had been accepted by a large
enough community, industry solutions exploiting them have been implemented
closing the loop to allow enterprises using standards-based IT systems. [6] This
situation facilitates building new composite applications based on the reference
model.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 160–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Architecture for Information Exchange Based on Reference Models 161

In order to illustrate this, we refer to the example of the Oil and Gas industry
whose declared goal is to enable information integration to support, e.g., the
integration of different data sources and sensors, the validation of information
delivered by different sources, and the exchange of information within and be-
tween companies via web services [7]. This requires that Oil and Gas IT systems,
e.g., asset management or facility monitoring, share information according to a
reference model, and that they can interpret messages using that model. In the
particular case of the Oil and Gas industry, the reference model is given by
the ISO 15926 ontology which is formalized in the W3C Web Ontology Lan-
guage (OWL) [8]. First middleware solutions are available to address the task
of information integration, e.g., IBM’s Information Integration Framework [9].
Such middleware solutions allow information exchange between the existing IT
systems based on ISO 15926. Further, they facilitate the creation of new compos-
ite applications, such as production optimization or equipment fault protection.
Such composite applications depend on information stemming from several ex-
isting IT systems, and, thus, benefit from semantically unambiguous information
exchange.

Since the reference model is typically designed ex post, i.e., long after IT sys-
tems have been put in place, the IT systems’ implementation models have to
be mapped to such a reference model. Different IT systems feature implementa-
tion models specified in different implementation languages. Examples for such
implementation languages are object-oriented languages or relational schemas.
Therefore, the outlined setting requires to cope with arbitrary implementation
languages. In addition, mapping between reference and implementation models
is typically a non-trivial task which requires a flexible mechanism to cope with
all kinds of disparities between the two kinds of models. The reason is that im-
plementation models serve the purpose of providing a model which allows for
simple programming resulting in efficiently executable code. In contrast, refer-
ence models serve the purpose of providing a clear, formal conceptualization of a
domain. Further, the mapping has to be bidirectional since the IT system has to
send and receive messages expressed according to the conceptualization under-
lying the reference model. In addition, for coping efficiently with the disparities
between reference and implementation model, the mapping process itself must
happen at runtime and on the instance level. For example, an asset management
application might contain instance data about a specific pump. This instance
data has to be represented by means of ISO 15926 for information exchange
with other IT systems via a middleware solution. Finally, the established IT
systems cannot be touched in most cases. That means, the mapping mechanism
has to be implemented in a non-intrusive way.

Despite the existence of sophisticated solutions for model mapping [10], data-
base integration [11], or ontology mapping [12], the existing approaches for map-
ping models of both kinds are still limited with respect to supporting the outlined
settings. Therefore, we contribute a flexible, bidirectional, and non-intrusive ap-
proach for performing the mapping process between reference and implementa-
tion models at run-time and on the instance-level. The approach can be used

162 H. Paulheim et al.

with a multitude of arbitrary implementation languages and especially when the
reference model is given ex post. Although we explain our approach along an
example of the Oil and Gas domain, our approach is generic, meaning that it
prescribes an architecture that can be instantiated differently depending on the
language of the reference model, implementation model, IT system landscape or
the application domain.

We start by introducing typical deviations between reference and implemen-
tation models in Section 2, using the ISO 15926 ontology as a running example.
Section 3 surveys related approaches along our distinguishing features of being
flexible, bidirectional, non-intrusive, runtime, instance level, and ex post. Section
4 introduces our reference architecture, which is instantiated in a case study from
the oil and gas domain in Section 5. A scalability and performance evaluation
can be found in Section 6. Finally, we give a conclusion in Section 7.

2 Typical Deviations

Reference models and implementation models are different by nature. The reason
is that implementation models are task-specific, with the focus on an efficient
implementation of an application. In contrast to reference models, modeling de-
cisions are geared towards a pragmatic and efficient model. Due to those differ-
ences, one often faces the situation where implementation models and reference
models are incompatible in the sense that a 1:1 mapping between them does
not exist. This also holds when both kinds of models are specified in the same
language.

To show some typical deviations between the two kinds of models, we use
examples from the Oil and Gas domain. As discussed in the introduction, the
ISO 15926 ontology serves as a reference model. Facilitating information ex-
change between IT systems using ISO 15926 requires serializing data (e.g., Java
objects) from IT systems to RDF data and deserializing that data back to data
in the receiving IT system. The W3C Resource Description Framework (RDF)
[13] is a semi-structured, graph-based language that applies triples to represent
statements about Web URIs. For example, the triple

sys:valve 0243 rdf:type iso15926:Valve.

states that sys:valve 0243 is an instance of the ontology category iso15926:

Valve. The subject (sys:valve 0243), predicate (rdf:type), and object (iso-
15926:Valve) of the statement are all specified as URIs, using abbreviated
namespaces [14].

Fig. 1 shows a typical mismatch between reference and implementation mod-
els, viz., a multi-purpose class. A class EquipmentImpl could be used to model
different types of equipment, distinguished by the toE (type of equipment) flag.
In the ISO 15926 ontology, several thousand types of equipment are defined as
separate ontology categories. Representing each of the types as a separate class
would lead to an ineffective class model, so using a single class with a flag is a
more pragmatic solution.

An Architecture for Information Exchange Based on Reference Models 163

EquipmentImpl

toE : TypeOfEquipment

«enumeration»
TypeOfEquipment

MOTOR = 1
VALVE = 2
VACCUMPUMP = 3

INANIMATE
PHYSICAL
OBJECT

VALVE
VACCUM-

PUMP

sys:valve_0243
 rdf:type
 iso15926:Valve. …

MOTOR

Fig. 1. Typical mismatch 1: Multi-purpose classes. The left hand side shows a class
model, the middle depicts an excerpt of the ISO 15926 ontology, and the right hand
side shows a sample desired RDF serialization

With a 1:1 mapping, however, an EquipmentImpl object cannot be serialized
without information loss. A 1:1 mapping can only map EquipmentImpl to the on-
tology category Inanimate Physical Object, which serves as a common super
category for all equipment categories. With that mapping, an EquipmentImpl

object valve 0243 would be serialized as

sys: 0243 rdf:type iso15926:InanimatePhysicalObject.

This serialization implies the loss of information stored in the toE attribute, as
it does not support a deserialization to an EquipmentImpl with a proper value
for the toE attribute. Therefore, an approach relying on a 1:1 mapping is not
very useful here.

Other similar deviations encompass conditional classes, e.g., classes which
depict objects that may or may not exist (usually determined via a deleted flag),
and artificial classes, which depict objects of different kinds without a meaningful
common super category (such as a class AdditionalCustomerData storing both
a social security number and an email address). Furthermore, there are also
multi-purpose relations, which may depict different relations in the ontology,
depending on a flag or on the nature of the related object.

Another typical deviation between implementation and reference models are
shortcuts. Shortcuts may span across different relations between objects, leaving
out intermediate entities. Fig. 2 shows such a deviation: the ISO 15926 ontology
defines a category Approval, which has a relation both to the approved Thing,
as well as the approving authority. The Approval itself has more detailed at-
tributes, such as a Date.

A corresponding implementation model defines an Order and a Person class
(both of which are categories also present in the ISO 15926 ontology), but omits
the intermediate Approval category in favor of a direct relation, implemented
as an attribute in the Order class. To properly serialize an Order object, an
Approval instance has to be created as well in the serialization, as depicted
in Fig. 2.1 During deserialization, this instance is then used to create the link

1 The underscore namespace prefix is a standard RDF N3 notation which denotes an
anonymous resource, i.e., an object that is known to exist, but whose identity is
unknown [14].

164 H. Paulheim et al.

Order

id : String

APPROVAL

hasApprover

hasApprovedPerson

name : String
1 1

approvedBy
THING

PERSON

sys:o_1 rdf:type
 iso15926:Order.
sys:p_2 rdf:type
 iso15926:Person.
_:a rdf:type Approval.
_:a :hasApproved sys:o_1.
_:a :hasApprover sys:p_2.

Fig. 2. Typical mismatch 2: Shortcuts

between the Order and the Person object. Such a serialization encompassing
multiple categories in the ontology cannot be implemented using a 1:1 mapping.

Deviations may also occur on the attribute level. A typical example are com-
pound data types such as dates, which are most often represented as one variable
in a class model. In the ISO 15926 ontology, dates are represented using single
individuals for the day, month, and year part of a date, respectively. Another
deviation are counting attributes, such as an integer attribute numberOfParts,
which has to be serialized as a set of (anonymous) individuals, and deserialized
back to an integer number.

3 Related Work

The deviations introduced in the previous section require a careful mapping
between implementation model and reference model if the goal is to exchange
information based on the reference model. A semantically correct mapping is the
prerequisite for unambiguous, lossless information exchange, and, thus, for build-
ing new composite applications relying on information from several IT systems.
Related approaches have been proposed in many fields, such as information inte-
gration or ontology mapping, as depicted in Table 1. In this section, we provide
a survey of such related approaches and conclude that none of them supports
all required features.

As explained in the introduction, reference models are typically designed af-
ter IT systems’ implementation models are established. Therefore, an adequate
approach must support an ex post mapping. Moreover, simple 1:1 mappings be-
tween both types of models are not sufficient. Instead, flexible mappings are
required to cope with the typical deviations addressed in the previous section.
Since IT systems or new composite apps have to send and receive messages in
terms of the reference model, the mapping must be bidirectional. Further, the
mapping must happen at runtime of the IT system and on the instance level,
i.e., concrete instance data has to be mapped that adheres to the implemen-
tation and reference model, respectively. Most IT systems are established and
cannot be altered. Therefore, the mapping mechanism must be non-intrusive. If
a multitude of IT systems is involved, it is likely that they use different imple-
mentation languages to specify their implementation models. Correspondingly,
arbitrary implementation languages have to be supported.

The first category of related approaches shown in Table 1 is the field of
database design which distinguishes between conceptual models and logical

An Architecture for Information Exchange Based on Reference Models 165

Table 1. Categorization of approaches according to different criteria. A “yes” means
that there are approaches in the category that fulfill the criterion, not that each ap-
proach in the category fulfills the criterion.

Approach \ Criterion ex
p
o
st

fl
ex

ib
le

b
id
ir
ec
ti
o
n
a
l

ru
n
ti
m
e

in
st
a
n
ce

le
v
el

n
o
n
-i
n
tr
u
si
v
e

a
rb
it
ra
ry

Database Design no yes no no no no no
Model-Driven Engineering no yes yes no no no yes
Information Integration yes yes yes yes yes yes no
Direct Semantic Programming Models yes no yes yes yes yes no
Indirect Semantic Programming Models no yes yes yes yes no no
API Generation from Ontologies no yes yes no no no yes
Ontology Mapping yes yes yes no yes yes no

models according to [15]. Both bear resemblance to our notion of reference and
implementation models. CASE tools support the database designer to create
a conceptual model, e.g., an ERM [16], and automatically transform it to a
logical model, e.g., a relational schema. More recent tools, such as Together by
Borland,2 also support reverse engineering models from existing databases. How-
ever, ex post mappings to other schemata are typically not supported. Also, the
approaches do not work on the instance level and usually not at runtime.

In the area of model-driven engineering, platform independent models (PIMs)
are transformed to platform specific models (PSMs), which generally correspond
to our notion of reference and implementation models. However, this transfor-
mation does not happen at runtime and is also not intended to work on the
instance level. Originally conceived as unidirectional (transformation from PIM
to PSM), recent approaches also allow bidirectional mappings by implementing
reverse engineering [17,18].

Information integration deals with accessing information contained in differ-
ent IT systems using one central, mediated schema. The integrated systems are
addressed using wrappers, which provide an interface to the information con-
tained in the system, typically to their database. Queries posed using the medi-
ated schema are translated to sub queries posed to the individual wrappers, and
the results are collected and unified by an information integration engine [19].
While there are a number of very powerful information integration systems, e.g.,
for using an ontology as a central, mediated schema [20], they are most often
limited to integrating sources of one technology, i.e., SQL-based databases.

With a growing popularity of ontologies, different semantic programming mod-
els have been proposed for building ontology-based software. Those program-
ming models can also be used for mapping instances in a program to a reference

2 http://www.borland.com/us/products/together/

http://www.borland.com/us/products/together/

166 H. Paulheim et al.

ontology. There are two types of semantic programming models: direct and in-
direct models [21].

Direct semantic programming models let the user work with any object-
oriented programming language (e.g., Java) and allow for mapping classes of
that language to categories in the ontology. With such a mechanism, it is pos-
sible to serialize programming language objects as RDF data according to a
reference ontology, and vice versa. While most direct programming models are
intrusive (see [22] for a survey), ELMO3 and the work discussed in [23] provide
non-intrusive implementations as well and foresee ways of dynamically creating
mappings at runtime. Since the possibilities for expressing mappings are limited
in all those approaches, it is required that the “the domain model should be
rather close to the ontology” [23].

Indirect semantic programming models provide a set of meta-level program-
ming language constructs (such as an OWLClass and an OWLObjectRelation

class in Java), instead of providing mechanisms for mappings on the model level.
The most well-known examples are JENA [24] and OWL API [25]. Since the de-
veloper works directly with the ontology-based constructs, the approach allows
for flexibly using arbitrary ontologies. The drawback is that an ex post approach
is not possible, since the concepts defined in the ontology are used directly in the
code, typically as hard coded strings. Furthermore, since the indirect program-
ming model is used directly and deeply in the software, the approaches cannot
be regarded as non-intrusive.

Approaches for generating APIs from ontologies are a special type of model-
driven engineering approaches (see above) which take ontologies, e.g., OWL files,
as input for generating class models. Thus, they share the same set of characteris-
tics as MDE approaches. Typical examples for such approaches are RDFReactor
[26] and OWL2Java [27] (see [22] for a survey).

Ontology mapping approaches deal with creating mappings between different
ontologies. If instance data are described using an ontology A, they can be inter-
preted using the terms of an ontology B, if a mapping from A to B exists. The
first approaches to ontology mapping relied on tables storing pairwise correspon-
dences between elements in each ontology, and were thus of limited expressivity.
Recently, approaches such as SPARQL++ [28] also allow for flexible mappings,
which may also be stored in a non-intrusive way, i.e., external to the mapped
ontologies, e.g., by using C-OWL [29], or build bridges between RDF and XML
following different schemata, such as XSPARQL [30]. Ontology matching [31]
aims at automatically discovering such mappings. However, a runtime mapping
to the implementation model level is not foreseen and has to be provided by
additional mechanisms, e.g., by employing a semantic programming model (see
above).

In summary, there is a large number of approaches which can be exploited for
implementing information exchange based on reference models. However, none
of those approaches fulfills the complete set of requirements and provides the
full flexibility which is needed in many real-world industrial projects.

3 http://www.openrdf.org/doc/elmo/1.5/

http://www.openrdf.org/doc/elmo/1.5/

An Architecture for Information Exchange Based on Reference Models 167

Reference Model

IS1-A

com
mit
to

register

Implementation
Model Instance
Inspector

Reference
Model Instance

Factory

commit to

API

Class S1-A

instances of

Implementation Model S1

IT System S1

Mapping Execution Engine

IS2-A

register

IS1-A

Language A Exchange Format of Ref. Mod.

data
flow IS1-A

API

Class S2-A

instances of

Implementation Model S2

IT System S2

IS2-A

Reference
Model Instance
Inspector

Implementation
Model Instance

Factory

Mapping Execution Engine

Ref. Mod .Exchange Format Language B

register
Mapping Instruction:
„Express class S1-A in
terms of the reference

model.“

data
flow

Mapping Instruction:
„Express class S2-A in
terms of the reference

model.“ Representation of
in Reference Model
Exchange Format

Fig. 3. General architecture for information exchange between two systems

4 Reference Architecture

Considering the shortcomings of existing mapping approaches, we propose a
reference architecture for mapping between implementation and reference mod-
els. The architecture meets the criteria of flexible, bidirectional, and runtime
mappings which operate on the instance level. The architecture is designed to
be implemented in a non-intrusive way, so that it can be employed with legacy
systems where the reference model is provided ex post. This also covers the devel-
opment of new composite applications and mashups from existing applications.
The instantiations can operate on arbitrary implementation languages.

Fig. 3 shows the central elements of the architecture which are needed for
transferring information from one IT system (S1) into another one (S2) in a
semantically consistent way and without changing the implementation models
of S1 and S2.

The central means for interoperability is a reference model. For each class
of the implementation models (or any other relevant element), mapping instruc-
tions are written that explain the classes (or other constructs) of the

168 H. Paulheim et al.

implementation models in terms of the reference model. In this sense, the map-
ping instructions establish a partial conceptual commitment of the implemen-
tation model to the reference model. Formalizing the mapping instructions is
performed at design time and by an expert knowing the implementation model
as well as the reference model. The mapping instructions are processed by a
mapping execution engine. The mapping instructions are executable, i.e., they
can be applied at run-time for providing flexible mappings.

For each IT system, two separate mapping execution engines are established,
one for mapping from the implementation model to the reference model, and
one for mapping from the reference model to the implementation model. Each of
the two engines consists of a model instance inspector for the source model, and
a model instance factory for the target model (Fig. 3 only depicts one mapping
execution engine for each IT system, which is needed to illustrate the data flow
from S1 to S2).

The information exchange between S1 and S2 is implemented as follows: In-
stances according to the implementation model of system S1 are in use. If the
information carried by one of these instances is to be transferred to system S2,
this instance is sent to the mapping execution engine via the API of IT System
1 (in Fig. 3 an particular instance IS1-A is used to demonstrate the data flow).
First, the instance inspector identifies from which class the instance was derived
and selects the appropriate mapping instruction. Then, the reference model in-
stance factory creates one or more instances of a class (or different classes) of
the reference model in such a way that all information of the instance IS1-A
is represented appropriately, including the relations between the classes. This
“instance” is sent to S2.

Note that the reference model can be represented in more than one repre-
sentation language. Hence, the mapping instructions can be written for more
than one representation language. However, the language in which the reference
model is written serves as exchange format for the information between S1 and
S2. The mapping execution engine of S2 receives the previously generated in-
stance and identifies via the reference model instance inspector to which class
or classes in the reference model the arrived information belongs to. In the final
step the implementation model instance factory creates one or several instances
according to the implementation model of S2. The created instance is handed
over to S2 via the API of S2.

It is noteworthy that, since arbitrary mappings and implementation models
are possible, the number of objects in S1 and S2 does not have to be the same.
An object from S1 (and potentially a set of other objects related to that object)
are serialized in a data structure which conforms to the reference model, and
deserialized into an object or a set of objects for S2. Since those object models can
be conceptually different, the set of objects created for S2 can be substantially
different from the original set of objects in S1, and may also be implemented
with a different language. Thus, the approach is able to bridge both conceptual
as well as technological heterogeneities.

An Architecture for Information Exchange Based on Reference Models 169

5 Case Study

The previous section introduced an architecture that can be implemented dif-
ferently, depending on the language of the reference model, the implementation
models, and the IT system landscape. For example, we have discussed an in-
stantiation in the area of emergency management in [22]. In the following, we
introduce an instantiation in an industrial case study in the outlined Oil and
Gas domain and show how the generic elements of the architecture are imple-
mented in that concrete scenario. The role of the reference model is played by
the ISO 15926 Oil and Gas ontology [8] specified in OWL/RDF. For the sake
of brevity, Figure 4 shows the instantiated architecture with facility monitor-
ing as an existing IT system and production optimization as a new composite
application. Further existing IT systems are in place (not shown in Figure 4),
e.g., rotating equipment monitoring, engineering systems, or asset management,
which exchange information with production optimization. With respect to the
implementation languages, we assume that the facility monitoring is Java-based,
and the production optimization is Flex-based, with class models (implemented
in Java and Flex, respectively) as implementation models. The latter provides
an interface for exchanging objects with JSON [32] to facilitate data exchange.

5.1 Mapping Specification

To facilitate an executable mapping, we use rules for expressing mappings be-
tween class models and the ISO 15926 ontology (and vice versa). These rules can
be evaluated at runtime on Java and JSON objects to create the desired RDF
graph describing the object, and on an RDF graph to create the corresponding
set of objects. Fig. 5 shows how the mapping rules are used to transform a Java
object into an RDF graph and back, using the example depicted in Fig. 1. We
have employed a set of simple rule-based languages, which re-use elements from
common querying languages, such as XPath [33] and SPARQL [34]. The next
sections explain the different rule syntaxes in detail.

Mapping Class Models to ISO 15926. Our mapping approach uses tests on
the objects to be mapped as rule bodies, and a set of RDF triples to be produced
as rule heads. For each Java and Flex class, one rule set is defined. In cases
where objects have relations to other objects, the rule sets of the corresponding
related classes are executed when processing a related object. Rule sets defined
for super classes are inherited to sub classes, however, the developer may also
override inherited rules explicitly.

For defining dynamic mappings, XPath queries are used. Utilizing such queries,
RDF representations for objects can be realized dynamically. Thus, our rules
have the following form: the body consists of a test to be performed on an ob-
ject. The head is a set of RDF triples, each consisting of a subject, a predicate,
and an object, all three of which may depend on the object to transform. For
defining tests and dependent values, we use XPath expressions. If the test is
evaluated positively, one or more triples are generated, consisting of a subject,

170 H. Paulheim et al.

ISO 15926

commit to

register

commit to

API

EquimentImpl

instances of

Implementation Model in Java

Representation of

in ISO 15926 in RDF

IS2-A

register

IS1-A

Java ISO 15926 in RDFdata flow

IS1-A

API

Equipment

instances of

Implementation Model in Flex

Facility Monitoring System
IS2-A

RDF
Reader Object Factory

Mapping Execution Engine

ISO 15926 in RDF JSON

register
Mapping Rules:

„Express
EquipmentImpl in terms

of ISO15926.“

data flow

Mapping Rules:
„Express class S2-A in

terms of the ISO
15926.“

Rule Engine SPARQL
Processor

register

Rule Engine RDF
Writer

Mapping Execution
Engine

Xpath
Processor URI Factory

JSON
Object

IS1-A

Java
Object

Templates for
defining suitable sub-

graphs

RDF Filter

Production Optimization Application

register

Fig. 4. Instantiated architecture in the Oil and Gas scenario

predicate, and object. The subject, predicate, and object may be either constants
or XPath expressions as well. Thus, the syntax of our rules looks as follows:4

Rule ::= XPathExpr "→" Triple {"," Triple } "." ; (1)

Triple ::= 3 * (Constant|XPathExpr) ; (2)

In this syntax, Constant denotes an arbitrary sequence of characters enclosed
in quotation marks, and XPathExpr denotes an XPath expression following the
XPath standard [33], enhanced by the following extensions:

– The function regex(), called on a Java attribute, evaluates a regular expres-
sion [36] on that object and yields true if the regular expression matches
the attribute value, false otherwise.

– The function repeat(XPathExpr), called with an XPath expression as an
argument in the rule body, causes the rule head to be executed as many
times as there are results for the given XPath expression.

4 Represented using the Extended Backus Naur Form (EBNF) [35].

An Architecture for Information Exchange Based on Reference Models 171

name = "M0084B2"
description = "Pump Engine B"
toE = MOTOR

valve_0243 : EquipmentImpl
MOTOR

sys:valve_
0243

rdf:type

"M0084B2"

"Pump
Engine B"

rdfs:label

rdfs:
comment

Java->RDF rules for class EquipmentImpl:

/[toE=MOTOR] -> uri(.) rdf:type Motor.
/name -> uri(.) rdfs:label %.
/description -> uri(.) rdfs:comment %.

RDF->JSON rules for category Motor:

{?. rdf:toE Motor} -> createObject(?.,Equipment)/type = MOTOR.
{?. rdfs:label ?l} -> getObject(?.)/name = ?l.
{?. rdfs:comment ?c} -> getObject(?.)/description = ?c.

JSON Serialization:

{
 "toE" : "MOTOR",
 "name": "M0084B2",
 "desc": "Pump Engine B"

}

Fig. 5. Example rules for transferring Java to RDF and RDF to JSON

– The % symbol used in the head refers to the result of the XPath test per-
formed in the body.

– The . symbol used in the head refers to the currently serialized object.

– The function uri(XpathExpr) assigns a unique URI to a Java or Flex object.
The argument of the function is again an XPath expression, which may also
use the % and . constructs, as described above.

The result of an XPath test in the body can be used as a variable in the head
within the RDF triple to be generated (referred to with the % sign), as well as
the current object (referred to with the . sign). The uri function used in a triple
generates a unique URI for an object. The triples may also contain blank nodes,
which are needed, e.g., to cope with shortcuts.

The XPath expressions may also contain regular expressions to deal with
implicit background knowledge and non-atomic data types. Those can be used
for conditions or for splitting data values. A repeat function can be used to cover
object counting deviations (e.g., produce a set of n blank nodes for an attribute
value of n). The left-hand side of Fig. 5 shows a set of rules for mapping two
Java objects to a subset of the ISO 15926 ontology.

Mapping ISO 15926 to Class Models. The mapping rules from ISO 15926
to class models are similar. Again, rule sets are defined per ontology category,
are inherited to sub categories, and rules can be explicitly overridden by the
developer.

For rule bodies, SPARQL expressions are used. In the rule heads, objects are
created by using createObject, and attribute values for created objects are set
(by using getObject and an XPath expression identifying the attribute to be
set). The execution order of rules is defined such that all createObject state-
ments are executed first, assuring that all objects are created before attempting
to set attribute values.

Typically, Java or Flex objects will be created when a condition is fulfilled,
and values are set in these objects. This leads to the following rule syntax for
mapping rules from ISO 15926 to class models:

172 H. Paulheim et al.

Rule ::= SPARQLExpr "→" ObjFunction { "/" SetObjValue } "." ;

(3)

ObjFunction ::= "getObject(" SPARQLVariable{,SPARQLVariable} ","

ClassName ")" ; (4)

SetObjValue ::= XPathExpr "=(ObjFunction|ValueFunction|Constant) ;

(5)

ValueFunction ::= "getValue(" (SPARQLVariable|BuiltinFunction) ","

ClassName ")" ; (6)

BuiltinFunction ::= "count("SPARQLVariable")"

| "concat("SPARQLVariable,{SPARQLVariable}")" ;

(7)

Like in the rules for creating RDF representations from objects, XPathExpr
denotes an XPath expression. SPARQLExpr denotes the WHERE clause of a
SPARQL expression, and SPARQLVariable denotes a variable defined in that
WHERE part and is used for referencing the query’s results. ClassName is the
name of a Java class which is used when creating objects and object values (for
handling primitive types, the corresponding wrapper classes are used as a class
name). The right-hand side of Figure 5 shows how to use the rules to map RDF
representations to Flex objects.

The built-in functions count and concat are used for counting results and
concatenating strings, respectively. Both functions are on the feature list for
the next version of SPARQL [37], thus, our proprietary support for those func-
tions may be removed from the rule language once that new version becomes a
standard with adequate tool and API support.

For determining which categories an RDF instance belongs to, and for execut-
ing SPARQL statements, reasoning on the RDF graph and the domain ontology
can be used. To cover non-atomic data types, the rules may use a concat func-
tion for concatenating different results of a SPARQL query. For coping with
object counting, a count function can be used to produce the corresponding
attribute values (once SPARQL version 1.1, which supports counting, becomes
a standard, this will be obsolete).

Although the rules for both directions look similar, there is one subtle differ-
ence. The XPath expressions used on the object model are executed with closed
world semantics, while the SPARQL expressions used on the RDF model are

An Architecture for Information Exchange Based on Reference Models 173

executed with open world semantics5. The rationale is that the set of objects in
an information system is completely known (and therefore forms a closed world),
whereas an RDF graph representing a set of objects will typically only represent
a subset of the original information.

5.2 Template-Based Filtering for Data Exchange

The rules discussed above are typically evaluated in a recursive manner. This
may lead to problems when creating the data structure for an implementation
model instance. When creating the RDF representation for an object, each object
that is encountered underway is queued and processed. For very large connected
object graphs, this means that the resulting RDF graph can grow fairly large.
Especially when using that graph for data exchange between applications, such
a large graph can be undesirable for reasons of performance.

A straight forward way would be defining different rule sets for each class,
depending on which kind of object is currently serialized. Such a solution would
lead to n2 rule sets for n classes and thus be rather costly. If we would want to
take arbitrary paths into account (e.g., include the address of a person’s employer
into the annotation, but not the addresses of that person’s friends’ employers),
the complexity would even be exponential.

A better alternative is to use templates which define the sub graph that is to
be generated for an object of a certain class. While rules define the whole possi-
ble graph that can be produced for an object and are thus universal, templates
specifically restrict that graph to a sub-graph. This alternative reduces the com-
plexity to n rule sets and n templates. In our approach, the templates can be
written in plain RDF, which allows for a straight forward definition and re-use
of existing tools. Furthermore, since the rules are universal, they may be reused
for different information transmission use cases by only applying a different set
of templates.

5.3 Non-intrusive Implementation

For our case study, we have implemented the solution sketched above in a proto-
type capable of exchanging objects between Java and Flex applications. In our
integrated prototype, the Flex applications run encapsulated in Java containers,
and their API provides and consumes Flex objects in JSON notation [38].

Fig. 4 shows the architecture as it was implemented for the case study. The
left hand side depicts an equipment fault protection application, implemented in
Java. The mapping execution engine shown in the figure produces RDF graphs
from Java objects which are obtained from the application through its API.
The rule engine processes the mapping rules discussed above and uses an object
inspector implemented with JXPath6 for performing tests on the Java objects.

5 The count function discussed above counts results in the result set of a SPARQL
query (which forms a closed world), not in the underlying graph.

6 http://commons.apache.org/jxpath/

http://commons.apache.org/jxpath/

174 H. Paulheim et al.

The rule engines processing our rule languages have been implemented using
parsers generated from abstract grammars using JavaCC.7

By using Java’s reflection API [39] and relying on the Java Beans specification
[40] (a naming convention for object constructors and for methods for access-
ing property values), the implementation is non-intrusive and does not require
changes to the underlying class model in Java. A URI factory keeps track of the
RDF nodes created for each object and assigns unique URIs. An RDF writer,
implemented with JENA [24], creates RDF files which conform to the ISO 15926
ontology. These files are the cetral elements for semantically correct informatione
exchange in the proposed architecture.

As discussed above, it is desirable to reduce the set of transmitted RDF data as
far as possible. Thus, we have implemented a filter based on templates expressed
in RDF. Thus, the mapping rules from the Java model to the ontology have two
parts: the rules themselves, generating the whole possible graph for an object,
and the template reducing that graph to the desired subset.

On the right-hand side, a production optimization application is shown, which
is implemented in Flex, and which is supposed to consume data from the Java-
based equipment fault protection application. To that end, it receives RDF data
based on the ISO 15926 ontology. This data is processed using the mapping rules
described above, which are executed in a rule engine. The RDF data is analyzed
using JENA as a SPARQL engine, and corresponding JSON data is produced
and enriched using a Java-based reimplementation of JSONPath8 as an object
factory. The JSON objects created are then handed to the Flex application’s
API. For Flex-based applications, the transformation between RDF and JSON
is done entirely in the Java container, and the Flex application is only addressed
by using its JSON-based API, the implementation is also non-intrusive with
respect to Flex-based applications.

6 Scalability and Performance Evaluation

As the examples in Section 2 show, information exchange between IT systems
require a flexible approach for transforming information from an IT system into
a representation that follows a reference model and back. When using Java
and Flex-based applications in the Oil and Gas domain, this means mediating
between Java and Flex-based class models and the ISO 15926 reference ontology.

The instantiation of the architecture shown in Section 5 is capable of handling
all the typical deviations introduced. To build useful solutions, especially real-
time systems, this implementation has to be able to handle larger amounts of
data in short times. Therefore, we have run several performance tests on our
approach.

For these performance tests, we have used artificially created objects graphs
consisting of up to 10,000 interconnected objects and transformed them to RDF
and back to Java and Flex with our mapping engine. Fig. 6 shows the processing

7 https://javacc.dev.java.net/
8 http://goessner.net/articles/JsonPath/

https://javacc.dev.java.net/
http://goessner.net/articles/JsonPath/

An Architecture for Information Exchange Based on Reference Models 175

0,01
0,1

1
10

100

10 100 1000 10000

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Objects

without filter

with filter

Fig. 6. Runtime behavior for serializing Java objects as RDF

time for serializing Java objects in RDF, once with and once without applying the
template-based filtering mechanism. It shows that the time required per object
is below one millisecond, and that the processing time scales linearly with a
growing number of objects. The figures for transformation from Flex objects
look very similar.

For deserializing Java objects from RDF graphs, different reasoning mech-
anisms can be used for evaluating the SPARQL queries. For the evaluation,
we have used three different built-in reasoners in the JENA framework: a sim-
ple transitive reasoner only working on subclass and subproperty relations, an
RDF(S) reasoner, and an OWL reasoner. Except for the latter, the processing
time for each object is below ten milliseconds. In either case, the approach scales
linearly with a growing number of objects. Again, the figures for transforming
to Flex-based models look very similar.

The trade-off for using more powerful reasoning is a more complex definition of
mapping rules for the developer, since certain information which may be required
for the mapping (e.g., class membership of RDF instances) can be either inferred
automatically by the reasoner, or encoded explicitly in a mapping rule.

Figures 6 and 7 also demonstrate the impact of the template-based filtering
mechanism on performance: while applying the template during the serializing
step does not lead to a significant performance impact, smaller RDF structures
may be deserialized much faster than larger ones. Thus, it is beneficial to reduce
the RDF structures before the transfer to another system as far as possible. For
example, if the RDF structure to be transferred can be reduced by 50%, the
total processing time is also decreased by 50%, as the time for creating Java
objects from RDF decreases linearly, while there is no overhead in applying the
filter.

In summary, the evaluations show that the dynamic, rule-based mapping al-
gorithm can be implemented in a fast and high-performance manner, which does
not add any severe run-time overhead to the information exchange between IT
systems, and which also scales up to larger object graphs.

176 H. Paulheim et al.

0,1
1

10
100

1000

10 100 1000 10000

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Objects

Transitive Reasoner

RDFS Reasoner

OWL Reasoner

Fig. 7. Runtime behavior for deserializing RDF graphs as Java objects

7 Conclusion and Future Work

We have introduced a flexible, bidirectional, and non-intrusive approach for map-
ping between reference and implementation models on the instance level. The
mappings are used at runtime while the mapping instructions can be specified
after the implementation of the applications and the reference model. The work
is motivated by conceptual deviations between implementation models and ref-
erence models that can be frequently observed in existing software systems. We
discussed these domain independent deviations in detail in order to draw atten-
tion to an often ignored problem that occurs when reference models are used in
software engineering. The central conclusion of this discussion is that 1:1 map-
pings between implementation models and reference models will not lead to the
expected effect of syntactically and semantically correct information exchange
between independent applications.

With a case study from the oil and gas domain, we have discussed and shown
in an implementation how our approach can be used to bridge both conceptual
and technological heterogeneities between applications, and to facilitate seman-
tically correct information exchange between Java and Flex-based applications,
using the ISO 15926 ontology. The central advantage of the presented approach
is that not classes of the implementation models are mapped 1:1 to the reference
model but only its instances. Explaining the instances of the implementation
model in terms to one or more classes of the reference models allows for a great
flexibility for the implementation model. Legacy systems can be annotated with-
out making compromises in terms of ontological or conceptual soundness, and
due to the non-intrusive approach, can also be used with modern enterprise buses
without having to be modified to comply to a newly created reference model.
Furthermore, newly developed implementation models can be specified having
only computational efficiency and elegance in mind. Compliance to a domain
vocabulary or standards can be established via the presented approach. This
opens the possibility for establishing composite applications by reusing already
existing systems and information sources.

The paper has focused on the use case of information integration and ex-
change. However, the mechanism of mapping different implementation models

An Architecture for Information Exchange Based on Reference Models 177

to one common reference model may also be used to access the information in
different applications available as a unified linked data set, allowing for reasoning
and for unified visualization [41], and for other purposes that require run-time
access to a system’s data in a form that can be processed by a reasoner, such as
self-explaining systems, self-adapting user interfaces, or semantic event process-
ing in integrated applications [42].

Currently, the developer has to specify the mapping rules by hand. A straight
forward improvement is the provision of a tool set for assisting the developer
in creating the mapping rules. In the future, techniques developed, e.g., in the
field of ontology matching [31] and schema matching [43] may be employed to
suggest mappings and rules to the developer in an interactive manner. However,
this poses several challenges, since our rules are more complex (combining the
full expressive power of XPath, SPARQL, and regular expressions) than those
that can be discovered with state of the art tools. A possible solution would be
to suggest an approximation of a mapping rule to the user, and let her refine
that approximation to a complete mapping rule.

Acknowledgements. The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Research under grant no.
01ISO7009 (SoKNOS), 01IA08006 (ADiWa), and 13N10711 (InfoStrom).

References

1. Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Repre-
sentation System. Cognitive Science 9(2), 171–216 (1985)

2. Booch, G., Rumbaugh, J.E., Jacobson, I.: The Unified Modeling Language User
Guide. J. Database Manag. 10(4), 51–52 (1999)

3. Stipp, L., Booch, G.: Introduction to object-oriented design (abstract). OOPS Mes-
senger 4(2), 222 (1993)

4. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on
Information Systems. Springer (2009)

5. Rebstock, M., Fengel, J., Paulheim, H.: Ontologies-based Business Integration.
Springer (2008)

6. Pletat, U., Narayan, V.: Towards an upper ontology for representing oil & gas
enterprises. In: Position paper for W3C Workshop on Semantic Web in Energy
Industries; Part I: Oil and Gas (2008)

7. Verhelst, F., Myren, F., Rylandsholm, P., Svensson, I., Waaler, A., Skramstad,
T., Ornæs, J., Tvedt, B., Høydal, J.: Digital Platform for the Next Generation
IO: A Prerequisite for the High North. In: SPE Intelligent Energy Conference and
Exhibition (2010)

8. Kluewer, J.W., Skjæveland, M.G., Valen-Sendstad, M.: ISO 15926 templates and
the Semantic Web. In: Position paper for W3C Workshop on Semantic Web in
Energy Industries; Part I: Oil and Gas (2008)

9. Credle, R., Akibola, V., Karna, V., Panneerselvam, D., Pillai, R., Prasad, S.: Dis-
covering the Business Value Patterns of Chemical and Petroleum Integrated Infor-
mation Framework. Red Book SG24-7735-00, IBM (August 2009)

10. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pp. 1–12 (2007)

178 H. Paulheim et al.

11. Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Commu-
nity: A Brief Survey. AI Magazine 26(1), 83–94 (2005)

12. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD
Record 35(3), 34–41 (2006)

13. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-primer/

14. Berners-Lee, T.: Notation3 (N3) A readable RDF syntax (1998),
http://www.w3.org/DesignIssues/Notation3

15. ANSI/X3/SPARC Study Group on Data Base Management Systems: Interim Re-
port. FDT – Bulletin of ACM SIGMOD 7(2), 1–140 (1975)

16. Chen, P.P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

17. Hettel, T., Lawley, M., Raymond, K.: Towards Model Round-Trip Engineering:
An Abductive Approach. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp.
100–115. Springer, Heidelberg (2009)

18. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Conference Record
of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, January 16-18, pp. 4–16. ACM, Portland (2002)

19. Halevy, A.: Information Integration. In: Encyclopedia of Database Systems, pp.
1490–1496. Springer (2009)

20. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Se-
queda, J., Ezzat, A.: A Survey of Current Approaches for Mapping of Relational
Databases to RDF (2009),
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf, (ac-
cessed July 16, 2010)

21. Puleston, C., Parsia, B., Cunningham, J., Rector, A.: Integrating Object-Oriented
and Ontological Representations: A Case Study in Java and OWL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 130–145. Springer, Heidelberg (2008)

22. Paulheim, H., Plendl, R., Probst, F., Oberle, D.: Mapping Pragmatic Class Models
to Reference Ontologies. In: DESWeb 2011 - 2nd International Workshop on Data
Engineering Meets the Semantic Web. In Conjunction with ICDE 2011, Hannover,
Germany, April 11 (2011)

23. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Bridging EMF applications and RDF data
sources. In: Kendall, E.F., Pan, J.Z., Sabbouh, M., Stojanovic, L., Bontcheva, K.
(eds.) Proceedings of the 4th International Workshop on Semantic Web Enabled
Software Engineering, SWESE (2008)

24. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. In: Feldman, S.I., Uret-
sky, M., Najork, M., Wills, C.E. (eds.) Proceedings of the 13th International Con-
ference on World Wide Web - Alternate Track Papers & Posters, pp. 74–83. ACM
(2004)

25. Bechhofer, S., Volz, R., Lord, P.W.: Cooking the Semantic Web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
659–675. Springer, Heidelberg (2003)

26. Völkel, M., Sure, Y.: RDFReactor - From Ontologies to Programmatic Data Access.
In: Posters and Demos at International Semantic Web Conference (ISWC 2005),
Galway, Ireland (2005)

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

An Architecture for Information Exchange Based on Reference Models 179

27. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic Mapping of OWL
Ontologies into Java. In: Maurer, F., Ruhe, G. (eds.) Proceedings of the Six-
teenth International Conference on Software Engineering & Knowledge Engineering
(SEKE 2004), Banff, Alberta, Canada, June 20-24, pp. 98–103 (2004)

28. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for Mapping Between RDF
Vocabularies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 878–896. Springer, Heidelberg (2007)

29. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
C-OWL: Contextualizing Ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

30. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling
between the XML and RDF Worlds – and Avoiding the XSLT Pilgrimage. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)

31. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
32. json.org: Introducing JSON (2010), http://www.json.org/
33. W3C: XML Path Language (XPath) 2.0 (2007),

http://www.w3.org/TR/xpath20/

34. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

35. International Organization for Standardization (ISO): ISO/IEC 14977: Information
technology – Syntactic metalanguage – Extended BNF (1996),
http://www.iso.org/iso/iso catalogue/

catalogue tc/catalogue detail.html?csnumber=26153

36. Friedl, J.: Mastering Regular Expressions. O’Reilly (2006)
37. W3C: SPARQL New Features and Rationale (2009),

http://www.w3.org/TR/sparql-features/

38. Paulheim, H.: Seamlessly Integrated, but Loosely Coupled - Building UIs from
Heterogeneous Components. In: ASE 2010: Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 123–126. ACM, New
York (2010)

39. Foreman, I.R., Forman, N.: Java Reflection in Action. Action Series. Manning
Publications (2004)

40. Sun Microsystems: Java Beans API Specification (1997),
http://www.oracle.com/technetwork/java/javase/

/documentation/spec-136004.html

41. Paulheim, H., Meyer, L.: Ontology-based Information Visualization in Integrated
UIs. In: Proceedings of the 2011 International Conference on Intelligent User In-
terfaces (IUI), pp. 451–452. ACM (2011)

42. Paulheim, H., Probst, F.: Ontology-Enhanced User Interfaces: A Survey. Interna-
tional Journal on Semantic Web and Information Systems 6(2), 36–59 (2010)

43. Bonifati, A., Mecca, G., Papotti, P., Velegrakis, Y.: Discovery and Correctness of
Schema Mapping Transformations. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.)
Schema Matching and Mapping, pp. 111–147. Springer (2011)

http://www.json.org/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/rdf-sparql-query/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.html?csnumber=26153
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.html?csnumber=26153
http://www.w3.org/TR/sparql-features/
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

	An Architecture for Information Exchange Based on Reference Models
	Introduction
	Typical Deviations
	Related Work
	Reference Architecture
	Case Study
	Mapping Specification
	Template-Based Filtering for Data Exchange
	Non-intrusive Implementation

	Scalability and Performance Evaluation
	Conclusion and Future Work
	References

