
Reconstructing Complex Metamodel Evolution

Sander D. Vermolen, Guido Wachsmuth, and Eelco Visser

Software Engineering Research Group, Delft University of Technology, The Netherlands
{s.d.vermolen,g.h.wachsmuth,e.visser}@tudelft.nl

Abstract. Metamodel evolution requires model migration. To correctly migrate
models, evolution needs to be made explicit. Manually describing evolution is
error-prone and redundant. Metamodel matching offers a solution by automat-
ically detecting evolution, but is only capable of detecting primitive evolution
steps. In practice, primitive evolution steps are jointly applied to form a complex
evolution step, which has the same effect on a metamodel as the sum of its parts,
yet generally has a different effect in migration. Detection of complex evolution
is therefore needed. In this paper, we present an approach to reconstruct complex
evolution between two metamodel versions, using a matching result as input. It
supports operator dependencies and mixed, overlapping, and incorrectly ordered
complex operator components. It also supports interference between operators,
where the effect of one operator is partially or completely hidden from the target
metamodel by other operators.

1 Introduction

Changing requirements and technological progress require metamodels to evolve [8].
Preventing metamodel evolution by downwards-compatible changes is often insuffi-
cient, as it reduces the quality of the metamodel [2]. Metamodel evolution may break
conformance of existing models and thus requires model migration [22]. To correctly
migrate models, the evolution – implicitly applied by developers – needs to become ex-
plicit. Metamodel evolution can be specified manually by developers, yet this is error-
prone, redundant, and hard in larger projects. Instead, evolution needs to be detected
automatically from the original and evolved metamodel versions.

The most-used solution for detecting evolution is matching [24]. Metamodel match-
ing attempts to link elements from the original metamodel to elements from the target
metamodel based on similarity. The result is a set of atomic differences highlighting
what was created, what was deleted and what was changed. In practice, groups of
atomic differences may be applied together to form complex evolution steps such as
pulling features up an inheritance chain or extracting super classes [13]. In model mi-
gration, a complex operator is different from its atomic changes. For example, pulling
up a feature preserves information, whereas deleting and recreating it loses information.
To correctly describe evolution, we therefore need to detect complex evolution steps.
There are three major problems in reconstructing complex evolution steps:

Dependency. While metamodel changes are unordered, evolution steps are generally
applied sequentially and may depend on one another [4]. These dependencies need
to be respected by a mapping from metamodel changes to evolution steps.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 201–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

202 S.D. Vermolen, G. Wachsmuth, and E. Visser

Detection. To detect a complex evolution step, we must find several steps which make
up this complex step. But these steps are likely to be separated, incorrectly ordered,
and mixed with parts of other complex evolution steps.

Interference. An evolution step can hide, change, or partially undo the effect of an-
other step. Multiple steps can completely mask a step. As such, some or all steps
forming a more complex step may be missing, which impedes its detection.

Example. The upper part of Figure 1 shows two metamodel versions for a tag-based
issue tracker. In the original metamodel on the left-hand side, each issue has a reporter,
a title, and some descriptive text. Projects are formed by a group of users and have a
name and a set of issues. Users can comment on issues and tag issues. Additions and
removals of tags are recorded, such that they can be reverted.

While evolving the issue tracker, tagging became the primary approach for organi-
zation. As such, it became apparent, that not only issues, but also projects should be
taggable. Additionally, the metamodel structure had to be improved to allow users to
more easily subscribe to events, as to send them email updates. The resulting meta-
model is shown at the upper right of Figure 1. An Event entity was introduced, which
comprises comments as well as tag events (tag additions and removals). Furthermore,
projects obtained room for storing tags and events on these tags.

Matching the original and evolved metamodel yields the difference model presented
in the middle part of Figure 1. Two classes and seven features were added to the evolved
metamodel (left column), eight features were subtracted (middle column), and three
classes have an additional super type in the evolved metamodel (right column). We
will use this difference model as a starting point to detect the complex evolution steps
involved in the evolution of the original metamodel.

The evolution of the metamodel can also be captured in an evolution trace as shown
in the bottom part of Figure 1. At the metamodel level, the trace specifies the creation
of five new features, the renaming of two other features, and the extraction of two new
classes. At the model level, it specifies a corresponding migration. From the properties
of the involved operators, we can conclude that the evolution is constructive and that
we can safely migrate existing models without losing information.

In detecting the example evolution trace from the difference model, we face all three
major problems in trace reconstruction several times. For example, the second step de-
pends on the first step as it can only be applied if TagRemoval has a timestamp.

Furthermore, the second step comprises several of the presented differences. And fi-
nally, the first step interferes with the second, since its effect is completely hidden from
the difference model. The step needs to be reconstructed during detection.

Contribution. In this paper, we provide an approach to reconstruct complex evolution
traces from difference models automatically. It is based on the formalization of the core
concepts involved, namely metamodels, difference models, and evolution traces (Sec-
tion 2). First, we provide a mapping from changes in a difference model to primitive
operators in an evolution trace. We solve the dependency problem by defining precondi-
tions for all primitive operators. Based on these preconditions, we define a dependency
relation between operators which allows us to order operators on dependency and to

Reconstructing Complex Metamodel Evolution 203

class Issue {
title :: String
description :: Text
reporter -> User
project -> Project opposite issues
tags <> Tag (0..*)

}

class Project {
name :: String
issues -> Issue (1..*)

opposite project
members -> User (1..*)

}

class Tag {
name :: String

}

class TagAddition {
issue -> Issue
tag -> Tag
timestamp :: DateTime

}

class TagRemoval {
issue -> Issue
tag -> Tag

}

class Comment {
issue -> Issue
timestamp :: DateTime
content :: Text
author -> User

}

class User {. . .}

class Issue {
title :: String
description :: Text
reporter -> User
project -> Project opposite issues
log <> Event (0..*) opposite issue
tags <> Tag (0..*)

}

class Project {
name :: String
issues -> Issue (1..*)

opposite project
members -> User (1..*)
log <> TagEvent (0..*)
tags <> Tag (0..*)

}

class Tag {
name :: String

}

class TagAddition : TagEvent {}
class TagRemoval : TagEvent {}

class Event {
issue -> Issue opposite log
time :: DateTime
actor -> User

}

class TagEvent : Event {
tag -> Tag

}

class Comment : Event {
content :: Text

}

class User {. . .}

⊥→ 〈Issue.log〉 〈TagAddition.tag〉 →⊥
〈TagAddition〉 +superTypes−−−−−−−−→

〈TagEvent〉
〈TagAddition〉⊥→ 〈Project.log〉 〈TagAddition.timestamp〉 →⊥

⊥→ 〈Project.tags〉 〈TagAddition.issue〉 →⊥
⊥→ 〈Event〉 〈TagRemoval.issue〉 →⊥

〈TagRemoval〉 +superTypes−−−−−−−−→
〈TagEvent〉

〈TagRemoval〉⊥→ 〈Event.issue〉 〈TagRemoval.tag〉 →⊥
⊥→ 〈Event.time〉 〈Comment.author〉 →⊥
⊥→ 〈Event.actor〉 〈Comment.issue〉 →⊥

〈Comment〉 +superTypes−−−−−−−−→
〈Event〉

〈Comment〉⊥→ 〈TagEvent〉 〈Comment.timestamp〉 →⊥
⊥→ 〈TagEvent.tag〉

create feature TagRemoval.timestamp :: DateTime
extract super class TagEvent {issue, timestamp, tag} from TagAddition, TagRemoval

rename Comment.author to actor
create feature TagEvent.actor -> User
extract super class Event {issue, timestamp, actor} from Comment, TagEvent
rename Event.timestamp to time

create feature Issue.log <> Event (0..*) opposite issue
create feature Project.log <> TagEvent (0..*)
create feature Project.tags <> Tag (0..*)

Fig. 1. Original and evolved metamodel, difference model, and evolution trace

204 S.D. Vermolen, G. Wachsmuth, and E. Visser

construct valid primitive evolution traces from a difference model (Section 3). Second,
we show how to reorder primitive traces without breaking their validity and provide
patterns for mapping sequences of primitive operators to complex operators. We solve
the detection problem by reordering primitive traces to different normal forms in which
the patterns can be detected easily (Section 4). Finally, we extend our method to detect
also partial patterns in order to solve the interference problem (Section 5).

2 Modeling Metamodel Evolution

Metamodeling Formalism. Metamodels can be expressed in various metamodeling
formalisms. In this paper, we focus only on the core metamodeling constructs that are
interesting for coupled evolution of metamodels and models. We leave out packages,
enumerations, annotations, derived features, and operations.

Figure 2 gives a textual definition of the metamodeling formalism used in this pa-
per. A metamodel defines a number of classes which consist of a number of features.
Classes can have super types to inherit features and might be abstract. A feature has
a multiplicity (lower and upper bound) and is either an attribute or a reference. An at-
tribute is a feature with a primitive type, whereas a reference is a feature with a class
type. We only support predefined primitive types like Boolean, Integer, and String. An
attribute can serve as an identifier for objects of a class. A reference may be composite
and two references can be combined to form a bidirectional association by making them
opposite of each other. In the textual notation, features are represented by their name
followed by a separator, their type, and an optional multiplicity. The separator indicates
the kind of a feature. We use :: for attributes, -> for ordinary references, and <> for
composite references.

If we want to reason about properties of metamodels and their evolution, a textual
representation is often not sufficient. Thus, we provide in Figure 3 a more formal repre-
sentation of metamodels in terms of sets, functions, and predicates. In the upper left, we
define instance sets for the metaclasses from Figure 2. In the upper right, we formalize
most metafeatures from Figure 2 in terms of functions and predicates. Since super types
and features of a class c form subsets of instance sets, we formalize them accordingly.

class MetaModel {
classes <> Class (0..*)

}

abstract class NamedElement {
name :: String (1..1)

}

abstract class Type : NamedElement {}

class Class : Type {
isAbstract :: Boolean (1..1)
superTypes -> Class (0..*)
features <> Feature (0..*)

}

class DataType : Type {}

abstract class Feature : NamedElement {
lowerBound :: Integer (1..1)
upperBound :: Integer (1..1)
type -> Type (1..1)

}

class Attribute : Feature {
isId :: Boolean (1..1)

}

class Reference : Feature {
isComposite :: Boolean (1..1)
opposite -> Reference

}

Fig. 2. Metamodeling formalism providing core metamodeling concepts

Reconstructing Complex Metamodel Evolution 205

Instance sets

N := T ∪ F (named elements)

T := Td ∪ Tc (types)

Td (data types)

Tc (classes)

F := Fa ∪ Fr (features)

Fa (attributes)

Fr (references)

Functions and predicates

name : N → String (names)

lower : F → Integer (lower bounds)

upper : F → Integer (upper bounds)

type : F → T (types)

opposite : Fr → Fr (opposite references)

abstract : Tc (abstract classes)

id : Fa (identifying attributes)

composite : Fr (composite references)

Instance subsets

Cp(c) (parents)

Cc(c) :=
{
c′ ∈ Tc

∣
∣ c ∈ Cp(c

′)
}

(children)

Ca(c) := Cp(c) ∪
⋃

c′∈Cp(c)

Ca(c
′) (ancestors)

Cd(c) := Cc(c) ∪
⋃

c′∈Cc(c)

Cd(c
′) (descendants)

Ch(c) := Ca(c) ∪ Cd(c) ∪ {c} (type hierarchy)

F (c) (defined features)

Fi(c) := F (c) ∪
⋃

c′∈Ca(c)

F (c
′
) (defined and inherited features)

Fa(c) := Fa ∩ F (c) (attributes)

Fr(c) := Fr ∩ F (c) (references)

Lookup functions

〈cn〉 :=

{
c if c ∈ Tc ∧ name(c) = cn

⊥ else
〈cn.fn〉 :=

{
f if f ∈ F (〈cn〉) ∧ name(f) = fn

⊥ else

Fig. 3. Formal representation of metamodels in terms of sets, functions, and predicates

In terms of these subsets, we define other interesting subsets, e.g., children, ancestors
and descendants of c in the middle part. Typically, we refer to a class c by its name cn
and to a feature f of class c by cn .fn where cn and fn are the names of c and f , respec-
tively. To access classes and features referred by name, we define lookup functions in
the last box. The formalization so far also captures invalid metamodels, such as meta-
models with duplicate class names, or cycles in an inheritance hierarchy. Therefore, we
define metamodel validity by a number of invariants in Figure 4.

Difference Models. Difference-based approaches to coupled evolution use a declar-
ative evolution specification, generally referred to as the difference model [3,9]. This
difference model can be mapped automatically onto a model migration. With an au-
tomated detection of the difference model, the process can be completely automated.
Matching algorithms provide such a detection [17,7,5,15,30,1].

In this paper, we do not rely on a particular matching algorithm and abstract over
concrete representations of difference models. We model the difference between an
original metamodel mo and an evolved version me as a set Δ(mo,me). The elements

206 S.D. Vermolen, G. Wachsmuth, and E. Visser

Metamodel validity
 m

∀c, c′ ∈ Tc : name(c) = name(c
′
) ⇒ c = c

′ (unique class names)

∀c ∈ Tc : ∀f, f ′ ∈ Fi(c) : name(f) = name(f ′) ⇒ f = f ′ (unique feature names)

∀c ∈ Tc : c
∈ Ca(c) (non-cyclic inheritance)

∀f ∈ F : lower(f) ≤b upper(f) ∧ upper(f) >b 0 (correct bounds)

∀f ∈ Fa : type(f) ∈ Td (well-typed attributes)

∀f ∈ Fr : type(f) ∈ Tc (well-typed references)

∀f, f ′ ∈ Fr : opposite(f) = f
′ ⇔ opposite(f

′
) = f (inverse reflectivity)

Difference model validity
 Δ(mo,me)

 mo∧
 me (source and target validity)

∀δ, δ′ ∈ Δ(mo,me) : t(δ) = t(δ′)
=⊥⇒ s(δ) = s(δ′) (unique sources)

∀δ, δ′ ∈ Δ(mo,me) : s(δ) = s(δ
′
)
=⊥⇒ t(δ) = t(δ

′
) (unique targets)

∀δ, δ′ ∈ Δ(mo,me) : s(δ) ∈ F (s(δ′)) ∧ t(δ)
=⊥⇒ t(δ) ∈ F (t(δ′)) (non-moving features)

Evolution trace validity mo,me
 O1 . . . On

 mo (source validity)

∀i ∈ 1, . . . , n :
 O1 ◦ · · · ◦ Oi(mo) (valid applications)

O1 ◦ · · · ◦ On(mo) = me (target validity)

Fig. 4. Validity of metamodels, difference models, and evolution traces

of this set are three different kinds of changes [26,3]: Additive changes ⊥→ e, where
the evolved metamodel contains an element e which was not present in the original
metamodel. Subtractive changes e →⊥, where the evolved metamodel misses an el-
ement e which was present in the original metamodel. Updative changes, where the
evolved metamodel contains an element e′ which corresponds to an element e in the
original metamodel and the value of a metafeature of e′ is different from the value in

e. We distinguish three kinds of updates: Additions e
+mf−−−→
v

e′, where the multi-valued

metafeature mf of e′ has an additional value v which was not present in e. Removals

e
−mf−−−→
v

e′, where the multi-valued metafeature mf of e′ is missing a value v which was

present in e. Substitutions e
mf−−→ e′, where the single-valued metafeature mf of e′ has

a new value which is different from the value in e. A complete list of possible meta-
model changes with respect to our metamodeling formalism is given in the left column
of Figure 5.

For validity of difference models, we have three requirements: First, the original and
evolved metamodel need to be valid. Second, two changes should not link the same
source element with different target elements or the same target element with different
source elements. Element merges and splits are represented as separate additions and
removals and will be reconstructed during detection. Third, we expect changing features
not to move between classes, i.e., the class containing a changed feature should be the
same or a changed version of the class containing the original feature. We define these
requirements formally in Figure 4. Note that s(δ) yields the source element of a change
(left-hand side of an arrow) while t(δ) gives the target element (right-hand side).

Reconstructing Complex Metamodel Evolution 207

Evolution Traces. Operator-based approaches to coupled evolution provide a rich
set of coupled operators which work at the metamodel level as well as at the model
level [29,11]. At the metamodel level, a coupled operator defines a metamodel transfor-
mation capturing a common evolution step. At the model level, it defines a model trans-
formation capturing the corresponding migration. Following the terminology from [13],
we differentiate between primitive and complex operators. Primitive operators perform
an atomic metamodel evolution step that can not be further subdivided. A list of prim-
itive operators which is complete with respect to our metamodeling formalism is given
in the left column of Figure 7. Complex operators can be decomposed into a sequence
of primitive operators which has the same effect at the metamodel level but typically not
at the model level. For example, a feature pull-up can be decomposed into feature dele-
tions in the subclasses followed by a feature creation in the parent class. At the model
level, the feature deletions cause the deletion of values in instances of the subclasses
while the feature creation requires the introduction of default values in instances of the
parent class. Thus, values for the feature in instances of the subclasses are replaced by
default values. This is not an appropriate migration for a feature pull-up which instead
requires the preservation of values in instances of the subclasses. We will define only a
few complex operators in this paper. For an extensive catalog of operators, see [13].

Each operator has a number of formal parameters like class and feature names. In-
stantiating these parameters with actual arguments results in an operator instance O.
This notation hides the actual arguments but is sufficient for this paper. We can now
model the evolution of a metamodel as a sequence of such operator instances O1 . . . On.
We call this sequence an evolution trace. We distinguish primitive traces of only primi-
tive operator instances from complex traces. There are three requirements for the valid-
ity of an evolution trace with respect to the original and the evolved metamodel. First,
we require the original metamodel to be valid. Second, each operator instance should be
applicable to the result of its predecessors and should yield a valid metamodel. Third,
applying the complete trace should result in the evolved metamodel. Again, we capture
these requirements formally in Figure 4.

3 Reconstructing Primitive Evolution Traces

This section shows how to reconstruct a correctly ordered, valid evolution trace from a
difference model. First, we provide a mapping from metamodel changes to sequences of
primitive operator instances. Second, we define a dependency relation between operator
instances based on preconditions of these instances. This allows us to order primitive
evolution traces on dependency resulting in valid primitive evolution traces.

Mapping. The mapping of changes onto sequences of operator instances is presented
in Figure 5. The left column shows the different metamodel changes. The right column
shows the corresponding operator instances. The middle column shows conditions to
select the right mapping and to instantiate parameters correctly. Note that we omit con-
ditions of the form xn = name(x). We assume such conditions implicitly whenever
there is a pair of variables x and xn . This way, cn refers to the name of a class c, fn to
the name of a feature f , and tn to the name of a type t. Figure 6 (left) shows the result
of the mapping applied to the example difference model from Figure 1.

208 S.D. Vermolen, G. Wachsmuth, and E. Visser

Dependencies between Operator Instances. Despite the atomicity of primitive oper-
ators, not all primitive evolution traces can be completely executed. Reconsider the left
trace in Figure 6. Step 5 creates a reference to TagEvent at a point where no class
TagEvent exists. Similarly, step 8 references a non-existent class Tag and step 24 at-
tempts to create an inheritance chain with duplicate feature names. Operator instances
cannot be applied to all metamodels: Features can only be created in classes that exist,
classes can only be created if no equivalently named class is present and a class can
only be dropped if it is not in use anywhere else. These restrictions either come directly
from the meta-metamodel or from the invariants for valid metamodels. We can translate
these restrictions into preconditions. An operator precondition Opre(m) ensures that
an operator instance O can be applied to a metamodel m and that the application on a
valid m yields again a valid metamodel. Figures 7 and 8 give a complete overview of
the preconditions for primitive operators.

One condition for the validity of a trace of operators is the validity of each inter-
mediate metamodel. Since succeeding operator preconditions ensure this validity, we
can redefine trace validity in terms of preconditions:

Evolution trace validity mo,me
 O1 . . . On

O1,pre(mo) ∧ ∀i∈2..n : Oi,pre((O1 ◦ · · · ◦ Oi−1)(m)) (valid applications)

Applying operator instances enables or disables other operator instances. For exam-
ple, the creation of a class c can enable the creation of a feature c.f . The class creation
operator validates parts of the precondition of the feature creation operator. To model
the effect of an operator instance on conditions, we use a backward transformation de-
scription as introduced by Kniesel and Koch [14]. A backward description Obd is a
function that, given a condition C to be checked after applying an operator instance O,
computes a semantically equivalent condition that can be checked before applying O:
Obd(C)(m) ⇔ C(O(m)). We define backward description functions for the primitive
operators based on the postconditions specified in Figures 7 and 8: A backward descrip-
tion rewrites any clause in a condition C with true, when it is implied by the operator
postcondition. Using these backward description functions, we can define enabling and
disabling operator instances as dependencies: Operator instance O2 depends on opera-
tor instance O1, if the backward description of operator O1 changes the precondition of
O2. Typically, operator instances are dependent if they affect or target the same meta-
model element. Examples are creation and deletion of the same class, creation of a class
and addition of a feature to this class, and creation of a class and of a reference to this
class.

Dependency Ordering. To ensure trace validity, we need to ensure that the precon-
ditions of all operator instances are enabled and thus all dependencies are satisfied.
The dependency relation between operator instances is a partial order on these in-
stances. To establish validity, we apply the partial dependency order to the trace and
make the ordering complete by arbitrarily ordering independent operator instances.
Figure 6 (right) shows the dependency-ordered trace of primitive operators for the run-
ning example.

Reconstructing Complex Metamodel Evolution 209

Metamodel Difference Conditions Primitive Operator Instances

⊥→ c
c ∈ Tc create class cn
abstract(c) [make cn abstract]
Cp(c) = {sc1, . . . , sck} [add super scn1 to cn

.

.

.
add super scnk to cn]

c →⊥ c ∈ Tc drop class cn

e
name−−−→ e′

e ∈ Tc rename en to en′

e ∈ F (c) rename cn.en to en′

c
isAbstract−−−−−−→ c′

¬abstract(c) make cn abstract

abstract(c) drop cn abstract

c
+superTypes−−−−−−−−→

sc
c′ add super scn to cn

c
−superTypes−−−−−−−−→

sc
c′ drop super scn from cn

⊥→ f

f ∈ Fa(c) ∧ t = type(f) create feature cn.fn :: tn
l = lower(f) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn.fn to u]
id(f) [make cn.fn identifier]

f ∈ Fr(c) ∧ t = type(f) create feature cn.fn -> tn
l = lower(f) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn.fn to u]
composite(f) [make cn.fn composite]
f ′ = opposite(f) [make cn.fn inverse fn ′]

f →⊥ f ∈ F (c) drop feature cn.fn

f
lowerBound−−−−−−−→ f ′ l = lower(f ′) ∧ l <b lower(f) generalize lower cn.fn to l

l = lower(f ′) ∧ l >b lower(f) specialize lower cn.fn to l

f
upperBound−−−−−−−→ f ′ u = upper(f ′) ∧ u >b upper(f) generalize upper cn.fn to u

u = upper(f ′) ∧ u <b upper(f) specialize upper cn.fn to u

f
type−−→ f ′

f ∈ F (c) drop feature cn.fn
f ′ ∈ Fa(c

′) ∧ t = type(f ′) create feature cn ′.fn ′ :: tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn ′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn ′ to u]
id(f ′) [make cn′.fn ′ identifier]

f ∈ F (c) drop feature cn.fn
f ′ ∈ Fr(c

′) ∧ t = type(f ′) create feature cn ′.fn ′ -> tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn ′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn ′ to u]
composite(f ′) [make cn′.fn ′ composite]
f ′′ = opposite(f ′) [make cn′.fn ′ inverse fn ′′]

f
isId−−→ f ′ ¬id(f) make cn.fn identifier

id(f) drop cn.fn identifier

f
isComposite−−−−−−−→ f ′ ¬composite(f) make cn.fn composite

composite(f) drop cn.fn composite

f
opposite−−−−−→ f ′ f ′ ∈ Fr(c) ∧ f ′′ = opposite(f ′)
= ⊥ make cn.fn′ inverse fn ′′

f ′ ∈ Fr(c) ∧ opposite(f ′) = ⊥ drop cn.fn′ inverse

Fig. 5. Possible metamodel changes and corresponding sequences of primitive operator instances

210 S.D. Vermolen, G. Wachsmuth, and E. Visser

1 create feature Issue.log <> Event
2 generalize upper Issue.log to -1
3 make Issue.log composite
4 make Issue.log inverse Event.issue
5 create feature Project.log

<> TagEvent
6 generalize upper Project.log to -1
7 make Project.log composite
8 create feature Project.tags <> Tag
9 generalize upper Project.tags to -1
10 make Project.tags composite
11 add super TagEvent to TagAddition
12 drop feature TagAddition.issue
13 drop feature TagAddition.tag
14 drop feature TagAddition.timestamp
15 add super TagEvent to TagRemoval
16 drop feature TagRemoval.issue
17 drop feature TagRemoval.tag
18 create class Event
19 create feature Event.issue -> Issue
20 create feature Event.time

:: DateTime
21 create feature Event.actor -> User
22 create class TagEvent : Event
23 create feature TagEvent.tag -> Tag
24 add super Event to Comment
25 drop feature Comment.issue
26 drop feature Comment.timestamp
27 drop feature Comment.author

create feature Project.tags <> Tag
generalize upper Project.tags to -1
make Project.tags composite
drop feature TagAddition.issue
drop feature TagAddition.tag
drop feature TagAddition.timestamp
drop feature TagRemoval.issue
drop feature TagRemoval.tag
create class Event
create feature Issue.log <> Event
generalize upper Issue.log to -1
make Issue.log composite
create feature Event.issue -> Issue
make Issue.log inverse Event.issue
create feature Event.time

:: DateTime
create feature Event.actor -> User
create class TagEvent : Event
create feature Project.log

<> TagEvent
generalize upper Project.log to -1
make Project.log composite
add super TagEvent to TagAddition
add super TagEvent to TagRemoval
create feature TagEvent.tag -> Tag
drop feature Comment.issue
drop feature Comment.timestamp
drop feature Comment.author
add super Event to Comment

Fig. 6. Unordered and dependency-ordered primitives mapped from the difference model

Primitive Operator Preconditions Postconditions

create class cn 〈cn〉 = ⊥ 〈cn〉
= ⊥ ∧ F (〈cn〉) = ∅
¬targeted(〈cn〉) ∧ ¬abstract(〈cn〉)

drop class cn
〈cn〉
= ⊥ ∧ F (〈cn〉) = ∅
¬targeted(〈cn〉) 〈cn〉
= ⊥

create feature
cn.fn :: tn

〈cn〉
= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′)
= fn

〈cn.fn〉
= ⊥
〈cn.fn〉 ∈ Fa

create feature
cn.fn -> tn

〈cn〉, 〈tn〉
= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′)
= fn

〈cn.fn〉
= ⊥
〈cn.fn〉 ∈ Fr ∧ type(〈cn.fn〉) = 〈tn〉

 ∃f ′ : opposite(〈cn.fn〉) = f ′)
¬composite(〈cn.fn〉) ∧ ¬id(〈cn.fn〉)

drop feature cn.fn 〈cn.fn〉
= ⊥ 〈cn.fn〉 = ⊥

Fig. 7. Pre- and postconditions for structural primitive operators

Reconstructing Complex Metamodel Evolution 211

Primitive Operator Preconditions Postconditions

rename class cn to cn′ 〈cn〉
= ⊥ ∧ 〈cn′〉 = ⊥ 〈cn〉 = ⊥ ∧ 〈cn′〉
= ⊥

rename feature cn.fn to fn′
〈cn.fn〉
= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′)
= fn ′
〈cn.fn〉 = ⊥
〈cn.fn′〉
= ⊥

make cn abstract 〈cn〉
= ⊥ ∧ ¬abstract(〈cn〉) abstract(〈cn〉)

drop cn abstract 〈cn〉
= ⊥ ∧ abstract(〈cn〉) ¬abstract(〈cn〉)

add super cnsup to cnsub

〈cnsup〉, 〈cnsub〉
= ⊥
〈cnsup〉
∈ Ch(〈cnsub〉)
∀c ∈ Ch(〈cnsub〉) : ∀f ∈ F (c) :

〈cnsup.name(f)〉 = ⊥
〈cnsup〉 ∈ Cp(〈cnsub〉)

drop super cnsup from cnsub
〈cnsub〉, 〈cnsup〉
= ⊥
〈cnsup〉 ∈ Cp(〈cnsub〉) 〈cnsup〉
∈ Cp(〈cnsub〉)

generalize type cn.fn to cn′ 〈cn.fn〉
= ⊥ ∧ 〈cn′〉
= ⊥
〈cn′〉 ∈ Ca(〈cn〉) type(〈cn.fn〉) = 〈cn′〉.

specialize type cn.fn to cn′ 〈cn.fn〉
= ⊥ ∧ 〈cn′〉
= ⊥
〈cn′〉 ∈ Cd(〈cn〉) type(〈cn.fn〉) = 〈cn′〉.

generalize upper cn.fn to u
〈cn.fn〉
= ⊥
u >B upper(〈cn.fn〉) upper(〈cn.fn〉) = u

generalize lower cn.fn to l
〈cn.fn〉
= ⊥
l < lower(〈cn.fn〉) lower(〈cn.fn〉) = l

specialize upper cn.fn to u
〈cn.fn〉
= ⊥
u <B upper(〈cn.fn〉)
u ≥B lower(〈cn.fn〉)

upper(〈cn.fn〉) = u

specialize lower cn.fn to l
〈cn.fn〉
= ⊥
l > lower(〈cn.fn〉)
l ≤ upper(〈cn.fn〉)

lower(〈cn.fn〉) = l

make cn.fn inverse cn′.fn ′
〈cn.fn〉, 〈cn′.fn ′〉
= ⊥

 ∃f : opposite(〈cn.fn〉) = f

∨opposite(〈cn′.fn ′〉) = f
opposite(〈cn.fn〉) = 〈cn′.fn′〉

drop cn.fn inverse
〈cn.fn〉
= ⊥
∃f ′ : opposite(〈cn.fn〉) = f ′
 ∃f ′ : opposite(〈cn.fn〉) = f ′

make cn.fn identifier 〈cn.fn〉
= ⊥ ∧ ¬id(〈cn.fn〉) id(〈cn.fn〉)

drop cn.fn identifier 〈cn.fn〉
= ⊥ ∧ id(〈cn.fn〉) ¬id(〈cn.fn〉)

make cn.fn composite
〈cn.fn〉
= ⊥
¬composite(〈cn.fn〉) composite(〈cn.fn〉)

drop cn.fn composite
〈cn.fn〉
= ⊥
composite(〈cn.fn〉) ¬composite(〈cn.fn〉)

Fig. 8. Pre- and postconditions for non-structural primitive operators

212 S.D. Vermolen, G. Wachsmuth, and E. Visser

Complex Operator Conditions Equivalent Trace

pull up feature
cn.fn

Cc(〈cn〉) = {c1, . . . , ck}
〈cn1.fn〉 ≡F · · · ≡F 〈cnk.fn〉

drop feature cn1.fn
. . .

drop feature cnk.fn
t = type(〈cn1.fn〉) ∧ t ∈ Td create feature cn.fn :: tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(〈cn1.fn〉) ∧ u >b 1 [generalize upper cn.fn to u]
id(〈cn1.fn〉) [make cn.fn identifier]

Cc(〈cn〉) = {c1, . . . , ck}
〈cn1.fn〉 ≡F · · · ≡F 〈cnk.fn〉

drop feature cn1.fn
. . .

drop feature cnk.fn
t = type(〈cn1.fn〉) ∧ t ∈ Tc create feature cn.fn -> tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(〈cn1.fn〉) ∧ u >b 1 [generalize upper cn.fn to u]
composite(〈cn1.fn〉) [make cn.fn composite]
f ′ = opposite(〈cn1.fn〉) [make cn.fn inverse fn ′]

extract super
class cn

{fn1,. . .,fnj }
from cn1,. . .,cnk

true create class cn
add super cn to cn1

. . .
add super cn to cnk

pull up feature cn.fn1
. . .

pull up feature cn.fnj

fold super class
cn from cn′

Fi(〈cn〉) = {f1, . . . , fk}
∀i = 1 . . . k : 〈cn′.fni〉 ≡F fi

drop feature cn′.fn1
. . .

drop feature cn′.fnk

add super cn to cn′

Fig. 9. (De-)Composition patterns for complex operators

4 Reconstructing Complex Evolution Traces

This section shows how to reconstruct valid complex evolution traces from valid prim-
itive traces. First, we provide patterns for mapping sequences of primitive operator in-
stances to complex operator instances. Second, we discuss how to reorder evolution
traces without breaking their validity. This allows us to reorder traces into different nor-
mal forms in which the patterns can be detected easily and be replaced by complex
operator instances.

Patterns. A complex operator instance comprises a sequence of (less-complex) op-
erator instances. We can use patterns on these sequences to detect complex operator
instances. Figure 9 lists the decompositions and conditions for two complex operators
working across inheritance. When read from left to right, it shows how to decompose a
complex operator instance, when read from right to left, it defines its detection pattern.
Given a source metamodel m, we can recursively decompose an operator instance O
into a sequence of primitive operator instances �O�m = P1 . . . Pn. As a precondition,
a complex operator instance needs to fulfill the backward descriptions of the precon-
ditions of these primitives. But typically this is not enough and an operator instance
requires additional preconditions.We highlight these additional preconditions with a
box in Figure 9.

Reconstructing Complex Metamodel Evolution 213

1 create class Event
2 create feature Event.timestamp

:: DateTime
3 create feature Event.actor -> User
4 drop feature Comment.timestamp
5 drop feature Comment.actor
6 add super Event to Comment

1 create class Event
6 add super Event to Comment
5 drop feature Comment.actor
3 create feature Event.actor -> User
4 drop feature Comment.timestamp
2 create feature Event.timestamp

:: DateTime

Fig. 10. Excerpt of dependency-ordered operators in Figure 6

Reordering traces. Figure 10 shows an excerpt of Figure 6. It displays the extraction
of super class Event from class Comment. Operator ordering is still determined by the
dependency ordering from the previous section. To simplify the example, we changed
the operator on Comment.author to work on Comment.actor . We will look at
author and the complete trace in the next section. Consider applying the patterns from
Figure 9. There is no consecutive sequence of operator instances satisfying any of the
patterns. We could detect pulling up feature timestamp in instances 2 and 4, yet where
do we put the detected complex operator: at position 2 or at position 4?

Detection patterns typically cannot be applied directly. Instead, traces need to be
reordered to find consecutive instances of a pattern. Dependency ordering is partial
and therefore leaves room for swapping independent operators. In the example, we can
swap 2 and 3 as they work on different features; 2 and 4 as they work on different types;
2 and 5 which also work on different types; 4 and 5 which work on different features;
3 and 5, which work on different types; and finally, we can repeatedly swap 6 to follow
operator 1, as all features that are created are dropped from the inheritance chain first.
The reordered trace is shown at the right of Figure 10. We can now apply the patterns for
pulling up timestamp and actor. Subsequently, we see the pattern for class extraction
emerge, which yields a super class extraction of Event {timestamp, actor} from
Comment and TagEvent.

Normal forms. In the example, we carefully swapped operators. Not only did we avoid
swapping dependent operators (as to preserve trace validity), we also chose swaps,
which gave us a detectable pattern. In particular, we focused on obtaining a consec-
utive feature creation and drop, of features that only differ in position in the inheritance
chain. A set of swap rules can bring an evolution trace into a format most suitable
for detecting a pattern. In general, these rules obey the dependency relation. However,
some dependent instances can still be swapped by adjusting their parameters. For ex-
ample, rename class A to B and create feature B.f. . . can be swapped to:
create feature A.f. . . and rename class A to B .

Repeated application of a set of swap rules will result in a normal form defined by
this set. Each normal form targets to bring potential components of a pattern together
and to satisfy the operator precondition. For example, to detect a feature pull up, we
rely on feature similarity: Class creations and super additions get precedence over other
operators. Feature creations, changes, and drops are sorted on feature name, type, and
modifiers. Class drops and destructive updates on the inheritance chain go last. Dif-
ferent patterns need different trace characteristics and thus different normal forms. But
operators with similar kinds of patterns can share normal forms.

214 S.D. Vermolen, G. Wachsmuth, and E. Visser

5 Reconstructing Masked Operator Instances

In this section, we extend the detection to deal not only with complete but also partial
patterns. First, we revisit the problem of operator interference and study its effects on
detection. Second, we show how to complete partial patterns by the additions of opera-
tor instances in a validity preserving fashion. This allows us to detect operator instances
which patterns are partially or even completely hidden by other instances.

Masked Operators. We reconsider the running example from Figure 1. During evolu-
tion, several features of the classes TagAddition and TagRemoval were extracted
into a new super class TagEvent . In order to extract the feature timestamp it needs
to be present in both TagAddition and TagRemoval . Yet, it is not. As a human, we
deduce that timestamp must have been added in the process of extracting TagEvent.
There is, however, no explicit record of such feature creation. Detection will therefore
fail. Later in the evolution, when extracting the class Event , we seek to pull up a
feature actor . The class Comment , which we are extracting from, only offers a fea-
ture author. Again as a human, we assume that author must have been renamed
to actor (like we did in the previous section), yet this operation is not present in the
original evolution trace. Similarly, we have to create the feature actor in TagEvent

before extracting Event and rename the feature timestamp to time after extracting
Event to yield the target metamodel. Each of these operations has no record in the
difference set obtained from the matching algorithm.

When evolutions become more complex, individual evolution steps no longer need
to have an explicit effect on the target metamodel and are therefore not explicit in the
matching result. An operator instance can hide or even undo parts of the effect of an-
other instance. This is a strong variant of dependency, which we call masking. A primi-
tive operator P1 masks another primitive operator P2 when composition of the two can
be captured in a third primitive operator P3. More generally, we define masking for
arbitrary operator instances as the presence of a mask in decompositions:

P1 masksm P2 ⇔ ∃P3 : (P1 ◦ P2)(m) = P3(m)

O1 masksm O2 ⇔ ∃P1 ∈ �O1�m : ∃P2 ∈ �O2�m : P1 masks P2

Most operators can be masked by renaming. All operators are masked by their inverses,
in which case P3 is the identity operator. Extraction of class TagEvent in the running
example masks extraction of class Event . Note that a trace obtained from a valid
difference model will only contain masks that involve complex operators.

Masked Detection Rules. Detection of masked operator instances follows a trace
rewriting approach similar to the original detection of complex operator instances: We
try to rewrite a sequence of operator instances into another sequence which has the same
effect on the metamodel. Instead of checking the operator precondition in a pattern, like
we did in the previous section, we now ensure the precondition by deducing a suitable
sequence to rewrite to. We now discuss how to derive a detection rule for a masked
complex operator instance, e.g., for pulling up an attribute cnsup.fn . Its decomposition
is the following:

Reconstructing Complex Metamodel Evolution 215

drop feature cnsub1.fn
. . .
drop feature cnsubi.fn
create feature cnsup.fn

[specialize lower cnsup.fn to l]
[generalize upper cnsup.fn to u]
[make cn.fn identifier]

From the decomposition we choose a trigger, which tells us that there may have been
a feature pull up. We choose one of the feature drops (number x). We use the trigger as
a pattern on the left-hand side of a rewrite rule and assume on the right-hand side that
there must have been a feature pull up:

drop feature cnsubx.fn -> . . . pull up feature cnsup.fn . . .

When the dots are left blank, application of the left-hand side to a metamodel does
not have an equivalent effect as application of the right-hand side. Instead, we fill the
dots, to establish equivalence. The left set of dots ensures that the pull up feature oper-
ator can be applied, i.e., its precondition is satisfied. The right set of dots ensures that
application of the trace is equivalent to application of the left-hand side of the rewrite
rule. Both sets of dots are filled in using inverses of the operators found in the pattern.
The left set of dots is replaced by inverses of each of the primitive operators whose pre-
condition is not already satisfied. For pull up feature, we create features in all sibling
classes if they do not exist yet and remove the target feature if it already exists. The right
set of dots is replaced by inverses that neutralize the effect of the complex operator and
bring the metamodel back to its original state. For pull up feature, we need to create
all sibling features, which were present beforehand, as these were deleted during pull
up and we need to drop the target feature if it was not present beforehand. The rewrite
rule for detecting a masked feature pull up is (leaving out the operations on feature
modifiers, for simplicity):

drop feature cnsubx.fn ->

create feature cnsibn1.fn
. . .
create feature cnsibnj.fn
[drop feature cnsup.fn]
pull up feature cnsup.fn
create feature cnsibe1.fn
. . .
create feature cnsibek.fn
[drop feature cnsup.fn]

In which cnsup is chosen arbitrarily from Cp(〈cnsubx〉), cnsibn is the set of all
sibling classes which do not have a feature named fn and thus need to obtain the feature
to pull it up. cnsibe is the set of all sibling classes which do have a feature named fn and
thus need to be reequipped with fn to neutralize the effect of pulling it up. The feature
drops are conditional. The first drop should be present if 〈cnsup .fn〉 �= ⊥ and the latter
should be present if 〈cnsup .fn〉 = ⊥. In addition to the pattern on the left-hand side of a
rewrite rule for a masked complex operator O, a rewrite rule is also conditioned by the
operator’s precondition Ocpre. It is checked in addition to the trigger. For feature pull
up, the operator precondition Ocpre ensures presence of an inheritance chain between
cnsub and cnsup . The metamodel invariants ensure feature names uniqueness across
inheritance. The precondition of the trigger ensures fn exists in cnsub . Therefore, fn
cannot exist in cnsup . The rewrite rule for feature pull up can thus be simplified by
removing the top drop feature and always using the bottom drop feature.

Using the presented approach, we can derive masked detection rules for any complex
operator. By definition, such rules expand the trace. To find a suitable evolution, we

216 S.D. Vermolen, G. Wachsmuth, and E. Visser

1 drop feature TagAddition.issue -> pull up feature TagEvent.issue
drop feature TagEvent.issue
create feature TagRemoval.issue

2 create feature TagRemoval.issue -> identity
drop feature TagRemoval.issue

3 create feature TagEvent.tag -> Tag -> pull up feature TagEvent.tag
drop feature TagAddition.tag create feature TagRemoval.timestamp
drop feature TagAddition.timestamp pull up feature TagEvent.timestamp
drop feature TagRemoval.tag drop feature TagEvent.timestamp

4 pull up feature TagEvent.issue -> drop class TagEvent
drop super TagEvent from TagAddition
drop super TagEvent from TagRemoval
extract super TagEvent

{issue, tag, timestamp}
from {TagAddition, TagRemoval}

push down feature TagEvent.tag
push down feature TagEvent.timestamp

Fig. 11. Masked detection applied to running example

need to compact the trace again. First, we can rewrite any pair of inverse operators
to the identity function, as their effect on the metamodel is canceled out and they are
unlikely to have been part of the original evolution. Second, we combine a creation and
deletion of two features, which only differ by name into a feature rename. This allows
us to detect complex operators, which are masked by a rename, such as a pull up of
feature f , followed by a rename of f to f ′. Combining rules for inverses requires a
normal form grouping on operator category and the renaming rule requires a normal
form on feature similarity.

Applying Masked Detection Rules. We apply masked detection rules to the running
example. Figure 11 shows the intermediate steps. Step 1 applies feature pull up de-
tection to TagAddition.issue . After normalizing the trace, we apply an inverse
pattern to creation and drop of TagRemoval.issue and reduce the trace (step 2).
TagEvent.issue is not reduced yet. It will be used later as a component of extracting
class Event. Next, we repeat steps 1 and 2 by pulling up tag and timestamp (step 3).
Subsequently, the pull up of TagEvent.issue triggers detection of super class ex-
traction of TagEvent in step 4. The drop class, both super drops, and both feature
push downs are subsequently neutralized by a class creation, super additions, and pull
ups respectively. We then repeat detection of super class extraction for Event , using
the rename pattern to neutralize create and drops of timestamp and time as well as
author and actor . Finally, we get the result shown in Figure 1 (bottom).

All regular rewrite rules, which we defined in the previous section, reduced the num-
ber of operators in the trace. Furthermore, we did not consider overlapping (interfering)
complex operators. These two assumptions enabled fast detection. The rules for detect-
ing masked operators, on the other hand, can increase the size of the trace. For exam-
ple, the feature pull up pattern increases the trace by the number of occurrences of this
feature in sibling classes plus one (for dropping the pulled up feature). Furthermore,
for each trace, several rules may be applicable at different positions in the trace. To find

Reconstructing Complex Metamodel Evolution 217

a solution, we therefore use a backtracking approach. Each backtracking step tries to
apply each of the rules to a trace, yielding zero or more new traces, to which rule
application is applied recursively.

6 Related Work

Research on difference detection is found in differencing textual documents, matching
structured artifacts, and detection of complex evolution. Text differencing is ignorant of
structure or semantics. We discuss related work on matching and complex detection.

Matching. A matching algorithm detects evolution between two artifacts by linking
elements of one artifact to elements of the other. Links are either established based on
similarity, or using an origin tracking technique such as persistent identifiers. Links are
concerned with one element in each artifact. Consequently, matching approaches detect
atomic changes. They do not offer support for detecting complex changes. Nevertheless,
we discuss them as potential input to our approach. Matching has received attention in
the domains of UML, source code reorganization, database schemas and metamodels.

In the domain of UML, Ohst et al. first proposed a solution to compare two UML
documents [19]. They compare XML files and use persistent ids for matching. Later
work by Xing and Stroulia presents UMLDiff, a matching tool set using similarity met-
rics instead of persistent ids to establish links [30]. Lin et al. propose a generalization of
the work of Xing and Stroulia, which is not restricted to UML models, but uses domain
specific models as input instead [16].

In the domain of source code reorganization, Demeyer et al. proposes to find refac-
torings using change metrics [6]. Later work by Tu and Godfrey uses statistical data and
metrics to match evolved software architectures, a process referred to as origin analysis
[25].The work on evolving architectures is extended by Godfrey and Zou, by adding
detection of merged and split source code entities [10]. In schema matching, a body of
work exists, which generally offers a basis for the other works presented in this section.
Rahm et al. and later Shvaiko et al. present surveys on schema matching [20,21]. Sun
and Rose present a study of schema matching techniques [24].

Lopes et al. consider schema matching applied in the context of model-driven engi-
neering, but propose a new matching algorithm for models [17]. Instead, Falleri et al.
take the existing similarity flooding algorithm from the field of schema matching and
apply it to metamodels [7]. Work by DelFabro et al. [5] and by Kolovos et al. [15] pro-
pose new matching algorithms to the modeling domain. Finally, EMFCompare offers
metamodel independent model comparison in the Eclipse Modeling Framework [1]. It
relies on heuristic-based matching and differencing, which are both pluggable.

Complex Detection. Detection of complex operators has received significantly less
attention in research than matching. Cicchetti et al. discuss an approach for model mi-
gration along complex metamodel evolution [3]. They obtain the complex evolution
from an arbitrary matching algorithm, but do not offer such an algorithm on their own.
Instead, they emphasize the need for a matching algorithm able to detect complex evo-
lution. Our approach fulfills this need. Later work of Cicchetti addresses the problem of

218 S.D. Vermolen, G. Wachsmuth, and E. Visser

dependencies between evolution steps [4]. Since their work focuses only on dependency
ordering but not on complex operator detection, they specify operator dependency only
statically in terms of the metamodeling formalism. This is too restrictive for the detec-
tion of complex operators since it limits possible reorderings dramatically. By defining
dependency only in the context of an actual metamodel, our approach enables reorder-
ing into various normal forms which allow for the detection of complex operators.

Garcès et al. present an approach to automatically derive a model migration from
metamodel differences [9]. The difference computation uses heuristics to detect also
complex changes. Each heuristic refines the matching model, and is implemented by a
model transformation in ATL. The transformation rules for detecting complex changes
are similar to the patterns presented in Section 4. Yet, the approach does not cover
operator dependencies, was not able to detect complex changes in a Java case study,
and does not address operator masking.

7 Discussion

Metamodeling Formalism. In this paper, we focus only on core metamodeling
constructs that are most interesting for coupled evolution of metamodels and models.
Concrete metamodeling formalisms like Ecore [23] or MOF [18] provide additional
metamodeling constructs like packages, interfaces, operations, derived features, volatile
features, or annotations. Since our approach allows for extension, we can add support
for these constructs. Therefore, we need to provide additional primitive operators, de-
fine their preconditions, extend existing preconditions with respect to new invariants,
derive additional complex operators, and define detection patterns for them.

Implementation. We implemented our approach prototypically in Acoda1, a data
model evolution tool for WebDSL [28], which is a DSL for web applications. Acoda
offers an Eclipse plugin to seamlessly integrate into regular development. The plugin
provides editor support for evolution traces (such as syntax highlighting, instant er-
ror marking and content completion), generation of SQL migration code, application of
migrations to a database, and the evolution detection presented in this paper. The imple-
mentation uses an existing data model matching algorithm. We relied on rewrite rules
in Stratego [27] to specify each step of the reconstruction algorithm, i.e., mapping data
model changes to primitive operators, dependency ordering, normal form rewriting,
complex operator detection, and masked operator detection. Acoda presents different
evolution traces to the user, who can select and potentially modify the best match.

Trace Selection. Involving the user in the selection process prevents complete au-
tomation, but with a rich set of supported coupled operators, detection is likely to yield
several suitable traces. Only the user can decide which migration is correct. We can as-
sist this decision by presenting migrations of example models. Conversely, the user can
assist the detection by giving examples for original and migrated models. The detection
can then drop all traces which cannot reproduce the examples. Additionally, the user
may choose to only consider information-preserving traces, thereby narrowing down
the set of suitable traces.

1 http://swerl.tudelft.nl/bin/view/Acoda

Reconstructing Complex Metamodel Evolution 219

Completeness. The set of primitive operators guarantees completeness at the meta-
model level as it allows us to evolve any source metamodel to any target metamodel.
Completeness at the model level is not feasible since it would imply that we can detect
any model transformation between the instances of two arbitrary metamodels. Though,
we can add more complex coupled operators to our detection. This increases the search
space for both the user and for the detection. As for the user, we have a tradeoff between
completeness and usability. There will be many similar operators with minor differ-
ences in their migration. Understanding and distinguishing operators becomes harder.
In a number of real-life case studies, we identified the most common operators [13].
We propose to support only the detection of these operators and to leave rare cases to
the user. As for the detection, supporting more complex operators increases the search
space and we have a tradeoff between completeness and performance.

Performance. Besides the number of supported complex operators, detection perfor-
mance is influenced by evolution size and mask depth, but not by metamodel size,
which only affects the matching process. The GMF case study [12] showed us that a
larger distance between original and evolved metamodel reduces the matching algo-
rithm precision, making it more unlikely to still detect a good evolution trace. On the
other hand, we found that an evolution between two commits to the repository could
mostly be captured by 20 evolution steps. A preliminary case study of Acoda on part
of the evolution of Researchr2, a publication management system, showed the appli-
cability of detection. Traces in Researchr between subsequent repository commits are
short, hence we applied the detection to steps of ten subsequent commits, which yields
traces up to 52 steps in length. A detection run generally takes several seconds and is
significantly shortened when reducing the number of commits considered in a single
detection run.

Acknowledgments. This research was supported by NWO/JACQUARD project
638.001.610, MoDSE: Model-Driven Software Evolution.

References

1. Brun, C., Pierantonio, A.: Model differences in the eclipse modelling framework. UP-
GRADE, The European Journal for the Informatics Professional (2008)

2. Casais, E.: Managing class evolution in object-oriented systems, ch. 8, pp. 201–244. Prentice
Hall International (UK) Ltd. (1995)

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: Enterprise Distributed Object Computing Conference, EDOC. IEEE
(2008)

4. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evo-
lution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg
(2009)

5. Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching transfor-
mations and weaving models. In: Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC 2007, pp. 963–970. ACM (2007)

2 http://researchr.org

220 S.D. Vermolen, G. Wachsmuth, and E. Visser

6. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In: Pro-
ceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2000, pp. 166–177. ACM (2000)

7. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for Automatic
Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)

8. Favre, J.-M.: Languages evolve too! changing the software time scale. In: IWPSE 2005:
Eighth International Workshop on Principles of Software Evolution, pp. 33–42. IEEE (2005)

9. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by Precise De-
tection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

10. Godfrey, M.W., Zou, L.: Using origin analysis to detect merging and splitting of source code
entities. IEEE Transactions on Software Engineering, 166–181 (2005)

11. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of
Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
52–76. Springer, Heidelberg (2009)

12. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language Evolution in Practice: The His-
tory of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 3–22. Springer, Heidelberg (2010)

13. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An Extensive Catalog of Operators
for the Coupled Evolution of Metamodels and Models. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011)

14. Kniesel, G., Koch, H.: Static composition of refactorings. SCP 52(1-3), 9–51 (2004)
15. Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R.: Different models for model matching:

An analysis of approaches to support model differencing. In: ICSE Workshop on Comparison
and Versioning of Software Models, CVSM 2009, pp. 1–6 (May 2009)

16. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models.
European Journal of Information Systems 16(4), 349–361 (2007)

17. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven
engineering: From theory to practice. In: Advances in Systems, Computing Sciences and
Software Engineering, pp. 219–227. Springer (2006)

18. Object Management Group. Meta Object Facility (MOF) core specification version 2.0
(2006), http://www.omg.org/spec/MOF/2.0/

19. Ohst, D., Welle, M., Kelter, U.: Differences between versions of uml diagrams. In: Proc. of
the 9th European Software Engineering Conference, ESEC/FSE, pp. 227–236. ACM (2003)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4), 334–350 (2001)

21. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra,
S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg
(2005)

22. Sprinkle, J.M.: Metamodel driven model migration. PhD thesis, Vanderbilt University (2003)
23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

2.0. Addison-Wesley (2009)
24. Sun, X.L., Rose, E.: Automated schema matching techniques: An exploratory study. Re-

search Letters in the Information and Mathematical Science 4, 113–136 (2003)
25. Tu, Q., Godfrey, M.: An integrated approach for studying architectural evolution. In: 10th

International Workshop on Program Comprehension, pp. 127–136 (2002)
26. Vermolen, S.D., Visser, E.: Heterogeneous Coupled Evolution of Software Languages. In:

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

http://www.omg.org/spec/MOF/2.0/

Reconstructing Complex Metamodel Evolution 221

27. Visser, E.: Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems
in StrategoXT-0.9. In: Lengauer, C., Batory, D., Blum, A., Vetta, A. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

28. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Läm-
mel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer,
Heidelberg (2008)

29. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

30. Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differencing. In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2005, pp. 54–65. ACM (2005)

	Reconstructing Complex Metamodel Evolution
	Introduction
	Modeling Metamodel Evolution
	Reconstructing Primitive Evolution Traces
	Reconstructing Complex Evolution Traces
	Reconstructing Masked Operator Instances
	Related Work
	Discussion
	References

