MoScript: A DSL for Querying
and Manipulating Model Repositories

Wolfgang Kling!+*, Frédéric Jouault!, Dennis Wagelaar®**, Marco Brambilla?,
and Jordi Cabot!

! AtlanMod, INRIA Ecole des Mines de Nantes, LINA
{wolfgang.kling,frederic.jouault,jordi.cabot}@inria.fr
2 Politecnico di Milano, Dipartimento di Elettronica e Informazione
marco.brambilla@polimi.it
3 Vrije Universiteit Brussel, Software Languages Lab
dennis.wagelaar@vub.ac.be

Abstract. Growing adoption of Model-Driven Engineering has hugely
increased the number of modelling artefacts (models, metamodels, trans-
formations, ...) to be managed. Therefore, development teams require
appropriate tools to search and manipulate models stored in model repos-
itories, e.g. to find and reuse models or model fragments from previous
projects. Unfortunately, current approaches for model management are
either ad-hoc (i.e., tied to specific types of repositories and /or models), do
not support complex queries (e.g., based on the model structure and its
relationship with other modelling artefacts) or do not allow the manipu-
lation of the resulting models (e.g., inspect, transform). This hinders the
probability of efficiently reusing existing models or fragments thereof. In
this paper we introduce MoScript, a textual domain-specific language for
model management. With MoScript, users can write scripts containing
queries (based on model content, structure, relationships, and behaviour
derived through on-the-fly simulation) to retrieve models from model
repositories, manipulate them (e.g., by running transformations on sets
of models), and store them back in the repository. MoScript relies on the
megamodeling concept to provide a homogeneous model-based interface
to heterogeneous repositories.

Keywords: DSL, Megamodel, Model Management, Scripting, OCL.

1 Introduction

As Model-Driven Engineering (MDE) methods and tools are maturing and be-
coming more popular, the number of modelling artefacts consumed and produced

* The author’s work is partially supported by the Galaxy (ANR - French National)
project.
** The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders).

A. Sloane and U. ASimann (Eds.): SLE 2011, LNCS 6940, pp. 180-200] 2012.
© Springer-Verlag Berlin Heidelberg 2012

MoScript: A DSL for Querying and Manipulating Model Repositories 181

by software engineering processes (e.g., models, metamodels, and transforma-
tions) has increased considerably.

MDE for complex systems [] is a typical example of this situation. In the
model driven development of those systems, every artefact (e.g. requirements
specifications, analysis and design documents, implementation artefacts, etc.,)
is a model. Apart from being numerous, these artefacts are often large, hetero-
geneous, interrelated, with complex internal structure, and possibly stored in
distributed model repositories.

MDE is partly to blame for this complexity, as it introduces new artefacts to
deal with, such as models, metamodels, transformation models, and transforma-
tions engines. Whereas having special-purpose metamodels allows for reducing
model complexity, the interrelations between transformations, models, and meta-
models can become very complex. Global Model Management (GMM) aims to
address this complexity problem by providing an explicit representation of the
modelling artefacts and their interrelations, in a model called megamodel [10].

However, current GMM solutions only provide passive metadata. It is possible
to query a megamodel, but not to access and manipulate the modelling artefacts
represented in a megamodel (e.g. loading/saving models, executing transforma-
tions, etc.).

In this paper, we propose MoScript a textual DSL (domain-specific language)
and megamodel agnostic platform for accessing and manipulating modelling arte-
facts represented in a megamodel.

MoScript allows to write queries that retrieve models from a repository, in-
spect them, invoke services on them (e.g. transformations), and to register newly
produced models back to the repository. MoScript scripts allow the description
and automation of complex modelling tasks, involving several consecutive ma-
nipulations on a set of models. As such, the MoScript language can be used for
modelling task and/or workflow automation.

The MoScript architecture includes an extensible metadata engine for resolv-
ing and accessing modelling artefacts and invoke services from different trans-
formation tools.

The remainder of this paper is structured as follows. Section Pl explains the
motivations of this work. Section [B] describes the supporting architecture for
MoScript. Section M presents the MoScript language. Section [l puts everything
together in the form of two examples. Section [0l describes how is MoScript im-
plemented. Section [compares our work with other, related approaches. Finally,
section [§ presents our conclusions and future work.

2 DMotivation

Along this section we will present some of the problems that motivated the
definition of MoScript. Then, in further sections, will illustrate how MoScript
helps us to solve them.

Let’s consider repositories of modelling artefacts represented by a megamodel,
which are used to develop complex systems. Typically, these repositories would
present the following characteristics:

182 W. Kling et al.

— Hundreds or thousands of heterogeneous artefacts. The reposito-
ries contain models, metamodels, metametamodels, transformations, source
code, file descriptors, data files, etc.

— Artefacts are related to other artefacts through predefined (e.g. con-
formsTo) and ad-hoc (e.g. weaving models) relationships.

— Many different tools, each one playing a specific role in the repository, like
model to model (M2M) transformation engines, model to text transformation
engines (M2T), documentation tools, compilers, script engines etc.

— Several kind of users participate in the evolution of the repository
(e.g., stakeholders, analysts, developers, etc.).

On this repositories, there are several tasks users may want to accomplish. (1)
Finding models, (2) combining modelling artefacts information (3) batch pro-
cessing, (4) and registering newly generated artefacts in the system.

Finding models may be difficult depending on the search criteria and the size
of the repositories. In the simplest case we may be interested in finding a single
model whose name (e.g., file name) is known, so a simple search (e.g., with
the file system search engine) will suffice. In many other cases models must be
searched using more complex criteria, such as:

— An internal characteristic such as models with an element with a given
value, metamodels containing elements of certain types, etc.

— A computed characteristic based on the models size or structure, such
as models with more than two hundred elements or transformations that
contain more imperative transformation excerpts than others etc.

— Their relations with other artefacts, such as models that are related to
a given transformation or to other models e.g. by a trace model.

After finding the desired models, we may need to extract and combine their
elements. The combination of information from several models is essential for
extracting metrics from model repositories. For instance, we may want to com-
pute the number of metamodel elements a transformation uses, or the number
of models and elements involved in a model weaving etc.

Another common requirement when working on MDE repositories is to be
able to execute batch processes of regular modelling tasks (e.g. transformations,
model checks, projections etc.) involving large amounts of models. Furthermore,
these batch processes should orchestrate the modelling tasks according to how
the models are arranged in the repository. For instance, when a model is modi-
fied only the transformations which use the modified model should be executed
and then all the transformations that use the output models of the executed
transformations and so on.

Finally, since several users manipulate the repositories, they are in constant
evolutionary state. Thus, it is important to have an updated view of the repos-
itory and to count with mechanisms for easily detect changes in the repository.
For instance suppose there is a batch process that re-executes the transforma-
tions in the repository when their input models change. Now, if a user contributes
a new transformation to the repository, the process will not be able to re-execute

MoScript: A DSL for Querying and Manipulating Model Repositories 183

the new transformation if it does not rely on an updated view that reflects the
new transformation and also its relation with its input models. Therefore, we
require mechanisms for easily register, update and delete artefacts from such a
repository view.

In the next sections we will see how MoScript enable us to perform all these
tasks.

3 The MoScript Architecture

Fig.dlshows an overview of the MoScript architecture, comprising both the basic
components and information flows.

3.1 Architecture Components

The MoScript architecture is composed of six components: the MoScript DSL,
a megamodel, a metadata engine, model repositories, transformation tools, and
external DSLs, editors, and discoverers, as shown in Fig. [[l and described next.

Model Repositories

Fig. 1. The MoScript architecture

— MoScript: A textual DSL, which serves as an interface between the users
and the modelling artefacts repositories. Users write and run their MoScript
scripts for retrieving modelling artefacts and performing modelling tasks (e.g.
inspect, transform, match, etc.) with them. MoScript uses the megamodel
as cartography to navigate the repositories and select modelling artefacts to
manipulate. As result of the manipulations, new modelling artefacts may be
created in the repositories or existing modelling artefacts may be removed.

184 W. Kling et al.

— Megamodel[3]: A model which describes artefacts within repositories (e.g.
their location, kind, format, etc.), and how they are interrelated. A meg-
amodel is a regular model, thus it conforms to a metamodel, which is shown
in Fig. @l For instance, the Entity element represents any MDE (i.e. arte-
facts that depend on well defined grammars) and non-MDE artefact (such
as non structured documents, tools, libraries, etc).

Identified -
Element —

/\

Relationship]
/\
Direcred
Model .
ode Relationship
Weaving N l ﬁ
Model | Transformation l 1 | megamodel

" Transformation
Model
Mega Transformation ’(—{ Record
Model J

Entity

* elements

conformsTo 1

Reference
Model

targetOf

extends *

MetaMeta -

Model

MetaModel

targetReferenceModel

srcReferenceModel

srcModel

Fig. 2. Part of the core metamodel for megamodels

The basic MDE artefacts supported by the megamodel are: MetaMeta-
Models (M3), which represent models conforming to themselves; Meta-
models (M2), which represent models conforming to metametamodels; and
TerminalModels (M1), which represent models conforming to metamod-
els but no other model conforms to them. Examples of TerminalModels
are TransformationModels, WeavingModels and Megamodels them-
selves. Relationships between artefacts (MDE and non-MDE) are repre-
sented by the Relationship concept. For instance, a Transformation is
a directed relationship between a TransformationModel and one or more
ReferenceModels (metamodels or metametamodels). The Transformation-
Model is the representation of the source code of the transformation while
the ReferenceModels restrict the type of input and output models the trans-
formation may be applied on. A TransformationRecord is another kind of
directed relationship. A TransformationRecord associates a Transformation
with a set of input and output models. As we will see later, it is useful for
rerunning transformations without giving any additional input.
Since MDE artefacts may be bridged to models (e.g. XMI files), from this
point forward we are going to call them just models.

— Metadata Engine: Provides services to MoScript for retrieving models,
executing tools services and (un)register models (from) into the megamodel.
The Metadata Engine exposes a homogeneous interface, which provides

MoScript: A DSL for Querying and Manipulating Model Repositories 185

location and technology transparency of models and transformation tools. It
also protects models from unauthorized access and modifications.

The metadata engine uses the megamodel for run-time type checking. For
instance, the metadata engine can check if the transformations are being
applied to the right models. In a previous work [24], we demonstrate the
viability of this type checking.

— Model repositories: Contain models stored in different formats, e.g. XMI,
XML, RDBMS, etc. Model repositories may reside in different physical lo-
cations, such as a local filesystem, a remote WebDAV server, the cloud, etc.

— Transformation Tools: Model-to-model (M2M), model-to-text (M2T) or
text-to-model (T2M) transformation tools provide transformation services.
They implement a generic interface, thus all transformation tools services
can be invoked the same way regardless the technology behind. Transfor-
mation tools may include QVT [1], ATL [I4], KermetaEI EMF CompareE
XpandE etc. In general, any tool that produces a new view of a modelling
artefact (e.g. documentation generators, compilers, file comparison tools,
etc.) is considered a transformation tool. If any transformation tool does not
fit the generic interface it may extend it along with the metamodel of the
megamodel, for adding new services and concepts.

— DSLs, Editors and Discoverers: These tools create models outside the
MoScript context and need to contribute them to the megamodel. They can
(un)register models (from) into the megamodel through MoScript, and they
can query the megamodel as well.

3.2 Architecture Information Flow

The information flow that takes place between the architecture components when
performing models manipulations with MoScript, is denoted by the numbers in
Fig.[Il (1) Users write and run a MoScript script. (2) MoScript queries the meg-
amodel to retrieve the model elements (metadata) describing the models and
transformations involved in the process. Then, it (3) asks the Metadata Engine
to apply the selected transformations on the selected models. (4) The metadata
engine retrievedd from the repositories the models and transformation definitions
(using the information stored in the megamodel elements, such as location, pro-
tocol, access restrictions etc). (5) Then it executes the transformations with the
models and (6) registers the resulting models in the megamodel if necessary.
Finally, the metadata engine returns to MoScript the model elements of the
megamodel resulting from the program execution, for further processing.

! mttp://www.kermeta.org/

2 http://www.eclipse.org/modeling/emf/?project=compare#compare

3http://www.eclipse.org/modeling/m2t/?project=xpand

4 Retrieving the model means that an interface (model handler) is exposed for ac-
cessing the model. It does not necessarily means that the whole model traverses the
network.

http://www.kermeta.org/
http://www.eclipse.org/modeling/emf/?project=compare#compare
http://www.eclipse.org/modeling/m2t/?project=xpand

186 W. Kling et al.
4 The MoScript Language

MoScript is a megamodel-based scripting DSL for modeling tasks and workflow
automation that uses OCL [2] as query language.

A megamodel is a regular model and thus can be navigated with standard
OCL, however the result of executing an OCL query on it, is merely informative.
For instance, consider the following query:

Model ::alllnstances ()—>select(m | m.conformsTo.kind = ’Java’)

The query selects from a megamodel, all the models that conform to a specific
kind of metamodel. The result is a collection of elements of type Model that
cannot be used directly in OCL to access or manipulate (check, match, transform
etc.) the physical artefacts they represent. This issue is due to the fact that
OCL does not handle models as a bootstrapped concept and does not have
multi-model support either.

The MoScript language intends to fill this gap with three main contributions:
(1) Model dereferencing, to retrieve models represented by metadata in a
megamodel; (2) Extensive library of generic operations to perform com-
mon model manipulation tasks with dereferenced models; (3) Modelling tasks
operation composition combined with OCL for manipulating dereferenced
models with powerful expressiveness.

Model dereferencing is applicable to all the megamodel elements that have a
separated physical representation in the system and may be accessed through a
locator (e.g., an URI). As a result of the dereferencing, an interface of the model
is loaded in memory and exposed for being used through an OCL ModelFEle-
ment type. Since OCL works on top of the megamodel, the OCL ModelElement
type always corresponds to an element type of the megamodel (TerminalModel,
Metamodel, Transformation etc.).

Furthermore, a set of operations are associated to those model element types
for being invoked from OCL and which in turn may be composed as any other
OCL expression, to perform more complex operations.

Next, we will explain in detail MoScript abstract and concrete syntax, as well
as its native library of operations and statements.

4.1 MoScript Abstract and Concrete Syntax

The MoScript DSL has a semantic model [II] and an abstract and concrete
syntax [22].

The MoScript’s semantic model is the megamodel. It is the place where the
domain concepts are stored and is independent from the language constructs.
The core concepts of the megamodel have been covered in section [Il

The abstract syntax as shown in figure B is divided in two packages. The
OCL package and the MoScript package. Since MoScript uses OCL as query
language, the complete OCL abstract syntax (not showed) is included as part of
the language.

MoScript: A DSL for Querying and Manipulating Model Repositories 187

OclExpression

AN

: l |
‘ PropertyCallExp ‘ l :
E 7AN -—{

MoScript

Helper 9‘ Library ‘ Program ‘

e
... \ﬁh‘ A
| QueryOp ‘ ‘ ProjectionOp ‘ ‘ i ‘ ‘ SaveStat ‘ | ForStat F—‘
‘ TransformOp ‘ ‘ StateCheckOp | ‘ RemoveStat ‘ ‘ BindingStat ‘ ‘ IfStat ‘

Fig. 3. MoScript abstract syntax main concepts

The OperationCallExp from the OCL package has been extended with a set
of operations we call operations without side effects. These operations are used to
perform several modelling tasks that do not modify the model repository
or the megamodel.

Operations without side effects are divided in four categories: query opera-
tions (QueryOp), operations for transformations between same technical spaces
(TransformOp), operations for transformations between different technical spaces
(ProjectionOp) and operations for checking the models state (StateCheckOp).
For each category MoScript provide several concrete operations, which will be
explained in the next subsection.

The MoScript package also provides a set of statements with side effects
(SaveStat, RemoveStat and RegisterStat). These statements allow the
modification of the repository or the megamodel. Side effects statements
may embed OCL expression and therefore side effects free operations. This is
why ExpressionStat is related to OCLExpression. This relation allows to carry
out complex models manipulations before persisting them in the repository and
the megamodel. However, the opposite (embed side effects statements within
OCL expressions) is not permitted. OCL expressions do not know side effects
statements, thus respecting the OCL side effects free philosophy.

MoScript also provides a statement for variable declaration and value binding
(BindingStat) and for (ForStat) and if (IfStat) statements for control flow.

MoScript has two kinds of modules: libraries and programs. A library con-
tains helpers, which are used to modularise complex OCL expressions. Libraries
may be in turn imported by programs or by other libraries.

The concrete syntax of MoScript is summarised in the following listing;:

program program_name
uses library

[.l.x.sing {

188 W. Kling et al.

variable : type = OclExpr;

}H

do {
variable <— OclExpr;

save (...); ...
remove (OclExpr);
register (...);

if ...
for ..

}

helper context 0clAny def: helper_name(params) : return_type;

A program has two sections, the using and do sections. The using section is
optional, and is used for declaring variables and assigning their initial value. The
do section is mandatory and is the core of the program. In it, operations without
side effects and side effects statements are used in combination with control flow
statements and OCL queries to perform modelling artefacts manipulations.

The complete definition of the concrete syntax is expressed in the TCS lan-
guage [15], and can be found at:
http://www.emn.fr/z-info/atlanmod/index.php/Moscript.

In the following subsections, we will discuss in detail the operations with-
out side effects and the statements with side effects provided by MoScript and
summarised in table [I1

Table 1. MoScript operations and statements summary

Operations without Side Effects
Model :: allContents() : Collection(OclAny)
Model :: allContentsRoots() : Collection(OclAny)
Model :: allContentsInstancesOf(type name : String) : Collection(OclAny)
Model :: allContentsInstancesOf(type : OclAny) : Collection(OclAny)
Transformation :: applyTo(inputModels : Sequence(Model)) : TransformationRecord
Transformation :: applyTo(inputModels : Map(String, Model)) : TransformationRecord
TransformationRecord :: run() : TransformationRecord
Model :: inject() : Model
Model :: extract() : Model
Model :: available() : Boolean
Model :: isDirty() : Boolean

Statements with Side Effects

save(m : Model, mm : Megamodel, id : String, locator : String)
remove(m : Model, mm : Megamodel)
register(mm : Megamodel, id : String, locator : String)

4.2 Operations without Side Effects

This subsection describes in detail the operations without side effects provided
by MoScript. As mentioned before, operations without side effects are classified

http://www.emn.fr/z-info/atlanmod/index.php/Moscript

MoScript: A DSL for Querying and Manipulating Model Repositories 189

in four categories, queries, transformations of models in a same technical space,
transformations of models between different technical spaces and model state
checkers.

Query Operations: The query operations provided by MoScript are
allContents, allContentsRoots and allContentsInstances0f. These opera-
tions dereference and load the physical model represented by the Model element.
Then, they query the model and return a collection of OCL elements. The el-
ements of the resulting collection are used as entry points to the model, from
where the rest of the elements may be reached. Subsequent queries to the model
are made with standard OCL expressions. The following example illustrates how
this operations may be used in general:

Model :: allInstances ()—>any(m | m.indentifier = ’SimpsonFamily’)
—>allContents ()—>collect(c | c.name))

In the example, we select a model with the “SimpsonFamily” id from the repos-
itory, and invoke the allContents operation on it. The operation dereferences
de model and returns an OCL collection with all the elements contained in the
model. Next, we iterate on the results, collecting all the element names. The
resulting collection should look like {’Bart’, ’Homer’, ’Lisa’, ’Maggie’,
’Marge’ }.

Note that the allContents operation hides complexity from the user. There
is no need to specify the metamodel of the model as this information is retrieved
from the megamodel.

When working with big models the operation allContents may be expensive
in terms of memory consumption and processing. So, MoScript includes other
operations like al1ContentsRoots and allContentsInstancesO0f for extracting
the models elements with more precision and therefore better performance.

Model to Model Transformations: The M2M transformations operations
provided by MoScript are the applyTo and the run operations.

The applyTo operations work in the context of the Transformation meg-
amodel element. They input models may be provided as a Map or as a Sequence
and the output models are returned as part of a TransformationRecord. When
provided as a Map, models are differentiated by their key and when provided as
a Sequence, models are differentiated by their order in the Sequence.

The applyTo operations are especially useful if we consider transformations
that are somehow generic (e.g., a transformation which transforms a Java source
code model to a .Net source code model), i.e. there may exist lots of different
models that may be transformed with the same transformation. In this case it
is very convenient to have a way for varying the input models for each transfor-
mation execution. The following example illustrates how these operations may
be used:
let j2dNet : Transformation =

Transformation:: allInstances ()—>any(t | t.identifier = ’j2dNet’)
" TerminalModel :: allInstances ()

190 W. Kling et al.

—>select(m | m.conformsTo.kind = ’Java’))
—>collect(jModel | j2dNet.applyTo(jModel))

In the example we first retrieve the transformation “Java to .Net” from the
repository and store it as j2dNet. Then we apply j2dNet to all the Java mod-
els found in the repository. Note that behind the scenes, the metadata engine
makes several checks before running the transformation. First, it checks if the
model is a transformation model, and thus may be executed. Then, it checks
if the input models conform to the metamodels the transformation supports.
Finally, it determines which is the right transformation engineﬁ for running the
transformation. To do this, the metadata engine queries the megamodel.

The run operation works in the context of the TransformationRecord meg-
amodel element. The run operation executes a transformation based on the
information stored in the TransformationRecord. Since it stores the last trans-
formation execution parameters, it is useful to rerun transformations without
specifying the input models. The operation returns the newly produced models
within another TransformationRecord.

The following example shows how it is possible to rerun all the transformations
of a model repository:

TransformationRecord:: allInstances ()—>collect(tr | tr.run())

Projectors: As we are working with heterogeneous model repositories, we rely
on technical projectors for non-XMI modelling artefacts (e.g. grammar-based
text). There are two kinds of projectors: injectors and extractors. Injectors
translate from other technical spaces (e.g. grammarware[I7], xmlware, etc) to
the modelware technical space and extractors do exactly the opposite. MoScript
provides the inject operation for injecting models and the extract operation
for extracting models.

The inject operation represents the T2M transformations. It works in the
context of the Model element, which represents a non-XMI artefact that depends
on a specific grammar. The inject operation applies the transformation to the
model and produces an XMI model. The following example shows how is possible
to inject the source code of Java programs into Java XMI models:

Model :: allInstances ()—>select(m | m.conformsTo.kind = ’JavaGrammar’))
—>collect(jCode | jCode.inject())

In the example, we select all the Java models which conform to the Java grammar
and inject them into models conforming to Java metamodels. The result is a
collection of Java XMI models. Behind the scenes, the Metadata Engine retrieves
from the megamodel the corresponding parselﬁ of the grammar and the tool that
uses it, to produce the XMI model.

The extract operation represents the M2T transformations and uses the same
mechanism as the inject operation, but in the opposite direction.

For both operations we follow an approach similar to the one described in
[25].

® Required relations not showed in Fig[Pl
5 Required relations not showed in Fig[l

MoScript: A DSL for Querying and Manipulating Model Repositories 191

Models State Checkers: A set of consistency check utility operations have
been included in the language. The available operation, which verifies if the
modelling artefact is available in the repository (e.g., it could have been removed
by an external tool, or its physical location is unreachable), and the isDirty
operation, which checks if the model has been modified outside MoScript. This
is useful to know if it is necessary to re-execute the transformations in which the
model participates.

4.3 Statements with Side Effects

This subsection describes in detail the statements with side effects provided by
MoScript. As said before, these statements allow the modification of the models
in the repository and the megamodel. These statements are usually combined
with OCL expressions and operations without side-effects.

save. The save statement persists an in-memory model into the repository
and registers it in the megamodel if it is not already registered. The latter step is
important for keeping integrity between the megamodel and the repository. The
save statement takes as arguments the Model to be persisted, the megamodel
in which the model should be storedEI7 an identifier and a locator. The locator
argument is the physical location path where the model should be stored (e.g. a
filesystem path or URI).

Suppose we want to store the .Net models derived from Java models showed
in a previous example. The following example shows how the save statement
can be used for this purpose:

for (dNetModel in dNetModels) {

save (dNetModel , this, dNetModel.getIdentifier (),
dNetModel.location + ’.xmi’);
}

helper context Model def: getIdentifier (): ...;

In the example, we iterate over the collection of .Net models and persist them
in the repository. We use a helper to produce the identifiers of the models. The
this keyword means that the model will be stored in the root megamodel.

Register. The register statement allows the registration of models in the
megamodel when the model is already stored in the repository. It takes as argu-
ments the megamodel, the model identifier, its physical location and creates the
corresponding megamodel element.

The register statement is the statement other tools (e.g. editors, discoverers,
DSLs, etc.) use to register the artefacts created outside the MoScript context.
For instance, manually created models, discovered models, etc. The following ex-
ample shows how it is possible with MoScript to register a new metametamodel:

register (this, ’Ecore’, ’http://www.eclipse.org/emf/2002/Ecore’);

" Remember a megamodel may contain other megamodels.

192 W. Kling et al.

The metadata of a model already registered in the megamodel can be updated
by re-invoking the register statement. For instance, when another tool changes
the location of a model.

Remove. The remove statement allows the removal of models from the reposi-
tory. It also removes the model element from the megamodel in order to maintain
consistency between both. It receives as argument the megamodel and the Model
to be eliminated.

5 Putting All Together

In this section we provide examples of complete MoScript scripts which demon-
strate the power of the language.

5.1 Change Propagation

Roughly speaking, Model Driven Development (MDD) consists in transforming
models from higher levels to lower levels of abstraction until the generation of
code, in order to produce runnable systems.

7\
FAYA

mlll m112 m121 mlzz

abstraction <+

Fig. 4. An MDD system transformation chains

Now, suppose we have an MDD based system, which has a binary tree like
arrangement of models and transformations, as shown in Fig. @ In the figure,
models are denoted by the m nodes and transformations by the ¢ directed edges.
Now, if model m; changes we will have to re-execute all the transformations
that are directly or indirectly affected by the change in the model, in order to
reflect the change in the models of the lowest level of abstraction (the code).
The MoScript program in listing @l shows how to do it.

Listing 1.1. Change propagation
1 program PropagateChanges
2
3 do {
4

5 im : Model = Model::alllnstances ()—>any(m | m.identifier = ’mi1’);
6

MoScript: A DSL for Querying and Manipulating Model Repositories 193

7 for(tr : getTransformations (m)) {

8 om : Model = tr.run().targetModel —>first();
9 save (om, this, om.identifier, om.locator);
10 }

1 }

13 helper def: getTransformations (m :Model) :Sequence(
— TransformationRecord) =

14 trs : Sequence(TransformationRecord) = TransformationRecord::
<>allInstances ()—>select(tr | tr.srcModel—>first().identifier
«» = m.identifier) in

15 if trs—>isEmpty () then

16 Sequence{}

17 else

18 trs—>union(trs—>collect(tr | getTranformations (tr.targetModel

——>first ()))—>flatten())
19 endif;

The explanation of the code is the following:

T We select from the repository the modified model by its id (line 5).

IT We call the helper getTransformations (line 7) to return a collection of
TransformationRecords in the order they must be executed.

IIT The getTransformations helper selects all the TransformationRecords that
use model m as input of its transformation (line 14).

IV For each TransformationRecord, the output model of its transformation is
selected, and a recursive call is made to the getTransformations helper, in
order to go through the tree in depth, getting the rest of the Transforma-
tionRecords (line 18).

V Finally, for each TransformationRecord its transformation is executed (line
8), its resulting model saved in the repository and updated in the megamodel
(line 9)

Note that the example is an intentional over simplification of real case models
and transformations arrangements, in order to keep the code simple. We assumed
the transformations have only one input and output model and no cycles between
them.

5.2 Inspecting and Combining Models Information

In this example we show how we can combine information from several models
and make computations for obtaining measurements from the model repository.
We will compute a measure for determining the transformations naive complete-
nessd of all the transformations in the repository.

A transformation t; is naively complete if all the elements of its source meta-
model mm, and its target metamodel mmsy are matched (used) by at least one
rule of the transformation.

To illustrate our definition of naive completeness, suppose we have a trans-
formation and its models t1(m;) = mo where my is the input model and mo

8 Checking whether a transformation is actually complete or not is much more
complex.

194 W. Kling et al.

is the output model. m; and msy conform to the metamodels mm; and mms
respectively. A transformation is a finite set of rules ¢, = (r1,72,...,7). Each
rule has 1 or none input element or pattern and has at least one output ele-
ment r() = (op1, opa, ..., 0py,) or r(ip) = (op1, op2, ..., 0py,). The input and output
patterns correspond to elements of the metamodels.

To determine which elements of mmy and mms are used in the transformation,
we will inspect its transformation rules. For each rule of ¢; we will verify the
number of elements from mm; (€mm1) present as input pattern (ip;) in at least
one rule of the transformation. Number of elements from mma (€m2) present
as output patterns (op1) in at least one rule of the transformation.

The result of the measurement is calculated for mm; as
Crmm1 = Z(ipt117 D125 - - - iptln)/ Z(emm117 Emmi2y .-, emmln) and the same
for mms but with the output patterns and the output metamodel. The trans-
formation is considered naively complete if Cry,1 = 1 and Cripme = 1.

Listing L2 shows the OCL query for obtaining the described measures. For the
sake of simplicity we inspect only ATL matched rules, which are fully declarative
and always have an input element. We also assume that all the metamodels
conform to Ecore.

Listing 1.2. Transformation completeness query

1 program TransformationCompleteness

3 do {

4 res : Sequence(0clAny) = getNaiveCompleteness () ;

5 -- Do something with the result

6 }

T

8 helper def getNaiveCompleteness (): Sequence(OclAny) =

9 Transformation.allInstances ()—>collect(tr |

10 let trName : String = tr.transformationModel .name in

11 let mmIn : Set(String) = tr.srcReferenceModel

12 —>collect(e | e.referenceModel.allContentInstancesOf (’

<+EClass’))

13 —>flatten()—>collect(e | e.name).asSet () in

14 let mmOut : Set(String) = tr.targetReferenceModel

15 —>collect(e | e.referenceModel.allContentInstancesOf (’

<+EClass’))

16 —>flatten()—>collect(e | e.name).asSet () in

17 let trIn : Set(String) = tr.transformationModel .inject().
<»allContentInstancesO0f (’MatchedRule’)

18 —>collect(x | x.inPattern.elements

19 —>collect(y | y.type.name))—>flatten().asSet() in

20 let trOut : Set(String) = tr.transformationModel.inject().
<sallContentInstances0f (’MatchedRule’)

21 —>collect(x | x.outPattern.elements

22 —>collect(y | y.type.name))—>flatten().asSet() in

23 let inRt : Real = trIn—>size() / mmIn—>size() in

24 let outRt : Real = trOut—>size() / mmOut—>size() in

25 Sequence(trName, inRt, outRt)

26)

Due to space limitations we do not explain the code in detail, but note that
doing these kind of computations without MoScript will demand a lot of work
with existing scripting techniques or adhoc codifications.

MoScript: A DSL for Querying and Manipulating Model Repositories 195

6 Implementation

In this section, we describe our implementation of MoScript. Figure[B shows how
we made the instantiation of the architecture presented in section

GMMA4ATL
-
GMMA4TCS
~ .

Model Repositories

Fig. 5. MoScript architecture implementation

As concrete implementation, we use our previous implementation of the meg-
amodel included in the AM3 tool[3]. AM3 follows the megamodel definition as
shown in Fig. [plus two extensions that support M2M and M2T-T2M trans-
formation in ATL and TCS respectively. The megamodel extension for ATL is
called GMM4ATL and the extension for TCS is called GMMA4TCS. As Metadata
Engine, we use the AM3 tool metadata layer. As transformation engines we use
ATL and TCS. TCS performs T2M transformations by generating an ANTLRH
grammar and performs M2T using Java-based extractors or ATL OCL queries.

MoScript has been implemented on top of the Eclipse Modeling Platform. We
use TCS as well, for defining its abstract and concrete syntax. TCS is in charge
of parsing and lexing MoScript to populate an abstract syntax tree (AST) model
ready for compilation. We built the MoScript compiler with ACdE, which is the
ATL VM Code Generator. It translates the AST model (generated by TCS) into
ATL VM assembly code for its execution.

Note that ATL and the ATL VM are two different concepts. ATL is a DSL
for transformations which is compiled in ATL VM code. Other DSLs may run
on top of the ATL VM as is the case of MoScript.

The concrete architecture uses two instances of the ATL virtual machine. One
instance for MoScript and another one for ATL. This guarantees that MoScript
operates independently of ATL and other transformation tools.

9http://www.antlr.org/
10 http://wiki.eclipse.org/ACG

http://www.antlr.org/
http://wiki.eclipse.org/ACG

196 W. Kling et al.

We tested MoScript with the ATL Transformations Zod. A model repository
of ATL transformation projects developed by the Eclipse community. It holds so
far 205 metamodels, 275 models, 219 transformations, and more than 400 other
artefacts including textual syntaxes, binary code, source code, libraries, etc. We
also tested MoScript with a WebML [§] repository, where models are stored in
XML.

In fig. [0l we show a screen shot of a running MoScript script in Eclipse. The
current implementation of MoScript can be downloaded from
http://www.emn.fr/z-info/atlanmod/index.php/Moscript_downloads.

fatatal ATL - Eclipse SOK. =
L S T = R A
EY E0Team T ATL o Ruphoring @ AMY §'wa
I Pregect Kapion 1% Mavigasen| = 1| [Muerigapeges muer 5 &) sample.fmlscore 3 =0
- progras MoSeriptDess v frmi

ing { ¥ 4 Famity March
i A 4 Member 5m
£t ITransforsation .
i 4 Member Cindy

Member Brangon

<4 Member Brensa
¥ 4 Famity Sailee

4 Mamber Pebsr

& Member Jackie

) Moeripetrgm aml $856 ’
4 readime. et 5853 5353

[g |

v 45200 -~ Find bransformstion L. !

L ATLIBndingDebugger Lr <= thisModule.getTransfByLd(" /FomiliesdFersons/Transformation/Fomilic

-« Find medel
fam - thisModule.getModel Byl FamiliesiPersons/famil ies Sanples sample

=+ Run kremsfarmation
medels s- tr.opplyTo(Hap{("IN', fem)});

Male Dyian Salor
Temale Cindy Mareh

per <= models-aget{"0UT');

-- Query resulting model r + Female Brenda March
momes <o per o *Person” | Fullbeme); Temale bachis Suiker
5L DSLB g L 1] aiw

36| I Progeorts | @ istory | B) Comcicle BT wbl| @20

ect: platform: romersasm |l

Fig. 6. Running MoScript script

7 Related Work

The concept of a megamodel was proposed in [5] and in [I0]. In [5] the megamodel
is proposed a solution to Global Model Management (GMM) while in [I0] it is
presented as a metamodel for describing MDE formalized with set theory. Sev-
eral recently works report use of megamodels or megamodeling techniques. For
instance, in [I2] a megamodel is used for the representation of all the artefacts
and their relationships involved in the model-driven support for the evolution of
software architectures. In [20], Megaf an infrastructure for the creation of architec-
ture frameworks formalizes its underlying infrastructure through a megamodel for
checking consistency among architectural elements. The 101companyl-q project is
an effort to create a conceptual framework based on megamodeling techniques for
understanding analogies between heterogeneous technologies. In general, all the

1 http://www.eclipse.org/m2m/atl/at1Transformations/
!2 http://101companies.uni-koblenz.de/index.php/Main Page

http://www.emn.fr/z-info/atlanmod/index.php/Moscript_downloads
http://www.eclipse.org/m2m/atl/atlTransformations/

MoScript: A DSL for Querying and Manipulating Model Repositories 197

mentioned works focus on representing high number of different artefacts and tech-
nical spaces involved in non trivial software systems and development processes.
MoScript uses the megamodel with the same general intend.

As far as we know, there are not many DSLs or approaches for GMM, i.e. they
do not use a megamodel as a global view for orchestrating and verifying MDE
development activities against it. However, we find similarities with approaches
such as Rondo [21], Maudeling™, Model Bus [6] and Moose [I8]. Rondo, Maudel-
ing and Moose translate models to their own internal formats, whereas Model
Bus and MoScript work directly on the models via a metadata engine. Rondo
represents models as directed labeled graphs. Maudeling represents models in the
Maude language [9], which is based on rewriting logic. Moose represents models
in CDIF or XMI exachange formats conforming to the FAMIX metamodel using
third party parsers. Rondo translates between different model representations of
the same information, and operates on a lower level than MoScript: it directly
manipulates the model artefacts, whereas MoScript relies on the invocations of
transformation engines. Maudeling provides advanced querying services on mod-
elling artefacts, and as such, could be an invokable service for MoScript. Moose
offers services for navigating and manipulating multiple model versions and uses
Pharo['4 (Smaltalk) as scripting language. Model Bus provides a modelling arte-
fact broker service, where registered tools can be applied to registered models.
Model Bus does not provide a megamodel concept to look up model and tool
metadata. MoScript uses a reflective approach, and queries the megamodel to
check if specific modelling artefacts may be used in combination.

Model search engines such as those presented in [7] and [19], are also related
to GMM in that they can perform large-scale model queries, based on model
contents. They differ from our approach in that the results obtained from a model
search cannot be directly used in further modelling operations. The results are
usually shown as a list of model names or model fragments which at most can
be downloaded.

MoScript is intended to implement MDE workflows. The main difference
with other MDE workflow approaches is that MoScript relies on a query lan-
guage that works on the rich contents of a megamodel and orchestrations are
based on its queries results. Other MDE workflow approaches are UniTI [23],
TraCo [I3], the Modeling Workflow Engine (MWE), and MDA Control Cen-
ter [16]. UniTI composes transformation processes via typed input and output
parameters. Compositions are validated based on model type information and
any additional constraints that can be specified on the models. TraCo uses a
component metamodel, with components and ports, where each workflow com-
ponent is wired to other components via its input and output ports. Ports are
typed in order to validate the compositions. MWE is a model-driven version of
An7 with several builtin tasks for model querying and transformation. MWE

13 Maudeling: http://atenea.lcc.uma.es/index.php/Main Page/Resources/Maudeling
' http://www.pharo-project .org/home

15 http://www.eclipse.org/modeling/emft/?project=mwe

16 http://ant .apache.org

http://www.pharo-project.org/home
http://www.eclipse.org/modeling/emft/?project=mwe
http://ant.apache.org

198 W. Kling et al.

does not perform any validation of the workflow composition. MoScript does not
perform a static type check on its workflow compositions either, but checks the
validity of the composition at run-time.

8 Conclusions and Future Work

In this paper, we presented MoScript: a scripting DSL and platform for Global
Model Management (GMM), based on the notion of a megamodel. The MoScript
architecture provides uniform access to modelling artefacts, such as models,
metamodels, and transformations, regardless of their storage format or their
physical location. It also provides bindings to several model manipulation tools,
such as transformation engines and querying tools, and allows invocation of those
tools.

The MoScript is an OCL-based scripting language for model-based task and
workflow automation, based on the metadata contained in a megamodel. It al-
lows querying a megamodel and use the results of such queries to load and store
modelling artefacts, and perform model manipulations, such as the invocation
of a model transformation engine. MoScript can use the rich metadata in the
megamodel to validate model manipulations, e.g. to check if a model transfor-
mation is applied to a model that conforms to the right metamodel. MoScript
is able to perform this validation at run-time, when the model manipulation is
invoked.

MoScript has been implemented on top of the Eclipse Modeling Platform, us-
ing TCS, ACG tools and AM3 metadata engine. It provides a textual and uses
the ATL virtual machine and debugger as its run-time environment. MoScript
uses ATL as M2M and TCS as M2T-T2M transformation engines. MoScript im-
plementation has been tested against models from the ATL examples repository
and a WebML repository.

As further work we plan to extend the list of repositories and tools our lan-
guage can interact with, and increase the number of predefined operations and
statements of the language. This may include a querying tool, such as Maudeling,
that allows us to validate modelling workflows written in MoScript.

References

1. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, ver-
sion 1.0, formal/08-04-03 (Apr 2008), http://www.omg.org/spec/QVT/1.0/PDF/

2. OCL 2.2 Specification, version 2.2, formal/2010-02-01 (February 2010),
http://www.omg.org/spec/0CL/2.2/PDF

3. Allilaire, F., Bezivin, J., Bruneliere, H., Jouault, F.: Global model management in
eclipse gmt/am3. In: Proc. of the Eclipse Technology eXchange Workshop (eTX)
at ECOOP 2006 (2006)

4. Barbero, M., Jouault, F., Bézivin, J.: Model driven management of complex sys-
tems: Implementing the macroscope’s vision. In: Proc. of ECBS 2008. IEEE Com-
puter Society Press (2008)

http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/OCL/2.2/PDF

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

MoScript: A DSL for Querying and Manipulating Model Repositories 199

Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. of
Workshop on Best Practices for Model-Driven Software Development at the 19th
Annual ACM Conference on OOPSLA (August 2004)

Blanc, X., Gervais, M.-P., Sriplakich, P.: Model Bus: Towards the Interoperability
of Modelling Tools. In: Amann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 17-32. Springer, Heidelberg (2005)

Bozzon, A., Brambilla, M., Fraternali, P.: Searching Repositories of Web Appli-
cation Models. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 1-15. Springer, Heidelberg (2010)

Ceri, S., Brambilla, M., Fraternali, P.: The History of WebML Lessons Learned
from 10 Years of Model-Driven Development of Web Applications. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Founda-
tions and Applications. LNCS, vol. 5600, pp. 273-292. Springer, Heidelberg (2009)
Clavel, M., Durédn, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76-87. Springer, Heidelberg (2003)

Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd
UML Workshop in Software Model Engineering (WISME 2004) Joint Event with
UML 2004 (October 2004)

Fowler, M.: Domain-Specific Languages, 1st edn. Addison-Wesley Professional (Oc-
tober 2010)

Graaf, B.: Model-driven evolution of software architectures. In: European Con-
ference on Software Maintenance and Reengineering (CSMR 2007), pp. 357-360
(2007)

Heidenreich, F., Kopcsek, J., Aimann, U.: Safe Composition of Transformations.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 108-122.
Springer, Heidelberg (2010)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1-2), 31-39 (2008)

Jouault, F., Bézivin, J., Kurtev, I.: Tcs: a dsl for the specification of textual con-
crete syntaxes in model engineering. In: GPCE 2006: Proc. of the 5th Int. Conf. on
Generative Programming and Component Engineering, pp. 249-254. ACM (2006)
Kleppe, A.: MCC: A Model Transformation Environment. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173-187. Springer, Heidelberg
(2006)

Klint, P.,; Lammel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14, 331-380 (2005)

Laval, J., Denier, S., Ducasse, S., Falleri, J.R.: Supporting Simultaneous Versions
for Software Evolution Assessment. Journal of Science of Computer Programming
(December 2010)

Lucrédio, D., de M. Fortes, R.P., Whittle, J.: MOOGLE: A Model Search Engine.
In: Czarnecki, K., Ober, 1., Bruel, J.-M., Uhl, A., Vélter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 296-310. Springer, Heidelberg (2008)

Malavolta, I.: A model-driven approach for managing software architectures with
multiple evolving concerns. In: Proc. of European Conference on Software Archi-
tecture: Companion Volume, ECSA 2010, pp. 4-8. ACM (2010)

200 W. Kling et al.

21. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: Proc. of SIGMOD 2003, pp. 193-204. ACM (2003)

22. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316-344 (2005)

23. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp. 31-45. Springer, Heidelberg (2007)

24. Vignaga, A., Jouault, F., Bastarrica, M.C., Bruneliere, H.: Typing in Model Man-
agement. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197-212. Springer,
Heidelberg (2009)

25. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: Bruel, J.-
M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159-168. Springer, Heidelberg (2006)

	MoScript: A DSL for Querying and Manipulating Model Repositories

	Introduction
	Motivation
	The MoScript Architecture
	Architecture Components
	Architecture Information Flow

	The MoScript Language
	MoScript Abstract and Concrete Syntax
	Operations without Side Effects
	Statements with Side Effects

	Putting All Together
	Change Propagation
	Inspecting and Combining Models Information

	Implementation
	Related Work
	Conclusions and Future Work
	References

