

Lecture Notes in Computer Science 6940
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anthony Sloane Uwe Aßmann (Eds.)

Software Language
Engineering
4th International Conference, SLE 2011
Braga, Portugal, July 3-4, 2011
Revised Selected Papers

13

Volume Editors

Anthony Sloane
Macquarie University, Department of Computing
Sydney, NSW 2109, Australia
E-mail: anthony.sloane@mq.edu.au

Uwe Aßmann
Technische Universität Dresden, Fakultät Informatik
Institut für Software- und Multimediatechnik (SMT)
Nöthnitzer Straße 46, 01069 Dresden, Germany
E-mail: uwe.assmann@tu-dresden.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28829-6 e-ISBN 978-3-642-28830-2
DOI 10.1007/978-3-642-28830-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932856

CR Subject Classification (1998): D.2, D.3, F.3, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present the proceedings of the 4th International Conference
of Software Language Engineering (SLE 2011). The conference was being held
in Braga, Portugal, during July 3–5, 2011, with several sessions on research
papers, tool/language demonstrations, a doctoral symposium, and an industry
track. SLE 2011 was co-located with the 4th Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE 2011) and two
workshops: the Industry Track of Software Language Engineering (ITSLE 2011)
and the Coupled Software Transformations Workshop (CSXW 2011).

The SLE conference series is devoted to a wide range of topics related to
artificial languages in software engineering. SLE is an international research fo-
rum that brings together researchers and practitioners from both industry and
academia to expand the frontiers of software language engineering. SLE’s fore-
most mission is to encourage and organize communication between communities
that have traditionally looked at software languages from different, more spe-
cialized, and yet complementary perspectives. SLE emphasizes the fundamental
notion of languages as opposed to any realization in specific technical spaces.

The response to the call for papers for SLE 2011 was lower than in 2010.
We received 45 full submissions from 50 abstract submissions. From these sub-
missions, the Program Committee (PC) selected 20 papers: 16 full papers and 4
tool/language demonstration papers, resulting in an acceptance rate of 44%.

SLE 2011 would not have been possible without the significant contribu-
tions of many individuals and organizations. We are grateful to the organizers
of GTTSE 2011 for their close collaboration and management of many of the lo-
gistics, in particular our host João Saraiva, who took great care that everything
worked out extremely well. We also wish to thank our financial supporters: Cen-
tro de Ciências e Tecnologias de Computação (CCTC), Fundação para a Ciência
e a Tecnologia (FCT), Luso-American Foundation (FLAD), Multicert, and Soft-
ware Improvement Group (SIG).

The SLE 2011 Organizing Committee, the Local Chairs, and the SLE Steering
Committee provided invaluable assistance and guidance. We are also grateful to
the PC members and the additional reviewers for their dedication in reviewing
the submissions. We also thank the authors for their efforts in writing and then
revising their papers, and we thank the Springer team for the final proceedings.

January 2012 Anthony Sloane
Uwe Aßmann

Organization

SLE 2011 was hosted by the Departamento de Informática, Universidade do
Minho, Braga, Portugal.

General Chair

João Saraiva Universidade do Minho, Braga, Portugal

Program Co-chairs

Anthony Sloane Macquarie University, Australia
Uwe Aßmann Dresden University of Technology, Germany

Organizing Committee

José Creissac Campos University of Minho (Finance Chair), Portugal
Joost Visser SIG (GTTSE/SLE Students’ Workshop

Co-chair), The Netherlands
Eric Van Wyk University of Minnesota (GTTSE/SLE

Students’ Workshop Co-chair), USA
Jurgen Vinju CWI (Workshop Selection Chair),

The Netherlands
João Paulo Fernandes University of Porto and University of Minho

(Web and Publicity Co-chair), Portugal
Vadim Zaytsev CWI (Publicity Co-chair), The Netherlands

Steering Committee

Mark van den Brand Eindhoven University of Technology,
The Netherlands

James Cordy Queen’s University, Canada
Jean-Marie Favre University of Grenoble, France
Dragan Gasevic Athabasca University, Canada
Görel Hedin Lund University, Sweden
Eric Van Wyk University of Minnesota, USA
Jurgen Vinju CWI, The Netherlands
Kim Mens Catholic University of Louvain, Belgium

VIII Organization

Program Committee

Adrian Johnstone University of London, UK
Aldo Gangemi Semantic Technology Laboratory, Italy
Alexander Serebrenik Eindhoven University of Technology,

The Netherlands
Ana Moreira FCT/UNL, Portugal
Anthony Cleve University of Namur, Belgium
Anthony Sloane Macquarie University, Australia
Anya Helene Bagge University of Bergen, Norway
Bernhard Rumpe Aachen University, Germany
Bijan Parsia University of Manchester, UK
Brian Malloy Clemson University, USA
Bruno Oliveira Seoul National University, South Korea
Chiara Ghidini FBK-irst, Italy
Daniel Oberle SAP Research, Germany
Eelco Visser Delft University of Technology,

The Netherlands
Eric Van Wyk University of Minnesota, USA
Fernando Pereira Federal University of Minas Gerais, Brazil
Fernando Silva Parreiras University of Koblenz-Landau, Germany
Friedrich Steimann University of Hannover, Germany
Görel Hedin Lund University, Sweden
Ivan Kurtev University of Twente, The Netherlands
James Power National University of Ireland, Ireland
Jeff Gray University of Alabama, USA
Jeff Z. Pan University of Aberdeen, UK
João Paulo Fernandes University of Minho and University of Porto,

Portugal
John Boyland University of Wisconsin-Milwaukee, USA
John Grundy Swinburne University of Technology, Australia
Jordi Cabot École des Mines de Nantes, France
Jurgen Vinju CWI, The Netherlands
Laurence Tratt Middlesex University, UK
Marjan Mernik University of Maribor, Slovenia
Mark van den Brand Eindhoven University of Technology,

The Netherlands
Michael Collard University of Akron, USA
Nicholas Kraft University of Alabama, USA
Paul Klint CWI, The Netherlands
Paulo Borba Federal University of Pernambuco, Brazil
Peter Haase University of Karlsruhe, Germany
Peter Mosses Swansea University, UK

Organization IX

Ralf Möller Hamburg University of Technology, Germany
Silvana Castano University of Milan, Italy
Steffen Zschaler Lancaster University, UK
Uwe Aßmann Dresden University of Technology, Germany
Zhenjiang Hu National Institute of Informatics, Japan

Additional Reviewers

Mauricio Alferez
Christoff Bürger
Robert Clarisó
Jácome Cunha
Chiara Di

Francescomarino
Luc Engelen
Arne Haber
Florian Heidenreich
Christoph Herrmann

Roland Hildebrandt
Nophadol Jekjantuk
Ted Kaminski
Sven Karol
Markus Look
Karsten Martiny
Stefano Montanelli
Rainer Marrone
Ruth Raventos
Sebastian Richly

Mirko Seifert
Daniel Spiewak
Massimo Tisi
Arjan Van Der Meer
Tijs Van Der Storm
Jeroen Van Den Bos
Naveneetha Vasudevan
Sebastian Wandelt
Michael Welch

Sponsoring Institutions

CCTC Centro de Ciências e Tecnologias de
Computação

FCT Fundação para a Ciência e a Tecnologia
FLAD Luso-American Foundation
Multicert
SIG Software Improvement Group

Table of Contents

Towards a One-Stop-Shop for Analysis, Transformation and
Visualization of Software . 1

Paul Klint, Bert Lisser, and Atze van der Ploeg

A Dedicated Language for Context Composition and Execution of True
Black-Box Model Transformations . 19

Andreas Seibel, Regina Hebig, Stefan Neumann, and Holger Giese

An Algorithm for Layout Preservation in Refactoring
Transformations . 40

Maartje de Jonge and Eelco Visser

Cloning in DSLs: Experiments with OCL . 60
Robert Tairas and Jordi Cabot

Uniform Modularization of Workflow Concerns Using Unify 77
Niels Joncheere and Ragnhild Van Der Straeten

Design of Concept Libraries for C++ . 97
Andrew Sutton and Bjarne Stroustrup

Join Token-Based Event Handling: A Comprehensive Framework for
Game Programming . 119

Taketoshi Nishimori and Yasushi Kuno

Reusing Pattern Solutions in Modeling: A Generic Approach Based on
a Role Language . 139

Christophe Tombelle, Gilles Vanwormhoudt, and Emmanuel Renaux

An Architecture for Information Exchange Based on Reference
Models . 160

Heiko Paulheim, Daniel Oberle, Roland Plendl, and Florian Probst

MoScript: A DSL for Querying and Manipulating Model Repositories . . . 180
Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar,
Marco Brambilla, and Jordi Cabot

Reconstructing Complex Metamodel Evolution . 201
Sander D. Vermolen, Guido Wachsmuth, and Eelco Visser

Designing Variability Modeling Languages . 222
Krzysztof Czarnecki

XII Table of Contents

Formalizing a Domain Specific Language Using SOS: An Industrial
Case Study . 223

Frank P.M. Stappers, Sven Weber, Michel A. Reniers,
Suzana Andova, and Istvan Nagy

Semantics First! Rethinking the Language Design Process 243
Martin Erwig and Eric Walkingshaw

Integrating Attribute Grammar and Functional Programming Language
Features . 263

Ted Kaminski and Eric Van Wyk

Parse Forest Diagnostics with Dr. Ambiguity . 283
Hendrikus J.S. Basten and Jurgen J. Vinju

Ambiguity Detection: Scaling to Scannerless . 303
Hendrikus J.S. Basten, Paul Klint, and Jurgen J. Vinju

Comparison of Context-Free Grammars Based on Parsing Generated
Test Data . 324

Bernd Fischer, Ralf Lämmel, and Vadim Zaytsev

RLSRunner: Linking Rascal with K for Program Analysis 344
Mark Hills, Paul Klint, and Jurgen J. Vinju

Metacompiling OWL Ontologies . 354
Anders Nilsson and Görel Hedin

Towards Combinators for Bidirectional Model Transformations
in Scala . 367

Arif Wider

Typed First-Class Communication Channels and Mobility
for Concurrent Scripting Languages . 378

Pawe�l T. Wojciechowski

Author Index . 389

Towards a One-Stop-Shop for Analysis, Transformation
and Visualization of Software

Paul Klint1,2, Bert Lisser1, and Atze van der Ploeg1

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

Abstract. Over the last two years we have been developing the meta-progra-
mming language RASCAL that aims at providing a concise and effective language
for performing meta-programming tasks such as the analysis and transformation
of existing source code and models, and the implementation of domain-specific
languages.

However, meta-programming tasks also require seamlessly integrated visual-
ization facilities. We are therefore now aiming at a ”One-Stop-Shop” for anal-
ysis, transformation and visualization. In this paper we give a status report on
this ongoing effort and sketch the requirements for an interactive visualization
framework and describe the solutions we came up with. In brief, we propose
a coordinate-free, compositional, visualization framework, with fully automatic
placement, scaling and alignment. It also provides user interaction. The current
framework can handle various kinds of charts, trees, and graphs and can be eas-
ily extended to more advanced layouts. This work can be seen as a study in
domain engineering that will eventually enable us to create a domain-specific
language for software visualization. We conclude with examples that emphasize
the integration of analysis and visualization.

1 Introduction

Over the last two years we have been developing the meta-programming language RAS-
CAL1 [6] that aims at providing a concise and effective language for performing meta-
programming tasks such as the analysis and transformation of existing source code and
models, and the implementation of domain-specific languages. RASCAL is completely
written in Java, integrates with Eclipse and gives access to programmable IDE features
using IMP, The IDE Meta-Tooling Platform2.

Given the large amounts of facts that emerge when analyzing software, meta-
programming tasks also require seamlessly integrated visualization facilities We are
therefore now aiming at a ”One-Stop-Shop” for analysis, transformation and visualiza-
tion. In this paper we give a status report on this ongoing effort and sketch the require-
ments for an interactive visualization framework and describe the solutions we came up
with. In brief, we propose a coordinate-free, compositional, visualization framework,
with fully automatic placement, scaling and alignment. It also provides user interaction.

1 http://www.rascalmpl.org/
2 http://www.eclipse.org/imp/

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://homepages.cwi.nl/~paulk
http://homepages.cwi.nl/~bertl
http://homepages.cwi.nl/~atze
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe
http://www.rascalmpl.org/
http://www.eclipse.org/imp/

2 P. Klint, B. Lisser, and A. van der Ploeg

Software visualization is a relatively young and broad domain [3] and there are sev-
eral ongoing efforts to create software vizualization frameworks, for instance, Rigi [14],
Bauhaus,3 and the Mondrian [10] visualization component of Moose4 to mention just
a few. In addition there is much excellent work in creating and exploring very spe-
cific visualizations ranging from version and process histories to application overviews,
module interconnections and class structures, see, for instance, [3] or the proceedings
of SoftVis.5

Software visualization systems can be positioned in a spectrum of visualization ap-
proaches and tools that differ in the level of automation and specialization for a specific
domain. At the high end of the spectrum are domain-specific visualization systems. For
instance, in the business domain, a limited number of visualizations can cater for the
majority of visualization needs. As a case in point, Excel6 provides a dozen chart types
including line charts, bar charts, area charts, pie charts, histograms, Gantt charts and
radar charts. Although all these charts are customizable, it is complex—and requires
explicit low-level programming—to add a completely new chart type to Excel. Other
examples in this category are GnuPlot7 that aims at graph plotting in the scientific do-
main and Many Eyes8 that aims at charts and data visualization.

At the low end of the automation and specialization spectrum are graphics package
like AWT9, Java2D10, SWT11 and Processing12 that provide low level graphics. Every-
thing is possible but has to be implemented from scratch using low-level primitives. On
a slightly higher automation level is a system like Protovis13 [1] that uses a declara-
tive, data-driven, approach for data visualization. There is no global state and visual
attributes are combined based on inheritance. However, mapping of measures to graph-
ical attributes has to be programmed explicitly and scaling them requires code changes.

The domain of visualizing software facts exhibits too much variability and is too
diverse to be covered by a limited set of standard visualizations from the high end of
the spectrum. Unfortunately, using low-level primitives to implement software visual-
izations from scratch is time-consuming, error-prone and requires manual integration
with the fact extractor. What is needed is a software visualization framework that takes
the middle ground.

As an analogy, consider the field of layouts in user-interfaces: there is no set of
layouts that can cater for all layout needs but manually programming them involves
tedious computations for alignments, sizing and resize behavior as well as manual inte-
gration of the user interface elements with the layout. This has been solved by automatic

3 http://www.bauhaus-stuttgart.de/bauhaus/index-english.html
4 http://www.moosetechnology.org/news/moose-4-0
5 http://www.softvis.org
6 http://office.microsoft.com/en-us/excel-help/
available-chart-types-HA001034607.aspx

7 http://www.gnuplot.info/
8 http://www-958.ibm.com/software/data/cognos/manyeyes/
9 http://java.sun.com/products/jdk/awt/

10 http://java.sun.com/products/java-media/2D/index.jsp
11 http://www.eclipse.org/swt/
12 http://processing.org/
13 http://vis.stanford.edu/protovis/

http://www.bauhaus-stuttgart.de/bauhaus/index-english.html
http://www.moosetechnology.org/news/moose-4-0
http://www.softvis.org
http://office.microsoft.com/en-us/excel-help/available-chart-types-HA001034607.aspx
http://office.microsoft.com/en-us/excel-help/available-chart-types-HA001034607.aspx
http://www.gnuplot.info/
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://java.sun.com/products/jdk/awt/
http://java.sun.com/products/java-media/2D/index.jsp
http://www.eclipse.org/swt/
http://processing.org/
http://vis.stanford.edu/protovis/

One-Stop-Shop for Analysis, Transformation and Visualization of Software 3

layout managers such as the ones in Tcl/TK [11]. We aim to do the same for software
visualization: alleviate programmers of tedious tasks by providing just the right level of
abstraction and automation. Thus we aim to develop a software visualization framework
that:

– enables non-experts to easily create, combine, extend and reuse interactive software
visualizations;

– integrates seamlessly with existing techniques for software analysis (parsing, pat-
tern matching, tree traversal, constraint solving) and software transformation
(rewriting, string templates).

Our main objective is to liberate the creator of visualizations from many low-level
chores, such as programming of explicit coordinates, mapping metrics related to soft-
ware properties to sizes of shapes and figures, and to provide high-level features instead,
like figure composition, fully automatic figure placement and symbolic links between
visualizations elements. Since RASCAL already provides excellent facilities for soft-
ware analysis and transformation, the main challenge is therefore to design a software
visualization framework that integrates well with and provides full access to what RAS-
CAL has to offer. Our contributions can be summarized as follows:

– A compositional, coordinate-free, visualization framework that provides primitives
for drawing elementary shapes and composite figures.

– Mechanisms to associate numeric scales with arbitrary figures.
– The first attempt we are aware of to decompose charts into reusable primitives.
– The integration of this framework with the RASCAL language and infrastructure

thus creating a true ”One-Stop-Shop” for software analysis, transformation and vi-
sualization.

– An analysis of the software visualization domain that can form the basis for a
domain-specific language for software visualization.

The paper is organized as follows. In Section 2 we identify requirements, elaborate on
the design principles we have adhered to and describe the actual design we came up
with. In Section 3 we present some examples and in Section 4 we draw conclusions.

2 Requirements, Design and Architecture

We will now first summarize our requirements and global design (Section 2.1) and
describe our global architecture (Section 2.2). In subsequent sections we will provide
more details.

2.1 Requirements

In scientific visualization, the data of interest represent objects or processes in the phys-
ical world and thus mapping of these data to visual attributes (e.g., location, size, color,
line width, line style, gradient, and transparency) is mostly dictated by physical prop-
erties or appearance. In software visualization, and in information visualization in gen-
eral, the data is more abstract and the mapping of the data to visual attributes is not

4 P. Klint, B. Lisser, and A. van der Ploeg

prescribed and not easy to design. A key problem when designing a software visualiza-
tion is to find good visual abstractions for software artifacts. Our software visualization
framework should therefore make it easy to describe such mappings and to enable ex-
periments to find the most appropriate ones. As a consequence the framework should
provide reusable primitives for expressing such mappings. Typical use cases to be sup-
ported are the visualization of

– hierarchical and non-hierarchical software structures,
– (multi-dimensional) metrics associated with software components,
– functions that express software properties over time.

The visualization framework should not only promote creating new visualizations but
should also include standard visual layouts (e.g., graphs, trees, tree maps) and primitives
for common chart types (e.g., bar charts, scatter plots, Gantt charts). To achieve this
goal, we reason that the software visualization framework should be automatic and
domain-specific, reusable, compositional and interactive.

Automatic and Domain-specific. We aim for as much as possible automation and spe-
cialization for our software visualization framework. This implies eliminating low-level
representation chores, such as layout and size computations, and introducing concepts
that are specialized for the software visualization domain. There is no fixed border be-
tween general information visualization and software visualization and it is fruitful to
exchange ideas and concepts between the two. We aim for very general solutions that
have direct application in the software visualization domain.

Reusable. Creating visualizations is difficult and their reuse should therefore be enabled
as much as possible. This implies that visualizations are treated as ordinary values and
can, for instance, be used as arguments of a function or be the result computed by a
function. The same applies to visual attributes. We want to be able to resize, parame-
terize and combine existing visualizations into new ones. A corollary is that arbitrary
combinations and nesting of visualizations should be allowed and that the composition
of visual attributes should be well-defined.

Compositional. Many graphics approaches are highly imperative. The color or line
style of a global pen can be set and when a line is drawn these pen properties are used.
As a consequence, drawing sequences that assume a different global state cannot be
easily combined. We aim for declarative visualizations in which each visualization is
self-contained, can be drawn independently, is easily composable and thus contributes
to reusability. For some related work we refer to [5,4], HaskellCharts14 and Degrafa15.
Compositionality is a desirable goal but limits the solution space. The main challenge
is to cover the whole spectrum of possible software visualizations with compositional
primitives.

Interactive. In the use cases we envisage, overwhelming amounts of data have to be un-
derstood and Schneiderman’s Overview First, Zoom and Filter, then Details-on-demand
mantra [12] applies. We need interaction mechanisms to enable the user to start with

14 http://dockerz.net/twd/HaskellCharts
15 http://www.degrafa.org/

http://dockerz.net/twd/HaskellCharts
http://www.degrafa.org/

One-Stop-Shop for Analysis, Transformation and Visualization of Software 5

Fig. 1. Architecture of Figure visualization framework

an overview visualization and to zoom in on details. This may include mixing visual-
ization with further software analysis and requires tight integration with an Interactive
Development Environment (IDE). For instance, given an initial overview of a software
system, a user may interactively select a subsystem, fill in a dialog window to select the
metrics to be computed, and inspect a new visualization that represents the computed
metrics. We aim for a mix of automatic, out-of-the box, interactions and
programmatically-defined ones. Since we will support various interaction elements
(e.g., buttons, text fields) as well as layouts we achieve integration of pure visualiza-
tion and user-interface construction.

2.2 Architecture

The technical architecture of our visualization framework is shown in Figure 1. The
given Software & Meta-Data is first parsed and then relevant analyses are performed
(Parsing & Analysis). Parsing and analysis can be completely defined and arbitrary
languages and data formats can therefore be parsed and analyzed. The analysis results
are then turned into a figure (Visualization) and the result is an instance of the Figure
data type, an ordinary RASCAL datatype that is used to represent our visualizations.
Note, for later reference, that another data type, FProperty, is used to represent all
possible visual properties of Figures. Figures are interpreted by a render function that
transforms them in an actual on-screen display with which the user can interact. There
is two-way communication between visualization and user: the visualization functions
create a figure that is shown to the user, but this figure may contain call backs (RASCAL

functions) that can be activated by user actions like pointing, hovering, selecting or
scrolling.

2.3 Figures and Properties

As already mentioned, visualizations are ordinary values and we use the datatypes
Figure and FProperty to represent them. All primitives and properties will be

6 P. Klint, B. Lisser, and A. van der Ploeg

Table 1. Primitives and Sample Containers

Operator Description
text A text string
outline Rectangular summary (with highlighted lines) of a source code file
box A rectangle (may contain nested figures)
ellipse An ellipse (may contain nested figures)

Table 2. Sample Properties

Operator Description
id Name of subfigure (used for cross references)
grow Horizontal (hgrow) and vertical (vgrow) size relative to children
shrink Horizontal (hshrink) and vertical (vshrink) size relative to parent
resizable Resizable in horizontal (hresizable) and vertical (vresizable) direction
align Horizontal (halign) and vertical (valign) alignment
lineWidth Width of lines
lineColor Color of lines
fillColor Fill color for closed figures

represented as constructor functions for the datatypes Figure and FProperty .16 In
order to be able to give meaningful examples, we give some samples of both.17

Figure Primitives. The primitive figures and some containers are listed in Table 1.
The primitives text and outline are atomic in the sense that they cannot contain
subfigures: text defines, unsurprisingly, text strings and outline is a rectangle with
a list of highlighted lines inside that can be used to summarize findings on a specific
source code file. The primitives box and ellipse are actually non-atomic containers
that may contain a subfigure (e.g., box in a box).

Figure Properties. Some figure properties are listed in Table 2, and they can define
size, spacing, and color. A figure may have a name which is defined by the id-property
(e.g., id("A")) and is used to express dependencies between figures and between
properties.

Several properties are related to size, alignment, and space assignment when figures
are being composed. We discuss these size-related properties together in later sections.
Other properties define visual aspects such as color, line style and font, or specific prop-
erties of shapes. Properties for associating interactive behavior with a specific figure are
given later in Table 5.

16 In Section 4, we speculate on using the syntax definition facilities of RASCAL and giving a
textual syntax to them, thus creating a true visualization DSL.

17 Our complete framework provides dozens of primitives and properties. In this and following
tables we only list items relevant for the current paper.

One-Stop-Shop for Analysis, Transformation and Visualization of Software 7

Example. The expressionbox(fillColor("red"), lineColor("green"))
will create a red rectangle with a green border. When rendered, this rectangle will oc-
cupy all available space in the current window.

Property Inheritance. Since figures and their subfigures usually have the same set-
tings for most of their properties it is cumbersome to set all the properties of every
figure individually. It should therefore be a possible to inherit properties from a parent
figure, but a model where all properties are inherited is cumbersome as well: if a prop-
erty should only apply to the current figure and not to its children then the programmer
has to explicitly reset that property for all the children. Therefore we have opted for a
model does not introduce this chore, but does allow inheritance:

– All properties are initialized with a standard (default) value.
– A property only applies to the figure in which it is set.
– A property can redefine the standard value of a property: that new standard value

is then used in all its direct and indirect children (unless some child explicitly rede-
fines that property itself). For example, lineColor defines the line color for the
current figure, std(lineColor) defines it for all direct and indirect children of
the current figure.

This model is similar in goal but simpler and more uniform than the inheritance model in
cascading stylesheets in HTML, since in our model the inheritance behavior is the same
for all properties, while in CSS this may differ per property as explained by Lie [8].

2.4 Figure Composition and Layout

In many approaches to graphics and visualization coordinates and explicit sizes are the
primary mechanisms to express the layout of a visual entity. For instance, a rectangle
is specified by its upper-left corner, width and height, or alternatively, by its upper-left
and lower-right corner. Although this is common practice, there are disadvantages to
this approach [2]:

– Explicit coordinates and sizes lead both to tedious computations to achieve a simple
layout and to manual programming of resize behavior. This conflicts with our goals
of automation and re-use.

– Explicit coordinates and sizes do not show the spatial relationships between the
elements in a layout, this makes re-use and interaction more difficult.

Therefore, we have chosen to avoid explicit coordinates and provide layouts based on
figure composition. The position of a figure is described by nesting figures, for example
an ellipse inside a box is written as box(ellipse()) or by using the composition
operators listed in figure Table 3. The most fundamental operators provide horizontal,
vertical and overlayed (stacked) composition of figures. As an example, a resizable
Dutch flag (Figure 2) can be created as follows: vcat([box(fillColor(c)) |
c <- ["red","white","blue"]]).

The size of a figure should depend on its context. In this way we can use the same
figure in different contexts, even though these contexts have different sizing require-
ments. One way of expressing the size of a figure in terms of its context is through the

8 P. Klint, B. Lisser, and A. van der Ploeg

Table 3. Composition Operators
Operator Description
hcat Horizontal composition, grid with one row
vcat Vertical compostion, grid with on collumn
hvcat Horizontal and vertical compostion (resembling placing words in a text paragraph)
overlay Stacked composed, i.e., figures are overlayed in the z-dimension.
grid Place figures in a grid
pack Place figures as close together as possible (bin packing)
graph Place figures and edges in graph layout
tree Place figures and edges in tree layout
treemap Place figures in a treemap layout

Fig. 2. Dutch Flag Fig. 3. Our version of Composition II
in Red, Blue, and Yellow by Piet Mon-
driaan, 1930

hshrink and vshrink properties, which declare how much a figure shrinks relative
to the horizontal or vertical size of its parent. The property shrink is a shorthand for
setting both hshrink and vshrink.

As an example, consider our version of the painting Composition II in Red, Blue,
and Yellow by Piet Mondriaan in Figure 3. Using our layout and sizing mechanisms
this painting can be concisely described by the code in Figure 4. The sizes of the boxes
are described in terms of their parents. If no sizing properties are given, the figure is
given the size that is available.

This wellknown way of defining sizes is, for instance, also used in HTML tables.
Another, novel, way of defining sizes in term of their context is through the hgrow and
vgrow properties: which declares how much a figure grows relative to the horizontal or
vertical size of its children. For example if we want a box containing the text “Rascal”
that is twice as wide and three times as high as the enclosed text we could define this
by box(text("Rascal"),hgrow(2.0),vgrow(3.0)).

To specify where in the available space a figure is positioned the halign and
valign properties are used. Here 0.0 means completely on the left side or top side

One-Stop-Shop for Analysis, Transformation and Visualization of Software 9

grid([
[vcat([box(),box()],

hshrink(0.25), vshrink(0.75)
),
box(fillColor("red"))

],
[box(fillColor("blue")),
hcat([box(hshrink(0.9)),

vcat([
box(),
box(fillColor("yellow"))

])
])

]
],std(lineWidth(6));

Fig. 4. Code creating Mondriaan painting, the colors relate each piece of code to the correspond-
ing area in the layout

(a) An overlay (b) Using a screen

Fig. 5. The use of overlay and screen

and 1.0 means completely on the right side or bottom side. Shorthands such as left()
are available. Consider the following example (Figure 5a), where the overlay com-
position is used which stacks figures:

overlay([
ellipse(text("A"), left(),top(),

fillColor("red"),shrink(0.6)),
ellipse(text("B"), center(),

fillColor("green"),shrink(0.6)),
ellipse(text("C"), right(), bottom(),

fillColor("yellow"),shrink(0.6))
])

Now suppose we want to display the same image as our last example, but with the
labels on the left as displayed in Figure 5b. We could achieve this effect by positioning
the labels in a separate overlay and horizontally composing these two overlays. However
this means that the user must manually specify the alignment of the labels. To raise the

10 P. Klint, B. Lisser, and A. van der Ploeg

level of automation in such cases we introduce the notion of a screen. A screen is a
horizontal or vertical line on which figures can be projected. Thus to obtain the picture
displayed in Figure 5b we place a screen on the left of the overlay and then project a
label from each ellipse on this screen in the following way:

leftScreen("s",
overlay([
ellipse(project(text("A"),"s"), left(),top(),

fillColor("red"), shrink(0.6)),
ellipse(project(text("B"),"s"), center(),

fillColor("green"), shrink(0.6)),
ellipse(project(text("C"),"s"), right(), bottom(),

fillColor("yellow"), shrink(0.6))
])

);

There are also composition for laying out arbitrary figures according to their relation
in a graph or a tree since this common in software visualization. We argue that with
these special purpose layout operators and the general purpose composition operators
described above the user can describe most layouts needed in software visualization in
a concise, declarative and reusable way.

2.5 Scales of Measurement

Representing software facts requires mapping measurements to scales. Mapping of soft-
ware measures to visual properties was pioneered in polymetric views as described
in [7]. We want to provide a similar mechanism but make the mapping from measure-
ment to graphic representation explicitly, so that it can later be scaled or manipulated
interactively. Traditionally, the following scales of measurement are distinguished [13]:

– A nominal scale consist of unordered data points and only equality of data points
is defined. This kind of data can, for instance, be represented by text labels or color
codes.

– An ordinal scale consists of ordered data points; this implies that a comparison
between data points is possible but that differences between values are not mean-
ingful.

– An interval scale consists of ordered values, with a constant scale, but no natural
zero. The typical example are temperatures and dates.

– A ratio scale consists of ordered, constant scale, values with a natural zero. Exam-
ples are height and age.

We distinguish the following aspects of a scale (of which the last three are inspired by
[9]):

– Its classification in the above four categories.
– The figures that are to be mapped to the scale. For example, the bars in a bar chart.

One-Stop-Shop for Analysis, Transformation and Visualization of Software 11

vcat([
hcat([box(text(n),fillColor(convert(t,"accessType")))

| <n,t> <- [<"equals","public">,
<"intersects","protected">,
<"toString","public">,
<"getPassword","private">,
<"union","protected">]

]),
colorPallette("Access types of methods",

"accesType",
hshrink(0.5))]

)

Fig. 6. Example using colorPallette

– The specific property whose value is to be mapped to the scale. For example, the
height of a bar in a bar chart or the coordinates of a point in a function or scatter
plot.

– The figure that explains the mapping. For example, an axis or a color legend.

We introduce a figure type for each kind of scale of measurement and annotate values
of figure properties with the name given to the desired scale figure to establish the
mapping. All scales are figures, and can be placed in the visualization just like ordinary
figures. They are visualized as an explanation of the mapping, i.e., axis or color legend.
Our ambition is to support all four scales of measurement as built-in primitives, but
currently we only support the nominal and the ratio scale.

Nominal scales. Assume that a list of Java method names and their access modifiers
are given. We want to visualize each method as a named box with a color that represents
its access modifier. The access modifiers can be represented by a nominal scale in which
each access modifier is mapped to a different color.

Figure 6 shows how this can be achieved. First we create horizontally concatenated
boxes with the method name as text and a fillColor that is determined by the value of
each access modifier converted to a nominal scale with name accessType. Below
these boxes, we then place the nominal scale colorPallette with a title and — as
expected — the name (accessType); it will convert the nominal values that were
added in the box declarations to a color on the pallette. The result is shown in Figure 7.

Interval Scales: Axes. Figure 8 gives the anatomy of a single bar in a typical bar chart:
the bar has a height (a numerical value) that should be mapped to units on the vertical
axis, and the bar should also be mapped to a nominal label on the horizontal axis.

To map numeric values, we introduce the notion of an axis. An axis takes care of the
proper interval and scale of values, and of major and minor tick marks. It has a name and
contains a figure with subfigures whose dimensions are mapped using the convert
operator. Axes exist in different flavors depending on their placement relative to the list
of figures.

12 P. Klint, B. Lisser, and A. van der Ploeg

Fig. 7. A nominal scale using a color pallette Fig. 8. Anatomy of a bar in a bar chart

Figure hBarChart(map[str,num] vals){
return bottomScreen("categories",leftAxis("y",

hcat([box(height(convert(vals[k],"y")),
project(text(k),"categories"),
fillColor("blue"))

| k <- vals], hgrow(1.2))
));

}

Fig. 9. hBarChart: a simple bar chart

For instance,

leftAxis("y", [box(height(convert(10, "y"))),
box(height(convert(15, "y")))

])

creates a vertical axis with two boxes to the right of it.
Axis and screen form the building blocks for many common chart types and we

illustrate in Figure 9 how to apply them to create simple bar charts in the following
function hBarChart that takes a map from strings to numbers and returns a bar chart
that visualizes this information. See Section 3.1 for an application of this function.

2.6 Figure Interaction

A plotting package like GnuPlot, takes a description of a desired plot and delivers a
static rendering of it. Given our interaction requirements (Section 2.1) we add proper-
ties and operators for interaction as listed in Tables 5, and respectively, 6. The properties
allow associating interactive behavior with a specific figure, such as showing a second
figure when the mouse is over the first one or handling a mouse click on a figure. The in-
teraction operators represent separate user-interface elements like buttons, checkboxes
and text fields, to which RASCAL closures (functions and their local context) can be

One-Stop-Shop for Analysis, Transformation and Visualization of Software 13

Table 4. Axes and Screens

Operator Description
leftAxis A vertical axis to the left of a figure, similar: rightAxis,

bottomAxis, topAxis
convert Convert a size to a datapoint on an axis
bottomScreen Horizontal projection screen at the bottom of a figure, similar:

topScreen, leftScreen, rightScreen
project Project a figure to a screen

Table 5. Interaction properties

Operator Description
mouseOver Add a figure when mouse is over current subfigure
onClick Handle mouse clicks
onMouseOver Handle the mouse entering the current subfigure
onMouseOff Handle the mouse leaving the current subfigure

Table 6. Interaction Figures

Operator Description
computeFigure Compute a new (sub)figure triggered by interaction
button Button with call back
textField Text entry field with call back
combo Combo box with call back
choice List of choices with call back
checkbox A check box with call back

attached as call backs. Although RASCAL has value-based semantics, it does allow as-
signment to variables and this can be used to represent the state of the user-interface
inside the RASCAL program.

Examples. In Figure 10 we illustrate how to define a function that returns a figure
property, in this case, a mouseOver property that will display a yellow box with text
when the mouse hovers over the figure which has this property. The box will be 1.2
times larger than the text and it is not resizable.

In Figure 11 the creation of a textfield is illustrated. Note how the textfield
property has a closure parameter

void(str s){TERM = s;}

that acts as call back function. It assigns to the environment variable TERM and in this
way global state can be maintained across calls to call back functions.

14 P. Klint, B. Lisser, and A. van der Ploeg

public FProperty popup(str S){
return mouseOver(box(text(S),

fillColor("lightyellow"),
grow(1.2),
resizable(false)));

}

Fig. 10. Defining a popup

str TERM = ""; // Initial search term
searchField =

hcat([text("Enter search term:"),
textfield("<TERM>", void(str s){TERM = s;})

]);

Fig. 11. Defining a text entry field

3 Examples

3.1 Bar Chart of File Name Extensions

The first task we want to solve is to extract all files from an Eclipse project, count the file
name extensions (i.e., different file types) and draw a bar chart of the result. The code
is shown in Figure 13 and re-uses the hBarChart function defined earlier in Figure 9.
The auxiliary function getExtensions use deep pattern matching (/) to search for
all files in the project and to count their frequencies. It returns a map from extensions to

Fig. 12. Bar chart with frequencies of file name extensions in JSPWiki

One-Stop-Shop for Analysis, Transformation and Visualization of Software 15

frequencies.18 In the statement m[l.extension]?0 += 1; the current value asso-
ciated with the value ofl.extension in table m is incremented. The binary undefined
operator ? caters for the case that that key value is not yet in the table and uses 0 instead.
Application to a sample project as in drawBarChart(|project://JSPWiki|),
and rendering the result gives the bar chart shown in Figure 12.

public Figure drawBarChart(loc project) {
e = getExtensions(getProject(project));
return vcat([text("Extensions in <project.host>",

fontSize(17)),
box(hBarChart(e),grow(1.1))]);

}

// Extract all file extensions
public map[str, num] getExtensions(Resource r) {

m = ();
for (/file(loc l) := r)

m[l.extension]?0 += 1;
return m;

}

Fig. 13. Visualizing file name extensions

3.2 Search and Browse Files

The second final task we want to solve deals with search and file exploration. It
integrates analysis, visualization and user interface construction and consists of the fol-
lowing steps:

– Present the user with a search field to enter a search term.
– Present the user with an option to search Java files or class files.
– Present the search results in the form of an outline per file, with colored lines rep-

resenting hits.
– When hovering over an outline, the corresponding file name is shown as a popup.
– When clicking on an outline, a new editor is opened for the corresponding file, with

the occurrences of the search term highlighted.

Figure 14a shows an example of visualizing the results of a query for the term
”while”, and Figure 14b shows an editor that appears when clicking on one of the file
outlines in Figure 14a.

The function mkOutline (Figure 15) takes the location of a source file, a word to
search for, a message to attach to each line, and a scale factor to compute the relative
position of hits in the file. It returns an outline figure, with line information associated
with it. This outline has two properties that implement interaction:

18 Extensions with a frequency below 2% are collected in the category ”other”; this is not shown
in the code.

16 P. Klint, B. Lisser, and A. van der Ploeg

(a) Search results for ”while” (b) Clicking on outline opens editor

Fig. 14. Browsing search results

public Figure mkOutline(loc f, str word, str msg, int scale){
lineInfo = [];
lines = readFileLines(f);
for(i <- index(lines)){
if(/<word>/ := lines[i])

lineInfo += info(i + 1, msg);
}
return outline(lineInfo,

size(lines),
size(5, size(lines)/scale),
popup(f.path),
onClick(void () {edit(f, lineInfo);}));

}

Fig. 15. mkOutline create an outline with search results

– a mouseOver that displays the file name when the mouse hovers over this outline;
this re-uses the function popup discussed earlier in Section 2.6

– an onClick properties that defines a parameterless function to be called when a
mouse click occurs on this outline. This function calls, in turn, the library function
edit that opens a source code editor for the given file.

The function find (Figure 16), searches through all files with the right file extension,
applies mkOutline to each file and packs the resulting outlines as densely as possi-
ble. Finally, the function searchGUI (Figure 17) creates the user-interface and uses
find as utility.

One-Stop-Shop for Analysis, Transformation and Visualization of Software 17

public Figure find(loc project, str word, str suffix){
if(word == "")

return
box(text("No results", center()), fillColor("silver"));

P = getProject(project);
outlines = [mkOutline(l, word, "Found: <word>", 2)

| /file(loc l) := P, l.extension == suffix
];

return pack(outlines, top(), left(), gap(3));
}

Fig. 16. find: top level function to create the visualization

public void searchGUI(){
// Create text field for search term
str TERM = ""; // Initial search term
searchField =

hcat([text("Enter search term:"),
textfield("<TERM>", void(str s){TERM = s;})

]);
// Create choice box for file extensions
str EXT = "java"; // Initial file name extension
extField =

hcat([text("Choose file name extension:"),
choice(["java", "class"], void(str s){EXT = s;})

]);
// Combine both fields in a box
pane = box(vcat([searchField, extField]),

fillColor("lightgrey"),
stdVresizable(false), vgrow(1.1));

// Create computed figure for visualization of result
result = computeFigure(

Figure(){ return find(project, TERM, EXT);}
);

// Render the pane and search result
render("Outline", vcat([pane, result], left()));

}

Fig. 17. searchGUI: create the user-interface

4 Conclusions

We have presented a high-level overview of the RASCAL visualization framework that
we are currently developing and we hope that this overview has convinced you that a
declarative, coordinate-free, visualization approach is both feasible and highly applica-
ble. Once the framework has stabilized, we envisage to explore how interaction facil-
ities can be further extended and how animation can be added. We are also planning

18 P. Klint, B. Lisser, and A. van der Ploeg

to systematically describe the most popular chart types with the primitives presented
here as starting point. A series of case studies will help to assess the applicability of our
framework and to further improve it.

This effort acts as a domain analysis for software visualization and we expect that the
concepts we have identified can form the basis for a true DSL for software visualization.
You will have observed that we have presented the framework as an abstract data type
with prefix constructor functions and this leaves the advanced RASCAL facilities for syn-
tax definition and parsing completely unused. Another next step is therefore to design
a concise textual syntax for the visualization primitives presented here and to integrate
them even further in the RASCAL language.

Acknowledgments. We thank our colleagues from the RASCAL team for the brain-
storms, suggestions and support. Jurgen Vinju commented on drafts of this paper.

References

1. Bostock, M., Heer, J.: Protovis: A Graphical Toolkit for Visualization. IEEE Transactions on
Visualization and Computer Graphics 15(6), 1121–1128 (2009)

2. Coutaz, J.: A layout abstraction for user-system interface. SIGCHI Bull. 16, 18–24 (1985)
3. Diehl, S.: Software visualization: visualizing the structure, behaviour, and evolution of soft-

ware. Springer (July 2007)
4. Elliott, C.: Functional images. In: The Fun of Programming. Cornerstones of Computing.

Palgrave (March 2003)
5. Finne, S., Peyton Jones, S.: Pictures: A simple structured graphics model. In: Glasgow Work-

shop on Functional Programming (January 1995)
6. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-Programming with Rascal. In: Fernandes,

J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques
in Software Engineering III. LNCS, vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

7. Lanza, M., Ducasse, S.: Polymetric views - a lightweight visual approach to reverse engineer-
ing. IEEE Transactions on Software Engineering 29(9) (September 2003)

8. Lie, H.: Cascading Style Sheets. PhD thesis, Faculty of Mathematics and Natural, Sciences
University of Oslo (2005)

9. Lucas, W., Shieber, S.M.: A Simple Language for Novel Visualizations of Information. In:
Filipe, J., Shishkov, B., Helfert, M., Maciaszek, L.A. (eds.) Software and Data Technologies.
CCIS, vol. 22, pp. 33–45. Springer, Heidelberg (2009)

10. Meyer, M., Gı̂rba, T., Lungu, M.: Mondrian: an Agile Information Visualization Framework.
In: Proceedings of the 2006 ACM Symposium on Software Visualization - SoftVis 2006, pp.
135–144. ACM Press, New York (2006)

11. Ousterhout, J.: Tcl and the Tk Toolkit. Addison-Wesley, Reading (1994)
12. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualiza-

tions. In: Proceedings of IEEE Symposium on Visual Languages, pp. 336–343 (1996)
13. Stevens, S.S.: On the Theory of Scales of Measurement. Science, New Series 103(2684),

677–680 (1946)
14. Storey, M.-A.D., Wong, K.: Rigi: A Visualization Environment for Reverse Engineering. In:

Proceedings of the 1997 (19th) International Conference on Software Engineering, pp. 606–
607. ACM (1997)

A Dedicated Language for Context Composition

and Execution of True Black-Box Model
Transformations

Andreas Seibel, Regina Hebig, Stefan Neumann, and Holger Giese

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{forename.surname}@hpi.uni-potsdam.de

Abstract. Model-Driven Engineering (MDE) automates development
activities by employing model transformations. Thereby, a plethora of
model transformation approaches with individual capabilities have been
developed. In certain cases, complex and automated MDE activities re-
quire the interaction of various, potentially heterogeneous, model trans-
formations. This can be achieved by a loosely coupled and highly cohesive
composition of model transformations implemented in different model
transformation languages. However, existing approaches either do not
support context composition, using other model transformations as addi-
tional context, or they violate the important black-box principle because
they require adapting model transformations for context composition.
In this paper, we present a dedicated model transformation composition
framework (MoTCoF) that does not require the adaptation of model
transformations and, thus, treats model transformations as true black-
boxes. We illustrate our approach with an application example taken
from an industrial case study.

Keywords: model transformation, composition, model-driven engineer-
ing, traceability.

1 Introduction

Today, Model-Driven Engineering (MDE) promises to improve software devel-
opment activities by employing models and model transformations as first-class
citizens.1 As an essential part of recent MDE environments, model transforma-
tions are not applied in isolation but are rather in combination. Due to changing
requirements to the software that is built, model transformations has to evolve
properly because evolving meta models of design artifacts.

However, it is not always feasible to simply append new functionality to exist-
ing model transformations, since the employed model transformation languages

1 We consider model transformations as any model operation that manipulates models
or model elements; e.g., derivation, synthesis, reverse engineering, migration, opti-
mization, adaptation, refactoring, etc. (cf. [1]).

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 19–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 A. Seibel et al.

might be insufficient for realizing the new requirements. For example, in an
industrial case study in cooperation with dSPACE2 we have developed a tool
chain that transforms SysML3 models into AUTOSAR4 models within Eclipse5

and further transforms these AUTOSAR models into SystemDesk6 conform AU-
TOSAR models (cf. [2]). Because of the new timing extension of AUTOSAR, we
now also had to transform textual SysML timing requirements into structural
AUTOSAR latency timing constraints. Yet, without making modifications to the
employed model transformation language (triple graph grammars (TGG) [3]), we
would not be able to extend the existing model transformation. Thus, we needed
to seamlessly compose existing model transformations. Since re-implementing a
complete model transformation in another model transformation language is
time-consuming, error-prone and expensive, this leads to two major challenges.

Firstly, it must be possible to define reusable, modifiable and extendible model
transformations. This can be reached by promoting model transformations with
loose coupling and high cohesion. The term coupling is a measure of the strength
of interconnection between one module and another [4]. Thus, a model trans-
formation should have as few interconnections as possible. The term cohesion is
the degree of functional relatedness of processing elements within a single module
[4]. Only focusing on a single concern – the actual transformation task – renders
a model transformation as highly cohesive. Thus, any additional concern, i.e.,
navigating to the right application context or focusing on composition concerns,
decreases cohesion. Secondly, the ability to compose model transformations im-
plemented in other model transformation languages must not be restricted. This
requires the consideration of model transformations as true black-boxes.

SysML AUTOSAR SystemDesk
AUTOSAR

S2A

b) context compositiona) data-flow composition

applied model
transformation SysML

Block
AUTOSAR

Composition Type
E2SD

B2CT

R2LTC

Requirement
Latency

Timing Constraint

Fig. 1. Principle of data-flow and context composition

Existing approaches to the composition of black-box model transformations
can be distinguished between two types of composition that we call data-flow
composition and context composition. The principles of these compositions are
illustrated in Fig. 1, which reflects our application example we use throughout
this paper.

2 http://www.dspace.com
3 http://www.sysml.org/specs.htm
4 AUTOSAR 4.0; http://autosar.org/
5 http://www.eclipse.org
6 SystemDesk is an environment from dSPACE to model embedded systems.

A Dedicated Language for Context Composition and Execution 21

Model transformation chains (i.e., UniTI [5]) or workflows are implementations
of data-flow compositions. A data-flow composition between model transforma-
tions exists whenever the output of one model transformation is the input of an-
other model transformation. Fig 1 a) shows a SysML to AUTOSAR (S2A) model
transformation and an Eclipse to SystemDesk (E2SD) model transformation. A
data-flow composition exists between S2A and E2SD because S2A produces an
AUTOSAR model that is consumed by E2SD to produce a SystemDesk conform
AUTOSAR model.

A major benefit of data-flow composition is that it does not require an explicit
composition concept but rather implicitly sharing models is sufficient to establish
a data-flow composition. Thus, the data-flow composition of independent model
transformations is still possible. However, a drawback of data-flow composition
is that the composition of model transformations is principally only possible if
the model transformations act on the same level-of-granularity (e.g., between
models). In our case study, we defined the TGG model transformation (S2A) be-
tween SysML models and AUTOSAR models, but we defined the extending model
transformation on a different level-of-granularity (between SysML requirements
and AUTOSAR latency timing constraints). The data-flow composition of these
two model transformations requires lifting the extending transformation to the
model level which implies the second drawback of data-flow compositions; the
extending model transformation has to implement additional navigation con-
cerns to find the right application context (e.g., the model elements that are
consumed and produced); the extending model transformation has to replicate
concerns from the model transformation that it extends. Thus, the extending
model transformation needs to re-produce which SysML block is transformed
into which AUTOSAR composition type. Only then is it possible to correctly
transform a SysML requirement that relates to a SysML block into an AUTOSAR
latency timing constraint that relates to an AUTOSAR composition type. Re-
producing the decisions of the extended model transformation decreases cohesion
and implicitly augments coupling.

In contrast to data-flow composition, context composition basically defines
that the application of a model transformation requires the application of an-
other model transformation as additional context for its own application. Thus,
an extending model transformation has access to traceability information gener-
ated by the application of another model transformation. Thus, context composi-
tion overcomes the aforementioned issues of the data-flow composition by relying
on the application of another model transformation and not only on shared mod-
els or model elements. Fig. 1 b) shows the application of a model transformation
Block to CompositionType (B2CT) that transforms a SysML block into an AU-
TOSAR composition type. Now, another model transformation Requirements to
LatencyTimingConstraint (R2LTC) transforms a SysML requirement of a SysML
block into an AUTOSAR latency timing constraint of a corresponding AUTOSAR
composition type. Thus, R2LTC can directly use B2CT as context because B2CT
provides the necessary application context – a SysML block and a corresponding
AUTOSAR composition type – to start the transformation R2LTC. An extending

22 A. Seibel et al.

model transformation might be applied multiple times in the context of another
transformation because multiple SysML requirements might be contained by one
SysML block.

In this paper we show a model transformation composition framework called
MoTCoF that supports data-flow and context composition of true black-box
model transformations implemented in different model transformation languages.
We achieve this by not requesting model transformations to interpret traceabil-
ity information for proper context composition. MoTCoF preserves the black-box
property of model transformations by shifting the interpretation of the traceabil-
ity information from the model transformations to the composition framework.
Therefore, the composition framework applies model transformations into the
required application context by unpacking the traceability information. In ad-
dition, MoTCoF uses pre-conditions (instantiation checks) to define fine-grained
conditions for proper application of model transformations. These pre-conditions
are defined separately from the model transformation to ensure separation of
concerns. Thus, MoTCoF takes total control of creating traceability informa-
tion as well as applying model transformations into the required application
context. Nevertheless, in certain scenarios model transformations create propri-
etary traceability information that should also be used for context composition
(i.e., model transformations that create traceability information as a by-product
of their application). Therefore, MoTCoF ’translates’ proprietary traceability in-
formation into traceability information of our composition framework. This will
be illustrated by means of an application example.

In the following, we first explain our industrial case study including an appli-
cation example in Section 2. In Section 3, we elucidate our dedicated language
to specify sufficient interfaces for model transformations (modules) and how to
define context compositions as well as instantiate data-flow compositions. In Sec-
tion 4, we show how to execute model transformations that are instantiated in a
data-flow as well as defined in a context composition. We delimit our approach
against related work in Section 5 and, finally, conclude our paper in Section 6.

2 Case Study

In an industrial case study in cooperation with dSPACE, we have developed
a tool chain that is able to transform SysML models within Eclipse into AU-
TOSAR conforming models within SystemDesk. In systems engineering, the en-
gineers use SysML, which reuses a subset of UML7, for developing embedded
systems. In the automotive domain, parts of these SysML models, which are
important for software engineering, are later refined in AUTOSAR for further
software development. Thus, automotive companies that develop the complete
system architecture or subsystems using SysML need to transform relevant parts
of those models to an AUTOSAR model.

7 UML = Unified Modeling Language; http://www.omg.org/spec/UML/

A Dedicated Language for Context Composition and Execution 23

Fig. 2 illustrates our developed tool chain. It employs SysML models and AU-
TOSAR models in an EMF8 compatible representation. We use TGGs to realize
the model transformation between these models (S2A). Another model transfor-
mation (E2SD) bridges the technological gap between Eclipse + EMF and the
tool SystemDesk from dSPACE.

SysML AUTOSARS2A

Evnironment: Eclipse + EMF

SystemDesk
AUTOSAR

E2SD

Evnironment: SystemDesk

Fig. 2. Complete tool chain of our case study

In the current release of AUTOSAR, defining timing constraints becomes pos-
sible by a timing extension [6]. Thus, our goal was to extend the model trans-
formation S2A, such that SysML requirements are transformed into AUTOSAR
latency timing constraints. Since we invested much effort in the development of
the model transformation S2A, we desired to reuse the model transformation
for this purpose. However, the requirements in SysML are formulated textually.
Thus, our existing model transformation cannot handle these requirements, be-
cause it is a structural model transformation language that does not support
text parsing. For this purpose, we had to extend the existing model transforma-
tion by another technology for handling the transformation of textual require-
ments without adapting the existing model transformation technology. Thus, we
have implemented a separate model transformation in Java, which is well-suited
for text parsing. This additional model transformation only transforms a single
requirement into a corresponding latency timing constraint. The composition
approach should be responsible for finding all needed application contexts.

<<compositionType>> : FuelSystemController

<<compositionType>> : FuelRateController <<compositionType>> : EngineModel

< > <<ReceiverPort>>
:RpRawSensors < ><<SenderPort>>

:PpFuelRate < >
< >

<<ReceiverPort>>
:RpFuelRate <<SenderPort>>

:PpRawSensors
<<Requirement>>

"source:RpRawSensors;
target:PpFuelRate;
min:20;max:40;"

SysML blockSysML requirement

Fig. 3. Software architecture of the fuel system controller encoded in SysML

Fig. 3 shows the software architecture of a fuel system controller as a SysML
model including a SysML requirement, which acts as our application example.9

The FuelRateController computes the fuel injection rate, which depends on the
current speed of the engine. The EngineModel represents the engine. Because of

8 EMF = Eclipse Modeling Framework; http://www.eclipse.org/modeling/emf
9 This is an example shipped with SystemDesk.

24 A. Seibel et al.

the given real-time requirements of an automotive engine, the FuelRateController
is subject to specific timing requirements that are reflected in the form of the
shown SysML requirement.

3 Specification and Instantiation of Modules

The methodology of MoTCoF includes two manual activities, and one automated
activity. These activities interact as Fig. 4 shows.

Execution
Engine

Model
Transformation

Designer

Model
Transformation User

Modules

Model
Transformations

Traceability
Links

1. specification

2. instantiation

3. execution

Artifact

Actor

Human
Actor

Legend

Instantiation
Checks

usage

data

re
la

te
d

re
la

te
d

tr
ig

ge
rs

specifies

reads

uses

uses/instantiates

reads/instatiates

Fig. 4. Overview of the MoTCoF approach

First, a model transformation designer is specifies model transformations
and instantiation checks using different model transformation technologies (lan-
guages). For each of the specified model transformation and instantiation checks
– as well for reused ones – the model transformation designer specifies modules,
based on the types of the consumed and produced modeling artifacts.10 Finally,
the model transformation designer specifies context compositions between mod-
ules that encapsulate the model transformations.

Second, a model transformation user can use model transformations by instan-
tiating earlier specified modules. Instances of modules are technically traceability
links, which are defined between concrete modeling artifacts that are consumed
and produced by the related model transformation.MoTCoF eases the user when
instantiating modules by leveraging module information (it only shows com-
patible modeling artifacts when instantiating modules). For the application of
a data-flow composition the model transformation user simply instantiates all
modules to be composed on shared source and target modeling artifacts. For
the application of a context composition, it is sufficient to instantiate the most
high-level module that does not extend any other module.

Third, the execution engine is executing all necessary model transformations
that are in data-flow compositions and context compositions. The execution
engine is explicitly triggered by the model transformation user and is explained
in Section 4 in more detail.

10 We use the term modeling artifact as a synonym for model and model element.

A Dedicated Language for Context Composition and Execution 25

3.1 Specification of Modules

MoTCoF does not provide a model transformation language but rather a model
transformation composition language. Thus, existing model transformation
languages complement MoTCoF. The model transformation designer integrates
existing model transformations or newly specified model transformations by
specifying modules within MoTCoF. A module is a suitable interface of the
model transformation it represents. In addition, modules contain information
about context composition, which defines the required context. The execution
engine needs the context composition information for proper execution of the
model transformations.

A module has a set of parameter types. A parameter type is either source
or source & target, or target of a module. A parameter type defines the types
of modeling artifacts that are consumed and/or produced by the model trans-
formation related to the module. A modeling artifact type is any meta model
or meta model element.11 A source parameter type defines that an associated
model transformation consumes an instance of the related modeling artifact type
and potentially instances of contained modeling artifact types. A source & tar-
get parameter type defines that an associated model transformation requires an
instance of the related modeling artifact type and further may manipulate the
instance as well as instances of modeling artifact types that are contained by the
related modeling artifact type. Finally, a target parameter type defines that an
associated model transformation is responsible for creating or overwriting an in-
stance of the related modeling artifact type and potentially instances containing
modeling artifact types.

A module can be explicitly associated to a model transformation for which it
is the black-box representation. By using technology adapters,MoTCoF supports
the application of model transformations specified in different model transforma-
tion languages.12 However, as we will show later a module can also be specified
without being associated to a model transformation, which we consider as a
’virtual’ module.

Fig. 5 shows two modules (S2A and R2LTC) from our application example
encoded in concrete syntax of our module language. S2A is the representation of
our TGG model transformation (denoted by the (T) symbol), which transforms
SysML models into AUTOSAR models. It additionally creates a Correspondence
model that contains proprietary traceability information created by the TGG
model transformation when applying it. R2LTC is a module that represents the
model transformation, which only transforms a SysML requirement into an AU-
TOSAR latency timing constraint. Because a latency timing constraint needs to
be contained by a composition type, the transformation needs a composition
type as additional source & target. It must be a source & target because the

11 We assume that meta models are structured like trees. Ecore models are always trees
and, thus, fulfill our assumption.

12 Because of the lack of space, we do not explain the technology adapters that are
responsible for applying model transformations. We also do not show the concrete
model transformations that we use throughout this paper.

26 A. Seibel et al.

S2A (T)

SysML

T

Correspondence

S AUTOSART

Composition
Type

R2LTC (T)
S STRequirement

Modeling
Artifact Type

Module

ST

S

T

source
parameter type
source & target
parameter type

target
parameter type

Model
transformation
associated

Legend
(T)

Instantiation check
associated

(C)

LatencyTiming
Constraint

T

Fig. 5. Primary modules from our case study’s application example

model transformation will append the created latency timing constraint to the
given composition type. It has to be noted that the specification of both model
transformations is completely independent.

A module can be associated with an instantiation check (denoted by the (C)
symbol). The execution engine uses instantiation checks as pre-conditions for
the instantiation of a module into some application context. If the instantiation
check evaluates to true, the execution engine can correctly instantiate the related
module into the given application context. Instantiation checks are considered as
black-boxes, too. Thus, the model transformation designer can specify them in
any model transformation language because we use the same technology adapters
(e.g., OCL13). Furthermore, instantiation checks must not have any side effects.

Instantiation checks and model transformations can also be combined within a
singe module. This way, we can separate between reasoning about the correctness
of an application context and the operational semantic of model transformation
implementation, which makes it more reusable.

3.2 Specification of Context Compositions

After the specification of modules, a model transformation designer specifies all
necessary context compositions between these modules. Concerning our appli-
cation example, R2LTC should be composed into the context of S2A because it
is considered as an extension of S2A. Up to this point, R2LTC cannot be ap-
propriately composed with S2A because there is a granularity gap between the
module S2A which is defined too coarse-grained and R2LTC which is defined too
fine-grained. To overcome this issue, we define another (virtual) module that
acts as ’glue code’ between S2A and R2LTC. This virtual module will ensure
that R2LTC is only applied between SysML blocks and corresponding AUTOSAR
composition types. Otherwise, we might transform requirements of blocks into
latency timing constraint of non-corresponding composition types, which would
be incorrect.

13 OCL = Object Constraint Language; http://www.omg.org/spec/OCL/

A Dedicated Language for Context Composition and Execution 27

S2A (T)
SysML T

AUTOSAR

S

Correspondence

T

B2CT (C)
S

S

SBlock
CompositionType

CorrB2CT

Fig. 6. S2A exports B2CT

Fig. 6 shows how S2A exports the virtual module B2CT.14 Exporting a module
is also a kind of context composition. It is called export because virtual modules
only exist in the context of exactly one other module (B2CT only exists within
S2A). Virtual modules can be used by other modules as context.

The exported module B2CT is not associated with a model transformation,
but with an instantiation check. This instantiation check is responsible for en-
suring that a block and a composition type, related to B2CT, indeed corre-
spond. Therefore, the instantiation check could also use similarity heuristic, e.g.,
name equivalence. Because the TGG model transformation creates proprietary
traceability information (correspondences), we added the modeling artifact type
CorrB2CT as another source to B2CT. CorrB2CT already contains the informa-
tion whether a block and a composition type correspond. The instantiation check
uses this additional source to check whether the related block and composition
type are related via a CorrB2CT. Thereby, we translate proprietary traceabil-
ity information of the TGG model transformation into the concept of virtual
modules.

:Composition
Type

:CorrB2CT
target >< source

[failure]

[success]

:Block

true

false

Fig. 7. Instantiation check associated to B2CT

The instantiation check of B2CT is defined as shown in Fig. 7. In our ap-
plication example, we use Story Diagrams (cf. [7]) for the specification of the
instantiation check. The instantiation check evaluates whether a given modeling
artifact :Block and a given modeling artifact :CompositionType are connected
by a given modeling artifact :CorrB2CT. If this holds, the application of the
instantiation check returns true, else it returns false.

By specifying B2CT, we are now able to also explicitly define a context com-
position between B2CT and R2LTC and, thus, we have an indirect context com-
position between S2A and R2LTC. The context composition between B2CT and
R2LTC is illustrated in Fig. 8. Such a context composition is explicitly defined

14 The module is called B2CT because it connect a block and a composition type that
correspond to each other.

28 A. Seibel et al.

S2A (T)
SysML T

AUTOSAR

S

Correspondence

T

B2CT (C)
S

S

SBlock
CompositionType

CorrB2CT

LatencyTiming
Constraint

R2LTC (T)
S

T

Requirement

<<context>>

ST

Fig. 8. R2LTC composed via context into B2CT

by a reference between modules labeled with <<context>>. A module can have
multiple context references and, thus, can exist in multiple context compositions
(but not at the same time which means XOR-semantics).

Summarized, the model transformations that are related to modules that use
B2CT as context are completely decoupled from the model transformation re-
lated to the module S2A. We only couple their module specifications via context
dependencies.

3.3 Instantiation of Modules

Up until now, we have shown how to specify modules that appropriately rep-
resent model transformations as black-boxes and how to define context compo-
sition between model transformations through modules. Now, we show how a
model transformation user is able to instantiate modules and, therefore, model
transformations for eventual application by employing traceability links.

The instantiation of a module is always performed into a specific applica-
tion context (i.e., between specific models or model elements). This application
context of a traceability link has to conform to the modeling artifact types of
the instantiated module, which means that the modeling artifacts are instances
of the modeling artifact types that are related to the parameter types of the
module.

Fig. 9 shows a traceability link that is an instantiation of the module S2A
and, therefore, an instantiation of a SysML to AUTOSAR model transformation.
fuelsys:SysML is the SysML model that provides the fuel system controller of our

FS:S2A

fuelsys
:SysML

T

FS:Correspondence

S

fuelsys
:AUTORSAR

T

:Modeling
Artifact

:Traceability
Link

ST

S

T

source
parameter
source & target
parameter
target
parameter

Legend

Fig. 9. Example of the concrete syntax of traceability links

A Dedicated Language for Context Composition and Execution 29

application example shown in Fig. 3, FS:Correspondence is the Correspondence
model that is created by the TGG model transformation, and fuelsys:AUTOSAR
is the AUTOSAR model that is created by the TGG model transformation based
on the given SysML model.

3.4 Specification of Data-Flow Compositions

Fig. 10 shows a sufficient configuration of the tool chain from our applica-
tion example that is illustrated in Fig. 2. FS:S2A and FS:E2SD are com-
posed by a data-flow because FS:S2A is producing fuelsys:AUTOSAR which is
subsequently consumed by FS:E2SD. We have chosen the data-flow composi-
tion between FS:S2A and FS:E2SD because E2SD does not extend S2A but
rather transforms a AUTOSAR model as a whole into a SystemDesk conform
representation.

FS:S2A

fuelsys
:SYSML

T

fuelsys
:AUTOSAR

S

FS:E2SD

S
fuelsys

:SystemDesk
AUTOSAR

T

FS:Correspondence
T

Fig. 10. Instantiation of a data-flow composition representing the tool chain

4 Execution of True Black-Box Model Transformations

Based on the instantiation shown in Fig. 10, we show how MoTCoF automati-
cally executes the presented tool chain, transforming the SysML model of the fuel
system controller – including textual timing requirements – into a SystemDesk
conforming AUTOSAR model. Our implementation distinguishes between the
execution of instantiated model transformations that are in a data-flow compo-
sition and model transformations that are in a context composition. Thereby,
context-composed model transformations are automatically instantiated during
execution. The execution sequence always follows the same schema: firstly, an
already instantiated model transformation is applied and, secondly, its context
compositions are completely instantiated and applied before the next already
instantiated model transformation is applied. Fig. 11 illustrates the execution
sequence based on our application example.

In step one, the model transformation, which is related to the module S2A, is
applied into the application context of FS:S2A. This partly transforms the given
fuelsys:SysML model into the related fuelsys:AUTOSAR model. In step two, the
execution engine automatically creates (exports) instances of B2CT to all possi-
ble application contexts that exist within the context of FS:S2A (this are all com-
binations of a :Block, which are directly or indirectly contained by fuelsys:SysML,
a :CompositionType, which is contained by fuelsys:AUTOSAR, and a :CorrB2CT,
which is contained by FS:Correspondence). However, B2CT is only instantiated if

30 A. Seibel et al.

the associated instantiation check, shown in Fig. 7, evaluates to true. Otherwise,
the application context is withdrawn. This is necessary because B2CT should
only exist between SysML blocks and AUTOSAR composition types that indeed
correspond to each other. In our application example, three instances of B2CT
are created in step two (one for each transformed SysML block generated by
applying S2A).

FS:S2A FS:E2SD

FSC:B2CT FRC:B2CT EM:B2CT

FR:R2LTC

FS:S2A FS:E2SD

FS:S2A FS:E2SD

FSC:B2CT FRC:B2CT EM:B2CT

FS:S2A FS:E2SD

FSC:B2CT FRC:B2CT EM:B2CT

FR:R2LTCLL

1. step

2. step

3. step

4.step

dadadatatata-fl-fl-flowowow
cococompmpmpososositititioioionnn
dededepepependndndenencycyy

context
composition
dependency

focussed
traceability

links
t

data-flow execution sequence

co
nt

ex
t e

xe
cu

tio
n

se
qu

en
ce

Fig. 11. Execution sequence of our application example

After all correct application contexts for B2CT were found and, thus, B2CT
is instantiated completely, in step three each instance of B2CT (FSC:B2CT,
FRC:B2CT and EM:B2CT) is employed as context for instantiating the mod-
ule R2LTC because R2LTC is explicitly defined as composed via context into
B2CT. As R2LTC has Requirement as source, a CompositionType as source &
target and LatencyTimingConstraint as target, it is sufficient for an applica-
tion context to consist out of a :Requirement and a :CompositionType only.
Targets are automatically created or overwritten when instantiating modules.
Since R2LTC is not associated to an instantiation check, the execution engine
automatically creates instances of R2LTC for any application context that is
found in the context of a :B2CT. In our application example, there is only
one requirement specified (FR:Requirement). Thus, only one R2LTC is instan-
tiated (FR:R2LTC). Because R2LTC is associated to a model transformation,
the model transformation is subsequently applied into the application context
of FR:R2LTC. Consequently, FR:LatencyTimingConstrained is created and added
to FuelRateController:CompositionType so that it appropriately represents FR:
Requirement.

Figure 12 shows FS:S2A after executing step one, two and three. It can be
seen that FR:LatencyTimingConstraint is created within the right fuel rate con-
troller FuelRateController:CompositionType because the FR:R2LTC was executed

A Dedicated Language for Context Composition and Execution 31

only in the context of a correct B2CT (which contains the requirements that is
transformed). Thus, the associated transformation does not need to be costly
to reproduce the information where to transform the SysML requirement into.
Because no more context compositions are available, in a fourth step the already
configured FS:E2SD is applied, which transforms the fuelsys:AUTOSAR model
into a SystemDesk conforming representation fuelsys:SystemDeskAUTOSAR.

The execution engine is made of two execution algorithms: a data-flow execu-
tion algorithm and a context execution algorithm. The data-flow execution algo-
rithm is shown in Listing 1.1. It is responsible for applying model transformations
that are instantiated in data-flow compositions in a correct sequence. We assume
that the instantiation of data-flows do not result in cyclic dependencies at all. If
so, the data-flow execution algorithm cannot be applied correctly. Thus, before
executing the data-flow composition a simple algorithm can detect cyclic depen-
dencies and inform the model transformation user to resolve the cycles.

The context execution algorithm is shown in Listing 1.2. It is responsible for in-
stantiating and applying model transformations that are specified in context com-
positions in a correct sequence. The context execution algorithm is subordinate
to the data-flow execution algorithm and, thus, is triggered by the latter one after
each step.

4.1 Data-Flow Execution Algorithm

The data-flow execution algorithm automatically executes all traceability links
in a correct sequence, which is defined by means of the data-flow composition.

FS:Correspondence

FS:S2A
fuelsys:SYSML

FuelSystemController:
Block

fuelsys:AUTOSAR

FuelSystemController:
CompositionType

TS

FRC:B2CT
S

FuelRateController:
Block

FuelRateController:
Composition

TypeS

FR:R2LTC
S

T

FR:Requirement FR:LatencyTimi
ngConstraint

EngineModel:Block

EngineModel
:Composition

Type

EM:B2CT
S S

T

EM:CorrB2CT FRC:CorrB2CT

S

S

FSC:B2CT
S S

S

FSC:CorrB2CT

ST

<<context>>

Fig. 12. Traceability links after executing steps one, two and three

32 A. Seibel et al.

It takes a set of traceability link L as input that should be executed, which are
instances of modules that are not in a context composition (does not depend on
the context of another model transformation, e.g., FS:S2A and FS:E2SD as shown
in Fig. 10). The correct sequence for executing traceability links is obtained by
topologically sorting L, which sorts them concerning produced and consumed
modeling artifacts.

1 procedure executeDataF low(L) : void {
2 L′ := topologicallySortTraceabilityLinks(L);
3 f o ra l l (l ∈ L′) {
4 module := getModuleOf(l) ;
5 operation := getModelTransformation(module′) ;
6 i f (operation �= null) apply(l′, operation);
7 executeContext(l) ;
8 }
9 }

Listing 1.1. Data-flow execution algorithm

For each traceability link in the sorted set L′, the associated model trans-
formation is applied, if available, using the technology adapter interface (Line
5-6). Then, the context execution algorithm is triggered to also execute model
transformations that are directly and indirectly composed via context into the
module related to l (Line 7).

4.2 Context Execution Algorithm

The context execution algorithm automatically instantiates and executes all
modules that are directly context-composed into the module that is related to
the given traceability link l. Firstly, the algorithm triggers instantiate Context
(see Listing 1.3) on l, which returns all correct instances of all modules directly
context-composed into the given module (Line 3). Secondly, for each of the newly
instantiated traceability links, the associated model transformation, if available,
is applied using the technology adapter interface (Line 5-9). Thirdly, the al-
gorithm is recursively triggered for each previously instantiated and executed
traceability link in L′ because the related module of each traceability link l′ may
be the source of context compositions, too. The recursion terminates because the
context composition structure is a tree. Thus, a module with no further context
compositions will be reached definitely.

The algorithm is wrapped into a fix-point (Line 2 and 4) because a module
can depend the outcome of a direct or indirect neighbor module. The fix-point is
reached as soon as no more traceability links can be instantiated within the con-
text of l. A fix-point exists, if there are no model transformations that mutually
create their own pre-conditions, which should usually hold.

4.3 Instantiation Algorithm

The instantiation algorithm instantiates all modules that are directly composed
via context into the module related to l. Therefore, for each module that is

A Dedicated Language for Context Composition and Execution 33

1 procedure executeContext(l) : void {
2 while (true) {
3 L′ := instantiateContext(l) ;
4 i f (L′ == ∅) break ; // break i f f i x−point i s reached
5 f o ra l l (l′ in L′) {
6 module′ := getModuleOf(l′) ;
7 operation := getModelTransformation(module′) ;
8 i f (operation �= null) apply(l′, operation);
9 }

10 f o ra l l (l′ in L′) executeContext(l′) ;
11 }
12 }

Listing 1.2. Context execution algorithm

1 procedure instantiateContext(l) : L {
2 L := ∅ ;
3 module := getModule(l) ;
4 f o ra l l (module′ that are exported or composed v ia context by

module) {
5 AC := findApplicationContexts(l, module′);
6 f o ra l l (applicationContext ∈ AC) {
7 i f (� ∃l′ ∈ L : getApplicationContext(l′) = applicationContext∧

getModule(l′) = module′) {
8 l′ := createInstance(applicationContext, module′) ;
9 operation := getInstantiationCheck(module′) ;

10 i f (operation == null | | apply(l′, operation)) {
11 L := L ∪ l′ ;
12 //add l′ as c h i l d to l
13 }
14 }
15 }
16 }
17 return L ;
18 }

Listing 1.3. Instantiation of modules in the context of a traceability link

directly composed via context, the algorithm first finds all possible application
contexts (Line 5). An application context is a set of modeling artifacts with only
modeling artifacts are considered that are directly related to l or that are directly
or indirectly contained by modeling artifacts directly related to l. Then, for
each context-composed module and each application context, an instance of that
module is tried to be created into that context. However, creating an instance
depends on the following conditions: no instance of the considered module has
to exist in that application context (Line 7) and if the module is associated with
an instantiation check, the instantiation check must evaluate to true (Line 10).
The algorithm returns a set of correctly instantiated traceability links.

4.4 Technology Adapters

Technology adapters act as abstraction layer between model transformation tech-
nologies and MoTCoF. Any technology adapter has to implement an interface,
such that MoTCoF can trigger the application of model transformations without

34 A. Seibel et al.

reasoning about technical details and the technology behind. For each technology
only one adapter has to be implemented. Currently, MoTCoF provides technol-
ogy adapters for TGG, Java, Story Diagrams, ATL, EMF Compare15. This interface
is also used to trigger the application of instantiation checks.

1 procedure apply(l, operation) : boolean {
2 boolean success := false ;
3 applicationContext := getApplicationContext(l) ;
4 // implementation that app l i e s operat ion in app l i cat ionContext

us ing the techno logy s p e c i f i c API
5 . . .
6 return su c c e s s ;
7 }

Listing 1.4. Schematic implementation of a technology adapter interface

Listing 1.4 shows a schematic implementation of the technology adapter in-
terface apply that has to be implemented. The parameters of the interface are
a traceability link l and a model transformation/instantiation check operation
that should be applied in the application context of l. Because we consider model
transformations and instantiation checks as true black-boxes we do not expect
to hand over the traceability link l but rather the application context of l, which
are the concrete modeling artifacts processed by the model transformations or
instantiation check. The result of apply is true if the application of operation in
applicationContext was successful. Otherwise, it should return false.

5 Related Work

We have considered several approaches that are dedicated to the composition
of primarily black-box model transformations. We compare all considered ap-
proaches by means of the following properties. Composition type declares what
type of composition is applied, which are data-flow or context compositions,
as explained in the introduction. True black-box is the ability to apply and
compose model transformations implemented in different model transformation
languages, so that an approach does not require to extend or modify model trans-
formations for composition compatibility. Table 1 shows a direct comparison of
MoTCoF with all considered related works.

5.1 Data-Flow Composition

In the following, approaches that support data-flow composition are introduced.
In UniTI [5] a sophisticated approach to chain model transformations is shown.
There, the authors provide a component-like language to define model transfor-
mations and their interconnections. Similarly, in [8] Oldevik composes black-box
model transformations by means of UML Activity Diagrams and in [9] MWE is

15 http://www.eclipse.org/emf/compare/

A Dedicated Language for Context Composition and Execution 35

Table 1. Direct comparison of approaches

Approach Composition Type True Black-Box

Data-Flow Context

UniTI [5]
√ × √

J. Oldevik [8]
√ × √

MWE [9]
√ × √

MCC [10]
√ × √

D. Wagelaar [11]
√ × √

Aldazabal et al. [12]
√ × √

Etien et al. [13]
√ × ∼

TraCo [14]
√ × √

Cuadrado et al. [15] × √ ×
Vanhooff et al. [16]

√ √ ×
Epsilon [17]

√ √ ×
QVT Relational [18] × √ ×

MoTCoF
√ √ √

proposed to build chains of model transformations, which is part of the oAW16

framework. In [10] a scripting language calledMCC17 is introduced. Based on this
scripting language the authors show how to compose model transformations se-
quentially and in parallel. Both types of composition are data-flow compositions.
The parallel composition can be applied if two transformations do not depend
on the same models. In [11] Wagelaar defines model transformation chains by
specifying a meta model that fits into a specific schema. From these kinds of
meta models, Ant scripts are generated for further execution. In [12] Aldaza-
bal et al. define the composition of model transformations by means of BPEL18

models. Thus, the composition is basically a data-flow composition including
additional logic by means of the BPEL language. Etien et al. define in [13] in-
dependent model transformations as model transformation chains. Due to the
specific problem they solve, the composed transformations do not access the
same models directly, but the models are somehow translated. Finally, in [14]
the data-flow composition approach TraCo19 is presented. There, model transfor-
mations that have overlapping input and output modeling artifacts are executed
sequentially, while model transformations that do not share modeling artifacts
are executed in parallel.

As mentioned above, all these approaches focus on data-flow composition,
only. Further each of the approaches considers model transformations as true
black-boxes, except Etien et al.’s approach [13], where this is not mentioned
explicitly.

16 oAW = openArchitectureWare; http://www.eclipse.org/workinggroups/oaw/
17 MCC = MDA Control Center.
18 BPEL = Business Process Execution Language; http://bpel.xml.org/
19 TraCo = Transformation Composition.

36 A. Seibel et al.

5.2 Context Composition

Besides data-flow composition approaches, there are already approaches that
support context composition. One of them is shown by Cuadrado et al. in [15].
In this approach potentially heterogeneous model transformations are grouped
in so called phases. The composition of these phases is obtained in two differ-
ent modes. First, independent model transformations are composed and second,
model transformations that depend on the outcome of previously applied model
transformations are composed, which the authors call refinement. They use im-
plicitly created traceability information that can be queried by model transfor-
mation through a function they provide. Thus, their approach supports context
composition. However, the authors assume that model transformations have to
implement the provided traceability function to reason about the additional
context provided by traceability. Since, this cannot be implemented with each
transformation technology, Cuadrado et al.’s approach violates the black-box
principle. Another context composition approach is presented by Vanhooff et al.
in [16]. The authors use a global traceability graph, which contains traceability
information, as context for the composition of model transformations. Never-
theless as in Cuadrado et al.’s approach [15], Vanhooff et al. expect that model
transformations need to explicitly interpret traceability information and, thus,
violate the black-box principle, too. They further do not show how to execute
compositions. Finally, in [17], the Epsilon model management framework is pre-
sented. Epsilon allows black-box data-flow composition of Epsilon tasks, defined
in E* languages20 or additional languages like ATL21. The data-flow composition
is implemented with Ant22 scripts. In addition, Epsilon provides its own transfor-
mation language ETL. Within ETL, context compositions are possible. However,
context compositions are not possible with other transformation languages as
ETL and, as in the two approaches above, the traceability information of the
context composition has to be interpreted by the transformation. Thus, Epsilon
provides no black-box context composition.

These three approaches support context composition, but all of them vio-
late the black-box principle, because they require that model transformations
need to explicitly query the context information (traceability). In contrast to
these approaches, MoTCoF does not pass the traceability information directly to
the model transformation, but rather unpacks the information before. Thus, it
provides the required context in the form of modeling artifacts only. Thus, our
approach for data-flow and context composition is a true black-box approach.

To the best of our knowledge, there is currently no approach that supports con-
text composition of true black-box model transformations. Nevertheless, QVT23

Relational in combination with QVT Black-Box could be employed to provide
a proper solution. If we assume to employ QVT as a language to only com-
pose black-box model transformations, context composition could be realized by

20 http://www.eclipse.org/gmt/epsilon/
21 http://www.eclipse.org/atl/
22 http://ant.apache.org/
23 QVT = Query View Transformation; http://www.omg.org/spec/QVT/

A Dedicated Language for Context Composition and Execution 37

means of when and where clauses, that could be used to directly invoke other
black-box model transformations. The invocation does not pass traceability in-
formation directly, but rather parameters that are coming from the invoking
model transformation, which acts as context.

However, beside the fact that currently no implementation of a combination of
QVT Relational and QVT Black-Box exists, none of the clauses implement a com-
position semantic that is suitable for our transformation extension scenario. The
implication of the where clause is that the success of the invoking model transfor-
mation (comparable to our extended transformation) relies on the success of the
invoked model transformation (i.e., the extending transformation)(top-down).
In our scenario, we expect that the extended model transformation can be ap-
plied successfully even if the invoked model transformation cannot be applied
successfully. For example, consider the case that a SysML block does contain
a not yet syntactically correct requirement. In this case, the extending model
transformation would fail. However, this should imply that the extended model
transformation fails. The when clause is principally the contrary (bottom-up) of
the where clause. This implies that, e.g., applying R2LTC would invoke B2CT.
However, an AUTOSAR model might contain a high amount of requirements.
Thus, needing to apply R2LTC on each requirement manually makes the context
composition useless.

6 Conclusions and Future Work

In this paper, we have introduced our dedicated model transformation compo-
sition framework MoTCoF that supports the data-flow and context composition
of model transformations specified in different model transformation languages.
The model transformations do not require the inclusion of any additional in-
formation that would be necessary for the composition. Thus, we can consider
model transformations as true black-boxes. Therefore, we have defined a mod-
ule language to represent model transformation in MoTCoF. Modules are suit-
able interfaces for model transformations, which enable us to contemplate model
transformations as black-boxes. Nesting modules or connecting them by means
of context references is a sufficient definition for context composition. The execu-
tion of model transformations first requires the manual instantiation of modules
into concrete application contexts (between concrete modeling artifacts), which
implies the instantiation of data-flow compositions. Second, for a set of instanti-
ated modules, the execution engine automatically applies the represented model
transformations in the required sequence determined by the data-flow composi-
tion. Furthermore, the execution engine automatically instantiates modules and
applies the related model transformations into application contexts given by the
previous application of model transformations. The execution engine further uses
the context composition between modules to determine the necessary sequence
for applying model transformations.

There are several points that we want to improve in the future. Currently,
MoTCoF only supports the definition of data-flow composition between manu-
ally instantiated modules. To support the model transformation user, we think

38 A. Seibel et al.

of instantiating modules automatically that are in a data-flow composition. We
also suppose that the automatic instantiation of modules, which are in a data-
flow composition, into the context of another module is beneficial for certain
scenarios. To support model transformation designers, we believe that an au-
tomated validation of modules, which are defined in a context composition, is
necessary. It is not obvious if the context composition of modules is applicable
because it requires that related modeling artifacts exist in a transitive contain-
ment hierarchy. Yet, a major open challenge is to support not only the initial
application of model transformations but also to reapply model transformations.
For example, an incremental re-execution based on changes.

References

1. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science 152, 125–142 (2006)

2. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–
579. Springer, Heidelberg (2010)

3. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006.
LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

4. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline
of Computer Program and Systems Design, 1st edn. Prentice-Hall, Inc., Upper
Saddle River (1979)

5. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

6. AUTOSAR: Specification of Timing Extensions V1.1.0 R4.0 Rev 2 (2010),
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf

7. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

8. Oldevik, J.: Transformation Composition Modelling Framework. In: Kutvonen, L.,
Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108–114. Springer, Heidel-
berg (2005)

9. openArchitectureWare: The modeling workflow engine (2011),
http://www.eclipse.org/modeling/emft/?project=mwe

10. Kleppe, A.: MCC: AModel Transformation Environment. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173–187. Springer, Heidelberg
(2006)

11. Wagelaar, D.: Blackbox composition of model transformations using domain-
specific modelling languages. In: Kleppe, A. (ed.) First European Workshop on
Composition of Model Transformations, CMT 2006, pp. 15–19. Centre for Telem-
atics and Information Technology, University of Twente, Enschede (2006)

http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
http://www.eclipse.org/modeling/emft/?project=mwe

A Dedicated Language for Context Composition and Execution 39

12. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter, T.: Auto-
mated model driven development processes. In: Proc. of the ECMDA Workshop
on Model Driven Tool and Process Integration. Fraunhofer IRB Verlag, Stuttgart
(2008)

13. Etien, A., Muller, A., Legrand, T., Blanc, X.: Combining independent model trans-
formations. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC 2010, pp. 2237–2243. ACM, New York (2010)

14. Heidenreich, F., Kopcsek, J., Aßmann, U.: Safe Composition of Transformations.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 108–122.
Springer, Heidelberg (2010)

15. Cuadrado, J., Molina, J.: Modularization of model transformations through a phas-
ing mechanism. Software and Systems Modeling 8(3), 325–345 (2009)

16. Vanhooff, B., Van Baelen, S., Joosen, W., Berbers, Y.: Traceability as Input for
Model Transformations. In: Proc. of 3rd Workshop on Traceability (ECMDA-TW),
June 11-15, pp. 37–46. SINTEF, Haifa (2007)

17. Kolovos, D.S., Paige, R., Polack, F.: A Framework for Composing Modular and
Interoperable Model Management Tasks. In: MDTPI Workshop, EC-MDA, Berlin,
Germany (June 2008)

18. Object Management Group: MOF 2.0 QVT 1.0 Specification (2008)

An Algorithm for Layout Preservation
in Refactoring Transformations

Maartje de Jonge and Eelco Visser

Dept. of Software Technology, Delft University of Technology, The Netherlands
m.dejonge@tudelft.nl, visser@acm.org

Abstract. Transformations and semantic analysis for source-to-source transfor-
mations such as refactorings are most effectively implemented using an abstract
representation of the source code. An intrinsic limitation of transformation tech-
niques based on abstract syntax trees is the loss of layout, i.e. comments and
whitespace. This is especially relevant in the context of refactorings, which pro-
duce source code for human consumption. In this paper, we present an algorithm
for fully automatic source code reconstruction for source-to-source transforma-
tions. The algorithm preserves the layout and comments of the unaffected parts
and reconstructs the indentation of the affected parts, using a set of clearly defined
heuristic rules to handle comments.

1 Introduction

The successful development of new languages is currently hindered by the high cost of
tool building. Developers are accustomed to the integrated development environments
(IDEs) that exist for general purpose languages, and expect the same services for new
languages. For the development of Domain Specific Languages (DSLs) this require-
ment is a particular problem, since these languages are often developed with fewer
resources than general purpose languages. Language workbenches aim at reducing that
effort by facilitating efficient development of IDE support for software languages [10].
The Spoofax language workbench [12] generates a complete implementation of an edi-
tor plugin with common syntactic services based on the syntax definition of a language
in SDF [23]. Services that require semantic analysis and/or transformation are imple-
mented in the Stratego transformation language [3]. We are extending Spoofax with a
framework for the implementation of refactorings.

Refactorings are transformations applied to the source code of a program. Source
code has a formal linguistic structure [6] defined by the programming language in which
it is written, which includes identifiers, keywords, and lexical tokens. Whitespace and
comments form the documentary structure [6] of the program that is not formally part
of the linguistic structure, but determines the visual appearance of the code, which is
essential for readability. A fundamental problem for refactoring tools is the informal
connection between linguistic and documentary structure.

Refactorings transform the formal structure of a program and are specified on the ab-
stract syntax tree (AST) representation of the source code, also used in the compiler for
the language. Compilers translate source code from a high-level programming language

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 40–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Algorithm for Layout Preservation in Refactoring Transformations 41

to a lower level language (e.g., assembly language or machine code), which is intended
for consumption by machines. In the context of compilation, the layout of the output is
irrelevant. Thus, compiler architectures typically abstract over layout. Comments and
whitespace are discarded during parsing and are not stored in the AST.

In the case of refactoring, the result of the transformation is intended for human
consumption. Contrary to computers, humans consider comments and layout important
for readability. Comments explain the purpose of code fragments in natural language,
while indentation visualizes the hierarchical structure of the program. Extra whitespace
helps to clarify the connections between code blocks. A refactoring tool that loses all
comments and changes the original appearance of the source code completely, is not
useful in practice.

The loss of comments and layout is an intrinsic problem of AST-based transforma-
tion techniques when they are applied to refactorings. To address the concern of layout
preservation, these techniques use layout-sensitive pretty-printing to construct the tex-
tual representation [13,14,16,18,20]. Layout is stored in the AST, either in the form
of special layout nodes or in the form of tree annotations. After the transformation,
the new source code is reconstructed entirely by unparsing (or pretty-printing) of the
transformed AST. This approach is promising because it uses language independent
techniques. However, preservation of layout is still problematic. Known limitations are
imperfections in the whitespace surrounding the affected parts (indentation and inter-
token layout), and the handling of comments, which may end up in the wrong locations.
The cause of these limitations lies in the orthogonality of the linguistic and documen-
tary structure; projecting documentary structure onto linguistic structure loses crucial
information (Van De Vanter [6]).

In this paper, we address the limitations of existing approaches to layout preservation
with an approach based on automated text patching. A text patch is an incremental mod-
ification of the original text, which can consist of a deletion, insertion or replacement
of a text fragment at a given location. The patches are computed automatically by com-
paring the terms in the transformed tree, with their original term in the tree before the
transformation. The changes in the abstract terms are translated to text patches, based
on origin tracking information, which relates transformed terms to original terms, and
original terms to text positions [22]. A layout adjustment strategy corrects the whites-
pace at the beginning and end of the changed parts, and migrates comments so that they
remain associated with the linguistic structures to which they refer. The layout adjust-
ment strategy uses explicit, separately specified layout handling rules that are language
independent. Automated text patching offers more flexibility regarding layout handling
compared to the pretty-print approach. At the same time, the layout handling is lan-
guage generic and fully automatic, allowing the refactoring developer to abstract from
layout-specific issues.

The paper provides the following contributions:

– A formal analysis of the layout preservation problem, including correctness and
preservation proofs for the reconstruction algorithm;

– A set of clearly defined heuristic rules to determine the connection of layout with
the linguistic structure;

42 M. de Jonge and E. Visser

– An algorithm that reconstructs the source code when the underlying AST is changed.
The algorithm maximally preserves the whitespace and comments of the program
text.

We start with a formalization of the problem of layout preservation. Origin tracking is
introduced in Section 3. Section 4 explains the basic reconstruction algorithm, refined
with layout adjustment and comment heuristics in Section 5. Finally, in Section 6 we
report on experimental results.

2 Layout Preservation in Refactoring

Refactorings are behavior-preserving source-to-source transformations with the objec-
tive to ‘improve the design of existing code’ [9]. Although it is possible to refactor
manually, tool support reduces evolution costs by automating error-prone and tedious
tasks. Refactoring tools automatically apply modifications to the source code, attempt-
ing to preserve the original layout, which is not trivial to accomplish.

2.1 Example

We discuss the problems related to layout preservation using an example in WebDSL, a
domain specific language for web applications [24]. Extract-entity is a refactoring im-
plemented for WebDSL, Figure 1 shows the textual transformation. The required source
code modifications are non trivial. A new entity (Account) is created from the selected
properties, and inserted after the User entity. The selected properties are replaced by a
new property that refers to the extracted entity. Comments remain attached to the code
structures to which they refer. Thus, the comments in the selected region are moved
jointly with the selected properties. Furthermore, the comment /*Blog Info*/ still
precedes the Blog entity. The layout of the affected parts is adjusted to conform to the
style used in the rest of the file. In particular, indentation and a separating empty line
are added to the inserted entity fragment.

entity User {
name : String

//account info

pwd : String //6ch

user : String

expire : Date
}

/*Blog info*/
entity Blog { ... }

entity User {
name : String
account : Account
expire : Date

}

entity Account {
//account info
pwd : String //6ch
user : String

}

/*Blog info*/
entity Blog { ... }

Fig. 1. Textual transformation

An Algorithm for Layout Preservation in Refactoring Transformations 43

[Entity(
"User"

, [Prop("name", "String")
, Prop("pwd", "String")
, Prop("user", "String")
, Prop("expire", "Date")])

,Entity("Blog", [...])]

Fig. 2. Abstract syntax

Figure 2 displays the abstract syntax of the program
fragment. Abstract syntax trees represent the formal
structure of the program, abstracting from comments
and layout. Automatic refactorings are typically de-
fined on abstract syntax trees; the structural represen-
tation of the program is necessary to reliably perform
the analyses and transformations needed for correct ap-
plication. Moreover, abstracting from the arbitrary lay-
out of the source code simplifies the specification of the
refactoring.

2.2 Problem Analysis

The refactoring transformation applied to the AST results in a modified abstract syntax
tree. The AST modifications must be propagated to the concrete source text in order

Fig. 3. Unparsing

to restore the consistency between the concrete and ab-
stract representation. Figure 3 illustrates the idea. S and
T denote the concrete and the abstract representation of
the program, the PARSE function maps the concrete repre-
sentation into the abstract representation, while TRANSF

applies the transformation to the abstract syntax tree. To
construct the textual representation of the transformed
AST, an UNPARSE function must be implemented that
maps abstract terms to strings.

The PARSE function is surjective, so for each well-
formed abstract syntax term t, there exists at least one string that forms a tex-
tual representation of t. An UNPARSE function can be defined that constructs such
a string [21]. The PARSE function is not injective; strings with the same linguis-
tic structure but different layout are mapped to the same abstract structure, that is
∃s : UNPARSE(PARSE(s)) �= s. It follows that layout preservation can not be achieved
by a function that only takes the abstract syntax as input, without having access to the
original source text.

In the context of refactoring, it is required that the layout of the original text is pre-
served. A text reconstruction function that maps the abstract syntax tree to a concrete
representation must take the original text into account to preserve the layout (Figure 4).
We define two criteria for text reconstruction:

Correctness. PARSE(CONSTRTEXT(TRANSF(PARSE(s)))) = TRANSF(PARSE(s))

Preservation. CONSTRTEXT(PARSE(s)) = s

Fig. 4. Text reconstruction

The correctness criterion states that text reconstruction
followed by parsing is the identity function on the AST
after transformation. The preservation criterion states that
parsing followed by text reconstruction returns the origi-
nal source text. Preservation as defined above only covers
the identity transformation. Section 4 gives a more pre-
cise criterion that defines preservation in the context of
(non-trivial) transformations.

44 M. de Jonge and E. Visser

The layout preservation problem falls in the wider category of view update problems.
Foster et al. [8] define a semantic framework for the view update problem in the context
of tree structured data. They introduce lenses, which are bi-directional tree transfor-
mations. In one direction (GET), lenses map a concrete tree into a simplified abstract
tree, in the other direction (PUTBACK), they map a modified abstract view, together
with the original concrete tree to a correspondingly modified concrete tree. A lens is
well-behaved if and only if the GET and PUTBACK functions obey the following laws:
GET(PUTBACK(t, s)) = t and PUTBACK(GET(s), s) = s. These laws resemble our
correctness and preservation criterion. Indeed, the bi-directional transformation PARSE,
CONSTRUCTTEXT forms a well-behaved lens.

3 Origin Tracking

Text reconstruction implements an unparsing strategy by applying patches to the origi-
nal source code. The technique requires a mechanism to relate nodes in the transformed
tree to fragments in the source code. This section describes an infrastructure for preserv-
ing origin information. Figure 5 illustrates the internal representation of the source code.
The program structure is represented by an abstract syntax tree (AST). Each node in the
AST keeps a reference to its leftmost and rightmost token in the token stream, which
in turn keep a reference to their start and end offset in the character stream. Epsilon
productions are represented by a token for which the start- and end- offset are equal.
This architecture makes it possible to locate AST-nodes in the source text and retrieve
the corresponding text fragment. The layout structure surrounding the text fragment is
accessible via the token stream, which contains layout and comment tokens.

When the AST is transformed during refactoring, location information is automati-
cally preserved through origin tracking (Figure 6, dashed line arrows). Origin tracking
is a general technique which relates subterms in the resulting tree back to their orig-
inating term in the original tree. The rewrite engine takes care of propagating origin
information, such that nodes in the new tree point to the node from which they origi-
nate. Origin tracking is introduced by Van Deursen et al. in [22], and implemented in
Spoofax [12]. We implemented a library for retrieving origin information. The library

Fig. 5. Internal representation Fig. 6. Origin tracking

An Algorithm for Layout Preservation in Refactoring Transformations 45

exposes the original node, its associated source code fragment, and details about sur-
rounding layout such as indentation, separating whitespace and surrounding
comments.

4 Layout Preservation for Transformed AST

In this section we describe the basic reconstruction algorithm and prove correctness and
preservation.

4.1 Formalization

We introduce a formal notation for terms in concrete and abstract syntax, which stresses
the correspondence between both representations. Given a grammar G, let SG be the
set of strings that represent a concrete syntax (sub)tree, and let TG be the set of well-
formed abstract syntax (sub)trees. We use the following notation for tree structures:
(t, [t0...tk]) ∈ TG denotes a term t ∈ TG with subterms [t0...tk] ∈ TG (ti denotes the
subterm at the ith position). Equivalently, (s, [s0...sk]) ∈ SG means a string s ∈ SG

with substrings [s0...sk] ∈ SG, so that each si represents an abstract term ti ∈ TG,
and s represents a term (t, [t0...tk]) ∈ TG. Terms are characterized by their signature,
consisting of the constructor name and the number of subterms and their sorts. When the
constructor of a term is important, it is added in superscript ((xN , [x0, ...xk])). Finally,
for list terms the notation [x0, ...xk] is used as short notation for (x[], [x0, ...xk]), leaving
out the list constructor node.

We define the following operations on SG and TG, using the subscripts S and T to
specify on which term representation the operation applies. Given a term (x, [x0...xk])
with subterm xi, then R(xi, xnew)(x) replaces the subterm at position i with a new
term xnew in term x. In case x is a list, additional operations are defined for deletion
and insertion. D(xi)(x) defines the deletion of the subterm at position i in x, while
IB(xi, xnew)(x) and IA(xi, xnew)(x) define the insertion of xnew before (IB) or after
(IA) the ith element.

Assumption 1. Let PRS : SG → TG the parse function that maps concrete terms onto
their corresponding abstract terms. PRS is a homomorphism on tree structures.

The text reconstruction algorithm translates the transformation in the abstract represen-
tation to the corresponding transformation in the concrete representation. This transla-
tion essentially exploits the homomorphic relationship between abstract and concrete
terms. The applicability of the homomorphism assumption and techniques to overcome
exceptional cases are discussed later in this section.

Lemma. Let PRS : SG → TG the parse function, and assume PRS : SG → TG is a
homomorphism on tree structures. Then the following equations hold:

L 1. PRS ◦ RS(s
′
i, si)(s) = RT (PRS(s′i), PRS(si)) ◦ PRS(s)

L 2. PRS ◦ DS(s
′
i)(s) = DT (PRS(s′i)) ◦ PRS(s)

L 3. PRS ◦ IBS(s
′
i, si)(s) = IBT (PRS(s′i), PRS(si)) ◦ PRS(s)

46 M. de Jonge and E. Visser

L 4. PRS ◦ IAS(s
′
i, si)(s) = IAT (PRS(s′i), PRS(si)) ◦ PRS(s)

Proof. This follows from the assumption that PRS is a homomorphism on tree struc-
tures.

Definition. Given the functions PRS : SG → TG, PP : TG → SG, ORTRM : TG →
TG, ORTXT : TG → SG, with PP a pretty-print function and ORTRM and ORTXT

functions that return the origin term respectively the origin source fragment of a term.
The following properties hold:

D 1. ORTRM(PRS(s)) = PRS(s)

D 2. ORTXT(PRS(s)) = s

D 3. PRS(ORTXT(ORTRM(t))) = ORTRM(t)

D 4. PRS(PP(t)) = t

D 5. PP(s) = s for all string terms s

4.2 Algorithm

We define an algorithm that reconstructs the source code after the refactoring trans-
formation (Figure 8). CONSTRUCTTEXT(node) takes an abstract syntax term as input
and constructs a string representation for this term. Three cases are distinguished; re-
construction for nodes (l. 1-5), reconstruction for lists (l. 6-11), and pretty printing in
case the origin term is missing, i.e. when a term is newly created in the transformation
(l. 12-14). We discuss those cases.

If an origin term with the same signature exists (l. 2-3), the text fragment is recon-
structed from the original text fragment, corrected for possible changes in the subterms.
The function RS(t

′
i, ti) : String → String subsequently replaces the substrings that

represent original subterms with substrings for the new subterms constructed by a re-
cursive call to CONSTRUCTTEXT (l. 5). The (relative) offset is used to locate the text
fragment associated to the original subterm (ORTXT(t′i)), this detail is left out of the
pseudo code.

Text reconstruction for list terms (line 6-11) implements the same idea, except that
the changes in the subterms may include insertions and deletions. The textual modi-
fications are calculated by a differencing function (DIFF) and subsequently applied to
the original list fragment (line 11). The DIFF function matches elements of the new list
with their origin term in the original list; the matched elements are returned as replace-
ments (line 25), the unmatched elements of the old list form the deletions (lines 21, 29),
while the insertions consist of the unmatched elements in the new list (lines 23, 30). It
is crucial that the elements of the new list are correctly matched with related elements
from the old list, since they automatically adopt the surrounding layout at the position
of the old term, which may contain explanatory comments.

New terms are reconstructed by pretty-printing. To preserve the layout of subterms
associated with an origin fragment, the pretty print function is applied after replacing
the subterms with their textual representation, constructed recursively (line 14).

An Algorithm for Layout Preservation in Refactoring Transformations 47

entity Account {
//account info
pwd : String //6c
user : String

}

Account //account info
pwd : String //6c
user : String

pwd : String

pwd String

user : String

user String

Fig. 7. Reconstruction example

The reconstruction algorithm implements a postorder traversal of the transformed
abstract syntax tree, constructing the text fragment of the visited term from the text frag-
ments of its subterms that were already constructed in the traversal. Figure 7 illustrates
the reconstruction of the account entity. The substrings printed in bold are constructed
by traversing the subterms, while the surrounding characters are either retrieved from
the origin fragment, or constructed by pretty printing.

4.3 Correctness

We prove correctness of CONSTRUCTTEXT : TG → SG (Figure 8, abbreviated as CT),
assuming that PARSE : SG → TG is a homomorphism on tree structures.

Theorem (Correctness). ∀t ∈ TG PARSE(CT(t)) = t

The proof is by induction on tree structures. We distinguish two cases for the leaf nodes,
dependent on whether an origin term exists with the same signature.

Base case (a). Let t = (tN , []) a leaf node with origin term (tN , []).

PRS(CT(t)) =line 5 PRS(ORTXT(ORTRM(t))) =D 3 ORTRM(t) = (tN , [])

Base case (b). Let (t, []) a leaf node for which no origin term exists.

PRS(CT(t)) =line13−14 PRS(PP(t)) =D 4 t

IH. PARSE(CT(ti)) = ti holds for all subterms t0 to tk of a term (t, [t0, ..., tk]).

We now proof the induction step PARSE(CT(t)) = t.

Induction step (a). Assuming the induction hypothesis, we first prove a property of text
modification operations as applied in lines 5, 11.

48 M. de Jonge and E. Visser

CONSTRUCTTEXT(term)� Abbreviated as CT

1 if
2 (tN , [t0, ...tk]) ← term

3 (t′N , [t′0, ...t
′
k]) ← ORTRM(term)

4 then � Term with origin info
5 return RS(ORTXT(t ′0), CT(t0)) ◦ · · · ◦RS(ORTXT(t′k), CT(tk))

◦ ORTXT(ORTRM(term))

6 else if
7 [t0, ...tk] ← term

8 [t′0, ...t
′
j] ← ORTRM(term)

9 then � List term
10 [MOD0, ...MODz] ← DIFF(ORTRM(term), term)

11 return MOD0 ◦ · · · ◦ MODz(ORTXT(ORTRM(term)))

12 else � New constructed term
13 (tN , [t0, ...tk]) ← term

14 return PP ◦ RT (t0, CT(t0)) ◦ · · · ◦ RT (tk , CT(tk))(tN)

DIFF(originLst, newLst)

15 diffs,unmatched ← []

16 for each el in newLst do
17 if ORTRM(el) ∈ originLst then
18 el ′ ← ORTRM(el)

19 if PREFIX(el ′, originLst) �= [] then
20 deletedElems ← PREFIX(el ′, originLst)
21 diffs ← DS(ORTXT(deletedElems)) :: diffs

22 if unmatched �= [] then
23 diffs ← IBS(ORTXT(el′), CT(unmatched)) :: diffs

24 unmatched ← []

25 diffs ← RS(ORTXT(el′), CT(el)) :: diffs
26 originLst ← SUFFIX(el ′, originLst)
27 else
28 unmatched ← unmatched ::: [el]

29 diffs ← DS(ORTXT(originLst)) :: diffs

30 diffs ← IAS(ORTXT(originLst), CT(unmatched)) :: diffs

31 return REVERSE(diffs)

Fig. 8. Pseudo code reconstruction algorithm

p 1. Given a concrete syntax term (s, [...ORTXT(t′i)...]). The following holds for mod-
ification operations MOD ∈ R, IB, IA, D.
PRS ◦ MODS(ORTXT(t′i), CT(ti))(s) =L 1,L 2,L 3,L 4

MODT (PRS ◦ ORTXT(t′i), PRS ◦ CT(ti)) ◦ PRS(s) =D 3,IH

MODT (t
′
i, ti) ◦ PRS(s)

We prove the induction step for constructor terms (tN) below, the proof for list terms
follows the same logic. Let t = (tN , [t0...tk]) a term with origin term t′=(t′N , [t′0...t′k]).
PRS ◦ CT(t) =line 5−6

An Algorithm for Layout Preservation in Refactoring Transformations 49

PRS ◦ RS(ORTXT(t′0), CT(t0))... ◦ RS(ORTXT(t′k), CT(tk)) ◦ ORTXT(t′) =p 1

RT (t
′
0, t0) ◦ ... ◦ RT (t

′
k, tk) ◦ PRS ◦ ORTXT(t′) = D 3

RT (t
′
0, t0) ◦ ... ◦ RT (t

′
k, tk)(t

′N , [t′0...t
′
k]) = (tN , [t0...tk]) = t

Induction step (b). First, we prove a property for pretty printing.

p 2. PRS ◦ PP ◦ RT (t
′
i, ti)(t) =

D 4

RT (t
′
i, ti)(t) =

D 4

RT (PRS ◦ PP(t′i), PRS ◦ PP(ti)) ◦ PRS ◦ PP(t) =L 1

PRS ◦ RS(PP(t′i), PP(ti)) ◦ PP(t)

Let (t, [t0...tk]) a node for which no origin term exists.
PRS ◦ CT(t) =line 14

PRS ◦ PP ◦ RT (t0, CT(t0)) ◦ ... ◦ RT (tk, CT(tk))(t) =p 2

PRS ◦ RS(PP(t0), PP ◦ CT(t0)) ◦ ... ◦ RS(PP(tk), PP ◦ CT(tk)) ◦ PP(t) =L 1,D 5

RT (PRS◦PP(t0), PRS◦CT(t0))◦...◦RT (PRS◦PP(tk), PRS◦CT(tk))◦PRS◦PP(t) =D 4,IH

RT (t0, t0) ◦ ... ◦ RT (tk, tk)(t) =
D 4 t

Applicability. The correctness proof depends on the assumption that parsing is a homo-
morphism on tree structures, we discuss two common exceptions. Tree structures in the
concrete syntax representation can be ambiguous, in which case the parse result is deter-
mined by disambiguation rules. Syntactic ambiguities invalidate the homomorphic na-
ture of the parse function. For instance, “2∗4+5”, is parsed as (tPlus, [(tMult, [2, 4]), 5]),
while the alternate parse ((tMult, [2, (tPlus, [4, 5])])) is rejected. Thus, bottom up text
reconstruction fails to produce the correct code fragment for (tMult, [2, (tPlus, [4, 5])])
in case (tPlus, [4, 5]) is reconstructed as “4+5” instead of “(4+5)”. To guarantee cor-
rectness, a preprocessor step is required that adds parentheses at the necessary places
in the tree, where text reconstruction does not yield an expression between parentheses.
The rules for parentheses insertion can be derived from the syntax definition [21]. This
approach is taken in GPP [4], the generic pretty printer that is used in Spoofax. Another
exception with respect to the homomorphism property concerns separation between list
elements. When a list element is inserted (or deleted), it must be inserted (deleted) in-
clusive a possible separator, which is determined by the parent node. The separation is
retrieved from the original source text in case the origin list has two or more elements,
otherwise its looked up in the pretty-print table, based on te signature of the parent term.

4.4 Layout Preservation

Abstract syntax terms in general have multiple textual representations. These represen-
tations differ in the use of layout between the linguistic elements. In addition, small
differences may occur in the linguistic elements; typically the use of braces is optional
in some cases. We introduce the notion of formatting that covers these differences. Then
we prove that the text reconstruction algorithm preserves formatting for terms that are
not changed in the transformation, although they may have changes in their subterms.

50 M. de Jonge and E. Visser

Definition. Given (s, [s0, ...sk]) ∈ SG. The formatting of s is defined as the list con-
sisting of the substring preceding s0, the substrings that appear between the subterms
s0, ...sk, plus the substring succeeding sk

Theorem (Maximal Layout Preservation). Let t ∈ TG with origin term ORTRM(t) ∈
TG. If t and ORTRM(t) have the same signature, then CT(t) and ORTXT(ORTRM(t))
have the same formatting.

Proof. Let (tN , [t0...tk]) a term with origin term (t′N , [t′0...t
′
k]), then CT(t) =

RS(ORTXT(t′0), CT(t0)) ◦ ... ◦ RS(ORTXT(t′k), CT(tk)) ◦ ORTXT(ORTRM(t)).
Since RS only affects the substrings that represent the child nodes, the formatting of
the parent string is left intact. For list terms: Let t = [t0...tk] a list with origin term
ORTRM(t) = [t0...tl], then CT(t) = MODt′0 ◦ ... ◦ MODt′

l
◦ ORTXT(ORTRM(t))

MODt′i ∈ {RS , DS , IBS , IAS}. By definition, the modification functions affect the
substrings representing the child nodes, or insert a new substring. In both cases the
formatting of the parent string is preserved.

5 Whitespace Adjustment and Comment Migration

The algorithm of Figure 8 preserves the layout of the unaffected regions, but fails to
manage spacing and comments at the frontier between the changed parts and the un-
changed parts. Figure 9 shows the result of applying the algorithm to the refactoring
described in section 2 (Figure 1). Comments end up at the wrong location (//account
info, /*Blog info*/), the whitespace separation around the account property and
Account entity is not in accordance with the separation in the original text, and the
indentation of the Account entity is disorderly.

The algorithm in Figure 8 translates AST-changes to modifications on code
structures, but ignores the layout that surrounds these structures. To overcome this
shortcoming, we refine the implementation of the algorithm so that whitespace and

entity User {
name : String
//account info

account : Account expire : Date
}

/*Blog info*/
entity Account {
password : String //6 chars
username : String

}entity Blog { ... }

Fig. 9. Layout deviation

IBADJUSTED(told, tnew)

1 text ← CT(tnew)

2 text ← REMOVEINDENT(text)

3 text ← ADDINDENT(

text,

ORIGININDENT(told))

4 text ← CONCATSTRINGS([

text,

ORSEPARATION(told)])

5 offset ← OFFSETWITHLO(told)
6 return IBS(offset , text)

Fig. 10. Layout adjustment function

An Algorithm for Layout Preservation in Refactoring Transformations 51

/**
* Processes income data and displays statistics #1
*/
public static void displayStatistics(Scanner input) {

//Initialize variables #2a
int count = 0; // Number of values #3a
double total = 0; // Sum of all incomes #3b

//Process input values until EOF #2b
System.out.println("Enter income values");
while (input.hasNextDouble()) {

double income = input.nextDouble();
//System.out.println("processing: " + income); #4
if(income>=0){

count++; // Keep track of count
total += income; // and total income #5

}
}

//Display statistics #2c
double average = calcAverage(count, /*sum*/ total); #6
System.out.println("Number of values = " + count);
System.out.println("Average = " + average);

}

Fig. 11. Comment styles

comments are migrated together with their associated code structures. This is imple-
mented by using the layout-sensitive versions of the origin tracking functions to access
origin fragments and locate textual changes. Language generic layout adjustment func-
tions are implemented that correct the whitespace of reconstructed fragments, so that
the spacing of the surrounding code is adopted. In particular, an inserted fragment is
indented and separated according to the layout of the adjacent nodes. Figure 10 shows
the layout adjustment steps for IBS . First, the text is reconstructed with its associated
comments. Then, the existing separation and (start)indentation is removed, leaving the
nesting indentation intact. Subsequently, the start indentation at the insert location is
retrieved from the adjacent term (told) and appended to all lines. Finally, separation is
added (retrieved by inspecting the layout surrounding told) to separate the node from its
successor.

5.1 Comment Heuristics

Comment migration requires a proper interpretation of how comments attach to the
linguistic structure, which is problematic because of the informal nature of comments.
The use of comments differs, depending on style conventions for a particular language
and the personal preference of the programmer. Van De Vanter [6] gives a detailed
analysis.

Figure 11 illustrates the use of comments with different style conventions used in
combination. Fragment #1 is a block comment that explains the purpose of the accom-
panying method. The comment resides in front of its structural referent. This is also

52 M. de Jonge and E. Visser

the case for the comments in #2a,b,c. However, these comments do not attach to a sin-
gle structure element, but instead relate to a group of statements. The blank lines that
surround these grouped statements are essential in understanding the scope of the com-
ments. Contrary to the previous examples, the line comment in #3 points backwards to
the preceding statement. #6 provides an example of a comment in the context of list
elements separated by a comma. In this case, the location of the comma determines
whether the comment points forward or backward. The commented-out println state-
ment in #4 does not have a structural referent. It can best be seen as lying between the
surrounding code elements. Finally, #5 illustrates a single comment that is spread over
two lines. A human reader will recognize it as a single comment, although it is struc-
turally split in two separate parts. In this case, the vertical alignment hints at the fact
that both parts belong together.

Figure 11 makes clear why attaching comments to AST nodes is problematic. The
connection of comments with AST-nodes only becomes clear when taking into account
the full documentary structure, including newlines, indentation and separator tokens.
Comments can point forward, as well as backward and, purely based on analysis of the
tree structure, it is impossible to decide which one is the case. Even more problematic
are #2 and #4; both comment lines lack an explicit referent in terms of a single AST
node. The former refers to a sublist, while the latter falls between the surrounding nodes.

Text reconstruction allows for a more flexible approach towards the interpretation
of comments. Instead of a fixed mapping between comments and AST nodes, heuristic
rules are defined that interpret the documentary structure around the moved AST-part.
Comment heuristics are defined as layout patterns using newlines, indentation, and sep-
arators as building blocks (Figure 12). If a pattern applies to a given node (or group of
nodes), the node is considered as the structural referent of the comment(s) that take part
in the pattern. The binding heuristics have the following effect on the textual transfor-
mation; if a node / group of nodes is (re)moved, all adjacent comments that bind to the
node(s) are (re)moved as well. Adjacent comments that do not bind, stay at their orig-
inal position in the source code. Comments that lie inside the region of the migrated
node(s) automatically migrate jointly.

The patterns in Figure 12 handle the majority of comment styles correctly. The com-
ment styles in Figure 11 are recognized by the patterns, with the exception of vertical
alignment (#5), which is not detected. Preceding(1) binds #1 to the displayStatistics
method, and #2a,b,c to the statement groups they refer to. #3 is interpreted by Succeed-
ing(1). None of the patterns applies to #4, which indeed neither binds to the preceding
nor to the succeeding node. The comment in #6 is associated with the succeeding node
by application of Preceding(2). Finally, #5 is associated to its preceding statement, but
not recognized as a single comment spread over two lines.

Heuristic rules will never handle all cases correctly; ultimately, it requires under-
standing of the natural language to decide the meaning of the comment and how it
relates to the program structure. While our experience so far suggests that the heuris-
tics are adequate, further experience with other languages, other refactorings, and other
code bases is needed to determine whether these rules are sufficient.

An Algorithm for Layout Preservation in Refactoring Transformations 53

Preceding(1):

<newline OR lower-indent><newline>
<comments><newline>
<nodes><newline>
<newline OR lower-indent>

Preceding(2):

<separator><comments><node>

Succeeding(1):

<node><comments><newline>

Succeeding(2):

<node><comments><separator>

Succeeding(3):

<node><separator><comments><newline>

{

/*..*/

int i

int j

}

int i, /*..*/ int j

int i /*..*/

int j

int i /*..*/ , int j

int i, /*..*/

int j

Fig. 12. Comment patterns

6 Evaluation

We implemented the layout preservation algorithm in Spoofax [12], the sources of the
library are available on-line [2]. We successfully applied the algorithm to renaming,
extraction and inlining refactorings defined in WebDSL [24], MoBL [11] and Strat-
ego [3]. In addition, we applied the algorithm to the Java refactorings mentioned in this
section. For future work we will implement more refactorings and we will experiment
with different languages and layout conventions.

Van De Vanter [6] points out the importance of the documentary structure for the
comprehensibility and maintainability of source code. The paper gives a detailed analy-
sis of the documentary structure consisting of indentation, line breaks, extra spaces and
comments. The paper sketches the prerequisites for a better layout handling by trans-
formation tools. We use the examples and requirements pointed out by Van De Vanter
to provide a qualitative evaluation of our approach.

It is impossible for automatic tools to handle all layout correctly. After all, textual
comments are written for human beings. Ultimately, comments can only be related to
the code by understanding natural language. Therefore, instead of trying to prove that
our tool handles layout correctly, we show that our approach meets practical standards
for refactoring tools. We compare the layout handling of our technique with the refactor-
ing support in Eclipse Java Development Tools (JDT), which is widely used in practice.
We use a test set consisting of Java fragments with different layout styles. This set in-
cludes test cases for indentation and separating whitespace, as well as test cases for
different comment styles, covering all comment styles discussed by Van De Vanter [6]
and illustrated in Figure 12.

The results are summarized in Table 1; + means that the layout is accurately handled,
-/+ indicates some minor issues, while - is used in case more serious defects were
found. A minor issue is reported when the layout is acceptable but doen not precisely

54 M. de Jonge and E. Visser

Table 1. Layout Preservation Results

Cat. Description E CT

1 P1 Inline on method preceded by block comment + +
2 Inline on method preceded by a commented-out method - +
3 Move method preceded by multiple comments + +
4 Convert-to-field on the first statement of a group preceded by a com-

ment
- +

5 Convert-to-field on statement below commented-out line - +

6 P2 Change method signature + +

7 S1 Extract method, last stm ends with line comments + +
8 Extract method, preceding stm ends with line comments + +
9 Convert-to-field, decl with succeeding line comments - +

10 S2 Change method signature + +

11 S3 Change method signature -/+ -/+

12 Inside Extract method with comments in body + +
13 Inline method with comments in body + +

14 Selection Extract method, preceding comments in selection + +
15 Extract method, preceding comments outside selection + +

16 Indent Extract method, code style follows standards + +
17 Extract method, code style deviates from standards - -/+

18 Sep. ws Extract method, code style follows standards + +
19 Extract method, code style deviates from standards -/+ +

20 Format Extract method, standard code style + +
21 Extract method, code style deviates from standard -/+ -/+

22 V. align Renaming so that v. alignment of “=” is spoiled - -
23 Renaming so that v. alignment of comments is spoiled - -

E : Eclipse Helios (3.6.2)

CT: Text Construction

follows the style used in the rest of the code, a serious defect is reported in case the
layout is untidy or when comments are lost. The results show that our approach handles
layout adequately in most cases. Different comment styles are supported (1-15), and
the adjustment of whitespace gives acceptable results (16-19). 17, 19, and 23 show that
variations in code style only led to some minor issues. For example in 17, the indent
of the new inserted method correctly follows the indentation of the adjacent methods,
but the indentation in the body follows the style defined in the pretty-print definition.
Vertical alignment (22, 23) is not restored. A possible improvement is to restore vertical
alignment in a separate phase, using a post processor.

Eclipse does not implement the same refined heuristic patterns as our technique,
which explains the deviating results in 2, 4, and 5. In those three cases, the comments
were incorrectly associated with the moved code structures and, consequently, did not
remain at their original location. In all three cases the comment did not show up in the
modified source code. In 9, the comment was not migrated to the new inserted field,

An Algorithm for Layout Preservation in Refactoring Transformations 55

although it was (correctly) associated to the selected variable declaration. The reason is
that the relation between the inserted field and the deleted local variable is not set. In
our implementation, the origin tracking mechanism keeps track of this relation. Eclipse
uses editor settings to adjust the whitespace surrounding new inserted fragments, which
works well under the condition that the file being edit adopts these settings.

We implemented a general solution for layout preservation with the objective to sup-
port the implementation of refactorings for new (domain specific) languages. Using our
approach, the layout preservation is not a concern for the refactoring programmer but
it is automatically provided by the reconstruction algorithm. The evaluation indicates
that our generic approach produces results of comparable and in some cases even better
quality then refactorings implemented in current IDEs.

7 Related Work

We implemented an algorithm for layout preservation in refactoring transformations.
Instead of trying to construct the entire source code from the AST, the algorithm uses
the original source text to construct the text for the transformed AST. Origin tracking
is used to relate terms in the AST with their original code fragments, while internal
changes are propagated and applied as text patches. As a result, the original layout is
preserved for the unaffected parts of the program. The main challenge is the treatment
of spacing and comments on the frontier between the changed and the unchanged code.
Layout adjustment functions correct the whitespace of reconstructed fragments, so that
the spacing of the surrounding code is adopted. Comments are migrated according to
their intent. We define heuristic patterns for comment binding, that interpret the docu-
mentary structure near the node. The comment patterns are flexible in the sense that they
do not assume a one-to-one relation between comments and AST nodes. The heuristic
rules are language generic and cover the layout styles commonly seen in practice.

7.1 AST Approaches

Various attempts have been made to address the concern of appearance preservation by
adding layout information to the AST. For a complete reconstruction, all characters that
do not take part in the linguistic structure should be stored. This includes whitespace,
comments and (redundant) parentheses. The modified source code is reconstructed from
the transformed AST by layout-aware pretty printing [5].

Van den Brand and Vinju [20] use full parse trees in combination with rewrite rules in
concrete syntax. The rewrite engine is adapted to deal with the extra layout branches, by
using the assumption that any two layout nodes always match. The approach described
in [18] also relies on extra layout branches. Instead of adapting the rewrite engine,
the authors propose an automated migration of the transformation rules to take care
of the layout branches. Layout annotations are used in [14] (Kort, Lämmel), while the
RefactorErl tool [13] stores the layout information in a semantic graph.

All approaches based on extended ASTs succeed, to a certain extent, in preserving
the original layout. In most approaches, layout is preserved for the unaffected parts,
but the reconstruction of the affected parts has limitations. The implicit assumption is

56 M. de Jonge and E. Visser

that the documentary structure can be mapped satisfactorily onto abstract syntax trees.
However, the mapping of layout elements to AST nodes has intrinsic limitations. At-
taching comments to preceding (or succeeding) AST nodes is a simplification that fails
in cases when a comment is not associated with a single AST node, as is shown in
examples provided by Van De Vanter [6]. Another shortcoming is related to indenta-
tion and whitespace separation at the beginning and end of changed parts. Migrating
whitespace is not sufficient since the indentation at the new position may differ from
the indentation at the old position, due to a different nesting level. Furthermore, newly
constructed structures should be inserted with indentation and separating whitespace.

7.2 HaRe

HaRe [15,17] is a refactoring tool for Haskell that preserves layout. The program is
internally represented by the Abstract Syntax Tree and the token stream, which are
linked by source location information. Layout preservation is performed explicitly in
the transformation steps, which process the token stream and the AST in parallel. After
the transformation, the source code is extracted from the modified token stream.

Haskell programs can be written in layout-sensitive style for which the meaning of a
syntax phrase may depend on its layout. For this reason, it is essential for the refactoring
tool not to violate the layout rules when transforming the program. HaRe implements a
layout adjustment algorithm to keep the layout correct. The algorithm ensures that the
meaning of the code fragments is not changed, which does not necessarily mean that
the code is as much as possible like the original one in appearance. HaRe uses heuristic
rules to move/remove comments together with the associated program structures. These
heuristics include rules for comments that precede a program structure and end-of-line
comments that follow after a structure.

Similar to our approach, HaRe uses the token stream to apply layout analysis and
to extract source code fragments. The main difference is that HaRe modifies the token
stream during the transformation, while we reconstruct the source code afterwards, us-
ing origin-tracking to access the original source. The requirement to change the AST
and token stream in parallel makes it harder to implement new transformations and
requires an extension of the rewrite machinery specific for source-to-source transfor-
mations. We clearly separate layout handling from rewriting, which enables us to use
the existing compiler infrastructure for refactoring transformations.

7.3 Eclipse

The Java Developer Toolkit (JDT) used in Eclipse offers an infrastructure for imple-
menting refactorings [1]. Refactoring transformations are specified with replace, insert
and remove operations on AST nodes, which are used afterwards to calculate the cor-
responding textual changes. Common to our approach, the replace, insert and remove
operations on AST nodes are translated to textual modifications of the source code.
However, instead of being restricted to the replace, delete and insert operations on AST
nodes, we compute the primitive AST modifications by applying a tree differencing
algorithm to the transformed abstract syntax tree. As a result, the transformation and
text reconstruction are clearly separated. Thanks to this separation of concerns, we can
specify refactorings in a specialized transformation language (Stratego).

An Algorithm for Layout Preservation in Refactoring Transformations 57

7.4 Text Patching

The LS/2000 system [7,19] is a design-recovery and transformation system, imple-
mented in TXL. LS/2000 is successfully applied for ”year 2000” remediation of legacy
COBOL, PL/I, and RPG applications. The system implements an approach based on au-
tomated text patching. The differences between the original code and the transformed
code are calculated with a standard differencing algorithm, operating on the token
stream. The deviating text regions are merged back into the original text.

The token based differencing successfully captured changes that were relatively
small. For millennium bug renovations, typical changes were the local insertion of a
few lines of code. When the changes are large, or involve code movement, standard
differencing algorithms do not work well [19]. We implemented a tree differencing al-
gorithm that reconstructs moved code fragments by using origin tracking, furthermore,
fragments with nested changes are reconstructed by recursion on subtrees.

7.5 Lenses

Foster et al. [8] implement a generic framework for synchronizing tree-structured data.
Their approach to the view update problem is based on compoundable bi-directional
transformations, called lenses. In the GET direction, the abstract view is created from
the concrete view, projecting away some information; in the PUTBACK direction, the
modified abstract view is mapped to a concrete representation, restoring the projected
elements from the original concrete representation. The lens laws, which resemble our
preservation and correctness criteria, impose some constraints on the behavior of the
lens. Given a certain GET function, in general, many different PUTBACK functions can
be defined. The real problem is to define a PUTBACK function that does what is required
for a given situation. We define CONSTRUCTTEXT as a PUTBACK function for parsing,
and prove that it fulfills the correctness and (maximal) layout preservation criteria.

Our approach is based on origin tracking as a mechanism to relate abstract terms with
their corresponding concrete representation. Origin tracking makes it possible to locate
moved subtrees in the original text. Furthermore, lists are compared using the origin
relation to match corresponding elements. In contrast, lenses use the concrete repre-
sentation as an input parameter to the PUTBACK function. As a consequence, details
are lost about how subterms relate to text fragments. This seems especially problematic
in case terms have nested changes, or when they are moved to another location in the
tree. We defined heuristic rules for comment binding and layout adjustment functions
to correct the spacing surrounding the changed parts. Layout adjustment and comment
migration might be hard to express in the lenses framework. Foster et al. [8] mention
the expressiveness of their approach as an open question. Layout preservation seems a
challenging problem in this respect.

8 Conclusion

Refactorings are source-to-source transformations that help programmers to improve
the structure of their code. With the popularity and ubiquity of IDEs for mainstream

58 M. de Jonge and E. Visser

general purpose languages, software developers come to expect rich editor support in-
cluding refactorings also for domain-specific software languages. Since the effort that
can be spent on implementations of DSLs is often significantly smaller than the effort
that is spent on (IDEs for) languages such as Java, this requires tool support for the
high-level definition of refactorings for new (domain-specific) software languages.

An important requirement for the acceptability of refactorings for daily use is their
faithful preservation of the layout of programs. Precisely this aspect, as trivial as it often
seems compared to the actual refactoring transformation, has confounded meta-tool
developers. The result is typically that the definitions of refactorings are contaminated
with code for layout preservation. The lack of a generic solution for layout preservation
has held back widespread development of refactoring tools for general purpose and
domain-specific languages.

In this paper, we have presented an approach to layout preservation that separates lay-
out preservation from the structural definition of refactorings, allowing the refactoring
developer to concentrate on the structural transformation, leaving layout reconstruction
to a generic library. The library computes text patches based on the differences between
the old and the new abstract syntax tree, relying on origin tracking to identify the ori-
gins of subtrees. The approach applies layout conventions for indentation and vertical
layout (blank lines) from the old code to newly created pieces of code; heuristic rules
are defined for comment migration.

The separation of layout preservation from transformation enables the implementa-
tion of refactorings by the common meta-programmer. With this framework in place we
expect to develop a further library of generic refactorings that will further simplify the
development of refactorings for a wide range of software languages.

References

1. Eclipse documentation: Astrewrite Eclipse, JDT 3.6 (2010), http://help.eclipse.org/
helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/

eclipse/jdt/core/dom/rewrite/ASTRewrite.html
2. The Spoofax language workbench (2010), http://strategoxt.org/Spoofax
3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A language

and toolset for program transformation. Science of Computer Programming 72(1-2), 52–70
(2008)

4. de Jonge, M.: A pretty-printer for every occasion. In: The International Symposium on Con-
structing Software Engineering Tools (CoSET 2000), pp. 68–77. University of Wollongong,
Australia (2000)

5. de Jonge, M.: Pretty-printing for software reengineering. In: ICSM 2002: Proceedings of the
International Conference on Software Maintenance (ICSM 2002), p. 550. IEEE Computer
Society, Washington, DC (2002)

6. Van de Vanter, M.L.: Preserving the documentary structure of source code in language-based
transformation tools. In: 1st IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2001), November 10, pp. 133–143. IEEE Computer Society, Florence
(2001)

7. Dean, T.R., Cordy, J.R., Schneider, K.A., Malton, A.J.: Using design recovery techniques to
transform legacy systems. In: ICSM 2001: Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 2001), p. 622. IEEE Computer Society, Washington, DC
(2001)

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://strategoxt.org/Spoofax

An Algorithm for Layout Preservation in Refactoring Transformations 59

8. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3) (2007)

9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley (1999)
10. Fowler, M.: Language workbenches: The killer-app for domain specific languages? (2005)
11. Hemel, Z., Visser, E.: Programming the Mobile Web with Mobl. Technical Report 2011-01,

Delft University of Technology (January 2011)
12. Kats, L.C.L., Visser, E.: The Spoofax language workbench. Rules for declarative specifi-

cation of languages and ides. In: Rinard, M. (ed.) Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2010, Reno, NV, USA, October 17-21 (2010)

13. Kitlei, R., Lóvei, L., Nagy, T., Horváth, Z., Kozsik, T.: Layout preserving parser for refactor-
ing in Erlang. Acta Electrotechnica et Informatica 9(3), 54–63 (2009)

14. Kort, J., Lämmel, R.: Parse-tree annotations meet re-engineering concerns. In: Proceedings of
Third IEEE International Workshop on Source Code Analysis and Manipulation (September
2003)

15. Li, H., Thompson, S.: A comparative study of refactoring Haskell and Erlang programs. In:
Penta, M.D., Moonen, L. (eds.) Sixth IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM 2006), pp. 197–206. IEEE (September 2006)

16. Li, H., Thompson, S., Orosz, G., Toth, M.: Refactoring with Wrangler, updated: Data and
process refactorings, and integration with Eclipse. In: Horvath, Z., Teoh, T. (eds.) Proceed-
ings of the Seventh ACM SIGPLAN Erlang Workshop, p. 12. ACM Press (September 2008)

17. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer: HaRe, and its API. In: Boyland,
J., Hedin, G. (eds.) Proceedings of the 5th Workshop on Language Descriptions, Tools and
Applications (LDTA 2005) (April 2005)

18. Lohmann, W., Riedewald, G.: Towards automatical migration of transformation rules after
grammar extension. In: CSMR 2003: Proceedings of the Seventh European Conference on
Software Maintenance and Reengineering, p. 30. IEEE Computer Society, Washington, DC
(2003)

19. Malton, A., Schneider, K.A., Cordy, J.R., Dean, T.R., Cousineau, D., Reynolds, J.: Processing
software source text in automated design recovery and transformation. In: Proc. International
Workshop on Program Comprehension (IWPC 2001), pp. 127–134. IEEE Press (2001)

20. van den Brand, M., Vinju, J.: Rewriting with layout. In: Kirchner, C., Dershowitz, N. (eds.)
Proceedings of RULE (2000)

21. van den Brand, M., Visser, E.: Generation of formatters for context-free languages. ACM
Transactions on Software Engineering Methodology 5(1), 1–41 (1996)

22. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Comput. 15(5-6), 523–545
(1993)

23. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of Amster-
dam (September 1997)

24. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer, Hei-
delberg (2008)

Cloning in DSLs: Experiments with OCL

Robert Tairas and Jordi Cabot

AtlanMod, INRIA & École des Mines de Nantes – France
{robert.tairas,jordi.cabot}@inria.fr

Abstract. Code cloning (i.e., similar code fragments) in general pur-
pose languages has been a major focus of the research community. For
domain specific languages (DSLs), cloning related to domain-specific
graphical languages has also been considered. This paper focuses on
domain-specific textual languages in an effort to evaluate cloning in these
DSLs where instances of such DSLs allow for less code to express domain-
specific features, but potentially more frequently used code constructs.
We suggest potential application scenarios of using clone detection for
the maintenance of DSL code. We introduce a clone detection mechanism
using a Model Driven Engineering (MDE) based approach to evaluate the
extent of cloning in an initial DSL (i.e., the Object Constraint Language
(OCL)). The evaluation reveals the existence of cloning in OCL, which
suggests the relevance and potential applications of clone detection and
analysis in DSLs.

Keywords: Code clones, clone detection, domain-specific languages, ATL
Transformation Language, Object Constraint Language.

1 Introduction

Code clones represent similar fragments of source code, where the similarity of
the clones can vary, ranging from clones that are exactly the same syntactically
to clones that are similar because they represent the same semantics. Research
related to code clones has received much attention in the past decade. However,
most efforts are geared toward clones found in source code written in general
purpose language (GPLs). The evaluation of cloning in domain-specific languages
(DSLs), specifically textual DSLs, has not received as much attention. These
languages, which in many cases are used as modeling languages, are typically
smaller in size compared to programs written in GPLs [5]. However, the language
constructs in DSLs are more specific to a domain and hence could be used more
often in the code, which could potentially introduce duplication resulting in
clones. Our overall goal is to suggest scenarios for the use of clone detection in
the maintenance of DSL code. Therefore, we are also interested in determining
the relevance of cloning as it relates to DSLs to support the utility of clone
detection-based tools for DSLs.

This paper focuses on the evaluation of cloning in artifacts containing code as-
sociated to the Object Constraint Language (OCL). We consider OCL artifacts
as an initial step of a broader understanding of cloning in DSLs. We perform

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 60–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cloning in DSLs: Experiments with OCL 61

clone detection on these artifacts using a Model-Driven Engineering (MDE) ap-
proach in which models consisting of OCL expressions are transformed, thus
producing a new model containing information about the clones of the expres-
sions grouped together based on their similarities. The contribution of this paper
is the study of cloning within expressions (of OCL) based on the observation of
various OCL-related artifacts. The term OCL expressions and expressions will
be used interchangeably throughout the remainder of this paper.

The paper is structured as follows: Section 2 outlines current state-of-the-
art and related work. Section 3 offers scenarios where clone detection could be
utilized in a DSL environment. Section 4 outlines the process used to detect
clones and Section 5 details the detection process in OCL. Section 6 provides
an evaluation of the detected clones in several artifacts related to OCL. Section
7 summarizes threats to validity of the approach described in this paper and
Section 8 concludes the paper and summarizes future work.

2 Related Work

The research topic of code clones has received much attention in the past decade.
The initial research activity was the introduction of automated techniques to
detect clones in code. Early efforts include a technique proposed by Johnson
[11] with more recent approaches given by Kim et al. [15]. Current state-of-the-
art clone detection tools are able to detect clones in GPLs such as C and Java
in reasonable speed for code bases that can reach up to several million lines
of code, as can be seen in Table 1. A detailed listing of publications related
to code clones is available at http://www.cis.uab.edu/tairasr/clones/literature.
From the listing of publications at this web site, it can also be seen that research
related to code clones is not solely focused on their detection, but also on the
analysis of the detection results for various purposes including, for example, how
clones evolve [16].

Table 1. Clone coverage percentage in programs

Artifact LOC % of Clones

Linux kernel [19] 4,365K 15%

Java Development Kit (JDK) 1.4.2 [10] 2,418K 8%

Process-Control System [1] 400K 12%

As seen in the previous paragraph, much of the research concerning code
clones has focused on cloning in GPLs. In terms of DSLs, it should be noted that
clone detection and analysis has been considered for domain-specific graphical
languages [20][4]. However, textual-based DSLs has received less attention. The
collection of domain-specific textual languages is an in-between case, as they can

62 R. Tairas and J. Cabot

conform to a metamodel, but also are textual in nature. Because they conform
to a metamodel, textual DSLs could use detection techniques from graphical
DSLs. However, the detection techniques of graphical DSLs utilize graph-based
algorithms to identify clones and hence place emphasis on the graphical layout
of the models. Contextual information within the models is either not considered
or abstracted thus removing information that could be included in the detection
process. Our detection process attains as much information about the textual
language as possible. Abstractions or parameterizations are only used to deter-
mine clones that consist of differing terminal values, but match syntactically.

Lämmel and Pek [17] observed cloning of P3P, a non-executable DSL related
to Web-based privacy policies, as part of an overall analysis of the language.
The DSL is an XML-based language and hence used for storing data, compared
to the declarative type language of OCL, which we evaluated. The detection
process for P3P is simpler as identifiers are non-existent, hence Type II clones
(described Section 5.2) are not considered. The study of P3P and our study of
OCL can serve as a repository of evaluations related to different families of DSLs.
Li and Thompson [18] have considered clone detection on the Erlang/OTP func-
tional language. As primarily a declarative language, OCL is somewhat related
to functional languages. However, in [18] clone detection is performed with the
main goal of finding refactoring opportunities to abstract certain parts of the
source code. Our evaluation of OCL includes possible uses of OCL other than
modularizing the code.

3 Application Scenarios

In this section, we describe potential application scenarios involving clone detec-
tion in DSLs as compared to the use in GPLs. Specifically, these scenarios relate
to the maintenance of the DSL code that is associated with the clones.

3.1 In-place Maintenance

An alternative maintenance mechanism other than modularizing clones that has
been proposed in GPLs is to keep track of where the clones are located and
notify the user when one of the clones is edited to allow the user to consider
editing the remaining clone(s). This mechanism is useful if the user does not
want to modularize the clones right away, because they may have the property
of being, for example, short-lived. Because the clones remain where they are,
the maintenance can be considered to be in-place. Such a technique for Java
has been proposed by Duala-Ekoko and Robillard [6]. The technique proposes
clone region descriptors that will allow the tracking of associated clones even
when the surrounding code has changed. This technique can not identify new
clones that may be associated to any tracked clones, because clone detection is
only executed at the first instance when the tool is initialized. This is due to the
size of programs written in Java and most GPLs, which can result in each clone
detection run to take a considerable amount of time.

Cloning in DSLs: Experiments with OCL 63

Programs or code written in DSLs are mainly smaller compared to GPLs,
because of their more expressive nature. This characteristic could potentially
allow the execution of clone detection to be performed more frequently. If clone
detection can be performed more often, then newer code fragments associated
to any existing clone group can be identified more frequently. This will produce
a more up-to-date and accurate tracking of clones and hence allow for a more
complete in-place maintenance option. It should be noted that the option of in-
place maintenance should not rule out any opportunities to modularize certain
clone groups.

3.2 Pattern Detection and Suggestion

A separate scenario of utilizing clone detection is to determine commonly used
patterns of language constructs. The results of clone detection can be used by
an expert to determine commonly used patterns as an alternative to performing
this step manually. The patterns can be stored in a repository and then used in
several different ways that are described in the following paragraph.

The repository of common patterns can be used to assist users to complete
a language construct when, for example, the user types in the first part of a
construct. This repository could also be used to notify users when the code that
was typed may be erroneous, similar to the mechanism proposed by Gruska et
al. [9]. If what the user typed corresponds to a pattern in the repository, then
the pattern can be displayed to the user to determine if user’s code is correct.
It should be noted that the common patterns represent multiple instances of
use that were previously identified as clones. A robust clone detection technique
can provide clones in varying levels of granularities compared to the function-
level focus in [9]. A third scenario is the suggestion of a more optimal language
construct to perform a specific functionality. If the clone detection process can
identify as clones more varying degrees of language constructs that represent
the same functionality, a DSL expert can determine the most optimal version
among these clones. This optimal version can then be suggested to the user
who in many cases does not have a programming background and hence is less
experienced in determining optimal code options. Specifically related to OCL,
properly parameterized common patterns can optionally be placed into a generic
library such as that proposed by Chimiak-Opoka [3]. This library in turn can be
used by multiple OCL artifacts.

4 Clone Detection Process

The scenarios outlined in Section 3 are meaningless if the relevance of cloning in
DSLs is not strong. We devote the remainder of this paper to evaluate cloning in
DSLs, with an initial consideration of OCL-related artifacts. Again, we consider
OCL artifacts as an initial step of a broader understanding of cloning in DSLs.

64 R. Tairas and J. Cabot

Our overall process of finding clones in a DSL follows an MDE approach.
We plan to apply the same detection process on other DSLs and consider MDE
to allow for a more generic focus on the overall process, which can then be
adapted to specific cases of DSLs. MDE proposes generating models of systems
and performing transformations on these models to achieve a specific goal [22].
In our case, the models represent DSL code and the goal of the transformations
of these models is to determine the duplication in the code. The top part of
Figure 1 outlines the process that we propose to find clones in a DSL. A file
or files containing the DSL code is parsed and a model or models representing
the code are generated (Step 1). A model transformation step is performed that
actually performs the detection of duplicate language constructs (Step 2). The
resulting model or target model consists of information about the grouping of
the detected clones. This information consists of the location of the clones in
the original file of the DSL code (Step 3). This information is used to generate
statistical data about the clones. It is also used to generate an HTML report of
the clone groups, which is manually evaluated.

OCL Expressions OCL Expressions
Model

OCL Metamodel

Clone Groups
Model

Clone Groups
MetamodelATL Metamodel

Clone Detection
(ATL Transformation)

Abstract SyntaxConcrete Syntax

TCS

DSL DSL Model

DSL Metamodel

Clone Groups
Model

Clone Groups
Metamodel

Transformation
Metamodel

1 2 3Clone Detection
Transformation

Statistical
Information

HTML
Report

Match

Count

Contains

Concrete Syntax Abstract Syntax

Fig. 1. Clone detection process (in general and for OCL)

The model transformation in Step 2 can be conceptually separated into three
main sub-steps. Match performs the task of determining whether two language
constructs match each other based on similarity rules that are pre-defined. Count
is used to determine the size of a language construct and is used to filter out
elements that are less than a specified size. Contains is used to evaluate two

Cloning in DSLs: Experiments with OCL 65

language constructs to determine if one is contained or is a sub-construct of
another. This is used to filter the detection results to avoid reporting clone
groups that can be subsumed by other clone groups. These sub-steps will be
described further in the next section as it relates to OCL.

For a different DSL to utilize this process, the three sub-steps would need
to be modified to “fit” the metamodel of the DSL. Recent progress in higher
order transformations (HOTs) [23] provide a promising mechanism to automate
the construction of transformations for different metamodels. In our case, HOTs
could potentially be used to generate the three sub-steps associated with the
clone detection transformation automatically based on the metamodel of the
DSL in question. All three sub-steps perform their tasks by traversing the models
that conform to the metamodel. We envision HOTs to provide transformations
based on the metamodel for each of the sub-steps, which in turn will generate
the necessary functionalities to perform the detection process on the new DSL.

5 Clone Detection Process in OCL

In this section, we provide details of the detection process described in the previ-
ous section as it relates to detecting clones among OCL expressions. The bottom
part of Figure 1 displays the clone detection process instantiated for OCL.

5.1 Obtaining a Model or Models of OCL Expressions

In order for the detection process using the model transformation mechanism to
work, the OCL expressions must first be converted into or injected as a model.
We use the Textual Concrete Syntax (TCS) [13] DSL, which allows for the textual
specification of models and in turn the parsing of these textual specifications into
models (i.e., text-to-model). The result of the injection is a model or models
of the OCL expressions. This model conforms to the OCL metamodel, which
consists of the important elements that are required to model the expressions
(i.e., the abstract syntax of the expressions).

5.2 Clone Detection through Model Transformation

Code clones can be categorized into several levels of similarities. Bellon et al. [2]
identify exactly identical fragments as Type I clones. Type II clones are fragments
that are syntactically the same, but are parameterized through the renaming of
properties such as identifier names in the fragments. Near exact matches (i.e.,
the addition or deletion of a few lines of code) are represented by Type III
clones. Roy et al. [21] further propose Type IV clones, which are semantically
similar fragments that can differ syntactically. Our approach to clone detection
using model transformation performs an evaluation of the OCL expressions and
groups expressions that are determined to be duplicates based on clones of Types
I and II. The information about the location of the clones within these groups

66 R. Tairas and J. Cabot

is exactly the elements of the resulting model or target model, which will be
described in the next sub-section. We use the ATL Transformation Language
(ATL) [12] to generate the transformation.

It should be noted that an OCL expression can consist of a collection of smaller
OCL expressions. Our detection process performs duplication evaluation on all
OCL expressions. In order to reduce the number of expressions that are evaluated
for duplication, we perform some filtering of the expressions and results. We set
a minimum “size” for an OCL expression. This size is based on the number of
nodes that represents an OCL expression in the model. For example, Figure 2
provides the model for the following OCL expression.

ATL!Helper.allInstances()->asSequence()

This expression consists of three nodes. Setting the filter to a minimum of four
nodes will not include this expression in the detection process. The Count trans-
formation helper (i.e., in Figure 1) assists in determining the size of each expres-
sion whose information is used to filter out expressions that are less than the
pre-defined minimum size.

CollectionOperationCallExp OperationCallExp OclModelElement

asSequence allInstances Helper

Fig. 2. OCL expression model

Listing 1 outlines in a more imperative style compared to the original ATL
transformation of how we detect and group OCL expression clones. All instances
of OCL expressions are extracted from the model. This collection is passed
through the sub-step of removing expressions that do not meet the minimum
number of nodes representing them (i.e., lines 2-6 in Listing 1 where the mini-
mum is set to eight). After this sub-step, each remaining expression is evaluated
for duplication. The first iteration creates a clone group for the first expression
that is evaluated. The second iteration evaluates the first two expressions. If
they do not match, then the second expression is placed in a separate group.
The third expression is then evaluated against the two original groups (if the
two groups did not match). If the third expression matches one of these groups,
then it is included in the group. If the third expression does not match the two
groups, it is placed into its own group. The fourth expression is then evaluated
against the existing groups and is placed into one of the groups if they match or
is put into a new group if none match, and so on.

The comparisons between two expressions (i.e., function MATCH in line 11
of Listing 1) is performed by recursively traversing the model. For two ex-
pressions to be considered as exact duplicates (i.e., Type I clones), their rep-
resentations in the model based on the metamodel has to be the same. For

Cloning in DSLs: Experiments with OCL 67

example in Figure 2, the first comparison is whether both expressions contain
a CollectionOperationCallExp element. If so, then the comparison looks for
matching OperationCallExp elements. And finally, the comparisons look for
matching OCLModelElement elements. Because the representations in a clone
group are structurally identical, the MATCH function only compares the first el-
ement in the group, because all clones already in the clone group will have
the same representation. This detection technique is adopted from the way the
Eclipse Java Development Tools (JDT)1 performs detection within its refactor-
ing framework. The technique uses a Visitor pattern [8] to recursively traverse
the nodes in the abstract syntax tree to determine similarity.

Listing 1. Clone grouping process

1: filteredExps ← ∅
2: for all exp in OCLexpressions do
3: if COUNT(exp) ≥ 8 then
4: filteredExps ← filteredExps ∪ {exp}
5: end if
6: end for
7: groups ← ∅
8: for all exp in filteredExps do
9: matched ← false
10: for all group in groups do
11: if MATCH(exp, group[0]) then
12: group ← group ∪ {exp}
13: matched ← true
14: end if
15: end for
16: if !matched then
17: newGroup ← exp
18: groups ← groups ∪ {newGroup}
19: end if
20: end for
21: filteredGroups ← ∅
22: for all group in groups do
23: if !ISSUBGROUP(group, filteredGroups) then
24: filteredGroups ← filteredGroups ∪ {group}
25: end if
26: end for

The detection technique in this paper is not flexible enough for detecting
Type III-like clones, but is sufficient to find Type I and II clones. For Type II
clones, certain elements that are being compared are allowed to differ but still
considered as matching (i.e., having parameterized differences). In our case, the
elements that are allowed to differ include typical parameterized differences, such

1 Eclipse JDT, http://www.eclipse.org/jdt

68 R. Tairas and J. Cabot

as identifiers names and boolean, integer, real, and string values. More specific
to OCL, values of “OCLType” are also allowed to differ. This is similar to a class
type in Java.

The groups variable in Listing 1 contains the initial collection of clone groups.
This collection is passed through the third sub-step, which removes redundant
groups whose clones are completely covered by clones in another group (i.e., lines
22-26 in Listing 1). Inside function ISSUBGROUP, the Contains transformation
helper (i.e., in Figure 1) assists in the evaluation of whether one clone group can
be subsumed by another clone group and hence be removed from the final results.
For example, let two detected groups be G1 = (c1, c2, c3) and G2 = (c4, c5, c6).
If c4 ⊆ c1, c5 ⊆ c2, and c6 ⊆ c3, then G2 is not included in the final results.

5.3 OCL Expressions Clones Information

The result of the model transformation is an output model that has grouped
together expressions that are either Type I or Type II clones. The information
regarding each clone consists of the name of the original file containing the clone
and the location of the clone in the file (i.e., the starting and ending lines of the
expression represented by the clone). The offsets within each line are also given
as part of the location information due to the fact that OCL expressions are not
necessarily separated in different lines as is evident with statements in GPLs.
During clone detection in GPLs, the statement level is typically the smallest
element that is evaluated for duplication, which are usually separated in different
lines. For OCL expressions in our case, sub-expressions within larger expressions
are also considered during the detection process. These sub-expressions may have
been written in the same line as the larger expression, but may not include the
entire line. An example can be seen in the expression below in its original layout,
where only the sub-expression between “<<” and “>>” is part of the detected
clone. The first part of the first line and last part of the last line are not part of
the clone. This clone was found in the XML2DSL ATL transformation model.

XML!Element.allInstances() -> select(e | << if e.name = ’model’

then if e.parent.name = ’dmd’

then e.getAttrVal(’name’) <> ’Core’

else false endif

else false

endif >>)-> first()

The information about the location of the clones is used to calculate statistical
information, which is summarized in the following section. In addition, the clone
information is also used to generate an HTML report consisting of the actual
OCL expressions related to the clones. This report is used for further manual
evaluation of the characteristics of the clones.

6 Evaluation Results

We evaluated the duplication of expressions in several artifacts containing OCL-
like and generic OCL expressions. The first collection of artifacts were ATL trans-

Cloning in DSLs: Experiments with OCL 69

formations obtained from the ATL transformation zoo,2 because ATL
includes OCL-like expressions as a very important part of its language. The
remaining collection of artifacts comes from UML projects in which OCL ex-
pressions are used in the specification of UML models. Three of these projects
come from case studies of the use of UML in software development: DBLP,3

EURent [7], and OSCommerce.4 DBLP is a web-based application for display-
ing computer science-related bibliography. EURent is a well-known case study
that represents a fictitious rental car company. OSCommerce represents an open
source e-commerce application. The remaining two artifacts are the UML spec-
ification itself, which contains OCL expressions within the specification5 and
test cases containing OCL expressions obtained from the Dresden Toolkit.6 This
toolkit supports the parsing and evaluation of OCL constraints.

Table 2 summarizes the amount of cloning detected within the various OCL
artifacts. We do not show cloning in terms of number of lines of code, because
as stated in Section 5.3, several OCL expressions can potentially be written in
the same line. Instead, Table 2 shows the number of expressions that were part
of the detected clones compared to the number of total expressions that were
evaluated for expressions with eight or more nodes. This is different from the
lines of code measurement as seen in Table 1. It should be noted that this total
includes sub-expressions of OCL that are found within larger expressions, which
are also counted.

Table 2. Cloned expressions (minimum of eight nodes)

Artifact Expressions Cloned expressions

ATL Transformations 6659 3923 (58%)

DBLP Case Study 34 21 (61%)

Dresden Toolkit Test Cases 5803 4421 (76%)

EURent Case Study 625 199 (31%)

OSCommerce Case Study 574 330 (57%)

UML Specification 376 107 (28%)

It can be seen in Table 2 that cloned expressions account for 28% or more
of the overall expressions that were evaluated. When we reduced the minimum
size of the expressions to four nodes, the percentage of cloned expression were
higher. For example, DBLP had 65 out of 82 (79%) expressions that were part
of clones. EURent had 605 out of 1205 (50%) expressions that were part of clones.

2 ATL Transformations, http://www.eclipse.org/m2m/atl/atlTransformations
3 The DBLP Case Study, http://guifre.lsi.upc.edu/DBLP.pdf
4 OSCommerce Conceptual Schema, http://guifre.lsi.upc.edu/OSCommerce.pdf
5 UML Specification, http://www.omg.org/spec/UML/2.3/Superstructure
6 Dresden OCL, http://www.dresden-ocl.org/index.php/DresdenOCL

70 R. Tairas and J. Cabot

OSCommerce had 1090 out 1372 (79%) expressions and the UML specification
had 362 out of 796 (45%) expressions that were included in the detected clone
groups. Based on these numbers, we make an observation that cloning occurs
frequently in OCL code. A related question of whether within these collections
of clones interesting clones can be found is considered in the remainder of this
section.

We were interested in the extent of clones found within several different models
(i.e., inter-duplication). From the collection of artifacts, only OCL expressions in
ATL transformations artifact were contained in multiple models. A typical ATL
transformation set up transforms a source model that conforms to a metamodel,
to a target model conforming to the same or different metamodel. Related to
inter-duplication, we were interested to know whether clones existed in trans-
formations in general that involved different metamodels or whether clones are
more associated to transformations in which the metamodel is the same.

Table 3 summarizes the amount of inter-duplication among ATL models based
on clone detection that is filtered for three different minimum expression sizes.
The table classifies clone groups based on the number of models they reside
in. For example, during the detection of expressions with nodes greater than
or equal to eight, 125 clone groups had clones residing in two models. It can
be seen in the table that most of the clone groups consist of clones residing
in the same ATL model. A closer look at the clones found in multiple ATL
models reveals that most duplication is related to transformations where either
the source or target conforms to the XML metamodel. In other words, the same
OCL expressions used to transform to or from an XML model is used over
and over again in other XML-related transformation. For example, the following
expression pattern represented by 14 clones in one group was scattered in eight
ATL models (i.e., XMLHelpers, XML2MySQL, XML2Make, XML2GeoTrans,
XML2DXF, XML2Ant, XML2Maven, and XML2Book). As the names of the
models suggest, the metamodel of the source model was XML. The expression
itself traverses through the child elements of a node and finds the value of an
attribute with the name equal to c.name.

self.children

->select(c | c.oclIsKindOf(XML!Attribute) and c.name = name)

A smaller clone group containing three clones in three models (i.e., XML2DSL,
XML2ATOM, and XML2RSS) represent expressions, one of which is given fol-
lowing this paragraph, that extract the text from an XML element. Again, this
is a typical function in transformations related to XML. These expressions are
actually part of helper definitions, which suggests that the functionality has been
modularized. However, the modularization is only local and thus each model con-
tains identical helper definitions. The helper definition could instead be placed in
a more general helper library, which can then be included in the transformation
models.

Cloning in DSLs: Experiments with OCL 71

Table 3. Clone groups classified based on the number of models they reside in

Number of models

Expression size 1 2 3 4 5 6 7 8 9 10-19 ≥ 20

≥ 10 nodes 298 89 28 11 3 3 1 1 0 0 0

≥ eight nodes 402 125 42 16 4 3 3 4 0 2 0

≥ six nodes 486 171 60 42 10 8 3 7 1 10 1

if e.isEmpty() then

’’

else

let r : Sequence(XML!Element) = e->select(f | f.name = name)

in

if r.isEmpty() then

’’

else

r->collect(d | d.children)->flatten()

->select(f | f.oclIsTypeOf(XML!Text))

->select(g | g.name = ’#text’)->first().value

endif

endif

An example of inter-duplication that is not XML-specific is found in
a clone group whose clones reside in 14 models (i.e., JavaSource2Table,
SD2flatSTMD, BibTeX2DocBook, MySQL2KM3, PathExp2PetriNet, Man-
tis2XML, SpreadsheetMLSimplified2XML, SoftwareQualityControl2Mantis,
Monitor2Semaphore, Bugzilla2XML, SoftwareQualityControl2Bugzilla,
SSL2SDLTransformation, TextualPathExp2PathExp, and SpreadsheetML-
Simplified2SoftwareQualityControl). These clones represent a commonly used
expression in ATL called resolveTemp, which allows for the referencing of
target model elements. An example is given in the following expression.

b.attachment->collect(e | thisModule.resolveTemp(e, ’a’))

From the observations of inter-duplication in ATL models, we can note that the
majority of cloning in multiple models is related to transformation involving the
XML metamodel. Unfortunately, the other OCL artifacts were not separated
into different models. We were unable to consider the other artifacts for the
evaluation of inter-duplication and hence the evaluation of ATL models alone
does not provide a strong argument of whether inter-duplication within OCL is
prevalent or not.

Table 4 lists the sizes of the detected clone groups. One observation is that in
each of the results, approximately half of the groups contain only a pair of clones.
For example, in the clone groups from the ATL transformations, 314 out of 601
clone groups contain only pair-wise clones. However, larger sized clone groups are
also evident some of which are considerable in size. For example, we observed a

72 R. Tairas and J. Cabot

clone group of 43 clones all residing in the same ATL model called UMLDI2SVG
that consisted of an expression, which selects elements of typeInfo of either
“CompartmentSeparator” or “NameCompartment.” Although these clones re-
side in a single model, identifying both parameterized cases of the expression
can not be done by a simple textual search function. Clone detection provides a
more robust searching mechanism that can ignore terminal values. The following
is an example of the cloned expression.

n.contained

->select(e | e.semanticModel.typeInfo = ’CompartmentSeparator’)

Table 4. Clone group sizes

Number of clones

Artifact 2 3 4 5 6 7 8 9 10-19 20-29 30-39 ≥ 40

ATL Transformations 314 99 64 21 23 19 8 10 27 6 7 3

DBLP Case Study 2 3 0 0 0 0 0 0 0 0 0 0

Dresden Toolkit Test Cases 185 54 31 15 13 3 1 2 19 24 0 2

EURent Case Study 27 3 2 2 1 0 0 2 2 0 0 0

OSCommerce Case Study 22 8 4 0 3 2 0 1 7 2 0 0

UML Specification 19 2 2 1 0 0 0 0 0 0 0 0

In a separate case, a group of clones can be found in two clone groups in the
Dresden Toolkit Test Cases, an example of which can be seen in the following
expression. This is an interesting group of clones, because it represents a typical
constraint in OCL that asserts the names of two customers cannot be equal.
In this case, modularizing the clones would not be the main goal. Instead this
pattern could be included in the repository of patterns that was described in
Section 3 and could be used to assist users during the coding of such constraints.

self.participants

->forAll(c1 : Customer, c2:Customer |

c1 <> c2 implies c1.name <> c2.name)

6.1 Summary of Evaluation Results

Table 2 shows the varying degrees of cloning among the OCL-related artifacts
that we evaluated. We can not make a direct comparison with Table 1, because
the measurement units are different. However, we can see that the percentage
of cloned expressions compared to the total number of expressions evaluated is
considerable. Table 4 revealed that small clone group sizes comprised around half
of clone groups reported from the detection process. However, larger clone groups
are still evident and clearly relevant. Furthermore, we have provided examples

Cloning in DSLs: Experiments with OCL 73

of interesting clone groups described earlier in this section that were found from
the manual evaluation of the clone groups. We conclude that the occurrences of
cloning in OCL is evident and interesting clones can be found, thus warranting
future efforts to provide maintenance assistance in OCL as it relates to cloning
and clone detection.

Regarding the specific examples of interesting clones in our evaluation, observ-
ing the OCL-like expressions in ATL models revealed that much of the cloning
among multiple models (i.e., inter-duplication) occurred in transformations in-
volving the XML metamodel. Modularizing some of these clones was actually
done, but only within individual transformation models. We suggest writing a
general library of helper definitions consisting of common tasks performed dur-
ing transformations that are associated with the XML metamodel, information
of which could be obtained from the clone detection results.

ATL provides a construct to “import” helper libraries using the uses com-
mand. However, OCL currently does not provide such a mechanism in which
a general library of helper definitions can be shared among OCL instances.
Chimiak-Opoka [3] has proposed OCLLib, which offers such a feature. We sug-
gest evaluating the clone detection results with the OCL community where the
results provide empirical information of commonly used expressions. This infor-
mation can be used to support the development of OCLLib or even re-engineering
the OCL language to include patterns that are used much more frequently.

Clone detection results provide general cloning information. In order for the
identification of interesting clone groups (i.e., groups representing common pat-
terns as described in Section 3) to be more effective, the detection results must
be filtered to reduce the number of uninteresting clone groups. For example,
filtering could remove clone groups containing expressions such as expressions
that are too simple, but keep expressions such as common constraints used in
UML models. Filtering of detection results is considered part of the clone analy-
sis phase (i.e., post-detection activity). We seek to apply one or more of analysis
techniques used on GPLs to assist in filtering the detection results of OCL ex-
pressions, but also consider newer approaches in order to determine common
patterns of expressions.

7 Threats to Validity

The clone detection process described in this paper is able to detect exact match-
ing expressions and expressions that are syntactically the same, but may consist
of differing terminal values. This restricts the types of clones that can be de-
tected, because clones with slightly differing syntax are not detected and hence
are not included in the overall evaluation.

Current tools that provide automated detection of clones typically contain
several adjustable configuration settings that when changed can return different
results of cloning. Popular tools such as CCFinder [14] and CloneDR [1] consist
of several adjustable settings. The detection technique described in this paper
also allows changing certain properties of the detection process, e.g., number of

74 R. Tairas and J. Cabot

minimum nodes allowable for an expression to be included in the duplication
evaluation. This single setting can return different numbers of clone groups as
seen in Table 3 when the number of nodes varies. Settings that were selected
could potentially influence the conclusions of the clone evaluation.

The OCL artifacts evaluated in the paper represent a varying collection of ar-
tifacts (i.e., both generic and OCL-like expressions). However, the artifacts have
limitations, such as the small number of expressions in the DBLP Case Study. In
addition, all artifacts except for the Dresden Toolkit Test Cases represent OCL
expressions in actual ATL transformations or UML model specifications. The
expressions from the Dresden Toolkit are for testing purposes, but still consist
of expressions that would be used in the specification of a model. We are limited
in the amount of publicly available OCL artifacts that can be used for evaluation
and hence we advocate the establishment of repositories of DSL artifacts.

Because of the specific nature of DSLs, many different DSLs are in use today.
Further validation of cloning in DSLs requires more studies of other DSLs. We
have provided an evaluation of only one DSL, which limits the support of our
conclusions as it relates to DSLs in general. However, we consider this evaluation
to be an initial evaluation that will be complemented by evaluations of cloning
in other DSLs.

8 Conclusion and Future Work

In this paper, we have provided an evaluation of cloning in OCL expressions as
an initial step toward a broader understanding of cloning in DSLs. We offered
scenarios of the utilization of clone detection in DSL code maintenance. However,
we emphasized the need to determine the relevance of the topic of cloning in
DSLs. In order to determine this, we first described a MDE-based clone detection
technique that was used to detect clones in several OCL artifacts. Based on our
evaluation of clone detection results, there is a considerable amount of cloning
among the expressions, and we conclude that cloning in OCL specifically is
evident. In addition, interesting clones can be found among the reported clone
groups. These initial observations through OCL support future efforts of utilizing
clone detection with OCL code, including the scenarios that were previously
proposed.

Future work related to the clone detection technique described in this paper
includes developing a more robust clone detection process, which includes be-
ing more “flexible” in terms of allowing more types of clones to be detectable.
In addition, further studies of more artifacts (both OCL and other DSLs) will
provide more representative characteristics of cloning within DSLs. The evalu-
ation of other types of DSLs would provide a broader understanding of cloning
in DSLs. However, with the nature of DSLs being “specific,” a general under-
standing encompassing all DSLs may not be possible, in which case evaluation
will be focused separately among the DSLs. Finally, based on the results of the
evaluation of artifacts in this paper, we are currently working on the applica-
tion scenarios of clone detection as described in Section 3 to determine their
feasibility and usability.

Cloning in DSLs: Experiments with OCL 75

References

1. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: International Conference on Software Maintenance, pp.
368–377 (1998)

2. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and eval-
uation of clone detection tools. IEEE Transactions on Software Engineering 33(9),
577–591 (2007)

3. Chimiak-Opoka, J.: OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the
Object Constraint Language. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 665–669. Springer, Heidelberg (2009)

4. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model clone
detection in practice. In: International Workshop on Software Clones, pp. 57–64
(2010)

5. van Deursen, A., Klint, P.: Little languages: Little maintenance. Journal of Software
Maintenance: Research and Practice 10(2), 75–92 (1998)

6. Duala-Ekoko, E., Robillard, M.: Clone region descriptors: Representing and track-
ing duplication in source code. ACM Transactions of Software Engineering and
Methodology 20(1), 1–31 (2010)

7. Frias, L., Queralt, A., Olivé, A.: Eu-rent car rentals specification. Tech. Rep. LSI-
03-59-R, Technical University of Catalonia - Departament de Llenguatges i Sis-
temes Informatics (2003)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston (1995)

9. Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6,000 projects: Lightweight
cross-project anomaly detection. In: International Symposium on Software Testing
and Analysis, pp. 119–130 (2010)

10. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and accurate
tree-based detection of code clones. In: International Conference on Software En-
gineering, pp. 96–105 (2007)

11. Johnson, J.H.: Substring matching for clone detection and change tracking. In:
International Conference on Software Maintenance, pp. 120–126 (1994)

12. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

13. Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the specification of textual con-
crete syntaxes in model engineering. In: Jarzabek, S., Schmidt, D.C., Veldhuizen,
T.L. (eds.) International Conference on Generative Programming and Component
Engineering, pp. 249–254 (2006)

14. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on
Software Engineering 28(7), 654–670 (2002)

15. Kim, H., Jung, Y., Kim, S., Yi, K.: MeCC: Memory comparison-based clone de-
tector. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) International Conference
on Software Engineering, pp. 301–310 (2011)

16. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: European Software Engineering Conference held Jointly with the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 187–196 (2005)

17. Lämmel, R., Pek, E.: Vivisection of a non-executable, domain-specific language -
understanding (the usage of) the P3P language. In: IEEE International Conference
on Program Comprehension, pp. 104–113 (2010)

76 R. Tairas and J. Cabot

18. Li, H., Thompson, S.: Clone detection and removal for Erlang/OTP within a refac-
toring environment. In: Workshop on Partial Evaluation and Program Manipula-
tion, pp. 169–178 (2009)

19. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: A tool for finding copy-paste
and related bugs in operating system code. In: Symposium on Operating Systems
Design and Implementation, pp. 289–302 (2004)

20. Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Com-
plete and accurate clone detection in graph-based models. In: International Con-
ference on Software Engineering, pp. 276–286 (2009)

21. Roy, C., Cordy, J., Koschke, R.: Comparison and evaluation of code clone detec-
tion techniques and tools: A qualitative approach. Science of Computer Program-
ming 74(7), 470–495 (2009)

22. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

23. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-
Order Model Transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

Uniform Modularization

of Workflow Concerns Using Unify

Niels Joncheere� and Ragnhild Van Der Straeten

Vrije Universiteit Brussel, Software Languages Lab
Pleinlaan 2, 1050 Brussels, Belgium
{njonchee,rvdstrae}@vub.ac.be

Abstract. Most state-of-the-art workflow languages offer a limited set
of modularization mechanisms. This typically results in monolithic work-
flow specifications, in which different concerns are scattered across the
workflow and tangled with one another. This hinders the design, the
evolution, and the reusability of workflows expressed in these languages.
We address this problem by introducing the Unify framework, which
supports uniform modularization of workflows by allowing all workflow
concerns — including crosscutting ones — to be specified in isolation of
each other. These independently specified workflow concerns can then
be connected to each other using a number of workflow-specific connec-
tors. We discuss the interaction of the most invasive connector with the
workflows’ control flow and data perspectives. We instantiate the frame-
work towards two state-of-the-art workflow languages, i.e., WS-BPEL
and BPMN.

1 Introduction

Workflow management systems have become a popular technique for automating
processes in many domains, ranging from high-level business process manage-
ment to low-level web service orchestration. A workflow is created by dividing
a process into different activities, and by specifying the ordering in which these
activities need to be performed. This ordering is called the control flow perspec-
tive.

Separation of concerns [1] is a general software engineering principle that
refers to the ability to identify, encapsulate, and manipulate only those parts of
software that are relevant to a particular concept, goal, or purpose. These parts,
called concerns, are the primary motivation for organizing and decomposing
software into manageable and comprehensible modules.

Realistic workflows consist of several concerns, which are connected in order
to achieve the desired behavior. However, if all of these concerns need to be
specified in a single, monolithic workflow specification, it will be hard to add,
maintain, remove or reuse these concerns. Although most workflow languages

� Funded by the Belgian State – Belgian Science Policy through the Interuniversity
Attraction Poles program.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 77–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 N. Joncheere and R. Van Der Straeten

allow decomposing workflows into sub-workflows, this mechanism is typically
aimed at grouping activities instead of facilitating the independent evolution
and reuse of concerns. Moreover, a workflow can only be decomposed according
to one dimension with this construct, and concerns that do not align with this de-
composition end up scattered across the workflow and tangled with one another.
Such concerns are called crosscutting concerns [2]. These problems have been
discussed in related work by ourselves [3,4] and others [5,6,7], where they are
mainly tackled using aspect-oriented programming for workflows. Nevertheless,
the problems are not yet fully addressed by the proposed solutions.

The goal of our current solution is to facilitate independent evolution and
reuse of all workflow concerns, i.e., not merely crosscutting concerns. This can
be accomplished by improving the modularization mechanisms offered by the
workflow language. We propose an approach called Unify which provides a set of
workflow-specific modularization mechanisms that can be readily employed by a
wide range of existing workflow languages. Unify facilitates specifying workflow
concerns as separate modules. These modules are then composed using versatile
connectors, which specify how the concerns are connected. The main contribu-
tions of Unify are the following:

1. Existing research on modularization of workflow concerns is aimed at only
modularizing crosscutting concerns [6,7,3], or at only modularizing one par-
ticular kind of concern, such as monitoring [8]. Unify, on the other hand,
aims to provide a uniform approach for modularizing all workflow concerns.

2. Existing aspect-oriented approaches for workflows are fairly straightforward
applications of general aspect-oriented principles, and are insufficiently fo-
cused on the concrete context of workflows. Unify improves on this by al-
lowing workflow concerns to connect to each other in workflow-specific ways,
i.e., the connector mechanism supports a number of dedicated concern con-
nection patterns that are not supported by other approaches.

3. Unify is designed to be applicable to a wide range of concrete workflow lan-
guages. This is accomplished by defining its connector mechanism in terms
of a general, extensible base language meta-model.

4. Unify defines a clear semantics for its modularization mechanism. This fa-
cilitates the application of existing workflow verification techniques.

5. The Unify implementation can either be used as a separate workflow engine,
or as a pre-processor that is compatible with existing workflow engines.

The structure of this paper is as follows. Section 2 specifies the motivation for
Unify, and introduces a running example. Section 3 provides an initial descrip-
tion of our approach by showing how the running example could be developed
from scratch when using Unify. Sections 4 and 5 introduce the meta-model for
our base language and connector mechanism, respectively. Section 6 discusses
the interaction of our connector mechanism with the control flow and data per-
spectives, and discusses the semantics of our connector mechanism. Section 7
describes our implementation, Section 8 gives an overview of related work, and
Section 9 states our conclusions and outlines future work.

Uniform Modularization of Workflow Concerns Using Unify 79

2 Motivation

Consider the workflow in Figure 1, which is a simplified version of an automated
order handling process for an online book store. The workflow is visualized using
the Business Process Model and Notation (BPMN) [9]; a brief overview of this
notation is given in the legend at the bottom right of the figure. The workflow
starts at the start event at the top of the figure. It first performs the Login and
SelectBooks activities in parallel. The workflow then proceeds with the Spec-
ifyOptions activity, after which the control flow is split again. A first branch
contains the Pay and SendInvoice activities, while a second branch contains the
ProcessOrder and Ship activities. The VerifyBankAccount activity synchronizes
both branches. The last activity to be executed is the ProcessReturns activity, af-
ter which the workflow ends at the end event. Please note that only the contents
of the SelectBooks, Pay, and Ship activities are shown, whereas the contents of
other activities are omitted in the interest of brevity.

OrderHandling

SelectBooks

Select
Book

Confirm

AddBook
OrContinue

Confirm
OrContinue

Save
Preference

Report

Add
Book

Save
Preference

Login

Specify
Options

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Method

Wire
Transfer
Payment

Payment
Method

Report

Report

Report

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Report

Report

Process
Order

Process
Returns

Legend

Start event

End event

AND-split (one incoming
transition) or AND-join
(one outgoing transition)

XOR-split (one incoming
transition) or XOR-join
(one outgoing transition)

Transition

Activity

Send
Invoice

Verify
Bank

Account

Fig. 1. Example order handling workflow, expressed using BPMN

80 N. Joncheere and R. Van Der Straeten

Like any realistic software application, the workflow in Figure 1 consists of
several concerns — parts that are relevant to a particular concept, goal, or pur-
pose — which are connected in order to achieve the workflow’s desired behavior.
The main concern is obviously order handling. This concern has already been
hierarchically decomposed into sub-concerns — such as book selection, payment
and shipping — using the composite activity construct. Other concerns are pref-
erence saving, reporting and bank account verification, which occur at various
places across the workflow. The general software engineering principle of sepa-
ration of concerns argues that applications should be decomposed into different
modules in such a way that each concern can be manipulated in isolation of other
concerns. However, many current workflow languages do not allow decomposing
workflows into different modules. For example, a workflow expressed using WS-
BPEL [10] (the de facto standard in workflow languages) is a single, monolithic
XML file that cannot be straightforwardly divided into sub-workflows. This lack
of modularization mechanisms makes it hard to add, maintain, remove, or reuse
concerns. In order to improve separation of concerns in workflows, workflow
languages should allow concerns to be specified in isolation of each other.

However, allowing concerns to be specified in isolation of each other is not
sufficient: in order to obtain the desired workflow behavior, workflow languages
should also provide a means of specifying how a workflow’s concerns are con-
nected to each other.

In existing workflow languages, the only kind of connection that is supported
is typically the classic sub-workflow pattern: a main workflow explicitly specifies
that a sub-workflow should be executed. The choice of which sub-workflow is to
be executed is made at design time, and it is hard to make a different choice
afterwards. By delaying the choice of which sub-workflow is to be executed, the
coupling between main workflow and sub-workflow is lowered, and separation of
concerns is improved. In the workflow in Figure 1, one could for example vary the
behavior of the workflow by deploying a different Pay sub-workflow in different
situations.

A second kind of connection between concerns is useful when concerns crosscut
a workflow: some concerns cannot be modularized cleanly using the sub-workflow
decomposition mechanism, because they are applicable at several locations in
the workflow. The reporting concern, for example, is present at several locations
in the workflow in Figure 1. The sub-workflow construct does not solve this
problem, since sub-workflows are called explicitly from within the main workflow.
This makes it hard to add, maintain, remove or reuse such crosscutting concerns.
This problem has been observed in general aspect-oriented research [2]. Aspect-
oriented extensions to WS-BPEL, such as AO4BPEL [6] and Padus [3], allow
specifying crosscutting concerns in separate aspects. An aspect allows specifying
that a certain workflow fragment, called an advice, should be executed before,
after, or around a certain set of activities in the base workflow. In the workflow
in Figure 1, one could for example specify that the Report activity needs to
be performed after the Confirm activity and after each of the three Payment
and two Ship activities, without explicitly invoking the Report activity at each

Uniform Modularization of Workflow Concerns Using Unify 81

of those places. However, these aspect-oriented extensions use a new language
construct for specifying crosscutting concerns, i.e., aspects. This means that
concerns which are specified using the aspect construct can only be reused as
an aspect, and not as a sub-workflow. On the other hand, concerns which are
specified using the sub-workflow construct can only be reused as a sub-workflow,
and not as an aspect.

Moreover, the aspect-oriented extensions mentioned above only support the
basic concern connection patterns (before, after, or around) that were identified
in general aspect-oriented research, and do not sufficiently consider the specifics
of the workflow context. They lack support for other patterns such as parallelism
and choice. For example, the before, after or around patterns do not provide an
elegant way of specifying that the SavePreference activity should be performed
in parallel with the SelectBook and AddBook activities. Furthermore, it is com-
pletely impossible to specify more advanced connections between concerns, e.g.,
specifying that the VerifyBankAccount activity should be executed after the Pay
activity has been executed and before the Ship activity is executed, which would
thus synchronize the two parallel branches by introducing a new AND-split and
-join in the order handling workflow.

Finally, the aspect-oriented extensions mentioned above are all targeted at
WS-BPEL, and cannot be applied easily to other languages. Each of these ap-
proaches also favors a specific implementation technique; for example, AO4BPEL
can only be executed using a modified WS-BPEL engine, and Padus can only
be used as a pre-processor. More variability in terms of the applicable languages
and possible implementation techniques would make a modularization approach
more widely applicable.

3 Developing a Workflow Using Unify

There are two main scenarios for applying Unify to workflow development. In the
first scenario, Unify is used to improve a workflow that has already been devel-
oped using an existing workflow language, but without any regard for separation
of concerns. Unify could then be used to decompose the existing workflow into
a number of different modules, which each correspond to a concern, and which
are connected to each other in order to achieve the original behavior. We will
not consider this first scenario in this paper. The second scenario assumes that a
developer is creating a new workflow from scratch, perhaps with a library of pre-
viously implemented concerns at his disposal. In this section, we will introduce
Unify using this second scenario.

The first step in developing a workflow using Unify is to identify its concerns.
In the example from Figure 1, these are, among others, order handling, book
selection, payment, shipping, preference saving, and reporting. Unify promotes
implementing a workflow’s concerns as separate modules.1 This can be achieved
using the composite activity construct. Figure 2 shows how the concerns that

1 Deciding which concerns should be modularized is partly a matter of personal pref-
erence, and is not the focus of our research.

82 N. Joncheere and R. Van Der Straeten

were mentioned in the previous section could be specified separately. Note that
each of the composite activities in Figure 2 contains less activities than the
corresponding composite activity in Figure 1. The Unify base language, which
is discussed in Section 4, defines the abstract syntax of our workflow concerns.

OrderHandling

Specify
Options

Process
Returns

Login

Select
Books

Pay

Process
Order

Ship

SelectBooks

Select
Book

Confirm

AddBook
OrContinue

Confirm
OrContinue

Add
Book

Pay

Credit
Card

Payment

PayPal
Payment

Specify
Payment
Method

Wire
Transfer
Payment

Payment
Method

Ship

Ship
ByMail

Ship
ByCourierShipping

Method

Save
Preference

Report
Verify
Bank

Account

Send
Invoice

Fig. 2. Independently specified workflow concerns

The advantage of specifying workflow concerns as separate composite activ-
ities is better separation of concerns: the different parts of a concern are no
longer scattered across the workflow(s), or tangled with one another. After the
concerns have been identified and implemented (or retrieved from a library of
previously implemented concerns), the connections between the concerns should
be specified. We identify two main categories of connections between concerns:

– Anticipated concern connections are concern connections that are ex-
plicitly anticipated by one of the concerns: this concern is aware, at design
time, of the fact that it will connect to another concern at a certain point
in its execution.

– Unanticipated concern connections are concern connections that are
not explicitly anticipated by the concerns: the concerns are not aware of the
fact that they will connect to each other at a certain point in their execution.

An example of the former is apparent in the OrderHandling concern in Figure 2:
this concern contains, among others, the SelectBooks, Pay and Ship activities,
which will need to be realized by connecting them to the SelectBooks, Pay and
Ship concerns that are shown in the middle of the figure.

Uniform Modularization of Workflow Concerns Using Unify 83

An example of the latter is present in Figure 2 as well: neither the SelectBooks,
Pay nor Ship concerns contain any reference to the Report concern, whereas an
unanticipated concern connection can be made between the Report concern and
those three concerns.

Unify allows specifying both anticipated and unanticipated connections using
its connector construct. In our example, the following connectors can, among
others, be used to connect the different concerns:

1. An activity connector can be used to specify that the SelectBooks activity
in the OrderHandling concern should be executed by executing the Select-
Books concern (and likewise for the Pay and Ship activities and concerns).
Thus, activity connectors allow hierarchically decomposing workflows into
different concerns.

2. An after connector can be used to specify that the Report concern should
be executed after the Confirm activity in the SelectBooks concern, after
the three Payment activities in the Pay concern, and after the two Ship
activities in the Ship concern. Thus, after connectors allow expressing the
after pattern that is currently offered by aspect-oriented approaches.

3. A parallel connector can be used to specify that the SavePreference con-
cern should be executed in parallel with the SelectBook and AddBook activ-
ities in the SelectBooks concern. Thus, parallel connectors allow expressing
a pattern that is not currently offered by aspect-oriented approaches.

4. A free connector can be used to specify that the VerifyBankAccount con-
cern should be executed after the OrderHandling concern’s Pay activity has
been executed and before its Ship activity is executed. Thus, free connectors
allow invasively changing a concern’s control flow by introducing additional
splits and joins, e.g., in order to synchronize two parallel branches.

Activity connectors express anticipated concern connections, while the other con-
nectors express unanticipated concern connections. The Unify connector mecha-
nism, which offers other connectors in addition to the ones mentioned above, and
which is discussed in Section 5, defines the abstract syntax of our connectors.

We have defined a textual concrete syntax for our connectors, which is avail-
able in Backus–Naur form at [11]. Listing 1 shows how the above activity, after,
and free connectors can be expressed using this syntax. If one would apply all
the above connectors to the concerns of Figure 2, one would obtain the workflow
of Figure 1.

4 The Unify Base Language

Unify is designed to be applicable to a range of concrete workflow languages,
as long as they conform to a number of basic assumptions. These assumptions
are expressed as a meta-model for our workflow concerns. We do not restrict
ourselves to any particular concrete workflow language as long as it can be
defined as an extension to this meta-model. The meta-model allows expressing
arbitrary workflows [12], i.e., workflows whose control flow is not restricted to

84 N. Joncheere and R. Van Der Straeten

SelectBooksConnector:
CONNECT OrderHandling.SelectBooks TO SelectBooks

ReportConnector:
CONNECT Report AFTER activity("SelectBooks\.Confirm|Pay\..*Payment|Ship\.ShipBy.*")

VerifyBankAccountConnector:
CONNECT VerifyBankAccount
AND-SPLITTING AT controlport(OrderHandling.Pay.ControlOut)
JOINING AT controlport(OrderHandling.Ship.ControlIn)

Listing 1. Example activity, after, and free connectors

a predefined set of control flow patterns, and is therefore also compatible with
more restricted workflows such as structured workflows.

Figure 3 provides the meta-model for our workflow concerns. This meta-model
does not contain the Unify connector mechanism, which is given in Section 5. The
complete Unify meta-model is the union of these two meta-models. The meta-
models are expressed using UML, with well-formedness constraints specified in
OCL.

Transitiondestination

CompositeActivity

AtomicActivity

name
condition

ControlPort

ControlInputPort

ControlOutputPort

Activity

0..*

0..*

0..1

StartEvent

EndEvent

0..*

parent

children

controlIn controlOut
{ordered}

Join

Split

AndSplit

XorSplit

AndJoin

XorJoin

0..1 0..1 0..1 0..1andJoin xorJoinxorSplitandSplit

... corresponds to ...

... corresponds to ...

ControlNode

name
Node

Event

source

11 0..1 0..1

context StartEvent:

self.controlIn->size() = 0

and self.controlOut->size() = 1

context EndEvent:

self.controlIn->size() = 1

and self.controlOut->size() = 0

context Activity:

self.controlIn->size() = 1

and self.controlOut->size() = 1

context Split:

self.controlIn->size() = 1

and self.controlOut->size() > 0

context Join:

self.controlIn->size() > 0

and self.controlOut->size() = 1

parent parent1 1

transition transition

context CompositeActivity:

self.children->count(c | c.oclIsTypeOf(StartEvent)) = 1

and self.children->count(c | c.oclIsTypeOf(EndEvent)) = 1

and self.children->forAll(c1, c2 |

 c1 <> c2 implies c1.name <> c2.name)

context Node:

self.controlIn->union(self.controlOut)->forAll(c1, c2 |

 c1 <> c2 implies c1.name <> c2.name)

Fig. 3. The Unify base language meta-model

A workflow concern is modeled as a CompositeActivity. Each CompositeActiv-
ity has the following children: (1) A StartEvent, which represents the point where
the CompositeActivity’s execution starts. (2) An EndEvent, which represents the

Uniform Modularization of Workflow Concerns Using Unify 85

point where the CompositeActivity’s execution ends. (3) Any number of Activi-
ties, which are the units of work that are performed by the CompositeActivity.
(4) Any number of ControlNodes, which are used to route the CompositeActiv-
ity’s control flow. (5) One or more Transitions, which connect the StartEvent,
the EndEvent, the Activities and the ControlNodes to each other.

An Activity is either a CompositeActivity or an AtomicActivity. Nested Com-
positeActivities can be used to hierarchically decompose a concern, similar to
the classic sub-workflow decomposition pattern. Each Activity has a name that
is unique among its siblings in the composition hierarchy, and has one Con-
trolInputPort and one ControlOutputPort. A ControlInputPort represents the
point where control enters an Activity, while a ControlOutputPort represents
the point where control exits an Activity. Each ControlPort has a name that is
unique among its siblings. Within a CompositeActivity, the StartEvent is used
to specify where the CompositeActivity’s execution should start when its Con-
trolInputPort is triggered. The EndEvent is used to specify where the Com-
positeActivity’s execution should finish, and will cause the CompositeActivity’s
ControlOutputPort to be triggered. Thus, a StartEvent only has a ControlOut-
putPort, and an EndEvent only has a ControlInputPort.

Transitions define how control flows through a CompositeActivity. This is
done by connecting the ControlOutputPorts of the CompositeActivity’s Nodes
to ControlInputPorts. ControlNodes can be used to route the flow of control,
and are either AndSplits, XorSplits, AndJoins or XorJoins. A Split may have a
corresponding Join. Together, Transitions and ControlNodes define a Compos-
iteActivity’s control flow perspective.

The Unify base language meta-model does not aim to support every possi-
ble control flow pattern that has been identified in existing literature, as our
research focuses on the expressiveness of the modularization mechanism rather
than on the expressiveness of the individual modules. The meta-model supports
the basic control flow patterns [13], which are sufficient for expressing most work-
flows. It does not aim to support more advanced patterns such as cancellation
and multiple instances. Due to the generic nature of the Unify base language
meta-model, the cores of most workflow languages are compatible with it. We
have extended the meta-model towards the cores of the WS-BPEL and BPMN
workflow languages.

5 The Unify Connector Mechanism

The Unify connector mechanism is based on aspect-oriented principles [2]. It
allows adding the functionality defined by a certain workflow concern (which
is modeled as a CompositeActivity) at certain locations in another workflow
concern. In aspect-oriented terminology, the former concern is the advice, while
the latter is the base concern. The locations where the advice is added are called
joinpoints, and are either the base concern’s activities, splits, or control ports.
The process of adding the functionality to the base concern is called weaving.

86 N. Joncheere and R. Van Der Straeten

Unify promotes separation of concerns by allowing workflow concerns to be
specified in isolation of each other, as separate CompositeActivities. These can
be executed separately, or can be connected to other concerns using connec-
tors. Figure 4 shows the meta-model for the Unify connector mechanism. In the
interest of brevity, the definition of the CompositeActivity’s allNodes and allCon-
trolPorts queries are omitted. These queries return the set of nodes and control
ports, respectively, obtained by the transitive closure of the children relation.

ActivityConnector

splittingType
FreeConnector

Activity

Before
Connector

After
Connector

Around
Connector

splitPointcut
InConnector

name
condition

ControlPort

Composition

name
Connector

InversionOfControl
Connector

activityPointcut

Basic
InversionOfControl

Connector

Split

1

baseConcern

0..*

connectors
{ordered}

0..*

1..*

0..*

1 advice

/split 0..*

0..*

0..*
/activity

activity
1

0..*

0..*

0..* 0..*

joiningsplitting

1 1

executedActivity
1

0..*

context ActivityConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.activity)

composition

context BasicInversionOfControlConnector:
self.composition.baseConcern
 ->allNodes()->includes(self.activity)

context InConnector:
self.composition.baseConcern
 ->allNodes()
 ->includes(self.split)

context FreeConnector:
self.composition.baseConcern
 ->allControlPorts()->includes(self.splitting)
and self.composition.baseConcern
 ->allControlPorts()->includes(self.joining)

CompositeActivity

Parallel
Connector

Choice
Connector

Fig. 4. The Unify connector language meta-model

A Composition specifies which CompositeActivity is its base concern, and
which Connectors are to be applied to it. The set of Connectors is ordered, and
the connectors will be applied according to this ordering.

Connectors can be used to add functionality at certain points in a concern.
They can be divided into two categories: ActivityConnectors and InversionOf-
ControlConnectors. In a traditional workflow language, a workflow can be di-
vided into several levels of granularity through the use of sub-workflows. Con-
trol passes from the main workflow into sub-workflows and back, with the main
workflow specifying when the sub-workflow should be executed. An ActivityCon-
nector allows expressing that a certain Activity inside a certain concern should
be implemented by executing another Activity, which thus acts as a sub-concern.
By specifying this link in a separate connector instead of inside the concern, we
reduce coupling between the concern and the sub-concern, thus promoting reuse.

InversionOfControlConnectors invert the traditional passing of control from
main workflow into sub-workflows: they specify that a certain concern should be
adapted, while this concern is not aware of this adaptation. In this way, such

Uniform Modularization of Workflow Concerns Using Unify 87

connectors can be used to add concerns that were not anticipated when the
concern to which they are applied was created.

Joinpoints are well-defined points within the specification of a concern where
extra functionality — the advice — can be inserted using an InversionOfControl-
Connector. Joinpoints in existing aspect-oriented approaches for workflows are
either every XML element of the workflow definition [6] or every workflow activ-
ity [3]. As is shown in Table 1, our approach supports three kinds of joinpoints:
Activities, Splits, and ControlPorts. The joinpoint model is static, which has the
advantage of allowing us to define a clear weaving semantics (see Section 6.3).

Table 1. Advice types and joinpoints

Advice type Joinpoint

before Activity
after Activity
around Activity
parallel Activity
choice Activity
in Split
free ControlPort

Table 2. Pointcut predicates

Activity pointcuts

activity(identifierpattern)
compositeactivity(identifierpattern)
atomicactivity(identifierpattern)

Split pointcuts

split(identifierpattern)
andsplit(identifierpattern)
xorsplit(identifierpattern)

Control port pointcuts

controlport(identifier)
controlinputport(identifier)
controloutputport(identifier)

Pointcuts are expressions that resolve to a set of joinpoints, and are used to
specify where in the base concern the connector should add its functionality. Be-
cause all Activities, Splits and ControlPorts have names that are unique among
their siblings, every joinpoint can be uniquely identified by prepending the name
of the Activity, Split or ControlPort with the names of their parents. This allows
specifying sets of joinpoints as identifier patterns. Pointcuts can be expressed
using the predicates in Table 2.

There are seven kinds of InversionOfControlConnectors, one for each of the
advice types listed in Table 1.

BeforeConnectors, AfterConnectors, and AroundConnectors allow inserting a
certain Activity before, after, or around each member of a set of Activities in
another concern. These correspond to the classic before, after, and around advice
types that are common in aspect-oriented research.

ParallelConnectors and ChoiceConnectors allow adding a parallel or alterna-
tive Activity to each member of a set of Activities in another concern. These are
novel advice types that have not yet been considered in aspect-oriented research.

InConnectors allow adding an Activity as an extra branch to an existing Split.
These are similar to Padus’s in advice type [3].

88 N. Joncheere and R. Van Der Straeten

FreeConnectors allow (AND- or XOR-) splitting a concern’s control flow into
another Activity at a certain control port, and joining the concern at another
control port. These control ports are specified using two pointcuts: the splitting
pointcut and the joining pointcut, respectively. The splitting pointcut specifies
where the concern’s control flow will be split into the advice activity, and the
joining pointcut specifies where the concern will be joined. FreeConnectors are
more general than Parallel-, Choice-, and InConnectors : Parallel- and Choice-
Connectors allow adding a parallel or alternative Activity to an existing Activity
and InConnectors allow adding an Activity as an extra branch to an existing
Split, whereas FreeConnectors allow more freedom in where the control flow of
the base concern is split into the advice concern, and where the advice concern
joins the control flow of the base concern.

In order to widen the applicability of our approach, our connector mechanism
is defined in terms of our base language meta-model, which may be extended
towards different concrete workflow languages. Thus, we assume that there are
no prohibitive semantic differences between the way in which these languages’
concepts are mapped to our meta-model. As there is a consensus on the semantics
of the basic control flow patterns within the workflow community, this seems to
be a safe assumption. The way in which semantic details may be added to our
approach is an interesting avenue for future work, and will become more relevant
when more advanced control flow patterns are added to the base language meta-
model.

6 Discussion

6.1 Interaction with the Control Flow Perspective

The connector mechanism described above allows invasively changing a base
concern by connecting other concerns to it. In this subsection, we focus on the
effects of the connector mechanism on a base concern’s control flow. Our goal
here is to prevent that connecting a well-behaved concern to a well-behaved
base concern results in a composition that is not well-behaved. A concern is
well-behaved if it can never deadlock nor result in multiple active instances of
the same activity [12].

Before-, After-, Around-, Parallel- or ChoiceConnectors cannot negatively in-
fluence a base concern’s control flow because they merely result in the execution
of some extra behavior around the joinpoint activity. Thus, they cannot influ-
ence any part of the base concern’s control flow other than the execution of the
joinpoint activity itself. InConnectors cannot negatively influence a base con-
cern’s control flow because they merely result in the addition of an extra branch
to an existing split. Thus, they cannot influence any part of the base concern’s
control flow other than the execution of the split itself. Therefore, we will only
discuss the effects of the FreeConnector.

Existing research [12] considers three kinds of workflows with respect to the
structure of their control flow: arbitrary workflows, structured workflows, and
restricted loop workflows. In general, the Unify base language allows expressing

Uniform Modularization of Workflow Concerns Using Unify 89

arbitrary workflows. However, a specific extension of the Unify meta-model may
be more restrictive. Therefore, we restrict the FreeConnector depending on the
kind of workflows that is supported by the current extension.

Arbitrary Workflows. Intuitively, arbitrary workflows are workflows in which
a split does not need to have a corresponding join. There is no guarantee that
every arbitrary workflow is well-behaved; deciding whether a given arbitrary
workflow is well-behaved requires the use of verification techniques [12].

Using a free connector to connect a well-behaved arbitrary workflow concern
to a well-behaved arbitrary base workflow concern may give rise to a compo-
sition that is not well-behaved, but it is not possible to prevent this without
introducing structure into the arbitrary workflow concerns. Therefore, we do
not introduce any restrictions on the free connector when it is used to connect
arbitrary workflow concerns. However, the semantics of our connector mecha-
nism (see Section 6.3) allows applying the same verification techniques that are
used to decide whether the connected workflow concerns are well-behaved to the
composition of these workflow concerns, and the connector mechanism thus does
not introduce any new challenges in this regard.

Structured Workflows. Intuitively, structured workflows are workflows in
which every AND-split has a corresponding AND-join, and every XOR-split
has a corresponding XOR-join. Thus, each split and its corresponding join con-
stitute a block structure, and control can only enter or exit this block structure
through the join or split. Control can also not cross the different branches of
the block structure. These restrictions guarantee that a structured workflow is
well-behaved [12].

Because free connectors insert a new split and and a new join into a base
workflow concern in order to execute another workflow concern as an additional
branch, this new branch may make a structured base workflow concern unstruc-
tured. In order to prevent this, the splitting and joining control ports of a free
connector must be part of the same branch of the same block structure in case
of structured workflows. Note that this restriction precludes the use of the free
connector that was introduced in Section 2 in order to synchronize two parallel
branches: as the splitting and joining joinpoints of this free connector are located
in different branches of the same block structure, this connector is disallowed
when the current extension only supports structured workflows.

Restricted Loop Workflows. Intuitively, restricted loop workflows are work-
flows in which only loops need to be structured (i.e., a split must only have
a corresponding join if it introduces a loop in the workflow). Thus, only loops
constitute block structures. Restricted loop workflows are less expressive than
arbitrary workflows and more expressive than structured workflows. Depending
on the implementation of the underlying workflow engine, it can be guaranteed
that restricted loop workflows are well-behaved [12]. Similar to our approach for
structured workflows, we restrict the free connector in case of restricted loop
workflows: the splitting and joining control ports of a free connector must be
part of the same branch of the same block structure.

90 N. Joncheere and R. Van Der Straeten

The above restrictions aim to prevent undesirable effects of using the Unify
connector mechanism. One can also envision approaches that detect undesirable
effects. For example, in previous work [14] we have designed and implemented
a means of expressing and statically verifying control flow policies for Unify
workflows.

6.2 Interaction with the Data Perspective

In addition to effects on the control flow perspective of the connected workflow
concerns, the connector mechanism has effects on the data perspective of the
connected workflow concerns. For example, a connected workflow concern may
reference a variable that is not defined at the place where it is woven. The effects
of the connector mechanism on the data perspective depend on the approach that
is used by the specific extension to the Unify meta-model to pass data from one
activity to another. Existing research [15] has identified the following approaches:
integrated control and data channels, distinct control and data channels, and no
data passing. We assume that both of the connected workflow concerns use the
same approach.

Integrated Control and Data Channels. In this approach, control flow and
data are passed simultaneously between activities, and transitions are annotated
with which data elements must be passed. Activities can only access data that
has been passed to them by an incoming transition. Given two workflow concerns
that use this approach, we must make sure that the weaving of the two work-
flow concerns results in a correct composition with regard to the data elements.
Therefore, a connector must specify which data elements should be passed from
the base workflow concern to the other workflow concern and back. These data
elements must be accessible at the joinpoint. The weaving process will gener-
ate transitions from the base workflow concern to the other workflow concern
and back, and annotate these transitions with the data elements to be passed,
resulting in a correct composition.

Distinct Control and Data Channels. In this approach, data is passed
between activities via explicit data links that are distinct from control flow
links (i.e., transitions). Therefore, a connector must specify which data elements
should be passed from which activities in the base workflow concern to the other
workflow concern and back. The weaving process will generate transitions be-
tween the workflow concerns as usual, but will also generate distinct data links
from the specified activities in the base workflow concern to the other workflow
concern and back, resulting in a correct composition.

No Data Passing. In this approach, activities share the same data elements,
typically via access to some common scope. Thus, no explicit data passing is
required. In order to implement our connector mechanism, we could merely weave
a workflow concern into the base workflow conern without any regard to the data
perspective. The activities of the former workflow concern could then access all
the data elements that are accessible at the joinpoint. However, this would be
undesirable as it would amount to dynamic scoping: a woven workflow concern

Uniform Modularization of Workflow Concerns Using Unify 91

might execute correctly at one joinpoint, and not at another, depending on which
variables are accessible. Therefore, a connector must specify the data elements
that are expected from the base workflow concern, and how these map to the
data elements used in the other workflow concern. The weaving process can then
verify whether all data is correctly mapped, and copy the data elements from the
base workflow concen to the other workflow concern according to this mapping.

The solutions for each of these three approaches can be defined as extensions
to the Unify meta-model. In the context of our extension towards WS-BPEL,
we have already defined the extension for the no data passing approach. This
extension encompassed associating every CompositeActivity with a Scope, which
defines any number of Variables. This information can then be used by the
weaving process.

6.3 Semantics

Because inversion-of-control connectors can invasively change the behavior of a
concern by connecting another concern to it at an unanticipated location, it is
important that the semantics of these connectors is clearly defined. Therefore,
we have defined the semantics of the connector weaving using the graph trans-
formation formalism [16]. In the interest of brevity, this section briefly discusses
this semantics. We refer the reader to [17] for a complete description of our
connector weaving semantics.

The semantics of a connector, which connects an workflow concern to a base
workflow concern, is given by constructing a new concern that composes the base
concern and the other concern according to the connector type and the pointcut
specification. This is accomplished using graph transformation rules that work
on the abstract syntax of the Unify base language.

A graph consists of a set of nodes and a set of edges. A typed graph is a
graph in which each node and edge belong to a type defined in a type graph. An
attributed graph is a graph in which each node and edge may contain attributes
where each attribute is a (value, type) pair giving the value of the attribute and
its type. Types can be structured by an inheritance relation.

A graph transformation rule is a rule used to modify a host graph, G, and
is defined by two graphs (L, R). L is the left-hand side of the rule representing
the pre-conditions of the rule and R is the right-hand side representing the post-
conditions of the rule. The process of applying the rule to a graph G involves
finding a graph monomorphism, h, from L to G and replacing h(L) in G with
h(R) (more details can be found in [16]).

In our approach, the type graph represents the meta-model shown in Figure 3.
The translation of this meta-model to a type graph is straightforward: each
meta-class corresponds to a typed node and each meta-association corresponds
to a typed edge. Attributes in the meta-model are translated to corresponding
node attributes. The well-formedness constraints can be formalized by graph
constraints. Graph constraints allow the expression of properties over graphs
(more details can be found in [18]).

92 N. Joncheere and R. Van Der Straeten

For each possible combination of connector type (cf. Figure 4) and pointcut
predicate (cf. Table 2), we specify a composition rule. Due to space restrictions
we only explain the rules for the FreeConnector. The complete set of composition
rules can be found in [17].

Fig. 5. The FreeAndSplittingOI graph transformation rule in AGG. The leftmost pane
represents a NAC, which should be seen as a forbidden structure. The next pane
represents the positive part of the rule’s left-hand side. The rightmost pane represents
the right-hand side of the rule.

Figure 5 shows the rule that corresponds to an AND-splitting FreeConnector
expressed in the general-purpose graph transformation tool AGG.2 The left-hand
side of a graph transformation rule is composed of a positive condition, i.e., the
presence of certain combinations of nodes and edges, and optionally, a set of
negative application conditions (NACs), i.e., absence of certain combinations of
nodes and edges. On the right-hand side of the transformation rule the result of
weaving the workflow concern in the base workflow concern is shown. Remark
that eight rules are specified for the FreeConnector : four rules for the AND-
splitting FreeConnector, and four for the XOR-splitting FreeConnector. Each of
these has four rules because of the possible combinations of control input and
output ports.

The FreeAndSplittingOI(sName : String, jName : String, aName : String)
rule adds a split at a certain control output port, adds a join at a certain control
input port, and inserts an activity between the new split and join. The rule is
parametrized with the name of the splitting control output port, the name of the
joining control input port, and the name of the activity that is to be inserted.
The left-hand side of the rule specifies the splitting ControlOutputPort and its
outgoing Transition, the joining ControlInputPort and its incoming Transition,
and the Activity that is to be inserted with its ControlInputPort and ControlOut-
putPort. The right-hand side specifies the graph after inserting the activity. The
splitting ControlOutputPort is now connected to a new AndSplit through a new
Transition. The AndSplit has two outgoing Transitions, the first is the split-
ting ControlOutputPort ’s original outgoing Transition, and the second is a new
Transition that is connected to the ControlInputPort of the inserted Activity.
The ControlOutputPort of the inserted Activity is connected to a new AndJoin

2 See http://tfs.cs.tu-berlin.de/agg/

http://tfs.cs.tu-berlin.de/agg/

Uniform Modularization of Workflow Concerns Using Unify 93

through a new Transition. The other incoming Transition of the AndJoin is the
joining ControlInputPort ’s original incoming Transition. Finally, the AndJoin is
connected to the joining ControlInputPort through a new Transition.

7 Implementation

We have created a proof-of-concept implementation for Unify, which is available
for download at [11]. The architecture of this implementation is shown in Figure
6. At the heart of the architecture lies a Java implementation of the Unify
base language (cf. Figure 3) and connector mechanism (cf. Figure 4). The Unify
API allows constructing and manipulating workflow concerns in-memory, while
extensions to the Unify framework provide parsers and serializers for existing
concrete workflow languages. A composition specifies which concerns should be
loaded and which connectors should be applied to them.

One by one, the Unify connector weaver applies the connectors to the base
concern in the order specified by the composition. For each connector, the base
concern is modified accordingly. The final modified base concern is transformed
into a Petri nets execution model if one wants to use Unify’s built-in work-
flow engine, or is exported back to the workflow language in which the original
concerns were specified. In this latter case, the composition is serialized into a
single workflow in which all concerns are woven together. An Eclipse plug-in that
facilitates interaction with the Unify tool chain is currently under development.

The instantiation process is straightforward for common workflow concepts,
i.e., activities and basic control flow concepts. However, three limitations may
arise when instantiating Unify: (1) The base language is graph-based, which
means that block-structured constructs such as those encountered in WS-BPEL
should be correctly mapped to Unify’s graph-based constructs, which is feasible.
(2) The base language only provides the basic control flow patterns identified
in existing research, which means that it is cumbersome to implement advanced
control flow patterns such as those encountered in YAWL [19]. (3) The base

Eclipse plug-in
(under development)

Petri nets
execution model

(Java)

PNMLGraphviz

Petri nets
execution manager

(Java)

Petri nets
execution monitor

(Java)

Connector weaver
(Java)

Abstract syntax
(Java)

Unify
composition

Unify connectors
(plain text)Unify connectors

(plain text)Unify
concerns

Unify connectors
(plain text)Unify connectors

(plain text)Unify
connectors

BPMN / WS-BPEL

Fig. 6. Architecture of the Unify implementation

94 N. Joncheere and R. Van Der Straeten

language focuses on the control flow perspective, which means that it provides
no support for other perspectives, such as the exception handling perspective.
These limitations are the result of the deliberate choice to focus on the ex-
pressiveness of the modularization mechanism rather than on the expressiveness
of the individual modules, and could be addressed by iterating over the base
language meta-model. We believe that the current meta-model is sufficient for
demonstrating our contributions to the modularization of workflow concerns.

8 Related Work

Broadly speaking, the related work we consider can be divided into four domains:

ComponentBased Systems.Component based software development (CBSD)
aims to promote separation of (non-crosscutting) concerns by allowing the com-
position of independent software components. Although some component frame-
works allow modularizing specific crosscutting concerns using constructs like de-
ployment descriptors, a general modularization mechanism for crosscutting con-
cerns is typically unavailable. In the context of CBSD, connectors are often used
to specify the roles that different software components fulfill in a composition
[20]. Unify connectors are inspired by such component-based connectors, and are
similarly used to specify, at deployment time, how different concerns should be
composed. However, unlike component-based connectors, with respect to the con-
nected concerns, Unify connectors describe both anticipated and non-anticipated
(e.g., aspect-oriented) connections.

TraditionalWorkflowLanguages.Themost well-known currentworkflow lan-
guages are WS-BPEL [10] and YAWL [19]. WS-BPEL has notoriously poor sup-
port for separation of concerns (which has led to a number of aspect-oriented ap-
proaches that aim to remedy this; see below): a WS-BPEL process is a monolithic
XML file that cannot be straightforwardly divided into sub-processes. YAWL im-
proves on this in that it allowsworkflows to be divided into reusable sub-workflows.

Aspect-Oriented Programming for Workflows. The lack of modularization
mechanisms in traditional workflow languages, most notably WS-BPEL, has led
to the development of a number of aspect-oriented approaches for worfklows.
AO4BPEL [6], the approach by Courbis & Finkelstein [7], and Padus [3] are
the most well-known. They all allow modularizing crosscutting concerns in WS-
BPEL workflows using separate aspects. Unify improves on them by allowing
the modularization of all workflow concerns, i.e., not only crosscutting ones, and
by introducing workflow-specific advice types in addition to the classic before,
after, and around advice types. Moreover, Unify is not restricted to any concrete
workflow language such as WS-BPEL.

Dynamic Workflow Systems. Existing research has produced a taxonomy of
workflow flexibility [21]. With regard to this taxonomy, Unify mainly aims to im-
proveworkflowflexibility by design by providing amore expressivemodularization
mechanism than those offered by current workflow languages. The use of the stan-
dard Unify connector weaver precludes other forms of flexibility, i.e., flexibility by

Uniform Modularization of Workflow Concerns Using Unify 95

deviation, by underspecification, or by change (which describe different kinds of
runtime adaptation of workflows). Extending our execution model with support
for runtime enabling and disabling of connectors would remove this restriction,
but is currently beyond the scope of our research, as runtime adaptation does not
improve the design or reuse of workflow concerns. This constitutes an important
difference in focus with regard to workflow systems that allow dynamically chang-
ing workflows.

9 Conclusions and Future Work

Existing workflow languages have insufficient support for separation of concerns.
This can make workflows hard to comprehend, maintain, and reuse. We address
this problem by introducing Unify, a framework that allows specifying both
regular and crosscutting workflow concerns in isolation of each other. The Unify
connector mechanism allows connecting these independently specified concerns
using a number of workflow-specific connectors.

Activity connectors allow expressing that an existing activity in one concern
should be implemented by executing another concern, in a way that minimizes
dependencies between these concerns and thus facilitates their independent evo-
lution and reuse. Additionally, inversion-of-control connectors allow augmenting
a concern with other concerns that were not considered when it was designed,
and again facilitates independent evolution and reuse of these concerns.

At the heart of Unify lies a meta-model that allows expressing arbitrary work-
flows, and which can be mapped to several concrete workflow languages and no-
tations. We also provide a meta-model for the connector mechanism, and discuss
its interaction with the control flow and data perspectives. We provide a seman-
tics for the weaving of the connectors using the graph transformation formalism.

We have identified the following directions of future work: (1) Unify connectors
are currently specified using a textual syntax (cf. Section 3). We are investigating
how we can support workflow developers in specifying connectors in a visual way.
(2) Although a proof-of-concept implementation of Unify has been developed,
tool support should be extended in order to facilitate adoption of the approach.
Therefore, we are developing an Eclipse plug-in that facilitates interaction with
the Unify tool chain. (3) We are working on a more extensive validation of our
approach, based on the refactoring of a real-life workflow application using Unify.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

3. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten,
R., Truyen, E., Joosen, W., Jonckers, V.: Isolating Process-Level Concerns Us-
ing Padus. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 113–128. Springer, Heidelberg (2006)

96 N. Joncheere and R. Van Der Straeten

4. Joncheere, N., Deridder, D., Van Der Straeten, R., Jonckers, V.: A Framework for
Advanced Modularization and Data Flow in Workflow Systems. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 592–598.
Springer, Heidelberg (2008)

5. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and com-
promises. ACM Queue 1(1), 48–58 (2003)

6. Charfi, A., Awasthi, P.: Aspect-Oriented Web Service Composition with
AO4BPEL. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250,
pp. 168–182. Springer, Heidelberg (2004)

7. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005), pp.
69–77. ACM Press, St. Louis (2005)

8. González, O., Casallas, R., Deridder, D.: MMC-BPM: A Domain-Specific Language
for Business Processes Analysis. In: Abramowicz, W. (ed.) Business Information
Systems. Lecture Notes in Business Information Processing, vol. 21, pp. 157–168.
Springer, Heidelberg (2009)

9. Object Management Group: Business Process Model and Notation, version 2.0
(2011), http://www.omg.org/spec/BPMN/2.0/

10. Jordan, D., Evdemon, J., et al.: Web Services Business Process Execution Lan-
guage, version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

11. Joncheere, N., et al.: The Unify framework (2009),
http://soft.vub.ac.be/~njonchee/artifacts/unify/

12. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On Structured Workflow
Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 431–445. Springer, Heidelberg (2000)

13. Russell,N.,terHofstede,A.H.M.,vanderAalst,W.M.P.,Mulyar,N.:Workflowcontrol
-flow patterns: A revised view. BPMCenter Report BPM-06-22, BPMCenter (2006)

14. De Fraine, B., Joncheere, N., Noguera, C.: Detection and resolution of aspect in-
teractions in workflows. Technical Report SOFT-TR-2011.06.20, Vrije Universiteit
Brussel, Software Languages Lab, Brussels, Belgium (2011),
http://soft.vub.ac.be/~njonchee/publications/TR20110620.pdf

15. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns. QUT Technical Report FIT-TR-2004-01, Queensland University of
Technology (2004)

16. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Foundations, vol. 1. World Scientific, River Edge (1997)

17. Joncheere, N., Van Der Straeten, R.: Semantics of the Unify composition mecha-
nism. Technical Report SOFT-TR-2011.04.15, Vrije Universiteit Brussel, Software
Languages Lab, Brussels, Belgium (2011),
http://soft.vub.ac.be/~njonchee/publications/TR20110415.pdf

18. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Monographs in Theoretical Computer Science. Springer (2006)

19. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

20. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

21. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
flexibility: A survey of contemporary approaches. LNBIP, vol. 10, pp. 16–30 (2008)

http://www.omg.org/spec/BPMN/2.0/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://soft.vub.ac.be/~njonchee/artifacts/unify/
http://soft.vub.ac.be/~njonchee/publications/TR20110620.pdf
http://soft.vub.ac.be/~njonchee/publications/TR20110415.pdf

Design of Concept Libraries for C++

Andrew Sutton and Bjarne Stroustrup

Texas A&M University
Department of Computer Science and Engineering

{asutton,bs}@cse.tamu.edu

Abstract. We present a set of concepts (requirements on template arguments)
for a large subset of the ISO C++ standard library. The goal of our work is
twofold: to identify a minimal and useful set of concepts required to constrain
the library’s generic algorithms and data structures and to gain insights into how
best to support such concepts within C++. We start with the design of concepts
rather than the design of supporting language features; the language design must
be made to fit the concepts, rather than the other way around. A direct result of
the experiment is the realization that to simply and elegantly support generic pro-
gramming we need two kinds of abstractions: constraints are predicates on static
properties of a type, and concepts are abstract specifications of an algorithm’s
syntactic and semantic requirements. Constraints are necessary building blocks
of concepts. Semantic properties are represented as axioms. We summarize our
approach: concepts = constraints + axioms. This insight is leveraged to de-
velop a library containing only 14 concepts that encompassing the functional,
iterator, and algorithm components of the C++ Standard Library (the STL). The
concepts are implemented as constraint classes and evaluated using Clang’s and
GCC’s Standard Library test suites.

Keywords: Generic programming, concepts, constraints, axioms, C++.

1 Introduction

Concepts (requirements on template arguments) are the central feature of C++ generic
library design; they define the terms in which a library’s generic data structures and
algorithms are specified. Every working generic library is based on concepts. These
concepts may be represented using specifically designed language features (e.g. [15,
20]), in requirements tables (e.g., [2,22]), as comments in the code, in design documents
(e.g., [21]), or simply in the heads of programmers. However, without concepts (formal
or informal), no generic code could work.

For example, a Matrix library that allows a user to supply element types must have
a concept of what operations can be used on its elements. In other words, the Matrix li-
brary has a concept of a “number,” which has a de facto definition in terms of operations
used in the library code. Interpretations of “number” can vary dramatically from library
to library. Is a polynomial function a number’? Are numbers supposed to support divi-
sion? Are operations on numbers supposed to be associative? Regardless, every generic
Matrix library has a “number” concept.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 97–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 A. Sutton and B. Stroustrup

In this work, we experiment with designs for concepts by trying to minimize the
number of concepts required to constrain the generic algorithms and data structures of
a library. To do such experiments, we need ways to represent concepts in C++ code. Our
approach is to use constraint classes, which allows us to experiment with different sets
of concepts for a library without pre-judging the needs for specific language support
features. Once we have experimented with the design of concepts for several libraries,
we expect our criteria for concept design and use to have matured to the point where
we can confidently select among the reasonably well-understood language design alter-
natives. Language support should be determined by ideal usage patterns rather than the
other way around.

Previous work in the development of concept libraries has resulted in the definition
of large numbers of concepts to constrain comparatively few generic components. For
example, the last version of the C++ Draft Standard to include concepts [5] defined
130 concepts to constrain approximately 250 data structures and algorithms. Nearly
2/3rds of that library’s exported abstractions were concept definitions. Out of the 130
concepts, 108 relate are used to (directly or indirectly) express the functional, iterator,
and algorithms parts of the standard library that we address here. In comparison, the
Elements of Programming (EoP) book [34] covers similar material with 52 concepts
for about 180 different algorithms (just under 1/3rd).

Obviously, not all of the concepts in either publication are “equally abstract”. That
C++ Draft Standard includes about 30 concepts enumerating requirements on overload-
able operator‘s alone and several metaprogramming-like concepts such as Rvalue_of.
The EoP book lists many concepts that explore variations on a theme; invariants are
strengthened or weakened, operators are dropped, and definition spaces are restricted.
From these and similar designs of concepts, it has been concluded that writing a generic
library requires exhaustive enumeration of overloadable operations, conceptual support
for template metaprogramming, and massive direct language support for concepts.

Fortunately, such conclusions are false. Furthermore, they are obviously false. The
overwhelming majority of generic libraries, including the original version of STL, were
written without language support for concepts and used without enforcement mecha-
nisms. The authors of these libraries did not consider some hundred different concepts
during their development. Rather, the generic components of these libraries were writ-
ten to a small set of idealized abstractions.

We argue that generic libraries are defined in terms of small sets of abstract and
intuitive concepts, and that an effective specification of concepts is the product of an
iterative process that minimizes the number of concepts while maintaining expressive
and effective constraints. Ideal concepts are fundamental to their application domain
(e.g., String, Number, and Iterator), and consequently it is a rare achievement to find a
genuine new one. These abstract and intuitive concepts must not be lost in the details
needed to express them in code. Neither should the ease of learning and ease of use
offered by these concepts be compromised by an effort to minimize the constraints of
every algorithm.

To explore these ideas concretely, we develop a minimal design of the concepts for
the STL that encompasses its functional, iterator, and algorithm libraries. The result-
ing concept library defines only 14 concepts, 94 fewer than originally proposed for the

Design of Concept Libraries for C++ 99

corresponding parts of the C++ Standard Library. We leverage the results of the ex-
periment and the experience gained to derive a novel perspective on concepts for the
C++ programming language. Our approach reveals a distinct difference between re-
quirements that represent domain abstractions and those that support their specifica-
tion: concepts and constraints, respectively. Concepts based on this distinction results
in a conceptually simpler and more modular design.

We validate the design of the concepts by implementing them within the framework
of a concept emulation library for the Origin C++ Libraries [38]. The libraries are im-
plemented using the 2011 ISO C++ standard facilities. The concepts are then integrated
into the STL subset of Clang’s libc++ and GCC’s libstdc++ and checked against their
test suites for validation.

The results of this work yield several contributions to our knowledge of generic pro-
gramming. First, we demonstrate that it is both feasible and desirable to experiment to
seek a minimal conceptual specification for a generic library. Second, we demonstrate
that distinguishing between concepts (as abstractions) and constraints (as static require-
ments) is an effective way to achieve this goal. Third, we identify semantic properties,
axioms, as the key to practical discrimination of concepts from constraints. Finally, we
provide a simpler and easier to use specification of key parts of the ISO C++ standard
library.

2 Related Work

Generic programming is rooted in the ability to specify code that will work with a va-
riety of types. Every language supporting generic programming must address the issue
of how to specify the interface between generically written code and the set of concrete
types on which it operates. Several comparative studies have been conducted in support
for generic programming and type constraints [18]. These studies were leveraged to
support the definition of concepts for C++

ML relies on signatures to specify the interface of modules and constrain the type
parameters of functors [27]. Operations in the signature are matched against those de-
fined by a structure to determine conformance. In Haskell, type classes denote sets of
types that can be used with same operations [24]. A type is made a member of that
set by explicitly declaring it an instance and implementing the requisite operations.
Type classes are used as constraints on type parameters in the signatures of polymor-
phic functions. Similarities between Haskell type classes and C++ concepts have also
been explored [6, 7]. AXIOM categories are used to define the syntax and semantics
of algebraic domains [10]. The specification of algebraic structures helped motivate the
design of its category system [9, 11]. Requirements on type parameters in Eiffel, Java,
and C# are specified in terms of inherited interfaces. Checking the conformance of a
supplied type argument entails determining if it is a subtype of the required interface or
class [8, 25, 26, 41].

From the earliest days of the design of C++ templates, people have been looking
for ways to specify and constrain template arguments [35, 36]. For the C++0x stan-
dards effort two proposals (with many variants) were considered [15, 20]. A language
framework supporting generic programming was developed in support of these propos-
als [32, 33].

100 A. Sutton and B. Stroustrup

There has been less work on the design of concepts themselves (as opposed to
studying language support). The dominant philosophy of concept design has focused on
“lifting” algorithms from specific implementations to generic algorithms with specific
requirements on arguments [28]. However, applying the same process to the concepts
(iterative generalization) can lead to an explosion in the number of concepts as require-
ments are minimized for each algorithm in isolation. The (ultimately unsuccessful) de-
sign for C++0x included a carefully crafted and tested design for the complete C++0x
standard library including around 130 concepts [5]. In [13], Dehnert and Stepanov de-
fined properties of regular types and functions. Stepanov and McJones carefully worked
out a set of concepts for their variant of the STL in EoP [34]; Dos Reis implemented
verification for those and found a few improvements [14].

Other research has focused on the use of concepts or their expression in source code.
Bagge and Haveraaen explored the use of axioms to support testing and the semantic
specification of algebraic concepts [4]. Pirkelbauer et al [29] and Sutton and Maletic
[40] studied concepts through mechanisms for automatically extracting requirements
from actual source code. Also, many aspects of concepts can be realized idiomatically
in C++0x [12, 39]; this is the basis of our implementation in this work.

3 Requirements for Concept Design

The immediate and long-term goals of this research are to develop an understanding
of the principles of concepts and to formulate practical guidelines for their design. A
midterm goal is to apply that understanding to the design of language features to support
the use of concepts, especially in C++.

Here, we present an experiment in which we seek a conceptual specification for
the STL that defines a minimum number of concepts. This goal is in stark contrast to
previous work [5] where the explicit representation of even the subtlest distinctions in
requirements was the ideal.

The minimization aspect of the experiment constrains the design in such a way that
the resulting concepts must be abstract and expressive. A concept represents a generic
algorithm’s requirements on a type such as a Number or an Iterator. A concept is a
predicate that can be applied to a type to ascertain if it meets the requirements embodied
by the concept. An expressive concept, such as Iterator, allows a broad range of related
expressions on a variety of types. In contrast, a simple syntactic requirement, such as
requiring default construction, is a constraint on implementers and does not express a
general concept.

The effect of this minimization is ease of learning and ease use. In particular, it
provides library designers and users with a simple, strong design guideline that could
never be achieved with (say) 100 primitive requirements (primitive in the mathematical
sense). The design of a concept library is the result of two minimization problems:
concept and constraint minimization.

Concept minimization seeks to find the smallest set of concepts that adequately rep-
resent the abstractions of a generic library. The problem is na?vely solved by defining
a single concept that satisfies the requirements of all templates. For example, mutable
random-access iterators work with practically all STL algorithms so a minimum con-
cept specification might simply be a Random_access_iterator. This would result in

Design of Concept Libraries for C++ 101

over-constrained templates and make many real-world uses infeasible. For example, a
linked-list cannot easily and economically support random access and an input stream
cannot support random access at all. Conversely, the popular object-oriented notion of
a universal Object type under-constrains interfaces, so that programmers have to rely
on runtime resolution, runtime error handling, and explicit type conversion.

Constraint minimization seeks to find a set of constraints that minimally constrain
the template arguments. This problem is na?vely solved by naming the minimal set of
type requirements for the implementation of an algorithm. If two algorithms have non-
identical but overlapping sets of requirements, we factor out the common parts, which
results in three logically minimal sets of requirements. This process is repeated for all
algorithms in a library. Concepts developed in this manner resemble the syntactic con-
structs from which they are derived; the number of concepts is equal to the number of
uniquely typed expressions in a set of the algorithms. This results in the total absence
of abstraction and large numbers of irregular, non-intuitive concepts. In the extreme,
every implementation of every algorithm needs its own concept, thus negating the pur-
pose of “concepts” by making them nothing but a restatement of the requirements of a
particular piece of code.

Effective concept design solves both problems through a process of iterative refine-
ment. An initial, minimal set of concepts is defined. Templates are analyzed for re-
quirements. If the initial set of concepts produces overly strict constraints, the concept
definitions must be refactored to weaken the constraints on the template’s arguments.
However, the concepts must not be refactored to the extent that they no longer represent
intuitive and potentially stable abstractions.

4 Concepts = Constraints + Axioms

Previous work on concepts use a single language mechanism to support both the ab-
stract interfaces (represented to users as concepts) and the queries about type properties
needed to eliminate redundancy in concept implementations. From a language-technical
point of view, that makes sense, but it obscures the fundamental distinction between
interface and implementation of requirements. Worse, it discourages the programmer
from making this distinction by not providing language to express the distinction. We
conclude that we need separate mechanisms for the definition of concepts and for their
implementation.

We consider three forms of template requirements in our design:

– Constraints define the statically evaluable predicates on the properties and syntax
of types, but do not represent cohesive abstractions.

– Axioms state semantic requirements on types that should not be statically evaluated.
An axiom is an invariant that is assumed to hold (as opposed required to be checked)
for types that meet a concept.

– Concepts are predicates that represent general, abstract, and stable requirements of
generic algorithms on their argument. They are defined in terms of constraints and
axioms.

Constraints are closely related to the notion of type traits, metafunctions that evaluate
the properties of types. We choose the term “constraint” over “trait” because of the

102 A. Sutton and B. Stroustrup

varied semantics already associated the word “trait.” The word “constraint” also em-
phasizes the checkable nature of the specifications. The terms “concept” and “axiom”
are well established in the C++ community [1, 2, 5, 16, 18, 22, 34, 39].

Constraints and axioms are the building blocks of concepts. Constraints can be used
to statically query the properties, interfaces, and relationships of types and have direct
analogs in the Standard Library as type traits (e.g., is_const, is_constructible, is_-
same). In fact, a majority of the concepts in C++0x represent constraints [5].

Axioms specify the meaning of those interfaces and relationships, type invariants,
and complexity guarantees. Previous representations of concepts in C++ define axioms
as features expressed within concepts [5,16]. In our model, we allow axioms to be writ-
ten outside of concept specifications, not unlike properties in the EoP book [34]. This
allows us to distinguish between semantics that are inherent to the meaning of a concept
and those that can be stated as assumed by a particular algorithm. The distinction also
allows us to recombine semantic properties of concepts without generating lattices of
semantically orthogonal concepts, which results in designs with (potentially far) fewer
concepts.

The distinctive property that separates a concept from a constraint is that it has se-
mantic properties. In other words, we can write axioms for a concept, but doing so for a
constraint would be farfetched. This distinction is (obviously) semantic so it is possible
to be uncertain about the classification of a predicate, but we find that after a while the
classification becomes clear to domain experts. In several cases, the effort to classify
deepened our understanding of the abstraction and in four cases the “can we state an
axiom?” criterion changed the classification of a predicate, yielding—in retrospect—
a better design. These improvements based on the use of axioms were in addition to
the dramatic simplifications we had achieved using our earlier (less precise) criteria of
abstractness and generality.

Our decision to differentiate concepts and constraints was not made lightly, nor was
the decision to allow axioms to be decoupled from concepts. These decisions are the
result of iteratively refining, balancing, and tuning concepts for the STL subject to the
constraints of the experiment. These insights, once made, have resulted in a clear, con-
cise, and remarkably consistent view of the abstractions in the STL. The distinction
between concepts, constraints, and axioms is a valuable new design tool that supports
modularity and reuse in conceptual specifications. We expect the distinction to have
implications on the design of the language support for concepts. For example, if we
need explicit modeling statements (concept maps [20]; which is by no means certain),
they would only be needed for concepts. Conversely, many constraints are compiler in-
trinsic [22]. These two differences allow for simpler compilation model and improved
compile times compared to designs based on a single language construct [5, 19].

As an example of the difference, consider the C++0x concepts HasPlus, HasMinus,
HasMultiply, and HasDivide. By our definition, these are not concepts. They are noth-
ing but requirements that a type has a binary operator +, -, *, and, /, respectively. No
meaning (semantics) can be ascribed to each in isolation. No algorithm could be writ-
ten based solely on the requirement of an argument type providing (say) - and *. In
contrast, we can define a concept that requires a combination of those (say, all of them)

Design of Concept Libraries for C++ 103

with the usual semantics of arithmetic operations conventionally and precisely stated as
axioms. Such concepts are the basis for most numeric algorithms.

It is fairly common for constraints to require just a single operation and for a concept
to require several constraints with defined semantic relationships among them. How-
ever, it is quite feasible to have a single-operation concept and, conversely, a multi-
operation constraint. For example, consider the interface to balancing operations from
a framework for balanced-binary tree implementations [3]:

constraint Balancer<typename Node> {
void add_fixup(Node*);
void touch(Node*);
void detach(Node*);

}

This specifies the three functions that a balancer needs to supply to be used by the
framework. It is clearly an internal interface of little generality or abstraction; it is an
implementation detail. If we tried hard enough, we might come up with some semantic
specification (which would depend on the semantics of Node), but it would be unlikely
to be of use outside this particular framework (where it is used in exactly one place).
Furthermore, it would be most unlikely to survive a major revision and extension of
the framework unchanged. In other words, the lack of generality and the difficulty of
specifying semantic rules are strong indications that Balancer is not a general concept,
so we make it a constraint. It is conceivable that in the future we will understand the
application domain well enough to support a stable and formally defined notion of a
Balancer and then (and only then) would we promote Balancer to a concept by adding
the necessary axioms. Partly, the distinction between concept and constraint is one of
maturity of application domain.

Constraints also help a concept design accommodate irregularity. An irregular type
is one that almost meets requirements but deviates so that a concept cannot be written
to express a uniform abstraction that incorporates the irregular type. For example, os-
tream_iterator and vector<bool>::iterator are irregular in that their value type cannot
be deduced from their reference type. Expression templates are paragons of irregularity:
they encode fragments of an abstract syntax tree as types and can support lazy evalu-
ation without additional syntax [42]. We can’t support every such irregularity without
creating a mess of “concepts” that lack proper semantic specification and are not stable
(because they essentially represent implementation details). However, such irregular it-
erators and expression templates are viable type arguments to many STL algorithms.
Constraints can be used to hide these irregularities, thus simplifying the specification of
concepts. A long-term solution will have to involve cleaner (probably more constrained)
specification of algorithms.

5 Concepts for the STL

Our concept design for the STL is comprised of only 14 concepts, 17 supporting con-
straints, and 4 independent axioms. These are summarized in Table 1.

We present the concepts, constraints, and axioms in the library using syntax similar
to that developed for C++0x [5, 15, 20]. The syntax used in this presentation can be

104 A. Sutton and B. Stroustrup

Table 1. Concepts, constraints, and axioms

Concepts Constraints
Regularity Iterators Operators Language

Comparable Iterator Equal Same
Ordered Forward_iterator Less Common

Copyable Bidirectional_iterator Logical_and Derived
Movable Random_access_iterator Logical_or Convertible
Regular Logical_not Signed_int

Callable
Functional Types Initialization Other
Function Boolean Destructible Procedure
Operation Constructible Input_iterator
Predicate Assignable Output_iterator
Relation

Axioms
Equivalence_relation

Strict_weak_order
Strict_total_order
Boolean_algebra

mapped directly onto the implementation, which supports our validation method. Also,
the concept and constraint names are written as we think they should appear when used
with language support, not as they appear in the Origin library.

To distinguish C++ from purely object-oriented or purely functional type systems,
we preface the presentation of these concepts with a summary view of values and ob-
jects within the context of the C++ type system. In brief, a value is an abstract, im-
mutable element such as the number 5 or the color red. An object resides in a specific
area of memory (has identity) and may hold a value. In C++, values are represented by
rvalues: literals, temporaries, and constant expressions (constexpr values). Objects are
lvalues that support mutability in the forms of assignment and move (i.e., variables).
Objects are uniquely identified by their address. A constant of the form const T is an
object that behaves like a value in that it is immutable, although it still has identity. A
reference is an alias to an underlying value (rvalue reference) or object (lvalue refer-
ence). In order for our design to be considered viable, it must address the differences
between the various kinds of types in the C++ type system [37].

5.1 Regular Types

In our design, all abstract types are rooted in the notion of regularity. The concept Reg-
ular appears in some form or other in all formalizations of C++ types [22, 32, 34]; it
expresses the notion that an object is fundamentally well behaved, e.g. it can be con-
structed, destroyed, copied, and compared to other objects of its type. Also, Regular
types can be used to define objects. Regularity is the foundation of the value-oriented
semantics used in the STL, and is rooted in four notions: Comparability, Order, Mov-
ability, and Copyability. Their representation as concepts follow.

Design of Concept Libraries for C++ 105

concept Comparable<typename T> {
requires constraint Equal<T>; // syntax of equality
requires axiom Equivalence_relation<equal<T>, T>; // semantics of equivalence

template<Predicate P>
axiom Equality(T x, T y, P p) {

x==y => p(x)==p(y); // if x==y then for any Predicate p, p(x) == p(y)
}
axiom Inequality(T x, T y) {

(x!=y) == !(x==y); // inequality is the negation of equality
}

}

The Comparable concept defines the notion of equality comparison for its type ar-
gument. It requires an operator == via the constraint Equal, and the meaning of that
operator is imposed by the axiom Equivalence_relation. The Equality axiom defines
the actual meaning of equality, namely that two values are equal if, for any Predicate,
the result of its application is equal. We use the C++0x axiom syntax with the=> (im-
plies) operator added [16]. The Inequality axiom connects the meaning of equality to
inequality. If a type defines == but does not a corresponding !=, we can automatically
generate a canonical definition according to this axiom (as described in Sect. 6). The
Inequality axiom requires that user-defined != operators provide the correct semantics.

We define the notion of Order similarly:

concept Ordered<Regular T> {
requires constraint Less<T>;
requires axiom Strict_total_order<less<T>, T>;
requires axiom Greater<T>;
requires axiom Less_equal<T>;
requires axiom Greater_equal<T>;

}

We factor out the axioms just to show that we can, and because they are examples of
axioms that might find multiple uses:

template<typename T>
axiom Greater(T x, T y) {

(x>y) == (y<x);
}
template<typename T>
axiom Less_equal(T x, T y) {

(x<=y) == !(y<x);
}
template<typename T>
axiom Greater_equal(T x, T y) {

(x>=y) == !(x<y);
}

106 A. Sutton and B. Stroustrup

As with Comparable, the definition of requirements is predicated on a syntactic con-
straint (Less) and a semantic requirement (Strict_total_order). Obviously, not all types
inherently define a total order; IEEE 754 floating point values define only a partial or-
der when considering NaN values. Because this is an axiom and can’t be proven by a
C++ compiler, we are allowed to assume that it holds. The required axioms connect the
meaning of the other relational operations to <.

concept Copyable<Comparable T> {
requires constraint Destructible<T> && Constructible<T, const T&>

axiom Copy_equality(T x, T y) {
x==y => T{x}==y && x==y; // copy construction copies (non-destructively)

}
};

A Copyable type is both copy constructible and Comparable. The Copy_equality
axiom states that a copy of an object is equal to its original. Copyable (and also Mov-
able) types must be Destructible, ensuring that the program can destroy the constructed
objects.

concept Movable<typename T> {
requires constraint Destructible<T> && Constructible<T, T&&>

axiom Move_effect(T x, T y) {
x==y => T{move(x)}==y && can_destroy(x); // original is valid but unspecified

}
}

A Movable type is move constructible. Moving an object puts the moved-from object
in a valid but unspecified state. The C++0x axiom syntax provides no way of express-
ing “valid but unspecified” so we introduce the primitive predicate can_destroy() to
express that requirement.

A Regular type can be used to create objects, declare variables, make copies, move
objects, compare values, and default-construct. In essence, the notion of regularity de-
fines the basic set operations and guarantees that should be available for all value-
oriented types.

concept Regular<typename T> {
requires Movable<T> && Copyable<T>;
requires constraint Constructible<T> // default construction

&& Assignable<T, T&&> // move assignment
&& Assignable<T, const T&>; // copy assignment

axiom Object_equality(T& x, T& y) {
&x==&y => x==y; // identical objects have equal values

}
axiom Move_assign_effect(T x, T y, T& z) {

x==y => (z=move(x))==y && can_destroy(x); // original is valid but unspecified
}

Design of Concept Libraries for C++ 107

axiom Copy_assign_equality(T x, T& y) {
(y = x) == x; // a copy is equal to the original

}
}

The Object_equality axiom requires equality for identical objects (those having the
same address). The Move_assign_effect and Copy_assign_equality axioms extend
the semantics of move and copy construction to assignment. Note that the require-
ment of assignability implies that const-qualified types are not Regular. Furthermore,
volatile-qualified types are not regular because they cannot satisfy the Object_equality
axiom; the value of a volatile object may change unexpectedly. These design decisions
are intentional. Objects can be const- or volatile-qualified to denote immutability or
volatility, but that does not make their value’s type immutable or volatile. Also, includ-
ing assignment as a requirement for Regular types allows a greater degree of freedom
for algorithm implementers. Not including assignability would mean that an algorithm
using temporary storage (e.g., a variable) would be required state the additional require-
ment as part of its interface, leaking implementation details through the user interface.

We note that Order is not a requirement of Regular types. Although many regular
types do admit a natural order, others do not (e.g., complex<T> and thread), hence the
two concepts are distinct.

This definition is similar to those found in previous work by Dehnert and Stepanov
[13] and also by Stepanov and McJones [34] except that the design is made modular
in order to accommodate a broader range of fundamental notions. In particular, these
basic concepts can be reused to define concepts expressing the requirements of Value
and Resource types, both of which are closely related to the Regular types, but have
restricted semantics. A Value represents pure (immutable) values in a program such
as temporaries or constant expressions. Values can be copy and move constructed, and
compared, but not modified. A Resource is an object with limited availability such
an fstream, or a unique_ptr. Resources can be moved and compared, but not copied.
Both Values and Resources may also be Ordered. We omit specific definitions of these
concepts because they were not explicitly required by any templates in our survey; we
only found requirements for Regular types.

By requiring essentially all types to be Regular, we greatly simplify interfaces and
give a clear guideline to implementers of types. For example, a type that cannot be
copied is unacceptable for our algorithms and so is a type with a copy operator that
doesn’t actually copy. Other design philosophies are possible; the STL’s notion of type
is value-oriented; an objected-oriented set of concepts would probably not have these
definitions of copying and equality as part of their basis.

5.2 Type Abstractions

There are a small number of fundamental abstractions found in virtually all programs:
Boolean, Integral, and Real types. In this section, we describe how we might define
concepts for such abstractions. We save specific definitions for future work, pending
further investigation and experimentation.

The STL traditionally relies on the bool type rather than a more abstract notion,
but deriving a Boolean concept is straightforward. The Boolean concept describes a

108 A. Sutton and B. Stroustrup

generalization of the bool type and its operations, including the ability to evaluate ob-
jects in Boolean evaluation contexts (e.g., an if statement). More precisely, a Boolean
type is a Regular, Ordered type that can be operated on by logical operators as well
as constructed over and converted to bool values. The Boolean concept would require
constraints for logical operators (e.g., Logical_and) and be defined by the semantics of
the Boolean_algebra axiom.

Other type abstractions can be found in the STL’s numeric library, which is com-
prised of only six algorithms. Although we did not explicitly consider concepts in the
numeric domain, we can speculate about the existence and definition of some concepts.
A principle abstraction in the numeric domain is the concept of Arithmetic types, those
that can be operated on by the arithmetic operators +, *, -, and / with the usual semantics,
which we suspect should be characterized as an Integral Domain. As such, all integers,
real numbers, rational numbers, and complex numbers are Arithmetic types. Stronger
definitions are possible; an Integral type is an Arithmetic type that also satisfies the se-
mantical requirements of a Euclidean Domain. We note that Matrices are not Arithmetic
because of non-commutative multiplication.

The semantics of these concepts can be defined as axioms on those types and their
operators. Concepts describing Groups, Rings, and Fields for these types should be
analogous to the definition of Boolean_algebra for Boolean types. We leave the exact
specifications of these concepts as future work as a broader investigation of numeric
algorithms and type representations is required.

5.3 Function Abstractions

Functions and function objects (functors) are only “almost regular” so we cannot define
them in terms of the Regular concept. Unlike regular types, functions are not default
constructible and function objects practically never have equality defined. Many so-
lutions have been suggested such as a concept Semiregular or implicitly adding the
missing operations to functions and function objects.

To complicate matters, functions have a second dimension of regularity determined
by application equality, which states that a function applied to equal arguments yields
equal results. This does not require functions to be pure (having no side effects), only
that any side effects do not affect subsequent evaluations of the function on equal argu-
ments. A third property used in the classification of functions and function objects is the
homogeneity of argument types. We can define a number of mathematical properties for
functions when the types of their arguments are the same.

To resolve these design problems, we define two static constraints for building func-
tional abstractions: Callable and Procedure. The Callable constraint determines whether
or not a type can be invoked as a function over a sequence of argument types. The Proce-
dure constraint establishes the basic type requirements for all procedural and functional
abstractions.

constraint Procedure<typename F, typename... Args> {
requires constraint Constructible<F, F const&> // has copy construction

&& Callable<F, Args...>; // can be called with Args...
typename result_type = result_of<F(Args...)>::type;

}

Design of Concept Libraries for C++ 109

Procedure types are both copy constructible and callable over a sequence of arguments.
The variadic definition of this concept allows us to write a single constraint for functions
of any arity. The result_type (the codomain) is deduced using result_of.

There are no restrictions on the argument types, result types or semantics of Proce-
dures; they may, for example, modify non-local state. Consequently, we cannot spec-
ify meaningful semantics for all procedures, and so it is static constraint rather than
a concept. A (random number) Generator is an example of a Procedure that takes no
arguments and (probably) returns different values each time it is invoked.

A Function is a Procedure that returns a value and guarantees application equiva-
lence and deterministic behavior. It is defined as:

concept Function<typename F, typename... Args> : Procedure<F, Args...> {
requires constraint !Same<result_type, void>; // must return a value

axiom Application_equality(F f, tuple<Args...> a, tuple<Args...> b) {
(a==b) => (f(a...)==f(b...)); // equal arguments yield equal results

}
}

The Application_equality axiom guarantees that functions called on equal arguments
yield equal results. This behavior is also invariant over time, guaranteeing that the func-
tion always returns the same value for any equal arguments. The syntax a... denotes the
expansion of a tuple into function arguments. The hash function parameter of unordered
containers is an example of a Function requirement.

An Operation is a Function whose argument types are homogeneous and whose
domain is the same as its codomain (result type):

concept Operation<typename F, Common... Args> : Function<F, Args...> {
requires sizeof...(Args) != 0; // F must take at least one argument
typename domain_type = common_type<Args?>::type;
requires constraint Convertible<result_type, domain_type>;

}

From this definition, an Operation is a Function accepting a non-empty sequence of
arguments that share a Common type (defined in Sect 6). The common type of the func-
tion’s argument types is called the domain_type. The result_type (inherited indirectly
from Procedure) must be convertible to the domain_type.

Note that the concept’s requirements are not applied directly to F and its argument
types. Instead, the concept defines a functional abstraction over F and the unified do-
main type. Semantics for Operations are more easily defined when the domain and
result type are interoperable. This allows us to use the Operation concept as the basis
of algebraic concepts, which we have omitted in this design. We note that many of the
function objects in the STL’s functional library generate Operation models (e.g., less,
and logical_and).

Parallel to the three functional abstractions Procedure, Function, and Operation, we
define two predicate abstractions: Predicate and Relation. A Predicate is a Function
whose result type can be converted to bool. Predicates are required by a number of STL
algorithms; for example, any algorithm ending in _if requires a Predicate (e.g., find_-

110 A. Sutton and B. Stroustrup

if). This specification also matches the commonly accepted mathematical definition of a
predicate and is a fundamental building block for other abstractions functional abstrac-
tions. A Relation is a binary Predicate. The axioms Strict_weak_order and Strict_to-
tal_order are semantic requirements on the Relation concept. These concepts are easily
defined, and their semantics are well known.

5.4 Iterators

The distinction between concept and constraint has a substantial impact on the tradi-
tional iterator hierarchy [22]. We introduce a new general Iterator concept as the base
of the iterator hierarchy. The input and output aspects of the previous hierarchy are
relegated to constraints.

An Iterator is a Regular type that describes an abstraction that can “move” in a
single direction using ++ (both pre- and post-increment) and whose referenced value
can be accessed using unary *. The concept places no semantic requirements on either
the traversal operations or the dereferencing operation. In this way, the Iterator concept
is not dissimilar from the ITERATOR design pattern [17], except syntactically. As with
the previous designs, there are a number of associated types. Its definition follows:

concept Iterator<Regular Iter> {
typename value_type = iterator_traits<Iter>::value_type;
Movable reference = iterator_traits<Iter>::reference;
Signed_int difference_type = iterator_traits<Iter>::difference_type;
typename iterator_category = iterator_traits<Iter>::iterator_category;

Iter& Iter::operator++(); // prefix increment: move forward
Dereferenceable Iter::operator++(int); // postfix increment
reference Iter::operator*(); // dereference

}

Here, the pre-increment operator always returns a reference to itself (i.e., it yields an
Iterator). In contrast, the result of the post-increment operator only needs to be Deref-
erenceable. The weakness of this requirement accommodates iterators that return a
state-caching proxy when post-incremented (e.g., ostream_iterator). The Movable re-
quirement on the reference type simply establishes a basis for accessing the result. This
also effectively requires the result to be non-void.

The definition presented here omits requirements for an associated pointer type and
for the availability of ->: the arrow operator. The requirements for -> are odd and con-
ditionally dependent upon the iterator’s value type [15]. In previous designs, the ->
requirement was handled as an intrinsic; that’s most likely necessary.

Forward, Bidirectional, and Random Access Iterators have changed little in this de-
sign. These concepts refine the semantics of traversal for Iterators. However, Input Iter-
ators and Output Iterators have been “demoted’ to constraints (see below). A Forward
Iterator is a multi-pass Iterator that abstracts the traversal patterns of singly-linked lists:

concept Forward_iterator<typename Iter> : Iterator<Iter> {
requires constraint Convertible<iterator_category, forward_iterator_tag>;
requires constraint Input_iterator<Iter>;

Design of Concept Libraries for C++ 111

Iter Iter::operator++(int); // postfix increment---strengthen Iterator’s requirement

axiom Multipass_equality(Iter i, Iter j) {
(i == j) => (++i == ++j); // equal iterators are equal after moving

}
axiom Copy_preservation(Iter i) {

(++Iter{i}, *i) == *i; // modifying a copy does not invalidate the original
}

}

An Input_iterator only requires its reference type to be convertible to its value type.
For a Forward_iterator this requirement strengthened so that, like the pre-increment
operator, its post-increment must return an Iterator. The two axioms specify the se-
mantic properties of multi-pass iterators: equivalent iterators will be equivalent after
incrementing and incrementing a copy of an iterator does not invalidate the original.

Finally (and notably), Forward_iterators are statically differentiated from Input_-
iterators by checking convertibility of their iterator categories. This allows the compiler
to automatically distinguish between models of the two concepts without requiring a
concept map (as was needed in the C++0x design). Consider:

template<typename T, Allocator A>
class vector {

template<Iterator Iter>
vector(Iter first, Iter last) { // general version (uses only a single traversal)

for(; first != last; ++first)
push_back(*first);

}
template<Forward_iterator Iter>
vector(Iter first, Iter last) {

resize(first, last); // traverse once to find size
copy(first, last, begin()); // traverse again to copy

}
};

The vector’s range constructor is optimized for Forward_Iterators. However, this is not
just a performance issue. Selecting the wrong version leads to serious semantic prob-
lems. For example, invoking the second (multi-pass) version for an input stream iterator
would cause the system to hang (wait forever for more input). With the automatic con-
cept checking enabled by the Convertible requirement, we leverage the existing iterator
classification to avoid this problem.

A Bidirectional Iterator is a Forward Iterator that can be moved in two directions
(via ++ and –). It abstracts the notion of traversal for doubly linked lists:

concept Bidirectional_iterator<Iter> : Forward_iterator<Iter> {
Iter& Iter::operator--(); // prefix decrement: move backwards
Iter Iter:: operator--(int); // postfix decrement

112 A. Sutton and B. Stroustrup

axiom Bidirectional(Iter i, Iter j) {
i==j => --(++j)==i;

}
}

A Random Access Iterator is an Ordered Bidirectional Iterator that can be moved mul-
tiple “jumps” in constant time; it generalizes the notion of pointers:

concept Random_access_iterator<Ordered Iter> : Bidirectional_iterator<Iter> {
Iter& operator+=(Iter, difference_type);
Iter operator+(Iter, difference_type);
Iter operator+(difference_type, Iter);
Iter& operator-=(Iter, difference_type);
Iter operator-(Iter, difference_type);
difference_type operator-(Iter, Iter); // distance
reference operator[](difference_type n); // subscripting

axiom Subscript_equality(Iter i, difference_type n) {
i[n] == *(i + n); // subscripting is defined in terms of pointer arithmetic

}
axiom Distance_complexity(Iter i, Iter j) {

runtime_complexity(i - j)==O(1); // the expression i-j must be constant time
}

}

The requirements on the result type of the decrement operators are analogous to the
requirements for increment operators of the Forward_iterator concept. The Random_-
access_iterator concept requires a set of operations supporting random access (+ and
-). Of particular interest are the requirement on Ordered and the ability to compute the
distance between two iterators (in constant time) via subtraction. Semantically, the Sub-
script_equality axiom defines the meaning of the subscript operator in terms of pointer
arithmetic. The Distance_complexity axiom requires the computation of distance in
constant time. Similar requirements must also be stated for random access addition and
subtraction, but are omitted here. Here, runtime_complexity and O are intrinsics used
to describe complexity requirement.

Input_iterator and Output_iterator are defined as constraints rather than concepts.
To allow proxies, their conversion and assignment requirements are expressed in terms
of a type “specified elsewhere.” The C++0x design relies on associated types, which are
expressed as member types. These are implicit parameters that cannot be universally
deduced from the iterator. As is conventional, we rely on type traits to support this
association. A constrained template or other concept must be responsible for supplying
the external argument. However, our definition provides the obvious default case (the
iterator’s value type):

constraint Input_iterator<typename Iter, typename T = value_type<Iter>> {
requires constraint Convertible<iterator_traits<Iter>::reference, T>;

}
constraint Output_iterator<typename Iter, typename T = value_type<Iter>&&> {

Design of Concept Libraries for C++ 113

requires constraint Assignable<iterator_traits<Iter>::reference, T>;
}

Here, we assume that value_type<Iter> is a template alias yielding the appropriate
value type. The constraints for Input_iterator and Output_iterator support the ability
to read an object of type T and write an object of type T respectively.

6 Constraints

In this section, we give an overview of constraints that have been described in previous
sections. Many discussed thus far have direct corollaries in the C++ Standard Library
type traits or are easily derived; they are basically a cleaned-up interface to what is
already standard (and not counted as concepts in any design). Several that we have used
in our implementation are described in Table 2.

Table 2. Type constraints

Constraint Definition
Same<Args...> Defined in terms of is_same
Common<Args..> True if common_type<Args...> is valid
Derive<T, U> is_base_of<T, U>
Convertible<T, U> is_convertible<T, U>
Signed_int<T> is_signed<T, U>

The Same constraint requires that all argument types be the same type. It is a vari-
adic template that is defined recursively in terms of is_same. The Common constraint
requires its argument types to all share a common type as defined by the language re-
quirements of the conditional operator (?:). Finding the common type of a set of types
implies that all types in that set can be implicitly converted to that type. This directly
supports the definition of semantics on the common type of a function’s arguments for
the Operation concept. Derived and Convertible are trivially defined in terms of their
corresponding type traits. We note that Signed_int is a constraint because its definition
is closed: only built-in signed integral types satisfy the requirement (e.g., int, and long).

Constraints describing the syntax of construction, destruction, and assignment are
given in Table 3, and constraints describing overloadable operators in Table 4. The
constraints for construction, destruction, and assignment are trivially defined in terms
of existing type traits. The operator constraints require the existence of overloadable
operators for the specified type parameters and may specify conversion requirements
on their result types. For binary operators, the second parameter defaults to the first so
that, say, Equal<T> evaluates the existence of operator==(T, T).

The Equal and Less constraints require their results to be bool, which allows the
constrained expression to be evaluated in a Boolean evaluation context. The other op-
erators do not impose constraints on their result types because we cannot reasonably
define universally applicable conversion requirements for all uses of those operators. In
essence, these constraints are purely syntactic; any meaning must be imposed by some
other concept or template.

114 A. Sutton and B. Stroustrup

Table 3. Constraints for object initialization

Constraint Definition
Destructible<T> is_destructible<T>
Constructible<T, Args..> is_constructible<T, Args...>
Assignable<T, U> is_assignable<T, U>

Table 4. Constraints for overloadable operators

Constraint Definition
Equal<T, U=T> bool operator==(T, U)
Less<T, U=T> bool operator<(T, U)
Logical_and<T, U=T> auto operator&&(T, U)
Logical_or<T, U=T> auto operator||(T, U)
Logical_not<T> auto operator!(T)
Derefernce<T> auto operator*(T)

7 Implementation and Validation

We implemented the described concepts and traits by building a custom library of
constraint classes in C++11. Our approach blends traditional techniques for imple-
menting constraint classes [31] with template metaprogramming facilities [1]. The re-
sult is a lightweight concept emulation library that can be used to statically enforce
constraints on template parameters and supports concept overloading using concept-
controlled polymorphism (enable_if) [23]. The library is implemented as a core com-
ponent of the Origin Libraries [38].

To simplify experimentation, the library does not differentiate between concepts and
constraints except through naming conventions. Concepts names in the implementation
are written cConcept, constraint names are written tConstraint (“t” stands for “type
property”) and axioms, aAxiom. This naming convention is chosen for the implementa-
tion so that it will not collide with “real” concepts when defined with language support.
For example, the Constructible constraint described in 6 is implemented in Origin as
tConstructible:

template<typename T, typename... Args>
struct tConstructible {

tConstructible() { auto p = constraints; }

static void constraints(Args... args) {
T{forward<Args>(args)...}; // use pattern for copy construction

}

typedef tuple<std::is_constructible<T, Args...>> requirements;
typedef typename requires_all<requirements>::type type;
static constexpr bool value = type::value;

};

Design of Concept Libraries for C++ 115

tConstructible is a constraint because no sensible semantics can be defined for con-
struction, beyond what the language already guarantees for constructors. The tCon-
structible constructor is responsible for instantiating the constraints function, which
contains the use patterns for the concept, which are similar to those introduced in [15].
The function parameters of the constraints function introduce objects, which simplifies
the writing of use patterns.

The type and value members satisfy the requirements of a type trait or Boolean meta-
function. These members, especially value, are used to reason about the type at compile
time without causing compiler errors. This is used to select between overloads based on
modeled satisfied requirements using enable_if [23].

All concepts in the library are automatically checked. Implementing a concept library
that requires users to write explicit concept maps would require us to do so for every
data structure tested. That approach is not needed for the STL and, in our opinion, does
not scale well. Axioms are not (and cannot be) checked by the compiler so for our
validation we treat them as comments.

Function template requirements are specified by explicit constructions of temporary
objects. For example:

template<typename T>
T const& min(T const& x, T const& y) {

cOrdered<T>{}; // requires that T has operators <, >, <=, and >=
return y < x ? y : x;

}

Here cOrdered<T> denotes a requirement on the template parameter T. Instantiating
the algorithm entails instantiating the cOrdered<T> constructor and its nested require-
ments. Compilation terminates if a constraint class is instantiated with template argu-
ments that do not satisfy the required use patterns.

For class templates, the requirements are specified as base classes. For example:

template<typename T> class Vector : private cRegular<T> { /* ... */ };

This ensures that the compiler instantiates the concept checks when constructing objects
of the constrained class. Requirements within constraint classes are written in exactly
the same way: explicit construction is used in conjunction with use patterns, and inher-
itance is used to emulate concept refinement.

There are no memory or performance costs induced by the use of Origin’s constraint
classes. Constraint instances are optimized out of the generated code either through
dead-code elimination or the empty base optimization. Compile times can be increased
marginally but are no worse than using any other concept checking library.

We applied the constraint classes to a subset of the Clang and GCC implementations
of the Standard Library: the functional, algorithm, and iterator components (the STL).
Class and function template constraints were written for each data structure and algo-
rithm exported by those components. We iteratively refined both the concepts and the
constraints as required by the limits of the experiment.

We use the libraries’ test suites (just over 9,000 programs at the time of writing) to
check the correctness of the concepts. A more substantial validation of our design could
be achieved by compiling a large number of C++ applications against the modified

116 A. Sutton and B. Stroustrup

libraries, but the test suite cover a sufficient number of instantiations so we are confident
in the design.

Test suite failures generally indicated overly strict constraints on a type or algo-
rithm. In some cases, such failures also indicated what we perceive as problems with
the original conceptual specification for the library. In such cases, these failures are due
to the representation of irregular types as legitimate concepts. For example, strict out-
put iterators such as ostream_iterator are Iterators in principle but are neither default
constructible nor equality comparable. We modified these irregular cases so they would
model the required concepts. There are only four such iterators in the STL, and they are
easily adapted to model our proposed concepts.

8 Conclusions

We studied concept design rather than language design for expressing concepts with
the aim of bringing empirical evidence to the center of language design discussions.
We found that explicitly differentiating between concepts and constraints based on se-
mantic requirements (axioms) improved our analyses and clarified long-standing “dark
corners” of the STL design. It led to spectacular simplification and a dramatic reduction
in the number of concepts needed to describe the STL interfaces (14 rather than 108).
The STL interfaces were already considered well understood after more than a decade’s
use and much analysis, so we conclude that our concept design technique is nowhere
near as obvious as it seems in retrospect. Our technique is rooted in classical algebraic
theory, so we further conjecture that it will be very widely applicable.

Our conclusions on language design for concepts are, as we expected them to be,
very tentative. However, we have demonstrated a central role for axioms, a feature that
was widely conjectured to be unnecessary during the C++0x design. Beyond that, we
found constraints classes so expressive and manageable in our implementation that we
want to re-examine the use-pattern approach for expressing syntactic requirements.

We continue to investigate concepts for the C++ Standard Library by broadening our
conceptual analysis to cover numeric and scientific computing domains and containers.
With Origin, we are pursuing concepts related to heaps and graphs [30]. Exploring con-
ceptual designs in different domains supports language design by addressing a broader
set of use cases. In particular, we plan to examine uses of concepts in algorithm speci-
fications with the aim of simplifying such specifications.

Concepts are abstract, general, and meaningful. Consequently, they are unlikely to
be specific to a specific library. As concepts mature, they become a repository of fun-
damental domain knowledge. Thus, we expect concepts to cross library boundaries to
become more widely useful. We expect that our exploration of the definition and use of
concepts will decrease the total number of concepts (among all libraries) while improv-
ing their quality and utility.

Acknowledgements. Thanks to Matt Austern, Paul McJones, Gabriel Dos Reis, and
Alex Stepanov for comments that led to major improvements and will be the basis for
further work. This project was partially supported by NSF grants A3350-32525-CS and
A0040-32525-CS and Award KUS-C1-016-04, made by King Abdullah University of
Science and Technology (KAUST).

Design of Concept Libraries for C++ 117

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond. C++ In-Depth. Addison Wesley (2004)

2. Austern, M.: Generic Programming and the STL: Using and Extending the C++ Standard
Template Library, 7th edn. Addison-Welsey Longman, Boston (1998)

3. Austern, M., Stroustrup, B., Thorup, M., Wilkinson, J.: Untangling the Balancing and
Searching of Balanced Binary Search Trees. Software: Practice and Experience 33(13),
1273–1298 (2003)

4. Bagge, A.H., David, V., Haveraaen, M.: The Axioms Strike Back: Testing with Concepts and
Axioms in C++. In: 8th International Conference on Generative Programming and Compo-
nent Engineering (GPCE 2009), Denver, Colorado, pp. 15–24 (2010)

5. Becker, P.: Working Draft, Standard for the Programming Language C++. Tech. Rep. N2914,
ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Programming Language C++
(2009)

6. Bernardy, J.P., Jansson, P., Zalewski, M., Schupp, S., Priesnitz, A.: A Comparison of C++
Concepts and Haskell Type Classes. In: Workshop on Generic Programming (WGP 2008),
Victoria, Canada, pp. 37–48 (2008)

7. Bernardy, J.-P., Jansson, P., Zalewski, M., Schupp, S.: Generic Programming with C++ Con-
cepts and Haskell Type Classes–A Comparison. Journal of Functional Programming 20(3-4),
271–302 (2010)

8. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the Future Safe for the Past:
Adding Genericity to the Java Programming Language. In: 13th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 1998),
Vancouver, Canada, pp. 183–200 (1998)

9. Davenport, J.H., Gianni, P.M., Trager, B.M.: Scratchpad’s View of Algebra II: A Categorical
View of Factorization. In: International Symposium on Symbolic and Algebraic Computation
(ISSAC 1991), Bonn, Germany, pp. 32–38 (1991)

10. Davenport, J.H., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer (1992)
11. Davenport, J.H., Trager, B.M.: Scratchpad’s View of Algebra I: Basic Commutative Algebra.

In: Miola, A. (ed.) DISCO 1990. LNCS, vol. 429, pp. 40–54. Springer, Heidelberg (1990)
12. David, V.: Concepts as Syntactic Sugar. In: 9th International Working Conference on Source

Code Analysis and Manipulation (SCAM 2009), Alberta, Canada, pp. 147–156 (2009)
13. Dehnert, J.C., Stepanov, A.: Fundamentals of Generic Programming. In: Jazayeri, M.,

Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 1–11.
Springer, Heidelberg (2000)

14. Dos Reis, G.: Personal Communication (October 2010)
15. Dos Reis, G., Stroustrup, B.: Specifying C++ Concepts. In: 33rd Symposium on Principles

of Programming Languages (POPL 2006), Charleston, South Carolina, pp. 295–308 (2006)
16. Dos Reis, G., Stroustrup, B., Merideth, A.: Axioms: Semantics Aspects of C++ Concepts.

Tech. Rep. N2887, ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Program-
ming Language C++ (2009)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994)

18. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: An Extended Comparative Study
of Language Support for Generic Programming. Journal of Functional Programming 17,
145–205 (2007)

19. Gregor, D.: ConceptGCC (2008),
http://www.generic-programming.org/software/ConceptGCC/

http://www.generic-programming.org/software/ConceptGCC/

118 A. Sutton and B. Stroustrup

20. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Concepts: Linguis-
tic Support for Generic Programming in C++. In: ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2006), Portland,
Oregon, pp. 291–310 (2006)

21. Hewlett-Packard: Standard Template Library Programmer’s Guide (1994),
http://www.sgi.com/tech/stl/index.html

22. International Organization for Standards: International Standard ISO/IEC 14882. Program-
ming Languages — C++ (2003)

23. Järvi, J., Willcock, J., Lumsdaine, A.: Concept-Controlled Polymorphism. In: Pfenning, F.,
Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 228–244. Springer, Heidelberg (2003)

24. Jones, M.P.: Type Classes with Functional Dependencies. In: Smolka, G. (ed.) ESOP 2000.
LNCS, vol. 1782, pp. 230–244. Springer, Heidelberg (2000)

25. Kennedy, A., Syme, D.: Design and Implementation of Generics for the .NET Common Lan-
guage Runtime. In: ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI 2001), Snowbird, Utah, pp. 1–12 (2001)

26. Meyer, B.: Eiffel: The Language. Prentice-Hall (1991)
27. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML - Revised.

The MIT Press (1997)
28. Musser, D., Stepanov, A.: Algorithm-oriented Generic Libraries. Software: Practice and Ex-

perience 24(7), 623–642 (1994)
29. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Support for the Evolution of C++ Generic Func-

tions. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp.
123–142. Springer, Heidelberg (2011)

30. Siek, J., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2001)

31. Siek, J., Lumsdaine, A.: Concept Checking: Binding Parametric Polymorphism in C++. In:
1st Workshop on C++ Template Programming, Erfurt, Germany (2000)

32. Siek, J., Lumsdaine, A.: Essential Language Support for Generic Programming. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2005),
Chicago, Illinois, pp. 73–84 (2005)

33. Siek, J., Lumsdaine, A.: Language Requirements for Large-Scale Generic Libraries. In:
Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 405–421. Springer, Hei-
delberg (2005)

34. Stepanov, A., McJones, P.: Elements of Programming. Addison Wesley, Boston (2009)
35. Stroustrup, B.: Parameterized Types for C++. Computing Systems 2(1), 55–85 (1989)
36. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley (1994)
37. Stroustrup, B.: ”New” Value Terminology (2010),

http://www2.research.att.com/~bs/terminology.pdf
38. Sutton, A.: Origin C++0x Libraries (2011), http://code.google.com/p/origin
39. Sutton, A., Holeman, R., Maletic, J.I.: Identification of Idiom Usage in C++ Generic Li-

braries. In: 18th International Conference on Program Comprehension (ICPC 2010), Braga,
Portugal, pp. 160–169 (2010)

40. Sutton, A., Maletic, J.I.: Automatically Identifying C++0x Concepts in Function Templates.
In: 24th International Conference on Software Maintenance (ICSM 2004), Beijing, China,
pp. 57–66 (2008)

41. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé, P., Bracha, G., Gafter, N.: Adding Wild-
cards to the Java Programming Language. In: ACM Symposium on Applied Computing,
SAC 2004, Nicosia, Cyprus, pp. 1289–1296 (2004)

42. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26–31 (1995)

http://www.sgi.com/tech/stl/index.html
http://www2.research.att.com/~bs/terminology.pdf
http://code.google.com/p/origin

Join Token-Based Event Handling:

A Comprehensive Framework
for Game Programming

Taketoshi Nishimori and Yasushi Kuno

Graduate School of Business Sciences, University of Tsukuba,
Tokyo, 3-29-1 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan

nis@nisnis.jp

kuno@gssm.otsuka.tsukuba.ac.jp

http://www.gssm.otsuka.tsukuba.ac.jp/

Abstract. In action game programming, programmers have to control
multiple concurrent activities on the screen corresponding to multiple
game characters. To address this difficulty, many game-oriented script-
ing languages have been proposed so far. However, current scripting lan-
guages seem to lack support for interactions among multiple concurrent
activities in a state-dependent manner. To overcome this problem, we
propose an event handling framework called “join token” in which the
states of game characters can be expressed as tokens and interactions can
be described as handlers specifying multiple tokens. For the purpose of
evaluation, we have developed a game scripting language called “Moge-
moge,” and wrote several sample games in this language. In this paper,
we describe experiences of using join token framework for sample games
and compare the code written in Mogemoge against a code written in an
existing scripting language.

Keywords: video game, programming language, event handling frame-
work, scripting language.

1 Introduction

Video game programming, especially that used for action games, has the distin-
guishing characteristic that programmers have to manage multiple concurrent
activities on the screen corresponding to multiple game characters. For example,
in many shooting games, multiple missiles are concurrently moving on the game
screen, and when those missiles “hit” various objects, the resulting effects are
different depending on the kind of objects and their states such as whether they
have a shield or not.

Managing concurrent activities in general purpose programming languages
such as C++ or Java is notoriously difficult and complex.

One way to deal with this problem is to use game-oriented scripting languages.
Scripting languages can provide language mechanisms and/or frameworks to
support concurrent activities of multiple game characters, so that programmers
can describe the logic of the game in a more straightforward manner.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 119–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.gssm.otsuka.tsukuba.ac.jp/

120 T. Nishimori and Y. Kuno

For example, Stackless Python [12][15] supports micro-threads that make it
feasible to assign a dedicated thread to each of the game characters. However,
this approach does not address the problem of interaction among the characters,
which is the main focus of this paper.

UnrealScript[14] supports concurrent objects called “actors.” In this scripting
language, methods are invoked under some corresponding conditions. However,
UnrealScript also does not address the problem of interaction among the char-
acters.

To address this problem, we propose an event handling framework called “join
token” that coordinates multiple, state-dependent, concurrent activities required
for a game description[9]. To assess the effectiveness of this mechanism, we have
designed and implemented an experimental game-oriented scripting language
called “Mogemoge” that incorporates join token as a built-in coordination mech-
anism. For the purpose of evaluation, we have written several demo games using
Mogemoge.

The concept of join token is based on join-calculus [4] and Linda[7] compu-
tational models. Join-calculus models the coordination of multiple concurrent
tasks. Linda models the decoupling of the message sender and receiver. As far
as we know, there are several programming languages based on either of these
models, but no language has combined both of these models.

The major contribution of this paper is our interim evaluation of join token
framework through two demonstration game implementations, one of which was
also written in Ruby for comparison purposes. The concept of the join token
framework and an overview of Mogemoge language are already described in [9];
we briefly presented these in this paper because these are necessity to understand
the main point of the research.

The structure of this paper is as follows. In Section 2, we explain the idea and
design of the join token framework and discuss its characteristics. In Section 3,
we provide an overview of Mogemoge language, along with its implementation. In
Section 4, we explain two sample games implemented in Mogemoge, and present
a comparison with one of the games implemented in Ruby/Tk. In Section 5, we
explain related works and discuss the strong points of join token. In Section 6,
other issue including concurrency and performance are discussed, and finally the
conclusion is drawn in Section 7.

2 Join Token: an Event Handling Framework Suitable
for Games

The majority of game programs and/or game scripting languages are based on
object orientation, because many games are based on simulated behavior of real
(or virtual) objects. In object orientation, behaviors (actions) are described as
methods attached to one of those objects. Methods are implemented as subrou-
tines and are called from other methods (or from the main routine).

However, the above design differs significantly from interactions in game pro-
grams, as follows:

Join Token-Based Event Handling 121

throw tok2(5)

throw tok1(3)

Object_A

Object_B

tok2(5)
 object = A

tok1(3)
 object = B

token pool

join o1.tok1(x) o2.tok2(y)
 where x + y > 6 {
 o2.put(x); o1.put(y);
}

join ... {
 ...
}

(1) objects
 throw tokens predefined handlers

:

:
ignition;

(2) ignition: token maching &
 condition checking

(3) fire: handler execution
Object_A.put(3);

Object_B.put(5);

Fig. 1. Idea of join token

– Interactions in games are associated with two or more characters, while meth-
ods are attached to a single object.

– Interactions in games are initiated when some conditions are met, while
methods are invoked from some other methods.

– Interactions are controlled by the states of each associated character, while
method invocations are controlled solely by the calling object.

These differences make it difficult to express the programmers’ (or the game
designers’) idea in a straightforward manner when using an object-oriented (O-
O) language.

To overcome these problems, we propose the new event handling framework
called “join token,” as a supplementary mechanism to conventional object ori-
entation (Fig.1).

– Each object participating in an interaction expresses its willingness to par-
ticipate by generating a “token.” A token is associated with the object that
generated the token and a list of parameters specified in the code.

– Tokens are generated when methods execute “throw statements,” and the
generated tokens are automatically put into the global “token pool.”

– An interaction (multiple object action) is described as a “join statement”
that defines a “join handler” (hereafter referred to as “handler”). A handler
specifies the set of tokens that participate in the interaction, the optional
conditions, and the body statements that are executed when the interaction
occurs.

– Interactions are started when the special “ignition” statement is executed
in the program; this statement corresponds to the “handle event” phase of
a game program, and is expected to be used in the main loop of the game
program. When the ignition statement is executed, the token pool scans the
list of defined handlers one by one, and tries to select the tokens that match
with a handler.

122 T. Nishimori and Y. Kuno

– When all the handler’s token specifications are matched with the existing
tokens and the handler’s associated condition is true, if specified, the han-
dler “fires,” and the body of the handler is executed. Within the body, each
token’s associated objects and parameters are available. The tokens that
participated in a fire are removed from the token pool unless otherwise spec-
ified.

The major benefit of the above design is that handlers are neutral to all objects
and are associated with the global token pool. The separation of object inter-
actions (handlers) and each object’s behavior (methods) simplifies the structure
of game scripts, as shown in later sections.

Our target is not a parallel programming language, but rather a game script-
ing language, in which event ordering should by strictly defined and controllable.
Therefore, a list of handlers is scanned in the order of their definition (source
program), and each handler consumes as many tokens as possible when it is
considered, with matching being performed in the order described in the corre-
sponding join statement. Token matching is also performed strictly as per the
orderings; an older token in the pool is considered earlier. Note that a handler
can fire multiple times when there are sufficient tokens and when conditions per-
mit. The tokens generated within the method bodies invoked from the handler
bodies can participate in subsequent matching. Therefore, one can consume a
token by a handler and immediately regenerate the same token in its body if
necessary.

Tokens are identified with their names and the originating object. Therefore,
when an object throws tokens with the same name twice and the first token is
not consumed, the second token replaces the first one; the number of arguments
may vary among these tokens. Such operations are useful when one would like
to overwrite the arguments of some tokens. Alternatively, one can withdraw a
token with the “dispose” statement.

3 The Mogemoge Language

Mogemoge is an experimental game scripting language equipped with a join
token mechanism. The purpose of developing this language is to evaluate the
usefulness and descriptive potential of join token. Therefore, Mogemoge was
designed to be a minimal, compact and simple programming language, except
for the part executing the join token mechanism.

3.1 Basic Features

Wehave used prototype-basedobject orientation similar to that used in JavaScript
andSelf[16], because it can lead to a compact language definition.Therefore,Moge-
moge provides the syntax to create concrete objects, and those objects can be used
as the prototypes from which subordinate objects (logical copies) can be
created.

Join Token-Based Event Handling 123

In the same manner, we have designed the functionalities of Mogemoge to be
minimal, namely, (1) object definition/creation, (2) method definition/invocation
and (3) action descriptions through executable statements. Below, we show these
functionalities with the use of small code examples.

The following Mogemoge code creates a game character object:

Char = object {

x = 0; y = 0;

init_char = method(_x, _y) { x = _x; y = _y; }

...

};

The above code creates an ordinary object and assigns it to the global variable
named “Char.” Within the object definition, variable assignments define and
initialize the object’s instance variables. Note that the methods are also ordinary
objects and are stored in instance variables.

A “new” operator creates an object through copying:

c = new Char;

In the above code, the “new” operator creates a fresh object and then copies
all of the properties including the variables and their values from the Character
object. The resulting object is assigned to the variable “c.” To invoke methods
on an object, the dot notation is used, similar to that used in Java or C++.

An assignment stores a value to the specified variable. When the variable
does not exist, a new one is created. A “my” modifier forces the creation of local
variables for the surrounding scope. Although the syntax was borrowed from
Perl, its intention is more close to that of the local “var” in JavaScript.

foo = method() {

my x = 1;

result method(d) { result x; x = x + d; }

};

The “result” statement specifies the return value of the method. Therefore, the
foo method returns an anonymous method object, which increments the value
stored in x by d and returns the old value of x.

Mogemoge also has the following features, which we will not describe in here.

– C# like delegation
– Composition (compose objects and create a new object)
– Injection (modify an object by adding variables)
– Extraction (modify an object by deleting variables)

3.2 Join Token Feature

A “throw” statement adds a token to the global token pool:

throw tok1(1, 2);

124 T. Nishimori and Y. Kuno

Conversely, a dispose statement removes a token from the token pool. The
following statement removes tok1 that is thrown by the object executing the
method code:

dispose tok1;

A join statement defines a handler. The following is an example of a handler
definition:

join r1.tok1(a, b) r2.tok2(c, d) {

print "a + c = " + (a + c);

print "b + d = " + (b + d);

};

In the above example, the handler fires when both tokens tok1 and tok2 are
in the token pool. The term r1.tok1(a, b) means that the handler matches
the tok1 token and two arguments can be extracted; when the number of actual
arguments is not 2, the extra values are discarded and nil values are used for
the missing values.

When the handler is invoked, a and b represent the corresponding argument
values for the matched token, and r1 represents the object that has thrown the
matched token. The term r2.tok2(c, d) can be read likewise. When the body
of the handler is being executed, the matched values can be used.

The tokens matched against a handler are removed from the pool by default,
but when a token specifier is prefixed with the symbol “*,” the token is retained
in the pool. Following is an example:

join r1.tok1(a) *r2.tok2(b) { ... }

Note that the tokens left in the pool can be consumed by a sussessive handler
defined in the code, or can remain in the pool until the next ignition.

Join handlers may optionally be guarded by Boolean expressions introduced
by a where clause. In the following example, the handler is invoked only when
the arguments of the two tokens are identical:

join r1.tok1(a) r2.tok2(b) where a == b { ... };

Aside from join statements, the existence of a token can be examined by an
exist operator, as follows:

if (exist tok) { ... }

3.3 Implementation

We have implemented Mogemoge using Java and the SableCC[6] compiler com-
piler framework. The lexical and syntax definition (about 160 lines of code) is
translated by SableCC to Java code, which implements the lexical analyzer and
the parser. The parser generates an abstract syntax tree (AST) from the source
program. Our interpreter inherits from the tree walking code (also generated by
SableCC) and executes the program actions while traversing the tree. The total

Join Token-Based Event Handling 125

size of the Mogemoge interpreter is about 2400 lines of code, including the Java
and the SableCC definitions.

Since Mogemoge runs on the Java Virtual Machine(JVM), it is easy to in-
terface Mogemoge code with Java code. Actually, in our implementation, game
graphics routines are written in Java and called from Mogemoge code. A special
syntax is provided to declare Mogemoge-callable Java method signatures. Con-
versely, Java code can call Mogemoge routines and can access Mogemoge data
structures (tokens and the token pool). However it is a bit difficult, because
calling conventions have to be maintained.

The token pool, tokens, and join handlers are represented using Java data
structures and the associated lookup code. When an ignition statement is exe-
cuted, the list of defined join handlers is examined one by one, while searching
for matched tokens in the pool. When a sufficient token for the handler is found,
the where clause (if any) is executed, and then, if the condition is satisfied, the
handler body is executed. Note that the where clauses and handler bodies are
represented as AST data structures and are stored within the handler object.

The current algorithm for a token-handler match uses a simple linear search,
and so far, this algorithm has not caused any performance problems with ap-
proximately 100 handlers and 1000 tokens. If necessary, we could implement
additional index data structures to speed up the search.

4 Evaluation of the Join Token Framework

We have implemented several example games using the Mogemoge language and
the join token framework. In the following sections, we describe two such games
and discuss our model. In addition, we have implemented one of the games
using an existing programming language (namely, Ruby with Tk graphics) and
compared the resulting code with the Mogemoge version.

4.1 “Baloon” Game

“Balloon” is a simple shooting game written in Mogemoge; the number of lines
of code is 357. Its screenshots are shown in Fig.2. In this game, balloons with
hanging bombs come down from the sky. The player controls a battery (at the
left-bottom corner of the game screen), and shoots/explodes missiles to destroy
the bombs, so that bombs do not hit buildings at the bottom of the screen.

One missile can destroy only one balloon or bomb when the missile hits them
directly. Alternatively, explosion of the missile can destroy multiple balloons and
bombs that fall within the explosion area.

Rules of this game are summarized as follows:

R1. A battery’s direction is controlled by the player.
R2. The player can shoot/explode a missile by pressing/releasing a key.
R3. A balloon falls slowly from the top of screen. A bomb is bound to the tip

of a string hang from the balloon.

126 T. Nishimori and Y. Kuno

Fig. 2. Screenshot of “Balloon” Game

R4. A missile can destroy a balloon or bomb without an explosion.
R5. If either a balloon or a bomb is destroyed while connected, the remaining

one continues to fall. A bomb falls faster than a balloon.
R6. An explosion of a missile/bomb can destroy balloons.
R7. An explosion of a missile/bomb can explode bombs.
R8. A bomb and an explosion can destroy a building at the bottom of the game

screen.
R9. An explosion is not destroyed by any objects except for a building. An

explosion cannot destroy two or more buildings.

These rules are classified into two categories: rules that specify relationships
(or interactions) between game characters and other rules. Relationship rules
are R3, R4, R5, R6, R7, R8, and R9. Non-relationship rules are R1, R2.
Non-relationship rules can be implemented as ordinary methods associated with
corresponding objects in a straightforward manner. However, when ordinary
method are used, some elaborated coding will be required to implement rela-
tionship rules, because two or more objects are involved with these rules.

With our join token framework, these relationship rules can be represented as
one or more join handlers in a clear and straightforward manner.

The following code initializes a balloon and a bomb:

Balloon = object {

init = method(x) { # a method which initializes a balloon

bomb = new Bomb; bomb.init(x, 0); # create a bomb

throw balloon(bomb); # throws a token with a bomb

}

};

Bomb = object {

init = method(x, y) { # a method which initializes a bomb

throw bomb; # throws a bomb token

}

};

Join Token-Based Event Handling 127

When a balloon is created, it also creates a bomb and a balloon token associated
with itself (as a throwing object) and the bomb (as an argument).

Similarly, other objects such as a missile or an explosion throws a token named
missile or explosion (this time with no arguments) correspondingly, at the
time of creation.

The rules related to collisions/explosions (R4, R5, R6, R7, R8, R9) can be
implemented with the following handler code:

rule R4+R5: A missile destroys a balloon.

join m.missile() bln.balloon(bomb) where m.is_collided(bln) {

m.destroy(); bln.destroy(); # destroys the missile and the balloon

bomb.set_vel(0, 2); # add falling velocity to the bomb

}

rule R4(+R5): A missile destroys a bomb.

join m.missile() b.bomb() where m.is_collided(b) {

m.destroy(); b.destroy(); # destroy the missile and the bomb

}

rule R6(+R5): An explosion destroys a balloon.

join *e.explosion() bln.balloon(bomb) where e.is_collided(bln) {

bln.destroy(); # destroys a balloon

bomb.set_vel(0, 2); # add falling velocity to the bomb

}

rule R7(+R5): An explosion explodes a bomb.

join *e.explosion() b.bomb() where e.is_collided(b) {

b.destroy();

e = new Explosion; # an explosion takes place

e.init(b.x, b.y, 1.2); # initialize position and size

}

rule R8: A bomb destroys a building.

join b.bomb() bld.building() where b.is_collided(bld) {

bld.destroy(); b.destroy(); # destroys the building and the bomb

}

rule R8+R9: An explosion destroys a building.

join e.explosion() bld.building() where e.is_collided(bld) {

bld.destroy(); # destroys the building

}

The handlers corresponding to rules R6 and R7 use the * symbol to retain
explosion tokens in the pool for some duration, so that they can destroy mul-
tiple balloons and bombs. The handler corresponding to the rule R9 (the last
handler) is an exception; an explosion token is deleted when an explosion col-
lides with a building.

The binding rule, R3, is implemented by the following handler code:

rule R3: a bomb is bound to a balloon.

join *bln.balloon(child) *b.bomb() where child == b {

b.set_pos(bln.tipx, bln.tipy);

};

128 T. Nishimori and Y. Kuno

Fig. 3. Screenshot of “Descender” Game

If there is a pair of balloon token and bomb token such that an argument
of the balloon is the object associated with the bomb token, this means that
the corresponding bomb is bound to the corresponding balloon. Therefore, the
position of a bomb is set to the tip of the string of a balloon (variables tipx and
tipy of a balloon means the position of the tip of the string). This handler is
intended to fire many times to continually adjust the positions of bombs. So, *
symbols are used to retain the corresponding tokens in the pool

The rule R5 is implemented as a supplementary code in the handler for rules
R4, R6, and R7. When a balloon is hit by a missile, the falling velocity of the
remaining bomb is increased. However, when a bomb is hit by a missile, the
speed of the corresponding balloon does not change, so no action is required.

As shown in the above listings, our handlers correspond to game rules in a
fairly straightforward manner, and the code described in the handler bodies are
simple and readable, suggesting the usefulness of our join token framework.

4.2 “Descender” Game

“Descender” (Fig.3) is an action game that is more complicated than the one
described in the previous section; the number of lines of code is 847. The aim of
the player in this game is to descend infinitely along the wall of two buildings
using horizontal and vertical ropes. The player controls where to stretch ropes
and his movement along them. Birds drops bombs, and building inhabitants
occasionally cut vertical ropes. If a bomb hits the player or an inhabitant cuts
the rope that the player is currently hanging on, the game is over.

Rules of this game are summarized as follows:

R1. The player can move along a horizontal or vertical rope from his current
position.

R2. When the player is holding the bottom of a vertical rope, or there is no
vertical rope under the player, he can extend a vertical rope to the bottom
of the screen.

R3. All objects are scrolled upward when the player descends (the vertical
coordinate of the player is fixed).

Join Token-Based Event Handling 129

R4. Clouds are scrolled up more slowly than other scrolling characters; they
are for visual decoration and have no effect on other objects.

R5. When the player is holding a vertical rope and there is no horizontal rope
around him, he can stretch a horizontal rope.

R6. Birds flying in the air occasionally drop bombs.
R7. Inhabitants in some of the windows occasionally cut the vertical rope in

front of them.
R8. If a bomb hits the player, the player falls and the game is over.
R9. If an inhabitant cuts the rope that the player is currently holding, the

player falls and the game is over.
R10. A vertical rope extends to the bottom infinitely until an inhabitant cuts

it.

All of the above rules except R6 are implemented with join handlers.
In this game, a player is in one of three modes: descending mode (holding a

vertical rope), horizontal moving mode (holding a horizontal rope), and falling
mode (the game is over). A player’s action in each mode is implemented as a cor-
responding method, and a variable named update stores the currently effective
mode, as follows:

Player = object {

update_descending = method() { ... }

update_moving_horizontally = method() { ... }

update_falling_horizontally = method() { ... }

update = update_descending; # the initial mode is descending.

}

The following is the descending mode method:

update_descending = method() {

if (guiKeyPressed(KEY_DOWN)) {

throw cmd_descend;

}

if (guiKeyOn(KEY_LEFT)) {

throw cmd_shoot_hrope;

} elif (guiKeyOn(KEY_RIGHT)) {

throw cmd_shoot_hrope;

}

is_left_side = (x == LEFT_PLAYER_X);

if (guiKeyPressed(KEY_RIGHT) and is_left_side) {

throw cmd_go_side;

} elif (guiKeyPressed(KEY_LEFT) and not is_left_side) {

throw cmd_go_side;

}

};

The actions the player can perform in a descending mode are to descend, to
stretch a horizontal rope, and to switch to horizontal moving mode. These ac-
tions are expressed by throwing either a cmd descend, cmd shoot hrope, or

130 T. Nishimori and Y. Kuno

cmd go side token. For example, a cmd descend token (thrown when the down
arrow key is pressed) is handled by the following two handlers:

join p.cmd_descend *r.v_rope where r.is_on(p.x, p.y) {

d = min(r.by - p.y, 2);

if (d > 0) {

throw scroll(d);

p.anim_descend();

} else {

r.extend_to_bottom();

}

};

join p.cmd_descend { };

A v rope token is thrown by a vertical rope at its creation time and remains in
the pool as long as the rope is available (designated by a * symbol).

A body of the first handler is executed when there is a cmd descend token
and a player is on a vertical rope. This handler implements the rules R1 and
R2. When the vertical rope has some margin below the player to descend (R1),
all objects are scrolled up (as the player descends) Otherwise, the vertical rope
is extended to the bottom of the screen(R2). Note that the scroll token is
thrown when the player is descending, as explained shortly.

The second handler has an empty body; it simply consumes a cmd descend

token when it is not processed by the first handler, e.g., either the player is not
descending or the player is not on a vertical rope.

Other command tokens thrown in a descending mode are implemented sim-
ilarly. All command tokens thrown at a certain animation frame are handled
within the frame, and are consumed by an empty handler when they are not
effective in that frame.

The game screen scrolls up according to the player’s descending action (R3).
Therefore, all game characters except for the player update their vertical coor-
dinate. As shown above, the handler of rule R1 throws scroll token when the
player is descending, and this token is handled by the following handlers (the
argument of a scroll token represents the number of pixels to scroll):

join *any.scroll(d) *o.bg_object {

o.y = o.y - d;

if (o.y < SCROLL_OUT_LIMIT_Y) { o.destroy(); }

};

join *any.scroll(d) *r.v_rope {

if (r.y > 0 or d > 0) { #

r.y = r.y - d;

if (r.y < 0) { r.y = 0; }

}

if (r.by < HEIGHT) {

r.by = r.by - d;

if (r.by < 0) { r.destroy(); }

}

};

Join Token-Based Event Handling 131

join *any.scroll(d) *c.cloud {

c.y = c.y - d / 2.0;

};

join any.scroll { };

Note that the scroll token is thrown by the handler that consumes the token
cmd descend and is processed by another handlers in the same ignition. There-
fore, handlers that processes scroll should be placed below the handler that
throws scroll.

All objects that scroll but have no specific action while scrolling throw a
bg object token at initialization; they simply move upward and destroy them-
selves when they go out of the screen. This is implemented by the first handler.

The second handler is for a vertical rope. A vertical rope, whose top and
bottom vertical coordinates are held by y and by correspondingly, behaves a
little differently. As the rule R10 states, the bottom of a vertical rope does not
move upward if its bottom is at the bottom of the game screen.

The third handler implements a cloud that goes slowly (at half the speed of
other scrolling objects) up the screen (R4). When a cloud goes out of the screen,
it resets its position to the bottom to “reuse” itself (this behavior is described
in the cloud object and is not shown here).

The fourth handler is defined at the end of handlers processing the scroll

token to consume a scroll token when its job is done, as in the other command
tokens.

The rule R5 is implemented by the following handlers:

join p.cmd_shoot_hrope *r.h_rope_flying

where abs(p.y - r.y) < BREADTH_TO_CHANGE_ROPE {

};

join p.cmd_shoot_hrope *r.h_rope

where abs(p.y - r.y) < BREADTH_TO_CHANGE_ROPE {

};

join p.cmd_shoot_hrope {

hr = new HorizontalRope;

if (p.x == LEFT_PLAYER_X) {

hr.init(p.y, false);

p.anim_shoot_hrope(false);

} else {

hr.init(p.y, true);

p.anim_shoot_hrope(true);

}

};

join p.cmd_shoot_hrope { };

Note that a horizontal rope throws either a h rope token (on which a player can
hang) or a h rope flying token (on which player cannot hang on because it is
not completely stretched between buildings).

132 T. Nishimori and Y. Kuno

A horizontal rope can be stretched only when there is no other horizontal
rope nearby (R5). This behavior is expressed by the first 2 handlers. If there is
any horizontal rope within BREADTH TO CHANGE ROPE pixels, a cmd shoot hrope

token is simply deleted so that no further action occurs.
The third handler stretches a horizontal rope leftwards or rightwards accord-

ing to the current position of the player. Note that this hander specifies only
one token. Its role is to execute the stretching action when the cmd shoot hrope

token was not removed by the previous handlers.
The fourth handler removes the token when its task is done as in the other

handlers that process command tokens.
An inhabitant tries to cut a vertical rope (the rule R7). An inhabitant con-

sists of two objects: the inhabitant itself and his arm. An arm object throws a
cmd cut rope token if it has fully extended from its body, and this token is pro-
cessed by the following handlers (method can cut checks if the arm can actually
cut the rope):

join a.cmd_cut_rope *r.v_rope where a.can_cut(r) {

r.cut(a.y);

};

join a.cmd_cut_rope { };

Method cut actually cuts the rope and throws a cut vrope token with two
arguments, which are the top and bottom y coordinate of the cut part. This
token is processed by the handlers corresponding to R9, which simply checks if
the player should fall and changes its state accordingly:

join *p.player rope.cut_vrope(by, cut_y)

where p.x == rope.x

and rope.y <= p.y and p.y <= by

and cut_y < p.y {

p.update = p.update_falling;

};

join any.cut_vrope { };

The rule R8 is implemented similarly:

join *p.player o.bitch where p.is_collided(o) {

p.update = p.update_falling; # create an effect object....

};

Although the “Descender” game has some complexity, the methods of the game
objects are simple and the join handlers concisely express the corresponding
rules in a straightforward manner.

4.3 Comparison with Ruby

As an evaluation, we have implemented our “Balloon” game also in Ruby (pre-
cisely Ruby/Tk; Tk library is used for graphics and input handling). In this

Join Token-Based Event Handling 133

section, we present the comparison between a join token-based code in Moge-
moge and an ordinary O-O code in Ruby.

The resulting game was mostly identical except for the speed and/or look and
feel owing to differences in graphics library. The numbers of lines of code is 357
for the Mogemoge version and 436 for the Ruby version. The object definitions
are mostly similar for both the versions, but there are large differences in the
event handling part.

In this game, most of the interactions among characters are collisions, e.g.,
an interaction occurs when two characters collide with each other. Therefore,
we can factor out collision detection onto a single iteration method (a kind of
coroutine in Ruby) as follows:

def check_collision(c1, c2)

o1s = $obj_list.find_all { |o| o.kind_of? c1 }

o2s = $obj_list.find_all { |o| o.kind_of? c2 }

o1s.each do |o1|

o2s.each do |o2|

yield o1, o2 if o1 != o2 && o1.is_collided(o2)

end

end

end

With the help of a check collision method, an interaction handling code can
be written as follows:

def check_collision_all

check_collision(Explosion, Bomb) do |e,b|

b.destroy()

Explosion.new(b.x, b.y, 1.2)

end

check_collision(Explosion, Balloon) do |e,bln|

bln.bomb.set_vel(0, 2) if !bln.bomb.nil?

bln.destroy

end

check_collision(Missile, Balloon) do |m,bln|

m.destroy; bln.destroy

bln.bomb.set_vel(0, 2) if !bln.bomb.nil?

end

check_collision(Missile, Bomb) do |m,b|

m.destroy; b.destroy

end

check_collision(Building, Bomb) do |bld,b|

bld.destroy; b.destroy

end

check_collision(Explosion, Building) do |e,bld|

if e.active then e.active = false; bld.destroy end

end

end

134 T. Nishimori and Y. Kuno

Each of the calls to check collision corresponds to handlers in the Mogemoge
version, but there are the following differences:

– The kinds of characters participating in each interaction are explicitly de-
scribed as class names, but their roles in the interaction are not shown; they
are expressed as token names in Mogemoge.

– Additional objects participating in the interaction have to be stored in and
extracted from the participating object; they are expressed as token argu-
ments in Mogemoge.

– Checks for condition prior to actions are embedded in the code; they are
represented as “where” clauses in Mogemoge.

– Unavailability of an object for multiple interactions have to be managed
by the code through flags (active property in the above code); they are
automatically managed by token semantics and * symbols in Mogemoge.

– The above Ruby code does not address rule R3 because it is not a collision.
We had to make a balloon and a corresponding bomb to refer to each other
via their reference variables and had to maintain this relation manually, as
in the following code, in the destroy method:

def destroy # a balloon must not refer to a destroyed bomb

@parent.bomb = nil if !@parent.nil?

end

Using a join token, such references were not necessary and R3 could be
described in a straightforward manner within the handler.

In more complex games with many interactions other than collisions (as in the
“Descender” game), the complexity of the Ruby code will increase to a great
extent.

In addition, the above code runs nested loops for every combinations of inter-
acting characters for clarity; if the performance becomes a problem, we will have
to merge some of the loops, further decreasing the readability of the code. In the
case of Mogemoge, we can implement various speedup techniques as necessary
without affecting the existing code.

5 Related Works

There are many aspects in our join token framework, so we shall examine the
related works with respect to each of them.

Game Scripting Languages. Since our goal is to ease game programming, we
first examine the related works that treat game scripting languages. As noted
previously, an action game programmer has to control multiple concurrent ac-
tivities of game characters, along with their interaction in a state-dependent
manner.

Join Token-Based Event Handling 135

Micro-threads of Stackless Python [12], [15] allows assigning a dedicated thread
to each of the game character objects, so that those objects seemingly act au-
tonomously and concurrently; this view is very natural for game designers. Sev-
eral websites including [2] recommend this style of game scripting.

Yet, another awkwardness of game programming is that each of the characters
may have their own state, and they interact with each other in a state-dependent
manner. Some of the game scripting languages, including UnrealScript[14] pro-
vides a notion of state; in such languages, game programmers can explicitly
describe states in their code. However, “interaction” poses another difficulty,
because two or more characters (with their own states) are involved in an
interaction.

Coordination Models. From the above discussion, it seems necessary to in-
troduce some coordination model to the game scripting language in order to ease
the description of interactions among concurrent activities (game characters).

Linda[7] is a coordination model that uses a “tuple space” as a communication
media among concurrent activities. In Linda, both the sender and the receiver
of a message (a “tuple” in Linda terminology) are separated in time (at which
timing) and space (at which portion of the code). This relieves the programmer
from the awkward control of details. However, the demerit of Linda is that the
coordination is not symmetric and a bit too low-level; the sender simply emits
its tuple, and the receiver must actively select tuples matching its needs.

Join-calculus[4] is yet another coordination model in which the atomic join
handler of two or more concurrent activities can be specified. The merit of join-
calculus is its high level description and symmetry. On the other hand, the target
of the coordination is the thread itself and the two activities are tightly coupled
at the join handler; loose coupling of Linda will be more desirable in this respect.

Therefore, we have combined the advantages of both the models and designed
a join token framework. Tokens and token pool corresponds to tuples and tuple
space in Linda, respectively. A join handler was derived from join-calculus, al-
though our handlers join tokens, not threads. Moreover, we have associated an
originating object to each of the tokens in order to ease the object-orientation
style of programming, which is common in game programming.

Reactive/Event Programming. Join token can be viewed a kind of reactive
and/or event-based programming, which has a long series of history.

First, rule engines, long used for expert systems, have the facility to gather
multiple facts (similar to tuples in Linda) and invoke rules when matches are
found. Moreover, recent rule engines such as Jess [5], [8] allows Java objects to
be used as facts: thus, it can be used as a coordination mechanism for game
program written in Java. However, such code will be awkward to write, because
every coordination activity must be converted to Jess API calls. Alternatively, it
is quite possible to use Jess or a similar rule engine as an implementation device
for token pool and take advantage of the efficient Rete[3] algorithm built into it.
We will revisit this topic later.

136 T. Nishimori and Y. Kuno

Second, Dynamic aspect-oriented programming (AOP) as in [1], [10] makes it
possible to insert join points to existing class code at runtime. It could be used to
install callbacks (join points) when an object becomes ready for interaction and
would like to wait for one of the other objects to express willingness to participate
in an interaction. However, this approach is similar to a thread-based join such
as in join-calculus, with its drawbacks, as noted previously. It might also be too
general and powerful; a more domain-specific solution would be desirable.

Third, data binding as seen in JavaFX[11] and reactive programming[13] can
trigger events when the values of some variables have changed, and appropri-
ate action can be specified. Their major usage for now is to reflect values of
some portions to other parts of the system (e.g., user interface components or
accompanying objects or so on), but a more flexible setting (for game logic pro-
gramming) is also possible. However, such customizations might be awkward.
Therefore, they might be used as back-end mechanisms to implement join to-
kens, as in the rule engine case.

6 Discussion

In this section, we discuss the various aspects of join token frameworks and
discuss their related issues.

Concurrency Issue. As noted in Section 2, the join token framework de-
scribed in this paper is targeted to game scripting, in which event ordering and
processing order should be strictly controlled by the programmer. Therefore,
true concurrency and the resulting non-determinism are intentionally excluded.
Perhaps, thanks to this strict ordering property, we got little surprises when
debugging the join token-based code.

However, Linda and join-calculus, from which the join token was derived,
are actually concurrency coordination models. Therefore, the join token model
might also be useful for a true concurrent setup also. We might encounter more
“surprises” with such setup, and might require additional coordination (order
controlling) mechanisms. We would like to investigate this issue in the future.

Restriction Regarding Token Overwriting. As explained in Section 2, each
object can throw multiple tokens with different names into the pool, but can
have only one token with a specific name, because the latter throw statement
with identical name replaces the previous one. Although this may pose some
restriction on the usage of tokens, we have chosen this condition for clarity and
simplicity; we have felt no inconvenience so far.

Applicability to More Complex Games. The games we have implemented
with Mogemoge and join token so far are fairly simple and small ones, so their
applicability to more complex (commercial-scale) games is not yet known.

However, we note that token names are hard-coded in the source code and
cannot be changed at runtime. Therefore, although the token pool looks like a

Join Token-Based Event Handling 137

global chaos, it is not so in fact; logically, there are many small pools for each
distinct token names. When developing large scale games, a token naming con-
vention can be used to safeguard against interference among program modules.

Performance Issue. As noted above, we have only implemented small games
using the join token, and so have not encountered any performance problems so
far. We expect that this situation might change in the case of larger games.

However, we note that current video games use the majority of their CPU
cycles in 3D high resolution graphics, so we guess that CPU cycles used for
game logic computation will be negligible even on fairly complex games.

When dealing with the computational complexity of token matching, given
that tokens with different names are totally distinct, the number of tokens and
handlers with the same name matters. In a naive implementation (which we use
for current Mogemoge implementation), with M handlers and N tokens for a
specific token name, the computational complexity will be O(MN).

If this becomes a problem, we could incorporate a clever algorithm such as
Rete[3]. However, since the Rete algorithm caches the outcome of Boolean guard
expressions (“where” clauses in join tokens), we need a guarantee that the value
of guard expressions does not change without notice. One way to achieve this
might be to restrict the guard expressions to use only local values (handler
associated objects and their instance variables). We consider a detailed analysis
as our future work.

7 Conclusion

Game scripting languages are an effective approach to develop complex games.
In the case of action games, the difficulty in development mainly resides in
describing complicated interactions among the multiple concurrent behaviors of
objects in a state-dependent way.

The join token mechanism that was described in this paper addresses this
problem by means of the global token pool and join handlers. This mechanism
combines the advantages of the join-calculus and the Linda computational mod-
els.

To show the effectiveness of join token mechanism, we have designed and de-
veloped an experimental game scripting language called Mogemoge. Mogemoge
is an interpreted, prototype-based object language equipped with join token.
We have developed Mogemoge using Java and SableCC (a Java-based compiler-
compiler framework).

For the purpose of evaluation, we have implemented several demo action
games with Mogemoge, including the two described in this paper. We have
also compared Mogemoge against an ordinary scripting language through ex-
periments. As a result, the Mogemoge code could be easily derived from the
game rules and is comprehensive in general.

At present, we have developed only a few simple sample games with Moge-
moge. We would like to evaluate the effectiveness of join token in more complex,
realistic games in the future.

138 T. Nishimori and Y. Kuno

Acknowledgement. The authors would like to thank the reviewers of Software
Language Engineering Conference 2011 for their helpful suggestions to improve
this paper.

Implementation Status and Availability

The implementation of Mogemoge and its sample programs are available at the
web site at http://www.nisnis.jp/mogemoge/.

References

1. Bornér, J.: What are the key issues for commercial aop use: how does aspectwerkz
address them? In: 3rd International Conference on Aspect-Oriented Software De-
velopment, pp. 5–6 (2004)

2. Dorf, M.: Need high levels of concurrency? Try stackless Python (July 2010),
http://www.learncomputer.com/stackless-python/

3. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
matching problem. Artifical Intelligence 19(1), 17–37 (1982)

4. Fournet, C., Gonthier, G.: A Calculus of Mobile Agents. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 406–421. Springer, Heidelberg
(1996)

5. Friedman-Hill, E.: Jess in Action: Rule-Based Systems in Java. Manning Publica-
tions Co, Greenwich (2003)

6. Gagnon, E.: SableCC, an object-oriented comiler framework, Master’s Thesis,
McGill University (1998)

7. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7(1), 80–112 (1985)

8. Jess: The rule engine for the Java platform, http://www.jessrules.com/
9. Nishimori, T., Kuno, Y.: Join token: A language mechanism for interactive game

programming (2011) (under submission)
10. Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: Efficient dynamic weaving

for java. In: 2nd International Conference on Aspect-Oriented Software Develop-
ment, pp. 100–109 (2003)

11. Slovàcek, V., Macik, M., Kĺıma, M.: Development framework for pervasive com-
puting applications. SIGACCESS Newsletter 95, 17–29 (2009)

12. Stackless Python, http://www.stackless.com/
13. Susini, J.-F.: The reactive programming approach on top of Java/J2ME. In: Pro-

ceedings of the 4th International Workshop on Java Technologies for Real-Time
and Embedded Systems, pp. 227–236 (2006)

14. Sweeney, T.: UnrealScript language reference,
http://udn.epicgames.com/Three/UnrealScriptReference.html

15. Tismer, C.: Continuations and Stackless Python. In: Proceedings of the 8th Inter-
national Python Conference (2000)

16. Ungar, D., Smith, R.B.: Self: the power of simplicity. In: OOPSLA 1987,
pp. 227–242 (1987)

http://www.nisnis.jp/mogemoge/
http://www.learncomputer.com/stackless-python/
http://www.jessrules.com/
http://www.stackless.com/
http://udn.epicgames.com/Three/UnrealScriptReference.html

Reusing Pattern Solutions in Modeling:

A Generic Approach Based on a Role Language

Christophe Tombelle1, Gilles Vanwormhoudt1,2, and Emmanuel Renaux1

1 Institut TELECOM
{tombelle,vanwormhoudt,renaux}@telecom-lille1.eu

2 LIFL/CNRS - University of Lille 1 (UMR 8022)
59655 Villeneuve d’Ascq cedex - France

Abstract. Design patterns are a means to capture and reuse good prac-
tices and working solutions acquired by experts in various domains of
specification and design. A lot of work has been done to try to express the
solution part of design patterns in a computer understandable language
but most of it is centered on the UML, especially on the Class diagrams.
Model engineering techniques make it easier to design domain-specific
languages and we think that design patterns can be identified in any
engineering domain. So, a language able to describe accurately design
pattern solutions for any specification or design language, along with its
reuse process, would be of great interest. This paper presents Gipsie,
a specification language that approaches, at an abstract level, this goal
through the notion of generic roles, i.e. parameterized by any metamodel.

1 Introduction

Whatever be the language of specification and design, some good practices and
working solutions to a given problem can be identified by experts. Design pat-
terns [7] are a mean to capture and reuse such valuable items so that they can be
profitable to various design teams. In this paper, we are particularly interested
in the specification of small reusable pieces of model expressing the solution part
of design patterns with the goal of incorporating such pieces into larger models.

With Model-driven engineering promoting the building and use of a diversity
of Domain-Specific Modeling Languages [10], appears a need to represent as
accurately as possible the solution part of design patterns for any language. A
language would be accompanied with its set of common design patterns.

In fact, several works [18,4,1] have been proposed to express the solution part
of design patterns in a computer understandable form. Unfortunately, most of
these works were designed to specific domain, defined by a specific metamodel
(mostly UML). Moreover, they tend to use a specific language to express the
design patterns. As a result, the application of design patterns over new meta-
models has been obstructed, since each of them requires to develop a new spe-
cific support. If one wants to quickly establish design patterns support for new
domain-specific languages, generic methods and tools are needed.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 139–159, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 C. Tombelle, G. Vanwormhoudt, and E. Renaux

This paper presents the metamodel of Gipsie, a GenerIc Pattern SpecIfica-
tion languagE aiming at describing the solution part of design patterns for any
language. In our proposal, a design pattern solution represents an abstraction
of model fragments and is primarily described in terms of roles. The process
of reusing a design pattern solution in a target model is also considered and
we propose a metamodel and a process for a pattern realization (or binding)
i.e. a particular application of a given pattern solution to a given target model.
Compared to other existing approaches, Gipsie limits the design effort by not
requiring to specify new metamodels or to adapt existing ones for a specific
modeling languages.

Section 2 presents some motivations for a language capable to specify accu-
rately the solution part of design patterns. Section 3 presents our proposition
for specifying pattern solution. Section 4 describes how a pattern solution can
be applied to a target model. Tools supporting the approach are described in
Section 5. Section 6 presents related works prior to conclude with Section 7.

2 Motivating Examples

2.1 Existence of Design Patterns in Any Design Language

A lot of work has been done to describe design patterns themselves as models but
most of it is centered on the UML, especially on the Class diagrams. However,
some good practices can be identified in any domain, language or modeling tool.
For instance, we find the need of patterns in the domain of communicating pro-
cesses [2] or the domain of workflow [21]. In the following, we will use examples of
patterns from these two domains to motivate some general requirements for pat-
terns realization in any modeling language. In the first domain, one can identify
the ‘Timeout on no answer’ design patterns for the SDL specification language
[8]. The solution part of this pattern is pictured in the left part of Figure 1.
This pattern recommends the use of a Timer (tm) when a request (req) is sent
to a peer entity while expecting an answer from it. If the answer Signal (reply)
is not received within the delay specified by the timer, a timeout Signal (tm)
allows the automaton not to wait indefinitely for the answer in the same state
(wait). In the second domain, we find the ‘Milestone’ pattern [21]. This pattern
is shown in the right part of Figure 1 using the Business Process Modeling No-
tation (BPMN). It expresses that the completion of an activity (Task A) in one
Sub-Process1 is required before an activity (Task B) in another Sub-Process can
start. In the pattern solution, a Link End Event (MilestoneEvent) that follows
task A is used to trigger a corresponding Link Start Event that precedes Task
B and an Association link is used to reinforce their relationship.

2.2 Requirements for a Generic Pattern Specification Language

In design patterns described in natural language [7], the class diagram drawn in
the solution part is willing to be a description of the general solution brought by

1 whatever are its predecessor and successor tasks in the Sub-process.

Reusing Pattern Solutions in Modeling 141

SET(now+5, tm)

req

wait wait

reply

RESET(tm)

TIMER tm;

tm

‘Time out on no reply’ SDL pattern ‘Milestone’ BPMN pattern

Fig. 1. SDL and BPMN patterns

the pattern. Indeed, such a class diagram captures the structural constraints of
the pattern solution by using regular model elements of the UML metamodel.
To get a description of the pattern solution reusable in case tools, we may think
about directly transposing this class diagram as a computer understandable
model and manipulate the result as a prototypical instance of the pattern solu-
tion. However, this prototypical approach puts too many constraints as we will
see hereafter.

Unneeded Constraints Issue: First of all, the prototypical approach forces
some model elements to exist and to have all properties specified by their meta-
class whereas the pattern tells nothing about most of them. In addition to these
constraints relative to the metalevel, other unneeded constraints are due to model
elements themselves. Sometime the value of a model element property may be
a requirement for the pattern but it may often be a detail (especially name
properties). In ‘Time out on no reply’ pattern, the state and signal names are
just a detail: the pattern does not require the state and the answer signal to
be respectively called wait and reply. Another unneeded constraint is also the
position of an element in an ordered feature. For instance, the ‘Time out on no
reply’ pattern does not require the timer setting to follow strictly the output
signal. The only requirement is that these elements belong to the same branch.

Ideally, a pattern description should be a fragment specification only including
elements that are part of the pattern intent. It should not include unneeded
elements so that no unneeded constraints are imposed to the models targeted
for its applications.

Identity Requirement: Some patterns impose some constraints on properties,
such as having the same value as another property. In our pattern examples,
this first requirement is shown by the name of the timer (resp. Link End Event)
and the name of the timeout signal (resp. Link Start Event) : it must be the
same for ensuring consistency. In the same way, often, a pattern requires same

142 C. Tombelle, G. Vanwormhoudt, and E. Renaux

model fragments to be contained -or just referred to- by distinct model elements
such as methods with the same signature in distinct classes. An illustration of
this second requirement is given by the ‘HeartBeat’ pattern (see Figure 5) : the
action for the initial setting of the timer and its setting after sending the live
signal must have the same parameters. The pattern description should enforce
these identity constraints.

Validity Issue: A pattern prototype usually includes model elements that are
not always required by the pattern. Their presence is only required for the sake of
model conformance to its metamodel. In a description of ‘Time out on no reply’
(Figure 1), the presence of an initial state is not required because it plays no
role in the pattern. A prototypical approach would probably specify the initial
state (see the metamodel Figure 4). A similar observation can be made for the
‘Milestone’ pattern where the Subprocess has no initial activity and the Task
B is not linked to any predecessor. Indeed, a pattern need not specify a model
conforming to the complete metamodel, only the target model must do so.

Need for Abstraction: A pattern intent can often be achieved by different
means. A common intent is to specify elements of the pattern without being
too accurate about their metaclass that even may be abstract. In ‘Timeout on
no answer’, one need to specify that the req output signal can follow either an
initial state or an input signal, that is a branch element (abstraction represented
by a dotted box in Figure 1). A pattern specification language should support
this kind of abstraction to potentially allow more candidates playing a role.

Another common intent is to specify that a model element should be present in
a container without specifying the containment relation nor if this containment
is direct or indirect. ‘HeartBeat’ shows the initial set-up of the tm timer using
a ‘SET(Now+5, tm)’ action. The container of this action is the process but the
containment is indirect and multiple direct containers are possible such as the
initial state or any input signal of the target process.

2.3 Requirements for Pattern Application

The issue of describing a design pattern solution can not be addressed without
considering its application to a target model. This application can follow various
scenarios.

When applying a pattern to an existing model, some elements specified by the
pattern may already be present in the model, while others have to be inserted.
If the target element exists, it is just identified as playing the role. If it does
not exist, it must be created then inserted in the target model. Following the
application context, existing and inserted elements are not always the same.
Extreme situations are a model where the pattern is already present (all elements
must be identified as playing the role) and an empty model (all elements must
be inserted). To accommodate all these situations, the application of pattern
should provide flexible mechanisms to select which elements are matched and
which ones are inserted.

At application time, a major requirement is the ability to apply a same design
pattern multiple times in different ways or to apply different design patterns to a

Reusing Pattern Solutions in Modeling 143

same target model. This implies that a same target model element should be able
to play multiple roles so that different responsibilities are documented separately.

Once applied, pattern-aware tools should keep track of the pattern applica-
tion. For the sake of model exchangeability, non pattern-aware tools should still
be able to load the target model.

In the next section, we propose Gipsie, a generic pattern specification language
that meets these requirements.

3 Role Modeling for Patterns

3.1 Our Approach of Design Patterns

In our approach, a pattern solution is specified by a role model that complements
constraints expressed by the metamodel. A role model specifies constraints on
the target model with a structure of roles. In our case, a role specifies that an
element should exist (existence constraint), should be in relation with such other
(relationship constraint) and some of its properties should respect some values
(values constraint)2. Whereas a metamodel specifies meta-elements for defining
the structure of its compliant models, a role model specifies role elements for
abstracting model fragments in these compliant models. A target model con-
taining a pattern solution must comply with its metamodel and a fragment of
this model must comply with the corresponding role model.

Our approach is depicted in Figure 2. This figure shows the structure of the
two involved modeling spaces (TargetModel space and Pattern space) as well as
their relationships using one of our previous example. The TargetModel space
is considered similar to the OMG multi-level metamodeling architecture (Tar-
getModel, Metamodel, Metametamodel). The Pattern space is contributed by
our approach. In this space, we provide the metamodel of Gipsie to express role
structures (Role models) capturing pattern solutions. As Gipsie is willing to
be generic, its metamodel will not refer to any specific metamodel but only to
the metametamodel3. This enables the parametrization of role model elements
with elements of a target metamodel : for instance, a role model capturing the
‘Timeout on no answer’ pattern solution will have roles that refers to Input and
Timer metaclasses of the SDL metamodel. In a role model, this parametrization
complements the structure of roles : it serves to state the meta-type expected
for elements playing a role in a target model.

In our approach, one application of a pattern solution to a target model is
specified by a realization containing binding elements. Each binding element is
associated to a role element and specifies how the role is concretely realized in
the context of the target model : either it is bound to a target model element
or it is inserted as a new element in the target model. Note that a target model
element may play multiple roles but is always instance of its metaclass. The

2 This notion of role differs from [16] and UML where a role captures a behaviour in
a collaboration of objects.

3 In our experimentation, we have used Ecore Metamodel of EMF.

144 C. Tombelle, G. Vanwormhoudt, and E. Renaux

MetaMetaModel
(EMOF)

Target
MetaModel

(SDL Metamodel)

Target Model
(SDL Model)

Gipsie MetaModel

Role model
(Time out on no
answer pattern)

Role model binding
(Pattern

realization)

Pattern SpaceTargetModel Space

parametrized by

based on

pattern constraints
(play role)

realizes

meta

meta

meta

Tooling
Pattern Tooling

relies onrelies on

Binding MetaModel

meta

Fig. 2. The pattern big picture

instance of relation should not be confused with the plays role relation. In the
following, we detail each component of the Pattern space.

3.2 The Gipsie Language

Figure 3 shows the metamodel of Gipsie. Role is the main concept of Gipsie meta-
model. A role has a name and specifies a meta-element that defines the kind of ele-
ment able to play the role. There are different kinds of roles: an object roleRObject
specifies a metaclass (i.e. an EClass instance), a link role RLink specifies a meta-
link (i.e an EReference), a property role RProperty specifies a meta-property (i.e
an EAttribute), a value roleRValue specifies a literal. Such a fine grain structuring
is justified by accuracy and expressive power targeted for Gipsie4.

Figure 4 depicts the instantiation of this metamodel for the ‘Time out on
no answer’ pattern5. The structure of this role model reflects the structure of
the pattern solution given by Figure 1 except that role elements have replaced
concrete elements. All these role elements specify what it is expected from any
target model to comply with the pattern. For instance, the wait object role
linked with the reply object role assumes the existence of a State element linked
to an Input element in any target model. The use of role elements enables us
to express expected fragment of models without having to specify unneeded
constraints imposed by the metamodel.

Figure 4 also gives the target metamodel used to parameterize the roles of the
pattern6. This target metamodel describes simple SDL processes with Process,
Action, State,... metaclasses, instances of EClass.

4 A formalization of the approach is available at the Gipsie site (see footnote 11).
5 The notation for role models is adapted from [17].
6 The parametrization of a role element with a particular meta-element is noted be-
tween < and > character. For instance, req:<Output> means that the req object
role is parametrized by the Output metaclass.

Reusing Pattern Solutions in Modeling 145

literal : String
name : String
description : String

NamedElement

Role

param : EClass
RObject param : EAttribute

index: Integer

RProperty

param : EReference
index: Integer

RLink

param:
EDatatype
index: Integer

RValue

param: EPackage
RoleModel

links
0..*

dest 0..1
root

1

refDest
0..1

props

0..*

value

0..1

refValue 0..1

value: Integer
RIndex

roles
0..*

index 0..1

RCopyObject

copyOf
1

index

0..1

Fig. 3. Gipsie metamodel

In the following, we give some explanations about the concepts provided by
the Gipsie metamodel.
Role Model: This concept specifies the pattern solution and references the
target metamodel (i.e an EPackage) and contains the top level object roles. A
pattern solution has a hierarchical structure: an object role can contain link roles
that can contain other object roles.

Object Roles: The presence of an object role in a pattern solution specifies
that an element should exist in the target model to play the role. In Figure 4,
the wait role is represented by an instance of RObject which is parameterized
by the State metaclass to specify that only a state must play this role. This role
puts no constraints on the name property of the State element.

Abstract Object Roles: An object role may refer to a base metaclass even if
it is abstract. This allows any instance of a concrete subclass of this metaclass
to play this role in the target model. An example of abstract role in Figure 4 is
the be role which specifies the BranchElement metaclass. Along with abstract
link roles, this is a way to meet the need for abstraction cited in the previous
section.

Property and Value Roles: In order to constrain a property, a property role
(RProperty) must be added to a pattern object role. In Figure 4, a RProperty
is added to the st:<Set> object role in order to specify that a constraint exists
on the ‘expression’ attribute. The nature of the constraint is specified by a value
role (RValue) added to the property role. A value role specifies a value for a
property role. In order to be generic and usable with properties of any data
type (EInt, EChar or any specific enum type), the value is specified with a
string literal. For instance, the expression property of st:<Set> should be valued
‘Now + 5’.

Value Sharing: In the intent of ‘Time out on no reply’, the name of the timer
and the one of the timeout signal is not mandatory. What really matters is
that these names must be the same for understanding. This can be enforced in

146 C. Tombelle, G. Vanwormhoudt, and E. Renaux

name: String
Process

Start

StartElement

Action

params: String[]
Input

name: String
State

expression: String
Set

NextState

Output

1..*
0..*
actions

name: String
Timer

0..*

1

Reset

1

name: String
paramsType:
String[]

Signal

0..*1

1

1

0..*elements

1
inputs

signal

refState

timer

BranchElement

timers

timer

signal signals

SDLMetamodel

PatternName:<Metamodel>

Role Model

roleName:<roleType>

Object Role (RObject)

Link Role (RLink)
<monolink> or <multilink[]>

Containment link role (RLink)
<compositeLink> or < >

PropertyRole (RProperty)
<name>

<String> or <>

ValueRole (RValue)

TimeOutOnNoReply:<SDLProcessMetamodel>

 to:<Process>

be:<BranchElement>

req:<Output>

st:<Set>

ns:<NextState>

< >

t1:<Timer>

wait:<State>

in1:<Input>

<timers[]>

<elements[]>

objects

sig1:<Signal>

<name>

<signal>
reply:<Input>

rst1:<Reset> <signal[]>

<actions[]>

<inputs[]>

<refState>

<actions[]>

<timer>

< >

<'NOW+5'>
<expression>

<name><timer>

Fig. 4. Metamodel for simple SDL Process and ‘Time out on not answer’ described
with Gipsie

Gipsie, with t1 and sig1 attached property roles sharing the same value role.
This feature is called ‘value sharing’. In this case, the value role literal is left
unset (<> in the figure) to specify that the value of the name does not matter
as long as it is the same for the two objects.

Link Roles: A link role is contained in its source object role and points to its
destination object role. In the target model, this specifies that a link should exist
between objects playing roles specified by linked roles. A link role specifies with
a meta-link the type of link that must exist between these objects. For instance,
a <refState> link role between ns and wait object roles specifies that the target
of the NextState playing the ns role should be the state playing the wait role.
The meta-link is oriented from the containing role to the destination role. The
opposite meta-link, if any, is implicitly specified by the metamodel.

Reusing Pattern Solutions in Modeling 147

Abstract Link Roles: An RLink that does not specify any meta-link is not
an incorrect pattern element. For the target model, this specifies that object
playing the source role must contain the object playing the destination role,
following any containment feature. Of course, metaclasses must be specified in
both source and destination object roles. This linking constraint intersects with
ones imposed by the metamodel, so that such a containment feature should
exist, in order the pattern to be valid. If such a feature does not exist be-
tween the source and destination metaclasses, an indirect abstract containment
is specified. This feature meets the ‘Need for abstraction’ discussed earlier. It
is illustrated by the containment link from the to:<Process> role object to the
be:<BranchElement>.

Link Index and Equality: A link role can have an index to constrain the
position of the linked object in the target model. For instance, if a pattern
requires the parameter of an operation to be the first one, an index value of 0
will specify this requirement. If the first position is not required, the index is not
specified. Indexes may be shared among multiple link roles. This constrains the
destination objects position to be the same.

HeartBeat:<SDLProcessMetamodel>

 :<Process>

:<State>

objects

<name>

<timers[]>

<inputs[]>

< >

<name>
:<Input> sig1:<Signal>

<signal>

t1:<Timer>

slife:<Signal>:<Output>
<signal>

s1:<Set>

:<NextState>

<timer>

<signals[]>

<'*'><name>

s2s2

<'NOW+5'>
<expression>

<actions[]>

s2

Copy Object Role Void Role

<elements[]>

<refState>

-

*

tmHB

TIMER tmHB;

SET(NOW+5,
tmHB)

sLife

SET(NOW+5,
tmHB)

‘Heartbeat’ pattern

Fig. 5. Copy object role illustration in ‘HeartBeat’

The copy Object Role: In some patterns, objects playing roles must share the
same constraints. An illustration can be drawn from design patterns for an object
oriented programming language which commonly describe method redefinitions.
The method and its parameters are a model fragment that must occur a first
time in the base class and a second time in the redefining class. In the target
model, this constrains the two operations to be a copy one from the other. The
‘copy object role’ feature of Gipsie (RCopyObject) is dedicated to this issue.
It is a role that refers to another role and constrains the bound object in the

148 C. Tombelle, G. Vanwormhoudt, and E. Renaux

target model to be a copy of the other7. In Figure 5, we show the use of this
feature in the HeartBeat pattern for SDL (left part). This pattern generates a
periodic ‘alive’ signal to a peer entity. After the initialization or an input signal,
the timer (tmHB) is set to the duration of an interval and after the timeout,
a signal (sLife) is generated and propagated. In the corresponding role model
(right part), the s2 role is specified as a copy of s1:<Set> to constraint the two
timer setting of the pattern to have the same parameters.

3.3 Role Model Validation

Link and object roles specify graphs of any shape. A pattern designer can refer
to any metaclass in an object role and to any meta-link in a link role. This can
lead to invalid pattern descriptions. Editing and validation processes ensure con-
sistency for pattern descriptions. The role model validation process starts from
the root object role and propagates first to sub-object roles through containment
link roles. Non containment link roles are then validated, ending with property
and value roles.

The validation process uses meta-elements specified by the different roles.
Metaclass for the role (e.g. to role in Figure 4) may be chosen with no other
constraints than being part of the target metamodel. The meta-link specified in
a link role must be present in the metaclass specified by its origin object role
(signal meta-link is present in the State metaclass specified in wait). In the SDL
process metamodel, signal is actually a meta-link of the Input metaclass. Its type
(signal type is Signal) must be the metaclass specified in the destination object
role (sig1 metaclass is State). The metaclass specified in a non root object role
must be assignment compatible with the type of the meta-link of its containment
link role.

4 Pattern Application with Role Modeling

4.1 Our Approach of Pattern Application

At application time, following the target model context, a role will be bound
to an existing target element or inserted. In case of binding, an existing target
element is just identified to play the role. In case of insertion, a new model
element is created then inserted into the target model and finally bound too. If
an object role features no property roles, the object is created with metamodel
specified defaults, else property roles are applied. In the same way, if the object
role features link roles, they are identified to existing links or inserted.

While describing a given pattern consists in writing a model of Gipsie meta-
model, applying this pattern to a given target model requires the manipulation
of application-time entities which represent the pattern realization (see fig. 6).
We call these entities ‘bindings’ and propose to define them in a ‘role model

7 ’copy’ means that sub objects are deep copied while referred objects are shallow
copied.

Reusing Pattern Solutions in Modeling 149

binding’. A ‘role model binding’ maintains links both to the role model captur-
ing the pattern solution and to a target model. Figure 6 gives an example of
role model binding to apply the ‘Time out on no answer’ pattern solution on a
target model and the model resulting from this application.

TimeOutOnNoReply:<SDLProcessMetamodel>

 to:<Process>

be:<BranchElement>

req:<Output>

st:<Set>

ns:<NextState>

< >

t1:<Timer>

wait:<State>

in1:<Input>

<timers[]>

<elements[]>

<objects>

sig1:<Signal>

<name>

<signal>
reply:<Input>

rst1:<Reset> <signal[]>

<actions[]>

<inputs[]>

<refState>

<actions[]>

<timer>

< >

<'NOW+5'>
<expression>

<name>

sMetamodel>

to:<Process>

<timers[]>

<elements[]>

<objects>

SDL Target Model
After application

Idle

CONReq

Connecting

CC

CR

Connecting

Connected

Idle

SET(now+5, tm)

RESET(to)

TIMER tm;

tm

Idle

CONReq

Connecting

CC

CR

Connecting

Connected

Idle

Bindings

SDL Target Model

<timer>

Fig. 6. Application of the ‘Time out on no answer’ pattern to a target model

4.2 The Binding Metamodel

Figure 7 depicts the binding metamodel and its instantiation for the previous
example. To simplify the binding operation, this metamodel is minimized. In
particular, it does not include concept for the binding of a role link (resp. role
property) since its correspondence with a target link (resp. target property) can
be deduced from the binding of roles at its ends (resp. the bound owner role).
We explain the concepts of this metamodel hereafter :

The Role Model Binding: A role model binding (RoleModelBinding) refer-
ences a role model and a target model. It contains a tree of object bindings. The
structure of this tree is computed automatically (by the createBinding() method)
to be isomorphic to the roles and the containment relationship between roles (see
right part of Figure 7 as example).

The Object Binding: An object binding (BObject) is a realization of an object
role. It holds a role link to the role it realizes. It also keeps track of the application
of an object role to a target object with a target link to the target model object
(EObject). A targetContainer link must be specified for root object bindings

150 C. Tombelle, G. Vanwormhoudt, and E. Renaux

intended for insertion. A targetContRef is also useful if multiple containment
meta-links exist in the container metaclass. targetContainer and targetContRef
must also be specified if the object role is contained in an abstract link role.
Because the metaclass associated with its object role may be an abstract meta-
class, a concrete metaclass must be chosen among the subclasses. This allows
the object role to be bound to any model element instance of one of its concrete
subclasses (eventually inserted one), providing for variability in the application.
The object binding holds this concrete metaclass as concreteMetaclass.

createBinding()
apply()

roleModel : RoleModel
targetModel: EObject

RoleModelBinding

validate()
literal : String

Binding

concreteMetaclass: EClass
role : RObject
target: EObject
targetContainer: EObject
targetContainerRef:
EReference

BObject

objects

0..*

rootBindings

0..*

roleModel : TimeOutOnNoReply
...

: RoleModelBinding

role: be (<BranchElement>)
...

: BObject

role: req
(<Output>)
...

: BObject

role: st (<Set>)
...

: BObject

role: (<a NextState>)
...

: BObject

role: wait (<State>)
...

: BObject

role: in1 (<Input>)
...

: BObject

role: t1 (<Timer>)
...

: BObject

role: reply (<Input>)
...

: BObject

role: rst1 (<Input>)
...

: BObject

role: sig1 (<Signal>)
...

: BObject

rootBinding[0]

objects[...]

objects[...]

objects[...]
objects[...]

objects[...]

Fig. 7. The binding metamodel and one binding model

4.3 The Application Process

The application or binding process consists in choosing how to apply a role model
to a target model. The binding model is a trace of these choices. It is checked
through a validation process based on a set of constraints. The binding process
is semi-automatic. The manual part is guided by the validation process.

In the first phase, a binding model is derived from the structure of the role
model. In this model, binding elements are created with a reference to the role
they realize and are linked according to the containment relationships of roles.
At this stage, the role model is not bound to a target model and the validation
process reports the binding model as ‘unbound’.

The purpose of the second phase is to define what must be inserted (un-
bound roles) and where (in objects bound to roles). This phase is guided by
the validation process and begins by designating a compliant target model in
the RoleModelBinding. This changes the status of the binding model to ‘bound’
instructing the validation process to report about the applicability of the role
model. A valid binding model would mean the role model is applicable i.e. ready
for the third phase. However, at this stage, it is no longer valid and requires min-
imal editing : object roles such as be:<BranchElement> which are contained via
an abstract link role must either be bound to a target object either have their

Reusing Pattern Solutions in Modeling 151

target container and container reference defined. Object roles not bound to a
target object are intended for creation and insertion of a new object in the tar-
get model. If the role specifies an abstract metaclass, the choice of a concrete
subclass is required in the object binding. When a constraint is violated the user
corrects the binding model. Bound target elements must comply with meta-
elements specified by their roles. Copy constraints between roles are checked if
roles are both bound to the target model. If a value binding does not impose a
value but is shared by multiple property bindings related to bound target ob-
jects, the validation reports these properties in existing objects should have the
same value.

The third phase applies the roles to the target model resulting in the insertion
or modification of elements. It is itself divided in two steps :

– In the first step, new elements are created. This is achieved by traversing
the tree of binding elements. For an unbound role, a new object is created and
initialized with its specific property values. For an unbound copy object role,
the target object referenced by the other role is cloned. In both cases the role
element is bound to the newly created or cloned object. After this phase, all
roles are bound to an object.

– In the second step, the target model is updated. This is done by a second
traversal. Several operations are performed during this traversal. Firstly, previ-
ously created objects are attached to their container. Secondly, link roles with
no corresponding link in the target model are identified thanks to an analysis of
links existing between target objects playing roles. For such link roles, a corre-
sponding link is added between the target objects. If a link index is specified in
the role model, it defines the insertion point. Lastly, properties of target objects
are modified according to their value role or value binding.

After this final step, the target model has all the elements to comply with the
pattern solution. However, the target model holds no references to the binding
model nor to the role model so that it can still be manipulated by tools unaware
of role and binding models. The role model is also independent of any target
model. As discussed in the next section, a role model can be applied multiple
times to a same target model using different bindings. Multiple role models
can also be applied to a same target model. However, multiple bindings may
introduce conflicting constraints. The user is the only judge of the utility of
applying a role model.

4.4 Capacities in the Application Process

Figure 8 shows some of the main capacities provided by the application process
using the example of a role model parameterized with a metamodel for simple
class-based models. This role model expresses a simple structural pattern for
wrapping elements. We can find such a pattern as part of larger patterns like
Adapter or Decorator. It is composed of a role for the ‘wrapper’ class, an abstract
role for the ‘wrapped’ classifier and a role for the property that links the role
players. By being abstract, the ‘wrapped’ role gives the possibility to select a
class or a datatype for its target element. The table in lower part of the figure

152 C. Tombelle, G. Vanwormhoudt, and E. Renaux

represents several applications of this role model8,9, exhibiting the following
capacities :

– The capacity to apply a role model to various base models including an
empty one (illustrated by row 1) or a target model already containing the pattern
(illustrated by row 6 and 7) or some of its parts (row 5). This is made possible
because a binding can vary according to the target.

– The capacity to get distinct results when applying a role model to a base
model thanks to distinct bindings and/or distinct concretizations of abstract
roles. In the table, this capacity is illustrated by rows 2 and 3 which target the
same base model but lead to different resulting models.

– The capacity to apply a role model multiple times to a base model using
different binding models. Multiple applications of a role model can be either
independent or chained. The latter case occurs when elements introduced by an
application are reused for another applications. Rows 2 and 3 give an example
of two independent applications while the couple composed of rows 3 and 6 il-
lustrates chained applications. For this couple, we can observe that the result of
the first application (row 3) may serve as an input base model for the second
application (row 6) and that roles of the latter application are played by previ-
ously inserted elements. For multiple applications, we have ordering properties
similar to those described in [14].

– The capacity to bind several object roles to a same target element within
the same application. Illustration of this capacity is given by row 3 where the
existing c1 class plays both the ’wrapper’ and ’wrapped’ roles to wrap the same
type of elements.

– The capacity of an existing element to play different roles in chained appli-
cations. This is illustrated by rows 5 and 7 considered as a chained application.
In application of row 5, the c2 class is inserted as a player of the ’wrapped’ role
while this class plays the ’wrapper’ role in application of row 7, resulting in a
chain of wrappers.

The capacities presented above show the flexibility provided by our approach to
address a wide range of situations. Thanks to these capacities, a pattern solution
can be reused multiple times in the same target model or be reused across several
target models but it can also be incorporated in target models with some form
of variability for inserted elements.

5 Tool Support

To evaluate the proposed approach, we have built and integrated some tools10

into the Eclipse environment by relying upon its modeling framework (EMF).

8 Base and result models of classes are represented as instances diagrams of the MM
metamodel.

9 To distinguish existing elements from added ones in a resulting model, they are
represented by dotted box.

10 see http://www.telecom-lille1.eu/people/tombelle/gipsie/gipsie.html

Reusing Pattern Solutions in Modeling 153

5

6

3

1

4

2

wrpd=>Datatype
wrpr->c

pw->void
wrpd->void

wrpd=>Class
wrpr->c1

pw->p
wrpd->void

None
wrpr->c1
pw->void
wrpd->d

wrpr->c1
pw->void
wrpd->c1

None

wrpd=>Datatype
wrpr->c1
pw->void

wrpd->void

wrpr->void
pw->void

wrpd->void

Empty

wrpd=>Class

BindingBase Model Result Model After ApplicationAbstract Role
Concretization

p:Property c2:Class
type

c1:Class p:Property d:Datatype
type

c1:Class

c1:Class d:Datatype

c1:Class p:Propertyproperties[0]

c1:Class p:Property

properties[0]

c1:Class
properties[0]

c1:Class
properties[0]

type

p:Property d:Datatype
type

c1:Class
properties[0]

p:Property c2:Class
type

c1:Class
properties[0]

c:Class p1:Property

properties[0]

type
c:Class

p1:Property
properties[0]type

p2:Propertyproperties[1]
d:Datatype

type

Role Model <MM>

pw:<Property>
wrpd:<Classifier>

<type>

Metamodel MM

Property

<abstract>
Classifier

Class

Datatype

type 1

*
wrpr:<Class>

properties[0]

<properties[]>

wrpd=>Class
wrpr->c2
ref->void

wrpd->void
7

c1:Class p1:Property

c2:Class

type

properties[0]

c1:Class p1:Property c2:Class
typeproperties[0]

p2:Property
properties[0]type

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'

name='wrprdElt'
c3:Class

Fig. 8. Several applications of a role model to various base models

Figure 9 shows the suite of tools and their relationships. Role models and
binding models can be edited thanks to smart editors existing in two versions :
a tree-based one and a text-based one. These editors offer powerful completion
assistance to parameterize role model elements. They also check the consistency
of role and binding models as described previously. The Model2RoleTransformer
tool allows to transform any model conforming to a metamodel into a role model
targeted for this metamodel. This tool is useful to quickly get a first version of a
role model from existing models so it can be further abstracted. The Concretizer
tool goes in the other direction. It allows to create a fragment of model from
a root role which has no abstract links11. Thanks to this last tool, designers
can quickly test the specification of their role model by concretizing some parts.

11 this creation is made possible by relying on defaults from the role model and defaults
from the targeted metamodel.

154 C. Tombelle, G. Vanwormhoudt, and E. Renaux

When role models are ready-to-use, they can be put into a repository of role
models. Within this repository, role models are automatically organized into
groups related to their target metamodel. Finally, a tool for applying available
role models to target models as explained previously is also provided.

input model M

CB CC

Role
Models

Repository
Model2Role
Transformer

Tool

Role Model
Application

Tool

Smart Editors (Tree-based and text-based)
for Role models and Role Bindings

Concretizer
Tool

result model RM

R1

R2 R3

target model M'

C1 C2

Apply with
binding:

<R1 -> CA,
R2 -> CB,
R3 -> CC> result model M'

CA

C1 C2

Fig. 9. Tools for designing and applying role models

These tools have been exploited to conduct a preliminary experiment with
several modeling languages : UML class and activity diagram, Ecore, SDL, Stat-
echart, BPMN and Petri Net. Table 1 presents a subset of role models designed
for both UML, Ecore12 and SDL metamodels13. These role models correspond
to pattern solutions found in [7] for UML and Ecore and SDL patterns found
in [2,8]. For each role model, we give the number of main constructs used in
each pattern : object role (abstract role), link role (abstract link role), role
property, copy role. The numbers given for a row correspond to the set of ele-
ments required to comply with a pattern solution. From the provided values, we
can see that experimented patterns have various complexity and exhibit different
needs in terms of necessary constructs. Several remarks can be made from this
experiment.

First, the diversity of experimented languages, even if their number is limited,
confirmed the genericity claimed by our approach. In particular, we validated
that our approach can be applied to small and huge modeling languages like
UML as well languages modeling structural and behavioral parts of a system. In
future work, we plan to investigate categories of modeling languages not studied
here in order to identify patterns that are difficult to define with our approach.

Secondly, one can see from the table values that each pattern required to spec-
ify a significant amount of constructs. However, it is important to note that the
number of constructs is minimized compared to those needed for expressing the
pattern in a target model. As a result, our approach does not require additional

12 We designed the same set of patterns for UML and Ecore in order to compare their
differences in terms of needed constructs.

13 Role models for all GOF patterns are available on the Web site.

Reusing Pattern Solutions in Modeling 155

Table 1. Some of the experimented patterns for UML, Ecore and SDLs

Metamodel Role model RObjectabstract RLinksabstract RProps RCopy

UML (Ecore)

AbstractFactory 16 (10) 14 (9) 2 (2) 0 (0)
Adapter 15 (13) 9 (5) 4 (3) 0 (0)
Bridge 13 (11) 6 (5) 7 (6) 1 (1)
Builder 14 (11) 11 (9) 5 (2) 1 (1)

ChainOfResponsability 8 (6) 5 (4) 1 (1) 1 (1)
Command 17 (13) 13 (10) 2 (2) 1 (1)
Composite 36 (31) 22 (20) 6 (8) 1 (1)
Decorator 16 (14) 7 (6) 9 (9) 0 (0)

SDL

Heartbeat 9 2 2 1
BlockingRequestReply 152 7 2 0
TimeOutOnNoReply 111 41 3 0

RepeatedEvents 142 61 10 0
TimedRepeatedTrials 355 151 13 0
TimerControlledRepeat 31 13 8 0

Timer 23 10 4 0
Watchdog 131 7 3 0

efforts for specifying patterns. There is just a learning curve to understand all
subtleties of the proposed approach but this effort must be balanced with the
benefit of reusing a role model across multiple target models and avoiding the
effort of incorporating elements of a pattern solution by hands.

In this experiment, we also noted that the complexity of a pattern specifica-
tion with a role model depends on the target metamodel. This is indicated by
the values given for UML and Ecore on the same set of GOF patterns. The dif-
ference between values for roles and links comes from the fact that inheritance,
relationships between classes and cardinalities are defined using simpler concepts
in Ecore in comparison with UML.

This experiment also highlighted that the abstraction features supported by
our approach only make sense for some target metamodels. In our experiment,
we were only able to exploit abstraction features for SDL (abstract roles pa-
rameterized by BranchElement or Action), not for UML or Ecore class diagram.
In general, it appears that concepts like abstract role object and abstract role
link are more appropriate for metamodels that allow to construct models from
a hierarchy (generalization or composition) of concepts. At the opposite, the
concept of RCopy role were mainly relevant for GOF patterns and is generally
more adapted to metamodels that include refinement relationships.

Finally, a few shortcomings have been identified for this experiment :
– Designing roles model requires to have a good knowledge of the target meta-

model since proposed constructs must explicitly reference existing metamodel
classes, links and properties.

– Role models provide limited support to reduce the complexity of pattern so-
lution. The only mechanism available for this purpose is the RCopy role concept
but, as discussed previously, it is only relevant to specific modeling language.

156 C. Tombelle, G. Vanwormhoudt, and E. Renaux

– Competition between role model and target model exists sometimes. This
situation occurs when an element intended for insertion competes with an ex-
isting element. For instance, a binding for the base model of row 7 in figure 8
with values (wrpr → c1, pw → p1, wrpd → void) would cause a competition
between c2:Class and a new inserted classifier. Such situation generally requires
update of an existing link for enabling insertion (here type link) and removing of
existing element but at present time, we do not allow this modification to keep
the target model compliant with another role model previously applied. In this
case, we let the user edit the target model if he want to apply the role model.

6 Related Works

Initial works on representing pattern solutions at the modeling level are [18,4,1].
Some works have exploited the role concept for expressing pattern.

The idea of role modeling has been introduced by Reenskaug [16] for providing
a general approach to modeling object and object collaborations. The work of
[17] is the first to specifically address the use of roles for pattern design and
integration. In this work, a pattern is represented by a role model corresponding
to a set of interconnected roles where role represents the view some objects in
the collaboration hold on another object playing that role. Composition between
role models and constraints between roles is also provided. In UML standard,
the concept of parameterized collaboration is used to represent the structure of
a pattern solution in terms of roles. The application of a pattern solution into
a particular context is represented by collaboration usages and bindings of roles
to classes. While our approach gives the ability to specify and apply patterns for
any modeling languages, these approaches are only suitable for object models.
Another difference is that our approach offers pattern-specific features to address
abstraction, identity, sharing in pattern specification and integration.

The use of roles as a metamodeling technique for specifying pattern solu-
tion has been applied in two works but they do not address pattern applica-
tion. France and Al. [6] propose to specify UML patterns as specialized UML
metamodels. Pattern roles are specified as subclasses of UML metaclasses and
are related to each other through new meta-associations. This work also defines
rules to establish the conformance of a particular UML model to a pattern meta-
model using a binding relationship. Compared to this work, our approach differs
by not using a specialized metamodel for expressing the structural properties of
the pattern solution but another way relying upon an role-based language which
is less constraining than the notion of specialized metamodel (see discussion in
2.2). This work does not claim either the ability to specify model fragments and
to be generalizable to any metamodel.

A more generic proposal in the context of pattern detection is EPattern [5],
a language to specify patterns for any MOF-compliant metamodels. With this
language, a pattern is specified as a MOF metaclass containing references to
classes and links of a target metamodel through roles and connectors. Gipsie
shares with EPattern some meta-level architectural principles and the ability

Reusing Pattern Solutions in Modeling 157

to specify patterns for any modeling language. However, there are also some
differences due to their distinct usage: some constructs offered by Gipsie to
cope with identity, sharing, abstraction, distinctness and variability in pattern
specification do not exist in EPattern. Our approach also provides a richer and
finer-grain structuring with property and value roles. Last, there is no mention
of model fragment in EPattern and features to validate the pattern specification
against the target metamodel are lacking.

Some works not based upon roles have also studied the integration of pattern
solutions in target models. [12] presents a metamodel-based approach providing
a representation of both the design problem solved by pattern and its solution.
Each part is specified by a specialized metamodel like in [6]. Application of a
pattern is implemented as a transformation that takes an input model conform-
ing to the problem metamodel and produces an output model containing the
solution. The work of [19] proposes a metaprogramming approach which applies
a design pattern to a UML model by successive transformation steps leading to
a final situation where the occurrence of the pattern is explicit. Aspect-oriented
modeling (AOM) approaches[3,15,11,22] can also be seen as a technical solution
to incorporate models representing pattern solutions into various base models
(see examples in [3,11]). AOM approaches provide a notion of model-based as-
pect made of pointcuts and advices as well as a model weaving process that
combines advice element with elements from the base model each time point-
cuts match. In all these works, applying design patterns requires an existing
initial situation whereas ours does not need a particular structure to apply a
pattern. Another difference with our work is that these approaches are generally
limited to a specific language which is often a part of UML14. Last, our approach
provides several pattern-specific features to address abstraction, identity, shar-
ing in pattern specification and integration that have no equivalent in the cited
approaches.

A last category of works related to the present one concerns those that provide
a notion of model component to construct models by reuse. In this category, we
can cite works based on UML template [20,14] which allows representing generic
models as packages parameterized by model elements, then produce other models
through parameters substitution. UML template can be used to express and ap-
ply pattern solutions [14]. From this point of view, limitations of UML Template
compared with our approach are to be metamodel-specific, to expect a matching
structure limiting the application and to require strict conformance with the
metamodel resulting in unneeded constraints. Another recent work providing a
notion of model component for any domain-specific modeling language is Reuse-
ware [9]. In Reuseware, components are model fragments with ports that can be
composed by defining composition programs where ports are linked to combine
elements from multiple components. The structure of components and compo-
nent programs for a DSL are defined by a composition system that extends the
DSL with new constructs for reuse. The need to provide new definitions for a
specific language is a distinct feature with our approach which does not have

14 In AOM, only the work of [13] can be used with arbitrary modeling language.

158 C. Tombelle, G. Vanwormhoudt, and E. Renaux

this requirement. Finally, this approach differs from ours by requiring to clearly
identify elements of models fragment that can be composed whereas we only re-
quire such identification at binding time. In our case, this offers more flexibility
to apply a pattern solution in many contexts.

7 Conclusion

In this paper, we have presented a generic role-based approach and its tools to
describe accurately design patterns solutions and support their reuse through
pattern realizations. In future works, we plan to extend the language to handle
constraints between roles like the distinctness or equality of their respective tar-
get objects. We also plan to exploit binding models to check if a target model
still complies with the pattern intents after a modification. We will explore the
representation of roles played multiple times in a same pattern realization. Evo-
lution of the binding model for deeper modification of the target model and
more flexibility in the application process will also be studied. More generally,
this work is a first step toward pattern engineering available for any metamodel.

References

1. Albin-Amiot, H., Guéhéneuc, Y.: Meta-Modeling Design Patterns: Application to
Pattern Detection and Code Synthesis. In: Proceedings of ECOOP Workshop on
Automating Object-Oriented Software Development Methods (2001)

2. Byun, Y., Sanders, B.A.: A Pattern-based Development Methodology for Commu-
nication Protocols. Journal of Information Science and Engineering 22 (2006)

3. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable
aspects. In: Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE 2001 (2001)

4. Mapelsen, D., Hosking, J., Grundy, J.: Design Pattern Modelling and Instantiation
using DPML. In: Proceedings of 40th TOOLS, ACS (2002)

5. Elaasar, M., Briand, L.C., Labiche, Y.: A Metamodeling Approach to Pattern
Specification. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 484–498. Springer, Heidelberg (2006)

6. France, R.B., Kim, D.-K., Ghosh, S., Song, E.: A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering 30(3) (2004)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Westley (1995)

8. Geppert, B., Rossler, F.: The SDL pattern approach — a reuse-driven SDL design
methodology. Computer Networks 35(6), 627–645 (2001)

9. Johannes, J., Fernández, M.A.: Adding Abstraction and Reuse to a Network Mod-
elling Tool Using the Reuseware Composition Framework. In: Kühne, T., Selic,
B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 132–143.
Springer, Heidelberg (2010)

10. Kelly, S., Tolvanen, J.: Domain-Specific Modeling. Wiley & Sons (2008)
11. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel, J.-

M.: Introducing Variability into Aspect-Oriented Modeling Approaches. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735,
pp. 498–513. Springer, Heidelberg (2007)

Reusing Pattern Solutions in Modeling 159

12. Mili, H., El-Boussaidi, G.: Representing and Applying Design Patterns: What Is
the Problem? In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 186–200. Springer, Heidelberg (2005)

13. Morin, B., Klein, J., Barais, O., Jézéquel, J.-M.: A Generic Weaver for Supporting
Product Lines. In: International Workshop on Early Aspects at ICSE 2008 (2008)

14. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On Some Properties of Pa-
rameterized Model Application. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 130–144. Springer, Heidelberg (2005)

15. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Mod-
els. In: Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software
Development I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

16. Reenskaug, T.: Working with Object, The OORAM Software Engineering Ap-
proach. Manning (1996)

17. Riehle, D.: Describing and composing patterns using role diagrams. In: Proceeding
of WOON 1996 (1st Int’l. Conference on Object-Orientation in Russia) (1996)

18. Sanada, Y., Adams, R.: Representing Design Pattern in UML: Towards a Compre-
hensive Approach. Journal of Object Technology 1(2) (2002)

19. Sunyé, G., Le Guennec, A., Jézéquel, J.-M.: Design Patterns Application in UML.
In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 44–62. Springer, Heidel-
berg (2000)

20. Auxiliary Constructs Templates. UML 2.0 Superstructure Specification (2003)
21. van der Aalst, W.M.P., ter Hofstede, A.H.M., et al.: Workflow Patterns. In: Dis-

tributed and Parallel Databases, vol. 14. Kluwer Academic Publishers (2003)
22. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A

Unified Approach for Composing UML Aspect Models Based on Graph Transfor-
mation. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions
on AOSD VI. LNCS, vol. 5560, pp. 191–237. Springer, Heidelberg (2009)

An Architecture for Information Exchange

Based on Reference Models

Heiko Paulheim1, Daniel Oberle2, Roland Plendl2, and Florian Probst2

1 Technische Universität Darmstadt
Knowledge Engineering Group
paulheim@ke.tu-darmstadt.de

2 SAP Research
{d.oberle,roland.plendl,f.probst}@sap.com

Abstract. The goal of reference models is to establish a common vocabu-
lary and recently also to facilitate semantically unambiguous information
exchange between IT systems. However, IT systems are based on imple-
mentation models that typically deviate significantly from the reference
models. This raises the need for a mapping mechanism, which is flexible
enough to cope with the disparities between implementation model and
reference model at runtime and on instance level, and which can be imple-
mented without altering the established IT system. We present an archi-
tecture that solves this problem by establishing methods for representing
the instances of an existing IT-System in terms of a reference model. Based
on rules, the concrete nature of the representation is decided at run time.
Albeit our approach is entirely domain independent, we demonstrate the
feasibility of our approach in an industrial case study from the Oil and Gas
domain, using the ISO 15926 ontology as a reference model and mapping
it to different Java and Flex implementation models.

1 Introduction

Semantic modeling techniques have evolved in the areas of knowledge represen-
tation [1], object orientation [2,3], and recently ontologies [4]. However, neither
software engineers nor knowledge engineers had considered enterprise applica-
tions for using semantic modeling techniques several decades ago. In the mean-
time, the complexity of enterprises as well as their need to exchange information
ad-hoc continues to grow leading to an increased awareness of the need for se-
mantically richer information. Since the early 1990s, the idea of modeling specific
aspects of an enterprise has led to the definition of various reference models where
semantic modeling techniques are used to formalize the concepts identified by
the different standards bodies [5]. The initial purpose of such standards was to
create a commonly accepted nomenclature for representing structural and opera-
tional aspects of enterprises. Once these standards had been accepted by a large
enough community, industry solutions exploiting them have been implemented
closing the loop to allow enterprises using standards-based IT systems. [6] This
situation facilitates building new composite applications based on the reference
model.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 160–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Architecture for Information Exchange Based on Reference Models 161

In order to illustrate this, we refer to the example of the Oil and Gas industry
whose declared goal is to enable information integration to support, e.g., the
integration of different data sources and sensors, the validation of information
delivered by different sources, and the exchange of information within and be-
tween companies via web services [7]. This requires that Oil and Gas IT systems,
e.g., asset management or facility monitoring, share information according to a
reference model, and that they can interpret messages using that model. In the
particular case of the Oil and Gas industry, the reference model is given by
the ISO 15926 ontology which is formalized in the W3C Web Ontology Lan-
guage (OWL) [8]. First middleware solutions are available to address the task
of information integration, e.g., IBM’s Information Integration Framework [9].
Such middleware solutions allow information exchange between the existing IT
systems based on ISO 15926. Further, they facilitate the creation of new compos-
ite applications, such as production optimization or equipment fault protection.
Such composite applications depend on information stemming from several ex-
isting IT systems, and, thus, benefit from semantically unambiguous information
exchange.

Since the reference model is typically designed ex post, i.e., long after IT sys-
tems have been put in place, the IT systems’ implementation models have to
be mapped to such a reference model. Different IT systems feature implementa-
tion models specified in different implementation languages. Examples for such
implementation languages are object-oriented languages or relational schemas.
Therefore, the outlined setting requires to cope with arbitrary implementation
languages. In addition, mapping between reference and implementation models
is typically a non-trivial task which requires a flexible mechanism to cope with
all kinds of disparities between the two kinds of models. The reason is that im-
plementation models serve the purpose of providing a model which allows for
simple programming resulting in efficiently executable code. In contrast, refer-
ence models serve the purpose of providing a clear, formal conceptualization of a
domain. Further, the mapping has to be bidirectional since the IT system has to
send and receive messages expressed according to the conceptualization under-
lying the reference model. In addition, for coping efficiently with the disparities
between reference and implementation model, the mapping process itself must
happen at runtime and on the instance level. For example, an asset management
application might contain instance data about a specific pump. This instance
data has to be represented by means of ISO 15926 for information exchange
with other IT systems via a middleware solution. Finally, the established IT
systems cannot be touched in most cases. That means, the mapping mechanism
has to be implemented in a non-intrusive way.

Despite the existence of sophisticated solutions for model mapping [10], data-
base integration [11], or ontology mapping [12], the existing approaches for map-
ping models of both kinds are still limited with respect to supporting the outlined
settings. Therefore, we contribute a flexible, bidirectional, and non-intrusive ap-
proach for performing the mapping process between reference and implementa-
tion models at run-time and on the instance-level. The approach can be used

162 H. Paulheim et al.

with a multitude of arbitrary implementation languages and especially when the
reference model is given ex post. Although we explain our approach along an
example of the Oil and Gas domain, our approach is generic, meaning that it
prescribes an architecture that can be instantiated differently depending on the
language of the reference model, implementation model, IT system landscape or
the application domain.

We start by introducing typical deviations between reference and implemen-
tation models in Section 2, using the ISO 15926 ontology as a running example.
Section 3 surveys related approaches along our distinguishing features of being
flexible, bidirectional, non-intrusive, runtime, instance level, and ex post. Section
4 introduces our reference architecture, which is instantiated in a case study from
the oil and gas domain in Section 5. A scalability and performance evaluation
can be found in Section 6. Finally, we give a conclusion in Section 7.

2 Typical Deviations

Reference models and implementation models are different by nature. The reason
is that implementation models are task-specific, with the focus on an efficient
implementation of an application. In contrast to reference models, modeling de-
cisions are geared towards a pragmatic and efficient model. Due to those differ-
ences, one often faces the situation where implementation models and reference
models are incompatible in the sense that a 1:1 mapping between them does
not exist. This also holds when both kinds of models are specified in the same
language.

To show some typical deviations between the two kinds of models, we use
examples from the Oil and Gas domain. As discussed in the introduction, the
ISO 15926 ontology serves as a reference model. Facilitating information ex-
change between IT systems using ISO 15926 requires serializing data (e.g., Java
objects) from IT systems to RDF data and deserializing that data back to data
in the receiving IT system. The W3C Resource Description Framework (RDF)
[13] is a semi-structured, graph-based language that applies triples to represent
statements about Web URIs. For example, the triple

sys:valve 0243 rdf:type iso15926:Valve.

states that sys:valve 0243 is an instance of the ontology category iso15926:

Valve. The subject (sys:valve 0243), predicate (rdf:type), and object (iso-
15926:Valve) of the statement are all specified as URIs, using abbreviated
namespaces [14].

Fig. 1 shows a typical mismatch between reference and implementation mod-
els, viz., a multi-purpose class. A class EquipmentImpl could be used to model
different types of equipment, distinguished by the toE (type of equipment) flag.
In the ISO 15926 ontology, several thousand types of equipment are defined as
separate ontology categories. Representing each of the types as a separate class
would lead to an ineffective class model, so using a single class with a flag is a
more pragmatic solution.

An Architecture for Information Exchange Based on Reference Models 163

EquipmentImpl

toE : TypeOfEquipment

«enumeration»
TypeOfEquipment

MOTOR = 1
VALVE = 2
VACCUMPUMP = 3

INANIMATE
PHYSICAL
OBJECT

VALVE
VACCUM-

PUMP

sys:valve_0243
 rdf:type
 iso15926:Valve. …

MOTOR

Fig. 1. Typical mismatch 1: Multi-purpose classes. The left hand side shows a class
model, the middle depicts an excerpt of the ISO 15926 ontology, and the right hand
side shows a sample desired RDF serialization

With a 1:1 mapping, however, an EquipmentImpl object cannot be serialized
without information loss. A 1:1 mapping can only map EquipmentImpl to the on-
tology category Inanimate Physical Object, which serves as a common super
category for all equipment categories. With that mapping, an EquipmentImpl

object valve 0243 would be serialized as

sys: 0243 rdf:type iso15926:InanimatePhysicalObject.

This serialization implies the loss of information stored in the toE attribute, as
it does not support a deserialization to an EquipmentImpl with a proper value
for the toE attribute. Therefore, an approach relying on a 1:1 mapping is not
very useful here.

Other similar deviations encompass conditional classes, e.g., classes which
depict objects that may or may not exist (usually determined via a deleted flag),
and artificial classes, which depict objects of different kinds without a meaningful
common super category (such as a class AdditionalCustomerData storing both
a social security number and an email address). Furthermore, there are also
multi-purpose relations, which may depict different relations in the ontology,
depending on a flag or on the nature of the related object.

Another typical deviation between implementation and reference models are
shortcuts. Shortcuts may span across different relations between objects, leaving
out intermediate entities. Fig. 2 shows such a deviation: the ISO 15926 ontology
defines a category Approval, which has a relation both to the approved Thing,
as well as the approving authority. The Approval itself has more detailed at-
tributes, such as a Date.

A corresponding implementation model defines an Order and a Person class
(both of which are categories also present in the ISO 15926 ontology), but omits
the intermediate Approval category in favor of a direct relation, implemented
as an attribute in the Order class. To properly serialize an Order object, an
Approval instance has to be created as well in the serialization, as depicted
in Fig. 2.1 During deserialization, this instance is then used to create the link

1 The underscore namespace prefix is a standard RDF N3 notation which denotes an
anonymous resource, i.e., an object that is known to exist, but whose identity is
unknown [14].

164 H. Paulheim et al.

Order

id : String

APPROVAL

hasApprover

hasApprovedPerson

name : String
1 1

approvedBy
THING

PERSON

sys:o_1 rdf:type
 iso15926:Order.
sys:p_2 rdf:type
 iso15926:Person.
_:a rdf:type Approval.
_:a :hasApproved sys:o_1.
_:a :hasApprover sys:p_2.

Fig. 2. Typical mismatch 2: Shortcuts

between the Order and the Person object. Such a serialization encompassing
multiple categories in the ontology cannot be implemented using a 1:1 mapping.

Deviations may also occur on the attribute level. A typical example are com-
pound data types such as dates, which are most often represented as one variable
in a class model. In the ISO 15926 ontology, dates are represented using single
individuals for the day, month, and year part of a date, respectively. Another
deviation are counting attributes, such as an integer attribute numberOfParts,
which has to be serialized as a set of (anonymous) individuals, and deserialized
back to an integer number.

3 Related Work

The deviations introduced in the previous section require a careful mapping
between implementation model and reference model if the goal is to exchange
information based on the reference model. A semantically correct mapping is the
prerequisite for unambiguous, lossless information exchange, and, thus, for build-
ing new composite applications relying on information from several IT systems.
Related approaches have been proposed in many fields, such as information inte-
gration or ontology mapping, as depicted in Table 1. In this section, we provide
a survey of such related approaches and conclude that none of them supports
all required features.

As explained in the introduction, reference models are typically designed af-
ter IT systems’ implementation models are established. Therefore, an adequate
approach must support an ex post mapping. Moreover, simple 1:1 mappings be-
tween both types of models are not sufficient. Instead, flexible mappings are
required to cope with the typical deviations addressed in the previous section.
Since IT systems or new composite apps have to send and receive messages in
terms of the reference model, the mapping must be bidirectional. Further, the
mapping must happen at runtime of the IT system and on the instance level,
i.e., concrete instance data has to be mapped that adheres to the implemen-
tation and reference model, respectively. Most IT systems are established and
cannot be altered. Therefore, the mapping mechanism must be non-intrusive. If
a multitude of IT systems is involved, it is likely that they use different imple-
mentation languages to specify their implementation models. Correspondingly,
arbitrary implementation languages have to be supported.

The first category of related approaches shown in Table 1 is the field of
database design which distinguishes between conceptual models and logical

An Architecture for Information Exchange Based on Reference Models 165

Table 1. Categorization of approaches according to different criteria. A “yes” means
that there are approaches in the category that fulfill the criterion, not that each ap-
proach in the category fulfills the criterion.

Approach \ Criterion ex
p
o
st

fl
ex

ib
le

b
id
ir
ec
ti
o
n
a
l

ru
n
ti
m
e

in
st
a
n
ce

le
v
el

n
o
n
-i
n
tr
u
si
v
e

a
rb
it
ra
ry

Database Design no yes no no no no no
Model-Driven Engineering no yes yes no no no yes
Information Integration yes yes yes yes yes yes no
Direct Semantic Programming Models yes no yes yes yes yes no
Indirect Semantic Programming Models no yes yes yes yes no no
API Generation from Ontologies no yes yes no no no yes
Ontology Mapping yes yes yes no yes yes no

models according to [15]. Both bear resemblance to our notion of reference and
implementation models. CASE tools support the database designer to create
a conceptual model, e.g., an ERM [16], and automatically transform it to a
logical model, e.g., a relational schema. More recent tools, such as Together by
Borland,2 also support reverse engineering models from existing databases. How-
ever, ex post mappings to other schemata are typically not supported. Also, the
approaches do not work on the instance level and usually not at runtime.

In the area of model-driven engineering, platform independent models (PIMs)
are transformed to platform specific models (PSMs), which generally correspond
to our notion of reference and implementation models. However, this transfor-
mation does not happen at runtime and is also not intended to work on the
instance level. Originally conceived as unidirectional (transformation from PIM
to PSM), recent approaches also allow bidirectional mappings by implementing
reverse engineering [17,18].

Information integration deals with accessing information contained in differ-
ent IT systems using one central, mediated schema. The integrated systems are
addressed using wrappers, which provide an interface to the information con-
tained in the system, typically to their database. Queries posed using the medi-
ated schema are translated to sub queries posed to the individual wrappers, and
the results are collected and unified by an information integration engine [19].
While there are a number of very powerful information integration systems, e.g.,
for using an ontology as a central, mediated schema [20], they are most often
limited to integrating sources of one technology, i.e., SQL-based databases.

With a growing popularity of ontologies, different semantic programming mod-
els have been proposed for building ontology-based software. Those program-
ming models can also be used for mapping instances in a program to a reference

2 http://www.borland.com/us/products/together/

http://www.borland.com/us/products/together/

166 H. Paulheim et al.

ontology. There are two types of semantic programming models: direct and in-
direct models [21].

Direct semantic programming models let the user work with any object-
oriented programming language (e.g., Java) and allow for mapping classes of
that language to categories in the ontology. With such a mechanism, it is pos-
sible to serialize programming language objects as RDF data according to a
reference ontology, and vice versa. While most direct programming models are
intrusive (see [22] for a survey), ELMO3 and the work discussed in [23] provide
non-intrusive implementations as well and foresee ways of dynamically creating
mappings at runtime. Since the possibilities for expressing mappings are limited
in all those approaches, it is required that the “the domain model should be
rather close to the ontology” [23].

Indirect semantic programming models provide a set of meta-level program-
ming language constructs (such as an OWLClass and an OWLObjectRelation

class in Java), instead of providing mechanisms for mappings on the model level.
The most well-known examples are JENA [24] and OWL API [25]. Since the de-
veloper works directly with the ontology-based constructs, the approach allows
for flexibly using arbitrary ontologies. The drawback is that an ex post approach
is not possible, since the concepts defined in the ontology are used directly in the
code, typically as hard coded strings. Furthermore, since the indirect program-
ming model is used directly and deeply in the software, the approaches cannot
be regarded as non-intrusive.

Approaches for generating APIs from ontologies are a special type of model-
driven engineering approaches (see above) which take ontologies, e.g., OWL files,
as input for generating class models. Thus, they share the same set of characteris-
tics as MDE approaches. Typical examples for such approaches are RDFReactor
[26] and OWL2Java [27] (see [22] for a survey).

Ontology mapping approaches deal with creating mappings between different
ontologies. If instance data are described using an ontology A, they can be inter-
preted using the terms of an ontology B, if a mapping from A to B exists. The
first approaches to ontology mapping relied on tables storing pairwise correspon-
dences between elements in each ontology, and were thus of limited expressivity.
Recently, approaches such as SPARQL++ [28] also allow for flexible mappings,
which may also be stored in a non-intrusive way, i.e., external to the mapped
ontologies, e.g., by using C-OWL [29], or build bridges between RDF and XML
following different schemata, such as XSPARQL [30]. Ontology matching [31]
aims at automatically discovering such mappings. However, a runtime mapping
to the implementation model level is not foreseen and has to be provided by
additional mechanisms, e.g., by employing a semantic programming model (see
above).

In summary, there is a large number of approaches which can be exploited for
implementing information exchange based on reference models. However, none
of those approaches fulfills the complete set of requirements and provides the
full flexibility which is needed in many real-world industrial projects.

3 http://www.openrdf.org/doc/elmo/1.5/

http://www.openrdf.org/doc/elmo/1.5/

An Architecture for Information Exchange Based on Reference Models 167

Reference Model

IS1-A

com
mit
to

register

Implementation
Model Instance
Inspector

Reference
Model Instance

Factory

commit to

API

Class S1-A

instances of

Implementation Model S1

IT System S1

Mapping Execution Engine

IS2-A

register

IS1-A

Language A Exchange Format of Ref. Mod.

data
flow IS1-A

API

Class S2-A

instances of

Implementation Model S2

IT System S2

IS2-A

Reference
Model Instance
Inspector

Implementation
Model Instance

Factory

Mapping Execution Engine

Ref. Mod .Exchange Format Language B

register
Mapping Instruction:
„Express class S1-A in
terms of the reference

model.“

data
flow

Mapping Instruction:
„Express class S2-A in
terms of the reference

model.“ Representation of
in Reference Model
Exchange Format

Fig. 3. General architecture for information exchange between two systems

4 Reference Architecture

Considering the shortcomings of existing mapping approaches, we propose a
reference architecture for mapping between implementation and reference mod-
els. The architecture meets the criteria of flexible, bidirectional, and runtime
mappings which operate on the instance level. The architecture is designed to
be implemented in a non-intrusive way, so that it can be employed with legacy
systems where the reference model is provided ex post. This also covers the devel-
opment of new composite applications and mashups from existing applications.
The instantiations can operate on arbitrary implementation languages.

Fig. 3 shows the central elements of the architecture which are needed for
transferring information from one IT system (S1) into another one (S2) in a
semantically consistent way and without changing the implementation models
of S1 and S2.

The central means for interoperability is a reference model. For each class
of the implementation models (or any other relevant element), mapping instruc-
tions are written that explain the classes (or other constructs) of the

168 H. Paulheim et al.

implementation models in terms of the reference model. In this sense, the map-
ping instructions establish a partial conceptual commitment of the implemen-
tation model to the reference model. Formalizing the mapping instructions is
performed at design time and by an expert knowing the implementation model
as well as the reference model. The mapping instructions are processed by a
mapping execution engine. The mapping instructions are executable, i.e., they
can be applied at run-time for providing flexible mappings.

For each IT system, two separate mapping execution engines are established,
one for mapping from the implementation model to the reference model, and
one for mapping from the reference model to the implementation model. Each of
the two engines consists of a model instance inspector for the source model, and
a model instance factory for the target model (Fig. 3 only depicts one mapping
execution engine for each IT system, which is needed to illustrate the data flow
from S1 to S2).

The information exchange between S1 and S2 is implemented as follows: In-
stances according to the implementation model of system S1 are in use. If the
information carried by one of these instances is to be transferred to system S2,
this instance is sent to the mapping execution engine via the API of IT System
1 (in Fig. 3 an particular instance IS1-A is used to demonstrate the data flow).
First, the instance inspector identifies from which class the instance was derived
and selects the appropriate mapping instruction. Then, the reference model in-
stance factory creates one or more instances of a class (or different classes) of
the reference model in such a way that all information of the instance IS1-A
is represented appropriately, including the relations between the classes. This
“instance” is sent to S2.

Note that the reference model can be represented in more than one repre-
sentation language. Hence, the mapping instructions can be written for more
than one representation language. However, the language in which the reference
model is written serves as exchange format for the information between S1 and
S2. The mapping execution engine of S2 receives the previously generated in-
stance and identifies via the reference model instance inspector to which class
or classes in the reference model the arrived information belongs to. In the final
step the implementation model instance factory creates one or several instances
according to the implementation model of S2. The created instance is handed
over to S2 via the API of S2.

It is noteworthy that, since arbitrary mappings and implementation models
are possible, the number of objects in S1 and S2 does not have to be the same.
An object from S1 (and potentially a set of other objects related to that object)
are serialized in a data structure which conforms to the reference model, and
deserialized into an object or a set of objects for S2. Since those object models can
be conceptually different, the set of objects created for S2 can be substantially
different from the original set of objects in S1, and may also be implemented
with a different language. Thus, the approach is able to bridge both conceptual
as well as technological heterogeneities.

An Architecture for Information Exchange Based on Reference Models 169

5 Case Study

The previous section introduced an architecture that can be implemented dif-
ferently, depending on the language of the reference model, the implementation
models, and the IT system landscape. For example, we have discussed an in-
stantiation in the area of emergency management in [22]. In the following, we
introduce an instantiation in an industrial case study in the outlined Oil and
Gas domain and show how the generic elements of the architecture are imple-
mented in that concrete scenario. The role of the reference model is played by
the ISO 15926 Oil and Gas ontology [8] specified in OWL/RDF. For the sake
of brevity, Figure 4 shows the instantiated architecture with facility monitor-
ing as an existing IT system and production optimization as a new composite
application. Further existing IT systems are in place (not shown in Figure 4),
e.g., rotating equipment monitoring, engineering systems, or asset management,
which exchange information with production optimization. With respect to the
implementation languages, we assume that the facility monitoring is Java-based,
and the production optimization is Flex-based, with class models (implemented
in Java and Flex, respectively) as implementation models. The latter provides
an interface for exchanging objects with JSON [32] to facilitate data exchange.

5.1 Mapping Specification

To facilitate an executable mapping, we use rules for expressing mappings be-
tween class models and the ISO 15926 ontology (and vice versa). These rules can
be evaluated at runtime on Java and JSON objects to create the desired RDF
graph describing the object, and on an RDF graph to create the corresponding
set of objects. Fig. 5 shows how the mapping rules are used to transform a Java
object into an RDF graph and back, using the example depicted in Fig. 1. We
have employed a set of simple rule-based languages, which re-use elements from
common querying languages, such as XPath [33] and SPARQL [34]. The next
sections explain the different rule syntaxes in detail.

Mapping Class Models to ISO 15926. Our mapping approach uses tests on
the objects to be mapped as rule bodies, and a set of RDF triples to be produced
as rule heads. For each Java and Flex class, one rule set is defined. In cases
where objects have relations to other objects, the rule sets of the corresponding
related classes are executed when processing a related object. Rule sets defined
for super classes are inherited to sub classes, however, the developer may also
override inherited rules explicitly.

For defining dynamic mappings, XPath queries are used. Utilizing such queries,
RDF representations for objects can be realized dynamically. Thus, our rules
have the following form: the body consists of a test to be performed on an ob-
ject. The head is a set of RDF triples, each consisting of a subject, a predicate,
and an object, all three of which may depend on the object to transform. For
defining tests and dependent values, we use XPath expressions. If the test is
evaluated positively, one or more triples are generated, consisting of a subject,

170 H. Paulheim et al.

ISO 15926

commit to

register

commit to

API

EquimentImpl

instances of

Implementation Model in Java

Representation of

in ISO 15926 in RDF

IS2-A

register

IS1-A

Java ISO 15926 in RDFdata flow

IS1-A

API

Equipment

instances of

Implementation Model in Flex

Facility Monitoring System
IS2-A

RDF
Reader Object Factory

Mapping Execution Engine

ISO 15926 in RDF JSON

register
Mapping Rules:

„Express
EquipmentImpl in terms

of ISO15926.“

data flow

Mapping Rules:
„Express class S2-A in

terms of the ISO
15926.“

Rule Engine SPARQL
Processor

register

Rule Engine RDF
Writer

Mapping Execution
Engine

Xpath
Processor URI Factory

JSON
Object

IS1-A

Java
Object

Templates for
defining suitable sub-

graphs

RDF Filter

Production Optimization Application

register

Fig. 4. Instantiated architecture in the Oil and Gas scenario

predicate, and object. The subject, predicate, and object may be either constants
or XPath expressions as well. Thus, the syntax of our rules looks as follows:4

Rule ::= XPathExpr "→" Triple {"," Triple } "." ; (1)

Triple ::= 3 * (Constant|XPathExpr) ; (2)

In this syntax, Constant denotes an arbitrary sequence of characters enclosed
in quotation marks, and XPathExpr denotes an XPath expression following the
XPath standard [33], enhanced by the following extensions:

– The function regex(), called on a Java attribute, evaluates a regular expres-
sion [36] on that object and yields true if the regular expression matches
the attribute value, false otherwise.

– The function repeat(XPathExpr), called with an XPath expression as an
argument in the rule body, causes the rule head to be executed as many
times as there are results for the given XPath expression.

4 Represented using the Extended Backus Naur Form (EBNF) [35].

An Architecture for Information Exchange Based on Reference Models 171

name = "M0084B2"
description = "Pump Engine B"
toE = MOTOR

valve_0243 : EquipmentImpl
MOTOR

sys:valve_
0243

rdf:type

"M0084B2"

"Pump
Engine B"

rdfs:label

rdfs:
comment

Java->RDF rules for class EquipmentImpl:

/[toE=MOTOR] -> uri(.) rdf:type Motor.
/name -> uri(.) rdfs:label %.
/description -> uri(.) rdfs:comment %.

RDF->JSON rules for category Motor:

{?. rdf:toE Motor} -> createObject(?.,Equipment)/type = MOTOR.
{?. rdfs:label ?l} -> getObject(?.)/name = ?l.
{?. rdfs:comment ?c} -> getObject(?.)/description = ?c.

JSON Serialization:

{
 "toE" : "MOTOR",
 "name": "M0084B2",
 "desc": "Pump Engine B"

}

Fig. 5. Example rules for transferring Java to RDF and RDF to JSON

– The % symbol used in the head refers to the result of the XPath test per-
formed in the body.

– The . symbol used in the head refers to the currently serialized object.

– The function uri(XpathExpr) assigns a unique URI to a Java or Flex object.
The argument of the function is again an XPath expression, which may also
use the % and . constructs, as described above.

The result of an XPath test in the body can be used as a variable in the head
within the RDF triple to be generated (referred to with the % sign), as well as
the current object (referred to with the . sign). The uri function used in a triple
generates a unique URI for an object. The triples may also contain blank nodes,
which are needed, e.g., to cope with shortcuts.

The XPath expressions may also contain regular expressions to deal with
implicit background knowledge and non-atomic data types. Those can be used
for conditions or for splitting data values. A repeat function can be used to cover
object counting deviations (e.g., produce a set of n blank nodes for an attribute
value of n). The left-hand side of Fig. 5 shows a set of rules for mapping two
Java objects to a subset of the ISO 15926 ontology.

Mapping ISO 15926 to Class Models. The mapping rules from ISO 15926
to class models are similar. Again, rule sets are defined per ontology category,
are inherited to sub categories, and rules can be explicitly overridden by the
developer.

For rule bodies, SPARQL expressions are used. In the rule heads, objects are
created by using createObject, and attribute values for created objects are set
(by using getObject and an XPath expression identifying the attribute to be
set). The execution order of rules is defined such that all createObject state-
ments are executed first, assuring that all objects are created before attempting
to set attribute values.

Typically, Java or Flex objects will be created when a condition is fulfilled,
and values are set in these objects. This leads to the following rule syntax for
mapping rules from ISO 15926 to class models:

172 H. Paulheim et al.

Rule ::= SPARQLExpr "→" ObjFunction { "/" SetObjValue } "." ;

(3)

ObjFunction ::= "getObject(" SPARQLVariable{,SPARQLVariable} ","

ClassName ")" ; (4)

SetObjValue ::= XPathExpr "=(ObjFunction|ValueFunction|Constant) ;

(5)

ValueFunction ::= "getValue(" (SPARQLVariable|BuiltinFunction) ","

ClassName ")" ; (6)

BuiltinFunction ::= "count("SPARQLVariable")"

| "concat("SPARQLVariable,{SPARQLVariable}")" ;

(7)

Like in the rules for creating RDF representations from objects, XPathExpr
denotes an XPath expression. SPARQLExpr denotes the WHERE clause of a
SPARQL expression, and SPARQLVariable denotes a variable defined in that
WHERE part and is used for referencing the query’s results. ClassName is the
name of a Java class which is used when creating objects and object values (for
handling primitive types, the corresponding wrapper classes are used as a class
name). The right-hand side of Figure 5 shows how to use the rules to map RDF
representations to Flex objects.

The built-in functions count and concat are used for counting results and
concatenating strings, respectively. Both functions are on the feature list for
the next version of SPARQL [37], thus, our proprietary support for those func-
tions may be removed from the rule language once that new version becomes a
standard with adequate tool and API support.

For determining which categories an RDF instance belongs to, and for execut-
ing SPARQL statements, reasoning on the RDF graph and the domain ontology
can be used. To cover non-atomic data types, the rules may use a concat func-
tion for concatenating different results of a SPARQL query. For coping with
object counting, a count function can be used to produce the corresponding
attribute values (once SPARQL version 1.1, which supports counting, becomes
a standard, this will be obsolete).

Although the rules for both directions look similar, there is one subtle differ-
ence. The XPath expressions used on the object model are executed with closed
world semantics, while the SPARQL expressions used on the RDF model are

An Architecture for Information Exchange Based on Reference Models 173

executed with open world semantics5. The rationale is that the set of objects in
an information system is completely known (and therefore forms a closed world),
whereas an RDF graph representing a set of objects will typically only represent
a subset of the original information.

5.2 Template-Based Filtering for Data Exchange

The rules discussed above are typically evaluated in a recursive manner. This
may lead to problems when creating the data structure for an implementation
model instance. When creating the RDF representation for an object, each object
that is encountered underway is queued and processed. For very large connected
object graphs, this means that the resulting RDF graph can grow fairly large.
Especially when using that graph for data exchange between applications, such
a large graph can be undesirable for reasons of performance.

A straight forward way would be defining different rule sets for each class,
depending on which kind of object is currently serialized. Such a solution would
lead to n2 rule sets for n classes and thus be rather costly. If we would want to
take arbitrary paths into account (e.g., include the address of a person’s employer
into the annotation, but not the addresses of that person’s friends’ employers),
the complexity would even be exponential.

A better alternative is to use templates which define the sub graph that is to
be generated for an object of a certain class. While rules define the whole possi-
ble graph that can be produced for an object and are thus universal, templates
specifically restrict that graph to a sub-graph. This alternative reduces the com-
plexity to n rule sets and n templates. In our approach, the templates can be
written in plain RDF, which allows for a straight forward definition and re-use
of existing tools. Furthermore, since the rules are universal, they may be reused
for different information transmission use cases by only applying a different set
of templates.

5.3 Non-intrusive Implementation

For our case study, we have implemented the solution sketched above in a proto-
type capable of exchanging objects between Java and Flex applications. In our
integrated prototype, the Flex applications run encapsulated in Java containers,
and their API provides and consumes Flex objects in JSON notation [38].

Fig. 4 shows the architecture as it was implemented for the case study. The
left hand side depicts an equipment fault protection application, implemented in
Java. The mapping execution engine shown in the figure produces RDF graphs
from Java objects which are obtained from the application through its API.
The rule engine processes the mapping rules discussed above and uses an object
inspector implemented with JXPath6 for performing tests on the Java objects.

5 The count function discussed above counts results in the result set of a SPARQL
query (which forms a closed world), not in the underlying graph.

6 http://commons.apache.org/jxpath/

http://commons.apache.org/jxpath/

174 H. Paulheim et al.

The rule engines processing our rule languages have been implemented using
parsers generated from abstract grammars using JavaCC.7

By using Java’s reflection API [39] and relying on the Java Beans specification
[40] (a naming convention for object constructors and for methods for access-
ing property values), the implementation is non-intrusive and does not require
changes to the underlying class model in Java. A URI factory keeps track of the
RDF nodes created for each object and assigns unique URIs. An RDF writer,
implemented with JENA [24], creates RDF files which conform to the ISO 15926
ontology. These files are the cetral elements for semantically correct informatione
exchange in the proposed architecture.

As discussed above, it is desirable to reduce the set of transmitted RDF data as
far as possible. Thus, we have implemented a filter based on templates expressed
in RDF. Thus, the mapping rules from the Java model to the ontology have two
parts: the rules themselves, generating the whole possible graph for an object,
and the template reducing that graph to the desired subset.

On the right-hand side, a production optimization application is shown, which
is implemented in Flex, and which is supposed to consume data from the Java-
based equipment fault protection application. To that end, it receives RDF data
based on the ISO 15926 ontology. This data is processed using the mapping rules
described above, which are executed in a rule engine. The RDF data is analyzed
using JENA as a SPARQL engine, and corresponding JSON data is produced
and enriched using a Java-based reimplementation of JSONPath8 as an object
factory. The JSON objects created are then handed to the Flex application’s
API. For Flex-based applications, the transformation between RDF and JSON
is done entirely in the Java container, and the Flex application is only addressed
by using its JSON-based API, the implementation is also non-intrusive with
respect to Flex-based applications.

6 Scalability and Performance Evaluation

As the examples in Section 2 show, information exchange between IT systems
require a flexible approach for transforming information from an IT system into
a representation that follows a reference model and back. When using Java
and Flex-based applications in the Oil and Gas domain, this means mediating
between Java and Flex-based class models and the ISO 15926 reference ontology.

The instantiation of the architecture shown in Section 5 is capable of handling
all the typical deviations introduced. To build useful solutions, especially real-
time systems, this implementation has to be able to handle larger amounts of
data in short times. Therefore, we have run several performance tests on our
approach.

For these performance tests, we have used artificially created objects graphs
consisting of up to 10,000 interconnected objects and transformed them to RDF
and back to Java and Flex with our mapping engine. Fig. 6 shows the processing

7 https://javacc.dev.java.net/
8 http://goessner.net/articles/JsonPath/

https://javacc.dev.java.net/
http://goessner.net/articles/JsonPath/

An Architecture for Information Exchange Based on Reference Models 175

0,01
0,1

1
10

100

10 100 1000 10000

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Objects

without filter

with filter

Fig. 6. Runtime behavior for serializing Java objects as RDF

time for serializing Java objects in RDF, once with and once without applying the
template-based filtering mechanism. It shows that the time required per object
is below one millisecond, and that the processing time scales linearly with a
growing number of objects. The figures for transformation from Flex objects
look very similar.

For deserializing Java objects from RDF graphs, different reasoning mech-
anisms can be used for evaluating the SPARQL queries. For the evaluation,
we have used three different built-in reasoners in the JENA framework: a sim-
ple transitive reasoner only working on subclass and subproperty relations, an
RDF(S) reasoner, and an OWL reasoner. Except for the latter, the processing
time for each object is below ten milliseconds. In either case, the approach scales
linearly with a growing number of objects. Again, the figures for transforming
to Flex-based models look very similar.

The trade-off for using more powerful reasoning is a more complex definition of
mapping rules for the developer, since certain information which may be required
for the mapping (e.g., class membership of RDF instances) can be either inferred
automatically by the reasoner, or encoded explicitly in a mapping rule.

Figures 6 and 7 also demonstrate the impact of the template-based filtering
mechanism on performance: while applying the template during the serializing
step does not lead to a significant performance impact, smaller RDF structures
may be deserialized much faster than larger ones. Thus, it is beneficial to reduce
the RDF structures before the transfer to another system as far as possible. For
example, if the RDF structure to be transferred can be reduced by 50%, the
total processing time is also decreased by 50%, as the time for creating Java
objects from RDF decreases linearly, while there is no overhead in applying the
filter.

In summary, the evaluations show that the dynamic, rule-based mapping al-
gorithm can be implemented in a fast and high-performance manner, which does
not add any severe run-time overhead to the information exchange between IT
systems, and which also scales up to larger object graphs.

176 H. Paulheim et al.

0,1
1

10
100

1000

10 100 1000 10000

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Objects

Transitive Reasoner

RDFS Reasoner

OWL Reasoner

Fig. 7. Runtime behavior for deserializing RDF graphs as Java objects

7 Conclusion and Future Work

We have introduced a flexible, bidirectional, and non-intrusive approach for map-
ping between reference and implementation models on the instance level. The
mappings are used at runtime while the mapping instructions can be specified
after the implementation of the applications and the reference model. The work
is motivated by conceptual deviations between implementation models and ref-
erence models that can be frequently observed in existing software systems. We
discussed these domain independent deviations in detail in order to draw atten-
tion to an often ignored problem that occurs when reference models are used in
software engineering. The central conclusion of this discussion is that 1:1 map-
pings between implementation models and reference models will not lead to the
expected effect of syntactically and semantically correct information exchange
between independent applications.

With a case study from the oil and gas domain, we have discussed and shown
in an implementation how our approach can be used to bridge both conceptual
and technological heterogeneities between applications, and to facilitate seman-
tically correct information exchange between Java and Flex-based applications,
using the ISO 15926 ontology. The central advantage of the presented approach
is that not classes of the implementation models are mapped 1:1 to the reference
model but only its instances. Explaining the instances of the implementation
model in terms to one or more classes of the reference models allows for a great
flexibility for the implementation model. Legacy systems can be annotated with-
out making compromises in terms of ontological or conceptual soundness, and
due to the non-intrusive approach, can also be used with modern enterprise buses
without having to be modified to comply to a newly created reference model.
Furthermore, newly developed implementation models can be specified having
only computational efficiency and elegance in mind. Compliance to a domain
vocabulary or standards can be established via the presented approach. This
opens the possibility for establishing composite applications by reusing already
existing systems and information sources.

The paper has focused on the use case of information integration and ex-
change. However, the mechanism of mapping different implementation models

An Architecture for Information Exchange Based on Reference Models 177

to one common reference model may also be used to access the information in
different applications available as a unified linked data set, allowing for reasoning
and for unified visualization [41], and for other purposes that require run-time
access to a system’s data in a form that can be processed by a reasoner, such as
self-explaining systems, self-adapting user interfaces, or semantic event process-
ing in integrated applications [42].

Currently, the developer has to specify the mapping rules by hand. A straight
forward improvement is the provision of a tool set for assisting the developer
in creating the mapping rules. In the future, techniques developed, e.g., in the
field of ontology matching [31] and schema matching [43] may be employed to
suggest mappings and rules to the developer in an interactive manner. However,
this poses several challenges, since our rules are more complex (combining the
full expressive power of XPath, SPARQL, and regular expressions) than those
that can be discovered with state of the art tools. A possible solution would be
to suggest an approximation of a mapping rule to the user, and let her refine
that approximation to a complete mapping rule.

Acknowledgements. The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Research under grant no.
01ISO7009 (SoKNOS), 01IA08006 (ADiWa), and 13N10711 (InfoStrom).

References

1. Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Repre-
sentation System. Cognitive Science 9(2), 171–216 (1985)

2. Booch, G., Rumbaugh, J.E., Jacobson, I.: The Unified Modeling Language User
Guide. J. Database Manag. 10(4), 51–52 (1999)

3. Stipp, L., Booch, G.: Introduction to object-oriented design (abstract). OOPS Mes-
senger 4(2), 222 (1993)

4. Staab, S., Studer, R. (eds.): Handbook on Ontologies. International Handbooks on
Information Systems. Springer (2009)

5. Rebstock, M., Fengel, J., Paulheim, H.: Ontologies-based Business Integration.
Springer (2008)

6. Pletat, U., Narayan, V.: Towards an upper ontology for representing oil & gas
enterprises. In: Position paper for W3C Workshop on Semantic Web in Energy
Industries; Part I: Oil and Gas (2008)

7. Verhelst, F., Myren, F., Rylandsholm, P., Svensson, I., Waaler, A., Skramstad,
T., Ornæs, J., Tvedt, B., Høydal, J.: Digital Platform for the Next Generation
IO: A Prerequisite for the High North. In: SPE Intelligent Energy Conference and
Exhibition (2010)

8. Kluewer, J.W., Skjæveland, M.G., Valen-Sendstad, M.: ISO 15926 templates and
the Semantic Web. In: Position paper for W3C Workshop on Semantic Web in
Energy Industries; Part I: Oil and Gas (2008)

9. Credle, R., Akibola, V., Karna, V., Panneerselvam, D., Pillai, R., Prasad, S.: Dis-
covering the Business Value Patterns of Chemical and Petroleum Integrated Infor-
mation Framework. Red Book SG24-7735-00, IBM (August 2009)

10. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pp. 1–12 (2007)

178 H. Paulheim et al.

11. Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Commu-
nity: A Brief Survey. AI Magazine 26(1), 83–94 (2005)

12. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD
Record 35(3), 34–41 (2006)

13. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-primer/

14. Berners-Lee, T.: Notation3 (N3) A readable RDF syntax (1998),
http://www.w3.org/DesignIssues/Notation3

15. ANSI/X3/SPARC Study Group on Data Base Management Systems: Interim Re-
port. FDT – Bulletin of ACM SIGMOD 7(2), 1–140 (1975)

16. Chen, P.P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

17. Hettel, T., Lawley, M., Raymond, K.: Towards Model Round-Trip Engineering:
An Abductive Approach. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp.
100–115. Springer, Heidelberg (2009)

18. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Conference Record
of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, January 16-18, pp. 4–16. ACM, Portland (2002)

19. Halevy, A.: Information Integration. In: Encyclopedia of Database Systems, pp.
1490–1496. Springer (2009)

20. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Se-
queda, J., Ezzat, A.: A Survey of Current Approaches for Mapping of Relational
Databases to RDF (2009),
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf, (ac-
cessed July 16, 2010)

21. Puleston, C., Parsia, B., Cunningham, J., Rector, A.: Integrating Object-Oriented
and Ontological Representations: A Case Study in Java and OWL. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 130–145. Springer, Heidelberg (2008)

22. Paulheim, H., Plendl, R., Probst, F., Oberle, D.: Mapping Pragmatic Class Models
to Reference Ontologies. In: DESWeb 2011 - 2nd International Workshop on Data
Engineering Meets the Semantic Web. In Conjunction with ICDE 2011, Hannover,
Germany, April 11 (2011)

23. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Bridging EMF applications and RDF data
sources. In: Kendall, E.F., Pan, J.Z., Sabbouh, M., Stojanovic, L., Bontcheva, K.
(eds.) Proceedings of the 4th International Workshop on Semantic Web Enabled
Software Engineering, SWESE (2008)

24. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. In: Feldman, S.I., Uret-
sky, M., Najork, M., Wills, C.E. (eds.) Proceedings of the 13th International Con-
ference on World Wide Web - Alternate Track Papers & Posters, pp. 74–83. ACM
(2004)

25. Bechhofer, S., Volz, R., Lord, P.W.: Cooking the Semantic Web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
659–675. Springer, Heidelberg (2003)

26. Völkel, M., Sure, Y.: RDFReactor - From Ontologies to Programmatic Data Access.
In: Posters and Demos at International Semantic Web Conference (ISWC 2005),
Galway, Ireland (2005)

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

An Architecture for Information Exchange Based on Reference Models 179

27. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic Mapping of OWL
Ontologies into Java. In: Maurer, F., Ruhe, G. (eds.) Proceedings of the Six-
teenth International Conference on Software Engineering & Knowledge Engineering
(SEKE 2004), Banff, Alberta, Canada, June 20-24, pp. 98–103 (2004)

28. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for Mapping Between RDF
Vocabularies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 878–896. Springer, Heidelberg (2007)

29. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
C-OWL: Contextualizing Ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

30. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling
between the XML and RDF Worlds – and Avoiding the XSLT Pilgrimage. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)

31. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
32. json.org: Introducing JSON (2010), http://www.json.org/
33. W3C: XML Path Language (XPath) 2.0 (2007),

http://www.w3.org/TR/xpath20/

34. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query/

35. International Organization for Standardization (ISO): ISO/IEC 14977: Information
technology – Syntactic metalanguage – Extended BNF (1996),
http://www.iso.org/iso/iso catalogue/

catalogue tc/catalogue detail.html?csnumber=26153

36. Friedl, J.: Mastering Regular Expressions. O’Reilly (2006)
37. W3C: SPARQL New Features and Rationale (2009),

http://www.w3.org/TR/sparql-features/

38. Paulheim, H.: Seamlessly Integrated, but Loosely Coupled - Building UIs from
Heterogeneous Components. In: ASE 2010: Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 123–126. ACM, New
York (2010)

39. Foreman, I.R., Forman, N.: Java Reflection in Action. Action Series. Manning
Publications (2004)

40. Sun Microsystems: Java Beans API Specification (1997),
http://www.oracle.com/technetwork/java/javase/

/documentation/spec-136004.html

41. Paulheim, H., Meyer, L.: Ontology-based Information Visualization in Integrated
UIs. In: Proceedings of the 2011 International Conference on Intelligent User In-
terfaces (IUI), pp. 451–452. ACM (2011)

42. Paulheim, H., Probst, F.: Ontology-Enhanced User Interfaces: A Survey. Interna-
tional Journal on Semantic Web and Information Systems 6(2), 36–59 (2010)

43. Bonifati, A., Mecca, G., Papotti, P., Velegrakis, Y.: Discovery and Correctness of
Schema Mapping Transformations. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.)
Schema Matching and Mapping, pp. 111–147. Springer (2011)

http://www.json.org/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/rdf-sparql-query/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.html?csnumber=26153
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.html?csnumber=26153
http://www.w3.org/TR/sparql-features/
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

MoScript: A DSL for Querying

and Manipulating Model Repositories

Wolfgang Kling1,�, Frédéric Jouault1, Dennis Wagelaar3,��, Marco Brambilla2,
and Jordi Cabot1

1 AtlanMod, INRIA École des Mines de Nantes, LINA
{wolfgang.kling,frederic.jouault,jordi.cabot}@inria.fr

2 Politecnico di Milano, Dipartimento di Elettronica e Informazione
marco.brambilla@polimi.it

3 Vrije Universiteit Brussel, Software Languages Lab
dennis.wagelaar@vub.ac.be

Abstract. Growing adoption of Model-Driven Engineering has hugely
increased the number of modelling artefacts (models, metamodels, trans-
formations, ...) to be managed. Therefore, development teams require
appropriate tools to search and manipulate models stored in model repos-
itories, e.g. to find and reuse models or model fragments from previous
projects. Unfortunately, current approaches for model management are
either ad-hoc (i.e., tied to specific types of repositories and/or models), do
not support complex queries (e.g., based on the model structure and its
relationship with other modelling artefacts) or do not allow the manipu-
lation of the resulting models (e.g., inspect, transform). This hinders the
probability of efficiently reusing existing models or fragments thereof. In
this paper we introduce MoScript, a textual domain-specific language for
model management. With MoScript, users can write scripts containing
queries (based on model content, structure, relationships, and behaviour
derived through on-the-fly simulation) to retrieve models from model
repositories, manipulate them (e.g., by running transformations on sets
of models), and store them back in the repository. MoScript relies on the
megamodeling concept to provide a homogeneous model-based interface
to heterogeneous repositories.

Keywords: DSL, Megamodel, Model Management, Scripting, OCL.

1 Introduction

As Model-Driven Engineering (MDE) methods and tools are maturing and be-
coming more popular, the number of modelling artefacts consumed and produced

� The author’s work is partially supported by the Galaxy (ANR - French National)
project.

�� The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders).

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 180–200, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MoScript: A DSL for Querying and Manipulating Model Repositories 181

by software engineering processes (e.g., models, metamodels, and transforma-
tions) has increased considerably.

MDE for complex systems [4] is a typical example of this situation. In the
model driven development of those systems, every artefact (e.g. requirements
specifications, analysis and design documents, implementation artefacts, etc.,)
is a model. Apart from being numerous, these artefacts are often large, hetero-
geneous, interrelated, with complex internal structure, and possibly stored in
distributed model repositories.

MDE is partly to blame for this complexity, as it introduces new artefacts to
deal with, such as models, metamodels, transformation models, and transforma-
tions engines. Whereas having special-purpose metamodels allows for reducing
model complexity, the interrelations between transformations, models, and meta-
models can become very complex. Global Model Management (GMM) aims to
address this complexity problem by providing an explicit representation of the
modelling artefacts and their interrelations, in a model called megamodel [10].

However, current GMM solutions only provide passive metadata. It is possible
to query a megamodel, but not to access and manipulate the modelling artefacts
represented in a megamodel (e.g. loading/saving models, executing transforma-
tions, etc.).

In this paper, we propose MoScript a textual DSL (domain-specific language)
and megamodel agnostic platform for accessing and manipulating modelling arte-
facts represented in a megamodel.

MoScript allows to write queries that retrieve models from a repository, in-
spect them, invoke services on them (e.g. transformations), and to register newly
produced models back to the repository. MoScript scripts allow the description
and automation of complex modelling tasks, involving several consecutive ma-
nipulations on a set of models. As such, the MoScript language can be used for
modelling task and/or workflow automation.

The MoScript architecture includes an extensible metadata engine for resolv-
ing and accessing modelling artefacts and invoke services from different trans-
formation tools.

The remainder of this paper is structured as follows. Section 2 explains the
motivations of this work. Section 3 describes the supporting architecture for
MoScript. Section 4 presents the MoScript language. Section 5 puts everything
together in the form of two examples. Section 6 describes how is MoScript im-
plemented. Section 7 compares our work with other, related approaches. Finally,
section 8 presents our conclusions and future work.

2 Motivation

Along this section we will present some of the problems that motivated the
definition of MoScript. Then, in further sections, will illustrate how MoScript
helps us to solve them.

Let’s consider repositories of modelling artefacts represented by a megamodel,
which are used to develop complex systems. Typically, these repositories would
present the following characteristics:

182 W. Kling et al.

– Hundreds or thousands of heterogeneous artefacts. The reposito-
ries contain models, metamodels, metametamodels, transformations, source
code, file descriptors, data files, etc.

– Artefacts are related to other artefacts through predefined (e.g. con-
formsTo) and ad-hoc (e.g. weaving models) relationships.

– Many different tools, each one playing a specific role in the repository, like
model to model (M2M) transformation engines, model to text transformation
engines (M2T), documentation tools, compilers, script engines etc.

– Several kind of users participate in the evolution of the repository
(e.g., stakeholders, analysts, developers, etc.).

On this repositories, there are several tasks users may want to accomplish. (1)
Finding models, (2) combining modelling artefacts information (3) batch pro-
cessing, (4) and registering newly generated artefacts in the system.

Finding models may be difficult depending on the search criteria and the size
of the repositories. In the simplest case we may be interested in finding a single
model whose name (e.g., file name) is known, so a simple search (e.g., with
the file system search engine) will suffice. In many other cases models must be
searched using more complex criteria, such as:

– An internal characteristic such as models with an element with a given
value, metamodels containing elements of certain types, etc.

– A computed characteristic based on the models size or structure, such
as models with more than two hundred elements or transformations that
contain more imperative transformation excerpts than others etc.

– Their relations with other artefacts, such as models that are related to
a given transformation or to other models e.g. by a trace model.

After finding the desired models, we may need to extract and combine their
elements. The combination of information from several models is essential for
extracting metrics from model repositories. For instance, we may want to com-
pute the number of metamodel elements a transformation uses, or the number
of models and elements involved in a model weaving etc.

Another common requirement when working on MDE repositories is to be
able to execute batch processes of regular modelling tasks (e.g. transformations,
model checks, projections etc.) involving large amounts of models. Furthermore,
these batch processes should orchestrate the modelling tasks according to how
the models are arranged in the repository. For instance, when a model is modi-
fied only the transformations which use the modified model should be executed
and then all the transformations that use the output models of the executed
transformations and so on.

Finally, since several users manipulate the repositories, they are in constant
evolutionary state. Thus, it is important to have an updated view of the repos-
itory and to count with mechanisms for easily detect changes in the repository.
For instance suppose there is a batch process that re-executes the transforma-
tions in the repository when their input models change. Now, if a user contributes
a new transformation to the repository, the process will not be able to re-execute

MoScript: A DSL for Querying and Manipulating Model Repositories 183

the new transformation if it does not rely on an updated view that reflects the
new transformation and also its relation with its input models. Therefore, we
require mechanisms for easily register, update and delete artefacts from such a
repository view.

In the next sections we will see how MoScript enable us to perform all these
tasks.

3 The MoScript Architecture

Fig. 1 shows an overview of the MoScript architecture, comprising both the basic
components and information flows.

3.1 Architecture Components

The MoScript architecture is composed of six components: the MoScript DSL,
a megamodel, a metadata engine, model repositories, transformation tools, and
external DSLs, editors, and discoverers, as shown in Fig. 1 and described next.

Fig. 1. The MoScript architecture

– MoScript: A textual DSL, which serves as an interface between the users
and the modelling artefacts repositories. Users write and run their MoScript
scripts for retrieving modelling artefacts and performing modelling tasks (e.g.
inspect, transform, match, etc.) with them. MoScript uses the megamodel
as cartography to navigate the repositories and select modelling artefacts to
manipulate. As result of the manipulations, new modelling artefacts may be
created in the repositories or existing modelling artefacts may be removed.

184 W. Kling et al.

– Megamodel[3]: A model which describes artefacts within repositories (e.g.
their location, kind, format, etc.), and how they are interrelated. A meg-
amodel is a regular model, thus it conforms to a metamodel, which is shown
in Fig. 2. For instance, the Entity element represents any MDE (i.e. arte-
facts that depend on well defined grammars) and non-MDE artefact (such
as non structured documents, tools, libraries, etc).

Terminal
Model

Reference
Model

MetaMeta
Model

Entity

i

Identified
Element

Relationship
Model

a

MetaModel

Re

Weaving
Model

g g
 Transformation

Model
on

el Mega
Model
M

Directed
Relationship

Transformation
rmatiomatio

Transformation
Record n f

Fig. 2. Part of the core metamodel for megamodels

The basic MDE artefacts supported by the megamodel are: MetaMeta-
Models (M3), which represent models conforming to themselves; Meta-
models (M2), which represent models conforming to metametamodels; and
TerminalModels (M1), which represent models conforming to metamod-
els but no other model conforms to them. Examples of TerminalModels
are TransformationModels, WeavingModels and Megamodels them-
selves. Relationships between artefacts (MDE and non-MDE) are repre-
sented by the Relationship concept. For instance, a Transformation is
a directed relationship between a TransformationModel and one or more
ReferenceModels (metamodels or metametamodels). The Transformation-
Model is the representation of the source code of the transformation while
the ReferenceModels restrict the type of input and output models the trans-
formation may be applied on. A TransformationRecord is another kind of
directed relationship. A TransformationRecord associates a Transformation
with a set of input and output models. As we will see later, it is useful for
rerunning transformations without giving any additional input.

Since MDE artefacts may be bridged to models (e.g. XMI files), from this
point forward we are going to call them just models.

– Metadata Engine: Provides services to MoScript for retrieving models,
executing tools services and (un)register models (from) into the megamodel.
The Metadata Engine exposes a homogeneous interface, which provides

MoScript: A DSL for Querying and Manipulating Model Repositories 185

location and technology transparency of models and transformation tools. It
also protects models from unauthorized access and modifications.

The metadata engine uses the megamodel for run-time type checking. For
instance, the metadata engine can check if the transformations are being
applied to the right models. In a previous work [24], we demonstrate the
viability of this type checking.

– Model repositories: Contain models stored in different formats, e.g. XMI,
XML, RDBMS, etc. Model repositories may reside in different physical lo-
cations, such as a local filesystem, a remote WebDAV server, the cloud, etc.

– Transformation Tools: Model-to-model (M2M), model-to-text (M2T) or
text-to-model (T2M) transformation tools provide transformation services.
They implement a generic interface, thus all transformation tools services
can be invoked the same way regardless the technology behind. Transfor-
mation tools may include QVT [1], ATL [14], Kermeta,1 EMF Compare,2

Xpand,3 etc. In general, any tool that produces a new view of a modelling
artefact (e.g. documentation generators, compilers, file comparison tools,
etc.) is considered a transformation tool. If any transformation tool does not
fit the generic interface it may extend it along with the metamodel of the
megamodel, for adding new services and concepts.

– DSLs, Editors and Discoverers: These tools create models outside the
MoScript context and need to contribute them to the megamodel. They can
(un)register models (from) into the megamodel through MoScript, and they
can query the megamodel as well.

3.2 Architecture Information Flow

The information flow that takes place between the architecture components when
performing models manipulations with MoScript, is denoted by the numbers in
Fig. 1. (1) Users write and run a MoScript script. (2) MoScript queries the meg-
amodel to retrieve the model elements (metadata) describing the models and
transformations involved in the process. Then, it (3) asks the Metadata Engine
to apply the selected transformations on the selected models. (4) The metadata
engine retrieves4 from the repositories the models and transformation definitions
(using the information stored in the megamodel elements, such as location, pro-
tocol, access restrictions etc). (5) Then it executes the transformations with the
models and (6) registers the resulting models in the megamodel if necessary.
Finally, the metadata engine returns to MoScript the model elements of the
megamodel resulting from the program execution, for further processing.

1 http://www.kermeta.org/
2 http://www.eclipse.org/modeling/emf/?project=compare#compare
3 http://www.eclipse.org/modeling/m2t/?project=xpand
4 Retrieving the model means that an interface (model handler) is exposed for ac-
cessing the model. It does not necessarily means that the whole model traverses the
network.

http://www.kermeta.org/
http://www.eclipse.org/modeling/emf/?project=compare#compare
http://www.eclipse.org/modeling/m2t/?project=xpand

186 W. Kling et al.

4 The MoScript Language

MoScript is a megamodel-based scripting DSL for modeling tasks and workflow
automation that uses OCL [2] as query language.

A megamodel is a regular model and thus can be navigated with standard
OCL, however the result of executing an OCL query on it, is merely informative.
For instance, consider the following query:

Model : : allInstances ()−>select (m | m . conformsTo . kind = ’ Java ’)

The query selects from a megamodel, all the models that conform to a specific
kind of metamodel. The result is a collection of elements of type Model that
cannot be used directly in OCL to access or manipulate (check, match, transform
etc.) the physical artefacts they represent. This issue is due to the fact that
OCL does not handle models as a bootstrapped concept and does not have
multi-model support either.

The MoScript language intends to fill this gap with three main contributions:
(1) Model dereferencing, to retrieve models represented by metadata in a
megamodel; (2) Extensive library of generic operations to perform com-
mon model manipulation tasks with dereferenced models; (3) Modelling tasks
operation composition combined with OCL for manipulating dereferenced
models with powerful expressiveness.

Model dereferencing is applicable to all the megamodel elements that have a
separated physical representation in the system and may be accessed through a
locator (e.g., an URI). As a result of the dereferencing, an interface of the model
is loaded in memory and exposed for being used through an OCL ModelEle-
ment type. Since OCL works on top of the megamodel, the OCL ModelElement
type always corresponds to an element type of the megamodel (TerminalModel,
Metamodel, Transformation etc.).

Furthermore, a set of operations are associated to those model element types
for being invoked from OCL and which in turn may be composed as any other
OCL expression, to perform more complex operations.

Next, we will explain in detail MoScript abstract and concrete syntax, as well
as its native library of operations and statements.

4.1 MoScript Abstract and Concrete Syntax

The MoScript DSL has a semantic model [11] and an abstract and concrete
syntax [22].

The MoScript’s semantic model is the megamodel. It is the place where the
domain concepts are stored and is independent from the language constructs.
The core concepts of the megamodel have been covered in section 1.

The abstract syntax as shown in figure 3, is divided in two packages. The
OCL package and the MoScript package. Since MoScript uses OCL as query
language, the complete OCL abstract syntax (not showed) is included as part of
the language.

MoScript: A DSL for Querying and Manipulating Model Repositories 187

OperationCallExp

PropertyCallExp

OclExpression

OperationCallExp

PropertyCallExp

OclExpression

QueryOp

TransformOp

ProjectionOp

BindingStat

ForStat SaveStat RegisterStat

RemoveStat

ExpressionStat

Program Library Helper

Unit

MoScript

IfStat

Statement

StateCheckOp

Fig. 3. MoScript abstract syntax main concepts

The OperationCallExp from the OCL package has been extended with a set
of operations we call operations without side effects. These operations are used to
perform several modelling tasks that do not modify the model repository
or the megamodel.

Operations without side effects are divided in four categories: query opera-
tions (QueryOp), operations for transformations between same technical spaces
(TransformOp), operations for transformations between different technical spaces
(ProjectionOp) and operations for checking the models state (StateCheckOp).
For each category MoScript provide several concrete operations, which will be
explained in the next subsection.

The MoScript package also provides a set of statements with side effects
(SaveStat, RemoveStat and RegisterStat). These statements allow the
modification of the repository or the megamodel. Side effects statements
may embed OCL expression and therefore side effects free operations. This is
why ExpressionStat is related to OCLExpression. This relation allows to carry
out complex models manipulations before persisting them in the repository and
the megamodel. However, the opposite (embed side effects statements within
OCL expressions) is not permitted. OCL expressions do not know side effects
statements, thus respecting the OCL side effects free philosophy.

MoScript also provides a statement for variable declaration and value binding
(BindingStat) and for (ForStat) and if (IfStat) statements for control flow.

MoScript has two kinds of modules: libraries and programs. A library con-
tains helpers, which are used to modularise complex OCL expressions. Libraries
may be in turn imported by programs or by other libraries.

The concrete syntax of MoScript is summarised in the following listing:

program program_name

uses library
. . .
[using {

188 W. Kling et al.

variable : type = OclExpr ; . . .
}]

do {
variable <− OclExpr ;

save (. . .) ; . . .
remove (OclExpr) ; . . .
register (. . .) ; . . .

i f . . .
for . .

}

helper context OclAny def : helper_name (params) : return_type ; . . .

A program has two sections, the using and do sections. The using section is
optional, and is used for declaring variables and assigning their initial value. The
do section is mandatory and is the core of the program. In it, operations without
side effects and side effects statements are used in combination with control flow
statements and OCL queries to perform modelling artefacts manipulations.

The complete definition of the concrete syntax is expressed in the TCS lan-
guage [15], and can be found at:
http://www.emn.fr/z-info/atlanmod/index.php/Moscript.

In the following subsections, we will discuss in detail the operations with-
out side effects and the statements with side effects provided by MoScript and
summarised in table 1.

Table 1. MoScript operations and statements summary

Operations without Side Effects

Model :: allContents() : Collection(OclAny)

Model :: allContentsRoots() : Collection(OclAny)

Model :: allContentsInstancesOf(type name : String) : Collection(OclAny)

Model :: allContentsInstancesOf(type : OclAny) : Collection(OclAny)

Transformation :: applyTo(inputModels : Sequence(Model)) : TransformationRecord

Transformation :: applyTo(inputModels : Map(String, Model)) : TransformationRecord

TransformationRecord :: run() : TransformationRecord

Model :: inject() : Model

Model :: extract() : Model

Model :: available() : Boolean

Model :: isDirty() : Boolean

Statements with Side Effects

save(m : Model, mm : Megamodel, id : String, locator : String)

remove(m : Model, mm : Megamodel)

register(mm : Megamodel, id : String, locator : String)

4.2 Operations without Side Effects

This subsection describes in detail the operations without side effects provided
by MoScript. As mentioned before, operations without side effects are classified

http://www.emn.fr/z-info/atlanmod/index.php/Moscript

MoScript: A DSL for Querying and Manipulating Model Repositories 189

in four categories, queries, transformations of models in a same technical space,
transformations of models between different technical spaces and model state
checkers.

Query Operations: The query operations provided by MoScript are
allContents, allContentsRoots and allContentsInstancesOf. These opera-
tions dereference and load the physical model represented by the Model element.
Then, they query the model and return a collection of OCL elements. The el-
ements of the resulting collection are used as entry points to the model, from
where the rest of the elements may be reached. Subsequent queries to the model
are made with standard OCL expressions. The following example illustrates how
this operations may be used in general:

Model : : allInstances ()−>any (m | m . indentifier = ’ SimpsonFamily ’)
−>allContents ()−>collect (c | c . name))

In the example, we select a model with the “SimpsonFamily” id from the repos-
itory, and invoke the allContents operation on it. The operation dereferences
de model and returns an OCL collection with all the elements contained in the
model. Next, we iterate on the results, collecting all the element names. The
resulting collection should look like {’Bart’, ’Homer’, ’Lisa’, ’Maggie’,

’Marge’}.
Note that the allContents operation hides complexity from the user. There

is no need to specify the metamodel of the model as this information is retrieved
from the megamodel.

When working with big models the operation allContentsmay be expensive
in terms of memory consumption and processing. So, MoScript includes other
operations like allContentsRoots and allContentsInstancesOf for extracting
the models elements with more precision and therefore better performance.

Model to Model Transformations: The M2M transformations operations
provided by MoScript are the applyTo and the run operations.

The applyTo operations work in the context of the Transformation meg-
amodel element. They input models may be provided as a Map or as a Sequence
and the output models are returned as part of a TransformationRecord. When
provided as a Map, models are differentiated by their key and when provided as
a Sequence, models are differentiated by their order in the Sequence.

The applyTo operations are especially useful if we consider transformations
that are somehow generic (e.g., a transformation which transforms a Java source
code model to a .Net source code model), i.e. there may exist lots of different
models that may be transformed with the same transformation. In this case it
is very convenient to have a way for varying the input models for each transfor-
mation execution. The following example illustrates how these operations may
be used:

l e t j2dNet : Transformation =
Transformation : : allInstances ()−>any (t | t . identifier = ’ j2dNet ’)

in
TerminalModel : : allInstances ()

190 W. Kling et al.

−>select (m | m . conformsTo . kind = ’ Java ’))
−>collect (jModel | j2dNet . applyTo (jModel))

In the example we first retrieve the transformation “Java to .Net” from the
repository and store it as j2dNet. Then we apply j2dNet to all the Java mod-
els found in the repository. Note that behind the scenes, the metadata engine
makes several checks before running the transformation. First, it checks if the
model is a transformation model, and thus may be executed. Then, it checks
if the input models conform to the metamodels the transformation supports.
Finally, it determines which is the right transformation engine5 for running the
transformation. To do this, the metadata engine queries the megamodel.

The run operation works in the context of the TransformationRecord meg-
amodel element. The run operation executes a transformation based on the
information stored in the TransformationRecord. Since it stores the last trans-
formation execution parameters, it is useful to rerun transformations without
specifying the input models. The operation returns the newly produced models
within another TransformationRecord.

The following example shows how it is possible to rerun all the transformations
of a model repository:

TransformationRecord : : allInstances ()−>collect (tr | tr . run ())

Projectors: As we are working with heterogeneous model repositories, we rely
on technical projectors for non-XMI modelling artefacts (e.g. grammar-based
text). There are two kinds of projectors: injectors and extractors. Injectors
translate from other technical spaces (e.g. grammarware[17], xmlware, etc) to
the modelware technical space and extractors do exactly the opposite. MoScript
provides the inject operation for injecting models and the extract operation
for extracting models.

The inject operation represents the T2M transformations. It works in the
context of the Model element, which represents a non-XMI artefact that depends
on a specific grammar. The inject operation applies the transformation to the
model and produces an XMI model. The following example shows how is possible
to inject the source code of Java programs into Java XMI models:

Model : : allInstances ()−>select (m | m . conformsTo . kind = ’ JavaGrammar ’))
−>collect (jCode | jCode . inject ())

In the example, we select all the Java models which conform to the Java grammar
and inject them into models conforming to Java metamodels. The result is a
collection of Java XMI models. Behind the scenes, the Metadata Engine retrieves
from the megamodel the corresponding parser6 of the grammar and the tool that
uses it, to produce the XMI model.

The extract operation represents the M2T transformations and uses the same
mechanism as the inject operation, but in the opposite direction.

For both operations we follow an approach similar to the one described in
[25].

5 Required relations not showed in Fig.2
6 Required relations not showed in Fig.2

MoScript: A DSL for Querying and Manipulating Model Repositories 191

Models State Checkers: A set of consistency check utility operations have
been included in the language. The available operation, which verifies if the
modelling artefact is available in the repository (e.g., it could have been removed
by an external tool, or its physical location is unreachable), and the isDirty

operation, which checks if the model has been modified outside MoScript. This
is useful to know if it is necessary to re-execute the transformations in which the
model participates.

4.3 Statements with Side Effects

This subsection describes in detail the statements with side effects provided by
MoScript. As said before, these statements allow the modification of the models
in the repository and the megamodel. These statements are usually combined
with OCL expressions and operations without side-effects.

save. The save statement persists an in-memory model into the repository
and registers it in the megamodel if it is not already registered. The latter step is
important for keeping integrity between the megamodel and the repository. The
save statement takes as arguments the Model to be persisted, the megamodel
in which the model should be stored7, an identifier and a locator. The locator
argument is the physical location path where the model should be stored (e.g. a
filesystem path or URI).

Suppose we want to store the .Net models derived from Java models showed
in a previous example. The following example shows how the save statement
can be used for this purpose:

. . . for (dNetModel in dNetModels) {
save (dNetModel , this , dNetModel . getIdentifier () ,

dNetModel . location + ’. xmi ’) ;
} . . .

helper context Model def : getIdentifier () : . . . ;

In the example, we iterate over the collection of .Net models and persist them
in the repository. We use a helper to produce the identifiers of the models. The
this keyword means that the model will be stored in the root megamodel.

Register. The register statement allows the registration of models in the
megamodel when the model is already stored in the repository. It takes as argu-
ments the megamodel, the model identifier, its physical location and creates the
corresponding megamodel element.

The register statement is the statement other tools (e.g. editors, discoverers,
DSLs, etc.) use to register the artefacts created outside the MoScript context.
For instance, manually created models, discovered models, etc. The following ex-
ample shows how it is possible with MoScript to register a new metametamodel:

register (this , ’ Ecore ’ , ’ http :// www. eclipse. org/ emf /2002/ Ecore ’) ;

7 Remember a megamodel may contain other megamodels.

192 W. Kling et al.

The metadata of a model already registered in the megamodel can be updated
by re-invoking the register statement. For instance, when another tool changes
the location of a model.

Remove. The remove statement allows the removal of models from the reposi-
tory. It also removes the model element from the megamodel in order to maintain
consistency between both. It receives as argument the megamodel and the Model
to be eliminated.

5 Putting All Together

In this section we provide examples of complete MoScript scripts which demon-
strate the power of the language.

5.1 Change Propagation

Roughly speaking, Model Driven Development (MDD) consists in transforming
models from higher levels to lower levels of abstraction until the generation of
code, in order to produce runnable systems.

Fig. 4. An MDD system transformation chains

Now, suppose we have an MDD based system, which has a binary tree like
arrangement of models and transformations, as shown in Fig. 4. In the figure,
models are denoted by the m nodes and transformations by the t directed edges.
Now, if model m1 changes we will have to re-execute all the transformations
that are directly or indirectly affected by the change in the model, in order to
reflect the change in the models of the lowest level of abstraction (the code).
The MoScript program in listing 4 shows how to do it.

Listing 1.1. Change propagation

1 program PropagateChanges
2

3 do {
4

5 im : Model = Model : : allInstances ()−>any (m | m . identifier = ’m1 ’) ;
6

MoScript: A DSL for Querying and Manipulating Model Repositories 193

7 for (tr : getTransformations (m)) {
8 om : Model = tr . run () . targetModel−>first () ;
9 save (om , this , om . identifier , om . locator) ;

10 }
11 }
12

13 helper def : getTransformations (m : Model) : Sequence (
↪→TransformationRecord) =

14 trs : Sequence (TransformationRecord) = TransformationRecord : :
↪→allInstances ()−>select (tr | tr . srcModel−>first () . identifier
↪→ = m . identifier) in

15 i f trs−>isEmpty () then
16 Sequence{}
17 else
18 trs−>union (trs−>collect (tr | getTranformations (tr . targetModel

↪→−>first ()))−>flatten ())
19 endif ;

The explanation of the code is the following:

I We select from the repository the modified model by its id (line 5).
II We call the helper getTransformations (line 7) to return a collection of

TransformationRecords in the order they must be executed.
III The getTransformations helper selects all the TransformationRecords that

use model m as input of its transformation (line 14).
IV For each TransformationRecord, the output model of its transformation is

selected, and a recursive call is made to the getTransformations helper, in
order to go through the tree in depth, getting the rest of the Transforma-
tionRecords (line 18).

V Finally, for each TransformationRecord its transformation is executed (line
8), its resulting model saved in the repository and updated in the megamodel
(line 9)

Note that the example is an intentional over simplification of real case models
and transformations arrangements, in order to keep the code simple. We assumed
the transformations have only one input and output model and no cycles between
them.

5.2 Inspecting and Combining Models Information

In this example we show how we can combine information from several models
and make computations for obtaining measurements from the model repository.
We will compute a measure for determining the transformations naive complete-
ness8 of all the transformations in the repository.

A transformation t1 is naively complete if all the elements of its source meta-
model mm1 and its target metamodel mm2 are matched (used) by at least one
rule of the transformation.

To illustrate our definition of naive completeness, suppose we have a trans-
formation and its models t1(m1) = m2 where m1 is the input model and m2

8 Checking whether a transformation is actually complete or not is much more
complex.

194 W. Kling et al.

is the output model. m1 and m2 conform to the metamodels mm1 and mm2

respectively. A transformation is a finite set of rules t1 = (r1, r2, ..., rn). Each
rule has 1 or none input element or pattern and has at least one output ele-
ment r() = (op1, op2, ..., opn) or r(ip) = (op1, op2, ..., opn). The input and output
patterns correspond to elements of the metamodels.

To determine which elements ofmm1 andmm2 are used in the transformation,
we will inspect its transformation rules. For each rule of t1 we will verify the
number of elements from mm1 (emm1) present as input pattern (ipt1) in at least
one rule of the transformation. Number of elements from mm2 (emm2) present
as output patterns (opt1) in at least one rule of the transformation.

The result of the measurement is calculated for mm1 as
Crmm1 =

∑
(ipt11, ipt12, . . . , ipt1n)/

∑
(emm11, emm12, . . . , emm1n) and the same

for mm2 but with the output patterns and the output metamodel. The trans-
formation is considered naively complete if Crmm1 = 1 and Crmm2 = 1.

Listing 1.2 shows the OCL query for obtaining the described measures. For the
sake of simplicity we inspect only ATL matched rules, which are fully declarative
and always have an input element. We also assume that all the metamodels
conform to Ecore.

Listing 1.2. Transformation completeness query

1 program TransformationCompleteness
2

3 do {
4 res : Sequence (OclAny) = getNaiveCompleteness () ;
5 -- Do something with the result
6 }
7

8 helper def getNaiveCompleteness () : Sequence (OclAny) =
9 Transformation . allInstances ()−>collect (tr |

10 l e t trName : S t r i ng = tr . transformationModel . name in
11 l e t mmIn : Set (S t r i ng) = tr . srcReferenceModel
12 −>collect (e | e . referenceModel . allContentInstancesOf (’

↪→EClass ’))
13 −>flatten ()−>collect (e | e . name) . asSet () in
14 l e t mmOut : Set (S t r i ng) = tr . targetReferenceModel
15 −>collect (e | e . referenceModel . allContentInstancesOf (’

↪→EClass ’))
16 −>flatten ()−>collect (e | e . name) . asSet () in
17 l e t trIn : Set (S t r i ng) = tr . transformationModel . inject () .

↪→allContentInstancesOf (’ MatchedRule ’)
18 −>collect (x | x . inPattern . elements
19 −>collect (y | y . type . name))−>flatten () . asSet () in
20 l e t trOut : Set (S t r i ng) = tr . transformationModel . inject () .

↪→allContentInstancesOf (’ MatchedRule ’)
21 −>collect (x | x . outPattern . elements
22 −>collect (y | y . type . name))−>flatten () . asSet () in
23 l e t inRt : Real = trIn−>size () / mmIn−>size () in
24 l e t outRt : Real = trOut−>size () / mmOut−>size () in
25 Sequence (trName , inRt , outRt)
26) ;

Due to space limitations we do not explain the code in detail, but note that
doing these kind of computations without MoScript will demand a lot of work
with existing scripting techniques or adhoc codifications.

MoScript: A DSL for Querying and Manipulating Model Repositories 195

6 Implementation

In this section, we describe our implementation of MoScript. Figure 5 shows how
we made the instantiation of the architecture presented in section 3.

Fig. 5. MoScript architecture implementation

As concrete implementation, we use our previous implementation of the meg-
amodel included in the AM3 tool[3]. AM3 follows the megamodel definition as
shown in Fig. 2, plus two extensions that support M2M and M2T-T2M trans-
formation in ATL and TCS respectively. The megamodel extension for ATL is
called GMM4ATL and the extension for TCS is called GMM4TCS. As Metadata
Engine, we use the AM3 tool metadata layer. As transformation engines we use
ATL and TCS. TCS performs T2M transformations by generating an ANTLR9

grammar and performs M2T using Java-based extractors or ATL OCL queries.
MoScript has been implemented on top of the Eclipse Modeling Platform. We

use TCS as well, for defining its abstract and concrete syntax. TCS is in charge
of parsing and lexing MoScript to populate an abstract syntax tree (AST) model
ready for compilation. We built the MoScript compiler with ACG10, which is the
ATL VM Code Generator. It translates the AST model (generated by TCS) into
ATL VM assembly code for its execution.

Note that ATL and the ATL VM are two different concepts. ATL is a DSL
for transformations which is compiled in ATL VM code. Other DSLs may run
on top of the ATL VM as is the case of MoScript.

The concrete architecture uses two instances of the ATL virtual machine. One
instance for MoScript and another one for ATL. This guarantees that MoScript
operates independently of ATL and other transformation tools.

9 http://www.antlr.org/
10 http://wiki.eclipse.org/ACG

http://www.antlr.org/
http://wiki.eclipse.org/ACG

196 W. Kling et al.

We tested MoScript with the ATL Transformations Zoo11. A model repository
of ATL transformation projects developed by the Eclipse community. It holds so
far 205 metamodels, 275 models, 219 transformations, and more than 400 other
artefacts including textual syntaxes, binary code, source code, libraries, etc. We
also tested MoScript with a WebML [8] repository, where models are stored in
XML.

In fig. 6 we show a screen shot of a running MoScript script in Eclipse. The
current implementation of MoScript can be downloaded from
http://www.emn.fr/z-info/atlanmod/index.php/Moscript_downloads.

Fig. 6. Running MoScript script

7 Related Work

The concept of a megamodel was proposed in [5] and in [10]. In [5] the megamodel
is proposed a solution to Global Model Management (GMM) while in [10] it is
presented as a metamodel for describing MDE formalized with set theory. Sev-
eral recently works report use of megamodels or megamodeling techniques. For
instance, in [12] a megamodel is used for the representation of all the artefacts
and their relationships involved in the model-driven support for the evolution of
software architectures. In [20], Megaf an infrastructure for the creation of architec-
ture frameworks formalizes its underlying infrastructure through amegamodel for
checking consistency among architectural elements. The 101company12 project is
an effort to create a conceptual framework based on megamodeling techniques for
understanding analogies between heterogeneous technologies. In general, all the

11 http://www.eclipse.org/m2m/atl/atlTransformations/
12 http://101companies.uni-koblenz.de/index.php/Main Page

http://www.emn.fr/z-info/atlanmod/index.php/Moscript_downloads
http://www.eclipse.org/m2m/atl/atlTransformations/

MoScript: A DSL for Querying and Manipulating Model Repositories 197

mentionedworks focus on representing high number of different artefacts and tech-
nical spaces involved in non trivial software systems and development processes.
MoScript uses the megamodel with the same general intend.

As far as we know, there are not many DSLs or approaches for GMM, i.e. they
do not use a megamodel as a global view for orchestrating and verifying MDE
development activities against it. However, we find similarities with approaches
such as Rondo [21], Maudeling13, Model Bus [6] and Moose [18]. Rondo, Maudel-
ing and Moose translate models to their own internal formats, whereas Model
Bus and MoScript work directly on the models via a metadata engine. Rondo
represents models as directed labeled graphs. Maudeling represents models in the
Maude language [9], which is based on rewriting logic. Moose represents models
in CDIF or XMI exachange formats conforming to the FAMIX metamodel using
third party parsers. Rondo translates between different model representations of
the same information, and operates on a lower level than MoScript: it directly
manipulates the model artefacts, whereas MoScript relies on the invocations of
transformation engines. Maudeling provides advanced querying services on mod-
elling artefacts, and as such, could be an invokable service for MoScript. Moose
offers services for navigating and manipulating multiple model versions and uses
Pharo 14 (Smaltalk) as scripting language. Model Bus provides a modelling arte-
fact broker service, where registered tools can be applied to registered models.
Model Bus does not provide a megamodel concept to look up model and tool
metadata. MoScript uses a reflective approach, and queries the megamodel to
check if specific modelling artefacts may be used in combination.

Model search engines such as those presented in [7] and [19], are also related
to GMM in that they can perform large-scale model queries, based on model
contents. They differ from our approach in that the results obtained from a model
search cannot be directly used in further modelling operations. The results are
usually shown as a list of model names or model fragments which at most can
be downloaded.

MoScript is intended to implement MDE workflows. The main difference
with other MDE workflow approaches is that MoScript relies on a query lan-
guage that works on the rich contents of a megamodel and orchestrations are
based on its queries results. Other MDE workflow approaches are UniTI [23],
TraCo [13], the Modeling Workflow Engine (MWE)15, and MDA Control Cen-
ter [16]. UniTI composes transformation processes via typed input and output
parameters. Compositions are validated based on model type information and
any additional constraints that can be specified on the models. TraCo uses a
component metamodel, with components and ports, where each workflow com-
ponent is wired to other components via its input and output ports. Ports are
typed in order to validate the compositions. MWE is a model-driven version of
Ant16, with several builtin tasks for model querying and transformation. MWE

13 Maudeling: http://atenea.lcc.uma.es/index.php/Main Page/Resources/Maudeling
14 http://www.pharo-project.org/home
15 http://www.eclipse.org/modeling/emft/?project=mwe
16 http://ant.apache.org

http://www.pharo-project.org/home
http://www.eclipse.org/modeling/emft/?project=mwe
http://ant.apache.org

198 W. Kling et al.

does not perform any validation of the workflow composition. MoScript does not
perform a static type check on its workflow compositions either, but checks the
validity of the composition at run-time.

8 Conclusions and Future Work

In this paper, we presented MoScript: a scripting DSL and platform for Global
Model Management (GMM), based on the notion of a megamodel.The MoScript
architecture provides uniform access to modelling artefacts, such as models,
metamodels, and transformations, regardless of their storage format or their
physical location. It also provides bindings to several model manipulation tools,
such as transformation engines and querying tools, and allows invocation of those
tools.

The MoScript is an OCL-based scripting language for model-based task and
workflow automation, based on the metadata contained in a megamodel. It al-
lows querying a megamodel and use the results of such queries to load and store
modelling artefacts, and perform model manipulations, such as the invocation
of a model transformation engine. MoScript can use the rich metadata in the
megamodel to validate model manipulations, e.g. to check if a model transfor-
mation is applied to a model that conforms to the right metamodel. MoScript
is able to perform this validation at run-time, when the model manipulation is
invoked.

MoScript has been implemented on top of the Eclipse Modeling Platform, us-
ing TCS, ACG tools and AM3 metadata engine. It provides a textual and uses
the ATL virtual machine and debugger as its run-time environment. MoScript
uses ATL as M2M and TCS as M2T-T2M transformation engines. MoScript im-
plementation has been tested against models from the ATL examples repository
and a WebML repository.

As further work we plan to extend the list of repositories and tools our lan-
guage can interact with, and increase the number of predefined operations and
statements of the language. This may include a querying tool, such as Maudeling,
that allows us to validate modelling workflows written in MoScript.

References

1. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, ver-
sion 1.0, formal/08-04-03 (Apr 2008), http://www.omg.org/spec/QVT/1.0/PDF/

2. OCL 2.2 Specification, version 2.2, formal/2010-02-01 (February 2010),
http://www.omg.org/spec/OCL/2.2/PDF

3. Allilaire, F., Bezivin, J., Bruneliere, H., Jouault, F.: Global model management in
eclipse gmt/am3. In: Proc. of the Eclipse Technology eXchange Workshop (eTX)
at ECOOP 2006 (2006)

4. Barbero, M., Jouault, F., Bézivin, J.: Model driven management of complex sys-
tems: Implementing the macroscope’s vision. In: Proc. of ECBS 2008. IEEE Com-
puter Society Press (2008)

http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/OCL/2.2/PDF

MoScript: A DSL for Querying and Manipulating Model Repositories 199

5. Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. of
Workshop on Best Practices for Model-Driven Software Development at the 19th
Annual ACM Conference on OOPSLA (August 2004)

6. Blanc, X., Gervais, M.-P., Sriplakich, P.: Model Bus: Towards the Interoperability
of Modelling Tools. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 17–32. Springer, Heidelberg (2005)

7. Bozzon, A., Brambilla, M., Fraternali, P.: Searching Repositories of Web Appli-
cation Models. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 1–15. Springer, Heidelberg (2010)

8. Ceri, S., Brambilla, M., Fraternali, P.: The History of WebML Lessons Learned
from 10 Years of Model-Driven Development of Web Applications. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Founda-
tions and Applications. LNCS, vol. 5600, pp. 273–292. Springer, Heidelberg (2009)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

10. Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd
UML Workshop in Software Model Engineering (WISME 2004) Joint Event with
UML 2004 (October 2004)

11. Fowler, M.: Domain-Specific Languages, 1st edn. Addison-Wesley Professional (Oc-
tober 2010)

12. Graaf, B.: Model-driven evolution of software architectures. In: European Con-
ference on Software Maintenance and Reengineering (CSMR 2007), pp. 357–360
(2007)

13. Heidenreich, F., Kopcsek, J., Aßmann, U.: Safe Composition of Transformations.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 108–122.
Springer, Heidelberg (2010)

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1-2), 31–39 (2008)

15. Jouault, F., Bézivin, J., Kurtev, I.: Tcs: a dsl for the specification of textual con-
crete syntaxes in model engineering. In: GPCE 2006: Proc. of the 5th Int. Conf. on
Generative Programming and Component Engineering, pp. 249–254. ACM (2006)

16. Kleppe, A.: MCC: AModel Transformation Environment. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173–187. Springer, Heidelberg
(2006)

17. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14, 331–380 (2005)

18. Laval, J., Denier, S., Ducasse, S., Falleri, J.R.: Supporting Simultaneous Versions
for Software Evolution Assessment. Journal of Science of Computer Programming
(December 2010)

19. Lucrédio, D., de M. Fortes, R.P., Whittle, J.: MOOGLE: A Model Search Engine.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 296–310. Springer, Heidelberg (2008)

20. Malavolta, I.: A model-driven approach for managing software architectures with
multiple evolving concerns. In: Proc. of European Conference on Software Archi-
tecture: Companion Volume, ECSA 2010, pp. 4–8. ACM (2010)

200 W. Kling et al.

21. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: Proc. of SIGMOD 2003, pp. 193–204. ACM (2003)

22. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

23. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

24. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in Model Man-
agement. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer,
Heidelberg (2009)

25. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. In: Bruel, J.-
M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 159–168. Springer, Heidelberg (2006)

Reconstructing Complex Metamodel Evolution

Sander D. Vermolen, Guido Wachsmuth, and Eelco Visser

Software Engineering Research Group, Delft University of Technology, The Netherlands
{s.d.vermolen,g.h.wachsmuth,e.visser}@tudelft.nl

Abstract. Metamodel evolution requires model migration. To correctly migrate
models, evolution needs to be made explicit. Manually describing evolution is
error-prone and redundant. Metamodel matching offers a solution by automat-
ically detecting evolution, but is only capable of detecting primitive evolution
steps. In practice, primitive evolution steps are jointly applied to form a complex
evolution step, which has the same effect on a metamodel as the sum of its parts,
yet generally has a different effect in migration. Detection of complex evolution
is therefore needed. In this paper, we present an approach to reconstruct complex
evolution between two metamodel versions, using a matching result as input. It
supports operator dependencies and mixed, overlapping, and incorrectly ordered
complex operator components. It also supports interference between operators,
where the effect of one operator is partially or completely hidden from the target
metamodel by other operators.

1 Introduction

Changing requirements and technological progress require metamodels to evolve [8].
Preventing metamodel evolution by downwards-compatible changes is often insuffi-
cient, as it reduces the quality of the metamodel [2]. Metamodel evolution may break
conformance of existing models and thus requires model migration [22]. To correctly
migrate models, the evolution – implicitly applied by developers – needs to become ex-
plicit. Metamodel evolution can be specified manually by developers, yet this is error-
prone, redundant, and hard in larger projects. Instead, evolution needs to be detected
automatically from the original and evolved metamodel versions.

The most-used solution for detecting evolution is matching [24]. Metamodel match-
ing attempts to link elements from the original metamodel to elements from the target
metamodel based on similarity. The result is a set of atomic differences highlighting
what was created, what was deleted and what was changed. In practice, groups of
atomic differences may be applied together to form complex evolution steps such as
pulling features up an inheritance chain or extracting super classes [13]. In model mi-
gration, a complex operator is different from its atomic changes. For example, pulling
up a feature preserves information, whereas deleting and recreating it loses information.
To correctly describe evolution, we therefore need to detect complex evolution steps.
There are three major problems in reconstructing complex evolution steps:

Dependency. While metamodel changes are unordered, evolution steps are generally
applied sequentially and may depend on one another [4]. These dependencies need
to be respected by a mapping from metamodel changes to evolution steps.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 201–221, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

202 S.D. Vermolen, G. Wachsmuth, and E. Visser

Detection. To detect a complex evolution step, we must find several steps which make
up this complex step. But these steps are likely to be separated, incorrectly ordered,
and mixed with parts of other complex evolution steps.

Interference. An evolution step can hide, change, or partially undo the effect of an-
other step. Multiple steps can completely mask a step. As such, some or all steps
forming a more complex step may be missing, which impedes its detection.

Example. The upper part of Figure 1 shows two metamodel versions for a tag-based
issue tracker. In the original metamodel on the left-hand side, each issue has a reporter,
a title, and some descriptive text. Projects are formed by a group of users and have a
name and a set of issues. Users can comment on issues and tag issues. Additions and
removals of tags are recorded, such that they can be reverted.

While evolving the issue tracker, tagging became the primary approach for organi-
zation. As such, it became apparent, that not only issues, but also projects should be
taggable. Additionally, the metamodel structure had to be improved to allow users to
more easily subscribe to events, as to send them email updates. The resulting meta-
model is shown at the upper right of Figure 1. An Event entity was introduced, which
comprises comments as well as tag events (tag additions and removals). Furthermore,
projects obtained room for storing tags and events on these tags.

Matching the original and evolved metamodel yields the difference model presented
in the middle part of Figure 1. Two classes and seven features were added to the evolved
metamodel (left column), eight features were subtracted (middle column), and three
classes have an additional super type in the evolved metamodel (right column). We
will use this difference model as a starting point to detect the complex evolution steps
involved in the evolution of the original metamodel.

The evolution of the metamodel can also be captured in an evolution trace as shown
in the bottom part of Figure 1. At the metamodel level, the trace specifies the creation
of five new features, the renaming of two other features, and the extraction of two new
classes. At the model level, it specifies a corresponding migration. From the properties
of the involved operators, we can conclude that the evolution is constructive and that
we can safely migrate existing models without losing information.

In detecting the example evolution trace from the difference model, we face all three
major problems in trace reconstruction several times. For example, the second step de-
pends on the first step as it can only be applied if TagRemoval has a timestamp.

Furthermore, the second step comprises several of the presented differences. And fi-
nally, the first step interferes with the second, since its effect is completely hidden from
the difference model. The step needs to be reconstructed during detection.

Contribution. In this paper, we provide an approach to reconstruct complex evolution
traces from difference models automatically. It is based on the formalization of the core
concepts involved, namely metamodels, difference models, and evolution traces (Sec-
tion 2). First, we provide a mapping from changes in a difference model to primitive
operators in an evolution trace. We solve the dependency problem by defining precondi-
tions for all primitive operators. Based on these preconditions, we define a dependency
relation between operators which allows us to order operators on dependency and to

Reconstructing Complex Metamodel Evolution 203

class Issue {
title :: String
description :: Text
reporter -> User
project -> Project opposite issues
tags <> Tag (0..*)

}

class Project {
name :: String
issues -> Issue (1..*)

opposite project
members -> User (1..*)

}

class Tag {
name :: String

}

class TagAddition {
issue -> Issue
tag -> Tag
timestamp :: DateTime

}

class TagRemoval {
issue -> Issue
tag -> Tag

}

class Comment {
issue -> Issue
timestamp :: DateTime
content :: Text
author -> User

}

class User {. . .}

class Issue {
title :: String
description :: Text
reporter -> User
project -> Project opposite issues
log <> Event (0..*) opposite issue
tags <> Tag (0..*)

}

class Project {
name :: String
issues -> Issue (1..*)

opposite project
members -> User (1..*)
log <> TagEvent (0..*)
tags <> Tag (0..*)

}

class Tag {
name :: String

}

class TagAddition : TagEvent {}
class TagRemoval : TagEvent {}

class Event {
issue -> Issue opposite log
time :: DateTime
actor -> User

}

class TagEvent : Event {
tag -> Tag

}

class Comment : Event {
content :: Text

}

class User {. . .}

⊥→ 〈Issue.log〉 〈TagAddition.tag〉 →⊥
〈TagAddition〉 +superTypes−−−−−−−−→

〈TagEvent〉
〈TagAddition〉⊥→ 〈Project.log〉 〈TagAddition.timestamp〉 →⊥

⊥→ 〈Project.tags〉 〈TagAddition.issue〉 →⊥
⊥→ 〈Event〉 〈TagRemoval.issue〉 →⊥

〈TagRemoval〉 +superTypes−−−−−−−−→
〈TagEvent〉

〈TagRemoval〉⊥→ 〈Event.issue〉 〈TagRemoval.tag〉 →⊥
⊥→ 〈Event.time〉 〈Comment.author〉 →⊥
⊥→ 〈Event.actor〉 〈Comment.issue〉 →⊥

〈Comment〉 +superTypes−−−−−−−−→
〈Event〉

〈Comment〉⊥→ 〈TagEvent〉 〈Comment.timestamp〉 →⊥
⊥→ 〈TagEvent.tag〉

create feature TagRemoval.timestamp :: DateTime
extract super class TagEvent {issue, timestamp, tag} from TagAddition, TagRemoval

rename Comment.author to actor
create feature TagEvent.actor -> User
extract super class Event {issue, timestamp, actor} from Comment, TagEvent
rename Event.timestamp to time

create feature Issue.log <> Event (0..*) opposite issue
create feature Project.log <> TagEvent (0..*)
create feature Project.tags <> Tag (0..*)

Fig. 1. Original and evolved metamodel, difference model, and evolution trace

204 S.D. Vermolen, G. Wachsmuth, and E. Visser

construct valid primitive evolution traces from a difference model (Section 3). Second,
we show how to reorder primitive traces without breaking their validity and provide
patterns for mapping sequences of primitive operators to complex operators. We solve
the detection problem by reordering primitive traces to different normal forms in which
the patterns can be detected easily (Section 4). Finally, we extend our method to detect
also partial patterns in order to solve the interference problem (Section 5).

2 Modeling Metamodel Evolution

Metamodeling Formalism. Metamodels can be expressed in various metamodeling
formalisms. In this paper, we focus only on the core metamodeling constructs that are
interesting for coupled evolution of metamodels and models. We leave out packages,
enumerations, annotations, derived features, and operations.

Figure 2 gives a textual definition of the metamodeling formalism used in this pa-
per. A metamodel defines a number of classes which consist of a number of features.
Classes can have super types to inherit features and might be abstract. A feature has
a multiplicity (lower and upper bound) and is either an attribute or a reference. An at-
tribute is a feature with a primitive type, whereas a reference is a feature with a class
type. We only support predefined primitive types like Boolean, Integer, and String. An
attribute can serve as an identifier for objects of a class. A reference may be composite
and two references can be combined to form a bidirectional association by making them
opposite of each other. In the textual notation, features are represented by their name
followed by a separator, their type, and an optional multiplicity. The separator indicates
the kind of a feature. We use :: for attributes, -> for ordinary references, and <> for
composite references.

If we want to reason about properties of metamodels and their evolution, a textual
representation is often not sufficient. Thus, we provide in Figure 3 a more formal repre-
sentation of metamodels in terms of sets, functions, and predicates. In the upper left, we
define instance sets for the metaclasses from Figure 2. In the upper right, we formalize
most metafeatures from Figure 2 in terms of functions and predicates. Since super types
and features of a class c form subsets of instance sets, we formalize them accordingly.

class MetaModel {
classes <> Class (0..*)

}

abstract class NamedElement {
name :: String (1..1)

}

abstract class Type : NamedElement {}

class Class : Type {
isAbstract :: Boolean (1..1)
superTypes -> Class (0..*)
features <> Feature (0..*)

}

class DataType : Type {}

abstract class Feature : NamedElement {
lowerBound :: Integer (1..1)
upperBound :: Integer (1..1)
type -> Type (1..1)

}

class Attribute : Feature {
isId :: Boolean (1..1)

}

class Reference : Feature {
isComposite :: Boolean (1..1)
opposite -> Reference

}

Fig. 2. Metamodeling formalism providing core metamodeling concepts

Reconstructing Complex Metamodel Evolution 205

Instance sets

N := T ∪ F (named elements)

T := Td ∪ Tc (types)

Td (data types)

Tc (classes)

F := Fa ∪ Fr (features)

Fa (attributes)

Fr (references)

Functions and predicates

name : N → String (names)

lower : F → Integer (lower bounds)

upper : F → Integer (upper bounds)

type : F → T (types)

opposite : Fr → Fr (opposite references)

abstract : Tc (abstract classes)

id : Fa (identifying attributes)

composite : Fr (composite references)

Instance subsets

Cp(c) (parents)

Cc(c) :=
{
c′ ∈ Tc

∣
∣ c ∈ Cp(c

′)
}

(children)

Ca(c) := Cp(c) ∪
⋃

c′∈Cp(c)

Ca(c
′) (ancestors)

Cd(c) := Cc(c) ∪
⋃

c′∈Cc(c)

Cd(c
′) (descendants)

Ch(c) := Ca(c) ∪ Cd(c) ∪ {c} (type hierarchy)

F (c) (defined features)

Fi(c) := F (c) ∪
⋃

c′∈Ca(c)

F (c
′
) (defined and inherited features)

Fa(c) := Fa ∩ F (c) (attributes)

Fr(c) := Fr ∩ F (c) (references)

Lookup functions

〈cn〉 :=

{
c if c ∈ Tc ∧ name(c) = cn

⊥ else
〈cn.fn〉 :=

{
f if f ∈ F (〈cn〉) ∧ name(f) = fn

⊥ else

Fig. 3. Formal representation of metamodels in terms of sets, functions, and predicates

In terms of these subsets, we define other interesting subsets, e.g., children, ancestors
and descendants of c in the middle part. Typically, we refer to a class c by its name cn
and to a feature f of class c by cn .fn where cn and fn are the names of c and f , respec-
tively. To access classes and features referred by name, we define lookup functions in
the last box. The formalization so far also captures invalid metamodels, such as meta-
models with duplicate class names, or cycles in an inheritance hierarchy. Therefore, we
define metamodel validity by a number of invariants in Figure 4.

Difference Models. Difference-based approaches to coupled evolution use a declar-
ative evolution specification, generally referred to as the difference model [3,9]. This
difference model can be mapped automatically onto a model migration. With an au-
tomated detection of the difference model, the process can be completely automated.
Matching algorithms provide such a detection [17,7,5,15,30,1].

In this paper, we do not rely on a particular matching algorithm and abstract over
concrete representations of difference models. We model the difference between an
original metamodel mo and an evolved version me as a set Δ(mo,me). The elements

206 S.D. Vermolen, G. Wachsmuth, and E. Visser

Metamodel validity � m

∀c, c′ ∈ Tc : name(c) = name(c
′
) ⇒ c = c

′ (unique class names)

∀c ∈ Tc : ∀f, f ′ ∈ Fi(c) : name(f) = name(f ′) ⇒ f = f ′ (unique feature names)

∀c ∈ Tc : c �∈ Ca(c) (non-cyclic inheritance)

∀f ∈ F : lower(f) ≤b upper(f) ∧ upper(f) >b 0 (correct bounds)

∀f ∈ Fa : type(f) ∈ Td (well-typed attributes)

∀f ∈ Fr : type(f) ∈ Tc (well-typed references)

∀f, f ′ ∈ Fr : opposite(f) = f
′ ⇔ opposite(f

′
) = f (inverse reflectivity)

Difference model validity � Δ(mo,me)

� mo∧ � me (source and target validity)

∀δ, δ′ ∈ Δ(mo,me) : t(δ) = t(δ′) �=⊥⇒ s(δ) = s(δ′) (unique sources)

∀δ, δ′ ∈ Δ(mo,me) : s(δ) = s(δ
′
) �=⊥⇒ t(δ) = t(δ

′
) (unique targets)

∀δ, δ′ ∈ Δ(mo,me) : s(δ) ∈ F (s(δ′)) ∧ t(δ) �=⊥⇒ t(δ) ∈ F (t(δ′)) (non-moving features)

Evolution trace validity mo,me � O1 . . . On

� mo (source validity)

∀i ∈ 1, . . . , n : � O1 ◦ · · · ◦ Oi(mo) (valid applications)

O1 ◦ · · · ◦ On(mo) = me (target validity)

Fig. 4. Validity of metamodels, difference models, and evolution traces

of this set are three different kinds of changes [26,3]: Additive changes ⊥→ e, where
the evolved metamodel contains an element e which was not present in the original
metamodel. Subtractive changes e →⊥, where the evolved metamodel misses an el-
ement e which was present in the original metamodel. Updative changes, where the
evolved metamodel contains an element e′ which corresponds to an element e in the
original metamodel and the value of a metafeature of e′ is different from the value in

e. We distinguish three kinds of updates: Additions e
+mf−−−→
v

e′, where the multi-valued

metafeature mf of e′ has an additional value v which was not present in e. Removals

e
−mf−−−→
v

e′, where the multi-valued metafeature mf of e′ is missing a value v which was

present in e. Substitutions e
mf−−→ e′, where the single-valued metafeature mf of e′ has

a new value which is different from the value in e. A complete list of possible meta-
model changes with respect to our metamodeling formalism is given in the left column
of Figure 5.

For validity of difference models, we have three requirements: First, the original and
evolved metamodel need to be valid. Second, two changes should not link the same
source element with different target elements or the same target element with different
source elements. Element merges and splits are represented as separate additions and
removals and will be reconstructed during detection. Third, we expect changing features
not to move between classes, i.e., the class containing a changed feature should be the
same or a changed version of the class containing the original feature. We define these
requirements formally in Figure 4. Note that s(δ) yields the source element of a change
(left-hand side of an arrow) while t(δ) gives the target element (right-hand side).

Reconstructing Complex Metamodel Evolution 207

Evolution Traces. Operator-based approaches to coupled evolution provide a rich
set of coupled operators which work at the metamodel level as well as at the model
level [29,11]. At the metamodel level, a coupled operator defines a metamodel transfor-
mation capturing a common evolution step. At the model level, it defines a model trans-
formation capturing the corresponding migration. Following the terminology from [13],
we differentiate between primitive and complex operators. Primitive operators perform
an atomic metamodel evolution step that can not be further subdivided. A list of prim-
itive operators which is complete with respect to our metamodeling formalism is given
in the left column of Figure 7. Complex operators can be decomposed into a sequence
of primitive operators which has the same effect at the metamodel level but typically not
at the model level. For example, a feature pull-up can be decomposed into feature dele-
tions in the subclasses followed by a feature creation in the parent class. At the model
level, the feature deletions cause the deletion of values in instances of the subclasses
while the feature creation requires the introduction of default values in instances of the
parent class. Thus, values for the feature in instances of the subclasses are replaced by
default values. This is not an appropriate migration for a feature pull-up which instead
requires the preservation of values in instances of the subclasses. We will define only a
few complex operators in this paper. For an extensive catalog of operators, see [13].

Each operator has a number of formal parameters like class and feature names. In-
stantiating these parameters with actual arguments results in an operator instance O.
This notation hides the actual arguments but is sufficient for this paper. We can now
model the evolution of a metamodel as a sequence of such operator instances O1 . . . On.
We call this sequence an evolution trace. We distinguish primitive traces of only primi-
tive operator instances from complex traces. There are three requirements for the valid-
ity of an evolution trace with respect to the original and the evolved metamodel. First,
we require the original metamodel to be valid. Second, each operator instance should be
applicable to the result of its predecessors and should yield a valid metamodel. Third,
applying the complete trace should result in the evolved metamodel. Again, we capture
these requirements formally in Figure 4.

3 Reconstructing Primitive Evolution Traces

This section shows how to reconstruct a correctly ordered, valid evolution trace from a
difference model. First, we provide a mapping from metamodel changes to sequences of
primitive operator instances. Second, we define a dependency relation between operator
instances based on preconditions of these instances. This allows us to order primitive
evolution traces on dependency resulting in valid primitive evolution traces.

Mapping. The mapping of changes onto sequences of operator instances is presented
in Figure 5. The left column shows the different metamodel changes. The right column
shows the corresponding operator instances. The middle column shows conditions to
select the right mapping and to instantiate parameters correctly. Note that we omit con-
ditions of the form xn = name(x). We assume such conditions implicitly whenever
there is a pair of variables x and xn . This way, cn refers to the name of a class c, fn to
the name of a feature f , and tn to the name of a type t. Figure 6 (left) shows the result
of the mapping applied to the example difference model from Figure 1.

208 S.D. Vermolen, G. Wachsmuth, and E. Visser

Dependencies between Operator Instances. Despite the atomicity of primitive oper-
ators, not all primitive evolution traces can be completely executed. Reconsider the left
trace in Figure 6. Step 5 creates a reference to TagEvent at a point where no class
TagEvent exists. Similarly, step 8 references a non-existent class Tag and step 24 at-
tempts to create an inheritance chain with duplicate feature names. Operator instances
cannot be applied to all metamodels: Features can only be created in classes that exist,
classes can only be created if no equivalently named class is present and a class can
only be dropped if it is not in use anywhere else. These restrictions either come directly
from the meta-metamodel or from the invariants for valid metamodels. We can translate
these restrictions into preconditions. An operator precondition Opre(m) ensures that
an operator instance O can be applied to a metamodel m and that the application on a
valid m yields again a valid metamodel. Figures 7 and 8 give a complete overview of
the preconditions for primitive operators.

One condition for the validity of a trace of operators is the validity of each inter-
mediate metamodel. Since succeeding operator preconditions ensure this validity, we
can redefine trace validity in terms of preconditions:

Evolution trace validity mo,me � O1 . . . On

O1,pre(mo) ∧ ∀i∈2..n : Oi,pre((O1 ◦ · · · ◦ Oi−1)(m)) (valid applications)

Applying operator instances enables or disables other operator instances. For exam-
ple, the creation of a class c can enable the creation of a feature c.f . The class creation
operator validates parts of the precondition of the feature creation operator. To model
the effect of an operator instance on conditions, we use a backward transformation de-
scription as introduced by Kniesel and Koch [14]. A backward description Obd is a
function that, given a condition C to be checked after applying an operator instance O,
computes a semantically equivalent condition that can be checked before applying O:
Obd(C)(m) ⇔ C(O(m)). We define backward description functions for the primitive
operators based on the postconditions specified in Figures 7 and 8: A backward descrip-
tion rewrites any clause in a condition C with true, when it is implied by the operator
postcondition. Using these backward description functions, we can define enabling and
disabling operator instances as dependencies: Operator instance O2 depends on opera-
tor instance O1, if the backward description of operator O1 changes the precondition of
O2. Typically, operator instances are dependent if they affect or target the same meta-
model element. Examples are creation and deletion of the same class, creation of a class
and addition of a feature to this class, and creation of a class and of a reference to this
class.

Dependency Ordering. To ensure trace validity, we need to ensure that the precon-
ditions of all operator instances are enabled and thus all dependencies are satisfied.
The dependency relation between operator instances is a partial order on these in-
stances. To establish validity, we apply the partial dependency order to the trace and
make the ordering complete by arbitrarily ordering independent operator instances.
Figure 6 (right) shows the dependency-ordered trace of primitive operators for the run-
ning example.

Reconstructing Complex Metamodel Evolution 209

Metamodel Difference Conditions Primitive Operator Instances

⊥→ c
c ∈ Tc create class cn
abstract(c) [make cn abstract]
Cp(c) = {sc1, . . . , sck} [add super scn1 to cn

.

.

.
add super scnk to cn]

c →⊥ c ∈ Tc drop class cn

e
name−−−→ e′

e ∈ Tc rename en to en′

e ∈ F (c) rename cn.en to en′

c
isAbstract−−−−−−→ c′

¬abstract(c) make cn abstract

abstract(c) drop cn abstract

c
+superTypes−−−−−−−−→

sc
c′ add super scn to cn

c
−superTypes−−−−−−−−→

sc
c′ drop super scn from cn

⊥→ f

f ∈ Fa(c) ∧ t = type(f) create feature cn.fn :: tn
l = lower(f) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn.fn to u]
id(f) [make cn.fn identifier]

f ∈ Fr(c) ∧ t = type(f) create feature cn.fn -> tn
l = lower(f) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(f) ∧ u >b 1 [generalize upper cn.fn to u]
composite(f) [make cn.fn composite]
f ′ = opposite(f) [make cn.fn inverse fn ′]

f →⊥ f ∈ F (c) drop feature cn.fn

f
lowerBound−−−−−−−→ f ′ l = lower(f ′) ∧ l <b lower(f) generalize lower cn.fn to l

l = lower(f ′) ∧ l >b lower(f) specialize lower cn.fn to l

f
upperBound−−−−−−−→ f ′ u = upper(f ′) ∧ u >b upper(f) generalize upper cn.fn to u

u = upper(f ′) ∧ u <b upper(f) specialize upper cn.fn to u

f
type−−→ f ′

f ∈ F (c) drop feature cn.fn
f ′ ∈ Fa(c

′) ∧ t = type(f ′) create feature cn ′.fn ′ :: tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn ′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn ′ to u]
id(f ′) [make cn′.fn ′ identifier]

f ∈ F (c) drop feature cn.fn
f ′ ∈ Fr(c

′) ∧ t = type(f ′) create feature cn ′.fn ′ -> tn
l = lower(f ′) ∧ l >b 0 [specialize lower cn′.fn ′ to l]
u = upper(f ′) ∧ u >b 1 [generalize upper cn′.fn ′ to u]
composite(f ′) [make cn′.fn ′ composite]
f ′′ = opposite(f ′) [make cn′.fn ′ inverse fn ′′]

f
isId−−→ f ′ ¬id(f) make cn.fn identifier

id(f) drop cn.fn identifier

f
isComposite−−−−−−−→ f ′ ¬composite(f) make cn.fn composite

composite(f) drop cn.fn composite

f
opposite−−−−−→ f ′ f ′ ∈ Fr(c) ∧ f ′′ = opposite(f ′) �= ⊥ make cn.fn′ inverse fn ′′

f ′ ∈ Fr(c) ∧ opposite(f ′) = ⊥ drop cn.fn′ inverse

Fig. 5. Possible metamodel changes and corresponding sequences of primitive operator instances

210 S.D. Vermolen, G. Wachsmuth, and E. Visser

1 create feature Issue.log <> Event
2 generalize upper Issue.log to -1
3 make Issue.log composite
4 make Issue.log inverse Event.issue
5 create feature Project.log

<> TagEvent
6 generalize upper Project.log to -1
7 make Project.log composite
8 create feature Project.tags <> Tag
9 generalize upper Project.tags to -1
10 make Project.tags composite
11 add super TagEvent to TagAddition
12 drop feature TagAddition.issue
13 drop feature TagAddition.tag
14 drop feature TagAddition.timestamp
15 add super TagEvent to TagRemoval
16 drop feature TagRemoval.issue
17 drop feature TagRemoval.tag
18 create class Event
19 create feature Event.issue -> Issue
20 create feature Event.time

:: DateTime
21 create feature Event.actor -> User
22 create class TagEvent : Event
23 create feature TagEvent.tag -> Tag
24 add super Event to Comment
25 drop feature Comment.issue
26 drop feature Comment.timestamp
27 drop feature Comment.author

create feature Project.tags <> Tag
generalize upper Project.tags to -1
make Project.tags composite
drop feature TagAddition.issue
drop feature TagAddition.tag
drop feature TagAddition.timestamp
drop feature TagRemoval.issue
drop feature TagRemoval.tag
create class Event
create feature Issue.log <> Event
generalize upper Issue.log to -1
make Issue.log composite
create feature Event.issue -> Issue
make Issue.log inverse Event.issue
create feature Event.time

:: DateTime
create feature Event.actor -> User
create class TagEvent : Event
create feature Project.log

<> TagEvent
generalize upper Project.log to -1
make Project.log composite
add super TagEvent to TagAddition
add super TagEvent to TagRemoval
create feature TagEvent.tag -> Tag
drop feature Comment.issue
drop feature Comment.timestamp
drop feature Comment.author
add super Event to Comment

Fig. 6. Unordered and dependency-ordered primitives mapped from the difference model

Primitive Operator Preconditions Postconditions

create class cn 〈cn〉 = ⊥ 〈cn〉 �= ⊥ ∧ F (〈cn〉) = ∅
¬targeted(〈cn〉) ∧ ¬abstract(〈cn〉)

drop class cn
〈cn〉 �= ⊥ ∧ F (〈cn〉) = ∅
¬targeted(〈cn〉) 〈cn〉 �= ⊥

create feature
cn.fn :: tn

〈cn〉 �= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′) �= fn

〈cn.fn〉 �= ⊥
〈cn.fn〉 ∈ Fa

create feature
cn.fn -> tn

〈cn〉, 〈tn〉 �= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′) �= fn

〈cn.fn〉 �= ⊥
〈cn.fn〉 ∈ Fr ∧ type(〈cn.fn〉) = 〈tn〉
� ∃f ′ : opposite(〈cn.fn〉) = f ′)
¬composite(〈cn.fn〉) ∧ ¬id(〈cn.fn〉)

drop feature cn.fn 〈cn.fn〉 �= ⊥ 〈cn.fn〉 = ⊥

Fig. 7. Pre- and postconditions for structural primitive operators

Reconstructing Complex Metamodel Evolution 211

Primitive Operator Preconditions Postconditions

rename class cn to cn′ 〈cn〉 �= ⊥ ∧ 〈cn′〉 = ⊥ 〈cn〉 = ⊥ ∧ 〈cn′〉 �= ⊥

rename feature cn.fn to fn′
〈cn.fn〉 �= ⊥
∀c′ ∈ Ch(〈cn〉) : ∀f ′ ∈ F (c′) :

name(f ′) �= fn ′
〈cn.fn〉 = ⊥
〈cn.fn′〉 �= ⊥

make cn abstract 〈cn〉 �= ⊥ ∧ ¬abstract(〈cn〉) abstract(〈cn〉)

drop cn abstract 〈cn〉 �= ⊥ ∧ abstract(〈cn〉) ¬abstract(〈cn〉)

add super cnsup to cnsub

〈cnsup〉, 〈cnsub〉 �= ⊥
〈cnsup〉 �∈ Ch(〈cnsub〉)
∀c ∈ Ch(〈cnsub〉) : ∀f ∈ F (c) :

〈cnsup.name(f)〉 = ⊥
〈cnsup〉 ∈ Cp(〈cnsub〉)

drop super cnsup from cnsub
〈cnsub〉, 〈cnsup〉 �= ⊥
〈cnsup〉 ∈ Cp(〈cnsub〉) 〈cnsup〉 �∈ Cp(〈cnsub〉)

generalize type cn.fn to cn′ 〈cn.fn〉 �= ⊥ ∧ 〈cn′〉 �= ⊥
〈cn′〉 ∈ Ca(〈cn〉) type(〈cn.fn〉) = 〈cn′〉.

specialize type cn.fn to cn′ 〈cn.fn〉 �= ⊥ ∧ 〈cn′〉 �= ⊥
〈cn′〉 ∈ Cd(〈cn〉) type(〈cn.fn〉) = 〈cn′〉.

generalize upper cn.fn to u
〈cn.fn〉 �= ⊥
u >B upper(〈cn.fn〉) upper(〈cn.fn〉) = u

generalize lower cn.fn to l
〈cn.fn〉 �= ⊥
l < lower(〈cn.fn〉) lower(〈cn.fn〉) = l

specialize upper cn.fn to u
〈cn.fn〉 �= ⊥
u <B upper(〈cn.fn〉)
u ≥B lower(〈cn.fn〉)

upper(〈cn.fn〉) = u

specialize lower cn.fn to l
〈cn.fn〉 �= ⊥
l > lower(〈cn.fn〉)
l ≤ upper(〈cn.fn〉)

lower(〈cn.fn〉) = l

make cn.fn inverse cn′.fn ′
〈cn.fn〉, 〈cn′.fn ′〉 �= ⊥
� ∃f : opposite(〈cn.fn〉) = f

∨opposite(〈cn′.fn ′〉) = f
opposite(〈cn.fn〉) = 〈cn′.fn′〉

drop cn.fn inverse
〈cn.fn〉 �= ⊥
∃f ′ : opposite(〈cn.fn〉) = f ′ � ∃f ′ : opposite(〈cn.fn〉) = f ′

make cn.fn identifier 〈cn.fn〉 �= ⊥ ∧ ¬id(〈cn.fn〉) id(〈cn.fn〉)

drop cn.fn identifier 〈cn.fn〉 �= ⊥ ∧ id(〈cn.fn〉) ¬id(〈cn.fn〉)

make cn.fn composite
〈cn.fn〉 �= ⊥
¬composite(〈cn.fn〉) composite(〈cn.fn〉)

drop cn.fn composite
〈cn.fn〉 �= ⊥
composite(〈cn.fn〉) ¬composite(〈cn.fn〉)

Fig. 8. Pre- and postconditions for non-structural primitive operators

212 S.D. Vermolen, G. Wachsmuth, and E. Visser

Complex Operator Conditions Equivalent Trace

pull up feature
cn.fn

Cc(〈cn〉) = {c1, . . . , ck}
〈cn1.fn〉 ≡F · · · ≡F 〈cnk.fn〉

drop feature cn1.fn
. . .

drop feature cnk.fn
t = type(〈cn1.fn〉) ∧ t ∈ Td create feature cn.fn :: tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(〈cn1.fn〉) ∧ u >b 1 [generalize upper cn.fn to u]
id(〈cn1.fn〉) [make cn.fn identifier]

Cc(〈cn〉) = {c1, . . . , ck}
〈cn1.fn〉 ≡F · · · ≡F 〈cnk.fn〉

drop feature cn1.fn
. . .

drop feature cnk.fn
t = type(〈cn1.fn〉) ∧ t ∈ Tc create feature cn.fn -> tn
l = lower(〈cn1.fn〉) ∧ l >b 0 [specialize lower cn.fn to l]
u = upper(〈cn1.fn〉) ∧ u >b 1 [generalize upper cn.fn to u]
composite(〈cn1.fn〉) [make cn.fn composite]
f ′ = opposite(〈cn1.fn〉) [make cn.fn inverse fn ′]

extract super
class cn

{fn1,. . .,fnj }
from cn1,. . .,cnk

true create class cn
add super cn to cn1

. . .
add super cn to cnk

pull up feature cn.fn1
. . .

pull up feature cn.fnj

fold super class
cn from cn′

Fi(〈cn〉) = {f1, . . . , fk}
∀i = 1 . . . k : 〈cn′.fni〉 ≡F fi

drop feature cn′.fn1
. . .

drop feature cn′.fnk

add super cn to cn′

Fig. 9. (De-)Composition patterns for complex operators

4 Reconstructing Complex Evolution Traces

This section shows how to reconstruct valid complex evolution traces from valid prim-
itive traces. First, we provide patterns for mapping sequences of primitive operator in-
stances to complex operator instances. Second, we discuss how to reorder evolution
traces without breaking their validity. This allows us to reorder traces into different nor-
mal forms in which the patterns can be detected easily and be replaced by complex
operator instances.

Patterns. A complex operator instance comprises a sequence of (less-complex) op-
erator instances. We can use patterns on these sequences to detect complex operator
instances. Figure 9 lists the decompositions and conditions for two complex operators
working across inheritance. When read from left to right, it shows how to decompose a
complex operator instance, when read from right to left, it defines its detection pattern.
Given a source metamodel m, we can recursively decompose an operator instance O
into a sequence of primitive operator instances �Om = P1 . . . Pn. As a precondition,
a complex operator instance needs to fulfill the backward descriptions of the precon-
ditions of these primitives. But typically this is not enough and an operator instance
requires additional preconditions.We highlight these additional preconditions with a
box in Figure 9.

Reconstructing Complex Metamodel Evolution 213

1 create class Event
2 create feature Event.timestamp

:: DateTime
3 create feature Event.actor -> User
4 drop feature Comment.timestamp
5 drop feature Comment.actor
6 add super Event to Comment

1 create class Event
6 add super Event to Comment
5 drop feature Comment.actor
3 create feature Event.actor -> User
4 drop feature Comment.timestamp
2 create feature Event.timestamp

:: DateTime

Fig. 10. Excerpt of dependency-ordered operators in Figure 6

Reordering traces. Figure 10 shows an excerpt of Figure 6. It displays the extraction
of super class Event from class Comment. Operator ordering is still determined by the
dependency ordering from the previous section. To simplify the example, we changed
the operator on Comment.author to work on Comment.actor . We will look at
author and the complete trace in the next section. Consider applying the patterns from
Figure 9. There is no consecutive sequence of operator instances satisfying any of the
patterns. We could detect pulling up feature timestamp in instances 2 and 4, yet where
do we put the detected complex operator: at position 2 or at position 4?

Detection patterns typically cannot be applied directly. Instead, traces need to be
reordered to find consecutive instances of a pattern. Dependency ordering is partial
and therefore leaves room for swapping independent operators. In the example, we can
swap 2 and 3 as they work on different features; 2 and 4 as they work on different types;
2 and 5 which also work on different types; 4 and 5 which work on different features;
3 and 5, which work on different types; and finally, we can repeatedly swap 6 to follow
operator 1, as all features that are created are dropped from the inheritance chain first.
The reordered trace is shown at the right of Figure 10. We can now apply the patterns for
pulling up timestamp and actor. Subsequently, we see the pattern for class extraction
emerge, which yields a super class extraction of Event {timestamp, actor} from
Comment and TagEvent.

Normal forms. In the example, we carefully swapped operators. Not only did we avoid
swapping dependent operators (as to preserve trace validity), we also chose swaps,
which gave us a detectable pattern. In particular, we focused on obtaining a consec-
utive feature creation and drop, of features that only differ in position in the inheritance
chain. A set of swap rules can bring an evolution trace into a format most suitable
for detecting a pattern. In general, these rules obey the dependency relation. However,
some dependent instances can still be swapped by adjusting their parameters. For ex-
ample, rename class A to B and create feature B.f. . . can be swapped to:
create feature A.f. . . and rename class A to B .

Repeated application of a set of swap rules will result in a normal form defined by
this set. Each normal form targets to bring potential components of a pattern together
and to satisfy the operator precondition. For example, to detect a feature pull up, we
rely on feature similarity: Class creations and super additions get precedence over other
operators. Feature creations, changes, and drops are sorted on feature name, type, and
modifiers. Class drops and destructive updates on the inheritance chain go last. Dif-
ferent patterns need different trace characteristics and thus different normal forms. But
operators with similar kinds of patterns can share normal forms.

214 S.D. Vermolen, G. Wachsmuth, and E. Visser

5 Reconstructing Masked Operator Instances

In this section, we extend the detection to deal not only with complete but also partial
patterns. First, we revisit the problem of operator interference and study its effects on
detection. Second, we show how to complete partial patterns by the additions of opera-
tor instances in a validity preserving fashion. This allows us to detect operator instances
which patterns are partially or even completely hidden by other instances.

Masked Operators. We reconsider the running example from Figure 1. During evolu-
tion, several features of the classes TagAddition and TagRemoval were extracted
into a new super class TagEvent . In order to extract the feature timestamp it needs
to be present in both TagAddition and TagRemoval . Yet, it is not. As a human, we
deduce that timestamp must have been added in the process of extracting TagEvent.
There is, however, no explicit record of such feature creation. Detection will therefore
fail. Later in the evolution, when extracting the class Event , we seek to pull up a
feature actor . The class Comment , which we are extracting from, only offers a fea-
ture author. Again as a human, we assume that author must have been renamed
to actor (like we did in the previous section), yet this operation is not present in the
original evolution trace. Similarly, we have to create the feature actor in TagEvent

before extracting Event and rename the feature timestamp to time after extracting
Event to yield the target metamodel. Each of these operations has no record in the
difference set obtained from the matching algorithm.

When evolutions become more complex, individual evolution steps no longer need
to have an explicit effect on the target metamodel and are therefore not explicit in the
matching result. An operator instance can hide or even undo parts of the effect of an-
other instance. This is a strong variant of dependency, which we call masking. A primi-
tive operator P1 masks another primitive operator P2 when composition of the two can
be captured in a third primitive operator P3. More generally, we define masking for
arbitrary operator instances as the presence of a mask in decompositions:

P1 masksm P2 ⇔ ∃P3 : (P1 ◦ P2)(m) = P3(m)

O1 masksm O2 ⇔ ∃P1 ∈ �O1m : ∃P2 ∈ �O2m : P1 masks P2

Most operators can be masked by renaming. All operators are masked by their inverses,
in which case P3 is the identity operator. Extraction of class TagEvent in the running
example masks extraction of class Event . Note that a trace obtained from a valid
difference model will only contain masks that involve complex operators.

Masked Detection Rules. Detection of masked operator instances follows a trace
rewriting approach similar to the original detection of complex operator instances: We
try to rewrite a sequence of operator instances into another sequence which has the same
effect on the metamodel. Instead of checking the operator precondition in a pattern, like
we did in the previous section, we now ensure the precondition by deducing a suitable
sequence to rewrite to. We now discuss how to derive a detection rule for a masked
complex operator instance, e.g., for pulling up an attribute cnsup.fn . Its decomposition
is the following:

Reconstructing Complex Metamodel Evolution 215

drop feature cnsub1.fn
. . .
drop feature cnsubi.fn
create feature cnsup.fn

[specialize lower cnsup.fn to l]
[generalize upper cnsup.fn to u]
[make cn.fn identifier]

From the decomposition we choose a trigger, which tells us that there may have been
a feature pull up. We choose one of the feature drops (number x). We use the trigger as
a pattern on the left-hand side of a rewrite rule and assume on the right-hand side that
there must have been a feature pull up:

drop feature cnsubx.fn -> . . . pull up feature cnsup.fn . . .

When the dots are left blank, application of the left-hand side to a metamodel does
not have an equivalent effect as application of the right-hand side. Instead, we fill the
dots, to establish equivalence. The left set of dots ensures that the pull up feature oper-
ator can be applied, i.e., its precondition is satisfied. The right set of dots ensures that
application of the trace is equivalent to application of the left-hand side of the rewrite
rule. Both sets of dots are filled in using inverses of the operators found in the pattern.
The left set of dots is replaced by inverses of each of the primitive operators whose pre-
condition is not already satisfied. For pull up feature, we create features in all sibling
classes if they do not exist yet and remove the target feature if it already exists. The right
set of dots is replaced by inverses that neutralize the effect of the complex operator and
bring the metamodel back to its original state. For pull up feature, we need to create
all sibling features, which were present beforehand, as these were deleted during pull
up and we need to drop the target feature if it was not present beforehand. The rewrite
rule for detecting a masked feature pull up is (leaving out the operations on feature
modifiers, for simplicity):

drop feature cnsubx.fn ->

create feature cnsibn1.fn
. . .
create feature cnsibnj.fn
[drop feature cnsup.fn]
pull up feature cnsup.fn
create feature cnsibe1.fn
. . .
create feature cnsibek.fn
[drop feature cnsup.fn]

In which cnsup is chosen arbitrarily from Cp(〈cnsubx〉), cnsibn is the set of all
sibling classes which do not have a feature named fn and thus need to obtain the feature
to pull it up. cnsibe is the set of all sibling classes which do have a feature named fn and
thus need to be reequipped with fn to neutralize the effect of pulling it up. The feature
drops are conditional. The first drop should be present if 〈cnsup .fn〉 �= ⊥ and the latter
should be present if 〈cnsup .fn〉 = ⊥. In addition to the pattern on the left-hand side of a
rewrite rule for a masked complex operator O, a rewrite rule is also conditioned by the
operator’s precondition Ocpre. It is checked in addition to the trigger. For feature pull
up, the operator precondition Ocpre ensures presence of an inheritance chain between
cnsub and cnsup . The metamodel invariants ensure feature names uniqueness across
inheritance. The precondition of the trigger ensures fn exists in cnsub . Therefore, fn
cannot exist in cnsup . The rewrite rule for feature pull up can thus be simplified by
removing the top drop feature and always using the bottom drop feature.

Using the presented approach, we can derive masked detection rules for any complex
operator. By definition, such rules expand the trace. To find a suitable evolution, we

216 S.D. Vermolen, G. Wachsmuth, and E. Visser

1 drop feature TagAddition.issue -> pull up feature TagEvent.issue
drop feature TagEvent.issue
create feature TagRemoval.issue

2 create feature TagRemoval.issue -> identity
drop feature TagRemoval.issue

3 create feature TagEvent.tag -> Tag -> pull up feature TagEvent.tag
drop feature TagAddition.tag create feature TagRemoval.timestamp
drop feature TagAddition.timestamp pull up feature TagEvent.timestamp
drop feature TagRemoval.tag drop feature TagEvent.timestamp

4 pull up feature TagEvent.issue -> drop class TagEvent
drop super TagEvent from TagAddition
drop super TagEvent from TagRemoval
extract super TagEvent

{issue, tag, timestamp}
from {TagAddition, TagRemoval}

push down feature TagEvent.tag
push down feature TagEvent.timestamp

Fig. 11. Masked detection applied to running example

need to compact the trace again. First, we can rewrite any pair of inverse operators
to the identity function, as their effect on the metamodel is canceled out and they are
unlikely to have been part of the original evolution. Second, we combine a creation and
deletion of two features, which only differ by name into a feature rename. This allows
us to detect complex operators, which are masked by a rename, such as a pull up of
feature f , followed by a rename of f to f ′. Combining rules for inverses requires a
normal form grouping on operator category and the renaming rule requires a normal
form on feature similarity.

Applying Masked Detection Rules. We apply masked detection rules to the running
example. Figure 11 shows the intermediate steps. Step 1 applies feature pull up de-
tection to TagAddition.issue . After normalizing the trace, we apply an inverse
pattern to creation and drop of TagRemoval.issue and reduce the trace (step 2).
TagEvent.issue is not reduced yet. It will be used later as a component of extracting
class Event. Next, we repeat steps 1 and 2 by pulling up tag and timestamp (step 3).
Subsequently, the pull up of TagEvent.issue triggers detection of super class ex-
traction of TagEvent in step 4. The drop class, both super drops, and both feature
push downs are subsequently neutralized by a class creation, super additions, and pull
ups respectively. We then repeat detection of super class extraction for Event , using
the rename pattern to neutralize create and drops of timestamp and time as well as
author and actor . Finally, we get the result shown in Figure 1 (bottom).

All regular rewrite rules, which we defined in the previous section, reduced the num-
ber of operators in the trace. Furthermore, we did not consider overlapping (interfering)
complex operators. These two assumptions enabled fast detection. The rules for detect-
ing masked operators, on the other hand, can increase the size of the trace. For exam-
ple, the feature pull up pattern increases the trace by the number of occurrences of this
feature in sibling classes plus one (for dropping the pulled up feature). Furthermore,
for each trace, several rules may be applicable at different positions in the trace. To find

Reconstructing Complex Metamodel Evolution 217

a solution, we therefore use a backtracking approach. Each backtracking step tries to
apply each of the rules to a trace, yielding zero or more new traces, to which rule
application is applied recursively.

6 Related Work

Research on difference detection is found in differencing textual documents, matching
structured artifacts, and detection of complex evolution. Text differencing is ignorant of
structure or semantics. We discuss related work on matching and complex detection.

Matching. A matching algorithm detects evolution between two artifacts by linking
elements of one artifact to elements of the other. Links are either established based on
similarity, or using an origin tracking technique such as persistent identifiers. Links are
concerned with one element in each artifact. Consequently, matching approaches detect
atomic changes. They do not offer support for detecting complex changes. Nevertheless,
we discuss them as potential input to our approach. Matching has received attention in
the domains of UML, source code reorganization, database schemas and metamodels.

In the domain of UML, Ohst et al. first proposed a solution to compare two UML
documents [19]. They compare XML files and use persistent ids for matching. Later
work by Xing and Stroulia presents UMLDiff, a matching tool set using similarity met-
rics instead of persistent ids to establish links [30]. Lin et al. propose a generalization of
the work of Xing and Stroulia, which is not restricted to UML models, but uses domain
specific models as input instead [16].

In the domain of source code reorganization, Demeyer et al. proposes to find refac-
torings using change metrics [6]. Later work by Tu and Godfrey uses statistical data and
metrics to match evolved software architectures, a process referred to as origin analysis
[25].The work on evolving architectures is extended by Godfrey and Zou, by adding
detection of merged and split source code entities [10]. In schema matching, a body of
work exists, which generally offers a basis for the other works presented in this section.
Rahm et al. and later Shvaiko et al. present surveys on schema matching [20,21]. Sun
and Rose present a study of schema matching techniques [24].

Lopes et al. consider schema matching applied in the context of model-driven engi-
neering, but propose a new matching algorithm for models [17]. Instead, Falleri et al.
take the existing similarity flooding algorithm from the field of schema matching and
apply it to metamodels [7]. Work by DelFabro et al. [5] and by Kolovos et al. [15] pro-
pose new matching algorithms to the modeling domain. Finally, EMFCompare offers
metamodel independent model comparison in the Eclipse Modeling Framework [1]. It
relies on heuristic-based matching and differencing, which are both pluggable.

Complex Detection. Detection of complex operators has received significantly less
attention in research than matching. Cicchetti et al. discuss an approach for model mi-
gration along complex metamodel evolution [3]. They obtain the complex evolution
from an arbitrary matching algorithm, but do not offer such an algorithm on their own.
Instead, they emphasize the need for a matching algorithm able to detect complex evo-
lution. Our approach fulfills this need. Later work of Cicchetti addresses the problem of

218 S.D. Vermolen, G. Wachsmuth, and E. Visser

dependencies between evolution steps [4]. Since their work focuses only on dependency
ordering but not on complex operator detection, they specify operator dependency only
statically in terms of the metamodeling formalism. This is too restrictive for the detec-
tion of complex operators since it limits possible reorderings dramatically. By defining
dependency only in the context of an actual metamodel, our approach enables reorder-
ing into various normal forms which allow for the detection of complex operators.

Garcès et al. present an approach to automatically derive a model migration from
metamodel differences [9]. The difference computation uses heuristics to detect also
complex changes. Each heuristic refines the matching model, and is implemented by a
model transformation in ATL. The transformation rules for detecting complex changes
are similar to the patterns presented in Section 4. Yet, the approach does not cover
operator dependencies, was not able to detect complex changes in a Java case study,
and does not address operator masking.

7 Discussion

Metamodeling Formalism. In this paper, we focus only on core metamodeling
constructs that are most interesting for coupled evolution of metamodels and models.
Concrete metamodeling formalisms like Ecore [23] or MOF [18] provide additional
metamodeling constructs like packages, interfaces, operations, derived features, volatile
features, or annotations. Since our approach allows for extension, we can add support
for these constructs. Therefore, we need to provide additional primitive operators, de-
fine their preconditions, extend existing preconditions with respect to new invariants,
derive additional complex operators, and define detection patterns for them.

Implementation. We implemented our approach prototypically in Acoda1, a data
model evolution tool for WebDSL [28], which is a DSL for web applications. Acoda
offers an Eclipse plugin to seamlessly integrate into regular development. The plugin
provides editor support for evolution traces (such as syntax highlighting, instant er-
ror marking and content completion), generation of SQL migration code, application of
migrations to a database, and the evolution detection presented in this paper. The imple-
mentation uses an existing data model matching algorithm. We relied on rewrite rules
in Stratego [27] to specify each step of the reconstruction algorithm, i.e., mapping data
model changes to primitive operators, dependency ordering, normal form rewriting,
complex operator detection, and masked operator detection. Acoda presents different
evolution traces to the user, who can select and potentially modify the best match.

Trace Selection. Involving the user in the selection process prevents complete au-
tomation, but with a rich set of supported coupled operators, detection is likely to yield
several suitable traces. Only the user can decide which migration is correct. We can as-
sist this decision by presenting migrations of example models. Conversely, the user can
assist the detection by giving examples for original and migrated models. The detection
can then drop all traces which cannot reproduce the examples. Additionally, the user
may choose to only consider information-preserving traces, thereby narrowing down
the set of suitable traces.

1 http://swerl.tudelft.nl/bin/view/Acoda

Reconstructing Complex Metamodel Evolution 219

Completeness. The set of primitive operators guarantees completeness at the meta-
model level as it allows us to evolve any source metamodel to any target metamodel.
Completeness at the model level is not feasible since it would imply that we can detect
any model transformation between the instances of two arbitrary metamodels. Though,
we can add more complex coupled operators to our detection. This increases the search
space for both the user and for the detection. As for the user, we have a tradeoff between
completeness and usability. There will be many similar operators with minor differ-
ences in their migration. Understanding and distinguishing operators becomes harder.
In a number of real-life case studies, we identified the most common operators [13].
We propose to support only the detection of these operators and to leave rare cases to
the user. As for the detection, supporting more complex operators increases the search
space and we have a tradeoff between completeness and performance.

Performance. Besides the number of supported complex operators, detection perfor-
mance is influenced by evolution size and mask depth, but not by metamodel size,
which only affects the matching process. The GMF case study [12] showed us that a
larger distance between original and evolved metamodel reduces the matching algo-
rithm precision, making it more unlikely to still detect a good evolution trace. On the
other hand, we found that an evolution between two commits to the repository could
mostly be captured by 20 evolution steps. A preliminary case study of Acoda on part
of the evolution of Researchr2, a publication management system, showed the appli-
cability of detection. Traces in Researchr between subsequent repository commits are
short, hence we applied the detection to steps of ten subsequent commits, which yields
traces up to 52 steps in length. A detection run generally takes several seconds and is
significantly shortened when reducing the number of commits considered in a single
detection run.

Acknowledgments. This research was supported by NWO/JACQUARD project
638.001.610, MoDSE: Model-Driven Software Evolution.

References

1. Brun, C., Pierantonio, A.: Model differences in the eclipse modelling framework. UP-
GRADE, The European Journal for the Informatics Professional (2008)

2. Casais, E.: Managing class evolution in object-oriented systems, ch. 8, pp. 201–244. Prentice
Hall International (UK) Ltd. (1995)

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: Enterprise Distributed Object Computing Conference, EDOC. IEEE
(2008)

4. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evo-
lution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg
(2009)

5. Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching transfor-
mations and weaving models. In: Proceedings of the 2007 ACM Symposium on Applied
Computing, SAC 2007, pp. 963–970. ACM (2007)

2 http://researchr.org

220 S.D. Vermolen, G. Wachsmuth, and E. Visser

6. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics. In: Pro-
ceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2000, pp. 166–177. ACM (2000)

7. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for Automatic
Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)

8. Favre, J.-M.: Languages evolve too! changing the software time scale. In: IWPSE 2005:
Eighth International Workshop on Principles of Software Evolution, pp. 33–42. IEEE (2005)

9. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing Model Adaptation by Precise De-
tection of Metamodel Changes. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

10. Godfrey, M.W., Zou, L.: Using origin analysis to detect merging and splitting of source code
entities. IEEE Transactions on Software Engineering, 166–181 (2005)

11. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - Automating Coupled Evolution of
Metamodels and Models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
52–76. Springer, Heidelberg (2009)

12. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language Evolution in Practice: The His-
tory of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 3–22. Springer, Heidelberg (2010)

13. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An Extensive Catalog of Operators
for the Coupled Evolution of Metamodels and Models. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011)

14. Kniesel, G., Koch, H.: Static composition of refactorings. SCP 52(1-3), 9–51 (2004)
15. Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R.: Different models for model matching:

An analysis of approaches to support model differencing. In: ICSE Workshop on Comparison
and Versioning of Software Models, CVSM 2009, pp. 1–6 (May 2009)

16. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models.
European Journal of Information Systems 16(4), 349–361 (2007)

17. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context of model driven
engineering: From theory to practice. In: Advances in Systems, Computing Sciences and
Software Engineering, pp. 219–227. Springer (2006)

18. Object Management Group. Meta Object Facility (MOF) core specification version 2.0
(2006), http://www.omg.org/spec/MOF/2.0/

19. Ohst, D., Welle, M., Kelter, U.: Differences between versions of uml diagrams. In: Proc. of
the 9th European Software Engineering Conference, ESEC/FSE, pp. 227–236. ACM (2003)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4), 334–350 (2001)

21. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Spaccapietra,
S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg
(2005)

22. Sprinkle, J.M.: Metamodel driven model migration. PhD thesis, Vanderbilt University (2003)
23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework

2.0. Addison-Wesley (2009)
24. Sun, X.L., Rose, E.: Automated schema matching techniques: An exploratory study. Re-

search Letters in the Information and Mathematical Science 4, 113–136 (2003)
25. Tu, Q., Godfrey, M.: An integrated approach for studying architectural evolution. In: 10th

International Workshop on Program Comprehension, pp. 127–136 (2002)
26. Vermolen, S.D., Visser, E.: Heterogeneous Coupled Evolution of Software Languages. In:

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

http://www.omg.org/spec/MOF/2.0/

Reconstructing Complex Metamodel Evolution 221

27. Visser, E.: Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems
in StrategoXT-0.9. In: Lengauer, C., Batory, D., Blum, A., Vetta, A. (eds.) Domain-Specific
Program Generation. LNCS, vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

28. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Läm-
mel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer,
Heidelberg (2008)

29. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

30. Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differencing. In: Pro-
ceedings of the 20th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2005, pp. 54–65. ACM (2005)

Designing Variability Modeling Languages

Krzysztof Czarnecki

University of Waterloo

Abstract. The essence of software product line engineering (SPLE) is
the process of factoring out commonalities and systematizing variabili-
ties, that is, differences, among the products in a SPL. A key discipline
in SPLE is variability modeling. It focuses on abstracting the variabil-
ity realized in the many development artifacts of an SPL, such as code,
models, and documents.

This talk will explore the design space of languages that abstract vari-
ability, from feature modeling and decision modeling to highly expressive
domain-specific languages. This design space embodies a progression of
structural complexity, from lists and trees to graphs, correlating with the
increasing closeness to implementation. I will also identify a set of basic
variability realization mechanisms. I will illustrate the variability abstrac-
tion and realization concepts using Clafer, a modeling language designed
to support these concepts using a minimal number of constructs. I will
also report on the progress towards a Common Variability Language, the
Object Management Groups effort to standardize variability modeling,
which embodies many of these concepts. I will close with an outlook on
the future research challenges in variability modeling.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, p. 222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formalizing a Domain Specific Language

Using SOS: An Industrial Case Study

Frank P.M. Stappers1, Sven Weber2, Michel A. Reniers3, Suzana Andova1,
and Istvan Nagy1,2

1 Dept. of Mathematics and Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2 Dept. for Architecture and Platform, ASML,
P.O. Box 324, NL-5500 AH Veldhoven, The Netherlands

3 Dept. of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. This paper describes the process of formalizing an existing,
industrial domain specific language (dsl) that is based on the task-
resource paradigm. Initially, the semantics of this dsl is defined infor-
mally and implicitly through an interpreter. The formalization starts by
projecting the existing concrete syntax onto a formal abstract syntax
that defines the language operators and process terms. Next, we define
the dynamic operational semantics at the level of individual syntactical
notions, using structural operational semantics (sos) as a formal meta-
language. Here, the impact of the formalization process on the dsl is
considered in terms of disambiguation of underlying (semantic) language
design decisions.

1 Introduction

Modern manufacturing systems coordinate concurrent components to success-
fully manufacture products. As a result, the governing control software has to
support complex execution, coordination and optimize scenarios.

To cope with the complexity of control software, model-driven engineering
(mde) techniques have been widely adopted over the last decade. mde treats
models as first class entities and aims at reducing development effort and lead-
time when compared to more traditional software engineering techniques. Nowa-
days, models are increasingly created using domain specific languages (dsls).
dsls are languages that define the jargon [19] of a particular class of problem
domains or set of domain aspects. Executable dsls hide software implementation
details by generating executable models or code from concrete domain models.

dsl design starts with the definition of an abstract syntax (grammar) relating
domain notions such as verb, noun and adverb. In mde this typically results in a
meta-model. For an abstract syntax, a textual or graphical concrete syntax can
be defined to create syntactically correct terms such as the sentence ‘The cow
flies red.’. Clearly, syntax (form) needs semantics (meaning) to obtain a mea-
ningful specification. Static semantics define aspects like well-formedness, typing

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 223–242, 2012.
� Springer-Verlag Berlin Heidelberg 2012

224 F.P.M. Stappers et al.

and structure of concrete models. Dynamic semantics define the model of com-
putation for the (composed) execution behavior of a dsl’s syntactical notions. In
practice, the semantics of a dsl is often defined implicitly and informally through
(i) translations to a (formal) language and/or executable language, or (ii) an en-
gine/interpreter that processes concrete domain models. Having well defined,
processable semantics should enable automated reasoning on the execution be-
havior of concrete models. However, even with explicit and formal semantics,
limited or no tool support exists for semantic mappings and automated formal
reasoning.

We propose a two-step approach that facilitates both semantic mappings and
automated formal reasoning on concrete domain models. First, we define the
semantics for the dsl’s individual syntactical components in an intermediate
formal meta-language. Second, we transform the dsl’s formal semantics, along
with a syntactic interpretation, to facilitate automated analysis [26]. Since both
steps are non-trivial, this paper focuses on the first step and illustrates that it can
uncover sub-optimal design decisions and ambiguities. Also, we illustrate how
to minimize the impact of formalization while retaining backward compatibility.
During formalization both the relational structure of domain notions and their
behavioral effect(s) are considered.We use structural operational semantics (sos)
[23] to define the effect of language terms from an operational perspective. sos is
widely applicable given its mathematical expressiveness, e.g. support for higher-
order functions and compositionality. Also, sos has been successfully used to
define the formal semantics of a wide variety of languages [2,13,27,28].

We consider the formalization of an existing, industrial dsl called Task Re-
source Control System (trecs) [29]. trecs supports the definition of predic-
tive and reactive rules to optimally allocate manufacturing activities (tasks) to
mechatronic subsystems (resources) over time while subjected to dynamic con-
straints. trecs domain models are specified using, among others, a graphical
syntax that resembles uml activity diagrams, where tasks correspond to activ-
ities. Here, tasks are executed concurrently taking conditions, predecessors and
availability of resources into account. Also, tasks are annotated with resource
usage including resource state pre- and postconditions (not discussed in this pa-
per). Since its conception, the dsl has matured in an industrial setting where
many - non-disclosed - reactive concepts like (dynamic) priorities and exceptions
have been added. Although we formalized the entire dsl, this paper discloses
only a small subset. To illustrate, we use this entire subset to model an uncon-
ventional example: a simple recipe to create the Italian dessert Tiramisu. We
refer to [12,29] for examples on the use of trecs to control wafer scanners.

The remainder of this paper is structured as follows. Section 2 discusses related
work. In Section 3 we introduce the (concrete syntax of) disclosed domain notions
using our running example:making Tiramisu.Also, we project the concrete syntax
onto a formal abstract syntax that contains the operators and process variables
used to define the formal semantics in sos. Section 4 defines the dynamic seman-
tics, which are validatedwith domain experts and language engineers.We evaluate
our approach and results in Section 5. The paper is concluded in Section 6.

Formalizing a Domain Specific Language Using SOS 225

2 Related Work

The dsl as formalized in this paper, is loosly based on the uml [24] modelling
format. As such, the formalization of uml Statechart Models [9,18], uml State
Machines [20,22], uml Sequence Diagrams [1], and uml Activity Diagrams [5]
can be considered as a starting point. Here, design constraints can be captured in
the Object Constraint Language (ocl) [7]. As dsls add domain specific notions,
the usability of these existing formal definitions can be significantly reduced
depending on the complexity and nature of the changes. In our case, the non-
disclosed changes are quite extensive and include scheduling, dispatching logic,
exception handling and more. When considering trecs as a separate language,
rather than one specialized from uml, we find many frameworks and methods
that transform dsls and/or their concrete models in such a way that formal
syntax and semantics are assigned [21].

The framework of [11] restricts modeling languages in a way that only de-
scriptions of possible domain configurations are mappable. First, domain (onto-
logical) semantics are assigned to language constructs. Second, the ontological
assumptions are identified by administering the elements of the domain and their
relationships. Third, the ontological assumptions are transferred and become the
rules that restrict the use of the language constructs and limit the statements
to the specific domain. Finally, they construct the meta-model from these rules.

A similar approach is taken by [17] where the meta-model is formalized
bottom-up. They start from a simple core that defines the syntax for a class
of dsls. Next, a relating class, i.e. transformation, is defined to relate syntac-
tic elements of one domain with elements of another. Then, a special element is
introduced that can generate all the domains for a particular class, i.e. the meta-
model. Finally, formal Horn logic [14] is added to preserve and formulate various
properties over different domains using the FORMULA [16] theorem prover. In
the work of [11,17], a meta-model is created that describes the constructs that
specify the commonalities and/or differences between dsls. Meta-models are ex-
pressed using ocl and class diagrams that define relationships [6]. Our route
is similar since we take basic notions and create a syntactical meta-model for
them. Rather than constraining class diagrams, we provide an actual model of
computation through sos. This allows us to specify the behavior mathematically
for each syntax element in isolation and provide a compositional language.

The work of [8] shows a pragmatic and instrumented approach towards pro-
viding operational semantics for dsls. First, they sketch assigning semantics in
an axiomatic, operational, or denotational (translational) manner, based on the
dsl’s taxonomy. Based on the selected adequate target language, a mapping is
provided that preserves the semantic relation. The proof for preservation is also
considered. Our approach is similar but we use operational semantics instead.
Operational semantics are preferred when considering the semantics of complex,
composed language terms. In [31] operational semantics in mde are explored for
a small academic language.

226 F.P.M. Stappers et al.

Since we demonstrate feasibility of the operational approach for a large, indus-
trial language, other aspects (like backward compatibility) need to be considered.
Our work supersedes this scope as it fits and complements both approaches.

Finally, in [10,25] different approaches are taken to assign dynamic semantics
of dsls in the context of mde. Here, dynamics are assigned through Abstract
State Machines (asms) [4], with extensions to Prolog [30] and Scheme [15]. As the
underlying semantics of asms can be formally defined in sos [27], we demonstrate
that any intermediate semantic definitions can be omitted.

3 Formalizing Domain Notions

To illustrate and discuss all disclosed features of trecs, we consider a concrete
model to create a simple Tiramisu. This is explained in detail in Section 3.1.
In Section 3.2 we project our example’s concrete syntax onto a formal abstract
syntax. We validate our formal syntax in Section 3.3.

3.1 Running Example

To create Tiramisu, we require ingredients, kitchen utensils and appliances, a
recipe and a way of working as specified in Fig. 1. In the dsl, ingredients, kitchen
utensils and appliances are called “resources”. The recipe and its sub-recipes are
called “subplans” and the individual activities in a subplan are called “tasks”.

ingredient cream topping coffee syrup assembling
milk 500 ml
white sugar 150 gram 75 gram
flour 35 gram
egg yolks 6 pcs.
dark rum 60 ml 60 ml
vanilla extract 2 teasp.
mascarpone cheese 225 gram
ladyfingers 32 pcs.
espresso 360 ml
butter 60 gr

A. Make Tiramisu

1. Make Cream Topping - see B
2. add mascarpone - using a wooden spoon, beat 225 gram mascarpone cheese in a bowl until it is soft and

smooth. Then gently whisk the mascarpone into the result from B.6 until the custard mixture is smooth.
3. mix coffee syrup - in a large shallow bowl combine 360 ml espresso, 75 grams sugar and 60 ml dark rum.
4. line loaf pan - before making layers, take a loaf pan and line it with plastic wrap and making sure that

the plastic wrap extends outside the loaf pan to allow wrapping.
5. Make Layers - see C
6. cool down cake - once all layers are made, cover the Tiramisu with plastic wrap and place it in a

refrigerator and have it cool for at least 6 hours.
7. present and serve - once the cake is cooled, remove the plastic wrap from the top and gently invert the

Tiramisu from the loaf pan to a serving plate. Remove remaining plastic wrap and serve the dessert.

– continued on next page –

Formalizing a Domain Specific Language Using SOS 227

B. Make Cream Topping

1. boil sweet milk - in a saucepan heat 430 ml milk and 100 grams sugar right up to the boiling point.
2. egg yolk mixture - meanwhile whisk 70 ml milk, 50 grams sugar, 35 grams flour and 6 egg yolks in a

heatproof bowl.
3. whisk milk & egg yolk - once the sweet milk has just come to a boil gradually whisk it into the egg yolk

mixture. Transfer this mixture into a large saucepan.
4. reduce mixture - next slowly cook the result from B.3 while stirring constantly until it comes to a boil.

Once it boils, continue to whisk the mixture constantly for another minute and let it reduce a bit.
5. enrich mixture - take the result from B.4 of the heat and strain into a large bowl. Whisk in 60 ml dark

rum, 2 teaspoons vanilla extract, and 60 grams butter. Cover the bowl with plastic wrap to prevent
crust-forming.

6. cool down topping - place the bowl in the refrigerator and let it cool down for approximately two hours.

C. Make Layers

1. 8 fingers? - ensure that we have 8 ladyfingers to create a layer.
2. dip fingers - one ladyfinger at a time, dip 8 ladyfingers into the coffee syrup from step A.3 and place

them side by side in the loaf pan.
3. cover with cream - spoon 1/4 of the custard from A.2 and completely cover the 8 ladyfingers.
4. make Layers - repeat Make Layers until no more ladyfingers are left.

Fig. 1. A recipe for a simple Tiramisu

The dsl’s activity diagram-like concrete syntax is illustrated using Fig. 2.
Fig. 2d shows resource definition through a hash-like table. An initialization
is required to execute a concrete model. We assume we Make Tiramisu only
once, using exactly those resources required. This results in an initialization of
ingredients, kitchen utensils and appliances as illustrated in Fig. 2e.

3.2 Concrete Syntax Projection

We start by identifying and projecting the most elementary notions in terms
of behavior to obtain a compositional formal syntax. If we cannot capture the
intended behavior by any of the already introduced notions, we either add new
or refine existing notions. Note that we choose a process algebra-like notation
like in [2] and reuse process algebraic operators where possible (see Section 4).

Task. A task is the smallest identifiable behavior in the system under control.
In Fig. 2a, add mascarpone and mix coffee syrup are tasks. The concrete syntax
of a task is a rounded rectangle (node) with a name label.

Decision 1. The execution of a labeled task is atomic and observable. ⊓⊔

Decision 2. In some cases we do not want observable behavior. This is shown
in Fig. 2c by a task labeled with the reserved word skip. This is represented by
a process term τ . For now, T denotes the finite set of all tasks including τ . ⊓⊔

Precedence Relation. A finish-start precedence (fs) relation can be used to
start behavior if and only if the preceding behavior has terminated successfully.

228 F.P.M. Stappers et al.

ss

Make Tiramisu

cool down cake

mix coffee syrup

Make Cream Topping

Make Layers

add mascarpone

present and serve

line loaf pan

ss

(a) Tiramisu subplan

Make Cream Topping

reduce mixture

egg yolk mixture

whisk milk & egg yolk

boil sweet milk

enrich mixture

cool down topping

ss

(b) Cream Topping subplan

8 fingers?

8 fingers?

[false] [true]

Make Layers

skip

Make Layers

dip fingers

cover with cream

<<split>>

<<merge>>

(c) Layers subplan

task consumes produces
add mascarpone wooden spoon: 1 pcs wooden spoon: 1 pcs

mascarpone: 225 gr bowl : 1 pcs
cooled topping: 1 pcs custard: 4 vol.
bowl: 1 pcs

⋮ ⋮ ⋮

(d) Resource usage

resource(s) init
milk 480 ml
sugar 225 gr

wooden spoon 1pcs
refrigerator 1 pcs

⋮ ⋮

(e) Resouce initialization

Fig. 2. Partial Tiramisu recipe in dsl’s concrete syntax

This is shown in Fig. 2a as a labelless, directed edge between cool down cake
and present and serve. A start-start precedence (ss) relation can be used to start
behavior if and only if preceding behavior has started its execution. This is
shown in Fig. 2b as a directed edge with label ss between boil sweet milk and egg
yolk mixture. In practice, such a relation could be used to the capture queued
execution of activities on mechatronic subsystems.

Decision 3. For each type of relation we introduce a dedicated operator. Let
p and q be process terms. Then a finish-start relation in the abstract syntax is
expressed by

p ⋅ q

The start-start relation in abstract syntax is expressed by

p ⌊⌊⌊ q

⊓⊔

Decision 4. Supersedes Decision 1 where tasks are considered atomic. Atomicity
implies that if p would be a single task t, we could not distinguish the behavior of
the ⌊⌊⌊ operator from that of the ⋅ operator. To make this observable, we introduce
an explicit start and finish action for all labeled tasks except τ . Let Tα be a finite
set of elements called starting tasks, i.e. the alphabet of starting tasks. Let Tω
be a finite set of elements called finishing tasks, i.e. the alphabet of finishing

Formalizing a Domain Specific Language Using SOS 229

tasks. We refine a labeled task such that tα ∈ Tα and tω ∈ Tω denote the start
respectively the finish of task t. For now, we assume that for every action tα
performed, tω will always follow eventually (see Section 4.2, Decision 18). From
this point forward, we refer to this as performing a (labeled) task t and will
denote the associated behavior by a single tα. We denote T = Tα ∪ Tω ∪ {τ},
where τ /∈ Tα ∪ Tω. ⊓⊔

Choice. The execution of behavior can be conditionally based on some decision,
as shown in Fig. 2c where decision 8 fingers? tests if we have sufficient ladyfin-
gers. The concrete syntax of a choice consists of a split diamond that is closed by
a merge diamond. The alternative conditional behavior (branches) is specified
in-between making every branch in the choice syntactically finite. Splits have a
finite number of outcomes making the number of branches n also finite. Here,
each outcome corresponds to one edge that is annotated with a squared brack-
eted outcome label. Note that for the split diamond, the incoming edges have
relevance in terms of precedence relations, for the merge diamond this holds for
the outgoing edges.

Decision 5. We map a branch i to its corresponding process term pi, and define
an operator across all branches. Now, assuming a decision function d that maps
each evaluation outcome to exactly one branch process term, we obtain

⋁d⟨p1, . . . , pn⟩

⊓⊔

Decision 6. The choice operator acts on the state of the system. This means
we require a mechanism to store the actual state. Let Λ denote the set of all
values and let V denote the set of all variables. Then Σ = V → Λ denotes the set
of all variable valuations. A variable valuation is a total function that captures
the values of the variables. Now, σ ∈ Σ denotes a variable valuation where σ
is the state vector that stores the variable valuation observed by the system’s
behavior. Now, the evaluated decision function will be of the form d ∶ Σ → N

where each valuation will correspond to exactly one branch process term. ⊓⊔

Concurrent Execution. We would like tasks to execute concurrently where
possible to e.g. maximize the output of the system under control. Execution
can be forked and merged using multiple ingoing/outgoing precedence relations,
possibly of different types. The concrete syntax captures forking [joining] concur-
rent behavior implicitly, without an explicit sync bar, through multiple outgoing
[incoming] edges as shown in Fig. 2b for example boil sweet milk. Note that -
unlike in more strictly scoped forks [joins] of activity diagrams - tasks can have
predecessors belonging to different forks [joins].

Decision 7. We duplicate task labels to force synchronization. Let p and q be
process terms. For duplicate task labels in p and q we force synchronization while
for other labels we allow full interleaving by writing

p � q

230 F.P.M. Stappers et al.

Here, only terms that occur on both sides of the operator are performed simul-
taneously. Terms that are on either one side of the operator can be executed
concurrently as long as their precedence relations are respected. The use of this
operator and the formal syntax in general are clarified using Fig. 3. ⊓⊔

Decision 8. Extends Decision 4 where task start and finish actions were implic-
itly considered to be unique. Since task labels are now duplicated, they cannot
be distinguished anymore when they are mapped from the concrete to the ab-
stract syntax. We refine the definition of labeled task t by extending its process
terms with an unique identifier i ∈ N such that tα becomes tiα and tω becomes
tiω. As diagrams are syntactically finite, the set of unique labels that needs to be
assigned is also finite. ⊓⊔

Composition. Tasks can be placed in a named group called a subplan to en-
able reuse and nesting. A subplan is represented by a square labeled box that
contains behavior in te form of labeled tasks. In Fig. 2, Make Tirasmisu, Make
Cream Topping and Make Layers are subplans. Subplans can reference subplans
(including itself). A reference is represented by a smaller square labeled box that
does not contain any modeled behavior.

Decision 9. We introduce process equations to facilitate composition. Let S
denote the set of subplan labels, disjoint from the set of task labels, i.e. S∩T = ∅.
Furthermore, we require that the process equations are orthogonal, that is, every
left-hand variable in the process equation may only be defined once. Now, let
A ∈ S describe the behavior for process term p by the equation

A ≡ p

⊓⊔

Decision 10. Extends Decision 8 as process equations may result in behavior
inside of a subplan to become potentially indistinguishable. As an example,
consider a single task label that is used and instantiated in two different subplans.
We assume P ∶ List(S) to be a list of subplan labels at which actions tiα and
tiω are execute such that during execution we observe ti,Pα and ti,Pω . Note that
considering the left-hand side of the equation as the parent node and the element
on the right as its child, we can infer a tree-like structure. Here, it must hold
that p does not contain identical subplan labels to obtain unique paths. Also,
subplan references must be uniquely distinguishable. ⊓⊔

Decision 11. To mark the initial process we introduce a special keyword init
that marks the initial process term p. We assume that every specification has
exactly one initialization, which is expressed by

init p

⊓⊔

Formalizing a Domain Specific Language Using SOS 231

Resource. A task consumes a set of resource labels when it starts its execution
and produces a set of resource labels when it finishes. Both sets can be empty. All
tasks with the same label are of the same (proto)type: they produce and consume
the exact same amount of each resource label. In the dsl, these definitions are
stored separately as shown for task add mascarpone in Table 2d. Note that some
resource labels (such as wooden spoon) are used by consuming them at the
beginning of a task and returning them at the end.

Decision 12. We assume that a task claims all required resource during its entire
execution. So, early resource release is not considered. Let R denote the finite
set of resource labels. Now, RQ ∶ Tα → (R → N) denotes the (possibly empty) set
of resources required to start execution of a task. Similarly, RP ∶ Tω → (R → N)

denotes the (possibly empty) set of resources that is produced when the execution
of a task finishes. The amount of resources that are available is denoted by
RA ∶ R → N. The resource usage is encoded in the state vector resulting in RA

as a reserved variable in σ, whereas RQ and RP are globally given. ⊓⊔

3.3 Formal Syntax Validation

At this point, domain experts and language engineers are involved to mature the
formal abstract syntax. That is, we validate the expected behavior of composed
operators based on the informal execution semantics as presented in Section 3.
For illustrative purposes we reconsider the subplans from Fig. 2 and write them
in the formal abstract syntax as shown in Fig. 3. Using our running example we
can illustrate two out of five detected ambiguities. The remaining ambiguities
concern non-disclosed parts of the language.

To illustrate the first ambiguity, we reconsider Fig. 2b and replace the sequen-
tial composition of reduce mixture (B.4) and enrich mixture (B.5) by a preemptive
sequential composition. We keep the sequential composition with Cool down top-
ping (B.6) such that we get B.4 ⌊⌊⌊B.5 ⋅B.6. The result is shown in Fig. 4a. Next,

Make Tiramisu ≡ ((Make Cream Topping ⌊⌊⌊ line loaf panα ⋅ Make Layers) �
(Make Cream Topping ⋅ add mascarponeα ⋅ Make Layers) �
(Make Cream Topping ⌊⌊⌊ mix coffee syrupα ⋅ Make Layers)) ⋅
cool down cakeα ⋅ present and serveα

Make Cream Topping ≡ ((boil sweet milkα ⌊⌊⌊ egg yolk mixtureα ⋅
whisk milk & egg yolkα) � (boil sweet milkα ⋅
whisk milk & egg yolkα)) ⋅ reduce mixtureα ⋅
enrich mixtureα ⋅ cool down toppingα

Make Layers ≡ ⋁8 fingers?⟨ τ, dip fingersα ⋅ cover with creamα ⋅ Make layers ⟩

init Make Tiramisu

Fig. 3. Subplans and their initialization in dsl’s formal syntax. We assume operator
priorities as discussed at the end of Section 3.3

232 F.P.M. Stappers et al.

we define E ≡ B.4⌊⌊⌊B.5 as illustrated by Fig. 4b. Based on syntactic replacement,
domain experts expect from both Fig. 4a and Fig. 4b that B.6α can occur be-
fore B.4ω. However, the dsl’s legacy implementation performs a mathematical
substitution such that brackets are placed around E, which changes the dynamic
behavior to where E now needs to successfully terminate before B.6α can occur.

Decision 13. Changing the execution semantics of existing operators can ad-
versely affect behaviors from validated and implemented concrete legacy models.
So, to preserve backward compatibility for concrete models written in the infor-
mal dsl, a new “all finish-start” precedence relation is added. We use a directed
edge annotated with an fsˆ label. This precedence relation can only be used in
conjunction with subplan references. Let p be a reference and q be any process
term then the all finish-start behavior is obtained by (p) ⋅ q. ⊓⊔

B.4 B.5 B.6
ss

(a)

ss

E

B.4 B.5 B.6

(b)

B.4 B.5 B.6
ss

(c)

ss

E

B.4 B.5 B.6

(d)

Fig. 4. Disambiguation on finish–start and start–start relations

To illustrate the second ambiguity, we reconsider the same fragment as before
but assume B.4 ⋅ B.5 ⌊⌊⌊ B.6 instead as shown in Fig. 4c. Here, domain experts
expected B.6α can occur as soon as B.5α occurs and B.4ω to occur before B.5α.
Next, we define E ≡ B.4 ⋅ B.5 and write E ⌊⌊⌊ B.6 as shown in Fig. 4d. Consider-
ing syntactic replacement, we expect that B.6α can occur no earlier than after
performing B.5α. Domain engineers, however, expect that B.6α may occur after
performing B.4α. The intuition behind, is that we consider a composite term ‘in
progress’ as soon as some start action is observed and not when all start actions
have been observed.

Decision 14. To preserve backward compatibility for concrete models written
in the informal dsl, a new “any start-start” precedence relation is added. We
use a directed edge annotated with an ss� label. This precedence relation can
only be used in conjunction with subplan references. Let p be a reference and q
be any process term then the any start-start behavior is obtained by

p ⌊⌊ q

⊓⊔

In all, for each concrete instance of the legacy precedence relations in con-
junction with a subplan reference, domain experts will have to decide to use the

Formalizing a Domain Specific Language Using SOS 233

new or the the old operator. The resulting, validated formal syntax and taxon-
omy for trecs are given in Table 1. Here, psemantics is a placeholder term (see
Section 4.3). The descending order of operators is defined as

“ ⋅ ”,{“ ⌊⌊ ”,“ � ”,“ ⌊⌊⌊ ”},“⋁d ”

Of these operators “ � ”,“ ⌊⌊⌊ ”, and “ ⋅ ” associate to the right. Priorities can be
overruled by using parentheses “(” and “)”.

Table 1. Formal abstract syntax and taxonomy for trecs

process term operator name variable description
p ∶∶= τ skip

ti,Pα start of a task t i ∶ N finite identifier
P ∶ List(S) list of process

definition labels

ti,Pω finish of a task t i ∶ N finite identifier
P ∶ List(S) list of process

definition labels
p ⋅ p sequential composition
p ⌊⌊⌊ p preemptive sequential composition
p ⌊⌊ p left merge composition
⋁d ⟨p1, . . . , pn⟩ conditional choice d ∶ Σ → N decision function

n ∶ N finite branch number
p
 p synchronized parallel composition
A ≡ p process definition A ∈ S
psemantics grammar for defining semantics

symbol description
Λ set of all values
V set of all variables
Σ = V → Λ set of all variable valuations
σ ∶ Σ state vector with active variable valuations
Tα finite set of task starts
Tω finite set of task finishes
T finite set of tasks, where Tα ∪ Tω ∪ {τ} and τ /∈ Tα ∪ Tω
RA ∶ R → N reserved variable in σ denoting available resources
RQ ∶ Tα → (R→ N) reserved constant in σ denoting the required resources to

start execution of a task
RP ∶ Tω → (R→ N) reserved constant in σ denoting the produced resources at

the finish of a task
S finite set of process equations where S ∩ T = ∅
I initial subplan label where I ∈ S

4 Formalizing Dynamic Semantics

We use sos to assign dynamic operational semantics to dsl process terms (ab-
stract notions). sos associates a labeled transition system to terms, where action
transitions describe the discrete behavior. First, we explain sos and its semantic
notions. Then we assign semantics for the trecs’ individual process terms.

4.1 Semantic Preliminaries

Process. A process is a tuple ⟨p, σ⟩, where p denotes a process term for an
element of an activity diagram, and σ ∈ Σ denotes a variable valuation.

234 F.P.M. Stappers et al.

Transition. A transition between process terms describes a state change, there
by observing a possible action that is represented by a label.

Decision 15. We limit ourselves to observing the executed task and its associated
resources, we choose to reveal at most this information on each transition. As
such, a label consists of two elements: (i) the label of the executed task and (ii)
the associated set of resources. A transition dictates either continuative behavior
or successful termination. ⊓⊔

Continuative action transitions : �→ ⊆ (P×Σ)×(X×(R → N))×(P×Σ), where
X is (i) T when an internal action is performed, or (ii) T ×N×L(S) when the start

of a task is performed. The intuition of an action transition ⟨p, σ⟩
t,R
�→ ⟨p′, σ′⟩

is that process ⟨p, σ⟩ performs the discrete action (t,R), thereby transforming
into process ⟨p′, σ′⟩. σ′ denotes the corresponding valuation of process p′ after
performing transition t, associating resources R.

Terminating action transitions : �→ (✓,) ⊆ (P×Σ)×(X×(R → N))×(P×Σ),
where X is the same as for continuative action transitions. The intuition of a

termination transition ⟨p, σ⟩
t,R
�→ ⟨✓, σ′⟩ is that process ⟨p, σ⟩ transforms into

⟨✓, σ′⟩, by performing the discrete action (t,R). ✓ denotes successful process
termination.

Transition System Specification. A transition system specification [3] de-

notes a set of deduction rules. A deduction rule has the form H
C where H is a set

of transition formulae (premises) and C is a transition formula (conclusion). To
derive the conclusion, and perform an action, all premises need to be satisfied.

4.2 Abstract Syntax Projection

Skip. The τ is defined as Table 2 (skip). A τ action is an internal action that
cannot be observed nor claim resources.

Decision 16. τ cannot change the state vector σ is not updated. The no resource
claim ∀r∈R{R(r) = 0}, using an auxiliary function R that maps all resource labels
to zero, is represented by ∅. ⊓⊔

Start of a Task. The start of a task is defined as Table 2 (start-task). ti,Pα
is the action that starts task t. To perform ti,Pα , the required resources RQ(tα)
must be available.

Decision 17. The resource availability is expressed by premise (σ(RA)≥RQ(tα)).
As all functions are total, we assume point-wise evaluation. If ti,Pα is performed,
we observe ti,Pα ∈ Tα where i is the unique identifier and P is the subplan hier-
archy, thereby claiming resources RQ(tα). ⊓⊔

Decision 18. To ensure that ti,Pω follows after ti,Pα , we rewrite the term to a term
that performs the finish of task t. The number of claimed resources is subtracted
from the available resources, reflected by σ[RA → σ(RA) −RQ(tα)]. ⊓⊔

Formalizing a Domain Specific Language Using SOS 235

Finish of a Task. The finish of a task is defined asTable 2 (finish-task). ti,Pω
is the action that finishes task t.

Decision 19. Any release of claimed (produced) resources are added to the set
of available resources, reflected by σ[RA → σ(RA)+RP (tω)]. The set of premises
is empty, so the finish of a task is performed unconditionally. We observe ti,Pω
and RP (tω) on the transition and rewrite ti,Pω to ✓ to terminate. ⊓⊔

Sequential Composition. Table 2 (FS) defines the sequential composition.

Decision 20. We follow the standard semantics given in literature, e.g. [13]. Here,
p ⋅ q behaves as q, if p successfully terminates after performing action (β, ρ), i.e.
the upper case of Table 2 (FS). If p, by performing action (β, ρ) becomes p′,
then the process p ⋅ q behaves as p′ ⋅ q, i.e. the lower case of Table 2 (FS). ⊓⊔

Preemptive Sequential Composition. The preemptive sequential composi-
tion is defined as Table 2 (SS1) and (SS2). Here, we want a right term of the
operator to perform actions iff a left term can successfully terminate.

Decision 21. (SS1) defines the behavior when term p performs a transition.
Whenever p successfully terminates, the them continues as q. If p continues as
p′, the term continues as p′ ⌊⌊⌊ q. Informally, rule (SS2) expresses that q can

Table 2. Operational rules for the basic operators

(skip)
⟨τ, σ⟩

τ,∅
�→ ⟨✓, σ⟩

(start-task) σ(RA) ≥ RQ(tα)

⟨ti,Pα , σ⟩
t
i,P
α ,RQ(tα)

�→ ⟨ti,Pω , σ[RA → σ(RA) −RQ(tα)]⟩

(finish-task)

⟨ti,Pω , σ⟩
t
i,P
ω ,RP (tω)
�→ ⟨✓, σ[RA → σ(RA) +RP (tω)]⟩

(FS)
⟨p, σ⟩

β,ρ
�→ ⟨

✓

p′
, σ′⟩

⟨p ⋅ q, σ⟩
β,ρ
�→ ⟨

q
p′ ⋅ q

, σ′⟩
(SS1)

⟨p, σ⟩
β,ρ
�→ ⟨

✓, σ′

p′, σ′
⟩

⟨p ⌊⌊⌊ q, σ⟩
β,ρ
�→ ⟨

q, σ′

p′ ⌊⌊⌊ q, σ′
⟩

(SS2)
⟨p, σ⟩

β,ρ
�→ ⟨✓, σ′⟩ , ⟨q, σ⟩

β′,ρ′

�→ ⟨
✓

q′
, σ′′⟩ , ⟨p, σ′′⟩

β,ρ
�→ ⟨✓, σ′′′⟩

⟨p ⌊⌊⌊ q, σ⟩
β′,ρ′

�→ ⟨
p

p ⌊⌊⌊ q′
, σ′′⟩

(SS�)
⟨p, σ⟩

β,ρ
�→ ⟨

✓, σ′

p′, σ′
⟩

⟨p ⌊⌊ q, σ⟩
β,ρ
�→ ⟨

q, σ′

p′ ⌋∅⌊q, σ′
⟩

(C)
⟨pd(σ), σ⟩

β,ρ
�→ ⟨

✓

p′
, σ′⟩

⟨⋁d⟨p1, . . . , pn⟩, σ⟩
β,ρ
�→ ⟨

✓

p′
, σ′⟩

d(σ) ∈ [1, n]

(spc)
⟨p ⌋sync(p) ∩ sync(q) ⌊q, σ⟩

β,ρ
�→ ⟨

✓

p′
, σ′⟩

⟨p
 q, σ⟩
β,ρ
�→ ⟨

✓

p′
, σ′⟩

(pe)
⟨p, σ⟩

β,ρ
�→ ⟨

✓

p′
, σ′⟩

⟨A,σ⟩
β[P⊲A/P],ρ
�→ ⟨

✓

p′[P⊲A/P]
, σ′⟩

A = p ∈ S

236 F.P.M. Stappers et al.

perform an action, iff p can terminate but does not perform the action yet. p ⌊⌊⌊ q
states that q performs action (β′, ρ′) such that p stays allowed to successfully
terminate by performing action (β, ρ). To ensure continuation of p after the

action taken by q in (SS2), the premise ⟨p, σ′′⟩
β,ρ
�→ ⟨✓, σ′′′⟩ is added. ⊓⊔

Left Merge Composition. Table 2 (SS�) defines the left merge composition.
The process on the left of the operator has to perform an action first, after
which the remaining processes behave concurrently. Note that the concurrency
used here is less restrictive than the � operator.

Decision 22. The upper case of (SS�) expresses that if p successfully terminates
in p⌊⌊q the process behaves as q (no remainder of p can interleave). If p continues
as p′, the lower case of (SS�) expresses that the remaining process behaves as
p′ ⌋∅⌊q. To allow reuse, we introduce p′ ⌋∅⌊q, which takes the tasks that need
to synchronize as a parameter. As no tasks need to synchronize the parameter
is set to ∅. This auxiliary operator is explained in detail in Section 4.3. ⊓⊔

Conditional Choice. The conditional choice selects a process term according
to the outcome of an evaluation function as defined in Table 2 (C).

Decision 23. Let d ∶ Σ → N be this surjective function that, provided a state
vector σ, will return a value within the domain of the enumeration (which is a
subset of N). The outcome of d(σ) is forced to be in range by the function. ⊓⊔

Synchronized Parallel Composition. The semantics for synchronized paral-
lel composition is given in Table 2 (spc). If behavior occurs on both sides of the
operator and it is enabled, then execution is synchronized. If behavior occurs on
only one side, it must execute without synchronization.

Decision 24. As terms are rewritten on both sides of the operator, the set of
synchronizing actions needs to be calculated prior to executing any action. The
set needs to be preserved until the synchronized parallel composition successfully
terminates. For this we use an auxiliary concurrency operator, that is the same
operator as the preemptive sequential operator, though instantiated differently.
The concurrent execution operator initiates the auxiliary concurrency operator
p⌋C ⌊q, where it computes C ⊆ T ×N × List(S), being the set of synchronizing
actions that occur in both p and q. ⊓⊔

Decision 25. To compute C in we introduce function sync that computes the
intersection of transition labels both occurring p and q by sync(p)∩sync(q). We
interpret a transition label β ≡ ti,Px as a triple (tx, i, P) ∈ T ×N × List(S). The
sync function is defined as

Formalizing a Domain Specific Language Using SOS 237

sync(τ) = ∅

sync(ti,Pα) = {(tα, i, P)} ∪ sync(t
i,P
ω)

sync(ti,Pω) = {(tω, i, P)}
sync(p ⋅ q) = sync(p) ∪ sync(q)

sync(⋁d⟨p1, . . . pn⟩) =
n

⋃

i=1
sync(pi)

sync(p ⌊⌊⌊ q) = sync(p) ∪ sync(q)
sync(p ⌊⌊ q) = sync(p) ∪ sync(q)
sync(p � q) = sync(p) ∪ sync(q)
sync(A) = sync(p′) where A = p ∈ S and p′ is obtained by

substituting all labels P by P ⊲ A in p

⊓⊔

Process Definition. Table 2 (pe) states the deduction rule. For each task
in a process, we generate an unique identifier by taking the list of identifier
equations (the scope in which an action is executed) and combine it with the
task’s identifier. The generation of such an identifier is done at the semantic level
by substituting the hierarchical levels in tasks.

Decision 26. We substitute by taking the current hierarchical level P and ap-
pend the identifier’s equation P ⊲ A, and perform it on the action as well as the
remaining process term. As an example, if we evaluate term D = ai at hierarchy
at level c, which claims no resources, and observe transition ai,[c⊲D],∅. ⊓⊔

4.3 Auxiliary Operational Semantics

Concurrent Execution. Concurrent execution p⌋C ⌊q only synchronizes be-
havior, if an action β occurs in C and both p and q have the action enabled.
Otherwise, if β does not occur in C, enabled actions from both p and q are
performed without synchronization.

Consider action β /∈ C and p or q having action β enabled. Table 4 (spe5)

and Table 4 (spe6) define that if either p or q successfully terminates p⌋C ⌊q,
respectively continues as C ⌊p or C ⌊q. Table 4 (spe7) and Table 4 (spe8) define
that if either p or q continues as p′ or q′ respectively, p⌋C ⌊q continues as p′ ⌋C ⌊q
or p⌋C ⌊q′ respectively.

If action β ∈ C, then Table 4 (spe1) states that if p and q can perform an action
β, and both end up in a terminating state, then p⌋C ⌊q ends up in a terminating
state after executing β. Table 4 (spe2) and Table 4 (spe3) state that if either
p or q ends up in a terminating stating and both processes perform an action
β, they continue as a right synchronized execution C ⌊p′ or C ⌊q′, respectively.
Table 4 (spe4) states that if p and q both have action β enabled and continue
as p′ and q′, p⌋C ⌊q continues as p′ ⌋C ⌊q′. In all cases C is constant.

238 F.P.M. Stappers et al.

Decision 27. Rules (spe2) and (spe3) dictate encapsulation (⌊), which is un-
defined within the current semantics. Therefore we again require an auxiliary
operator and semantic rules. ⊓⊔

Table 3. Operational rules for auxiliary operators

(spe1) β ∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨✓, σ′⟩, ⟨q, σ⟩

β,ρ
�→ ⟨✓, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨✓, σ′⟩

(spe2) β ∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨p′, σ′⟩, ⟨q, σ⟩

β,ρ
�→ ⟨✓, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨C ⌊p′, σ′⟩

(spe3) β ∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨✓, σ′⟩, ⟨q, σ⟩

β,ρ
�→ ⟨q′, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨C ⌊q′, σ′⟩

(spe4) β ∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨p′, σ′⟩, ⟨q, σ⟩

β,ρ
�→ ⟨q′, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨p′ ⌋C ⌊q′, σ′⟩

(spe5) β /∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨✓, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨C ⌊q, σ′⟩

(spe6) β /∈ C, ⟨q, σ⟩
β,ρ
�→ ⟨✓, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨C ⌊p,σ′⟩

(spe7) β /∈ C, ⟨p,σ⟩
β,ρ
�→ ⟨p′, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨p′ ⌋C ⌊q, σ′⟩

(spe8) β /∈ C, ⟨q, σ⟩
β,ρ
�→ ⟨q′, σ′⟩

⟨p ⌋C ⌊q, σ⟩
β,ρ
�→ ⟨p ⌋C ⌊q′, σ′⟩

(encap)
⟨p,σ⟩

β,ρ
�→ ⟨

✓

p′
, σ′⟩ , β /∈ C

⟨C ⌊p,σ⟩
β,ρ
�→ ⟨

✓

C ⌊p′
, σ′⟩

Encapsulation Operator. The encapsulation operator C ⌊p, prohibits the
execution of all actions that occur in C. The semantics is provided in Ta-
ble 4 (encap), where the successfully termination of C ⌊p is denoted in the upper
case, and the continuation of C ⌊p as C ⌊p′ in the lower case. In all, we extend
our formal abstract syntax as shown in Table 4.

Table 4. Definition of process term psemantics

process term operator name variable description

psemantics ∶∶= p⌋C ⌊p concurrent execution C set of actions
C ⌊p encapsulation operator C set of actions

Decision 28. Extends Decision 25 to accommodate the introduction auxiliary
operational semantics by adding

sync(C ⌊p) = C ∪ sync(p)
sync(p⌋C ⌊q) = C ∪ sync(p) ∪ sync(q)

⊓⊔

4.4 Formal Semantic Validation

To validate dsl’s formal semantics, we have proposed a framework [26] that
transforms sos deduction rules, along with the syntactic interpretation, into a
specification suitable for formal behavioral analysis. Using an implementation of
this framework in the mCRL2 tool-set [13], we can automatically generate state
spaces for trecs models. The generated state spaces can be visualized and used
to validate the possible execution behavior for Figure 4a and Figure 4b. The
concrete state spaces as generated by the tool-set are visualized using Figure 5a
and Figure 5b. The total state space for our Tiramisu example can be generated
and visualized in a similar fashion.

Formalizing a Domain Specific Language Using SOS 239

B.4α

B.4ω

B.5α

B.5α

B.4ω

B.5ω

B.5ω

B.4ω

B.6α

B.6α

B.4ω

B.6ω

B.6ω

B.4ω

(a) Intended behavior

B.4α B.4ω

B.5α

B.5α

B.4ω

B.5ω

B.5ω

B.4ω
B.6α B.6ω

(b) Observed behavior

5 Evaluation

This paper illustrates a structured approach to the formalization of (dynamic)
semantics for an industrial dsl using sos.

We started from an existing dsl with informal and implicit semantics. First,
we have identified the concrete notions used in the concrete models. This results
in a structuring of the concrete syntax. Furthermore, it facilitates the generaliza-
tion of concrete syntax elements and syntax variation points. These observations
enable multiple concrete syntax projections in the near future.

Once identified, concrete notions are then projected onto abstract notions
where the concrete syntax is mimicked as closely as possible. By starting with
the most elementary notions first, we try to reuse abstract notations where
possible. If reuse is not possible we try to refine existing abstract notions. We
introduce new abstract notions when refinement is not possible. This approach
helps to create a compositional language. However, it also results in (many)
orthogonal annotations, such as the start for a task, process scopes, and task
identifiers. These annotations are required to obtain observable and uniquely
distinguishable actions for the formal semantics.

Currently, the defined formal abstract syntax for trecs contains well over
thirty abstract notions. Next, we involved engineers to further mature this for-
mal abstract syntax. While maturing, we identified a number of notions where
the engineer’s intended behavior differed from that implemented in the inter-
preter. Including the non-disclosed parts of the dsl, we have identified five se-
mantic gaps, two of which are discussed and addressed in this paper. Most gaps
were introduced when formalizing the operators to represent subplans. To close
the cognitive gap between intended and implemented semantics, we needed to
introduce additional complementary operators.

Next, we defined the formal dynamic semantics for trecs. That is, for each
abstract notion we created one or more sos deduction rules. Because sos is a
compositional formalism, it facilitates an incremental approach where the behav-
ior of simple notions can be composed into more complex, compound behavior.
As such, we expected that the semantics could be defined by more simple nota-
tions. Instead, as the semantics are subjected to numerous design decisions, we
had to introduce auxiliary operators to exactly capture the semantics.

In the formal semantics, “available resources” (RA) could replace the state
vector (σ), since all evaluations of the example are preformed on RA. We

240 F.P.M. Stappers et al.

decided to explicitly define σ since the full dsl contains other constructs that
also manipulate σ and influence the decision taking process. Moreover, we choose
to define resource claims using total mappings (visible on the transition label)
meaning that any and all resource labels need to be known in advance. Finally,
we want to stress that trecs allows to fork and join concurrency in an almost
arbitrary manner. In turn, this implied (lots of) refinement of notions to obtain
unique task labels and ensure correct synchronization.

Once defined, our new operators have been implemented manually in the dsl’s
interpreter. For each use of a legacy operator, domain experts have to decide to
either retain the legacy operator or to switch to the new operator based on the
disambiguated semantics. This approach provides backward compatibility with
the (execution behavior) of the informal language. Note that the use of comple-
mentary operators reduced the regression and qualification impact significantly
while phasing out ambiguous behavior.

6 Conclusions and Future Work

A dsl’s syntax is typically defined through some (parsing) grammar or meta-
model. In practice, the execution semantics and a dsl’s model of computation
are mostly implemented implicitly in translations and/or an execution engine
or interpreter. We observed that the execution behavior of concrete domain
models may exhibit unexpected, critical dependencies on this implicit semantics.
Formalizing the syntax and defining the semantics for a dsl is a challenging task,
particularly when considering the operational impact of changing the existing
execution semantics.

This paper demonstrates the successful formalization of an industrial size
dsl. We have defined the dsl’s operational semantics though sos, which is fully
compositional. From thereon, we can aggregate and compose terms and study
the behavior of these composed terms in isolation. The result is a language
definition where the dsl’s abstract and concrete syntax are formally related to
its static and dynamic semantics. As our approach results in orthogonal concepts,
it provides handles to analyze different aspects (e.g. throughput and safety) that
are closely related to the execution behavior.

Using our bottom-up approach, we obtain a well-defined behavioral scope,
which worked particularly well when validating the formal semantics with do-
main experts and language engineers. However, this validation can also uncover
cognitive gaps between the engineer’s intended semantics and the dsl’s imple-
mented semantics. To bridge these gaps, we propose to add complementary op-
erators to disambiguate. The use of separate operators limits the regression and
qualification impact in an operational context. Also, it facilitates the migration
of legacy concrete models to the new formalized dsl. To facilitate automated
analysis of models created in our formalized dsl, we have developed a generic
mathematical framework [26] that also accepts the work presented in this paper
directly as input.

The work conducted in this paper was part of the KWR 09124 project
LithoSysSL at ASML. Currently, we are extending our work with formal

Formalizing a Domain Specific Language Using SOS 241

semantics for non-disclosed reactive concepts and run-time optimization rules.
Also, the possibility to define sos on meta-models in mde environments is in-
vestigated.

References

1. Aredo, D.B.: A Framework for Semantics of UML Sequence Diagrams in PVS.
Journal of Universal Computer Science 8(7), 674–697 (2002)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes (Cambridge Tracts in Theoretical Computer Science).
Cambridge University Press (December 2009)

3. Bol, R.N., Groote, J.F.: The Meaning of Negative Premises in Transition System
Specifications. J. ACM 43(5), 863–914 (1996)

4. Börger, E.: High Level System Design and Analysis Using Abstract State Machines.
In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 1–43.
Springer, Heidelberg (1999)

5. Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML Activity
Diagrams. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer,
Heidelberg (2000)

6. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL Class Diagrams using
Constraint Programming. In: ICSTW 2008, pp. 73–80. IEEE Computer Society
(2008)

7. Clark, T., Warmer, J. (eds.): Object Modeling with the OCL. LNCS, vol. 2263.
Springer, Heidelberg (2002)

8. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay on Semantics
Definition in MDE - An Instrumented Approach for Model Verification. JSW 4(9),
943–958 (2009)

9. David, A., Möller, M.O., Yi, W.: Formal Verification of UML Statecharts with
Real-Time Extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 218–232. Springer, Heidelberg (2002)

10. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. Technical Re-
port n. 06.02, Laboratoire d’Informatique de Nantes-Atlantique (April 2006)

11. Evermann, J., Wand, Y.: Toward Formalizing Domain Modeling Semantics in Lan-
guage Syntax. IEEE Trans. Software Eng. 31(1), 21–37 (2005)

12. Graaf, B., Weber, S., van Deursen, A.: Model-Driven Migration of Supervisory
Machine Control Architectures. JSS 81(4), 517–535 (2008)

13. Groote, J.F., Mathijssen, A.J.H., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The Formal Specification Language mCRL2. In: MMOSS. Dagstuhl Seminar
Proceedings, vol. 06351. IBFI, Schloss Dagstuhl, Germany (2007)

14. Horn, A.: On Sentences Which are True of Direct Unions of Algebras. J. Symb.
Log. 16(1), 14–21 (1951)

15. IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990
(1991)

16. Jackson, E.K., Schulte, W.: Model Generation for Horn Logic with Stratified Nega-
tion. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008.
LNCS, vol. 5048, pp. 1–20. Springer, Heidelberg (2008)

17. Jackson, E.K., Sztipanovits, J.: Formalizing the structural semantics of domain-
specific modeling languages. Software and System Modeling 8(4), 451–478 (2009)

242 F.P.M. Stappers et al.

18. Jansamak, S., Surarerks, A.: Formalization of UML statechart models using Con-
current Regular Expressions. In: ACSC 2004, pp. 83–88. Australian Computer
Society, Inc., Darlinghurst (2004)

19. Kleppe, A.: Software language engineering. Addisson-Wesley (2009)
20. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph

Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 241–256. Springer, Heidelberg (2001)

21. Mauw, S., Wiersma, W.T., Willemse, T.J.H.: Language-Driven System Design.
IJSEKE 14(6), 625–663 (2004)

22. Lilius, J., Paltor, I.P.: Formalising UML State Machines for Model Checking. In:
France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg
(1999)

23. Plotkin, G.D.: A Structural Approach to Operational Semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

24. Rumbaugh, J., Jacobson, I., Booch, G.: UnifiedModeling Language Reference Man-
ual, 2nd edn. Pearson Higher Education (2004)

25. Sadilek, D.A., Wachsmuth, G.: Using Grammarware Languages to Define Opera-
tional Semantics of Modelled Languages. In: Oriol, M., Meyer, B. (eds.) TOOLS
EUROPE 2009. LNBIP, vol. 33, pp. 348–356. Springer, Heidelberg (2009)

26. Stappers, F.P.M., Reniers, M.A., Weber, S.: Transforming SOS Specifications to
Linear Processes. In: Salaün, G., Schätz, B. (eds.) FMICS 2011. LNCS, vol. 6959,
pp. 196–211. Springer, Heidelberg (2011)

27. Tonino, H.: A Sound and Complete SOS-Semantics for Non-Distributed Deter-
ministic Abstract State Machines. In: Workshop on Abstract State Machines, pp.
91–110 (1998)

28. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations
of a Compositional Interchange Format for Hybrid Systems. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer,
Heidelberg (2007)

29. van den Nieuwelaar, N.J.M.: Supervisory Machine Control by Predictive-reactive
Scheduling. PhD thesis, Technische University Eindhoven (2004)

30. Wielemaker, J.: An Overview of the SWI-Prolog Programming Environment. In:
WLPE. Report, vol. CW371, pp. 1–16. Katholieke Universiteit Leuven (2003)

31. Wolterink, T.J.L.: Operational Semantics Applied to Model Driven Engineering.
Master’s thesis, University of Twente (2009)

Semantics First!
Rethinking the Language Design Process

Martin Erwig and Eric Walkingshaw

School of EECS
Oregon State University

Abstract . The design of languages is still more of an art than an engineering dis-
cipline. Although recently tools have been put forward to support the language
design process, such as language workbenches, these have mostly focused on
a syntactic view of languages. While these tools are quite helpful for the de-
velopment of parsers and editors, they provide little support for the underlying
design of the languages. In this paper we illustrate how to support the design of
languages by focusing on their semantics first. Specifically, we will show that
powerful and general language operators can be employed to adapt and grow
sophisticated languages out of simple semantics concepts. We use Haskell as a
metalanguage and will associate generic language concepts, such as semantics
domains, with Haskell-specific ones, such as data types. We do this in a way that
clearly distinguishes our approach to language design from the traditional syntax-
oriented one. This will reveal some unexpected correlations, such as viewing type
classes as language multipliers. We illustrate the viability of our approach with
several real-world examples.

1 Introduction

How do we go about designing a new language? This seems to still be an open question.
To quote Martin Fowler from his latest book [6, p. 42]:

When people reviewed this book, they often asked for tips on creating a good
design for the language. ... I’d love to have a [sic] good advice to share, but I
confess I don’t have a clear idea in my mind.

This quote underlines that even though the development of software languages is sup-
ported by quite a few tools, the design process itself is still far from being an engi-
neering discipline. Many concepts remain poorly defined or are interpreted differently
depending on the approach taken.

In this paper we will address this problem and present a systematic approach to
designing a software language. This approach is based on two key ideas or insights.

First, language development should be semantics driven, that is, we start with a se-
mantics model of the language core and then work backwards to define a more and more
complete language syntax. This is a rather unorthodox, maybe even heretical, position
given the current dogma of programming language specification. For example, the very
first sentence in Felleisen et al.’s latest book [5] states rather categorically:

 This work is partially supported by the Air Force Office of Scientific Research under the grant
FA9550-09-1-0229 and by the National Science Foundation under the grant CCF-0917092.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 243–262, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

244 M. Erwig and E. Walkingshaw

The specification of a programming language starts with its syntax.

We challenge this view and argue that, even though the “syntax first” approach has a
long and well established tradition, it is actually impeding the design of languages.

Second, language development should be compositional, that is, bigger languages
should be composed of smaller ones using well-defined language composition opera-
tors. The notion of compositionality itself is widely embraced and praised as a mark
of quality, particularly in the area of denotational semantics [15], and compositionality
within individual languages is generally valued since it supports expressiveness with
few language constructs. We will illustrate that a semantics-driven language design will
itself be compositional in nature and will lead more naturally to compositional lan-
guages, in particular, when compared to syntax-driven language design. One reason
might be that thinking about a language’s syntax is often tied to its concrete syntax,
which is problematic since the widely used LL or LR parsing frameworks are not com-
positional in general and thus impose limits on the composition of languages [11].

In order to motivate and explain our approach we will consider in Section 3 the
(evolving) design of a small language for a calendar application. This example will help
us establish a set of basic concepts and the corresponding terminology. This example
also helps to point out some of the challenges that a language developer is faced with.

To discuss the involved technical aspects we have to express the language design in
a concrete (meta)language. We use Haskell for this purpose since (1) Haskell has been
successfully employed in the development of many DSLs, and (2) many of Haskell’s
concepts have a direct and clear interpretation in terms of language design. We will
briefly summarize how Haskell abstractions map to language concepts in Section 2.

Using Haskell as a metalanguage (or DSL) for language design also allows us to
identify new concepts in language design. One example is the notion of language
schema. Language schemas and their cousins language families will be discussed in
Section 4 where we specifically point out how polymorphism in the language descrip-
tion formalism (that is, the metalanguage) can be exploited for making language design
more systematic and amenable to reuse.

A critical aspect of semantics-driven language design is the systematic, incremental
extension of a base language (or schema) to a more complex language. This process
is supported by language operators that are discussed in Section 5. As explained in
Section 2, the semantics-driven approach leads to a distribution of language descriptions
across different concepts of the metalanguage. This suggests a distinction of language
operators into different categories, and the description follows these categories.

In Section 6 we will demonstrate the proposed semantics-driven language design
approach on several examples to illustrate its power and simplicity. Finally, after a dis-
cussion of related work in Section 7 we present some conclusions in Section 8.

2 Haskell as a Language Design DSL

Haskell [16] has a long tradition as a metalanguage and has been used quite extensively
to define all kinds of domain-specific languages. A few standard idioms of how to rep-
resent languages in Haskell have developed that are part of the Haskell folklore. Even
though these idioms may not have been documented comprehensively in one place,

Semantics First! Rethinking the Language Design Process 245

Language Domain Metalanguage (Haskell)
Language L Data type data L = Cn

L. Schema - Type constructor data S a = Cn

Program p ∈ L Expression e :: L

Operation N1 . . .Nk → L Constructor C :: Nk -> L

Semantics domain D (Data) type data D

Semantics [[·]] : L → D Function sem :: L -> D

Fig. 1. Syntax-directed view of language concepts and their representation

Tim Sheard’s paper [18] is a good place to start. There has also been some work on how
to make language design modular and extensible [8, 13, 18, 19].

Most of this work is focused on syntax, taking the view that a language is defined
by defining its (abstract) syntax plus a mapping to some kind of semantics domain.
Under this view of language, sentences expanded from a nonterminal L are represented
in Haskell by terms that are built using constructors of a data type L. Each constructor
represents a grammar production for L. The argument types of the constructor represent
the nonterminals that occur on the right-hand side of the production. Constants represent
terminal symbols, and constructors having basic type arguments (such as Int) form the
link to the lexical syntax. This view is briefly summarized in Figure 1.

The two-level view that results from the syntax-directed approach to language design
is not the only way in which language can be represented, however. Alternatively, we
can start the design of a language with a decision about the semantics domain that best
captures the essence of the domain the language is describing. In Haskell this domain
will also be represented as a (data) type, say D. However, its constructors will be taken
immediately as language operators. For example, in a language for representing dates
(see also Figure 3) we may have a data type Month that includes constructors such as
Jan. This constructor would not just be considered a semantics value, but would also be
used as an operation of the date language.

Of course, the language will need more operations than just the constructors of D.
Instead of introducing an explicit representation through additional data types or con-
structors, as in the syntax-directed approach, the semantics-directed approach will sim-
ply define functions that take the appropriate arguments and construct elements of the
semantics domain D directly. This idea is also behind the combinator library approach
to the design of domain-specific embedded languages (DSELs), see, for example, [8].

While a semantics function is required in the syntactic approach to map explicit syn-
tax to semantics values, in the semantics-directed approach this semantics function is
effectively distributed over many individual function definitions. By forgoing an explicit
syntax representation, the phase distinction between syntax and semantics disappears
in the semantics-directed approach.

The semantics-directed view of language development and its implication on the
metalanguage representation are briefly summarized in Figure 2.

The basic idea of semantics-driven language development is to start with a small
language that represents the essence of the language to be developed, then to extend
this core systematically. The advantages of this approach are: (1) The compositional

246 M. Erwig and E. Walkingshaw

Language Domain Metalanguage (Haskell)
Language L Data type & functions data D = Cn; (f = e)m

L. Schema - Type constructor & functions data S a = Cn; (f = e)m

Operation N1 . . .Nk → L Constructor or function C/f :: Nk -> L

Semantics domain D Given by D, the data type part of L
Semantics [[·]] : L → D Given by (f = e)m, the function part of L

Fig. 2. Semantics-directed view of language concepts and their representation

design clearly represents the different components of the language and how they are
connected, (2) the language development is less ad hoc, and (3) being compositional,
the language design can be better maintained.

These advantages are particularly relevant for language prototyping. Once a designer
is happy with a semantics-driven language design, she can always “freeze” it by con-
verting its syntax from implicit into explicit representations and adding a semantics
function. This enables the abstract syntax of programs in the language to be manip-
ulated directly (for analysis or transformation), regaining any advantages of syntax-
directed approaches. Therefore the semantics-driven approach should not be seen as an
exclusive alternative to the syntax-directed approach, but rather as a companion that
can in some cases replace it and in other cases precede it and pave the way for a more
syntax-focused design.

3 Semantics-Driven Language Development

In this section we will illustrate with an example how a focus on semantics can go a
long way in building a language. Specifically, we will consider compositional language
extensions, that is, extensions that do not require changes to existing languages, in Sec-
tion 3.1. We will also discuss the problem and necessity of non-compositional language
extensions in Section 3.2.

3.1 Compositional Language Extensions

Consider a calendar tool for storing appointment information. That this is by no means
a trivial application domain can be seen by the fact that many different calendar applica-
tions and tools exist with different sets of features, and that some calendar functionality
is commonly performed by separate, external tools (consider, for example, the planning
of schedules with Doodle).

In order to build a calendar application, we must identify the operations that such an
application must perform. However, instead of doing this directly, which would lead to
a flat, monolithic set of operations, we instead approach the problem by focusing first
on the core language elements. We will begin by identifying the individual components
of the domain, and how these can be represented by different DSLs. We will then in-
crementally compose and extend these smaller DSLs to form the desired application.
This approach has the additional advantage that it can produce a library of small and
medium-sized DSLs that can be reused in the development of many language projects.
We also refer to these small, reusable DSLs sometimes as Micro DSLs.

Semantics First! Rethinking the Language Design Process 247

data Month = Jan | Feb | ... | Dec

type Day = Int

data Date = D Month Day

[jan,...,dec] = map D [Jan,...,Dec]

type Hour = Int

type Minute = Int

data Time = T Hour Minute

hours h = T h 0

am h = hours h

pm h = hours (h+12)

before t t’ = t’-t

Fig. 3. Micro DSLs for date and time. The function hours constructs hour values, am and pm

denote morning and afternoon hours, and the function before subtracts two time values.

The most important element of semantics-driven language design is the idea to start
the design process by identifying the absolutely most essential concepts of the lan-
guage to be developed. Compared with a denotational semantics approach, this basi-
cally amounts to identifying the semantics domain, which also means that the semantics
function for this initial core language will then be the identity function.

At its core, a calendar application offers the ability to define appointments at par-
ticular times. We recognize two separate components in this description, “times” and
“appointments”, that we can try to define through individual DSLs. These two lan-
guages are linked to form a calendar, and without needing to know any details about
times and appointments, we can see that it is this language combination that captures
the essence of calendars. Specifically, times are mapped to appointments. We can rep-
resent this using a generic language combinator for maps that is parameterized by types
for its domain and range. This straightforward Map data type can be defined as follows.1

data Map a b = a :-> b | Map a b :&: Map a b

Whereas a data type represents a language, a parameterized data type represents what
we call a language schema, that is, a whole class of languages. A language can be ob-
tained from a language schema through instantiation, that is, by substituting languages
for the type parameters.

To make our example more concrete we start with a simple version of a calendar that
maps days, given by month and day, to values of some arbitrary type. To this end we
make use of the definitions for dates and times shown in Figure 3.2 Note that even these
tiny languages are not completely defined by data types alone. For example, functions,
such as dec or pm are providing syntactic sugar. In addition, the function before extends
the Time language by a new operation.

Based on the languages Date and Time we can define a language for calendars that
associates appointment information with dates.

type CalD a = Map Date a

week52 :: CalD String

week52 = dec 30 :-> "Work" :&: dec 31 :-> "Party"

1 Here and in the following we will sometimes omit details, such as Show instance definitions
and infix declarations. Their effect will become clear from their use.

2 Again, we simplify the definitions a bit and omit some definitions, such as the Show instances
or the Num instance for Time.

248 M. Erwig and E. Walkingshaw

Strictly speaking, CalD is still a language schema since the appointment information has
not yet been fixed, but week52 is a program in the language CalD String. It is obvious
that we can also define a calendar language that maps Time to appointments. In the
following example we define a simple calendar pattern to encode a habit to exercise
before a party. With that, we can then define two typical daily schedules.

type CalT a = Map Time a

partyAt :: Hour -> CalT String

partyAt h = hours 2 ‘before‘ h :-> "Exercise" :&: h :-> "Party"

work, party :: CalT String

work = am 8 :-> "Work" :&: pm 6 :-> "Dinner"

party = work :&: partyAt 9

The use of calendar patterns supports a very high-level and compositional description
of calendars without changing the underlying language representation. For example, a
party day expands to a time calendar value as follows.3

08:00 -> "Work" & 18:00 -> "Dinner" & 19:00 -> "Exercise" & 21:00 -> "Party"

We argue that this form of low-cost extensibility is, at least in part, a direct consequence
of choosing the most appropriate semantics domain, in this case a mapping. Therefore,
the initial focus on language semantics pays off since it simplifies the later language
design by dramatically lowering the language maintenance effort. Since in our view a
language is given by the core representation plus additional functions, we can also view
function definitions, such as partyAt, as user-defined extensions of the DSL.

From a language engineering perspective, we can observe that the function definition
capability of the metalanguage helps us to easily and flexibly extend the core represen-
tation by new features, such as patterns for dependent appointments.

We can easily combine these two types of calendars by instantiating the date calendar
with the time calendar.

type Cal a = CalD (CalT a)

week52 :: Cal String

week52 = dec 30 :-> work :&: dec 31 :-> party

We have illustrated how to extend the calendar language by refining the domain of
the mapping structure that forms its semantics basis. In the same way we can create
more expressive calendar languages by extending the range. Using product types we
can combine appointment information with information about participants, how long
an appointment takes, dependencies between appointments or other relationships, etc.
This is all quite straightforward, and the result can be as general as the requirements of
a particular application need it to be. This extensibility is a consequence of finding the
right semantics domain for calendars at the beginning of the language design process.

3 Note that when pretty printed, the data constructors :&: and :-> are rendered as & and ->.

Semantics First! Rethinking the Language Design Process 249

Of course, there are situations when the initial design decision is not general enough
to support a specific language extension. In these cases, we have to resort to non-
compositional changes to the language. This is what we look into next.

3.2 Non-compositional Language Extensions

Suppose we want to extend the calendar application by allowing the distinction between
publicly visible and private (parts of) appointments (we might, for example, want to
hide the fact that we have two parties on two consecutive days). This idea can be easily
extended to more sophisticated forms of visibility or visibility in particular contexts.
From a language perspective we are faced with the need to selectively annotate parts of
an abstract syntax tree. Since this situation is quite common, the approach to take from
a language composition perspective is to define a generic annotation language (that is,
a language schema) and integrate this in some way with the language schema Cal. We
begin by defining a simple language schema for marking terms as private. This could be
easily generalized to a more general annotation language by additionally parameterizing
over the annotation language, but we will pursue this less-general approach for clarity.

data Privacy k a = Hidden k a | Public a

A simple extension of the calendar language with this privacy language is obtained by
composing the language schemas Map and Privacy k (for some language of keys k)
when instantiating Cal. Since language schemas are represented by type constructors in
the metalanguage, language composition is realized by type instantiation.

type Key = String

type Private a = Privacy Key a

type CalP a = Map (Private Date) (Private a)

We also add some special syntax for the map constructor for different combinations of
hidden and visible information. We use * and . in the smart constructors to indicate
the position of the hidden and publicly visible information, respectively. (We omit the
definition of *->* since we don’t need it for our examples.)

(*->.) :: (Key,Date) -> a -> CalP a

(k,d) *->. i = Hidden k d :-> Public i

(.->*) :: Date -> (Key,a) -> CalP a

d .->* (k,i) = Public d :-> Hidden k i

(.->.) :: Date -> a -> CalP a

d .->. i = Public d :-> Public i

We can now hide data and/or appointment information in calendars (for example, to
hide our birthday on New Year’s Eve or that we have a party on December 30th).

week52 = ("pwd",dec 30) *->. "Party" :&: dec 31 .->* ("pwd","Birthday")

When we inspect a partially hidden calendar, the pretty printer definition for Privacy
ensures that hidden parts will be blocked out.

250 M. Erwig and E. Walkingshaw

*** -> "Party" & Dec-31 -> ***

So far the privacy extension of calendars was compositional. However the extension
is limited. While the shown definition enables us to selectively hide information about
particular appointments, it does not allow us to hide whole sub-calendars. This could be
important because we might not want to expose the number of appointments of some
part of our calendar to an outside party, but with the current definition we can only hide
the leaves of the syntax tree, and the number of entries remains visible.

Note that simply wrapping Private around CalP doesn’t solve this problem, because
the :&: operation expects arguments of type Map and thus can’t be used to compose
private calendars. One could envision the definition of a smart constructor for Map, a
function that inspects the calendar arguments and then propagates the privacy status to
the combined calendar, but this approach will inherently lose the privacy information
of subcalendars and thus doesn’t solve the problem.

A solution to this problem is to generalize the definition of Map to allow for an addi-
tional language schema as a parameter, which is then used to wrap the result of recursive
occurrences of Map in :&: and the arguments of :->. Such a generalization of Map itself
is not compositional, but after the generalization we have regained compositionality,
which allows us to continue to keep the privacy and other micro DSLs separated.

There are different ways to realize this idea. The most obvious approach is to directly
apply the type constructor representing the language schema to every occurrence of Map.

data Map w a b = w a :-> w b | w (Map w a b) :&: w (Map w a b)

However, this representation might cause a lot of unnecessary overhead, in particular,
in cases when local calendar annotations are only sparingly used. Moreover, from a
more general language maintenance perspective, this approach is often more involved
since one has to change all recursive occurrences. This might cause more work in more
complicated data types, which also complicates the adaptation of values to the new
types. A less intrusive approach is to add an additional constructor to Map which wraps
just one recursive occurrence of Map. This constructor can then be used on demand and
thus introduces the wrapping overhead only when needed.

data Map w a b = w a :-> w b

| Map w a b :&: Map w a b

| Wrap (w (Map w a b))

With this definition we can apply the privacy operations not only to dates and infos, but
also to whole subcalendars.

week1 = Wrap $ Hidden "pwd" (jan 1 .->. "Party" :&: jan 2 .->. "Rest")

Evaluating week52 :&: week1 produces the following output, completely hiding week1.

*** -> "Party" & Dec-31 -> *** & ***

The calendar scenario demonstrates how languages can be developed in small incre-
ments, starting from a small initial semantics core. We have seen that ideally language
extensions are performed in a compositional way, but that this is not always possible. In
the following two sections we will first briefly discuss the notions of language schemas
and language families and then analyze language operators that form the basis of our
approach to grow and combine languages out of small micro DSLs.

Semantics First! Rethinking the Language Design Process 251

4 Language Schemas and Families

Sets of (related) languages can be characterized by a language schema, that is, a param-
eterized data type. We have seen different forms of calendars represented in this way,
and all calendars are elements of the set of languages characterized by the schema Map.

Language schemas facilitate the definition of quite general language operators that
can work on whole classes of languages. As an example, consider the function dom that
computes the domain in the form of a list of values for any language captured by the
language schema Map. In the calendar language dom computes the times at which ap-
pointments are scheduled, whereas in a scheduling or voting application (such as Doo-
dle), where Map may be used to map users to their votes or preferences, dom computes
users that have (already) voted. We can thus see that different concepts in different lan-
guages are realized by the same polymorphic function, which is made possible since the
function is tied to a language schema that can be instantiated in many different ways.

Some language schemas will be the result of instantiation from more general lan-
guage schemas. We have seen several examples of this, such as CalT, which is an
instance of Map, and Cal which is a “nested instance” obtained by instantiating CalD

(which is already an instance) by CalT, which is another instance.
Language schemas capture the idea of fully parameterized, or fully polymorphic,

languages, represented by parametric polymorphism in data types. The generality of
language schemas is a result of the data type polymorphism.

Language families are groups of related languages and are represented by type
classes. Languages are related if they have common operations (methods). An impor-
tant use of type classes in compositional language design is to enforce constraints on
the languages that can be used in a language schema. For example, we might say that
any language w used in the extended Map schema must provide an operation unwrap.

Type classes fit a bit differently into the “language operator” view, as will be ex-
plained below. Type classes reveal an interesting new class of activities in language
design, something that could be called language organization. For example, creating a
type class, say F, does not create a new language directly, but it provides new opportu-
nities for creating new languages. This typically happens when we make a type (that is,
language) L an instance (that is, member) of the type class (that is, language family) F.
In that case all the functions that are derived from the type class become automatically
available for the new instance. In other words, the instantiation has added new syntax
(represented by the derived functions) to the language.

5 Language Operators

In our vision of semantics-driven, compositional language development, languages live
in a space in which they are connected by language operators. This structure allows
a language designer to start a design with some initial language and then traverse the
space by following language operators until a desired language is reached. In this sec-
tion we discuss the notion of language operators, which transform languages into one
another. Specifically, we are interested in language operators for expanding languages
since the semantics-driven approach to language design builds more complex languages
out of simpler ones. Therefore, we will focus on expansion operators and only briefly
mention their inverse cousins for language shrinking.

252 M. Erwig and E. Walkingshaw

First-Order Operations: Adding/Removing . . .

In the language domain In the metalanguage (Haskell)
. . . (Sub)language Data type •〈data L ps = CS〉
. . . Operation Constructor data L ps = CS•C
. . . Operation argument Constructor argument data L ps = CS{C TS•T}

Higher-Order Operation
In the language domain In the metalanguage (Haskell)
Abstraction Type parameterization data L ps⊕a = [a/T]CS
Instantiation Type instantiation ⊕〈type L = S T〉
Inheritance Type class instantiation ⊕〈instance C L where fs〉

Fig. 4. Semantics language operators and their representation

In the description of language operators we make use of some auxiliary notation to
abbreviate different kinds of changes to a language description. Since, in the context of
this paper, a language description is a Haskell program, that is, a set of Haskell type and
function declarations, we basically need operations to add, remove, and change such
declarations. Thus, we use ⊕D and �D to indicate the addition and removal of a declara-
tion D from the language description, respectively. We use • to denote either operation.
We also use these operations in the context of declarations to add or remove parts. For
example, we write data L = CS⊕C to express the addition of a constructor C to the
constructors CS of the data type L. To pick a single element in a list as a context for a
transformation we enclose the element in curly brackets following the list. For example,
the notation CS{C TS⊕T} says that the list of argument types TS of one constructor C in
the list of constructors CS is extended by the type T.

We also make use of the traditional substitution notation [N/O]D for substituting the
new item N for the existing old item O everywhere it occurs in the declaration D, and
we abbreviate [N/O]O by [N/O]. Specifically, we use D for declarations, CS for lists of
constructors, and C for individual constructors. We also employ indexing to access parts
of specific definitions. For example, CSL yields the constructors of the data type L.

We can distinguish between first- and higher-order language operators. A first-order
language operator takes one or more languages and produces a new language. In con-
trast, a higher-order language operator takes other language operators as inputs or pro-
duces them as outputs. Moreover, we can distinguish language maintenance operations
according to the language aspect they affect, that is, whether they affect the semantics
(representation), the syntax, or the organizational structure. We will consider first- and
higher-order operations for these cases separately in the following subsections.

5.1 Semantics Language Operators

The semantics language operations and their representation in the metalanguage are
summarized in Figure 4.

An example of a first-order language operator is the addition of a new operation,
represented in the metalanguage by the addition of a constructor to the data type rep-
resenting the language. Similarly, we can extend an existing language operation by

Semantics First! Rethinking the Language Design Process 253

adding a new type argument to the constructor that represents that operation. We can
also add whole languages by adding new data types. This will often be a preparatory
step to combine the language with others into a bigger language. All of these operations
have natural inverse operations, that is, removing productions/constructors, restricting
operations/constructors, and removing languages/data types.

These six first-order operations form the basis for other language operations. For ex-
ample, consider the case when we have two languages L and M with different operations
that are nevertheless describing the same domain. We can merge L and M into one lan-
guage, say L, by substituting all occurrences of type M in the constructors of M by L and
then adding those updated constructors to L. Since language M is not needed anymore
after the merge, it can be removed.

data L = CS⊕〈[L/M]CSM〉
�〈data M = CS〉

This is an example of an (ordered) union of two languages (ordered, because one lan-
guage is privileged since its name is kept as a result of the union).

In contrast to first-order language operators that work directly on languages, a
higher-order language operator takes other language operators as inputs or produces
them as outputs. We should note at this point that a language schema is itself a language
operator since it can produce, via instantiation, different languages. With this in mind,
we can discuss higher-order language operations. One example is language abstraction
that takes a language or a language schema and produces a language schema by substi-
tuting a type (or sublanguage) by a parameter. Similarly, language instantiation takes a
language schema and substitutes a language (or language schema) for one of its param-
eters and thus produces a language or a more specific language schema. For example,
CalD is obtained from Map by substituting Date for a.

As with first-order language operations, we can derive more sophisticated higher-
order language operations from abstraction and instantiation. In the following we dis-
cuss one such example, namely language or schema composition. The basic idea behind
schema composition is to instantiate one schema with another. Taking the example from
Section 1 we can instantiate a new language schema as follows.

type CalP a = Map (Private Date) (Private a)

We can then use this specialized schema to instantiate further languages (or schemas).
Finally, we can describe the inheritance of operations from existing languages

through the instantiation of type classes, which makes type classes a powerful weapon,
because in addition to the class members, all functions that are derived from the class
will be made also available for the newly instantiated language. The importance of this
language operation cannot be overemphasized. It can extend the scope and expressive-
ness of a language dramatically with very little effort. We will present an example of
this later in Section 6.1.

5.2 Syntax Language Operators

The syntax language operations and their representation in the metalanguage are rather
straightforward and are summarized in Figure 5. Interestingly, the syntax level offers

254 M. Erwig and E. Walkingshaw

First-Order Operations: Adding/Removing . . .

In the language domain In the metalanguage (Haskell)
. . . Operation Function •〈fun f vs = e〉
. . . Operation argument Function argument fun f vs•v = [v/e’]e
. . . Specialized syntax Function instantiation •〈g = f e〉

Fig. 5. Syntax language operators and their representation

only first-order language operations. This might be a reason why the semantics-driven
approach is so much more powerful, because it offers higher-order language operations.

Extending a language by introducing new syntax works essentially by adding a new
function definition. We have shown examples of this in Figure 3. In addition, in DSEL
settings, users can extend language syntax on the fly by adding their own function defi-
nitions, as was illustrated in Section 3.1 with the function partyAt.

By extending an existing function with a new parameter we can extend the scope of
existing operations within a language. For example, we could add a new parameter for
minutes to the pm function shown in Figure 3 and thus extend the time language. Of
course, the inverse operations of removing function definitions or removing function
arguments are also available. Moreover, we can add or remove specialized syntax by
adding instances of functions obtained through application of more generic functions to
specific values. The definition of the reusable calendars work and party are examples
of this, again happening on the user level.

5.3 Organizational Language Operators

The adjective “organizational” indicates that the operators in this group are not directly
responsible for extending languages. But that does not mean that they are not useful or
even powerless. Organizational operations are preparatory in nature; they are akin to an
investment that pays dividend later.

For example, the definition of a type class creates a view of a language, called lan-
guage family, that other languages can be associated with. The benefit of making a
language a member of a language family (that is, making the data type an instance of
the type class that represents the language family) lies in getting immediate access to all
the functions that are derived from the class, that is, in language terms, the syntax of the
new family member is at once expanded by the whole “family heritage”. An example
of this is making a language a member of Monad, which expands the language’s syntax
through all the functions available in the vast monad libraries.

The definition of a language family itself amounts to the definition of a “language
multiplier” since the syntax provided by the functions derived from the type class can
be repeatedly added to arbitrarily many other languages. Multi-parameter type classes,
functional dependencies, and associated types do not change this view in any substantial
way. Moreover, most of the machinery that is available for defining type classes, such
as subclasses or derived classes, are supporting tools for the definition of language mul-
tipliers. Finally, adding a class constraint to a schema/function restricts the languages
that that schema can be instantiated with. Adding a class constraint might be considered
a higher-order operation since it produces a new (constrained) schema.

Semantics First! Rethinking the Language Design Process 255

6 Semantics-Driven Language Design in Action

The semantics-driven approach to language development is born from our experiences
designing many languages for a wide range of application domains. In this section, we
discuss the design of just three of these languages from the perspective of semantics-
driven design. Each of these languages is described in published papers (one with a
best paper award), and one is in active use by other people. The first two strongly ex-
hibit semantics-driven traits as published, while the third language is a more traditional
syntax-directed design which we have redesigned here in a semantics-driven way.

It is important to emphasize, however, that the goal of this work is not to provide a
fool-proof methodology for language engineering. Rather, it is to provide a strategy for
language design and a toolbox for implementing this strategy. This will be evident in the
following discussion, where a semantics-driven approach does not lead inevitably to an
objectively best language, but rather informs design decisions and guides the inherently
subjective design process.

6.1 Probabilistic Functional Programming

The first language we consider is a Haskell DSEL for probabilistic modeling, called
PFP (probabilistic functional programming) [1]. This language is presented with only
minor changes from the published version, made to simplify the discussion.

We begin by considering what a probabilistic model represents at a fundamental
level. One obvious answer is a distribution of possible outcomes. By limiting the focus
in PFP to discrete probability distributions, we can capture this meaning as a mapping
from outcomes to the probabilities that those outcomes occur. We thus begin the design
of PFP by partially instantiating the Map language schema from Section 3, creating a
new language schema Dist for representing probability distributions.

type Dist a = Map a Float

Although we have fixed the representation of probabilities to the language of floating
point numbers, this is not the only possibility; for example, probabilities might instead
be represented as rational numbers.

We can now instantiate the Dist schema with different outcome languages to produce
different distribution languages. For example, given the following simple language for
coin flip outcomes, Dist Coin is the language of distributions of a single coin flip.

data Coin = H | T

Using this we can define distributions modeling both fair and unfair coins.

fair, unfair :: Dist Coin

fair = H :-> 0.5 :&: T :-> 0.5

unfair = H :-> 0.8 :&: T :-> 0.2

On top of this tiny semantic core, PFP provides a large suite of syntactic extensions—
operations for extending and manipulating distributions, implemented as functions.
Probability distributions have several non-syntactic constraints related to probabilistic

256 M. Erwig and E. Walkingshaw

axioms. For example, probabilities in a distribution must sum to one and each be be-
tween zero and one. Operations must therefore be careful to preserve these properties.

Below we demonstrate a simple syntactic extension of the language with an operation
for defining uniform distributions.

uniform :: [a] -> Dist a

uniform as = foldr1 (:&:) [a :-> (1/n) | a <- as]

where n = fromIntegral (length as)

Using this, we could instead define the fair coin above as uniform [H,T], or define the
distribution of a die roll as uniform [1..6]. In the definition of uniform, we manu-
ally ensure that the probabilistic axioms are preserved and this is not too onerous. For
more interesting operations that involve the composition of multiple distributions, this
becomes more complicated and thus error-prone. Fortunately, organizational language
operators provide a more general solution to this problem.

By observing that probability distributions form a monad, we can carefully define
one composition operator (monadic bind) that preserves the axioms, along with an op-
erator for building trivial distributions (monadic return), in order to bring distributions
into the monad language family. This gives us immediate access to a huge number of
monadic operations for composing and manipulating probability distributions that auto-
matically preserve the probabilistic axioms by virtue of being defined in terms of return
and bind. Interestingly, as a class of type constructors, monads are actually a family of
language schemas. We instantiate the monad schema family for Dist as follows, where
toList is a function that transforms a map, Map a b, into an association list, [(a,b)].4

instance Monad Dist where

return a = a :-> 1

d >>= f = foldr1 (:&:) [b :-> (p*q) | (a,p) <- toList d

, (b,q) <- toList (f a)]

An interesting feature of the monad language family, when using Haskell as a meta-
language, is that instantiating it also extends the concrete syntax of our language by
allowing us to use Haskell’s do-notation.

Now we can, for example, write the Cartesian product of two distributions by reusing
the liftM2 composition operator from Haskell’s standard libraries.

prod :: Dist a -> Dist b -> Dist (a,b)

prod = liftM2 (\a b -> (a,b))

And we can confirm that the probabilistic axioms are preserved by examining the prod-
uct distribution of our fair and unfair coins from above.

> prod fair unfair

(H,H) -> 0.4 & (H,T) -> 0.1 & (T,H) -> 0.4 & (T,T) -> 0.1

This demonstrates the power of language families for enabling language reuse and pro-
moting structured language extension.

4 Note that the following is not strictly Haskell code since we cannot instantiate a type class with
a partially applied type synonym. In fact, Dist is a newtype, but wrapping and unwrapping
the nested Map value uninterestingly obfuscates the code, so we ignore this detail.

Semantics First! Rethinking the Language Design Process 257

However, not all operations on probability distributions can be implemented in terms
of bind. One such example is computing conditional probability distributions. Given a
distribution d and a predicate p on outcomes in d, a conditional distribution d’ is the
distribution of outcomes in d given that p is true. In other words, p acts as a filter on d,
and the probabilities are scaled in d’ to preserve the probabilistic axioms. We extend the
syntax of PFP with a filter operation for computing conditional distributions, described
by the following type definition.

(|||) :: Dist a -> (a -> Bool) -> Dist a

To demonstrate the use of this operator, we also define the following simple predicate
on tuples, which returns true if either element in the tuple equals the parameter.

oneIs :: Eq a => a -> (a,a) -> Bool

oneIs a (x,y) = a == x || a == y

Now we can, for example, compute the distribution of two fair coin tosses, given that
one of the tosses comes up heads.

> prod fair fair ||| oneIs H

(H,H) -> 0.33 & (H,T) -> 0.33 & (T,H) -> 0.33

This discussion has barely scratched the surface of PFP. In addition to many more
syntactic extensions (operations on distributions), PFP provides semantic extensions
for describing sequences of probabilistic state transitions, running probabilistic simula-
tions, and transforming distributions into random (impure) events. The high extensibil-
ity of the language, both syntactically and semantically, is a testament to the benefits of
semantics-driven design and an emphasis on language composition. This is also demon-
strated in the next subsection, where we directly reuse PFP as a sublanguage in a larger
language for explaining probabilistic reasoning.

6.2 Explaining Probabilistic Reasoning

The language described in this subsection focuses on explaining problems that re-
quire probabilistic reasoning [2, 3]. This language has also been simplified from pre-
viously published versions, both for presentation purposes, and to better demonstrate
the semantics-driven approach.

We motivate this language with the following riddle: “Given that a family with two
children has a boy, what is the probability that the other child is a girl?” Many reply that
the probability is one-half, but in fact, it is two-thirds. This solution follows directly
from the conditional probability example above. If a birth corresponds to a fair coin
flip where heads is a boy and tails is a girl, then we see in the resulting conditional
distribution that two out of the three of the remaining outcomes have a girl, and their
probabilities sum to two-thirds.

Following the semantics-driven approach, the first step in designing an explanation
language is to identify just what an explanation is, on a fundamental level. It turns
out that this is an active area of research and hotly-debated topic by philosophers [7].
Ultimately, we opted for a simple and pragmatic explanation representation based on a
story-telling metaphor, where an explanation is a sequence of steps that guide the reader

258 M. Erwig and E. Walkingshaw

from some initial state to the explanandum (that is, the thing that is to be explained).
An initial attempt to represent this semantics in Haskell follows, where the sublan-

guages s and a represent the current state at a step and the annotation describing that
step, respectively.

data Step s a = Step s a

type Expl s a = [Step s a]

For explaining probabilistic reasoning problems, we can instantiate these schemas with
a probability distribution for s, and a simple string describing the step for a.

type ProbExpl b = Expl (Dist b) String

The state of each (non-initial) step in an explanation is derived from the previous step.
Rather than encode this relationship in each explanation-building operation, we instead
reuse the Step schema to extend the semantics with a notion of a story. A story is a
sequence of annotated steps, where each step is a transformation from the state produced
by the previous step to a new state. We can then instantiate a story into an explanation
by applying it to an initial state.

type Story s a = [Step (s -> s) a]

explain :: Story s a -> s -> Expl s a

As an example, we can define the story in the above riddle by a sequence of three steps:
add the first child to the distribution, add the second child to the distribution, filter the
distribution to include only those families with a boy. We can then instantiate this story
with the empty distribution to produce an explanation—essentially a derivation of the
conditional distribution from the previous subsection.

However, this explanation is somewhat inadequate since it requires the reader to still
identify which outcomes in the final distribution are relevant and add up their proba-
bilities. As a solution, we extend the semantics of probabilistic reasoning explanations
by wrapping distributions in a construct that controls how they are viewed, allowing
us to group together those cases that correspond to the solution of the riddle. The lan-
guage schema G describes optionally grouped distributions. If a distribution is grouped,
a partitioning function maps each element into a group number.

data G a = Grouped (a -> Int) (Dist a) | Flat (Dist a)

type ProbExplG b = Expl (G b) String

This extension is similar to the addition of privacy to the calendar language in Section 3,
in that we extend the semantics by wrapping an existing sublanguage in a language
schema that gives us additional control over that language. Finally, we add a fourth step
to our story that groups results into two cases depending on whether the other child is a
girl or boy, so the riddle’s solution can be seen directly in the final grouped distribution.

In addition to several syntactic extensions for creating explanations, in [2] we also
extend the semantics to include story and explanation branching, for example, to repre-
sent decision points. In [3] we provide several operations for automatically transforming
explanations into alternative, equivalent explanations (which might then help a reader
who does not understand the initial explanation). This extension highlights a strength of
the semantics-driven approach. By focusing on a simple, fundamental representation of
explanations these transformations were easy to identify, while they would have been
much more difficult to extract from the (quite complex) syntax of explanation creation.

Semantics First! Rethinking the Language Design Process 259

6.3 Choice Calculus

The final language we will consider is the choice calculus, a DSL for representing
variation in software and other structured artifacts [4]. As published, this is a more
traditional language, with a clear separation of syntax and semantics connected by a se-
mantics function. Although the initial design was strongly motivated by a consideration
of the semantics, we present a significantly re-designed version of the language here,
using a more purely semantics-driven approach.

The essence of a variational artifact is once again a mapping. The range of this map-
ping is the set of plain artifacts encoded in the variational artifact (that is, its variants),
and the domain is the set of decisions that produce those variants. We instantiate the Map
schema with a language for decisions, defined below, to produce a language schema V

(which stands for “variational”) for the semantics of choice calculus expressions.

type V a = Map Decision a

For the discussion here, we will use the lambda calculus as our artifact language, rep-
resented by the following data type.

data LC = Var Name | Abs Name LC | App LC LC

type VLC = V LC

We read the V schema as variational, so VLC is the variational lambda calculus.
The best representation for decisions is not immediately obvious. One option is to

employ a “tagging” approach, where each alternative in a choice (a variation point in the
artifact) is labeled with a tag. A decision is then just a list of tags, one selected from each
choice. This approach is appealingly simple, but turns out to be too unstructured. As a
solution, we introduce in [4] locally scoped dimensions, which bind and synchronize
related choices. For example, a dimension OS might include the tags Linux, Mac, and
Windows; every choice in the OS dimension must then also contain three alternatives,
and the selection of alternatives from these choices would be synchronized.

Therefore, we define decisions to be a list of dimension-tag pairs, representing the
tag chosen from each dimension in the variational artifact.

type Dim = String

type Tag = String

type Decision = [(Dim,Tag)]

To implement locally scoped dimensions, we will need to “lift” the semantics to param-
eterize it with a notion of context. A context is propagated downward from selections in
dimensions, so we represent it as a list associating dimensions with integers, where the
integer represents the alternative to select from each choice bound by that dimension.

type Context = [(Dim,Int)]

We express the lifted semantics below and provide a function to “unlift” the semantics
of a top-level variation artifact by applying an empty context.

type V’ a = Context -> V a

type VLC’ = V’ LC

unlift :: V’ a -> V a

unlift = ($ [])

260 M. Erwig and E. Walkingshaw

Now we can define the syntax of the choice calculus in terms of this lifted semantics.
We must define two operations, for declaring dimensions and introducing choices. The
dimension declaration operation takes as arguments a dimension name, its list of tags,
and the scope of the declaration. As before, toList transforms a Map into an association
list; we introduce fromList to perform the inverse operation.

dim :: Dim -> [Tag] -> V’ a -> V’ a

dim d ts f c = fromList [((d,t):qs,e’) | (t,i) <- zip ts [0..]

, (qs,e’) <- toList (f ((d,i):c))]

The semantics of this operation is computed by selecting each tag independently in the
scope (by prepending (d,i) to the context, where the selected tag is the ith tag in ts)
and prepending that selection to the decision of the result.

The operation for introducing choices is much simpler. It accepts its binding dimen-
sion name and a list of alternatives as arguments, looks up its dimension in its associated
context, and returns the ith alternative if an entry in the context is found.

chc :: Dim -> [V’ a] -> V’ a

chc d as c = case lookup d c of

Just i -> (as !! i) c

Nothing -> error ("Unbound choice: " ++ d)

We also extend the syntax with smart constructors for variational lambda calculus ex-
pressions. Their implementations are omitted for lack of space, but each propagates the
corresponding LC constructor over the argument semantics. For app, the result is a prod-
uct of the two mappings, where entries are joined by concatenating the decisions and
composing the resulting lambda calculus expressions with the App constructor.

var :: Name -> VLC’

abs :: Name -> VLC’ -> VLC’

app :: VLC’ -> VLC’ -> VLC’

Finally, we provide an example of the language in action below. Note that we pretty
print the dimension-qualified tag ("D","t") as D.t for readability.

> unlift $ dim "A" ["t","u"]

$ app (chc "A" [var "f", var "g"])

(chc "A" [var "x", dim "B" ["v","w"]

$ chc "B" [var "y", var "z"]])

[A.t] -> f x & [A.u,B.v] -> g y & [A.u,B.w] -> g z

Observe that the two choices in the A dimension are synchronized and that a selection
in dimension B is only required if we select its alternative by selecting A.u.

This example demonstrates the flexibility of the semantics-driven approach by show-
ing that it can relatively easily accommodate concepts like scoping that seem at first to
be purely syntactic in nature. In particular, the strategy of lifting a semantics language
into a functional representation is potentially very powerful, although a full exploration
of this idea is left to future work.

Semantics First! Rethinking the Language Design Process 261

7 Related Work

There is a vast literature on language design that approaches the problem from a syn-
tactic point of view; Klint et al. provide a comprehensive overview [12]. Also, the re-
cent flurry of work on language workbenches—essentially integrated development en-
vironments that support the creation of DSLs, takes a predominantly syntax-focused
approach to language design; for overviews see [17, 20, 14]. In contrast, the approach
described in this paper is characterized by its focus on semantics.

Paul Hudak was among the first to advocate DSELs [8, 9] (also called “internal
DSLs” [6]) and the compositional approach to developing DSLs. This work has inspired
many to develop DSELs for all kinds of application areas (some impressive examples
can be found in this collection [10]). Our choice of Haskell as a metalanguage raises the
question of how semantics-driven DSL design relates to DSELs. The answer is that the
two concepts are quite independent. For example, one might define a DSEL in Haskell
by first defining the abstract syntax of the language as a data type, which is decidedly
syntax-driven. Similarly, the semantics-driven approach can be equally well applied
to non-embedded (external) DSLs. The creation of combinator libraries (for example,
in [8]) is a specific strategy for implementing DSELs in functional metalanguages that
most closely resembles the semantics-driven approach. Although the design of a com-
binator library will not necessarily incorporate all aspects of the semantics-driven ap-
proach, combinator libraries can nonetheless be viewed as a specific realization of the
semantics-driven approach in languages like Haskell.

The use of Haskell for language design and development has also been subject to re-
search. Tim Sheard provides an overview of basic techniques and representations [18].
One particular problem that has been addressed repeatedly is the composition of lan-
guages (or language fragments). One proposal is to abstract the recursive structure of
data types in a separate definition and use a fixpoint combinator on data types to tie to-
gether several languages into one mutual recursive definition [19]. Another approach is
to systematically employ monad transformers to gradually extend languages by selected
features [13]. Both of these proposals are quite creative and effective. However, they
embrace the syntax-oriented view of languages. This is not a bad thing; on the contrary,
as far as they go, these approaches provide also effective means to compose parsers for
the built languages whereas the semantics-driven approach and internal DSLs have little
control over syntax. On the other hand, the opportunities for language composition are
rather limited when compared with the semantics-driven approach.

8 Conclusions

In this paper, we have promoted a semantics-driven approach to language development
and identified a set of language operators that support the incremental extension and
composition of languages in order to realize this approach. Our approach is based on a
clear separation of syntax and semantics into different concepts of the chosen metalan-
guage Haskell, namely functions and data types, respectively.

We have illustrated our approach with several examples, including the design of
non-toy languages that have been published and are in use, which demonstrates that
semantics-driven language design actually works in practice.

262 M. Erwig and E. Walkingshaw

The advantages of our approach are particularly relevant for language prototyping.
And while semantics-driven language design can in some cases replace the traditional
syntax-focused approach, it can also work as a supplement, to be used as tool to explore
the design space before one commits to a specific design that is then implemented using
the syntactic approach.

References

1. Erwig, M., Kollmansberger, S.: Probabilistic Functional Programming in Haskell. Journal of
Functional Programming 16(1), 21–34 (2006)

2. Erwig, M., Walkingshaw, E.: A DSL for Explaining Probabilistic Reasoning. In: Taha, W.M.
(ed.) DSL 2009. LNCS, vol. 5658, pp. 335–359. Springer, Heidelberg (2009)

3. Erwig, M., Walkingshaw, E.: Visual Explanations of Probabilistic Reasoning. In: IEEE Int.
Symp. on Visual Languages and Human-Centric Computing, pp. 23–27 (2009)

4. Erwig, M., Walkingshaw, E.: The Choice Calculus: A Representation for Software Variation.
ACM Transactions on Software Engineering and Methodology (2011) (to appear)

5. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex. MIT Press,
Cambridge (2009)

6. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
7. Halpern, J., Pearl, J.: Causes and Explanations: A Structural-Model Approach, Part I: Causes.

British Journal of Philosophy of Science 56(4), 843–887 (2005)
8. Hudak, P.: Modular Domain Specific Languages and Tools. In: IEEE 5th Int. Conf. on Soft-

ware Reuse, pp. 134–142 (1998)
9. Hudak, P.: Building Domain-Specific Embedded Languages. ACM Computing Sur-

veys 28(4es), 196 (1996)
10. Gibbons, J., de Moor, O. (eds.): The Fun of Programming. Palgrave MacMillan (2003)
11. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and Declarative Syntax Definition: Paradise

Lost and Regained. In: ACM Int. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 918–932 (2010)

12. Klint, P., Lämmel, R., Verhoef, C.: Toward an Engineering Discipline for Grammarware.
ACM Trans. Softw. Eng. Methodol. 14, 331–380 (2005)

13. Liang, S., Hudak, P., Jones, M.: Monad Transformers and Modular Interpreters. In: 22nd
ACM Symp. on Principles of Programming Languages, pp. 333–343 (1995)

14. Merkle, B.: Textual Modeling Tools: Overview and Comparison of Language Workbenches.
In: ACM Int. Conf. on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 139–148 (2010)

15. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press, Cam-
bridge (2003)

16. Peyton Jones, S.L.: Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge (2003)

17. Pfeiffer, M., Pichler, J.: A Comparison of Tool Support for Textual Domain-Specific Lan-
guages. In: OOPSLA Workshop on Domain-Specific Modeling, pp. 1–7 (2008)

18. Sheard, T.: Accomplishments and Research Challenges in Meta-Programming. In: Taha, W.
(ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001)

19. Sheard, T., Pasalic, E.: Two-Level Types and Parameterized Modules. Journal of Functional
Programming 14(5), 547–587 (2004)

20. Völter, M., Visser, E.: Language Extension and Composition With Language Workbenches.
In: ACM Int. Conf. on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 301–304 (2010)

Integrating Attribute Grammar and Functional

Programming Language Features�

Ted Kaminski and Eric Van Wyk

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

{tedinski,evw}@cs.umn.edu

Abstract. While attribute grammars have several features making them
advantageous for specifying language processing tools, functional pro-
gramming languages offer a myriad of features also well-suited for such
tasks. Much other work shows the close relationship between these two
approaches, often in the form of embedding attribute grammars into
lazy functional languages. This paper continues in this tradition, but in
the other direction, by integrating various functional language features
into attribute grammars. Specifically we integrate rich static types (in-
cluding parametric polymorphism, typed distinctions between decorated
and undecorated trees, limited type inference, and generalized algebraic
data-types) and pattern-matching, all in a manner that maintains fa-
miliar and convenient attribute grammar notations and especially their
highly extensible nature.

1 Introduction

Attribute grammars[8] are a programming paradigm for the declarative specifica-
tion of computations over trees, especially of interest in specifying the semantics
of software languages. The underlying context free grammar of the language pro-
vides the structure for syntax-directed analysis, and synthesized and inherited
attributes provide a convenient means for declaratively specifying the flow of
information up and down the tree.

Over the years many additions to this formalism have been proposed to in-
crease the expressiveness, flexibility, extensibility, and convenience of attribute
grammars. Higher-order attributes [19] were introduced to, among other things,
end the hegemony of the original syntax tree. Many computations are more eas-
ily expressed over transformed trees, which is why compilation often involves
several intermediate languages, or are not possible without dynamically gener-
ating arbitrarily larger trees. Through higher-order attributes, these new trees
can be constructed, stored in attributes, and also decorated with attributes.

Reference attributes [5] were introduced to handle non-local dependencies
across a tree, and are often described as superimposing a graph structure on the
syntax tree. A typical use of reference attributes is obtaining a direct reference

� This work is partially supported by NSF Awards No. 0905581 and 1047961.

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 263–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 T. Kaminski and E. Van Wyk

to the declaration node of an identifier at a use site of that identifier. These help
dramatically in allowing specifications to be written at a high-level.

Forwarding [16] and production-valued attributes were introduced to solve an
extensibility problem for attribute grammars. Independently designed language
extensions can be written as attribute grammar fragments that can add new
productions (new language constructs) or new attributes and attribute equations
to existing productions (a new analysis or translation). But, these extensions
may not compose because the new attributes will not have defining equations
on the new productions. Forwarding provides a solution to this problem by
permitting new productions to forward any queries for unspecified attributes to
a semantically equivalent tree in the host language, where these attributes would
have been defined. This tree does not have to be statically determined, and can
be computed dynamically, often by using higher-order attributes.

There are many other useful extensions to attribute grammars such as remote
attributes and collections [1], circular attributes [2], generic attribute gram-
mars [12], and more. In this paper, however, we will only be considering the
three described above.

Functional programming languages also offer a number of compelling features,
such as strong static typing, parametric polymorphism, type inference, pattern
matching, and generalized algebraic data types. We are interested in integrating
these feature into attribute grammars in order to enjoy the best of both worlds.
We have a number of goals in doing so:

1. Safety. The language should have features that help the language developer
to identify and prevent bugs in their attribute grammar.

2. Synergy. The features should work together and not be separate, disjointed
parts of the language.

3. Simplicity. It should not be a heavy burden on the implementer of the at-
tribute grammar specification language.

4. Extensible. We do not want to compromise on one of the biggest advantages
that attribute grammars and forwarding provide.

5. Fully-featured. These features should be integrated with attribute grammars
well enough that they are still as useful and powerful as they are in functional
languages.

6. Natural. Notation should be convenient, sensible and not overly cumbersome,
and error messages should be appropriate and clear.

A strong motivating example for this integration is using attribute grammar
constructs for representing type information in a language processor. In this
case a nonterminal represent types in the language and productions (with this
nonterminal on the left hand side) construct representations for different types.
We would definitely like the extensibility properties that attribute grammars
and forwarding provide so that we can add new types (new productions) and
new analysis over existing types (new attributes). If the attribute grammar is
embedded in Haskell, Java, or similar languages, the algebraic data types and
classes available in these languages cannot meet these requirements to the same
satisfaction that attribute grammars can.

Integrating Attr. Grammar and Functional Prog. Lang. Features 265

We would equally like a number of functional programming language features
for this application. Checking for type equality (or unifying two types) without
making use of pattern matching often results in programmers creating an isFoo

attribute for every production foo, along with attributes used only to access the
children of a production, and using those to test for equality. This is essentially
reinventing pattern matching, badly. These tedious “solutions” are elegantly
avoided by allowing pattern matching on nonterminals.

Pattern matching proves useful far beyond just representing types, however.
There are many cases in language processing where we care about the local
structure of sub-trees, and these are all ideal for handling with pattern matching.
In many cases, the expressiveness pattern matching provides can be difficult to
match with attributes since a large number of attributes are typically necessary
to emulate a pattern.

Having decided to represent types using grammars, we may ask what other
“data structure”-like aspects of the language definition might benefit from being
represented as grammars as well? One example is the type of information typ-
ically stored in a symbol table. Extensible environments, where new language
features can easily add new namespaces, scopes, or other contextual informa-
tion, become possible simply by representing them as grammars with existing
attribute grammar features. New namespaces, for example, can simply be new
attributes on the environment nonterminal, and new information can be added
to the environment in an extensible way through new productions that make
use of forwarding. But without parametric polymorphism, a specialized nonter-
minal has to be rewritten for every type of information that we wish to store
in the environment, which quickly becomes tedious. But with it, we can design
environments and symbol table structures in a generic way so that they can be
implemented once in a library and reused in different language implementations.

We make the following contributions:

– We describe a small attribute grammar specification languageAg, a subset of
Silver [17], that captures the essence of most attribute grammar specification
languages (section 2.)

– We show how types help simplify the treatment of higher-order, reference,
and production-valued attributes (section 2.)

– We describe a type system for Ag that carefully integrates all of the desired
features (section 3). We also identify and work around a weakness of applying
the Hindley-Milner type system to attribute grammars (section 3.2.)

– We describe a method for using types to improve the notation of the lan-
guage, by automatically inferring whether a child tree node identifier intends
to reference the originally supplied tree (on which values for attributes are
not available) or the version decorated with attributes (section 3.3.)

– We describe a new interaction with forwarding that permits pattern match-
ing to be used on attribute grammars without compromising the extensibility
of the grammar (section 4.)

266 T. Kaminski and E. Van Wyk

T ::= nv | nn <T > | Decorated nn <T> | Production (nn <T > ::= T)
D ::= · | nonterminal nn <nv > ; D

| synthesized attribute na <nv > ::T ; D
| inherited attribute na <nv > :: T ; D

| attribute na <T> occurs on nn <nv > ; D

| production n nl ::nn <T > ::= n ::T { S } D

S ::= n .na = E ; | forwards to E { A } ;

A ::= na = E

E ::= n | Ef (E) | E .na | decorate E with { A } | new E

Fig. 1. The language Ag

2 The AG Language

A number of Silver features are omitted from the language Ag, as we wish to
focus on those parts of the language that are interesting from a typing and
semantics perspective and are generally applicable to other attribute grammar
languages. To that end, terminals, other components related to parsing and
concrete syntax, aspects productions, collection and local attributes, functions,
operations on primitive types, as well as many other basic features are all omitted
from Ag. There are no major difficulties in extending the contributions of this
paper to the full language.

The grammar for the language Ag is given in Fig. 1. Names of values (e.g.
productions and trees) are denoted n, and we follow the convention of denoting
nonterminal names as nn, attribute names as na, and type variables as nv.

A program in Ag is a set of declarations, denoted D. These declarations
would normally be mutually recursive, but for simplicity of presentation, we
consider them in sequence in Ag. (Mutual recursion could cause problems for
type reconstruction, but we are not relying on type reconstruction in any way
for declarations in Ag or Silver.) The forms of declaration should be relatively
standard for attribute grammars; we take the view of attributes being declared
separately from the nonterminals on which they occur.

Nonterminals are parameterized by a set of type variables (nv) in angle brack-
ets. We will adopt the convention of omitting the angle brackets whenever this
list is empty. Attributes, too, are parameterized by a set of type variables, and it
is the responsibility of the occurs on declaration to make clear the association
between any variables an attribute is parameterized by, and those variables the
nonterminal is parameterized by.

Production declarations give a name (nl) and type (nn <T>) to the non-
terminal they construct. The name is used to define synthesized attributes for
this production or access inherited attributes given to this production inside the
body of the production (S). Each of the children of the production is also given
a name and type, and the body of the production consists of a set of (what we
will call) statements (S).

Integrating Attr. Grammar and Functional Prog. Lang. Features 267

Fig. 2. The distinction between undecorated and decorated trees, and the operations
decorate and new on them. The trees are a representation of the lambda calculus
expression (λx.x)().

The attribute definition statement may define synthesized attributes for the
node created by the current production, or inherited attributes for its children,
depending on whether the name (n) is the left hand side (nl in production
declarations) or the name of a child, respectively.

Forwarding is simply another form of equation that can be written as part of
the production body. Forwarding works by forwarding requests of any attributes
not defined by this production to the forwarded-to tree (E). Any inherited at-
tributes requested by the forwarded-to tree may be supplied in A, or will oth-
erwise be forwarded to the inherited attributes supplied to the forwarding tree.
If no new synthesized attribute equations are given in a production, and no in-
herited attribute equations are given in the forward, then forwarding behaves
identically to simple macro expansion.

Expressions are denoted E. Production application (tree construction) and at-
tribute access are standard. The new and decorate expressions will be explained
momentarily.

In the specification of types, T , we see that every (parameterized) nonterminal
nn produces two distinct, but related, types:

– the undecorated type, denoted nn, is for trees without computed attribute
values (these play the same role as algebraic data types in ML or Haskell)

268 T. Kaminski and E. Van Wyk

– the decorated type, denoted Decorated nn, is a tree that is decorated with
attributes, created by supplying an undecorated tree with its inherited at-
tributes.

The observed distinction between these two goes back at least as far as [3], and
a type distinction between decorated and undecorated trees shows up naturally
in functional embeddings of attribute grammars (such as in [6]), but with less
familiar notation. Despite this, to the best of our knowledge, the type distinction
has not been deliberately exposed as part of an attribute grammar specification
language before. For a comparison with other languages, see related work in
section 5.

To go along with these types, there are two expressions to convert between
the two: new creates an undecorated tree from a decorated tree, and decorate

creates a new decorated tree by supplying it with a list of inherited attribute
definitions, denoted A. These operation are illustrated visually in Fig. 2.

Distinguishing these two kinds of trees by types provides some advantages:

– Enhanced Static Type Safety. Object-oriented embeddings in particular often
do not make this distinction, allowing either kind of tree to be used incor-
rectly. This stems from the ability to set inherited attributes by side-effects
on objects representing trees.

– Simplicity. Higher-order [19], reference [5] and production-valued [16] at-
tributes are just ordinary attributes of different types (respectively, nn,
Decorated nn, and Production(...)), and need no special treatment by the
evaluator or the language.

– Maintain expressiveness. Productions can deliberately take decorated trees
as children, for example, allowing a tree to share sub-trees with other trees.
This is technically allowed in other systems with reference attributes, but at
the expense of type safety, and it’s not clear it is an intended feature.

– Convenience. In section 3.3 we show how these types can be used to provide
a convenient notation in Ag.

A small example of a grammar for boolean propositions is given in Fig. 3. The
example assumes the existence of a primitive boolean type, not included in our
definition of Ag, and one shorthand notation: the with syntax of the nonterminal
declaration stands in for occurs on declarations of Ag for each of the attributes
that follow it.

The grammar shows the use of a few of the basic features of attribute gram-
mars, in the notation of Ag. The eval attribute is an ordinary synthesized
attribute, while the negation attribute is a so-called higher-order attribute. In
Ag, we can see this is just an ordinary attribute with a different type. The
implies production shows the use of forwarding in a macro-like fashion, while
the iff production demonstrates that it’s still possible to provide equations for
some of the attributes when forwarding.

The example grammar in Fig. 4 shows the use of the polymorphic syntax for
nonterminal, attribute, and production declarations for the simple example of
the pair data structure. We will be referring back to these two example grammars
later on in the paper to illustrate some subtle details.

Integrating Attr. Grammar and Functional Prog. Lang. Features 269

nonterminal Expr with eval, negation;

synthesized attribute eval :: Boolean;

synthesized attribute negation :: Expr;

production and

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval && r.eval;

e.negation = or(not(l),not(r));

}

production or

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval || r.eval;

e.negation = and(not(l),not(r));

}

production not

e::Expr ::= s::Expr

{ e.eval = !s.eval;

e.negation = s;

}

production literal

e::Expr ::= b::Boolean

{ e.eval = b;

e.negation = literal(!b);

}

production implies

e::Expr ::= l::Expr r::Expr

{ forwards to or(not(l),r);

}

production iff

e::Expr ::= l::Expr r::Expr

{ e.eval = l.eval == r.eval;

forwards to and(implies(l,r),

implies(r,l));

}

Fig. 3. An simple example grammar for boolean propositions, written in Ag

nonterminal Pair<a b>;

synthesized attribute fst<a> :: a;

synthesized attribute snd<a> :: a;

attribute fst<a> occurs on Pair<a b>;

attribute snd<d> occurs on Pair<c d>;

production pair

p::Pair<a b> ::= f::a s::b

{ p.fst = f;

p.snd = s;

}

Fig. 4. An simple example defining a pair type, written in Ag

3 The AG Type System

3.1 The Type Inference Rules

Each of the nonterminals in the (meta) language Ag has a rather special typing
relation, and so we will describe them in some detail.

N ;P ;S; I;O;Γ � D Declarations

Here N,P, S, I, and O represent, respectively, declared nonterminal types, pro-
duction names, synthesized attributes, inherited attributes, and occurs-on dec-
larations. These reflect the various components of an attribute grammar specifi-
cation, but here we specify them explicitly. Since these do not change except at
the top level of declarations (D), we will omit writing them for the other typing
relations and consider them to be implicitly available.

270 T. Kaminski and E. Van Wyk

L;R;Γ � S Production body statements

L is the pair of the name and type of the left-hand side symbol of the production
(the type the production constructs.) R is the set of name/type pairs for the
right-hand side symbols (the children) of the production. These are used to
distinguish when it is acceptable to defined inherited or synthesized attributes
inside the production statements.

X ;Γ � A Inherited attribute assignments

Here, X is the type of the nonterminal that inherited attributes are being sup-
plied to by decorate expressions and forwards to statements.

Γ � E : T Expressions

This is the standard relation for expressions, except for N,P, S, I, and O that
are implicitly supplied.

Inference Rules. The type inference rules for Ag are shown in Fig. 5. In
all rules, we omit explicitly checking the validity of types (T) written in the
syntax. All that is required to ensure types are valid is that nn actually refer
to a declared nonterminal, with an appropriate number of parameter types.
Wherever nn appears on its own in the syntax, however, we will write these
checks explicitly. Additionally, we always require lists of type variables nv to
contain no duplicates.

We use fv(T) to represent the free type variables of a type T. This may also
be applied to many types (T), in which case it is the union of the free type
variables. To ensure that different sequences of types or type variables have the
same number of elements, we use the notation T∀k to indicate that there are k
elements in the sequence T.

The rule D-nt declaring nonterminals is straightforward and adds the non-
terminal type to N . We omit basic checks for redeclarations here for brevity.
The rule D-syn adds the type of the synthesized attribute to S and ensures the
type of the attribute is closed under the variables it is parameterized by. The
rule for inherited attributes is symmetric and not shown.

The rule D-occ requires some explanation. The actual value stored in O
for an occurrence of an attribute on a nonterminal is a function, α, from the
nonterminal’s type to the type of the attribute. We write [nv �→ T] to represent
a substitution that maps each type variable to its respective type. The definition
of α looks complex but is quite simple: first, we are interested in the type of the
attribute (Ta), so that is what the substitution is applied to. We want to equate
the variables declared as parameters of the nonterminal (nvdn) with both the
variables written in this occurs declaration (nv) and with the types supplied as
a parameter to this function (Tp). Finally, we want to equate the type variables
that are parameters of the attribute (nvda) with the actual type supplied for
those parameters in this occurs declaration (T). The directions of these rewrites

Integrating Attr. Grammar and Functional Prog. Lang. Features 271

N ∪ nn <nv >;P ;S; I;O;Γ � D

N ;P ;S; I;O;Γ � nonterminal nn <nv > ; D
(D-nt)

fv(T) \ nv = ∅ N ;P ;S ∪ na <nv > : T; I;O;Γ � D

N ;P ;S; I;O;Γ � synthesized attribute na <nv > ::T ; D
(D-syn)

fv(T) \ nv = ∅ na <nvda∀k > : Ta ∈ S ∪ I nn <nvdn∀j > ∈ N

α(nn <Tp∀j >) = ([nvda �→ T] ◦ [nv �→ nvdn] ◦ [nvdn �→ Tp])(Ta)
N ;P ;S; I;O ∪ na@nn = α;Γ � D

N ;P ;S; I;O;Γ � attribute na <T∀k > occurs on nn <nv∀j > ; D
(D-occ)

nn <nvdn∀k > ∈ N

nl : nn <Tn >;nc : Tc;Γ ∪ nl : Decorated nn <Tn >∪nc : dec(Tc) � S

Tp = Production (nn <Tn > ::= Tc)
N ;P ∪ n;S; I;O;Γ ∪ n : ∀fv(Tp).Tp � D

N ;P ;S; I;O;Γ � production n nl ::nn <Tn∀k > ::= nc ::Tc { S } D
(D-prod)

n : T = L, na ∈ S, T = nn <Tn >, na@nn = α ∈ O, Γ � E : α(T)

L;R;Γ � n .na = E ;
(S-syn)

n : T ∈ R, na ∈ I, T = nn <Tn >, na@nn = α ∈ O, Γ � E : α(T)

L;R;Γ � n .na = E ;
(S-inh)

n : T = L Γ � E : T T;Γ � A

L;R;Γ � forwards to E { A } ;
(S-fwd)

na ∈ I X = nn <Tn > na@nn = α ∈ O Γ � E : α(T)

X;Γ � na = E
(A-inh)

n : ∀nv.Tq ∈ Γ

Γ � n : [nv �→ ν]T
(E-var)

Γ � E : Decorated nn <Tn >

Γ � new E : nn <Tn >
(E-new)

Γ � Ef : Production (T ::= Tc) Γ � E : Tc

Γ � Ef (E) : T
(E-app)

Γ � E : Decorated nn <Tn > na@nn = α ∈ O

Γ � E .na : α(nn <Tn >)
(E-acc)

Γ � E : nn <Tn > nn <Tn >;Γ � A

Γ � decorate E with { A } : Decorated nn <Tn >
(E-dec)

Fig. 5. Type inference rules Ag

272 T. Kaminski and E. Van Wyk

are simply such that no type variables from these declarations “escape” into the
resulting type. For example, the function α for fst attribute on Pair shown in
Fig. 4 would map Pair < T S > to T .

The rule D-prod has a few very particular details. The types written in the
production signature are those types that should be supplied when the produc-
tion is applied. Inside the body of the production, however, the children and
left-hand side should appear decorated. So, if a child is declared as having type
Expr (as in many of the productions of Fig. 3), then inside the production body,
its type is seen to be Decorated Expr. To accomplish this, we apply dec to the
types of the children when adding them to the environment (Γ). dec’s behavior
is simple: it is the identity function, except that nonterminal types nn <T> be-
come their associated decorated types Decorated nn <T>. The purpose of this
is to reflect what the production does: there will be rules inside the production
body (S) that define inherited attributes for its children, and therefore, the chil-
dren are being automatically decorated by the production and should be seen
as decorated within the production body.

Note that when D-prod checks the validity of its statements S, it supplies
R with types unchanged (that is, without dec applied.) This is also important,
as inherited attributes can only be supplied to previously undecorated children.
Children of already decorated type already have their inherited attributes, and
so this information (R, without dec applied) is necessary to distinguish between
children that were initially undecorated and those that were already decorated
and cannot be supplied new inherited attributes.

The rules S-syn and S-inh are again symmetric, and apply to the same syn-
tax. Which rule is used depends on whether an inherited attribute is being de-
fined for a child, or a synthesized attribute is being defined for the production.
Note that we use the shorthand na ∈ S to mean that it is a declared attribute
of the appropriate kind, as we no longer care about the type declared for the
attribute specifically, that will be obtained from the occurs declaration via the
function α. A major subtlety of the rule S-fwd is that the expression type is
undecorated. Rule A-inh is similar to S-inh except that we obtain the type from
the context, rather than by looking up a name.

The rules E-var, and E-app are slight adaptations of the standard versions
of these for the lambda calculus. Notice in the rule E-acc that the expression
type is required to be decorated (attributes cannot be accessed from trees that
have not yet been decorated with attributes.) In section 3.2, we consider the
problem with this rule, as written, where we must know the type of the left
hand side in order to report any type at all for the whole expression, due to the
function α. The rules E-dec and E-new should be straightforward, based on
their descriptions in the previous section, and the visual in Fig. 2.

Generalized Algebraic Data Types. A full description of GADTs can be
found in [11]. Examples of the utility of GADTs are omitted here for space
reasons, but many of the examples in the cited functional programming literature
make use of them for syntax trees—the application to attribute grammars should
be obvious.

Integrating Attr. Grammar and Functional Prog. Lang. Features 273

The language Ag (as it currently stands, without pattern matching) supports
GADTs effortlessly. The type system presented in Fig. 5 needs no changes at all,
whether GADTs are allowed or not. The only difference is actually syntactic. If
the type of the nonterminal on the left hand side of production declarations
permits types (T) inside the angle brackets (as they do in Fig. 1), GADTs are
supported. If instead, these are restricted to type variables (nv), then GADTs
are disallowed. All of the complication in supporting GADTs appears to lie
in pattern matching, as we will see in section 4.2 when we introduce pattern
matching to Ag.

3.2 Polymorphic Attribute Access Problem

We encountered an issue in adapting a Hindley-Milner style type system to
attributes grammars. Typing the attribute access expression e.a immediately
raises two problems with the standard inference algorithm:

– There is no type we can unify e’s type with. The constraint we wish to
express is that, whatever e’s type, the attribute a occurs on it. That is,
na@nn = α has to be in O.

– There is no type that we can report as the type of the whole expression,
without knowing e’s type, because without that nonterminal type we cannot
look up the function α needed to report the attribute’s type.

These problems can occur even in the simplest case of parameterized attributes.
For example, we cannot know that e.fst means that e should be a Pair or a
Triple, another nonterminal also decorated by fst. Any access of fst simply
requires knowing what type we’re accessing fst on.

Fortunately, a sufficient level of type annotation guarantees that the types of
subexpressions can be inferred before reporting a type for the attribute access
expression. For Ag this is not a significant burden: production and attributes
need type annotations. Productions require type signatures since they define the
underlying context free grammar. And attributes are similar to type classes in
Haskell where they also require type signatures. The major downside of needing
type annotations is for features not present in Ag but present in Silver: func-
tions, let-expressions, “local attributes” and some other features require type
annotations whereas type inference on these may be preferred.

Type inference does still provide a significant advantage since it infers the
“type parameters” to parameterized productions. In a prototype implementation
of parametric polymorphism in Silver [4] without inference one needed to specify,
for example, the type of elements in an empty list literal. Explicitly specifying
such type parameters quickly becomes tedious.

3.3 Putting Types to Work

In rule D-prod, nonterminal children are added to the environment in their dec-
orated form for the body of the production (using the function dec.) While this is

274 T. Kaminski and E. Van Wyk

correct behavior, it can be inconvenient, as it can lead to a tedious proliferation
of new wherever the undecorated form of a child is needed instead.

What we’d like is to have these names refer to either of their decorated or
undecorated values, and simply disambiguate based upon type. The example
grammar in Fig. 3 is already relying on this desired behavior. In the not pro-
duction, we happily access the eval attribute from the child s, when defining the
equation for eval on this production. But, we also use s as an undecorated value
when defining negation. As currently written, the type rules would require us
to write new(s) in the latter case, because the higher-order attribute expects an
undecorated value, and s is seen as decorated within the production.

The simplest change to the type rules to reflect this idea would be to add a
new rule for expressions that is able to refer implicitly to the R and L contextual
information given to statements:

n : T ∈ R ∪ L

Γ � n : T
(E-AsIs)

Unfortunately, simply introducing this rule leads to nondeterminism when type
checking. With it, there is no obvious way to decide whether to use it or E-var,
which is problematic.

To resolve this issue, we introduce a new pseudo-union type of both the dec-
orated and undecorated versions of a nonterminal. But this type, called Und
for undecorable, will also carry with it a type variable that is specialized to the
appropriate decorated or undecorated type when it is used in one way or the
other. This restriction reflects the fact that we need to choose between one of
these values or the other.

Und is introduced by altering the dec function used in D-prod to turn un-
decorated child types into undecorable types, rather than decorated types. An
undecorable type will freely unify with its corresponding decorated and undec-
orated type, but in doing so, refines its corresponding hidden type variable.

U(Und〈nn <nv >, a〉, nn<nv >) :- U(a, nn <nv >)

U(Und〈nn <nv >, a〉, Decorated nn<nv >) :- U(a, Decorated nn <nv >)

U(Und〈nn <nv >, a〉, Und〈nn <nv >, b〉) :- U(a, b)

Now, suppose we have the admittedly contrived types for foo and bar below,
and we attempt to type the expression foo(child1, bar, child2)

bar :: Production(Baz ::= Expr)

foo :: Production(Baz ::= a Production(Baz ::= a) a)

child1 will report type Und〈Expr, a〉, and child2 will report Und〈Expr, b〉.
We will then enforce two constraints while checking the application of foo:
Und〈Expr, a〉 = Expr, which using the first rule above will result in requir-
ing a = Expr, then Und〈Expr,Expr〉 = Und(〈Expr〉, b) which will using the
third rule requires b = Expr.

Integrating Attr. Grammar and Functional Prog. Lang. Features 275

E ::= case E of p → Ep

p ::= np(n) |

Fig. 6. The pattern extension to Ag

The introduction of this undecorable type is something of a special-purpose
hack, but the notation gains are worth it. The notational gains could also be
achieved with more sophisticated type machinery (like type classes), but it seems
worthwhile to stick to the simple Hindley-Milner style of type systems.

4 Pattern Matching

In this section we consider the extensions that must be made to include pattern
matching in Ag. The main challenge lies in the interaction of forwarding and
pattern matching.

4.1 Adding Pattern Matching to AG

Fig. 6 shows the extension to expression syntax for patterns. Note that to sim-
plify our discussion, we are considering only single-value, non-nested patterns.
Support for nested patterns that match on multiple values at once can be ob-
tained simply by applying a standard pattern matching compiler, such as [20].

As already noted in the introduction, pattern matching can be emulated with
attributes, but that emulation comes at the cost of potentially needing many
attributes. One possible translation of pattern matching to attributes begins
by creating a new synthesized attribute for each match expression, occurring
on the nonterminal it matches on, with the corresponding pattern expression
as the attribute equation for each production1. This also requires every name
referenced in that equation to be turned into an inherited attribute that is passed
into that nonterminal by the production performing the match. These names not
only include children of the production, but also any pattern variables bound
by enclosing pattern matching expressions, such as those created by the pattern
compiler from multi-value, nested patterns.

This translation actually does not quite work in Ag: pattern matching on ref-
erence attributes is problematic because they’re already decorated values that we
cannot supply with more inherited attributes. In practice, though, there are other
language features available that can be used to avoid this problem. Still, this is
not a good approach for implementing pattern matching. The most prolific data
structures are probably also those pattern matched upon the most, and unless
the attribute grammar implementation is specifically designed around solving
this problem, there will be overhead for every attribute. A List nonterminal,

1 The observant reader may note here that we have left out wildcards. This is delib-
erate, and will be considered shortly.

276 T. Kaminski and E. Van Wyk

nonterminal Type with eq, eqto;

synthesized attribute eq :: Boolean;

inherited attribute eqto :: Type;

production pair

t::Type ::= l::Type r::Type

{ t.eq =

case t.eqto of

pair(a, b) ->

(decorate l with { eqto = a }).eq &&

(decorate r with { eqto = b }).eq

| _ -> false

end;

}

production tuple

t::Type ::= ts::[Type]

{ forwards to

case ts of

[] -> unit()

| a:[] -> a

| a:b:[] -> pair(a, b)

| f:r -> pair(f, tuple(r))

end;

}

Fig. 7. A use of pattern matching in types

for example, could easily balloon to very many attributes that are the result of
translated-away patterns, and there could easily be very many more cons nodes
in memory. The result would not be memory efficient, to say the least.

The true value of considering this translation to attributes is in trying to
resolve the problem pattern matching raises for extensibility. Patterns are ex-
plicit lists of productions (constructors), something that works just fine for data
types in functional languages because data types are closed: no new constructors
can be introduced. Nonterminals are not closed, and this is a major friction in
integrating these two language features. However, if pattern matching has a suc-
cessful reduction to attributes, that problem is already solved: forwarding gives
us the solution.

But, the translation to attributes is not quite fully specified: what do we do
in the case of wild cards? We choose the smallest possible answer that could still
allow us to be sure we cover all cases: wild cards will apply to all productions,
not already elsewhere in the list of patterns, that do not forward. Thus, we
would continue to follow forwards down the chain until either we reach a case in
the pattern matching expression, or we reach a non-forwarding, non-matching
production, in which case we use the wild card. The dual wild card behavior
(applying to all productions, not just those that do not forward) would mean
that the “look through forwards” behavior of pattern matching would only occur
for patterns without wild cards, which seems unnecessarily limiting.

In Fig. 7, we show a very simple example of the use of pattern matching in de-
termining equality of types. (We again take a few small liberties in notation; new
in this example is the use of a list type and some notations for it borrowed from
Haskell.) The advantage of interacting pattern matching and forwarding quickly
becomes apparent in the example of a tuple extension to the language of types.
The tuple type is able to “inherit” its equality checking behavior from whatever
type it forwards to, as is normal for forwarding. But, this alone is not sufficient:

Integrating Attr. Grammar and Functional Prog. Lang. Features 277

consider checking two tuples (tuple([S, T, U])) against each other. The first
will forward to pair(S, pair(T, U)), and pattern match on the second. But,
without the “look-through” behavior we describe here, the pattern will fail to
match, as it will look like a tuple. With the behavior, it will successfully match
the pair production it forwards to, and proceed from there.

Alternative Wild Card Behavior. One alternative might be to take advan-
tage of higher level organizational information (not considered in Ag) to decide
which productions to apply the wildcard case to. For example, the wildcard could
apply to all known productions wherever the case expression appears (based on
imports or host/extension information), instead of all non-forwarding produc-
tions. This has the advantage that we wouldn’t need to repeat the wildcard
case for some forwarding productions in those cases where we’d like to distin-
guish between a production and the production it forwards to, but it has a few
disadvantages as well:

– We may now need to repeat case alternatives if we don’t want to distinguish
between a forward we know about (e.g. for syntactic sugar.)

– The meaning of a case expression might change based on where it appears
or by changing the imports of the grammar it exists in.

– A “useless imports” analysis would have to become more complex to ensure
no pattern matching expressions would change behavior, as the wildcard of
a case expression may be implicitly referencing that grammar.

As a result, this behavior has enough additional implementation and conceptual
complexities that we have not adopted it.

4.2 Typing Pattern Matching Expressions

Matching on undecorated trees seems to introduce no new interesting behavior
different from pattern matching on ordinary data types, which makes sense be-
cause in a sense undecorated trees are not different from ordinary data types.
Pattern matching on decorated trees, however, introduces a couple of interesting
behaviors:

– As we saw in the previous section, we can evaluate the forward of a produc-
tion and allow pattern matching to “look through” to the forward.

– We can also allow pattern variables to extract the decorated children of a
production, rather than just the undecorated children.

Further, restricting pattern matching to only apply to decorated trees doesn’t
lose us anything: if it makes sense to pattern match on an undecorated tree,
then the case construct can simply decorate a tree with no inherited attributes
to pattern match upon it. As a result, we have decided to just consider pattern
matching on decorated trees in Ag.

The type rules for patterns are shown in Fig. 8. Notice in E-case that the
scrutinee expression (E) must be a decorated type. Also note that dec is applied

278 T. Kaminski and E. Van Wyk

Γ � E : Decorated nn <T > Γ � p → Ep : nn <T > → T

Γ � case E of p → Ep : T
(E-case)

np ∈ P Γ � np : Production(Tn ::= Tc)

θ ∈ mgu(Ts = Tn) θ(Γ, n : dec(Tc)) � Ep : θ(Tr)

Γ � np(n) → Ep : Ts → Tr

(P-prod)

Fig. 8. The additional typing rules for pattern matching expressions

directly to Tc in P-prod. The reason for this is to allow pattern matching to
extract the decorated trees corresponding to a node’s children. This function
(dec) must be applied prior to any type information outside the original decla-
ration of the production being considered, in order to be accurate about which
children are available as decorated trees. For example, the pair production in
Fig. 4 would not be decorating its children, even though they might turn out
to be a (undecorated) nonterminal type (i.e. a pair of Expr), because to the
pair production, the types of its children are type variables. Applying dec early
means that here we see the type of the children as type variables, rather than a
specific type, just as the original production would have.

The use of θ in the type rule P-prod is the cost that we must pay for sup-
porting GADTs in patterns. The details for handling GADTs in patterns are
adapted from [11], as this approach seemed especially simple to implement. In
that paper, much attention is paid to a notion of wobbly and rigid types. Thanks
to the concessions in type reconstruction we must make due to the attribute
access problem discussed in section 3.2, all bindings in Ag can be considered
rigid in their sense, vastly simplifying the system even more.

The essential idea is to compute amost general unifier (θ) between the pattern
scrutinee’s type and the result type of the production 2. We then check the right
hand side of the alternative, under the assumptions of the unifier. In effect,
all this rule is really stating is that whatever type information we learn from
successfully matching a particular GADT-like production stays confined to that
branch of the pattern matching expression.

4.3 Other Concerns

No new special cases need to be introduced to perform a well-definedness test
in the presence of pattern matching, as pattern matching can be translated to
attributes (the troubles mentioned earlier are eliminated if we are allowed full-
program information), and forwarding can also be translated away to higher
order attribute grammars [16].

2 The need to concern ourselves with “fresh” most general unifiers in the sense of the
cited paper is eliminated again due to the lack of “wobbly” types.

Integrating Attr. Grammar and Functional Prog. Lang. Features 279

The standard techniques apply for ensuring exhaustive matching of patterns,
except that we only need to consider productions that do not forward as the
essential cases to cover.

Although it is often glossed over in descriptions of type systems, it’s worth
noting that we’re allowing type variables to appear in productions’ right hand
sides (that is, in the children) that do not appear in the left hand side. This
corresponds to a notion of existential types in functional languages, but we do
not require any special forall notation to include them. Background discussion
on existential types can be found in [9].

5 Related Work

The integration of pattern matching and forwarding we present in this paper is
novel. Some aspects of the rest of the system can be found in scattered in other
attribute grammar languages in various forms, but not in ways that provide both
the type safety and the familiar and convenient notations that we provide here.

In JastAdd [5] and Kiama[14], trees are represented as objects and attribute
evaluation mutates the tree effectfully (either directly as in JastAdd or indirectly
via memoization as in Kiama.) As a result, both of these languages lack a type
distinction between the two kinds of trees. Instead, the user must remember to
invoke a special copy method, analogous to our new expression, wherever a new
undecorated tree is needed. These copy methods do not change the type of the
tree, as our new operation does, resulting in a lack of the type safety that we
have here. UUAG[15] does not appear to support reference attributes, and so the
type distinction is irrelevant. In functional embeddings these type distinctions
occur naturally but at the notational cost of typically having different names for
the two views of the tree and needing to explicitly create the decorated tree from
the undecorated one. AspectAG [18] is a sophisticated embedding into Haskell
that naturally maintains the type safety we seek but at some loss of notational
convenience. It also requires a fair amount of so-called “type-level” programming
that is less direct than the Silver specifications, and the error messages generated
can be opaque.

Kiama and UUAG, by virtue of their embedding in functional languages, do
support parameterized nonterminals and attributes. UUAG side-steps the at-
tribute access problem of section 3.2 by simply not having reference attributes.
All attribute access are therefore only on children, which have an explicit type
signature provided. UUAG does not appear to support GADT-like productions,
but we suspect it could be easily extended to. Both also support pattern match-
ing on nonterminals. In UUAG, this is only supported for undecorated trees,
and its behavior is identical to ordinary pattern matching in Haskell. In Kiama,
pattern matching can extract decorated children from a production. But in both
cases, use of pattern matching would compromise the extensibility of the speci-
fication. Rascal [7] allows trees to be dynamically annotated with values, similar
to adding attribute occurs-on specifications dynamically. However, the presence
of annotations is not part of the static type system and thus neither is the
distinction between decorated and undecorated trees.

280 T. Kaminski and E. Van Wyk

Scala’s [10] support for pattern matching and inheritance presents the same
type of extensibility problem we faced when integrating pattern matching with
forwarding. Their solution is a notion of sealed classes that simply prevent new
classes from outside the current file from inheriting from it directly.

In [13], a type system with constraints powerful enough to capture the α
functions created by our occurs declarations is presented. To regain full type
inference, we believe the basic Hindley-Milner style system must be abandoned
in favor of something at least this powerful.

6 Future Work

Typing attribute grammars offers a wealth of future work possibilities. The lan-
guageAg is not quite suitable for proving soundness results, as writing down op-
erational semantics for it would be overly complicated. Instead, we would like to
develop a smaller core attribute calculus, with an appropriate operational seman-
tics and obtain a soundness result from that. To get the simple Hindley-Milner
type system to apply, we sacrificed the ability to remove some type annotations
from the languages. We believe a more powerful core type system (such as in [13])
will permit inference to work freely. The type system currently does not permit
many forms of functions over data structures to be recast as attributes. For ex-
ample, quantifiers are not permitted in the right places to allow if-then-else

to somehow be written as attributes on a Boolean nonterminal. Attributes also
cannot occur on only some specializations of a nonterminal, which means natural
functions like sum over a list of integers cannot be recast as attributes. (Such
computations are realized as functions in Silver.)

Furthermore, the traditional well-definedness tests for attribute grammars
may have another useful interpretation in terms of types, perhaps refining our
blunt distinction between undecorated and decorated types. There may also be
refinements possible due to the presence of pattern matching. Generic attribute
grammars[12] are partly covered by polymorphic nonterminals, except for their
ability to describe constraints on the kinds of types that can be incorporated.
For example, in Silver, permitting nonterminals to require type variables to be
concrete types, permitting these type variables to appear in concrete syntax,
and reifying the result before it is sent to the parser generator would be a useful
addition to the language. Finally, we would like to account for circular attributes,
which are extremely useful for fixed point computations. It would be interesting
to see if there is a type-based distinction for circular attributes, just as we show
for reference, higher-order, and production attributes in this paper.

7 Conclusion

In this paper we have claimed that certain features found in modern functional
languages can be added to an attribute grammar specification language to pro-
vide a number of benefits. By using types to distinguish decorated and undec-
orated trees the type system can prevent certain errors and help to provide

Integrating Attr. Grammar and Functional Prog. Lang. Features 281

more convenient notations. Pattern matching on decorated trees adds a measure
of convenience and expressiveness (in the informal sense) to attribute grammar
specification languages, and crucially, it can be done while maintaining the exten-
sibility possible with forwarding. Parameterized nonterminals and productions
can play the same role as algebraic data types in functional languages; they can
be used as syntax trees or for more general purpose computations. Furthermore,
GADT-like productions are a very natural fit for attribute grammars.

However, in scaling Ag up to Silver, the type annotations requirement to
get around the attribute access problem stands in the way of meeting our full-
featured goal described in section 1. This means that functions and local at-
tributes, for example, must specify their types.

In integrating these features into an attribute grammar specification language
we found that some small modifications to the implementation of Hindley-Milner
typing were needed. To meet our goals of having natural and familiar notations
(for attribute access and in order to infer if the decorated or undecorated ver-
sion of a tree is to be used) it was helpful to have direct control over the type
system to make modifications so that attribute grammar-specific concerns could
be addressed. Supporting GADT-like productions and pattern matching that is
compatible with forwarding required similar levels of control of the languages
implementation and translation.

We previously added polymorphic lists and a notion of pattern-matching that
was not compatible with forwarding using language extensions [17]. While this
approach does allow expressive new features to be added to the language, it
could not accomplish all of our goals, as adding a new typing infrastructure
(for type inference) replaces and does not extend the previous type system in
Silver. Adding these kinds of features by embedding attribute grammars in a
function language or writing a preprocessor that is closely tied to the underlying
implementation language can also make it more difficult to achieve these goals.
However, an advantage of these approaches that should not be overlooked is
that many useful features of the underlying language can be used “for free” with
no real effort on the attribute grammar system designer to include them into
their system. It is difficult to draw any conclusions beyond noting that these
are the sort of trade-offs that AG system implementers, specifically (and DSL
implementers, more generally) need to consider.

References

1. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
2. Farrow, R.: Automatic generation of fixed-point-finding evaluators for circular, but

well-defined, attribute grammars. SIGPLAN Notices 21(7) (1986)
3. Ganzinger, H., Giegerich, R.: Attribute coupled grammars. SIGPLAN Notices 19,

157–170 (1984)
4. Gao, J.: An Extensible Modeling Language Framework via Attribute Grammars.

Ph.D. thesis, University of Minnesota, Department of Computer Science and En-
gineering, Minneapolis, Minnesota, USA (2007)

5. Hedin, G.: Reference attribute grammars. Informatica 24(3), 301–317 (2000)

282 T. Kaminski and E. Van Wyk

6. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987)

7. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Proc. of Source Code Analysis and
Manipulation, SCAM 2009 (2009)

8. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127–145 (1968); corrections in 5, 95–96 (1971)

9. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM
Trans. on Prog. Lang. and Systems (TOPLAS) 16(5), 1411–1430 (1994)

10. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima
(2010)

11. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: Proc. of the Eleventh ACM SIGPLAN Inter-
national Conf. on Functional Programming, pp. 50–61. ACM (2006)

12. Saraiva, J., Swierstra, D.: Generic Attribute Grammars. In: 2nd Workshop on
Attribute Grammars and their Applications, pp. 185–204 (1999)

13. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and decid-
able type inference for GADTs. In: Proc. of the 14th ACM SIGPLAN International
Conf. on Functional Programming, pp. 341–352. ACM (2009)

14. Sloane, A., Kats, L., Visser, E.: A pure object-oriented embedding of attribute
grammars. In: Proc. of Language Descriptions, Tools, and Applications (LDTA
2009). ENTCS, vol. 253, pp. 205–219. Elsevier Science (2010)

15. Swierstra, S., Alcocer, P., Saraiva, J.: Designing and Implementing Combinator
Languages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608,
pp. 150–206. Springer, Heidelberg (1999)

16. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in At-
tribute Grammars for Modular Language Design. In: Horspool, R.N. (ed.) CC
2002. LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

17. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Science of Computer Programming 75(1-2), 39–54 (2010)

18. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: How
to do aspect oriented programming in Haskell. In: Proc. of 2009 International Conf.
on Functional Programming, ICFP 2009 (2009)

19. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: ACM
Conf. on Prog. Lang. Design and Implementation (PLDI), pp. 131–145 (1990)

20. Wadler, P.: Efficient compilation of pattern matching. In: The Implementation of
Functional Programming Languages, pp. 78–103. Prentice-Hall (1987)

Parse Forest Diagnostics with Dr. Ambiguity

Hendrikus J.S. Basten and Jurgen J. Vinju

Centrum Wiskunde & Informatica (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands

{Jurgen.Vinju,Bas.Basten}@cwi.nl

Abstract. In this paper we propose and evaluate a method for locating causes
of ambiguity in context-free grammars by automatic analysis of parse forests. A
parse forest is the set of parse trees of an ambiguous sentence. Deducing causes
of ambiguity from observing parse forests is hard for grammar engineers because
of (a) the size of the parse forests, (b) the complex shape of parse forests, and (c)
the diversity of causes of ambiguity.

We first analyze the diversity of ambiguities in grammars for programming
languages and the diversity of solutions to these ambiguities. Then we introduce
DR. AMBIGUITY: a parse forest diagnostics tools that explains the causes of
ambiguity by analyzing differences between parse trees and proposes solutions.
We demonstrate its effectiveness using a small experiment with a grammar for
Java 5.

1 Introduction

This work is motivated by the use of parsers generated from general context-free gram-
mars (CFGs). General parsing algorithms such as GLR and derivates [3, 6, 9, 17, 35],
GLL [22,34], and Earley [16,32] support parser generation for highly non-deterministic
context-free grammars. The advantages of constructing parsers using such technology
are that grammars may be modular and that real programming languages (often requir-
ing parser non-determinism) can be dealt with efficiently1. It is common to use general
parsing algorithms in (legacy) language reverse engineering, where a language is given
but parsers have to be reconstructed [25], and in language extension, where a base lan-
guage is given which needs to be extended with unforeseen syntactical constructs [10].

The major disadvantage of general parsing is that multiple parse trees may be pro-
duced by a parser. In this case, the grammar was not only non-deterministic, but also
ambiguous. We say that a grammar is ambiguous if it generates more than one parse tree
for a particular input sentence. Static detection of ambiguity in CFGs is undecidable in
general [13, 15, 18].

It is not an overstatement to say that ambiguity is the Achilles’ heel of CFG-general
parsing. Most grammar engineers who are building a parser for a programming lan-
guage intend it to produce a single tree for each input program. They use a general
parsing algorithm to efficiently overcome problematic non-determinism, while ambi-
guity is an unintentional and unpredictable side-effect. Other parsing technologies, for

1 Linear behavior is usually approached and most algorithms can obtain cubic time worst time
complexity [33].

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 283–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 H.J.S. Basten and J.J. Vinju

Ambihuous

Ambiguous
subsentence

Choice node

Unambiguous context

Fig. 1. The complexity of a parse forest for a trivial Java class with one method; the indicated
subtree is an ambiguous if-with-dangling-else issue (180 nodes, 195 edges)

�

�

�

�

If (<

ExprName (Id ("a")), <

IfElse (IfElse (

> ExprName (Id ("a")),

> If (

ExprName (Id ("b")), ExprName (Id ("b")),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("a"))), Method (MethodName (Id ("a"))),

[[

])), |]))),

ExprStm (ExprStm (

Invoke (Invoke (

Method (MethodName (Id ("b"))), Method (MethodName (Id ("b"))),

[[

])))) |])))

Fig. 2. Using diff -side-by-side to diagnose a trivial ambiguous syntax tree for a dangling else
in Java (excerpts of Figure 1)

example Ford’s PEG [19] and Parr’s LL(*) [28], do not report ambiguity. Nevertheless,
these technologies also employ disambiguation techniques (ordered choice, dynamic
lookahead). In combination with a debug-mode that does produce all derivations, the
results in this paper should be beneficial for these parsing techniques as well. It should
help the user to intentionally select a disambiguation method. In any case, the point of
departure for the current paper is any parsing algorithm that will produce all possible
parse trees for an input sentence.

In other papers [4, 5] we present a fast ambiguity detection approach that combines
approximative and exhaustive techniques. The output of this method are the ambigu-
ous sentences found in the language of a tested grammar. Nevertheless, this is only a
observation that the patient is ill, and now we need a cure. We therefore will diagnose
the sets of parse trees produced for specific ambiguous sentences. The following is a
typical grammar engineering scenario:

Parse Forest Diagnostics with Dr. Ambiguity 285

1. While testing or using a generated parser, or after having run a static ambiguity
detection tool, we discover that one particular sentence leads to a set of multiple
parse trees. This set is encoded as a single parse forest with choice nodes where
sub-sentences have alternative sub-trees.

2. The parser reports the location in the input sentence of each choice node. Note that
such choice nodes may be nested. Each choice node might be caused by a different
ambiguity in the CFG.

3. The grammar engineer extracts an arbitrary ambiguous sub-sentence and runs the
parser again using the respective sub-parser, producing a set of smaller trees.

4. Each parse tree of this set is visualized on a 2D plane and the grammar engineer
spots the differences, or a (tree) diff algorithm is run by the grammar engineer to
spot the differences. Between two alternative trees, either the shape of the tree is to-
tally different (rules have moved up/down, left/right), or completely different rules
have been used, or both. As a result the output of diff algorithms and 2D visualiza-
tions typically require some effort to understand. Figure 1 illustrates the complexity
of an ambiguous parse forest for a 5 line Java program that has a dangling else am-
biguity. Figure 2 depicts the output of diff on a strongly simplified representation
(abstract syntax tree) of the two alternative parse trees for the same nested condi-
tional. Realistic parse trees are not only too complex to display here, but are often
too big to visualize on screen as well. The common solution is to prune the input
sentence step-by-step to eventually reach a very minimal example that still triggers
the ambiguity but is small enough to inspect.

5. The grammar engineer hopefully knows that for some patterns of differences there
are typical solutions. A solution is picked, and the parser is regenerated.

6. The smaller sentence is parsed again to test if only one tree (and which tree) is
produced.

7. The original sentence is parsed again to see if all ambiguity has been removed
or perhaps more diagnostics are needed for another ambiguous sub-sentence. Typ-
ically, in programs one cause of ambiguity would lead to several instances dis-
tributed over the source file. One disambiguation may therefore fix more “ambigui-
ties” in a source file.

The issues we address in this paper are that the above scenario is (a) an expert job,
(b) time consuming and (c) tedious. We investigate the invention of an expert system
that can automate finding a concise grammar-level explanation for any choice node in
a parse forest and propose a set of solutions that will eliminate it. This expert system
is shaped as a set of algorithms that analyze sets of alternative parse trees, simulating
what an expert would do when confronted with an ambiguity.

The contributions of this paper are an overview of common causes of ambiguity in
grammars for programming language (Section 3), an automated tool (DR. AMBIGU-
ITY) that diagnoses parse forests to propose one or more appropriate disambiguation
techniques (Section 4) and an initial evaluation of its effectiveness (Section 5). In 2006
we published a manual [36] to help users disambiguate SDF2 grammars. This well-read
manual contains recipes for solving ambiguity in grammars for programming languages.
DR. AMBIGUITY automates all tasks that users perform when applying the recipes from
this manual, except for finally adding the preferred disambiguation declaration.

286 H.J.S. Basten and J.J. Vinju

We need the following definitions. A context-free grammar G is defined as a 4-tuple
(T,N, P, S), namely finite sets of terminal symbols T and non-terminal symbols N ,
production rules P in A × (T ∪ N)∗ written like A → α, and a start symbol S. A
sentential form is a finite string in (T ∪ N)∗. A sentence is a sentential form without
non-terminal symbols. An ε denotes the empty string. We use the other lowercase greek
characters α, β, γ, . . . for variables over sentential forms, uppercase roman characters
for non-terminals (A,B, . . .) and lowercase roman characters and numerical operators
for terminals (a, b,+,−, ∗, /). By applying production rules as substitutions we can
generate new sentential forms. One substitution is called a derivation step, e.g. αAβ ⇒
αγβ with rule A → γ. We use ⇒∗ to denote sequences of derivation steps. A full
derivation is a sequence of production rule applications that starts with a start symbol
and ends with a sentence. The language of a grammar is the set of all sentences derivable
from S. In a bracketed derivation [20] we record each application of a rule by a pair of
brackets, for example S ⇒ (αEβ) ⇒ (α(E +E)β) ⇒ (α((E ∗E) +E)β). Brackets
are (implicitly) indexed with their corresponding rule.

A non-deterministic derivation sequence is a derivation sequence in which a � oper-
ator records choices between different derivation sequences. I.e. α ⇒ (β) � (γ) means
that either β or γ may be derived from α using a single derivation step. Note that β does
not necessarily need to be different from γ. An example non-deterministic derivation is
E ⇒ (E + E) � (E ∗ E) ⇒ (E + (E ∗ E)) � ((E + E) ∗ E). A cyclic derivation
sequence is any sequence α ⇒+ α, which is only possible by applying rules that do not
have to eventually generate terminal symbols, such as A → A and A → ε.

A parse tree is an (ordered) finite tree representation of a bracketed full derivation
of a specific sentence. Each pair of brackets is represented by an internal node labeled
with the rule that was applied. Each terminal is a leaf node. This implies the leafs
of a parse tree form a sentence. Note that a single parse tree may represent several
equivalent derivation sequences. Namely in sentential forms with several non-terminals
one may always choose which non-terminal to expand first. From here on we assume a
canonical left-most form for such equivalent derivation sequences, in which expansion
always occurs at the left-most non-terminal in a sentential form.

A parse forest is a set of parse trees possibly extended with ambiguity nodes for each
use of choice (�). Like parse trees, parse forests are limited to represent full derivations
of a single sentence, each child of an ambiguity node is a derivation for the same sub-
sentence. One such child is called an alternative. For simplicity’s sake, and without loss
of generality, we assume that all ambiguity nodes have exactly two alternatives.

A parse forest is ambiguous if it contains at least one ambiguity node. A sentence is
ambiguous if its parse forest is ambiguous. A grammar is ambiguous if it can generate
at least one ambiguous sentence. An ambiguity in a sentence is an ambiguity node.
An ambiguity of a grammar is the cause of such aforementioned ambiguity. We define
cause of ambiguity precisely in Section 3. Note that cyclic derivation sequences can be
represented by parse forests by allowing them to be graphs instead of just trees [29].

A recognizer for G is a terminating function that takes any sentence α as input and
returns true if and only if S ⇒∗ α. A parser for G is a terminating function that takes
any finite sentence α as input and returns an error if the corresponding recognizer would
not return true, and otherwise returns a parse forest for α. A disambiguation filter is a

Parse Forest Diagnostics with Dr. Ambiguity 287

function that takes a parse forest for α and returns a smaller parse forest for α [24].
A disambiguator is a function that takes a parser and returns a parser that produces
smaller parse forests. Disambiguators may be implemented as parser actions, or by
parser generators that take additional disambiguation constructs as input [9]. We use
the term disambiguation for both disambiguation filters and disambiguators.

2 Solutions to Ambiguity

There are basically two kinds of solutions to removing ambiguity from grammars. The
first involves restructuring the grammar to accept the same set of sentences but using
different rules. The second leaves the grammar as-is, but adds disambiguations (see
above). Although grammar restructuring is a valid solution direction, we restrict our-
selves to disambiguations described below. The benefit of disambiguation as opposed
to grammar restructuring is that the shape of the rules, and thus the shape of the parse
trees remains unchanged. This allows language engineers to maintain the intended se-
mantic structure of the language, keeping parse trees directly related to abstract syntax
trees (or even synonymous) [21].

Any solution may be language preserving, or not. We may change a grammar to
have it generate a different language, or we may change it to generate the same lan-
guage differently. Similarly, a disambiguation may remove sentences from a language,
or simply remove some ambiguous derivation without removing a sentence. This de-
pends on whether or not the filter is applied always in the context of an ambiguous
sentence, i.e. whether another tree is guaranteed to be left over after a certain tree is fil-
tered. It may be hard for a language engineer who adds a disambiguation to understand
whether it is actually language preserving. Whether or not it is good to be language
preserving depends entirely on ad-hoc requirements. The current paper does not answer
this question. Where possible, we do indicate whether adding a certain disambiguation
is expected to be language preserving. Proving this property is out-of-scope.

Solving ambiguity is sometimes confused with making parsers deterministic. From
the perspective of the current paper, non-determinism is a non-issue. We focus solely
on solutions to ambiguity.

We now quote a number of disambiguation methods here. Conceptually, the follow-
ing list contains nothing but disambiguation methods that are commonly supported by
lexer and parser generators [1]. Still, the precise semantics of each method we present
here may be specific to the parser frameworks of SDF2 [21, 37] and RASCAL [23]. In
particular, some of these methods are specific to scannerless parsing, where a context-
free grammar specifies the language down to the character level [30, 37]. We recom-
mend [7], to appreciate the intricate differences between semantics of operator priority
mechanisms between parser generators.

Priority disallows certain direct edges between pairs of rules in parse trees in order to
affect operator priority. For instance, the production for the + operator may not be
a direct child of the * production [9].
Formally, let a priority relation > be a partial order between recursive rules of an
expression grammar. If A → α1Aα2 > A → β1Aβ2 then all derivations γAδ ⇒
γ(α1Aα2)δ ⇒ γ(α1(β1Aβ2)α2) are illegal.

288 H.J.S. Basten and J.J. Vinju

Associativity is similar to priority, but father and child are the same rule. It can be
used to affect operator associativity. For instance, the production of the + operator
may not be a direct right child of itself because + is left associative [9]. Left and
right associativity are duals, and non-assocativity means no nesting is allowed at
all. Formally, if a recursive rule A → AαA is defined left associative, then any
derivation γAδ ⇒ γ(AαA)δ ⇒ γ(Aα(AαA))δ is illegal.

Offside disallows certain derivations using the would-be indentation level of an (in-
direct) child. If the child is “left” of a certain parent, the derivation is filtered [26].
One example formalization is to let Π(x) compute the start column of the sub-
sentence generated by a sentential form x and let > define a partial order be-
tween production rules. Then, if A → α1Xα2 > B → β then all derivations
γAδ ⇒ γ(α1Xα2)δ ⇒∗ γ(α1(. . . (β) . . .)α2)δ) are illegal if Π(β) < Π(α1).
Parsers may employ subtly different offside disambiguators, depending on how Π
is defined for each different language or even for each different production rule
within a language.

Preference removes a derivation, but only if another one of higher preference is
present. Again, we take a partial ordering > that defines preference between rules
for the same non-terminal. Let A → α > A → β, then from all derivations
γAδ ⇒ γ((α) � (β))δ we must remove (β) to obtain A ⇒ γ(α)δ.

Reserve disallows a fixed set of terminals from a certain (non-)terminal, commonly
used to reserve keywords from identifiers. Let K be a set of sentences and let I be a
non-terminal from which they are declared to be reserved. Then, for every α ∈ K ,
any derivation I ⇒∗ α is illegal.

Reject disallows the language of a certain non-terminal from that of another one. This
may be used to implement Reserve, but it is more powerful than that [9]. Let
(I - R) declare that the non-terminal R is rejected from the non-terminal I . Then
any derivation sequence I ⇒∗ α is illegal if and only if R ⇒∗ α.

Not Follow/Precede declarations disallow derivation steps if the generated sub-
sentence in its context is immediately followed/preceded by a certain terminal. This
is used to affect longest match behavior for regular languages, but also to solve
“dangling else” by not allowing the short version of if, when it would be immedi-
ately followed by else [9]. Formally, we define follow declaration as follows. Given
A ⇒∗ α and a declaration A not-follow β, where β is a sentence, any derivation
S ⇒∗ γAβδ ⇒∗ γ(α)βδ is illegal. We should mention that Follow declarations
may simulate the effect of “shift before reduce” heuristics that deterministic — LR,
LALR — parsers use when confronted with a shift/reduce conflict.

Dynamic Reserve disallows a dynamic set of sub-sentences from a certain non-
terminal, i.e. using a symbol table [1]. The semantics is similar to Reject, where
the set R is dynamically changed as certain derivations (i.e. type declarations) are
applied.

Types removes certain type-incorrect sub-trees using a type-checker, leaving correctly
typed trees as-is [12]. Let C(d) be true if and only if derivation d (represented by
a tree) is a type-correct part of a program. Then all derivations γAδ ⇒ γ(α)δ are
illegal if C(α) is false.

Heuristics There are many kinds of heuristic disambiguation that we bundle under a
single definition here. The preference of “Islands” over “Water” in island grammars

Parse Forest Diagnostics with Dr. Ambiguity 289

is an example [27]. Preference filters are sometimes generalized by counting the
number of preferred rules as well [9]. Counting rules is used sometimes to choose
a “simplest” derivation, i.e. the most shallow trees are selected over deeper ones.
Formally, Let C(d) be any function that maps a derivation (parse tree) to an integer.
If C(A ⇒ α) > C(A ⇒ β) then from all derivations A ⇒∗ (α) � (β) we must
remove (β) to obtain A ⇒ (α).

Not surprisingly, each kind of disambiguation characterizes certain properties of deriva-
tions. In the following section we link such properties to causes of ambiguity. Apart
from Types and Heuristics (which are too general to automatically report specific sug-
gestions for), we can then link the causes explicitly back to the solution types.

3 Causes of Ambiguity

Ambiguity is caused by the fact that the grammar can derive the same sentence in at least
two ways. This is not a particularly interesting cause, since it characterizes all ambiguity
in general. We are interested in explaining to a grammar engineer what is wrong for a
very particular grammar and sentence and how to possibly solve this particular issue. We
are interested in the root causes of specific occurrences of choice nodes in parse forests.

For example, let us consider a particular grammar for the C programming language
for which the sub-sentence “{S * b;}” is ambiguous. In one derivation it is a block of
a single statement that multiplies variables S and b, in another it is a block of a single
declaration of a pointer variable b to something of type S. From a language engineer’s
perspective, the causes of this ambiguous sentence are that:

– “*” is used both in the rule that defines multiplication, and in the rule that defines
pointer types, and

– type names and variable names have the same lexical syntax, and
– blocks of code start with a possibly empty list of declarations and end with a possi-

bly empty list of statements, and
– both statements and declarations end with “;”.

The conjunction of all these causes explains us why there is an ambiguity. The removal
of just one of them fixes it. In fact, we know that for C the ambiguity was fixed by
introducing a disambiguator that reserves any declared type name from variable names
using a symbol table at parse time, effectively removing the second cause.

We now define a cause of an ambiguity in a sub-sentence to be the existence of any
edge that is in the parse tree of one alternative of an ambiguity node, but not in the
other. In other words, each difference between two alternative parse trees in a forest is
one cause of the ambiguity. For example, two parse tree edges differ if they represent
the application of a different production rule, span a different part of the ambiguous
sub-sentence, or are located at different heights in the tree.

We define an explanation of an ambiguity in a sentence to be the conjunction of
all causes of ambiguity in a sentence. An explanation is a set of differences. We call
it an explanation because an ambiguity exists if and only if all of its causes exist.
A solution is any change to the grammar, addition of a disambiguation filter or use
of a disambiguator that removes at least one of the causes.

290 H.J.S. Basten and J.J. Vinju

Fig. 3. Euler diagram showing the categorization of parse tree differences

Some causes of ambiguity may be solvable by the disambiguation methods defined
in Section 2, some may not. Our goals are therefore to first explain the cause of am-
biguity as concisely as possible, and then if possible propose a palette of applicable
disambiguations. Note that even though the given common disambiguations have lim-
ited scope, disambiguation in general is always possible by writing a disambiguation
filter in any computationally complete programming language.

3.1 Classes of Parse Tree Differences

Having defined ambiguity and the causes thereof, we can now categorize different kinds
of causes into classes of differences between parse trees. The difference classes are the
theory behind the workings of DR. AMBIGUITY (Section 5). Figure 3 summarizes the
cause classes that we will identify in the following.

For completeness we should explain that ambiguity of CFGs is normally bisected
into a class called HORIZONTAL ambiguity and a class called VERTICAL ambiguity
[2, 8, 31]. VERTICAL contains all the ambiguity that causes parse forests that have two
different production rules directly under a choice node. For instance, all edges of deriva-
tion sequences of form γAδ ⇒ γ((α) � (β))δ provided that α �= β are in VERTICAL.
VERTICAL clearly identifies a difference class, namely the trees with different edges
directly under a choice node.

HORIZONTAL ambiguity is defined to be all the other ambiguity. HORIZONTAL does
not identify any difference class, since it just implies that the two top rules are the same.
Our previous example of ambiguity in a C grammar is an example of such ambigu-
ity. We conclude that in order to obtain full explanations of ambiguity the HORIZON-
TAL/VERTICAL dichotomy is not detailed enough. VERTICAL provides only a partial
explanation (a single cause), while HORIZONTAL provides no explanations at all.

Parse Forest Diagnostics with Dr. Ambiguity 291

We now introduce a number of difference classes with the intention of characterizing
differences which can be solved by one of the aforementioned disambiguation methods.
Each element in a different class points to a single cause of ambiguity. A particular
disambiguation method may be applicable in the presence of elements in one or more
of these classes.

The EDGES class is the universe of all difference classes. In EDGES are all single
derivation steps (equivalent to edges in parse forests) that occur in one alternative
but not in the other. If no such derivation steps exist, the two alternatives are exactly
equal. Note that EDGES = HORIZONTAL ∪ VERTICAL.

The TERMINALS class contains all parse tree edges to non-ε leafs that occur in one
alternative but not in the other. If an explanation contains a difference in TERMI-
NALS, we know that the alternatives have used different terminal tokens—or in the
case of scannerless, different character classes—for the same sub-sentences. This is
sometimes called lexical ambiguity. If no differences are in TERMINALS, we know
that the terminals used in each alternative are equal.

The WHITESPACE class (⊂ TERMINALS) simply identifies the differences in TER-
MINALS that produce terminals consisting of nothing but spaces, tabs, newlines,
carriage returns or linefeeds.

The REGEXPS class contains all edges of derivation steps that replace a non-terminal
by a sentential form that generates a regular language, occurring in one derivation
but not in the other, i.e. A ⇒ (ρ) where ρ is a regular expression over terminals. Of
course, TERMINALS ⊂ REGEXPS. In character level grammars (scannerless [9]),
the REGEXPS class often represents lexical ambiguity. Differences in REGEXPS

may point to solutions such as Reserve, Follow and Reject, since longest match
and keyword reservation are typical solution scenarios for ambiguity on the lexical
level.

In the SWAPS class we put all edges that have a corresponding edge in the other
alternative of which the source and target productions are equal but have swapped
order. For instance, the lower edges in the parse tree fragment ((E ∗E)+E)� (E ∗
(E + E)) are in SWAPS. If all differences are in SWAPS, the set of rules used in
the derivations of both alternatives are the same and each rule is applied the same
number of times—only their order of application is different.

The SAME class is the subset of edges in SWAPS that have the same source and target
productions. In this case, the only difference between two corresponding edges are
the substrings they span. For instance, the lower edges in the parse tree fragment
((E + E) + E) � (E + (E + E)) are in SAME. Differences in this class typically
require Associativity solutions.

The REORDERINGS class generalizes SWAPS with more than two rules to permute.
This may happen when rules are not directly recursive, but mutually recursive in
longer chains. Differences in REORDERINGS or SWAPS obviously suggest a Prior-
ity solution, but especially for non-directly recursive derivations Priority will not
work. For example, the notorious “dangling else” issue [1] generates differences
in application order of mutually recursive statements and lists of statements. For
some grammars, a difference in REORDERINGS may also imply a difference in
VERTICAL, i.e. a choice between an if with an else and one without. In this case

292 H.J.S. Basten and J.J. Vinju

a Preference solution would work. Some grammars (e.g. the IBM COBOL VS2
standard) only have differences in HORIZONTAL and REORDERINGS. In this case
a Follow solution may prevent the use of the if without the else if there is an
else to be parsed. Note that the Offside solution is an alternative method to remove
ambiguity caused by REORDERINGS. Apparently, we need even smaller classes of
differences before we can be more precise about suggesting a solution.

The LISTS class contains differences in the length of certain lists between two alter-
natives. For instance, we consider rules L → LE and observe differences in the
amount of times these rules are applied by the derivation steps in each alternative.
More precisely, for any L and E with the rule L → LE we find chains of edges
for derivation sequences αLβ ⇒ αLEβ ⇒⇒∗ αLE+β, and compute their length.
The edges of such chains of different lengths in the two alternatives are members of
LISTS. Examples of ambiguities caused by LISTS are those caused by not having
“longest match” behavior: an identifier “aa” generated using the rules I → a and
I → I a may be split up in two shorter identifiers “a” and “a” in another alternative.
We can say that LISTS ∩ REGEXPS �= ∅.
Note that differences in LISTS∩REORDERINGS indicate a solution towards Follow
or Offside for they flag issues commonly seen in dangling constructs. On the other
hand a difference in LISTS \ REORDERINGS indicates that there must be another
important difference to explain the ambiguity. The “‘{S * a}”’ ambiguity in C is of
that sort, since the length of declaration and statement lists differ between the two
alternatives, while also differences in TERMINALS are necessary.

The EPSILONS class contains all edges to ε leaf nodes that only occur in one of the
alternatives. They correspond to derivation steps αAβ ⇒ α()β, using A → ε.
All cyclic derivations are caused by differences in EPSILONS because one of the
alternatives of a cyclic ambiguity must derive the empty sub-sentence, while the
other eventually loops back. However, differences in EPSILONS may also cause
other ambiguity than cyclic derivations.

The OPTIONALS class (⊂ EPSILONS) contains all edges of a derivation step αAβ ⇒
α()β that only exist in one alternative, while a corresponding edge of δAζ ⇒ δ(γ)ζ
only exists in the other alternative. Problems that are solved using longest match
(Follow) are commonly caused by optional whitespace for example.

4 Diagnosing Ambiguity

We provide an overview of the architecture and the algorithms of DR. AMBIGUITY in
this section. In Section 5 we demonstrate its output on example parse forests for an
ambiguous Java grammar.

4.1 Architecture

Figure 4 shows an overview of our diagnostics tool: DR. AMBIGUITY. We start from the
parse forest of an ambiguous sentence that is either encountered by a language engineer
or produced by a static ambiguity detection tool like AMBIDEXTER. Then, either the

Parse Forest Diagnostics with Dr. Ambiguity 293

Fig. 4. Contextual overview (input/output) of DR. AMBIGUITY

user points at a specific sub-sentence2, or DR. AMBIGUITY finds all ambiguous sub-
sentences (e.g. choice nodes) and iterates over them. For each choice node, the tool
then generates all unique combinations of two children of the choice node and applies
a number of specialized diff algorithms to them.

Conceptually there exists one diff algorithm per disambiguation method (Section 2).
However, since some methods may share intermediate analyses there is some additional
intermediate stages and some data-dependency that is not depicted in Figure 4. These in-

2 We use Eclipse IMP [14] as a platform for generating editors for programming languages
defined using RASCAL [23]. IMP provides contextual pop-up menus.

294 H.J.S. Basten and J.J. Vinju

termediate stages output information messages about the larger difference classes that
are to be analyzed further if possible. This output is called “Classification Informa-
tion” in Figure 4. The other output, called “Disambiguation Suggestions” is a list of
specific disambiguation solutions (with reference to specific production rules from the
grammar).

If no specific or meaningful disambiguation method is proposed the classification
information will provide the user with useful information on designing an ad-hoc dis-
ambiguation.

DR. AMBIGUITY is written in the RASCAL domain specific programming language
[23]. This language is specifically targeted at analysis, transformation, generation and
visualization of source code. Parse trees are a built-in data-type which can be queried
using (higher order) pattern matching, visiting and set, list and map comprehension
facilities. To understand some of the RASCAL snippets in this section, please familiarize
yourself with this definition for parse trees (as introduced by [37]):

data Tree

= appl(Production prod, list[Tree] args) // production nodes

| amb(set[Tree] alternatives) // choice nodes

| char(int code); // terminal leaves

data Production

= prod(Symbol lhs, list[Symbol] rhs, Attributes attributes); // rules

DR. AMBIGUITY, in total, is 250 lines of RASCAL code that queries and traverses terms
of this parse tree format. The count includes source code comments. It is slow on big
parse forests3, which is why the aforementioned user-selection of specific sub-sentences
is important.

4.2 Algorithms

Here we show some of the actual source code of DR. AMBIGUITY.
First, the following two small functions iterate over all (deeply nested) choice nodes

(amb) and over all possible pairs of alternatives. This code uses deep match (/), set
matching, and set or list comprehensions. Note that the match operator (:=) iterates over
all possible matches of a value against a pattern, thus generating all different bindings
for the free variables in the pattern. This feature is used often in the implementation of
DR. AMBIGUITY.

list[Message] diagnose(Tree t) {

return [findCauses(x) | x <- {a | /a:amb(_) := t}];

}

list[Message] findCauses(Tree a) {

return [findCauses(x, y) | {x, y, _*} := a.alternatives];

}

The following functions each implement one of the diff algorithms from Figure 4. The
following two (slightly simplified4) functions detect opportunities to apply priority or
associativity disambiguations.

3 The current implementation of RASCAL lacks many trivial optimizations.
4 We have removed references to location information that facilitates IDE features.

Parse Forest Diagnostics with Dr. Ambiguity 295

list[Message] priorityCauses(Tree x, Tree y) {

if (/appl(p,[appl(q,_),_*]) := x,

/t:appl(q,[_*,appl(p,_)]) := y, p != q) {

return [error("You might add this priority rule: <p> \> <q>")

,error("You might add this associativity group: left (<p> | <q>)")];

}

return [];

}

list[Message] associativityCauses(Tree x, Tree y) {

if (/appl(p,[appl(p,_),_*]) := x, /Tree t:appl(p,[_*,appl(p,_)]) := y) {

return [error("You might add this associativity declaration: left <p>")];

}

return [];

}

Both functions “simultaneously” search through the two alternative parse trees p and q,
detecting a vertical swap of two different rules p and q (priority) or a horizontal swap of
the same rule p under itself (associativity).

This slightly more involved function detects dangling-else and proposes a follow
restriction as a solution:

list[Message] danglingCauses(Tree x, Tree y) {

if (appl(p,/appl(q,_)) := x, appl(q,/appl(p,_)) := y) {

return danglingOffsideSolutions(x, y)

+ danglingFollowSolutions(x, y);

}

return [];

}

list[Message] danglingFollowSolutions(Tree x, Tree y) {

if (prod(_, rhs, _) := x.prod,

prod(_, [prefix*, _, l:lit(_), more*], _) := y.prod,

rhs == prefix) {

return [error("You might add a follow restriction for <l> on: <x.prod>")];

}

return [];

}

The function danglingCauses detects re-orderings of arbitrary depth, after which the out-
ermost productions are compared by danglingFollowSolutions to see if one production
is a prefix of the other.

DR. AMBIGUITY currently contains 10 such functions, and we will probably add
more. Since they all employ the same style —(a) simultaneous deep match, (b) produc-
tion comparison and (c) construction of a feedback message— we have not included
more source code5.

5 The source code is available at
http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc

http://svn.rascal-mpl.org/rascal/trunk/src/org/rascalmpl/library/Ambiguity.rsc

296 H.J.S. Basten and J.J. Vinju

4.3 Discussion on Correctness

These diagnostics algorithms are typically wrong if one of the following four errors is
made:

– no suggestion is given, even though the ambiguity is of a quite common kind;
– the given suggestion does not resolve any ambiguity;
– the given suggestion removes both alternatives from the forest, resulting in an

empty forest (i.e., it removes the sentence from the language and is thus not lan-
guage preserving);

– the given suggestion removes the proper derivation, but also unintentionally re-
moves sentences from the language.

We address the first threat by demonstrating DR. AMBIGUITY on Java in Section 5.
However, we do believe that the number of detection algorithms is open in principle.
For instance, for any disambiguation method that characterizes a specific way of solv-
ing ambiguity we may have a function to analyze the characteristic kind of difference.
As an “expert tool”, automating proposals for common solutions in language design,
we feel that an open-ended solution is warranted. More disambiguation suggestion al-
gorithms will be added as more language designs are made. Still, in the next section we
will demonstrate that the current set of algorithms is complete for all disambiguations
applied to a scannerless definition of Java 5 [11], which actually uses all disambigua-
tions offered by SDF2.

For the second and third threats, we claim that no currently proposed solution re-
moves both alternatives and all proposed solutions remove at least one. This is the case
because each suggestion is solely deduced from a difference between two alternatives,
and each disambiguation removes an artifact that is only present in one of the alterna-
tives. We are considering to actually prove this, but only after more usability studies.

The final threat is an important weakness of DR. AMBIGUITY, inherited from the
strength of the given disambiguation solutions. In principle and in practice, the appli-
cation of rejects, follow restrictions, or semantic actions in general renders the entire
parsing process stronger than context-free. For example, using context-free grammars
with additional disambiguations we may decide language membership of many non-
context-free languages. On the one hand, this property is beneficial, because we want to
parse programming languages that have no or awkward context-free grammars. On the
other hand, this property is cumbersome, since we can not easily predict or characterize
the effect of a disambiguation filter on the accepted set of sentences.

Only in the SWAPS class, and its sub-classes we may be (fairly) confident that we do
not remove unforeseen sentences from a language by introducing a disambiguation. The
reason is that if one of the alternatives is present in the forest, the other is guaranteed to
be also there. The running assumption is that the other derivation has not been filtered by
some other disambiguation. We might validate this assumption automatically in many
cases. So, application of priority and associativity rules suggested by DR. AMBIGUITY

are safe if no other disambiguations are applied.

Parse Forest Diagnostics with Dr. Ambiguity 297

Table 1. Disambiguations applied in the Java 5 grammar [11]

Disambiguations Grammar snippet (Rascal notation)
7 levels of expression priority Expr = Expr "++"

> "++" Expr

1 father/child removal MethodSpec = Expr callee "." TypeArgs? Id {

if (callee is ExprName) filter; }

9 associativity groups Expr = left (Expr "+" Expr

| Expr "-" Expr)

10 rejects ID = ([$A-Z_a-z] [$0-9A-Z_a-z]*) \ Keywords

30 follow restrictions "+" = [\+] !>> [\+]

4 vertical preferences Stm = @prefer "if" "(" Expr ")" Stm

| "if" "(" Expr ")" Stm "else" Stm

5 Demonstration

In this section we evaluate the effectiveness of DR. AMBIGUITY as a tool. We applied
DR. AMBIGUITY to a scannerless (character level) grammar for Java [10,11]. This well
tested grammar was written in SDF2 by Bravenboer et al. and makes ample use of its
disambiguation facilities. For the experiment here we automatically transformed the
SDF2 grammar to RASCAL’s EBNF-like form.

Table 1 summarizes which disambiguations were applied in this grammar. RASCAL

supports all disambiguation features of SDF2, but some disambiguation filters are im-
plemented as libraries rather than built-in features. The @prefer attribute is interpreted
by a library function for example. Also, in SDF2 one can (mis)use a non-transitive
priority to remove a direct father/child relation from the grammar. In Rascal we use a
semantic action for this.

5.1 Evaluation Method

DR. AMBIGUITY is effective if it can explain the existence of a significant amount of
choice nodes in parse forests and proposes the right fixes. We measure this effectiveness
in terms of precision and recall. DR. AMBIGUITY has high precision if it does not
propose too many solutions that are useless or meaningless to the language engineer. It
has high recall if it finds all the solutions that the language engineer deems necessary.

Our evaluation method is as follows:

– The set of disambiguations that Bravenboer applied to his Java grammar is our
“golden standard”.

– The disambiguations in the grammar are selectively removed, which results in dif-
ferent ambiguous versions of the grammar. New parsers are generated for each
version.

– An example Java program is parsed with each newly generated parser. The program
is unambiguous for the original grammar, but becomes ambiguous for each altered
version of the grammar.

298 H.J.S. Basten and J.J. Vinju

Table 2. Precision/Recall results for each experiment, including (P)riority, (A)ssociativity,
(R)eject, (F)ollow restrictions, A(c)tions filtering edges, A(v)oid/prefer suggestions, and
(O)ffside rule. For each experiment, the figures of the removed disambiguation are highlighted.

Diagnoses
Experiment P A R F c v O Precision Recall
1. Remove priority between "*" and "+" 1 1 0 0 0 1 0 33% 100%
2. Remove associativity for "+" 0 1 0 0 0 0 0 100% 100%
3. Remove reservation of true keyword from ID 0 0 1 0 0 1 0 50% 100%
4. Remove longest match for identifiers 0 0 0 6 0 0 0 16% 100%
5. Remove package name vs. field access priority 0 0 0 0 6 1 0 14% 100%
6. Remove vertical preference for dangling else 0 0 0 1 14 1 1 7% 100%
7. All the above changes at the same time 1 2 1 7 20 4 1 17% 100%

– We measure the total amount and which kinds of suggestions are made by DR. AM-
BIGUITY for the parse forests of each grammar version, and compute the precision
and recall.

Precision is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS |
|FOUNDDISAMBIGUATIONS | × 100%. We

expect low precision, around 50%, because each particular ambiguity often has many
different solution types. Low precision is not necessarily a bad thing, provided the total
amount of disambiguation suggestions remains human-checkable.

Recall is computed by |FOUNDDISAMBIGUATIONS ∩ REMOVEDDISAMBIGUATIONS |
|REMOVEDDISAMBIGUATIONS | ×100%. From

this number we see how much we have missed. We expect the recall to be 100% in our
experiments, since we designed our detection methods specifically for the disambigua-
tion techniques of SDF2.

5.2 Results

Table 2 contains the results of measuring the precision and recall on a number of ex-
periments. Each experiment corresponds to a removal of one or more disambiguation
constructs and the parsing of a single Java program file that triggers the introduced
ambiguity.

Table 2 shows that we indeed always find the removed disambiguation among the
suggestions. Also, we always find more than one suggestion (the second experiment is
the only exception).

The dangling-else ambiguity of experiment 6 introduces many small differences be-
tween two alternatives, which is why many (arbitrary) semantic actions are proposed
to solve these. We may learn from this that semantic actions need to be presented to
the language engineer as a last resort. For these disambiguations the risk of collateral
damage (a non-language preserving disambiguation) is also quite high.

The final experiment tests whether the simultaneous analysis of different choice
nodes that are present in a parse forest may lead to a loss of precision or recall. The
results show that we find exactly the same suggestions. Also, as expected the precision

Parse Forest Diagnostics with Dr. Ambiguity 299

Fig. 5. DR. AMBIGUITY reports diagnostics in the RASCAL language workbench

of such an experiment is very low. Note however, that DR. AMBIGUITY reports each
disambiguation suggestion per choice node, and thus the precision is usually perceived
per choice node and never as an aggregated value over an entire source file. Figure 5
depicts how DR. AMBIGUITY may report its output.

5.3 Discussion

We have demonstrated the effectiveness of DR. AMBIGUITY for only one grammar.
Moreover this grammar already contained disambiguations that we have removed, si-
multaneously creating a representative case and a golden standard.

We may question whether DR. AMBIGUITY would do well on grammars that have
not been written with any disambiguation construct in mind. We may also question
whether DR. AMBIGUITY works well on completely different grammars, such as for
COBOL or PL/I. More experimental evaluation is warranted. Nevertheless, this initial
evaluation based on Java looks promising and does not invalidate our approach.

Regarding the relatively low precision, we claimed that this is indeed wanted in many
cases. The actual resolution of an ambiguity is a language design question. DR. AMBI-
GUITY should not a priori promote a particular disambiguation over another well known
disambiguation. For example, reverse engineers have a general dislike of the offside rule
because it complicates the construction of a parser, while the users of a domain specific
language may applaud the sparing use of bracket literals.

300 H.J.S. Basten and J.J. Vinju

6 Conclusions

We have presented theory and practice of automatically diagnosing the causes of am-
biguity in context-free grammars for programming languages and of proposing disam-
biguation solutions. We have evaluated our prototype implementation on an actively
used and mature grammar for Java 5, to show that DR. AMBIGUITY can indeed pro-
pose the proper disambiguations.

Future work on this subject includes further extension, further usability study and
finally proofs of correctness. To support development of front-ends for many program-
ming languages and domain specific languages, we will include DR. AMBIGUITY in
releases of the RASCAL IDE (a software language workbench).

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques and Tools. Addison-Wesley
(1986)

2. Altman, T., Logothetis, G.: A note on ambiguity in context-free grammars. Inf. Process.
Lett. 35(3), 111–114 (1990)

3. Aycock, J., Horspool, R.N.: Faster Generalized LR Parsing. In: Jähnichen, S. (ed.) CC 1999.
LNCS, vol. 1575, pp. 32–46. Springer, Heidelberg (1999)

4. Basten, H.J.S.: Tracking Down the Origins of Ambiguity in Context-Free Grammars. In: Cav-
alcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255,
pp. 76–90. Springer, Heidelberg (2010)

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In: Brabrand, C.,
Moreau, P.E. (eds.) Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications (LDTA 2010), pp. 5:1–5:9. ACM (2010)

6. Begel, A., Graham, S.L.: XGLR–an algorithm for ambiguity in programming languages. Sci-
ence of Computer Programming 61(3), 211–227 (2006); Special Issue on The Fourth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2004)

7. Bouwers, E., Bravenboer, M., Visser, E.: Grammar engineering support for precedence rule
recovery and compatibility checking. ENTCS 203(2), 85–101 (2008); Proceedings of the
Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA 2007)

8. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free grammars. Sci.
Comput. Program. 75(3), 176–191 (2010)

9. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation Filters for Scan-
nerless Generalized LR Parsers. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp.
143–158. Springer, Heidelberg (2002)

10. Bravenboer, M., Tanter, E., Visser, E.: Declarative, formal, and extensible syntax definition
for AspectJ. SIGPLAN Not. 41, 209–228 (2006)

11. Bravenboer, M., Vermaas, R., de Groot, R., Dolstra, E.: Java-front: Java syntax defini-
tion, parser, and pretty-printer. Tech. rep., http://www.program-transformation.org (2011),
http://www.program-transformation.org/Stratego/JavaFront

12. Bravenboer, M., Vermaas, R., Vinju, J.J., Visser, E.: Generalized Type-Based Disambiguation
of Meta Programs with Concrete Object Syntax. In: Glück, R., Lowry, M.R. (eds.) GPCE
2005. LNCS, vol. 3676, pp. 157–172. Springer, Heidelberg (2005)

http://www.program-transformation.org
http://www.program-transformation.org/Stratego/JavaFront

Parse Forest Diagnostics with Dr. Ambiguity 301

13. Cantor, D.G.: On the ambiguity problem of Backus systems. Journal of the ACM 9(4), 477–
479 (1962)

14. Charles, P., Fuhrer, R.M., Sutton Jr., S.M., Duesterwald, E., Vinju, J.: Accelerating the cre-
ation of customized, language-specific IDEs in eclipse. In: Arora, S., Leavens, G.T. (eds.)
Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2009 (2009)

15. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braf-
fort, P. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland, Am-
sterdam (1963)

16. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102 (1970)
17. Economopoulos, G.R.: Generalised LR parsing algorithms. Ph.D. thesis, Royal Holloway,

University of London (August 2006)
18. Floyd, R.W.: On ambiguity in phrase structure languages. Communications of the

ACM 5(10), 526–534 (1962)
19. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation. SIGPLAN

Not. 39, 111–122 (2004)
20. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Computer and

System Sciences 1(1), 1–23 (1967)
21. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism SDF -

reference manual. SIGPLAN Notices 24(11), 43–75 (1989)
22. Johnstone, A., Scott, E.: Modelling GLL Parser Implementations. In: Malloy, B., Staab, S.,

van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 42–61. Springer, Heidelberg
(2011)

23. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-Programming with Rascal. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques
in Software Engineering III. LNCS, vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

24. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars. In:
Pighizzini, G., San Pietro, P. (eds.) Proc. ASMICS Workshop on Parsing Theory, pp. 1–
20. Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università di Milano,
Milano, Italy (1994)

25. Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract. Exper. 31, 1395–
1448 (2001)

26. Landin, P.J.: The next 700 programming languages. Commun. ACM 9, 157–166 (1966)
27. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of the Eighth

Working Conference on Reverse Engineering (WCRE 2001), p. 13. IEEE Computer Society,
Washington, DC (2001)

28. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. In: Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, pp. 425–436. ACM, New York (2011)

29. Rekers, J.: Parser Generation for Interactive Environments. Ph.D. thesis, University of Ams-
terdam (1992)

30. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of programming languages. In:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design
and Implementation, PLDI 1989, pp. 170–178. ACM (1989)

31. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech. rep., com-
pilertools.net (2001), http://accent.compilertools.net/Amber.html

32. Schröer, F.W.: ACCENT, a compiler compiler for the entire class of context-free grammars,
2nd edn. Tech. rep., compilertools.net (2006),
http://accent.compilertools.net/Accent.html

http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Accent.html

302 H.J.S. Basten and J.J. Vinju

33. Scott, E.: SPPF-style parsing from earley recognisers. ENTCS 203, 53–67 (2008)
34. Scott, E., Johnstone, A.: GLL parsing. ENTCS 253(7), 177–189 (2010); Proceedings of the

Ninth Workshop on Language Descriptions Tools and Applications (LDTA 2009)
35. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems.

Kluwer Academic Publishers (1985)
36. Vinju, J.J.: SDF disambiguation medkit for programming languages. Tech. Rep. SEN-1107,

Centrum Wiskunde & Informatica (2011), http://oai.cwi.nl/oai/asset/18080/18080D.pdf
37. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, Universiteit van Ams-

terdam (1997)

http://oai.cwi.nl/oai/asset/18080/18080D.pdf

Ambiguity Detection: Scaling to Scannerless

Hendrikus J.S. Basten, Paul Klint, and Jurgen J. Vinju

Centrum Wiskunde & Informatica
Science Park 123, 1098 XG Amsterdam, The Netherlands

Abstract. Static ambiguity detection would be an important aspect of language
workbenches for textual software languages. However, the challenge is that au-
tomatic ambiguity detection in context-free grammars is undecidable in general.
Sophisticated approximations and optimizations do exist, but these do not scale
to grammars for so-called “scannerless parsers”, as of yet. We extend previous
work on ambiguity detection for context-free grammars to cover disambiguation
techniques that are typical for scannerless parsing, such as longest match and re-
served keywords. This paper contributes a new algorithm for ambiguity detection
in character-level grammars, a prototype implementation of this algorithm and
validation on several real grammars. The total run-time of ambiguity detection
for character-level grammars for languages such as C and Java is significantly
reduced, without loss of precision. The result is that efficient ambiguity detection
in realistic grammars is possible and may therefore become a tool in language
workbenches.

1 Introduction

1.1 Background

Scannerless generalized parsers [7], generated from character-level context-free gram-
mars, serve two particular goals in textual language engineering: parsing legacy lan-
guages and parsing language embeddings. We want to parse legacy languages when
we construct reverse engineering and reengineering tools to help mitigating cost-of-
ownership of legacy source code. The syntax of legacy programming languages fre-
quently does not fit the standard scanner-parser dichotomy. This is witnessed by lan-
guages that do not reserve keywords from identifiers (PL/I) or do not always apply
“longest match” when selecting a token class (Pascal). For such languages we may gen-
erate a scannerless generalized parser that will deal with such idiosyncrasies correctly.

Language embeddings need different lexical syntax for different parts of a composed
language. Examples are COBOL with embedded SQL, or Aspect/J with embedded Java.
The comment conventions may differ, different sets of identifiers may be reserved as
keywords and indeed identifiers may be comprised of different sets of characters, de-
pending on whether the current context is the “host language” or the embedded “guest
language”. Language embeddings are becoming increasingly popular, possibly due to
the belief that one should select the right tool for each job. A character-level grammar
can be very convenient to implement a parser for such a combined language [8]. The

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 303–323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

304 H.J.S. Basten, P. Klint, and J.J. Vinju

reason is that the particular nesting of non-terminals between the host language and the
guest language defines where the different lexical syntaxes are applicable. The lexical
ambiguity introduced by the language embedding is therefore a non-issue for a scanner-
less parser. There is no need to program state switches in a scanner [15], to use scanner
non-determinism [2], or to use any other kind of (ad-hoc) programming solution.

Using a character-level grammar and a generated scannerless parser results in more
declarative BNF grammars which may be maintained more easily than partially hand-
written parsers [11]. It is, however, undeniable that character-level grammars are more
complex than classical grammars since all lexical aspects of a language have to be spec-
ified in full detail. The character-level grammar contains more production rules, which
may contain errors or introduce ambiguity. In the absence of lexical disambiguation
heuristics, such as “prefer keywords” and “longest match”, a character-level grammar
may contain many ambiguities that need resolving. Ergo, character-level grammars lead
to more declarative grammar specifications but increase the risk of ambiguities and
makes automated ambiguity detection harder.

1.2 Contributions and Roadmap

We introduce new techniques for scaling ambiguity detection methods to the complex-
ity that is present in character-level grammars for real programming languages. Our
point of departure is a fast ambiguity detection framework that combines a grammar
approximation stage with a sentence generation stage [5]. The approximation is used to
split a grammar into a set of rules that certainly do not contribute to ambiguity and a set
that might. The latter is then fed to a sentence generator to obtain a clear and precise
ambiguity report. We sketch this global framework (Section 2) and then describe our
baseline algorithm (Section 4). The correctness of this framework has been established
in [4] and is not further discussed here.

We present several extensions to the baseline algorithm to make it suitable for
character-level grammars (Section 5). First, we consider character classes as shiftable
symbols, instead of treating every character as a separate token. This is necessary to
deal with the increased lexical complexity of character-level grammars. Second, we
make use of disambiguation filters [7] to deal with issues such as keyword reservation
and longest match. These filters are used for precision improvements at the approxima-
tion stage, and also improve the run-time efficiency of the sentence generation stage
by preventing spurious explorations of the grammar. Third, we use grammar unfolding
as a general optimization technique (Section 6). This is necessary for certain character-
level grammars but is also generally applicable. At a certain cost, it allows us to more
effectively identify the parts of a grammar that do not contribute to ambiguity.

We have selected a set of real character-level grammars and measure the speed, foot-
print and accuracy of the various algorithms (Section 7). The result is that the total cost
of ambiguity detection is dramatically reduced for these real grammars.

Ambiguity Detection: Scaling to Scannerless 305

Fig. 1. Baseline architecture for fast ambiguity detection

2 The Ambiguity Detection Framework

2.1 The Framework

Our starting point is an ambiguity detection framework called AMBIDEXTER [5], which
combines an extension of the approximative Noncanonical Unambiguity Test [13] with
an exhaustive sentence generator comparable to [14]. The former is used to split a gram-
mar into a set of harmless rules and a set of rules that may contribute to ambiguity. The
latter is used to generate derivations based on the potentially ambiguous rules and pro-
duce understandable ambiguity reports.

Figure 1 displays the architecture of the baseline algorithm which consists of seven
steps, ultimately resulting in a non-ambiguity report, an ambiguity report, or a time-out.

1. In step ❶ the grammar is bracketed, starting and ending each rule with a unique
terminal. The language of the bracketed grammar represents all parse trees of the
original grammar. In this same step an NFA is constructed that over-approximates
the language of the bracketed grammar. This NFA allows us to find strings with
multiple parse trees, by approximation, but in finite time.

2. In step ❷ a data-structure called a Pair Graph (PG) is constructed from the NFA.
This PG represents all pairs of two different paths through the NFA that produce
the same sentence, i.e., potentially ambiguous derivations. During construction, the
PG is immediately traversed to identify the part of the NFA that is covered by the
potentially ambiguous derivations.

3. In step ❸ we filter the uncovered parts from the NFA and clean up dead ends. This
might filter potentially ambiguous derivations from the NFA that are actually false
positives, so we reconstruct the PG again to find more uncovered parts. This process
is repeated until the NFA cannot be reduced any further.

4. In step ❹ we use the filtered NFA to identify harmless productions. These are the
productions that are not used anymore in the NFA. If the NFA is completely filtered
then all productions are harmless and the grammar is unambiguous.

306 H.J.S. Basten, P. Klint, and J.J. Vinju

5. In step ❺ we prepare the filtered NFA to be used for sentence generation. Due to
the removal of states not all paths produce terminal only sentences anymore. We
therefore reconstruct the NFA by adding new terminal producing paths.
In our original approach we generated sentences based on the remaining potentially
harmful productions. However, by immediately using the filtered NFA we retain
more precision, because the NFA is a more precise description of the potentially
ambiguous derivations than a reconstructed grammar.

6. In step ❻ we convert the NFA into a pushdown automaton (PDA) which enables
faster sentence generation in the next step.

7. The final step (❼) produces ambiguous strings, including their derivations, to report
to the user. This may not terminate, since most context-free grammars generate
infinite languages; we need to stop after a certain limited time. All ambiguity that
was detected before the time limit is reported to the user.

It was shown in [4] that the calculations employed in this architecture are correct, and
in [5] that indeed the efficiency of ambiguity detection can be improved considerably
by first filtering harmless productions. However, the baseline algorithm is not suitable
for character-level grammars since it is unable to handle their increased complexity and
it will still find ambiguities that are already solved. It can even lead to incorrect results
because it cannot deal with the non-context-free behaviour of follow restrictions. In this
paper we identify several opportunities for optimization and correction:

– We filter nodes and edges in the NFA and PG representations in order to make use of
disambiguation information that is found in character-level grammars (Section 5).

– We “unfold” selected parts of a grammar to handle the increased lexical complexity
of character-level grammars (Section 6).

For the sake of presentation we have separated the discussion of the baseline algorithm
(Section 4), the filtering (Section 5), and the unfolding (Section 6), but it is important
to note that these optimizations are not orthogonal.

2.2 Notational Preliminaries

A context-free grammar G is a four-tuple (N, T, P, S) where N is the set of non-
terminals, T the set of terminals, P the set of productions over N × (N ∪T)∗, and S is
the start symbol. V is defined as N ∪ T . We use A,B,C, . . . to denote non-terminals,
X,Y, Z, . . . for either terminals or non-terminals, u, v, w, . . . for sentences: strings of
T ∗, and α, β, γ, . . . for sentential forms: strings over V ∗.

A production (A,α) in P is written as A→α. A grammar is augmented by adding
an extra non-terminal symbol S′, a terminal symbol $ and a production S′ → S$, and
making S′ the start symbol. We use the function pid :P →N to relate each production
to a unique number. An item indicates a position in a production rule with a dot, for
instance as S → A•BC. We use I to denote the set of all items of G.

The relation =⇒ denotes derivation. We say αBγ directly derives αβγ, written as
αBγ =⇒ αβγ if a production rule B → β exists in P . The symbol =⇒∗ means
“derives in zero or more steps”. The language of G, denoted L(G), is the set of all

Ambiguity Detection: Scaling to Scannerless 307

sentences derivable from S. We use S(G) to denote the sentential language of G: the
set of all sentential forms derivable from S.

From a grammar G we can create a bracketed grammar Gb by surrounding each
production rule with unique bracket terminals [9]. The bracketed grammar of G is
defined as Gb = (N, Tb, Pb, S) where Tb is the set of terminals and brackets, de-
fined as Tb = T ∪ T〈 ∪ T〉, T〈 = {〈i | i ∈ N}, T〉 = {〉i | i ∈ N}, and Pb =
{A → 〈iα〉i | A → α ∈ P, i = pid(A → α)}. Vb is defined as N ∪ Tb. We use
the function bracketP to map a bracket to its corresponding production, and bracketN
to map a bracket to its production’s left hand side non-terminal. They are defined as
bracketP(〈i) = bracketP(〉i) = A → α iff pid(A → α) = i, and bracketN(〈i) =
bracketN(〉i) = A iff ∃A → α ∈ P, pid(A → α) = i. A string in the language of Gb

describes a parse tree of G. Therefore, if two unique strings exist in L(Gb) that become
identical after removing their brackets, G is ambiguous.

3 Character-Level Grammars

Now we introduce character-level grammars as used for scannerless parsing. Character-
level grammars differ from conventional grammars in various ways. They define their
syntax all the way down to the character level, without separate token definitions. For
convenience, sets of characters are used in the production rules, so-called character
classes. Regular list constructs can be used to handle repetition, like in EBNF. Also,
additional constructs are needed to specify the disambiguation that is normally done
by the scanner, so called disambiguation filters [12]. Typical disambiguation filters for
character-level grammars are follow restrictions and rejects [7]. Follow restrictions are
used to enforce longest match of non-terminals such as identifiers and comments. Re-
jects are typically used for keyword reservation. Other commonly used disambiguation
filters are declarations to specify operator priority and associativity, so these do not have
to be encoded manually into the production rules.

3.1 Example

Figure 2 shows an excerpt of a character-level grammar, written in SDF [10,16]. The
excerpt describes syntax for C-style variable declarations. A Declaration statement
consists of a list of Specifiers followed by an Identifier and a semicolon, sep-
arated by whitespace (Rule 1). A Specifier is either a predefined type like int or
float, or a user-defined type represented by an Identifier (Rule 4). At Rule 5 we
see the use of the character class [a-z] to specify the syntax of Identifier.

The grammar contains both rejects and follow restrictions to disambiguate the lexical
syntax. The {reject} annotation at Rule 6 declares that reserved keywords of the
language cannot be recognized as an Identifier. The follow restriction statements at
Rules 9–11 declare that any substring that is followed by a character in the range [a-z]
cannot be recognized as an Identifier or keyword. This prevents the situation where
a single Specifier, for instance an Identifier of two or more characters, can also be
recognized as a list of multiple shorter Specifiers. Basically, the follow restrictions
enforce that Specifiers should be separated by whitespace.

308 H.J.S. Basten, P. Klint, and J.J. Vinju

Declaration ::= Specifiers Ws? Identifier Ws? ";" (1)

Specifiers ::= Specifiers Ws? Specifier (2)

Specifiers ::= Specifier (3)

Specifier ::= Identifier | "int" | "float" | ... (4)

Identifier ::= [a-z]+ (5)

Identifier ::= Keyword { reject } (6)

Keyword ::= "int" | "float" | ... (7)

Ws ::= [\ \t\n]+ (8)

Identifier -/- [a-z] (9)

"int" -/- [a-z] (10)

"float" -/- [a-z] (11)

Fig. 2. Example character-level grammar for C-style declarations

3.2 Definition

We define a character-level context-free grammar GC as the eight-tuple (N, T, C, P C, S,
RD, RF , RR) where C ⊂ N is the set of character classes over P(T), P C the set of pro-
duction rules over N ×N∗, RD the set of derivation restrictions, RF the set of follow
restrictions, RR the set of rejects.

A character class non-terminal is a finite set of terminals in T . For each of its ele-
ments it has an implicit production with a single terminal right hand side. We can write
αCβ =⇒ αcβ iff C ∈ C and c ∈ C.

The derivation restrictions RD restrict the application of productions in the context
of others. They can be used to express priority and associativity of operators. We define
RD as a relation over I × P C . Recall that we have defined I as the set of all items of a
grammar. An element (A → α•Bγ,B → β) in RD means that we are not allowed to
derive a B non-terminal with production B → β, if it originated from the B following
the dot in the production A → αBγ.

The follow restrictions RF restrict the derivation of substrings following a certain
non-terminal. We define them as a relation over N × T+. An element (A, u) in this
relation means that during the derivation of a string βAγ, γ can not be derived into a
string of form uδ.

The rejects RR restrict the language of a certain non-terminal, by subtracting the
language of another non-terminal from it. We define them as a relation over N ×N . An
element (A,B) means that during the derivation of a string αAβ, A cannot be derived
to a string that is also derivable from B.

4 Baseline Algorithm

In this section we explain the baseline algorithm for finding harmless production rules
and ambiguous counter-examples. The presentation follows the steps shown in Figure 1.
We will mainly focus on the parts that require extensions for character-level grammars,
and refer to [4,5] for a complete description of the baseline algorithm. Algorithm 1 gives
an overview of the first stage of finding harmless productions. All functions operate on
a fixed input grammar G = (N, T, P, S) to which they have global read access.

Ambiguity Detection: Scaling to Scannerless 309

Algorithm 1. Base algorithm for filtering the NFA and finding harmless productions.
function FIND-HARMLESS-PRODUCTIONS() =

(Q,R) = BUILD-NFA()
do

nfasize = |Q|
Qa = TRAVERSE-PATH-PAIRS(Q,R) // returns items used on conflicting path pairs
(Q,R) = FILTER-NFA(Q,R,Qa) // removes unused items and prunes dead ends

while nfasize �= |Q|
return P \ USED-PRODUCTIONS(Q)

4.1 Step 1: NFA Construction

The first step of the baseline algorithm is to construct the NFA from the grammar. It is
defined by the tuple (Q,R) where Q is the set of states and R is the transition relation

over Q× Vb ×Q. Edges in R are denoted by Q
Vb�−→ Q. The states of the NFA are the

items of G. The start state is S′ → •S$ and the end state is S′ → S$•. There are three
types of transitions:

– Shifts of (non-)terminal symbols to advance to a production’s next item,
– Derives from items with the dot before a non-terminal to the first item of one of the

non-terminal’s productions, labeled over T〈,
– Reduces from items with the dot at the end, to items with the dot after the non-

terminal that is at the first item’s production’s left hand side, labeled over T〉.

Algorithm 2 describes the construction of the NFA from G. First, the set of states Q is
composed from the items of G. Then the transitions in R are constructed, assuming only
items in Q are used. Lines 2–4 respectively build the shift, derive and reduce transitions
between the items of G.

Intuitively, the NFA resembles an LR(0) parse automaton before the item closure.
The major differences are that also shifts of non-terminals are allowed, and that the
NFA has — by definition — no stack. The LR(0) pushdown automaton uses its stack to
determine the next reduce action, but in the NFA all possible reductions are allowed. Its
language is therefore an overapproximation of the set of parse trees of G. However, the
shape of the NFA does allow us to turn it into a pushdown automaton that only generates
valid parse trees of G. We will do this later on in the sentence generation stage.

Without a stack the NFA can be searched for ambiguity in finite time. Two paths
through it that shift the same sequence of symbols in V , but different bracket symbols
in Tb, represent a possible ambiguity. If no conflicting paths can be found then G is

Algorithm 2. Computing the NFA from a grammar.
function BUILD-NFA() =
1 Q = I // the items of G

2 R = {A → α•Xβ
X�−→ A → αX•β | } // shifts

3 ∪ {A → α•Bγ
〈i�−→ B → •β | i = pid(B → β)} // derives

4 ∪ {B → β• 〉i�−→ A → αB•γ | i = pid(B → β)} // reduces
5 return (Q,R)

310 H.J.S. Basten, P. Klint, and J.J. Vinju

unambiguous, but otherwise it is uncertain whether or not all conflicting paths represent
ambiguous strings in L(G). However, the conflicting paths can be used to find harmless
production rules. These are the rules that are not or incompletely used on these paths. If
not all items of a production are used in the overapproximated set of ambiguous parse
trees of G, then the production can certainly not be used to create a real ambiguous
string in L(G).

4.2 Step 2: Construct and Traverse Pair Graph

NFA Traversal. To collect the items used on all conflicting path pairs we can traverse
the NFA with two cursors at the same time. The traversal starts with both cursors at
the start item S′ → •S$. From there they can progress through the NFA either inde-
pendently or synchronized, depending on the type of transition that is being followed.
Because we are looking for conflicting paths that represent different parse trees of the
same string, the cursors should shift the same symbols in V . To enforce this we only
allow synchronized shifts of equal symbols. The derive and reduce transitions are fol-
lowed asynchronously, because the number of brackets on each path may vary.

During the traversal we wish to avoid the derivation of unambiguous substrings, i.e.
an identical sequence of one derive, zero or more shifts, and one reduce on both paths,
and prefer non-terminal shifts instead. This enables us to filter more items and edges
from the NFA. Identical reduce transitions on both paths are therefore not allowed if
no conflicts have occurred yet since their corresponding derives. A path can thus only
reduce if the other path can be continued with a different reduce or a shift. This puts
the path in conflict with the other. After the paths are conflicting we do allow identical
reductions (synchronously), because otherwise it would be impossible to reach the end
item S′ → S$•. To register whether a path is in conflict with the other we use boolean
flags, one for each path. For a more detailed description of these flags we refer to [13,4].

Algorithm 3 describes the traversal of path pairs through the NFA. It contains gaps
①–④ that we will fill in later on (Algorithm 7), when extending it to handle character-
level grammars. To model the state of the cursors during the traversal we use an item
pair datatype with four fields: two items q1 and q2 in Q, and two conflict flags c1 and
c2 in B. We use Π to denote the set of all possible item pairs.

The function TRAVERSE-EDGES explores all possible continuations from a given
item pair. We assume it has access to the global NFA variablesQ andR. To traverse each
pair graph edge it calls the function TRAVERSE-EDGE — not explained here — which
in turn calls TRAVERSE-EDGES again on the next pair. The function SHIFTABLE de-
termines the symbol that can be shifted on both paths. In the baseline setting we can only
shift if the next symbols of both paths are identical. Later on we will extend this func-
tion to handle character-level grammars. The function CONFLICT determines whether
a reduce transition of a certain path leads to a conflict. This is the case if the other path
can be continued with a shift or reduce that differs from the first path’s reduce.

Pair Graph. There can be infinitely many path pairs through the NFA, which can not
all be traversed one-by-one. We therefore model all conflicting path pairs with a finite
structure, called a pair graph, which nodes are item pairs. The function TRAVERSE-
EDGES describes the edges of this graph. An infinite amount of path pairs translates to

Ambiguity Detection: Scaling to Scannerless 311

Algorithm 3. Traversing NFA edge pairs.
function TRAVERSE-EDGES(p ∈ Π) =
1 for each (p.q1

〈i�−→ q′1) ∈ R do // derive q1
2 p′ = p, p′.q1 = q′1, p

′.c1 = 0
3 TRAVERSE-EDGE(p, p′)
4 od
5 for each (p.q2

〈i�−→ q′2) ∈ R do // derive q2
6 p′ = p, p′.q2 = q′2, p

′.c2 = 0
7 TRAVERSE-EDGE(p, p′)
8 od
9 for each (p.q1

X�−→ q′1), (p.q2
Y�−→ q′2)∈R

10 do // synchronized shift
11 if SHIFTABLE(X , Y) �= ∅ then
12 p′ = p, p′.q1 = q′1, p

′.q2 = q′2
13 // . . . ①

14 TRAVERSE-EDGE(p, p′)
15 fi
16 for each (p.q1

〉i�−→ q′1) ∈ R do
17 if CONFLICT(p.q2, 〉i) then
18 // conflicting reduction of q1
19 p′ = p, p′.q1 = q′1, p

′.c1 = 1
20 // . . . ②

21 TRAVERSE-EDGE(p, p′)
22 fi

23 for each (p.q2
〉i�−→ q′2) ∈ R do

24 if CONFLICT(p.q1, 〉i) then
25 // conflicting reduction of q2
26 p′ = p, p′.q2 = q′2, p

′.c2 = 1
27 // . . . ③

28 TRAVERSE-EDGE(p, p′)
29 fi
30 if p.c1 ∨ p.c2 then

31 for each (p.q1
〉i�−→ q′1), (p.q2

〉i�−→ q′2)∈R
32 do // synchronized reduction
33 p′ = p, p′.q1 = q′1, p

′.q2 = q′2
34 p′.c1 = p′.c2 = 1
35 // . . . ④

36 TRAVERSE-EDGE(p, p′)
37 od

function SHIFTABLE(X ∈ V , Y ∈ V) =
1 if X = Y then return X else return ∅

function CONFLICT(q ∈ Q, 〉i ∈ T〉) =

1 return ∃q′ ∈ Q,u ∈ T ∗
〈 : (∃X : q

uX�−→+ q′) ∨ (∃ 〉j �= 〉i : q u〉j�−→+ q′)

cycles in this finite pair graph. To find the items used on all conflicting paths it suffices
to do a depth first traversal of the pair graph that visits each edge pair only once.

4.3 Steps 3–4: NFA Filtering and Harmless Rules Identification

After the items used on conflicting path pairs are collected we can identify harmless
production rules from them. As said, these are the productions of which not all items
are used. All other productions of G are potentially harmful, because it is uncertain if
they can really be used to derive ambiguous strings.

We filter the harmless production rules from the NFA by removing all their items
and pruning dead ends. If there are productions of which some but not all items were
used, we actually remove a number of conflicting paths that do not represent valid parse
trees of G. After filtering there might thus be even more unused items in the NFA. We
therefore repeat the traversing and filtering process until no more items can be removed.
Then, all productions that are not used in the NFA are harmless. This step concludes the
first stage of our framework (Find Harmless Productions in Figure 1).

312 H.J.S. Basten, P. Klint, and J.J. Vinju

4.4 Steps 5–7: NFA Reconstruction and Sentence Generation

In the second part of our framework we use an inverted SGLR parser [7] as a sentence
generator to find real ambiguous sentences in the remainder of the NFA. However, cer-
tain states in the NFA might not lead to the generation of terminal-only sentences any-
more, due to the removal of terminal shift transitions during filtering. These are the
states with outgoing non-terminal shift transitions that have no corresponding derive
and reduce transitions anymore. To make such a non-terminal productive again we in-
troduce a new terminal-only production for it that produces a shortest string from its
original language. Then we add a new chain of derive, shift, and reduce transitions for
this production to the states before and after the unproductive non-terminal shift.

After the NFA is reconstructed we generate an LR(0) pushdown automaton from it
to generate sentences with. In contrast to the first stage, we now do need a stack because
we only want to generate proper derivations of the grammar. Also, because of the item
closure that is applied in LR automata, all derivations are unfolded statically, which
saves generation steps at run-time.

The inverted parser generates all sentences of the grammar, together with their parse
trees. If it finds a sentence with multiple trees then these are reported to the user. They
are the most precise ambiguity reports possible, and are also very descriptive because
they show the productions involved [3]. Because the number of derivations of a gram-
mar can be infinite, we continue searching strings of increasing length until a certain
time limit is reached. The number of strings to generate can grow exponentially with
increasing length, but filtering unambiguous derivations beforehand can also greatly
reduce the time needed to reach a certain length as Section 7 will show.

5 Ambiguity Detection for Character-Level Grammars

After sketching the baseline algorithm we can extend it to find ambiguities in character-
level grammars. We take disambiguation filters into account during ambiguity detection,
so we do not report ambiguities that are already solved by the grammar developer. Fur-
thermore, we explain and fix the issue that the baseline harmless rules filtering is unable
to properly deal with follow restrictions.

5.1 Application of Baseline Algorithm on Example Grammar

Before explaining our extensions we first show that the baseline algorithm can lead to
incorrect results on character-level grammars. If we apply it to the example grammar of
Figure 2, the harmless production rule filter will actually remove ambiguities from the
grammar. Since the filtering is supposed to be conservative, this behaviour is incorrect.

The baseline algorithm will ignore the reject rule and follow restrictions in the gram-
mar (Rules 6, 7, 9–11), and will therefore find the ambiguities that these filters meant
to solve. Ambiguous strings are, among others, “float f;” (float can be a keyword
or identifier) and “intList l;” (intList can be one or more specifiers). Rules 1–5
will therefore be recognized as potentially harmful. However, in all ambiguous strings,
the substrings containing whitespace will always be unambiguous. This is detected by
the PG traversal and Rule 8 (Ws ::= [\ \t\n]+) will therefore become harmless.

Ambiguity Detection: Scaling to Scannerless 313

Rule 8 will be filtered from the grammar, and during reconstruction Ws? will be
terminalized with the shortest string from its language, in this case ε. This effectively
removes all whitespace from the language of the grammar. In the baseline setting the
grammar would still be ambiguous after this, but in the character-level setting the lan-
guage of the grammar would now be empty! The follow restriction of line 9 namely
dictates that valid Declaration strings should contain at least one whitespace charac-
ter to separate specifiers and identifiers.

This shows that our baseline grammar filtering algorithm is not suitable for character-
level grammars as is, because it might remove ambiguous sentences. In addition, it
might even introduce ambiguities in certain situations. This can happen when non-
terminals are removed that have follow restrictions that prohibit a second derivation
of a certain string. In short, follow restrictions have a non-context-free influence on sen-
tence derivation, and the baseline algorithm assumes only context-free derivation steps.
In the extensions presented in the next section we repair this flaw and make sure that
the resulting algorithm does not introduce or lose ambiguous sentences.

5.2 Changes to the Baseline Algorithm

The differences between character-level grammars and conventional grammars result
in several modifications of our baseline algorithm. These modifications deal with the
definitions of both the NFA and the pair graph. We reuse the NFA construction of Algo-
rithm 2 because it is compliant with character-level productions, and apply several mod-
ifications to the NFA afterwards to make it respect a grammar’s derivation restrictions
and follow restrictions. An advantage of this is that we do not have to modify the pair
graph construction. To keep the test practical and conservative we have to make sure
that the NFA remains finite, while its paths describe an overapproximation of S(Gb).

Character Classes. Because of the new shape of the productions, we now shift entire
character classes at once, instead of individual terminal symbols. This avoids adding
derives, shifts and reduces for the terminals in all character classes, which would bloat
the NFA, and thus also the pair graph. In the PG we allow a synchronized shift of two
character classes if their intersection is non-empty. To enforce this behaviour we only
need to change the SHIFTABLE function as shown in Algorithm 4.

Derivation Restrictions and Follow Restrictions. After the initial NFA is constructed
we remove derive and reduce edges that are disallowed by the derivation restrictions.
This is described in function FILTER-DERIVE-RESTRICTIONS in Algorithm 5. Then
we propagate the follow restrictions through the NFA to make it only generate strings
that comply with them. This is described in function PROPAGATE-FOLLOW-

Algorithm 4. SHIFTABLE function for character-level pair graph.
function SHIFTABLE(X ∈ N , Y ∈ N) =

// returns the symbol that can be shifted from X and Y
if X ∈ C ∧ Y ∈ C then return X ∩ Y // X and Y are character classes
else if X = Y then return X // X and Y are the same non-terminal
else return ∅ // no shift possible

314 H.J.S. Basten, P. Klint, and J.J. Vinju

Algorithm 5. Filtering derive restrictions from the NFA.
function FILTER-DERIVE-RESTRICTIONS(R) =

return R \{A → α•Bγ
〈i�−→ B → •β | i = pid(B → β), (A → α•Bγ,B → β) ∈ RD}

\{B → β• 〉i�−→ A → αB•γ | i = pid(B → β), (A → α•Bγ,B → β) ∈ RD}

RESTRICTIONS in Algorithm 6. The operation will result in a new NFA with states
that are tuples containing a state of the original NFA and a set of follow restrictions
over P(T+). A new state cannot be followed by strings that have a prefix in the state’s
follow restrictions. To enforce this we constrain character class shift edges according to
the follow restrictions of their source states.

The process starts at (S′ → •S$, ∅) and creates new states while propagating a state’s
follow restrictions over the edges of its old NFA item. In contrast to the original NFA,
which had at most one shift edge per state, states in the new NFA can have multiple. This
is because non-terminal or character class edges actually represent the shift of multiple
sentences, which can each result in different follow restrictions. Lines 6–9 show the
reconstruction of character-class shift edges from a state (A → α•Bβ, f). Shift edges
are added for characters in B that are allowed by f . All characters in B that will result
in the same new set of follow restrictions are combined into a single shift edge, to not
bloat the new NFA unneccesarily. The restrictions after a shift of a are the tails of the
strings in f beginning with a, and are calculated by the function NEXT-FOLLOW.

Line 12 describes how a state’s restrictions are passed on unchanged over derive
edges. Lines 13–20 show how new non-terminal shift edges are added from a state
(A → α•Bβ, f) once their corresponding reduce edges are known. This is convenient
because we can let the propagation calculate the different follow restrictions that can
reach A → αB•β. Once the restrictions that were passed to the derive have reached a
state B → γ•, we propagate them upwards again over a reduce edge to A → αB•β. If
B has follow restrictions — in RF — these are added to the new state as well. Note
that multiple follow restriction sets might occur at the end of a production, so we might
have to reduce a production multiple times. For a given state B → •γ, the function
SHIFT-ENDS returns all states that are at B → γ• and that are reachable by shifting.

If the reduced production is of form B → ε we create a special non-terminal symbol
Bε and make it the label of the shift edge instead ofB. This is a small precision improve-
ment of the PG traversal. It prevents the situation where a specific non-terminal shift
that —because of its follow restriction context— only represents the empty string, is
traversed together with another instance of the same non-terminal that cannot
derive ε.

The propagation ends when no new edges can be added to the new NFA. In theory the
new NFA can now be exponentially larger than the original, but since follow restrictions
are usually only used sparingly in the definition of lexical syntax this will hardly happen
in practice. In Section 7 we will see average increases in NFA size of a factor 2–3.

Rejects. Instead of encoding a grammar’s rejects in the NFA, we choose to handle them
during the PG traversal. Consider an element (A,B) in RR, which effectively subtracts
the language of B from that of A. If the language of B is regular then we could, for
instance, subtract it from the NFA part that overapproximates the language of A. This

Ambiguity Detection: Scaling to Scannerless 315

Algorithm 6. Propagating follow restrictions through the NFA.
function PROPAGATE-FOLLOW-RESTRICTIONS(Q,R) =
// propagate follow restrictions through NFA (Q,R) and return a new NFA (Q′, R′)
1 Q′ = {(S′ → •S$, ∅)}, R′ = ∅
2 repeat
3 add all states used in R′ to Q′

4 for qf = (A → α•Bβ, f) ∈ Q′ do
5 if B ∈ C then // B is a character class
6 for a ∈ B, a /∈ f do // all shiftable characters in C
7 let B′ = {b | b ∈ B, b /∈ f, NEXT-FOLLOW(a,f) = NEXT-FOLLOW(b, f)}
8 add qf

B′�−→ (A → αB•β, NEXT-FOLLOW(a,f)) to R′

9 od
10 else // B is a normal non-terminal

11 for A → α•Bβ
〈i�−→ q′ ∈ R do

12 add qf
〈i�−→ (q′, f) to R′ // propagate f over derivation

13 for qrf = (qr, fr) ∈ SHIFT-ENDS((q′, f))
14 let qsf = (A → αB•β, fr ∪ RF (B)) // shift target

15 add qrf
〉i�−→ qsf to R′ // reduction to shift target

16 if bracketP(〈i) = B → ε then

17 add qf
Bε�−→ qsf to R′ // non-terminal shift representing empty string

18 else
19 add qf

B�−→ qsf to R′ // non-terminal shift of non-empty strings
20 od
21 od
22 until no more edges can be added to R′

23 return (Q′, R′)

function SHIFT-ENDS((A → •α, f) ∈ Q′) =
1 // return the states at the end of A → α, reachable from q using only shifts

2 let ���= {q ��� q′ | q B�−→ q′ ∈ R′} // the shift transitions of R′

3 return {(A → α•, f ′) | (A → •α, f) ���∗ (A → α•, f ′)}

function NEXT-FOLLOW(a ∈ T, f ∈ P(T+))
1 return {α | aα ∈ f, α �= ε} // the next follow restrictions of f after a shift of a

would not violate the finiteness and overapproximation requirements. However, if the
language of B is context-free we have to underapproximate it to finite form first, to
keep the NFA an overapproximation and finite. A possible representation for this would
be a second NFA, which we could subtract from the first NFA beforehand, or traverse
alongside the first NFA in the PG.

Instead, we present a simpler approach that works well for the main use of rejects:
keyword reservation. We make use of the fact that keywords are usually specified as a
set of non-terminals that represent literal strings — like Rules 6 and 7 in Figure 2. The
production rules for "int", "float", etc. are not affected by the approximation, and
appear in the NFA in their original form. We can thus recognize that, during the PG
traversal, a path has completely shifted a reserved keyword if it reduces "int". After

316 H.J.S. Basten, P. Klint, and J.J. Vinju

Algorithm 7. Extensions to TRAVERSE-EDGES for avoiding rejected keywords.
// at ① (shift) insert:

p′.r1 = p′.r2 = ∅ // clear reduced sets

// at ② and ④ (conflicting and pairwise reduce) insert:
if not CHK-REJECT(〉i, p.r2) then continue
p′.r1 = NEXT-REJECT(〉i, p.r1)

// similarly, insert at ③ and ④:
if not CHK-REJECT(〉i, p.r1) then continue
p′.r2 = NEXT-REJECT(〉i, p.r2)

function CHK-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// returns whether a reduction with 〉i is possible after reductions r on other path
let A = bracketN(〉i)
return ¬∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR

function NEXT-REJECT(〉i ∈ T〉, r ∈ P(N)) =
// adds non-terminal reduced with 〉i to r if it is involved in a reject
let A = bracketN(〉i)
if ∃B ∈ r : (A,B) ∈ RR ∨ (B,A) ∈ RR then

return r ∪ {A}
else return r

that, we can prevent the other path from reducing Identifier before the next shift.
This does not restrict the language of Identifier in the NFA — it is kept overapprox-
imated —, but it does prevent the ambiguous situation where “int” is recognized as an
Identifier on one path and as an "int" on the other path.

Of course, Identifier could also be reduced before "int", so we need to register
the reductions of both non-terminals. During the PG traversal, we keep track of all
reduced non-terminals that appear in RR, in two sets r1 and r2, one for each path. Then,
if a path reduces a non-terminal that appears in a pair in RR, together with a previously
reduced non-terminal in the other path’s set, we prevent this reduction. The sets are
cleared again after each pairwise shift transition. Algorithm 7 shows this PG extension.

5.3 NFA Reconstruction

In Section 5.1 we saw that follow restrictions should be handled with care when filtering
and reconstructing a grammar, because of their non-context-free behaviour. By removing
productions from a grammar certain follow restrictions can become unavoidable, which
removes sentences from the language. On the other hand, by removing follow restrictions
new sentences can be introduced that were previously restricted. When reconstructing a
character-level grammar we thus need to terminalize filtered productions depending on
the possible follow-restrictions they might generate or that might apply to them.

Instead, by directly reusing the filtered NFA for sentence generation, we can avoid this
problem. The follow restrictions that are propagated over the states already describe the
follow restriction context of each item. For each distinct restriction context of an item a

Ambiguity Detection: Scaling to Scannerless 317

separate state exists. We can just terminalize each unproductive non-terminal shift edge
with an arbitrary string from the language of its previously underlying automaton.

Furthermore, the filtered NFA is a more detailed description of the potentially am-
biguous derivations than a filtered grammar, and therefore describes less sentences. For
instance, if derive and reduce edges of a production B → β are filtered out at a specific
item A → α•Bγ, but not at other items, we know B → β is harmless in the context
of A → α•Bγ. The propagated follow restrictions also provide contexts in which cer-
tain productions can be harmless. We could encode this information in a reconstructed
grammar by duplicating non-terminals and productions of course, but this could really
bloat the grammar. Instead, we just reuse the baseline NFA reconstruction algorithm.

6 Grammar Unfolding

In Section 7 we will see that the precision of the algorithm described above is not always
sufficient for some real life grammars. The reason for this is that the overapproximation
in the NFA is too aggressive for character-level grammars. By applying grammar un-
foldings we can limit the approximation, which improves the precision of our algorithm.

The problem with the overapproximation is that it becomes too aggressive when cer-
tain non-terminals are used very frequently. Remember that due to the absence of a stack,
the derive and reduce transitions do not have to be followed in a balanced way. There-
fore, after deriving from an item A → α•Bβ and shifting a string in the language of B,
the NFA allows reductions to any item of form C → γB•δ. This way, a path can jump
to another production while being in the middle of a first production. Of course, a lit-
tle overapproximation is intended, but the precision can be affected seriously if certain
non-terminals are used very frequently. Typical non-terminals like that in character-level
grammars are those for whitespace and comments, which can appear in between almost
all language constructs. Since these non-terminals can usually derive to ε, we can thus
jump from almost any item to almost any other item by deriving and reducing them.

To restrict the overapproximation we can unfold the frequently used non-terminals in
the grammar, with a technique similar to one used in [6]. A non-terminal is unfolded by
creating a unique copy of it for every place that it occurs in the right-hand sides of the
production rules. For each of these copies we then also duplicate the entire sub-grammar
of the non-terminal. The NFA thus gets a separate isolated sub-automaton for each
occurence of an unfolded non-terminal. After the derivation from an item A → α•Bβ
a path can now only reduce back to A → αB•β, considering B is unfolded. After
unfolding, the NFA contains more states, but has less paths through it because it is more
deterministic. In the current implementation we unfold all non-terminals that describe
whitespace, comments, or literal strings like keywords, brackets and operators. Later on
we will refer to this unfolding extension as CHAR+UNF.

7 Experimental Results

We have evaluated our ambiguity detection algorithm for character-level grammars on
the grammar collection shown in Table 1. All grammars are specified in SDF [10,16].
The selection of this set is important for external validity. We have opted for grammars of

318 H.J.S. Basten, P. Klint, and J.J. Vinju

Table 1. Character-level grammars used for validation

Name Prods. SLOC Non-terms. Derive rest. Follow restr. Reserved keywords
C1 324 415 168 332 10 32
C++2 807 4172a 430 1 87 74
ECMAScript3 403 522 232 1 27 25
Oberon04 189 202 120 132 31 27
SQL-925 419 495 266 23 5 30
Java 1.56 698 1629 387 297 78 56
1SDF grammar library, revision 27501, http://www.meta-environment.org
2TRANSFORMERS 0.4, http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
3ECMASCRIPT-FRONT, revision 200, http://strategoxt.org/Stratego/EcmaScriptFront
4RASCAL Oberon0 project (converted to SDF), rev. 34580, http://svn.rascal-mpl.org/oberon0/
5SQL-FRONT, revision 20713, http://strategoxt.org/Stratego/SqlFront
6JAVA-FRONT, revision 17503, http://strategoxt.org/Stratego/JavaFront
aAfter removal of additional attribute code

general purpose programming languages, which makes it easier for others to validate our
results. For each grammar we give its name, number of productions, number of source
lines (SLOC), number of non-terminals, number of priorities and associativities (deriva-
tion restrictions), number of follow restrictions and number of reserved keywords.

7.1 Experiment Setup

We have run both our NFA filtering and sentence generation algorithms on each of
these grammars. Most measurements were carried out on an Intel Core2 Quad Q6600
2.40GHz with 8GB DDR2 memory, running Fedora 14. A few memory intensive runs
were done on an Amazon computing cloud EC2 High-Memory Extra Large Instance
with 17.1GB memory. The algorithms have been implemented in Java and are avail-
able for download at http://homepages.cwi.nl/~basten/ambiguity. In order to
identify the effects of the various extensions, we present our empirical findings for the
following combinations:

– BASE: the baseline algorithm for token-level grammars as described in Section 4,
with the only addition that whole character-classes are shifted instead of individual
tokens. Even though this configuration can lead to incorrect results, it is included
as a baseline for comparison.

– CHAR: the baseline algorithm extended for handling character-level grammars as
described in Section 5, including extensions for follow restrictions, derive restric-
tions and rejects.

– CHAR+UNF: the CHAR algorithm combined with grammar unfolding (Section 6).

7.2 Results and Analysis

In Table 2 we summarize our measurements of the NFA filtering and harmless produc-
tion rule detection. For each grammar and extension configuration we give the number
of harmless productions found versus total number of productions, number of edges
filtered from the NFA, execution time (in seconds) and memory usage (in MB).

http://www.meta-environment.org
http://www.lrde.epita.fr/cgi-bin/twiki/view/Transformers/Transformers
http://strategoxt.org/Stratego/EcmaScriptFront
http://svn.rascal-mpl.org/oberon0/
http://strategoxt.org/Stratego/SqlFront
http://strategoxt.org/Stratego/JavaFront
http://homepages.cwi.nl/~basten/ambiguity

Ambiguity Detection: Scaling to Scannerless 319

Table 2. Timing and precision results of filtering harmless productions

Grammar Method Harmless NFA edges Time Memory
productions filtered (sec) (MB)

C BASE 48 / 324 343 / 14359 64 2128
CHAR 62 / 324 2283 / 24565 120 3345
CHAR+UNF 75 / 324 8637 / 30653 97 2616

C++ BASE 0 / 807 0 / 8644 32 1408
CHAR 0 / 807 0 / 39339 527 7189
CHAR+UNFa – – >9594 >17.3G

ECMAScript BASE 44 / 403 414 / 4872 12 547
CHAR 46 / 403 1183 / 10240 46 1388
CHAR+UNF 88 / 403 9887 / 19890 31 1127

Oberon0 BASE 0 / 189 0 / 3701 4.2 256
CHAR 70 / 189 925 / 6162 9.0 349
CHAR+UNF 73 / 189 10837 / 20531 14 631

SQL-92 BASE 13 / 419 98 / 4944 16 709
CHAR 20 / 419 239 / 9031 83 2093
CHAR+UNF 65 / 419 7285 / 14862 37 1371

Java 1.5 BASE 0 / 698 0 / 16844 60 2942
CHAR 0 / 698 0 / 45578 407 7382
CHAR+UNFa 189 / 698 180456 / 262030 1681 15568

aRun on Amazon EC2 High-Memory Extra Large Instance

Every configuration was able to filter an increasing number of productions and edges
for each of the grammars. For C and ECMAScript BASE could already filter a small
number rules and edges, although it remains unsure whether these are all harmless
because the baseline algorithm cannot handle follow restrictions properly. For C and
Oberon0 our character-level extensions of CHAR improved substantially upon BASE,
without the risk of missing ambiguous sentences.

Of all three configurations CHAR+UNF was the most precise. For the grammar
order of the table, it filtered respectively 23%, 0%, 22%, 39%, 16% and 27% of the
production rules, and 28%, 0%, 50%, 53%, 49% and 69% of the NFA edges. Unfold-
ing grammars leads to larger but more deterministic NFAs, which in turn can lead to
smaller pair graphs and thus faster traversal times. This was the case for most grammars
except the larger ones. ECMAScript, SQL-92 and Oberon0 were checkable in under 1
minute, and C in under 2 minutes, all requiring less than 3GB of memory. Java 1.5 was
checkable in just under 16GB in 30 minutes, but for the C++ grammar — which is
highly ambiguous — the pair graph became too large. However, the additional cost of
unfolding was apparently necessary to deal with the complexity of Java 1.5.

Table 3 allows us to compare the sentence generation times for the unfiltered and
filtered NFAs. For each grammar and NFA it shows the number of sentences of a certain
length in the language of the NFA, and the times required to search them for ambiguities.
The unfiltered sentence generation also takes disambiguation filters into account. C++
is not included because its NFA could not be filtered in the previous experiments.

For all grammars we see that filtering with CHAR and CHAR+UNF lead to re-
ductions in search space and generation times. To indicate whether the investments in

320 H.J.S. Basten, P. Klint, and J.J. Vinju

Table 3. Timing results of sentence generation. Times are in seconds. For each sentence length,
the run-time of the fastest configuration (also taking filtering time into account) is highlighted.
Speedup is calculated as unfiltered sentence gen. time

filtering time+sentence gen. time .

Grammar Len Ambig Unfiltered CHAR CHAR+UNF Maximum
NTs Sentences Time Sentences Time Sentences Time speedup

C 5 6 345K 7.9 273K 5.9 267K 5.9 0.08x
6 8 5.06M 35 3.77M 25 3.66M 25 0.29x
7 8 75.5M 398 53.4M 270 51.6M 259 1.1x
8 9 1.13G 5442 756M 3466 727M 3362 1.6x
9 10 17.0G 78987 10.8G 47833 10.3G 47018 1.7x

ECMAScript 3 6 14.2K 4.5 11.7K 3.5 9.29K 3.3 0.13x
4 8 274K 11 217K 8.9 159K 6.7 0.29x
5 10 5.17M 149 3.92M 120 2.64M 69 1.5x
6 11 96.8M 2805 70.5M 2186 43.8M 1184 2.3x
7 12 1.80G 54175 1.26G 41091 719M 20264 2.7x

Oberon0 22 0 21.7M 60 320 1.0 182 1.0 6.0x
23 0 62.7M 186 571 1.0 248 1.0 19x
24 0 247M 815 1269 1.0 468 1.0 82x
25 0 1.39G 4951 3173 1.1 1343 1.1 490x
26 0 9.56G 35007 9807 1.3 3985 1.3 3399x
32 0 108M 172 13.8M 28
33 0 549M 885 55.6M 101
34 0 2.80G 4524 224M 393
35 0 14.3G 22530 906M 1591
36 0 3.66G 6270

SQL-92 11 5 2.65M 16 1.54M 9.4 321K 4.2 0.39x
12 6 15.8M 102 7.36M 47 1.66M 14 2.0x
13 6 139M 1018 51.3M 379 11.5M 90 8.0x
14 6 1.49G 11369 453M 3572 90.8M 711 15x
15 7 4.39G 35024 742M 5781
16 8 6.13G 47211

Java 1.5 7 0 187K 33 39.1K 6.8 0.02x
8 1 3.15M 115 482K 20 0.07x
9 1 54.7M 1727 6.05M 212 0.91x

10 1 959M 39965 76.2M 4745 6.2x

filtering time actually pay off, the last column contains the maximum speedup gained by
either CHAR or CHAR+UNF. For sentence lengths that are already relatively cheap
to generate, filtering beforehand has no added value. However, the longer the sentences
get the greater the pay-off. We witnessed speedup factors ranging from a small 1.1
(C length 7) to a highly significant 3399 (Oberon0 length 26). Filtering Oberon0 with
CHAR+UNF was so effective that it increased the sentence length checkable in around
15 minutes from 24 to 35.

For most grammars filtering already becomes beneficial after around 15 seconds to 6
minutes. For Java 1.5 this boundary lies around 35 minutes, because of its high filtering

Ambiguity Detection: Scaling to Scannerless 321

time. However, after that we see an immediate speedup of a factor 6.2. In all cases
CHAR+UNF was superior to CHAR, due to its higher precision and lower run-times.

The third column of Table 3 contains the number of ambiguous non-terminals found
at each length. Because of filtering, ambiguous non-terminals at larger lengths were
found earlier in multiple grammars. There were 2 ambiguous non-terminals in C that
were found faster, and 4 non-terminals in ECMAScript and 3 in SQL-92.

Concluding, we see that our character-level NFA filtering approach was very bene-
ficial on the small to medium grammars. A relatively low investment in filtering time
— under 2 minutes — lead to significant speedups in sentence generation. This enabled
the earlier detection of ambiguities in these grammars. For the larger Java 1.5 gram-
mar the filtering became beneficial only after 32 minutes, and for the highly ambiguous
C++ grammar the filtering had no effect at all. Nevertheless, ambiguity detection for
character-level grammars is ready to be used in interactive language workbenches.

7.3 Validation

In [4] we proved the correctness of our baseline algorithm. To further validate our
character-level extensions and their implementations we applied them on a series of
toy grammars and grammars of real world programming languages. We ran various
combinations of our algorithms on the grammars and automatically compared the am-
biguous sentences produced, to make sure that only those ambiguities that exist in a
grammar were found, so not more and not less. For the version of our implementation
that we used for the experiments above, we found no differences in the ambiguous
strings generated. The validation was done in the following stages:

– First we built confidence in our baseline sentence generator by comparing it to the
external sentence generators AMBER [14] and CFGANALYZER [1]. For this we
used a grammar collection also used in [3], which contains 87 small toy grammars
and 25 large grammars of real-world programming languages.

– Then we validated the character-level extension of the baseline sentence genera-
tor by comparing it to a combination of our baseline sentence generator and the
SGLR [7] parser used for SDF. By running the baseline sentence generator on
character-level grammars it will report more strings as ambiguous than actually ex-
ist in a grammar, because it does not regard disambiguation filters. We therefore
filter out the truly ambiguous sentences by using the SGLR parser as an oracle, and
test whether our character-level sentence generator finds exactly the same ambigu-
ous sentences. In some situations SGLR will produce non-optimal parse trees, so
we had to verify these by hand. In this step and the following we used the SDF
grammars in Table 1.

– Third, we validated our NFA filtering algorithms by running the character-level
sentence generator on both filtered and unfiltered NFAs. Because a filtered NFA
contains only one reconstructed sentence for non-terminals with only harmless pro-
ductions, it might produce less variations of ambiguous sentences. We therefore
reduced all ambiguous sentences to their core ambiguous sentential forms [4] be-
fore comparison. This is done by removing the unambiguous substrings from an
ambiguous sentence, and replacing them with their deriving non-terminal.

322 H.J.S. Basten, P. Klint, and J.J. Vinju

8 Conclusion

We have presented new algorithms for ambiguity detection for character-level grammars
and by experimental validation we have found an affirmative answer to the question
whether ambiguity detection can be scaled to this kind of grammars. We have achieved
significant speedups of up to three orders of magnitude for ambiguity checking of real
programming language grammars. Ambiguity detection for character-level grammars
is ready to be used in interactive language workbenches, which is good news for the
main application areas of these grammars: software renovation, language embedding
and domain-specific languages.

References

1. Axelsson, R., Heljanko, K., Lange, M.: Analyzing Context-Free Grammars Using an In-
cremental SAT Solver. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 410–422.
Springer, Heidelberg (2008)

2. Aycock, J., Horspool, R.N.: Schrödinger’s token. Software: Practice & Experience 31(8),
803–814 (2001)

3. Basten, H.J.S.: The usability of ambiguity detection methods for context-free grammars. In:
Johnstone, A., Vinju, J.J. (eds.) Proceedings of the Eigth Workshop on Language Descrip-
tions, Tools and Applications (LDTA 2008). ENTCS, vol. 238 (2009)

4. Basten, H.J.S.: Tracking Down the Origins of Ambiguity in Context-Free Grammars. In: Cav-
alcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255,
pp. 76–90. Springer, Heidelberg (2010)

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In: Brabrand, C.,
Moreau, P.-E. (eds.) Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications (LDTA 2010). ACM (2010)

6. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free grammars. Sci.
Comput. Program. 75(3), 176–191 (2010)

7. van den Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation Filters for Scan-
nerless Generalized LR Parsers. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp.
143–158. Springer, Heidelberg (2002)

8. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language embed-
ding and assimilation without restrictions. In: Vlissides, J.M., Schmidt, D.C. (eds.) OOPSLA,
pp. 365–383. ACM (2004)

9. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. Journal of Computer and
System Sciences 1(1), 1–23 (1967)

10. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism SDF -
reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

11. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition: paradise lost
and regained. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) OOPSLA, pp. 918–932. ACM
(2010)

12. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars. In: Pro-
ceedings of the ASMICS Workshop on Parsing Theory. pp. 1–20. Technical Report 126-1994,
Università di Milano (1994)

13. Schmitz, S.: Conservative Ambiguity Detection in Context-Free Grammars. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 692–703.
Springer, Heidelberg (2007)

Ambiguity Detection: Scaling to Scannerless 323

14. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech. rep., com-
pilertools.net (2001), http://accent.compilertools.net/Amber.html

15. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible languages.
In: Consel, C., Lawall, J.L. (eds.) GPCE, pp. 63–72. ACM (2007)

16. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amster-
dam (September 1997)

http://accent.compilertools.net/Amber.html

Comparison of Context-Free Grammars

Based on Parsing Generated Test Data

Bernd Fischer1, Ralf Lämmel2, and Vadim Zaytsev3

1 Electronics and Computer Science, University of Southampton,
Southampton, United Kingdom

2 Software Languages Team, Universität Koblenz-Landau,
Koblenz, Germany

3 Software Analysis and Transformation Team,
Centrum Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. There exist a number of software engineering scenarios that
essentially involve equivalence or correspondence assertions for some of the
context-free grammars in the scenarios. For instance, when applying gram-
mar transformations during parser development—be it for the sake of dis-
ambiguation or grammar-class compliance—one would like to preserve the
generated language. Even though equivalence is generally undecidable for
context-free grammars, we have developed an automated approach that is
practically useful in revealing evidence of nonequivalence of grammars and
discovering correspondence mappings for grammar nonterminals. Our ap-
proach is based on systematic test data generation and parsing.We discuss
two studies that show how the approach is used in comparing grammars
of open source Java parsers as well as grammars from the course work for
a compiler construction class.

Keywords: grammar-based testing, test data generation, coverage cri-
teria, grammar equivalence, parsing, compiler construction, course work.

1 Introduction

The paper is concerned with the automated comparison of context-free grammars
based on test data generated from a grammar. The goal is here to reveal evidence,
if any, for grammar nonequivalence, and to suggest a correspondence mapping
between the nonterminals of the compared grammars. If no evidence of grammar
nonequivalence is found, then this status may support an assertion of grammar
equivalence (against the odds of undecidability). We develop a corresponding
approach for grammar comparison which we demonstrate with two studies. The
resulting infrastructure and both studies in grammar comparison are available
online.1

The following grammar comparison scenarios exemplify the relevance of the
presented work.

1 http://slps.sourceforge.net/testmatch

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 324–343, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://slps.sourceforge.net/testmatch

Comparison of Context-Free Grammars 325

Grammar comparison scenarios

� Parser implementation: The implementor of a parser may start from the
“readable” grammar in a language manual and then transform it so that
ambiguities or inefficiencies or grammar class violations are addressed. For
instance, the (recovered) Cobol grammar from IBM’s standard [9,13] requires
substantial transformations before a quality parser is obtained. Grammar
comparison can be used to shield this laborious process against errors.

� Language documentation: The documenter is supposed to provide a read-
able grammar for which it may be hard to establish though that it precisely
represents the intended language. For instance, each version of the Java Lan-
guage Specification contains a “more readable” and a “more implementable”
grammar [4], and a substantial number of deviations have been identified by
a complex and laborious process of grammar convergence [17]. Grammar
comparison can be used to improve automation of this process.

� Interoperability testing: Suppose that there exist multiple grammars (in fact,
front-ends) for the same (intended) language. Interoperability testing may be
based on code reviews or manually developed test suites. Grammar compar-
ison techniques can be used to test for interoperability more automatically
and systematically even during mapping preparation phase.

� Teaching language processing: Compiler construction is a very established
subject in computer science education and there are continuous efforts to
improve and update corresponding courses [1,5,24,27]. However, the typical
course involves laborious efforts—on the educator’s side—some of which can
be reduced with grammar comparison. For instance, the nonterminal names
of student solutions can be automatically connected with a reference solution.
Differences between the generated languages can be automatically identified.

Contributions of the paper

� We develop a framework for grammar-based test data generation and various
related coverage criteria with associated and modularized generation algo-
rithms. This results in a simple and integrated framework—when compared
to previous work.

� We develop a grammar matching algorithm which uses a systematic classifi-
cation scheme for the nonterminal correspondences between two grammars
starting from accept/reject results obtained by “combinatorial” parsing: all
mappings between nonterminals of the grammars are evaluated.

� We produce empirical evidence for the power of grammar-based test data
generation in practical situations based on two complementary studies. Dif-
ferent coverage criteria are shown to make a contribution in this context.

Roadmap of this paper: §2 presents a methodology for grammar comparison.
§3 describes a set of coverage criteria and test data generation algorithms for use in
grammar comparison. §4 reports on a grammar comparison study for Java grammars
which concludes with a nonequivalence result in particular. §5 develops a matching

326 B. Fischer, R. Lämmel, and V. Zaytsev

algorithm for nonterminals based on parser applications to test data. §6 reports on
a grammar comparison study for a compiler construction class managing to match
grammars of the course work. §7 discusses related work. §8 concludes the paper.

2 Methodology

Overall, the idea of test-based comparison of grammars may appear relatively
straightforward. Nevertheless, a suitable methodology has to be set up.

Asymmetric comparison. Given are two grammars G and G′ which have
been extracted from or can be turned uniformly into parsers (acceptors) A and
A′. Here we call G the reference grammar and G′ the grammar under test. Ac-
cordingly,G represents the intended language, and we want to support assertions
of correctness and completeness for G′ relative to G. We say that G′ is complete,
if A′ accepts all strings that A accepts. We say that G′ is correct, if A′ rejects
all strings that A rejects. With test-based comparison we can attempt to find
counterexamples. That is, we generate (positive) test cases from G and apply A′

to them; rejection provides evidence of incompleteness of G′. We also generate
(positive) test cases from G′ and apply A to them; rejection provides evidence
of incorrectness of G′.

Symmetric comparison. In practice, we cannot always assume that one gram-
mar is clearly a reference grammar. Instead, both grammars may simply compete
with each other to appropriately capture an intended language. In this case, it
does not make sense any longer to speak of correctness and completeness. One
can still exercise both of the above-mentioned directions of test data generation
and parser application, but what was called evidence of incompleteness or incor-
rectness previously simply reduces to evidence of nonequivalence. (A)symmetric
comparison, as discussed here, is a form of differential testing [20].

Non-context-free effects. When discussing (a)symmetric grammar compar-
ison so far, we stipulated that a parser A should precisely accept the language
generated by the grammar G. Obviously, this is not necessarily true in practice.
For instance, grammar-class restrictions or built-in ambiguity resolution strate-
gies may imply that a generated parser rejects some part of the formal language.
Also, parser descriptions may provide additional control that also goes beyond
plain context-free grammars; see, for example, syntactic and semantic predicates
in ANTLR. Further, a parser may rely on a designated lexer whose description
may be incorporated into the grammar, but some aspects may be hard to model
explicitly, e.g., whitespace handing. These and other differences between gram-
mar and parser challenge the soundness of any grammar comparison approach.
We encounter such effects in the case studies, but we defer a more general in-
vestigation of these effects to future work.

Comparison of Context-Free Grammars 327

Nonterminal matching. When discussing (a)symmetric grammar comparison
so far, we focused on confidence for equivalence or evidence for nonequivalence.
As some of the introductory scenarios indicated, one may want to go beyond
(non)equivalence and aim at nonterminal matching. This generalization is useful
for understanding grammars and for preparing an effective mapping between
derivation trees of the compared grammars, if needed. The key idea here is
to use data sets indexed by nonterminals so that acceptance/rejection can be
tested per nonterminal which eventually allows to match nonterminals from the
two grammars when they accept each other test data sets better than for any
other combination of nonterminals. For practicality’s sake, it is important to
support nonterminal matching even for grammars that are not fully equivalent.

Stochastic vs. systematic test data generation. As we discuss in [15], prior
art in grammar-based testing focuses on stochastic test data generation (e.g.,
[19,25]). The canonical approach is to annotate a grammar with probabilistic
weights on the productions and other hints. A test data set is then generated us-
ing probabilistic production selection and potentially further heuristics. Stochas-
tic approaches have been successfully applied to practical problems. One concep-
tual challenge with stochastic approaches is that they require some amount of
configuration to achieve coverage. For instance, recursive nonterminals in gram-
mars imply a need for appropriate probabilistic weights so that divergence is
avoided. This needs to be done carefully to avoid, in turn, insufficient coverage.
In the present paper, we leverage systematic test data generation, by which we
mean that test data sets are generated by effective enumeration methods for the
coverage criteria of interest. These methods do not require any configuration.
Also, these methods imply minimality of the test data sets in both an intuitive
and a formal sense.

Larger sets of smaller test data items. Starting with Purdom’s seminal
work [22], there is the question of how to trade off size of test data set vs. size
of test data items. For instance, when attempting to cover all productions of
a grammar, one may generate a smaller test data set with each item covering
as many additional productions as possible (thereby implying larger items); in-
stead, one may also generate a larger test data set with each item covering as
few individual productions as possible (thereby implying smaller items). In the
present paper, without loss of generality, we adopt the latter principle which is
well in line with general (unit) testing advice. We also refer to [20] for support
of this principle.

3 Test Data Generation

Based on previous work on grammar-based test data generation [7,14,15,18,22,25],
we develop a generation framework which accumulates a number of coverage
criteria and associated generation algorithms in a modular manner. We have

328 B. Fischer, R. Lämmel, and V. Zaytsev

specified all ingredients in a declarative logic program of which we show excerpts
below. (The complete specification, which also includes some optimizations, is
available online; see the footnote on the first page.)

3.1 Grammars and Trees

Generation algorithms process a grammar and generate trees. We represent
grammars as lists of productions. A production is a triple p(L,N,X) consist-
ing of an optional label L, a left-hand side nonterminal N , and a right-hand side
expression X . expr/1 specifies the allowed expression forms for BNF and EBNF,
using functors true for ε, t for terminals, n for nonterminals, ‘,’ for sequences,
‘;’ for choices, ‘?’ for optional parts, ‘*’ and ‘+’ for repetitions. The structure of
trees follows exactly the one of grammars, and hence all functors are overloaded
to represent trees as well as grammars. We refer to Figure 1 for details.2 Gram-
mar fragments are included into trees for origin tracking; see n and ‘;’ on the
right of the figure.

grammar(Ps)
⇐ maplist(prod,Ps).

prod(p(L,N,X))
⇐ mapopt(atom,L), atom(N), expr(X).

expr(true).
expr(t(T)) ⇐ atom(T).
expr(n(N)) ⇐ atom(N).
expr(’,’(Xs)) ⇐ maplist(expr,Xs).
expr(’;’(Xs)) ⇐ maplist(expr,Xs).
expr(’?’(X)) ⇐ expr(X).
expr(’∗’(X)) ⇐ expr(X).
expr(’+’(X)) ⇐ expr(X).

tree(true).
tree(t(T)) ⇐ atom(T).
tree(n(P,T)) ⇐ prod(P), tree(T).
tree(’,’(Ts)) ⇐ maplist(tree,Ts).
tree(’;’(X,T)) ⇐ expr(X), tree(T).
tree(’?’(Ts)) ⇐ mapopt(tree,Ts).
tree(’∗’(Ts)) ⇐ maplist(tree,Ts).
tree(’+’(Ts)) ⇐ maplist1(tree,Ts).

Fig. 1. Logic programming-based specification of grammars and trees

3.2 Coverage Criteria

Suppose that S is a set of derivation trees for a given grammar G. We say
that S achieves trivial coverage (TC), if S is not empty; S achieves nonterminal
coverage (NC), if S exercises each nonterminal of G at least once; S achieves
production coverage (PC), if S exercises each production of G at least once; S
achieves branch coverage (BC), if S exercises each branch for each occurrence of
‘;’, ‘?’, ‘*’, ‘+’ at least once; S achieves unfolding coverage (UC), if S exercises
each production of each right-hand side nonterminal occurrence at least once.

2 The definitions leverage higher-order predicates maplist/2, maplist1/2, mapopt/2 for
applying unary predicates to arbitrary lists, to lists with at least one element, or to
lists of zero or one elements, respectively.

Comparison of Context-Free Grammars 329

For backward compatibility with preexisting terminology [14], we also give the
name context-dependent branch coverage (CDBC) to the combination of BC
and UC.

Trivial, nonterminal and production coverage presumably do not require fur-
ther formal clarification. BC and UC require the notion of a focus, i.e., the
right-hand side non-terminal that is expanded (“varied”) next. The predicate
mark/3 in Figure 2 precisely enumerates all possible foci for branch and unfold-
ing coverage in an expression (or an entire production). In the case of BC, all
expressions that involve a form of choice are foci. In the case of UC, all expres-
sions that denote a nonterminal occurrence are foci. In mark(C,X1,X2), C is the
name of the coverage criterion (bc or uc), X1 is the original expression, X2 is
X1 updated so that one subterm contains a focus that is marked by enclosing it
in {. . .}.

mark(C,p(L,N,X1),p(L,N,X2)) ⇐
mark(C,X1,X2).

mark(uc,n(N),{n(N)}).
mark(bc,’;’(Xs),{’;’(Xs)}).
mark(bc,’?’(X),{’?’(X)}).
mark(bc,’∗’(X),{’∗’(X)}).
mark(bc,’+’(X),{’+’(X)}).

mark(C,’?’(X1),’?’(X2)) ⇐
mark(C,X1,X2).

mark(C,’∗’(X1),’∗’(X2)) ⇐
mark(C,X1,X2).

mark(C,’+’(X1),’+’(X2)) ⇐
mark(C,X1,X2).

mark(C,’,’(Xs1),’,’(Xs2)) ⇐
append(Xs1a,[X1|Xs1b],Xs1),
append(Xs1a,[X2|Xs1b],Xs2),
mark(C,X1,X2).

mark(C,’;’(Xs1),’;’(Xs2)) ⇐
append(Xs1a,[X1|Xs1b],Xs1),
append(Xs1a,[X2|Xs1b],Xs2),
mark(C,X1,X2).

Marked productions are essentially
marked expressions.

A nonterminal occurrence provides a fo-
cus for unfolding coverage. The EBNF
forms ‘;’, ‘?’, ‘*’, ‘+’ provide foci for
branch coverage.

Foci for BC and UC may also be found
by recursing into subexpressions.

Sequences and choices combine multi-
ple expressions, and foci are found by
considering one subexpression at the
time. (Marking is designed to be non-
deterministic here.)

Fig. 2. Marking foci for branch and unfolding coverage

The remarkable property of this uniform specification is that it facilitates
effectively systematic test data generation for the coverage criteria BC and UC
in the sense that a generation algorithm may simple iterate over the extension
of the predicate and exercise all options for any marked focus.

330 B. Fischer, R. Lämmel, and V. Zaytsev

3.3 Generation Primitives

Generation algorithms for the five coverage criteria can be composed from a
small set of primitives; one of which is the predicate mark/3 described above.
These are the remaining ones; we include mode annotations for the intended
direction of usage.3

� complete(+G,+X,−T): we follow the standard definition [18,22]; the tree T
is the shortest completion of expression X according to grammar G.

� mindepth(+G,+N,−D): the natural number D is the minimum depth of
derivation trees rooted by nonterminal N according to grammar G in terms
of the nonterminal nodes on paths—this is the essential relationship for
shortest completion and possibly further generation algorithms; it can be
computed by a simple fixed point computation.

� hole(+G,+N,+H,−T ,−V): the tree T is rooted in nonterminal N with a
“hole” for a derivation tree for nonterminal H where the hole is accessible
through the place holder (logical variable) V—the tree is the smallest one in
the sense of the shortest path from N to H (in terms of nonterminal nodes)
while using shortest completion everywhere else.

� dist(+G,+N1,+N2,−D): the natural number D is the (minimum) distance
between nonterminals N1 and N2 in the sense of nonterminal nodes on paths
in derivation trees from N1 to N2—this is the essential relationship for small-
est trees with holes; it can be computed by a simple fixed point computation
similar to mindepth/3.

� vary(+G,+X,−T): the expression X contains exactly one focus ({. . . }) and
trees T are enumerated such that they are shortest completions overall, but
all “immediate options” for the focus are exercised.

Figure 3 lists the specification of vary/3 ; it uses the primitive complete/3 and a
trivial relation def(+G,?N,−Ps) between grammarsG, nonterminalsN , and pro-
ductions Ps such that N is a nonterminal defined by the grammar G according
to the productions Ps.

3.4 Generation Algorithms

We are ready to define algorithms for the coverage criteria TC, NC, PC, BC, and
UC. We leverage the primitives mentioned above. See Figure 4 for the specifica-
tion of the algorithms. The simple specifications generate larger sets of smaller
trees that achieve coverage in the intended manner, due to the focus of the
primitives on minimality (i.e., shortest completion, smallest tree, etc) and the
individual expansion of the foci via mark/3. For instance uc/3 with arguments
uc(+G,?R,−T) generates (by backtracking) derivation trees T for nonterminals
R from grammar G. It is important to notice that the predicates of Figure 4

3 The modes “+” and “−” are used for (instantiated) input or (uninstantiated) output
arguments, respectively. In principle, there is also the mode “?” for unconstrained
arguments.

Comparison of Context-Free Grammars 331

vary(G,{n(N)},n(P,T)) ⇐
def(G,N,Ps),
member(P,Ps),
P = p(, ,X),
complete(G,X,T).

vary(G,{’;’(Xs)},’;’(X,T)) ⇐
member(X,Xs),
complete(G,X,T).

vary(,{’?’()},’?’([])).
vary(G,{’?’(X)},’?’([T])) ⇐

complete(G,X,T).
vary(,{’∗’()},’∗’([])).
vary(G,{’∗’(X)},’∗’([T])) ⇐

complete(G,X,T).
vary(G,{’+’(X)},’+’([T])) ⇐

complete(G,X,T).
vary(G,{’+’(X)},’+’([T1,T2])) ⇐

complete(G,X,T1),
complete(G,X,T2).

A nonterminal occurrence in focus is varied
so that all productions are exercised. (The
complete spec also deals with chain produc-
tions and top-level choices in a manner that
increases variation in a reasonable sense.)

A choice in focus is varied so that all
branches are exercised.

An optional expression and a ‘*’ repetition
in focus are varied so that the cases for no
tree and one tree are exercised. A ‘+’ repeti-
tion is varied so that the cases for sequences
of length 1 and 2 are exercised.

We omit all clauses for recursing into com-
pound expressions; they mimic shortest
completion but they are directed in a way
that they reach the focus.

Fig. 3. Varying foci for branch and unfolding coverage

tc(G,R,T)
⇐ def(G,R,), complete(G,n(R),T).

nc(G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), complete(G,n(H),V).

pc(G,R,T)
⇐ def(G,R,Ps), member(P,Ps), complete(G,P,T).

pc(G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), pc(G,H,V).

bc(G,R,T)
⇐ cdbc(bc,G,R,T).

uc(G,R,T)
⇐ cdbc(uc,G,R,T).

cdbc(C,G,R,T)
⇐ def(G,R,Ps), member(P,Ps), mark(C,P,F), vary(G,F,T).

cdbc(C,G,R,T)
⇐ def(G,R,), dist(G,R,H,), hole(G,n(R),H,T,V), cdbc(C,G,H,V).

Fig. 4. Enumeration of test data achieving coverage

iterate over all possible nonterminals for the root R of the generated trees (as-
suming R is left uninstantiated). This implies that we can generate test data
sets that are indexed by the nonterminals of the grammar; see again §2.

332 B. Fischer, R. Lämmel, and V. Zaytsev

Let us pick one generation algorithm for discussion. For instance, predicate
pc/3 enumerates trees achieving PC as follows. The first clause of pc/3 models
the case that we want to cover a production P of the rooting nonterminal R,
in which case we simply apply shortest completion to P . The second clause of
pc/3 models the case that we want to cover a production of some nonterminal
H that is only reachable through a nonempty path starting from the rooting
nonterminal R, in which case we create a tree with a hole for nonterminal H to
be filled by recursive invocation of pc/3.

4 Grammar Nonequivalence Study: Java 5

In this study, we apply symmetric grammar comparison to four different gram-
mars, in fact, parsers of the Java programming language. That is, we generate
test data for all the grammars, and each test case from each of the test sets is
then fed into each of the parsers. In this manner, we discover differences between
the languages generated by the four grammars. (All involved grammars and tools
are available online; see the footnote on the first page.)

4.1 Grammar Sources

In previous work, we have extracted Java grammars from the Java Language
Specification (JLS) [4], with many inconsistencies and irregularities reported
in [17]. These Java grammars appear to be a good target for grammar compar-
ison, yet a significant grammar recovery effort would be needed to make those
grammars executable. In fact, this recovery process would involve judgment calls
that possibly bring the executable grammar further away from the JLS.

It turns out though that several handmade, executable adaptations of the
JLS already exist and are deployed in practice. Thus, in the current work we ac-
quired four operational grammars for J2SE 5.0 (“Java 5”) from four widely used
ANTLR sources, distributed under the BSD license. The underlying ANTLR-
based parser descriptions strive to cover the same language; they were developed
independently from one another by different grammar engineers, based on their
experience, style and understanding of the JLS [4]:

Technology Author Year PROD VAR TERM

Habelitz ANTLR34 Dieter Habelitz5 2008 397 226 166
Parr ANTLR3 Terence Parr6 2006 425 151 157
Stahl ANTLR27 Michael Stahl8 2004 262 155 167
Studman ANTLR2 Michael Studman9 2004 267 161 168

4 http://www.antlr.org
5 http://www.antlr.org/grammar/1207932239307/Java1_5Grammars/Java.g
6 http://www.antlr.org/grammar/1152141644268/Java.g
7 http://www.antlr2.org
8 http://www.antlr.org/grammar/1093454600181/java15-grammar.zip
9 http://www.antlr.org/grammar/1090713067533/java15.g

http://www.antlr.org
http://www.antlr.org/grammar/1207932239307/Java1_5Grammars/Java.g
http://www.antlr.org/grammar/1152141644268/Java.g
http://www.antlr2.org
http://www.antlr.org/grammar/1093454600181/java15-grammar.zip
http://www.antlr.org/grammar/1090713067533/java15.g

Comparison of Context-Free Grammars 333

PROD,VARandTERMvalues in the table refer to simple grammarmetrics [21]
of the number of top alternatives in grammar production rules, the number of non-
terminal symbols, and the number of terminal symbols. We have developed a sim-
ple infrastructure for driving a set of ANTLR-based parsers including aspects of
parser generation and selecting the appropriate ANTLR version.

4.2 Grammar Extraction

Based on previous work on grammar convergence [16], we were able to extract
the context-free grammars from the ANTLR-based parser description. That is,
we developed a designated extractor, using the Rascal [11] meta-programming
language, so that the following ANTLR constructs are abstracted away:

� Semantic actions — {...}
� Rule arguments — [...]
� Semantic predicates — {...}?
� Syntactic predicates — (...)=>
� Rewriting rules — -> ^(...)
� Return types of the rules — returns ...
� Specific sections — options, @header, @members, @rulecatch, ...
� Rule modifiers — options, scope, @after, @init, ...

Also some minor notational features like character class negation (∼) or range
operator (..) needed to be translated into basic context-free grammar notation.
Tokens defined as terminals were merged with the normal grammar rules. By
doing so, we are able to fit most of the grammar knowledge in our infrastructure
without focusing on idiosyncratic details. An abstracted grammar differs from
the original in terms of the accepted language, and these effects are yet to be
fully studied; see §2.

4.3 Test Set Generation

Using the algorithm and the infrastructure described in §3, we generated test
data for (only) the start symbols of each of the Java grammars. Figure 5 reports
on the amount of test data. As an exercise in studying the effectiveness of the
different coverage criteria, we explicitly divided test data based on the coverage
criteria, and ultimately found out that the CDBC set contains the largest number
of test cases and usually includes TC, PC, NC and BC sets.

Trivial coverage only involves one test case (rooted in the start symbol). One
may expect that the shortest completions of all grammars are mutually accepted
by the parsers. The test sets for production and nonterminal coverage yield the
same test sets because of ANTLR-implied10 and author-specific grammar style.
The way BC and UC (and hence CDBC) are defined, the corresponding test sets
need not to imply PC and NC, but, in practice, the implication holds. Hence, for
the rest of the paper, we use test sets of CDBC for drawing actual conclusions
on grammar comparison.

10 For instance, definitions of nonterminals in ANTLR have exactly one production
because choices are used instead of multiple productions.

334 B. Fischer, R. Lämmel, and V. Zaytsev

0

250

500

750

1,000

1,250

TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC TC PC NC BC CDBC

Java (Habelitz) Java (Parr) Java (Stahl) Java (Studman) TESCOL (00001)

Fig. 5. Test set sizes. Amount of test data generated to satisfy trivial, production,
nonterminal, branch and context-dependent branch coverage criteria. For comparison,
we also show test set sizes for a much smaller grammar of the study in §6 in which
case test sets were generated for all nonterminals as opposed to only the start symbol
of the Java grammars.

4.4 Results

Figure 6 reports on the degree of observed nonequivalence during testing. The
blue dots represent acceptance rate for each of the criteria-driven subsets, while
the green block behind them reports on all test data together. Let us first ex-
amine the diagonal plots which are expected to be equal to 100%, not just close
to it. Namely, consider one of the test cases generated from but not parseable
with the Habelitz grammar:

class a { { switch (++ this) { } } }

According to the extracted grammar, switch block labels are defined by a nillable
nonterminal aptly called switchBlockLabels:

switchBlockLabels:

switchCaseLabels switchDefaultLabel? switchCaseLabels

switchDefaultLabel:

DEFAULT COLON blockStatement*

switchCaseLabels:

switchCaseLabel*

However, the original parser specification contained an AST rewriting rule:

switchBlockLabels

: switchCaseLabels switchDefaultLabel? switchCaseLabels

-> ^(SWITCH_BLOCK_LABEL_LIST switchCaseLabels

switchDefaultLabel? switchCaseLabels) ;

This rule raises an exception if an attempt is made to rewrite an empty tree,
and the unhandled exception is then treated as a failure to parse code. Since
the context-free part allows switchBlockLabels to be ε, generated test data

Comparison of Context-Free Grammars 335

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

0
%

5
0
%

1
0
0
%

T
C

P
C

N
C

B
C

C
D
B
C

H
ab

elitz
 H

ab
elitz

H
ab

elitz
 P

arr
H

ab
elitz

 S
tahl

H
ab

elitz
 S

tud
m

an

P
arr

 H
ab

elitz
P

arr
 P

arr
P

arr
 S

tahl
P

arr
 S

tud
m

an

S
tahl

 H
ab

elitz
S

tahl
 P

arr
S

tahl
 S

tahl
S

tahl
 S

tud
m

an

S
tud

m
an

 H
ab

elitz
S

tud
m

an
 P

arr
S

tud
m

an
 S

tahl
S

tud
m

an
 S

tud
m

an

Fig. 6. Testing Java grammars and parsers. The Habelitz grammar is apparently
much more permissive than the rest. All parsers accept almost all test cases generated
from their corresponding grammars (diagonal plots).

336 B. Fischer, R. Lämmel, and V. Zaytsev

explores the option, but the idiosyncrasy with which its structure was originally
defined, leads to false nonequivalence reports. It is also worth mentioning that
the grammar with the highest self-acceptance rate (99%) is Parr, which was
designed by the creator of the ANTLR notation.

From the non-diagonal plots of Figure 6 one can see that the Parr, Stahl and
Studman grammars are rather close to one another, but the Habelitz grammar
is much more permissive. Indeed, manual cursory examination of the failing test
cases shows that the Habelitz parser accepts, among other things:

� class a < a extends a {}, class a < a >> {}, class a < a >>> {}

(the piece of grammar dealing with angle brackets is annotated with a “dirty
trick” comment)

� native class a { } (“native” is a modifier for a method, not for a class)
� @ a (++ 0) (annotation followed by neither class nor package declaration)

The last mentioned example is responsible for most of the failures. In fact, the only
place we were able to spot where the Habelitz grammar is more restrictive than
the rest is enumeration definitions (it does not allow for empty enumerations).

5 Matching Algorithm

Nonterminals of two given grammars are to be matched. We assume that the
grammars are executable in that corresponding parsers are available. In fact,
the grammars may have been extracted from the parsers—as discussed above.
We start from a test set indexed by nonterminals of one grammar. We apply
the parser of the other grammar to the indexed test set while also varying the
start symbol so that all nonterminals are exercised. For each parser run with
one test case, we get a positive response (meaning that this particular test case
has been accepted as valid according to a particular nonterminal) or a negative
one (meaning that a parse error occurred, AST building failed, a syntactic or
semantic predicate did not hold, etc.).

We can group these results into triples {reference nonterminal, nonterminal
under test, percentage of successfully parsed test data}. Such a relation, when
displayed in table form with reference nonterminals as rows and nonterminals
under test as columns, and when sorted alphabetically, looks like Figure 7 (left).
Cells with 0% successes are left blank, up to 25% are yellow, below 75% are blue,
up to 99% are green and exactly 100% successes are red.

The results are processed further by making actual matches between nonter-
minals. First, universal(·, y) matches are made by removing nonterminals under
test that accept all test data generated by more than 75% of the reference non-
terminals. Then, different rules for matching are attempted exhaustively. Each
single match is recorded and the matched nonterminals are removed from fur-
ther checks for the rest of the matching loop. There are the following rules for
matches; these options are attempted in the given order for each matching step:

Comparison of Context-Free Grammars 337

00001.bgf → 00001.jar
1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lexicographic order

00001.bgf → 00001.jar
1 0

1 0

1 0

1 0

1 1 0

1 0 1 0

1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

1 0

Matching order

1 100% 1 75–99% 1 26–74% 0 1–25% 0 0%

Fig. 7. Visualized nonterminal matching. In every color matrix, each row repre-
sents a producing nonterminal and each column denotes an accepting nonterminal. On
the left color matrix, nonterminals (i.e., rows and columns) are sorted alphabetically;
on the right one, in the order of matching.

void(x, ·) all nonterminals under test accept less than 25% for x’s test data.
perfect(x, y) x generates test data which can always be parsed by y and never

by any other nonterminal, and y also exclusively accepts only x’s test data;
nearlyPerfect(x, y) x generates test data of which more than 75% can be

parsed by y and never by any other nonterminal, and y also exclusively
accepts only x’s test data;

exclusive(x, y) x generates test data which is best parsed by y at more than
75%, and y exclusively accepts only x’s test data;

probable(x, y) x generates test data which is parsed only by y, and acceptance
rate is at least 25%;

block(xi, yi) all xi yield test data that is well accepted (> 75%) by all yi;
probableBlock(xi, yi) all xi yield test data accepted at > 25% by all yi;
maximum(x, y) of all candidates, y has the highest acceptance rate.

If any nonterminals are left once the above rules have been exhausted, then that
rest is assumed to match none(x, ·). If rows and columns of the relation are
resorted in the order of matching, we can see a picture like the one on Figure 7
(right). There we see a universal match being made, followed by a long series
of perfect and then nearly perfect matches, several exclusive matches, a big
block match and some less reliable matches at the end of the process.

6 Nonterminal Matching Study: Course Work

TESCOL (TESt COmpiler Language) is an artificial small programming lan-
guage used by the first coauthor in a compiler engineering course. A TESCOL

338 B. Fischer, R. Lämmel, and V. Zaytsev

program contains a list of semicolon-separated declarations and a single state-
ment. The program starts with the keyword trolley, followed by a constant
identifier, the keyword contains, and the declarations. The statement is sepa-
rated from the declarations by the keyword checkout and followed by a semi-
colon, the mandatory done and another semicolon. There are also some contex-
tual restrictions: global naming scheme, non-recursive procedures, declarations
preceding uses, etc.

A class of students was asked to implement TESCOL in ANTLR, resulting in a
codebase of 83 grammars claiming to conform to the same language specification.
The following actions were part of the preparations of the TESCOL grammar
base:

� ANTLR3 grammars were recovered from the submitted tarballs;
� The grammars were extracted as described in §4.2;
� We generated boilerplate Java code for passing a file name and a nonterminal
name as parameters for parser runs;

� The code produced by ANTLR from the grammar was compiled together
with the boilerplate code to form a JAR;

� The filenames were obfuscated to avoid disclosing students’ identities.

In this way we were able to obtain 32 pairs, each consisting of a valid context-
free grammar and a runnable JAR with a parser. Each of the remaining 51
grammars contained small errors in the ANTLR productions or the expected
interaction protocol which prevented their automated processing in the study of
this paper. Each of the working grammars was used to generate test data for
all nonterminals it contained. Such a test data set for one grammar consisted
of around 1000 test cases (min. 599, max. 1354), distributed among coverage
criteria as shown in Figure 5 (right). One test data set took around 5 hours to
test against all 2300 nonterminals of available 32 candidate grammars on an Intel
Core i7 machine with a 2.80GHz CPU; see also Table 3. The results reported
in this paper refer specifically to one test data set for the reference grammar
nicknamed 00001, fed into all of the available parsers. The choice of 00001 over
other TESCOL grammars was purely incidental.

TESCOL grammars are considerably smaller than Java grammars, having on
average four times less top alternatives, three times less nonterminal symbols
and almost half less terminals (compare with the values in the table on page
332):

PROD VAR TERM

Minimum 69 54 101
Average 85 67 104
Maximum 126 83 120

Let us return to Figure 7, which we already used for illustration of nonterminal
matching. In fact, the two matrices in the figure represent matches of the refer-
ence grammar against its own parser. The only universal match is with a non-

Comparison of Context-Free Grammars 339

00001.bgf → 11011.jar
1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 1 0

1 0 1 0

1 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0

1 0

1 0 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

Well-matching grammars

00001.bgf → 10100.jar
1 0

1 0

0 1 0

0 1 0

0 1 0

0 0 1 0

0 0 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 1 0

0 0

0 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 1 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Poorly matching grammars

1 100% 1 75–99% 1 26–74% 0 1–25% 0 0%

Fig. 8. Visualized nonterminal matching. A good match between languages can
be seen on the left; a considerably worse one on the right.

terminal called token, which serves error handling. Void matches for comment,
COMMENT and WS (whitespace) make sense because of the way how a parser han-
dles, in fact, skips such lexical categories. However, a void match for procDec is
suspicious; when investigated, we see the same problem encountered earlier in
§4.4: a RewriteEmptyStreamException.

Nominal inspection of all 50 singular matches shows that they are correct.
There are also two group matches: one correct (comprising expr, multExpr,
compExpr, andExpr, etc, closely related nonterminals from one grammatical
level) and one incorrect (constDec and declarations with themselves). The
incorrectness of the latter is a direct consequence of the problem with procDec.

Figure 8 shows two more examples of nonterminal matching which we will dis-
cuss very briefly. The one on the left is well-matched, with a couple of groups and
many perfect matches, most of which could not have been inferred from nominal
matching: MULTI with ARITH-MUL, NEQ with COND-NONEQUAL, grstatement with
statement-group, etc. The one on the right is matching rather poorly, with 41
nonterminals matching void or none and the rest being in blocks.

We have condensed the results of matching all grammars with the reference
grammar in Figure 9, where matches are counted based on their type. Uni-
versal, void and none belong to a group of usually unwanted matches since
they fail to provide any information to the grammar engineer. On the other
end, block and probable block matches give some information which requires
more sophisticated heuristics or human interpretation. The remaining matches
are singular: one reference nonterminal matches with one nonterminal under test.
As it becomes apparent from the diagram, perfect, nearly perfect, exclusive,

340 B. Fischer, R. Lämmel, and V. Zaytsev

0

17.5

35

52.5

70

00000 00010 00100 00110 01000 01010 01100 01110 10000 10010 10100 10110 11000 11010 11100 11110

TESCOL

NO SINGULAR GROUP

Fig. 9. TESCOL nonterminal matching. Blue (dark grey) bar parts denote non-
terminals that did not match anything (universal, void, none); green (grey) denotes
nonterminals for which a match was found (perfect, nearly perfect, exclusive, proba-
ble, maximum); yellow (light grey) is for nonterminals which were matched in a group
(block, probable block).

probable and maximummatches cover the majority of reference nonterminals.
Group matches also provide useful and adequate results. Hence, nonterminal
matching is successful in the context of the study.

7 Related Work

§2 already provided some general background on the established topic of grammar-
based testing; we refer to [3,7,8,12,14,15,18,19,20,25] for extensive discussion of
methods and applications of grammar-based testing. Our work is original in so
far that we are the first to actually use grammar-based testing for the com-
parison of grammars. Usually, grammar-based testing is used to test parsers or
compilers.

In both studies in §4 and §6, we have noticed imperfect self-matching and ex-
plained reasons for it. One of the ways to improve on this issue would be to take
into account the constraints expressed by the parser specification. There are re-
lated methods of extending grammar-based testing to attribute grammars [6,10].

In our current development, we do not yet leverage any sort of negative test
data generation. There are grammar-based testing scenarios that clearly benefit
from inclusion of negative test cases [29]. For instance, a parser for which no
grammar-based parser description is available can only be tested for complete-
ness with regard to reference grammar with positive test cases whereas testing
for correctness would require negative test cases. In our comparison-based con-
text of the present paper, negative test data is “less important” because evidence

Comparison of Context-Free Grammars 341

of both non-completeness and non-correctness can be found with the help of
positive test cases that are obtained from the compared grammars; see again §2.

Grammar nonequivalence is a well-known undecidable problem. One related
problem is the status of a grammar to be ambiguous (or not). Some sort of
testing has been successfully applied though in this context [2]. Another related
problem is grammar-class/non-ambiguity preservation under composition. While
context-free grammars can always be combined together to form new context-
free grammars, smaller subclasses related to specific parsing technology (or to
the requirement of non-ambiguity) usually do not exhibit this property. Several
attempts to provide painless language modularity are known, such as Kiama [26],
Silver/Copper [28], language boxes methodology [23], etc. Grammar comparison-
like methods may be potentially useful in supporting safe composition.

8 Conclusion

We have developed and demonstrated an approach to grammar comparison
which relies on systematic grammar-based test data generation and parsing.
We have shown, in particular, that the approach can be used for revealing differ-
ences between substantially large grammars and for matching many grammars.
We conclude with a discussion of future work.

The results of nonterminal matching turn out to be useful based on our nom-
inal inspection. Further research is needed to see how the information that is
derived from nonterminal matching can be usefully consumed by grammar en-
gineers for different scenarios. For instance, someone who likes to converge two
grammars may need to turn the matches into appropriate transformations.

We already mentioned the possibility of generating negative test cases. In
theory, more evidence can be found by applying parsers to negative test cases.
Whether or not this evidence makes a difference in practical scenarios like ours
is an open question.

There is also the related question whether we can improve precision of match-
ing by generating larger test sets for more demanding coverage criteria. While it
may lead to bad scalability to universally replace CDBC by a more demanding
criterion, a more selective approach could be scalable enough: generate more test
data when about to match a block; see §5.

Our implementation leaves much room for optimization. As apparent from
Table 3, the generation phase is not a problem: it is required only once, and
takes only a few minutes. However, our current infrastructure for parser ex-
ecution loops over test cases such that the parser is run separately for each
test case, causing excessive overhead with loading and unloading in the JVM.
The computation of the results of the present paper relied on parallelism/
distribution.11

11 We used several machines at the CWI SWAT department. The estimated, sequential
time to run all TESCOL-based test data against all parsers is 300 days.

342 B. Fischer, R. Lämmel, and V. Zaytsev

Table 3. Performance. Time (in minutes, seconds and, if necessary, hours) to gen-
erate test data, unparse it (turn parse trees to source code), and run. Generation
was measured separately for satisfying trivial, production, nonterminal, branch and
context-dependent branch coverage criteria.

generate unparse run
Test set TC PC NC BC CDBC Habelitz Parr Stahl Studman

Habelitz 00:21 00:58 00:59 02:14 04:46 00:30 02:29 02:02 01:23 01:20
Parr 00:08 00:29 00:29 02:10 03:51 00:34 02:50 02:21 01:33 01:34
Stahl 00:08 00:35 00:35 02:45 05:01 00:39 03:02 02:34 01:40 01:39
Studman 00:09 00:38 00:39 02:59 05:12 00:37 03:05 02:35 01:41 01:41

TC PC NC BC CDBC unparse 00000 00001

00000 00:31 00:47 00:50 00:59 01:27 00:57 5:08:48 4:40:23
00001 00:05 00:14 00:51 01:12 01:53 01:47 5:41:22 5:10:36
... ...
All TESCOL 02:21 08:44 27:21 34:21 59:19 17:32 —

Acknowledgments. Bernd Fischer was supported by EPSRC grant EP/
F052669/1. Robert van Liere (CWI, Amsterdam) provided expert advice on
visualization.

References

1. Aho, A.V.: Teaching the Compilers Course. SIGCSE Bull. 40, 6–8 (2008)
2. Basten, H.J.S.: Tracking Down the Origins of Ambiguity in Context-Free Gram-

mars. In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC
2010. LNCS, vol. 6255, pp. 76–90. Springer, Heidelberg (2010)

3. Burgess, C.J.: The Automated Generation of Test Cases for Compilers. Software
Testing, Verification and Reliability 4(2), 81–99 (1994)

4. Gosling, J., Joy, B., Steele, G.L., Bracha, G.: The Java Language Specifica-
tion, 3rd edn. Addison-Wesley (2005), all versions of the JLS are available at
http://java.sun.com/docs/books/jls

5. Griswold, W.G.: Teaching Software Engineering in a Compiler Project Course.
Journal on Educational Resources in Computing 2 (December 2002)

6. Harm, J., Lämmel, R.: Two-dimensional Approximation Coverage. Informat-
ica 24(3) (2000)

7. Hennessy, M., Power, J.F.: Analysing the Effectiveness of Rule-coverage as a Re-
duction Criterion for Test Suites of Grammar-based Software. Empirical Software
Engineering 13, 343–368 (2008)

8. Hoffman, D., Wang, H.Y., Chang, M., Ly-Gagnon, D., Sobotkiewicz, L., Strooper,
P.: Two Case Studies in Grammar-based Test Generation. Journal of Systems and
Software 83, 2369–2378 (2010)

9. IBM Corporation: VS COBOL II Application Programming Language Reference,
4th edn. (1993), Publication number GC26-4047-07

10. Kastens, U.: Studie zur Erzeugung von Testprogrammen für Übersetzer. Bericht
12/80, Institut für Informatik II, University Karlsruhe (1980)

http://java.sun.com/docs/books/jls

Comparison of Context-Free Grammars 343

11. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-Programming with Rascal. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

12. Kossatchev, A.S., Posypkin, M.A.: Survey of Compiler Testing Methods. Program-
ming and Computing Software 31, 10–19 (2005)

13. Lämmel, R., Verhoef, C.: VS COBOL II grammar Version 1.0.4 (1999),
http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/

14. Lämmel, R.: Grammar Testing. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 201–216. Springer, Heidelberg (2001)

15. Lämmel, R., Schulte, W.: Controllable Combinatorial Coverage in Grammar-Based
Testing. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 19–38. Springer, Heidelberg (2006)

16. Lämmel, R., Zaytsev, V.: An Introduction to Grammar Convergence. In: Leuschel,
M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 246–260. Springer, Hei-
delberg (2009)

17. Lämmel, R., Zaytsev, V.: Recovering Grammar Relationships for the Java Lan-
guage Specification. Software Quality Journal 19(2), 333–378 (2011)

18. Malloy, B.A., Power, J.F.: An Interpretation of Purdom’s Algorithm for Automatic
Generation of Test Cases. In: 1st Annual International Conference on Computer
and Information Science, pp. 3–5 (2001)

19. Maurer, P.: Generating Test Data with Enhanced Context-free Grammars. IEEE
Software 7(4), 50–56 (1990)

20. McKeeman, W.M.: Differential Testing for Software. Digital Technical Journal of
Digital Equipment Corporation 10(1), 100–107 (1998)

21. Power, J.F., Malloy, B.A.: A Metrics Suite for Grammar-based Software. Journal
of Software Maintenance and Evolution: Research and Practice 16, 405–426 (2004)

22. Purdom, P.: A Sentence Generator for Testing Parsers. BIT 12(3), 366–375 (1972)
23. Renggli, L., Denker, M., Nierstrasz, O.: Language Boxes: Bending the Host Lan-

guage with Modular Language Changes. In: van den Brand, M., Gašević, D., Gray,
J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 274–293. Springer, Heidelberg (2010)

24. Schwartzbach, M.I.: Design Choices in a Compiler Course or How to Make Under-
graduates Love Formal Notation. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959,
pp. 1–15. Springer, Heidelberg (2008)

25. Sirer, E.G., Bershad, B.N.: Using Production Grammars in Software Testing. SIG-
PLAN Notices 35, 1–13 (1999)

26. Sloane, A.M., Kats, L.C.L., Visser, E.: A Pure Object-Oriented Embedding of At-
tribute Grammars. In: Ekman, T., Vinju, J. (eds.) Proceedings of the Ninth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2009). Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers (2009)

27. Waite, W.M.: The Compiler Course in Today’s Curriculum: Three Strategies. In:
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Ed-
ucation, SIGCSE 2006, pp. 87–91. ACM (2006)

28. Van Wyk, E., Krishnan, L., Bodin, D., Schwerdfeger, A.: Attribute Grammar-
Based Language Extensions for Java. In: Bateni, M. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 575–599. Springer, Heidelberg (2007)

29. Zelenov, S., Zelenova, S.: Automated Generation of Positive and Negative Tests
for Parsers. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 187–202. Springer, Heidelberg (2006)

http://www.cs.vu.nl/grammarware/browsable/vs-cobol-ii/

RLSRunner: Linking Rascal
with K for Program Analysis

Mark Hills1,2, Paul Klint1,2, and Jurgen J. Vinju1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

Abstract. The Rascal meta-programming language provides a number of fea-
tures supporting the development of program analysis tools. However, sometimes
the analysis to be developed is already implemented by another system. In this
case, Rascal can provide a useful front-end for this system, handling the parsing
of the input program, any transformation (if needed) of this program into individ-
ual analysis tasks, and the display of the results generated by the analysis. In this
paper we describe a tool, RLSRunner, which provides this integration with static
analysis tools defined using the K framework, a rewriting-based framework for
defining the semantics of programming languages.

1 Introduction

The Rascal meta-programming language [13,12] provides a number of features support-
ing the development of program analysis tools. This includes support for processing the
input program with a generalized parser and pattern matching over concrete syntax; de-
veloping the code for the analysis using flexible built-in types (e.g., sets, relations, lists,
and tuples), pattern matching, user-defined algebraic data types, and higher-order func-
tions; and displaying the analysis results interactively to the user through visualization
libraries and through integration with the Eclipse IDE via IMP [4,5].

However, sometimes the analysis to be developed already exists, and there may be
compelling reasons to use this analysis instead of rewriting it in Rascal. The existing
analysis may be trusted, very complicated, or highly optimized, or may provide features
not already available in Rascal. In these cases, instead of requiring the user to rewrite
the analysis, Rascal can be used for its front-end capabilities (parsing, concrete syn-
tax matching, Eclipse integration) while handing off analysis tasks to existing analysis
tools.

This paper describes a tool, RLSRunner, which provides this integration with pro-
gram analyses written using the K framework [10,16]. K is a rewriting-based, tool-
supported notation for defining the semantics of programming languages. It is based
on techniques developed as part of the rewriting logic semantics (RLS) project [15,14].
RLSRunner links languages defined in Rascal with formal language definitions writ-
ten either directly in K and compiled to Maude [6], or with K-style definitions written
directly in Maude.

Contributions. The direct contribution described here is the RLSRunner tool itself, pro-
viding a method to take advantage of K language definitions while building program

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 344–353, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://homepages.cwi.nl/~hills
http://homepages.cwi.nl/~paulk
http://homepages.cwi.nl/~jurgenv
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe

RLSRunner: Linking Rascal with K for Program Analysis 345

analysis tools using Rascal. Indirectly, we believe that RLSRunner highlights the flex-
ibility of Rascal, showing that there is no requirement for Rascal-only solutions. It
also mitigates one of the limitations of the current K suite of tools, which are focused
on abstract syntax-based program representations but provide only limited support for
working with concrete syntax.

Roadmap. In Section 2 we describe the Rascal support created for interacting with ex-
ternal tools (in general) and K definitions in Maude (in particular). We then describe
extensions to K language definitions needed to support interaction with Rascal in Sec-
tion 3. This is put together in a case study in Section 4, presenting the pairing of Rascal
with an existing analysis framework used to search for type and unit errors in programs
written in a paradigmatic imperative language. Section 5 then briefly discusses related
work, while Section 6 presents some thoughts for future work and concludes.

2 Supporting K Program Analysis in Rascal

Figure 1 provides an overview of the process of integrating languages defined in Rascal
with program analysis semantics defined in K. The first step in this integration is to
define the front-end components: a grammar for the language; a generated parser based
on this grammar; and a program (the “Maude-ifier”) that will take the generated parse
tree for a program and transform it into a Maude-readable form. Section 4 provides a
concrete example of this process. As a side-effect, defining the grammar also provides
an IDE for the language, which can be further extended with additional features as
needed.

Given the Maude-ified code, the Rascal RLSRunner library then provides the func-
tionality, in conjunction with language-specific user code, to: generate the analysis
tasks; send them to Maude; read the results; and parse these results to extract the overall
results of the analysis. The main driver function for this process is the runRLSTask
function, shown in Figure 2. runRLSTask provides the functionality needed to start,
communicate with, and stop Maude. To do this it makes use of the ShellExec library.
ShellExec includes a number of routines to start, read from, write to, and terminate
processes running outside Rascal.

Fig. 1. Integrating Rascal and K

346 M. Hills, P. Klint, and J.J. Vinju

public RLSResult runRLSTask(loc ml, RLSRunner runner,
str input...)

{
PID pid = startMaude(ml,runner.maudeFile);

str inputStr = input[0];
list[str] inputArgs = [];
if (size(input) > 1)
inputArgs = [input[n] | n <- index(input)-0];

str toRun = (runner.pre)(inputStr,inputArgs);

writeTo(pid, toRun);
str res = readFrom(pid);
bool continueReading = true;
while (continueReading) {
if (/rewrites:\s*\d+/ !:= res && /Maude\>\s+$/ !:= res)

res = res + readFrom(pid);
else

continueReading = false;
}

RLSResult rlsRes = (runner.post)(res);
stopMaude(pid);
return rlsRes;

}
Fig. 2. The runRLSTask Function, in Rascal

The execution of runRLSTask is customized for specific languages and analysis
tasks using an RLSRunner value (in this case, RLSRunner is the name of a Rascal
algebraic data type, not the library) passed as a parameter (runner in Figure 2). The
RLSRunner includes the Maude definition of the K semantics to use for the analysis,
and also includes pre- and post-processing functions, referred to in Figure 1 as “Analysis
Task Generator” and “Result Processor”, respectively (and in the code aspre andpost).
The pre-processing function takes the Maude-ified term, passed to runRLSTask as the
first element of the inputs parameter, and pre-processes it. This generates the analysis
task, or tasks, in the form of a Maude term (named toRun in the code). This term is
written to the Maude process’s input stream, where it will then be rewritten by Maude
using the analysis semantics to perform the analysis. When Maude writes the final result
of the analysis, this is read by runRLSTask on the process output stream.

Once the entire result is read, runRLSTask invokes the post-processing function.
This function checks to see if the result format is one it can parse; if so, it returns
the analysis results using a user-defined, analysis-specific constructor that extends type
RLSResult. Two output formats are currently supported by the RLSRunner library,
while more can be added as needed. Both default formats include performance informa-
tion from Maude: total rewrites, rewrites per second, etc. In the first format, the result of
the analysis is provided just as a string containing all the generated output (for instance,
all error messages). This string is processed by the result processor (see Figure 1) to

RLSRunner: Linking Rascal with K for Program Analysis 347

extract the analysis results. In the second format, error information is returned using a
delimited format, made up of the location of the error, the severity of the error, and the
error message. In conjunction with the createMessages function in the RLSRun-
ner library, the result processor can extract the location, severity, and error message
information, returning the analysis results as a set of items of Rascal type Message:

data Message = error(str msg, loc at)
| warning(str msg, loc at)
| info(str msg, loc at);

Using the addMessageMarkers function in the Rascal ResourceMarkers library,
these messages can be added in Eclipse as Problem markers to the indicated loca-
tions, with a severity (Error, Warning, or Info) based on the results; these markers
appear both in the editor (as red “squiggly” underlines for errors, for instance) and in
the Problems view. Location information from the parse tree, passed in as part of the
analysis task to Maude, is used in the messages to ensure that markers are added to the
correct locations. Section 4 shows examples of this output marking in action.

If, instead, the post-processor cannot parse the result, it returns all the output from
the analysis using a predefined RLSResult named NoResultHandler, indicating
that some error occurred. Then, after any results (parsable or not) have been computed
by post, runRLSTask stops the Maude process and returns the RLSResult item.

3 Rascal Support in K

To work with Rascal, K definitions need to meet two requirements. First, the output of a
run of the semantics should be in a format parsable by the RLSRunner library. Second,
the semantics should support Rascal source locations, allowing messages generated by
the analysis to be tied back to specific source locations in the file being analyzed.

To support Rascal source locations in K semantics, an algebraic definition of Rascal
locations is provided as an operator sl (for source location) that defines a value of sort
RLocation. sl keeps track of the URI as well as the position information: offset,
length, and starting and ending rows and columns (set to -1 if not available). sl is
defined (using Maude notation) as follows:

fmod RASCAL-LOCATION is
including STRING .
including INT .
sort RLocation .
op sl : String Int Int Int Int Int Int -> RLocation .

endfm

These locations are then used by extending the abstract syntax for various language con-
structs, such as declarations, expressions, etc, adding new “located” versions of these
constructs. For each construct C that we wish to extend, we define a new operator writ-
ten as locatedC, taking both a C and an RLocation. For instance, assuming we
have a sort for declarations named Decl, the located version is defined in Maude as:

op locatedDecl : Decl RLocation -> Decl .

348 M. Hills, P. Klint, and J.J. Vinju

To use these in the semantics, a new K cell, currLoc, is defined, holding the current
source location. This cell is updated to the location given in a located construct when
one is encountered during evaluation:

op currLoc : RLocation -> State .
eq k(decl(locatedDecl(D, RL)) -> K) currLoc(RL’) =

k(decl(D) -> rloc(RL’) -> K) currLoc(RL) .

The equation shown above does the following: if we are in a state where a located dec-
laration D, with source location RL, is the next evaluation step, and RL’ is the current
location, we change the current location to RL. We also set the next two computational
steps, first evaluating the declaration D using whatever logic was already present, and
then resetting the location back to RL’. This processes the declaration in the context
of the source location given with the declaration, and then recovers the current location
in case it is needed. The rule to handle rloc, which recovers a source location (while
discarding the current location in the currLoc cell), is shown below:

op rloc : RLocation -> ComputationItem .
eq k(rloc(RL) -> K) currLoc(RL’) = k(K) currLoc(RL) .

The need for, in essence, creating a location stack can be seen with constructs such as
loops or conditionals, where the correctness of the (located) construct may depend on
the correctness of (located) children. Without a mechanism to recover prior locations,
the error message would instead have to be given in terms of the most recent location,
which may not be the correct one.

4 Linking Rascal with the SILF Analysis Framework

SILF [10], the Simple Imperative Language with Functions, is a standard imperative lan-
guage with functions, arrays, and global variables. Originally designed as a dynamically
typed language, it has since been adapted to support experiments in defining program
analysis frameworks, including type systems, using an abstract K semantics, with anal-
ysis information given in programs using function contracts and type annotations [11].

As mentioned in Section 2, the first step in linking Rascal with a K-defined analysis
tool is to define the front-end components: a grammar for the language, the generated
parser, and the Maude-ifier. As a running example, two rules in the grammar for SILF,
defining the productions for addition (Plus) and for a function call (CallExp), are
given as follows ({Exp ","}* represents a comma-separated list of expressions):

Exp = Plus: Exp "+" Exp
| CallExp: Ident "(" {Exp ","}* ")";

In Maude, the abstract syntax is defined by defining algebraic operators, with each _
character representing a placeholder for a value of the given sort. The Maude versions of
the two productions given above are shown below, with the first operator defining Plus
and the second and third defining CallExp, one with parameters and one without:

RLSRunner: Linking Rascal with K for Program Analysis 349

op _+_ : Exp Exp -> Exp .
op _‘(_‘) : Id ExpList -> Exp .
op _‘(‘) : Id -> Exp .

The string generated by the Maude-ifier, created with Rascal code like the following,
uses a prefix form of these operators, for instance using _+_ for the plus operation with
the operands following in parens:

case (Exp)‘<Exp el> + <Exp er>‘ :
return located(exp,"Exp","_+_(<toMaude(el)>,<toMaude(er)>)");

Function located then builds the located version of the construct, discussed in Sec-
tion 3, using the location associated with exp (the subtree representing the plus expres-
sion) to generate the correct values for the sl operator. An example of the Maude gen-
erated for the expression 1 + 2 is shown below (with the file URI replaced by t.silf
for conciseness, and with the expression located on line 13 between columns 7 and 12):

locatedExp(_+_(
locatedExp(#(1),sl("t.silf",166,1,13,7,13,8)),
locatedExp(#(2),sl("t.silf",170,1,13,11,13,12))),

sl("t.silf",166,5,13,7,13,12)))

Once we have the Maude-ified program with embedded location information, we can
use the RLSRunner library, as described in Section 2, to run the analysis tasks gener-
ated for the language. In this case the pre-processing function is very simple, inserting
the Maude-ified version of the program into a use of eval (with nil indicating that
no input parameters are provided – they are only used in executions of the dynamic
semantics). red is the Maude command to reduce a term, i.e., to perform the analysis:

public str preCheckSILF(str pgm, list[str] params) {
return "red eval((<pgm>),nil) .\n";

}

Fig. 3. Type Error Markers in SILF

350 M. Hills, P. Klint, and J.J. Vinju

Fig. 4. Problems View with SILF Type Errors

The results are handled by the post-processing function in conjunction with functions
in the RLSRunner library, extracting the analysis results as Rascal Messages as dis-
cussed in Section 3.

Two types of analysis are currently supported. The first is a standard type checking
policy, with types provided using type annotations such as $int. Figure 3 provides an
example of the results of a run of this analysis on a program with several type errors. As
can be seen in the Eclipse Problems view, shown for the same file in Figure 4, there are
three errors in this file. The first marked location in Figure 3 contains one of these errors,
an attempt to add y, which is an integer, to b, which is a boolean. The second marked
location actually has two errors. The guard of the if should be a boolean, not an integer;
and the argument to write should be an integer, not a boolean. The actual output of
Maude, parsed to extract this error information, is the following string (formatted to fit
in the provided space, and with the actual URI replaced with t.silf):

Type checking found errors:
||1:::|t.silf::124::5::9::7::9::12|:::

Type failure, incompatible operands: (y + b),$int,$bool||
||1:::|t.silf::134::35::11::2::11::37|:::

Type failure, expression x should have type $bool,
but has type $int.||

||1:::|t.silf::158::8::11::26::11::34|:::
Type failure: write expression b has type $bool,
expected type $int.||

The second analysis is a units analysis, which includes unit type annotations, assert
and assume statements, loop invariants, and function contracts with preconditions, post-
conditions, and modifies clauses (useful because SILF supports global variables). An
example of a run of this analysis, including a tooltip showing a detected error, is shown
in Figure 5. The error is in the addition: variable projectileWeight is declared
with pounds as the unit, while function lb2kg converts an input value in pounds (as
specified in the precondition) to an output value in kilograms (as specified in the post-
condition). When the units analysis examines the function call, it checks that the input
satisfies the precondition (true) and then assumes the output result matches the postcon-
dition. Because of this, the two operands have a different unit, so they cannot be added.
Another example is shown in Figure 6, where the invariant fails to hold because of a
mistake on line 10, where y * x was accidentally written instead of y * y, causing

RLSRunner: Linking Rascal with K for Program Analysis 351

Fig. 5. Units Arithmetic Error in SILF Units Policy

the units of x and y to be out of sync. This error is detected after one abstract loop
iteration, with the detected inconsistency between the units shown in the error message.

All the code for the integration between Rascal and K shown in this section is avail-
able in the Rascal subversion repository: links can be found at http://homepages.
cwi.nl/∼hills/RascalK .

5 Related Work

Many tools exist for working with, and potentially executing, formal definitions of
programming languages. Generally these tools focus on defining a standard dynamic
(evaluation) and maybe static (type) semantics, but, by choosing the appropriate do-
main, they could also be used for program analysis. Tools with support for some form
of development environment include Centaur [2] (for operational semantics) and the
Action Environment [17] (for action semantics). A number of approaches for defin-
ing semantics and program analyses using term rewriting have also been proposed [7].
For instance, the Meta-Environment [18] provides an open environment for designing
and implementing term rewriting environments; one instantiation of this, the ASF+SDF
Meta-Environment [19], provides a graphical environment for defining the syntax of a
language in SDF, editing programs in the defined language, and performing reductions

Fig. 6. An Invariant Failure in SILF Units Policy

http://homepages.cwi.nl/~hills/RascalK
http://homepages.cwi.nl/~hills/RascalK

352 M. Hills, P. Klint, and J.J. Vinju

or transformations with ASF equations [20]. Much like in K, these equations can also
be (and have been) used for program analysis.

Along with these, many static analysis tools, including those with some sort of graph-
ical interface for the user, have also been developed, including Frama-C [1] and a num-
ber of tools that support JML notation [3].

The main distinctions between these tools and the work presented here are: the use
of K for defining the program analysis semantics; the lack of a standard development
environment for K (especially as compared to tools such as ASF+SDF); and the lack
of a specific source language to analyze (as compared to tools such as JML, which
focuses on Java). The work here attempts to address some of the limitations caused
by the second point, providing a method to link IDEs developed in Rascal with an
analysis semantics given in K, leading to a better experience for the analysis user. On
the other hand, since we are focusing specifically on the second point, this work takes
the use of K, and the interest in supporting multiple source languages, as a given. K
has already been compared extensively to other semantic notations [8,16], and this ap-
proach towards program analysis has already been compared to other program analysis
approaches [8,11]; due to space concerns, we do not repeat these comparison here.

6 Summary and Future Work

In this paper we have presented a library-based approach to integrating Rascal with
analysis tools written using K and running in Maude. This approach allows standard
K specifications to be written with only slight modifications to account for the use of
source locations and the format of the output. In Rascal, most of the code needed has
been encapsulated into a reusable library, requiring only the Maude-ifier and a small
amount of “glue” code to be written. The RLSRunner library, including the ScriptExec
and ResourceMarkers code, consists of1 156 lines of Java code, 114 lines of Rascal
code, and 9 lines of Maude code. For SILF, the Maude-ifier is 244 lines of Rascal code
– essentially 2 lines per language construct (1 for the match, 1 for the generated string),
plus several lines to handle lists. The glue code is 42 lines of Rascal in a single module,
plus two lines to add the required menu items to run the analyses. 12 equations were
added to the SILF specification to handle the source locations, totaling 25 lines. The
definition of source locations is reusable in other K analysis specifications, while all
added equations are reusable across other SILF analyses (or analyses in other languages
with the same abstract language constructs). As a point of comparison, the total size of
the SILF specification, including both analyses used here, is 4428 lines.

In the future we would like to expand the RLSRunner to provide for more execution
options, including those related to Maude’s search and model checking features (useful
for concurrent languages), with appropriate visualizations of the results. We would also
like to investigate the automatic generation of the Maude-ifier, and potentially the Maude
syntax operators, from the Rascal and Maude language specifications. Finally, once the
Rascal C grammar is complete, we plan to use RLSRunner to integrate the generated C
environment with CPF [9], an existing analysis framework for C defined using K.

1 These are just counts of the total number of lines in the file exclusive of blank lines and
comments.

RLSRunner: Linking Rascal with K for Program Analysis 353

References

1. Frama-C, http://frama-c.cea.fr
2. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual, V.: CEN-

TAUR: the system. In: Proceedings of SDE 3, pp. 14–24. ACM Press (1988)
3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,

E.: An overview of JML tools and applications. In: Proceedings of FMICS 2003. ENTCS,
vol. 80, pp. 75–91 (2003)

4. Charles, P., Fuhrer, R.M., Sutton Jr., S.M.: IMP: A Meta-Tooling Platform for Creating
Language-Specific IDEs in Eclipse. In: Proceedings of ASE 2007, pp. 485–488. ACM Press,
New York (2007)

5. Charles, P., Fuhrer, R.M., Sutton Jr., S.M., Duesterwald, E., Vinju, J.J.: Accelerating the
Creation of Customized, Language-Specific IDEs in Eclipse. In: Proceedings of OOPSLA
2009, pp. 191–206. ACM (2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.L. (eds.):
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer,
Heidelberg (2007)

7. Heering, J., Klint, P.: Rewriting-based Languages and Systems. Cambridge Tracts in Theo-
retical Computer Science, vol. 55, pp. 776–789. Cambridge University Press (2003)

8. Hills, M.: A Modular Rewriting Approach to Language Design, Evolution and Analysis. PhD
thesis, University of Illinois at Urbana-Champaign (2009)

9. Hills, M., Chen, F., Roşu, G.: Pluggable Policies for C. Technical Report UIUCDCS-R-2008-
2931, Department of Computer Science, University of Illinois at Urbana-Champaign (2008)

10. Hills, M., Şerbănuţă, T.F., Roşu, G.: A Rewrite Framework for Language Definitions and for
Generation of Efficient Interpreters. In: Proceedings of WRLA 2006. ENTCS, vol. 176, pp.
215–231. Elsevier (2007)

11. Hills, M., Roşu, G.: A Rewriting Logic Semantics Approach To Modular Program Analysis.
In: Proceedings of RTA 2010. Leibniz International Proceedings in Informatics, vol. 6, pp.
151–160. Schloss Dagstuhl - Leibniz Center of Informatics (2010)

12. Klint, P., van der Storm, T., Vinju, J.: RASCAL: A Domain Specific Language for Source
Code Analysis and Manipulation. In: Proceedings of SCAM 2009, pp. 168–177. IEEE Com-
puter Society, Los Alamitos (2009)

13. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-Programming with Rascal. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009 III. LNCS, vol. 6491, pp. 222–
289. Springer, Heidelberg (2011)

14. Meseguer, J., Roşu, G.: The rewriting logic semantics project. In: Proceedings of SOS 2005.
ENTCS, vol. 156, pp. 27–56. Elsevier (2006)

15. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Computer Sci-
ence 373(3), 213–237 (2007)

16. Roşu, G., Şerbănuţă, T.F.: An Overview of the K Semantic Framework. Journal of Logic and
Algebraic Programming 79(6), 397–434 (2010)

17. van den Brand, M., Iversen, J., Mosses, P.D.: An Action Environment. Science of Computer
Programming 61(3), 245–264 (2006)

18. van den Brand, M., Moreau, P.-E., Vinju, J.J.: Environments for Term Rewriting Engines
for Free! In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 424–435. Springer,
Heidelberg (2003)

19. van den Brand, M., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M., Kuipers,
T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: A Component-Based Language Development Environment.
In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 365–370. Springer, Heidelberg (2001)

20. van Deursen, A., Heering, J., Klint, P. (eds.): Language Prototyping: An Algebraic Specifica-
tion Approach. AMAST Series in Computing, vol. 5. World Scientific (1996)

http://frama-c.cea.fr

Metacompiling OWL Ontologies

Anders Nilsson1 and Görel Hedin2

1 Department of Automatic Control
Lund University, Sweden

2 Department of Computer Science
Lund University, Sweden

Abstract. Ontologies, formal knowledge representation, and reasoning
are technologies that have begun to gain substantial interest in recent
years. We present a high-level declarative approach to writing applica-
tion programs for specific ontologies, based on viewing the ontology as a
domain-specific language.

Our approach is based on declarative meta-compilation techniques.
We have implemented a tool using this approach that allows typed front-
ends to be generated for specific ontologies, and to which the desired
functionality can be added as separate aspects. Our tool makes use of the
JastAdd meta-compilation system which is based on reference attribute
grammars. We describe the architecture of our tool and evaluate the
approach on applications in industrial robotics.

1 Introduction

The semantic web [23] aims at formalizing large portions of knowledge in a
form which enhances interoperability of usually distributed systems, and which
introduces provisions for a common understanding of basic terms. The term
ontology is normally used in this context to denote a logical formalization of a
particular domain of knowledge, stored in a commonly understood format and
accessible via the world wide web or a similar mechanism.

There are already many tools for handling ontologies in different formats.
Ontology editors for the well known ontology notation OWL [15,16], for example
Protégé [17] and OntoStudio [5], typically store the information in a knowledge
database as RDF triplets (subject, predicate, and object).

Access and manipulation of such knowledge, can be done either at the generic
level, i.e., in terms of the triplets, or at a domain-specific level, where the on-
tology is used for interpreting the knowledge as a domain-specific programming
model. Examples of tools working at the generic level include semantic reasoners,
such as FaCT++ [21] or Pellet [11], which can infer new facts from the knowl-
edge base, and the standard query language SPARQL [19], which allows the
knowledge base to be queried. The knowledge base can also be directly accessed
programmatically, using a generic API, like the Jena Owl API [8].

While the generic level is appropriate for general reasoning over arbitrary on-
tologies, the domain-specific level is often more appropriate for applications tied

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 354–366, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Metacompiling OWL Ontologies 355

to a specific ontology. For example, a hierarchical structure is easy and natural to
represent as a tree at the domain-specific level, but needs to be represented as sepa-
rate triplets of knowledge at the generic level, making generic information retrieval
cumbersome and error-prone: Instead of simply traversing a tree structure, each
level of nodes must be retrieved using new queries and the hierarchical structure
must be maintained outside the knowledge database in the application logic.

There are many tools that can be used to support writing applications at
the domain-specific level. These tools typically represent the knowledge as an
object-oriented model, introducing classes for the concepts in the ontology, and
interpreting predicates to model class and object relationships like inheritance
and part-of relations. Typically, this domain-specific model is accessible through
an API in an object-oriented programming language, like Java, and which is
generated from the ontology schema. Examples of such tools include RDFReac-
tor [22] and Owl2Java [24]. A related approach is that of providing mappings
between RDF and object-oriented models, such as EMF, e.g., [7].

However, a plain generated API has its limitations. First, the application
programmer might like to enrich the generated semantic model with application-
specific computations, for example in the form of additional fields and methods.
Second, such application code should be separated from the generated API:
we do not want the application programmer to edit generated code. Third, for
computing properties of the semantic model, it can be advantageous to use
high-level declarative programming. Fourth, the ontology might change, and it
is desirable that the application code can be reasonably robust to such changes.

In this paper, we provide a solution that supports these requirements. We
note that the problem of writing the application program is similar to writing
a compiler: we need to parse information, analyze it, and generate some kind
of output as a result. By using an object-oriented language, we can map the
triplets for a specific ontology dialect to a typed object-oriented abstract syntax
tree that is easy to perform computations on. For example, a subclass triplet,
like (PincerGripper, subclassof, Gripper), would be mapped to a subclass rela-
tion between the corresponding classes in the object-oriented language. And a
composition restriction, like (Gripper, has, OpenSkill), would be mapped to a
parent-child relation in the abstract syntax tree.

Implementing the classes for such an abstract syntax tree by hand would be
awkward, however, since they will then be sensitive to future changes to the
description specification. Even small changes to the structure could imply a lot
of work to adjust the compiler to the changes.

As is not uncommon, such problems become easier to solve by moving up
to the next abstraction level. By implementing a meta-compiler, a compiler for
OWL that, as output, generates a compiler for the description language spec-
ified in OWL, the abstraction level is raised. Instead of having to handle the
dependencies between description language and tools manually, there is now one
single specification for both description language and tool generation. The fact

356 A. Nilsson and G. Hedin

that these description languages are XML-based helps in that the parsing syntax
is given beforehand.

We have implemented such a meta-compiler for OWL, called JastOwl. JastOwl
is implemented using the JastAdd meta-compilation system [3] which supports
high-level declarative computations on the abstract syntax tree by means of
reference attribute grammars [6], and aspect-oriented modularization using inter-
type declarations [10].

The rest of this paper is structured as follows. In section 2 we describe the
architecture of JastOwl. Section 3 gives an example application of using JastOwl
in the area of industrial robotics, and section 4 evaluates the approach. Related
work is discussed in section 5, and section 6 concludes the paper.

2 JastOwl, a Meta-compiler for OWL

Figure 1 shows the use of the JastOwl meta-compiler. Given an OWL ontology
and hand-written application aspects, a dedicated compiler is generated that
can parse an OWL knowledge database following the constraints defined by the
ontology, and process that information according to the application aspects.
For example, the dedicated compiler could generate vendor-specific configura-
tion files for a particular robot, or interface classes for particular sensors and
actuators. The dedicated compiler could also be a more advanced interactive
application, communicating with an active robot, for example, to employ a skill
server database to reason about what tools to attach to a robot to accomplish a
specific task. These are just a few examples of possible applications.

In the middle part of the figure we see the generation of the dedicated com-
piler: JastOwl parses the ontology and generates specifications for the dedicated
compiler, namely a parsing grammar, an abstract grammar, and a JastAdd as-
pect that contains methods for serialization. The parsing grammar is run through
a parser generator, JavaCC in our case [13], to produce the parser for the ded-
icated compiler. The abstract grammar and the generated JastAdd aspects are
combined with hand-written application aspects and run through JastAdd to
generate the remaining part of the dedicated compiler.

The JastOwl tool is itself generated using JavaCC and JastAdd, as shown in
the top part of the figure. The architecture is general, and we could use the same
architecture to generate similar tools for other ontology notations than OWL,
and for other file formats (there exists a sister tool for XML).

The JastOwl tool analyzes the ontology to find class declarations and restric-
tions on individuals of these classes in order to generate the JastAdd abstract
grammar, see Fig. 2. The abstract grammar corresponds to an object-oriented
API with a type hierarchy and traversal methods for abstract syntax trees follow-
ing the grammar. The generated JastAdd aspect adds OWL/XML serialization
methods to this API. The handwritten application aspects use the combined API
to generate the desired robotics code for an input knowledge database. Examples
of such generated code could be interface classes, communication protocol code,
and skill server reasoning code.

Metacompiling OWL Ontologies 357

Robotics

Ontology

(OWL)

Knowledge

database

(OWL)

puts
constraints
on

Handwritten application

aspects for generating

robotics code

JavaCC +
 JastAdd

JavaCC +
 JastAdd

Dedicated
robotics
compiler

JastOwl

OWL abstract grammar

OWL parsing grammar

JastAdd aspects
JastAdd aspects

Source code for
JastOwl meta compiler

Examples of generated
robotics code

Interface classes

Communication

protocol

code

Skill server

reasoning

Robotics

abstract grammar

Robotics

parsing grammar

Serialization aspect

Generated source code for
dedicated robotics compiler

Fig. 1. The JastOwl meta compiler. JastOwl generates a dedicated compiler descrip-
tion (abstract grammar, parsing grammar, and serialization code) for a given ontology.
This description can be extended with application-specific handwritten aspects to gen-
erate the dedicated compiler. JastOwl is itself generated using JastAdd and JavaCC.

2.1 Generation Details and Limitations

The conceptual differences between Description Logic (DL) and Object Oriented
(OO) systems as well as different ways of bridging the gap have been described
in several papers. Kalyanpur et.al. [9] maps OWL classes to Java interfaces and
properties to untyped Java lists while for example RDFReactor [22] uses a more
elaborate approach where the OWL class hierarchy is being flattened to fit the
Java single inheritance model. RDFReactor also handles OWL properties in a
typed way in the generated Java code.

The development of JastOWL, on the other hand, has so far not been aimed
towards a complete representation of DL in OO or a front-end to existing rea-
soners. Instead, the original idea was to implement a pragmatic toolkit in order
to make it easier to write software that extracts knowledge from an ontological
knowledge source and makes something out of it. For example, to generate access
code or to generate communication protocol code.

358 A. Nilsson and G. Hedin

The JastOWL translation of OWL concepts is similar to how RDFReactor
does it, but with some limitations: The current version directly translates OWL
classes into Java classes limiting us to ontologies where multiple inheritance is
not used. OWL properties are handled similarly. For each property, child nodes
will be generated for the corresponding domain class in the JastAdd abstract
grammar, see Fig. 2. Multiple range properties are not yet supported.

It can be noted that the ontology and knowledge database are often stored
in the same OWL file. Both the meta-compiler and the generated compiler will
then operate on the same OWL file, but with very different goals. The meta-
compiler looks for declarations of classes and restrictions, while the generated
compiler is mainly interested in the instances of the aforementioned classes and
restrictions.

To evaluate the approach, several prototype applications have been imple-
mented, primarily in the area of industrial robotics.

3 SIARAS Skillserver Example

The example described here was developed as a part of the EU-project SIARAS
Skill-Based Inspection and Assembly for Reconfigurable Automation Systems
(FP6 - 017146) http://www.siaras.org. The main goal of the SIARAS project
was to facilitate simple dynamic reconfiguration of complex production pro-
cesses, by introducing the concepts of skill-based manufacturing and structured
knowledge.

3.1 Ontology Structure

At the top level, see top left of Fig. 3, the ontology is split into six categories:

ObjectBase. Every physical object can be modeled as a simple Part, or as an
Assembly consisting of parts or other assemblies.

Operation. The vocabulary needed for talking about operations1 that are per-
formed by a device.

PhysicalObject. A work cell consists of PhysicalObjects. Some objects, De-
vices, are active and have skills, while other, Workpieces, are passive and are
being manipulated by the devices.

Property. The Property hierarchy enumerates those properties of devices and
skills which are interesting for the skill server to reason about.

Skill. A Skill represents an action that might be performed (by a device) in the
context of a production process.

Task. The definition of a Task concept. It is not yet being used, but serves as
a placeholder for possible future extension.

1 An operation has been defined earlier as an instantiated skill. It is the basic element
of task representation.

Metacompiling OWL Ontologies 359

Start ::= Element*;

abstract Thing : ComplexElement ::=;

abstract Element;

ComplexElement : Element ::= OwlIdentifier Attribute* Element*;

ValueElement : ComplexElement;

RdfDeclaration : ComplexElement;

abstract SimpleElement : Element ::= <LITERAL>;

Attribute ::= Value;

Value ::= <STRING_LITERAL>;

OwlIdentifier ::= <IDENTIFIER>;

PhysicalObject : Thing ::= hasProperty:Thing*;

Device : PhysicalObject ::= skill:Thing* subDevice:Thing* software:Thing*;

Abstract : Thing ::=;

Software : Abstract ::=;

Skill : Thing ::= hasProperty:Thing* isSkillOf:Thing*;

EndEffector : Device ::=;

Actuator : Device ::=;

CompoundDevice : Device ::=;

Sensor : Device ::=;

ManufacturingDevice : Device ::=;

CommunicationDevice : Device ::=;

Computer : Device ::=;

ManipulationAndHandlingDevice : Device ::=;

DisplacementDevice : ManipulationAndHandlingDevice ::=;

Fixture : ManipulationAndHandlingDevice ::=;

Robot : ManipulationAndHandlingDevice ::=;

Fig. 2. An OWL ontology and the corresponding generated abstract grammar. Solid
edges indicate an is superclass of relation, and dashed edges an is part of relation.

360 A. Nilsson and G. Hedin

Fig. 3. Parts of the SIARAS robotics ontology

Most devices are not useful in isolation in a manufacturing cell, but must be
combined with other devices to make a meaningful compound device. For exam-
ple, consider a possible set of devices needed for an industrial robot to perform
drilling in workpieces: robot controller, I/O board, robot arm, drilling machine,
drill bit. None of these devices is by itself capable of drilling a hole at a specified
location; a drilling machine can not position itself at the correct position, nor
can it drill a hole without a drill bit attached to it. Only by connecting2 together
all the devices mentioned above may the resulting compound device perform a
drilling operation.

Since the skill server is supposed to generate configurations for a robot cell,
it must also be able to reason about how, and when, devices are connected to
each other. We have therefore introduced a device relationship in the ontology,
hasSubDevice ↔ isSubDeviceOf , in order to model compound devices. A dif-
ference compared to other relations in the ontology is that it is dynamic instead
of static. Device instances in a device library will not typically be statically con-
nected to any other device instance. Instead, a task description where a specific
device instance is used, must also specify how it is connected to other devices
listed in the task description. An example on specifying device relations is shown
in Fig. 4.

2 Connect should here not be taken literally but in a logical sense: controls/is con-
trolled by.

Metacompiling OWL Ontologies 361

controller_1: ABB_IRC5

ioboard_1: dig328

robot_1: ABB_IRB-140

clamp_1: AngleGripper

drillmachine_1: Bosch_GBM_10_RE

drillbit_1: DrillBit_HSS_8mm

SubDevice: controller_1,ioboard_1

SubDevice: controller_1,robot_1

SubDevice: drillmachine_1,drillbit_1

SubDevice: robot_1,drillmachine_1

controller 1

ioboard 1 robot 1

drillmachine 1

drillbit 1

Fig. 4. Device specification from a task description on the left. Corresponding device
tree on the right

We should also keep in mind that device relations may change during execu-
tion of a task description, for example by using a tool exchanger. Revisiting the
example in Fig. 4 using a tool changer, we get a changing device tree such as
one shown in Fig. 5. In the beginning of the task description, there is no device
attached to the robot arm (if we do not consider the tool exchanger itself) —
the middle tree in the figure. When the robot attaches a drilling machine, the
device tree transforms to the left one. Finally replacing the drilling machine with
a gripper results in the rightmost version of the device tree.

Yet another aspect of combining devices in compound ones is computing their
properties out of the properties of their elements. In come cases this operation
is obvious: e.g., a gripper can hold an object, thus a robot equipped with a grip-
per can also hold an object (simple inheritance). However, the allowed payload
for such a compound device will not be inherited, but rather computed in a
particular way. For example:

min(payload(robot) − weight(gripper), payload(gripper))

There seems to be no obvious way to devise a generic inheritance mechanism for
compounds; we currently assume that this will be specified by the user, although
other possibilities are investigated.

3.2 Handling Knowledge

A lot of what the skill server is really about, is to transform information (knowl-
edge) between different representations. First, the skill server needs to parse an
ontology description, various local ontology extensions and a number of device
descriptions from different device libraries, and build an internal representation
of how the various parts of a manufacturing cell (devices, other physical objects,
software, etc.) are interconnected, which is suitable for performing reasoning and
feasibility analysis. In the other end of the skill server pipeline, it needs to be

362 A. Nilsson and G. Hedin

controller 1

ioboard 1 robot 1

drillmachine 1

drillbit 1

controller 1

ioboard 1 robot 1

controller 1

ioboard 1 robot 1

gripper 1

Fig. 5. Changing device tree when using a tool exchanger with the robot

able to generate configurations for the industrial robot cell. This is actually, at
some level of abstraction, quite similar to what is done by any compiler for a
programming language.

But, unlike a traditional compiler, the skill server is also used as a knowledge
manager, keeping an abstract knowledge representation of the cell. As the man-
ufacturing process executes. the cell state changes. For example, state changes
occur when tools are replaced using tool changers or when work pieces are joined
(glued, welded, screwed, etc.) together to finally form a product. As the cell state
changes, the skill server internal representation of the device configurations must
also change. As they are parts of a tree structure, we can simply model man-
ufacturing cell state changes as moving branches of the syntax tree from one
position to another.

Data inferred from the knowledge base is described as attributes of syntax
tree nodes, declaratively defined by equations in a JastAdd application aspect.
The declarative definition allows the information to be automatically updated
whenever the syntax tree is changed. Currently, this is done simply by flushing
all cached attribute values. New values are then computed on demand as needed.
This works well as long as the syntax tree is not very large, and has not been a
practical problem for our applications so far.

As an example of the use of JastAdd application aspects, consider the scenario
shown in Fig. 5 where a robot is supposed to switch tools from a drilling machine
to a gripper in order to be able to fulfill the operations mandated by the robot
cell task. The skill server will then first check which ones of the available drilling
machines, if any, could be used to perform the upcoming operations. Restrictions
are given, for example, by the width and depth of the hole to drill, and by the
workpiece material.

Metacompiling OWL Ontologies 363

As a simplified version of this problem, consider the following grammar.
S t a r t : := Element ∗ ;
a b s t r a c t Element ;
S k i l l : Element : := <Id> Prope r ty ∗ ;
Grasp : S k i l l ;
D r i l l : S k i l l ;
Dev ice : Element : := <Id> S k i l l U s e ∗ ;
S k i l l U s e : := <Id >;
P rope r ty : := <Value >;

To find the devices that can grasp, we need to look in each device, find which
skills the device has by matching the SkillUse nodes to the appropriate Skill
nodes, and finding out if one of those Skills is a Grasp object. This is accom-
plished by the following attributes and equations.

c o l l Set<Device> S t a r t . d ev i ce sWi thGra sp ()
[new HashSet<Device >()] wi th add ;

Device c o n t r i b u t e s t h i s
when canGrasp ()
to S t a r t . d ev i ce sWi thGra sp () f o r r o o t () ;

syn boo l ean Device . canGrasp () {
f o r (S k i l l U s e u : g e t S k i l l U s e s ()) {

i f (u . d e c l () != n u l l && u . d e c l () . canGrasp ()) r e t u r n t r u e ;
}
r e t u r n f a l s e ;

}

syn Element S k i l l U s e . d e c l () = lookup (g e t I d ()) ;
i n h Element S k i l l U s e . lookup (S t r i n g i d) ;
eq S t a r t . getE lement (i n t i ndex) . lookup (S t r i n g i d) {

f o r (Element e : g e tE l ement s ()) {
i f (e . matches (i d)) r e t u r n e ;

}
r e t u r n n u l l ;

}

syn boo l ean Element . canGrasp () = f a l s e ;
eq Grasp . canGrasp () = t r u e ;

syn boo l ean Element . matches (S t r i n g i d) = f a l s e ;
eq S k i l l . matches (S t r i n g i d) = i d == ge t I d () ;

i n h S t a r t Device . r o o t () ;
eq S t a r t . getE lement (i n t i ndex) . r o o t () = t h i s ;

This works as follows. The root of the abstract syntax tree, i.e., the Start node,
has an attribute devicesWithGrasp that is a list of the devices we are looking
for. It is defined as a so called collection attribute to which so called contributions
contribute elements. In this case each Device contributes itself to this collection
if it can grasp things.

To check if a Device can grasp things, it checks through its SkillUses. These
are bound to Skill objects through a reference attribute decl, which is in
turn defined through an inherited attribute lookup. The attributes canGrasp,
matches, and root, are helper attributes.

Note that more code is needed to implement the actual reasoning, i.e., to
match the set of restrictions imposed by the workpiece and operation to be
carried out onto the set of properties of the retrieved devices. Based on some
(given) optimization criteria the “best” device will be chosen.

364 A. Nilsson and G. Hedin

4 Evaluation

The current JastOwl prototype, consisting of about 1500 lines of JastAdd code,
can analyze a non-trivial OWL document and then generate a JastAdd abstract
grammar, as well as a JavaCC parser description, for the description language
as described by the OWL document. Regardless of which changes are done in
the OWL-based specification, both the abstract and concrete grammars for the
description language can be automatically generated.

In order to comprise a fully usable application, in the form of a dedicated
compiler, application code, here in the form of JastAdd aspects, is needed. If
the ontology changes, there is a possibility that the application code has to be
changed as well. However, due to the use of high-level attribution mechanisms,
the code is relatively insensitive towards changes in the syntax tree structure
and to additions of new ontology classes or relations. In particular, equations
for inherited attributes apply to complete subtrees and are therefore relatively
insensitive to minor changes in the possible forms of the syntax tree. Likewise
for contributions to collection attributes.

Recapitulating the four requirements from Section 1 we find that they are all
satisfied. Aspect orientation in the form of static code weaving enables us to add
desired functionality to the generated front-end in a modular fashion. We may
re-generate the grammars and front-end code while not risking to accidentally
delete any of the manually supplied code. Reference attribute grammars, as part
of JastAdd, supplies a compact way to implement references to data stored in
nodes in different parts of the tree, in effect transforming it to a directed graph.

Also performance-wise the proposed method of automatically generating a
JastAdd based dedicated compiler front-end for ontological knowledge seems to
be a good choice. The SIARAS skillserver could use any one of two different back-
ends to access a library of device knowledge; either a backend based on Protégé
with Pellet as reasoner, or a backend based on JastAdd, developed using the
JastOwl meta compiler. The task of, for example, returning all grippers capable
of lifting at least 0.5kg took around 3 seconds to execute using the JastOwl
meta-compiler approach, and more than 20 seconds using the Protégé/Pellet
back-end.

5 Related Work

The idea to take some kind of schema representation and generate a dedicated
parser, model classes, and serialization code, is used in many other tools. In
particular, there are many XML tools that employ this idea. Examples include
JAXB [4] which is a part of the Java SE platform. Similar techniques also exist
for OWL, for example [9], and is implemented by several tools, including Protege.

Whereas these tools generate high-level classes and APIs for particular schema
or ontologies, JastOwl differs by basing the generation on a corresponding ab-
stract grammar, and by supporting the modular addition of application-specific
functionality to the generated classes. Furthermore, this added functionality can

Metacompiling OWL Ontologies 365

be specified at a high level, using declarative reference attribute grammars. Be-
cause the JastOwl tool is itself generated, it is also possible to add alternative
serialization formats easily, that work for any ontology.

There are several other tools that provide high-level processing of schema-
based formalisms by making use of grammarware, but that focus on term rewrit-
ing rather than analysis and computations on an AST [1,20].

An early approach to apply attribute grammars for schema-based notations
was that of Psaila [18]. In this approach, it was suggested that the DTD schema
for a class of XML documents was extended directly with attributes and equa-
tions to provide semantics to XML documents.

Cowan [2] presents an interesting way of connecting an OO Java model in
the form of Javabeans with an RDF model using Java annotations and runtime
reflection/introspection. However, no support for automatically generating Jav-
abeans corresponding to a given RDF model has been found, and the developer
is then left with the task of manually coding the needed Javabeans.

6 Conclusions

In this paper we have proposed how metacompilation based on reference at-
tribute grammars can be used for developing tools for analyzing and manipu-
lating ontological knowledge databases. By implementing a meta compiler, in
this case a compiler parsing an ontology description in OWL, producing both
abstract and concrete grammars for a dedicated compiler, we can get rid of the
often tedious and error prone work of implementing such applications, as well as
simplifying the maintenance of them as the ontology changes.

The application code can be modularized as aspects separate from the gener-
ated compiler source code, and can be programmed at a declarative high level
using attributes. The separation of user submitted code from generated code
result in fairly good robustness to changes in the ontology.

The JastOwl meta compiler has so far been used in several ontology re-
lated experiments and prototypes. Originally developed within the SIARAS
project [12] (http://www.siaras.org/), JastOwl has also been used in in-
dustrial robotics ontology experiments within the european RoSta project [14]
(http://www.robot-standards.eu/). Currently there is ongoing work within
the ROSETTA project (http://www.fp7rosetta.org/) where we are investi-
gating the possibilities of using ontologies in conjunction with self-describing
communication protocols.

Experiences so far indicate that our method of using the JastOwl meta-
compiler with the JastAdd toolkit is an efficient way, both in lines of code as
well as regarding performance, for analyzing and/or manipulating ontological
knowledge.

References

1. Bravenboer, M.: Connecting XML processing and term rewriting with tree gram-
mars. M. Sc. thesis. Utrecht University (November 2003)

366 A. Nilsson and G. Hedin

2. Cowan, T.: Jenabean: Easily bind JavaBeans to RDF (April 2008),
http://www.ibm.com/developerworks/java/library/j-jenabean/index.html

3. Ekman, T., Hedin, G.: The JastAdd System - modular extensible compiler con-
struction. Science of Computer Programming 69, 14–26 (2007)

4. Fialli, J., Vajjhala, S.: The Java Architecture for XML Binding (JAXB). JSR
Specification (2003)

5. Ontoprise GmBH: OntoStudio semantic modelling environment (2011),
http://www.ontoprise.de/en/products/ontostudio/

6. Hedin, G.: Reference Attributed Grammars. Informatica (Slovenia) 24(3) (2000)
7. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Bridging EMF applications and RDF

data sources. In: Semantic Web Enabled Software Engineering (SWESE 2008),
Karlsruhe (October 2008)

8. Jena: Jena – a semantic web framework for java (2009),
http://jena.sourceforge.net/ (site accessed on November 5, 2009)

9. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic Mapping of OWL
Ontologies into Java. In: Maurer, F., Ruhe, G. (eds.) SEKE, pp. 98–103 (2004)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

11. LLC, C.P.: Pellet: Owl2 reasoner for Java (2011),
http://clarkparsia.com/pellet

12. Malec, J., Nilsson, A., Nilsson, K., Nowaczyk, S.: Knowledge-Based Reconfigura-
tion of Automation Systems. In: International Conference on Automation Science
and Engineering, CASE 2007, pp. 170–175. IEEE (2007)

13. Java-CC Parser Generator, metamata Inc., http://www.metamata.com
14. Nilsson, A., Muradore, R., Nilsson, K., Fiorini, P.: Ontology for robotics: A

roadmap. In: International Conference on Advanced Robotics, ICAR 2009, pp.
1–6 (June 2009)

15. Web ontology language (2004), http://www.w3.org/2004/OWL/
16. Web ontology language, version 2 (2009), http://www.w3.org/TR/owl2-overview
17. The Protégé Ontology Editor and Knowledge Acquisition System (2009),

http://protege.stanford.edu/

18. Psaila, G., Crespi-Reghizzi, S.: Adding semantics to XML. In: Workshop on At-
tribute Grammars, WAGA (1999)

19. SPARQL: SPARQL protocol and RDF query language (January 2008),
http://www.w3.org/TR/rdf-sparql-query/

20. Stap, G.: XML document transformation processes using ASF+ SDF. M. Sc. thesis.
University of Amsterdam (2007)

21. Tsarkov, D.: FaCT++ (2007), http://owl.man.ac.uk/factplusplus/
22. Völkel, M.: RDFReactor – From Ontologies to Programatic Data Access. In: Proc.

of the Jena User Conference 2006. HP Bristol (May 2006)
23. W3C: Semantic web (2001), http://www.w3.org/2001/sw
24. Zimmermann, M.: Knowledge-Based Design Patterns for Detailed Ship Structural

Design. Ph.D. thesis, University of Rostock (May 2010)

http://www.ibm.com/developerworks/java/library/j-jenabean/index.html
http://www.ontoprise.de/en/products/ontostudio/
http://jena.sourceforge.net/
http://clarkparsia.com/pellet
http://www.metamata.com
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/owl2-overview
http://protege.stanford.edu/
http://www.w3.org/TR/rdf-sparql-query/
http://owl.man.ac.uk/factplusplus/
http://www.w3.org/2001/sw

Towards Combinators for Bidirectional

Model Transformations in Scala

Arif Wider

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany

wider@informatik.hu-berlin.de

Abstract. In model-driven engineering (MDE), often models that con-
form to different metamodels have to be synchronized. Manually imple-
mented model synchronizations that are not simple bijections are hard to
maintain and to reason about. Special languages for expressing bidirec-
tional transformations can help in this respect, but existing non-bijective
languages are often hard to integrate with other MDE technologies or
depend on up-to-date tool support. We embed lenses – a promising
term-rewriting-based approach to bidirectional transformations – into
the Scala programming language and use lenses for model synchroniza-
tion. We discuss how this allows for static type-safety and for seamless
integration with existing Java-based MDE technologies.

1 Introduction

Model-driven engineering (MDE) advocates the use of domain-specific languages
(DSLs) for describing a system. Using multiple DSLs to describe different aspects
of a system is called multi-view modeling or domain-specific multimodeling. In
a metamodel-based context, this means that the system description consists of
a heterogeneous set of models that conform to different metamodels. If these
DSLs overlap semantically, the consistency of the system description has to be
ensured, i.e., these models have to be synchronized.

Existing metamodel-based technologies like Xtext1 provide good support for
defining a DSL and for creating a corresponding domain-specific workbench, i.e.,
an integrated toolset that makes using this DSL comfortable. However, those
technologies do not support multimodeling, yet, i.e., they do not provide means
to specify (non-bijective) relations between DSLs, so that models that are created
using these DSLs are synchronized automatically.

These synchronizations can be implemented manually as pairs of unidirec-
tional model transformations. However, with this approach, the consistency of
the forward and the backward transformation has to be ensured and both trans-
formations have to be maintained separately. In order to avoid this maintenance
overhead and to make defining such synchronizations more concise, there are spe-
cial languages for defining bidirectional transformations. These languages provide

1 http://www.eclipse.org/Xtext

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 367–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.eclipse.org/Xtext

368 A. Wider

means to specify a consistency relation which defines both the forward and the
backward transformation. With QVT Relations2, there is a language for defining
bidirectional model transformations declaratively. Although standardization was
finished in 2008, QVT Relations does not seem to have gained widespread use in
current MDE practice. Stevens [1] points out semantic issues in QVT (especially
regarding non-bijective transformations) that could be a reason for the limited
acceptance. Additionally, we suppose that the lack of stable and up-to-date tool
support for QVT Relations is responsible for the situation.

In this paper, we present a lightweight approach to bidirectional model trans-
formations: We embed lenses – a combinator-based approach to bidirectional
term-transformations – into the Scala programming language and explore how
lenses have to be adapted for model transformations. Because of Scala’s interop-
erability with Java, this approach integrates well with technologies that are based
on the Eclipse Modeling Framework (EMF) as lenses implemented in Scala can
directly process the Java-instances that represent an EMF model at runtime.
Furthermore, one can benefit from existing tools for Scala – e.g., for editing,
debugging and type-checking – and does not depend on special tool support.

A strength of lenses is their compositional notion: complex transformations
are composed out of small and well-understood transformations using a set of
combinators, which allows for compositional reasoning. This is possible because
of lenses’ asymmetric setting that differentiates lenses from QVT Relations and
similar approaches: One of the two structures that are synchronized has to be an
abstraction of the other. Although this restriction limits applications of lenses
in MDE, we believe that lenses are well suited for multimodeling when used in
conjunction with a common synchronization model as a shared abstraction.

Lenses are presented in detail in the next section. In Sect. 3, we explore
how lenses can be adapted for model transformations and present a data model
for that. In Sect. 4, we show how lenses can be embedded into Scala and how
Scala’s type system can be used to ensure static type-safety. After discussing
related work in Sect. 5, Sect. 6 concludes the paper and presents future work.

2 Lenses

Lenses, as introduced by Pierce et al. [2], are asymmetric bidirectional trans-
formations, i.e., one of the two structures that are synchronized has to be an
abstraction of the other. This asymmetric approach is inspired by the view-
update problem known in the database community, where a database view – the
abstraction – has to be updated when the database changes and vice versa.

Given a set C of concrete structures and a set A of abstract structures, a lens
comprises three functions:

get : C → A
put : A× C → C
create : A → C

2 being part of the QVT standard (http://www.omg.org/spec/QVT/)

http://www.omg.org/spec/QVT/

Towards Combinators for Bidirectional Model Transformations in Scala 369

The forward transformation get derives an abstract structure from a given con-
crete structure. The backward transformation put takes an updated abstract
structure and the original concrete structure to yield an updated concrete struc-
ture. If there is no original concrete structure, the alternative backward trans-
formation create creates a concrete structure using default values instead.

Lenses specify well-behaved [2] bidirectional transformations, which means
that every lens must obey the following lens laws :

get(put(a, c)) = a (PutGet)

get(create(a)) = a (CreateGet)

put(get(c), c) = c (GetPut)

These laws formalize some behaviour one would generally expect from a bidi-
rectional transformation: The updated (or initially created) concrete structure
c fully reflects changes made in the abstract structure a (PutGet and Cre-

ateGet) and data in the concrete structure that is hidden by the abstraction
is preserved (GetPut). Now, the strength of lenses is their compositional no-
tion: A set of primitive lenses whose well-behavedness was manually proved is
provided together with a set of lens combinators for which it is proved that the
resulting composed lens is well-behaved if all of its sublenses are well-behaved.
These lenses and combinators then can be used as a vocabulary for bidirectional
transformations from which arbitrarily complex lenses can be composed without
having to prove the lens laws again. For example, a common combinator is the
sequential composition comp which takes two lenses l and k as arguments and
puts them in a row:

comp(l : lens, k : lens) : lens {
get(c) = k .get(l .get(c))
put(a, c) = l .put(k .put(a, l .get(c)), c)
create(a) = l .create(k .create(a))

}
The get direction is straightforward: first l’s get function is called and the result is
used as input for k’s get function. The put direction is slightly more complicated:
first, the original concrete input has to be abstracted by l’s get function to be
a proper input for k’s put function. Pierce et al. show that with a small set of
primitive lenses and combinators rich lens-libraries can be constructed.

3 A Data Model for Lenses for Model Transformations

In this section, we explore how lenses can be pragmatically adapted, so that they
can be used in an EMF-based context for defining bidirectional model transfor-
mations. Pragmatic in the sense, that we take the characteristic properties of
models into account and still stay as close as possible to the original semantics to
be able to reuse some of the composed tree lenses presented by Pierce et al. [2].

Therefore, we have to look on the different data models: Lenses have been
defined for transforming unordered edge-labeled trees. Taking the original lens

370 A. Wider

example [2], the two trees shown in Fig. 1 can be kept in sync by composing a
parametrized focus lens with the map lens combinator to map(focus(Phone,{URL
�→ http://}). Here, focus is parametrized to extract the phone number and –
if there is no original model – to restore the lost URL with the default value
http://.

Fig. 1. A concrete tree and a derived abstract tree being kept in sync by a lens

In contrast, a model (at runtime) is a graph of objects that conforms to a
metamodel. Those objects are instances of classes in the metamodel. Further-
more, a metamodel can contain constraints that restrict the set of valid models.
An object is a triple of a unique identity by which it can be referenced, a state,
and the implementing class defining valid operations on that object. The state
of an object is defined by the values of a fixed number of fields. In a Java-based
context, fields have a unique name and a static type. Fields containing multiple
values can be expressed as a homogeneously typed collection, e.g., an indexed
list or a key-value map. Thus, two models that are similar to the tree structures
in Fig. 1 can be implemented in EMF as shown in the UML object diagram in
Fig. 2.

Fig. 2. A UML object diagram of an EMF implementation of the tree example in Fig. 1

Obviously, a fundamental difference is the fact that models in general are
graphs. But if we look at MDE frameworks like EMF, it is characteristic that
a spanning containment tree is enforced, i.e., models must have an explicitly
marked root-object and objects can have at most one container. This constraint
has been shown to be very useful for MDE tool implementations. If we adopt
this constraint, we can describe a model as a tree of terms that have a type-
annotation, a unique identity, and either a fixed number of subterms (the fields)

Towards Combinators for Bidirectional Model Transformations in Scala 371

or an arbitrary number of subterms of the same type (the contents of a collec-
tion). In the former case – we call it a Constructor Term (CtorTerm) – its arity
and the order of its subterms is determined by its classtype, whereas in the latter
case (CollectionTerm) it has an arbitrary arity. Terms that have no subterms
either hold a single value-literal (ValueTerm) or the id of another term, thus,
representing a non-containment reference (RefTerm). Finally, it is often helpful,
to be able to express a tuple of terms (TupleTerm), that does not correspond
to a classtype, e.g., for representing the key-value pairs in a map. The following
grammar defines a notation for describing models in that way; type-annotations
are surrounded by square brackets and, for now, we assume a unique identity to
be implicitly carried by every term.

term ::= CtorT erm[classtype](term1, ..., termn)
| CollectionTerm[collectiontype](term1, ..., termn)
| V alueT erm[valuetype](value)
| RefTerm[classtype](idref)
| TupleT erm(term1, ..., termn)

This term notation has similarities with the ATerm format [3] and combines
it with the data model of EMF. Fig. 3 shows the models from Fig. 2 being
represented in our term notation.

Fig. 3. The models from Fig. 2 represented in our type annotated term notation

Comparing this data model with the one of tree lenses, type-annotations and
(implicit) object-ids were added and order of subterms now matters. This way,
edge-labels are replaced by indices, but together with the type-annotation indices
can be mapped to field names. Furthermore, we defined different types of terms,
which, together with the type annotations, will later help us to express type
constraints on the data that a lens can handle. On the one hand this data model
allows us to implement most of the original tree lenses with similar semantics
for model transformations and on the other hand allows for defining further
lenses that are needed for applications in MDE, namely, lenses that handle non-
containment references and make use of objects’ identities.

372 A. Wider

4 Embedding Lenses in Scala

When composing lenses, it is desirable to have tool support that ensures that
a composed lens will produce models that conform to the target metamodel
and to the source metamodel, respectively. Therefore, we embed lenses into the
Scala programming language and show how Scala’s type system allows for static
structural analysis and for expressing type constraints of specific lenses. This
way, the corresponding error highlighting, syntax checks and code completion
features can be provided by any Scala IDE plug-in and no further tooling is
needed. Because of Scala’s interoperability with Java, lenses implemented in
Scala can directly process the Java-instances that represent an EMF model at
runtime.

Statically Typed Lenses. In a first naive approach, the abstract type of a
lens that synchronizes between concrete terms of type C and abstract terms of
type A can be implemented as shown in the following code listing:

abstract class Lens[C <: Term, A <: Term] {

def get(c: C): A

def put(a: A, c: C): C

def create(a: A): C }

Both types C and A have to inherit (<:) from Term which is the root of the
term type hierarchy presented in Sect. 3. Based on this lens type, we can define
simple lenses and lens combinators like the sequential composition Comp (see
Sect. 2) and we are able to express Comp’s type constraint that the abstract
term of lens l has to be of the same type (CA) as the concrete term of lens k :

class Comp[C,CA,A](l: Lens[C,CA], k: Lens[CA,A]) extends Lens[C,A] {

def get(c: C): A = k.get(l.get(c))

def put(a: A, c: C): C = l.put(k.put(a, l.get(c)), c)

def create(a: A): C = l.create(k.create(a)) }

Let the domain classes and the concrete model from the example in Sect. 3
be implemented like this (for brevity, we use Scala’s case class syntax which
allows for omitting the new keyword – we also could have defined the model
using Java/EMF):

case class AddressBook(entries: Map[String, ContactInfo])

case class ContactInfo(phone: Int, url: String)

case class PhoneBook(entries: Map[String, Int])

val ab = AddressBook(Map("Pat" -> ContactInfo(3334444,"http://pat.com"),

"Chris" ->

ContactInfo(8889999,"http://chris.net"))

Now, the goal is to be able to parameterize and compose different pre-defined
lenses (here, Focus and Map) and use the resulting composed lens to transform
the model as shown in the following statically typed Scala code:

Towards Combinators for Bidirectional Model Transformations in Scala 373

val ab2pb = Map(Focus(...)) // composing and parameterizing the lens

val pb: PhoneBook = ab2pb.get(ab) // derive abstract model as phonebook

pb.entries("Pat") = 3334321 // modify the contents of the phonebook

val abnew: AddressBook = ab2pb.put(pb, ab) // put the changes back

Converting Models to Typed Terms. In order to be able to implement such
pre-defined lenses independently from the concrete domain classes, i.e., as lenses
that work on term types, but on the other hand be able to use these lenses
directly on domain objects as shown before, models have to be converted to
terms. We use Scala’s implicit conversions for transparently converting models
to terms and vice versa. We want to preserve static type-safety throughout the
whole transformation process, therefore, we have to keep track of the types of all
of a term’s subterms. This typing cannot be achieved only by annotating terms
with a corresponding class type, because in the transformation process interme-
diate term structures can emerge that do not correspond to a class that is defined
in the source metamodel or in the target metamodel. As Scala’s type system (and
other common type systems) only provide either a heterogeneously typed tuple
construct with a fixed arity (e.g., Tuple3[A,B,C]) or a homogeneously typed
collection (e.g., List[A]) we use heterogeneously typed lists (HLists) as intro-
duced by Kiselyov et al. [4] as the underlying data structure. HLists are based
on typed Cons-cells and can be implemented and used in Scala like this:

abstract class HList // base type with the following two subtypes:

case class HCons[H, T <: HList](head: H, tail: T) extends HList

case class HNil extends HList // type to express the end of a list

val hl: HCons[String, HCons[Int, HNil]] = HCons("str", HCons(42, HNil))

Some Scala implementations of HList – e.g., J. Nordenberg’s [5] – de-
fine typelist types (TList) correspondingly and define the type alias ::[H,T]

for TCons[H,T]. Thus, using a TList as the type parameter of HList allows
for concisely defining a list that contains objects of type A, B and C as
HList[A:: B :: C :: TNil](a,b,c). A term type like CtorTerm that can have
subterms of different types wraps an HList and has two type parameters: the
corresponding class type C and TL, the typelist of its inner HList. Domain
objects can now be converted back and forth implicitly. Therefore, pairs of con-
versions have to be provided for every class whose objects can be part of a model
but can be generated from the corresponding metamodels.

class CtorTerm[C, TL <: TList](subterms: HList[TL])

// implicit conversions between ContactInfo and CtorTerm:

implicit def CI2Term(ci: ContactInfo):

CtorTerm[ContactInfo, ValueTerm[Int] :: ValueTerm[String] :: TNil] = ..

implicit def Term2CI(t: CtorTerm[ContactInfo, ...]): ContactInfo = ...

374 A. Wider

Type-Parameterized Lenses. For a parameterized lens like focus, we need
some type-level programming: Scala provides an alternative concept for type
parameters, called abstract type members (accessible as Type#TypeMember). Like
other abstract class members, abstract type members can be implemented by
subclasses. As type members can have type parameters themselves, this can
be used to realize type functions that are evaluated at compile-time. Together
with recursively defined type-level number literals (Nats), this allows for defining
type-safe methods of HList, e.g., a type-safe indexed accessor (nth):

abstract class Nat // a type representing natural numbers

class Succ[P <: Nat](...) extends Nat // recursively defined numbers

class _0 extends Nat // a type for expressing the bottom type

type _1 = Succ[_0] //type aliases for number literals; _2, _3, et cetera

abstract class TList{ type Nth[N <: Nat] } //TList’s abstract type member

abstract class HList[TL <: TList] {

def nth[N <: Nat](n: N): TL#Nth[N] // type-safe indexed accessor

With this framework of implicit conversions, term types and type-safe opera-
tions on HLists, we can define some parameterized lenses. In the following code
listing, the focus lens is parameterized with the 0 number literal to extract the
phone number (0th member) of a ContactInfo object. The third parameter, a
default object of type C, is only needed for the create function. As can be seen,
the type parameters of Focus can be inferred by the compiler.

class Focus[C, TL <: TList, N <: Nat]

(c: Class[C], n: N, dflt: C) extends Lens[CtorTerm[C,TL],TL#Nth[N]]{..}

// a parameterized instance of Focus to extract the phone number:

val focus = Focus(classOf[ContactInfo], _0, ContactInfo(42,"http://"))

// type inferred to: Lens[CtorTerm[ContactInfo,TCons[..]],ValueTerm[Int]]

val ciPat: ContactInfo = ab.entries("Pat") //here, the concrete structure

val phonePat: Int = focus.get(ciPat) // retrieving the abstract structure

val ciPatNew: ContactInfo = focus.put(3334321,ciPat) // put changes back

Generic Lenses. For some lenses the approach presented so far works well,
but for every type that is to be transformed, a parameterized lens has to be
instantiated. If, for instance, a lens is to be applied to one subterm and another
lens is to be applied to all other subterms, different instances of the latter have to
be provided for every type of subterm, which is not feasible. This applies already
to very simple lenses like the identity lens Id. Using a common supertype (e.g., Id
extends Lens[Term,Term]) does not help, because this way type information
gets lost.

A more generic abstract lens type is needed, which we call MetaLens. The
main difference is that the lens functions now have a type parameter themselve
which is to be inferred from the passed function parameters. This way, the type
C of the concrete term is not determined until – at compile-time – a lens’ function

Towards Combinators for Bidirectional Model Transformations in Scala 375

is called. The type A of the abstract term is then determined by the type member
A[C] which serves as a type function to express A in terms of C. Finally, a second
abstract type member Constraint is provided to express constraints on C.

abstract class MetaLens {

type Constraint <: Term // type member for defining constraints on C

type A[C <: Constraint] <: Term // type function to derive A from C

def get[C <: Constraint](c: C): A[C] // C is inferred and determines A

def put[C <: Constraint](a: A[C], c: C): C // same with put

def create[C <: Constraint](a: A[C]): C // inference via result type

}

The abstract Term type provides some of its properties as type members,
e.g., its typelist TL and its concrete TermType. Therefore it is possible to de-
fine a lens that, for instance, only works on constructor terms by specifying
type Constraint = Term{ type TermType = CtorTerm[_,_] }.

An example for a lens implementing this generic lens type is a generic version
of the focus lens that does not have to be parametrized with a concrete type C:

class GenericFocus[N <: Nat] extends MetaLens {

type Constraint = Term // no special constraint here

type A[C <: Constraint] = C#TL#Nth[N] // implementing the type function

def get[C <: Constraint](c: C): A[C] = c.subterms.nth[N]

... }

Ultimately, this gives us a rich framework for defining generic type-safe lenses
and for expressing their type constraints. Still, these generic lenses can be used
as concise as the lenses shown before because of Scala’s rich type inference mech-
anisms. We implemented several of the original lenses with this generic lens type
and we are confident that it serves as solid basis for a lens-library for MDE
applications.

5 Related Work

Our approach to embed a term-rewriting- and combinator-based language into
Scala was inspired by the work of Sloane, who embedded the term-rewriting lan-
guage Stratego into Scala as part of the kiama project [6]. However, in kiama,
Scala’s type system is not leveraged to that extent as in our approach and terms
are not typed. Admittedly, as Stratego is all about generic traversal, here, achiev-
ing static type-safety is much more involved. By embedding lenses into Scala, our
approach to bidirectional model transformations is lightweight in the sense that
it is easy to integrate with existing projects and tools. Furthermore, it is flexible
in the sense that developers, who do not immediately see a way to solve their
task using a special transformation language, can use Scala as a general-purpose
language and can later gradually migrate to a bidirectional implementation in
order to reduce the long-term maintenance overhead of unidirectional transfor-
mations.

376 A. Wider

Apart from symmetric or mainly bijective approaches like Triple Graph Gram-
mars and QVT, respectively, other approaches that apply non-bijective asym-
metric bidirectional transformations to heterogeneous model synchronization
were presented by Xiong et al. [7] and Hidaka et al. [8]. These approaches are less
lightweight but – in contrast to our term-based approach – are graph-based and,
hence, are in general less limited regarding changes that affect non-containment
references. In contrast to lenses’ state-based nature, the approach of Xiong is
update-based. This prevents seamless integration with existing technologies be-
cause updates have to be marked explicitly which results in a dirty metamodel.
However, Diskin et al. argue that state-based lenses cannot decide whether an ob-
ject was replaced by another or if its state was changed and, thus, show semantic
issues with applying lenses to model transformations. Therefore, they introduce
delta-based lenses that separate update-alignment from update-propagation [9].
This way, lenses can be used to synchronize graph-based models as long as a cor-
rect update-alignment is provided. Hidaka et al. combine concepts from lenses
with the graph query language UnQL and presented promising results. However,
compared to our embedding approach, their solution is not as tool-independent
and easy to integrate, yet.

6 Conclusions and Future Work

We presented a lightweight approach to bidirectional model transformations by
embedding lenses into Scala and showed how this allows for using them – with
certain restrictions – in an MDE context. Furthermore, we showed that type-
level programming techniques together with Scala’s implicit conversions can be
leveraged to ensure static type-safety. Now, our first goal is to provide most of
the original lenses [2] with similar semantics but with static typing in Scala.
However, to be applicable in MDE, the original framework of tree lenses has to
be extended with lenses that handle non-containment references and account for
objects’ identities. Although we are confident, that some of those lenses can be
defined using the original lens semantics, we plan to investigate if our approach
can also be applied to delta-based lenses and how this affects integration with
existing MDE technologies.

Beyond that, an issue with our current implementation is the missing support
for generic traversal. Therefore, we explore how generic programming techniques
from Haskell can improve our approach. Oliveira and Gibbons showed how some
of these techniques can be implemented in Scala [10].

Acknowledgements We like to thank Terje Gjøsæter, Siamak Haschemi, Frank
Kühnlenz, Martin Schmidt, Guido Wachsmuth, and the anonymous reviewers for
comments on a preliminary version of this paper. This work is supported by the
Deutsche Forschungsgemeinschaft, Graduiertenkolleg METRIK (GRK 1324).

References

1. Stevens, P.: Bidirectional Model Transformations in qvt: Semantic Issues and Open
Questions. Software and Systems Modeling 9(1), 7–20 (2010)

Towards Combinators for Bidirectional Model Transformations in Scala 377

2. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combina-
tors for Bi-Directional Tree Transformations: A Linguistic Approach to the View
Update Problem. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2005, pp. 233–246. ACM
(2005)

3. van den Brand, M., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient Annotated
Terms. Software – Practice and Experience 30(3), 259–291 (2000)

4. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly Typed Heterogeneous Collections.
In: Proceedings of the ACM SIGPLAN Workshop on Haskell, pp. 96–107. ACM
(2004)

5. Nordenberg, J.: Type Lists and Heterogeneously Typed Arrays (2009),
http://jnordenberg.blogspot.com/2009/09/

type-lists-and-heterogeneously-typed.html

6. Sloane, A.M.: Experiences with Domain-Specific Language Embedding in Scala.
In: Proceedings of 2nd Int’l Workshop on Domain-Specific Program Development
(2008)

7. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with
Bidirectional Model Transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 213–228. Springer, Heidelberg (2009)

8. Hidaka, S., Hu, Z., Kato, H., Nakano, K.: A Compositional Approach to Bidirec-
tional Model Transformation. In: ICSE Companion, pp. 235–238 (2009)

9. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10,
6:1–6:25 (2011)

10. Oliveira, B.C.D.S., Gibbons, J.: Scala for Generic Programmers: Comparing
Haskell and Scala Support for Generic Programming. J. Funct. Program. 20, 303–
352

http://jnordenberg.blogspot.com/2009/09/type-lists-and-heterogeneously-typed.html
http://jnordenberg.blogspot.com/2009/09/type-lists-and-heterogeneously-typed.html

Typed First-Class Communication Channels and

Mobility for Concurrent Scripting Languages

Pawe�l T. Wojciechowski

Poznań University of Technology, Poland
Pawel.T.Wojciechowski@cs.put.poznan.pl

Abstract. In the 1990s, there was considerable interest in mobile com-
putation: systems in which running computations (or mobile agents)
could be moved from one machine to another. Much of this work was
in terms of high-level programming languages and mobile process cal-
culi. An example is Nomadic Pict—a prototype high-level programming
language in which to express and verify overlay networks, for reliable
communication between mobile agents. One can ask whether the lan-
guage abstractions could be useful for scripting programming in modern
distributed deployment platforms, such as many-core processors, grids,
web servers and datacentres. In this paper, we demonstrate selected fea-
tures of Nomadic Pict, and show the use of typed channels and agent
mobility for programming in the grid. We demonstrate example design
patterns that can be used for implementing safe message passing, test &
send, system bootstrapping, and relocatable computation.

1 Introduction

In the 1990s, there was considerable interest in mobile computation: systems
in which running computations could be moved from one machine to another.
Much of this work was in terms of high-level programming languages and mo-
bile process calculi, such as the π-calculus [11] and Mobile Ambients [5] (see
e.g. [14,10,8,12,19,17] among others). Process calculi (also known as process al-
gebras) were originally conceived for the formal study of concurrent and mobile
communication systems. They provide a rigorous framework where complex sys-
tems can be accurately analyzed, including reasoning techniques to verify their
essential properties. In parallel, various high-level programming languages have
been designed based on the process calculi. Unfortunately a lot of this work still
remains theoretical, with only a few language implementations available. Now,
relocatable computation is a pervasive reality, though at the level of virtual
machines rather than high-level languages. One can ask whether the semantic
theory and language abstractions developed in these frameworks could be ap-
plied (or adapted) to scripting languages designed for distributed deployment
platforms such as many-core processors, grids, web servers and datacentres?

One of the goals of scripting languages for distributed deployment platforms
is to provide a lightweight but expressive set of programming constructs for con-
necting distributed chunks of computations (or whole applications, services, etc.)

A. Sloane and U. Aßmann (Eds.): SLE 2011, LNCS 6940, pp. 378–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Typed First-Class Communication Channels and Mobility 379

and defining control flow. In such languages, some programming errors can be
detected via type-checking, either statically or, more often, dynamically. Impor-
tant modern scripting languages include Perl, Python, PHP, JavaScript, Ruby or
extensions of Lisp. Many of these languages were originally developed for special-
ized domains, e.g. web services, but are increasingly being used more broadly. A
shortcoming of most scripting languages is the lack of first-class support for con-
currency. Concurrency is nowadays ubiquitous and no longer bound to a narrow
high-performance computing domain. It is required for scalability and interact-
ing with remote services. The newest proposals of scripting languages overcome
these shortcomings. For example, Thorn [4] has support for concurrency based
on message passing between lightweight, isolated processes. Clojure [6], an ex-
tension of Lisp, takes a different approach to concurrency and supports sharing
changing state between threads in a synchronous and coordinated manner us-
ing Software Transactional Memory (STM). Typed message-passing is the sole
means of communication between processes in the Singularity OS [7]. However,
the implementation does not support cross-machine channels.

On the other hand, relocatable computation is not yet a frequently supported
feature in scripting languages. In the virtualized environments, relocatable com-
putation (or virtual machines) can make it easier to deploy applications and
reduce the impact of partial system failures by moving applications from a mis-
behaving network node to a non-faulty node. Thus, the design of novel scripting
languages that support mobile computations could improve system robustness.
Are tasks typical of scripting programming that would best be expressed at the
level of mobile process calculi? In this paper, we describe a series of programming
examples (or patterns) that answer positively. We target the grid platform but
the patterns presented in the paper are general, and so can be applied to other
deployment platforms as well. In [2], the authors describe type-safe program-
ming mechanisms for combining and managing enterprise services, in the setting
of farms of virtual machines. It would be interesting future work to extend our
language to control VMs, using the service combinators described in [2].

In the late 1990s, we developed Nomadic Pict [18,19,17,13]1—a mobile
agent distributed programming language. The low-level language extends the
compiler and run-time system of Pict [14], a concurrent language based on the
π-calculus, to support our primitives for agent creation, migration, and location-
dependent communication. High-level languages, with particular infrastructures
for location-independent communication, can then be obtained by applying user
supplied translations into the low-level language. An experimental implemen-
tation of Nomadic Pict and further details are available from [13]. The goal
of this paper is to show how Nomadic Pict’s abstractions, such as typed first-
class communication channels and agent mobility could be used to safely express
typical tasks of a scripting language for distributed deployment platforms. We
use concrete examples of executable programs in Nomadic Pict to express: safe
message-passing communication, test & send synchronization, system bootstrap-
ping, and relocatable computation in a networked system. The examples are toy

1 Nomadic Pict and its theory is joint work with Peter Sewell and Asis Unyapoth.

380 P.T. Wojciechowski

applications that serve only to illustrate the concepts, but we hope that abstrac-
tions such as typed first-class channels and relocatable computation will pave
the way into future industrial strength scripting languages.

Some of the Nomadic Pict abstractions have been encoded in libraries of
general-purpose functional programming languages. For example, an experimen-
tal language Acute [15] has a distributed message-passing library that is an
implementation of the Nomadic Pict constructs for migration of mobile com-
putations and communication between them. Acute extends an ML-like core
language to support distributed development, deployment, and execution, al-
lowing type-safe interaction between separately built programs. Some of these
ideas were further developed and put into practice in HashCaml language [3],
an extension of the OCaml bytecode compiler with support for type-safe mar-
shalling and related naming features.

This paper is not a research paper on Nomadic Pict but a paper to accompany
a language demonstration. The readers interested in the design and implemen-
tation of our language, the Nomadic π-calculi, formal reasoning and proofs are
referred to [18].

2 Language Demonstration

2.1 Typed Channels for Safe Communication

Consider a program in which several parallel processes communicate by means of
messages. One of the frequent programming errors in message-passing programs
is that the type of values marshaled for communication does not match the type
of values expected on the receiver’s side. Below is a small program in Nomadic
Pict to illustrate this case.

new x : ^Int {- Communication channel creation - }

run (

x! 10

| x? msg= printi! msg {- Message-passing communication - }
)

The above program creates a communication channel using a keyword new; the
channel is named x, and has a type ^Int of channels carrying values of type
Int. Then, the program executes (using run) two parallel processes. The first
process outputs a message (a value 10) on channel x, and terminates. In parallel,
denoted with | (bar), the second process waits for an input on channel x. After
the message has been received, it is substituted for the formal parameter msg
and the process reduces to printi!10, which prints out 10.

If the program would be modified, so that the first process outputs a message
of a different type, e.g. a record of two integers [10 10], or the second process
expects a value of a different type than Int, then the program would not be
correct, and the Nomadic Pict compiler would generate an error. Later in the

Typed First-Class Communication Channels and Mobility 381

paper, we show programs that use typed channels for network communication. In
such programs, the same typing principle is used, allowing type-mismatch errors
to be detected at compile time. This simple typing principle could be further
extended, e.g. to support session types [9].

Processes communicate using message passing instead of shared variables,
which removes the need for locks. Channel names are first-class values, i.e. they
can be created at runtime and passed as arguments or results of function calls.
Contrary to the message-passing languages that follow the Actor model (such
as Erlang [1]), channel names can be passed along other channels in the style of
the π-calculus. For instance, in the following program a channel name x will be
communicated on another channel of type ^^Int to some other process executed
in parallel, which can use x for communication. First-class communication chan-
nels can be very useful in grid programming, e.g. to dynamically reconfigure the
logical network topology of a grid in response to some events.

new x : ^Int {- Creation of typed first-class channels - }
new y : ^^Int

run (

x! 10 | y! x | y? p= p? msg= printi! msg {- Communication - }
)

The program above creates two communication channels, named x and y, using
a keyword new. The channels are typed. The former channel has type ^Int

of channels that can only carry values of type Int, while the latter channel
has type ^^Int (understood as ^(^Int)) of channels that can carry names of
channels of the former type. In the main part of the program we execute (using
run) three parallel processes. The first and second process output their messages,
respectively on channel x and y and terminate, while the third process waits for
an input on channel y. The output and input on channel y can synchronize,
reducing the third process to an input process x?arg= printi!arg, which again
synchronizes with an output on x. Finally, the program prints out the message
received on channel x, i.e. 10.

The construct <chan>?<pattern>= is only used for one input. If we would
require the input process to be ready to accept new messages, then we should
use a replicated input construct, as in the program below.

new x : ^Int

run (

x!1 | x!2 | x!3 {- Three parallel output processes - }
| x?* arg = printi! arg {- A replicated input process (server) - }
)

In the above program, three concurrent processes output integer numbers, which
are received by another process (a server) that prints them all out. The order of
message delivery is unspecified, since the parallel processes in our program are
not synchronized. In case of remote communication, we may choose to replace
the x?* arg = ... construct by a timed input as below.

382 P.T. Wojciechowski

wait

x?* arg = printi! arg

timeout

t -> print! "Timeout!"

If no message is received on channel x after t seconds (roughly), then an excep-
tion is raised and handled in the timeout clause.

2.2 Agents and Test & Send

A distributed computation is one whose portions can be executed in different sites
(or grid nodes, or processors) interconnected via a network. In Nomadic Pict a
distributed computation consists of agents located on sites, where a site is an
instance of the Nomadic Pict runtime system. Internally, agents may consist of
many concurrent processes that can communicate using channels. The channels
are distinct, in that outputs and inputs can only interact if they are in the same
agent. This provides a limited form of dynamic binding, with the semantics of
a channel name (i.e., the set of partners that a communication on that channel
might synchronise with) dependent on the agent in which it is used.

In order to test if an agent is present on a local site, we can use a test & send
synchronization construct iflocal.

new chan : ^String

agent a =

iflocal chan! "MESSAGE"

then print! "b is on this site."

else print! "b is not here."

and b =

chan ?* msg = print! msg

The above program creates two agents a and b. Execution of the conditional
iflocal chan!"MESSAGE" by agent a checks if agent b is on agent a’s cur-
rent site. If so, then it delivers a message "MESSAGE" to channel chan inside agent
b as part of the same atomic action, and continues with the ’then’ clause. Oth-
erwise, it continues with the ’else’ clause. The iflocal construct may simplify
programming of failure detectors in the grid.

2.3 Distributed Bootstrapping

Grid computations are to be executed on a large number of machines. Therefore,
parallel portions of a distributed computation must be spawned on machines
automatically, with any communication links properly established. If the pro-
gramming environment does not offer any support of this sort, the programmer
has to implement bootstrapping of a grid system. Below we demonstrate how
this can be done in Nomadic Pict.

Typed First-Class Communication Channels and Mobility 383

Execution of migrate to n migrates the whole agent including any commu-
nication channels to a site n. After migration, the agent’s execution commences
from the point in which it has stopped before migration. Migration transparency
greatly simplifies programming, for the cost of a more complex virtual machine.

val n = ’’sirius.cs.put.pl’’:5000

new c : ^String

agent a =

(

migrate to n {- Migrate agent a to sirius and continue - }
c ?* msg = print! msg

)

and b =

<a @ n> c! "Hello!"

In the above program, two agents a and b are created. After creation the former
agent migrates to a site n, identified by a pair of an IP address and a port
number and waits for a message on channel c. In parallel, agent b outputs a
string message "Hello!" to agent a, and terminates. Agent a is expected to
be on site n. If the agent will not be there, when the message has arrived, the
message is discarded. (Alternatively, a message could be sent to a static daemon
agent that uses iflocal to deliver messages locally.)

The Nomadic Pict language also has a construct <a>c!m for location-
independent (LI) communication, which does not require the agent’s site to be
specified. An application-specific overlay network will deliver message m to agent
a irrespective of its current location. It is guaranteed that the message will be
delivered despite of any agent migrations. Different LI overlay networks can be
chosen from the package; the choice depends on the application.

2.4 Relocatable Computation

In a grid system, it is inevitable that some machines may partially fail or slow
down. Thus, the grid admins should be able to relocate processes running on
these machines to non-faulty nodes. Now, relocatable computation is a pervasive
reality, though at the level of virtual machines rather than high-level languages.
In a recent paper, we discuss the use of the Nomadic Pict calculus for verifying
overlay networks for relocatable computations [16].

Below we demonstrate the use of relocatable computation for active messages.
Let us assume that on the site ’’sirius.cs.put.pl’’:5000, an agent Smith
has been created, waiting for a message:

new ch : ^String

agent Smith =

ch?* msg= print! msg

384 P.T. Wojciechowski

On another site, a function dispatch is defined that spawns an agent messenger
for delivering message content of type X, to a recipient described using a triple
of agent, site and channel names passed as arguments. After messenger is cre-
ated, the function returns a value 0. Below the function is called, resulting in
messengermigrating to Smith’s site and delivering a message locally. The recipi-
ent’s agent/channel names can be obtained using a name server (see Section 2.7).

def dispatch (#X a:Agent s:Site c:^X msg:X) : Int =

(agent messenger =

(

migrate to s

iflocal <a> c! msg

then print! "OK, delivered."

else print! "No recipient."

)

0)

val stat = (dispatch Smith ’’sirius.cs.put.pl’’:5000 ch "Hello!")

To support different types of messages the channel c in dispatch has a polymor-
phic type (from Pict), which is defined by a type variable X. The type variable
can be specialized to any type. It our example, it is specialized to String, when
substituted in the function call by a channel ch of type ^String.

The migrating agent messenger can be an arbitrary program, e.g. a presenter
of the e-mail content. Thus, we can dynamically add some new computation
on Smith’s node, even if the original program on this node was not designed
for this. If needed, messenger could also voluntarily relocate to another server
using migrate to and continue computation there.

2.5 Types for Input/Output Modalities

In some programs, we may intend a communication channel to be used only for
inputs or only for outputs. Otherwise, a program may be incorrect. Below we
illustrate the use of the Pict type system for safe programming of input/output
modalities. This type system has been extended in Nomadic Pict for distributed
programming. Below is an example program implementing a server function,
which creates on demand (in response to the function call) a fresh channel that
can be used for communication with the server, as explained below.

def server () : !Int =

(new c : ^Int

run c? msg = printi! msg

c)

val x = (server)

run x! 10

Execution of the above function server creates a fresh communication channel c
carrying integers, and waits for a message on it. The returned channel is assigned

Typed First-Class Communication Channels and Mobility 385

to a variable x that is later used for an output (of a value 10). The type of
channels returned by the function is !Int instead of ^Int, where ! (exclamation
mark) means that the channel name has only an output capability, i.e. it cannot
be used for an input. Thus, we can guarantee that only the server process can
read on this channel. This mechanism supports confidentiality since no other
process can read from this channel.

2.6 Types for Variant Messages

It would be inconvenient to create and use a different channel for every new type
of a message. How to communicate messages of different types in the same chan-
nel, and still be able to statically check if the types of marshaled/unmarshaled
values are correct ? Below is an example program that uses a suitable mechanism,
adopted in Nomadic Pict.

new c : ^[num>Int text>String]

run c ?* msg =

switch msg of

(

num> v : Int -> printi! (+ v 1)

text> s : String -> print! (+$ "message: " s)

)

run c! [num> 2]

run c! [text> "foo"]

The above program creates a channel c that has a variant type of channels car-
rying either messages of type num>Int or text>String, where num and text are
labels that differentiate between the types. A message received on this channel
must be first resolved using a construct switch ... of. The construct allows
messages to be matched against patterns, followed by corresponding actions.

In the above program, two types of messages are sent on channel c: an integer
2 and a string "foo". The integer message is incremented and printed out, while
the string message is first concatenated (using a function +$) with another string,
and then printed out. The program does not compile if we would try to send on
the c channel a value of a different type.

2.7 Types for Dynamic Messages

When programs are compiled separately and should connect each other, the usual
approach is to publish names of channels/agents/sites at some name server. The
address of this server is known to all processes in the grid, so that any new agent
joining the system can get the public names and use them for communication.
For example, in the program in Section 2.4, a process calling function dispatch

could obtain the channel and agent names of the message recipient from a name
server, using library functions publish and subscribe.

386 P.T. Wojciechowski

In untyped languages, the publish/subscribe code is prone to errors that can
be difficult to find. In typed languages, type-checking of dynamic values is usually
done entirely at runtime. However, the risk of producing erroneous code exists
if the language does not force the programmer to implement exceptions.

Below is a code fragment of a new joining process. The program uses dynamic
types, i.e. types that are not erasured by the compiler, but which accompany
values at runtime. Dynamic types are erasured in Nomadic Pict explicitly, using
a construct typecase, which requires exception code to be specified.

new c : ^Dyn

run c?* v =

typecase v of

[a:Agent s:Site d: ^String] -> <a@s> d! "Hello world!"

stat : Int -> printi! stat

else

print! "Type not recognized!"

run c!(dynamic 3)

The above program creates a name server channel c that can be used for carrying
messages of any type at the same time. Then, we implement a client process that
expects only two types of messages to be received from channel c: either a triple
of agent, site and channel names to be used for communication with the agent, or
some integer value. If a message received does not match these types, exception
code is executed (here, an error message is printed).

Contrary to statically checked variant types, described in Section 2.6, type-
checking is done dynamically, when the values are resolved by typecase. A
dynamic value can be created using construct dynamic, which marshals a value
with a runtime representation of its type.

3 Conclusions

In the paper, we gave some taste of distributed programming in Nomadic Pict–a
prototype, strongly-typed language based on the π-calculus. As other languages
based on process calculi, it offers abstractions that are small and easy to learn.
In the paper, we demonstrated the use of statically and dynamically typed first-
class channels for safe message-passing communication. Notably, Nomadic Pict
also supports relocatable computation—a rare feature that greatly simplifies
system bootstrapping and enables active messages. We think that this sort of
programming abstractions are a tool that would be useful for future concurrent
scripting languages in modern deployment platforms, such as many-core pro-
cessors, grids, web servers and datacentres. In the paper, we demonstrated the
main features of Nomadic Pict, focusing on grid programming. This prototype
serves as a proof-of-concept and lacks many features that are necessary for prac-
tical applications, such as integration with other languages and environments. It
would be interesting future work to develop a concurrent scripting language for
managing relocatable virtual machines, using the abstractions of Nomadic Pict.

Typed First-Class Communication Channels and Mobility 387

References

1. Armstrong, J.L., Virding, R.: Erlang – an experimental telephony switching lan-
guage. In: Proc. XIII International Switching Symposium (May-June 1991)

2. Bhargavan, K., Gordon, A.D., Narasamdya, I.: Service Combinators for Farming
Virtual Machines. In: Wang, A.H., Zavattaro, G. (eds.) COORDINATION 2008.
LNCS, vol. 5052, pp. 33–49. Springer, Heidelberg (2008)

3. Billings, J., Sewell, P., Shinwell, M., Strnǐsa, R.: Type-safe distributed program-
ming for OCaml. In: Proc. 2006 ACM SIGPLAN Workshop on ML (2006)

4. Bloom, B., Nystrom, N., Östlund, J., Richards, G., Strnǐsa, R., Vitek, J., Wrigstad,
T.: Thorn–robust, concurrent, extensible scripting on the JVM. In: Proc. OOPSLA
2009 (October 2009)

5. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science
(TCS) 240(1), 177–213 (2000)

6. Clojure. Distribution files and documentation, http://clojure.org/
7. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R., Levi,

S.: Language support for fast and reliable message-based communication in Singu-
larity OS. In: Proc. EuroSys 2006 (April 2006)

8. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., Rémy, D.: A Calculus of Mo-
bile Agents. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 406–421. Springer, Heidelberg (1996)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Lopes, L., Figueira, Á., Silva, F., Vasconcelos, V.T.: A concurrent programming
environment with support for distributed computations and code mobility. In: Proc.
CLUSTER 2000 (November 2000)

11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and II.
Information and Computation 100(1), 1–77 (1992)

12. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents
interaction and mobility. IEEE TSE 24(5), 315–330 (1998)

13. Nomadic Pict Language, http://www.cs.put.poznan.pl/pawelw/npict
14. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.

In: Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press
(2000)

15. Sewell, P., Leifer, J.J., Wansbrough, K., Nardelli, F.Z., Allen-Williams, M.,
Habouzit, P., Vafeiadis, V.: Acute: High-level programming language design for
distributed computation. In: Proc. ICFP 2005 (September 2005)

16. Sewell, P., Wojciechowski, P.T.: Verifying overlay networks for relocatable compu-
tations (or: Nomadic Pict, relocated). In: Proc. Workshop on the Rise and Rise of
the Declarative Datacentre, Microsoft MSR-TR-2008-61 (May 2008)

17. Sewell, P., Wojciechowski, P.T., Pierce, B.C.: Location-Independent Communica-
tion for Mobile Agents: A Two-Level Architecture. In: Bal, H.E., Cardelli, L.,
Belkhouche, B. (eds.) ICCL-WS 1998. LNCS, vol. 1686, pp. 1–31. Springer, Hei-
delberg (1999)

18. Sewell, P., Wojciechowski, P.T., Unyapoth, A.: Nomadic Pict: Programming lan-
guages, communication infrastructure overlays, and semantics for mobile compu-
tation. ACM TOPLAS 32(4), 1–63 (2010)

19. Wojciechowski, P.T., Sewell, P.: Nomadic Pict: Language and infrastructure design
for mobile agents. IEEE Concurrency 8(2), 42–52 (2000)

http://clojure.org/
http://www.cs.put.poznan.pl/pawelw/npict

Author Index

Andova, Suzana 223

Basten, Hendrikus J.S. 283, 303
Brambilla, Marco 180

Cabot, Jordi 60, 180
Czarnecki, Krzysztof 222

de Jonge, Maartje 40

Erwig, Martin 243

Fischer, Bernd 324

Giese, Holger 19

Hebig, Regina 19
Hedin, Görel 354
Hills, Mark 344

Joncheere, Niels 77
Jouault, Frédéric 180

Kaminski, Ted 263
Kling, Wolfgang 180
Klint, Paul 1, 303, 344
Kuno, Yasushi 119

Lämmel, Ralf 324
Lisser, Bert 1

Nagy, Istvan 223
Neumann, Stefan 19
Nilsson, Anders 354
Nishimori, Taketoshi 119

Oberle, Daniel 160

Paulheim, Heiko 160
Plendl, Roland 160
Probst, Florian 160

Renaux, Emmanuel 139
Reniers, Michel A. 223

Seibel, Andreas 19
Stappers, Frank P.M. 223
Stroustrup, Bjarne 97
Sutton, Andrew 97

Tairas, Robert 60
Tombelle, Christophe 139

van der Ploeg, Atze 1
Van Der Straeten, Ragnhild 77
Vanwormhoudt, Gilles 139
Van Wyk, Eric 263
Vermolen, Sander D. 201
Vinju, Jurgen J. 283, 303, 344
Visser, Eelco 40, 201

Wachsmuth, Guido 201
Wagelaar, Dennis 180
Walkingshaw, Eric 243
Weber, Sven 223
Wider, Arif 367
Wojciechowski, Pawe�l T. 378

Zaytsev, Vadim 324

	Title
	Preface
	Organization
	Table of Contents
	Towards a One-Stop-Shop for Analysis, Transformation and Visualization of Software
	Introduction
	Requirements, Design and Architecture
	Requirements
	Architecture
	Figures and Properties
	Figure Composition and Layout
	Scales of Measurement
	Figure Interaction

	Examples
	Bar Chart of File Name Extensions
	Search and Browse Files

	Conclusions
	References

	A Dedicated Language for Context Composition and Execution of True Black-Box Model Transformations
	Introduction
	Case Study
	Specification and Instantiation of Modules
	Specification of Modules
	Specification of Context Compositions
	Instantiation of Modules
	Specification of Data-Flow Compositions

	Execution of True Black-Box Model Transformations
	Data-Flow Execution Algorithm
	Context Execution Algorithm
	Instantiation Algorithm
	Technology Adapters

	Related Work
	Data-Flow Composition
	Context Composition

	Conclusions and Future Work
	References

	An Algorithm for Layout Preservation in Refactoring Transformations
	Introduction
	Layout Preservation in Refactoring
	Example
	Problem Analysis

	Origin Tracking
	Layout Preservation for Transformed AST
	Formalization
	Algorithm
	Correctness
	Layout Preservation

	Whitespace Adjustment and Comment Migration
	Comment Heuristics

	Evaluation
	Related Work
	AST Approaches
	HaRe
	Eclipse
	Text Patching
	Lenses

	Conclusion
	References

	Cloning in DSLs: Experiments with OCL
	Introduction
	Related Work
	Application Scenarios
	In-place Maintenance
	Pattern Detection and Suggestion

	Clone Detection Process
	Clone Detection Process in OCL
	Obtaining a Model or Models of OCL Expressions
	Clone Detection through Model Transformation
	OCL Expressions Clones Information

	Evaluation Results
	Summary of Evaluation Results

	Threats to Validity
	Conclusion and Future Work
	References

	Uniform Modularization of Workflow Concerns Using Unify
	Introduction
	Motivation
	Developing a Workflow Using Unify
	The Unify Base Language
	The Unify Connector Mechanism
	Discussion
	Interaction with the Control Flow Perspective
	Interaction with the Data Perspective
	Semantics

	Implementation
	Related Work
	Conclusions and Future Work
	References

	Design of Concept Libraries for C++
	Introduction
	Related Work
	Requirements for Concept Design
	Concepts = Constraints + Axioms
	Concepts for the STL
	Regular Types
	Type Abstractions
	Function Abstractions
	Iterators

	Constraints
	Implementation and Validation
	Conclusions
	References

	Join Token-Based Event Handling: A Comprehensive Framework for Game Programming
	Introduction
	Join Token: an Event Handling Framework Suitable for Games
	The Mogemoge Language
	Basic Features
	Join Token Feature
	Implementation

	Evaluation of the Join Token Framework
	``Baloon'' Game
	``Descender'' Game
	Comparison with Ruby

	Related Works
	Discussion
	Conclusion
	References

	Reusing Pattern Solutions in Modeling: A Generic Approach Based on a Role Language
	Introduction
	Motivating Examples
	Existence of Design Patterns in Any Design Language
	Requirements for a Generic Pattern Specification Language
	Requirements for Pattern Application

	Role Modeling for Patterns
	Our Approach of Design Patterns
	The Gipsie Language
	Role Model Validation

	Pattern Application with Role Modeling
	Our Approach of Pattern Application
	The Binding Metamodel
	The Application Process
	Capacities in the Application Process

	Tool Support
	Related Works
	Conclusion
	References

	An Architecture for Information Exchange Based on Reference Models
	Introduction
	Typical Deviations
	Related Work
	Reference Architecture
	Case Study
	Mapping Specification
	Template-Based Filtering for Data Exchange
	Non-intrusive Implementation

	Scalability and Performance Evaluation
	Conclusion and Future Work
	References

	MoScript: A DSL for Querying and Manipulating Model Repositories
	Introduction
	Motivation
	The MoScript Architecture
	Architecture Components
	Architecture Information Flow

	The MoScript Language
	MoScript Abstract and Concrete Syntax
	Operations without Side Effects
	Statements with Side Effects

	Putting All Together
	Change Propagation
	Inspecting and Combining Models Information

	Implementation
	Related Work
	Conclusions and Future Work
	References

	Reconstructing Complex Metamodel Evolution
	Introduction
	Modeling Metamodel Evolution
	Reconstructing Primitive Evolution Traces
	Reconstructing Complex Evolution Traces
	Reconstructing Masked Operator Instances
	Related Work
	Discussion
	References

	Designing Variability Modeling Languages
	Formalizing a Domain Specific Language Using SOS: An Industrial Case Study
	Introduction
	Related Work
	Formalizing Domain Notions
	Running Example
	Concrete Syntax Projection
	Formal Syntax Validation

	Formalizing Dynamic Semantics
	Semantic Preliminaries
	Abstract Syntax Projection
	Auxiliary Operational Semantics
	Formal Semantic Validation

	Evaluation
	Conclusions and Future Work
	References

	Semantics First!Rethinking the Language Design Process
	Introduction
	Haskell as a Language Design DSL
	Semantics-Driven Language Development
	Compositional Language Extensions
	Non-compositional Language Extensions

	Language Schemas and Families
	Language Operators
	Semantics Language Operators
	Syntax Language Operators
	Organizational Language Operators

	Semantics-Driven Language Design in Action
	Probabilistic Functional Programming
	Explaining Probabilistic Reasoning
	Choice Calculus

	Related Work
	Conclusions
	References

	Integrating Attribute Grammar and Functional Programming Language Features
	Introduction
	The AG Language
	The AG Type System
	The Type Inference Rules
	Polymorphic Attribute Access Problem
	Putting Types to Work

	Pattern Matching
	Adding Pattern Matching to AG
	Typing Pattern Matching Expressions
	Other Concerns

	Related Work
	Future Work
	Conclusion
	References

	Parse Forest Diagnostics with Dr. Ambiguity
	Introduction
	Solutions to Ambiguity
	Causes of Ambiguity
	Classes of Parse Tree Differences

	Diagnosing Ambiguity
	Architecture
	Algorithms
	Discussion on Correctness

	Demonstration
	Evaluation Method
	Results
	Discussion

	Conclusions
	References

	Ambiguity Detection: Scaling to Scannerless
	Introduction
	Background
	Contributions and Roadmap

	The Ambiguity Detection Framework
	The Framework
	Notational Preliminaries

	Character-Level Grammars
	Example
	Definition

	Baseline Algorithm
	Step 1: NFA Construction
	Step 2: Construct and Traverse Pair Graph
	Steps 3–4: NFA Filtering and Harmless Rules Identification
	Steps 5–7: NFA Reconstruction and Sentence Generation

	Ambiguity Detection for Character-Level Grammars
	Application of Baseline Algorithm on Example Grammar
	Changes to the Baseline Algorithm
	NFA Reconstruction

	Grammar Unfolding
	Experimental Results
	Experiment Setup
	Results and Analysis
	Validation

	Conclusion
	References

	Comparison of Context-Free Grammars Based on Parsing Generated Test Data
	Introduction
	Methodology
	Test Data Generation
	Grammars and Trees
	Coverage Criteria
	Generation Primitives
	Generation Algorithms

	Grammar Nonequivalence Study: Java 5
	Grammar Sources
	Grammar Extraction
	Test Set Generation
	Results

	Matching Algorithm
	Nonterminal Matching Study: Course Work
	Related Work
	Conclusion
	References

	RLSRunner: Linking Rascal with K for Program Analysis
	Introduction
	Supporting K Program Analysis in Rascal
	Rascal Support in K
	Linking Rascal with the SILF Analysis Framework
	Related Work
	Summary and Future Work
	References

	Metacompiling OWL Ontologies
	Introduction
	JastOwl, a Meta-compiler for OWL
	Generation Details and Limitations

	SIARAS Skillserver Example
	Ontology Structure
	Handling Knowledge

	Evaluation
	Related Work
	Conclusions
	References

	Towards Combinators for Bidirectional Model Transformations in Scala
	Introduction
	Lenses
	A Data Model for Lenses for Model Transformations
	Embedding Lenses in Scala
	Related Work
	Conclusions and Future Work
	References

	Typed First-Class Communication Channels and Mobility for Concurrent Scripting Languages
	Introduction
	Language Demonstration
	Typed Channels for Safe Communication
	Agents and Test & Send
	Distributed Bootstrapping
	Relocatable Computation
	Types for Input/Output Modalities
	Types for Variant Messages
	Types for Dynamic Messages

	Conclusions
	References

	Author Index

