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Abstract For the 2-dimensional Navier–Stokes System written for the stream
functions we construct a set of initial data for which initial critical points bifurcate
into three critical points. This can be interpreted as the birth of new viscous vortices
from a single one. In another class of solutions vortices merge, i.e. the number of
critical points decrease.

1 Introduction

We are very glad to dedicate this paper to Professor S. Smale. The works of Smale
in the theory of dynamical systems played a great role in the development of this
important field and led to the appearance of new concepts and methods. We wish
Professor Smale a very good health and many new important results.

The usual bifurcation theory deals with one-parameter families of smooth maps
or vector fields. In this situation fixed points or periodic orbits become functions
of this parameter. Bifurcations appear when their linearized spectrum changes its
structure. The main role in the theory is played by the so-called versal deformations,
i.e. by special families such that arbitrary families can be represented as some
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projections of versal deformations (see, for example [1]). In this approach the
positions of bifurcating orbits and their dependence on the parameter are known.

In this paper we consider a dynamical system generated by the 2-dimensional
Navier–Stokes System and deformations are produced by solutions of this system.
Certainly, this is a very special case of a much more general problem in which
Navier–Stokes System is replaced by linear or non-linear PDE for which strong
existence and uniqueness results are known. The next step is to choose fixed points
or periodic orbits and sometimes this can be a difficult problem. In our case this is
done under the assumption of an additional symmetry of the problem.

We write Navier–Stokes System for the stream function  D  . Qx1; Qx2; t/ on the
2-dimensional square 0 � Qx1; Qx2 � �:

@ 

@t
C��1

�
@ 

@ Qx1 � @� 
@Qx2

� @ 

@ Qx2 � @� 
@ Qx1

�
D � : (1)

In (1) the viscosity is taken to be 1 and the external forcing terms are absent. The
velocity of the fluid u D .u1; u2/ is expressed from  through the relations

u1 D � @ 
@ Qx2 ; u2 D @ 

@ Qx1 (2)

which show that u is a local function of  . This is one of the advantages of  .
Moreover, the velocity u given by (2) always satisfies incompressibility condition

div.u/ D @u1
@ Qx1 C @u2

@x2
D 0:

We consider the space of functions  written as a series

 . Qx1; Qx2; t/ D
X

m2Cn2¤0
fmn sinm Qx1 sin n Qx2: (3)

The coefficients fmn are odd functions of its arguments and decay fast enough so
that all appearing series converge. In Sect. 2 we reproduce the proof of the theorem
from [4] in which we show that the space of such  is invariant under the dynamics
generated by (1).

In (1) the operator��1 has the form

��1 D �
X

m2Cn2¤0

1

m2 C n2
sinm Qx1 sin n Qx2:

The formulas (2) and (3) show that on the boundary the velocity vector u is
directed along the boundary. This situation is called the slip boundary condition.
From the physical point of view it is not so natural but it is quite satisfactory as a
mathematical model.
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Let us write down an infinite-dimensional system of ODE for the coefficients fmn

which follows from (1) and actually is equivalent to (1)

df mn

dt
� 1

m2 C n2

X
m0Cm00Dm
n0Cn00Dn

fm0n0fm00n00 � ..m00/2 C .n00/2/ � .m0n00 �m00n0/

D �.m2 C n2/fmn: (4)

Introduce the vorticity

! D � D
X
m;n

!mn sinm Qx1 sin n Qx2

which shows that !mn D �.m2 C n2/fmn. For the coefficients !mn we have even a
simpler system of ODE equivalent to (4)

d!mn

dt
C

X
m0Cm00Dm
n0Cn00Dn

!m0n0!m00n00 � m
0n00 �m00n0

.m0/2 C .n0/2

D �.m2 C n2/!mn: (5)

In [2–4], the following theorem was proven

Theorem 1 (Global wellposedness and decay). Let � > 1, A > 0 and

j!mn.0/j � A

.m2 C n2/
�
2

; (6)

for all m; n, m2 C n2 ¤ 0. Then for some absolute constantK1 > 0 and all t > 0,

j!mn.t/j � AK1

.m2 C n2/
�
2

: (7)

The proof of Theorem 1 is given in Sect. 2. In the periodic case it was given in [3]
and [4] and extended to other boundary conditions in [2]. The inequality (7) implies
that for the stream function

jfmn.t/j � AK1

.m2 C n2/
�
2 C1 ; 8m; n:

We shall take � to be so large that the decay of fmn will be sufficient for our
purposes. Actually the decay of fmn is much faster but we do not dwell on this here.
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Remark 1. Our flow (1)–(3) is closely connected with a special class of 2�-periodic
flows on the whole plane. Namely suppose Q D Q . Qx1; Qx2; t/ is a solution to the
Navier–Stokes equation with 2�-periodic boundary condition, and satisfy

Q .� Qx1; Qx2; t/ D � Q . Qx1; Qx2; t/ D Q . Qx1;� Qx2; t/; 8 Qx1; Qx2: (8)

It is not difficult to check that the special symmetry (8) is preserved under the
dynamics of the Navier–Stokes flow. Furthermore if we write

Q . Qx1; Qx2; t/ D
X
m;n

Qfmne
i.m Qx1Cn Qx2/;

then

� Qfmn D Qf�m;n D Qfm;�n; 8m; n:

Therefore from a simple computation

Q . Qx1; Qx2; t/ D �
X
m;n

Qfmn sinm Qx1 sin n Qx2 (9)

which corresponds exactly to (3) up to a minus sign. This shows that Q is also a
solution to our problem (1)–(3).

We shall call extremal points of the stream function the points of local minima
or maxima of  . Near these points the velocity u is tangent to the level sets of  
(or Q ) which are closed curves. It is natural to call extremal points of  viscous
vortices. The main purpose of this paper is to show that these vortices can split or
merge.

Now we can formulate our main results of this paper.

Theorem 2 (Existence of bifurcations). There exists an open set A in the space
of stream functions such that the following holds true:

For each stream function  0 2 A, there is an open neighborhood U of the point
. Qx1; Qx2/ D .�

2
; �
2
/, two moments of times 0 < t1 < t2 such that the corresponding

stream function  D  . Qx1; Qx2; t/ solves (1) with initial data  0 and satisfy

1. At t D 0, .�
2
; �
2
/ is a non-degenerate minimum of  in the neighborhoodU .

2. For any 0 < t � t1,  has only one critical point in U given by . Qx1; Qx2/ D
.�
2
; �
2
/.

3. At t D t1, . Qx1; Qx2/ D .�
2
; �
2
/ is a degenerate local minimum of  in U .

4. For t1 < t � t2,  has exactly three critical points in U . The point .�
2
; �
2
/

becomes a saddle. Two other critical points are of the form .�
2

C x�; �
2

C y�/,
.�
2

� x�; �
2

� y�/ where x� ¤ 0, y� ¤ 0 and are local minima.
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Remark 2. Under our conditions the point .�
2
; �
2
/ is the extremal point of the stream

function for all time. This property plays the same role as the knowledge of fixed
points or periodic orbits in the usual theory of bifurcations.

Remark 3. The fact that the extra critical points emerge in the form .�
2

C x�;
�
2

C y�/, .�
2

� x�; �
2

� y�/ is not surprising. As we shall see later in Sect. 3, by
the inversion symmetry (18), our stream function  is invariant under the reflection
about the point .�

2
; �
2
/.

Our next result is in some sense the reversal of the process described in
Theorem 2. For a class of initial data having three critical points near the special
point .�

2
; �
2
/, we show that they merge into one critical point in finite time.

Theorem 3 (Merging of critical points). There exists an open set A in the space
of stream functions such that the following holds true:

For each stream function  0 2 A, there is an open neighborhood U of the point
. Qx1; Qx2/ D .�

2
; �
2
/, two moments of times 0 < t1 < t2 such that the corresponding

stream function  D  . Qx1; Qx2; t/ solves (1) with initial data  0 and satisfy

1. For 0 � t < t1,  has exactly three critical points in U . The point .�
2
; �
2
/ is a

saddle. Two other critical points are of the form .�
2

Cx�; �
2

Cy�/, .�
2

�x�; �
2

�
y�/ where x� ¤ 0, y� ¤ 0 and are local minima.

2. At t D t1, .�2 ;
�
2
/ is a degenerate minimum of  in the neighborhood U .

3. For any t1 < t � t2,  has only one critical point in U given by . Qx1; Qx2/ D
.�
2
; �
2
/.

This paper is organized as follows. In Sect. 2 we give the proof of Theorem 1.
In Sect. 3 we derive the equation for extremal points and formulate sufficient
conditions for bifurcations needed in Theorem 2. Section 4 is devoted to the
construction of bifurcations in the degenerate case. In Sect. 5 we prove the existence
of bifurcation for non-degenerate initial data by using a perturbation argument.
In Sect. 6 we give the construction of stream functions satisfying the needed
conditions. In Sects. 7 and 8 we describe the proof of Theorem 3 and construction
of initial conditions.

2 Proof of Theorem 1

In this section we give the proof of Theorem 1 using the trapping argument from [4].
We shall use the letter C with or without indices to denote different absolute

constants whose values may vary from line to line. The actual value of C does not
play any role in our arguments.

To simplify notations, denote Z2� D f.m; n/ 2 Z
2; m ¤ 0; n ¤ 0g and r D

.m; n/ 2 Z
2�, r 0 D .m0; n0/ 2 Z

2�, r 00 D .m00; n00/ 2 Z
2�, and also denote !r D !mn,

!r 0 D !m0n0 and so on.
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By standard enstrophy inequality, we have

k!.t/kL2
Qx1 Qx2

.Œ0;���Œ0;��/ � E0; 8 t > 0;

where E0 > 0 is the enstrophy at t D 0.
By Fourier transform, this implies

0
@X
r2Z2

�

j!r.t/j2
1
A

1
2

� C1E0;8 t > 0: (10)

Let K1 > 0 be a constant depending on A which will be taken sufficiently large.
By (10), we get

j!r.t/j � C1K1E0
jr j �2 ; 8 jr j � K

2
�

1 ; 8 t > 0:

Define the trapping set

˝.K1/ D
(
. Q!r/ W j Q!r j � C1K1E0

jr j �2 ; 8 jr j � K
2
�

1

)
: (11)

Now we show that for all t > 0 the trajectories of our system remain inside the
set ˝.K1/. Indeed at t D 0, by choosingK1 > 2A (see (6)), we get that our system
lies strictly inside ˝.K1/. Assume t1 > 0 is the first moment of time when our
system reaches the boundary @˝.K1/.1

Then for some jr�j � K
2
�

1 ,

j!r�.t1/j D C1K1E0
jr�j� :

WLOG assume

!r�.t1/ D C1K1E0
jr�j� :

The case !r�.t1/ D �C1K1E0jr�j� is similar and therefore its discussion is omitted.
We then aim to show that

@t!r� .t/
ˇ̌̌
tDt1

< 0:

1Strictly speaking, we should consider the Galerkin approximations of our system to avoid issues
connected with the infinite dimensionality of our system.
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This will guarantee that the trajectory of our system cannot exit the trapping set
˝.K1/ and will remain inside ˝.K1/.

Recall the vorticity equation

@t! C��1r?! � r! D �!: (12)

By using (12), we have

��1r?! � r! D
X

.m;n/2Z2
�

Nmn sinm Qx1 sin n Qx2;

where

jNmnj �
X

r 0Cr 00Dr

j!r 0 j
jr 0j � jr 00j � j!r 00 j: (13)

There are two cases.

Case 1. jr 0j > 1
3
jr j. Then

jr 00j
jr 0j � jr j C jr 0j

jr 0j � C:

Hence

RHS of (13) � C
X

r 0Cr 00Dr
jr 0j> 1

3 jr j

j!r 0 j � j!r 00 j

� C

0
@ X

jr 0j> 1
3 jr j

j!r 0 j2
1
A

1
2

�
 X

r 00

j!r 00 j2
! 1

2

� CK1

jr j��1 E1:

Case 2. jr 00j > 1
3
jr j and jr 0j � 1

3
jzj. Then

RHS of (12) � CK1

jr j��1
X

jr 0j� 1
3 jr j

j!r 0 j
jr 0j

� CK1

jr j��1 log jr j � E1:
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Concluding from the above cases, we get

jNr�.t1/j � CK1E1
jr�j��1 log jr�j

and hence by (12)

@t!r�.t/

ˇ̌
ˇ̌̌
tDt1

� CK1E1
jr�j��1 log jr�j � C1K1E1

jr�j��2

< 0;

ifK1 is sufficiently large (recall that by (11), jr�j � K
2
�

1 ). This finishes the trapping
argument and Theorem 1 is proved.

3 The Equation for Extremal Points

We consider a special class of flows

 . Qx1; Qx2; t/ D
X

mC n is even

fmn sin.m Qx1/ sin.n Qx2/: (14)

It is also invariant under the Navier–Stokes dynamics. If this condition is valid, then
on the vertical boundaries, for any 0� Qx2 �� , the velocity vector at the point .0; Qx2/
has the same magnitude but opposite direction to the velocity at the point .0; �� Qx2/.
In some sense they form a dipole with center at .�

2
; �
2
/. Similar statements also hold

for the horizontal boundaries.
In this paper we study bifurcations of the stream function near the point .�

2
; �
2
/.

After the change of variables,

Qx1 D �

2
C x; Qx2 D �

2
C y; (15)

we shift our coordinate system and define

�.x; y; t/ D  .
�

2
C x;

�

2
C y; t/: (16)

By (16), (14) and (9), we get

�.x; y; t/ D �
X

mC n is even

fmne
i. mCn

2 �CmxCny/

D �
X

mC n is even

fmn.�1/mCn
2 ei.mxCny/:
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Since � and fmn are both real-valued, we get

�.x; y; t/ D �
X

mC n is even

fmn.�1/mCn
2 cos.mx C ny/ (17)

D �.�x;�y; t/; (18)

i.e. � satisfies the inversion symmetry. It implies that at the point .x; y/ D .0; 0/ the
gradient of � vanishes.

Introduce a neighborhood Uı D f.x; y/ W x2 C y2 � ı2g. Later we shall choose
ı to be sufficiently small.

For sufficiently small t2 > 0 consider the time interval Œ0; t2� and write the
following expansion of � in the neighborhoodUı:

�.x; y; t/ D �.0; 0; t/C a1.t/x
2 C a2.t/y

2 C a3.t/xy

C b1.t/x
4 C b2.t/y

4 C b3.t/x
3y C b4.t/x

2y2 C b5.t/xy
3

C �.x; y; t/; (19)

where the remainder term satisfies the inequalities

�.x; y; t/ D O.x6 C y6/;

@�

@x
.x; y; t/ D O.jxj5 C jyj5/;

@�

@y
.x; y; t/ D O.jxj5 C jyj5/: (20)

In the expansion (19), terms of odd degree are not present because of the
symmetry (18).

The first equation for the critical point takes the form

@x� D 0:

By (19), we get

2a1x C a3y C 4b1x
3 C 3b3x

2y C 2b4xy
2

C b5y
3 C @�

@x
D 0: (21)

Here and later we occasionally suppress the time dependence and write ai .t/,
bi.t/ simply as ai , bi when the context is clear.

Assume for 0 � t � t2

a3.t/ � O.1/: (22)
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More precisely

const � a3.t/ � const:

The values of constants play some role later. This will be clarified below (see (34)).
Equation 21 takes the form

y D �2a1
a3
x � 4b1

a3
x3 � 3b3

a3
x2y � 2b4

a3
xy2

� b5

a3
y3 � 1

a3

@�

@x
: (23)

Assume also that in formula (19)

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (24)

For sufficiently small t2 it implies that for 0 � t � t2,

bi.t/ � O.t/; i D 2; � � � ; 5: (25)

Write (23) in the form

y D �2a1
a3
x � 4b1

a3
x3 CO.t/ �O.jxj3 C jyj3/

CO.jxj5 C jyj5/: (26)

Since .x; y/ 2 Uı, we have the rough estimate

y D O.x/: (27)

Consider the other critical point equation

@�

@y
D 0:

By (19), we get

2a2y C a3x C 4b2y
3 C b3x

3 C 2b4x
2y

C 3b5xy
2 C @�

@y
D 0:

In view of the assumptions (25) and (20), we obtain

2a2y C a3x CO.t/ �O.jxj3 C jyj3/CO.jxj5 C jyj5/ D 0:
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Using (27), we get

2a2y C a3x CO.t/ �O.jxj3/CO.jxj5/ D 0: (28)

Substituting (26) into (28) and using again (27), we have

2a2

�
�2a1
a3
x � 4b1

a3
x3
�

C a3x CO.t/ �O.jxj3/CO.jxj5/ D 0:

Or simply,

a23 � 4a1a2

a3
x � 8a2b1

a3
x3 CO.t/ �O.jxj3/CO.jxj5/ D 0: (29)

It is obvious that (29) has a solution x D 0. We now look for other possible
solutions in Uı. Dividing both sides of (29) by x

a3
, we obtain

.a23 � 4a1a2/� 8a2b1x
2 CO.t/ �O.x2/CO.x4/ D 0: (30)

We shall choose initial data very carefully so that the needed bifurcation happens
on the time interval Œ0; t2�. This will be done in two stages. At the first stage we
consider the degenerate case in which the bifurcation happens immediately for
t > 0. In the second stage we perturb the degenerate data so that the bifurcation
is “delayed” to a later time 0 < t1 < t2. In other words, we show that for sufficiently
small (and special) perturbations, the desired bifurcation happens at t D t1.

4 Stage 1: The Bifurcation in the Degenerate Case

Rewrite (30) as

�.a23 � 4a1a2/C 8a2b1x
2 CO.t/ �O.x2/CO.x4/ D 0: (31)

Choose �0 D �0.x; y/ so that

a3.0/
2 � 4a1.0/a2.0/ D 0;

d

dt

�
a23.t/ � 4a1.t/a2.t/

� jtD0 > 0;
a2.0/ > 0; a3.0/ > 0; b1.0/ > 0: (32)

In addition, we also need

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (33)
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The possibility of choosing �0 with properties (32)–(33) will be shown later (see
Sect. 6). Assume for the moment that these conditions are met, then for sufficiently
small t2 > 0, we have for 0 < t � t2,

A00
3 � a3.t/ � A0

3 > 0;

A00
2 � a2.t/ � A0

2 > 0;

B 00
1 � d

dt

�
a23.t/ � 4a1.t/a2.t/

�
� B 0

1 > 0;

B 00
2 � b1.t/ � B 0

2 > 0; (34)

where A0
i , A

00
i , B 0

i , B
00
i are constants.

By (32)–(34), we have for 0 < t � t2

.a23.t/ � 4a1.t/a2.t// � t;

which means that

const � t � a23.t/ � 4a1.t/a2.t/ � const � t:

Also we have

8a2.t/b1.t/ � const:

It follows that for 0 < t � t2, the equation (31) is of the form

�O.t/CO.1/ � x2 CO.t/ �O.x2/CO.x4/ D 0: (35)

For sufficiently small ı and sufficiently small t2, the equation (35) has two and
only two solutions

x D ˙O.pt/
because O.t/ is of order of t , O.1/ > 0 and other terms do not play any essential
role. In this sense solutions to (31) bifurcates into two solutions for 0 < t � t2.

Remark that at t D 0, the only solution to (31) is x D 0 due to the conditions
a3.0/

2 � 4a1.0/a2.0/ D 0 and a2.0/b1.0/ � const.

5 Stage 2: Bifurcation from Non-degenerate Initial Data,
a Perturbation Argument

In stage 2 we finish our construction of bifurcation from non-degenerate initial data.
The main idea is to perturb the initial data considered in Stage 1. The perturbation
will be chosen so that initially we will have only one local non-degenerate minimum
located at .x; y/ D .0; 0/.
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To this end, consider Q�0 D Q�0.x; y/ 2 C1 with the following properties:

Q�0.x; y/ D Q�0.�x;�y/; 8 x; y;
@4 Q�0
@xm@yn

ˇ̌
ˇ
.x;y/D.0;0/ D 0; 8mC n D 4; 0 � m � 4;

@2 Q�0
@x@y

ˇ̌
ˇ
.x;y/D.0;0/ D 0;

@2 Q�0
@x2

ˇ̌
ˇ
.x;y/D.0;0/ > 0;

@2 Q�0
@y2

ˇ̌
ˇ
.x;y/D.0;0/ > 0: (36)

Fix �0 D �0.x; y/ taken from Stage 1 which has the properties (32)–(33). We
shall consider the perturbation by Q�0 having the form

Q��0.x; y/ D �0.x; y/C � Q�0.x; y/;

where � > 0 is sufficiently small.
Denote the corresponding solution of the main equation (1) (in the shifted

coordinates) by �� D ��.x; y; t/. To simplify the notations, we expand ��.x; y; t/
in the form corresponding to (19), i.e. we write

��.x; y; t/ D ��.0; 0; t/C a�1.t/x
2 C a�2y

2 C a�3xy

C b�1.t/x
4 C b�2.t/y

4 C b�3.t/x
3y C b�4.t/x

2y2 C b�5.t/xy
3

C Q�.x; y; t/ (37)

where Q� satisfies an estimate similar to (20).
We now check the properties of ��.x; y; t/.

(a) At t D 0, the point .x; y/ D .0; 0/ is the unique extremum of ��.x; y; 0/ in the
neighborhoodUı. Also .0; 0/ is a non-degenerate local minimum.

To prove this, we note that due to (32), (33) and (36), the critical point
equation (30) still holds for ��.x; y; t/ for sufficiently small � > 0 with
corresponding coefficients a1, a2, a3, b1 now replaced by a�1, a

�
2, a

�
3, b

�
1. In

particular this gives us

.a�3.0//
2 � 4a�1.0/a

�
2.0/� 8a�2.0/b

�
1.0/x

2 CO.x4/ D 0: (38)

Denote

Qa1 D @2 Q�0
@x2

ˇ̌̌
.x;y/D.0;0/ > 0;

Qa2 D @2 Q�0
@y2

ˇ̌
ˇ
.x;y/D.0;0/ > 0:



254 D. Li and Y.G. Sinai

By (32) and (36), we have

.a�3.0//
2 � 4a�1.0/a

�
2.0/

D a3.0/
2 CO.�2/ � 4.a1.0/C � Qa1/.a2.0/C � Qa2/

D �4.a1.0/ Qa2 C a2.0/ Qa1/� CO.�2/: (39)

On the other hand, for sufficiently small � > 0, by using (38) and (36), we have

a�2.0/b
�
1.0/ D .a2.0/CO.�// � .b1.0/CO.�2//

D a2.0/b1.0/CO.�/

� const: (40)

Therefore by (39) and (40), the equation (38) takes the form

�O.1/� �O.1/ � x2 CO.x4/ D 0;

or simply

O.1/ � � CO.1/ �O.x2/ D 0:

It is clear that for � > 0 this equation does not have any real-valued solution
in Uı.

To show that .0; 0/ is a non-degenerate local minimum at t D 0, we observe
that by (39), for sufficiently small � > 0,

.a�3.0//
2 � 4a�1.0/a�2.0/ < 0: (41)

Also we have by (32)

a�1.0/ > 0; a�2.0/ > 0: (42)

Equations 41 and 42 show that the Hessian matrix

�
a�1.0/

1
2
a�3.0/

1
2
a�3.0/ a�2.0/

�

is strictly positive definite. Hence .0; 0/ is a non-degenerate local minimum.
(b) Consider the function

D�.t/ D .a�3.t//
2 � 4a�1.t/a�2.t/:
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It will be proven below that for sufficiently small � > 0, the following holds:
There exists unique t1 D t1.�/ > 0 such that

D�.t/ < 0; for 0 � t < t1;

D�.t/ D 0; for t D t1;

D�.t/ > 0; for t1 < t � t2: (43)

Furthermore, the reduced critical-point equation (see (30))

D�.t/ � 8a�2.t/b�1.t/x2 CO.t/ �O.x2/CO.x4/ D 0 (44)

has

• No solution for 0 � t < t1,
• Exactly one solution given by x D 0 for t D t1,
• Two nonzero solutions for t1 < t � t2.

To prove (43), we recall the bound (34) , where for 0 � t � t2

B 00
1 � d

dt

�
a23.t/ � 4a1.t/a2.t/

� � B 0
1 > 0: (45)

Since our initial data are given by

��0.x; y/ D �0.x; y/C � Q�0.x; y/;

it follows from simple perturbation theory that for sufficiently small � > 0 , we have

k��.x; y; t/ � �.x; y; t/kHm
t;x;y

� �.�;m/; (46)

where �.�;m/ ! 0 as � ! 0 andm is fixed.
The notationHm

t;x;y denotesmth Sobolev norms of  :

k kHm
t;x;y

D
X

0�˛CˇC��m

���@˛t @ˇx@�y 
���
L2
:

Take m to be sufficiently large and then � sufficiently small. It follows from (45)
and (46) that

2B 00
1 � d

dt

�
.a�3.t//

2 � 4a�1.t/a�2.t/
� � B 0

1

2
> 0; (47)

for any 0 � t � t2.
This means in particular that D�.t/ is strictly increasing for 0 � t � t2.
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By (39), we have for t D 0 and � sufficiently small,

D�.0/ < 0: (48)

On the other hand for t D t2, by using the analysis from Stage 1, we have

.a3.t2//
2 � 4a1.t2/a2.t2/ > 0:

Since

D�.t2/ D .a3.t2//
2 � 4a1.t2/a2.t2/CO.�/;

it follows easily that for � sufficiently small

D�.t2/ > 0: (49)

Now (47)–(49) easily yield (43).
Finally the conclusion after (44) is a simple corollary of the properties of D�.t/

and perturbation theory. We omit the details.
In summary, we have proved the following:
For sufficiently small � > 0, the function ��.x; y; t/ has the following properties

in the neighborhoodUı:
There exists 0 < t1 < t2, such that

• For 0 � t < t1, .x; y/ D .0; 0/ is the only critical point in Uı. Furthermore it is
a non-degenerate local minimum.

• For t D t1, .x; y/ D .0; 0/ is the only critical point in Uı.
• For t1 < t � t2, there are three critical points in Uı. The point .x; y/ D .0; 0/ is

a saddle. Two other critical points are of the form .x�; y�/, .�x�;�y�/, where
x� > 0, y� > 0.

Remark that due to our inversion symmetry (18), if .x�; y�/ is a critical point
with x� ¤ 0, then .�x�;�y�/ is also a critical point.

6 Construction of �0 Satisfying (32)–(33)

We now demonstrate the existence of �0 D �0.x; y/ which satisfies conditions
(32)–(33) and also has inversion symmetry (18).

By (17), we choose

�0.x; y/ D �
X

mC n is evenjmj�N;jnj�N

Qfmn.�1/mCn
2 cos.mx C ny/: (50)
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To simplify matters, we impose the following conditions on Qfmn:

• Qfmn is real-valued;
• Qfmn D 0 if m D 0 or n D 0;
• Qfmn are odd in each of its variablesm and n.

The above conditions imply that

�0.x; y/ D �
X

1�m;n�N
mC n is even

Qfmn �
�
2.�1/mCn

2 cos.mx C ny/

� .�1/�mCn
2 cos.�mx C ny/ � .�1/m�n

2 cos.mx � ny/
�

D �
X

1�m;n�N
mC n is even

2 Qfmn.�1/mCn
2

�
cos.mx C ny/ � .�1/n cos.mx � ny/

�
:

(51)

Define

fmn D �2 Qfmn.�1/mCn
2 :

Then we have

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn

�
cos.mx C ny/ � .�1/n cos.mx � ny/

�
; (52)

where fmn are the coefficients to be determined.
Now recall the conditions (32) and (33) and choose

a3.0/ D 2;

a1.0/ D a2.0/ D 1;

b1.0/ D r1

24
> 0;

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0; (53)

where r1 is a parameter whose value will be specified later.
We still have to check the second condition in (32). This condition can be

simplified a little bit. By (53),

d

dt

�
a23.t/ � 4a1.t/a2.t/

�ˇ̌̌
tD0

D 4. Pa3.0/� Pa1.0/� Pa2.0//

D 2

�
@3�

@t@x@y
.0; 0; 0/�

�
@

@t
��

�
.0; 0; 0/

�
:
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By (1), (19), (16) and (53), we have

�
@

@t
��

�
.0; 0; 0/ D @

@t
� 

��
2
;
�

2
; 0
�

D �2 0

��
2
;
�

2

�
C .r? 0/

��
2
;
�

2

�
� .r� 0/

��
2
;
�

2

�

D r1:

Similarly

@3�

@t@x@y
.0; 0; 0/ D �

@xy�
�1.r?�0 � r��0/

�
.0; 0/:

Therefore the condition

d

dt

�
a23.t/ � 4a1.t/a2.t/

�ˇ̌̌
tD0 > 0

is equivalent to

@xy�
�1.r?�0 � r��0/.0; 0/ > r1: (54)

Our goal is to find .fmn/ in (52) such that both (53) and (54) hold. In our formulae
below, the summation is understood to be in the region f.m; n/ W 1 � m; n � N and
mC n is eveng. In terms of fmn, the conditions (53) now take the form

X
fmn �mn � .1C .�1/n/ D �2;

X
fmn �m2 � .1 � .�1/n/ D �1;

X
fmn � n2 � .1 � .�1/n/ D �1;

X
fmn �m4 � .1 � .�1/n/ D r1;

X
fmn �m3n � .1C .�1/n/ D 0;

X
fmn �m2n2 � .1 � .�1/n/ D 0;

X
fmn �mn3 � .1C .�1/n/ D 0;

X
fmn � n4 � .1 � .�1/n/ D 0: (55)

Due to the factors .1˙ .�1/n/ which can vanish depending on the parity of n in
the summation, we distinguish two types of coefficients. We shall say fmn is even if
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bothm and n are even. Otherwise fmn is called odd. Notice that due to the constraint
that mC n is even we shall only have either odd or even coefficients.

We consider first the equations for even coefficients. From (55) we only need

X
m;n�2

m; n are even

fmn �mn D �1;

X
m;n�2

m; n are even

fmn �m3n D 0;

X
m;n�2

m; n are even

fmn �mn3 D 0; (56)

Now we assume that we only have two nonzero even coefficients f22 and f44.
Then from (56) we get

f22 � 22 C f44 � 42 D �1;
f22 � 24 C f44 � 44 D 0:

A simple computation gives that

f22 D �1=3; f44 D 1=48I (57)

Next we turn to odd coefficients.
From (55), we get

X
1�m;n�N
m; n are odd

fmn �m2 D �1
2
;

X
1�m;n�N
m; n are odd

fmn � n2 D �1
2
;

X
1�m;n�N
m;n are odd

fmn �m4 D r1

2
;

X
1�m;n�N
m; n are odd

fmn �m2n2 D 0;

X
1�m;n�N
m; n are odd

fmn � n4 D 0; (58)
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To simplify matters, we assume that the only nonzero odd coefficients are f11,
f31, f33, f15, f51.

Let r2 be another parameter whose value will be specified later. We shall choose
f51 D r2 and add this condition to (58). For the coefficients f11, f31, f33, f15, f51
we then have the matrix equation

0
BBBBBBBBB@

1 1 32 32 1 52

1 32 1 32 52 1

1 1 34 34 1 54

1 32 32 92 52 52

1 34 1 34 54 1

0 0 0 0 0 0 1

1
CCCCCCCCCA

0
BBBBBBBBB@

f11

f13

f31

f33

f15

f51

1
CCCCCCCCCA

D

0
BBBBBBBBB@

� 1
2

� 1
2

r1
2

0

0

r2

1
CCCCCCCCCA

(59)

Choose r1 D 1
10

and r2 D �10. From (59), we obtain

0
BBBBBBB@

f11
f13

f31
f33
f15

f51

1
CCCCCCCA

D

0
BBBBBBB@

�580:5698
90:0012

90:0008

�6:6598
�10:0001
�10:0000

1
CCCCCCCA

(60)

We have completely solved (53). It remains to check the condition (54).
To simplify the computation, we rewrite (52) as

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn � e
i.mxCny/ C e�i.mxCny/

2

C
X

1�m;n�N
mC n is even

fmn � .�1/nC1 � e
i.mx�ny/ C e�i.mx�ny/

2
:

D
X

jmj�N;jnj�N
gmne

i.mxCny/; (61)

where the coefficients gmn satisfy

• gmn D 0 if .mC n/ is not even or m D 0 or n D 0.
• gmn D 1

2
fjmj;jnj if mn > 0.

• gmn D 1
2
fjmj;jnj � .�1/nC1 if mn < 0.
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To find the LHS of (54), we use the coefficients gmn and calculate

��1r�0.x; y/ D
X

jmj�N;jnj�N
gmn � i �

�
m
n

�
.�1/.m2 C n2/

ei.mxCny/;

r?�0.x; y/ D
X

j Qmj�N;jQnj�N
g QmQn � i �

 
�Qn
Qm

!
� ei. QmxCQny/:

Hence

.r�1r�0 � r?�0/.x; y/ D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2

� ei
�
.mC Qm/xC.nCQn/y

�
:

(62)

Note that in the summation of the RHS of (62), the zero-th mode is not present
since if m D � Qm, n D �Qn then Qmn �m Qn D 0.

We then apply the operator @xy��1 to both sides of (62) to obtain

@xy�
�1
�
��1r�0 � r?�0

�ˇ̌ˇ
.x;y/D.0;0/

D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2

� .mC Qm/.nC Qn/
.mC Qm/2 C .nC Qn/2 : (63)

By using (57), (60), (61), and (63) and a tedious calculation, we obtain

LHS of (54) D 0:1436 > 0:1 D r1:

Clearly this gives us all the needed estimates.
We have finished the construction of the desired initial data �0 needed in Stage 1.

The proof of Theorem 2 is now completed.

7 Proof of Theorem 3

In this section we give the proof of Theorem 3. The argument is similar to the proof
of Theorem 2 and is again done in two stages. We sketch the details as follows.

• Stage 1: degenerate case. Recall the reduced critical point equation,

�.a23 � 4a1a2/C 8a2b1x
2 CO.t/ �O.x2/CO.x4/ D 0: (64)
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Choose �0 D �0.x; y/ so that

a3.0/
2 � 4a1.0/a2.0/ D 0;

d

dt

�
a23.t/ � 4a1.t/a2.t/

�ˇ̌ˇ̌̌
tD0

< 0;

a2.0/ > 0; a3.0/ > 0; b1.0/ > 0; (65)

and also

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (66)

The possibility of choosing �0 with properties (65)–(66) will be shown in Sect. 8.
Assume for the moment that these conditions are met, then for sufficiently small
t2 > 0, we have for 0 < t � t2,

A00
3 � a3.t/ � A0

3 > 0;

A00
2 � a2.t/ � A0

2 > 0;

B 00
1 � d

dt

�
4a1.t/a2.t/ � a23.t/

�
� B 0

1 > 0;

B 00
2 � b1.t/ � B 0

2 > 0; (67)

where A0
i , A

00
i , B 0

i , B
00
i are constants.

By (65)–(67), we have for 0 < t � t2

const � t � 4a1.t/a2.t/ � a23.t/ � const � t;

and also

8a2.t/b1.t/ � const:

It follows that for 0 < t � t2, the equation (64) is of the form

O.t/CO.1/ � x2 CO.t/ �O.x2/CO.x4/ D 0 (68)

which clearly has no real-valued solution for 0 < t � t2.
• Stage 2: a perturbation argument. In stage 2 we perturb the initial data considered

in Stage 1 so that initially we will have three critical points.
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To this end, consider Q�0 D Q�0.x; y/ 2 C1 with the following properties:

Q�0.x; y/ D Q�0.�x;�y/; 8 x; y;

@4 Q�0
@xm@yn

ˇ̌̌
.x;y/D.0;0/ D 0; 8mC n D 4; 0 � m � 4;

@2 Q�0
@x@y

ˇ̌̌
.x;y/D.0;0/ D 0;

@2 Q�0
@x2

ˇ̌̌
.x;y/D.0;0/ > 0;

@2 Q�0
@y2

ˇ̌̌
.x;y/D.0;0/ > 0: (69)

Fix �0 D �0.x; y/ taken from Stage 1 which has the properties (65)–(66) and
consider the perturbation by Q�0 having the form

Q��0.x; y/ D �0.x; y/ � � Q�0.x; y/; (70)

where � > 0 is sufficiently small.
Denote the corresponding solution of the main equation (1) (in the shifted

coordinates) by �� D ��.x; y; t/. Expand ��.x; y; t/ in the form

��.x; y; t/ D ��.0; 0; t/C a�1.t/x
2 C a�2y

2 C a�3xy

C b�1.t/x
4 C b�2.t/y

4 C b�3.t/x
3y C b�4.t/x

2y2 C b�5.t/xy
3

C Q�.x; y; t/ (71)

where Q� satisfies an estimate similar to (20).

We now check that ��.x; y; t/ has the desired properties needed in Theorem 3.

(a) At t D 0, ��.x; y; 0/ has three critical points in the neighborhood Uı. Also
.0; 0/ is a saddle point.

To prove this, we note that due to (65), (66) and (69), the reduced critical
point equation for ��.x; y; t/ takes the form

.a�3.0//
2 � 4a�1.0/a

�
2.0/� 8a�2.0/b

�
1.0/x

2 CO.x4/ D 0: (72)

Denote

Qa1 D @2 Q�0
@x2

ˇ̌̌
.x;y/D.0;0/ > 0;

Qa2 D @2 Q�0
@y2

ˇ̌
ˇ
.x;y/D.0;0/ > 0:
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By (65), (69), and (70), we have

.a�3.0//
2 � 4a�1.0/a�2.0/

D a3.0/
2 CO.�2/ � 4.a1.0/� � Qa1/.a2.0/� � Qa2/

D 4.a1.0/ Qa2 C a2.0/ Qa1/� CO.�2/: (73)

On the other hand, for sufficiently small � > 0, by using (72), (69), and (70),
we have

a�2.0/b
�
1.0/ D .a2.0/�O.�// � .b1.0/CO.�2//

D a2.0/b1.0/�O.�/

� const: (74)

Therefore by (73) and (74), the equation (72) takes the form

O.1/� �O.1/ � x2 CO.x4/ D 0;

or simply

O.1/ � � �O.1/ �O.x2/ D 0:

It is clear that for � > 0 sufficiently small this equation has two real-valued
solutions in Uı.

To verify that .0; 0/ is a saddle point at t D 0, we observe that by (73), for
sufficiently small � > 0,

.a�3.0//
2 � 4a�1.0/a�2.0/ > 0: (75)

Also we have by (65)

a�1.0/ > 0; a�2.0/ > 0: (76)

Equations 75 and 76 show that the Hessian matrix

�
a�1.0/

1
2
a�3.0/

1
2
a�3.0/ a�2.0/

�

has one positive eigen-value and one negative eigen-value. Hence .0; 0/ is a
saddle.

(b) Consider the function

D�.t/ D .a�3.t//
2 � 4a�1.t/a�2.t/:
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It will be proven below that for sufficiently small � > 0, the following holds:

There exists unique t1 D t1.�/ > 0 such that

D�.t/ > 0; for 0 � t < t1;

D�.t/ D 0; for t D t1;

D�.t/ < 0; for t1 < t � t2: (77)

Furthermore, the reduced critical-point equation

D�.t/ � 8a�2.t/b�1.t/x2 CO.t/ �O.x2/CO.x4/ D 0 (78)

has

• Two nonzero solutions for 0 � t < t1,
• Exactly one solution given by x D 0 for t D t1,
• No solutions for t1 < t � t2.

To prove (77), we recall the bound (67), where for 0 � t � t2

B 00
1 � d

dt

�
a23.t/ � 4a1.t/a2.t/

� � B 0
1 > 0: (79)

Since our initial data are given by

��0.x; y/ D �0.x; y/C � Q�0.x; y/;

it follows from simple perturbation theory that

2B 00
1 � d

dt

�
4a�1.t/a

�
2.t/ � .a�3.t//2

� � B 0
1

2
> 0; (80)

for any 0 � t � t2.
This means in particular that D�.t/ is strictly decreasing for 0 � t � t2.
By (73), we have for t D 0 and � sufficiently small,

D�.0/ > 0: (81)

On the other hand for t D t2, by using the analysis from Stage 1, we have

.a3.t2//
2 � 4a1.t2/a2.t2/ < 0:

Since

D�.t2/ D .a3.t2//
2 � 4a1.t2/a2.t2/CO.�/;
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it follows easily that for � sufficiently small

D�.t2/ < 0: (82)

Now (80)–(82) easily yield (77).

8 Construction of �0 Satisfying (65)–(66)

We now demonstrate the existence of �0 D �0.x; y/ which satisfies conditions
(65)–(66). The construction is similar to the one in Sect. 6 and therefore we shall
only sketch the details.

Choose �0 in the form

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn .cos.mx C ny/ � .�1/n cos.mx � ny// ; (83)

where fmn are the coefficients to be determined.
Now recall the conditions (65) and (66) and set

a3.0/ D 2;

a1.0/ D a2.0/ D 1;

b1.0/ D r1

24
> 0;

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0; (84)

where r1 is a parameter whose value will be specified later.
The second condition in (65) simplifies to

@xy�
�1.r?�0 � r��0/.0; 0/ < r1: (85)

Our goal is to find .fmn/ in (83) such that both (84) and (85) hold. In our formulae
below, the summation is understood to be in the region f.m; n/ W 1 � m; n � N and
mC n is eveng. In terms of fmn, the conditions (84) now take the form

X
fmn �mn � .1C .�1/n/ D �2;

X
fmn �m2 � .1 � .�1/n/ D �1;

X
fmn � n2 � .1 � .�1/n/ D �1;

X
fmn �m4 � .1 � .�1/n/ D r1;
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X
fmn �m3n � .1C .�1/n/ D 0;

X
fmn �m2n2 � .1 � .�1/n/ D 0;

X
fmn �mn3 � .1C .�1/n/ D 0;

X
fmn � n4 � .1 � .�1/n/ D 0: (86)

Due to the factors .1˙ .�1/n/ which can vanish depending on the parity of n in
the summation, we distinguish two types of coefficients. We shall say fmn is even if
bothm and n are even. Otherwise fmn is called odd. Notice that due to the constraint
that mC n is even we shall only have either odd or even coefficients.

Consider first the equations for even coefficients. From (86) we only need

X
m;n�2

m; n are even

fmn �mn D �1;

X
m;n�2

m; n are even

fmn �m3n D 0;

X
m;n�2

m; n are even

fmn �mn3 D 0; (87)

Now we assume that we only have two nonzero even coefficients f22 and f44.
Then from (87) we get

f22 � 22 C f44 � 42 D �1;
f22 � 24 C f44 � 44 D 0:

A simple computation gives that

f22 D �1=3; f44 D 1=48I (88)

Next we turn to odd coefficients.
From (86), we get

X
1�m;n�N
m; n are odd

fmn �m2 D �1
2
;

X
1�m;n�N
m; n are odd

fmn � n2 D �1
2
;
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X
1�m;n�N
m;n are odd

fmn �m4 D r1

2
;

X
1�m;n�N
m; n are odd

fmn �m2n2 D 0;

X
1�m;n�N
m; n are odd

fmn � n4 D 0; (89)

To simplify matters, we assume that the only nonzero odd coefficients are f11,
f31, f33, f15, f51.

Let r2 be another parameter whose value will be specified later. We shall choose
f51 D r2 and add this condition to (89). For the coefficients f11, f31, f33, f15, f51
we then have the matrix equation

0
BBBBBBB@

1 1 32 32 1 52

1 32 1 32 52 1

1 1 34 34 1 54

1 32 32 92 52 52

1 34 1 34 54 1

0 0 0 0 0 0 1

1
CCCCCCCA

0
BBBBBBB@

f11

f13
f31
f33

f15
f51

1
CCCCCCCA

D

0
BBBBBBB@

� 1
2

� 1
2

r1
2

0

0

r2

1
CCCCCCCA

(90)

Choose r1 D r2 D 1. From (90), we obtain
0
BBBBBBB@

f11

f13
f31
f33

f15
f51

1
CCCCCCCA

D

0
BBBBBBB@

57:3646

�8:9883
�8:9922
0:6727

0:9987

1:0000

1
CCCCCCCA

(91)

We have completely solved (84). It remains to check the condition (85).
For this purpose, we rewrite (83) as

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn � e
i.mxCny/ C e�i.mxCny/

2

C
X

1�m;n�N
mC n is even

fmn � .�1/nC1 � e
i.mx�ny/ C e�i.mx�ny/

2
:

D
X

jmj�N;jnj�N
gmne

i.mxCny/; (92)
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where the coefficients gmn satisfy

• gmn D 0 if .mC n/ is not even or m D 0 or n D 0.
• gmn D 1

2
fjmj;jnj if mn > 0.

• gmn D 1
2
fjmj;jnj � .�1/nC1 if mn < 0.

In terms of the coefficients gmn, the LHS of (85) takes the form

.r�1r�0 � r?�0/.x; y/ D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2

� ei
�
.mC Qm/xC.nCQn/y

�
:

By a tedious calculation, we obtain

LHS of (85) D �0:1420 < 1 D r1:

Clearly this gives us all the needed estimates.
We have finished the construction of the desired initial data �0 needed in Stage 1

of Sect. 7. The proof of Theorem 3 is now completed.
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