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Preface

This volume is dedicated to Professor Stephen Smale on the occasion of his 80th
birthday. Besides his startling result of the proof of the Poincaré conjecture for all
dimensions greater than or equal to five in 1960, Professor Smale’s groundbreaking
contributions in various fields of mathematics have marked the second part of the
twentieth century and beyond.

Stephen Smale has done pioneering work in differential topology, global anal-
ysis, dynamical systems, nonlinear functional analysis, numerical analysis, theory
of computation, and machine learning as well as applications in the physical and
biological sciences and economics. In sum, he has manifestly broken the barriers
among the different fields of mathematics and dispelled some remaining prejudices.
He is indeed a universal mathematician.

Smale has been honored with several prizes and honorary degrees, including,
among others, the Fields Medal (1966), the Veblen Prize (1966), the National Medal
of Science (1996), and the Wolf Prize (2006/2007).

Besides mathematics, Smale has been a keen learner and collector of rare
minerals. Last but not least, Smale is a humanist and has been an active advocate
of freedom and equality of rights for all people in the USA and worldwide. He has
been politically involved in a number of such movements in the past and is still
active.

We wish to express our gratitude to the many distinguished professors who
accepted the opportunity to contribute to this publication.

Gainesville Panos M. Pardalos
Athens Themistocles M. Rassias
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Transitivity and Topological Mixing
for C 1 Diffeomorphisms

Flavio Abdenur and Sylvain Crovisier

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract We prove that, on connected compact manifolds, both C1-generic con-
servative diffeomorphisms and C1-generic transitive diffeomorphisms are topolog-
ically mixing. This is obtained through a description of the periods of a homoclinic
class and by a control of the period of the periodic points given by the closing
lemma.

1 Introduction

In his seminal dissertation about differentiable dynamical systems [22], Smale
described the recurrence of hyperbolic diffeomorphisms:

Theorem 1 (Smale’s spectral decomposition theorem). Consider a diffeomor-
phism f of a compact manifold. If the non-wandering set ˝.f / is hyperbolic and
contains a dense set of periodic points then it decomposes uniquely as the finite
union ˝.f / D ˝1 [ � � � [ ˝s of disjoint, closed, invariant subsets on each of
which f is topologically transitive.

Recall that the restriction of f to an invariant compact set � is topologically
transitive if there exists a dense forward orbit, or equivalently, if for any non-empty
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2 F. Abdenur and S. Crovisier

open sets U; V of�, there exists n � 1 such that f n.U /\V ¤ ;. Later on, Bowen
noticed [6] that each piece˝i admits a further decomposition˝i D Xi;1[� � �[Xi;`i
into disjoint closed subsets on each of which g D f `i is topologically mixing: for
any non-empty open sets U; V ofXi;j , there exists n0 � 1 such that f n.U /\V ¤ ;
for any n � n0.

Let Diff1.M/ denote the space of C1-diffeomorphisms of a connected compact
boundaryless manifold M endowed with the C1-topology. Our goal is to study
the recurrence of its generic non-hyperbolic elements. A robust obstruction to the
transitivity is the existence of a trapping region, i.e. a non-empty open set U ¤ M

such that f .U / � U . When this obstruction does not occur, it follows from [3]
that the generic dynamics is transitive on the whole manifold. More precisely, in
this case M is a homoclinic class (see the Sect. 2 below) implying that an iterate
g D f n of f is topologically mixing. Our goal here is to show that this is also the
case for the first iterate f :

Theorem 2. There exists a dense Gı subset G � Diff1.M/ such that any transitive
diffeomorphism f 2 G is topologically mixing.

A similar statement was obtained in [1] for flows but the case of diffeomorphisms
is more difficult: the proof requires closing and connecting lemmas in order to build
segments of orbit which visit successively two given regions U; V . For technical
reasons, the obtained orbits may be shorter than what is expected (see [9]) so that
the intersections between f n.U / and V could occur only at some particular times n,
breaking down the topological mixing. The main point of the present paper is thus
a closing lemma with control of the connecting time (Sect. 3).

Many examples of non-hyperbolic robustly transitive diffeomorphisms have
been constructed, see for instance [4] and [19]. Theorem 2 trivially implies that
these dynamics become topologically mixing modulo an arbitrarily small C1-
perturbation. In some particular cases, there is a stronger result: among robustly
transitive partially hyperbolic diffeomorphisms with one-dimensional center bundle,
the set topologically mixing dynamics contains an open and dense subset, see [11]
and [5, Corollary 3].

As far as we know, all of the known examples of robustly transitive diffeomor-
phisms are topologically mixing. This raises the following questions:

Questions.

1. Is every robustly transitive diffeomorphism topologically mixing?
2. Failing that, is topological mixing at least a C1-open-and-dense condition within

the space of all robustly transitive diffeomorphisms?

When M is connected and ! is a volume or a symplectic form, we denote by
Diff1!.M/ the space of the C1-diffeomorphisms which preserve !, endowed with
the C1-topology. The results stated before still hold in the conservative setting and
moreover any C1-generic diffeomorphism is transitive [2, 3]. One thus gets:

Theorem 3. Any diffeomorphism in a dense Gı subset G! � Diff1!.M/ is topolog-
ically mixing.
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We in fact obtain a version of the previous statement for locally maximal
sets, i.e. invariant compact sets � � M having a neighborhood U such that
� D \i2Zf i .U /. Conley has proved [7] for homeomorphisms of � that the non-
existence of a trapping region is equivalent to chain-transitivity: for any " > 0, there
exists a "-dense periodic sequence .x0; : : : ; xn D x0/ in�which is a "-pseudo orbit,
that is satisfies d.f .xi /; xiC1/ < " for any 0 � i < n. As a consequence of [3], for
C1-generic diffeomorphisms, any maximal invariant set which is chain-transitive
is also transitive. Generalizing Bowen’s result for hyperbolic diffeomorphisms, we
prove:

Theorem 4. There exists a dense Gı subset G � Diff1.M/ (or G! � Diff1!.M/)
of diffeomorphisms f such that any chain-transitive locally maximal set � decom-
poses uniquely as the finite union � D �1 [ � � � [ �`; of disjoint compact sets on
each of which f ` is topologically mixing.

Moreover, for 1 � i � `, any hyperbolic periodic p; q 2 �i with same stable
dimension satisfy:

– ` is the smallest positive integer such that W u.f `.p// \W s.p/\� ¤ ;,
– �i coincides with the closure of W u.p/ \W s.q/\�.

Clearly, Theorems 2 and 3 follow from Theorem 4.

2 The Period of a Homoclinic Class

Let f be a C1-diffeomorphism and O be a hyperbolic periodic orbit. We denote
by W j\ W 0 the set of transversal intersection points between two submanifolds
W;W 0 �M .

2.1 Homoclinic Class

The homoclinic class H.O/ of O is the closure of the set of transverse intersection
points between the stable and unstable manifolds W s.O/ and W u.O/. We refer
to [13] for its basic properties, which we now recall:

– Two hyperbolic periodic orbit O1;O2 are homoclinically related if W s.O1/

intersects transversally W u.O2/ and W u.O2/ intersects transversally W s.O1/.
This defines an equivalence relation on the set of hyperbolic periodic orbits.

– H.O/ is the closure of the union of the periodic orbits homoclinically related
to O .

– If O;O 0 are homoclinically related, H.O/ coincides with the closure of the set
of transversal intersections betweenW u.O/ and W s.O 0/.

– A homoclinic class is a transitive invariant set.
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2.2 Period of a Homoclinic Class

The period `.O/ � 1 of the homoclinic class H.O/ of O is the greatest common
divisor of the periods of the hyperbolic periodic points homoclinically related to
O . The group `.O/:Z is called the set of periods of H.O/. We have the following
characterization: for p 2 O , and n 2 Z, the manifoldsW u.f n.p// andW s.p/ have
a transversal intersection if and only if n 2 `.O/:Z. More generally:

Proposition 1. Consider a hyperbolic periodic point q whose orbit is homoclini-
cally related toO and such thatW u.p/ j\W s.q/ ¤ ;. ThenW u.f n.q// j\W s.p/ ¤
; if and only if n 2 `.O/:Z. In particularW u.q/ intersects transversally W s.p/.

This proposition is a consequence of Smale’s theorem on transversal homoclinic
points [21] and of Palis’ inclination lemma [15] (or �-lemma).

Theorem 5 (Smale’s homoclinic theorem). Consider a local diffeomorphism f , a
hyperbolic fixed point p and a transverse homoclinic intersection x 2W s.p/ j\W u

.p/. Then, in any neighborhood of fpg [ ff k.x/gk2Z, there exists, for some iterate
f n, a hyperbolic set K containing p and x.

Lemma 1 (Palis’ inclination lemma). Let p be a hyperbolic fixed point and
N � M be a submanifold which intersects W s.p/ transversally. Then for any
compact disc D � W u.p/ there exists a sequence .Dk/ of discs of N and an
increasing sequence .nk/ of positive integers such that f nk .Dk/ converges to D
in the C1-topology.

Proof (Proof of Proposition 1). Let p; q be two hyperbolic periodic points whose
orbits are homoclinically related and assume thatW u.p/ j\W s.q/ ¤ ;. LetGp;q be
the set of integers n such that W u.f n.q// j\ W s.p/ ¤ ;.

The set Gp;q is invariant by addition. Indeed if n 2 Gp;q , then W u.f n.q// j\W s

.p/ and W u.f n.p// j\ W s.f n.q// are non-empty. The inclination lemma im-
plies that W s.p/ accumulates on W s.f n.q// so that it transversally intersects
W u.f n.p//. If moreover m 2 Gp;q , we have W u.f nCm.q// j\ W s.f n.p// ¤ ;,
so that W s.p/ intersects transversallyW u.f nCm.q// and nCm 2 Gp;q .

The setGp;q is invariant by subtraction by the period r of p. Hence, for n 2 Gp;q ,
the opposite�n D .r�1/:n�r:n also belongs toGp;q . SoGp;q coincides withGq;p
and is a group.

If q0 is another hyperbolic periodic point whose orbit is homoclinically related
to those of p; q and satisfies W u.q0/ j\ W s.p/ ¤ ;, then Gp;q D Gp;q0 . Indeed the
stable and the unstable manifolds of q; q0 intersect transversally, and the unstable
manifolds of f n.q/ and f n.q0/ intersect the same stable manifolds. Consequently
the group G D Gp;q contains all the periods of the hyperbolic periodic orbits
homoclinically related to the orbit O of p. In particular, G contains `.O/:Z.

Conversely, let us consider n 2 G and an intersection point x 2 W u.f n.p// j\
W s.p/. One defines a local diffeomorphism g which coincides with f r in a (fixed)
neighborhood of p and which sends an iterate xu D f �n�ku:r .x/ 2 W u.p/ onto
an iterate xs D f ks:r .x/ 2 W s.p/. Since by Smale’s homoclinic theorem the
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orbits of xs; xu; p for g are contained in a hyperbolic set, one can shadow a pseudo-
orbit p; g�m.xs/; g�mC1.xs/; : : : ; gm�1.xs/; p by a hyperbolic periodic orbit that is
homoclinically related to p. By construction this orbit is contained in a hyperbolic
periodic orbitO 0 of f that is homoclinically related to O and whose period has the
form nCk:r for some k 2 Z, where r is the period of p. This implies that n belongs
to `.O/:Z, so that G D `.O/:Z.

2.3 Pointwise Homoclinic Class

If p is a point of the hyperbolic periodic orbit O , its pointwise homoclinic class
h.p/ is the closure of the set of transverse intersection points between the manifolds
W s.p/ and W u.p/: this set is in general not invariant by f .

Lemma 2. If the orbit of a hyperbolic periodic point q is homoclinically related
to O and W u.p/;W s.q/ have a transverse intersection point, then h.p/ coincides
with the closure of the set of transversal intersections between W u.p/ and W s.q/.
In particular h.p/ D h.q/.
Proof. By Proposition 1 W u.q/ and W s.p/ have a transverse intersection point.
If n;m are the periods of p and q, then for f nm the points p; q are fixed,
homoclinically related and their homoclinic class coincide with h.p/; h.q/ and with
the set of transversal intersections betweenW u.p/ and W s.q/.

The following proposition decomposes the homoclinic classes in the form
�1 [ � � � [ �` such that f ` is topologically mixing on each piece �i . However,
a priori the pieces are not disjoint.

Proposition 2. Let p 2 O and ` D `.O/ be the period of the homoclinic class.
Then:

– H.O/ is the union of the iterates f k.h.p//;
– h.p/ is invariant by f `;
– The restriction of f ` to h.p/ is topologically mixing;
– If f j .h.p// \ f k.h.p// has non-empty interior in H.O/, then f j .h.p// D
f k.h.p//.

Proof. Let m; n; k be three integers. We claim that the closure of W u.f k.p// j\
W s.f m.p// is either empty or coincides with f mCn`.h.p//. Indeed the first
set coincides with the image by f mCn:` of the closure of W u.f k�m�n:`.p//
j\ W s.f �n:`.p//. If this set is non-empty, one deduces that k � m � n:` belongs

to `:Z, hence W u.f k�m�n:`.p// and W u.p/ accumulate on each other. Similarly,
W s.f �n:`.p// and W s.p/ accumulate on each other. Consequently the closure of
W u.f k�m�n:`.p// j\W s.f �n:`.p// coincides with h.p/, proving the claim.

The claim immediately implies thatH.O/ coincides with the union of the iterates
of h.p/ and that f `.h.p// coincides with h.p/. Hence the two first items hold.
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Let U; V � M be two open sets which intersect h.p/. We have to show that for
any large n, the intersection f n:`.U / \ V intersects h.p/. We first introduce two
points x 2 U \ .W u.p/ j\W s.p// and y 2 V \ .W u.p/ j\W s.p//. Let us consider
a disc D � W u.p/ \ U containing x. The inclination lemma shows that for n
large f n:`.D/ accumulates on any disc of W u.p/, and hence on the local unstable
manifold of y. As a consequence, for n large f n:` intersects transversally in V the
local stable manifold of y, which proves the third item in the statement.

Let Ak denote the interior of f k.h.p// in H.O/: it is non-empty and dense in
f k.h.p//. The open and dense subset A0 [ � � � [ A`�1 of H.O/ is the disjoint
union of elements of the formAk1 \Ak2 \� � �\Aks . By construction this partition is
invariant by f . Since the restriction of f ` to each setAk is topologically mixing, one
deduces that Ak is not subdivided by the partition. This means that either Aj DAk
or Aj \ Ak D;. In the latter case one gets f j .h.p//D f k.h.p// proving the last
item.

2.4 Perturbation of the Period

For any diffeomorphism g close to f , one can consider the hyperbolic continuation
Og of O . By the implicit function theorem a given transverse intersection between
W s.O/ and W u.O/ will persist, and hence the period of the homoclinic class
of Og depends upper-semi-continously with g. The following perturbation lemma
provides a mechanism for the non-continuity of the period.

Proposition 3. Let us consider f 2 Diffr .M/, for some r � 1, and two hyperbolic
periodic orbits O;O 0 having a cycle: W u.O/ \ W s.O 0/ ¤ ; and W u.O 0/ \
W s.O/ ¤ ;.

If the period of the orbit O 0 does not belong to the set of periods `.O/:Z of the
class H.O/, then there exists a diffeomorphism g that is arbitrarily C r -close to f
such that `.Og/ < `.O/.

Proof. Let us assume that the stable dimension of O1 is smaller than or equal to
that of O2. Let us choose p 2 O and q 2 O 0 so that W s.p/ and W u.q/ have an
intersection point x and for some n 2 Z the manifoldsW u.f n.p// andW s.q/ have
an intersection point y. One can perturb f in an arbitrarily small neighborhood of
y so that the intersection becomes quasi-transversal (i.e. TyW u.O/CTyW s.O 0/ D
TyM ), hence robust, and we have not modified the orbits of p; q; x.

The inclination lemma ensures that W u.f n.p// accumulates on W u.q/. This
shows that if one fixes a small neighborhood U of x, there exist xs 2 W s.p/ and
xu 2 W u.f n.p// arbitrarily close to x whose respective future and past semiorbits
avoid U . By a small C r -perturbation it is thus possible to create a transverse
intersection betweenW s.p/ andW u.f n.p// so that after the perturbationn belongs
to the set of periods of the homoclinic class of O .
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If n 62 `.O/:Z we are done. Otherwise, if r is the period of O 0 then
W u.f nCr .p// \W s.q/ ¤ ;. One can thus repeat the same construction replacing
n by nC r 62 `.O/ and obtain the conclusion.

2.5 Relative Homoclinic Classes

If O is contained in an open set U , one defines the relative homoclinic class
H.O;U / of O in U as the closure of W s.O/ j\ W u.O/ \ .Tn2Z f n.U //. It is
a transitive invariant compact set contained in U .

All the results stated in the previous sections remain valid if one considers
hyperbolic periodic orbits and transverse homoclinic/heteroclinic orbits in U . For
instance, two hyperbolic periodic orbits O1;O2 � U are homoclinically related
in U if both W s.O1/ j\ W u.O2/ and W s.O2/ j\ W u.O1/ meet

T
n2Z f n.U /. The

homoclinic class H.O;U / coincides with the closure of the set of hyperbolic
periodic points whose orbit is homoclinically related to O in U .

The relative pointwise homoclinic class h.p;U / is the intersection h.p/ \
H.O;U /.

3 A Closing Lemma with Time Control

Pugh’s closing Lemma [16] allows one to turn any non-wandering point into a
periodic point via a small C1-perturbation of the dynamics. The proof selects a
segment of orbit of the original diffeomorphism which will be closed, so that it is
difficult to control the period of the obtained orbit. In order to control the period
of the closed orbit we propose here a different argument which uses several orbit
segments of the original dynamics, as in the proof of Hayashi’s connecting lemma.
A technical condition appears on the periodic points.

Definition 1. A periodic point x is non-resonant if, for the tangent map Dxf
r

at the period, the eigenvalues having modulus equal to one are simple (i.e. their
characteristic spaces are one-dimensional) and do not satisfy relations of the form

�
k1
1 �

k2
2 : : : �

ks
s D 1;

where the numbers �1; �1; : : : ; �s; �s are distinct and the ki are positive integers.

This is obviously satisfied by hyperbolic periodic points. Also this condition is
generic in Diff1.M/ and in Diff1!.M/, see [12,18,20]. The statement of the closing
lemma with time control is the following.

Theorem 6 (Closing lemma with time control). Let f be a C1-diffeomorphism,
` � 2 be an integer, x be either a non-periodic point or a non-resonant periodic
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point. Assume that each neighborhood V of x intersects some iterate f n.V / such
that n is not a multiple of `. Then, for diffeomorphisms g arbitrarily C1-close to f ,
x is periodic and its period is not a multiple of `.

If moreover there exists an open set U such that each small neighborhoodV of x
has a forward iterate f n.V / which intersects V and such that f .V /; : : : ; f n�1.V /
are contained in U , then the orbit of x under g can be chosen in U . If f belongs to
Diff1!.M/, so does g.

3.1 Pugh’s Algebraic Lemma and Tiled Perturbation Domains

The main connexion results for the C1-topology [2, 3, 8, 10, 16, 17] are obtained
by using the two following tools. The first one allows to perform independent
elementary perturbations. They are usually obtained through Pugh’s “algebraic”
lemma (the name refers to the proof which only involves sequences of linear maps)
and with combinatorial arguments.

Lemma 3 (Elementary perturbation lemma). For any neighborhood V of the
identity in Diff1.M/ (or in Diff1!.M/), there exists � 2 .0; 1/ and ı > 0 such that
for any finite collection of disjoint balls Bi D B.xi ; ri /, with ri < ı, and for any
collection of points yi 2 B.xi ; �:ri /, there exists a diffeomorphism h 2 V supported
on the union of the Bi which satisfies h.xi / D yi for each i .

Let d be the dimension of M . A cube C of Rd is the image of the standard cube
Œ�1; 1�d by a translation and an homothety. For � > 0 we denote �:C the cube
having the same barycenter and whose edges have a length equal to � times those
of C . A cube C of a chart 'WV ! R

d of M is the preimage by ' of a cube C 0 of
R
d . The cube �:C is the preimage '�1.�:C 0/.

Lemma 4 (Pugh’s algebraic lemma). For any f 2 Diff1.M/ and any � 2 .0; 1/,
there exists N � 1 and a covering ofM by charts 'WV ! R

d whose cubes C have
the following property.

For any a; b 2 C , there is a connecting sequence .a D a0; a1; : : : ; aN D b/ such
that for each 0 � k � N � 1 the point ak belongs to f k.5=4:C / and the distance
d.ak; f

�1.akC1// is smaller than � times the distance between f k.5=4:C / and the
complement of f k.3=2:C /.

In the following, one will fix a C1-diffeomorphism f , a neighborhood U �
Diff1.M/, and:

– Some constants �; ı provided by the elementary perturbation lemma and associ-
ated to the neighborhood V D fh D f �1 ı g; g 2 Ug of the identity;

– An integer N � 1 and a finite collection of charts f'sWVs ! R
d gs2S given by

Pugh’s algebraic lemma and associated to the constant � D .�=4/4d .
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Definition 2. The collection of charts f'sgs2S is a tiled perturbation domain if we
have:

– The f k.Vs/, with s 2 S , 0 � k < N � 1, have diameter < ı and are pairwise
disjoint;

– Each set Vk is tiled, i.e. is the union of cubes (the tiles) with pairwise disjoint
interior satisfying: each tile C intersects (is adjacent to) at most 4d other tiles,
each of them having a diameter which differs from the diameter of C by a factor
in Œ1=2; 2�.

Any point distinct from its N � 1-first iterates belongs to a tiled domain, see Fig. 1
in [3]. Note also that if the interior of 3=2:C and 3=2:C 0 intersect, then the tiles
C;C 0 are adjacent.

3.2 The Orbit Selection

The perturbation domain is used to connect together a collection of segments of
orbits of f .

Definition 3. A pseudo-orbit with jumps in the perturbation domain is a sequence
.yi / such that for each i , either f .yi / D yiC1 or the points yi , f �1.yiC1/ are
contained in a same set Vs .

We are interested by the following additional properties:

1. When the yi , f �1.yiC1/ belong to Vs , there is a connecting sequence .ai;0; : : : ;
ai;N / with ai;0 D yi and ai;N D f N�1.yiC1/ such that for each 0 � k < N ,
the ball Bi;k D B.ai;k ; ri;k/ with ri;k D ��1:d.ai;k; f �1.ai;kC1// is contained in
f k.Vs/.

2. The balls Bi;k are pairwise disjoint.

In order to control the periodic pseudo-orbits, we also introduce an integer ` � 1.

3. The length of the periodic pseudo-orbit .y1; : : : ; yn D y0/ is not a multiple of `.

When a pseudo-orbit .y1; : : : ; yn D y0/ satisfies conditions (1), (2) and f .y0/ ¤
y1, one can apply the elementary perturbation lemma and build a diffeomorphism
g 2 U by perturbing f in the union of the balls Bi;k such that the point y0 belongs
to a periodic orbit of length n.

These conditions can be obtained by the following proposition.

Proposition 4. Let .yi / be a periodic pseudo-orbit with jumps in the perturbation
domain such that when yi , f �1.yiC1/ differ, they are contained in a same tile of the
perturbation domain.

Then there exists another periodic pseudo-orbit with jumps in the perturbation
domain which satisfies (1) and (2). Moreover if the first pseudo-orbit satisfies (3),
then so does the second one.
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Proof. Note that by an arbitrarily small modification of the initial pseudo-orbit, the
points of the pseudo-orbit do not belong to the boundaries of the tiles. In this way, to
each point of the pseudo-orbit which belong to the perturbation domain is associated
a unique tile.

3.2.1 The Shortcut Process

The new orbit is obtained from the first one by performing successive shortcuts: if
.y1; : : : ; yn/ is a first periodic pseudo-orbit with jumps in the perturbation domain
and if yi ; yj for some i < j belong to a same set Vk , then .y1; : : : ; yi ; yj�1; : : : ; yn/
and .yiC1; : : : ; yj / are two new periodic pseudo-orbits with jumps in the pertur-
bation domain. In the process, we keep one of them and continue with further
shortcuts. Note that if the initial orbit satisfies (3), i.e. if n is not a multiple of `,
then the periods of the two new orbits cannot be both multiple of `: we can thus
choose a new orbit which still satisfies (3).

3.2.2 Primary Shortcuts Avoiding Accumulations in Tiles

In a first step, we perform shortcuts so that the new periodic pseudo-orbit still has
jumps in the tiles of the perturbation domain, but intersect each tile at most once: we
perform a shortcut each time we have a pair yi ; yj in a same tile of the perturbation
domain.

3.2.3 Construction of Connecting Sequences

We then consider each jump of the obtained periodic pseudo-orbit .y1; : : : ; yn/
at the end of the first step: these are the indices i such that yi is different from
f �1.yiC1/. By definition the two points belong to a same tile Ci of a domain
Vs . One can thus use the property given by Pugh’s algebraic lemma and build a
connecting sequence .ai;0; : : : ; ai;N / with ai;0 D yi , xi;N D f N�1.yiC1/, such that
for each 0 � k � N � 1, the distance di;k D d.ai;k; f

�1.ai;kC1// is smaller than
� times the distance between f k.5=4:Ci/ and the complement of f k.3=2:Ci/. We
then set ri;k D ��1:di;k and introduce the ball Bi;k D B.ai;k ; ri;k/ � f k.Vs/. By
construction the condition (1) is satisfied, but the different balls Bi;k may have non-
empty intersection when i varies.

3.2.4 Secondary Shortcuts Avoiding Ball Intersections

Let us now consider the case where two balls Bi;k; Bj;k0 intersect. Note that this has
to occur in some domain f k.Vs/ for a given s 2 S , hence we have k D k0. We then
perform the shortcut associated to the pair yi ; yj . Let us assume for instance that
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one keeps the orbit .y1; : : : ; yi ; yjC1; : : : ; yn/ (the other case is similar). As a new
connecting sequence between yi and f N�1.yj / one introduces

.a0
i;0; : : : ; a

0
i;N / D .ai;0; : : : ; ai;k ; aj;kC1; : : : aj;N /:

In this way all the balls associated to the new sequence but one coincide with balls
of the former sequences. Only the new ball B 0

i;k is different: it has the same center
as as Bi;k but a larger radius r 0

i;k. Since the distance between xi;k and f �1.xj;kC1/
is smaller than 2.ri;k C rj;k/, we have

r 0
i;k � 2��1:.ri;k C rj;k/: (1)

3.2.5 The Process Stops

Since the initial length of the pseudo-orbit is finite, the process necessarily stops in
finite time. We have however to explain why along the secondary shortcut procedure
each ball Bi;k does not increase too much and does not leave the sets f k.Vs/.

By construction it is centered at a point ai;k associated to a tile Ci . Let us assume
that the radius ri;j is a priori bounded by the distance between f k.5=4:Ci/ and
the complement of f k.3=2:Ci/. Since ai;k 2 5=4:Ci , the ball Bi;k is contained in
3=2:Ci and can only intersect the cubes 3=2:C such thatC and Ci are adjacent tiles.
If Bi;k intersects Bj;k , the point aj;kC1 is thus associated to a tile adjacent to Ci .

Provided the a priori bound is preserved, the balls centered at ai;k during the
process can thus intersect successively at most 4d other balls coming from adjacent
tiles. The diameter of the tiles adjacent to Ci is at most twice the diameter of
Ci , hence from (1) after 4d shortcuts, the diameter of the ball centered at ai;k is
bounded from above by .�=4/4

d
� times the distance between f k.5=4:Ci/ and the

complement of f k.3=2:Ci/. From our choice of � this gives the a priori estimate.
When the process stops, all the balls are disjoint, hence properties (1) and (2) are

satisfied. As we already explained, property (3) is preserved.

3.3 Proof of Theorem 6

Let us introduce as before an integer N � 1 and a chart 'WV !M of a
neighborhood V of x, given by Pugh’s algebraic lemma.

3.3.1 The Non-periodic Case

Let us first assume that x is non-periodic. If V is taken small enough, it is disjoint
from its N � 1 first iterates. It can also be tiled, so that it defines a perturbation
domain and x belongs to the interior of some tile C .
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By assumption, there exists z 2 C and an iterate f n.z/ 2 C with n � 1 which
is not a multiple of `: the sequence .z; f .z/; : : : f n�1.z// thus defines a periodic
pseudo-orbit which satisfies the property (3). Applying Proposition 4, there exists a
pseudo-orbit with jumps in the perturbation domain which satisfies all the properties
(1), (2) and (3).

One deduces that there exists a diffeomorphism g in the neighborhood U of f
having a periodic point in V (close to x) whose period is not a multiple of `. By
a new perturbation (a conjugacy), one can ensure that this periodic point coincides
with x, as required. The proof is the same in Diff1!.M/. When one gives an open set
U containing fx; f .x/; : : : ; f N�1.x/g and fz; f .z/; : : : f n�1.z/g, it also contains
the obtained periodic orbit.

3.3.2 The Periodic Case

When x is periodic, it cannot belong to a tiled domain disjoint from a large number
of iterates. However from [2, Proposition 4.2], since x is non-resonant, the orbit O
of x satisfies the following property (see [2, Definition 3.10]).

Definition 4. A periodic orbitO is circumventable for .';N / if there exists

– Some arbitrarily small neighborhoodsW � � W C of O ,
– An open subset V 0 � V which is a tiled domain of the chart ',
– Some families of compact sets D�;DC contained in the interior of the tiles of V 0,

such that

– Any finite segment of orbit which connectsW � toM nW C (resp. which connects
M nW C to W �) has a point in a compact set of D� (resp. of DC),

– For any compact sets DC 2 DC, D� 2 D�, there exists a pseudo-orbit with
jumps in the perturbation domain V 0 which connectsDC toD� and is contained
in W C.

Note that one can assume that the period r of p is a multiple of ` since otherwise
the conclusion of Theorem 6 already holds. One can consider as before z 2 V \W �
and an iterate f n.z/ 2 V \W � with n � 1 which is not a multiple of `. Let f k�

.z/,
f kC

.z/ be the first and the last iterates f k.z/ of z with 0 � k � n which belong
to V n W C. The integers k� and n � kC are multiples of r , and hence of `. As a
consequence kC � k� is not a multiple of `. By Definition 4, there exist also some
iterates z�; f m1.z�/ of z which belong respectively to some compact setsD� 2 D�
and DC 2 DC respectively and such that m1 � 1 is not a multiple of `. There also
exist a pseudo-orbit .y0; : : : ; ym2/ contained in W C, with jumps in the tiles of V 0
and such that y0 2 DC and ym2 2 D�. In particular, m2 is a multiple of r , and
hence of `. One deduces that the pseudo-orbit .f .z�/; : : : ; f m1.z�/; y1; : : : ; ym2/
has jumps in the tiles of the domain V 0 and its length m2 C m1 is not a multiple
of `.
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Applying Proposition 4, there exists a pseudo-orbit with jumps in the pertur-
bation domain which satisfies properties (1), (2) and (3). One concludes as in the
non-periodic case.

4 Consequences

We now give the proof of the Theorem 4, which implies Theorems 2 and 3. It
combines the classical generic properties and a standard Baire argument.

4.1 The Non-conservative Case

There exists a dense Gı subset G� Diff1.M/ of diffeomorphisms f which
satisfy:

1. All the periodic points are hyperbolic.
2. Any intersection x between the stable W s.O/ and the unstable manifolds
W u.O 0/ of two hyperbolic periodic orbit is transverse, i.e. TxM D TxW s.O/C
TxW

u.O 0/.
These two items together form the Kupka-Smale property, see [12, 20].

3. Any locally maximal chain-transitive set is a relative homoclinic class.
4. If two hyperbolic periodic orbits O;O 0 are contained in a same chain-transitive

set �, then by an arbitrarily small C1-perturbation there exists a cycle between
O andO 0 which is contained in an arbitrarily small neighborhood of �.

5. Any two hyperbolic periodic orbit with the same stable dimension, contained in
a same chain-transitive set �, are homoclinically related in any neighborhood
of �.
The three last items are direct consequences of the connecting lemma for pseudo-
orbits [3] (see also [8, Theorem 6] for a local version).

6. For any ` � 1 and any open set U , let K`;U .f / denote the closure of the set of
periodic points whose period is not a multiple of ` and whose orbit is contained
in U .
If g is C1-close to f , then K`;U .g/ is contained in a small neighborhood of
K`;U .f /.

Proof. When all the periodic orbits of f are hyperbolic (or more generally have
no eigenvalue equal to 1), f is a lower-semi-continuity point of the map `;U Wg 7!
K`;U .g/ for the Hausdorff topology. One deduces from Baire’s theorem thatK`;U

is continuous in restriction to a dense Gı subset G0 � Diff1.M/. If f 2 G0
does not satisfy the item 6, then there exists a point x 62 K`;U .f / which is
arbitrarily close to a periodic point p of a diffeomorphism g close to f and
whose period is not a multiple of `. By a small perturbation, one can assume that
the periodic point p has no eigenvalue equal to 1, and hence one can replace g
by any diffeomorphism close: taking g 2 G0, one contradicts the continuity of
K`;U on G0. This proves the property.
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7. For any hyperbolic periodic orbit O , any neighborhood U of O and any
diffeomorphism g C 1-close to f , the relative homoclinic class H.Og;U / of g
has the same periods asH.O;U /.

Indeed we noticed in Sect. 2.4 that the period map g 7! `.Og/ is upper-
semi-continuous, and hence is locally constant on an open and dense subset of
Diff1.M/.

We now fix f 2 G and a locally maximal chain-transitive set � D \i2Zf i .U /

in an open set U . By item 3, � is a relative homoclinic class H.O;U /. Then by
Proposition 2, the set � admits an invariant decomposition into compact sets

� D �1 [ � � � [�`;

such that for each i , the restriction of f ` to�i is topologically mixing,�i coincides
with the pointwise relative homoclinic class of a point ofO in U , and ` is the period
of the relative homoclinic class.

Let us assume by contradiction that �1 and �i intersect for some 1 < i � `

at a point x. If x is periodic, then it is hyperbolic by item 1. Since f ` is transitive
in �1, one deduces that for any neighborhood V of x there exists k � 0 and a
segment of orbit y; f .y/; : : : ; f k`Cj .y/ in U with endpoints in V . One can thus
apply Theorem 6 and by a C1-perturbation build a periodic point arbitrarily close
to x, whose period is not a multiple of ` and whose orbit is contained in U . From
the item 6, this shows that K`;U .f / contains x. Since � is the locally maximal
invariant set in U , this shows that it contains a periodic orbit O 0 whose period is
not a multiple of ` and which is hyperbolic by the item 1. From the item 4, one
can create by an arbitrarily small perturbation a cycle between O and O 0. From
item 7 and Proposition 3 the period of O 0 is contained in the set of periods `.O/:Z,
a contradiction. The sets �i are thus pairwise disjoint.

The uniqueness of the decomposition is easy: considering any small open set V
intersecting H.O;U /, then a large iterate f n.V / meets V \H.O;U / if and only
if n is a multiple of `. Moreover the closure of

S
k�k0 f

k`.V \H.O;U //, for k0
large, coincides with one of the sets�i . We have thus obtained the main conclusion
of Theorem 4.

Let us consider two hyperbolic periodic points p; q 2 �1 having the same
stable dimension. By item 5, their orbits are homoclinically related in U . The
previous discussion shows that �1 D h.p;U / D h.q; U / and ` is the minimal
positive integer such that .W u.f `.p// j\ W s.p// \� is non-empty. By item 2, the
intersections betweenW u.f `.p// andW s.p/ are all transverse, giving the first item
of the Theorem 4.

There exists a transverse intersection point in � between W u.p/ and an iterate
W s.f k.q//. Using the fact that the decomposition of the theorem is an invariant
partition into disjoint compact sets, one deduces that f k.q/ belongs to �1 and that
k is a multiple of `. By Proposition 1, this implies that .W u.p/ j\ W s.q// \ �
is non-empty. Lemma 2 and item 2 now show that �1 D h.p/ is the closure of
.W u.p/ j\ W s.q// \ � D W u.p/ \ W s.q/ \ �, proving the second item of the
theorem.
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4.2 The Conservative Case

When dim.M/ � 3 and ! is a volume form, the previous proof goes through. In the
other cases ! is a symplectic form and the item 1 may fail. However the same proof
can be done replacing the item 1 by the properties 1’ and 1” below.

Any diffeomorphism in a denseGı subset G! � Diff1!.M/ satisfies the items 2–7
and moreover:

1’ All the periodic points are non-resonant.
1” Any neighborhood of a periodic orbit O contains a hyperbolic periodic orbit
O 0. Consider ` � 1. If the period ofO is not a multiple of `, then the same holds
for O 0.

Proof (Proof). By [18], there exists a dense Gı subset G0
! of diffeomorphisms

satisfying the item 1’.
One may then use similar arguments as in [14, Proposition 3.1]. Consider any

non-hyperbolic periodic point x of a diffeomorphism f , with some period r . Using
generating functions, it is possible to build a diffeomorphism Qf 2 Diff1!.M/ that is
C1-close to f such that the dynamics of Qf r in a neighborhood of x is conjugated
to a non-hyperbolic linear symplectic map A which is diagonalizable over C.

Let �1; : : : ; �m be the eigenvalues of A with modulus one. One can assume
moreover that they have the form e2i�pk=qk where ` ^ qk D 1. One deduces that
x is the limit of periodic points y whose minimal period is r:L where L is the least
common multiple of the qk . The tangent map at y at the period coincides with the
identity on its central part. Consequently, one can by a small perturbation turn y to
a hyperbolic periodic point. This shows that a diffeomorphism arbitrarily C1-close
to f in Diff1!.M/ has a hyperbolic periodic orbit contained in an arbitrarily small
neighborhood of the orbit of x and having a period which is not a multiple of `.

We end with a Baire argument. For n; ` � 1, let us denote by Dn;` � G0
! the

subset of diffeomorphisms whose periodic orbits of period less than n which are not
a multiple of ` are 1=n-approximated by hyperbolic periodic orbits whose period is
not a multiple of `. Since the periodic points of period less than n are finite and vary
continuously with the diffeomorphism, this set is open; it is dense by the first part
of the proof. We then set G! D Tn;` Dn;`.
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Recent Results on the Size of Critical Sets
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Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract In the first part of this survey we review some special cases of 'F -
category of a pair .M;N / of manifolds such as '-category, Morse-Smale charac-
teristic, and Morse-Smale characteristic for circular functions. Section 2 presents
examples of pairs with finite ', and Sect. 3 provides lower estimates for the size
of the critical sets in terms of topological dimension. We employ the cardinality
when the manifolds admit maps with finitely many critical points and the topological
dimension when no such maps exist.

1 Introduction

Let Mm;Nn be smooth manifolds and F � C1.M;N / be a family of smooth
mappings. The 'F -category of pair .M;N / is defined by

'F .M;N / D minf�.f / W f 2 Fg ; (1)
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Kogalniceănu nr. 1 400084, Cluj-Napoca, Romania
e-mail: cpintea@math.ubbcluj.ro

DOI 10.1007/978-3-642-28821-0 2, © Springer-Verlag Berlin Heidelberg 2012
17P.M. Pardalos and T.M. Rassias (eds.), Essays in Mathematics and its Applications,



18 D. Andrica and C. Pintea

where �.f / stands for the cardinality of the critical set C.f / of f W M ! N .
It is clear that 0 � 'F .M;N / � C1 and we have 'F .M;N / D 0 if and only
if family F contains immersions (if m < n), submersions (if m > n) or local
diffeomorphisms (if m D n).

In the following we shall point out some important particular cases as they are
presented in the book [1, pp. 145–147].

1. Let us consider F D C1.M;N /. Then 'F .M;N / represents the '-category of
pair .M;N / and it is simply denoted by '.M;N /. Remark that '.M;N / point
out a class of mappings f 2 C1.M;N / having a minimal critical set C.f /. In
a series of papers Church, and Church and Timourian [10–12] using results from
dimension theory, studied the mappings f 2 C1.M;N / with small critical set.
Some properties of the invariant '.M;N / are given in Sect. 4.4 of the book [1].

2. Consider the case when N D R, the real line, and the family F is given by
F.M/ D C1.M;R/, the algebra of all smooth real functions defined on M .
In this situation 'F .M;R/ represents the '-category of M (or the functional
category) and it is denoted by '.M/. The invariant '.M/ was first investigated
by Takens. The effective computation of '.M/ is a difficult problem (see also
Sect. 4.3 of the book [1]).
It is interesting to remark that we have not an example of closed manifold Mm

such that cat.M/ < '.M/ and also the equality cat.M/ D '.M/ is proved
only for some isolated classes of manifolds. Note that cat.N / stands for the
Lusternik-Schnirelmann category of M [1]. To understand the difficulty of the
problem if cat.M/ D '.M/ for every closed manifold let us look only to
the following particular situation: cat.M/ D '.M/ D 2. From cat.M/ D 2

one obtains that M is a homotopic sphere. Taking into account the well-known
Reeb’s result, from the equality '.M/ D 2 it follows that M is a topological
m-sphere. Therefore, the equality cat.M/ D '.M/ D 2 is equivalent to the
Poincaré conjecture. According to the fact that Poincaré conjecture was proved
to be true, it follows that for any closed manifold with cat.M/ D 2 we have
'.M/ D 2.

3. Let us consider N D R, F D Fm.M/ � C1.M;R/, the set of all Morse
functions defined onM . In this case one obtains 'F .M;R/ D 	.M/, the Morse-
Smale characteristic of manifold M , an important invariant of M intensively
studied by many authors. We mention here only the papers [21,22] and Sect. 4.1–
4.2 of [1]. An important situation when the Morse-Smale characteristic can
be computed in terms of the homology of M is given by the situation when
the manifold M is simply-connected of dimension > 5. This property was
proved in the celebrated paper of Smale [26]. Efforts have been made to
generalize Smale’s result to the case that manifold M is not simply-connected.
For example, Sharko [25] proved that still it is possible to compute the Morse-
Smale characteristic of the manifolds with infinite cyclic fundamental group. But
a complete answer for generalM is not known.

4. Using the notations above, consider N D S1 and the family F D Fm.M; S1/ �
C1.M; S1/, given by the set of all circle-valued Morse functions defined onM .
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The systematic study of circle-valued Morse functions was initiated by Novikov
in 1980. The motivation came from a problem in hydrodynamics, where the
application of the variational approach led to a multi-valued Lagrangian. In
this case we denote 'F .M; S1/ by 	S1.M/; and we call it the Morse-Smale
characteristic of manifoldM for circle-valued Morse functionsM ! S1. So, in
this situation we have

	S1.M/ D minf�.f / W f 2 Fm.M; S1/g: (2)

The invariant 	S1.M/ is quite different than 	.M/, and it is better reflected by
the structure of the fundamental group �1.M/. The computation of 	S1.M/

represents an interesting problem which is related to the topology and the
geometry of the closed one-forms on manifoldM .

5. Let G be a compact Lie group which act on the manifolds Mm, Nn. Recall that
the mapping f W M ! N is said to be G-equivariant if f .gp/ D gf .p// for
all p 2 M and all g 2 G. Observe that the critical set of such a map is invariant
under the action of G on M , as the rank of equivariant maps is actually constant
on orbits within the source manifold M under the action of G on M . In other
words, the critical sets of G-equivariant maps are unions of orbits, usually called
critical orbits of f , inside M under the action of G on M . This is the reason to
work, within this context, with the cardinality of the set of critical orbitsC.f /=G
rather than the cardinality of the critical set itself. Therefore one defines the
G-equivariant '-category of the pair .M;N / as

'G.M;N / WD minfcard.C.f /=G/ W f 2 C1
G .M;N /g;

where F WD C1
G .M;N / stands for the family of all smooth equivariant

mappings from M to N . In the case of the trivial action of G on the target
manifold N , note that the G-equivariant maps are actually the invariant ones
and N=G 	 N in this case. In the case of free actions of G on both manifolds
one could try to compare '.M=G;N=G/ with 'G.M;N / as well as '.M=G;N /
with 'G.M;N / when G acts freely on M and trivially on N .
Let F � C1.M;N / be a family of smooth mappings M ! N . Taking into
account the definition of 'F .M;N /, one obtains '.M;N / � 'F .M;N /, where
'.M;N / is the '-category of .M;N / related to the family C1.M;N / (see the
particular case (1)). In some papers we gave sufficient conditions expressed in
terms of some topological invariants of manifolds M and N in order to have
'.M;N / D C1 (see Sects. 4.4 and 4.5 of [1]). These conditions imply that
'F .M;N / D C1, for any family F � C1.M;N /.
In Sect. 2 we review our the last results involving the '-category of a pair
of surfaces and spheres, obtained in the paper [2, 4]. One of the main pur-
poses of this section is to present two constructions for a mapping M !
S2 having three critical points, where M is an orientable surface which is
not diffeomorphic to the 2-dimensional sphere S2. The last subsection con-
tains some additional results to the paper [3]. Also, we present some recent
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results on '-category of some pair of manifolds which admit maps with
finitely many critical points. Pairs of compact surfaces as well as connected
sums of products of spheres are investigated from this point of view and
it reflects the contents of the works [2–4, 14]. In Sect. 3 we review recent
theorems on maps with high dimensional critical sets. In the zero codimen-
sion case, the main class of such maps consists in those of zero degree,
while the higher codimension case is represented by partial results inspired
by the zero codimension one. This section reflects the contents of the works
[19, 20].

2 Functions with Finitely Many Critical Points

2.1 The '-Category of a Pair of Surfaces and Spheres

Denote by ŒŒr�� the smallest integer greater than or equal to r and by Œx� the largest
number smaller or equal to x. Write, when 
.N / < 0:

j
.M/j D d j
.N /j C v;where d; v 2 ZC; 0 � v < j
.N /j

so that

d D
�

.M/


.N /

�

The following result was proved in paper [2].

Theorem 1. Let M and N be connected closed orientable surfaces.

1. If 
.M/ > 
.N/ then '.M;N / D 1.
2. If M ¤ S2 then '.M; S2/ D 3.
3. If N is the torus S1 
 S1 then

'.M; S1 
 S1/ D
8
<

:

1; if 
.M/ < 0

0; if M D S1 
 S1
1; if M D S2

4. If 
.N / < 0, then

'.M;N / D
( hh v

d � 1
ii
; if d � 2

1; otherwise
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The situation when at least one of surfacesM andN is not orientable was studied
in the paper [4]. The main result proved in [4] is the following:

Theorem 2. 1. Suppose that M and N are nonorientable.

a. If N D RP
2 then

'.M;RP2/ D
�
0; if M D RP

2

2; otherwise

b. When N is the Klein bottle we have

'.M;RP2#RP2/ D
8
<

:

1; if 
.M/ 	 0 .mod 2/
0; if M D RP

2#RP2

1; if 
.M/ 6	 0 .mod 2/

c. Assume from now on that 
.N / < 0, soN is not RP2 nor the Klein bottle.

i. If 
.M/ � 2
.N / then

'.M;N / D
�
0; if 
.M/ D 2
.N /
1; otherwise

ii. If 
.M/ < 2
.N /.

(A) Assume that 
.N / 	 0 .mod 2/. Then

'.M;N / D
( hh v

d � 1
ii
; if 
.M/ 	 
.N / 	 0 .mod 2/

1; if 
.M/ 	 1 .mod 2/; 
.N / 	 0 .mod 2/

(B) Suppose that 
.N / 	 1 .mod 2/. Then

'.M;N / D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

hh v

d � 1
ii
; if d 	 
.M/ .mod 2/

max
�hh v

d � 1
ii
; if d 6	 
.M/ .mod 2/; d � 3

��
vC j
.N /j

d

���

;

1; if d 6	 
.M/ .mod 2/; d D 2

d. Suppose thatM is nonorientable andN is orientable. Then '.M;N / D1.
e. M is orientable and N is not orientable.

i. If 
.N / < 0
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'.M;N / D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

max

�hh v

d � 1
ii
;

��
vC j
.N /j

d

���

; if d is odd d � 5
hh v

d � 1
ii
; if d is even d � 4

0; if M D bN

1; if M ¤ bN; d � 3

ii. If N D RP
2 then

'.M;RP2/ D
�
2; if 
.M/ � 0
0; if M D S2

iii. If N D RP
2#RP2 then

'.M;RP2#RP2/ D
8
<

:

1; if 
.M/ < 0

0; if M D S1 
 S1
1; if M D S2

Remark 1. Computations were previously done for orientable surfaces in [2]. In
the paper [18] it was proved that '.Y;X/ is infinite when 
.Y / > 
.X/. In the
later case it was actually proved in the paper [19] that dim.C.f // � 1 for every
differentiable map f W X �! Y and dim.B.f // D 1 whenever R.f / ¤ ; (See
also Example 2(1) of this work).

Moreover, recent results of Bogatyi, Kudryatseva, and Zieschang [7,8] show that
the minimal number of critical points can be achieved by using maps f W Y !X

which are primitive branched coverings, i.e. mappings inducing surjective maps at
the level of fundamental groups.

The computation of '-category for any pair of spheres is a very difficult problem.
It is clear that we have '.Sm; Sn/ D 0 if m � n. Also, it is not difficult to show that
'.Sm; S1/ D 2 if m � 2. Some partial results when m > n � 2 were obtained in
the paper [2] and they are contained in:

Theorem 3. 1. The values of m > n � 2 for which '.Sm; Sn/ D 0 are exactly
those arising in the Hopf fibrations, that is, n 2 f2; 4; 8g and m D 2n� 1.

2. One has '.S4; S3/ D '.S8; S5/ D '.S16; S9/ D 2.
3. If m � 2n � 3, then '.Sm; Sn/ D 1.
4. If '.S2n�2; Sn/ is finite, then n 2 f2; 3; 5; 9g.

2.2 The Construction of a Mapping with Three Critical Points
from M to S 2

In [2] we treated separately the case N D S2, by making use of Belyi maps (see
[24]), but the proof was rather sketchy. Morris Hirsch asked us for more details and
later gave us the following simple proof using triangulations.
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The algebraic topology arguments in [2] show that '.˙; S2/ � 3 and it suffices
to see that there exists a Belyi map having precisely three critical points, namely
one critical point above each critical value.

There exist triangulations of the surface M with any number of vertices s � 1,
in particular for s D 3. In fact, we fix the vertices and then add, inductively, a
number of disjoint arcs joining the vertices such that no two arcs be homotopically
equivalent, by a homotopy keeping the endpoints fixed. Consider the maximal col-
lection of pairwise nonhomotopic such arcs. Moreover the complementary regions
are triangles, since otherwise we can add more arcs, contradicting the maximality.
We obtained, therefore, a triangulation ofM having s vertices, 2s�2
.M/ triangles
and 3s � 3
.M/ edges. Although each cell has its vertices among the three vertices
of the triangulation, they are not necessarily distinct.

However, we need a special triangulation, namely one in which all triangles have
the same (distinct) three vertices. Given n � 1 we consider the regular polygon in
the hyperbolic plane (respectively the Euclidean plane, when n D 1) with 2.2nC1/
vertices and angles

2�

2nC 1 . We identify the opposite edges by means of isometries

reversing the orientation. There are then two orbits of the vertices, and around each
vertex the total angle is 2� . We obtain then a closed hyperbolic surface.

Let us subdivide it into equal triangles with a common vertex at the center of the
polygon. This triangulation has three vertices, 2.2n C 1/ triangles and 3.2n C 1/
edges and thus the surface has genus n. Label the central vertex by 1 and the two
other vertices by 2 and 3. Then each triangle of the triangulation has the vertices
1–3. The hyperbolic surface is oriented and thus each triangle inherits an orientation.
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We say that a triangle is positive if the cyclic order of the labels of its vertices is 1–3
and negative otherwise. Observe that adjacent triangles have distinct signs since the
order of 2, 3 is reversed. Consider next the triangulation of S2 consisting of two
triangles whose boundaries are identified. Now, map the triangulation of M onto
that of the sphere S2 by mapping each triangle ofM to one or the other triangles of
the sphere according to the sign. This yields a mapM ! S2 which is ramified only
at the three vertices.

There is also a beautiful example due to John Hubbard of a Belyi function with
only three critical points, obtained by considering ˙ � CP

2 to be the projective
algebraic curve determined by the (non-homogeneous) equation

y2gC1 D x2 � 1:

The projection onto the first coordinate is a holomorphic map ˙ ! CP
1, which

is ramified over 1,�1 and1 and has three critical points. By the Riemann–Hurwitz
formula we have 
.˙/ D 2 � 2g.

One can seek for the topological classification of smooth functions f WM ! S2

with three critical points, i.e. up to the action by left multiplication by diffeomor-
phisms of M . The pull-back by f of the triangulation of S2 consisting of two
triangles (with vertices at critical values) is a special triangulation of M , in which
triangles can be given signs, according to the triangle covered on the sphere. If
we label the vertices by 1–3 then the sign of a triangle corresponds to the cyclic
order of the boundary labels. Further, if we fix a vertex, say the one labeled 1, and
look at the edges incident to it, then their endpoints are labeled only by 2 and 3;
moreover, consecutive edges correspond to different labels, and thus the cyclic order
of these labels is an alternate sequence 2; 3; 2; : : : ; 3. The union of these triangles is
a fundamental polygon P for the surfaceM . Thus P has 2.2nC 1/ edges, where n
is the genus of M . In particular P is the polygon drawn above.

Furthermore, one obtains M by identifying the edges of P by means of an
involution j . The involution h should satisfy the following conditions:

1. j reverses the orientation of the edges inherited from the circle, such that the
quotient is orientable;

2. j preserves the labels;
3. The orbit of a vertex by the permutation group generated by j is the set of all

vertices with the same label; this means that there are precisely two vertices in
the quotientM .

4. Adjacent edges are not identified by j .

Thus, up to a homeomorphism of M the special triangulations of M correspond
to polygons with an involution j as above. By direct inspection it follows that there
are not any other involutions j except the standard one from above, when the genus
is at most 3.



Recent Results on the Size of Critical Sets 25

2.3 Further Examples of Maps with Finitely Many Critical
Points

Recall from the paper [2] that '.S2n; SnC1/ D 2, if n D 2; 4 or 8. This equality is
realized by taking suspensions of both spaces in the Hopf fibration h W S2n�1 ! Sn,
where n D 2; 4 or 8, and then smoothing the new map at both ends. The extension
H W S2n ! SnC1 has precisely two critical points. This is also the basic example of
a Montgomery-Samelson fibration with finitely many critical points, as considered
in [5]. Our aim in this section is to define fiber sums of Hopf fibrations leading to
other examples of pairs of manifolds with finite ' and it reflects the content of the
work [14]. A characterization of the closed 2k-manifolds admitting smooth maps
onto .k C 1/-manifolds, k 2 f2; 4g, with finitely many critical points is provided
by Funar in [13], where he also provides an upper bound for the '-category of such
pairs.
Identify SnC1 (and respectively S2n) with the suspension of Sn (respectively S2n�1)
and thus equip it with the coordinates .x; t/, where jxj2 C t2 D 1, and t 2 Œ�1; 1�.
We call the coordinate t the height of the respective point. The suspensionH is then
given by:

H.x; t/ D
�

 .jxj/h
�
x

jxj
�

; t

�

;

where  W Œ0; 1� �! Œ0; 1� is a smooth increasing function infinitely flat at 0 such
that  .0/ D 0 and  .1/ D 1.

Pick-up a number of points x1; x2; : : : ; xk 2 SnC1 and their small enough disk
neighborhoods xi 2 Di � SnC1, such that:

1. The projections of Di on the height coordinate axis are disjoint;
2. TheDi ’s do not contain the two poles, i.e. their projections on the height axis are

included in the open interval .�1; 1/.
Let Ak be the manifold with boundary obtained by deleting from SnC1 of the
interiors of the disks Di , 1 � i � k. Let also Bk denote the preimage H�1.Ak/
� S2n by the suspended Hopf map. Since H restricts to trivial fibration over the
disksDi it follows that Bk is a manifold, each one of its boundary component being
diffeomorphic to Sn�1
Sn. Moreover, the boundary components are endowed with
a natural trivialization induced from Di .

Let now consider a finite connected graph � . To each vertex v of valence k we
associate a block .Bv; Av;H jBv/ which will be denoted .Bk; Ak;H jBk / when we
want to emphasize the dependence on the number of boundary components. Each
boundary component of Av or Bv corresponds to an edge incident to the vertex v.
We define the fiber sum along � as the following triple .B� ;A� ;H� /, where:

1. A� is the result of gluing the manifolds with boundary Av, associated to the
vertices v of � , by identifying for each edge e joining the vertices v and w (which
might coincide) the pair of boundary components in Av and Aw corresponding
to the edge e. The identification is made by using an orientation-reversing
diffeomorphism of the boundary spheres.
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2. B� is the result of gluing the manifolds with boundary Bv, associated to the
vertices v of � , by identifying for each edge e joining the vertices v and w
(which might coincide), the boundary components in Bv and Bw corresponding
to the pair of boundary components in A� associated to the edge e. Gluings in
B� are realized by some orientation-reversing diffeomorphisms with respect the
product structure over boundaries of Av and Aw. We choose the identification
diffeomorphism � W @Bv �! @Bw to be one from the construction of the double
of Bv.

3. As the boundary components are identified, the natural trivializations of the
boundary components of Bv agree in pairs. Thus the maps Hv induce a well-
defined mapH� W B� ! A� .

Proposition 1. The map H� W B� ! A� has 2m critical points, where m is the
number of vertices of � .

Proposition 2. If � has e edges and c cycles, i.e. e � c C 1 vertices, then B� is
diffeomorphic to ˙2n#eSn 
 Sn#cS1 
 S2n�1 (where ˙2n is a homotopy sphere
which is trivial when n D 2), while A� is diffeomorphic to #cS1 
 Sn. For c D 0,
the notation #cS1 
 Sn stands for actually SnC1.

Corollary 1. Let n 2 f2; 4; 8g, e � c � 0 with c ¤ 1 and ˙2n be a homotopy
2n-sphere. If n D 2, assume further that˙4 n int.D4/ embeds smoothly in S4. Then

'.˙2n #eSn 
 Sn#cS1 
 S2n�1; #cS1 
 Sn/ � 2e � 2c C 2:

The opposite inequality works for every dimension and is based on some elementary
algebraic topology arguments, such as:

Proposition 3. Let M2n and NnC1 be closed manifolds and n � 2. Assume that
�1.M/ Š �1.N / is a free group F.c/ with c generators, c ¤ 1 (with F.0/ D 0),
and that �j .M/ D �j .N / D 0, for 2 � j � n � 1 and Hn�1.M/ D 0. Then
'.M;N / � ˇn.M/� 2c C 2, where ˇk denotes the k-th Betti number.

Corollary 2. For any dimension n � 2 and e; c 2 ZC, with c ¤ 1 we have

'.˙2n#eSn 
 Sn#cS1 
 S2n�1; #cS1 
 Sn/ � 2e � 2c C 2

Here #cS1 
 Sn D SnC1 when c D 0 and #eSn 
 Sn#cS1 
 S2n�1 D S2n when
e D c D 0 and˙2n denotes a homotopy 2n-sphere, for n ¤ 2.

As a final conclusion of this section we have the following result:

Theorem 4. Let n 2 f2; 4; 8g, e � c � 0 with c ¤ 1 and ˙2n be a homotopy
2n-sphere. If n D 2, assume further that˙4 n int.D4/ embeds smoothly in S4. Then

'.˙2n#eSn 
 Sn#cS1 
 S2n�1; #cS1 
 Sn/ D 2e � 2c C 2

Here #cS1 
 Sn D SnC1 when c D 0, and #eSn 
 Sn#cS1 
 S2n�1 D S2n when
e D c D 0.
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3 Mappings with Large Critical Sets: Mappings of Zero
Degree

While the evaluation tool for the size of critical sets within the previous sections
is the cardinality, the maps of zero degree between compact oriented manifolds
have all infinitely many critical points, which makes the cardinality unsuitable
to evaluate the size of critical sets of such maps. The zero degree maps have
actually high dimensional critical sets and make the topological dimension a more
appropriate evaluation tool to measure their size. On the other hand, the remarkable
Sard theorem [23] ensures us that the set of critical values have zero measure and
indirectly points out that the measure cannot distinguish the sets of critical values
of different maps. Note that an infinite dimensional version of the Sard theorem was
proved by Smale [26]. For example the set of critical values of a constant map as
well as the set of critical values of the projectionp W Sn �! R

n; p.x1; : : : ; xnC1/ D
.x1; : : : ; xn/ have both zero measure, yet one of them is a zero dimensional manifold
while the other one is the .n�1/-dimensional sphere. Consequently the topological
dimension may play some role in the evaluation process, both for the size of the
critical sets and the size of the sets of critical values, the series of works by Church
and Timourian from the mid-1960s to mid-1970s being good arguments in this
respect. We only mention here three of them, namely [10–12].

3.1 Topological Approach

In this section we also employ the topological dimension to provide some examples
of maps with large critical sets.

Theorem 5. ([16]) Every compact connected manifold Mm is a Cantor manifold,
that is no subset of M of dimension � m � 2 separates M.

The next two propositions provide us with an explicit representation of the set of
critical values as well as with information on its size, in terms of dimension, for
some differentiable maps [9].

Proposition 4. If Mm, Nn are differential manifolds with M compact, N con-
nected and m � n, then for all f 2 C1.M;N /, one has B.f / D @

�
f .R.f //

	 [
@Imf [ A.f /, where R.f / stands for the set M n C.f / of regular points of f
and A.f / for the set B.f /\ f .R.f //.
Proposition 5. Let Mm, Nn be smooth manifolds such that m � n � 2. If N is
additionally connected and f W M ! N is a closed non-surjective C1 mapping
such that R.f / ¤ ;, then dimŒB.f /� D n � 1.

The next results of this subsection are based on the paper [19].
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Theorem 6. LetMn;Nn; .n � 2/ be smooth manifolds such thatM is compact. If
M;N are orientable and f W M ! N has zero degree, then either C.f / D M or
the set R.f / DMnC.f / is not connected. In any case, dimŒC.f /� � n � 1.

Proof. We first recall that sign.df /x; x 2 R.f /; is defined to beC1 or�1 as .df /x
preserves or reverses the orientation and observe that the function R.f / �! Z is
locally constant, i.e. it is actually constant on each component ofR.f /. Recall also
that the degree deg.f / of f is defined to be

X

x2f �1.y/

sign.df /x; (3)

where y 2 Im.f / is a regular value of f , as the sum (3) is independent of y 2
N n B.f / [17, p. 28]. On the other hand the equalities

0 D deg.f / D
X

x2f�1.y/

sign.df /x;

show that the sign map sgn.df /.�/ takes both values ˙1. Consequently, R.f / D
MnC.f / is not connected, which shows, by using Theorem 5, that dimŒC.f /� �
n � 1. �

Corollary 3. If Mn;Nn; .n � 2/ are smooth manifolds with M is compact and N
orientable, then dimŒC.f /� � n� 1 for all f 2 C1.M;N / in each of the following
situations:

1. N is not compact.
2. N is compact and M nonorientable.

Theorem 7. IfMm;Nn are compact connected smooth manifolds and f WM�!N

is a C1-differentiable map such that Œ�1.N / W Im.f�
/� is infinite, then the following

statements hold:

1. dimŒB.f /� D n � 1, wheneverm � n and R.f / ¤ ;.
2. deg.f / D 0 wheneverm D n andM;N are orientable.

We are next interested in pairs .Mn;N n/ of connected orientable manifolds with
the property that deg.f / D 0 for all f 2 C1.M;N /. As we have already seen
in Theorem 7(2), this is the case when '

alg
.�1.M/; �1.N // D 1. Note that

'
alg
.G;H/ stands for the algebraic '-category of the pair .G;H/ of groups, i.e.

'
alg
.G;H/ WD minfŒH W Im.f /� j f 2 Hom.G;H/g:

If ŒH W Im.f /� is infinite for all f 2 Hom.G;H/, then the notation '
alg
.G;H/ D

1 is used. Recall that if G;H are finitely generated abelian groups such that the
inequality rank.G=t.G// < rank.H=t.H// holds, then '

alg

�
G;H

	 D 1 [18].
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Theorem 8. IfMn;Nn .n � 2/ are compact connected manifolds, then dim


C.f /�

� n � 1, for all f 2 C1.M;N /, in each of the following situations:

1. '
alg
.�

1
.M/; �

1
.N // D 1 and N is orientable.

2. �
1
.M/ is finite and �

1
.N / is infinite.

Proposition 6. For every groupsG;H , the following inequalities hold:

1. '
alg
.G;H/ � '

alg

�
G

ŒG;G�
; H
ŒH;H�

�
.

2. '
alg
.G;H/ � '

alg

�
G
t.G/

; H
t.H/

�
.

Corollary 4. Let X; Y be pathwise connected spaces and ˇ1.X/; ˇ1.Y / their first
Betti numbers.Then :

1. The inequality '
alg

�
�1.X/; �1.Y /

	 � '
alg

�
H1.X/;H1.Y /

	
holds.

2. If X; Y are compact ENR spaces such that ˇ1.X/ < ˇ1.Y /, then we have
'
alg

�
�1.X/; �1.Y /

	 D 1.

IfM is a differentiable manifold, we denote by #rM the connected sumM #M # � � �
#M of r copies of M . The connected sum #gT

2 of g copies of the torus T 2 is also
denoted by Tg and the connected sum #gRP

2 of g copies of the projective plane RP2

by Pg .

Example 1. If Mm, Nn (m; n � 2) are closed differential manifolds, then in the
following cases one has '

alg

�
�1.#rM /; �1.#sN /

	 D1:

1. M , N orientable and rˇ
1
.M/ < sˇ

1
.N /.

2. M , N nonorientable and r.ˇ
1
.M/C 1/ < s.ˇ

1
.N /C 1/.

3. M nonorientable,N orientable and r.ˇ
1
.M/C 1/ < sˇ

1
.N /C 1.

4. M orientable, N nonorientable and rˇ
1
.M/C 1 < s.ˇ

1
.N /C 1/.

Indeed, ˇ1.#kX/ D kˇ1.X/ if X is orientable and ˇ1.#kX/ D k� 1Ckˇ1.X/ if X
is not orientable [15, p. 258], as the connected sum of nonorientable manifolds is
nonorientable [27, p. 92]. In particular one gets:

1. If g < g0, then '
alg

�
�1.Tg/; �1.Tg0

/
	 D1.

2. If g < g0, then '
alg

�
�1.Pg /; �1.Pg0

/
	 D1.

3. If g < 2g0 C 1, then '
alg

�
�
1
.P

g
/; �

1
.T

g0
/
	 D1.

4. If 2g < g0 � 1, then '
alg

�
�1.Tg/; �1.Pg0

/
	 D 1.

Example 2. Let us consider two closed differential manifolds Mm, Nn (m; n � 2)
and f W #rM �! #sN be a C1 map.

1. If m D n, then dim.C.f // � n � 1 in each of the following cases:

a. M , N orientable and rˇ1.M/ < sˇ1.N /.
b. M nonorientable,N orientable and r.ˇ1.M/C 1/ < sˇ1.N /C 1.
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2. If m � n and R.f / ¤ ;, then dim.B.f // D n � 1, in each of the following
cases:

a. M , N orientable and rˇ1.M/ < sˇ1.N /.
b. M , N nonorientable and r.ˇ1.M/C 1/ < s.ˇ1.N /C 1/.
c. M nonorientable,N orientable and r.ˇ1.M/C 1/ < sˇ1.N /C 1.
d. M orientable, N nonorientable and rˇ1.M/C 1 < s.ˇ1.N /C 1/.

In particular one gets:

1. dimŒC.f /� � 1 for every C1 map f W M ! N and dimŒB.f /� D 1 whenever
R.f / ¤ ; in each of the following situations:

a. M D Tg , N D T
g0

and g < g0.
b. M D Pg , N D T

g0
and g < 2g0 C 1.

2. dimŒB.f /� D 1 for every C1 map f W M ! N with R.f / ¤ ; in each the
following situations:

a. M D P2, N D Pg and g � 2.
b. M D Pg , N D P

g0
and g < g0.

c. M D Tg , N D P
g0

and 2g < g0 � 1.

3. If n > k � 1 and r is an arbitrary positive integer, then dimŒC.f /� � n � 1, for
every C1 map f W #

r
.T k 
 Sn�k/ ! #

r
T n and dimŒB.f /� D n � 1 whenever

R.f / ¤ ;.
4. If r; s are arbitrary positive integers, then the inequality dimŒC.f /� � 2 holds,

for every C1 map f W #
r
RP3 ! #

s
.S1 
 RP2/ and dimŒB.f /� D 2 whenever

R.f / ¤ ;.
5. If r; s are arbitrary positive integers, then the inequality dimŒC.f /� � 3 holds,

for every C1 map f W #
r
CP2 ! #

s
.T 2 
 RP2/ and dimŒB.f /� D 3 whenever

R.f / ¤ ;.

Corollary 5. If Mm;Nn are compact connected manifolds such that m � n � 2
and '

alg
.�1.M/; �1.N // D 1, then no submanifold of M of dimension less than

or equal to n � 2 is the critical set of any differentiable mapping f WM �! N .

The next result shows that the critical sets of some maps, possibly with nonzero
degree, are still large.

Theorem 9. If Mn;Nn; n � 3 are compact orientable smooth manifolds and f W
M �! N is a smooth map such that j deg.f /j < '

alg

�
�1.M/; �1.N /

	
, then one

gets dimŒC.f /� � n � 2.

The next result provides estimates on the algebraic '-category of a pair of finite
groups in terms of their orders and the orders’ prime decomposition structures.
This might be useful to find examples of manifolds, with finite fundamental
groups, satisfying the requirements of Theorem 9. Such an example appears in the
paper [19].
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Theorem 10. If G;H are finite Abelian groups with gcd
�
o.G/; o.H/

	 D pr11 � : : : �
p
r
k
k , then

o.H/

gcd
�
o.G/; o.H/

	 � '
alg
.G;H/ � o.H/

p
	1
1 � � �p	kk

;

where 	i D min.˛1 ; ˇ1/ C � � � C min.˛z ; ˇz/; z D min.x; y/, and Si D Z
p
˛1
i



Z
p
˛2
i


 � � � 
 Z
p
˛x
i

, ˙i D Z
p
ˇ1
i


 Z
p
ˇ2
i


 � � � 
 Z
p
ˇy
i

are the pi -Sylow subgroups

of G and H respectively, and the exponents ˛1 ; ˛2 ; : : : ; ˛x ; ˇ1 ; ˇ2 ; : : : ; ˇy satisfy
˛1 � ˛2 � � � � � ˛x ; ˇ1 � ˇ2 � � � � � ˇy .

3.2 Geometrical Approach

Another approach to provide different examples of maps with high dimensional
critical sets is provided by Pintea [20] and uses top volume forms of the target
oriented manifolds as the key tools.

LetM be anm-dimensional manifold and let � be a k-form onM . We define the
vanishing set of �, by the collection of points z 2M at which � is (identically) zero,
that is the set

V.�/ WD fz 2 M W �z.v1; : : : ; vk/ D 0 for all vi 2 Tz.M/g:

Note that if � D
X

1�j1<���<jk�m
aj1:::jk dxj1 ^� � �^dxjk is the local representation of �

with respect to some local chart .U; /, then

V.�/ \ U D fz 2 M W aj1:::jk .z/ D 0; for all 1 � j1 < � � � < jk � mg:

For more details on vanishing sets and their properties we refer to [6].

Theorem 11. Let Mm; Nn be differential manifolds such m � n and N is
orientable. If !N is a volume form on N and f W M ! N is a differentiable
mapping, then V.f �!N / D C.f /.
Remark 2. 1. If N is a compact connected orientable n-dimensional manifold, !N

is a volume form on N and ' W N ! R is a differentiable function, thenZ

N

'!N D 0 implies that either ' 	 0, or Nn'�1.0/ is not connected, namely

'�1.0/ D V.'!N / separates N . Consequently, the equality
Z

N

� D 0, for some

differential form � 2 ˝n.N /, implies that either � D 0, or V.�/ separates N . In
any case dim .V .�// � n � 1.

2. By using the above item (1), one can provide an alternative proof of Theorem 6.
Indeed, if !N is a volume form on N , observe that deg.f / D 0 if and only if
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Z

M

f �!N D 0, which shows that either C.f / D V.f �!N / D M or C.f / D
V.f �!N / separatesM . In any case, the conclusion dimŒC.f /� � n � 1 follows
immediately. Next, if f �!N D d˛, for some ˛ 2 ˝n�1.M/, then obviously
deg.f / D 0.

Corollary 6. Let Mn;Nn .n � 2/ be compact connected orientable manifolds, let
!
N

be a volume form on N and let f W M ! N be a differentiable mapping. If
f �!

N
is exact, then dimŒC.f /� � n � 1. In particular, if f is homotopic to a map

g WM �! N having just critical points, then dimŒC.f /� � n � 1.

Proposition 7. Let Mm;Nn; Pm�n; .m > n � 2/ be compact orientable man-
ifolds such that one of the de Rham cohomology groups Hn

dR.M/ or Hm�n
dR .M/

is trivial. Then, every smooth map f W M �! N 
 P has zero degree and
dim.C.f // � m� 1 therefore.

Proof. Let !N be a volume form on N and !P be a volume form on P . Observe
that f D .�N ı f; �P ı f /, where �N W N 
 P �! N and �P W N 
 P �! P

are the projections. Recall thatN 
P is orientable and ��
N!N ^��

P !P is a volume
form on N 
 P , which shows that

deg.f / D

Z

M

f � ���
N!N ^ ��

P !P
	

Z

N�P
��
N!N ^ ��

P!P

:

and, by means of Theorem 11,

C.f / D V �f � ���
N!N ^ ��

P!P
		 D V �.�N ı f /�!N ^ .�P ı f /�!P

	
:

Assume thatHn
dR.M/ is trivial, namely .�N ıf /�!N is exact, i.e. .�N ıf /�!N D

d˛, for some ˛ 2 ˝n�1.M/. Taking into account that .�P ı f /�!P is closed, one
gets successively

Z

M

f � ���
N!N ^ ��

P !P
	 D

Z

M

.�N ı f /�!N ^ .�P ı f /�!P

D
Z

M

d˛ ^ .�P ı f /�!P

D
Z

M

d
�
˛ ^ .�P ı f /�!P

	˙
Z

M

˛ ^ d.�P ı f /�!P

D
Z

M

d
�
˛ ^ .�P ı f /�!P

	 D 0:
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At this point we may choose to use Theorem 6 or Remark 2 in order to prove the
statement. The case Hm�n

dR .M/ D f0g can be treated similarly. �

Example 3. If m; n � 2, then every differentiable map f W SmCn ! Sm 
 Sn has
zero degree, hence dimŒC.f /� � mC n � 1.

Recall that two submanifolds N1; N2 of a given finite dimensional manifold M
are said to intersect transversally at p 2 N1 \ N2, written N1 tp N2, if Tp.M/ D
Tp.N1/C Tp.N2/. If N1; N2 do not intersect transversally at p 2 N1 \N2, we use
the notation N1 6tp N2.
Proposition 8. LetMm;Nn; P p be manifolds such thatm � nCp. IfN andP are
orientable and!

N
; !

P
are volume forms onN andP respectively, then the inclusion

Vf
�
g�!

P

	 � C.g/ [ U.f; g/ holds, for every differentiable maps f W M �! N ,
g WM �! P , where

U.f; g/ WD ˚x 2 R.f /\ R.g/jf �1�f .x/
	 6tx g�1�g.x/

	�
:

In what follows we are going to provide an approach for the higher codimension
case (dimM DW m > n WD dimN ), in which, the role of the form f �!N will
be played by forms of type f �!N ^ � , where � 2 ˝m�n.M/ are closed. If f W
Mm ! Nn; .m > n/ is a differentiable mapping and ! 2 ˝m�n.M/, consider the
set R.f / WD MnC.f / of regular points of f and

Vf .!/ WD
˚
p 2 R.f / j!p.u1; : : : ; um�n/ D 0; for all u1; : : : ; um�n 2 ker.df /p

�
:

Observe that Vf .!/ D fp 2 R.f / W .i�
f .p/
!/p D 0g, where i

f .p/
stands for the

inclusion f �1.f .p//nC.f / ,! R.f / of the fiber of f
ˇ
ˇ
R.f /

passing through p. In
other words

Vf .!/ D
[

p2R.f /
V
�
i�
f .p/
!
	
:

Theorem 12. Let Mm;Nn;m � n, be compact oriented manifolds and let f W
M ! N be a differentiable mapping. If � 2 ˝m�n.M/, then V.f �!N ^ �/ D
C.f /[ Vf .�/.

Theorem 13. Let Mm;Nn; .m > n � 2/ be compact orientable manifolds and let
!
N

be a volume form on N . If f WM ! N is a differentiable map such that f �!
N

is an exact form, then, for all � 2 Zm�n.M/, the inequality dimC.f / � m�	
f
�1

holds, where 	
f
WD minfdimVf .�/ j � 2 Zm�n.M/g.

Proof. Since f �!N is exact, it follows that f �!N D d˛ for some ˛ 2 ˝n�1.M/.
This means that

Z

M

f �!N ^ � D
Z

M

d˛ ^ � D
Z

M

d.˛ ^ �/C .�1/n
Z

M

˛ ^ d� D 0;
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for each � 2 Zm�n.M/. Therefore dimC.f /C dimVf .�/ � dimV.f �!N ^ �/ �
m � 1 for all � 2 Zm�n.M/ for any closed differential form � 2 Zm�n.M/. By
considering the minimum with respect to the closed forms � 2 Zm�n.M/, one gets
dimC.f / � m � 	

f
� 1. �
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The Fox–Li Operator as a Test and a Spur
for Wiener–Hopf Theory

Albrecht Böttcher, Sergei Grudsky, and Arieh Iserles

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract The paper is a concise survey of some rigorous results on the Fox–Li
operator. This operator may be interpreted as a large truncation of a Wiener–Hopf
operator with an oscillating symbol. Employing theorems from Wiener–Hopf theory
one can therefore derive remarkable properties of the Fox–Li operator in a fairly
comfortable way, but it turns out that Wiener–Hopf theory is unequal to the task of
answering the crucial questions on the Fox–Li operator.

1 Masers, Lasers and the Fox–Li Operator

The story begun 50 years ago. Fox and Li [13] considered the repeated reflection of
an electromagnetic wave of wave length � between two plane-parallel rectangular
mirrors. By a tensor product phenomenon, it suffices to suppose that the mirrors
are infinite strips of height 2a with distance b between them. A distribution u.x/,
x 2 .�a; a/, of the field on one mirror goes over into the distribution given by

.Au/.x/ D ei�=4

2
p
�

Z a

�a
.x � y/u.y/dy; x 2 .�a; a/; (1)
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on the other mirror. Here  is the function

.t/ D e�ik
p
t 2Cb2

.t2 C b2/1=4
�

1C bp
t2 C b2

�

(2)

where k D 1=� denotes the wave number. What Fox and Li were interested in
were the eigenvalues and eigenfunctions of the operator A: if Au D �u, then the
distribution u.x/ will after n reflections be transformed into �nu.x/. The number
1� j�j2 is the energy loss of the mode u at one step. This setup is called a maser in
the case of microwaves (� � 1 cm) and a laser when working with light waves, in
the range � � 5 � 10�5 cm.

Let us consider the integral operator A given by (1) on L2.�a; a/. Being
compact, it has at most countably many eigenvalues with the origin as the only
possible cluster point. Cochran [11] and Hochstadt [16] provided a rigorous
argument which proves that A has at least one eigenvalue. However, there is no
theorem that would imply more or anything else of interest about the operator A.
Well, A has a difference kernel and hence one would expect that for large a the
eigenvalues of A somehow mimic the values of the Fourier transform of ,

O.�/ WD
Z 1

�1
.t/ei�tdt; � 2 R:

The function O.�/ is even, exponentially decaying as j�j ! 1, and in L1.R/. Had
it been in C.R/, we would have had a theorem implying that the eigenvalues of A
cluster along the range O.R/ as a!1. However, O.�/ behaves like

r
�

2bj� � kj Œ1C i sign.� � k/�

as � ! k and hence it is not even in L1.R/. In addition we should mention that
the case a � b is not the really interesting case in physics. One is therefore left
with tackling the eigenvalue problem for A numerically, the big problem in this
connection being that the kernel  is highly oscillating: note that k � 20;000 cm�1
for light waves.

Fox and Li found an ingenious way out. The physically relevant case is the one
where a b. They wrote

exp.�ik
p
t2 C b2/ D exp

�

�ikb

�

1C t2

2b2
CO

�
t4

b4

���

;

and since jt j < a, one may ignore theO term if kba4=b4  1, that is, if a4  �b3.
As �  b, this assumption automatically implies that a  b, and therefore .t2 C
b2/1=4 and b=

p
t2 C b2 may be replaced by

p
b and 1, respectively. In summary, the

operator A may be approximated by the operator
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.A1u/.x/ D ei�=4e�ikb

p
�b

Z a

�a
e�i.k=2b/.x�y/2u.y/dy; x 2 .�a; a/:

The change of variables x ! ax, y ! ay yields the operator

.A2u/.x/ D aei�=4e�ikb

p
�b

Z 1

�1
e�i.ka2=2b/.x�y/2u.y/dy; x 2 .�1; 1/; (3)

and abbreviating ! WD ka2=.2b/ D a2=.2�b/ and
p

i WD ei�=4 we arrive at the
equality A2 D

p
2�e�ikbF�

! with F�
! and F! defined on L2.�1; 1/ by

.F�
!u/.x/ D

r
!i

�

Z 1

�1
e�i!.x�y/2u.y/dy; .F!u/.x/ D

r
!

�i

Z 1

�1
ei!.x�y/2u.y/dy:

Note that F�
! is really the adjoint of F! . The operator F! is now called the Fox–Li

operator, and the eigenvalues and eigenfunctions of this operator are what one wants
to know.

After the change of variables x ! x=
p
! � 1, y ! y=

p
! � 1 the operator F!

becomes the operator given by

.F!u/.x/ D 1p
�i

Z 2
p
!

0

ei.x�y/2u.y/dy; x 2 .0; 2p! /; (4)

on L2.0; 2
p
! /, and since ! D a2=.2�b/ may also be assumed to be very large,

F! is a very large truncation of a Wiener–Hopf operator.

In summary, the Fox–Li operator is a reasonable approximation to the original
physical problem and at the same time a large truncated Wiener–Hopf operator
whenever �2b2  a4  �b3. Using the dimensionless parameters OaWD ka and
ObW D kb, these inequalities read Ob1=2  Oa  Ob3=4, and ! becomes Oa2=.2 Ob/. Fox
and Li themselves showed that already the moderate choice Oa D 25, Ob D 100 leads
to acceptable numerical results.

2 Wiener–Hopf Operators

An integral operator on L2.0;1/ of the form

.W u/.x/ D
Z 1

0

%.x � y/u.y/dy; x 2 .0;1/;

is called a Wiener–Hopf operator. Such an operator is bounded on L2.0;1/ if
and only if the Fourier transform a WD O%, taken in the distributional sense, is a
function in L1.R/. The function % is uniquely determined by its Fourier transform
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a, henceforth we denote the operatorW byW.a/. The function a is usually referred
to as the symbol of W.a/. Note that W.a/ is the compression to L2.0;1/ of the
operator which acts on L2.R/ by the following rule: take the Fourier transform,
multiply the result by a, and then take the inverse Fourier transform.

For � 2 .0;1/, the truncated Wiener–Hopf operator W�.a/ is defined on
L2.0; �/ by

.W�u/.x/ D
Z �

0

%.x � y/u.y/dy; x 2 .0; �/: (5)

The Fourier transform of %.t/ D eit 2 is O%.�/ D p�i e�i�2=4. Thus, letting �.�/ D
e�i�2=4, we see that the Fox–Li operator F! given by (4) is nothing but W2

p
!.�/,

and the problem is to find the eigenvalues and eigenfunctions of W�.�/ as � D
2
p
! !1.

The spectral theory of Wiener–Hopf operators is well developed, one could say
that Wiener–Hopf operators and their discrete analogues, Toeplitz operators, are the
best understood nontrivial classes of non-selfadjoint operators. We refer to [4] for
a presentation of the matter. However, as already said, no result of this theory is
immediately applicable to provide any deeper insight into the spectrum spW�.�/ of
W�.�/. The best that is available to date is the following result.

Theorem 1. We have spW.�/ D D and spW�.�/ � D for every � > 0, where D

is the closed unit disc in the complex plane.

This was established in [7]. The nontrivial part of the theorem is that spW.�/ is
all of D. In [7] it is actually shown that spW�.�/ is contained in the open unit disc D
and that each point � 2 D belongs to the essential spectrum of W.�/, which means
that W.�/ � �I is not even invertible modulo compact operators.

3 Eigenvalues

The physicists’s intuition, like in Vainshtein’s paper [23], and numerical computa-
tions, made by Cochran and Hinds [12] for probably the first time, indicate that the
eigenvalues of W�.�/ lie along a spiral commencing at 1 and rotating clockwise to
the origin: cf. Fig. 1. To date, no person alive has been able to prove this, even less
so to derive rigourously the shape of the spiral. The following result gives an idea
of what one is already proud of.

Theorem 2. The operator W�.�/ is a trace class operator with at least one
eigenvalue for every � > 0, and with the possible exception of at most countably
many � 2 .0;1/, the operatorW�.�/ has a countable number of eigenvalues.

This was proved in [11,16,19]. The approach of [11,16] is based on proving that
det.I � zW�.�// is a nonconstant entire function of z. This function has infinitely
many discrete zeros of finite multiplicity unless it reduces to a polynomial, which
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Fig. 1 The eigenvalues of W�.�/, with � D 2
p
! D 25; 50 and � given by (4)

is shown to happen for at most countably many values of � . Combining Theorem 1
with the observation that W�.a/ is of trace class, one can say even a little more.
Namely, let f�n.W�.�//gNnD1 denote the eigenvalues of W�.�/ counted with their
algebraic multiplicities. Then

NX

nD1
�n.W�.�// D trW�.�/ D 1p

�i

Z �

0

ei�02dx D �p
�i
;

and since j�n.W�.�//j � 1 for all n, it follows that

�p
�
D
ˇ
ˇ
ˇ
ˇ
ˇ

NX

nD1
�n.W�.�//

ˇ
ˇ
ˇ
ˇ
ˇ
�

NX

nD1
j�n.W�.�//j � N;

which reveals that W�.�/ has at least �=
p
� eigenvalues.

Vainshtein [23] even raised a conjecture on the shape of the spiral.1 It says that
its parametric representation is � D exp.�˛.�/x� � iˇ.�/x�/, x 2 .0;1/, with

� D 2; ˛.�/ � �.1=2/�3=2

8
p
2 �3

; ˇ.�/ � �2

4�2
; (6)

where �.1=2/ is Riemann’s zeta function at the point 1=2, and that x D n gives
approximately �n. We will return to this conjecture below.

1According to [12], this conjecture comes from “using a distinctly physical approach based on
wave-guide theory”, but we admit that we have not been able to follow the argument of [23].
Moreover, numerical computations do not support the conjecture.



42 A. Böttcher et al.

Theorems of the type of Szegő’s limit theorem [14] give asymptotic expansions
for the trace tr'.W�.a// D P

n '.�n.W�.a///, where ' W C ! C belongs to a
certain class of so-called test functions. The following first-order result for the case
'.z/ D zj was proved in [7].

Theorem 3. For each fixed natural number j ,

trW j
� .�/ D

�
p
�ij
C o.�/ as � !1:

The operatorW j
� .�/ is the integral operator on L2.0; �/ with the kernel

mj .x; y/ WD 1

.�i/j=2

Z �

0

: : :

Z �

0

exp

 

i
jX

nD1
.xn � xnC1/2

!

dx2 : : : dxj ;

where x1 D x and xjC1 D y. The trace of W j
� .�/ is

R �
0
mj .x; x/dx, and in [7]

we proved that the leading term of the asymptotics of this multivariate oscillatory
integral is �=

p
�ij . We have not been able to determine the second term of the

asymptotic expansion for general j .

Results like Theorem 3 can be used to test conjectures on the asymptotic
eigenvalue distribution. Suppose we are given a family fb�g�>0 of functions
b� W.0;1/! C and we want to know whether it might be true that the eigenvalues
of W�.�/ are asymptotically distributed like samples of b� .x/ at x D n. We have

trW j
� .�/ D

X

n

�jn.W�.�//;

Z 1

0

bj� .x/dx �
X

n

bj� .n/;

and this is the motivation for saying that the eigenvalues ofW�.�/ are asymptotically
distributed as the values of b� (in a very weak sense) if, for each natural number
j � 1,

trW j
� .�/ D

Z 1

0

bj� .x/dx C o.�/ as � !1:

Using Theorem 3 we showed the following theorem in [7], which justifies at least a
few pieces of Vainshtein’s conjecture.

Theorem 4. Let b� .x/ D exp.�˛.�/x��iˇ.�/x�/with positive real numbers ˛.�/,
ˇ.�/, �. Then the eigenvalues of W�.�/ are asymptotically distributed as the values
of b� if and only if

� D 2; ˛.�/ D o
�
1

�2

�

; ˇ.�/ D �2

4�2
C o

�
1

�2

�

:
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4 Singular Values

The singular values of W�.�/ are the positive square roots of the eigenvalues of
W�.�/W

�
� .�/. Since W �

� .�/ D W�.�/, we have

.W�.�/W
�
� .�/u/.x/ D

1

�

Z �

0

�Z �

0

ei.x�t /2e�i.t�y/2dt
�

u.y/dy; x 2 .0; �/;

and hence W�.�/W
�
� .�/ D V �C1V where V is the unitary operator given by

.V u/.x/ D eix.��x/u.x/ and C1 is defined by

.C1u/.x/ D 1

�

Z �

0

sin.�.x � y//
x � y u.y/dy; x 2 .0; �/:

The change of variables x ! x=� , y ! y=� shows that C1 may be replaced by

.C2u/.x/ D 1

�

Z �2

0

sin.x � y/
x � y u.y/dy; x 2 .0; �2/:

The Fourier transform of sin t=.�t/ is 
.�1;1/, the characteristic function of the
interval .�1; 1/. Consequently, the singular values of W�.�/ are the square roots of
the eigenvalues of the operator C2 D W�2.
.�1;1//. This observation was probably
first made in [6].

We are thus led to Wiener–Hopf with real-valued symbols. So, let us suppose
that a 2 L1.R/ is real-valued. Then the operatorsW.a/ andW�.a/ are selfadjoint.
Hartman and Wintner [15] showed that spW.a/ equals the convex hull of the
essential range of a. In [5] it was proved that spW�.a/ � spW.a/ for all � > 0 and
that spW�.a/ converges to spW.a/ in the Hausdorff metric. Using these general
results and taking into account that kW�.a/k < kak1 unless a is a constant, we
arrive at the following.

Theorem 5. The set of the singular values ofW�.�/ is contained in Œ0; 1/ for every
� > 0 and converges to the segment Œ0; 1� in the Hausdorff metric as � !1.

Szegő’s limit theorem gives the first term of the asymptotics of the trace of
'.W�.a// for arbitrary real-valued a 2 L1.R/ and the first two terms of the
asymptotics if, in addition, a is smooth enough; see [4, 14]. Hence, for a D 
.�1;1/
we cannot derive a second order result in this way. Fortunately, the case where
a D 	
.˛;ˇ/ was studied in detail by Landau and Widom [18].2 They proved that if

2The reader might enjoy knowing the following, which is cited from [1]: “Harold Widom grew up
in Brooklyn, New York. He went to Stuyvesant High School where he was captain of the math
team. Coincidentally, the captain of the rival team at the Bronx High School of Science was Henry
Landau . . . ”.
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˛ < ˇ and 	 > 0 are real numbers, then

tr '.W�.	
.˛;ˇ/// D � '.	/.ˇ � ˛/
2�

C log �

�2

Z 	

0

	'.x/� x'.	/
x.	 � x/ dx CO.1/

for every ' 2 C1.R/ satisfying '.0/ D 0. This was conjectured by Slepian [20].
A second proof of this result is in [24]. In [6] we applied this formula toW�2.
.�1;1//
in order to get the following result on the finer distribution of the singular values
of W�.�/.

Theorem 6. Denote by N.x; y/ the number of singular values of W�.�/, counted
with their multiplicities, which lie in the interval .

p
x;
p
y/. Then for each ı in

.0; 1=2/,

N.1� ı; 1/ D �2

�
� 2 log �

�2
log

1 � ı
ı
C o.log �/;

N.ı; 1� ı/ D 4 log �

�2
log

1 � ı
ı
C o.log �/;

N.0; ı/ D1:

Thus, although, by Theorem 5, the singular values fill Œ0; 1� densely as � goes
to 1, the overwhelming majority of them are concentrated extremely close to the
endpoints of the segment.

5 Complex Wave Numbers

Let us assume that the wave number k lies in the lower complex half-plane, k D
k0 � i" with k0 D 1=� and " > 0. This assumption may not be of great interest in
maser and laser theory, but it might be satisfied in problems of acoustics and, more
importantly, it makes the problem nicely accessible to Wiener–Hopf theory.

Replacing k by k0 � i" in (2) and proceeding as in Sect. 1, the operator (3) now
becomes

.A2;"u/.x/ D aei�=4e�ikb

p
�b

Z 1

�1
e�i.k0a2=2b/.x�y/2e�."a2=2b/.x�y/2u.y/dy; (7)

and letting ! D k0a2=.2b/ and � D 2p!, we get the operator

.F!;"u/.x/ D 1p
�i

Z �

0

ei.x�y/2e�."=k0/.x�y/2u.y/dy; x 2 .0; �/ (8)
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in place of the operator (4). Here � is a large number. The spectrum of (7) is
what we are looking for, and this spectrum is

p
2� e�ik0be�"b times the complex

conjugates of the points in the spectrum of F!;". The Fourier transform of
.1=
p
�i/eit 2e�."=k0/t2 is

�"=k0 .�/ D
1

p
1C i"=k0

exp

�

� ."=k0/�
2

4.1C "2=k20/
�

exp

�

�i
�2

4.1C "2=k20/
�

and hence we may write F!;" D W�.�"=k0 /. Obviously, for " D 0, the symbol
�"=k0 coincides with � . The function � is in L1.R/ but not in L1.R/, neither it is
continuous on the one-point compactification PR of R, which causes a great deal of
problems in employing Wiener–Hopf theory. In contrast to this, �"=k0 is in L1.R/\
C. PR/, which facilitates matters significantly.

The kernels of the operators (4) and (8) are complex-symmetric, which implies
that the symbol, i.e. the Fourier transform of the kernel function, is even. Note that if
a is even, a.�/ D a.��/ for � 2 R, then we may think of the essential range R.a/
of a as a curve which is traced out by a.�/ from a.1/ to a.0/ as � moves from
�1 to 0 and then backwards from a.0/ to a.1/ as � moves further from 0 toC1.
Complex-symmetric Toeplitz matrices and Wiener–Hopf operators with complex-
symmetric kernels have certain peculiarities. The following was established in [6]
and is the continuous analogue of results by Tilli [21] and Widom [25]. Namely,
let a 2 L1.R/ \ C. PR/, suppose a is even, and assume also that the essential range
R.a/ of a does not contain interior points. The last assumption is always satisfied if
a has some minimal smoothness. Then the spectrum ofW�.a/ converges to R.a/ in
the Hausdorff metric. Secondly, if ' W C ! C is any continuous function such that
'.z/=z converges to a finite limit as z! 0, then

X

n

'.�n.W�.a/// D �

2�

Z 1

�1
'.a.�//d� C o.�/:

Applying these two general results to a D �"=k0 , we obtain the following two
theorems from [6].

Theorem 7. As � ! 1, the spectrum of W�.�"=k0 / converges in the Hausdorff
metric to the logarithmic spiral

R.�"=k0 / D
(

z 2 C W z D 1
p
1C i"=k0

e�.iC"=k0/� for some � 2 Œ0;1�
)

:

Theorem 8. The number of eigenvalues ofW�.�"=k0 / which lie close to the piece of
the logarithmic spiral of the previous theorem given by � 2 .0; �0/ is

2�

�

p
.1C "2=k2/�0 C o.�/:

Note that we are not able to prove something like these two theorems for W�.�/

because � is neither in L1.R/ nor in C. PR/.
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6 Pseudospectrum

Fix " > 0. The "-pseudospectrum sp"B of a bounded linear operator B on some
complex Hilbert space is the set of all � 2 C for which k.B � �I/�1k � 1=".
The spectrum of B is considered to be a subset of sp"B . If B is a normal
operator, then sp"B is simply the closed "-neigbourhood of spB . However, for
non-normal operators this is in general no longer the case, and for such operators the
pseudospectrum is in many instances of even greater use than the spectrum [22]. The
notion of the psedospectrum was independently invented several times [22], and one
of these inventions was made by Landau [17] when studying the Fox–Li operator.
We first state a simple result from [7].

Theorem 9. Given " > 0, there is a �0 > 0 such that sp"W�.�/ � D for � > �0.

This theorem may be restated as follows. Given " > 0 and � 2 D, there is a
�0 > 0 such that for every � > �0 we can find u� 2 L2.0; �/ satisfying ku�k D 1

and kW�.�/u� � �u�k � ". The following theorem is Landau’s [17]. He takes �
from the unit circle T and is able to say much more in this case.

Theorem 10. Given " > 0, � 2 T, and C > 0, there exists a �0 > 0 such that for
every � > �0 there are at least C� functions u�;n which form an orthonormal system
inL2.0; �/ and satisfy kW�.�/u�;n��u�;nk � ". Moreover, if �1 and �2 are distinct
points on T, then these functions corresponding to �1 and �2 can be chosen to be
mutually orthogonal.

Landau [17] writes that this theorem “shows that for large Fresnel number !
the laser cannot be expected to settle to a single mode.” Physical features of the
pseudospectrum of the Fox–Li operator are also discussed in the work by Sir
Michael Berry and his co-workers; see, e.g., [2, 3].

7 Challenges

So what are the big open problems for the Fox–Li operator we are, all progress
notwithstanding, left with? Here are a few of them. (a) Determine the absolute
value of the outmost or better of the outmost and next eigenvalues. (b) Prove that
the eigenvalues cluster, in some sense, along a spiral. (c) Prove that this spiral
migrates towards the unit circle as � ! 1. (d) Determine the shape of the
spiral. Is it as conjectured by Vainshtein (6), is it related to theta-three as tabled
in [6], or is it something completely different? (e) Describe the density of the
eigenvalue distribution along the spiral. (f) Determine the eigenfunctions: numerical
indications in [10] are that the eigenfunctions corresponding to leading eigenvalues
are trigonometric functions superimposed with low-amplitude rapid oscillation,
while for small eigenvalues the eigenfunctions are wave packets.
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These questions are of course also of interest for the operator with the original
kernel function (2).

We should emphasize that, with the exception of problems (d) and (e), these
questions have all been solved numerically. Approaching the Fox–Li operator
numerically is not a triviality, since this involves working with highly oscillatory
integrals. That Cochran and Hinds [12] were able to show us the spirals as early as
1974 must in this light be appreciated as an admirable feat. Since then numerical
methods for highly oscillatory integral equations have been elaborated by many
mathematicians, and by now the apparatus is well developed to overcome nearly all
subtleties caused by high frequencies. We refer to the recent papers [9, 10] and the
references therein for more on the computational mathematics for the Fox–Li and
related operators.

Finally, we repeat that two peculiarities of the Fox–Li operator are that its kernel
is complex-symmetric and that it depends only on the difference of the arguments.
To gain deeper insight into the Fox–Li operator it seems therefore reasonable
first to attain greater command of simpler operators with such kernels. In [8], we
accordingly considered Wiener–Hopf operators with even and rational symbols.
These are given by (5) where %.t/ is a finite sum of terms of the form pn.jt j/e�	njt j
with polynomials pn and complex numbers 	n such that Re 	n > 0. The symbol
a D O% is an even and rational function in L1.R/ \ C. PR/. Hence, by what was
outlined in Sect. 5, spW�.a/ converges to the curve R.a/ formed by the range of
a in the Hausdorff metric. However, in the case at hand we can say more. There
are explicit formulae for the Fredholm determinants of Wiener–Hopf operators with
rational symbols. Given a and under additional technical assumptions, we used these
formulae to construct a certain function bW.0;1/ ! C and to prove that there is a
numbering f�ng1nD1 of the eigenvalues of W�.a/ such that, with �n WD n�=� ,

�n D a.�n/C 1

2�
a0.�n/ arg b.�n/ � i

2�
a0.�n/ log jb.�n/j CO.1=�2/:

Note that the tangent to R.a/ through a.�n/ has the parametric representation
� D a.�n/ C a0.�n/t , t 2 R, and increasing values of the parameter t provide
the tangent with an orientation. The point a.�n/ C .1=2�/a0.�n/ argb.�n/ lies on
this tangent. It follows that, up to the O.1=�2/ term, the eigenvalue �n is located
on the right of the tangent if jb.�n/j > 1, while it is on the left of the tangent if
jb.�n/j < 1. Furthermore, the eigenfunctions for an eigenvalue �n are shown to be
linear combinations of eizj x where zj 2 C ranges over the finite set of solutions of
the algebraic equation a.z/ D �n.
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Kähler Metrics with Cone Singularities
Along a Divisor

S.K. Donaldson

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract We develop some analytical foundations for the study of Kähler metrics
with cone singularities in codimension one. The main result is an analogue of the
Schauder theory in this setting. In the later parts of the paper we discuss connections
with the existence problem for Kähler–Einstein metrics,in the positive case.

1 Introduction

Let D be a smooth divisor in a complex manifoldX . In this paper we study Kähler
metrics on X nD with cone singularities of cone angle 2�ˇ transverse toD, where
0 < ˇ < 1. The case we have primarily in mind is when X is a Fano manifold,
D is an anticanonical divisor and the metrics are Kähler–Einstein; the motivation
being the hope that one can study the existence problem for smooth Kähler–Einstein
metrics on X (as a limit when ˇ tends to 1) by deforming the cone angle. This can
be seen as a variant of the standard “continuity method”. We will make some more
remarks about this programme in Sect. 6 but it is clear that, at the best, a substantial
amount of work will be needed to carry this through—adapting much of the standard
theory to the case of cone singularities. This paper is merely a first step along this
road. Our goal is to set up a linear theory and apply it to the problem of deforming
the cone angle (Theorem 2 below). In further papers with X-X Chen, we will study
more advanced and sophisticated questions.
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There are several precedents for this line of work. First and foremost, singular
metrics of this kind have been considered before by Jeffres [6, 7] and Mazzeo [11].
Some applications to algebraic geometry are outlined by Tian in [4]. Mazzeo
considers the case of negative first Chern class, but this makes no difference in
the elementary foundational questions we consider here (until Sect. 6). As in this
paper, Mazzeo’s main emphasis is on the linear theory, and he outlines an approach
using the “edge calculus”. However this assumes some specialised background,
some complications with the choice of function spaces are reported and [11] does
not give quite enough detail for those not expert in the techniques to easily fill
in the proofs. Thus we have decided to make a fresh start here on the analysis,
using elementary methods. This means that we are very probably re-deriving many
results that are well-known to experts, and our conclusions are entirely consistent
with those described by Mazzeo. It is very likely that the edge calculus, or similar
technology, will be important in developing more refined analytical results.

A second precedent occurs in the study of 3-dimensional hyperbolic manifolds.
Here again one can consider metrics with cone singularities transverse to a knot. A
strategy, similar to ours in Kähler geometry, for constructing nonsingular hyperbolic
metrics via deformation of the cone angle was proposed by Thurston and there
are a number of papers in the literature developing the theory and the relevant
analysis ([5, 12, 13] for example). A third precedent occurs in gauge theory and
the work of Kronheimer, Mrowka and others on connections with codimension-
2 singularities [8]. In the case when the underlying manifold is complex, this is
related to the theory of holomorphic bundles with parabolic structures [2] and there
are some closer parallels with our situation.

The general scheme of this paper mimics the development of standard theory for
smooth manifolds. We begin by considering a “flat model” for a cone singularity
and in Sect. 2 we obtain an estimate in Hölder spaces for the Laplace operator, as
in the usual Schauder theory. This depends on certain properties of the Green’s
function which are derived in Sect. 3, using Bessel functions and classical methods.
In Sect. 4 we introduce complex structures, considering first a flat model and then
a general class of singular metrics on a pair .X;D/. What we achieve is roughly, a
parallel to the standard theory of Hölder continuous Kähler metrics. This degree
of regularity suffices to give a Fredholm theory linearising the Kähler–Einstein
equation, and in particular we can proceed to study the problem of deforming the
cone angle. Naturally we expect that it will be possible to say much more about
the local structure of these solutions but we mainly leave this for future papers.
Sections 5 and 6 are intended to provide context. In Sect. 5 we use the Gibbons–
Hawking construction, combined with our study of the Green’s function, to produce
certain almost-explicit Ricci-flat metrics with cone singularities, analogous to ALE
spaces in the usual theory. In Sect. 6 we outline what one might expect when X
is the complex projective plane blown up at one or two points—when no smooth
Kähler–Einstein metrics exist—and discuss connections with work of Szekelyhidi
and Li.

The author is grateful to Xiu-Xiong Chen, Mark Haskins and Jared Wunsch for
discussions related to this work.
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2 A Schauder Estimate

For ˛ 2 .0; 1/ and for a function f on Rm we define

Œf �˛ D sup
p;q

jf .p/ � f .q/
jp � qj˛ ; (1)

where sup D 1 is allowed. Write Rm D R2 
Rm�2 and let S D f0g 
Rm�2. Take
polar co-ordinates r; � on R2 and standard co-ordinates si on Rm�2. Fix ˇ 2 .0; 1/
and consider the singular metric

g D dr2 C ˇ2r2d�2 C
X

ds2i : (2)

This is the standard cone metric with cone angle 2�ˇ and a singularity along S . We
want to consider the Green’s operator of the Laplacian� D �g. To fix a definition,
let H be the be the completion of C1

c under the Dirichlet norm krf kL2 . Since
the metric g is uniformly equivalent to the standard Euclidean one, we get the same
space H using either metric. The Sobolev inequality implies that for q D 2m=

.mC 2/ and any � 2 Lq the linear form

f 7!
Z

f�; (3)

is bounded with respect to the H norm, so there is a unique G� 2 H such that

Z

f� D
Z

.rf;rG�/g; (4)

which is to say that � D G� is a weak solution of the equation �g� D �. Thus we
define a linear map G W Lq ! H .

Proposition 1. There is a locally-integrable kernel function G.x; y/ such that

G�.x/ D
Z

G.x; y/�.y/dy; (5)

for � 2 C1
c . The function G.x; y/ is smooth away from the diagonal and points

x; y 2 S .

This follows from standard theory, but in the next section we will give an
“explicit” formula for G.

Let D be one of the differential operators

@2

@si@sj

@2

@r@si
;
1

r

@2

@�@si
: (6)
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We define T D D ıG. Let � D ˇ�1 � 1. The main result of this section is

Theorem 1. Fix ˛ with 0 < ˛ < �. Then there is a constant C depending on
ˇ; n; ˛ such that for all functions � 2 C1

c .R
m/ we have

ŒT��˛ � C Œ��˛: (7)

(The statement should be interpreted as including the assertion that T� is
continuous, so its value at each point is defined.)

Note When we refer to the distance d.x; y/ D jx � yj between points in Rm we
always mean the standard Euclidean distance. However this is uniformly equivalent
to the distance defined by the singular metric.

The proof of the Theorem uses an integral representation for T . Let K.x; y/ D
DxG.x; y/ where the notation means that the differentiation is applied to the first
variable. Then we have

Proposition 2. If � 2 C1
c and �.x0/ D 0 for some x0 2 Rm then K.x0; /�. / is

integrable and

.T�/.x0/ D
Z

K.x0; y/�.y/dy: (8)

Of course the subtlety is that if � does not vanish at x0 then K.x0; /�. / is not
integrable and the formula has to be interpreted as a singular integral, but we will not
need to use this approach. What we do need is some more detailed information about
the kernel K , summarised in the next Proposition. We write � W R2 
 Rm�2 ! R2

for the projection map.

Proposition 3. There are 1; 2; 3; 4 with the following properties.

• If jzj D 1 then
jK.0; z/j � 1 (9)

• If jzj D 1 then
jK.w1; z/ �K.w2; z/j � 2jw1 � w2j� (10)

for any w1;w2 with jwi j � 1=2
• If jzj D 1 and j�.z/j � 1=2 then

jK.z;w/j � 3jz � wj�n; (11)

for w with jwj � 5.
• If jzj D 1 and j�.z/j � 1=2 then

j.rK/.z;w/j � 4jz � wj�n�1; (12)

for w with jwj � 5. Here the derivative rK is taken with respect to the first
variable.
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Propositions 2 and 3 will be established in the next section but now, assuming
them, we go on to the proof of Theorem 1. This is a variant of the standard proof of
the Schauder estimate for the ordinary Laplace operator.

What is crucially important is that T commutes with dilations. Thus, given � > 0
and a function � on Rn we define ��.x/ D �.��1x/ and we have .T�/� D T .��/.
This implies that

K.�x; �y/ D ��nK.x; y/: (13)

Note also that the Hölder seminorm scales by dilation as Œf��˛ D ��˛Œf �˛ so our
problem is scale invariant.

Fix a smooth function  supported in the unit ball, with �g and D both
smooth and with �g D 1 on the ı-ball for some fixed ı > 0. For example we
can take  D a.r/b.s/ where a.r/ is equal to 1 for small r and b is a suitable
function of s. Set 
 D �g so 
 has compact support, is equal to 1 on the ı-ball
and T
 D D is smooth. We write Œ
�˛ D c0, ŒT
�˛ D c1.

By scale invariance and linearity, it suffices to show that if � 2 C1
c has Œ��˛ D 1

and if x1; x2 2 Rm with jx1 � x2j D 1 then j�.x1/ � �.x2/j � C . Let d be a
minimum of .j�.x1/j; j�.x2/j/. We consider two cases: Case A, when d � 2, and
Case B, when d > 2.

Case A. Let x0
1; x

0
2 be the projections of x1; x2 to S . Then we can write

T�.x1/�T�.x2/ D
�
T�.x1/ � T�.x0

1/
	C�T�.x0

1/ � T�.x0
2/
	C�T�.x0

2/ � T�.x2/
	

(14)
and jx1 � x0

1j; jx0
1 � x0

2j; jx0
2 � x2j are all bounded by 3. Using this, and translation

and scale invariance, it suffices to consider two sub-cases

Sub-case A1 x1 D 0; jx2j D 1; x2 2 S .

Sub-case A2 x1 D 0; jx2j D 1; x0
2 D 0. (That is, x2 lies in R2 
 f0g. )

But to begin with the same discussion applies to either sub-case. We define �0 D
�.x2/
� where

� D max.ı�1; j�.x2/1=˛j/: (15)

We also define
�1 D .�.0/� �.x2//
: (16)

Then Œ�0�˛; Œ�1�˛ � c0 and ŒT �0�˛; ŒT �1�˛ � c1, using the fact that j�.x2/� �.0/j �
Œ��˛ D 1, by hypothesis. Now set �0 D � � �0 � �1. Thus �0 vanishes at 0 and x2
and we have

Œ�0�˛ � Œ��˛C2c0 D 1C2c0 ; jT�.x2/�T�.0/j � jT�0.x2/�T�0.0/jC2c1: (17)

This means that, simplifying notation, we can reduce to the situation where �
vanishes at x2 and 0. Thus, in this situation, we want to estimate
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Z

K.0; y/�.y/dy �
Z

K.x2; y/�.y/dy (18)

which is dominated by

I D
Z

jK.x2; y/ �K.0; y/j j�.y/jdy: (19)

Consider the contribution from the region jyj � 2. By the homogeneity we have

K.x2; y/ �K.0; y/ D jyj�n
�

K

�
x2

jyj ;
y

jyj
�

�K
�

0;
y

jyj
��

; (20)

and the second item in Proposition 3 gives

jK.x2; y/ �K.0; y/j � 2jyj���n: (21)

Then we get a bound on the contribution to I from fjyj � 2g in the form

Z 1

2

2R
���nR˛Rn�1dR; (22)

which is finite since ˛ < �.
Next we have to estimate the contribution to I from fjyj � 2g. First we consider

I1 D
Z

jyj�2
jK.0; y/�.y/jdy: (23)

By the homogeneity and the first item of Proposition 3 we have

jK.0; y/j � 1jyj�n; (24)

and j�.y/j � jyj˛ so

I1 � 1
Z

jyj�2
jyj�nC˛ (25)

which is finite. The final step is to estimate

I2 D
Z

jyj�2
jK.x2; y/�.y/jdy: (26)

This is where we use different arguments in the two sub-cases. In sub-case A1, when
x2 lies in S , the estimate is just the same as for I1 above, using translation invariance
in the Rm�2 factor. In sub-case A2, when x2 is in the orthogonal complement of S ,
we use the third item of Proposition 3 to get

jK.x2; y/j � 3jy � x2j�n (27)
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when jyj � 2 and so

jK.x2; y/jj�.y/j � 3jy � x2j˛�n (28)

and we can proceed as before. This completes the proof for Case A.

Case B. Recall that we have x1; x2 with jx1 � x2j D 1 and j�.xi /j > 2. Set

� D max.jx1j; jx2j; j�.x2/j1=˛/ (29)

and define �0 D �.x2/
�. Then �0.x1/ D �0.x2/ D �.x2/ and we have bounds on
Œ�0�˛; ŒT �0�˛ as before. It is clear that we can choose a function Q , supported in the
unit ball centred at x1, with �g

Q equal to 1 in a small neighbourhood of x1 and
in such a way that Œ Q �˛; Œ� Q �˛ are bounded by fixed constants, independent of x1
provided only that j�.x1/j > 2 (that is, x1 stays well away from the singular set).
Then we put Q
 D �g

Q and

�0 D � � .�0 C .�.x1 � �.x2// Q
: (30)

Arguing just as before, we are reduced to the situation where �.x1/ D �.x2/ D 0.
Now we can obviously suppose that x1 is the point closest to S and by translation

we can suppose that jx1j D d . We have to estimate the integral I , as before. We
consider the contribution from three regions

• Points y with jyj > 2d . This goes just as in Case A, using the second item in
Proposition 3, and rescaling.

• Points y with jy � x1j � 2. This goes just as before using the third item in
Proposition 3 and rescaling.

• Points y with jyj � 2d and jy � x1j > 2.

Here we use the fourth item in Proposition 3. Set zi D xi=d and w D y=d . The
fourth item in Proposition 3 gives a bound on the derivative of K.z;w/ with respect
to z for all points z on the segment joining z1; z2. For such points the distance jz�wj
is comparable to jz1 � wj so, integrating the bound gives

jK.z1;w/ �K.z2;w/j � d�1jw� z1j�n�1: (31)

since the distance jz1 � z2j is d�1. Scaling back we have

jK.x1; y/ �K.x2; y/j � jy � x1j�n�1: (32)

Now we can bound the contribution to I from this region by



Z 3d

2

R�n�1R˛Rn�1dR <1; (33)

where R D jy � x1j.
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3 Representation of the Green’s Functions
by Bessel Functions

Write c D ˇ�1 and consider the map � W R2 
 Rm�2 ! R2 
 R 
 Rm�2 defined by
�.r cos �; r sin �; s/ D .rc cos �; rc sin �; r2; s/. For an open subset ˝ � Rm we say
that function f on ˝ is ˇ-smooth if each point of ˝ has a neighbourhoodN � ˝
such that the restriction of f to N is the composite of � and a smooth function in the
ordinary sense on a neighbourhood of �.N /. We define the notion of convergence of
ˇ-smooth functions similarly. For fixed y write �y D G. ; y/. Then we have

Proposition 4. If y is not in ˝ then �y is ˇ-smooth on ˝ and �y varies
continuously with y, with respect to the topology of ˇ-smooth functions on ˝ .

If the point y is not in S then we can identify the metric g in a neighbourhood
of y with the usual Euclidean metric and it follows from standard theory that �y
differs from the usual Newton potential by a smooth (in fact harmonic) function. It is
straightforward to deduce from Proposition 4, this observation, and the symmetries
and scaling behaviour of the Green’s function that our kernelK satisfies the criteria
stated in Proposition 3. Likewise for the proof of Proposition 2. The main point
of interest is the second item of Proposition 3: this is the only place where the
number �, and hence the restriction on the range of the Hölder exponent, appears.
The derivative of the map

.r cos �; r sin �/ 7! .rc cos �; rc sin �/ (34)

is Hölder continuous with exponent �. Then the chain rule shows that for a
ˇ-smooth function f the derivatives @f

@r
and r�1 @f

@�
are Hölder continuous with this

exponent. It follows that, for each choice of differential operator D, the derivative
D�y is C ;� near the singular set (the derivatives in the si variables being harmless).

Granted the assertions above, we will focus for the rest of this Section on the
proof of Proposition 4. We achieve this by showing that the Green’s function has a
“polyhomogeneous expansion” around the singular set. This must be considered a
standard fact. Knowing the Green’s function in our problem is essentially the same
as knowing the Green’s function for the Dirichlet problem for the ordinary Laplace
equation on the product of a wedge of angle 2�ˇ in R2 with Rm�2 and, at least
when m D 3, this is a topic with a large classical literature (see for example [3]).
Equally, such polyhomogeneous expansions are prominent in the general theory of
edge operators, as applied in [11]. But, lacking an elementary reference for exactly
the result we want, we will include a proof here. The proof involves traditional
methods of separation of variables and a check on convergence.

We pause for a moment to recall some facts about Bessel functions. Our main
reference is [17]. We fix � � 0. The Bessel equation for f .z/ is

f 00 C z�1f 0 C .1 � �2z�2/f D 0: (35)
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The Bessel function J�.z/ is defined by a series expansion

J�.z/ D
1X

jD0

.�1/j .z=2/�C2j

j Š.� C j /Š ; (36)

and satisfies the Bessel equation. (Here and below we use the notation aŠ D � .aC1/
for the generalised factorial function). The asymptotic behaviour for large real z

is J� �
q

2
�z cos z. We define J�� by the same formula with � replaced by ��.

Then J�; J�� are two solutions of the Bessel equation. They can be seen as roughly
analogous to cos z; sin z. The linear combination

h�.z/ D e��i=2J��.z/ � e���i=2J�.z/; (37)

has the property that it decays rapidly at infinity on the upper half-plane: it is roughly
analogous to eiz. We write I�.z/ D e���i=2J�.iz/ and

K�.z/ D �

2 sin.��/
h�.iz/ D �

2 sin ��
.I��.z/ � I�.z/// : (38)

This formula can be extended to the case when � is an integer by taking a suitable
limit.

From (4), we have a convergent expansion

I�.z/ D
1X

jD0

1

j Š.� C j /Š
� z

2

��C2j
; (39)

and I� has asymptotic behaviour for large positive z

I�.z/ � ez

p
2�z

: (40)

The functionK� has the asymptotic behaviour for large positive z

K�.z/ �
r
�

2z
e�z (41)

but is unbounded near z D 0. For � > 0.

K�.z/ � .� � 1/Š
2

� z

2

���
z! 0; (42)

andK0.z/ � � log z. Our main tool will be the integral representation,

K�.z/ D 1

2

Z 1

�1
e�z cosh uC�udu: (43)
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With this background in place, we proceed to analyse the Green’s function by
separation of variables. To begin with we argue formally, but in the end when we
check convergence it will be clear that everything is watertight. Note that on grounds
of symmetry we can write

G.r; �; sI r 0; � 0; s0/ D
X

k�0
Gk.r; r

0; R/ cos k.� � � 0/; (44)

where R D js � s0j. We want to find formulae for the Gk and we will usually
write � D ck. Our Laplace operator can be written as �g� D �ˇ� C �Rm�2�

where�Rm�2 is the ordinary Laplacian on Rm�2 and�ˇ is the operator in the plane
defined by

�ˇ� D �rr C 1

r
�r C 1

ˇ2r2
��� : (45)

This means that � D J�.�r/e
ik� is an eigenfunction for �ˇ, with �ˇ� D

��2�. The Fourier-Bessel representation of a general function in terms of these
eigenfunctions leads to a formula for the heat kernel associated to the operator �ˇ

as 1X

kD0
Hk cos k.� � � 0/ (46)

where

Hk.r; r
0/ D ��1

Z 1

0

e��2tJ�.�r/J�.�r 0/d�: (47)

Now the heat kernel on a product is the product of the heat kernels, so the heat kernel
of the Laplacian�g on Rm is

.2�t/1�m=2e�R2=4t
�X

Hk.r; r
0/ cosk.� � � 0/

�
: (48)

We assume that m � 3. Then the Green’s function can be obtained by integrating
the heat kernel with respect to the time parameter. Thus

Gk.r; r
0; R/ D

Z 1

0

Z 1

0

.2�t/1�m=2e��2t�R2=4t J�.�r/J�.�r 0/ d�dt: (49)

Changing variable by t D R
2�
eu and using (9) we see that

Gk D 1

.2�/m
R2�m=2gk (50)

where

gk D 2
Z 1

0

�m=2�2Km=2�2.R�/J�.r�/J�.r 0�/d�: (51)
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The integral is convergent for all r; r 0 provided that R > 0. We get another
representation by rotating the integration path. Suppose that r < r 0 and write

sin.��/J�.r
0�/ D Im.e���i=2h�.r 0�//: (52)

Thus

gk D Im

�Z 1

0

�m=2�2Km=2�2.2R�/
e���i=2

sin ��
h�.r

0�/J�.r�/d�
�

: (53)

Because of the rapid decay of h� over the upper half plane we can rotate the
integration path to the positive imaginary axis, which is the same as replacing �
by i� in the integral. We get another expression

gk D 2
Z 1

0

�m=2�2Jm=2�2.R�/K�.r
0�/I�.r�/d�: (54)

This integral converges for any R, provided that r < r 0.
We will now derive polyhomogeneous expansions for the Green’s function in

appropriate regions. We need two elementary lemmas.

Lemma 1. For p; q � 0 we have

Z 1

0

Kp.2x/x
pCqdx � .p C q/Š: (55)

To see this, use the integral formula (9) to write the integral as

I D 1

2

Z 1

0

Z 1

�1
e�2x cosh uCpuxpCqdxdu: (56)

Now change the order of integration and perform the x integral to get

I D .p C q/Š
2

Z 1

�1
epu

.2 cosh u/pCqC1 du: (57)

Divide the integral into the two ranges u � 0; u � 0 and use the inequality
2 cosh u � e�u on the first and 2 cosh u � eu on the second. We get

I � .p C q/Š
2

�Z 0

�1
e.2pCqC1/uduC

Z 1

0

e�.qC1/udu

�

: (58)

The right hand side is

.p C q/Š
2

�
1

q C 1 C
1

2p C q C 1
�

� .p C q/Š: (59)
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Lemma 2. There is a universal constant C such that for all p; q � 1 we have

.p C q/Š
pŠqŠ

� C2pCq: (60)

When p; q are integers this follows immediately from the binomial theorem, with
C D 1. The same argument applies when one of p; q is an integer. Very likely we
can always take C D 1 but the author has not found this in texts so we give an ad
hoc argument. Set f .x/ D .1C x/p.1 � x/q . We have an identity

Z 1

�1
f .x/dx D 2pCqC1

p C q C 1
pŠqŠ

.p C q/Š : (61)

(See [17], p. 225.) Since .1Ch�1/h converges as h!1 there is a universal constant
ı > 0 such that if 0 � x � 1=2q we have .1 � x/q � ı, and if �1=2p � x � 0 we
have .1C x/q � ı. So if �1=2p � x � 1=2q we have f .x/ � ı. Thus the integral
of f .x/ is at least ı

2
.p�1 C q�1/. This gives

2pCq pŠqŠ

.p C q/Š �
ı

4
.p C q C 1/.p�1 C q�1/ � ı=2: (62)

First consider the representation arising from (11), when r < r 0. It is convenient
to normalise to r 0 D 2. Write Jm=2�2.x/ D xm=2�2F.x/, so F is bounded for
positive real x. Then using the series representation (6) for I� and integrating term-
by-term we get

G D
X

j;k

aj;k.R/r
�C2j cosk.� � � 0/ (63)

where

aj;k.R/ D 1

2�C2j
1

j Š.� C j /Š
Z 1

0

��C2jCm�4F.R�/K�.2�/d�: (64)

Thus, by Lemma 1,

jaj;k.R/j � C 0 1

2�C2j
.� C 2j Cm � 4/Š

j Š.� C j /Š ; (65)

where C 0 D sup jF j.
Now, using Lemma 2,

jaj;k.R/j � CC 0 .� C 2j Cm � 4/Š
.� C 2j /Š : (66)

It is then elementary that the sum on the right hand side of (12) does converge
absolutely provided that r < 1. For general r 0 we can use the scaling behaviour to
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deduce thatG D � 2
r 0

	m�3P
aj;k.

2R
r 0
/
�
r
2r 0

	�C2j
cosk.��� 0/ and the sum converges

absolutely if r < r 0=2.
For the other representation (10), we normalise to R D 1. Then we expand both

the Bessel functions J�.r�/; J�.r 0�/ in powers of � and, arguing in a similar way,
we have to consider a sum

P
j;j 0;k Mj;j 0;k where

Mj;j 0;k D
�r

2

��C2j �r 0

2

��C2j 0

.p C 2� C 2j C 2j 0/Š
j Šj 0Š.� C j /Š.� C j 0/Š

: (67)

For A;B;C;D > 1 we can write

.AC B C C CD/Š
AŠBŠC ŠDŠ

D .AC B C C CD/Š
.AC B/Š.C CD/Š

.AC B/Š
AŠBŠ

.C CD/Š
C ŠDŠ

� C322.ACBCCCD/; (68)

by three applications of Lemma 2. Thus

.2� C 2j C 2j 0/Š
j Šj 0Š.� C j /Š.� C j 0/Š

� C322.2�C2jC2j 0/: (69)

Again, elementary arguments show that the sum of Mj;j 0;k converges absolutely
provided r; r 0 < 1=2. Scaling back: in the region r; r 0 < R=2 we get a convergent
polyhomogeneous expansion

G D
X

bj;j 0;k.R/r
�C2j .r 0/�C2j 0

cos k.� � � 0/: (70)

We can now finish the proof of Proposition 4. We consider an open set ˝ and
y not in ˝ . We know from standard elliptic regularity that we only need to verify
the ˇ-smoothness condition at points x0 in ˝ \ S . Let ˝ 0 be the ball of radius
d=10 about x0 where d is the distance to the boundary of ˝ . We want to prove
that for any y not in ˝ the function �y restricted to ˝ 0 is the composite of � and a
smooth function. But for any such y at least one of the two expansions above is valid
over˝ 0. It is straightforward to see that the formal series we have considered define
weak solutions of the equation characterising �y and since we have verified local
convergence it follows that the sums represent valid formulae pointwise. Now the
series obviously define functions on appropriate neighbourhoods in Rm�2 
 R2 
 R.
That is, a polyhomogeneous series

P
aj;k.s/r

�C2j cosk.�/ defines a smooth
function of .s; �; �/ by X

aj;k.s/�
jRe.�k/; (71)

which gives the required factorisation when we set � D r2; � D rcei� . Similar
considerations show that �y varies continuously in the desired sense as y varies.
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4 Application to Kähler–Einstein Equations

4.1 Flat Model

Write Cˇ for the Riemannian manifold with underlying space C, on which we
take a standard co-ordinate �, and with the singular metric associated to the 2-form
ˇ2j�j2.ˇ�1/id�d�. Then the map � D rcei� (recall that we write c D ˇ�1) gives
an isometry from the standard cone metric dr2 C ˇ2r2d�2 to Cˇ. Likewise, when
m D 2n we get an isometry between the singular metric we considered above on
R2m and the Riemannian product Cˇ 
Cn�1. Let �1; : : : ; �n�1 be standard complex
co-ordinates on Cn�1. Thus we have two natural systems of co-ordinates .r; �; �a/
and .�; �a/.

We consider the i@@-operator on the complement of S , mapping functions
to (1,1) forms. Set � D dr C iˇrd� . Then, up to a factor of

p
2, the forms

�; d�1; : : : ; d�m�1 give an orthonormal basis for the .1; 0/ forms at each point. We
should keep in mind that � is not a holomorphic 1-form , although crc�1ei�� D d�
is. Now take a trivialisation of the .1; 1/ forms by sections

d�a ^ d�b ; d�a ^ � ; d�a ^ � ; � ^ �: (72)

Up to scale factor, this is a unitary trivialisation. With respect to this trivialisation
the components of i@@ are all operatorsD of the kind considered above, except for

D0 D i
�

r�1 @
@r

�

r
@

@r

�

C ˇ�2r�1 @2

@�2

�

: (73)

which is the i� ^ � component of i@@. Of course this is just the Laplacian�ˇ in the
R2 variable, with respect to the singular metric. So

�g D D0 C�Cn�1 (74)

in an obvious notation. Since, by definition,�gG� D � we can write

D0G� D � ��Cn�1�: (75)

The operator �Cn�1 is a sum of terms of the form allowed in Sect. 2 so we get a
Hölder estimate onD0G� and hence on i@@G�. So we have

Corollary 1. Suppose ˛ < � D .ˇ�1 � 1/. Then there is a constant C depending
only onm;ˇ; ˛ such that for all � 2 C1

c we have

Œi@@.G�/�˛ � C Œ��˛; (76)

where the left hand side is interpreted using the trivialisation above.
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Notice that it follows from our discussion of the Green’s function that the
components of i@@G� corresponding to the basis elements � ^ d�a tend to zero
on the singular set S .

4.2 Further Local Theory

Corollary 1 expresses the essential fact that we are after, but for applications we
need a variety of other statements which will be set out here. One detail is that
the smooth functions are not dense in Hölder spaces. But any C ;˛ function can be
approximated by smooth functions in the norm of C ;˛ for any ˛ < ˛. So in the end
this complication becomes irrelevant and we will ignore it. Suppose that � is a C ;˛

function with support in the unit ball B � Cˇ 
 Cn�1. Then i@@G� is C ;˛ and the
same estimate as in Corollary 1 holds. As in our discussion of i@@, we say that the
derivative of a function f is in C ;˛ if the components @f

@r
; r�1 @f

@�
and @f

@si
are C ;˛ .

Similar arguments to those of Sect. 2 (but easier)show that in the situation aboveG�
and rG� are in C ;˛. In fact the same argument show that G�;rG� are in C ;˛ for
any ˛ with ˛ < � and we have an estimate

ŒG��˛ C ŒrG��˛ � C Œ��˛: (77)

Taking ˛ > ˛ we get a compactness result: for a sequence �i , supported on B and
bounded in C ;˛, there is a subsequence fi 0g such that G�i 0 and rG�i 0 converge in
C ;˛ over compact sets. Notice also that, as in the remark following Corollary 1, the
components of rG� corresponding to the derivatives @f

@r
; r�1 @f

@�
tend to zero on the

singular set.
Now consider the situation where we have a function � 2 C ;˛.B/ such that ��,

defined pointwise outside S , is also C ;˛. Applying standard elliptic estimates in
small balls in the complement of S we see that jr�j D O.r�1C˛/ near the singular
set. One easy consequence is that ��, defined pointwise as above, agrees with the
weak, distributional, notion. For another we take a smooth cut-off function 
 of
compact support in B , equal to 1 on some interior region B 0 and with �
 smooth.
Then�.
�/ is in Lq so G�.
�/ is defined. It follows that 
� D G�1CG�2 where
�1 D .�
/� C 
�� and �2 D 2r
:r�. Away from the support of r
 it is clear
that G�2 is in C ;˛ . Thus we see that i@@� is locally in C ;˛ and we obtain interior
estimates of the form

Œi@@��˛;B0 � C .Œ���˛;B C Œ��˛;B/ ; (78)

where C depends on B 0. Similarly we get

Œr��˛;B0 � C .Œ���˛;B C Œ��˛;B / (79)

for any ˛ < �.
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Now let � be a C ;˛ section of the bundle of .1; 1/ forms, in the sense we have
defined, and consider the operator ��� D �� C �:i@@�. We suppose first that
� is supported on B and is sufficiently small in C ;˛ . It follows from the usual
Neumann series argument that we can invert�� and that an estimate corresponding
to Corollary 1 holds. Then we can extend all the results above to��. As usual, if we
have any � which vanishes at the origin we can reduce to the situation where � is
small and of compact support by dilation and multiplying by a cut-off function and
thus obtain the interior estimate near the origin.

4.3 Global Set-Up

Let X be a compact Kähler manifold and D � X be a smooth hypersurface. Let
� ! X be the holomorphic line bundle associated to D, so there is a section s of
� cutting out D. Let h� be any smooth hermitian metric on � and write


 D i@@jsj2ˇh� : (80)

Let ˝0 be a smooth Kähler metric on X . Then we have

Lemma 3. For sufficiently small ı > 0 the .1; 1/ form !0 D ˝0 C ı
 is positive
on X n D. The metric we obtain is independent of the choices of ˝0; h�; ı up to
quasi-isometry.

This is elementary to check and we omit the proof. If we choose standard complex
co-ordinates �; �a around a point of D, so that D is defined by the equation � D 0,
then jsj2h� D F j�j2 where F is a smooth positive function of �; �a. Thus


 D .i@@F ˇ/j�j2ˇ C iˇj�j2.ˇ�1/
�
�@F ˇd� � �@F ˇd�

�
C ˇ2F ˇj�j2.ˇ�1/id�d�:

(81)
Lemma 3 implies that there is a well-defined notion of a Hölder continuous

function, with exponent ˛, onX nD, using the singular metric. If we take a standard
local complex co-ordinate system �; �a as above and then set z D �j�jˇ�1 then this
becomes the ordinary notion of Hölder continuity in terms of the co-ordinates z; �a.
We write C ;˛;ˇ , or sometimes just C ;˛ for these functions onX . Now we want to go
on to define Hölder continuous differential forms. With a fixed metric h� as above,
define the .1; 0/-form

� D @jsjˇ: (82)

Then we say that a .1; 0/ form on X nD is Hölder continuous with exponent ˛ if
and only if it can be written as

f0�C f1�1 C � � � C fN�N ; (83)

where fi 2 C ;˛;ˇ and �i are smooth forms (in the ordinary sense) on X .
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Lemma 4. If ˛ < � this notion is independent of the choice of metric h�.

If we make another choice of metric we get another form �0 D @.f jsjˇ/ for a
smooth positive function f . Then

�0 D @f jsjˇ C f �: (84)

The function jsjˇ is in C ;˛ so �0 can be written in the stated form, and the result
follows immediately. Similarly ones sees that, in standard co-ordinates z D rei� ,
the Hölder continuous (1,0)- forms are just those of the shape f0� CPn�1

aD1 fad�a,
where � D drCiˇrd� , as in the previous subsection, the co-efficients f0; f1 : : : are
in C ;˛ and f0 vanishes on the singular set. Similarly, we can give a global definition
of a space of Hölder continuous .1; 1/ forms which reduces in local co-ordinates
.r; �; �a/ to those of the shape

mi�� C
X

mabd�ad�b Cma�d�a Cma�d�a (85)

wherem;mab;ma are C ;˛ and the ma vanish on the singular set.
Now we define C2;˛;ˇ to be the space of (real-valued) functions f onX nD with

f; @f; i@@f all Hölder continuous with exponent ˛. This is the analogue of the usual
Hölder space C2;˛ but there is an important difference that we are not asserting that
all second derivatives of f are in C ;˛ . We can define norms on C ;˛;ˇ; C2;˛;ˇ in the
usual way, making them Banach spaces. If !0 is a singular metric, as constructed
above, we have a space of Hölder continuous Kähler metrics of the form !� D
!0Ci@@� where � 2 C2;˛;ˇ and we require that!� � !0 onXnD, for some  > 0.
It is easy to check that this space of metrics is independent of the choice of !0.

Let ! be a Hölder continuous Kähler metric as above. In local co-ordinates the
metric is described by co-efficients as in (17). All of these have limits along the
singular set and by definition the limits of the ma are zero. The limits of the mab

obviously define a C ;˛ metric onD and the limit of the powerm1=ˇ is intrinsically a
C ;˛ Hermitian metric on the restriction of the line bundle� toD (which is identified
with the normal bundle of D in X ). Given any point p 2 D it is clear that we can
choose a standard co-ordinate system centred at p so that them D 1 andm˛ˇ D ı˛ˇ
at this point. Now write� for the Laplace operator of the metric !. Since it is given
by an algebraic contraction of i@@ it appears, in these local co-ordinates, in the form
�� considered in the previous subsection, and � vanishes at p. So we can apply the
results there to obtain interior estimates and inversion operators in sufficiently small
balls about this point. From here we can carry through the usual arguments to obtain
a parametrix for� over all of X . In this way we obtain

Proposition 5. If ˛ < � D .ˇ�1�1/ the inclusion C2;˛;ˇ ! C ;˛;ˇ is compact. If !
is a C ;˛;ˇ Kähler metric on .X;D/ then the Laplacian of ! defines a Fredholm map
� W C2;˛;ˇ ! C ;˛;ˇ .

From now on we restrict attention to the case whenX is a Fano manifold, Œ˝0� D
2�c1.X/ and D is in the linear system �KX . We can regard ˝0 as the curvature
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form associated to a smooth metric on the dual of KX . Then ! is the curvature
form of a singular metric h0 on this line bundle and any � 2 C2;˛;ˇ defines another
metric j j� D e�h0. We identify �D with K�1

X , so s is a section of K�1
X . If !� is

any Kähler metric on X n D its Riemannian volume form can be regarded as an
element of KX ˝KX so we get a function s ˝ sVol! on X nD. We say the metric
is Kähler–Einstein if

s ˝ sVol! D jsj2ˇ� : (86)

If this holds then, by standard elliptic regularity, � is smooth on X nD and satisfies
Ric.!�/ D ˇ!� .

We expect there to be a detailed regularity theory for these Kähler–Einstein
metrics around the singular divisor, as outlined by Mazzeo in [11]. We will leave
most of the discussion of this to another paper but we want to observe here that the
metrics are “smooth in tangential directions”. In a local co-ordinate system .z; �a/
we can choose a local Kähler potential  so that the equation becomes

.i@@ /n D eˇ : (87)

Let  0 be a derivative with respect to the real or imaginary part of any �a. Then  0
satisfies a linear equation .�Cˇ/ 0 D 0, so it follows that i@@ 0 is C ;˛ . Repeating
the argument, we find that all multiple derivatives in these directions satisfy this
condition. In particular, the induced metric on D and the metric induced on the
restriction of � to D are both smooth.

Another simple fact is that a solution of our Kähler–Einstein equation which is
in C2;˛;ˇ for some ˛ > 0 lies in C2;˛;ˇ for all ˛ < � D ˇ�1 � 1: thus the theory is
independent of the choice of exponent ˛.

4.4 Deforming the Cone Angle

For a Fano manifoldX and smoothD 2 j �KX j as above we have:

Theorem 2. Let ˇ0 2 .0; 1/; ˛ < �0 D ˇ�1
0 � 1 and suppose there is a C2;˛;ˇ0

solution ! to the Kähler–Einstein equation (18) on .X;D/, with ˇ D ˇ0. If there
are no nonzero holomorphic vector fields on X which are tangent to D then for ˇ
sufficiently close to ˇ0 there is a C2;˛;ˇ solution to (18) for this cone angle.

It seems likely that the condition on holomorphic vector fields is always satisfied,
by general results from algebraic geometry, but the author has not gone into this. In
any case it is not a serious restriction.

The proof of the theorem follows standard general lines. Having set up a linear
theory, we can deform the solutions to the nonlinear equation using an implicit
function theorem, provided that the linearised operator is invertible. However there
are some complications, for example due to the fact that the function spaces depend
on ˇ. We have seen that the solution ! defines a smooth metric on � over D. We
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extend this to a smooth metric, which we will write as k k, on� overX . This is not
to be confused with the singular metric, which we will write as j j, whose curvature
is !. Now for ˇ near to ˇ0 we define

!ˇ D ! C i@@.kskˇ � kskˇ0 /; (88)

so !ˇ0 D !. In other words, !ˇ is the curvature form of the singular metric onK�1
X

with
jsj2ˇ D exp.kskˇ � kskˇ0 /jsj2: (89)

Set
kˇ D jsj�2ˇˇ s ˝ s Vol!ˇ : (90)

Thus kˇ0 D 1, since ! solves the Kähler–Einstein equation. We state three
Propositions.

Proposition 6.
kkˇ � 1kC ;˛;ˇ ! 0 (91)

as ˇ ! ˇ0.

Write �ˇ for the Laplace operator of !ˇ .

Proposition 7. If �ˇ0 C ˇ0 W C2;˛;ˇ0 ! C ;˛;ˇ0 is invertible then for ˇ close to ˇ0
the operator �ˇ C ˇ W C2;˛;ˇ ! C ;˛;ˇ is also invertible and the operator norm of
its inverse is bounded by a fixed constant independent of ˇ.

The statements of Propositions 6 and 7 are not completely precise. There are
many ways of defining norms onC ˛;ˇ; C2;˛;ˇ , all of which are equivalent for fixed ˇ.
But what we need here is a definite family of norms, for example defined using a
fixed system of co-ordinate charts. But we hope that the details of such a definition
will be clear to the reader and do not need to be spelled out.

Proposition 8. If�ˇ0 Cˇ0 is not invertible then there is a non-trivial holomorphic
vector field on X tangent to D.

Given these three results, the proof of Theorem 2 is a standard application of the
implicit function theorem.

We begin with the proof of Proposition 6. This is completely elementary, but
the set-up is a little complicated. As a first simplification we reduce to considering
convergence with respect to the Hölder norm defined by the fixed parameter ˇ0. That
is to say, for any ˇ we are considering a standard chart 
ˇ mapping a neighbourhood
of 0 in C 
 Cn�1 to X and the functions in C ;˛;ˇ are those which pull back by 
ˇ
to ordinary C ;˛ functions. The composite �ˇ;ˇ0 D 
�1

ˇ ı 
ˇ is the map defined by

.rei� ; s/ 7! .r�ei� ; s/, where � D ˇ0=ˇ. If ˇ > ˇ0 this is not Lipschitz so the
notions of Hölder continuity are different. However, �ˇ;ˇ0 is ˇ0=ˇ-Hölder and this
means that it pulls C ;˛ functions back to C ;˛ˇ0=ˇ functions. Since we are always
free to adjust ˛ a little and since we can take ˇ0=ˇ arbitrarily close to 1, we see that
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it suffices to prove that
kkˇ � 1kC ;˛;ˇ0 ! 0 (92)

as ˇ! ˇ0.
We will use another, similar, elementary observation below. Supppose that fi is

a sequence of functions on the ball in C
Cn�1 converging to a limit f1 in C ;˛ and
with fi all vanishing on the singular set fr D 0g. Suppose that 0 < �i � � < ˛ and
�i ! 0 as i ! 1. Then the functions r��i fi are Hölder with exponent ˛ � � and
converge in this sense to f1 as i !1.

With these remarks in place we can begin the proof. We work in a standard local
co-ordinate system �; �a chosen so that section s is given by

s D �.d�d�1 : : : d�n/�1: (93)

Then ksk2 D F j�j2, where F is smooth strictly positive function of �; �a. Now
write, as in (16),

i@@.F ˇj�j2ˇ/ D F ˇj�j2ˇ�2� C Vˇ; (94)

say, where � D id�d�. Of course we can write down a formula for Vˇ , although it
is a little complicated. The point to emphasise is that this just depends on the smooth
function F and ˇ. All we need to know is that the (1,1)-forms Vˇ are C ;˛;ˇ0 forms
for ˇ close to ˇ0, they all vanish on the singular set and they converge to Vˇ0 in this
Hölder space sense as ˇ ! ˇ0. We leave the reader to verify these assertions by
straightforward calculation.

Now we can write
!ˇ D F ˇj�j2ˇ�2� C Vˇ C˝; (95)

where ˝ is independent of ˇ. Thus in our standard co-ordinates r; �; �a the form
˝ has C ;˛ co-efficients and all co-efficients tend to zero on the singular set except
those involving d�ad�b .

Recall that kˇ D jsj�2ˇˇ s ˝ sVol.!ˇ/. By the definition of our class of Holder
continuous metrics we can write

jsj2ˇ0 D ksk2 exp. C ksk2ˇ0 /; (96)

where  is C2;˛;ˇ0 . From this we get

kˇ

kˇ0
D ksk2.ˇ0�ˇ/ exp..ˇ � ˇ0/ C ˇksk2ˇ � ˇ0ksk2ˇ0 / Vol.!ˇ/

Vol.!ˇ0/
: (97)

Writing ksk2 D F j�j2 we get

kˇ

kˇ0
D j�j2.ˇ0�ˇ/Hˇ

Vol.!ˇ/

Vol.!ˇ0/
; (98)
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whereHˇ tends to 1 inC ;˛;ˇ0 as ˇ! ˇ0. So it suffices to prove that j�j2.ˇ0�ˇ/ Vol.!ˇ/
Vol.!ˇ0 /

also tends to 1 in this sense.
For simplicity, to explain the argument, let us suppose that n D 2. Write Vˇ C

˝ D ˝ˇ . So ˝ˇ are .1; 1/ forms which vary continuously in C ;˛;ˇ0 for ˇ close
to ˇ0. We take the standard volume form J0 in our co-ordinates .r; �; �0/ to be
J0 D � ^ d�1 : : : d�n�1d�1 : : : d�n�1. Then !2ˇ0=J0 �  > 1. Now since �2 D 0

we have
!2ˇ D F ˇj�j2.ˇ�ˇ0/� ^˝ˇ C˝2

ˇ; (99)

so, writing r D j�jˇ,

j�j2.ˇ0�ˇ/!2ˇ D F ˇ� ^˝ˇ C r2.1�ˇ=ˇ0/˝2
ˇ: (100)

The crucial thing is that ˝2
ˇ=J0 vanishes on the singular set. Thus we can apply

the observation about multiplication above to see that, after slightly adjusting ˛, the
product r2.1�ˇ=ˇ0/˝2

ˇ=J0 converges in C ;˛;ˇ0 as ˇ tends to ˇ0. This completes the
proof of Proposition 6.

Next we consider Proposition 8. The first step is to establish a Fredholm
alternative: if .�ˇ0 C ˇ0/ has no kernel in C2;˛;ˇ0 then it is surjective (i.e. the
Fredholm index is zero). For the corresponding L2 theory this is straightforward,
so what one needs to know is that if � is in C ;˛ and f is a weak solution of the
equation .�C ˇ0/f D � then f is in C2;˛;ˇ0 . By the results of (Sect. 4.2), this will
be true if we can show that f is in C ;˛;ˇ0 and this follows from the general theory
developed in [4], Chap. 8. Granted this, the proof of Proposition 8 comes down
to showing that a non-trivial solution of .�ˇ0 C ˇ0/f D 0 defines a non-trivial
holomorphic vector field on X , tangent to D. Of course this is standard material in
the ordinary, non-singular, case.To simplify notation write �ˇ0 D �. We write D
for the operator @ ı grad overX nD, where gradf denotes the gradient vector field
of f with respect to the metric and @ is the @-operator on vector fields. The fact that
the Ricci curvature of !ˇ0 is ˇ0!ˇ0 gives an identity

@ �Df D grad.�f C ˇ0f /: (101)

For � > 0, let X� be the complement of a tubular neighbourhood of D in X ,
modelled in standard local co-ordinates on the region fr � �g. Suppose that
.� C ˇ0/f D 0. We take the inner product of (19) with gradf and integrate by
parts to get Z

X�

jDf j2 D
Z

@X�

Df � gradf; (102)

where � denotes a certain bilinear algebraic operation. What we need to see is that
the boundary term tends to 0 with �. From that we see that gradf is a holomorphic
vector field on X nD. We know that the radial derivative @f

@r
is O.r˛/ for and this

translates into the fact that the @
@�

component of the vector field, in holomorphic

co-ordinates, is O.j�j˛ˇ�ˇC1/. The @
@�a

components are bounded. If ˛ is sufficiently
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close to � D ˇ�1 � 1 then ˛ˇ � ˇ C 1 is positive and this implies that the vector
field extends holomorphically acrossD and is tangent to D.

So the real task is to check that the boundary term in (20) tends to zero with �.
For this we use

Lemma 5. With the notation above, jDf j D O.r˛�1/, where r is the distance (in
the metric !ˇ0 ) to the divisor D.

Assuming this Lemma it follows that the integrand Df � gradf is O.r˛/, because
gradf is bounded so the boundary integral is O.r˛/ and the volume of @X� isO.r/.

To prove the Lemma we can work in a local chart and there is no loss in taking
r to be the radial co-ordinate as before. Given a point p with radial co-ordinate r0
we consider a small ball B0 of radius hr0 centred at p on which we can identify the
model cone metric with the flat metric (so h is a fixed small number depending on
ˇ0/. We re-scale this small ball to a unit ball B � Cn. The Kähler–Einstein metric
!ˇ0 re-scales to a Kähler–Einstein metric Q! onB . The fact that!ˇ0 isC ;˛ means that
the C0 difference between Q! and a Euclidean metric on B is O.r˛0 /. Now standard
elliptic regularity for the Kähler–Einstein equations implies that the derivative of Q!
is also O.r˛0 / on an interior ball. Scaling back, we see that the derivative of !ˇ0 is
O.r˛�1

0 / at p.
Now consider our function f with .� C ˇ0/f D 0. We know that the radial

derivative of f isO.r˛/ and the tangential derivatives are in C ;˛ . Given p as above,
let f0 be the R-linear function of the co-ordinates �a defined by the tangential
derivative of f at p. Thus the derivative of g D f � f0 is O.r˛0 / over B0 and the
variation of g over B0 is O.r˛C1

0 /. We also have �g D �ˇ0f since �f0 D 0. By
the same kind of argument as before, rescaling and using standard elliptic estimates,
we see that Dg is O.r˛�1

0 / at p. On the other hand Df0 D @.gradf0/ and the
definition of gradf0 involves the metric tensor !ˇ0 . From this we see that jDf0j is
bounded by a fixed multiple of the derivative of the metric tensor and so is O.r˛�1

0 /

by the preceding discussion. Hence Df D Dg CDf0 is O.r˛�1
0 / as required.

Finally we turn to Proposition 8, but here we will be very brief since nothing out
of the ordinary is involved. By the Fredholm alternative, it suffices to show that if
ˇi is a sequence converging to ˇ0 and if fi are functions with kfikC2;˛;ˇi D 1 but
k.�ˇiCˇi /fikC ;˛;ˇi ! 0 as i !1 then there is a nontrivial solution to the equation
.�ˇ0 C ˇ0/f D 0. To do this one applies elementary observations about the family
of metrics !ˇ , like those in the proof of Proposition 6, and standard arguments to
get uniform estimates, independent of i .

5 Model Ricci-Flat Solutions

5.1 Digression in Four-Dimensional Riemannian Geometry

Suppose that we have six 2-forms !1; !2; !3; �1; �2; �3 on a 4-manifold which
satisfy the equations
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!i ^ !j D V ıij ; �i ^ �j D �V ıij ; !i ^ �j D 0 (103)

where V is a fixed volume form. There is a unique Riemannian metric such that the
!i form an orthonormal basis for the self-dual forms �C and �j for the anti-self-
dual forms��. We want to discuss the Levi-Civita connection of this metric, viewed
as a pair of connections on the bundles�C; �� (that is, using the local isomorphism
between SO.4/ and SO.3/ 
 SO.3/). Changing orientation interchanges the two
bundles so we can work with either and we fix on��.

Write d�i D  i and consider the linear equations for 1-forms Ti

 i D Tj ^ �k � Tk ^ �j : (104)

(Here, and below, we use the convention that .ijk/ runs over the cyclic permutations
of (123).) It is a fact that this system of linear equations has a unique solution.
This fact is essentially the same as the usual characterisation of the Levi-Civita
connection in that the covariant derivative on �� is

r�i D Tj ˝ �k � Tk ˝ �j : (105)

The solution of (22) is

� 2Ti D � i � �j ^ .� k/C �k ^ .� j /; (106)

where � is the �-operator of the metric. The Ti are connection forms for �� in the
local orthonormal trivialisation �i . The components of the curvature tensor of ��
are the forms

Fi D dTi C Tj ^ Tk: (107)

This gives a way to compute the Riemann curvature tensor which is useful in
some situations, such as that below. In particular we can take the anti-self-dual
components F�

i of the Fi and express them in terms of the given basis so

F�
i D

X

j

Wij �j ; (108)

Then the matrix Wij represents the anti-self-dual Weyl tensor of the Riemannian
metric. It is a general fact that this is symmetric and trace-free.

A particular case of this is when the forms �i are all closed. Then the Ti vanish
and we see that �� is flat. This means that locally we have a hyperkähler metric,
although to fit with standard conventions we should change orientation, so we are
considering closed forms !i . In this situation the only non-vanishing component of
the Riemann curvature tensor is the anti-self-dual Weyl tensor, so we can use a basis
�i to compute the curvature tensor, as above.
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5.2 The Gibbons–Hawking Construction

We review this well-known construction. We start with a positive harmonic function
f on a domain ˝ in R3 and an S1 bundle P over ˝ with a connection whose
curvature is � � df . Let ˛ be the connection 1-form over P and dxi the pull-back
of the standard 1-forms on R3. Then we have

d˛ D �
X

fidxj dxk: (109)

(We will write fi ; fij etc. for the partial derivatives of f .) Set

!i D ˛ ^ dxi C fdxj ^ dxk: (110)

Then d!i D �fidxidxj dxkCfidxi ^dxj ^dxk D 0 and it is clear that the forms
satisfy !i ^!j D ıij V , with V D f ˛^dx1^dx2^dx3, so we have a hyperkähler
structure.

One basic example is when ˝ D R3 � nf0g and f D 4��1jxj�1. Then the
manifold we construct is R4 n f0g with the flat metric. If we identify R4 with C2 in
the usual way, the circle action can be taken to be .z;w/ 7! .�z; ��1w/ and the map
from C2 minus the origin to R3 given by the identification with P is

.z;w/ 7! .Re.zw/; Im.zw/; jzj2 � jwj2/: (111)

Like the metric, this map extends smoothly over the origin but we get a fixed point of
the action, corresponding to the pole of f . In general if we start with a hyperkähler
4-manifold .M;!1; !2; !3/ with a circle action which is Hamiltonian with respect
to the three symplectic forms then the Hamiltonians xi W M ! R define a map
x W M ! R3 and we recover the structure on M (at least locally) from a harmonic
function with poles.

Now we want to compute the curvature tensor of such a hyperkähler 4-manifold.
Set �i D ˛ ^ dxi � fdxj ^ dxk . Then �i form an orthonormal basis for �� as
considered in (Sect. 5.1) and

d�i D �2fidx1dx2dx3: (112)

One finds then that the 1-forms Ti are

Ti D �fi
f
˛ C 1

f 2
.fj dxk � fkdxj /: (113)

Computing dTi C Tj ^ Tk , one finds that the curvature tensor .Wij / in this
orthonormal basis is the trace-free part of the matrix
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�
fij

f 2
� 3fifj

f 3

�

: (114)

This can also be written as 2f times the trace-free part of the Hessian of the function
f �2 which checks with the fact that when f D jxj�1 the construction yields the flat
metric on R4. For then f �2 D jxj2, the Hessian of f �2 is twice the identity matrix
and so its trace-free part is zero.

5.3 Cone Singularities

Now return to our cone metric on R2 
R and let f be the Green’s function f .x/ D
�p.x/ D G.x; p/ where p D .1; 0; 0/. Locally, away from the singular set, we can
identify domains in R2

ˇ 
 R with domains in R3 and it is clear that the construction

above yields a Ricci-flat metric on an S1 bundle P over the complement of the
singular set and the point p. Another useful way to think about this is to cut the
plane along the negative real axis and identify the corresponding cut 3-space with a
wedge-shaped region U in standard Euclidean 3-space. We perform the Gibbons–
Hawking construction in the usual way over U , with the pole of f yielding a fixed
point of the action. Then we reverse the cut we made and glue appropriate points on
the boundary of the 4-manifold to get our metric with cone singularity. Either way,
the upshot is that we get a 4-manifold P with an S1 action having a single fixed
point, a map � W P ! R2 
 R and a metric g on P with a cone singularity along
��1.S/.

The metric g is locally hyperkähler but not globally. It has a global Kähler
structure !1 corresponding to the direction of the edge of the wedge. If we choose
local structures !2; !3 then parallel transport around the singular set takes the
complex form � D !2 C i!3 to e2�.ˇ�1/i�.

Now we claim that, with this global complex structure, P can be identified with
C2 and the singular set ��1.S/ corresponds to the complex curve C D f.z;w/ 2
C2 W zw D 1g. For this we begin by going back to the general Gibbons–Hawking
construction with a harmonic function f on a domain ˝ which we suppose to be
the product of a domain in the plane x1 D 0 with an interval about 0 in the x1
co-ordinate. Trivialise the bundle P by parallel transport in the x1 direction, so the
connection 1-form is a D a2dx2 C a3dx3. Write  for the angular co-ordinate on
the fibres of P . We seek a holomorphic function h on P , for the complex structure
corresponding to x1. In the trivialisation this amounts to solving the equations

@h

@x1
D �if @h

@ 
;

@h

@x2
C @h

@x3
D .a2 C ia3/h: (115)

We look for a solution which has weight 1 for the circle action, h.�z/ D �h.z/. In
this case @h

@ 
D ih so the first equation gives
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h.x1; x2; x3;  / D euh.0; x2; x3/e
i (116)

where

u.x1; x2; x3/ D
Z x1

0

f .t; x2; x3/dt: (117)

Conversely if we find a solution h.0; x2; x3/ of the second equation in (24) over the
slice x1 D 0 and define h using (25) and (26) then the integrability condition for the
complex structure implies that we obtain a solution of (24). In particular suppose
that we are in the case when @f

@x1
vanishes on the plane x1 D 0. This means that we

can choose a2; a3 to vanish on this plane. Thus, on this plane, the second equation
in (24) is the ordinary Cauchy–Riemann equation. Given any holomorphic function
h0.x2C ix3/ the formulae (25) and (26) define a holomorphic function h on P . The
same discussion applies if we seek a function Qh which transforms with weight �1.
We get another holomorphic function

Qh.x1; x2; x3;  / D e�uh0.0; x2; x3/e
�i : (118)

Thus we get a pair of holomorphic functions .h; Qh/ on P with

Qhh D h0.x2 C ix3/; (119)

or in other words a holomorphic map from P to C2. This maps the lifts  D 0; �

in P of the 2-dimensional domain in fx1 D 0g to the diagonal fz D wg in C2. It
also maps the subset in P lying over any line x2 D �2; x3 D �3 to the plane curve
zw D h20.�2 C i�3/.

We apply this discussion to the case when f is the Green’s function � on R2
R.
Of course we can only immediately fit in with the discussion above locally but we
hope that the picture will be clear to the reader. By symmetry, the R derivative of
� vanishes on the plane s D 0 and we are in the position above. Moreover the
symmetry taking s to �s lifts to a symmetry interchanging h; Qh. Of course one
has to consider how the local construction above works around the pole, but this
is just the same as in the model case of the ordinary Green’s function on R3. In
terms of our usual co-ordinates .r; �/ on R2 we define h0 D 1 � rcei� . This is
holomorphic with respect to the given complex structure on the plane and vanishes
at the pole of � . The construction above produces global holomorphic functions
h; Qh on P with h D Qh on a (real) 2-plane in P which maps to the plane s D 0 in
R2 
 R as a double branched cover, branched over the origin. The functions satisfy
h Qh D 1 on the singular set. So we get a holomophic map from P to C2 taking the
circle action on P to the action .z;w/ 7! .�z; ��1z/ and mapping the singular set
to the curve zw D 1. The fact that � .r; �; s/ decays like s�1 as s ! 1, so its
indefinite integral with respect to s is unbounded, implies that this map is bijective,
by a straightforward argument.

We can also start from the opposite point of view with the complex manifold
C2 and the C�-action .z;w/! .�z; ��1w/. We consider a locally-defined holomor-
phic 2-form
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� D ˇ.1 � zw/ˇ�1d zdw: (120)

This is preserved by the C�-action and, locally, there is a holomorphic Hamiltonian
map HC.z;w/ D .1 � zw/ˇ . Although this is not well-defined globally the power
H
1=ˇ

C is so, and this gives the R2 component of the map from C2 to R2 
 R which
arises from the identification of C2 with P .

It would take a little work to check that the metrics we have studied here really
do give metrics with cone singularities of the kind we defined in Sect. 4—analysing
the local representation in complex co-ordinates, but it seems to the author that this
should not be hard.

There are several possible variants of this construction. For example, we can
use finite sums of Green’s functions to get Ricci-flat Kähler metrics with cone
singularities on ALE spaces. The example we have constructed above furnishes
a plausible model for certain degenerations of metrics with cone singularities on
compact manifolds. Consider a compact complex surface X and a family of curves
D� which converge as � ! 0 to a singular curveD0 with one ordinary double point
at p 2 X . Suppose there are Kähler–Einstein metrics !� with fixed cone angle ˇ
alongD� , for � ¤ 0. We should expect that, after re-scaling small balls about p, the
rescaled metrics converge to the Ricci-flat metric we have discussed above. Thus
these kind of Ricci-flat, non-compact model solutions should play the same role in
the theory of metrics with cone singularities that the ordinary ALE spaces play in
the standard theory.

Another interesting application of these ideas is to supply models for the
behaviour of the metrics around the singular set. In particular we can study the
growth of the curvature. Looking at (23), we see that the curvature will be dominated
by the Hessian of the harmonic function f and from the discussion in Sect. 3 we see
that this will typically be O.rc�2/ D O.rˇ�1�2/. Since ˇ�1 > 1 the curvature is, at
least locally, in L2 but if ˇ > 1=2 the curvature is unbounded. We expect that the
like will hold for general Kähler–Einstein metrics with cone singularities.

6 Conjectural Picture

In this final section we discuss what one might expect about the existence problem
for metrics with cone singularities on a Fano manifold. It is natural to think of such
a metric as a solution of a distributional equation

Ric.!/ D ˇ! C 2�.1� ˇ/ŒD�: (121)

But in writing this equation we emphasise that we mean solutions of the kind we
have defined precisely in Sect. 4. This equation can be compared with the equation
studied in the standard “continuity method”
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Ric.!/ D ˇ! C .1 � ˇ/� (122)

where � is a prescribed closed .1; 1/ form representing 2�c1.X/. There are good
reasons for believing that the cone singularity problem will always have solutions
for small positive ˇ. In one direction, Tian and Yau established the existence of a
complete Ricci-flat Kähler metric on the non-compact manifoldX nD [16] and one
could expect that this is the limit of solutions !ˇ as ˇ tends to 0 (this idea, in the
negative case, is mentioned by Mazzeo in [11]). In another direction, it is known
that, at least if X has no holomorphic vector fields, solutions to (28) exist for small
ˇ and one could perhaps view (27) as a limiting case. Szekelyhidi [15] introduced
an invariantR.X/, defined to be the supremum of numbers� such there is a Kähler
metric˝ in the class 2�c1.M/ with Ric.˝/ � �˝ , pointwise on the manifold. He
showed that for any choice of � this is also the supremum of the values ˇ � 1 such
that a solution of (28) exists. Further, it is known that R.X/ � nC1

n
˛.X/ where

˛.X/ is Tian’s invariant. The natural conjecture then is

Conjecture 1. There is a cone-singularity solution !ˇ to (27) for any parameter ˇ
in the interval .0;R.X//. If R.X/ < 1 there is no solution for parameters ˇ in the
interval .R.X/; 1/

Note that if ˇ D ��1 for an integer �, our metrics with cone singularities are
orbifold metrics, so a great deal of standard theory can be brought to bear. See the
recent work [14] of Ross and Thomas, for example.

Suppose that we are in a case when solutions exist for small cone angles but not
for cone angles close to 1. We would like to understand how the solutions can break
down at some critical cone angle. This leads into a large discussion involving notions
of “stability” which we only want to touch on here. Recall that in the established
theory one defines the Futaki invariant of a Kähler manifold Y with a fixed circle
action. One definition is to take any invariant metric in the Kähler class and then set

Fut.Y / D
Z

Y

.S � OS/H (123)

where S is the scalar curvature, OS is the average value of the scalar curvature and
H is the Hamiltonian of the circle action. The key point is that in fact the Futaki
invariant does not depend on the choice of metric, in a fixed Kähler class. There are
other definitions which generalise to singular spaces and schemes. What is visible
from the formula (29) is that if Y admits an invariant metric of constant scalar
curvature, in the given class, then the Futaki invariant vanishes, since in that case
S D OS .

Now let � � Y be a divisor invariant under the circle action and 0 < ˇ � 1. We
define a Futaki invariant of the data by

Fut.Y;�; ˇ/ D Fut.Y / � .1 � ˇ/
�Z

�

H � Vol.�/

Vol.X/

Z

X

H

�

: (124)
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This definition can be motivated, in the framework of metrics with cone singularity
along �, by adding a suitable distributional term to the scalar curvature, in the
manner of (27) and substituting into (29). Under plausible assumptions about the
behaviour around the singular set, the definition implies that if there is an invariant
constant scalar curvature metric with cone angle ˇ alongD then Fut.Y;�; ˇ/ D 0.
In particular this should apply in the Kähler–Einstein situation.

Conjecture 2. Let X be a Fano manifold andD a smooth divisor in �KX . Suppose
ˇ0 � 1 and there are Kähler–Einstein metrics with cone angle ˇ alongD for ˇ < ˇ0
but not for cone angle ˇ0. Then the pair .X;D/ can be degenerated to a pair .Y;�/,
which has an S1 action, and Fut.Y;�; ˇ0/ D 0.

This conjecture really needs to be fleshed out. In one direction, we should discuss
pairs .Y;�/ with singularities. In another direction, what is really relevant is that
the Futaki invariant Fut.Y;�; 	/ decreases to 0 as ˇ increases to ˇ0 where the sign
of H is linked to the degeneration of .X;D/ to .Y;�/. But the statement conveys
the general idea.

We can illustrate this, albeit still at the conjectural level, by considering two
rational surfaces X1;X2: the blow-ups of CP2 in one or two points respectively. It
is well-known that these do not admit Kähler–Einstein metrics and we will see that
the calculation of certain Futaki invariants reproduces explicit known values of the
invariants R.Xi/ obtained by Szekelyhidi [15] and Li [9].

We begin with the case of X2, which take to be the blow-up of CP2 at the points
p D Œ1; 0; 0�; q D Œ0; 1; 0�. We take a smooth cubic C in CP2 through these two
points, so the proper transformD of C is a canonical divisor in X2. In this case the
degeneration of the pair .X2;D/ will only involve D, so Y D X2. To obtain � we
consider the C�-action on X2 induced by Œu; v;w� 7! Œ�u; �v;w� on CP2. We define
� to be the limit of D under the action as � ! 0. This is the proper transform of
a singular curve C 0 in CP2 which is the union of three lines through r D Œ0; 0; 1�

(the lines pr; qr and one other line). We take the circle action on Y D X2 to be the
obvious one defined by the above C�-action. It is then a straightforward exercise
to compute the Futaki invariant Fut.X2;�; ˇ/ as a function of ˇ. To fix signs and
constants we take the HamiltonianH to vanish at r and to take the value 3 on the line
at infinity fŒu; v; 0�g. The calculation of Fut.X2/ is easiest using a toric description.
One finds that

Fut.X2/ D �2=3: (125)

Likewise
Vol.X2/ D 7=2 ;Vol.�/ D 7 (126)
Z

X2

H D 19=3;
Z

�

H D 17=2 (127)

Thus Fut.X2;�; ˇ/ D � 23 C 25.1�ˇ/
6

and this vanishes when 1�ˇ D 4=25. This fits
in with the result of Chi-Li that R.X2/ D 21=25. In fact this is not too surprising
because the calculation in [9] involves essentially the same ingredients, but from a
different point of view.



78 S.K. Donaldson

Notice that this discussion ties in with that in Sect. 5 because the curve � is
singular. We expect that re-scaling the metrics for parameters ˇ < ˇ0 around the
point r we will get a limit which is a Ricci-flat metric on C2 with cone angle ˇ0
along the affine part of C .

There is a similar discussion forX1. We define this to be the blow-up of CP2 at r
and now we take C to be a smooth cubic through r . This time we degenerate in the
opposite direction, taking �!1. The limit � is a divisor which is the sum of the
proper transform of a line through r and the line at infinity, taken with multiplicity 2.
With H normalised to be equal to 1 on the exceptional divisor and 3 on the proper
transform of the line at infinity, the calculation now yields

Fut.X1;�; ˇ/ D 2

3
� 14.1� ˇ/

3
(128)

and we find the critical value ˇ0 D 6=7, agreeing with [9, 15]. (The fact that the
coefficient of .1 � ˇ/ has different signs in the two cases is connected with the fact
that we take limits in opposite directions � ! 0;1.) The expected behaviour of
the Kähler–Einstein metrics as ˇ ! ˇ0 is less clear in this case and we leave that
discussion for another place.

Remark. Towards the end of the writing of this paper, preprints by Berman [1] and
Li [10] appeared. These both seem to be very relevant to the discussion of this
section, and to give additional evidence for the conjectural picture above.
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The Space of Framed Functions is Contractible

Y.M. Eliashberg and N.M. Mishachev

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract According to Igusa (Ann Math 119:1–58, 1984) a generalized Morse
function on M is a smooth function M ! R with only Morse and birth-death
singularities and a framed function on M is a generalized Morse function with
an additional structure: a framing of the negative eigenspace at each critical point
of f . In (Igusa, Trans Am Math Soc 301(2):431–477, 1987) Igusa proved that
the space of framed generalized Morse functions is .dimM � 1/-connected. Lurie
gave in (arXiv:0905.0465) an algebraic topological proof that the space of framed
functions is contractible. In this paper we give a geometric proof of Igusa-Lurie’s
theorem using methods of our paper (Eliashberg and Mishachev, Topology 39:711–
732, 2000).

1 Framed Igusa Functions

1.1 Main Theorem

This paper is written at a request of Kazhdan and Hinich who asked us whether we
could adjust our proof in [5] of Igusa’s h-principle for generalized Morse functions
from [9] to the case of framed generalized Morse functions considered by Igusa in
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his paper [10] and more recently by Lurie in [11]. We are very happy to devote this
paper to Stephen Smale whose geometric construction in [12] plays the central role
in our proof (as well as in the proofs of many other h-principle type results).

Given an n-dimensional manifold W , a generalized Morse function, or as we
call it in this paper Igusa function, is a function with only Morse (A1) and birth-
death (A2) type singularities. A framing � of an Igusa function ' W W ! R is a
trivialization of the negative eigenspace of the Hessian quadratic form at A1-points
which satisfy certain extra conditions at A2-points, see a precise definition below.

If the manifoldW is endowed with a foliation F then we call ' W .W;F/! R a
leafwise Igusa function if restricted to leaves it has only Morse or birth-death type
singularities. A framing � of a leafwise Igusa function ' W .W;F/! R is a leafwise
framing; see precise definitions below.

The following theorem is the main result of the paper. We use Gromov’s notation
OpA for an unspecified open neighborhood of a closed subset A � W .

Theorem 1 (Extension theorem). LetW be an .nCk/-dimensional manifold with
an n-dimensional foliation F . Let A � W be a closed (possibly empty) subset and
.'A; �A/ a framed leafwise Igusa function defined on OpA � A. Then there exists a
framed leafwise Igusa function .'; �/ on the wholeW which coincides with .'A; �A/
on OpA.

Theorem 1 is equivalent to the fact that the space of framed Igusa functions is
contractible, which is a content of J. Lurie’s extension (see Theorem 3.4.7 in [11])
of Igusa’s result from [10]. Indeed, any family, parameterized by a manifold Q,
of framed Igusa functions on a manifold M can be viewed as a framed leafwise
Igusa function on the manifold M 
 Q endowed with a foliation by the fibers of
the projection M 
Q ! Q. Hence, Theorem 1 implies the contractibility of the
space of framed Igusa functions. Conversely, Theorem 1 can be deduced from the
contractibility result via the standard h-principle technique, see [8]. The current
form of the theorem allows us do not discuss the topology on this space, comp. [10].

1.2 Framed Igusa Functions

Objects associated with a leafwise Igusa function. Let TF denote the n-dimensional
subbundle of T W tangent to the leaves of the foliation F . Let us fix a Riemannian
metric on W . Given a leafwise Igusa function (LIF) ' we associate with it the
following objects:

• V D V.'/ is the set of all its leafwise critical points, i.e. the set of zeros of the
leafwise differential dF' W W ! T �F .

• ˙ D ˙.'/ is the set of A2-points. Generically, V is a k-dimensional submani-
fold ofW which is transversal to F at the set V n˙ of A1-points and has the fold
type tangency to F along a .k�1/-dimensional submanifold˙ � V of leafwise
A2-critical points of '.

• Vert is the restriction bundle TF jV .
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• d2F' is the leafwise quadratic differential of '. It is invariantly defined at each
point v 2 V . d2F' can be viewed as a homomorphism Vert ! Vert�. Using our
choice of a Riemannian metric we identify the bundles Vert and Vert� and view
d2F' as a self-adjoint operator Vert ! Vert. This operator is non-degenerate at
the points of V n˙ , and has a 1-dimensional kernel � � Vertj˙ . Note that � is
tangent to V , and thus we have � D Vert\ T V j˙ .

• d3F' is the invariantly defined third leafwise differential, which is a cubic form
on �. For a leafwise Igusa function ' this cubic form is non-vanishing, and hence
the bundle � is trivial and can be canonically oriented by choosing the direction
in which the cubic function d3F' increases. We denote by �C the unit vector in �
which defines its orientation.

Decomposition of V.'/ and splitting of Vert. The index of the leafwise quadratic
differential d2F' .v/, v 2 V , may takes values 0; 1; : : : ; n for v 2 V n ˙ and
0; 1; : : : ; n � 1 for v 2 ˙ . Let

V n˙ D V 0 [ � � � [ V n and ˙ D ˙1 [ � � � [˙n�1

be the decompositions of V n˙ and ˙ according to the index. Note that ˙i is the
intersection of the closures of V i and V iC1. Then for v 2 V i we have the splitting

TvF D Vert.v/ D VertiC.v/˚ Verti�.v/

where VertiC.v/ and Verti�.v/ are the positive and the negative eigenspaces of
d2F'.v/, and for any � 2 ˙i we have the splitting

T�F D Vert.�/ D Ver.�/˚ �.�/ D VeriC.�/˚ Veri�.�/˚ �.�/

(Ver ¤ Vert !), where VeriC.v/ and Veri�.v/ are the positive and the negative
eigenspaces of d2F' .�/. For � 2 ˙i and v 2 V i we have

lim
v!�

VertiC.v/ D VeriC.�/˚ �.�/ and lim
v!�

Verti�.v/ D Veri�.�/ :

For � 2 ˙i and v 2 V iC1 we have

lim
v!�

VertiC1� .v/ D Veri�.�/˚ �.�/ and lim
v!�

VertiC1C .v/ D VeriC.�/ :

Framing of a leafwise Igusa function. A framing of a leafwise Igusa function ' is
an ordered set � D .�1; : : : ; �n/ of unit vector fields in Vert.V / such that:

• �i is defined (only) over the union˙i�1 [ V i [ � � � [˙n�1 [ V n;
• �i j˙i�1 D �Cj˙i�1 ;
• .�1; : : : ; �i /jV i is an orthonormal framing for Verti�.
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V0

V1
Σ0

Fig. 1 Framed leafwise
Igusa function

In particular, �n is defined only on ˙n�1 [ V n and �1 is defined only on V n V 0.
The pair .'; �/ is called a framed leafwise Igusa function (see Fig. 1).

The motivation for adding a framing is discussed in [10].

1.3 Framed Formal Leafwise Igusa Functions

A formal leafwise Igusa function (FLIF) is a quadruple ˚ D .˚0; ˚1; ˚2; �C/
where:

• ˚0 W W ! R is any function;
• ˚1 W W ! TF is a vector field tangent to F , vanishing on a subset V D
V.˚/ � W ;

• ˚2 is a self-adjoint operator Vert ! Vert, which has rank n � 1 over a subset
˙ D ˙.˚/ � V and rank n over V n˙ ;

• �C is a unit vector field in the line bundle where � WD Ker .˚2jT V j˙ /.

A leafwise 3-jet of a genuine Igusa function can be viewed as a formal Igusa
function ˚ , where ˚0 D ', ˚1 D rF', ˚2 D d2F' and �C is the unit vector
field in Kerd2F oriented by the third differential d3F'. We denote this FLIF ˚ by
J.'/. A FLIF ˚ of the form J.'/ is called holonomic. Thus we can view a genuine
Igusa function as a holonomic formal Igusa function. Usually we will not distinguish
between leafwise holonomic functions and corresponding holonomic FLIFs.

Given a FLIF ˚ we will use the notation similar to the holonomic case. Namely,

• V i � V n ˙ is the set of points v 2 V n ˙ where the index (dimesion of the
negative eigenspace) of ˚2

v is equal to i , i D 0; : : : ; n;
• ˙i � ˙ is the set of points � 2 ˙ such that the index of ˚2

� is equal to i ,
i D 0; : : : ; n � 1;

• TvF D Vert.v/ D VertiC.v/ ˚ Verti�.v/ where VertiC.v/ and Verti�.v/ are the
positive and the negative eigenspaces of ˚2

v , v 2 V ;
• T�F D Vert.�/ D Ver.�/˚�.�/ D VeriC.�/˚Veri�.�/˚�.�/ where VeriC.v/

and Veri�.v/ are the positive and the negative eigenspaces of ˚2
� , � 2 ˙i .

As in the holonomic case, for � 2 ˙i and v 2 V i we have

lim
v!�

VertiC.v/ D VeriC.�/˚ �.�/ and lim
v!�

Verti�.v/ D Veri�.�/ ;

and so on.
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A framing for a formal leafwise Igusa function ˚ is an ordered set � D
.�1; : : : ; �n/ of unit vector fields in Vert.V / such that:

• �i is defined (only) over the union˙i�1 [ V i [ � � � [˙n�1 [ V n;
• �i j˙i�1 D �Cj˙i�1 ;
• .�1; : : : ; �i /jV i is an orthonormal framing for Verti�.

The pair .˚; �/ is called a framed formal leafwise Igusa function (framed FLIF).

As in the holonomic case, for a generic FLIF ˚ the set V is a k-dimensional
manifold and˙ its codimension 1 submanifold. However,˙ has nothing to do with
tangency of V to F , and moreover there is no control of the type of the tangency
singularities between V and F (see Fig. 2).

In what follows we will need to consider FLIFs for different foliations on W .
We will say that ˚ is an F -FLIF when we need to emphasize the corresponding
foliation F . Moreover, the notion of a FLIF can be generalized without any changes
to an arbitrary, not necessarily integrable n-dimensional distribution � � T W . We
will call such an object a �-FLIF. In the case when a distribution � is integrable
and integrates into a foliation F we will use as synonyms both terms: �-FLIF and
F -FLIF.

Push-forward operation for FLIFs. Let �;e� be two n-dimensional distributions in
T W . Let f W W ! W be a diffeomorphism covered by an isomorphismF W � !e�.
Let ˚ be a �-FLIF. Then we define the push-forwarde�- FLIF e̊ D .f; F /�˚ D
.e̊0; e̊1; e̊2;e�C/ as

– e̊0.f .x// WD ˚0.x/; x 2 W ;
– e̊1

f .x/.F.Z// D ˚1
x.Z/; x 2 W; Z 2 �x;

– e̊2
f .x/.F.Z// D F.˚2

x .Z//; x 2 V; Z 2 Vertx D �x ;

– e�C.f .x// D F.�C.x//; x 2 ˙:
If ˚ is framed then the push-forward operator .f; F /� transforms its framing � to a
framinge� of e̊ in a natural way:

– e�i .f .x// D F.�i .x//; x 2 V .
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Note that if � ande� are both integrable, i.e. tangent to foliations F and eF , F D df
and ˚ is holonomic i.e. ˚ D J.'/ then e̊ is also holonomic, e̊ D J.e'/, where
e' D ' ı f �1.

1.4 Outline of the Proof and Plan of the Paper

Any framed leafwise Igusa function can be extended from OpA to W formally,
i.e. as a framed FLIF .˚; �/, see Theorem 2. This is, essentially, an original Igusa’s
observation from [10]. We then gradually improve .˚; �/ to make it holonomic.
Note that unlike the holonomic case, the homotopical data associated with ˚1

and ˚2 are essentially unrelated. We formulate the necessary so-called balancing
homotopical condition for a FLIF to be holonomic, see Sect. 3.4, and show that one
can always make a FLIF .˚; �/ balanced via a modification, called stabilization, see
Sect. 3.6.

Our next task is to arrange that V.'/ has fold type tangency with respect to the
foliation F , as it is supposed to be in the holonomic case. FLIFs satisfying this
property, together with certain additional coorientation conditions over the fold, are
called prepared, see Sect. 3.1. We observe that for a prepared FLIF one can define a
stronger necessary homotopical condition for holonomicity. We call prepared FLIFs
satisfying this stronger condition well balanced, see Sect. 3.4.

Given any FLIF ˚ one can associate with it a twisted normal bundle (also called
virtual vertical bundle) ˚Vert over V D V.˚/ which is a subbundle of T W jV
obtained by twisting the normal bundle of V in W near ˙ D ˙.˚/, see Sect. 3.2.
In the holonomic case we have ˚Vert D Vert, see Lemma 7. A crucial observation
is that the manifold V has fold type tangency to any extension � of the bundle ˚Vert
to a neighborhood of V , see Lemma 5. Moreover, if ˚ is balanced then there exist a
global extension � of ˚Vert and a bundle isomorphismF W Vert! ˚Vert homotopic
to the identity Vert ! Vert through injective bundle homomorphisms into T W jV
such that the push-forward framed �-FLIF .e̊;e�/ D .Id; F /�.˚; �/ is well balanced,
see Lemma 11. If ˚ is holonomic on OpA then the bundle � and the framed FLIF
.e̊;e�/ coincide with TF and .˚; �/ over OpA.

The homotopy of the homomorphismF generates a homotopy of distributions �s
connecting � and TF . If it were possible to construct a fixed on OpA isotopy Vs of
V inW keepingVs folded with respect to �s then one could cover this homotopy by a
fixed on OpA homotopy of framed well balanced �s- FLIFs .e̊s;e�s/ beginning with
.e̊0;e�0/ D .e̊;e�/. Though this is, in general, impossible, the wrinkling embedding
theorem from [6] allows us to do that after a certain additional modification of V ,
called pleating, see Lemma 2. We then show that the pleating construction can
be extended to the class of framed well balanced FLIFs, see Sect. 3.5. Thus we
get a framed well balanced FLIF .b̊;b�/ extending the local framed leafwise Igusa
function .'A; �A/.
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The proof now is concluded in two steps. First, we show, see Lemma 20,
that a framed well balanced FLIF can be made holonomic near V , and then use
the wrinkling theorem from [3] to construct a holonomic extension to the whole
manifoldW , see Step 4 in Sect. 4.

The paper has the following organization. In Sect. 2.1 we discuss the notion of fold
tangency of a submanifold with respect to a not necessarily integrable distribution,
define the pleating construction for submanifolds and formulate the main technical
result, Lemma 2, which is an analog for folded maps of Gromov’s directed
embedding theorem, see [8]. This is a corollary of the results of [6]. Section 3 is
the main part of the paper. We define and study there the notions and properties
of balanced, prepared and well balanced FLIFs, and gradually realize the described
above program of making a framed FLIF well balanced. We also prove here Igusa’s
result about existence of a formal extension for framed FLIFs, see Theorem 2, and
local integrability of well balanced FLIFs, see Lemma 20. Finally, in Sect. 4 we just
recap the main steps of the proof.

2 Tangency of a Submanifold to a Distribution

In this section we always denote by V an n-dimensional submanifold of an .nCk/-
dimensional manifoldW , by˙ a codimension 1 submanifold of V and by Norm D
Norm.V / the normal bundle of V .

2.1 Submanifolds Folded with Respect to a Distribution

Let � be an n-dimensional distribution, i.e. a subbundle � � T W . The non-
transversality condition of V to � defines a variety˙� of the 1-jet space J 1.V;W /.
We say that V has at a point p 2 V a tangency to � of fold type if

• Corank� �jTpV D 1;
• J 1.j / W V ! J 1.V;W /, where j W V ,! W is the inclusion, is transverse to
˙� ; we denote˙ WD .J 1.j //�1.˙�/;

• � �jTp˙ W Tp˙ ! T Wp=� is injective.

If � is integrable, and hence locally is tangent to an affine foliation defined by the
projection � W RnCk ! R

k , these conditions are equivalent to the requirement that
the restriction �jV has fold type singularity, and in this case one has a normal form
for the fold tangency.

If V has fold type tangency to � along˙ then we say that V is folded with respect to
V along ˙ . The fold locus ˙ � V is a codimension one submanifold, and at each
point � 2 ˙ the 1-dimensional line field � D Ker�� jT V D �jV \ T V is transverse
to ˙ .
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Fig. 3 Characteristic
coorientation of the fold

The hyperplane field T˙ ˚ �j˙ can be canonically cooriented. In the case when �
is integrable this coorientation can be defined as follows. The leaves of the foliation
trough points of ˙ form a hypersurface which divides a sufficiently small tubular
neighborhood˝ of ˙ in W into two parts, ˝ D ˝C [˝�, where ˝� is the part
which contains V \ ˝ . Then the characteristic coorientation of the fold ˙ is the
coorientation of the hyperplaneT˙˚�j˙ determined by the outward normal vector
field to ˝� along ˙ , see Fig. 3.

For a general � take a point �0 2 ˙ , a neighborhood U of �0 in V , an arbitrary
unit vector field �C 2 .T˙˚�j˙/? and consider an embedding g W U 
 .��; �/!
W such that g.x; 0/ D x; x 2 U and @g

@t
.�; 0/ D �C, � 2 ˙\U , where t 2 .��; �/

is the coordinate corresponding to the second factor. Consider the line field L D
d g.�/. Note that Lj.˙\U/�0 D �. The line field L integrates to a 1-dimensional
foliation on U 
 .��; �/ which has a tangency of fold type to U 
 0 along ˙ 
 0.
Hence, U 
 0 � U 
 .��; �/ can be cooriented, as in the integrable case, which
gives the required coorientation of T˙ ˚ �j˙ , see Fig. 3.

It is important to note that the property that V has a fold type tangency to � along
˙ depends only on �jV , and not on its extension to OpV . Similarly, the above
definition of the characteristic coorientation of T˙ ˚ �j˙ is independent of all the
choices and depends only on �jV and not on its extension to OpV .

The following simple lemma (which we do not use in the sequel) clarifies the
geometric meaning of the fold tangency.

Lemma 1 (Local normal form for fold type tangency to a distribution). Sup-
pose V � W is folded with respect to � along V and the fold ˙ is cooriented.
Denote � WD �j˙ \ T V j˙ and � WD .�jV /=�. Consider the pull-back e� of
the bundle � to ˙ 
 R

2 and denote by E the total space of this bundle. Then
there exists a neighborhood ˝ of ˙ 
 0 in E , a neighborhood ˝ 0 � ˙ in
W , and a diffeomorphism ˝ ! ˝ 0 introducing coordinates .�; x; z; y/ in ˝ 0,
� 2 ˙ ; .x; z/ 2 R

2, y 2 �, such that in these coordinates the manifold V is given
by the equations z D x2; y D 0 and the bundle �jV coincides with the restriction
to V of the projection .�; x; z; y/! .�; z/.

Lemma 1 implies, in particular, that if V is folded with respect to � then �jV
always admits an integrable extension to a neighborhood of V .
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2.2 Pleating

Suppose V is folded with respect to � along ˙ . Let S � V n ˙ be a closed
codimension 1 submanifold and �C 2 � be a vector field defined over OpS � W .
For a sufficiently small �; ı > 0 there exists an embedding g W S 
 Œ�ı; ı� 

Œ��; ��! W such that

• @g

@u .s; t; u/ D �C.g.s; t; u//; .s; t; u/ 2 S 
 Œ�ı; ı� 
 Œ��; ��,
• gjS�0�0 is the inclusion S ,! V ,
• gjS�Œ�ı;ı��0 is a diffeomorphism onto the tubular ı-neighborhood U � S in V ,

which sends intervals s 
 Œ�ı; ı� 
 0, s 2 S , to geodesics normal to S .

Let � � P WD Œ�1; 1� 
 Œ�1; 1� be an embedded connected curve which
near @P coincides with the line fu D 0g. Here we denote by t; u the coordinates
corresponding to the two factors. We assume that � is folded with respect to the
foliation defined by the projection .t; u/ 7! t (this is a generic condition). We denote
by �ı; � the image of � under the scaling .t; u/ 7! .ıt; �u/. Consider a manifold eV
obtained from V by replacing the neighborhood U by a deformed neighborhood
eU� D g.Sn�1 
 �ı; �/. We say bV is the result of � -pleating of V over S in the
direction of the vector field �C, see Fig. 4.

The � C
0 -pleating with the curve � C

0 shown on Fig. 5 will be referred simply as
pleating.

Lemma 2 (Pleated isotopy). Suppose V � .W; �/ is folded with respect to � along
˙ � V . Let �s , s 2 Œ0; 1�, be a family of n-dimensional distributions over a
neighborhood˝ � V . Then there exist

– A manifold eV � ˝ obtained from V by a sequence of pleatings over
boundaries of small embedded balls in the direction of vector fields which extend
to these balls, and

– A C0-small isotopy hs W eV ! ˝ ,
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Fig. 6 Curves �1 and �˙

2

such that for each s 2 Œ0; 1� the manifold hs.eV / has only fold type tangency to �s .
If ė D ˙ [ ˙ 0 is the fold of eV with respect to �0 then hs.ė/ is the fold of hs.bV /
with respect to �s. If the homotopy �s is fixed over a neighborhoodOpA of a closed
subset A � V then one can arrange that V \ OpA D eV \ OpA and the isotopy
hs is fixed over OpA.

Lemma 2 is a version of the wrinkled embedding theorem from [6], see
Theorem 3.2 in [6] and the discussion in Sects. 3.2 and 3.3 in that paper on how to
replace the wrinkles by spherical double folds and how to generalize Theorem 3.2
to the case of not necessarily integrable distributions. Another cosmetic difference
between the formulations in [6] and Lemma 2 is that the former one allows not only
double folds, but also their embryos, i.e. the moments of death-birth of double folds.
This can be remedied by preserving the double folds till the end in the near-embryo
state, rather than killing them, and similarly by creating the necessary number of
folds by pleating at the necessary places before the deformation begins.

Remark 1. If eV satisfies the conclusion of Lemma 2 then any manifold eeV obtained
from eV by an additional � -pleating with any � will also have this property. For
our purposes we will need to pleat with three special curves �1 and �2̇ shown on
Fig. 6.

As it clear from this picture, a pleating with any of these curves can be viewed
as a result of a � C

0 -pleating followed by a second � �
0 -pleating. Hence, in the

formulation of Lemma 2 one can pleat with any of the curves �1 and �2̇ instead
of � C

0 .

3 Geometry of FLIFs

3.1 Homomorphisms �˚ and ˘˚

Given a �-FLIF ˚ we will associate with it several objects and constructions.

Isomorphism �˚ W Norm ! Vert. This isomorphism is determined by ˚1. The
tangent bundle T .�jV / to the total space of the bundle �jV canonically splits as
Vert ˚ T W jV , and hence the bundle of tangent planes to the section ˚1 along its
0-set V can be viewed as a graph of a homomorphism b� ˚ WT W jV !Vert vanishing
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and �C

on T V . The restriction of this homomorphism to Norm will be denoted by �˚ . The
transversality of the section ˚1 to the 0-section ensures that Ker b� ˚ D T V and
hence �˚ is an isomorphism.

By an index coorientation of ˙ in V we will mean its coorientation by a normal
vector field �C pointing in the direction of decreasing of the index, i.e. on ˙ i it
points into V i . We will denote by nC the vector field � �1

˚ .�C/ 2 Norm.V / , see
Fig. 7.

In the holonomic situation the index coorientation is given by the vector field �C
and the vector field nC determines the characteristic coorientation of the fold.

We call a �-FLIF ˚ prepared if

• V.˚/ is folded with respect to � with the fold along˙.˚/;
• T V \ Vert˙ D � and the vector field �C determines the index coorientation of

the fold;
• The vector field nC determines the characteristic coorientation of the fold ˙ .

Thus, any holonomic FLIF (when, in particular, � is integrable) is prepared.

Isomorphism ˘˚ W Norm ! Vert. Given a prepared �-FLIF ˚ , let us denote by
K the restriction of the orthogonal projection T W jV ! Norm to the subbundle
Vert D �jV � T W jV . The homomorphism K is non-degenerate over V n ˙ and
has a 1-dimensional kernel � over˙ .

Lemma 3 (Definition of˘˚ ). The composition˚2ıK�1 W NormjV n˙ ! VertjV n˙
continuously extends to a non-degenerate homomorphism˘˚ W Norm! Vert.

Proof. Let us prove the extendability of the inverse operator K ı �˚2
	�1

. There
exists a canonical extension of the vector field �C as a unit ˚2-eigenvector fielde�C
on Op˙ � V . Then

˚2.e�C.v// D c.v/e�C.v/ ; v 2 Op˙ ;

where the eigenvalue function c W Op˙ ! R has ˙ as its regular 0-level. Denote
fVer D e�?.v/ the orthogonal eigenspace of ˚2.v/. Denote eNor WD K.fVer/. The
operator K ı �˚2

	�1
is well defined on Ver D fVerj˙ � Vertj˙ and maps it

isomorphically onto Nor D eNorj˙ . It remains to prove existence of a non-zero
limit

lim
v!v02˙

K
��
˚2
	�1

.e�C/
�
D lim

v!v02˙
1

c.v/
K.e�C.v// :
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The vector-valued function K.e�C.v// vanishes on ˙ while the function c.v/ has
no critical points on ˙ . Hence, the above limit exists. On the other hand, the
transversality condition for the fold implies that jjK.e�C.v//jj � a dist.v; ˙/,
while jc.v/j � b dist.v; ˙/ for some positive constants a; b > 0, and therefore

lim
v!v02˙

1
c.v/K.

e�C.v// ¤ 0: ut
Lemma 4. If ˚ is holonomic then˘˚ D �˚ .

Proof. Indeed, recall that �˚ D b� ˚ jNorm, where b� ˚ W T W jV ! Vert is the
homomorphism defined by the section ˚1 linearized along its zero-set V . In the
holonomic situation one has over V n˙ the equality

b� ˚ jVert D d2' D ˚2 ;

where ' D ˚0. But b� ˚ jVert and b� ˚ jNorm are related by a projection along the kernel
of b� ˚ which is equal to T V . Hence, �˚ D ˚2 ı K�1 D ˘˚ . By continuity, the
equality˘˚ D �˚ holds everywhere. ut

3.2 Twisted Normal Bundle and the Isomorphism �˚

Given any �-FLIF ˚ we define here a twisted normal bundle, or as we also call it
virtual vertical bundle ˚Vert � T WV over V . As we will see later (see Lemma 7),
in the holonomic case ˚Vert coincides with Vert.

Let U D ˙ 
 Œ��; �� be the tubular neighborhood of ˙ in V of radius � > 0. We
assume that the splitting is chosen in such a way that the vector field @

@t
, where t is

the coordinate corresponding to the second factor, defines the index coorientation of
˙ in V , and hence coincides with �C. We denote

UC WD ˙ 
 .0; ��; U� WD ˙ 
 Œ��; 0/ :

Denote bye�C 2 Vert the unit eigenvector field of˚2jU which extends�C 2 Vertj˙ .
If � is small enough then such extension is uniquely defined. Let fVer WD e�? be the
complementary ˚2-eigenspace. We have fVerj˙ D Ver. DenoteenC WD � �1

˚ .e�C/,
eNor D � �1

˚ .fVer/; e�C WD @
@t

. Choose a function � W U ! Œ��
2
; �
2
� which has ˙ as

its regular level set f� D 0g, and which is equal to ˙�
2

near˙ 
 .˙�/.
We define the bundle ˚Vert in the following way. Over V n U it is equal to Norm.
The fiber over a point v 2 U is equal to Span.eNor; �.v//, where the line �.v/ is
generated by the vector

�C.v/ D sin �.v/enC.v/C cos �.v/e�C.v/;

see Fig. 8.
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Isomorphism �˚ W Vert ! ˚Vert. Let c W U ! R be the eigenvalue
function corresponding to the ˚2-eigenvector field e�C 2 Vert on U , i.e. we have
˚2.e�C.v// D c.v/e�C.v/, v 2 U . The function c is positive on UC and negative on
U�. Letec W U ! R be any positive function which is equal to c on @UC D ˙ 
 �
and equal to �c on @U� D ˙ 
 .��/.

We then define the operator

�˚ W Vert! ˚Vert

by the formula

�˚.Z/ D

8
ˆ̂
<

ˆ̂
:

� �1
˚ .˚2.Z//; over V n U; Z 2 Vert I
� �1
˚ .˚2.Z//; over U; Z 2 fVer I

ec.v/
�
sin �.v/enC C cos �.v/e�C	 ; Z De�C.v/; v 2 U :

(1)

It will be convenient for us to keep some ambiguity in the definition of ˚Vert

and �˚ . However, we note that the space of choices we made in the definition
is contractible, and hence the objects are defined in a homotopically canonical way.

Let us extend ˚Vert and �˚ to a neighborhood OpV � W . We will keep the same
notation for the extended objects.

Lemma 5. For any �-FLIF ˚ the ˚Vert-FLIF

˚Norm D .Id; �˚/�˚

on OpV is prepared.

Proof. Denote b̊ WD ˚Norm. We have V.b̊/ D V.˚/ D V . First of all we observe
(see Fig. 9) that V is folded with respect to ˚Vert along ˙ and the vector field
nC D nC.˚/ defines the characteristic coorientation of the fold. On the other hand,
�C.b̊/ D �˚.�C.˚// D �C.˚/ D �C.b̊/ and

nC.b̊/ D � �1
b̊
.�C.b̊// D � �1

b̊
.�C/ D � �1

˚ .��1
˚ .�C// D � �1

˚ .�C/ D nC.˚/;

and hence nC.b̊/ defines the characteristic coorientation of the fold ˙ . Thus b̊ is
prepared. ut
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Fig. 9 V is folded with respect to ˚Vert.

Lemma 6. For any FLIF ˚ the diagram

Norm

˘b̊ ���
��

��
��

�

�˚
�� Vert

�˚����
��
��
��

˚Vert

commutes for appropriate choices in the definition of ˚Vert and �˚ .

Proof. We need to check that ˘b̊ D �˚ ı �˚ . First, we check the equality over
V n U . We have NormjV nU D ˚VertjV nU , and hence Kb̊ D Id: Furthermore, over

V nU we have˘b̊ D K�1
b̊
ı b̊2 D �˚ ı˚2 ı��1

˚ D � �1
˚ ı˚2 ı˚2 ı �˚2

	�1
�˚ D

� �1
˚ ı˚2 ı�˚ D �˚ ı�˚: Similarly, we check that˘b̊jfNor D �˚ ı�˚ jfNor. Finally,

evaluating both parts of the equality on the vector field nC we get:˘b̊.n
C/ D �C D

�˚.�˚.n
C//. Then this implies˘b̊.en

C/ D �˚.�˚.en
C// for an appropriate choice

of the functionec > 0 in the definition of the homomorphism�˚ . ut

3.3 The Holonomic Case

We will need the following normal form for a leaf-wise Igusa function ' near ˙
(see [1, 2]).

Consider the pull-back of the bundle Ver D VerC˚Ver� defined over˙ to˙
R
R
via the projection ˙ 
 R 
 R ! ˙ . Let E be the total space of this bundle. The
submanifold˙ 
 0 
 0 of the 0-section of this bundle we will denote simply by˙ .
Consider a function � W E ! R given by the formula

�.�; x; z; yC; y�/ D x3 � 3zx C 1

2
.jjy2Cjj � jjy2�jj/ I (2)

.�; x; z/ 2 ˙ 
R 
 R; y˙ 2 .Ver˙/� :
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Fig. 10 Holonomic case: the bundle ˚Vert coincides with Vert

Consider the projection p W E ! ˙ 
R defined by the formula

p.�; x; z; yC; y�/ D .�; z/:

There exists an embedding g W Op˙ ! W , where Op˙ is a neighborhood of ˙
in E , such that

• g.�/ D �; � 2 ˙ ;
• g maps the fibers of the projection p to the leaves of the foliation F .
• ' ı g D � .

Via the parameterization map g we will view .�; x; z; yC; y�/ as coordinates in
Op˙ � W . In these coordinates the function ' has the form (2), the manifold V is
given by the equations z D x2; y˙ D 0, the foliation F is given by the fibers of the
projection p, the vector field � @

@z defines the characteristic coorientation of the fold

˙ , and the vector field @
@x
2 T V j˙ defines the index coorientation.

The normal form (2) can be extended to a neighborhood of V using the parametric
Morse lemma. However, we will not need it for our purposes.

Lemma 7. If ˚ is holonomic then for appropriate auxilliary choices the virtual
vertical bundle ˚Vert coincides with Vert (Fig. 10) and the isomorphism

�˚ W Vert! ˚Vert D Vert

is the identity.

Proof. Let ˚ be holonomic and ˚0 D '. The bundle Vert is transverse to V over
V n U , and over U it splits as fVer˚e�. We have eNor\ T V D f0g, the bundlee� is
tangent to V along ˙ and � De�j˙ is transverse to ˙ . Let us choose a metric such
that the transversality condition for the bundles VertjV nU ; fVerjU ; �jU are replaced
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by the orthogonality one. Then the operator � �1
˚ , and hence�˚ leaves invariant the

bundles VertjV nU and fVerjU . Moreover, on both these bundles the operators ˚2 D
d2' and �˚ coincide, and hence�˚ D Id.

It remains to analyze�˚ je�C . By definition,

�˚.e�
C.v// Dec.v/ �cos �.v/�C.v/C sin �.v/enC.v/

	
; v 2 U;

whereenC D � �1
˚ .e�C/. It is sufficient to ensure that the line �˚ je� coincides with

e�C because then the similar equality for vectors could be achieved just by choosing
an appropriate amplitude functionec in the definition of the operator �˚ . Note that
we have �˚.e�.v// D �.v/ for v 2 @U or v 2 ˙ . To ensure this equality on the rest
of U we need to further specify our choices. As it was explained above in Sect. 3.3
we can assume that the function ' in a neighborhood˝ � U in W is given by the
normal form (2). Choosing˝ D fjxj; jzj � �g we have

U WD V \˝ D fz D x2; y˙ D 0; jxj � �g ;

and bundles Vert, fVer and e� are given, respectively, by restriction to V of
the projections .�; x; z; yC; y�/ 7! .�; z/ , .�; x; z; yC; y�/ 7! .�; x; z/ and
.�; x; z; yC; y�/ 7! .�; z; y�; yC/ : Let us choose the tangent to V vector field
@
@x
C 2z @

@z as e�C and recall that we have chosen a metric for which the vectors

�C.v/ and e�C.v/ for v 2 @U are orthogonal. Let us choose any vector field
b� 2 P WD Span. @

@x
; @
@z / such that

• b�Cj@UC
De�Cj@UC

;
• b�Cj@U�

D �e�Cj@U�
;

• b�Cj˙ D � @
@z defines the characteristic coorientation;

• The vector field �CjIntUC belongs to the positive cone generated bye�C andb�C;
• The vector field �CjIntU� belongs to the positive cone generated bye�C and�b�C.

Let us pick a metric on P for which the vector fields e�C and b�C are orthogonal
and the vector fieldse�C ande�C have length 1. By rescaling, if necessary, the vector
fieldb�C we can arrange that it has length 1 as well. Let us denote by �.v/ the angle
between the vectors �C and �C in this metric. If we construct the virtual vertical
bundle (Fig. 10) ˚ j with this choice of the metric and the angle function � , then the
condition�˚.e�/ De� will be satisfied. ut

In all our results below concerning an extension of a holonomic FLIF from a
neighborhood of a closed set A we will always assume that over OpA all the
necessary special choices are made to ensure the conclusion of Lemma 7: the virtual
vertical bundle ˚Vert coincides with Vert and the isomorphism �˚ W Vert !
˚Vert D Vert is the identity, and hence, according to Lemma 6, we have �˚ D ˘b̊,

where b̊ D ˚Norm.
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3.4 Balanced and Well Balanced FLIFs

We call a FLIF ˚ balanced if the compositions

Norm
�˚�!Vert ,! T W jV and Norm

˘b̊�! ˚Vert ,! T W jV
are homotopic in the space of injective homomorphisms Vert ! T W jV . Here we
denote by b̊ the FLIF˚Norm. If˚ is holonomic over OpA � W then we say that˚
is balanced relative A if the homotopy can be made fixed over A.

Lemma 6 shows that the balancing condition is equivalent to the requirement that

the composition Vert
�˚�! ˚Vert ,! T W jV is homotopic to the inclusion Vert ,!

T W jV in the space of injective homomorphisms Vert! T W jV .

Lemma 4 shows that a holonomic ˚ is balanced. Moreover, it is balanced relative
to any closed subset A � W .

We say that a FLIF ˚ is well balanced if it is prepared and the isomorphisms
˘˚; �˚ W Norm ! Vert are homotopic as isomorphisms. Similarly we define the
notion of a FLIF well balanced relative to a closed subset A.

It is not immediately clear from the definition that a well balanced FLIF is
balanced. The next lemma shows that this is still the case.

Lemma 8. A well balanced FLIF is balanced.

Proof. We need to check that over V n ˙ we have ˘˚ D ˚2 ı K�1 and ˘b̊ D
˚2ıbK�1, whereK is the projection Norm! Vert and bK is the projection Norm!
˚Vert. We have bK D T ıK , where T W Vert! ˚Vert is the projection along T V .
Hence, we have˘b̊D ˘˚ ı T which implies, in particular, that the projection T is
non-degenerate over the whole V . Hence, the composition of the projection operator

T with the inclusion ˚Vert
i
,! T W jV is homotopic to the inclusion Vert

j
,!T W jV

as injective homomorphisms, and so do the compositions i ı˘b̊ and j ı˘˚ . ut

Note that for the codimension 1 case, i.e. when n D 1 the well balanced condition
for a prepared FLIF is very simple:

Lemma 9 (Well-balancing criterion in codimension 1). Suppose dim � D 1.
Then any prepared �-FLIF ˚ is well balanced if and only if at one point v 2 V n˙
of every connected component of V the map

.˘˚/v ı .�˚/�1v W Vertv ! Vertv

is a multiplication by a positive number. The same statement holds also in the
relative case.
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Lemma 10 (Well balanced FLIFs and folded isotopy). Let ˚ be a well balanced
FLIF. Let hs W W ! W be a diffeotopy, �s a family of n-dimensional distributions
on W , and �s W �0 ! �s a family of bundle isomorphisms covering hs , s 2 Œ0; 1�,
such that h0 D Id and for each s 2 Œ0; 1�
• Submanifold Vs WD hs.V / � W is folded with respect to �s along˙s WD hs.˙/;
• dhs.�0 \ T V // D dhs.�s/ \ T Vs;
• dhsj�0\T V D �sj�0\T V .

Then the push-forward �s-FLIF ˚s WD .hs;�s/�˚ , s 2 Œ0; 1�, is well balanced.

Proof. By assumption V.˚s/ is folded with respect to �s . Next, we observe that
all co-orientations cannot change in the process of a continuous deformation, and
similarly, the isomorphisms ˘˚s and �˚s vary continuously, and hence remain ho-
motopic as bundle isomorphisms Norm.˚s/ ! Vert.˚s/. Thus the well balancing
condition is preserved. ut

Note that if ˚ is balanced then the homomorphism �˚ W �jV ! ˚Vert composed
with the inclusion ˚Vert ,! T W extends to an injective homomorphism F W � !
T W . Then .Id; F /�˚ is a �-FLIF extending the local �-FLIF b̊. Here we denoted
by � WD F.�/.
Lemma 11. The �-FLIF b̊ D ˚Norm on OpV is well balanced.

Proof. We already proved in Lemma 5 that b̊ is prepared. Let us show that ˘b̊ D
�b̊. According to the definition of the push-forward operator we have �b̊ D �˚ ı
�˚ . But according to Lemma 6 we have �˚ ı �˚ D ˘b̊. ut

Consider a �-FLIF˚ . Suppose there exists a .kC1/-dimensional submanifold Y �
W , Y � V , such that

• Y is transverse to �;
• The line field �jV � Vert is an eigenspace field for ˚2, where we denoted � WD
� \ T Y ;

• ˚2jN WD�?jV is non-degenerate, where �? is the orthogonal complement to � in
�jY .

Consider the restriction �-FLIF e̊ D ˚ jY defined as follows: e̊0 D ˚0jY , e̊1 is
the projection of ˚1 along �?, e̊2 D ˚2j� ,e� D �. Note that we have V.e̊/ D V
and˙.e̊/ D ˙ .

We will assume that the bundle N is orthogonal to T Y . Under this assumption we
have �˚.N / D N . The next criterion for a FLIF to be well-balanced is immediate
from the definition.

Lemma 12. If e̊ is prepared then so is˚ . If e̊ is well balanced and˚2jN D �˚ jN
then ˚ is well balanced as well.
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3.5 Pleating a FLIF

We adjust in this section the pleating construction defined in Sect. 2.2 for submani-
folds to make it applicable for framed well balanced FLIFs. et ˚ be a well balanced
�-FLIF. We will use here the following notation from Sect. 2.2:

– S � Vi � V n ˙; i D 0; : : : ; n; is a closed cooriented codimension 1

submanifold;
– U D S 
 Œ�ı; ı� � S D S 
 0 is a tubular ı-neighborhood of S in Vi ;
– �C 2 � is a unit vector field defined over a neighborhood˝ of U in W ;
– g W S 
 Œ�ı; ı� 
 Œ��; �� ! ˝ ,! W is an embedding such that @g

@u .s; t; u/ D
�C.g.s; t; u//; .s; t; u/ 2 S 
 Œ�ı; ı�
 Œ��; ��, which maps S 
0
0 onto S and
S 
 Œ�ı; ı� 
 0 onto U ;

– � � P WD Œ�1; 1� 
 Œ�1; 1� is an embedded connected curve which near @P
coincides with the line fu D 0g;

– eV � W is the result of � -pleating of V over S in the direction of the vector
field �C.

We will make the following additional assumptions:

• The splitting VertjS D VertCjS ˚Vert�jS is extended to a splitting � D �C˚ ��
over the neighborhood˝ � W ;

• The vector field �C is a section of either ��j˝ or �Cj˝ ;
• The vector field �CjU is an eigenvector field for ˚2;
• Norm.˚/jU D Vert.˚/jU and �˚ jVertjU D Id.

There exists a diffeotopy hs W W ! W supported in ˝ connecting Id with
a diffeomorphism h such that h.V / D eV . We denote eU D eU� WD h1.� /. Let
�s W � ! �, s 2 Œ0; 1�, be a family of isomorphisms covering hs which preserve
Vert˙ and �C.

The manifold eU is folded with respect to � with the fold eS D
2NS

1

eSj where eSj D
h1.Sj /, where Sj D S 
 tj , �ı < t1 < : : : t2N < ı. Over eS we havee� D � D
TbV \ �.

Consider the push-forward FLIF ˚ WD .h1; �1/�˚ . Though the manifold V.˚/ D
eV is folded with respect to �, it is not prepared. We will modify ˚ to a prepared
FLIF e̊ D PleatS;�C;� .˚/ as follows.

Letec W eU ! R be a function which on @eU D @U coincides with the eigenvalue
function of the operator ˚2 for the eigenvector field �C, and have the fold eS WD
2NS

1

eSj as its regular 0-level. We call component of eU n eS positive or negative

depending on the sign of the functionec on this component. We then define
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Fig. 11 � -pleating of a well
balanced FLIF

• e̊1 D ˚1
;

• e̊2j�? D ˚2j�? ;
• e̊2.�C/ Dec �C;
• �C.e̊2/ D ˙�C, where the sign is chosen in such way that the vector field
�C.e̊2/ define an inward coorientation of positive components of eU n eS , see
Fig. 11.

We say that e̊ D PleatS;�C;� .˚/ is obtained from ˚ by � -pleating over S in
the direction of the vector field �C see Fig. 11.

Lemma 13. The FLIF e̊ is well balanced.

Proof. Consider the .k C 1/-dimensional manifold

Y WD g.S 
 Œ�ı; ı� 
 Œ��; ��/ � W :

Then Y is transverse � and � \ T Y D �. We also note that the orthogonal
complement �? of � 2 � is orthogonal to T Y , e̊2j�? D ˘e̊j�? D �e̊j�? .
According to Lemma 12 it is sufficient to check that the restriction b̊ WD e̊jY
is well balanced, rel. @Y . First, we need to check that this restriction is prepared.
By construction, eV D V.b̊/ is folded with respect to � and the vector field
�C.b̊/ D �C.e̊/ defines the index coorientation ofeS in eV . Next, we need to check
that the vector field nC.b̊/ D nC.e̊/ D � �1

e̊ .�C.e̊/ defines the characteristic
coorientation of the fold. It is sufficient to consider the case when S is the point, and
hence dimY D 2. The general picture is then obtained by taking a direct product
with S .

Note that the characteristic co-orientation of the fold eSj is given by the vector
field @

@t
if j is odd, and by � @

@t
if j is even. Consider first the case when j is

odd, see Fig. 12. Then if the lower branch of the parabola is positive then the vector
field �e̊.�

C/ defines the same coorientation as the vector field � @
@t

. But in this case
�C D ��C, and hence �e̊.�

C/ defines the characteristic coorientation of the fold.
The other cases can be considered in a similar way. Finally, we use Lemma 9 to
conclude that b̊ is well balanced relative the boundary @Y . ut

In order to extend the � -pleating operation to framed well-balanced FLIFs we need
to impose additional constraints on the choice of the vector field �C and the curve� ,
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Fig. 13 Framing of a � -pleated FLIF

see Fig. 13. For each j D 1; : : : 2N denote by �j the proportionality coefficient in
�CjeSj D �j �CjeSj , �j D ˙1. Then we require that

(˛) if eSj and eSjC1, j D 1; : : : ; 2N � 1 bound a negative component of eU n eS
then �j D �jC1;
(ˇ) if the component bounded byeS1 andeS2 is positive then �1 D �2N D ˙1 for
�C D ˙�i .

Lemma 14 (Pleating a framed FLIF). If �C and � satisfy the above conditions,
then given a framed well balanced FLIF .˚; �/ the FLIF e̊ D PleatS;�C;� admits a
framing e� , where the framinge� coincides with � outside eU .
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Proof. The proof is illustrated on Fig. 13. In the case �C 2 VertC the pleating
construction adds a 1-dimensional negative eigenspace to Vert� restricted to nega-
tive components eU n eS . Condition .˛/ then allows us to frame this 1-dimensional
space either with �iC1 WD �j �

C. Similarly, if �C 2 Vert� (or, equivalently when
the component bounded by eS1 and eS2 is positive) then the pleating construction
removes the negative eigenspace generated by �C on positive components. The
remaining negative components boundedeS2j andeS2jC1, j D 1; : : : ; N � 1, can be
framed withe� WD .�1; : : : ; �2j �i /. Condition (ˇ) ensures that the existing framing in
the complement of U satisfies the necessary boundary conditions oneS1 and eS2N .

ut

Lemma 15. Given any framed well balanced FLIF .˚; �/, one of the curves
�1; �2̇ shown on Fig. 6 can always be used as the curve � to produce a framed
well balanced FLIF .e̊;e�/ by a � -pleating.

Proof. Indeed, as it follows from Lemma 14, the curve �1 can always be used if
�CjS 2 VertC, while if �CjS 2 Vert� then the curve �2̇ can be used in the case
�C D ˙�i , see Fig. 13. ut

The next proposition is a corollary of Lemma 2 and the results discussed in the
current section.

Lemma 16 (Pleated isotopy of framed well balanced FLIFs). Let �s , s 2 Œ0; 1�,
be a family of n-dimensional distributions onW , and .˚; �/ a framed well-balanced
�0-FLIF with V.˚/ D V � W . Then there exist

• A framed well balanced �0-FLIF e̊ obtained from˚ by a sequence of pleatings,
and

• A C0-small isotopy hs W V ! W , s 2 Œ0; 1� such that h0 is the inclusion V ,! W

and eV s WD hs.V .e̊// is folded with respect to �s along ės WD hs.˙.e̊//.
If ˚ is holonomic over OpA then one can arrange that e̊ D ˚ on OpA and that
the homotopy hs is fixed over OpA.

Proof. According to Lemma 2 there exists a manifold eV for which the isotopy
with the required properties does exist. This manifold can be constructed beginning
from V by a sequence of � C

0 -pleatings along the boundaries of balls embedded
into V n˙ , in the direction of vector fields which extend to these balls. The latter
property allows us to deform these vector fields into vector fields contained in VertC
or Vert� (we need to use Vert� only if dim VertC D 0). Moreover, when using
�C 2 Vert�jVi and when i D dim Vert�jVi > 1 we can deform it further into the
last vector �i of the framing. In the case i D 1 we can deform �C into ˙�i , but we
cannot, in general, control the sign. Note that we need to use this case only if n D 1.
As it was explained in Remark 1, we can replace at our choice each � C

0 -pleating
in the statement of Lemma 2 by any of the � -pleatings with � D �1; �2̇ . But
according to Lemma 15 one can always use one of these curves to pleat in the class
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of framed well balanced FLIFs. It remains to observe that if ˚ is holonomic over
OpA then all the constructions which we used in the proof can be made relative to
OpA. ut

3.6 Stabilization

Let ˚ be a �-FLIF. Suppose that we are given a connected domain U � V n˙ with
smooth boundary such that the bundles Vert˙jU are trivial. Let C be an exterior
collar of @U � V n˙ . We set U 0 WD U [ C .

Let us assume that U is contained in V i . If i < n we choose a section �C of the
bundle VertC over U 0 and we define a negative stabilization of ˚ over U as a FLIF
e̊ D Stab�

U;�C
.˚/ such that

• e̊1 D ˚1;
• e̊2 D ˚2 over V n U 0;
• ˙.e̊/ D ˙.˚/ [ @U ; IntU � V iC1.e�/;
• Vert�.e̊/jIntU D Span.Vert�.˚/jIntU ; �

C/;
• �C.e̊/j@U D �C.

We will omit a reference to � in the notation and write simply Stab�
U .˚/ when this

choice will be irrelevant.

Note that in order to construct e̊2 on U 0 which ensures these property we need
to adjust the background metric on � to make �C an eigenvector field for ˚2

corresponding the eigenvalueC1. The vector field �C remains the eigenvector field
for e̊2 but the eigenvalue function is changed to c W U 0 ! Œ�1; 1�, where c is
negative on U , equal to 1 near @U 0 and has @U as its regular 0-level.

If the FLIF ˚ is framed by � D .�1; : : : ; �i / then e̊ can be canonically framed bye�
such thate� D � over V n U and Vert�.e̊/jIntU is framed bye� WD .�1: : : : ; �i ; �C/
and we define

Stab�
U .˚; �/ WD .Stab�

U; �i
.˚/;e�/;

In the case when U � Vi and i > 0 we can similarly define a positive stabilization
of ˚ over U as a FLIF e̊ D StabC

U; � .˚/, where � is a section of Vert� over U 0 such
that

• e̊1 D ˚1;
• e̊2 D ˚2 over V n U 0;
• ˙.e̊/ D ˙.˚/ [ @U ; IntU � V i�1.e�/;
• VertC.e̊/jIntU D Span.VertC.˚/jInt U; �

C/;
• �C.e̊/j@U D �C.

If˚ is framed by a framing � D .�1; : : : ; �i / then we will always choose �C D �i jU
and define a positive stabilization by the formula
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StabC
U .˚; �/ WD .StabC

U; �i
.˚/;e�/;

wheree�jIntU D .�1; : : : ; �i�1/.
Lemma 17 (Balancing via stabilization). Any FLIF can be stabilized to a bal-
anced one. If ˚ is balanced and 
.U / D 0 then StabU̇ .˚/ is balanced as well. The
statement holds also in the relative form.

Proof. The obstruction for existence of a fixed over A � V homotopy between
two monomorphisms �1; �2 W Norm ! T W jV is an n-dimensional cohomology
class ı.�1; �2IV;A/ 2 Hk.V;AI�k.Vn.RnCk///, or more precisely a cohomology
class with coefficients in the local system �k.Vn.TvW //; v 2 V . Note that
�k.Vn.R

nCk// D Z if k is even or n D 1 and Z=2 otherwise. It is straightforward
to see that

ı.�.˚/;�.StabU̇ .˚/IU; @U / D
(

.U /�; k is evenI
˙
.U /�; k is odd;

for an appropriate choice of a generator � of Hk.U; @U I�k.Vn.RnCk///. Hence,
stabilization over a domain with vanishing Euler characteristic does not change the
obstruction class ı.� .˚/;�.˚// and with the exception of the case k D n D 1

this obstruction class can be changed in an arbitrary way by an appropriate choice
of U . Indeed, if k > 1 then one can take as U either the union of l copies of
n-balls or a regular neighborhood of an embedded bouquet of l circles (comp. a
similar argument in [7]). If k D 1 and n > 1 then the sign issue is irrelevant
because the obstruction is Z=2-valued. If k D n D 1 then one may need two
successive stabilizations in order to balance a FLIF. Indeed, the domain U in this
case is a union of some number l of intervals, and hence
.U / D l . Thus the positive
stabilization increases the obstruction class by l , while the negative one decreases
it by l . Suppose, for determinacy, we want to stabilize over a domain in V0. If we
need to change the obstruction class by �l then we just negatively stabilize over
the union of l intervals. If we need to change it by Cl we first negatively stabilize
over one interval I and then positively stabilize over the union of l C 1 disjoint
intervals in I . ut

3.7 From Balanced to Well Balanced FLIFs

Lemma 18 (From balanced to well balanced). Let .˚; �/ be a balanced framed
�-FLIF which is holonomic over a neighborhood of a closed subset A � W . Then
there exists a framed well-balanced FLIF .˚ 0; � 0/ which coincides with ˚ over
OpA. In addition, V.˚ 0/ is obtained from V.˚/ via a C0- small, fixed on OpA
isotopy.
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Proof. There exists a family of monomorphisms �s W Vert ! T W , s 2 Œ0; 1�,

connecting Vert
�˚�! ˚Vert ,! � and the inclusion j W Vert ,! � . The homotopy

can be chosen fixed over OpA. The family �s can be extended to a family of
monomorphisms � ! T W . We will keep the notation �s for this extension. Denote
�s WD �s.�/, s 2 Œ0; 1�. Thus �1 D � and �0 is an extension to W of the bundle
Norm˚ . Lemma 11 then guarantees that the push-forward �0-FLIF .Id; �0/�.˚; �/
is well balanced. According to Lemma 16 there exists a well balanced framed
�0-FLIF .b̊;b�/ where bV D V.b̊/ is obtained from V by a C0-small isotopy which
i8s fixed outside a neighborhood of V and over a neighborhood of A, and a C0-
small supported in .OpbV / n A isotopy gs starting with g0 D Id such that for each
s 2 Œ0; 1� the manifold bV s WD gs.bV / is folded with respect to �s along ḃs D gs.ḃ/.
There exists a family of bundle isomorphisms�s W �0 ! �s covering the diffeotopy
hs and such that �0 D Id and �s D dgs over the line bundle T V jḃ \ �0. The
homotopy �s can be chosen fixed over OpA. Then, according to Lemma 10, the
push-forward �-FLIF .g1;�1/�.b̊;b�/ is well balanced relative A. ut

3.8 Formal Extension

Theorem 2 (Formal extension theorem). Any framed �-FLIF .˚; �/ onOpA� W
extends to a framed �-FLIF .e̊;e�/ on the whole manifoldW .

The proof is essentially Igusa’s argument in [10] (see pp. 438–442).

We begin with the following lemma which will be used as an induction step in the
proof.

Lemma 19 (Decreasing the negative index). Let j D 1; : : : ; n. Suppose W is a
cobordism between @�W and @CW , and for a framed FLIF .˚; �/ on W one has
V i D ¿ for i > j . Then there exists a framed FLIF .e̊;e�/ such that

• ˚ D e̊ on Op .@�W /;
• V i .e̊/ \ @CW D ¿ for i � j .

Proof. of Lemma 19. To prove the claim we recall that the j -dimensional bundle
Vert� overV j is trivialized by the framing � D .�1; : : : ; �j /, and �j j˙j�1 D �C. We
can extend the vector field �j to a neighborhoodG of V j in V j�1[V j [˙j�1 as a
unit vector field in V j�1

C . Let Xj be the self-adjoint linear operator VertC ! VertC
defined on the neighborhoodG which orthogonally projects Vert to the line bundle
spanned by �j . Choose neighborhoods H� � @�W and HC � @CW in W with
disjoint closures and consider a cut-off function � W V ! RC which is equal to 0 on
.V \H�/[.V nG/ and equal to 1 on V j \HC. Set e̊2 WD ˚2CC�Xj . Then for a
sufficiently large C > 0 the self-adjoint operator e̊2 coincides with ˚2 on V \H�,
has negative index � j everywhere, and < j on V j \HC, see Fig. 14. The kernel
of e̊2 on ˙j�1.e̊/ is generated by �j , and hence there is a canonical way to define
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Fig. 14 Decreasing the negative index

the vector field �C.e̊/j˙j�1 . Note that e̊ D ˚ in the complement V n V j�1.˚/ [
V j .˚/[˙j�1.˚/ and at each point v 2 V j�1.˚/[V j .˚/[˙j�1.˚/ the negative
eigenspace Vert�.e̊/ coincides either with Vert�.˚/, or with the span of the vectors
�1; : : : ; �j�1. Hence, the framing � of ˚ determines a framinge� of e̊. ut
Proof. of Theorem 2. Let ˚ D .˚0; ˚1; ˚2; �C/. Without loss of generality
we can assume that .˚; �/ is defined on an .n C k/-dimensional domain C �
W; IntC � A, with smooth boundary. Note that if ˚2jV\@C is positive definite,
then the extension obviously exist. Indeed, we can extend ˚1 in any generic
way to W , and then extend ˚2 as a positive definite operator on Vert. We
will inductively reduce the situation to this case. Let C 0 � IntC be a smaller
domain such that A � IntC 0. Let us apply Lemma 19 to the cobordism W.0/ D
C n IntC 0 between @�W.0/ D @C 0 and @CW.0/ D @C and to the restriction
.˚; �/jW.0/ in order to modify .˚; �/jW.0/ into a framed FLIF .˚.0/; �.0// which
coincides with .˚; �/ near @�W.0/ and such that V n.˚.0// \ .@CW.0// D ¿.
Then for a sufficiently small tubular neighborhood W.1/ of @CW.0/ in W.0/ we
have W.1/ \ A D ¿ and W.1/ \ V n.˚.0// D ¿. We view W.1/ as a cobordism
between @�W.1/ D @W.1/ n @CW.0/ and @CW.1/ D @CW.0/. Now we again apply
Lemma 19 to the cobordism W.1/ and ˚.0/jW.1/ and construct a framed FLIF
.˚.1/; �.1// on W.1/ which coincides with .˚.0/; �.0// near @�W.1/ and such that
V i.˚.1// \ @CW.1/ D ¿/ for i � n � 1. Continuing this process we construct
a sequence of nested cobordisms C � W.0/ � W.1/ � � � � � W.n�1/ and a
sequence of framed FLIFs .˚.j /; �.j // on W.j /, j D 0; : : : ; n � 1, such that for
all j D 0; : : : ; n � 1
• @CW.j / D @C ;
• .˚.jC1/; �.jC1// coincides with .˚.j /; �.j // on Op .@�W.jC1//;
• V i .˚.j //\ @CW.j / D ¿ for i � n � j .

Let us also set W.n/ D ¿. Hence we can define a framed formal Igusa function
.e̊;e�/ over C by setting .e̊;e�/ D .˚; �/ on C 0 and .e̊;e�/ D .˚.j /; �.j // on W.j / n



The Space of Framed Functions is Contractible 107

W.jC1/ for j D 0; : : : ; n � 1. Note that the quadratic part e̊2 of e̊ is positive
definite on @C , and hence the framed formal Igusa function e̊ can be extended to
the whole W .

ut

3.9 Integration Near V

Lemma 20 (Local integration of a well balanced FLIF). Any well balanced
F -FLIF ˚ can be made holonomic near V after a small perturbation near V .
Namely, there exists a homotopy of well balanced FLIFs ˚s; s 2 Œ0; 1�, s 2 Œ0; 1�,
beginning with ˚0 D ˚ with the following properties:

– V.˚s/ D V.˚/;˙.˚s/ D ˙.˚/ for all s 2 Œ0; 1�;
– .˚2

s ; �
C
s / is C0-close to .˚2; �C/ for all s 2 Œ0; 1�;

– ˚1 is holonomic on OpV .

If for a closed subset A � W the FLIF ˚ is already holonomic over OpA � W

then the homotopy can be chosen fixed over OpA.

Proof. According to Lemma 1 there exist local coordinates .�; t; z; y/ in a neigh-
borhood of ˙ in W , where � 2 ˙; x; z 2 R and y 2 Verj˙ such that the manifold
V is given by the equations z D x2; y D 0 and the foliation F is given by the
fibers of the projection .�; x; z; y/ ! .�; z/. The vector field @

@x
generates the line

bundle � D T V j˙ \ Vert and we can additionally arrange that @
@x
j˙ D �C. By a

small C0-small perturbation of the operator ˚2 (without changing it along ˙) we
can arrange the vector field @

@x
serves an eigenvector field for ˚2 in a neighborhood

of ˙ . We will keep the notation � for the extended line field @
@x

. Then the operator
˚2 W Vert D Ver ˚ � ! Ver ˚ � can be written as A ˚ c, where A is a non-
degenerate self-adjoint operator and c is an operator acting on the line bundle � by
multiplication by a function c D c.�; x/ on Op˙ � V such that for all � 2 ˙ we
have c.�; 0/ D 0, d.�/ WD @c

@x
.�; 0/ > 0.

Define a function ' on Op˙ � W given by the formula

'.�; x; z; y/ D d.�/

6
.x3 � 3zx/C 1

2
hAy; yi: (3)

Then V.'/ D V \ Op˙ and the operator d2F' W Ver ˚ � ! Ver ˚ � is equal
to A ˚bc, where the operatorbc acts on � by multiplication by the function d.�/x.
Hence the operator functions d2' and ˚2 coincides with the first jet along ˙ , and
therefore, one can adjust ˚2 by a C0- small homotopy to make ˚2 equal to d2'
over Op˙ � W . To extend ' to a neighborhood OpV � W we observe that the
neighborhood of V inW is diffeomorphic to the neighborhood of the zero section in
the total space of the bundle VertjV nU . In the corresponding coordinates we define
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'.v; y/ WD 1
2
h˚2.v/y; yi; v 2 V; y 2 Vertv. On the boundary of the neighborhood of

˙ where we already constructed another function, the two functions differ in terms
of order o.jjyjj2/. Hence they can be glued together without affecting d2F', and thus
we get a leafwise Igusa function ' with d2F' D ˚2. It remains to extend rF' as a
non-zero section of the bundle TF to the whole W . According to Lemmas 4 and 7
we have �' D ˘' D d2' D ˚2. Then the well balancing condition for ˚ implies
that �' is homotopic (rel. OpA) to �˚ as isomorphisms Norm ! Vert. But this
implies that there is a homotopy (rel. OpA) of sections ˚1

s W W ! Vert; s 2 Œ0; 1�,
connecting˚1

0 D ˚1 and˚1
1 D rF' and such that the zero set remains regular and

unchanged.
ut

4 Proof of Extension Theorem 1

STEP 1. FORMAL EXTENSION. We begin with a leafwise framed Igusa function
.'A; �A/. Using Theorem 2 we extend it to a FLIF .˚; �/ onW .
All consequent steps are done without changing anything on OpA.

STEP 2. STABILIZATION. Using Lemma 17 we make .˚; �/ balanced.
STEP 3. FROM BALANCED TO WELL BALANCED. Using Lemma 18 we further

improve .˚; �/ making it well balanced.
STEP 4. LOCAL INTEGRATION NEAR V . Using Lemma 20 we deform .˚; �/

without changing V.˚/ to make it holonomic near V .
STEP 5. HOLONOMIC EXTENSION TO W . Now on W nOpV we are in a position

to apply Wrinkling Theorem 1.6B from [3] (see also [4], p. 335) to extend
the constructed 'A[V as a leafwise wrinkled map ' W .W;F/ ! R.
The wrinkles of ' of any index have the canonical framing and thus this
completes the proof of Theorem 1.

Acknowledgements We are grateful to D. Kazhdan and V. Hinich for their encouragement to
write this paper and to S. Galatius for enlightening discussions.
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Quantum Gravity via Manifold Positivity

Michael H. Freedman

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract The macroscopic dimensions of space-time should not be input but
rather output of a general model for physics. Here, dimensionality arises from a
recently discovered mathematical bifurcation: “positive versus indefinite manifold
pairings.” It is used to build actions on a “formal chain” of combinatorial space-
times of arbitrary dimension. The context for such actions is 2-field theory where
Feynman integrals are not over classical, but previously quantized configurations.
A topologically enforced singularity of the action can terminate the dimension at
four and, in fact, the final fourth dimension is Lorentzian due to light-like vectors
in the four dimensional manifold pairing. Our starting point is the action of “causal
dynamical triangulations” but in a dimension-agnostic setting. Curiously, some hint
of extra compact dimensions emerges from our action.

1 Introduction

Can one hope to reconstruct the universe from mathematics? What about its most
prominent feature, its (at least coarse) 3C1-dimensionality? It is illuminating that in
most formalisms, stable bound states do not easily arise in other dimensions [8,18],
so even a very weak “anthropic principle” would force 3C1 dimensionality. But to
avoid completely the taint of circular reasoning, it would be desirable to construct
a dimension-agnostic Lagrangian which can then be calculated to concentrate on
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“realistic” 3C1-dimensional spaces. This paper is an initial step in this direction. In
this spirit let us think about building up manifolds (space) of increasing dimension
starting with the empty set by using the simplest possible operations: “cobounding”
and “doubling along the boundary” (mirror double). The former is adjoint to
integration and the latter generalizes z! zNz on complex numbers.

Thinking of the empty set as having dimension =�1,1 locate a compact 0D
manifold X0, i.e. a finite set of points, and write @�1.¿/ D X0. (Yes, the boundary
of a finite point set is the empty set.) Next let Y 0 be the union of X0 together with a
mirror image copy. Now find anX1 with @.X1/ D Y 0tY 00

;X1 is a cobordism from
Y 0 to some arbitrary compact 0-manifold Y 0

0
. Double X1 along its boundary to

make Y 1 (a collection of circles) and find a surfaceX2 satisfying @.X2/DY 1tY 10
,

where Y 1
0
is an arbitrary compact 1-manifold. Alternately doubling and cobounding

produces manifolds Xd and Y d of increasingly higher dimension d , which we
picture as links in a chain X of manifolds X0;X1; : : :. The idea is that for an
appropriate action, explained below, this process will almost surely get stuck at X4

or more precisely on some measure on the set of possible X4’s which constitutes a
nonperturbative quantum gravity. At each step, choice of coboundaryXd is random
but NOT uniform over cobounding manifolds, and is modeled after the procedure
of “causal dynamical triangulations” (CDT) [1–3] which has been successful in
producing phases in which most metrics fluctuate around those with flat space-like
leaves and globally are somewhat deSitter-like.

We have been ambiguous about the signature in which these CDT-like construc-
tions will be made. Actually, one beauty of CDT is that there is a well defined Wick
rotation so one may pass back and forth between statistical and quantum mechanical
interpretations at will. We also will use a topologically flexible version of CDT
[1] which grow not just product collars but general manifolds of zero relative
Euler characteristic. In fact, while we will arrange to concentrate the measure on
manifolds,X and Y are a priori permitted to be singular.

It is hoped that the process sketched above can produce a superposition con-
centrated near solutions of Einstein’s equations on smooth space-times (or in the
Euclidean case a probability measure concentrated near manifolds whose metric
is proportional to the Ricci tensor—i.e. “Einstein.”) This hope is borrowed from
the CDT community; our contribution is to treat the process CDT as recursive
in dimension and describe a natural action for which the process almost surely
terminates with X4.

In geometry, it is natural to enhance manifolds to local products with small ad-
ditional dimensions which can collapse without curvature blow-up [13]. Examples
of this include Seifert fibered spaces as enhanced surfaces, Nil-bundles, and more
generally manifolds with F-structures. Enhancement with Calabi-Yau directions
appears similar, since the basic example of C-Y’s are resolution of toroidal orbifolds.

1In topology it is natural to associate a negative integer as the dimension of the empty set and
setting this to be �1 avoids delaying the nontrivial steps of the construction.
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As explained below, there does appear to be some scope for our construction
producing small toroidal directions; but unfortunately these are not adequate for
standard model physics. It would be interesting to propose a variant which would
generate additional compactified dimensions which concentrate in a useful locality
of the infamous “landscape.”

Using ideas of Connes, it should be possible to give a supersymmetric version of
our action, but we will not treat that here.

Let us now discuss the main ingredients for the action S ; see (6) for a fuller
formulation. We will work with combinatorial d -manifolds Xd built up as in [1, 2]
from layers of Lorentzian simplices with space-like edges having length2 D a and
time-like edges having length2 D �˛a. In the CDT literature, ˛ is a constant, but
one can be more flexible and regard it as a random variable drawn from some
distribution. In the simplest model, Xd is built with a fixed space-like foliation
but this should be relaxed [1] to allow certain topology changing singularities at
constant time levels. Using Regge calculus, scalar curvature R can be defined
and integrated on each Xd . Also, the boundary @Xd has a distribution valued
second fundamental form whose norm squared should be included in S . We also
permit Xd itself to be singular, i.e. not a manifold with boundary. This requires
extending the definition ofR to singular contexts. We do not have a specific proposal
here, but note that it may be desirable to supress singular spaces within the path
integral by choosing the extension so that they are assigned a large action. However,
singularities—at least of the Lorentzian structure of X—should not be completely
supressed. They are required to make contact with the smooth (actually P.L.) theory
of manifold pairings. Processes that proceed through such singularities are useful as
they “forget” details of the causal structure.

LettingG govern the strength of gravity and� be the bare cosmological constant,
we write (schematically):

S
Reg
d .Xd / D � 1

G

Z

Xd
RC ı

Z

@Xd
k2ndk2 C 2�vol.Xd / (1)

(When we get to details we will actually double X to Y and use SEuc
d (Y) and no

boundary term.) The overall action S will include terms SReg
d .Xd /; d D 0; 1; 2; : : : ;

a fugacity for metric fluctuations, a volume, and a kinetic term.
Each Xd may not be a single piecewise Lorentzian “combinatorial” manifold,

but a superposition. This means that the “histories” X over which we integrate to
produce a partition function: ZD R

fXg DX e�iS.X/2 are not classical but already
quantum mechanical objects. (This situation has previously been considered in
cosmology [12, 17] under the name “third quantization.”) Given a fixed com-
binatorial d � 1 manifold Y d�1, Xd may be a single manifold with @Xd D
Y d t Y d 0

, or in the case Y d
0 D ¿; Xd is permitted to be a linear combination

of combinatorial d -manifolds Xd
i with boundaries equal to Y d�1 and normalized

2Actually we will work with a Euclidean, Wick rotated version of S .
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Xd

Xd
′

Yd−1f

Fig. 1 Commutative diagram
for equivalent kets

coefficients c1; : : : ; cn 2 C. Then Xd means

Xd D
nX

iD1
ciX

d
i ;

nX

iD1
jci j2 D 1:

We actually permit the case where the sum is infinite and the coefficients
L2-convergent, but less is known mathematically about pairing L2-combinations.

Finally we come to the pairing hXd ;Xd i. In [4, 11, 14] the universal manifold
pairings were defined and analyzed. Fixing a single closed d � 1 manifold Y d�1,
define MY d�1 to be the C vector space of finite3 linear combinations of the
cobounding manifolds fXd g with @Xd D Y d�1. MY d�1 becomes a Banach space
by declaring fXd ; @Xd D Y d�1g orthonormal.

The manifolds X have usually been considered up to diffeomorphism or P.L.
equivalence (rel boundary), meaning boundingXd andXd 0

are the same ket if there
is a diffeomorphism f W Xd ! Xd 0

extending the identity @Xd D @Xd 0 D Y d�1,
i.e. if there exists an f making Fig. 1 commute.

We will also consider a finer equivalence where Y;X; and X 0 are metric and f
required to be an isometry. Miso

Y will denote finite combinations of isometry classes.
Gluing along the common boundary Yd�1 yields [4, 11] sesquilinear pairings:

MY d�1 
MY d�1

h ; i��!M¿: (2)

The main result is that for d > 3 there are, for certain closed manifolds Y d�1,
light-like vectors v ¤ 0 such that hv; vi D 0, whereas for d � 3, hv; vi ¤ 0 for all
Y d�1 and all v ¤ 0. We say the low dimensional pairings are positive. (Later, we
add abto the notation for L2-completions and L2-pairings.)

To be more precise about the (2-)action S , we need to introduce a little
more notation and come to terms with the fact that Xd 2 MY d�1 may be a
“superposition” of bounding manifolds—not a classical cobounding manifold. This
‘superposition inside the “path integral” means that we must work in the context
of higher order field theories [12, 17]. This concept is explained in more detail in
Sect. 3 and Appendix B . But now let us interrupt our exposition of the technical
set up to give in Sect. 2 some historical perspective on how 4-dimensional spaces
have been, up until now, regarded as special. Finally, Sect. 4 discusses implications

3See Appendix A for both finite and L2 sums and pairings.
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and short-comings of our approach. Appendix A is on pairing Hilbert spaces of
manifolds and, and Appendix B is on a formalism for higher quantum field theories.
I would like to thank I. Klitch, J. Milnor, C. Nayak, and X. Qi for stimulating
discussions on the topic of this paper.

2 4-D Manifolds are Different

R
n admits a unique smooth (also P.L.) structure for n ¤ 4 and by DeMichelis and

Freedman [5] continuum many smooth (P.L.) structures when n D 4. What is going
on? The revolution in understanding 4-dimensional manifolds circa 1980 lead to
three quite distinct perspectives on the question, “what is special about D D 4?”4

The three answers may be summarized as:

1. Topological: 4-2-2=0,
2. Geometric: so.4/ ' so.3/˚ so.3/ is reducible,
3. Analytic: L2;2 + C.B. Morrey condition) Hölder continuity.

All three answers are essential to the theory of exotic R4’s.
In smooth and piecewise linear topology, general position is a powerful tool. It

states that after perturbation two submanifolds of dimension p and q will meet in a
submanifold of dimension d �p�q, where d is the ambient dimension. The reader
may easily check this fact for affine subspaces of Rd and this is essentially the whole
proof since “submanifold” is a local notion. Algebraic topology is dominated by
chain complexes: sequences of modules and boundary maps—the latter encoding
intersection points. It turns out that the key player [22] in cancelling oppositely
signed intersection points is the Whitney disk, a 2-dimensional disk. How a Whitney
disk will cross itself or another Whitney disk is governed by the general position
formula:

dim(double pts(Whitney disk)) D d � 2� 2: (3)

For d � 5, Whitney disks are imbedded, allowing cancellation; in these dimensions,
the algebra of chain complexes fully describes topology [16]: “algebraD topology.”
Dimension 4 is a borderline case: Whitney disks have isolated point intersections. In
this case, there is a useful topological [9]—but not smooth—technique for achieving
cancellation and linking topology to algebra (Fig. 2).

This topological (but not smooth) Whitney trick allows homological algebra to
successfully describe much of 4D topology—but not smooth topology—permitting
the proliferation of smooth structures.

The Lie algebra of the orthogonal group is simple except for so.4/ ' so.3/˚
so.3/. Since curvature is a (Lie algebra valued) 2-form within �2.T �I adG/,

4Today a similar situation exists in dimension three. Three-manifolds admit rather disjoint
understandings: hyperbolic geometry and Chern-Simons theory linked only weakly by the “volume
conjecture.”
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Fig. 2 The Whitney trick

the local identification of 2-forms with skew-symmetric matrices (so.n/) allow
curvature—only in dimension 4—to be decomposed according to the eigenvalues of
the Hodge � operator into positive and negative parts, �2 D �C ˚��. The result
is that the famous anti-self dual Yang-Mills equations and Serberg-Witten equations
can only be formulated in dimension four. One may say that these equations lead
to rather unique theories of smooth four dimensional spaces (including the exotic
structures on R

4,) but perhaps cannot explain how this space emerges in the first
place.

Finally, and most technical, is the analytic answer to the question “what is special
about 4-space?” This answer dates back to Uhlenbeck’s [21] and Taubes’ [19]
work on the “bubbling” phenomenon and the existence of solutions to the self dual
equation. In elliptic PDE, the equation itself is made to speak about the regularity
of a weak solution f —this is the famous “boot strap.” If the equation is second
order, the ellipticity condition says that a weak solution in L2 is also in L2;2, i.e. the
function and its first two distributional derivatives are in L2. The ordinary Sobolev
imbedding theorem says that

L2;2 � L0;q for
1

q
>
1

2
� 2 � 0

d
: (4)

For dimension d � 3, such solutions are uniformly continuous and the corre-
sponding moduli spaces compact. For d � 5, L2;2 formally is too weak to prove
regularity. d D 4 is borderline. If one adds the “Morrey” condition that the
L2;2 norm of f decays at least as fast as r˛ for some ˛ >0 on balls of radius
r , then f is not only in L0;1, but is Hölder continuous. The Uhlenbeck-Taubes
bubbling phenomenon happens at those isolated points where the Morrey condition
is unobtainable. “Bubbling” is responsible for the noncompact product ends in the
moduli spaces of anti-self-dual connections. Again, perspective three addresses how
analysis works on a smooth 4-space, but does not suggest where or how such a space
emerges.

In the last 5 years, the dimensional dichotomy, already discussed above—
positive/indefinite manifold pairings—has emerged. Our idea is to build the man-
ifold pairing into an action defined on candidate spaces (actually chains of spaces)
and then use this action to construct a quantum gravity. There are two wrinkles
which need to be appreciated from the start. First, the manifold pairing approach
is dimension-agnostic, so the object that receives a weighting (Euclidean case) or
action (Lorentzian case) is not a single 4-manifold but a “chain” starting with the
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empty set and proceeding upwards in dimension. Because of the nature of the paring
and the form of the action, the chain almost surely terminates in dimension 4; this
is derived and not assumed. Note that we use the term “chain” rather than “history,”
because we do not want to confuse the recursive dimension raising processes with
the usual notion of time which is an aspect of the final 4-manifold, and not the way it
“emerged” from the empty set. The chain is partially ordered and this order may be
conceived as a fleeting “pre-time” or as a second independent direction of evolution.

The second wrinkle is that manifold pairings (or more precisely their associated
quadratic forms) are defined not on a classical manifold M , but a superpositionP
aiMi . Chains are formal objects, and we will sometimes refer to them as such

to emphasize that point. This means that the “path integral” is over superpositions.
Partition functions in a quantum field theory (QFT) are calculated by integrating
over classical objects, e.g. Brownian paths or connections on a bundle. However,
for us the integral will already be over linearized5 objects analogous to a vector in
a Hilbert space whose kets are Brownian paths or connections. Such constructions
are not unknown in quantum gravity [12, 17] and have been referred to as “third
quantization” and “nth quantization.” We will introduce here only the aspects of this
formalism which are presently required.

3 Chains, Action, Hamiltonian

We now describe the form of a “2-action” for quantum gravity in the context of
a “2-quantum field theory” (2QFT). The essential feature of a 2QFT is a double
layer of quantization. This means studying a wave function of wave functions or,
via a Wick rotation to a Euclidean action, constructing a measure whose density
is e�SE. /. But instead of being a classical state,  is a normalized superposition
 DP ai i so that SE. /may be small or vanish due to interference effects from
components of  . This has the consequence in 2-field theory that superpositions,
which cancel rather than being unobserved (low amplitude), are instead likely to be
observed because their action is small. Most of the formalism of 2-field theory is
relegated to Appendix B ; here we proceed in a concrete ground-up fashion.

The Hilbert space A in which we will work has as its “kets” formal chains which
start at the empty set¿, and grow through a process borrowed from CDT, but now in
a dimension-agnostic form. Prominent in the construction is “mirror double” which
is a generalization of the norm2 of a complex number jzj2 D zz. Here ZZ will
have the meaning of gluing Z along a space-like boundary with its mirror image:
Z ! Z [Z WD ZZ. On a geometric level, leaving aside formal combinations, our
CDT-like growth process starting with d D 0 consists of two cycling steps:

5We use “linearize” not to mean “to approximate by a linear system,” but rather “to replace a set
by the complex vector space it spans,” e.g. as in the passage from a category to a linear category.
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1. (Euclidean, dim d � 1, manifold Y d�1) CDT��!(Lorentzian, dim d , manifoldXd ),

2. (Lorentzian, dim d , manifold Xd )
mirror double�������!(Euclidean, dim d , manifold Y d ).

We have used the term manifold loosely. X is permitted singularities in both its
causal (Lorentzian) structure and even its manifold structure. Similarly, Y may also
be singular. After step 2, Y d is now allowed to fluctuate to QY d breaking exact
mirror symmetry, then one cycles back to step 1 (with QY d replacing Y d�1). QXd

now doubles to Y dC1. A chain contains ¿; X0;X1;X2; : : : either terminating with
Xd 0

for some d 0 � 1, or continuing indefinitely.
To define a formal chain, we introduce formal combinations to the process. So

¿! X0 D
X

i

a0i X
0
i ;

X

i

ja0i j2 D 1:

Since there is no boundary @X0
i D ¿ to glue along, mirror double is simply disjoint

union with the orientation reversed point set. The next arrow goes

!
X

i;j

a0i a
0
jX

0
i X

0
j WD

X

i;j

a0i a
0
j Y

0
i;j WD Y 0:

We now collect terms according to isometry type (in this case number of (+,�)-
points) and write Y 0 D P

l0
b0l0Y

0
l0

. Next we would normally permit a topology

(actually P.L. structure) preserving fluctuation Y 0 D Y 0;kD0 ! Y 0;kD1 ! � � � !
Y 0;k

0 WD QY 0 to

QY 0 D
X

l0

b0l0
QY 0l0 ;

but in dimension zero there are no topology preserving fluctuations, so Y 0 D QY 0.
The next arrow is

b0l0Y
0
l0
! X1

l0
D
X

i

a1i;l0X
1
i;l0
; a1i;l0 D ˛i;l0b0l0 ;

X

i

j˛i;l0 j2 D 1 for all l0:

The terms X1
i;l0

are combinatorial Lorentzian 1-manifolds whose simplices have
(length2) = �a˛:

Because theX are Lorentzian, in this dimension theX1
l0

must be P.L. homeomor-
phic to Y 0l0
I union possible additional circles (Fig. 3). The only restriction to obtain

a non-singular Lorentzian extension is on the Euler characteristic X .Xd
ld�1

/ D
X .Y d�1

ld�1
/.
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⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
X 1
l0

︸ ︷︷ ︸
Y 0
l0

Fig. 3 The next arrow

The process now continues this cycle:

¿
grow��! X0 D

X

i
a0i X

0
i

double���!
X

i;j
a0i a

0
jX

0
i X

0
j D Y 0 D

X

l0
b0l0Y

0
l0

fluctuate����! QY 0 D
X

l0
b0l0Y

0
l0

grow��! X1 D
X

i;l0
a1i;l0X

1
i;l0

double���!
X

i;j;l0
a1i;l0a

1
j;l0
X1
i X

1
j D Y 1 D

X

l1
b1l1Y

1
l1

fluctuate����! QY 1 D
X

l1
b
k1;1
l1
Y
k1;1
l1

:::

grow��! X4 D
X

i;l3
a4i;l3X

4
i;l3

double���!
X

i;j;l3
a4i;l3a

4
j;l3
X4
i X

4
j D Y 4 D

X

l4
b4l4Y

4
l4

fluctuate����! QY 4 D
X

l4
b
k4;4
l4
Y
k4;4

l4;k4

:::

where a4i;l3 D ˛k3;3i b
k3;3
l3
;
P

i j˛k3;3i j2 D 1. Such a process is called a formal chain.
There is a general principle: If @Xd

ld�1
¤ Y d�1

ld�1
, i.e. there is a non-empty

“upper boundary,” then Xd
ld�1

cannot be a superposition for d >1, since there will
be no canonical way to identify boundary conditions (except when the boundary
has dimensionD 0) of the states supposedly in superposition. This severely limits
superpositions within formal chains.

Thus a formal chain has sites or “vertices” which are formal spaces of increasing
dimension and links which can be labeled by: “grow”, “double”, or “fluctuate.” The
word “formal” means “normalized complex-linear combination.” We argue that the
amplitude will concentrate on the special case: “formal non-singular Lorentzian
manifolds” but a priori one should permit the growth process Euclidean-d !
Lorentzian-.d C 1/ to add d C 1 simplices haphazardly. We permit the .d C 1/-
Lorentzian simplicies to be fitted together without regard to Lorentzian or even
manifold structure. The term in our action which we will denote

R �R, where R
is Regge scalar curvature, should be extended in some (unspecified) fashion to
penalize singularities of topology and Lorentzian structure. The role of singular
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Fig. 4 A formal chain
terminating with Y 4 D 0

structures will be explained shortly. The action will favor cases in which the d C 1
simplices are organized into a non-singular Lorentzian manifold with an Einstein
metric.

It is permissible to think of every link in the chain as reversible so that given one
chain c, it implies many related chains c0 which simply walk (e.g. randomly) up and
down c. Such c0 will have larger action than c and be correspondingly supressed.

To summarize:

• “Growth”: Euclidean-.d � 1/! Lorentzian-d adds Lorentzian d simplices.
• “Double”: Lorentzian-d ! Euclidean-d (Wick rotation).
• “Fluctuate”: Euclidean-d ! Euclidean-d alters the local combinatorial geome-

try.

Fluctuation must be allowed in order to make contact with topological pairing. Once
fluctuation is permitted on the Euclidean space, it is perhaps natural to introduce it
as well as an additional “link” on Lorentzian spaces. For simplicity we have not
done this. The action which we describe next is a kind of Einstein-Regge action
computed up and down the chain. Figure 4 gives a schematic depiction of a formal
chain terminating with Y 4 D 0.

The Euclidean sites in a formal chain will concentrate at elements of the L2

Hilbert space cMd;Euc
¿ spanned by formal C-combinations of simplicial Euclidean
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Fig. 5 Geometric Pochner
move at center in 2D

metric triangulated d -manifolds (bsignifies L2-completion, d D dimension, EucD
Euclidean, LorDLorentzian, and ¿ indicates the empty set), although formally
they are permitted to be more singular (see Fig. 6). Similarly, XdC1 concentrates
in cMd;Lor

Y d
.

The spaces Xd “grow” on Y d�1 by adding Lorentzian simplices. We do not
assumeXd

i;ld�1
are manifolds, but the action should favor this case. The Y d are made

of “spatial doubles”: glued copies of Y d and Y d across the space-like simplices. The
fluctuations of Euclidean simplicial structure (Y d ! QY d ) are assigned a fugacity
f which depends on the geometric Pochner move or Euclidean geometry change
occurring at each step k�1! k, and is to be extended linearly over superpositions,
weighting by jamplitudej2 (Fig. 5).

Since reflection inverts the Lorentzian light cones, the components of the double
Y d only have a canonical Euclidean (simplicial) structure obtained by Wick rotation
of Lorentzian simplices to Euclidean geometry. The unscaled action term Sd on Y d

is of the form

Sd .Y
d / D

Z

Y d
�R
G
C 2�ddvol (5)

where the integral of scalar curvatureR is interpreted combinatorially [2] according
to Regge calculus. No boundary term arises since Y d is doubled. G is Newton’s
constant manifesting the strength of gravity, and� is a bare cosmological constant.
Integrals over superpositions are to be extended linearly weighting by jamplitudej2.
The total action has the form

S.Y / DP1
dD0 cd

h
Sd.Y

d
ld ;k
/CPkd

kD0 fd .Y k�1;d ! Y k;d /
i

(6)

CP1
dD0

Pkd
kD0 gd jY k;d j2 C kinetic term

We define the volume term jY k;d j2 WD P jbk;dld j2. Clearly, S depends on constants
G;�d ; cd ; fd , and gd and the interesting regime appears to be for all d , cd �fdgd .
There are further hidden parameters in each dimension d . As in [1], the time-like
edges of all Lorentzian simplices should have (length2)D�˛da, where as Euclidean
edges have (length2)D a. We wish to take the constants, or random variable,
˛k well within the “C-phase” of [3], where the CDT growth process produces
roughly deSitter-like space-times. For large values of cn, the least action principle
suggests that the measure e�S.Y / will concentrate on formal chains which terminate,
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epytreyaLfotnenopmoC

X 1 full layer

X 2 full layer

X 2 partial layer

X 3 partial layer

Fig. 6 Aspect ratios for d D 1; 2; 3

i.e. achieve all bk;dld 	 0, in the lowest possible dimension d , which is believed to
be d D 4. (See Appendix A for the open mathematical point.) So we expect formal
chains to terminate almost surely with a linear combination of X4’s.

If a classical chain c has amplitude bi in formal chains ci with normalized
amplitudes ai (computed from the action S ), then c has probability

P
i a

2
i b

2
i . This

and other aspects of the 2-field theory formalism are described in Appendix B .
The CDT growth process adds foliated layers of d dimensional Lorentz simplices

to an initial .d � 1/ dimensional Euclidean slice with aspect ratio length2�(time-like
edges)/length2�(space-like edges) =�˛d . In Fig. 6, this is illustrated for d D 1; 2; 3

where for d D 2 both a partial and full layer is illustrated and for d D 3 only
a partial layer is shown. After Wick rotation to a Euclidean metric on Y kd ;dld

the
simplices will have a distribution of Euclidean lengths so the condition for ˛dC1 to
be in phase C above will be different from the numerically determined range in [3].

The definition for Sd (the Einstein Hilbert action with cosmological constant in
dimension d ) should be constructed to give a highly negative result (R near �1)
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for Y d , a double of Xd , unless Xd is a non-singular Lorentzian d -manifold with
all spatial boundary. Thus the action blows up unless the constituent components of
eachXd are Lorentzian manifolds and so the growth process concentrates on formal
chains of manifolds—not singular spaces—of increasing dimension.

We have not been explicit on this point until now but as in [1], our CDT-like
growth process should not be confined to building product collars, but rather it
should allow singularities in the spatial foliations consistent with the creation of
arbitrary d dimensional cobordisms .Xd IXd�1C ; Xd�1� /, consistent with the single
restriction on Euler characteristics: X .Xd / D X .Xd�1˙ /. This condition guarantees
a relative reduction of the tangent bundle ofXd to SO.d�1; 1/ and thus a .d�1; 1/
signature pseudo-Riemannian metric. Fugacities for various foliation singularities
must be regulated to obtain the benefits of CDTs, i.e. emergent geometry on the
components of Xd with Hausdorff dimension� d .

Topological variability in the CDT growth through the dimensions allow the
second, topological terms gd jY d j2 to vary. Recall that Xd may be a superposition.
A sufficiently large constant gd in S will, for d � 3, punish superpositions
where “the collection of terms into isometry classes” subsequent to mirror doubling
and fluctuation is reinforcing, and encourage cases where the collection involves
cancellation. This can be seen in Example 1 below. It is a topological theorem (at
least for finite superpositions) that not until d D 4 is reached can cancellation be
complete.

Example 1. Topological (not Lorentzian)X1 paired with itself.
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Terms have been collected according to the topological (actually smooth) type, in
this case increasing jY 1j2.
Note 1. In absence of cancellation, jY 1j2 would be equal to jX1j2. In this example,
jY 1j2 D 7

4
.

We must now explain a rather unexpected possibility on which this paper rests.
There are closed 3-dimensional manifolds, of the form Y 3, i.e. a double which
bound two distinct 4-manifoldsX4

1 and X4
2 with @X4

1 D @X4
2 D Y 3 so that if we set

X4 to be the formal 4-manifoldX4 D X4
1 � X4

2 , then

Y 4 D hX4
1 � X4

2 ;X
4
1 �X4

2 i D X4
1X

4
1 �X4

1X
4
2 � X4

2X
4
1 CX4

2X
4
2 D 0 2M4

¿:

This happens because the four closed 4-manifolds appearing in the final sum
are all diffeomorphic (equivalently P.L. homeomorphic.) (Similar examples are
constructed in [11].) For some Y 3 and with little additional work (see Appendix B),
we can ensure Y 3 is a double and X .X4

1 / D X .X4
2 / D X .Y 3/ D 0. The final

column of Fig. 4 illustrates such a cancellation (Y 4 D 0).
This kind of cancellation occurs in gluing manifolds of dim d � 4 [11, 14]

but does not occur in gluing manifolds of dimension d � 3 [4]. Appendix B
discusses what is known beyond the case of finite combinations considered loc. cit.
in the context of completed pairings h ; i^ on L2 sequences of amplitude labeled
manifoldsX^ DPi aiXi ;

P
i jai j2 D 1.

Because collecting terms may show Y 4k4 D 0 2M4
¿, the chain Y may terminate

in dimension 4 (or possibly higher) with X4. Given that the constants gd are
large, terminating chains are energetically favorable. If gd is sufficiently large, we
expect energy to dominate entropy and effectively all formal chains terminate at
dimension 4. Thus, even at finite temperature ˇ, a basic topological dichotomy may
control the macroscopic dimension of space within this class of models.

We now describe the “kinetic” interaction included in (6). While formal smooth
4D spaces may cancel to zero when paired, cancellation never can occur in any
dimension if the spaces come equipped with fixed triangulations and if the notion
of isomorphism is restricted to a simplicial piecewise linear bijective map (or
isometry). (To prove this, apply the discussion of “graph-pairings” within [4] to the
dual graph to the codimension 1 simplicies of the fixed triangulations.) However, the
fugacity f for geometric fluctuation Y k�1;d

ld
! Y

k;d
ld

softens the pairing and permits
cancellation and termination in dimension 4. But, these fluctuations are too much of
a good thing as they allow cancellation in lower dimensions as well between terms
that, while differing combinatorially, have identical topology and coefficients of
opposite sign (see Example 2.) The job of the kinetic term is to prevent, cancellation
(j QY d j D 0) for d < 4. When d D 4, a new topological phenomenon arises and
enforces cancellation for a new reason.

Here is an example of a potential—fluctuation induced—cancellation in dimen-
sion d D 1 in the combinatorial category.
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Example 2.

This process has the potential to stop the growth of space in dimension one but
may be thwarted by the “kinetic term” in S . If component combinatorial spaces Y k;dld

and Y kC1;d
ld

of a chain Y differ by a geometric Pochner move (or elementary metric
change), we call them “nearest neighbors.” The kinetic term, similar to �hd�x in
lattice spin models, penalizes disparity in amplitudes bk;dld for Y k;dld

and bkC1;d
ld

for

Y
kC1;d
ld

within the formal chain Y by adding

� 2hd
ˇ
ˇ
ˇb
k;d
ld
� bkC1;d

ld

ˇ
ˇ
ˇ
2

(7)

to the action for all nearest neighbor pairs. The strongest kinetic term would be
a hard gauge-like constraint requiring terms differing by Pochner moves to have
equal phases. The purpose of (earlier) permitting a non-zero amplitude for singular
Lorentzian spaces is to allow the kinetic term to act across these and thus stiffen
the phase not merely across spaces X with equivalent causal structures, but also
between spacesX1 and X2 that are just relatively diffeomorphic, but have unrelated
causal structures. Without this, we would encounter even in dimensions 2 and 3
nontrivial light-like vectors likeX1�X2, since the termsXiXj are all diffeomorphic
for 1 � i; j � 2.

There is an interesting statistical mechanics problem implicit in the kinetic term.
It concerns the stiffness of the space of formal chains under linkages via nearest
neighbor components (as above). In a nutshell, if one considers a graph G whose
vertices are formal chains and whose edges are induced by (weighted) nearest
neighbor occurrences, one asks if the first eigenvalue �1 of the graph Laplacian
is positive, i.e. is G gapped or gapless? Is there a region in the large space of model
parameters (but constrained by the necessity to lie in “C-phase” in all dimensions
d D 1; 2; 3; 4) for which �1.G/>0? In this situation, by setting hd large enough,
the various strands of the chain Y with differing combinatorial geometry but
agreeing topology will be so stiffly bound together in phase that any cancellation
of the type shown in Example 2 would be energetically unfavorable. The formal
chain would be forced to develop up to dimension four where QY 4 can cancel out for
topological reasons.

If it turns out there is no suitable regime in which �1.G/ > 0, there are two
possible solutions: (1) to make phase coherence of nearest neighbors a hard (gauge-
like) constraint, or less drastically, (2) use a non-local kinetic term to stiffen G so
that �1.G/ > 0. Non-local means quite different but P.L. homeomorphic geometries
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directly interact. In condensed matter physics, the preference for local interactions is
driven by the ubiquity of charge screening. In constructing a 2-action for a 2QFT, it
was more an aesthetic choice to seek, first, a local interaction (among formal chains)
sufficient to produce a satisfactory 3 + 1 dimensional phase.

4 Conclusions

Physics may well be capable of generating in real time any mathematical tools it
requires. This was famously the view of Richard Feynman. Another view is that new
mathematical ideas, in this instance manifold pairings, may suggest new approaches
to physical problems. Both view may be more or less valid at different times.

This paper begins an exploration of how the positivity of the low dimensional
universal manifold pairing might yield a model for quantum gravity. The idea is
to write a (2-)action S which picks out something like (3 + 1)-deSitter space from
all possible pseudo metric spaces, ideally with no assumptions about regularity,
dimension, or long scale structure. We have tried to keep the ingredients abstract
and the action S simple. The results are (only) mildly encouraging. Enough has
been seen to believe that manifold pairings can play a role in quantizing gravity, but
it is quite open how best to formulate that role. This paper is a first attempt.

We began with the CDT approach of building P.L. Lorentzian cobordisms in
Euclidean layers but started back at the empty set ¿, rather than an initial 3-sphere.
To this we add the idea of superpositions of cobordism, metrical fluctuations, and a
doubling operation z! zz modeled on norm square of a complex number.

Superposition of cobordisms (thought of as paths) is essential to connect with the
idea of manifold pairings. This means that the usual formalism for integrating over
paths is not the correct analog, but rather one should integrate over superpositions
of paths, i.e. linearized paths. This puts us in the realm of 2-field theory (see
Appendix B ), which we regard as a bonus. It seems natural that multiple layers
of quantization would be encountered in the trip back to highest energy.

But overall, we are not completely happy with the notion of a formal chain
and the action schema S we have written. Both the formal chain and the action
S should be simpler—more fundamental. Perhaps general partial orders can stand
in for Euclidean and Lorentzian (locally) flux simplicial structures (which appear
already to assume too much.) Perhaps the fugacity for Euclidean fluctuation can be
expressed as a perturbative consequence of growth. The goal would be to begin with
an elementary combinatorial structure, the complex numbers, and a rather succinct
2-action S and extract space time. Preferably, the dimension 3C1 would be singled
out from all possible p C q, whereas we assume the form p C 1. Also, it would be
nice to see compactified dimensions emerge.

Actually, we do see a hint within S (Example 2) that space-time might not be
simple deSitter-like but could in some parameter regimes contain small “compact”
dimensions. Extra circle factors are the easiest to understand. There is less action
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Xd
{

Yd−1 Yd−1

time
↑

b

a

Fig. 7 A product (a) and a non-product (b) Lorentzian cobordism

XdX̄d ∼=Yd−1 ×S1
small

Fig. 8 Doubling Fig. 7a above yields a Euclidean manifold with a small circle factor

involved growing a small collar Xd than a cobounding manifold Xd 0
with empty

“upper” boundary (see Fig. 7).
The cost in action in building compact directions on the way to building a

light-like vector v may be small enough that it wins for entropic reasons for some
parameter settings of S . Although compact tori do not, apparently, lead to the field
content required by standard model physics, this way of generating compact tori
may be a useful start (Fig. 8).

The proposal in this paper may have a falsifiable prediction. In earlier drafts,
we hoped to show that S3 has no light-like vector v in its pairing h ; iO

S3
. If this

mathematical fact were established, it would seem to exclude S3 as the spatial
topology near the “big bang”. We recently discovered light-like vectors in h ; iS3
(see Appendix A ), but the manifold constituents of v have much more homology
than Mazur-like examples (again, see Appendix A ) such as M #S1 
 S3, based on
a nontrivial homology sphere ˙ WD @M . Thus it is still possible that a non-trivial
homology spheres˙ may be favored by the action over S3.

A Appendix A: Manifold Pairings

Consider closed oriented d -manifolds Md of class P.L. (or Diff.) Define MP.L. d
¿

to be the C-vector space consisting of finite linear combinations of P.L. home-
omorphisms (alternatively homeomorphism or diffeomorphism) classes of Md .
(Henceforth we treat only the P.L. case.) If Sd�1 is closed of dimension d � 1,
define Md

S to be the C-vector space of finite linear combinations of coboundingM ,
@M D S , taken up to the equivalence relation of P.L. homeomorphism rel identityS .
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For each S there is a sesquilinear pairing:

Md
S 
Md

S

h ; iS���!Md
¿;

0

@
X

i

aiMi ;
X

j

bjNj

1

A 7!P
i;j aibjMiNj

where means complex conjugation or orientation reversal according to context.
The literature [4, 11, 14] on h ; iS may be summarized by:

Theorem 1. If d � 3, then for all S , h ; iS is positive, meaning hv; viS D 0 implies
v D 0. For every d � 4, there is some S such that for some v ¤ 0 2 Md

S ,
hv; viS D 0. Such v are called light-like and such pairings indefinite. For d D 4,
there are homology spheres˙3 for which h ; i˙3 is indefinite.

In forming superpositions,L2 rather than finite combinations of manifolds would
be the more natural setting, so let us see which facts extend formally and which
require work. Let a O denote L2-completion and let us add hats to the pairing and
extend its natural j j2 evaluation to R.

Md
S 
Md

S

h ; iS���! Md
¿

j j2��! R

Ý P
i ciYi 7! P

i ci ciw.Yi /

M^d
S 
M^d

S

h ; i^

S���!M^d
¿ [1

j j2��! R [1

where w is a weight function on fYig, which for convenience we take to be
w.Yi / D 1.

Notice that h ; iŜ may not land in square summable sequences—hence the
symbol1. For example, let S D S1, the circle, and let

a series easily estimated not to be square summable.
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Further notice that failure to converge is due to sufficient constructive inter-
ference. In the above example, hv; vi contains two terms topologically a torus,

h ; 1
2
i and h 1

2
; i; the coefficients collect to 1

2
C 1

2
D 1, whose norm

squared is 1. Without collection, the contribution to norm squared would be
1
2

2 C 1
2

2 D 1
2
. In fact, it is immediate that if no terms in the pairing can be collected

(i.e. none are P.L. homeomorphic), then:

jhv;wij2 D .jhvjj2/.jjwij2/

WD
 
X

i

ai ai

!0

@
X

j

bj bj

1

A ;

where hvj DP aiMi and jwi DP bjMj .
Oppositely, destructive interference reduces jhv;wij2. In [11], we found for cer-

tain integral homology 3-spheres˙ that there were cobounding pairs of homotopy
4-balls A and B , @A D ˙ D @B , so that the following 4-closed manifolds were all
(oriented) P.L. homeomorphic to the 4-sphere S4:

A NA Š A NB Š B NA Š B NB Š S4

Certainly this means v D jAi � jBi is a light-like vector for h ; i˙ .

hA� B;A� Bi D A NA �A NB � B NAC B NB D 0 2M4
¿:

We are not troubled by infinite values for jh ; ij2 since these will be accorded
infinite energy by the action and in our formalism will never be observed. What we
would like to know is that Theorem 1 for d � 3 remains valid after completion.
Presently, we know this only for d � 2. For d D 3, we

Conjecture 1 For all compact 2-dimensional surfaces S , the quadratic function on
L2 completions, jh ; iŜ j2 WM^

S2
! R[1 has no kernel (i.e. jhv; viŜ j2 D 0 implies

v D 0).

Discussion In the original (uncompleted) setting, positivity was proved by produc-
ing a (remarkably intricate) ordering of d -manifolds (d � 3) fP.L. homeo. types

of closed d -manifoldg WD fd g to an ordered set Od W fd g o�! Od obeying what is
called the topological Cauchy-Schwartz inequality: for all A;B with A ¤ B and
@A D @B D S ,

o.A NB/ < maxfo.A NA/; o.B NB/g:
It is an immediate consequence that, for finite vectors vf DPn

iD1 aiMi , o.Mi
NMj/

is maximized only on the diagonal by terms of the form ak NakMk
NMk . Since ak Nak>0,

these terms cannot cancel when the terms are collected (by P.L. homeomorphism
type), thus hvf ; vf i ¤ 0, and thus jhvf ; vf ij2 ¤ 0.
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The argument breaks down for more general L2-convergent sums v because
o.Mi

NMj/ may not achieve a maximum at all. If the complexity function [4] can
be altered to have an ascending chain condition (a.c.c.), all ascending chains have
finite length, then the positivity theorem above would automatically extend to the
L2-completed pairing:

OMd
S 
 OMd

S

h ; ibS���! OMd
¿ ! R

C [1; d D 0; 1; 2; : : :

This is easily done for d ¤ 3. For example, when d D 0; 1, and 2, replace the com-
plexity “number of connected components” by “-number of connected components”
and when d D 0, jEuler characteristicj by Euler characteristic. So we have:

Theorem 2. For d D 0; 1; and 2, h ; i^ is positive, i.e. hv; vi^ D 0 implies v D 0.

When d D 3 our order contains real quantities such as partition functions of graph
TQFT [15] and finite group TQFT [6], which do not lend themselves to an a.c.c.
However, the single most important term in the d D 3 complexity function is -
hyperbolic volume. Since the volumes of compact (or even finite volume) hyperbolic
manifolds for a well ordered subset of R, the a.c.c. holds and we have:

Theorem 3. The L2-completed hyperbolic manifold pairing

OM3
hyp;S 
 OM3

hyp;S ! OM3
hyp;¿ ! R [1

is positive. The subscript “hyp” means the ket 3-manifolds M are compact
hyperbolic and with totally geodesic boundary =S if @M ¤ 0. The gluings defining
the pairing are only homeomorphisms, not necessarily isometries.

Remark 1. It is a consequence of Thurston [20] that the geometric hypothesisM is
actually a topological one:M should be irreducible, boundary irreducible, atoroidal,
acylindrical, and with incompressible boundary. Furthermore, if M and M 0 obey
these hypotheses with @M D S D @M 0, thenM[SM 0 admits a (unique) hyperbolic
metric.

Remark 2. When the finite group TQFT term plays no role, the conjecture can be
proved. This happens when the surface S D S2 or a disjoint union of 2-spheres,
or more generally when the kernel .�1.S/ ! �1.Mi// is fixed over all Mi with
nonzero coefficients.

Finally, we prove two theorems about 3-manifoldsS for which the d D 4 pairing
is know to contain light-like vectors.

1. The 3-sphere S3 has a light-like vector in its pairing h ; iS3 .
Proof. According to [7], the anti-self-dual Donaldson invariants (ASDD) of
closed 4-manifolds M with b�2 � 3 are stable with respect to complex blow
up, i.e. connected sum with orientation reversed complex projective spaces:

M ! M]CP
2

S . Since all orientation preserving automorphisms of S3 are
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isotopic to idS3 , MdiffŠ M0 if and only if .M�; S3/diffŠ .M0�; S3/, the punctured
manifolds with boundary are diffeomorphic. Let M be as above and M0 be a
smooth closed manifold s-cobordant to M, but distinguished from M by an
ASDD. M may be taken to be a K3 surface and M0 its logarithmic transform.

Let ]n.]�n/ denote connected sum with n copies of CP
2

(n copies of CP2).
Define vn 2 HS3 as:

vn DM�]n �M0�]n:

Then vn DM�]�n �M0
�]�n, and so

hvn; vni DM]M]n]�n �M]M0]n]�n �M0]M]n]�n CM0]M0]n]�n: (8)

The four manifolds M]M;M]M0;M0]M, and M0]M0 are all s-cobordant.

Note that ]n]�n is equivalent to connected sum of CP
2
; CP 2 and .n� 1/ copies

of S2
S2, and that [10] s-cobordism becomes products after a finite stabilization
by S2 
 S2 
 I . The result is that for n large, the 4 manifolds in (8) are all
diffeomorphic. Since vn ¤ 0 for all n (by stability of the Donaldson invariants),
for n large, vn is a light-like vector.

2. If some 3-manifold M contains light-like vectors in its pairing, then any
3-manifold of the form M #N will as well, provided N admits P.L. (or smooth)
imbeddingN � S4 into the 4-sphere.

Proof. Stabilize the terms of a null vector for M as follows: vD P
aiWi to

v0D P
ai .Wi\P / where we have taken the boundary connected sum with one

of the closed complementary components ofN � S4: S4DP[NQ. We observe
that the composition:

Wi ,! Wi\P ,! Wi\P [NnB3 Q Š Wi ;

where \ denotes boundary connected sum, is simply addition of a product collar
(an equivalence so

Wi\P 	 Wj \P ) Wi\P [NnB3 Q 	 Wj \P [NnB3 Q

) Wi 	 Wj :

Thus v ¤ 0 implies v0 ¤ 0. But all terms in hv; vi are each modified by connected
sum with P NP , the double of P , to yield the corresponding term in hv0; v0i. Thus,
term by term, we see hv; vi D 0 implies hv0; v0i D 0.

In the construction of formal chains, we encounter 3-manifolds of the form
Y D X NX where @X D T 2, the 2-torus, with h ; iX NX having light-like vectors.
Let us understand why this is so. Using the above remark (twice) we can build
such Y starting with the Mazur homology 3-sphere M for which light-like
vectors were previously found [11]. An example of a Y D X NX , @X D T 2,
can be manufactured as X NX D M # NM#.S1 
 S2/, where X D .MnB3/ [
1-handle andM is the Mazur homology 3-sphere. Because of the connected sum
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decomposition and the well known facts that NM and S1 
 S2 is imbedded in S4,
h ; iY will have light-like vectors.

3. It is not yet proved that h ; iS is positive for any smooth (P.L.) 3-manifold S .

B Appendix B: 2-Field Theory (and Higher)

We briefly explore a formalism for concatenated quantization. Warning This
appendix is schematic, please read skeptically. We intentionally suppress analytic
detail to sketch a broad picture. For example, any two linear spaces dense within a
third function space are treated interchangeably.

In the main text, we worked in a Hilbert space H whose kets were formal
chains—object which are built from linear combinations of piecewise linear spaces.
Formal chains are themselves closed under C-linear combinations (up to normaliza-
tion) so H is a “relinearization” of an already linear space. It is not a foreign concept.
Consider a typical single particle Hilbert space H D L2.R3/ that is promoted to
(bosonic) Fock space F via a formal exponentiation, F D eH:

F D C˚H˚ H˝H
2Š

˚ H˝H˝H
3Š

˚ : : : (9)

(the denominators are to remind us that symmetrization scales the inner products).
Since (9) describes polynomials in H, F is dense in the linear space of continuous

functions (weak topology) on H, func.H; C /. Furthermore, for wave functions
(not basis kets)  i 2 H, if we relinearize—notationally place kets around  i
(j i i)—then the expression

PN
iD1 ai j i i 2 CŒH�, the linear space of complex

combinations of elements of H. Dually,
PN

iD1 ai j i i determines a distribution
(generalized function)

P
ai ı i on H, which again form a dense set in generalized

func.H; C /. Thus, we regard, for example, CŒH� � F as essentially equivalent
since both are dense in func.H; C /, and in this sense, view F as a relinearization
of H.

A chain, without linear combinations, is analogous to a Feynman diagram, which
propogates dynamics in Fock space. A formal chain is a propogation at the next level
represented by

A � eF � C
F D func.F ;C/:

This is the signature of 2-field theory. In general, n-field theory has a Hilbert space
at the n � 1 level above Fock space

H D ee
: :
:e
F

„ƒ‚…
n�1e’s

;
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where unless otherwise noted, parentheses are inserted from top to bottom (e.g.
33

3 D 327). Using only dense linear subspaces within functions one may avoid the
apparent explosion of cardinality. By passing to appropriate dense subspaces, we
can keep all Hilbert spaces separable.

To lay the hierarchical structure bare, we work here with a model case, somewhat
simpler than formal chains, in which higher Hilbert spaces are promoted from
scalar fields � 2 L2.R3;R/ which, extending our policy of ignoring all analytical
distinctions, we may simply write as functions:

L2.R3;C/ � C
R
3

and Fock.L2.R3;C// � eCR
3 � C

C
R
3

For example, in 2-QFT, operators will act on 2-Fock:

C
C
C
R
3 �

� eeR3
�

the linear space spanned by wave functionals of multiparticle wave functions  ,
DP bi j i i, i.e. non-linear functionals of multiparticle wave functionals.
If quantum field theory (QFT) computes some unitary fuzziness around classical

trajectories, then it is the purpose of 2-QFT to compute some fuzziness around the
unitary evolution of a QFT (which is itself unitary but only at a higher level.) To
illustrate the scope of the idea, we will briefly touch on the “easier” and “harder”
case of n quantum mechanics and n-string field theory. Regarding the terminology,
n-QFT with its stratified structure is reminiscent of n-categories; we have kept the
notation parallel. Finally, note the index n could also run over the ordinals but we
have no use for that here.

Possible applications (besides to the body of this paper) include: (1) investigate
models at high energy in which unitarity is only emergent, and (2) construct evective
hierarchical description of strongly interacting low energy physics.

The constituents of an n-QFT are named in Table 1.
Observables are not really constituents wholly within quantum theory, but

a bridge to the classical world, and so will be defined on the familiar level.
Observables may include field strength (curvature), charge, and momentum.

Using this very crude notation, let’s describe the Hilbert space for quantum
mechanics, field theory, quantum field theory, string quantum field theory, nonlinear
sigma models, and gauge field theory. The Hilbert space for QM is C

R, or more
preciselyL2.R/ orL2.Rn/ D ˝nL2.R/. Now dropping all analytic detail, the space
for field theory (FT) is RR

3
for, say, a real field � 2 R

R
3
. The Hilbert space for QFT

is Fock space C
R
R
3

, with wave functional  DP
ai j�ii;P jai j2 D 1. The Hilbert

space for 2-QFT is CC
R
R
3

, with DP ai j i i;P jai j2 D 1.
To get string-QFT from QFT, you fiddle around at the “top” of the tower:

C
R
R
3

Ý C
R
MS1

Ordinary Fock space of a
real scalar field.

Stringy Fock space of a
real scalar field.
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Table 1 The constituents of an n-QFT

n-Hilbert space
n-Fock space

n-cC

�
; n-c�

n C 1st quantized operators (to be consistent with the
terminology of second quantization)

n-H n-Hamiltonian
n-U Unitary evolution at level n
n-L n-Lagrangian
n-S n-action

But there are only ordinary 1-observables

M is an 11-manifold, S1 a circle which sweeps out a world sheet ˙ in time. Both
examples can be promoted to the 2-level simply by placing a “C” at the lower left
of the stack.

Of course, QFT’s come in minor variations:

(a) C
R
R
3

Ý C
XR

3 X , a manifold, is a “non-
linear sigma model”

(b) C
R
R
3

Ý C
sections of a G-principle bundle over R3 is a gauge field theory

Case (a) replacing R by X promotes a real scalar to a nonlinear sigma model. Case
(b) functions are replaced by sections to yield a gauge field theory.

2-field theory adds a C at the bottom of the tower, so wave functionals are of the

form  2 C
R
R
3

and 2-wave functionals are of the form 2 C
C
R
R
3

. 3-field theory

treats 3-wave functionals 2 C
C
C
R
R
3

, and so on.
The usual passage6 betweenH and L, the “path integral formulation of QFT,” is

based on the ability to restrict fields on R
4 to R

3 
 t . Let’s see how this works set
theoretically. On adding a functional level, inclusion and restriction alternate.

R
3 
 t ,! R

4 (inclusion of spaces)
R

R
3�t  R

R
4

(restriction of fields)

C
R
R
3

�t
,! C

R
R
4

(inclusion of 2-fields)

C
C
R
R
3

�t  C
C
R
R
4

(restriction of 3-fields)

It is important to be able to restrict fields to time slices, but you will notice that
the restriction maps exist naturally only for k-fields, k odd. However, for k even, it
is possible to pass to the linear duals V $ V �, and ignore the analytic issue of the
dual being a much larger space.

All books on QFT derive the evolution U from the Hamiltonian H as a “path
integral” over fields � weighted by e�iS.�/, S the action of an ordinary Lagrangian,
i.e. a 1-Lagrangian. Given, say, a 2-Hamiltonian 2-H , there will be a 2-Lagrangian,

6Between Hamiltonian and Lagrangian formalisms.
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Table 2 Higher field theory. Arrows indicate levels which may be removed by squeezing higher
order wave functionals

2-L, constructed as a “path integral” over 2-fields 2 C
R
R
4

weighted by e�i.2-S. //.
Formally, this 2-evolution 2-U is perfectly unitary. The 2-evolution naturally “drags
along” an ordinary 1-level linear evolution but this is not unitary and only becomes
unitary in a certain squeezed limit (see below). Consider Table 2. Here, is the
directional derivative at the next level:

Parallel formulae give j , and so on. We may also introduce a gradient x with
fewer parameters (coming from a lower level). In the “squeezed context” explained
below, � may be replaced by x . Introduce the “small gradient” x based on

x 2 R
4 (not RR

4
) translation. That is, define ��x.x/ WD �.x � �x/, then define

x j� D . .��x/� .�//��x, where x 2 R
3 or x 2 R

4, depending on context.
Define a family of 2-actions for c > 0 by
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As c !1, the 2-physics of 2-Lc;� is expected to concentrate on 2-fields, or “rules,”
which are nearly Dirac, i.e. � ı�, for some �.
In the c ! 1 limit, only x 2 R

4 translations have bounded energy among
general variations, so is expected to reduce to x . This effectively deletes the
C with the arrow next to it in Table 2. Thus, c ! 1 “squeezes” 2-QFT back to
ordinary QFT with 1

c
the small parameter.

Similarly, let us define a 3-action

where the squeezing term—conceptually—is given by

Setwise, evaluation includes ffieldsg� C
C

ffieldsg
by �. / WD .�/. An analytically

more convenient squeeze term is given by

ˇ0
Z

D� e� f̌ .�/;

where ˇ0; ˇ � 0. As with 2-fields, we now expect that as ˇ !1, the “physics” of
3-fields will squeeze down to evaluation of 3-fields of the form �. / D .�/, i.e.
a 1-field �. It is also expected that

R
D j j j2Ý R

dx4jr�j2, similarly for the
mass and interaction terms.

Since 3 is odd, 3-fields naturally restrict to “time slices”:

C
C
R
R
3

�t restriction ����� C
C
R
R
4

:

The path integral allows the formal derivation of a unitary evolution 3-U starting
from a Hermitian 3-Hamiltonian 3-H . This can also be accomplished at the 2-level
by passing to linear duals:

�
C

R
R
3

�t
�� restriction �����

�
C

R
R
4��
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Two final points should be explained: how the evolution at level n drags along a
linear but not-quite-unitary evolution at all levels m < n, and what observables in
n-QFT are. For both of these, we must define the “ket erasure” maps ˛n.

“Erase kets and extend linearly” defines a linear map:

There is also the familiar evaluation map en�2, given by

Formally, ˛n�1 ı ˛n ı en�2 D idn�2, up to an infinite constant.

Proof. If . / D .�0/, then DPi i .�0/j i i, and so

˛2 D
X

i

N
i .�0/ i D

X

i

bi0 i ;

where we have written i DPj bij j�j i. Then

˛1˛2 D
X

i;j
bi0 Nbij �j

D
X

i
bi0 Nbi0�0 C

X

i;j¤0 bi0
Nbij �j

D 1.�0/C
X

j¤0 0�j ;

where zero on the last line comes from the symmetry of the sum.

Measurement will merely be by a Hermitian operator O on ordinary Fock space

F D C
R
R
3

. The protocol is “reduce, then observe”:  n
˛n�!  n�1 ! � � � !  1,

and observe �i of O with probability jai j2, where  1 D P
ai 

1
i , where f 1i g is

an eigen-basis for O. Suppose n is odd (and if not, pass to the dual). Then the
successive evaluation maps promote  1 back to level n where n-U evolves the
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promoted wave function until the next measurement by some O0 also acting on

ordinary Fock space F D C
R
R
3

. If the level n-evolution is sufficiently squeezed,
then n-U evolves very nearly within evaluation subspace F � n-F and exact
unitarity on n-F implies that a nearly exact unitarity will be observed on F .

Final notes and examples: The level 2 creation operators, 2-c�
�

, create a set of
states of varying particle numbers, e.g. the set may contain a scalar, a singleton of
momentum k, linear combinations of pairs .k0 ˝S k00/, and so on. In other words,
2-c� creates an arbitrary element of Fock space. 3-c� creates sets of sets of states,
i.e. an arbitrary element in 2-Fock space, and so on.

Unitarity of the U is derived from the Lagrangian L: S D R
L reverses sign

(via complex conjugation) with reversal of orientation of slab X 
 Œ0; 1�:

Uij D
Z 1

0

eiS D
Z 0

1

eiS D U�1
j i :

This argument is formally identical at level n.
Although this appendix has focused on n-QFT, one may promote the discussion

to 2-string field theory or, in the other direction, cut the discussion down to n-
quantum mechanics n-QM. By linearizing the top of the tower, we can produce
2-string FT:

Z

all 2D field theories
S �!

Z

all 2D 2-field theories
2-S

Note 2. Among 2D field theories are nonlinear sigma-models of the form: (a string
action, S )2 R

M˙
. Similarly, among 2D 2-field theories are function on nonlinear

sigma-modules of the form: (a 2-string action, 2-S )2 C
R
M˙

. Presumably, these may
be important in evaluating the integral perturbatively but are not exhaustive.

Now for 2-QM: consider a wave function  2 H D C
R

pt.
and a 2-wave function

22-H D C
C
R

. To get a picture of how 2-QM can work, consider as a model for
part of 2-H consisting of 22-H, made from just two Dirac functions,

D
p
2

2
j 1i C

p
2

2
j 2i;

where we think of  i as the amplitude for particle i in position xi .
Choose a 2-Hamiltonian analogous to an ordinary Hamiltonian for a “molecule”

moving in potential:

2-H D 1

2
p2ıx1 C

1

2
p2ıx2 C V.x1 � x2/C

x21
2
C x22

2
C �

4Š
x41 C

�

4Š
x42;
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where pıxi D i@xi acts inside kets, so for example, pıx1Cıx2 D
p
2
2
ji@x1 1i Cp

2
2
ji@x2 2i.
Passing to a center of mass coordinate x1Cx2

2
, in the case where � D 0, we have

that

2-H D 1

2
p2ıx1Cıx2 C

�
x1 C x2
2

�2
C 1

2
p2ıx1�ıx2 C

�x1 � x2
2

�2 C V.x1 � x2/;

so the center of mass is still SHO, and the evolution is actually unitary at the 1-level.
If � ¤ 0, the center of mass wave function at the 1-level is induced by ket erasure:

�.c/ D
R
dx1Œ�1.x1/C �2.2c � x1/�

norm

does not evolve unitarily. I would like to thank Israel Klitch for suggesting this
example.

Formal manipulations in 2-QFT, e.g. of (perturbed) Gaussian integrals, at higher
levels will produce analogs of many familiar calculational features such as 2-ghosts,
2-Hubbard Stratonovich, and 2-perturbative expansions.
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Parabolic Explosions in Families of Complex
Polynomials

Estela A. Gavosto and Małgorzata Stawiska

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract We present a new algebro-algebraic approach to the parabolic explosion
of orbits for polynomials of a fixed degree d � 2, P.z/ D zd C ad�1zd�1 C : : :C
�z; ad�1; : : : ; a2; � 2 C where 0 is a multiple fixed point of P ıq

a for some a D
.ad�1; : : : ; a2; �0/ with �q0 D 1; �k0 ¤ 1 for k D 1; : : : ; q � 1. We show using
methods based on Puiseux series that for an open dense set of perturbed maps with
� D �0 exp.2�iu/, 0 becomes a simple fixed point and a number of periodic orbits
of period q appear which are holomorphic in uq . We also prove that the unwrapping
coordinates for perturbations of an analytic map with a parabolic periodic point
converge uniformly to the unwrapping coordinate for the map itself.

1 Introduction

There are many dynamical phenomena occuring in the one-parameter family of
complex polynomials P�.z/ D �z C z2. Throughout this paper we will assume
that �q D 1; �k ¤ 1 for k D 1; : : : ; q � 1. Observe that 0 is a multiple fixed
point of P ıq

� if �q D 1; � ¤ 1. Then, in the family of maps under consideration,
so-called “parabolic explosion” takes place, which heuristically can be described as
follows: when the parameter � varies between � D e2�ip=q and �0 D e2�i.p=qCu/,
with p; q coprime integers and u in a sufficiently small neighborhood of 0 in C, the

E.A. Gavosto (�)
Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA
e-mail: gavosto@math.ku.edu

M. Stawiska
Mathematical Reviews, 416 Fourth St., Ann Arbor, MI 48103, USA
e-mail: stawiska@umich.edu

DOI 10.1007/978-3-642-28821-0 7, © Springer-Verlag Berlin Heidelberg 2012
141P.M. Pardalos and T.M. Rassias (eds.), Essays in Mathematics and its Applications,



142 E.A. Gavosto and M. Stawiska

fixed point 0 of P ıq
�0 becomes simple and a new periodic q-cycle for P�0 appears

near 0. An important property is that this cycle can be followed holomorphically in
the variable u1=q . The discussion of parabolic explosion (sometimes referred to as
“implosion”, because of change of properties of Julia sets associated to perturbed
maps) was initiated by Douady in [11], in connection with the question of continuity
of Julia sets depending on the defining polynomials. As far as other important
problems of holomorphic dynamics are concerned, parabolic explosion and its
control was essential for the proof of existence of quadratic Julia sets with positive
measure by Buff and Chéritat [4, 5]. It also played a major role in the proof of
the fact (due to Shishikura, [23]) that Hausdorff dimension of the boundary of the
Mandelbrot set equals two. (For relations to other problems, see e.g. [2, 3].)

For one-parameter families of analytic maps of a real variable with real co-
efficients, f .x/ D .�1 C "/x C higher order terms, " small, (assuming some
non-degeneracy conditions) an analogous phenomenon is known as a flip or period-
doubling bifurcation (see [13], Theorem 3.5.1). It was proved in [6] (and later, in a
simpler way, in [27]) that period-tripling (or higher multiplicity) bifurcations cannot
occur for C1-families of self-maps of a compact interval or a circle. On the other
hand, the “period-multiplying” bifurcations of complex quadratic polynomials were
analyzed numerically already in [10, 15], where also certain universality properties
were observed. The study of the parabolic explosion from the point of view of
bifurcation theory was carried out in detail in [19, 22].

In this paper we take an algebro-geometric standpoint to look at bifurcations
associated with polynomials of a fixed degree d � 2 such that 0 is one of fixed points
for all polynomials in the (multi-parameter) family. More precisely, we consider
P.z/ D zd C ad�1zd�1 C : : : C �z; ad�1; : : : ; a2; � 2 C (this representation for
P can be achieved by applying a translation of the complex plane). As before, we
assume that 0 is a multiple fixed point of P ıq

a for some a D .ad�1; : : : ; a2; �0/ with
�
q
0 D 1; �k0 ¤ 1 for k D 1; : : : ; q � 1 (i.e., �0 a primitive q-th root of unity), and

vary coefficients ofP ıq . In Sect. 3 we prove our main result, namely that for an open
dense set of perturbed maps with � D �0 exp.2�iu/, 0 becomes a simple fixed point
and a number of periodic orbits of period q appear which are holomorphic in u1=q .

In the proof we apply methods based on Puiseux series (see [25] for the
treatment of quadratic polynomials). These methods are introduced and discussed
in Sect. 2. Additionally, in Sect. 4, we analyze some facts related to the construction
of Fatou coordinates for perturbed maps. We discover and make transparent a
relation between different unwrapping coordinates, one used in [21] and the other
(up to minor variations) in [5, 19, 22–24]. We then use this relation to prove that
the unwrapping coordinates for perturbations of an analytic map with a parabolic
periodic point converge uniformly to the unwrapping coordinate for the map itself.
Our result (Theorem 6) unifies the two existing approaches to Fatou coordinates
for perturbed maps within a natural algebraic framework and also offers a major
shortcut to estimates involved in the construction of these coordinates.



Parabolic Explosions in Families of Complex Polynomials 143

2 Iterated Polynomials and Their Roots

Our study of parabolic explosion in a one-parameter family of polynomials relies on
the normal form for Pq

� near z D 0 due to [12]. Let us recall the general statement:

Theorem 1 ([12], Proposition 9.6). Let f W C 7! C be a polynomial of degree d ,
˛ be a periodic point for f of order k such that � D .f ık/0.˛/ D e2�ip=q , with p
and q coprime integers. Then the multiplicity of ˛ as a fixed point of f ıqk is of the
form �q C 1, where � 2 f1; : : : ; d � 1g.
Corollary 1. Let k D 1 and ˛ D 0. Under the assumptions of Theorem 1, the
following expansion holds in a neighborhood of 0:

f ıq.z/ D zC Az�qC1 CO.z�qC2/;

with an A 2 C
�.

Example 1. (a) (� D 2) Let P.z/ D z3 � iz2 � z. The normal form for P ı2 is
P ı2.z/ D zC 4z5 CO.z6/

(b) (� D 3; cf. [8]) Let P.z/ D z4 � z. The normal form for P ı2 is P ı2.z/ D
z � 4z7 CO.z10/.

Recall also the following function, which was introduced in [9], Proposition 2.2:
Let � D e2�i� , where � D �0 C u D p=q C u, and P� D Pa;�. Define F.u; z/ WD
.P

ıq
� .z/ � z/=z for z ¤ 0 and F.u; 0/ D .@.P

ıq
� .z//=@z/ jzD0 �1 D e2�iuq � 1.

Then F is a function holomorphic in z and u, with the following Taylor expansion
near .0; 0/:

F.u; z/ D 2�iquCO.uz/C Az�q CO.z�qC1/; (1)

with A ¤ 0 as in 1. The nonzero periodic points of P� of period q are solutions of
the equation F.u; z/ D 0. In what follows we will express z as z.u/ which is a series
in nonnegative fractional powers of u (i.e., a Puiseux series). We will also describe
the birth of periodic cycles.

Fix a natural number d � 2 and consider the family of polynomials Pa0;�.z/ D
zd C ad�1zd�1 C : : : C �z; a0

d�1; : : : ; a0
2; � 2 C, which in particular contains the

subfamily Pa;�0 such that �0 D e2�ip=q with p; q coprime integers. In order to show
the occurence of parabolic explosion in this family, we will proceed as follows: First
we will fix a D .a2; : : : ; ad�1/ 2 C

d�2 and vary only � D e2�i.p=qCu/ with u in
a sufficiently small neighborhood of 0 in C. We will prove that the multiple fixed
point 0 of P ıq

�0;a
.z/ gives rise to a simple fixed point z D 0 and � periodic q-cycles

near zero for P�;a. The number � is the same as in Theorem 1. Our argument will
apply Puiseux theorem, using an approach that started in [25]. In particular, it will
follow that all the periodic points are simple and are represented by holomorphic
functions in uq in a neighborhood of 0. To deal with an arbitrary Pa0;�;; a0 D aC
.u2; : : : ; ud�1/, where uj are complex numbers in a neighborhood of 0, we will
apply a theorem from [14]. Here and below, CŒŒu�� denotes the ring of formal power
series in u with complex coefficients.
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The following lemma gives factorization in CŒŒu; z�� of the functionF introduced
above:

Lemma 1. (cf. [25], Theorem 1 for F associated with P of deg P D2.)
If Q is a polynomial in z with coefficients holomorphic in u, irreducible in the

ring CŒŒu��Œz�, and Y is a unit, then

F.u; z/ D Q.u; z/Y.u; z/;

Proof. We have zF.0; z/ D P ıq.z/ � z D z�qC1.z � c1/ : : : .z � cn/, where
c1; : : : ; cn ¤ 0. By Hensel’s lemma ([16], Theorem 1.16), zF.u; z/ D Q0Q1 : : :Qn

in CŒŒu��Œz�, with Q0.0; z/ D z�qC1;Qj .0; z/ D z � cj , deg Q0 D �q C 1,
degQj D 1, j D 1; : : : ; n. Moreover, z dividesQ0, henceF.u; z/ D Q.u; z/Y.u; z/
with Q.u; z/ D Q0.u; z/=z; Y D Q1 : : :Qn. The polynomial Q is irreducible.
Indeed, if Q D R1R2 with deg R1 D k; 0 < k < �q, then R1.0; z/ D
zk; R2.0; z/ D z�q�k andR1.0; 0/ D R2.0; 0/ D 0. HenceQ.u; z/ D au2CO.uz/C
O.z2/, which contradicts the normal form F.u; z/ D 2�quC : : :. ut
Remark 1. Consider an open polydisk� D f.a0; �/ 2 C

d�2 
 C W ja0
j � aj j < ıj ;

j� � �0j < �g, where a D .a2; : : : ; ad�1/ is some point in C
d�2 and �; ıj > 0

for j D 2; : : : ; d � 1. Let Da0;� denote the discriminant of the polynomial P ıq
a0 ;�
�

Id. Since the Weierstrass polynomial Q of F is irreducible, it follows that F is
irreducible in CŒŒu; z�� and, by Theorem 1.18 in [17], that the discriminant D.u/
of Q as a polynomial in z is not identically 0 in the ring CŒŒu��. Let �1 denote the
projection of � onto the plane fag 
C. Then 0 2 C is the only multiple fixed point
of P ıq

a;� for .a; �/ 2 �1. The neighborhoodQ1 of .a; �0/ determines a neighborhood
of 0 in the complex plane corresponding to the variable u.

Knowing that F is irreducible in CŒŒu; z��, we can apply Puiseux expansion
theorem in the following version:

Theorem 2. (cf. [16], Corollary 3.13): Let F.u; z/ 2 CŒŒu; z�� with F.0; 0/ D 0 be
irreducible and regular in z of order n (i.e., @nF=@zn.0; 0/ ¤ 0). Then there exists
�.u1=n/ D P

k�1 bkuk=n 2 CŒŒu1=n�� such that F.z; �.u1=n// D 0. Moreover, any
˛ 2 CŒŒu1=n�� satisfying F.z; ˛/ D 0 is such that ˛ D �.�u1=n/ for some n-th root
of unity �.

Corollary 2. (cf. [16], Corollary 3.12 and proof of Lemma 3.15): Let F be as in
Theorem 2 and let Q.u; z/ be the Weierstrass polynomial of F . Then Q.u; z/ DQ
jD0.z � �.�j u1=n//, where � is a primitive n-th root of unity.

Remark 2. In our situation F is a holomorphic function of the pair .u; z/ and all
statements above are true with formal series rings replaced by convergent series
rings. Most importantly, there exists a holomorphic function �.t/ defined on a small
open disk �" D ft W jt j < n

p
"g and an open neighborhood U 0 D �" 
 �ı � U

such that F.u; z/ D 0 for a pair .u; z/ 2 U 0 if and only if z D �.t/; u D tn for some
t 2 �". Also, Q.u; z/ D Qn�1

jD0.u � �.t�j //.
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Let � be a Puiseux series and let � be a root of unity of order n (not necessarily
primitive). A series ��.t/ WDP �kbkuk=n is called a conjugate of � . Note that in the
decomposition of f .u; z/ D P

ıq
� .z/ � z we have r D 1 and the function Y is the

product of simple linear factors z � ci .u/; i D 1; : : : ; d q � .�q C 1/, where ci are
holomorphic functions of u in a neighborhood of 0 whose values at 0 are given by
the nonzero simple roots of P ıq

�0
.z/ � z D 0. Let � D e2�i=�q (in particular, � is a

primitive root of unity of order �q), so that �0 D e2�i�p=�q D ��p.

Theorem 3. Let � D �0 exp.2�iu/ and P� be as above. Then all solutions of the
equation

P
ıq
� .z/ � z D 0 (2)

can be expressed as holomorphic functions of u1=�q .

Proof. By the Puiseux theorem, the (2) has a solution s D s.u/ DP
biui=�q . Then

P�.s.u// is also a solution of (2). Note that P�.s.u// equals the conjugate of s in
which u1=�q gets replaced by �0u1=�q , as the corresponding analytic functions of the
variable t , P�.s.t�q// and s..�0t/�q/, have the same derivatives at t D 0. Similarly,
P ı2
� .s/ is the conjugate of s by �20 D �2p� etc., up to P ıq

� .s/, which is the same
as s. In this way we obtain an orbit of period q associated with a solution s of (2) in
which all elements are holomorphic functions of u1=�q . ut
Remark 3. Thanks to our assumption about discriminants we know there are �q
distinct solutions, so we can repeat the argument starting with a conjugate of s that
does not belong to any of previously determined P�-orbits. Thus we get � orbits of
period q given by distinct Puiseux series in u1=�q in a neighborhood of 0.

3 Main Result

Now we will describe solutions of P ıq
�;a0 � z D 0 for an arbitrary a0 2 C

d�2 and their
properties. Our main result can be stated as follows:

Theorem 4. Let Pa0 ; �.z/ D zd C a0
d�1zd�1 C : : : C �z be a family of complex

polynomials, with a0
j D ajCuj ; j D 2; : : : ; d�1; � D exp.2�i.p=qCu1//; �0 D

exp.2�ip=q/. Assume that P ıq
a0; � do not have multiple fixed points, except P ıq

a; �0
, for

which 0 is a multiple fixed point. Then for each .a0; �/ close to .a; �0/ there are �
cycles of period q of Pa0;� close to 0, 1 � � � d � 1, whose points, after coordinate
changes u1 D V

�q
1 ; uj D VjV1pj ; pj 2 N; j D 2; : : : ; d � 1, can be represented

in some neighborhood of 0 2 C
d�1 as absolutely convergent power series in the

variables V1; : : : ; Vd�1. The number � depends on the polynomial P .

In the proof we will use a result from [14]. The author of that paper considers a
function f W Cd 7! C which is analytic at the origin with f .0/ D f 0

z .0/ D 0. He
shows existence and finds the form of small solutions z D z.u/ (which means that
z.u/! 0 as kuk ! 0) of the equation

f .z; u1; : : : ; ud�1/ D 0 (3)
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in terms of the solutions of equation

f .z; 0; : : : ; 0; uk; 0; : : : ; 0/ D 0; k D 1; : : : ; d � 1: (4)

The precise formulation is as follows:

Lemma 2. (cf. Theorem in [14]) Suppose there exists k 2 N such that the (4) has a
simple small solution. Then the (3) has a small solution which (after the coordinate
changes uk D V r

k ; uj D VjV
pi
k ; j D 1; : : : ; d � 1; r 2 N; pi 2 N) can be

represented as an absolutely convergent (in a neighborhood of 0) power series in
variables V1; : : : ; Vd�1 without a free term.

Proof. (of Theorem 4) In our case u1 D u; uj ; j D 1; : : : ; d � 1 are small
complex numbers, and f .z; u/ D P ıq

�;a0.z/ � z, so that f .z; u1; 0; : : : ; 0/ D P ıq
a;� � z,

which by Theorem 3 has �q simple solutions. The existence of small solutions of 3
representable by fractional power series follows now directly from Lemma 2. It
remains to identify q-cycles of Pa0;� among those solutions. The proof of Lemma 2
starts with fixing a solution of 4 of the form

P1
iD1 biV i

1 (where u1 D V
�q
1 ), then

changing the coordinates z D Pd�1
iD1 biV i

1 C V d�1
1 y and uj D V

pj
1 Vj ; j D 2;

: : : ; d � 1 in the Taylor expansion of f .z; u1; : : : ; ud�1/ and dividing (3) by
V
�qCd�2
1 . As a result, one gets a function satisfying the assumptions of implicit

function theorem, from which one obtains the unique solution y, which is a
holomorphic function of V1; : : : ; Vd�1 near 0. A different initial choice of solution
to (4) yields a different z DPd�1

iD1 b0
iV

i
1 C V d�1

1 y, so we get �q small solutions of
(3) (4). Similarly to the proof of Theorem 3, by taking the first partial derivative in
V1 at .0; : : : ; 0/ 2 C

d�1 of z and Pa0 ;�.z/ expressed as power series of V1; : : : ; Vd�1,
we see that the .d �1/-th partial sum of Pa0 ;�.z/ is the same as the .d �1/-th partial
sum of the �0-conjugate of the solution of (4) that yielded z. Thus the periodic orbits
of solutions of (4) yield periodic orbits of solutions of (3). ut

4 Applications to Fatou Coordinates for Perturbed Maps

The local dynamics near a parabolic fixed point of a holomorphic map can be
described by means of a Fatou coordinate. This follows from the Leau-Fatou Flower
Theorem, which gives construction of this coordinate as a certain conjugacy map
([7], Theorem 1.2; cf. also [1, 8, 18]).

Theorem 5. Let f .z/ D z C zr C O.zrC1/ with r > 1. Then there exist .r � 1/
domains called petals Pj , symmetric with respect to the r � 1 directions arg z D
2�l=.r�1/; l D 0; : : : ; r�2 such thatPk\Pj D ; for j ¤ k, 0 2 @Pj , eachPj is
conformally equivalent to the right half-plane H and f ık.z/ !1 as k ! 1 for
all z 2 Pj , all j . Moreover, for all j , the map f jPj is holomorphically conjugate
to the automorphism z 7! zC i of H .
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Shishikura in [23, 24] constructed Fatou coordinates for analytic maps in a
neighborhood of an f0.z/ D zCz2C: : :. (See also [4,19] for alternative calculations
and visualization). The paper [23] also sketched an idea for near-Fatou coordinates
for f in a neighborhood of f0.z/ D zC zrC1 C : : : with r > 1, which was carried
out in full detail in [22]. The case r > 1 was also analyzed by Oudkerk in [21]
by methods relying on ordinary differential equations in the complex plane. All
mentioned authors elaborated on the idea from [11], where Fatou coordinates were
constructed for f".z/ D zCz2C"; " 2 .0; "0/ with a small real "0 by means, among
other things, of estimates for orbits of certain flows. In this section we will focus on
some facts related to the construction of near- Fatou coordinates and describe them
in terms of the periodic points near the origin that are created when the parameter
is perturbed as in previous sections. By our main result, we can consider only one-
parameter families, i.e., P�.z/ D �z C z2 with �0 D e2�ip=q and � D e2�i.p=qCu/,
with p; q coprime integers and u in a sufficiently small neighborhood of 0 in C. We
assume here that � D 1.

Let Q0.u; z/ D zQ.u; z/ be the Weierstrass polynomial for P ıq
� .z/ � z with

coefficients analytic in u. In the variable z, we have Q0.z/ D z.z � �1/ : : : .z � �q/.
Changing coordinates as in [23] we can write P ıq.z/ � z D z.zq � �q/h.z/
with h.0/ ¤ 0, i.e., we can take �i D �i�1�; i D 1; 2; : : : ; q, where � is the
primitive q-th root of unity. Then we define an unwrapping coordinate w.z/ D
.1=q�q/ log..zq � �q/=zq/ (choosing an appropriate branch of logarithm). We have
the following:

Theorem 6. Up to an additive constant, w.z/ is equal to the integral

Z z

z0

1

Q0.u; �/
d�:

Proof. Observe first that Q0
0.0/ D ��q and Q0

0.�i / D q�i
q D q�q , since for

all i , �qi D �q . (The symbol’ denotes here differentiation in z.) By Subramaniam
and Malm [26], for Q0.z/ D z.zq � �q/, the integral equals 1

Q0

0.0/
log z C

Pq
iD1 1

Q0

0.�i /
log.z � �i / (up to an additive constant). Hence

R z
z0
.1=Q0.u; �//d� D

.1=q�q/.� log.zq/CQq
iD1 log.z � �i // D w.z/. ut

Recall that the construction of Fatou coordinate for a map with a parabolic fixed
point starts with applying the unwrapping map z 7! � 1

q
zq . We will now show that

this is the limit of our unwrapping coordinates w.

Proposition 1. w.z/! �1=qzq uniformly for jzj > R > R0 (with R0 big enough)
as � ! 0.

Proof. Note that for q D 1; 2; : : :, z 7! zq is a proper holomorphic mapping with
a pole at infinity. It is therefore enough to consider w.�/ D .1=� 0/ log..� � � 0=�//
with substitution � D zq; � 0 D �q and prove the proposition only for q D 1. The
pointwise convergence is due to the fact that log0.z/ D 1=z (this is how one proves
the known formula for the complex potential of an electric dipole at z D 0 obtained
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from two charges 1=� and �1=� placed respectively at z D 0 and z D � as � ! 0;
cf. [20]). The expansion of w.z/C 1=z in powers of 1=z is:

.1=�/ log.1 � �=z/ D ��=.2z2/ � �2=.3z3/� : : :

Thus jw.z/ C 1=zj � .1=jzj/ j�=zj
1�j�=zj , which is less than j� j=2 if e.g. j� j < 1 and

R > 2. ut
One of the goals of the study of perturbations of an analytic map with a parabolic

fixed point is to establish a coordinate change in which the map becomes close to a
translation of the complex plane. In the family of polynomialsP� the coordinates w
have this property, which can be seen from the following:

Proposition 2. Small perturbations of the polynomial P�0 with a parabolic fixed
point are close to the translation w 7! wC 1 in C1-topology.

Proof. In the unwrapping coordinate z 7! �1=qzq the unperturbed map is close to
the translation. By Proposition 1, the coordinate changes w are close to z 7! �1=qzq ,
hence small perturbations of P� are also close to w 7! wC 1. ut

This is quite a straightforward proof and it allows one to avoid estimates that were
proved separately as Proposition 3.1 in [22]. Moreover, our Theorem 6 also points
to a relation between the unwrapping coordinate w and the unwrapping coordinate
in [21], which was defined by

R z
z0
.1=.f .�/ � �/d�. Only through our approach

does it become clear that the expression in the denominator is replaced just by its
Weierstrass polynomial, so the two different kind of coordinates have in fact similar
behavior.
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2. A. Avila, X. Buff, A. Chéritat, Siegel disks with smooth boundaries, Acta Math. 193, 1–30
(2004)
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1 Abelianization, Super-Stability and Universality

Let V be a compact manifold (or, more generally, a compact locally contractible
space), denote by QA the real 1-homology H1.V IR/; thus, QA is an R-vector space
of finite dimension, say of N D rank.H1.V IR//, and let A D A.V / be the flat
1-homology (Abel-Jacobi-Albanese) torus A D H1.V IR/=H1.V IZ/.

Strictly speaking, we factorize not byH1.V IZ/ but byH1.V IZ/=torsion, and we
denote by hAb be the canonical (Abel’s) homomorphism from the homology of V
to that of A, i.e. hAb W H1.V IZ/! H1.V IZ/ D Z

N , where hAb is an isomorphism
fromH1.V IZ/=torsion onto H1.AIZ/.

Since the universal covering QA D H1.V IR/ of A is contractible, and since the
fundamental group �1.A/ D Z

N D H1.V IZ/=torsion is Abelian, there exists a
unique (Abel’s) homotopy class Œf �Ab of continuous maps f W V ! A, such that
the induced homology homomorphism Œf �Ab�1 W H1.V IZ/! H1.AIZ/ equals hAb .

There are two remarkable instances of classes ˙ of “geometric structures” with
the following property.

For every structure � 2 ˙ on an arbitrary V , there exists a unique ˙-structure
on A D A.V /, say �A D �A.�/, and an essentially unique �=�A-compatible map
f� W V ! A in the class Œf �Ab , (where, moreover, �A “commutes” with the group
translations in A in the examples A and B below).

A. Holomorphic Abelianization Theorem. Let � be a complex structure on V ,
such that .V; �/ is Kähler. e.g. complex algebraic. Then A admits a unique
translation invariant complex structure �A, such that the homotopy class Œf �Ab

contains a holomorphic map f� W .V; �/! .A; �A/, where this f� is unique up-to
A-translations.

B. Dynamical Superstability/Universality Theorem. Let � W V ! V be a self-
homeomorphism, such that the induced homology automorphism

��1 W H1.V IR/ D R
N ! R

N D H1.V IR/

is hyperbolic, i.e. all (real and complex) eigenvalues � of ��1 satisfy j�j ¤ 1.
Then the torus A D A.V / admits a unique (continuous group) automorphism
�A W A! A, such that the class Œf �Ab contains a continuous (typically, non-smooth
even for real analytic �) map f� W .V; �/ ! .A; �A/ commuting with the two �
which means the commutativity of the diagram

�

˚ V
f�! A

�A
�; that is f� ı � D �A ı f� ;

where this f� is unique, up-to translations by the (finite) subgroup f ix.�A/ � A of
the fixed points of �A.

The complex torus .A; �A/ in A is called the Albanese variety; it generalizes the
classical Jacobian of an algebraic curve.
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If dimR.V / D 4 and N D rank.H1.V // is even, then, Kodaira proved A without
the assumption of V being Kähler. (Later on, these V were shown to be Kähler
anyway as was was pointed to me by Domingo Toledo.) On the other hand, this fails
to be true in the non-Kähler case for dimR.V / � 6.

Theorem B is due to John Franks [21]; it was preceded by a similar result by
Michael Shub [76] for expanding (rather than hyperbolic) endomorphisms. The idea
goes back to Smale’s horse-shoe [79] – the first example of a structurally stable
diffeomorphism with uncountable closure of the set of periodic points. Later on,
Smale announced the stability of hyperbolic automorphisms of the 2-torus but his
proof remained unpublished. The first accepted proof of the stability of locally split
hyperbolic diffeomorphisms is due to Anosov [2].

C. Universality Problem. Let ˙ be a class of “geometric structures” and � be
a group, possibly with additional data expressible in the group theoretic terms.
Construct a space QA D QA.�;˙/ with a geometric structure � QA D � QA.� / 2 ˙ ,
or a “canonical family” of such . QA; � QA/, with the following properties.

� � -Invariance. The space A is acted upon by � where this action is compatible
with � QA.

�� .�;˙/-Universality. Let QV be a space with a structure Q� 2 ˙ and with
a � -action on QV which is compatible with Q� and let Qf W QV ! QA be a
� -equivariant map. Then Qf is � equivariantly homotopic to an essentially
unique � -equivariant map Qf� W QV ! QA which is compatible with the two
˙-structures: Q� on QV and � QA on QA.

In examples A and B, the group � is isomorphic to Z
N D H1.V /=torsion and

QA D H1.V IR/ D Z
N ˝ R D R

N , while QV is the maximal covering of V with a
free Abelian Galois group, where this Galois group equals our � , (isomorphic to
Z
N in the present case) such that QV =� D V and Qf� W QV ! QA equals a lift of
f� W V ! A to QV .

In the Albanese case, ˙ is a subclass of complex analytic structures. These
structures on QA are translation invariant. They make a family parametrized by
GLN .R/=GLN=2.C/, where N is necessarily even.

In the Franks case, the structures � QA on QA are hyperbolic automorphisms of QA,
i.e. hyperbolic linear self-maps of RN D QA, while Q� are lifts of self-homeomorphisms
of V D QV =ZN to QV .

What we want to is a characterization of groups � and of classes ˙ , where our
problem would be solvable and where the apparent similarity between A and B
would be embodied into a general functorial framework. We expose below the basic
ideas underlying A and B in the hope they would direct one toward such a general
theory.
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2 Symbols of Shadows

The construction of Franks’ map

f� W V ! A D H1.V IR/=H1.V IZ/

satisfying the equation f� ı � D �A ı f� ultimately depends on Markov (symbolic)
shadowing of quasi-orbits of group actions (see Sects. 2.3 and 2.4), but we start with
a slightly different argument due to Shub and Franks with no explicit mentioning of
symbols and shadows.

2.1 Contraction, Expansion, Split Hyperbolicity
and Fixed Points

Recall that �A W A ! A corresponds to the action of the self-homeomorphism �

of V on H1.V IR/.
Since �A W A! A is invertible, the equation f ı � D �A ı f can be rewritten as

the fixed point condition in the space F of maps f W V ! A,

�	.f / D f for �	.f / Ddef ��1
A ı f ı �:

This equation is solved by using the standard (and obvious)
Unique fixed point property for uniformly eventulally contracting self-maps of

complete metric spaces, where: a self map ' of metric space X is called ue
contracting if there exists a locally bounded function i.d / D i'.d/, 0 < d < 1,
such that diam.'i .U // � 1

2
diam.'.U // for all subset U � X and all i �

i'.diam.U //.
Usually, this property is formulated for contracting maps; the advantage of

“virtually” is a low sensitivity to the metric involved.
Namely, define the expansion (control) function, e.d/ D ef .d/, d � 0 of a map

f between metric spaces, say f W X ! Y by

e.d/ D sup
distX .x1;x2/�d

distY .f .x1/; f .x2//;

and say that an f has controlled expansion or, just, that f is controlled if
f is controlled at infinity, that means ef .d/ is a locally bounded function, and

f is uniformely continous, that is limd!0 e.d/ D 0.
Clearly, the ue-contraction condition is invariant under controlled homeomor-

phisms between metric spaces.
Local UFP. The unique fixed point property remains valid for partially defined

(uniformly eventually) contracting maps ' W U ! X , where U � X is a �-ball,
� > 0, around some point x0 2 X . Namely,
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There exists an "0 D "0.i.d/; �/ > 0, such that if x0 is "-fixed by ', i.e.
distX.x; '.x0// � " � "0 then x0 is accompanied by a unique fixed point x	 2 U ,
where distX.x0; x	/ � ı D ı."/! 0 for "! 0.

In fact, if " > 0 is small enough, then the forward orbit

x0; '.x0/; '
2.x0/ D ' ı '.x0/; '3.x0/ D ' ı '2.x0/; : : : ; 'i .x0/; : : :

is defined for all i D 1; 2; : : : ; and the limit x	 D limi!1 'i .x0/ 2 U is fixed by '.
Given a set X and a metric space Y , define DIST D DISTF D supX distY in the

space F of maps f W X ! Y by

DIST.f1; f2/ D sup
x2X

distY .f1.x/; f2.x//:

This DIST is not a true metric in F since it may be infinite for infinite X and
unbounded Y , but it is a true metric on every DIST-finiteness component F , that
is a maximal subset where DIST < 1. Accordingly, the usual “metric language”
applies to these components.

For example, we say that F is complete if every its finiteness component
is complete and observe that if Y is complete, then the space F is complete.
Furthermore, given a metric in X , the subspaces of continuous, of uniformly as
well as of controlled maps are also complete.

Call an invertible self-map ' W X ! X ue expanding if the reciprocal map
'�1 W X ! X is ue contracting.

Observe that ue expanding maps ' have (locally as well as globally) the ufp
property which follows from that for '�1.

Call a self-map ' W X ! X split hyperbolic if .X; '/ topologically decomposes
into a Cartesian product,

.X; '/ D .XC; 'C/ 
 .X�; '�/;

where the spaces X˙ admit metrics, say distC and dist�, such that the map 'C W
XC ! XC is ue expanding while '� W X� ! X� is ue contracting.

The ufp-property of the ue contracting self-maps .'C/�1 and '� implies that
split hyperbolic maps, of complete metric spaces enjoy the ufp-property: every

such map has a unique fixed point, provided the metric spaces .X˙; dist˙/ are
complete.

Notice that this fixed point is of somewhat different nature than that for
contracting map: if ' W X ! X is contracting, then the forward orbit of every
point x 2 X converges to the fixed point, but in the (nontrivially) split hypebolic
case, the forward and backward orbits of almost all points go to infinity.

Another relevant and (equally obvious) property of split hyperbolicity is that it is
inherited by spaces F D XY of maps of an arbitrary Y to X .

Indeed, if ' W X ! X is a ue contracting self-map, then the corresponding self-
map, say 'F W F ! F , on the space F of maps f W Y ! X with the “metric”
DIST is also ue contracting and the same is true for ue expanding maps.
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Therefore,
if X is complete, and ' W X ! X is either ue contracting or ue expanding, then

every 'F -invariant DIST-finiteness component F0 � F has a unique fixed point
f0 2 F0 of the map 'F W F ! F

If ' is split hyperbolic for X D .XC; distC/ 
 .X�; dist�/ then, obviously, 'F
is split hyperbolic for F D .FC;DISTC/ 
 .F �;DIST�/ where F˙ D .X˙/Y
with DIST˙ in F˙ corresponding to dist˙ in X˙. Moreover, this remains true for
subspaces of continuous, uniformly continuous and controlled maps in F .

Warning. Usually, the space X comes with its own metric distX , but we can not
claim that every 'F -invariant DIST-finiteness component of F for DIST associated
to distX has a fixed point, since our hyperbolic splitting X D XC 
 X� is not
necessarily a metric splitting.

However,
if the two projections .X; distX/ ! .X˙; dist˙/, are controlled at infinity, then

they preserve the finiteness components of DIST; therefore, every such 'F -invariant
component F0 � F has a unique fixed point of the map 'F W F ! F , provided the
metric spaces .XC; distC/ and .X�; dist�/ are complete.

Remark. In what follows, our self-map F ! F for F D XY depends on a given
self-map Y ! Y as well as on X ! X , but F inherits the hyperbolic splitting
fromX anyway and the above ufp property for the self maps of the DIST-finiteness
components of F remained valid.

Proof of Franks’ Super-stability for Self-homomorphisms � W V ! V . Let
QV ! V denote the Abelian covering of V that is induced by Abel’s map V ! A

from the covering mapH1.V IR/ D QA! A D H1.V IR/=H1.V IZ/, i.e. the Galois
group � of this covering equalsH1.V IZ/=torsion D Z

N .
Denote by QF the space of continuous maps QV ! QA, let

Q�	. Qf / D ��1
QA ı Qf ı Q�;

where � QA W QA ! QA is the homology automorphism ��1 W H1.V IR/ D QA ! QA D
H1.V IR/ and Q� is a lift of � W V ! V to the covering QV of V .

We look for an Qf 2 QF which satisfies the equation

Q�	. Qf / D Qf ;

where, moreover, this Qf W QV ! QA must be equivariant for the (Galois) actions of
� D H1.X/=torsion on QV and QA, i.e. Qf must be a lift of some f W V ! V from
our homotopy class Œf �Ab of maps V ! A.

Start by observing the following obvious.

1. Quasi-morphism Property. Since V is compact, the lift Qf W QV ! QA of every
continuous map f W V ! A in the class Œf �Ab almost commutes with the two
lifted � in the sense that the diagram
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Q�
˚ QV Qf! QA

� QA

�

commutes up-to a bounded error. This means

DIST.� QA ı Qf ; Qf ı Q�/ Ddef sup
Qv2 QV

dist QA.� QA ı Qf .Qv/; Qf ı Q�. Qx// <1;

or, equivalently (for � QA being invertible),

DIST. Q�	. Qf /; Qf / D sup
Qv2 QV

dist QA.�
�1
QA ı Qf ı Q�.Qv/; Qf .Qv// <1:

In other words,
Q�	 sends the DIST-finiteness component of the lift Qf of every f 2 Œf �Ab into
itself.
Such Qf W QV ! QA are regarded as quasi-morphisms in the category of metric
spaces with self-mappings where morphisms are maps where the corresponding
diagram is truly commutative.

2. Split Hyperbolicity. The hyperbolicity of the action � QA D ��1 of � W V ! V on
the homology QA D H1.V IR/ amounts to the existence of a unique splitting of

�̊ QA

QA into a Cartesian sum of an expanding and a contracting self-mappings,

. QA; � QA/ D . QAC; �C
QA / 
 . QA�; ��

QA /;

where QAC.D R
NC/ corresponds to the sum of the eigen-spaces of � QA D ��1

regarded as a linear operator on R
N D H1.X IR/ D QA with the eigen-values �

where j�j > 1 and QA�.D R
N�/ represents j�j < 1.

Since the hyperbolic splitting QAC 
 QA� D R
NC 
 R

N� of QA D R
N is a metric

one, the corresponding hyperbolic splitting for Q�	 W QF ! QF , where QF is the
space QF ; Q�	 of continuous maps Qf W QX ! QA, is a “metric” splitting for DIST in
QF ,

. QF ; Q�	/ D . QFC; Q�	C/ 
 . QF�; Q�	�/

where
the self-map Q�C	 W QFC ! QFC is contracting with respect to DIST QFC , that is
supQx2 QX dist QAC , due to the contraction by ��1

QAC
in the decomposition ��1

QAC
ı Qf ı Q� D

Q�C	. Qf /, while Q�	� W QF� ! QF� is expanding for DIST QF� , since Q� invertible.
In other words
the self-map Q�	 W QF !W QF is split hyperbolic.
Therefore,



158 M. Gromov

the DIST-finiteness component F0 � F of every map Qf0 W QV ! QA lifted from a
map V ! A contains a unique fixed point, say Qf	 2 F0 that is a map Qf	 W QV !QA, such that DIST. Qf	; Qf0/ <1.
To conclude the proof of Franks’ theorem let us show that Qf	 equals a lift of
some map V ! A, where, observe, the “lifted” maps Qf W QV ! QA are exactly
the � -equivariant ones for the group � D H1.V /=torsion D Z

N which acts on
QV and on QA.

Define the action of � on QF by Qf 	! 	 QF . Qf / D 	�1
QA ı Qf ı 	 QV , where 	 QA and 	 QX

denote the 	 -transformation of QV and QA for all 	 2 � . Thus,
the fixed point set f ix� of this action equals the subset QE� � QF , of equiv-
ariant maps, where, moreover, this QE� is contained in a single DIST-finiteness
component of QF .
The actions of � on QF and Q�	 W QF ! QF define an action of the normal extension
� 0 � � generated by translation of � on itself together with the automorhism
�� W � ! � induced by � W X ! X on � D H1.X/=torsion.
Since � � � 0 is normalized by Q�	, the fixed point set f ix� � QF is Q�	-invariant;
hence, the unique Q�-fixed point Qf	 2 QF is contained in QE� D f ix� . ut
This is not especially surprising since globally split hyperbolic self-maps are

rather primitive dynamical creatures and the above proof might appear a pure
tautology.

On the other hand, Franks’ theorem easily implies (see below) that hyperbolic
automorphisms �A of tori A D T

N are structurally C1-stable.
This may appear paradoxical, since these �A are topologically and measure

theoretically ergodic: naively intuitively, ergodicity and stability seem incompatible.
(The idea that such � could be structurally stable goes back to Thom and Smale, but
a realization of this idea has undergone a few unsuccessful attempts at the proof by
several great mathematicians.)

To derive structural stability from super-stability all one needs to show is that if
a � W A ! A is C1-close to �A then Franks’ morphism f� W .A; �/ ! .A; �A/ is
one-to-one.

But �A, and, therefore, every � which is sufficiently C1-close to �A, satisfy the
following obvious

Infinitesimal Expansiveness Property. There as an integer k D k.�A/ � 0 such
the norms of the differentials of the iterated maps �i , i D �k; : : : ;�1; 0; 1; : : : ; k,
satisfy

sup
ji j�k
jjD�i .�/jj � .1C "/jj� jj

for some " D ".�A/ > 0 and all tangent vectors � of A.
It follows by the implicit function theorem that � is locally expansive: the supZ-

distance in A between every two distinct �-orbits Z ! A is � "0 > 0; hence,
the map f� , being Z-equivariant and C0-close to the identity map A ! A, is,
necessarily, locally one-to-one.
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Since A is a closed manifold and f� is homotopic to a homeomorphism, that is
to �A, it is globally one-to-one. ut

Similar stability theorems for general group actions often go under the heading
of “rigidity” see [18] borrowing from the fame of the Mostow-Margulis-Zimmer
(super)rigidity theory for semisimple groups, while what we call “super-stable” is
called “semi-stable” by people in dynamics, who, apparently, are disgruntled with
non-injectivity, rather than being excited by uniqueness and universality.

2.2 Shadowing Lemmas

The idea underlying the above argument, due to Smale, Anosov, Tate, Shub and
Franks, can be vaguely formulated as follows:

if a group (sometimes a semigroup) ˙ of self-maps � of a metric space X
“strongly contracts/expands in many directions” then every ˙-quasi-orbit in X is
shadowed by an orbit. Moreover, the space of this shadows is “small”, i.e. it consists
of a single orbit.

Recall that orbits of an action of ˙ on X are ˙-equivariant maps o W ˙ ! X ,
say, for the left action of˙ on itself, i.e. o.� �� 0/ D �X.o.� 0//;where �X W X ! X

denotes the action of � 2 ˙ on X .
These orbits are the same as the fixed points of the �-action of ˙ on the space

X˙ of all maps q W ˙ ! X , defined by

�	.q/ D ��1
X ı q ı �:

The deviation of a general q 2 X˙ from being an orbit can be measured, for
example, with a given (usually, finite generating) subset � � ˙ , by

DI�.q/ Ddef sup
�2�

DIST.�.q/; q/;

where, recall, DIST inX˙ is defined as sup˙ distX . (One can use various “weighted
versions” of DIST which lead to somewhat different “quasi”s and/or “shadows”.)

Call q W ˙ ! X a quasi-orbit if DI�.q/ <1; more generally, "-orbit signifies
DI�.q/ < " (where this " � 0 may be large in the present context).

In other words quasi-orbits of an action of ˙ on X are the same as quasi-fixed
points for the corresponding �-action of the group˙ on X˙ .

An orbit o is said to ı-shadow a q if DIST.o; q/ < ı, where the plain “shadow”
refers to ı D1.

The essence of Franks’ argument is the following
Shadowing for Split Hyperbolic Actions of � D Z: Every quasi-orbit of such an

action on a complete metric space is shadowed by a unique orbit.
Indeed split hyperbolicity passes from X to the corresponding �-action on

XZ and every almost fixed point of the resulting (split hyperbolic!) action is
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accompanied by a unique fixed point in XZ that is an orbit of the original
action in X .

Moreover, split hyperbolicity implies
Uniform Shadowing. Every "-orbit q is ı-shadowed by an orbit where ı depends

on " but not on q.
The key property of the hyperbolic splitting QA D QAC 
 QA� in Franks’ argument

(where QA is a Euclidean space with a linear hyperbolic self-map � QA) is that this
splitting is metrically controlled, i.e. the projections p˙ W QA ! QA˙ are conrtolled
at infinity, for the (Euclidean) metrics in QA and QA˙,

dist QA. Qa1; Qa2/ � d <1) dist QA˙.p
˙. Qa1/; p˙. Qa2// � e.d/ <1I

hence, quasi-orbits project to quasi-orbits.
And on the bottom of all this lies ufp – the unique fixed point property of

(uniformly eventually) contracting self-maps of complete metric spaces that are the
spaces of �˙

QA -quaisi-orbits in . QA˙/Z in Franks’ case.
Question. What are the most general algebraic properties of a group ˙ and

geometric properties of a metric space X and the action of ˙ on X that would
guaranty the (unique) fixed point and shadowing property of the action?

For example, which (semi)groups of linear operators in a Banach (e.g. Hilbert)
space have the shadowing property?

Ultimately, one looks for criteria that would imply, for example, Kazhdan’s T -
property of ˙ :

by definition of T , every isometric action of a T -group˙ on a Hilbert space has
a fixed point, where the non-trivial point is proving T for particular groups˙ , such
as SLN .Z/, for N � 3.

Also Margulis’ super rigidity theorem can be viewed as a fixed point theorem for
semisimple groups acting on some spaces of “quasi-representations”.

In what follows, we only look at “hyperbolic-like” actions with “strong contrac-
tion” in certain directions.

Definition of Stable Partitions. A family of self-maps f�i W X ! Xgi2I eventu-
ally contracts a subset S � X if all subsets S 0 � S with diamX.S

0/ <1 satisfy

diamX.�i .S//! 0 for i !1I

this means that, for each D > 0, there are at most finitely many i 2 I , such that
diamX.�i .S

0// > D.
Thus,X is partitioned into maximal f�i g-stable subsets, called f�i g-stable slices

(leaves) that are eventually contracted by f�i g, where the corresponding quotient
space X=partition is denotedXC D XC

f�i g.
Observe that every uniformly continuous map � W X ! X which commutes with

all �i sends stable subsets to stable ones; thus, � induces a self-map of XC, say
�C W XC ! XC. Moreover, this remains true for � which eventually commute
with �i , i.e.

DIST.� ı �i ; �i ı �/! 0 for i !1:
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An eventual f�ig-contraction is called uniform if for each d > 0 there is a
cofinite (i.e. with finite complement) subset I.d/ � I , such that every f�i g-stable
subset U � X of diameter � d satisfies

diam.�i .U // � 1

2
diam.U / for all i 2 I.d/:

Call x 2 X an eventual fixed point of � if

dist.�i .x/; x/! 0 for i !1:

The set of eventually fixed points is (obviously) invariant under every uniformly
continuous map � W X ! X which eventually commutes with �i .

In fact, this is also true if the set f�i g is eventually normalized by � , i.e. there
exists a proper map j W I ! I , (i.e. the pull-backs of finite set are finite) such that

DIST.� ı �i ; �j.i/ ı �/! 0 for i !1:

Let us spice these definitions,with the two (obvious) observations.

Relative FP Property. Let X be a complete metric space and ˙ be a semigroup
of uniformly continous maps � W X ! X such that ˙ admits a family of maps
�i W X ! X which eventually commute with all � 2 ˙ and such that

? The eventual contraction (if any) of the family f�i g is uniform;
?? The induced action of ˙ on XC, for � 7! �C W XC ! XC has a fixed point

xC	 2 XC
Then ˙ has a fixed point x	 2 X .

Observe that uniqueness of xC	 does not, in general, imply uniqueness of x	 and
that the ordinary ufp for contracting maps � reduces to the above with˙ D f�i g D
f�i gi>0 and XC being a single point, where the uniqueness of the fixed point of a
contracting � is obvious.

Relative Unique Shadowing Property. Let X , X� be metric spaces, p� W X !
X� be a continuous map controlled at infinity and let a semigroup˙ act onX , where
this action preserves the partition of X into the fibers (i.e. pullbacks of points) of
p� and, thus, ˙ acts on X� as well.

Let f�i gi2I � ˙ be a subset of invertible maps �i W X ! X , such that

� The maps ��1
i W X ! X eventually contract the fibers of p� and this

contraction is uniform;
�� The family f��1

i g eventually commutes with every � 2 ˙ .

Let � � ˙ be a generating subset.
If every quasi-orbit q� with respect to� of the action of˙ onX� is shadowed by

an orbit o�, then also every quasi-orbit q in X is followed by an orbit o; moreover,
if o� D o�.q�/ is unique for every q�, then o D o.q/ is also unique.
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2.3 Applications of Shadows

Nilpotent Example. Let QG be a simply connected nilpotent Lie group and �0 WQG ! QG be a hyperbolic automorphism which means that the corresponding
automorphism d�0 of the Lie algebra Qg of QG is a hyperbolic linear self-map. Then

every group ˙ 3 �0 of automorphisms of QG commuting with �0 has the unique
shadowing property. Furthermore, this remains valid (and becomes more obvious)
for semigroups˙ , provided �0 is an expanding map.

Indeed, since the differential d�0 (of �0 at id 2 QG) is a linear self-map of the
Lie algebra Qg of QG and since the center Qc � Qg is d�0-invariant, the action of d�0
on Qc is also hyperbolic.

Let QCC � QG be the central subgroup corresponding to the subspace in Qc with
eigenvalues having j�j > 1. If all eigenvalues � of the action of � on Qc have j�j < 1
and if �0 is invertible in ˙ (e.g. if ˙ is a group), we just replace �0 by ��1

0 .
Since the quotient map QG ! QG� D QG= QCC, being a Lie group homomorphism,

is controlled at infinity, the relative shadowing property above yields the unique
shadowing property in QG by induction on dim. QG/,

(One may equally use the induction on the nilpotency degree, rather than on
dimension; thus, the above applies to infinite dimensional nilpotent Lie groups and
also to projective limits of such groups.)

Remark. The hyperbolic splittings G D GC 
 G� are not, in general, metrically
controlled for “natural” (e.g. left-invariant Riemannian) metrics inG andG˙, since
the subgroups G˙ � G are not necessarily normal; possibly, the control can be
regained with some “unnatural” metrics.

Infra-nilpotent Shub-Franks Super-stability Theorem. Let B be a (possibly
non-compact) infra-nil-manifold, that is a quotient of a simply connected nilpotent
Lie group QG by a group � freely and discretely acting on QG, such that � equals an
extension of a discrete subgroup �0 � QG by a finite group of automorphisms of QG
preserving �0.

Let � QG W QG ! QG be an automorphism which descends to a self-map of B with
a fixed point b	, say �B W B ! B . Denote by �� the induced endomorphism of
� D �1.B; b	/.

Let V be a compact locally contractible space with a continuous self-map � W
V ! V with a fixed point v	 and let �� W �1.V; v	/! �1.V; v	/ denote the induced
endomorphism of the fundamental group.

Let h W �1.V; v	/ ! � be a homomorphism compatible with the two endomor-
phisms, i.e. the following diagram commutes

��

˚ �1.V; v	/
h! �

��
�; that is h ı �� D �� ı h:

In the following two cases there exists a unique continuous �=�B -morphism f W
.V; �/ ! .B; �B/, such that f .v	/ D b	 and the induced homomorphism f� W
�1.V; v	/! �1.B; b	/ D � equals h.
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Shub Case. The self-map � QG W QG ! QG is expanding.

Franks Case. The differential d� QG of � QG W QG ! QG at id 2 QG is hyperbolic and
� W X ! X is a homeomorphism.

Proof. Since QB D QG is contractible, there exists a continuous map .V; v	/ !
.B; b	/ which implements h.

The lift of this map to the respective � -coverings QV of V and QB D QG sends
Q�-orbits to � QG -quasi-orbits.

The shadowing orbits of these, which are provided by the nilpotent example,
transform this lift to a Q�=� QG-morphism.

Since � is normalized by � QG , this morphism is � -equivariant. ut
Remarks and Questions.

(a) The fixed point x	 2 X of � is not truly needed as one can always extend � to
a self-map � 0 of a path connectedX 0 � X with a fixed point x0	 2 X 0:

(b) The contractibility of QB and the freedom of the action of � are used only for
an implementation of h W �1.X/ ! � by an equivariant map Qf0 W QX ! QB .
Granted such an Qf0, one may drop the freedom of the � -action on B . Thus,
for example, one obtains intersting self-homeomorphisms of simply connected
spaces, such as the sphere S2 D T

2=˙ 1.
(c) Possibly, infra-nilpotent .B; �B/ are the only “superstable” compact topological

manifolds. But, probably, there are interesting “superstable” B with a compli-
cated, e.g. non-locally compact and/or fractal, local topology.

(d) The images of Franks- Abel morphisms .X; �/ ! .B; �B/ are particular
closed connected �B -invariant subsets in .B; �B/. What are, for example,
these images for the FA maps of closed surfaces X2 with, say, pseudo-
Anosov homeomorphisms X2 ! X2? There are lots of other such closed
connected �B -invariant subsets, e.g. the “walls” of Markov partitions. Can one
explicitly describe the “topologically simplest” of them, e.g. locally contractible
and/or having equal topological and Hausdorff dimensions, say for hyperbolic
automorphisms of the tori A D T

N ? Jarek Kwapisz pointed out to me that the
description problem for closed invariant subsets for hyperbolic automorphisms
of tori was raised by M.Hirsh [45] and that, according to a conjecture attributed
to Smale in [3], hyperbolic automorphisms of tori admit no invariant compact
topological submanifolds, except for unions of subtori.
Can one systematically describe n-dimensional spaces, n < N , with self-
homeomorphisms, say .X; �/, with a given Franks-Abel Jacobian .A; �A/,
i.e. with rank.H1.X// D N and where � induces a given automorphism
of H1.X/?

(e) Some pseudo-Anosov homeomorphisms .X; �/ are obtained from hyperbolic
automorphisms �0 of 2-tori T2 by taking ramified coverings X2 of T2 with the
ramification locus contained in the fixed-point set of �0, where the resulting
ramified coveringX ! T 2 equals the corresponding Franks map.
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This map is non-injective, but the full Franks-Abel map X D X2 ! A D T
N ,

N D rank.H1.X
2//may seem injective for pseudo-Anosov � W X2 ! X2 with

hyperbolic �� W H1.X2/! H1.X2/. In fact, it is shown in [4] that these maps
are almost everywhere one-to-one.
However, this I learned from Jarek Kwapisz, certain FA maps may contain
horseshoes of double points [3] and, it was recently proven by Jarek Kwapisz
with Andy Bouwman, these maps are never injective for genus two surfaces X
(where the torus has dimension 4 D 2dim.X/).
This strikes contrast with the complex analytic Abel-Jacobi maps which are
injective by Torelli theorem. Yet, one wonders if Franks-Abel maps and
invariant subsets of hyperbolic toral automorphisms come as limit sets of “nice
complex analytic somethings”, similarly to how quasi-circles appear as limit
sets of complex analytic actions of discrete groups on the Riemann sphere. (The
Formula 2.7 in [4] is indicative of such an “analytic connection” as was pointed
out to me by Jarek Kwapisz.)

(f) What are “ramification constructions” for automorphisms of TN for N > 2,
and of infra-nilmanifolds in general?
(Besides unions of codimension two subtori one, probably, can ramify T

N along
“wild” codimension two subsets, such as the images of FA-maps of genus two
surfaces in T

4.)
What is a “good natural” class of self-homeomorphisms encompassing Anosov
along with 2D-pseudo-Anosov maps and closed under Cartesian products and
ramified coverings?

“Connected Hyperbolicity”. Let f˙j gj2J be a collections of transformation groups
of anX and denote by .E D Ef ix; J / the graph on the vertex set J where the edges
e 2 E correspond to the pairs of subgroups .˙j ;˙k/, j; k 2 J , such that

The intersection˙jk D ˙j \˙k is normal in ˙j as well as in ˙k ,
The action of ˙jk on X has the ufp property.

Similarly, define the graph .Eshad; J / with the unique shadowing property in lieu
of ufp.

It is obvious that
If the setEf ix is non-empty and the graph .Ef ix; J / is connected, then the action

of the group ˙ generated by all ˙j satisfies the ufp property.
Consequently, if the graph .Eshad; J / is connected, then ˙ has the unique

shadowing property.
This applies to certain “sufficiently hyperbolic” homeomorphisms groups, e.g.

linear groups˙ with “many” hyperbolic � 2 ˙ but the “connected hyperbolicity”,
as it stands, has limited applications, since the connectedness often fails for
.Eshad; J /; however, it may be satisfied by a larger graph of “virtual subgroups”
in ˙ , e.g. corresponding to subgroups in a group S � ˙ .

For example, such “virtual connectedness” holds for lattices in semisimple
groups of R-rank� 2.
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Questions.

(A) Let a group˙ act by linear transformations � of a Banach (e.g. Hilbert) space
X , where all (or, at least, “many”) � ¤ id are split hyperbolic.
Is there a general “virtual connectedness” criterion for the unique shadowing
property of such an action in the spirit of Kazhdan’s T and/or of the Mostow-
Margulis (super)rigidity?
(Mostow’s proof of the rigidity of cocompact lattices for rankR � 2 depends on
connectedness of Tits’ geometries of the ideal boundaries of the orresponding
symmetric spaces, and similar ideas underly “softer” arguments by Kazhdan,
Margulis and Zimmer.)
Let ˙ be a group of linear transformations of Rn. Then every ˙-quasi-orbit q
is shadowed by �-orbits for hyperbolic � 2 ˙ and ˙ acts on the space H.q/
of these orbits; yet, it may fail to have a fixed point in there. For example, this
typically happens for free non-Abelian groups˙ .

(B) What is the dynamics of the action of˙ on the closure ofH.q/? When does it
admit a compact invariant subset?
Suppose ˙ is a word hyperbolic group and let @1 D @1.˙/ denote its ideal
boundary.

(C) Is there a natural map from @1 
 @1 n diagonal to the clousure of H.q/?
(D) Are there meaningful examples of the unique shadowing for actions of non-

elementary hyperbolic groups˙? Is Kazhdan’s T relevant for this?
Let˙ be a group of hyperbolic conformal transformations of the sphere Sn and
let q be a quasi-orbit of the corresponding action of ˙ on the tangent bundle
T D T .Sn/ or on some associated bundle, e.g. on

Vn
T . Let Q denote the

space of ˙-quasiorbits in T .
(E) What are “interesting” invariant subsets (minimal? compact? finite?) of the �-

action of˙ onQ, e.g. those contained in the closure of the˙-orbit of a single
q 2 Q ? (Recall that the bullet action of a � 2 ˙ on q W ˙ ! T is given by
�	.q/.� 0/ D ��1 ı q.� � � 0/ W � 0 7! T ).
What happens if we enlarge ˙ by a group of automorphisms of the bundle
T ! Sn?

2.4 Combinatorial Reconstruction of Shub-Franks Group
Actions

Franks, (Shub) superstability theorem, applied to a hyperbolic automorphism
(expanding endomorphism) of compact infra-nil-manifold, � W B ! B , shows that
the space B and the transformation � are uniquely determined by purely algebraic

data encoded in the automorphism
��

˚ � D �1.B/:
Let us describe a functorial construction , called combinatorial reconstruction

˚ �  ˚ B

which is built into the Shub-Franks argument.
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Let � be a group with a left invariant metric, e.g. coming with a finite generating
subset in � and let ˙ D ˙� be a semigroup of endomorphisms (e.g. group of
automophisms ) � D �� W � ! � .

Denote by Q" D Q".�;˙;�/ the space of "-orbits that are maps q W ˙ ! � ,
such that

DI.q/ D DI�.q/ D sup
�2�

sup
� 02˙

dist� .�.q.�
0//; q.� � � 0// � "

where� is a given generating subset in˙ , which we assume being finite in most of
what follows.

Endow Q" with the topology of point-wise convergence (or, rather, point-wise
stabilization for � discrete) in the space of maps q W ˙ ! �

Observe that � embeds into Q" via the orbit map 	 7! o D o	 for o	.�/ D
�.	/; thus, � acts onQ" by 	.q/.�/ D o	.�/ �q.�/ and this action commutes with
the action of ˙ on Q", that is �.q.� 0// D q.�� 0/.

Let
QB" D QB".˙� / D Q"=ŒDIST� <1�

that is the space of DIST-finiteness component of Q" (for our DIST.q1; q2/ D
sup˙ dist� ) with the quotient space topology, and let

QB D QB.˙� / D
[

">0

QB"; and B D B.˙� / D QB=�;

where ˙ naturally acts on B since the action of ˙ on QB commutes with the action
of � .

Say that
˙� is rigid if there exists a (possibly large, but finite) " D ".�; dist� ;˙� ;�/ >

0, such that, for every quasi-orbit q, there is an "-orbit, say q" D q".q/, such that
DIST� .q; q"/ <1,

and
˙� is Divergent if there is a constant d D d.�; dist� ;˙� ;�; "/ > 0, such that

the inequality DIST� .q1; q2/ � 2d for two "-orbits, implies that DIST� .q1; q2/ � d.
This implies that the inequality DIST� .q1; q2/ � d is a transitive (i.e. equiva-

lence) relation between "-orbits.
Divergence can be also regarded as a convexity-type inequality or a maximum

principle satisfied by the function

di.�/ D dist� .�.q1.�//; q2.�// W

if two "-orbits, q1; q2 W ˙ ! � , are 2d -close on a (large) ball in ˙ then they are
d -close at the center of the ball.

Shadowing) Rigidity. Let � D �1.B; b	/ for a locally contractible space B
and let ˙ be induced by a semi-group of self-maps of .B; b	/. If B is compact,
then, obviously, the (not necessarily unique)
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shadowing property of the lifted action of ˙ to the universal covering QB of B
implies rigidity of ˙� .

Furthermore,
if the shadowing is unique and uniform, the action is divergent as well as rigid.
In particular “connectedly hypebolic” (e.g. cyclic hyperbolic) automorphisms

groups ˙ of compact infra-nil-manifolds B D QG=� are rigid and divergent. (We
did not pay much attention to uniformity of shadowing in these examples, but
the proofs of unique shadowing automatically deliver the uniformity as well since
hyperbolic actions are globally expansive: the sup˙ distance (i.e. DIST) between
every two distinct orbits is infinite.

Remarks. (a) The above construction is just a “discrete time” counterpart to the
Efremovich-Tikhomirova-Mostow-Margulis description of the ideal boundary
of a hyperbolic group via quasi-geodesic rays.

(b) If we drop the rigidity and/or the divergence condition then the resulting space
B D B.˙� / and B.�� / may become non-compact and/or non-Hausdorff; yet,
such a B may may have non-trivial Hausdorff ˙-equivariant quotient spaces;
besides, the geometry of “non-Hausdorffness” of a B may be interesting in its
own right.

(c) There are by far (?) more rigid divergent actions then those on infra-nil-
manifolds, especially if we allow infinitely generated groups, e.g. � D Z

1,
where the construction must incorporate a choice of a suitable metric on
such a � .

Questions.

(a) Find/classify rigid divergent (semi)groups of automorphisms (endomorphisms)
of finitely generated (finitely presented?) groups. For example:
Which automorphism groups˙ of ZN are rigid?
Are, for instance, “virtually connectedly hyperbolic”˙ rigid? (Much is known
in this direction: [18, 20, 53, 60, 73].)
Which automorphisms groups of free groups and of surface groups are rigid?
Are automorphisms of fundamental groups of surfaces induced by pseudo-
Anosov maps rigid? (This, probably, follows from [17] and [22].)
Let A be a ramified covering of T

N with ramification locus being the union
of flat codimension two subtori in general position. The fundamental group of
such an A often admits hyperbolic-like automorphisms.
Are these ever rigid?
Notice that there are lots of homeomorphisms in the world and typical groups
generated by several homeomorphisms are free; “intersting” ˙-actions of
groups˙ with “many” relations can not be constructed at will – such actions are
usually associated with specific geometric structures on corresponding spaces.
Also, there is no systematic way to produce finitely presented groups � with
“large” automorphisms groups ˙ . Notice that every � acted by ˙ is obtained
from the free group F.˙/ freely generated by � 2 ˙ which is factorized by a
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˙-invariant set R of relations. If R is “small”, the resulting � remains infinitely
generated; if R is too large, � becomes trivial. It seems difficult to strike the
right balance.
Yet, there is a construction by Rips [71] of “generic” finitely generated (but
not finitely presented) groups � with a given ˙ in their outer automorphism
groups.
On the other hand, the quotient groups F.˙/=R acted upon by ˙ look
interesting even for infinitely generated � .

(b) When does QB � � admit a (natural?) group structure extending that of � ?
(c) The group � enters the definition of “rigid” and/or “divergent” only via its

(word) metric, but eventually, � acts on QB . Can one incorporate the action of
� into “rigid/divergent” to start with?

(d) The notion of a quasi-orbit make sense for partially defined actions on � , such
as the obvious partial action of GLN .Q/ on Z

N , e.g. the (contracting) inverse
��1 of an expanding endomorphism � W ZN ! Z

N .
Namely, an "-orbit is a map q W ˙ ! � such that for each � 2 ˙ there exists
	 D 	.q; �/ 2 � with dist� .	; q.�// � " such that 	 belongs to the domain
of definition of all � 2 �, for a given generating subset � � ˙ , and such that
dist� .�.	/; q.� � �// � " for all � 2 �:
However, there are no full-fledged orbits and the corresponding action of � on
Q, is only partially defined.
What kind of spacesB with˙-dynamics can be constructed for partial actions?
(The above contracting ��1 serves as an encouraging example.)
If˙ acts by injective homomorphisms defined on subgroups of finite index in �
one defines the (generalized) semidirect product � Ì˙ that is the set of partial
transformations of � generated by, say, left translations 	 W � ! � and all
partial � W � ! �:

Probably, the rigidity of the original action, can be adequately addresses in terms
of the group � ? D � Ì ˙ , as suggested by the construction from the next
section. and /or in the spirit of permutational bimoduli of Nekrashevych [47,
67], where one works, instead of partial quasi-orbits, with the, say right, action
of ˙ on the product � � 
 � and the obvious left action of � , for some finite
set �, where the two actions commute.
(If� is the one element set, these correspond, modulo DIST <1 condition, to
the action of˙ on � � by conjugations.)

(e) There is a remarkable class of groups � discovered by Grigorchuk, where such
a � admits subgroups of finite index, say �1; �2 � � , and a contracting (in a
suitable sence) isomorphism of a Cartesian power of �1 to �2, say � W � k

1 ! �2,
that is a partially defined contracting “isomorphism” � W � k ! � .
(See [47, 67] for a combinatorial (re)construction of a dynamical system
associated to this kind of � .)

Observe that every k-bracketing of a finite ordered set I , e.g.

�
Œ.��/�/�.��/	�.Œ.��/.��/��/ � 	 where k D 2 and card.I / D 11;
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provides a partial map � I ! � . The totality ˙? of such maps make what is called
an operad.

Can one make the full use of the this operad˙? generated by � in Nekrashevych’
construction of B with ˙? “acting on B”?

Is there, in general, a meaningful dynamical theory of operads acting on
(compact?) spaces?

(A system of N bracketing on a set I of cardinality N gives one a partial
endomorphism � N ! � N while the full operad comprises a “functorially
coherent” family of all such maps for all possible bracketing.)

2.5 Symbolic Dynamics, Markov Coding and Markovian
Presentations

Recall the obvious Bernoulli shift action of a discrete (semi)group ˙ on the space
�˙ of maps of ˙ to a set �, let � � ˙ be a finite subset and take someM � ��.

Denote by C D CM � �˙ the pullback of M under the obvious (restriction)
map �˙ ! �� and define the corresponding Markov (sub)shift (of finite type)
Q D QM � �˙ as

Q D
\

�2˙
�.C /:

Next, observe thatQ
Q is a Markov (sub)shift in .�
�/˙ and letR � Q
Q
be a Markov subshift in this Q 
Q.

If this R, regarded as a binary relation on Q, is symmetric and transitive, let
X D Q=R be the quotient space of Q by this equivalence relation R and observe
that the (semi)group˙ naturally acts on this X .

Such an .X;˙/ is called Markov hyperbolic (dynamical system), usually for
finite sets �, and the corresponding surjective map Q ! X D Q=R is called
(finitery) Markovian presentation.

Let us explain why
“rigid Markovian” for a finitely generated (semi)group ˙ of automorphisms

(endomorphisms) of a finitely generated group � implies “rigid hyperbolic” for
.B.˙� /;˙/.

Given subsets � � � and � � ˙ take a subset M � �� and define M -orbits
q W ˙ ! � by the condition

m.�/ D .q.� � �//�1 � �.q.�// 2 � for all � 2 ˙ and � 2 �
and this functionm W � 7! ı 2 � belongs to M for all � 2 ˙ . The orbits o W ˙ !
� correspond to � D id 2 � , i.e. .o.� � �//�1 � �.o.�// D id and the space QQM

of M -orbits is invariant under the multiplication by orbits, since

.o.� � � 0/ � q.� � � 0//�1 � �.o.� 0// � �.q.� 0// D .q.� � � 0//�1 � �.q.� 0//:
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(We switched from the notation Q" used earlier to QQM but our "-orbits are special
cases of M -orbits)

Thus every M � ��, for given finite subsets � � ˙ and � � � , define a
Markov˙-shift QM D QQM=� .

Given an arbitrary finite generating subset � � ˙ , a sufficiently large finite
� � � and M D �� , then the quotient QBM of QQM by the equivalence relation
QR � QBM 
 QBM given by ŒDIST� <1� does not depend on�: this is our old QB .

The group � (embedded into the space of maps˙ ! � via ˙-orbits as earlier,
i.e. by 	 7! �.	/) acts on this R and the quotient R=� � BM 
 BM is Markov
by the Marcovian property of ˙� which, recall, corresponds to the uniformity of
shadowing. ut
Remarks. (a) “Markov symbolic coding” can be traced to the work by Hadamard

(1898) and Morse (1921) on geodesics in hyperbolic surfaces. The above
argument is essentially the same as the derivation of Markov property for locally
split hyperbolic (Bowen-Anosov) actions of Z (defined below) on compact
spaces from Anosov’s local shadowing lemma and local expansiveness. This
was exploited/refined by Sinai and Bowen in their Markov partition theory
[5,77] and then extended to general Markov hyperbolic transformations in [23]
(where these were called “finitely presented dynamical systems”.)

(b) The major advantage of “Markov hyperbolicity” (originally called just “hyper-
bolicity” [26]) over “split hyperbolicity” is the applicability of “Markov” to
arbitrary (semi)group˙ , not only to ˙ D Z and/or ZC.

However, non-trivial examples of Markov hyperbolic actions of non-cyclic
groups ˙ in [26] were limited to word hyperbolic groups ˙ acting on their ideal
boundaries. (These groups were called “coarse hyperbolic” in [26].)

We shall see in Sect. 3 below further examples that became available due to the
recent progress in the geometric rigidity theory.

Anosov-Bowen Systems. An action of Z by uniformly continuous homeomorphisms
of a metric space X is called locally split hyperbolic, if there exists a � > 0 such
that every �-ball in X is contained in a split neighbourhood U D UC 
 U� � X
such that

The fibers of the projection U ! UC are f�i gi!C1-stable, i.e. uniformly
eventually contracted by the positive powers of � , that is the transformation
corresponding to 1 2 Z,
The fibers of U ! U� are f�i gi!�1-stable,
The projections U ! U˙ are uniformly continuous with the moduli of
continuity independent of U .

Anosov Shadowing Lemma, says that if all metric spaces U˙ are complete then
there exists an "0 > 0, such that every "-orbit q W Z ! X with " � "0 is

ı D ı."/-shadowed by a unique orbit o W Z! X where ı D ı."/! 0 for "! 0.

Proof. Let XZ be the space of maps with the (possibly infinite) metric DIST D
sup

Z
distX and observe that the local split hyperbolicity of an action on X implies

that the corresponding �-action of Z on XZ is also split hyperbolic.
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Thus we need to show that every "-fixed point of � is accompanied by a nearby
fixed point.

This is done exactly as in the globally split case with a little caveat that the two
contracting actions are only partially defined and one needs to use the local ufp
property of contracting maps from Sect. 2.

The Markov partition theorem of Sinai-Bowen says, in effect, that
every locally split hyperbolic action of Z on a compact spaceX admits a cofinite

Markov presentation Q ! X , i.e. where the cardinalities of the pullbacks of all
x 2 X are bounded by a constant <1.

This, as it was shown by [23], remains true for all Markov hyperbolic Z-actions.
Question. Which Markov hyperbolic˙-actions admit cofinite Markov presenta-

tions?
This is, apparently, so for the boundary actions of the word hyperbolic groups˙

and for many (all?) Markov hyperbolic actions of free groups.
There is nothing of “holomorphic” in all this so far. Of course, endomorphisms

� W TN ! T
N analytically extend to holomorphic endomorphisms �C W .C�/N !

.C�/N where .C�/N are affine toric (hence, rational) varieties, where, small rational
deformations of �C may be of some interest.

Questions.

(a) Does CPN admit a birational action by the group SLNC2.Z/ which does not
factor through a finite group?

(b) Does it admits such an action by SLNC1.Z/ which is not conjugate to a
projective action?
(It is “No” for (b), hence, for (a), see [14].)

Similarly, compact real nil-manifolds G=� complexify to GC=� where these
quotients of complex nilpotent groups GC are, apparently, algebraic (affine? ratio-
nal?) as well.

But this is not quite a kind of “holomorphic connection” we are looking for – the
first whiff of “Kähler” can be felt, however, in the examples we shall see presently.

3 Inner Rigidity and Markov Coding

A finitely generated subgroup˙ in a finitely generated group � is called inner rigid
if the action of ˙ on � by inner automorphisms is rigid. In particular, � is called
inner rigid, if its action on itself by inner automorphisms is rigid.

Let us express this in geometric language and show that actions of discrete rigid
groups on homogeneous spaces are Markov.
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3.1 Quasi-isometries of Lie Groups and Combinatorial
Reconstruction of Homogeneous Spaces

A (possibly discontinuous) map f W X ! Y is called d -eventually �-Lipschitz
if distY .f .x1/; f .x2// � � � distX .x1; x2/ for all those x1; x2 2 X where
distX.x1; x2/ � d . for some constant d D d.f; �/ <1.

An eventually Lipschitz map is called a quasi-isometry if it is invertible modulo
translations, where a map � W X ! X is called a ı-translation if supdist.�; id / �
ı <1.

More specifically, an f W X ! Y is a .d; �/-quasi-isometry if there is a g W Y !
X such that both f and g are d -eventually �-Lipschitz and the composed self-maps
g ı f W X ! X and f ı g W Y ! Y are translations. Just “quasi-isometry” means
�-quasi-isometry for some � < 1. (See [70] and references therein for another
concept of approximate isometry.)

Quasi-isometric Rigidity and Completeness. A metric space X is called quasi-
isometrically rigid if there is some � < 1 such that every quasy-isometry q W
X ! X lies within bounded distance from a �-quasi-isometry, say q� such that
supdist.q; q�/ <1.
X is called quasi-isometrically complete if the group of quasi-isometries modulo

translation of X , denoted qis.X/, equals the isometry group iso.X/.
Clearly, this completeness implies rigidity and
co-compact discrete isometry groups˙ of rigid spaces X are inner rigid.
What is non-trivial is that (see [54, 68])
Let X be a Cartesian product of irreducible symmetric spaces of non-compact

type and irreducible Euclidean buildings. If X does contains among its factors
trees, as well as real hyperbolic and complex hyperbolic spaces then X is quasi-
isometrically complete.

Accidentally(?) this the same assumption which ensures the T -property of the
groupG D iso.X/.

Markov Corollary. Let˙;� be discrete cocompact subgroups in the above group
G D iso.X/, e.g. ˙ D � . Then the right action of ˙ on the left quotient space
G=� is Markov hyperbolic.

Indeed, what one needs besides rigidity is the expansiveness property which is
obvious in the present case sinceG has trivial center and supx2X dist.g.x/; x/ D 1
for all g ¤ id 2 G.

Remarks and Questions

(a) Probably, “generic” finitely presented groups � are q.i. complete, i.e. qis.� / D
� , but qis.� / may be quite large for certain (which?) groups � [16, 84].

(b) Let ˙ be a rigid (and divergent) group of automorphisms of � or, more
generally, a rigid semigroup of partially defined endomorphisms.
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Probably, the semidirect product � Ì˙ is inner rigid except for a specific list
of examples (possibly?) including certain (all) expanding endomorphisms of Z
and of nilpotent groups of nilpotency degree 2 with cyclic center.

(c) The quasi-isometric completeness allows a canonical reconstruction of G in
terms of a given co-compact subgroup � � G D iso.X/ which is, probably,
functorial for quasi-isometric embeddings (injective homomorphisms?) �1 !
�2 in many cases.
Thus, for example, some compact locally symmetric Kähler manifolds Y can be
reconstructed from their fundamental groups � in an essentially combinatorial
Markovian fashion.

(d) What are non-cocompact ˙ � G for which the action on G=� is Markov
hyperbolic? Is it true whenever vol.G=˙/ <1?

(e) What is the story for the real and, most interestingly, for the complex hyperbolic
spaces X?
One still can reconstruct iso.X/ in terms of a � � iso.X/ as follows.
Let @1.X/ be the ideal (hyperbolic) boundary of X . Assume for the simplicity
sake, that the action of � onX is free and orientation preserving and let Cn, n D
dim.X/ denote the space of � -invariant Borel measures C on .@1.X//nC1 of
finite mass, i.e. the (simplicial)L1-norm jjC jj <1, where C 2 C represent the
fundamental homology class ŒX=� � of X=� , that is a generator of the (infinite
cyclic!) groupHn.�;Z/.
Let G be the group of self-homeomorphisms h of @1X the action of which on
Cn satisfies jjh.C /jj D jjC jj.
If X D Hn

R
is real hyperbolic and n � 3, then the group G equals G since the

support of C of minimal mass equals the set of regular ideal n-simplices in X
by Milnor -Haagerup-Munkholm theorem.
Probably, G D G also in the complex hyperbolic case (and, properly stated, in
all symmetric spaces with no flat andH2

R
-factors).

But regardless of whether this is true or not for the complex hyperbolic spaces
X D Hm

C
of complex dimensionm � 2, one can replace ŒX=� � 2 Hn.� IZ/ by

the Kähler (Toledo) class C 2 H2.� IZ/. that is the Poincare dual of !m�1 for
the Kähler class ! 2 H2.X=� IZ/ D H2.� IZ/. Equivalently,C is the class in
H2.X=� / which maximizes the ratio !.C /=jjC jjl1 for the simplicial l1-norm
on homology (in the sense of [27]).
In either case, we need a distinguished class ! 2 H2.X=� IZ/, and then, it is
easy to see that the group G D G.!/ of self-homeomorphisms of .@1.X//3
preserving the norms of 2-cycles equals G D iso.Hm

C
/.

(If we choose a “wrong” class ! 2 H2.� /, then, most likely, G.!/will be equal
to � itself or a finite extension of � .)

(f) What are a measure-theoretic (instead of quasi-isometric) counterparts to
rigidity, quasi-orbits, etc. that would be applicable to non-cocompact lattices
� � G in the context of Margulis-Zimmer super-rigidity theory that would
give, in particular, a canonical reconstruction of G from � ?
Notice that the l1-homology makes sense with the Poisson-Furstenberg bound-
ary in lieu of the hyperbolic boundary and it is compatible with measurable
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equivalences between groups (that are “ergodic bimoduli” where Nekrashevitch
type constructions may be possible) but all this was not studied systematically.

(g) Besides the simplicial l1-norm on homology, there is another norm, which is
defined via the assembly map ˛ from the group of reduced rational bordisms
B�.� / to the rational Wall surgery groups L�.� /.
Recall that each L 2 Li is represented by a free module M over the rational
group ring of � with some extra structure (e.g. a non-singular quadratic form
for i D 4j ) on M . Let rank.L/ denote the minimum of rank.M/ over all M
representing L and

jjLjj Ddef lim
n!1

1

n
rank.n � L/:

Non-vanishing of this norm on ˛.B/, B 2 B�.� /, strengthens Novikov higher
signatures conjecture that claims just non-vanishing of ˛.B/ for B ¤ 0. It
is known, that that this norm does not vanish on the fundamental classes of
compact locally symmetric Hermitian spaces of non-compact type with non-
zero Euler class, [34, 59] but its role in rigidity remains unclear.

3.2 Stable Factorization of Rigid Flows

Actions of such (softish) groups as R can not be stable in the above sense, since one
can always reparametrize an action along the orbits. Accordingly, (super)stability
is defined as preservation of the partitions (foliations) into orbits rather than of the
actions themselves.

(This notion of stability is poorly adjusted to many “real life systems”, e.g. to
the amazing stability of the 24-h circadian rhythm under variation of temperature,
which, at the same time, can be greatly perturbed by a physically insignificant factor,
e.g. by a bad news said in a low voice. Finding an adequate functorial concept of
“selective stability” is a challenge for mathematicians.)

Examples of such (super)stable actions of R are suspensions of (super)stable
actions of Z � R and geodesic flow on manifolds of negative curvature.

(The ˙C-suspension of an action of ˙ on X for ˙C � ˙ is the natural action
of ˙C on .X 
˙C/=˙diag .)

The “combinatorial reconstruction” in this context, say for R-actions, defines the
space of unparameterized orbits of such an action.

For example, if X is a ı-hyperbolic space X , then the corresponding (space
of ideal) unparameterized geodesics correspond to (the space of) pairs of disjoint
points in the ideal boundary of X . But this does not automatically deliver the “ideal
geodesic flow space” ˝ with an actual action of R with these orbits.

What one does have, however, at least in the cases at hand, is a larger space, say
# such that ˝ , if it exists, comes as a quotient space of # .
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For example, if X is a geodesic hyperbolic space, one may take the space of
isometric maps R ! X for # . The images of these maps are distance minimizing
geodesics in X and the natural action of R corresponds to the geodesic flow.

The quotient map # ! ˝ must bring two geodesics together if they have the
same ends at the ideal boundary of X but this does not tell you which points on
geodesics must be actually identified.

But this ambiguity is “homotopically trivial” and can be easily resolved by a
(soft) partition of unity argument as follows.

Let # be a metric space with a free continous action of a locally compact and
compactly generated group ˙ (that is either Rn or Zn � R

n in what follows) and
let � � 0 be constant such that the following three conditions are satisfied.

1. The orbits maps ˙ ! # are �- bi-Lipschitz with respect to, say, maximal
left-invariant metric, on ˙ which equals a given metric on a compact subset
generating˙ .

2. If two orbits are parallel i.e. the Hausdorff distance between them is finite, then
this distance is � �.

3. Every 2R-ball in # can be covered by at most N D N.R/-balls of radiusR.

Let h W ˙ ! H D R
n be a continuous homomorphism with compact kernel.

Then there exists a metric space ˝ with a Lipschitz H -action on it and a
continuous quasi-isometric map P W # ! ˝ , which sends ˙-orbits to H -orbits
and such that two orbits in # go to the same orbit in ˝ if and only if they are
parallel.

Moreover, if � is a discrete isometry group of# which commutes with the action
of ˙ , then ˝ also admits a discrete isometric action of � which commutes with H
and such that the map P is � -equivariant.

Proof. (Compare with [28, 62]). An orbit preserving map P W # ! ˝ which
identify parallel orbits defines a continuous closed H -valued 1-cocycle � on the set
˘ � ˝ 
 ˝ of the pairs of points that lie on mutually parallel ˙-orbits in # ,
namely,

�.
1; 
2/ D P.
1/� P.
2/
which make sense for .
1; 
2/ 2 ˘ , since P.
1/ andP.
2/ lie in the sameH -orbit.

Conversely every continuous closedH -valued 1-cocycle � on ˘ � ˝ 
˝ , that
is an anti-symmetric function in two variables, �.
1; 
2/, .
1; 
2/ 2 ˘ , such that
�.
1; 
3/ D �.
1; 
2/C �.
2; 
3/, defines a space ˝ with an H action and a map
P W # ! ˝ .

For example if h W ˙ ! H D R
n is an isomorphism, then ˝ is defined as the

quotient space of# by the equivalence relationR � # that equals the zero set of �.
In what follows, we stick to this case, since h is an isomorphism in most example
and since the general case needs only extra notation.

Let us look at cocycles that are represented by locally finite sums

� D
X

i

�i ; where �i .
1; 
2/ D 'i.
1/� 'i.
2/
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for some Lipschitz maps 'i W # ! H D R
n with bounded (compact in the present

examples) supports.
Such maps are easy to come by. Indeed every ˙-orbit, say S � # , which is bi-

Lipschitz to R
n, admits a Lipschitz retraction ˚S W # ! S D H (i.e. ˚S jS D id )

with the Lipschitz constant � n � �. This ˚S can be cut off (i.e. made zero) to a
'� D '�.
/, � 2 S , 
 2 # , by multiplying it with the function f�.
/ which equals
1 on the (large) r-ball B�.R/ � # around �, which vanishes outside the concentric
2r-ball and which equals r�1.2r � dist.�; 
// in the annulus B.2r/ n B.r/.

What remains is to find a � -invariant collection of balls Bi.r/ D B�i .r/ with
a large ri , such that the concentric balls Bi.r=2/ cover # , while the intersection
multiplicity of the balls Bi.2r/ is bounded by a constant N <1.

For example, if the action of � is cocompact, one may take the � orbit of a
single (large) ball, and the general case needs a minor additional effort.

Remarks and Questions.

1. The main applications of ˝ for hyperbolic groups � is showing that (certain)
cohomology classes in � are bounded. Is there something similar for other
globally split hyperbolic R-actions, e.g. for the suspensions of hyperbolic
Z-actions?
The fundamental groups � of suspensions of known (all?) hyperbolic Z-actions
are amenable and their bounded cohomologies vanish. But possibly there is a
meaningful notion of cohomology with partially defined cocycles.

2. Can one combinatorially reconstruct the R
k-action on Weyl chambers in locally

symmetric spaces X of R-rank k in term of �1.X/?
3. Does the above factorization property extend to non-Abelian groupsH?

The above argument, possibly, can be extended to simply connected nilpotent Lie
groups H . On the other hand, the conclusion may be even stronger for “rigid”. i.e.
(some) semisimple H .

3.3 Shadows of Leaves

When is a “quasi-leaf” in a foliated manifold shadowed by a leaf?
We know this is so for the geodesic foliations of (finite and infinite dimensional)

manifolds (and singular, i.e. CAT.�/, spaces) of negative curvature and, at least
locally, for the orbit 1-foliations of general Anosov flows, such as suspensions of
hyperbolic automorphisms (and expanding endomorphisms) of infranilmanifolds
(where “locally” is, in fact, “semi-global”).

Let us look at examples of k-foliations with k > 1.
Submanifolds Foliations. Given a smooth manifold X , let Fk.X/ denote the

space of pairs .x; S/, where x 2 X and S 3 x is a germ of an k-submainifold
in X . Notice that Fk.X/ is tautologically foliated, where the leaves correspond to
immersed (with possible self-intersections) submanifolds in X .
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We are mostly concerned with “small” F -saturated submanifolds G � Fk.X/
which are unions of leaves in Fk.X/.

Examples. Let X is a Riemannian manifold. Then the the space marked geodesics
in X , denoted Geo1 � F1.X/, is an instance of our G. The space Geo1 is foliated
into geodesics in X – the orbits of the geodesic flow in (the unite tangent bundle
of) X .

Similarly one defines the space Geok � Fk.X/ the space of marked totally geodesic
submanifolds in X .

Unlike Geo1, the space Geok�2 is empty for generic Riemannian manifolds X .
This suggests another extension of Geo1 to k > 1, namely G D Platk � Fk.X/
– the space of marked minimal k-subvarieties in X that are solutions to the Plateau
problem.

This G is infinite dimensional, but it may contain “nice” finite dimensional sub-
foliations [29]

If X is a complex manifold and k D 2l then one defines Holl � Fk.X/ – the
space of all complex analytic submanifolds Y � X with dimC.Y / D l which, for
Kähler manifoldsX , makes a subfoliation in Platk .

Also notice that Hol1 is somewhat similar to Geo1, since holomorphic curves
can be parametrized either by C or byH2

R
; accordingly, these leaves comes from the

orbits of C- and/or SL2.R/-actions on the spaces of holomorphic maps of C and/or
of H2

R
to X . (See [37, 61] for a study of the dynamics of such group actions.)

If k > 1, then “interesting” finite dimensional saturated G � F1.X/ are rather
scarce – the main source of examples of foliations in finite dimensions comes from
Lie groups. Namely, we assume that X is transitively acted by a Lie group L and
let Y � X be an orbit under a connected subgroup in L. This Y , can be regarded as
a leaf, say SY � Fk.X/ for k D dim.Y /, and we take the L-orbit of SY in Fk.X/
for G.

Why “quasi-leaves” but not “quasi-orbits”? Apparently, smooth actions of Lie
groups larger than R, especially of semisimple ones, are very rare [85]. Such an
action may be stable just because miracles do not happens twice. On the other hand,
one entertains certain freedom in perturbing individual leaves, where stability seems
more meaningful.

But what is a “quasi-leaf”?
If a foliated manifoldG is endowed with a Riemannian metric, then an immersed

k-submanifold S0 ! G with a complete induced Riemannian metric is called an
"-leaf if S0 meets the leaves S of our foliation at the angles � ".

This definition is OK for small " > 0 when we deal with the local shadow-
ing/stability problem, but making sense of it for "!1, apparently, needs a specific
definition case by case.

Next, we say that an S0 ! G is ı-shadowed by a leaf, if there is a ı-small
C0-perturbation of an original immersion S0 ! G which sends S0 onto a true leaf
S � G. We express this in writing by DIST.S; S0/ � ı. (This is almost, but not
quite, the same as the ı-bound on the Hausdorff distance distHau.S; S0/. ) Plain
“shadowing” refers, as earlier, to DIST.S; S0/ <1.
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“"-Stable” (“prestable” in the terminology of [32]) means that every "-leaf is
ı-shadowed by a unique leaf where ı D ı."/ ! 0 for " ! 0, where we may
forfeit the uniqueness of the shadow and where the the corresponding definition of
“super-stability” i.e. where "!1 needs a special consideration.

A particular class of examples where the shadowing/stability problem can be,
probably, fully resolved, at least for small " > 0, is that of the foliations associated
to totally geodesic submanifolds Y in (possibly infinite dimensional) Riemannian
symmetric spacesX . This can be formulated without direct reference toG � Fk.X/
as follows.

Let Y � X be a totally geodesic k-submanifold. Say that a k-submanifold
Y" � X is an "-quasi-translate of Y if for each point x 2 Y", there exists
an isometry g of X by which Y is moved "-close to Y", where there several
(essentially equivalent) possibilities for this “close”. For example, this may mean
the existence of an "-diffeomorphism ' of the unite ball Bx.1/ � X which maps
the intersection g.Y / \ Bx.1/ onto Y" \ Bx.1/, where the "-property of ' signifies
that distC i .'; id / � ", for distC i being a certain “standard” metric in the space of
C i -smooth maps Bx.1/! X for a given i .

Shadowing/Stability Problem for Symmetric Spaces. Given the aboveX , Y � X
and " > 0. What are the cases, where Y is "-geostable, i.e. every "-quasi-translate
of Y lies within finite Hausdorff distance from the true g-translate of Y for some
isometry g W X ! X?

Examples. (a) Let X be a symmetric space (possibly of infinite dimension) with
non-positive curvature, K.X/ � 0, and Y � X be the union of all geodesics
parallel to a given one. Then
Y is "-geostable for some " D ".X/ > 0. In particular, the maximal flats in X ,
i.e. maximal subspaces isometric to a Euclidean space, are "-geostable.
This follows by the standard “transversal (co)hyperbolicity” argument (suitably
articulated in in [32], albeit with a few unnecessary extra assumptions on X ),
which equally applies to some non-symmetric spaces, e.g. to the Euclidean
buildings and also to the Cartesian products X D R

m 
 X1 
 X2 
 : : : 
 Xk ,
where all Xi haveK.Xi � �/ < 0.
The idea is to regard the leaves S corresponding to the translates of Y
in the corresponding foliated space G as fixed points of the group ˙ of
diffeomorphisms � (or the semigroup of selfmappings) of G which send every
leaf of our foliation, say S, into itself.
“Transversal (co)hyperbolicity” signifies that there are “many” � 2 ˙ which
“strongly contract” X in “many” directions transversal to the leaves. Such
a � defines a foliation SC, every leaf SC of which is consist of entire S -
leaves and � acting on SC brings these leaves closer together. It follows that it
also brings closer together quasi-leaves modulo the non-contracting directions,
which allows a local shadowing argument a la Anosov.
The simplest case of this is where X D R 
 X0, where K.X0/ � � < 0 and
dim(Y)=2.
In fact, let Y � X be a “quasi-flat” surface, i.e. such that
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Y is quasi-vertical: its angles with the vertical lines R
x, x 2 X0, are separated
away from �=2;
The intersection of Y with each horizontal slice r 
 X0 � X , r 2 R, is quasi-
geodesic in r 
X0 D X0.
Since the (Hausdorff) distance between every two intersections Y \ .r1 
 X0/
and Y \ .r2 
 X0/ is (obviously) finite, the projection of Y to X0 lies within
a finite distance from a geodesic, say Y0 � X0; hence, Y lies within a finite
distance from R 
 Y0 � X . ut

(b) Let X be a Cartesian square, X D Z 
 Z and Y D Zdiag � Z 
 Z D X ,
where Z is a simply connected symmetric space with no Euclidean, no real
hyperbolic and no complex hyperbolic factors.
Then Y is geostable: there exists an " D ".Z/ > 0/, such that every "-quasi-
translate Y" � X of Y is shadowed by a translate of Y .

Indeed, as we know, these Z are quasi-isometrically rigid, i.e. their the isometry
groups are inner rigid, where the general case easily reduces to that where
K.Z/ � 0.

Then, if K.Z/ � 0, all one needs of “"-quasi” is that the angles at which Y"
meets the fibers of the two projections X ! Z are confined to an interval Œ˛1; ˛2�
for 0 < ˛1 � ˛2 < �=2, because such a Y" serves as the graph of bi-Lipschitz map
Z ! Z; hence, it is close to an isometry gZ W Z ! Z. Then the graph of gZ in
X serves as the required translate of Y which lies within finite Hausdorff distance
from Y".

Counterexamples. If X is a non-rigid symmetric space then, apparently, the
shadowing/stability property fails to be true for most totally geodesic Y � X with
a notable exception for those from the above (a) and some similar (split) examples.

Questions.

(a) Are there other sources of the failure of geostability in symmetric spaces?
Namely, is every non-geostable Y � X contained in a non-rigid Y 0 � Y in X?
Is this, at least, true for graphs Y � X D Y0 
 Z of isometric embeddings
Y0 ! Z?
(Here, Y" � X with arbitrarily large " < 1 essentially correspond to quasi-
isometric embeddings Y0 ! Z.)
Are totally geodesic quaternionic geodesic subspaces in the quaternionic
hyperbolic space H4n

H
geostable?

Is the complex hyperbolicH2n
C
� H4n

H
(of complex dimension n) geostable?

(b) Is there a version (or versions) of geostability in dimensions k > 2 similar to
that for k D 1, which would be stable under perturbations of the Riemannian
metrics inX which destroy all totally geodesic submanifolds of dimension> 1?
A tangible possibility is offered by the Plateau foliated space Platk , which,
moreover, may be of use in the geostability problem for symmetric spaces X ,
since many quasi-geodesic (and sometimes even quasi-minimal) k-subvarieties
are shadowed by k-volume minimizing subvarieties Ymin � X (see [29]).
One can show in some cases that such a Ymin is unique, and if Y is geostable,
then Ymin is, a posteriori, totally geodesic.
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Is there an a priori criterion for a Ymin � X to be totally geodesic?
Do (the norms of) the second fundamental forms of some minimal subvarieties
Ymin in symmetric spaces X of non-compact type ever satisfy some maximum
principle or enjoy a Bochner-Simons type formula?

(c) Suppose that an "-quasi-translate Y" � X of (a possibly non-geostable) Y �
X is periodic, i.e. invariant under an isometry group �0 of X , such that the
quotient Y"=�0 is compact. Is Y" shadowed by an isometric translate of our
(totally geodesic) Y � X?

This is not true for the real hyperbolic space X D Hn
R

, even if �0 includes into
a discrete isometry group � with compact quotient X=� ; one can “bend” closed
totally geodesic submanifold Y=� � X=� along totally geodesic codimension one
submanifoldsZ � Y . But we shall see in the next Sect. 4.1 that a theorem of Grauert
delivers a holomorphic periodic stability in certain cases, which makes the periodic
geo-stability rather likely, e.g. for some Y � Hm

C
.

Sometimes “periodicity” can be relaxed to “quasiperiodicity” where the action
of �0 only “slightly” move Y". E.g. one may allow invariant Y" with Y � "�0 having
finite volume rather than being compact.

This can be studied in a foliated measure-theoretic set-up (see [19,30,85]) where
one has a (suitably understood) measurable family of submanifolds, (i.e. a foliation
with transversal measure mapped to X ) rather than an individual Y", and where the
local and global closeness are understood “on the average”, but this picture has not
been fully clarified yet.

4 Kähler Stability and Kähler Universality

Let look at the stability/rigidity problem from the angle of the Cauchy-Riemann
equations, where we try to obtain “holomorphic objects” e.g. subvarieties, maps
or sections of bundles, from (generously understood) approximately holomorphic
ones.

Ultimately, starting from a “suitable” group � , we want to identify/construct
some “universal” (generalized) complex analytic space (e.g. an algebraic or a Kähler
manifold)B D B.� /, or a holomorphic family of suchB , such that all (many) other
complex analytic spaces (e.g. Kähler manifolds) V with given homomorphisms
�1.V /! � would admit canonical holomorphic maps V ! B .

Besides Abel-Jacobi-Albanese construction there are two fundamental “super-
stability” results in the complex geometry: criteria for the existence of certain
complex subvarieties (Grauert) and of holomorphic maps (Siu).

4.1 C-Convexity and the Existence of Complex Subvarieties

Recall that a complex manifold X with a boundary is called C-convex (at the
boundary) or having a pseudoconvex boundary if no (local) holomorphic curve
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(i.e. Riemann surface) S � X can touch the boundary @X at a non-boundary point
s 2 S .

A complex manifold X without boundary is called C-convex at infinity if it can
be exhausted by compact C-convex domainsXi � X:
X is called strictly C-convex at infinity if there exists an exhaustion of it by

Xi with C2-smooth boundaries, such that these Xi are C2-stably C-convex, i.e.
the convexity property persists under all sufficiently small C2-perturbations of their
boundaries

Let k D dimhmt.X/ denote the homotopy dimension of X , that is the minimum
of dimensions of locally contractible topological spaces which are homotopy
equivalent to X .

Grauert Exceptional Cycle Theorem. Let X be a complex manifold which is
strictly C-convex at infinity. If its homotopy dimension satisfies k D dimhmt.X/ >

m D dimC.X/, then k is even and X contains a unique maximal compact complex
subvariety of complex dimension k=2, say Y0 � X , such that the homology inclusion
homomorphismHk.Y0/! Hk.X/ is an isomorphism.

Idea of the Proof. The strict C-convexity of the boundary of a relatively compact
domain X0 � X implies that the coherent sheaves over X0 have finite dimensional
cohomology. This implies that there are “many” holomorphic functions in the
interiorX0 which extend to a small neigbourhoodX1 � X0 with a pole at a complex
hypersurfaceZ � X1 which is tangent to the boundary @X0 at a single point.

These functions provide a proper holomorphic map from X0 to C
N (with

large N ) which is an embedding away from a subset Y0 � X0 where this map is
locally constant.

The homomorphisms is Hk.Y0/ ! Hk.X/ is an isomorphism by the Lefschetz
theorem for (possibly) singular complex Stein spaces, i.e. properly embedded
complex subvarieties in some CN .

Periodic Hol-Stability Corollary. Let X be a Hermitian (thus, Kählerian) symmet-
ric space with non-positive sectional curvatures and let Y � X be a totally geodesic
subspace, such that

no C-line tangent Y admits a parallel translation in X normal to Y ,
where, observe, such a line at a point y 2 Y , say LC � Ty.Y / � Ty.X/ admits

a parallel translation in the direction of a unit normal vector � 2 Ny.Y / D Ty.X/�
Ty.Y / � Ty.X/, if and only if the sectional curvatures ofX vanish on the bivectors
.�; l/ for all l 2 LC. (These curvatures do not vanish, for example, if rankR.Y / D
rankR.X/.)

If dim.Y / > 1
2
dimX then Y is periodically holomorphically stable: every pe-

riodic "-quasi-translate Y" is ı-close to a complex analytic submanifold Y 0 � X .
Moreover, such a complex analytic Y 0 close to Y is unique; hence, periodic.

Proof. The “no-parallel translate condition” is equivalent to the strict C-convexity
of all �-neighbourhoods of Y inX and if “"-quasi” is understood in some C2-norm,
then this property passes to the �0-neighbourhoods of Y", for all �0 � �0."/ ! 0

for "! 0. ut
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Remarks. (a) We did not assume Y being complex analytic itself but this follows
by sending "! 0.

(b) The actual “C2-quasi” condition can be expressed by a bound on the second
fundamental form of Y". This can be relaxed to C1 (and, probably, to C0) by
smoothing Y".

(c) Probably, “periodic” can be replaced by a suitable “quasi-periodic” with an
extension of the L2-techniques from [42] to the foliated framework but it is
unclear if “periodicity” it can be fully removed.

Singular Generalization. The exceptional cycle theorem remains valid for singular
complex spaces X , where a hypersurface @ � X is called (strictly) C-convex if
the intersection of @ with a small neighbourhood Ux � X of each point x 2 @
equals the pullback of a (strictly)C-convex hypersurface inCN under a holomorphic
embedding from Ux into some complex manifold U 0

x (where one may assume
dimC.U

0
x/ D 2dimC.X/).

Basic Question. We want to eventually address the followin global rather than "-
local holomorphic stability problem.

Let V be a closed (compact with no boundary) complex analytic space (e.g.
manifold) and �0 � � D �1.V / be a subgroup.

Let X�0 ! V denote the �0-covering of V , i.e. �1.X�0/ is isomorphically send
onto �0 by this covering map and let k0 D dimQhmt .�0/ be

the minimal number such that �0 admits a discrete action on a contractible
locally contractible metric space X (which may have fixed points under finite
subgroups in � ) such that dimhmt.X=�0/ D k0, where “discrete” means that, for
every bounded subset B � X there are at most finitely many 	 2 � , such that 	.B/
intersects B .

If �0 has no torsion, then

dimQhmt .�0/ D dimhmt.�0/ Ddef dimhmt .K.�0I 1//

for the Eilenberg-MacLane classifying space K.�0I 1/ of �0.
Also, there is a counterpart of this dimension for locally compact groups. For

example, if G is a Lie group then dimQhmt .G/ can be defined as the dimension of
the quotient space ofG by the maximal compact subgroup in it. More generally, one
may look at proper actions of G on contractible locally contractible metric spaces
X and take the minimal dimension of such an X for dimQhmt .G/, where “proper”
means that for every bounded subset B � X the set of those g 2 G, such that 	.B/
intersects B is precompact.

When does the homology group Hk0.�0IQ/ admit a basis which comes (via
the Eilenberg-MacLane classifying map X�0 ! K.�0; 1/) from compact complex
subspaces of dimensions k0=2 in X�0 ?

Subquestions. What properties of V and/or of �0 could ensure that the homotopy
dimension k0 D dimQhmt .�0/ is even and what are conditions for non-vanishing of
Hk0.�0IQ/?
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Below is an instance of a partial answer for Kähler manifolds V which globalizes
the above hol-stability in X , at least in the case of K.X/ < 0.
.?/ Let X be a complete simply connected complete Kähler manifold and let

�0 be an undistorted finitely generated isometry group of X , where “undistorted”
means that some (hence every) orbit map �0 ! X for 	 7! 	.x/ is a quasi-isometry
on its image for the word metric in �0.

If X has pinched negative curvature, �1 < �� � K.X/ � �C < 0, if �0
and if

k0 D dimQhmt .�0/ D dimhmt.X=�0/ > m D dimC.X/;

then

• k0 is even,
• The homology group Hk0.�0IR/ D Hk0.X=�0IR/ does not vanish. Moreover,

the k0=2-power of the Kähler class of X=� does not vanish on Hk0.�0/,
• The homology Hk0.�0IR/ D Hk0.X=�0IR/ is generated by the fundamental

classes of irreducible components of a compact complex analytic subspace in
V
k0=2

hol � X=�0.
Proof. . Since �0 is undistorted and X has pinched negative curvature, every orbit
� .x0/ � X admits a �0-invariant neighbourhood U � X which lies within finite
Hausdorff distance from this orbit and the boundary of which is smooth strictly
convex by Anderson’s lemma (see [1] and a sketch of the proof in Œ_� below).

SinceX is Kähler, (strict) convexity) (strict) C-convexity, and Grauert theorem
applies to the quotient spaceX=X0 (which may be singular as we do not assume the
freedom of the action action of �0 on X ). ut

.??/. This .?/ is most interesting where X admits a cocompact isometry group,
e.g.

1. X equals the universal covering QV of a compact manifold V without boundary.
In this case the lower bound on K.X/ is automatic, all one needs is

2. The strict negativity of sectional curvatures,K.V / � � < 0.
What is especially pleasant for X D QV is that the “undistorted” condition
becomes a purely algebraic one:

3. The orbit maps �0 ! X are undistorted if and only if
the imbedding �0 � � D �1.V / is a quasi-isometry for some (hence all) word
metrics in � and �0.

Thus, our basic question gets a satisfactory answer under the (1 + 2 + 3)-condition,
i.e. for

undistorted subgroups �0 � � D �1.V / with k0 D dimQhmt > m D
dimC.V /, where V is compact Kähler manifold with strictly negative sectional
curvatures.

Discussion. What are these .?/ and .??/ good for?
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As for X , the primely example is the complex hyperbolic space Hm
C

, m D
dimC.X/. But are there good candidates for �0?

It seems hard to come up with examples where the assumptions of .?/ are
satisfied, but the existence of the complex subvariety V k0=2

hol � X=�0 was not
apparent beforehand.

A pessimistic conjecture (which may thrill champions of “rigidity”) is that
every top-dimensional irreducible component of V k0=2

hol equals the image of a totally

geodesicHk0=2

C
� Hm

C
in the present case.

On the other hand, .?/ implies that certain groups �0, e.g. with odd k0 D
dimQhmt .�0/ > m, admit no undistorted actions onHm

C
.

Notice that the bound k0 > m is sharp:
cocompact groups �0 of isometries on Hm

R
naturally act on Hm

C
� Hm

R
, where

this action is, clearly, undistorted. On the other hand, according to .?/,
these �0 admit no undistorted actions onHm�1

C
for odd k0.

We shall see in the next section that this remains true for even k0 � 4 as well, but
it remains unclear if one can drop the “undistorted” condition in this case.

Questions and Conjectures.

(a) Possibly, on can relax K.X/ < 0 to K.X/ � 0 complemented by some extra
condition, on �0, e.g. by requiring that the action is
fully undistorted, that is some, (hence, every) orbit O � X of �0 admits an
eventually contracting retraction R W X ! O , i.e. such that

dist.R.x1/; R.x2// � " � dist.x1; x2/;

where " depends on d D dist.x1; x2/ and D D min.d ist.x1;O/; dist.x2;O//,
such that "! 0 for d;D !1.
This is akin to convexity but it has an advantage of being a quasi-isometry
invariant. This is equivalent to “undistorted” if K.X/ � � < 0, but may
be strictly stronger, e.g. it is so for non-cocompact lattices acting on irreducible
symmetric spaces of R-ranks � 2 according to (by now confirmed) Kazhdan’s
conjecture.
It is, in general, strictly stronger than “undistorted” but is equivalent to it for
K.X/ � � < 0.
The degenerate case ofX=�0 being quasi-isometric to the real line R allowed by
this condition needs to be excluded, e.g. by insisting that X=�0 is ı-hyperbolic
with the ideal boundary of strictly positive topological dimension.

(b) It seems harder to replace “K < 0” by some purely topological conditions.
The strongest topological/algebraic substitute(s) for “K < 0” is the assumption
that X is ı-hyperbolic with the ideal boundary homeomorphic to the sphere
S2m�1, m D dimC.X/.
This becomes a “true topology” if we also assume that X admits a cocompact
isometry group, say a discrete group � freely acting on X .
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Also, we need to assume that X is contractible or, at least that the fundamental
homology class ŒV �2m 2 H2m.V / of V D X=� does not vanish in the
homologyH2m.� W R/.
Would all these allow the conclusions of .?/ and .??/ to remain valid?
Can, at least, one show that X is Stein?
(This seems likely even for semihyperbolicX .)

(c) Can one do anything without “Kähler”?
For example, suppose that all assumptions from (b) are satisfied.
Does then the fundamental group � D �1.V / admit a formal Kähler class
 2 H2.� / D H2.V /, i.e. such that m D ŒV � ¤ 0?
If not, is this condition of any use for us?
Probably one handle “non- Kähler” for m D 2 in view of astheno-Kählerian
approach to Kodaira theory of complex surfaces [50]

(d) Probably, .?/ and/or .??/ (as well as their conjectural generalizations) remains
valid for singular Kähler spaces X , where, by definition, a singular Kähler
metric is locally induced from an ordinary Kähler structure, (i.e. each point
x 2 X admits a small neighbourhood Ux � X and a holomorphic embedding
of Ux to a complex manifold U 0

x, such that our singular metric on Ux comes
from a smooth Kähler metric on U 0

x) and where the conditionK.V / < � must
be understood as CAT.�/ in the singular case.

The bottleneck here is Anderson’s lemma which, in fact, holds (this is easy)
for all CAT.�/ spaces which have the following Œ_�-property that is obviously
satisfied by Riemannian manifolds with both side bounded curvatures, � �
K.X/ � , and with the injectivity radius bounded from below by some R > 0.
Œ_� There exists, for all "1; "2 > 0 and each point x0 2 X , a function '_ W X !

RC with the support in the "1-ball Bx0."1/ � X , such that
the second derivative of '_ on every geodesic in X is bounded in the absolute

value by "2 > 0 and
'_.x0/ � ı D ı.X; "1; "2/ > 0.

If a CAT.�/-space X satisfies Œ_�, then, by an easy argument,
the geodesic convex hull an "-quasiconvex subset in X is contained in the ı-

neighbourhood of U with ı ! 0 for "! 0.
This, applied to the �-neigbourhood of U with a large �, implies Anderson’s

lemma:
the convex hull of a quasi-convexU lies within finite Hausdorff distance from U .
It is unknown if Anderson’s lemma holds for all CAT.�/ spaces X , where the

test questions are the following. Let U D Bx1.R/ [ Bx2.R/ � X .
Is the convex hull of U contained in the "-neigbourhood of U where " ! 0 for

R!1?
Does, at least, " admit a bound independent of dist.x1; x2/ for R!1?
The above Œ_� has an obvious C-counterpart, where the bound on the full

Hessian (second derivatives) of '_ is replaced by such a bound on the complex
Hessian.
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The relevant version of Anderson’s lemma holds (by Œ_� or by an additional
argument) for some (all?) singular Kählerian CAT.�/-spaces X with cocompact
isometry groups, e.g. for X with isolated singularities.

Singular Kähler Examples. Compact non-singular quotients of the 2m-ball, V D
Hm

C
=� often have many complex totally geodesic submanifolds V m0

0 D H
m0
C
=

�0 � V .
By the Grauert blow-down theorem [25] the space V D V=V0 obtained from V

by shrinking V0 to a point has a complex analytic structure for which the obvious
map V ! V is complex analytic outside V0.

These V carry natural structures of Artin algebraic spaces moreover, some of
these V admit singular Kähler metrics with K < 0 and often (always?) these V are
projective algebraic.

On the other hand, the universal covers QV of these are generically hypebolic
by the (generalized) small cancellation theory. However, only relatively few among
these are known to carry singular metrics of negative curvature, where the sufficient
condition for this a lower bound on the size of the maximal �-collar U� � V0
of V0 that is the maximal �-neighbourhood of V0 in V which admits a homotopy
retraction to V0. Namely, if � � �0 for some universal �0, (something about �=2),
then V D V=V0 carries a singular metric of negative curvature which, apparently (I
did not carefully check this) can be chosen Kählerian.

More interestingly, this also applies to singular subvarieties V0 � V that are
immersed (i.e. with non-trivial selfintersections) totally geodesic in V D Hm

C
=� ,

provided their self-intersection loci are “sufficiently sparse”.
Namely, suppose that the self-intersection angles are bounded from zero by some

˛ > 0 and let V0 admits a �-collar with � � �0.˛/
Then such a collar can be approximated by a locally convex U � V0 and

by Grauert theorem V=V0 is complex analytic. Also, such a V has a singular
Riemannian (probably, Kählerian) metric of negative curvature. But it is unclear if
there are other complex analytic subsets in these V with large approximately locally
convex collars.

The picture is somewhat opposite for V0 � X with many self-intersections,
where such V0 tend to be “mobile” (ample) rather than exceptional. For example,
let V D Hm

C
=� and let V0 be a immersed totally geodesic (reducible or irreducible)

subvariety of complex dimensionm� 1 with vol2m�2.V0/ � const � vol2m.V / for a
large cost . Then most (probably, all) of such V0 are connected and

1. The homomorphism �1.V0/! �1.V / is onto;
2. V0 can be included into a family of divisors Vq � V which are generically non-

singular.

It is usually easy to see how (2))(1) but the the opposite implication, probably,
needs (?) extra conditions on V0.

It is also not fully clear what happens if dimC.V0/ � dimC.V / � 2, where
the cases dimC.V0/ � dimC.V /=2 and dimC.V0/ < dimC.V /=2 need separate
treatments. (Possibly, every V0 � V with dimC.V0/ < dimC.V /=2 and very
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many self-intersections is contained in an immersed totally geodesic V1 � V with
dim.V0/ < dim.V1/ < dim.V /.)

Also the arithmetics of the self-intersection loci of totally geodesic V0 � V D
Hm

C
(e.g. their definition fields and/or arithmetic Galois groups) seems poorly

understood.
Besides shrinking subvarieties in compact quotientsHm

C
=� one obtains a attrac-

tive class of analytic spaces with “interesting” fundamental group by compactifying
V D Hm

C
=� for non-cocompact lattices � , where the fundamental group �	 of

such a compactification V	 is hyperbolic if V has sufficiently large cusps. In fact,
these V	 carry singular (Kählerian?) metrics with negative curvatures.

There are two somewhat opposite constructions of a different kind which deliver
spaces of negative (or close to that) curvatures both, in (singular) Riemannian and
the Kählerian categories. (Specific instances of this will come up in the next section).

1. Ramified Coverings V1 ! V tend to be more negatively curved than V .
This is literally true if the branching locus ˙ � V (that is a possibly singular
subvariety of codimension two) is totally geodesic; immersed totally geodesics
˙ (with self-intersections) also serves well in many cases.
The above V0 � Hm

C
=� as well as unions of translates of coordinate complex

.m � 1/C-subtori in C
m=Z2m provide examples of such ˙ .

2. Quotient Spaces of non-Free Group Actions. If the action of � , say onX D Hm
C

,
has fixed points, the quotient space V D X=� may be (not necessarily) singular.
However, if the fixed point locus is “sparse” this V may still carry a metric of
negative (or close to that) curvature.
Probably, there are lots of a smooth projective algebraic varieties (defined over
number fields) which are biholomorphic to quotientsHm

C
=� . (Possibly, there are

Kählerian counterexamples in view of [82].)
More modestly, does every irreducible (smooth?) algebraic C-variety V admit a
dominating regular (only rational?) map from someHm

C
=� to some deformation

V 0 of V ?

We shall look closer on specific instances of (1) and (2) in the next section.
Non-holomorphic Problems. It seems that groups �0, e.g. subgroups in a given

discrete or a Lie group� , with large dimQhmt .�0/ are rather exceptional. (Not nearly
as exceptional as arithmetic groups, but something in the same spirit.)

In fact, such subgroups �0 � G in semisimple (real and p-adic) Lie groups
G seems to be associated with (possibly reducible) �0-invariant “subvarieties” in
the space G=K (in the Euclidean building for p-adic G) for the maximal compact
subgroupK � G ( and in the Euclidean building in the p-adic case).

On the other hand if a group � has large dimQhmt , then most (sometimes all)
infinite quotient groups � of � have dimQhmt .� / � dimQhmt .� /: Moreover, these
� are unlikely to have isometric actions on low dimensional spaces, such as trees,
for instance.

Besides large dimQhmt , what makes a group �0 “rigid” and its actions on X
“special” is its connectivity at infinity.
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The standard condition of this kind for hyperbolic groups �0 is that its ideal
boundary @1.�0/ is connected, locally connected and has no local cut-points: every
connected subset U � @1.�0/ remains connected upon removing a finite subset
S � U .

Alternatively one may bound from below the cut dimension of �0, i.e. the
minimal topological dimension of an S � @1.�0/ such that removal of S from
U does change the connectedness of U .

There are several candidates for dimcut for non-hyperbolic �0 (e.g. in terms of
asymptotic dimensions of subsets in �0), which disrupt the connectedness of �0 at
infinity, but I am not certain what the working definition should be.

Questions. Does the “no cut point” condition, or, at least, a stronger bound
dimcut � d0 for some d0 > 0, imply that every embedding of �0 into a hyperbolic
group � is undistorted?

What characterizes symmetric spaces (and Euclidean buildings) X , such that
every discrete isometric action of a �0 on X with dimQhmt � d0 and dimcut .�0/ �
d1 is undistorted? Fully undistorted?

The “undistorted” and “fully undistorted” conditions are accompanied by similar
ones, such as absence of parabolic elements in �0 � G (e.g. satisfied by all �0 in
cocompact discrete � � G) and/or by stability of the action (see the next section
and [9, 15, 39, 56]).

But the full scope of relations between such properties remains unclear, where
such relations, probably, become more pronounced for “large” dimQhmt and/or
dimcut .

Call a subgroup �0 in a Lie group (or a p-adic Lie group) a quasi-lattice if “an
essential part” of �0 is a lattice in a Lie subgroup G0 � G, i.e. G0=.G0 \ �0/ has
finite volume, and where the “essential part” condition is expressed by

dimQhmt .G
0 \ �0/ D dimQhmt .�0/:

What is the maximal dimension dimQhmt of discrete non-quasi-lattices �0 � G?
For example, what is the maximal dimension dmax D dimQhmt of non-quasi-

lattices �0 in the isometry group of the hyperbolic quaternion space H4m
H

?
Does every discrete non-quasi-lattice�0 � iso.H4m

H
/ with no parabolic elements

has dimQhmt � 2m?
How many (undistorted) subgroups � from a given class a locally compact

(e.g. discrete) group G may contain?
Let us formulate this precisely for hyperbolic groups G and a given set G of

subgroups � as follows.
Take the closure C D C.G;G/ of the set of the ideal boundaries @1.� / �

@1.G/, � 2 G, in the Hausdorff (distance) topology and ask ourselves:
What condition(s) on � 2 G would imply a bound on the dimension of C?
Notice in this regard that if G equals the isometry group of a symmetric space

X of negative curvature and � � G is an undistorted subgroup with dimQhmt <

dimX , then there are lots of undistorted subgroups in G isomorphic to the free
product of as many copies of � as you wish by the (obvious) Schottky combination
theorem. This makes dim.C/ D 1 in this case.
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In order to rule this out, one needs, besides a lower bound on dimQhmt for all
� 2 G also such a bound on dimcut , or something like that.

For instance let G consist of all hyperbolic groups � with dimQhmt .� / D d , for
a given d , and such that the ideal boundaries of these � are homeomorphic to the
sphere Sd�1.

Can one describe the symmetric spaces of a given dimension n (not very large
compared to d ) and/or hyperbolic groups G with dimQhmt .G/ D n such that
dim.C.G;G// � D for a given (large)D?

Now a few words about the quotient problem. The only (known) systematic
construction of quotients � of hyperbolic groups � depends on “collapsing”
undistorted subgroups in � , (or suitable subgroups in something like a free product
� � � 0) where, the generalized small cancellation theory (see 1.5 in [39]) shows
that the dimension dimQhmt may only increase in the process (e.g. if dimQhmt .�

0/ >
dimQhmt .� / and � 0 injects into � .)

What are condition on � which would rule out other kind of infinite quotient
groups?

For example, does every infinite quotient group � of a Kazhdan’s T hyperbolic
� has dimQhmt .� / � dimQhmt .� /‹

In particular, let � be a cocompact lattice in iso.H4m
H
/ for m � 2 and � be an

infinite quotient group of � .
Can the induced homology homomorphismH4m.� /! H4m.� / vanish?
Finally, does the above � admit an isometric action with unbounded orbits on a

2-dimensional simply connected spaceX withK.X/ � 0 (i.e. CAT.0/-space which
is not assumed locally compact)?

About dim D1. Is there an infinite dimensional version of Grauert’s exceptional
cycle theorem?

To formulate this one needs a notion of “middle dimension” in an infinite
dimensional complex variety X .

One option, e.g. for the space X of smooth maps of the circle S1 to a Kähler
manifold V , is suggested by “quasi-splitting” of this X into two “halves” similarly
how the space of functions S1 ! C “splits” into two Hardy spaces of holomorphic
functions on the Northern and to the Southern hemispheres into which an equatorial
S1 � S2 divides the sphere S2.

Then “dimhmt.X/ > dimC.X/” may signify that the gradient flows of C -convex
functions on X from a suitable class, can not bring all of X to (a Fredholm
perturbation) of such a “half”.

Another possibility is suggested by the concept of “mean dimension” for infinite
dimensional spaces acted upon by transformation groups [37, 61]

“Philosophical” Questions.

(a) Are there examples where something like the above .??/makes sense but which
are not ultimately depend on locally symmetric spaces?
Is there something of the kind in the Riemann moduli space of curves, or
rather in its universal orbi-covering space X acted upon by the mapping class
group � ?
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(b) The C-convexity condition is vaguely similar to the contraction property in
dynamics and Grauert’s blow down theorem has a unique fixed point flavour
to it. Accordingly, one may draw a similarity between C-concavity (associated
with ampleness or “mobility” of subvarieties) and expanding maps (or vice
versa?).
What is the holomorphic counterpart of split hyperbolicity? Is there a holomor-
phic [C-concave]
[C-convex] version of Frank’s super-stability theorem?
(Non-super stability seems easy: “[exceptional]
[ample]” is, apparently, a
stable property of complex subvarieties.)

(c) Looking from a different angle, the existence/nonexistence of a subvariety
(algebraic cycle) Y0 in an algebraic variety V is an essentially Diophantine
question which can be often resolved by reducing it to linear algebra where the
rationality of a solution is automatic.
Grauert’s theorem gives a convexity inequality criterion for the existence of cer-
tain Y0 where the proof goes via infinite dimensions, similarly to the proof of the
Shub-Franks superstability theorem which depends on a contraction/expansion
inequality in an infinite dimensional space.
Is there a general picture where both arguments would be simultaneously
visible?

(d) Is there an algebraic-geometric version of .??/, at least for locally symmetric V;
where everything should be expressed in terms of finite coverings QV ! V (or
of finite dimensional representations of � ) and where “homotopy” must refer
to the Grothendieck étale (and/or Nisnevich) topology?
(Probably, it is not hard to identify totally geodesic submanifolds Y0 and their
fundamental (sub)groups �0 � � in the purely algebraic/arithmetic language
in the spirit of Kazhdan’s theorem on arithmetic varieties.)

(e) Is there anything in common between (finitary!) Markov presentations of
hyperbolic systems and the approximation of the first order theory of algebraic
varieties over C by that over finite fields?

4.2 Existence and Non-existence of Holomorphic Maps

Define the homotopy rank of (the homotopy class of) a continuous map f W X !
Y , denoted rankhmtŒf �, as the minimal number r such that f is homotopic to a
composed map X ! P r ! Y , where P r is an r-dimensional cellular space. For
example, if Y itself is a cellular (e.g. triangulated) space, then rankhmtŒf � � r if
and only if f is homotopic to a map into the r-skeleton of Y . (At the end of the
next Sect. 4.3, we shall refine the concept of rankhmtŒf � for maps into non-compact,
possibly, infinite dimensional, spaces Y .)

Call a homotopy class of maps f W V ! W between complex analytic spaces
˙-holomorphic. and write Œf � 2 ˙HOL if f is homotopic to a holomorphic or to
an anti-holomorphic map.
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Recall that the Galois group Z2 D Z=2Z of RnC acts on the category of
complex spaces V by conjugation, V $ V , where the arrow “$” establishes a
homeomorphism between V and V .

For example, if V � CPN is a complex projective subvariety, then V equals
the image of V under the conjugation involution CPN ! CPN given by zi 7! zi ,
i D 0; 1; : : : ; N:

A map V ! W is antiholomorphic, if the corresponding map V ! W (for W
topologically identified with W ) is holomorphic.

Complex Structures on Symmetric Spaces. The main targets of holomorphic
maps in relevant examples are Hermitian symmetric spaces Y with non-positive
sectional curvatures, K.Y / � 0, and their quotients W D Y=� by groups of
holomorphic isometries � � isohol .Y /. These Y are Kähler and the groups
isohol .Y / are transitive on Y .

The simplest such Y is the complex hyperbolic space Hm
C

which is bi-
holomorphic (but by no means isometric) to the unit ball in C

m.
If a Hermitian symmetric Y is irreducible as a Riemannian space, i.e. does not

(non-trivially) isometrically split as Y D Y1
Y2 then it carries exactly two complex
analytic (Hermitian Kähler) structures invariant under isohol .Y / – the original one
and its conjugate, since the action of the isotropy subgroup isohol .Y; y0/ on the
tangent space Ty.Y / is irreducible.

If Y D Y1 
 Y2 
 : : : 
 Yk , where Yi are irreducible Hermitian, then, obviously,
Y admits 2k invariant complex structures. Sometimes, maps into Y and the quotient
spacesW D Y=� , which are holomorphic with respect to some of these structures,
are called˙holomorphic or just holomorphic maps.

(The complex Euclidean space C
n is also Hermitian symmetric, but this space,

as well as Y D Y0 
 C
n, must be addressed slightly differently.)

These definitions are justified by a theorem of Y. T. Siu who, in 1980, found
a Hodge-Bochner type formula for harmonic maps from Kählerian to Riemannian
manifolds which has led to a variety of results by Siu and his followers. (see [78,80]
and references therein).

Example: the Sui-Sampson-Carlson-Toledo ŒHm
C
=� �-Theorem. Let W be covered

by the complex hyperbolic space, i.e. W D Hm
C
=� for a free discrete isometry

group � � isohol .Hm
C
/, let V be a compact Kähler manifold and f0 W V ! W be

a continuous map. Denote by �0 � � the image of the fundamental group �1.V / in
� D �1.W / under the induced homomorphism �1.V / ! � D �1.W / (for some
choice of the base points in V and W ).

Let �0 contains no nilpotent subgroup � 0
0 � �0 of finite index (i.e. with

card.�0=� 0
0 / < 1) and with the nilpotency degree of � 0

0 at most 2 (e.g. Hm
C
=�

is compact and �0 contains no cyclic subgroup of finite index).
If rankhmt.f0/ > 2, then Œf0� 2 ˙HOL, i.e. f0 is homotopic to a holomorphic or

anti-holomorphic map. Moreover this˙-holomorphic map is unique.
Furthermore, if rankhmtŒf0� D 1; 2, then
f0 is homotopic to an “almost holomorphic” map f W V ! W , in the sense

that f decomposes as V ! S ! W , where S is a Riemann surface and the map
V ! S is holomorphic.
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Moreover, if Hm
C
=� is compact, “no nilpotent subgroup of finite index” can be

relaxed to “no cyclic subgroup of finite index”.
(In other words, the covering QV ! V with the Galois group �0 contains a

one parameter family of compact complex subvarieties V 0
s � QV with dimC .V

0
s / D

dimC.V / � 1.)

Corollaries. (1: ŒV �sing) This theorem, as stated, remains valid for singular locally
irreducible Kählerian, e.g. algebraic, varieties V .

Indeed, by Hironaka’s theorem, V admits a surjective holomorphic map V 0 ! V

with connected fibers, where V 0 is non-singular.
The composition of a continuous map f0 W V ! W with V 0 ! V contains a

holomorphic representative f 0 W V 0 ! W in its homotopy class, where f 0 sends
every fiber Sv � V 0, v 2 V , of the map V 0 ! V to a single point in W , since every
contractible holomorphic map of a connected S to W with K.W / � 0 is constant.
This gives us a holomorphic map f W V ! W which is, clearly, homotopic to f0.

(2: ŒW0 � W �) Let W D Hm
C
=� , for a discrete torsion free isometry group �

of Hm
C

, contain a unique maximal compact connected complex analytic subspace
W0 � W of positive dimension and let the inclusion W0 � W be a homotopy
equivalence.

Let f0 be a continous map from a compact Kähler manifold V to W0 and let
�0 � � D �1.W0/ denote the image of �1.V / under f0. If rankhmtŒf0� > 2 and if
�0 contains no nilpotent subgroup of finite index (this seems redundant), then f0 is
homotopic to a holomorphic map V ! W0.

Possibly, there are lots of such W and W0 � W but the only examples I see
offhand are immersed totally geodesicW0 � W .

If the selfintersection of such a W0 in W is sufficiently sparse (as in “Singular
Kähler Examples” of Sect. 4.1) then the inclusion homomorphism �1.W0/ !
�1.W / is injective and, by passing to the �1.W0/-covering of W if necessary, we
achieve the above “homotopy equivalence” property.

Also one can show in the “sparse case” thatW admits a proper positive C-convex
function which vanishes on W0 and is strictly C-convex away from W0, so that W0

is the only compact analytic subspace in W .
These W0, in the interesting cases where they do have self-intersections, are

singular with locally reducible singularities; hence, every holomorphic map from
a non-singular V to W0 lifts to the normalization W 0

0 of W0 that, if connected,
equalsHm0

C
=� 0

0 form0 D dimC.W0/. (IfW 0
0 is disconnected, then its each connected

component equalsHmi
C
=� 0

i .)
(3:ŒV 
Hm

C
�cycle) Let X ! V 
W be the “diagonal” covering map, i.e. �1.X/

isomorphically projects onto �1.V / and surjectively onto �0 � �1.W /. Observe,
that the projection X ! V is a homotopy equivalence – a fibration with the
fibersHm

C
.

If the generator ŒV �X 2 H2k.X/ D H2k.V / D Z, k D dimC.V /, goes to a
non-zero class in H2k.W / under the projection X ! W and k > 1, then ŒV �X can
be realized a compact k-dimensional complex subvariety V 0 � X , namely by the
graph of the holomorphic map V ! W (lifted to X ) which is guaranteed by the
SSCT theorem.
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On the other hand,
if V is non-singular, then, every complex subvariety V 0 � V 
W which projects

to V with degree 1, equals the graph of a holomorphic map V ! W .
Indeed, the fibers of the projection V 0 ! V , that is a regular rational map, are

rationally connected, while W contains no rational curves.
But singular V (e.g. those indicated in Sect. 4.1) may admit non-regular rational

maps into W .
(4:ŒHm

R
�) Let W D Hn

R
=� , let V be a compact (possibly singular) locally

irreducible Kähler space, let f0 W V ! W be a continuous map and �0 � � be
the image of �1.V / under f0.

If �0 contains no Abelian subgroup of finite index, then rankhmt.f0/ � 2;
moreover, if rankhmt.f0/ D 0; 1; 2, then f0 is homotopic to a map f which factors
through a holomorphic map V ! S for a Riemann surface S .

To see this observe that � � iso.Hm
R
/ � iso.Hm

C
/ for Hm

R
� Hm

C
and that “no

Abelian” implies “no nilpotent” in iso.Hm
R
/.

Since the squared distance function from Hm
R
=� � Hm

C
=� is strictly C-convex

onHm
C
=� , every complex submanifold V � Hm

C
=� of positive dimension must be

contained in Hm
R
=� . But Hm

R
=� is totally real in Hm

C
=� ; hence, Hm

C
=� receives

no non-constant holomorphic map from a compact connected analytic space.
We conclude by a corollary that combines SSCT with the Grauert’s exceptional

cycle theorem. (See Sect. 4.1. It is unclear if the linear analysis, which underlies
Grauert’s argument, is truly necessary here.)

(5) Let X be a complete simply connected Kähler manifold with strictly
negative sectional curvature, K.X/ � � < 0 (e.g. X D Hm

C
) and �X be a

discrete undistorted torsion free isometry group of X . Assume that dimhmt .�X/ D
dimhmt.X=�X/ > m D dimC.X/, i.e. V D X=�X is not contractible to the middle
dimensional skeleton of some (hence, any) triangulation of V .

Let �Y be a a discrete torsion free isometry group of Y D HN
C

, such that the
quotient space Y=�Y contains no compact complex analytic subvariety of positive
dimension, e.g. �Y � iso.HN

R
/ � iso.HN

C
/.

Let h W �X ! �Y be a homomorphism such that the image �0 D h.�X/ � �Y
contains no nilpotent subgroup of finite index, (where “no Abelian” suffices if �Y �
iso.HN

R
/). Then dimhmt .�0/ � 2, i.e. the quotient space HN

C
=�0 is contractible to

the 2-skeleton of some triangulation of this space.
In particular, no cocompact lattice in iso.Hn

R
/, n � 3, admits an undistorted

action on Hn�1
C

.

Proof. Apply the SSCT ŒHN
C
=� �-theorem to the normalization of the subvariety

V � W delivered by Grauert’s exceptional cycle theorem (see Sect. 4.1).

Disclaimer. The ŒHm
C
=� �-theorem looks even prettier than the Abel-Jacobi-Albanese

maps into tori – you do not have to bother with choosing a complex structure
in the target. It may look as a possible tool comparable to AJA for constructing
“new” holomorphic objects, e.g. for a realization of homology classes in a complex
manifold W by complex analytic subvarieties – the images of holomorphic maps
V ! W .
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However, this possibility seems as remote as in the Grauert case from the
previuos section, since producing Kähler manifolds satisfying given requirements
on their homotopy types seems more difficult than finding complex subvarieties in
a givenW .

How, on earth, for instance, can you construct a compact Kähler manifold V with
fundamental groups � admitting a discrete co-compact actions on Hm

C
, rather than

by first constructingHm
C
=� and then taking a subvariety V � Hm

C
=� ?

Apparently, the only realistic message one can extract from the ŒHm
C
=� �-theorem

in the available examples is “just” holomorphic rigidity:
“the only holomorphic representatives in a certain class of continuous objects are

the obvious ones if at all.”
In fact, “holomorphic realization” of continuous maps V ! W imposes strong

restriction on the topologies of both manifolds. For example, the image ŒV �� 2
H2n.W / of the fundamental class ŒV � 2 H2n.V /, n D dimC.V / must be .n; n/ (as
a current) in the Hodge decomposition in W . In particular, if a class h 2 H2n.W /

is representable by a holomorphic 2n-form on W , then hŒV �� D 0. (Compact
manifoldsW D Hm

C
=� usually carry lots of such n-forms form D 2n.)

Yet, there is some reason for optimism as we shall see by looking at infinite
dimensional examples.

4.3 Dirichlet Flow into Harmonicity for K � 0

Recall that the Dirichlet energy of a C1-smooth map between Riemannian mani-
folds, f W V ! W is

E.f / D
Z

V

jjDf jj2dv:

Equivalently, let UT .V / D Geo1.V / be the unit tangent bundle regarded as the
space of marked geodesics g W R! V . Then

the energy of f equals the energy of the curves f ıg W R! V integrated against
the Liouville measure in UT .V / D Geo1.V /,

where, observe, so defined energy makes sense for an arbitrary metric space
W and a geodesic metric space V with a distinguished (Liouville-like) measure on
the space of geodesics in V invariant under the geodesic flow. (Loosely speaking,
E.f / D E.f ı g/ for a random geodesic g in V .)

If dimV D 2, i.e. V is a surface, then the energy of an f is a conformal invariant
of the metric in V : it does not change if the Riemannian length (metric) is multiplied
by a positive function '.v/, since the squared norm of the differential jjDf jj2 is
divided by '2, while dv, being a 2-form on surfaces, is multiplied by '2 which
keeps the integrant jjDf jj2dv unchanged.

It is also clear that E.f / � area.f /, where the equality holds if and only the
map f is conformal.

If W is Kählerian with the fundamental 2-form denoted !W , then every surface
f W V ! W satisfies
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E.f / � area.f / � ˇˇ
Z

V

f �.!W /
ˇ
ˇ;

where E.f / D R
V
f �.!W / if and only if the map f is˙-holomorphic, and where,

if V is a closed oriented surface, the integral
R
V
f �.!W / is a homotopy invariant of

f which, in fact, depends only the homology class f�ŒV � 2 H2.W IR/.
Thus, holomorphic maps V ! W for dimR.V / D 2 are energy minimizing in

their homotopy classes.
An elementary computation shows that this remains true for all Kähler manifolds

V of an arbitrary dimension.
If V and W are Kählerian and V is compact, then every holomorphic map

f W V ! W is energy minimizing in its homotopy class, where the minimal energy
EminŒf � depends only on the homomorphism f� W H2.V /! H2.W /, namely

EminŒf � D
ˇ
ˇ
Z

V

!n�1
V ^ f �.!W /

ˇ
ˇ for n D dimC.V /:

If V D V n � CPN is a projective algebraic variety, and C � V is an algebraic
curve which equals the intersection of V with a generic CPN�nC1 � CPN , then
EminŒf � equals the energy of f W C ! W . In particular, this energy of f jC does
not depend on C for holomorphic maps V ! W .

This suggests the definition of the energy for arbitrary (non-holomorphic) f
associated to a probability measure � on the space C of these curves C , (that equals
the GrassmannianGrN�nC1.CPN /), as “the energy of f on a random holomorphic
curve in V ”, namely,

E�.f / D
Z

C
E.f jC/d�:

If f is holomorphic all these energies are equal EminŒf �; thus,
if a holomorphic f in the homotopy class Œf0� of a continous map f0V ! W

exists, it necessarily equals the energy minimizing map in this class (where one
needs the measure � to have full C for its support).

The energy minimizing maps are especially appealing if W has non-positive
sectional curvature, where the energy f 7! E.f / is, obviously, a geodesically
(almost strictly) convex function on the space of maps f W V ! W in a given
homotopy class, and as we shall explain below,

if V is compact, then every homotopy class Œf0� of maps contains a smooth energy
minimizing representative fmin under a (necessary) mild restriction on this class;
moreover, this fmin is unique up to properly understood “translations by constants”.

But even if one a priori knows that a homotopy class Œf0� does contain a
holomorphic map, which necessarily equals fmin, one can not (?) directly show that
fmin is holomorphic, unless one imposes rather stringent assumptions on the local
geometry of W . Yet, these assumptions are satisfied for a variety of meaningful
examples.

The Euler-Lagrange equations for the Dirichlet energy on C2-smooth maps f
between Riemannian manifolds make a second order non-linear elliptic written as
�f D 0, where the solutions of this are called harmonic maps.
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It is easy to see that a C2-smooth map f W V ! W is harmonic if and only if
its second differential at each point v 2 V , that is the quadratic map between the
tangent spaces, ' D D2

f W Tv.V /! Tf.v/.W / satisfies �f.v/ Ddef �'.0/ D 0 for
0 2 R

n D Tv.V /, where the second differential is defined with the local geodesic
coordinates in .V; v/ and .W; f .v//, and where the Laplace operator � D �Rn on
C2-maps from a Euclidean space R

n to a linear space T (that is the tangent space
Tf.v/.W / in the present case) is defined in the usual way.

Since �Rn does not depend on the metric in the target space T , but only
on the affine structure in T , the equation �f.v/ D 0 does not fully uses the
metric in W but rather the corresponding affine connection. On the other hand, the
equation �f D 0 is Euler-Lagrange for maps between Riemannian (and pseudo-
Riemannian) manifolds, i.e. it represents the stationary points of Dirichlet’s energy
E.f / D R

V
jjDf jj2dv and global minima of E.f / is the major (but not the only)

source of harmonic maps in geometry.

Similarly to the stationary Euler-Lagrange equation �f D 0, one sees that the
vector field for the downstream Dirichlet energy gradient flow ft on the space F 3
f of maps f W V ! W is f 7! �f where the vectors �f.v/ 2 Tf.v/.W / are
defined as above via the local geodesic coordinates at the points v 2 V and with the
geodesic coordinates in W at w D f .v/.

IfW is a Riemannian manifold with non-positive curvature,K.W / � 0 then, by
a theorem of Eells-Sampson, this flow behaves very much the same as the usual heat
flow on functions V ! R.

In fact, K.W / � 0 makes this flow “more contracting” then for W D R
n;

in particular, it is strictly contracting away from a finite dimensional space of
directions.

For example, if K.W < 0/, then the flow is strictly contracting on the subspace
of maps f with rank.Df / � 2, which implies that the fixed point set of the flow –
the set of harmonic maps in the homotopy class of f0 W V ! W , consists of a single
point (or it is empty if the flow slides to infinity in W which makes “strictness not
fully strict” after all).

Furthermore the flow ft , whenever it exists (i.e. if the image ft .V / � W , does
not “slide to infinity” in W and/or does not “hit the boundary” of W ), satisfies the
usual parabolic estimates, where the most important one is the bound on the norm
of the differential of f at each point v0 2 V in terms of the full energy

jjDf tC1.v0/jj2 � constV

Z

V

jjDf t .v/jj2dv:

Notice, that the dimension ofW does not enter these estimates, as it is especially
clear for maps V ! R

N ; therefore, this flow is defined and satisfies all Eels-
Sampson estimates for infinite dimensional Riemannian-Hilbertian manifolds W
with K.W / � 0.

If V andW are compact manifolds without boundaries, then, according to Eells-
Sampson,

the energy gradient flow is defined for all t � 0 and ft converges, for t !1 to
a harmonic map f1 W V ! W .
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If W is non-compact, then ft .V / � W may “slide to infinity” as it happens, for
example, in W D S1 
 R with the metric '2.t/ds2 C dt2 for the obvious maps
ft D S1 ! S1 
 t � W if the function '.t/ > 0 is decreasing.

If limt!1 '.t/ D linf > 0, then one still obtains a harmonic map f1 from
the circle S1 (that is a closed geodesic in the present case), however, not into W
but into the marked Hausdorff limit space W1 D limt!1.W; ft .s0// that equals
S1.linf / 
 R for the circle S1.linf/ of length linf .

But if linf D 0 the family ft , t !1, “collapses” to a constant map into R.
In general, for more complicated V andW , e.g. for V D S1
S1 andW D V 
R

with the metric '21.t/ds
2
1 C '22.t/ds22 C dt2, one may have a partial collapse of the

limit map.
If dim.W / D 1 then ft .V / may slide to infinity “dimension-wise” rather than

“distance-wise”. For example, let ' W R1 ! RC be a convex function with bounded
sublevels f'.x/ � lg � R

1 which does not achieve its minimum linf � 0 on our
Hilbert space R1.

Accordingly, the harmonic flow on the circles in W D S1 
 R
1 with the metric

'2.x/ds2 C dx2 (for dx2 denoting the Hilbert metric) will not converge in W ,
even if it remains in a bounded regions. Yet, the situation here is no worse than
that in the S1 
 R-example: the limit of maps ft W S1 ! W goes to the limit
space, that is to S1.linf / 
 R

1, except that “limits of pointed metric spaces” must
be understood as ultralimits as in [41, 55, 63] and in Sects. 6.A.slowromancapiii@,
6D3, 7.A.slowromancapiv@ in [33] (See more on this “stability” at the end of this
section).

IfW is complete, finite or infinite dimensional, manifold of strictly negative cur-
vature, K.W / � � < 0, or even, a possibly singular, complete CAT.�/-space
for this matter, then a family of uniformly Lipschitz maps ft W V ! W , e.g. finite
energy ft of an Eells-Sampson Dirichlet flow,

can not slide to infinity, except for the case where the action of the group �0 – the
image of �1.V / in � D �1.W / – on the universal covering X D QW is parabolic,

where, recall, “parabolic” means, that this action fixes a point, say b, in the ideal
boundary @1.X/ and preserves the horospheres centered at b, that are limits of
spheres Sx.R/ � X , where R D dist.x; x0/ for a fixed point x0 2 X and where
x ! b.

IfW is a complete simply connected finite dimensional manifold with ı-pinched
negative curvature, i.e. �1 < � � K.X/ � �ı < 0, then every discrete
parabolic group � � iso.X/ is virtually nilpotent, i.e. it contains a nilpotent
subgroup of finite index, according to Margulis’ lemma. Moreover the nilpotency
degree of such a � is bounded by ı=2.

For example, if ı < 4, e.g. X has constant curvature, then � is virtually Abelian
(which explains the presence of these conditions in the SSCT theorems ŒHm

C
� and

ŒHm
R
� of the previous section).

Equivariant Maps. It is appropriate to regard maps V ! W as equivariant maps
between their respective universal coverings.

In fact, all of the above automatically translates and generalizes to equivariant
maps f W X ! Y , where X and Y are acted by (not necessarily discrete) isometry
groups�X and�Y and “equivariant” refers to a given homomorphismh W �X ! �Y .
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One needs (?) the action of �X to be proper, e.g. discrete in order to define the
energy E.f / as the integral of the (�X -invariant!) energy density jjDf jj2dv over
X=�X and one needs no assumptions on the action of �Y what-so-ever, except of
being isometric.

Despite the apparent technical triviality of such a generalization, it significantly
broadens the range of applications of the Eells-Sampson theorem.

Foliated Harmonicity. The equivariant setting for “periodic” metrics and maps
admits the following “almost periodic” generalization.

Let X and Y foliated spaces with Riemannian leaves where the leaves in Y have
K � 0. If the foliation in X comes with a transversal measure, on may speak of
the energy of such maps and, under suitable (and not fully understood) stability
conditions the leaf-wise Dirichlet gradient flow in the space of mapsX ! Y which
send leaves to leaves converges to a leaf-wise harmonic map f W X ! Y (see [30])

This is relevant for our present purpose if the leaves in both spaces are Kählerian,
where we are after leaf-wise holomorphic maps (see next section).

Harmonic Maps with Infinite Energy. The radial projection fmdl from C n 0 to
the unit circle S1 � C, and/or the projection S1 
 R ! S1 serve as models for
general maps with infinite energy, where one exercises a sufficient control on the
energy-density.

The existence of similar harmonic maps f from quasi-Kählerian, e.g. quasi-
projective, varieties V D V n˙ (that are complements to complex subvarieties ˙
in compact Kählerian V , e.g. projective algebraic varieties V ) to spaces withK � 0
is established in [48, 51, 58, 83].

These maps, in the directions transversal to V0 near V0, behave like fmdl and
satisfy the natural bounds on the energy density.

Since, eventually, one wants to prove that these f are pluriharmonic (see
below) it is immaterial which Kähler metric on V is used for harmonicity. Yet,
it is technically convenient to work with a complete Kähler metric on V , where
such metrics are readily available. (See [48, 51], where all this is implemented for
maps into finite dimensional spaces with the techniques which, probably, apply to
dim D1 as well.)

About Stability. Let X and Y be acted by isometry groups �X and �Y , let h W
�X ! �Y be a homomorphism, where one can assume without loss of generality
that �Y equals the full isometry group iso.Y / the most (but not only) relevant part
of it is the image h.�X/ � iso.Y /.

Let us formulate several stability properties of h-equivariant maps f W X ! Y

which allow a harmonic limit f1 of the Eells-Sampson flow ft W X ! Y , where, in
the best case, f1 sendsX ! Y , or, if this flow “slides to infinity” in Y , we want to
guarantee a very similar harmonic map X ! Y1, where the limit space Y1 should
not be much different from Y .

We assume that Y is a complete simply connected (the latter can be dropped)
manifold with K.Y / � 0, where we do allow dim.Y / D 1. Besides it is
convenient (and possible) to admit singular CAT.0/-spaces into the picture, keeping
in mind that even if Y itself is non-singular the space Y1 may be singular.

Also, we can afford Y with convex boundary; moreover, if we expect the limit
map f1 to be holomorphic, then just C-convexity of the boundary will do.
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As forX , we concentrate on the co-compact case, i.e. where the action of �X on
X is proper (i.e. 	 !1) 	.x/!1) and X=�X is compact. In fact, everything
equally applies to the case where X is complete, the action of �X is proper and the
starting map f0 W X ! Y has �X -finite energy – the integral of the energy density
over X=�X is finite.

The strongest stability condition, which, due to the point-wise bound on jjDf t jj,
i.e. a uniform Lipschitz bound on ft , prevents “sliding to infinity” in Y and, thus,
insures the limit map f1 W X ! Y , reads as follows (see [9, 15, 39, 56]).
ŒStabstrong� There are a geodesically convex subset Y0 � Y (which may have

dim.Y0/ < dim.Y /) invariant under some isometry group �0 of Y such that
h.�X/ � �0 � �Y and a finite (compact if �X is locally compact rather than
just discrete) subset � � �X , such that, for every C > 0, the subset U.�;C / � Y0
defined by

U.�;C / 3 y0, distY .h.	/.y0/; y0/ � C for all 	 2 �

is �Y -precompact in Y0, i.e. it is covered by a �0-orbit of a compact subset in Y0.
For example, this condition is (obviously) satisfied by the actions of the above

non-purely parabolic h.�X/ � �Y on spaces Y with K.X/ � � < 0.
Notice that Stabmax makes sense for infinite dimensional Y but this is not

particularly interesting, since the normal projection Y ! Y0, which is distance
decreasing, brings the flow ft to Y0 � Y and the full geometry of Y (most of which
is situated away from Y0) remains out of the picture.

One can do slightly better with non-locally compact convex Y0 � Y , i D
1; 2; : : : ; which isometrically split, Y0 D 
Zi , i D 1; 2; : : :, with locally compact
factors Zi , but this is not very exciting either.

What serves better and covers a wider class of examples, is (as in [7, 8, 80]) a
lower bound on the k-volume volkŒf0� of the equivariant homotopy class of f0 W
X ! Y which is similar to but more accurate than the homotopy rank rankhmtŒf0�

defined earlier (at the beginning of Sect. 4.2).
Namely, if n D dim.X=�X/ and f W X ! Y is a smooth equivariant map, we

define voln.f / as the volume of the integral overX=�X of the absolute value of the
Jacobian of f . (Typically, �X is discrete and dim.X=�X/ D dim.X/, but we do
not, a priori, exclude dim.�X/, where maps f must be regarded locally as maps
from X=�X rather than from X in order to have correct Jacobians.)

The volume of the equivariant homotopy class of f , denoted infvolnŒf �, is
defined as the infimum of all smooth maps in the homotopy class Œf �.

Furthermore, this is especially relevant where X=�X is non-compact, we denote
by Œf �L the set of maps which can be joined with f by a homotopy of equivariant
L-Lipschitz maps (if f is not L-Lipschitz itself this class is empty) and let
inf volnŒf �L denote this infimum of the volumes of the maps in this class.

Define infvolkŒf �L for k � dim.X=�X/ by restricting maps f to �X -invariant
piece-wise smooth X 0 � X with dim.X 0=�X/ D k and setting

infvolkŒf �L D sup
X 0

inf
f 2Œf �L

volk.f jX 0/
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Finally, let rankhmtŒf �Lip be the maximal k such that infvolkŒf �L > 0 for all
L > 0.

Notice that rankhmtŒf �Lip � rankhmtŒf �Lip, where the inequality is strict, for
example, for the identity maps on complete non-compact manifolds with finite
volumes.

The role of this Lipschitz homotopy rank, is to bound from below the rank of the
(differential of the) limit map f1 W X ! Y1, since, clearly,

rank.f1/ Ddef max
x2X rank.Dxf1/ � rankŒf0�Lip

for the Eells-Sampson equivariant Dirichlet flow ft W X ! Y , which starts with a
Lipschitz f0 and converges to harmonic f1 W X ! Y1.

Notice that
if Y is a (possibly infinite dimensional) symmetric space then the (ultra)limit

space Y1 is isometric to Y ,
but the homomorphism h1 W �X ! iso.Y / does nor have to be equal to the

original h.
Also observe that
if Y has �1 � K.Y / � �2, then the limit space Y1 also has its sectional

curvatures pinched between �1 and �2.

4.4 From Harmonic to Pluriharmonic for KC � 0

A map f from a complex V manifold to Riemannian one is called pluriharmonic if
its restriction to every holomorphic curve (Riemann surface) in V is harmonic.

Equivalently, pluriharmonicity can be expressed byHessCf D 0 forHessCf .v/
being “one half” of the second differential D2

f W Tv.V / ! Tf.v/.W / made of the

values of Laplacians of D2
f at 0 2 Tv.V / on all holomorphic lines in Tv.V /.

Unlike harmonicity, pluruharmonicity is a very stringent condition on maps f W
V ! W at the points v 2 V where the ranks of the differentials Dvf W Tv.V / !
Tf.v/.W / are > 2 – generic W do not receive such maps at all. In fact, maps V1 

V2 ! W which are harmonic on all coordinate “slices” v1 
 V2 and V1 
 v2 satisfy
two determined PDE systems, which make such maps exceptionally rare.

On the other hand, there is the following
List of Standard Pluriharmonic Maps.

�˙holo ˙-Holomorphic maps from complex manifolds to Kählerian ones are
pluriharmonic.

�pluıhol Composed maps V
holo! S

harmo! W , where if S is a Riemann surface are
pluriharmonic.

In fact, composed maps V
holo! S

pluri! W are pluriharmonic. for all
complex manifolds V and S .
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�subm Riemannian submersions f W V ! W , where V is Kähler and the fibers
f �1.w/ 2 V are complex analytic, are pluriharmonic. (“Riemannian
submersion” means that the differentialDf isometrically sends every the
normal space to each fiber say Nv � Tv.V /, v 2 f �1.w/, onto Tw.W /.)

�geodıplu Composed geod ı pluri maps V
pluri! W0

geod! W , are pluriharmonic,
where “geod” refers to locally isometric geodesic maps which sends
geodesics to geodesics.

�� Cartesian products of pluriharmonic maps plurii W Vi ! Wi are
pluriharmonic
i plurii W 
i Vi ! 
iWi .

�dia Diagonal Cartesian products of pluriharmonic maps plurii W V ! Wi ,
that are composed maps diag W V ! 
i .Vi D V /! 
iWi , are plurihar-
monic V ! 
iWi .

Œ�� Basic Class of Examples. If W contains a totally geodesic split submanifold,
W � W1 
 W2, where W1 is Kählerian and where W2 receives a harmonic maps
from a Riemann surface, harmo W S ! W2, then, for every holomorphic map

holo W V ! W1 
S , the resulting composed map V
holo! W1 
S id�harmo! W1 
W2

is pluriharmonic V ! W with the image in W1 
W2 � W .
The Hodge-Bochner-Sui-Sampson formula for harmonic maps f of a Kählarian

V to a (possibly infinite dimensional) Riemannian W can be schematically
written as

.?/ jjHessCjj2dv D d hDf �HessCf ik�1 C ŒKC.W /.Df .�1/; : : : ;Df .�4//�dv;

where h: : : � : : :ik�1 is a certain bilinear form which takes values in .k � 1/-forms
on V , k D dimR.V /, and KC.W /.t1; t2; t3; t4/, ti 2 T .W /, is “a certain part” of the
curvature tensor of W , where Œ: : :� means that this KC.W / applies to the images of
the tangent vectors � 2 T .V / under the differentialDf W T .V /! T .W / and then
averages in a certain way at each point v 2 V .

Since
Z

V

d hDf �HessCf ik�1 D
Z

@V

hDf �HessCf ik�1

by Stoke’s formula, the inequalityKC.W / � 0, i.e.

KC.W /.t1; t2; t3; t4/ � 0 for all t1; t2; t3; t4 2 T .W /;
implies
FHBSS: Every harmonic map f from a Kähler manifold V into W is

pluriharmonic,
provided V is compact without boundary, or it can be exhausted by compact

domains with “small” boundaries so that the boundary term in the Stoke’s formula
goes to zero.

Miraculously, a seemingly impossible problem of the existence of a plurihar-
monic map f W V ! W is reduced to a realistic one of finding a harmonic map,
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where, if also K.X/ � 0, one knows (Eells-Sampson) that every map f0 W V ! W

is homotopic to a harmonic one under suitable stability assumptions, e.g. if W is
compact.

(Explicit writing down KC.W /, which we have no intention of doing, see [80]
for this, shows that KC.W / � 0 ) K.W / � 0; thus we do not have to make any
additional assumption onW if KC.W / � 0.)

But how could it happen that the Dirichlet flows that, in general, do not commute
in the space of maps V ! W for different Kählerian metric in V , have the same
fixed point set?

Apparently, these flows “semi-commute” in a certain way, which is partly
reflected in ŒTol�-convexity (see Sect. 4.6) and which, if one could expressed this
fully and precisely, would be useful in other contexts, e.g. for harmonic maps from
Riemannian manifolds with special holonomy groups (which for locally symmetric
spaces amounts to Margulis superrigidity, [19,49,64]) and for actions of groups with
“connected families of virtually split subgroups” (similar to those in Sect. 2.3.) on
CAT.0/ spaces of finite and infinite dimensions.

Also, it would be nice to find more sophisticated (semi)group actions defined by
PDE in function spaces that would display (super)stability similar to that in Sects. 2
and 3.

Since pluriharmonicity is a very restrictive condition, one concludes that the map
f must be a very special one, which, in turn, imposes strong constrains on the
homotopy class of f . (see below).

Flat Targets. If W is a flat manifold, e.g. W D R
n=Zn, and the KC-term in .?/

vanishes, then the implication harmonic) pluriharmonic for maps f W V ! W

follows from the Hodge decomposition on 1-forms, applied to the differential
' D df ,

every harmonic R
n-valued (including n D 1 [63]) 1-form ' on a compact

Kähler manifold V , that is locally equals the differential of a harmonic map
f W V ! R

n, decomposes into the sum ' D 'C C '�, where the forms '˙ are
˙-holomorphic:

locally, '˙ D df˙, where the (local) map fC W V ! C
n is holomorphic while

f� W V ! C
n is antiholomorphic.

In particular, the homotopy class Œf �Ab of continuous Abel’s maps f from
V to the torus W D A.V / D H1.V IR/=H1.V IR/ admits a pluriharmonic
representative fplu W V ! A.V / for every compact Kähler manifold and hence,
for every variety with normal singularities, where this map, as we know, does not
depend on any metric in W , but only on the flat affine structure in it.

Moreover, the Hodge decomposition provides the complex structure in thisW for
which fplu is holomorphic, thus, furnishing the proof of the Abel-Jacobi-Albanese
theorem.

This can be also seen by translating the classical
“pluriharmonic function equals the real part of a holomorphic function” to the

Hodge theoretic language:
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the complex valued 1-form dfpluC
p�1dJ fplu for dJfplu.�/ D dfplu.�=

p�1/,
� 2 T .V /, is a closed holomorphic 1-form.

Therefore, fplu W V ! A.V / is holomorphic for the complex structure on
A.V / corresponding to the linear anti-involution J W ' ! 'J on the linear space
H1.V IR/ which is realized by pluriharmonic 1-forms ' on V .

Since the harmonic map theory is invariant under isometries, one automatically
obtains, as was explained at the end of the previous section, the following

Equivariant Hodge-Albanese Theorem. Let �Y be an isometry group of the
Euclidean space Y D R

n, let X be a complete normal Kähler space with a proper
cocompact isometric action of a group �X , let h W �X ! �Y be a homomorphism
and f0 W X ! Y D R

n be a continuous h-equivariant map. (“Proper” means
Œ	 !1�) Œ	.x/!1�) Then

there exists an isometric action of �Y on some C
N , an R-affine surjective

equivariant map C
N ! R

n, and a holomorphic equivariant map X ! C
N such

that the composed map X ! C
N ! R

n is equivariantly homotopic to f0.
This theorem is limited by scarcity of “interesting” isometric group actions on R

n

for finite n. But there are by far more such actions on R
1 where the above applies

under suitable stability conditions, see [13, 63] for instances of this.
Another kind of generalization of Hodge-Albanese concerns mappings of quasi-

projective algebraic (and quasi-Kähler) varieties V n V0 to commutative algebraic
groups build of Abelian varieties and the multiplicative groupC� [46,75]; probably,
there is a full equivariant R1-valued version of this.

Discussion on KC ¤ 0. The general HBSS formula .?/ is not that surprising in
view of the corresponding Hodge formula where KC D 0, since

every invariant Euclidean formula involving at most second derivatives has its
Riemannian counterpart with an extra curvature term.

Actually,KC could be defined as such an “extra term” in the Hodge formula.
What is remarkable, however, that this KC is non-positive in a variety of

significant cases where one can use the Eels-Sampson theorem.
For example, one shows by a local/infinitesimal (sometimes quite involved, [7,8])

computation that the following spaces do haveKC � 0.
List of Spaces with KC � 0:

�2 2-Dimensional Y withK.Y / � 0, i.e. surfaces with non-positive curvatures.
��1=4 Riemannian manifolds Y with �1=4-pinched curvature, i.e. where �1 �

K.Y / � �1=4 have KC.Y / � 0. [44]
Furthermore, if the pinching is strict, i.e. �1 < K.Y / < �1=4, then also
KC < 0, where this inequality, is, by definition (whatever it is), stable under
C2-perturbation of metrics.
Moreover, the above remains true for the local 1=4-pinching condition. i.e.
where �.y/ � Ky.Y / � �.1=4/.y/ for some positive function .y/,
y 2 Y .

�sym Symmetric spaces Y with K.Y / � 0 have KC.Y / � 0, [7, 72, 78, 80].
Notice that the real hyperbolic spaces Hn

R
, n D 2; 3; : : : ;1, of constant

negative curvature have strictly negativeKC, while the inequality KC.Y / �
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0 is non-strict for all other symmetric spaces Y , not even for Y D Hn
C

(which
have �1 � K.Y / � �1=4) – an arbitrary small perturbation of the metric
may bringKC > 0.

�WP Weil-Peterson metric on the moduli space of curves. [74] (This metric is
non-complete but it is convex at infinity which is enough for Eells-Sampson,
where, however, the stability condition needs a special attention [11] and
where the measurable dynamics provides an alternative to harmonic maps
[52].)

�� Cartesian products of manifolds with KC � 0 also have KC � 0:
�sing There are some singular spaces, e.g. Euclidean and hyperbolic buildings

where KC � 0 and the HBSS formula .?/ applies, [10, 41].
�� Let Y , topologically a ball, be a smooth Riemannian manifold and let˙ � Y

be a union of k mutually orthogonal totally geodesic submanifolds of real
codimension 2.

Let AY n˙ be the obvious Zk-covering and Y� be the completion of AY n˙=� for
some discrete isometry group� of AY n˙ isomorphic to Z

k .
The simplest example of this is � D �Zk , where � is an integer and Y� equals a

ramified covering of Y .
A pleasant instance of Y�Zk being defined for all � > 0, is where Y equals the

Euclidean space as well a real or complex hyperbolic space.
If KC.Y / � 0, then the natural singular metric on such Y� for � � 1, probably,

also has KC � 0 which is easy to see for Y D R
n, Hn

R
andHn

C
.

One can not have KC.Y�Zk / � 0 for � < 1, e.g. where � D 1=m and Y�Zk D
Y=Zkm. But one can, in some cases (where Y harbor much negative curvature away
from ˙) make KC � 0 by suitably smoothing the metric, where this is sometimes
possible even in the Kähler category, e.g. for the Mostow-Siu examples (see [78] and
references therein).

All being said, the range of possibilities and applications of spaces locally
isometric to these Y�, which are abundant, especially (but not only) for (finite and
infinite dimensional) symmetric spaces Y , remains mainly unexplored.
�dimD1 Since the conditionKC � 0 is expressible with quadruples of vectors it

makes sense (like sectional curvature and unlike, say, Ricci curvature) for all infinite
dimensional Riemannian-Hilbertian manifolds Y , and all of the above applies to
these Y .

Our essential examples are infinite dimensional symmetric spaces Y which are
completions of the unions of Y1 � Y2 � : : : for increasing chains of finite
dimensional symmetric spaces Yi and geodesic isometric embeddings Yi � YiC1
(see [57, 69] and references therein).

The simplest infinite dimensional irreducible symmetric space is the real hy-
pebolic H1

R
, which, as we know, has KC < 0. It admits, for instance, a natural

isometric action of every countable subgroup � in the Cremona group Bir2 D
Bir.CP2/ of birational automorphisms of the projective plane CP2. (The group

Bir2 naturally acts on the cohomology H
2

of the projective limit of all rational
surfaces over CP2 and regular rational maps between them, where this action

preserves the intersection form of the type .C� �� �� �� : : :/ on H
2
.)
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This is used in [14] to show, among other things, that, for instance, “most” such �
are not Kazhdan T and that they can not serve as fundamental groups of Kähler
manifolds.

4.5 From Pluriharmonic to Holomorphic

Despite the fact that pluriharmonic maps are very special, it is not apparent what
they actually are in specific examples.

There are several cases, however, where one knows that such maps either have
small ranks or they are holomorphic [7, 8, 78, 80], where these properties can be
expressed with the following local invariants of Y .

Define rankplu.Y / of a Riemannian manifold Y (possibly infinite dimensional
and/or singular) as the maximal number r such that Y receives a pluri-harmonic
map of rank r from a complex manifold.

Define rankplu=hol.Y / of a locally irreducible Hermitian manifold Y as the
maximal number r such that Y receives a non-˙holomorphic pluri-harmonic map
of rank r from a complex manifold.

If Y (locally) reducible, i.e. if the universal covering QY isometrically splits
into a Cartesian product of QY D 
 QYi , where Yi are Hermitian manifolds, then
“˙holomorphicity” of a map f W X ! Y means ˙holomorphicity of the local
projections of f to each Yi .

Siu Rank. These two ranks equal 2 for generic Y ; they are most significant for
symmetric spaces Y .

Their main role is to provide a lower bound on rankSiu.W / D rankhmt=hol.W / of
a complex manifold W , where rankhmt=hol is the minimal number k such that, for
every compact Kähler manifold V , the space of continuous maps f W V ! W with
rankhmt > k contracts to the the subspace of ˙holomorphic maps i.e. the inclusion
˙HOL � CONT is a homotopy equivalence.

Here, as earlier, we need to make a provision for locally split W , i.e. where the
universal covering Y D QW admits a complex analytic splitting Y D 
iD1;::::j Yi
such that the j foliations of W into the Yi -slices, i D 1; : : : ; j , are invariant under
the Galois group of the covering Y ! W (and so W comes with j mutually
transversal holomorphic foliations which locally split W ).

Here ˙holomorphicity, is understood for such a W , as˙-holomorphicity of the
j local projections of our maps on the Yi -factors.

Remark about the h-Principle. Non-trivial lower bounds on rankhmt=hol are
formally similar to the Oka-Grauert h-principle, but the underlying mechanisms
of the proofs are opposite in nature: the h-principle is a manifestation of “softness”
of holomorphic maps, while rankhmt=hol is about “rigidity”.

Examples. (A1=4) If a Riemannian manifold Y has �1 < K.X/ < �1=4, then
rankplu.Y / D 2; moreover every pluriharmonic map X ! Y locally factors

as X
holo! S

plu! Y for dim.S/ D 2. Moreover, this remains true under the



206 M. Gromov

corresponding local strict 1=4 negative pinching assumption (as on the KC-list in
the previous section.)

This implies, with the FHBSS from Sect. 4.4 and the stability discussion in
Sect. 4.3 the following

Kählerian 1=4-non-Pinching Theorem. (see [7]) Let X be a normal Kähler space
with a proper isometric cocompact action of a group �X � isohol .X/, let Y be a
complete, possibly infinite dimensional, manifold which is strictly negatively 1=4
pinched i.e. �1 < �1 � K.Y / � �2 < �1=4, and let h W �X ! iso.Y / be a
homomorphism. Then

every h-equivariant map f0 W X ! Y has rankŒf0�Lip � 2.
(Probably, this remains true forKC � � < 0, e.g. for strictly locally negatively

1=4-pinched manifolds, i.e. for �.1 C "/.y/ � Ky.Y / � �.y/=4, where
a technical difficulty arises if infy2Y Ky.Y / D �1 and the limit space Y1 is
singular.)

(BHn
C

) The complex hyperbolic spaces Y D Hn
C

, n D 1; 2; : : : ;1, satisfy

rankplu=hol.H
n
C
/ D 2I

moreover, every non-˙holomorphic local pluriharmonic map into Hn
C

factors as

X
holo! S

plu! Y for dimR.S/ D 2. (see [7, 80])
We have indicated essential corollaries of this in Sect. 4.2; the present terminol-

ogy allows the following reformulation.
Given a Kählerian X as in the above (A), an h W �X ! isohol .H

n
C
/ and an

h-equivariant map f0 W X ! Hn
C

.
If rankŒf0�Lip � 3, then there exists a homomorphism h1 W �X ! isohol .H

n
C
/

and an h1-equivariant˙holomorphic map f1 W X ! Hn
C

, such that

rankR.f1/ � rankŒf0�Lip:

(A
B) Let X=�X do not fiber over Riemann surface in the sense that X admits
no holomorphic equivariant map for any homomorphism h (of �X to the isometry
group of the target space) neither to the complex line C nor to the hyperbolic
planeH2

R
.

Let f0 W X ! Y D Y1 
 Y2 be an equivariant map (for some homomorphism
h W �X ! iso.Y /), let Y1 be strictly negatively 1=4-pinched, e.g. Y1 D H1

R
, let

Y2 D H1
C

and let rankŒf0�Lip > 0.
Then the corresponding limit map f1 ˙-holomorphically send X to a single

“holomorphic slice” y1 
H1
C

.
Question. There are, apparently, lots of “interesting” isometry groups � acting

on H1
R

 H1

C
but are there any candidates among them for our kind of groups

�X that also act on a Kählerian X , e.g. being the fundamental groups of a complex
projective manifolds V ?

(C) If Y is a Hermitian symmetric space with K.X/ � 0 and with no flat (i.e.
Euclidean) factor, then rankplu=hol.Y / equals the maximum of the real dimensions
of totally geodesic subspaces Y 0 D Y0 
H2

R
� Y , with a Hermitian Y0
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In fact, every non-˙-holomorphic pluriharmonic map X ! Y of maximal rank

D rankplu=hol.Y / lands in some Y0 
 Y1 � Y and equals ŒX
holo0! Y0� 
 ŒX holo!

S
harm! Y1� [7, 8, 80].
(C0) A similar evaluation of rankplu=hol.Y / in terms of split totally geodesic Y 0 �

Y is available (albeit the proofs are more involved, see [8]) for most (non-Hermitian)
symmetric spaces Y .

Question. Let f0 W V ! W be a pluriharmonic map, where V is Kähler andW is
Hermitian locally symmetric. Suppose that f0 respects the Hodge filtrations on the
cohomologies of the 2 manifolds. Does it help, this map to be holomorphic? Would
it be useful to look at the corresponding the cohomologies with coefficient in flat
finite and infinite dimensional unitary bundles with more cohomology available?

Discussion on Infinite Dimensional X and Y . Irreducible symmetric spaces Y
with rankR � 2 admit more “interesting”, e.g. discrete and proper, isometric group
actions thanH1

R

H1

C
, e.g. proper actions of Kazhdan’s T -groups.

On the other hand the ranks rankplu=hol.Y / for these spaces Y go to infinity
for dim.Y / ! 1 (see [7, 8]) and it is unclear under which (global) conditions
pluriharmonic maps from finite dimensional X into such Y are holomorphic.

There are several possibilities for infinite dimensionalX , e.g. one can make such
X by taking unions of increasing families X1 � X2 � : : : (and inductive limits in
general); however, it is unclear what are meaningful examples.

(A potentially more promising path to infinite dimensions via “symbolic”
varieties is indicated in Sect. 4.10.)

4.6 [Tol]-Convexity and Deformation Completeness

The essential property of a W and/or of a continuous map f0 W V ! W we are
concerned with is Œf0� 2 ˙HOL, that is, we look for a ˙holomorphic (preferably
unique) representative in the homotopy class of f0.

This has nothing to do with any metric on W and with its curvature, and we
naturally wish to have a condition expressible in global, purely complex analytic,
even better topological, terms.

Are there global/asymptotic conditions on the universal covering Y of W
adequately reflecting KC � 0 and KC < 0, similarly to how hyperbolicity captures
K < 0?

Is there some “generalized CR-structure” on the ideal boundary @1.Y /?
What does KC tell you about Pansu’s conformal dimension of @1.Y /?
Suppose W is a topological manifold such that the universal covering Y

is bi-Lipschitz equivalent to a complete Riemannian manifold Y 0 with KC.Y
0/

� �ı < 0.
DoesW admit maps f0 from compact Kähler manifolds V with rankhmtŒf0� � 3?
Would it help to requireK.Y 0/ � �const > �1?
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Can one relax “bi-Lipschitz” to “quasiisometric” in the case where Y is
contractible?

A step toward this direction is suggested by the following
C-Convexity Lemma [81]. Let W be a complete Riemannian manifold let C be

a smooth connected projective algebraic curve (Riemann surface) and let Œf0� be
a homotopy class of maps C ! W . The minimum of the Dirichlet energies of
maps f 2 Œf0� (which, as we know, depends only on the conformal structure on C )
defines a function, call it Emin, on the moduli space M of conformal structures on
C . IfEmin is assumed by some (harmonic) map f 2 Œf0� with rank D 2 (“assumed”
is probably, unnecessary in most cases).

The Toledo Lemma says that if KC.W / � 0, then
[Tol]conv the function Emin is C-convex on M.

(C-Convex = pluri-sub-harmonic in the traditional terminology).

Furthermore, let Cb be a family of compact connected Riemann surfaces
parametrized by a holomorphic curve B �M and fb W Cb ! W be non-constant
harmonic maps with non-equal images in W ,

fb1.Cb1/ ¤ fb2.Cb2/ � W for b1 ¤ b2.

If KC < 0, then
the energy E.fb/ is strictly C-convex in b at almost all b 2 B ,

where “C-convex” is the same as subharmonic and “almost all” means “from an
open dense subset in B”.

This Toledo’s “almost strict” C-convexity is, essentially, as good as KC < 0 for
ruling out Kähler subgroups in �1.W /, since, obviously,

every continous map f0 from a projective algebraic manifold V to such a
[Tol]alm:st rict space W has rankŒf0�hmt � 2.

Remarks. (a) If the condition fb1.Cb1/ ¤ fb2.Cb2/ is not satisfied, then, this was
pointed out to me by Toledo, the energyE.fb/may be constant in b, where the
basic examples are families of ramified holomorphic covering maps between
Riemann surfaces, Cb ! W , dimC.W / D 1. Probably, if dimC.W / > 1, then
the only way the strict convexity fails is where the maps fb factor through such
ramified coverings over a minimal surface in W .

(b) The condition [Tol]conv (unlike K � 0) makes sense for an arbitrary metric
spaceW and this also applies to (properly reformulated) property [Tol]alm:st rict .

Also both conditions have a global flavour and they are (slightly) more robust
then the correspondingKC-curvature inequalities.

However, they limited to harmonic maps of closed surfaces intoW , and it would
be nice to have something similar for open surfaces – non-compact and/or with
boundaries. This would, in particular, allow a local version of [Tol]-convexity and
might imply stability of this property, and consequently of KC � 0, under weak
(Hausdorff?) limits of metric spaces.
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From now on, [Tol]conv-manifoldsW are those satisfying this C-convexity property.
“Holomorphic” Corollary. Let V be a projective algebraic manifold, let F W

V ! W be a continuous map and let Cq � V be an algebraic family of algebraic
curves in V , where q runs over a smooth connected projective algebraic curve Q,
such that Cq is connected non-singular for generic q 2 Q.

If W is [Tol]-convex, then the minimal energy Emin.q/ of the (homotopy class of
the) map F restricted to non-singular curves is constant in q.

Proof. If Cq is a singular curve in our family and fq W Cq ! W is a continuous
map which is smooth away from the singular points of Cq , then the energy of this
map is defined by integrating jjDf qjj2 over the non-singular locus of Cq . Thus, the
functionEmin.q/ is defined for all q 2 Q.

Let us show that the function Emin.q/ is continuous on Q for all (not necessarily
[Tol]-convex) Riemannian manifoldsW .

This is obvious at those q where the curves Cq are non-singular. It is also clear
that Emin is semicontinuous at all q: the energy may only jump up for q ! q0.

To see that, in fact, there is no “jump”, i.e. Emin.q0/ � limEmin.q/, assume
(the general case trivially reduces to this) that the curve C0 D Cq0 has a double
point singularity, say at c0 2 C0. Let QC0 ! C0 be the non-singular parametrization
(by normalization) of C0 and observe that Emin. QC0/ D Emin.C0/. (The extremal
harmonic map QC0 ! W does not, typically, factors through the parametrizing map
QC0 ! C0, which makes the extremal map C0 ! C0 discontinuous).

The curves Cq , q ! q0, are obtained near c0 by attaching “arbitrarily narro”
1-handles H" to QC0 D C0 by gluing the two branches of C0 along the two
infinitesimally small circles in C0 around c0.

These handles can be implemented by maps Hq ! W with the energies
E.Hq/! 0, that makes

.ı/ lim sup
q!q0

Emin.Cq/ � Emin. QC0/ D Emin.C0/:

All one needs to construct such Hq ! W is a family 'ı, ı > 0, of smooth
functions 'ı W D ! R, where D � C is the unit disc, where E.'ı/ � ı for all
ı > 0 and where

� The functions 'ı vanish on the boundary of D.
� The functions 'ı equal 1 at the center 0 2 D.

(Such 'ı are made out of ı log jzj in an obvious way.)
Thus, by .ı/, the functionEmin.q/ is continuous at all, including singular, curves

Cq in our family, and if W is [Tol]-convex Emin.q/ is constant on Q, since every
continuous function on D which is smooth C-convex on Q minus a finite subset is
constant on Q. (I am not certain, but this is, undoubtedly, known, if every bounded
C-convex function onD n 0 is continuous at 0.)

Curve Deformation Completeness. A complex manifold W is called cdc, if the
following holds for all above .V; Cq; f0/:
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if the continuous map fq0 D f0jCq0 W Cq0 ! W is homotopic to a holomorphic
one for some q0 2 Q, then all fq W Cq ! W are homotopic to holomorphic maps.

Observe that the cdc property, unlike [Tol]-convexity and/or K � 0, does not
depend on any metric, but only on the complex structure in W .

On the other hand, the above Corollary implies that
Kählerian [Tol]conv-manifolds are cdc – curve deformation complete.

Indeed, if a smooth map fq W Cq ! W is homotopic to a holomorphic h W Cq !
W , then E.fq/ � E.h/ by Wirtinger’s inequality, where, a priori, the equality
holds if and only if fq is ˙-holomorphic. Since the ˙-involution amounts to the
change of the orientation in Cq , a .C/-holomorphic map of positive rank into a
Kähler manifold W can not be homotopic to a .�/-holomorphic one; hence all fq
are holomorphic. (“Kähler” is essential: Calabi-Eckmann-Hopf manifolds Hmn D
Œ.Cm n 0/ 
 .Cn n 0/�=fez 
 e

p�1zgz2C contain contractible holomorphic curves,
H11 � Hmn.)

Let us indicate some simple properties of curve deformation complete compact
Kähler manifoldsW .

Holomorphic Extensions from Curves. Start with the case where a homotopy
class Œe0� of maps of a compact complex curve (Riemann surface) C to W admits
at most one holomorphic representative C ! W for every complex structure on C .
This is so, for example, for all non-contractible maps e0 W C ! W if W admits a
Kähler metric with strictly negative sectional curvature.

Remarks. (a) If the space E0 of continuous maps e W C ! W homotopic to e0 has
H2.E0IR/ D 0, then the space of holomorphic maps C ! W homotopic to e0
is finite.
Indeed, the space H0 � E0 of holomorphic maps h W C ! W is a complex
space, such that the c-evaluation map "c W E0 ! W for "c W e 7! e.c/ 2 W
is holomorphic on H0 � E0 for ecah c 2 C . Since W is Kähler as well as
compact the space H0 is compact.
If dimC.H0/ D d > 0, then the pullback "�

c .˝W / of the Kähler class ˝W ofW
to E0 by " does not vanish onH0 for generic c 2 C , since

"�
c .˝W /

d ŒH0� > 0I

for the fundamental class ŒH0� of (a d -dimensional irreducible component of)
H0; hence,H2.E0/ ¤ 0 for d > 0.

(b) If W is aspherical, i.e. the universal covering of W is contractible, then E0 is
homotopy equivalent to the Eilenberg-MacLane classifying space K.Z0I 1/ of
the centralizer Z0 of the Œe0�-image of the fundamental group of C in �1.W /.
For instance,

(c) If W admits a Riemanninan metric with strictly negative curvature, then
H2.E0IR/ D 0 for all non-contractible maps e0 W C ! W .

(d) If W admits a Kähler metric with non-positive sectional curvature, then the
space of holomorphic maps h W C ! W in every homotopy class Œe0� is
connected; such an h is unique, if and only if the the e0-image of �1.C / in
�1.W /, has trivial centralizer Z0.
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Probably, there are many algebraic manifoldsW where the space of holomorphic
maps C ! W in a given homotopy class is disconnected, even for aspherical W .
One could arrange this, for example, with an algebraic curve B in the moduli space
Mg of curves C of a genus g, where B an irreducible component of the lift QB of B
to the universal orbicovering QMg has a double point.

Assume the above algebraic manifold V is a non-singular compact complex surface,
i.e. dimC.V / D 2, let the family Cq be non-constant so that the union of all curves
Cq � V equals V and let us show that all compact Kähler cdc manifoldsW without
rational curves satisfy the following extension property.
? Every continuous map f0 W V ! W which is holomorphic on some non-

singular curve Cq0 � V is homotopic to a unique holomorphic map V ! W ,
provided the homotopy class of e0 D f0jCq0 contains at most one holomorphic
representative Cq ! W for all q in a small neighbourhoodU0 � Q of q0.

Proof. Let Z � V 
 W be the union of (possibly singular) holomorphic curves
QC � V 
W such that

� The projection PV W V 
W ! V biholomorphically sends each QC onto a curve
Cq � V for some q 2 Q and the projection PW W V 
W ! W is holomorphic
on each QC ;

�� All curves QC � V 
W have “degrees” equal that of the graph � .Cq0/ � V 
W
of the map f0jCq0 W Cq0 ! W , i.e. the value of the Kähler class ˝ D ˝V�W D
˝V ˚˝W on each QCq , that is ˝Œ QCq�, equals˝Œ� .Cq0/�.

Since � is comprised of sentences in the “first order holomorphic language” and �� is
“linguistically Kähler”, thisZ is a compact complex analytic subset in V 
W . (One
usually applies such “linguistic” argument to algebraic manifolds but it remains
valid in the compact Kähler case as well.)

Let Z0 � Z be the irreducible component of Z which contains the graph of the
(holomorphic!) map f0jCq0 W Cq0 ! W .

Since the projection PV W Z0 ! V is one-to-one over U0 it is generically one-
to-one; hence, Z0 serves as the graph of a rational map V ! W that, in fact, is
holomorphic since W contains no rational curves.

Remarks. The above argument does not work if “at most one holomorphic rep-
resentative Cq ! W ” (q 2 U0) is relaxed to “at most finitely many holomorphic
representativesCq ! W ” or to “at most one holomorphic representativeCq0 ! W ”
(for a single q0), but it seems hard to find an actual cdc manifold where the above
extension property fails to be true under the so relaxed conditions.

It is also unclear whether “without rational curves” is relevant for cdc mani-
foldsW .

Let us adjust the above to the case where there may be several mutually homo-
topic holomorphic maps of a curve C into W , keeping in mind split submanifolds
W 0 
 W 00 in a manifold W of non-positive curvature. (The proper condition was
missing from the first version of this paper as was pointed out to me by Domingo
Toledo).
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Let W , assumed as earlier compact Kähler cdc, have contractible universal
covering. Assume moreover, that W has the following

Split Deformation Property. Given a homotopy class Œe0� of maps of a closed
surface C0 into W there exists a unique (possibly empty) compact split irreducible
analytic space W 0 
 W 00 and a holomorphic map I W W 0 
 W 00 ! W with the
following property.

Let Cq be a complex curve (Riemann surface) homeomorphic to C0 and
hq W Cq ! W be a holomorphic map such that the composition of hq with a
homeomorphismC0 $ Cq belongs to the homotopy class Œe0�.

Then there exist unique holomorphic map h0
q W Cq ! W 0 and a constant map

g00
q W Cq ! W 00, such that the map hq factorizes as C

h0

q�g00

q! W 0 
 W 00 I! W ,
i.e. hq D I ı .h0

q 
 g00
q /.

Basic Example. The split deformation property is enjoyed by compact Kähler
manifoldsW with non-positive sectional curvatures.

Indeed, let �0 � �1.W / be a subgroup let � 00
0 � �1.W / be its centralizer and

� 0
0 � �0 be the centralizer of � 00

0 .
Since K.W / � 0 – “Kähler” is irrelevant here – there exists, by the Gromoll-

Wolf-Lawson-Yau splitting theorem, a split Riemannian manifold W 0
0 
 W 00

0 and
a map I0 W W 0

0 
 W 00
0 ! W which is geodesic isometric on all coordinate slices

w0
0
W 00

0 andW 0
0 
w00

0 and such that the I0-images of the fundamental groups ofW 0
0

andW 00
0 in �1.W / are conjugate to � 0

0 and � 00
0 respectively.

Now, recall thatW is Kähler and assume thatW 0
0 contains an irreducible complex

analytic subset A0 such that the image of the fundamental group of A0 in � 0
0 D

�1.W
0
0 / contains �0.

Then W 00
0 identifies with the space of holomorphic maps A ! W which send

�1.A/ onto �0 while W 0
0 appears as the space of holomorphic maps W 00

0 ! W

homotopic to I0jw0
0
W 00

0 . Thus, the manifoldsW 0
0 andW 00

0 acquire complex analytic
structures for which the map I is complex analytic.

Questions. Given a compact Kähler (e.g. algebraic) manifold W , call (the
conjugacy class of) a subgroup � � � D �1.W / holomorphic, if it equals the
image of the fundamnetal group of a compact connected Kähler (possibly singular)
space A under a holomorphic map A! W .

What is the structure H D H.� / D H.�;W / of (the set of) holomorphic
subgroups� in � ?

For instance, for which W is the centralizer of a holomorphic subgroup is
holomorphic (as for the aboveW with K.W / � 0)?

When can one reconstruct the complex structure in W in terms of H.� /?
Which manifoldsW have many and which few holomorphic subgroup?
For example, what are aspherical W (e.g. with K.W / � 0), where every

holomorphic� either has finite index in � or equals fid g � � ?
What is the corresponding structure for the algebraic fundamental group that is

the profinite completion of � ?
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If W is an algebraic manifold, what is a similar structure on the full geometric
Galois group �geo of W that encodes all ramified coverings of W ?

Does �geo.W / allow a reconstruction of W ?

Split Deformation Property ) Extension Property. Return to the above non-
singular compact complex surface V and a non-constant family of curves Cq � V ,
parametrized by an irreducible algebraic curveQ 3 q.
?? LetW be a compact Kähler cdc (curve deformation complete) manifold which

also enjoy SDP and let f0 W V ! W be a continuous map which is holomorphic on
some curve Cq0 � V . Then f0 is homotopic to a holomorphic map V ! W in the
following two cases:

(1) Every continuous map Q ! W is contractible, e.g. Q is a rational curve and
W is aspherical;

(2) The inclusion homomorphism �1.Cq0/! �1.V / is onto.

Proof. Because of SDP everything reduces to maps intoW 0 
W 00 and the proof of
the above ? applies to maps V ! W 0.

Questions

(a) Let W be [Tol]conv and let fq W Cq ! W be a family of harmonic (rather than
holomorphic) maps for generic points q 2 Q for which the curves Cq � V are
non-singular.
When does such a family continuously extend to all of V with no assumption
of having a holomorphic member among them?
If so, this would imply that every f0 W V ! W is homotopic to a pluriharmonic
map, as in the case KC � 0.

(b) Can the curve deformation completeness property (or some slight modification
of it) be expressed algebraically for algebraic manifolds W , i.e. is it invariant
under the action of the Galois group?
Notice that the main (but not only) source of (known) C-deformation complete
manifolds are arithmetic varieties, the class of which is Galois invariant by a
theorem of Kazhdan.
So we ask whether Kazhdan’s theorem extends to the class of curve deformation
complete manifolds.
Also this his question may be asked about rankhmt=hol.W /: is it an algebraic
invariant for algebraic manifoldsW ?

(c) Another question motivated by Kazhdan’s theorem is as follows. Let W be an
arithmetic variety, (possibly one has to assume it admits positive solution to
the congruence problem) let V be a smooth projective manifold (defined over a
number field?) and let h be a homomorphism of the profinite completion �1.V /
of the fundamental group of V to �1.W /.
Does there exist, under a suitable lower bound on some “topological rank” of h,
a regular map f from V to a Galois transform of W (kind of ˙-holomorphic,
but now discontinuous, map), such that the homomorphism �1.V / ! �1.W /

induced by f equals h up to a Galois automorphism of �1.W /.
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(d) There is a purely algebraic counterpart to rankhmt=hol.W / which is defined as
follows.
Let p W U ! B be a surjective holomorphic map between non-singular
algebraic varieties and Vb D p�1.b/ � U be (necessarily non-singular) fiber
Vb D p�1.b/ � U over a non-critical point b 2 B .
Define rankdfm

hmt=hol.W / as the minimal number k, such that every holomorphic
map Vb ! W of R-rank > k extends to a holomorphic map U ! W for all
U , B , p and Vb as above (where we do not assume beforehand the existence of
any continuous map V ! W that extends our holomorphic Vb ! W ).
It is easy to show that

rankdfm
hmt=hol.W / � rankhmt=hol.W /:

Are there algebraic manifoldsW with rankdfm
hmt=hol.W / < rankhmt=hol.W /?

(e) Let Y be a symmetric, say Hermitian, space with K.Y / � 0 and �C D �1.C /

be a surface group. Let M be the space of conformal structures on C and R the
space of conjugacy classes of homomorphisms � ! isohol .Y /.
The minimal energy Emin D Emin.�; �/ of �C -equivariant maps QC ! Y , for
QC D H2

R
, is a real analytic function on M 
R.

What is the algebraic/analytic nature of this function?
What are “natural” PDE satisfied by it?
What is the set of the critical points of Emin.�; �/?
Does the set of these functions for variable Y and/or �S carry some meaningful

structure?
Can one effectively describe pluriharmonic/holomorphic maps from Kähler

manifolds into Y=� in terms of Emin.�; �/?

Example. Let V be a non-singular projective variety, V � CPM , and let C � V

be a “generic mobile” curve, e.g. the intersection of V with an M 0-plane CPM 0 �
CPM , M 0 DM � dim.V / � 1, in general position.

IfW is a cdc (curve deformation complete) manifold (e.g.W is [Tol]conv), which
also has SDP (split deformation property), and if W contains no rational curve (e.g.
K.W / � 0), then

every continuous map f0 W V ! W which restricts to a holomorphic map on C
is homotopic to a holomorphic map V ! W .

Furthermore let cdc be relaxed to rankdfm
hmt=hol.W / � 2k and let V0 � V be the

intersection of V � CPM with a generic M0-plane CPM0 � CPM for M0 >

M � dim.V /C k.
Then every holomorphic map V0 ! W of C-rank > k extends to a holomorphic

map V ! W .

Questions.

1. We assumed from time to time that certain manifolds (varieties) were algebraic.
Was it truly needed or would “Kähler” suffice?
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2. Let W be a closed Riemannian [Tol]conv manifold and suppose it receives
a continuous map f0 from an algebraic (Kählerian?) manifold V , such that
rankhmtŒf0� D dim.W /.
Is (the Riemannian metric on)W “essentially” Kählerian?
Can one non-trivially deform the Riemannian metric on a locally symmetric
Kählerian W with KC � 0 keeping it [Tol]conv?
For example, does the n-torus admit a non-flat [Tol]conv-metric?

3. Which “slowly growing” harmonic maps X ! Y are pluriharmonic?
For instance, are Lipschitz harmonic functions Y ! R on Abelian coverings Y
of compact Kähler manifolds pluriharmonic?

4. Do non-trivial lower bounds on rankhmt=hol or rankdfm
hmt=hol, e.g. the strongest

rankhmt=hol.W / D 2 or the weakest rankdfm
hmt=hol.W / < dimR.W /, say for

projective algebraic manifolds W , imply that the universal covering QW of W
is contractible?

5. Conversely, let W be a compact Kähler manifold W with contractible QW . Does
it satisfy rankhmt=hol.W / < dimR.W / or at least rankdfm

hmt=hol.W / < dimR.W /?
Here one has to keep in mind certain exceptions/modifications. e.g. for �1.W / D
�0 Ë Zk as in Sect. 4.9.
On the other hand, there are, apparently, no examples of Kähler manifolds W
with contractible QW and word hyperbolic fundamental group �1.W / where one
would be able to show that rankhmt=hol.W / > 2.

6. Can you tell in terms of � when a compact Kähler space W with �1.W / D �

and rankhmt=hol < dimR.W / is non-singular?
When does a complete Kähler manifoldW with rankhmt=hol < dimR.W / contain
a compact (or just finite dimensional for dim.W / D1) “core” , i.e. an analytic
subspace W0 � W (similar the above B in the moduli space of curves) such
that the inclusion W0 � W is a homotopy equivalence, or, at least, such that the
inclusion homomorphism �1.W0/! �1.W / is an isomorphism?

For instance, let � admit a proper discrete (free?) action on a given (some?)
infinite dimensional symmetric space Y .

Granted such an action when does Y=� admit a finite dimensional (compact?)
complex analytic “core”W0 � W ?

There are few examples of “interesting” isometric group actions on infinite
dimensional symmetric spaces Y withK.Y / � 0. The most studied are Haagerup’s
a-T-menable groups that properly act on Y D C

1; these, according to A. Valette,
include all amenable, e.g. solvable groups.

These actions are used to derive the following constrains on the fundamental
groups � D �1.W / of compact Kähler manifoldW .

if � is 1=6-small cancelation group, then it contains a surface group of finite
index [13],

and
if � is solvable then it contains a nilpotent subgroup of finite index [12] (where

it remains unknown which nilpotent groups can serve as � D �1.W /).
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Also, there are interesting isometric actions of PSL2.R/ and of the Cremona
group Bir.CP2/ onH1

R
[14].

4.7 Algebra-Geometric Abel-Jacobi-Albanese Construction

The following classical construction of the Jacobian W D A.V / of a projective
algebraic variety V is vaguely similar to the combinatorial reconstruction of Shub-
Franks group actions (see Sect. 2.4) where orbits of an action come as equivalence
classes of quasi-orbits modulo DIST <1 equivalence relation.

Let Z0.V / be the group of 0-cycles in V that are formal integer combinationsP
v2V mv, for functions m W V ! Z with finite supports. and Observe two

tautological maps˙ W V ! Z0.V / for v!˙v D ˙1 � v.
Every holomorphic map ˛ W V ! A to a commutative algebraic groupA extends,

via the summation in A, to ˛C W Z0.V /! A.
Assume that the image ˛.V / � A generates A as a group. Then ˛C is onto and

in order to reconstruct A from V it remains to identify the equivalence relation on
Z0.V / which reducesZ0.V / to A.

This can be equivalently seen in terms of the symmetric powers V
N
sym D

V N=˘.V / of V (for the permutation group ˘.N/ acting on the Cartesian power
V N ) as follows.

Extend the above ˙maps V ! Z0.V / by summation in Z0.V / to the corre-

sponding maps˙N W V
N
sym ! Z0.V / and compose these maps with ˛C.

Thus, for every pair of integers .NC; N�/, we obtain a map ˛N˙ W V
N

C

sym 

V

N�

sym ! A, that are

Œ.v1; : : : ; vNC
/; .v0

1; : : : ; v
0
N�

/�! v1 C : : :C vNC
� v0

1 � : : : � v0
N�

:

which are onto for large N˙ and try to identify the fibers of these maps.
A rational curve in Zv0 .V / D Z0.V /=Zv0, is the image of a non-constant

holomorphic map ' from the projective line P1 D CP1, where “holomorphic”
means that ' W P1 ! Z0.V / descends from a pair of (ordinary) holomorphic maps

'˙ W P1 ! V
N

˙

sym for some (large) integersN˙ via the summation map on 0-cycles,

˙N
˙
W V

N
C

sym 
 V N�

sym ! Z0.V /.
Two zero cycles z1 and z2 in Z0.V / are called rationally equivalent if they can

be joined by chain of rational curves between them and the corresponding quotient
space is denoted by Z0.V /= �rat

Metrically speaking, let DIST.z1; z2/ D DISTrat.z1; z2/ be the length of the
shortest chain of rational curves between z1 and z2 (e.g. DIST.x1; z2/ � 1 if and
only if z1 and z2 lie on a rational curve in Z0.V /) and rewrite Z0.V /= �ratD
Z0.V /=ŒDISTrat <1�.



Super Stable Kählerian Horseshoe? 217

Since A contains no rational curve, every map Z0.V / ! A factors via a map
Z0.V /= �rat! A.

If V is a curve, i.e. dimC.V / D 1, then, classically, Z0.V /=rat equals the
Jacobian A.V / D H1.V IR/=H1.V IZ/.

In fact, the map ˛NC W V
N

C

sym ! A.V / associated to an Abel-Jacobi map ˛ W V !
A.V / (which is defined up-to translations inA.V /) is onto forNC � 1

2
rank.H1.V //

and if NC >> rank.H1.V //, in fact, NC > rank.H1.V // suffices, then the fibers
of ˛NC are complex projective spaces.

(This agrees with algebraic topology: the homotopy types of the symmetric

powers V
N
sym , for any V , converge as N ! 1 to the product of the Eilenberg-

MacLane spaces, K.H1.V /; 1/ 
 K.H2.V /; 2/ 
 : : : 
 K.H2m.V /; 2m/ for m D
dimC.V / by the Dold-Thom theorem.)

However if dimC.V / � 2, then the quotient space Z0.V /= �rat may be
much greater than the Albanese variety A.V /, in fact Z0.V /= �rat is infinite
dimensional in most cases (see [66]). I wonder if the rate of growth of the dimension

of V
N
sym = �rat for N ! 1 has ever been looked at. Also, the geometry of

.Z0.V /;DISTrat / may be interesting.
Possibly, one can remedy this by limiting Z0.V / to a certain subspaceQ0.V / �

Z0.V / (similar to quasi-orbits in the Shub-Francs case) and/or by strengthening
the �rat relation. For example, instead of chains of rational curves, one may try
chains of surfaces S � Z0.V / such that H1.S IR/ D 0, but this does not look
pretty.

Traditionally, if V � CPM is projective algebraic, one makes A.V / from A.C /

for generic curves C � V , that are intersections of V with M 0-planes CPM 0 �
CPM , M 0 DM � dim.V / � 1, in general position, since

the Albanese variety A.V / equals the maximal common quotient space (Abelian
variety) of the Jacobians A.C / of generic curves C � V .

(The suitably augmented category of the Abelian varieties that are Jacobians of
all non-singular curves in V seems a nice comprehensive invariant of V ; it, probably,
has been studied by algebraic geometers, but I am not an expert.)

To see this, let fC W C ! A be a holomorphic map from a genericC � V to a flat
Kählerian torus A. Such a map extends to a continuous map f W V ! A if and only

if the homology homomorphism .fC /� W H1.C / ! H1.A/ factors as H1.C /
emb�!

H1.V /
h! H1.A/ for some h, where emb� is the inclusion homomorphism for

C � V .
Granted such an f , we restrict it to all curves Cg D V \ CPM 0

g in V , for

V � CPM � CPM 0

g which are obtained by varying M 0-planes in CPM � V

(parametrized by the corresponding Grassmannian G 3 g) passing through a given
point v0 2 C � V � CPM , where we want this v0 to go to 0 2 A.V /.

Deform the resulting maps Cg ! A to harmonic ones, say fg W Cg ! A, all
sending v0 ! 0 2 A. These maps, as we know, must be all holomorphic because
of [Tol]conv (see the end of previous section) and, consequently, holomorphically
depending on q.
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It follows, that if two such curves, say Cg1 and Cg2 intersect at a point v 2 V ,
then fg1.v/ D fg2.v/, since Cg1 and Cg2 can be joined by a rational curve, say P , in
the space of all C passing through v0 and v and, since every holomorphic map, such
as p 7! fp.v/, from a rational P to A is constant, these fg define a holomorphic
map V ! A.

However, it is not apparent (at least to the author) how to see in a simple
geometric way (without using Hodge theory or Picard varieties) that the maximal
common factor (or, rather, the maximal quotient space) of the Jacobians A.C / has
the C-dimension equal one half of the rank of H1.V /.

4.8 Deformation Completeness and Moduli Spaces

Let us look from a similar perspective at other curve deformation complete, e.g.
[Tol]conv, spaces W , such as W D Hm

C
=� for a free discrete undistorted (e.g.

cocompact) group � � isohol .Hm
C
/.

Let C be a non-singular projective algebraic curve (Riemann surface) of positive
(preferably large) genus and ˛C W C ! W be a non-constant holomorphic map.

Such a map may be non-unique in its homotopy class, as in the above case of
flat Kählerian tori and then we need to normalize this map as we did it with SDP
in Sect. 4.6. This, however, is a minor issue and we assume ˛C is unique in its
homotopy class as forW D Hm

C
=� .

Denote by M DM.C / the Riemann moduli space of deformation of this curve
C and let C ! M be the “universal curve” over M that is the space of C with
marking points c 2 C .

Let bC 2M be the point corresponding to C and denote by B D B.C;W / the
union of all algebraic curves B � M, such that B 3 bC and such that the map
˛C W C ! W extends to a continous map ˛S of the complex surface S D CjB over
B , that is the restriction of the universal curve to B , to W .

Recall that these continuous maps ˛S W S ! W are homotopic to holomorphic
ones ˛holS W S ! W in the curve deformation complete case and we additionally
assume these are unique.

Denote by D D D.C;W / � C the universal curve restricted to B � M and
denote by A W D ! W the map compiled by ˛holS for all above B � M and S
over B .

(Since M is an orbifold, rather than a manifold, where the orbi-singular points
in M correspond to curves with non-trivial symmetries, one should, to be faithful
to the truth, pass to the universal orbi-coverings QM take the corresponding QC ! QM
and to formulate everything in terms of equivariant maps from QC to the universal
covering of W . And if one wants to stay in the algebraic category, one may use
finite coverings of sufficiently high level.)

Notice that for [Tol]conv manifoldsW the subspace B equals the minimum set of
the (C-convex) minimal energy function b 7! Emin.Cb/, b 2M, for maps from the
fibers Cb of the universal curve into W .
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Also observe that if W is finite dimensional, then B � M is a C-algebraic
subvariety in the moduli space of curves and that A W D ! W is a holomorphic
map.

Let W � CPM be projective algebraic, apply the above to a generic curve C D
W \CPM 0

,M 0 DM �mC1,m D dimC.W /, and observe that the closure of B in
a suitably compactified M equals, in this case, the Grassmann manifold Gk.CPM /

of k-planes CPk � CPM and that the fibers of the map A W B ! W are rational
varieties.

The essential specific feature of our W , besides the (assumed) injectivity of the
tautological classifying mapGk.CPM /!M for g 7! Cg D CPk

g \W (defined on
the Zariski open subset in Gk.CPM / corresponding to non-singular curves) is that
the image B of this map has a “semitopological” description, being the maximal
algebraic subset in M, such that D � C over it admits a continuous map to W
extending this from some curve C 2 D.

Questions. Can one intrinsically, in terms of the moduli spaces M of curves of all
genera, relate these B and the maps A W D ! W associated to different projective
embeddings of W ?

Is the canonical embedding W ! CPMh�1 associated to the space Hm (of
dimension Mh) of holomorphic m-forms on W is of a particular interest in this
picture?

Can all this (which is just a reformulation of Sui-Sampson-Carlson-Toledo
theorem) be actually used for (re)construction of spaces like Hm

C
=� ?

“Internalization” of Deformation of Surfaces. One can do a little of such
“reconstruction” with moduli spaces of surfaces rather than of curves (where, of
course, these spaces are not so readily available for sightseeing.)

Namely, let S ! M D M.S/ be a “universal surface” where S and M are
projective algebraic varieties and P W S !M DM.S/ a surjective holomorphic
parametrization map, where S is non-singular over a generic point in M, where
generic fiber S � S is a smooth surface and such that all (isomorphism classes of)
smooth deformations of S are among the fibers of P W S !M.

Let W have rankdfm
hmt=hol.W / D 2, e.g. W D Hm

C
=� . Then, by the very definition

of rankdfm
hmt=hol,

every holomorphic map S ! W extends to a rational map S ! W ; moreover
if S is non-singular and W contains no rational curve (which may follow from
[Tol]�conv) then this rational map is holomorphic.

Notice that universality of S is non-essential for this statement but is relevant for
identification/realization of spaces like Hm

C
=� .

For example, (this is significant starting from dim.W / D 3) assumeW � CPM

is projective and take the intersections of W with all .k C 1/-planes CPM 0C1
g �

CPM , g 2 GM 0C1.CPM /, M 0 D M � dim.W /C 1.
Then these intersection surfaces make the full moduli spaces M of these surfaces

(ı.e. every “abstract deformation” of S D W \ P
kC1 is “internal” – it comes from

moving the k-plane CPkC1 � CPM ) and W comes as a quotient of the universal
surface S over this M where the quotient map S ! W has rational fibers.
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As we mentioned earlier, this “internalization” is a purely algebraic property
which makes sense for varieties over an arbitrary field, but it is unclear, for example,
in what form it holds (if at all) for mod p reductions of W D Hm

C
=� .

Questions. Let the inclusion homomorphism �1.S/ ! �1.W /, for a non-
singular surface S � W D Hm

C
=� , is an isomorphism.

Is such an S “mobile” in the sense that its deformations cover all of W ?
Can mobile generic surfaces in other locally symmetric Hermitian spaces W

without flat factors have “external” deformations?
(The probable answer is “No”, which may (?) lead to examples where

rankdfm
hmt=hol < rankhmt=hol)

A related group of questions is motivated by the concept of Kähler hyperbolicity
(see [6, 31].)

Let � be a finitely presented group with even dimension dimQhmt .� / D 2m and
such that H2m.� IQ/ D Q. Let  2 H2.� IR/ be a hyperbolic “Kähler” class, i.e.
m ¤ 0 and where “hyperbolic” means that it is representable as the differential
(coboundary) of a bounded (non-invariant) 1-cochain. For example, if � is word
hyperbolic, then all 2-cocycles are hyperbolic.

Basic Questions. When does there exist a Kähler space Y with a discrete
isometric action of � , such that the Kähler class of Y corresponds (in an obvious
way) to ?

If such spaces Y do exist, can one evaluate rankhmt=hol.Y=� / and identify those
where this rank is minimal?

One knows (see [31]) that if such a Y is finite dimensional, topologically
contractible and non-singular and if the quotient space W D Y=� is compact,
(probably these conditions can be significantly relaxed), then Y supports a huge
Hilbert space ˝m

L2
D C

1 of square integrable holomorphic m-forms, m D
dimC.Y /, where the � -equivariant Bergman evaluation map B W Y ! CP1 (for
this CP1 being the space of hyperplanes in C

1 D ˝m
L2

) is, generically, one-to-one.
When does the Bergman metric on Y induced byB (from the Fubini-Studi metric

on CP1) hasKC � 0?
Is there an effective criterion (criteria) expressible entirely in terms of the group�

for the � -invariant 2m-dimensional homology class in this CP1, corresponding to
the B�-image of the � -invariant fundamental class ŒY �� of Y , (that is, essentially,
the same as ŒW � 2 H2m.W /) to be representable by an m-dimensional � -invariant
complex analytic subvariety Y 0 � CP1 with compact quotientW 0 D Y=� ?

The first difficulty to overcome is to identify the Hodge component ˝m
L2

of
holomorphic L2-forms in the full L2-cohomology Hm

L2
.Y IC/ in terms of �

alone.
Then you, probably, need to pinpoint the correct � -invariant Hermitian-Hilbert

metric on the linear space C1 D ˝m
L2

in order to have a useful metric on our CP1.
Granted this, you can formulate the necessary and sufficient condition in term of

the minimal 2m-volume of the homology class corresponding ŒY �� . but it remains
unclear how to compute this volume in specific examples.
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Alternatively, one can consider all (suitably homologically normalized)
Hermitian-Hilbert metrics HH on Hm

L2
.� IC/ and minimize this minimal

2m-volume in the corresponding projective space (acted upon by � ) over all HH .
But it remains highly problematic how to compute these minimal volumes in

specific examples.
A more general and promising class of questions is as follows:
Which complex invariants of a Kähler manifold W “essentially” depend on the

fundamental group � D �1.W /?
For example, is there a Kählerian counterpart to Novikov’s higher signature

conjecture?
Namely, letW ! K.�; 1/ be the Eilenberg-MacLane classifying map and h2i 2

H2i .W IQ/ be a cohomology class coming from H2i .K.�; 1/IQ/ via this map.
Let cn�i 2 H2n�2i .W IQ/, n D dimC.W /, be a linear combinations of product of
certain Chern classes of W .

Does the value .h2i ^ cn�i /ŒW �, for the fundamental class ŒW � 2 H2n.W / D Z,
actually depend on the complex structure inW or only on the homotopy type ofW ?

If not, what should one add to make it true?
For example, do the Chern numbers of a W with contractible universal covering

depend only on �1.W /?

4.9 On Kählerian and Hyperbolic Moduli Spaces

The Abel-Jacobi-Albanese construction needs a choice of a complex structure in
the target torus covered by C

n. This can be compensated by considering the moduli
space Bn of all such structures, where, however, some caution is needed, since
some complex tori, e.g. Cn=Z2n for n � 2, admit infinite groups of complex
automorphisms.

Accordingly, the moduli space of the complex 2n-tori A, that is an orbispace
which is locally at a point b0 D bA0 corresponding to A0 equals the quotient of
a complex analytic space of deformations of the complex structure in A0 by the
automorphism group of A, has a pretty bad singularity at this b0.

To remedy this, one fixes a polarization i.e. a translation invariant non-singular
2-form !0 on a torus and considers the moduli space of the isomorphism classes of
the invariant complex structures where this !0 serves as the imaginary part of an
invariant Hermitian metric.

The resulting moduli space Bn of Kählerian tori is a non-compact locally
symmetric Hermitian orbi-space of finite volume, that is a quotient of a Hermitian
symmetric space Y by a discrete isometry group � D �n D �orbi1 .Bn/, also
denoted �Y .

These tori A themselves, parametrized by Bn, make the universal family, say
An ! Bn where the fibers represent the isomorphism classes of all these A.
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The Abel-Jacobi-Veronese theorem says in this language that
every continuous map map from a compact Kähler manifold V to a fiber

Ab0 � An, b0 2 B, which induces an isomorphism H1.V /=torsion ! H1.Ab0/,
is homotopic to a holomorphic map V ! A with the image in a single fiber Ab ,
b D b.V / 2 Bn.

The universal orbi-covering space QAn of An has a natural structure of a
holomorphic vector bundle over Y , where this bundle carries a � invariant flat
R-linear (but not C-linear) connection.

On the other hand, since Y is topologically contractible as well as Stein, this
bundle is holomorphically (non-canonically) isomorphic to the trivial bundleY 
Cn.

The Galois group �A of the covering map QAn ! An is the semidirect product
� Ë Z

2n, for the monodromy action of � on Z
2n and where the action of �A on

QAn D Y 
 C
n is C-affine on the fibers y 
 C

n � QAn

This monodromy action � on Z
2n is of the kind we met in Sect. 2.3 (where we

discussed/conjectured the super-stability of such actions) and the Siu theorem for
equivariant map X ! Y can be reformulated in “dynamics” terms as well.

Namely, let X be a complex analytic space with a discrete action of �X �
isohol .X/ and f W X ! Y be an h-equivariant continuous map for a homomor-
phism h W �X ! � D �Y . Regard the trivial bundle X 
 C

n ! X as that induced
from QAn ! Y and, thus, lift the action of �X on X to a continous fiber-wise C-
linear action of �X on X 
 C

n ! X .
If the map f is holomorphic, then so is this lifted action, and, whenever Siu

theorem applies, the continuous action of �X on X 
 C
n ! X is equivariantly

homotopic to a holomorphic action.
(The moduli space Bn and its finite orbi-covers contain lots of compact Hermitian

totally geodesic subspaces, e.g. some W locally isometric the complex hyperbolic
spaces Hm

C
. The Siu theorem applies, for example, if the image of h is contained in

the fundamental (sub)group of such a W and rankhmt.f / > 2.)
Besides the action of �X , the map f induces an action of Z2n on X 
 C

n by
parallel translations in each fiber x 
 C

n, where the two actions together define
an action of the semidirect product � 0

X D �X Ëh Z2n where �X acts on Z
2n as

h.�X/ � �Y .
If the map f is holomorphic, so is the action of � 0

X on X 
 C
n.

Conversely,
if such an action is holomorphic to start with, it defines, by the universality of

An, an equivariant holomorphic map f W X ! Y .
This reformulation does not seem to help in proving Siu-type properties, but it

raises the following

Questions

(a) Are there other instances of holomorphic �X -spaces X , such that a continuous
lift of a discrete �X -action fromX to a fiber-wise linear and/or fiber-wise affine
action on a holomorphic vector bundle over X can be predictably deformed to
a holomorphic lift?
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(b) Let W 0 ! W be a holomorphic fibration where the fibers are Kählerian tori.
Let f0 W V ! W 0 be a continuous map, such that its projection to W is (known
to be) homotopic to a holomorphic map V ! W . (We may additionally insists
that this fibration admits a holomorphic section.)
Under what geometric conditions on W 0 (in particular, concerning the classi-
fying map from W to the moduli space B of Kählerian tori) and homotopy
conditions on f0 is the map f0 itself homotopic to a holomorphic map?
(We look for an answer that would embrace the Albanese theorem correspond-
ing to W being a single point along with the Siu theorem where one has to
require, in particular, that the homotopy rank rankhmt.f0/ equals that of the
projection of f0 to W .)

(c) The latter question has a counterpart in hyperbolic dynamics that we formulate
below in the simplest case.
LetW be a manifold (or orbifold) of negative curvature and let W 0 ! UT .W /

be an n-torus fibration over the unite tangent bundle of W .
Let the geodesic flow on UT .W / lift to an R-action on W 0 which maps
T
n-fibers to fibers and such that the return map T

n
u ! T

n
u , u 2 G � UT .W /,

over every periodic orbit (closed geodesic)G in UT .W /, is a linear hyperbolic
automorphism of Tnu .
(An inspiring example of such a W 0 is the lift of the universal elliptic curve A1

over the modular curve W D B1 to UT .W /, where the R-action is Anosov
hyperbolic and where the return maps T2 ! T

2 simultaneously and coherently
represent all hyperbolic automorphisms of T2 by monodromy transformations.)
What is the (super)stability range of this R-action on W 0?
Namely, let V 0 be a topological, say compact, space with an R-action and f0 W
V 0 ! W 0 be a continuous map. (IfW is an orbifold, one has to formulate this in
terms of equivariant maps between universal orbicoverings of our orbispaces.)
Under what circumstances is f0 homotopic to a continuos map V 0 ! W 0 which
sends R-orbits in V 0 to R-orbits in W 0?

4.10 Symbolic and Other Infinite Dimensional Spaces

Interesting (semi)group actions on compact complex spaces X appear only sporadi-
cally, where some of these, e.g. holomorphic actions of ZC on the 2-sphere (rational
curve), have been extensively studied under the heading of complex (holomorphic)
dynamics.

On the other hands there are lots of infinite dimensional spaces holomorphically
acted upon by pretty large groups. Below is a particular construction of such spaces.
� -Power Categories. Let K be a “geometric” category, e.g. the category of

Kähler or complex algebraic spaces, or a category of dynamical systems and let
� be a countable group. Define the category � K by Markovian recipe as follows.



224 M. Gromov

The objects X 2 � K are projective limits of finite Cartesian powers K� for
K 2 K and finite subsets � � � . These X are naturally acted upon by � and
the admissible finitery morphisms in our � -category are � -equivariant projective
limits of morphisms in K, where such a morphism F W X D K

�

1 ! Y D K
�

2 is
defined by a single morphism in K, say by f W K�

1 ! K2 where � � � is a finite
(sub)set.

Namely, if we think of x 2 X and y 2 Y as K1- and K2-valued functions x.	/
and y.	/ on � then the value y.	/ D F.x/.	/ 2 K2 is evaluated as follows:

Translate � � � to 	� � � by 	 , restrict x.	/ to 	� and apply f to this

restriction xj	� 2 K	�

1 D K�

1 .
In particular, every morphism f W K1 ! K2 in K tautologically defines a

morphism in K� , denoted f � W K�
1 ! K

�
2 , but K� has many other finitery

morphisms in it.
(Apparently, the right setting for K� is where K is a multi-category and where, in

particular,� -equivariant transformations of spacesK� represent certain “branches”
of operads in K.)

Moreover, there may exist extra (non-finitery) � -equivariant morphisms in K�

for certain categories K. For instance, if K is the category of topological spaces,
then continuos � -equivariant maps do not need be, in general, finitery. Also one
can naturally define continuos holomorphic maps K�

1 ! K
�

2 for complex analytic
K1 and K2.

Let us enrich K� by adding new objects to it defined by “equivariant systems
of equations” in X D K� , e.g. by F1.x/ D F2.x/ for two morphisms F1; F2 W
X ! Y for some Y 2 K′

� . Then introduce quotients of (old and new) objects X
by equivalence relationsR � X 
X , that are subobjects in our category.

Most of finite dimensional questions in algebraic geometry and complex analysis,
as well as in dynamics, e.g. concerning rankhmt=hol, superstability, etc., automat-
ically extend to the corresponding � -categories, where they acquire a dynamics
component coming from the � -actions. (See last section in [40] and references
therein.)

Furthermore, some finite dimensional results pass to � -categories by just taking
projective limits, and, in rare cases, finite dimensional proofs also extend to K� .

But the predominant number of obviously formulated problems in � -categories
still wait their solutions [38].

Sample Questions.

(a) Let K be the category of complex projective algebraic manifolds, let X � K�

1

be a subobject and Y D K�

2 , whereK2 D Hn
C
=� .

If the group � is amenable then one can, probably, define meanrankhmt.F /

(similarly to meandim in [37],) for continuous � -equivariant maps F W X !
Y , and show that every continuous � -equivariant maps F W X ! Y with
meanrankhmt.F / > 2 is � -equivariantly homotopic to a holomorphic map.
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(b) An alternative to the K� setting is that of compact infinite dimensional concen-
trated mm-spaces (see [38]) foliated by Hermitian-Hilbertian manifolds. Can
one develop the full fledged non-linear Hodge theory for such spaces and apply
this for proving Siu-type theorems in the “maximally extended/completed”
Kähler � -categories?

(c) Let K be the category of algebraic varieties defined over Z. Then the Fq-points
of an object X in the (extended) category K� make an ordinary Markov
hyperbolic � -dynamical system, say X.Fq/:
What are the patterns in the behaviour, say, of the topological entropies of
X.Fq/ for q D pi and i !1, or, more interestingly, for p !1?
(One may expect a satisfactorily general/concise answer for � D Z, but one,
probably, needs strong assumptions on X for more general amenable and sofic
groups � .)

(d) The Markovian dynamical � -systems X.Fpi / converge in the model theoretic
sense to X.C/. Is it has anything in common with Markovian presentations in
Sects. 2.5 and 3.1?
Is there anything special from the dynamics point of view about the � -systems
X.Fq/?
Notice that the � -spacesX.Fpi / converge in the model theoretic sense toX.C/
for p; i ! 1, [36], but it is unclear if there is any link between this and
Markovian presentations in Sect. 2.5.

The above � -spaces also make sense for continuous, e.g. Lie, groups � , where
the relevant equations defining “subobjects” are partial differential ones.

A particular instance of such a space is that of holomorphic maps from � D C

to an algebraic manifold, or more generally, an almost complex manifold K (see
[37, 61]).

The dynamics of the action of C as well as of the group of C-affine transforma-
tions of C, on spaces of holomorphic maps C ! K , e.g. the structure of invariant
measures on such spaces can be seen as a part of the Nevanlinna value distribution
theory (See [24, 61] for the first steps along these lines.)

Concluding Remarks. There are other parallels between complex geometry and
dynamics. For example, conjectural lower bounds on the topological entropy and on
the full spectrum of intermediate entropies, (defined in 0.8.F in[35]) of continuous
actions on an X in terms of the corresponding asymptotic invariants of the induced
actions on �1.X/ (a correct/ definition of such invariants is not so apparent) are
vaguely similar to the Hodge conjecture.

But the main question remains open:

Is there something more to all these “parallels” than just the universality of the
categorical/functorial language?.
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manuscript.
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studi di Bologna, Dipartimento di matematica, Bologna, 1992), pp. 55–99
33. M. Gromov, Asymptotic Invariants of Infinite Groups. Geometric group theory (Sussex, 1991),

vol. 2, London mathematical society lecture note series, vol. 182 (Cambridge University Press,
Cambridge, 1993), pp. 1–295

34. M. Gromov. Positive curvature, macroscopic dimension, spectral gaps and higher signatures,
in Functional Analysis on the Eve of the 21st Century, Volume II, ed. by S. Gindikin et al., (In
honor of the eightieth birthday of I. M. Gelfand). Proceedings conference, Rutgers University,
New Brunswick, 24–27 October 1993. Progress in mathematics, vol. 132 (Birkhäuser, Basel,
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A Smooth Multivariate Interpolation Algorithm

John Guckenheimer

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract This brief paper introduces an algorithm for smooth interpolation of a
multivariate function. The input data for the algorithm consists of a set of function
values and derivatives up to order r on a finite set of points E. The algorithm
utilizes the Voronoi diagram of E to construct a partition of unity that isolates the
points of E . Averaging locally defined functions with the partition of unity yields
the interpolating function. There are no special cases; the algorithm treats all input
data uniformly. The paper describes a test problem, the computation of a surface
that is defined as the level set of a function of three variables. This test demonstrates
that the algorithm produces approximations whose order corresponds to the degree
of the derivatives in the input data.

1 Introduction

This paper is dedicated to Steve Smale, my PhD advisor. Steve has been a continuing
inspiration to me throughout my career: his influence is apparent in this work.
Numerous times, Steve investigated carefully chosen problems in areas that were
new to him at the time. His approach has been to think about a subject from first
principles and reshape it himself – typically with a perspective that reflects his
mathematical roots in differential topology. Emulating his boldness, I tackle here a
subject new to me – multivariate interpolation – from first principles. My viewpoint
appears simple from the perspective of multivariable calculus, but different from
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those I have found in the numerical analysis literature on the subject. Hopefully,
these ideas will lead to further developments of broad applicability.

The problem of multivariate interpolation is closely related to the Whitney
extension theorem. A Whitney field of degree r on a finite set E � <n is a map
�r W E ! Pr where Pr is the space of polynomials P W <n ! < of degree r .
We seek a C1 function f W <n ! < whose Taylor expansion of degree r at each
x 2 E is given by �r .x/. In the context of manifolds, �r .x/ is an r-jet of f at each
x 2 E and the r-jet of f restricted toE is �r . This interpolation problem is a special
(trivial) case of the Whitney extension theorem with many solutions, and further
criteria will typically be imposed to select among these. For example, Fefferman
et al. [2] have investigated the algorithmic construction of f with minimal or near
minimal C rC1 norms. This paper approaches the problem experimentally, looking
for simple constructions that are easily implemented and tested on examples.
Criteria of simplicity are not readily captured in formal terms, so specification of
what makes for a “good” extension would be premature in these early stages of this
research. The criterion used here to assess the quality of interpolants is to begin with
a Whitney field that is the restriction of a C1 function g to E , and then test how
well the constructed interpolant f D fE approximates g as E and r vary. This begs
the question of whether the function g would be chosen as a “good” interpolant, but
our choices of g reflect the types of functions we seek to approximate. Fixing g, we
would like to find a family of interpolants with the property that fE � g tends to 0
in the C rC1 norm as the mesh diameter of E tends to 0.

The interpolation problem arises in different areas. The immediate motivation
here is accurate computation of level surfaces of a map F W <m ! <k . Individual
points of such a surface are readily computed with root finding algorithms. Jets can
also be determined as solutions of a hierarchy of equations obtained by differen-
tiating F . Our goal is to smoothly blend patches defined by these jets in order to
obtain high order accuracy in approximations of a level surface. We accomplish
the blending by averaging the functions with carefully selected partitions of unity.
Numerical tests indicate that this strategy does yield substantial improvements
compared to prevailing methods for representing level surfaces, especially when
compact representations are desired. Our tests take input data from Multifario [3], a
multiparameter continuation toolbox for computing implicitly defined manifolds.
Multifario produces discontinuous, polyhedral approximations to surfaces under
investigation. Our methods seek smooth surfaces that give better approximations
to the manifold based upon the same mesh.

Interpolation problems arise also in computer graphics. Specifically, many
motion capture systems are based upon video tracking markers on a moving object.
The surface of the object is reconstructed from the marker measurements. There
are two differences from the interpolation problem formulated above: (1) the data
is in the form a point cloud in <3 that may lie on a folded surface that is not
the graph of a function, and (2) many familiar objects are piecewise smooth and
have ridges and corners that are an important part of their geometry. Nonetheless,
reconstruction of local surface patches is essentially the problem described above.
So it is instructive to look to computer graphics for rendering methods that have
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been developed in that setting. One class of prevailing methods produces subdivision
surfaces [5]. Iterative piecewise linear refinements of a polygonal mesh converge to
a C1 (in a few cases C2) surface. Each step of the iteration is based upon using
a local stencil to produce new mesh points. The iteration is continued until the
mesh spacing is comparable to the resolution of the rendering. Depending upon the
scheme, the iterates may only approximate the input data or they may interpolate
it exactly. One of the awkward considerations in the subdivision schemes is that
the refinement rules depend upon the local connectivity of the mesh: the number
of polygons adjacent to each vertex matters. Nonetheless, the methods are fast and
readily implemented on graphics processing units. The limited smoothness of these
methods results from self similarity: smooth manifolds become more and more
linear on shorter length scales. In contrast, our methods rely upon forming smooth
averages of patches defined by explicit formulas.

2 Algorithm

This section describes an algorithm for computing a C1 function f W <n ! < that
interpolates a Whitney field �r on the finite set E . The Whitney field �r consists of
r � jets at each of the points of E D fxj g; 1 � j � N . This is used to construct
a C1 function f that interpolates the data �r . Given query points yk 2 <n, the
algorithm returns output f .yk/.

The construction of f is based upon partitions of unity. Recall that a partition of
unity of a C1 manifold M subordinate to the open covering Uj of M consists of
C1 functions 'j WM ! < with the following properties:

• 'j � 0 with support contained in NUj .
• For each x 2M , only a finite number of 'j .x/ are nonzero.
• For each x 2M ,

P
j 'j .x/ D 1

If fj W M ! < is a collection of C1 functions with the same index set as the
partition of unity,

P
j 'j .x/fj .x/ is the average of the fj with respect to the

partition of unity. Note that it suffices that the domain of fj contains Uj and that
the average is a C1 function.

We construct a partition of unity indexed by the set E so that xk is in the support
of 'j if and only if k D j . (For brevity, we write 'xj D 'j .) If the functions fj
represent the jets �r .xj / and are defined in domains that contain the supports of
the 'j , then

f .x/ D
NX

jD1
'j .x/fj .x/ (1)

is a smooth interpolating function for the Whitney field. Here N is the number of
points in E . One specific choice for fj is the polynomial Pj of degree r whose jet
at j is �r .xj /. At the point xj , the functions 'k; k ¤ j vanish together with all
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their derivatives. Thus the only term that contributes to the r-jet of f is 'jPj . Since
'j D 1C o.jx � xj jr /, the r-jet of 'jPj is the r-jet of Pj at xj .

The key aspect of the construction of f is building a cover that isolates points
of E and a partition of unity subordinate to that cover. The first step in this
process invokes a standard algorithm [1] to compute the Voronoi diagram of E .
This tessellation has cells Vj defined to be the points that are closer to xj 2 E
than to other points of E . Observe that if we scale Vj by a factor of 2, then the
enlarged cell Wj contains no points of E other than xj in its interior. Precisely,
Wj D fxj 12 .x C xj / 2 Vj g. Because 1

2
.xk C xj /; j ¤ k is not in the interior of

Vj , xk is not in the interior of Wj . The Wj are a cover of Rn because Vj is in the
interior of Wj and every point x is in a Vj .

The members of the partition of unity 'j will be functions whose support are
precisely the Wj . Let � be a face of Wj and L� be a linear function that vanishes
on � and is positive on the interior of Wj . Then the function

Q
L� , the product

being over all the faces of Wj , is positive on the interior of Wj and vanishes on its
boundary. If gj are arbitrary smooth functions that are positive on the boundary of
Wj , then

 j .x/ D
8
<

:

exp

�

� gj .x/
Q
L�.x/

�

x 2 Wj

0 x … Wj

is a C1 function. In particular, j and all its derivatives vanish as x approaches the
boundary of Wj . We set

'j .x/ D  j .x/
P
 j .x/

to obtain a partition of unity. The functions gj can be used to help “shape” the bump
functions 'j and modify their gradients near the boundary of Wj . This may help in
reducing the derivatives of the blended function f due to large derivatives of the 'j .

Evaluation of f at y 2 <n requires a list of the Wj for which y 2 Wj . With this
list, the values of  j .y/ are computed, and finally

f .y/ D
P

j  j .y/fj .y/
P

j  j .y/
:

3 Example

Henderson [3] developed Mulitfario, a collection of algorithms for multiparameter
continuation of k-dimensional level sets of a map RnCk ! Rn. He used the
computation of a 2-dimensional torus embedded in R3 as a test case. This torus
T is the zero set of the function

�
x2 C y2 C z2

	2 C 39

50
z2 � 11

50
x2 � 11

50
y2 C 1521

10000
(2)
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Fig. 1 The torus T2=5

It is the surface of revolution whose intersection with the .x; z/ plane is the circle of
radius 1=2 centered at .4=5; 0; 0/. See Fig. 1. Here we use computation of a portion
of this torus to test the performance of the algorithm described above. We take output
from a Multifario computation of this torus as our starting point. In Multifario,
manifolds are represented by discrete sets of points pj together with approximations
to their tangent spaces at these points. The manifolds are approximated by polytopes
whose boundaries are equidistant between a pair of pj . This gives a discontinuous
geometric object: there are gaps at the boundaries of the polytopes. Our algorithm
produces smooth interpolations of a portion of the torus represented as a graph of a
function Fz.x; y/. Denoting by Tc the part of the torus with Fz > c, we apply the
algorithm described above to T2=5. To avoid issues related to boundaries, we select
the mesh points produced by Multifario on the larger surface T1=5 and project these
onto the .x; y/ plane, obtaining the set of points E . We next evaluate the jets of
degree 4 of Fz to obtain a Whitney field � on E for T1=5 via explicit formulas for
Fz and its derivatives. The program Maple was used to generate formulas for these
derivatives, and they were evaluated with Matlab.

We computed interpolations of � with the algorithms described above, im-
plemented in Matlab. Algorithms from the Computational Geometry Algorithms
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Fig. 2 A three dimensional plot of the residuals between the zero set of the function (2) and the
interpolation of three jets at the (added) points of the barycentric subdivision of the mesh produced
by Multifario

Library (CGAL) that have been incorporated into Matlab [4] were used to compute
the Voronoi diagram ofE . The cells of the Voronoi diagram were then expanded by
a factor of 2 from the interior mesh point to obtain supports for a partition of unity of
a region containing the annulus A2=5 defined by 0:5 < r < 1:1 in the .x; y/ plane.
The values of interpolations of the Whitney fields � of degrees 1–4 at the vertices
of the barycentric subdivision of E were compared with explicit evaluation of the
function Fz at these points. We denote the differences of these values by Rj , the
subscript labeling the degree of the interpolation.

Figure 2 plots a piecewise linear interpolation of the computed residuals of R3
on the annulus A2=5. There are 695 points in the mesh E output from Multifario;
residuals of interpolations at 1,819 mesh points of the barycentric subdivision are
plotted in the figure. The figure illustrates vividly two observations: (1) the largest
residuals are close to the boundary of the annulus where the function Fz has a larger
gradient and mesh triangles with a larger aspect ration, and (2) there are a few
outliers at which the residuals have large relative magnitude. The largest magnitude
of the residuals is approximately 3.35e�4. To obtain another perspective on the
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Fig. 3 A histogram of logarithmically transformed residuals between the zero set of the func-
tion (2) and interpolations of three jets at the (added) points of the barycentric subdivision of the
mesh produced by Multifario

Table 1 Accuracy of the interpolation on A2=5 by averaged jets of degrees 1–4 is summarized for
two different meshes with the values of the maximum magnitude of the interpolation error and the
mean of the logarithms of these magnitudes
Degree Mesh points Int points Max residual Mean log resid

1 695 1,632 0.0066 �6.13
2 695 1,632 8.04e�4 �10.0
3 695 1,632 3.35e�4 �11.2
4 695 1,632 1.44e�4 �14.0
1 4,075 9,757 0.0016 �8.09
2 4,075 9,757 8.54e�5 �13.4
3 4,075 9,757 2.16e�5 �15.2
4 4,075 9,757 3.87e�6 �19.4

accuracy of the interpolation, Fig. 3 plots a histogram of the logarithm of the residual
magnitudes. The mean of these logarithms is approximately �11:2, representing a
residual of magnitude approximately 1.32e�5. The largest residual is due primarily
to a single cubic Taylor polynomial based at a point p ofE near .1:07;�0:026/ that
is evaluated at a point q close to .1:12; 0:035/. Note that p lies near the boundary
of A2=5 and q lies outside it.

Table 1 summarizes the effects on accuracy of interpolation due to mesh
refinement and increasing jet order. Both refinement and increasing jet order con-
sistently improve accuracy as measured by maximum residuals and the mean of the
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logarithmically transformed residuals. These data can be compared with estimates
of the residuals from polyhedral approximations in the tangent spaces of points of
E like those used in of Multifario. We compared the values of these polyhedral ap-
proximations at the edge points added to the barycentric subdivision ofE . These are
midpoints of segments joining the mesh points in adjacent cells. The maximum size
of the gaps at these points is approximately 0.0044 and the mean of the logarithms
of the gap sizes is approximately �8.16. We also computed the residuals between
the correct value of z and the average of the values from the two polyhedra. The
magnitude of the residuals was smaller than 0.0090 and the mean of the logarithms
of the residuals was approximately �6.58. The residual magnitudes are similar to
those obtained from the partition of unity averages when using jets of degree 1.

These results are expected since the partition of unity is also averaging linear
approximations to the function at the mesh points E . Note that averaging itself is
insufficient to increase the accuracy of linear approximations. This is readily seen
from the following example: consider a convex function f W < ! < and linear
approximations to f at two points x1 < x2. There will be a x1 < y < x2 so that both
linear approximations give the same value at y. In this case, all weighted averages
are the same and the residual with the value of f isO.jy�xj j2/. This indicates that
the accuracy of approximation of our interpolation method rests with the accuracy of
the individual patches: averaging with a partition of unity smooths the interpolating
function while doing little to improve the C0 accuracy of approximation.

4 Discussion

There is a vast gap in approximation theory for univariate and multivariate functions.
Expansion of univariate analytic functions in suitable bases such as Fourier series
or Chebyshev polynomials yields highly accurate approximations that can be
used to interpolate function values. Analogous methods for multivariate functions
do not seem to be prevalent. We demonstrate here how standard algorithms of
computational geometry can be used as the foundation for smoothly interpolating
functions with partitions of unity. The partitions of unity average or blend surface
elements while preserving their values and the values of their derivatives at a set of
mesh points. The methods are independent of the geometry of the mesh and simple
to implement. We end with two additional remarks.

One of the slowest parts of the algorithm implemented for this paper is testing
which domains Wj of the partition of unity contain a point y at which the
approximation is to be evaluated. In most circumstances, we expect that the number
of such domains will be small and that a local calculation will suffice to find the
Wj . However, the following example illustrates the case that all domains intersect
at a single point. Consider the set E D fexp.2�i j

N
; 0 � j < N g in <2 regarded

as the complex line. The Voronoi diagram of E consists of N sectors with apex at
the origin. Each setWj of the corresponding cover contains the origin in its interior.
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This will remain true if the points of E are perturbed. Thus, there are no bounds on
the number of sets Wj that can overlap at a single point. On the other hand, if the
Voronoi cells within a region each are contained in a ball of radius R, then we need
only examine sets Wj whose centers are within distance 2R of y to find all the Wj

that contain y. We expect that this observation can be used to significantly decrease
the run time of the algorithm.

Theoretically, we would like to be able to estimate the derivatives of partition of
unity averages and to choose partitions of unity that optimize these averages with
respect to a given criterion. The derivatives of f DPj 'j fj involve derivatives of
both the fj and the 'j . Since

P
j 'j is identically one, for any partial derivative

@,
P

j @'j D 0. Therefore @f is
P

j 'j @fj plus additional terms of the formP
j @1'j @2.fj � f /. If the fj are close to one another in a C r norm, then the

additional terms will be small. This basic estimate lends a glimmer of hope that
partitions of unity might serve as a vehicle for implementing higher order methods
for multivariate problems. For example, high order methods are commonplace in
solving initial value problems for ordinary differential equations. Are partitions
of unity a tool for developing higher order methods for solving partial differential
equations?
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Bifurcations of Solutions of the 2-Dimensional
Navier–Stokes System

Dong Li and Yakov G. Sinai

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract For the 2-dimensional Navier–Stokes System written for the stream
functions we construct a set of initial data for which initial critical points bifurcate
into three critical points. This can be interpreted as the birth of new viscous vortices
from a single one. In another class of solutions vortices merge, i.e. the number of
critical points decrease.

1 Introduction

We are very glad to dedicate this paper to Professor S. Smale. The works of Smale
in the theory of dynamical systems played a great role in the development of this
important field and led to the appearance of new concepts and methods. We wish
Professor Smale a very good health and many new important results.

The usual bifurcation theory deals with one-parameter families of smooth maps
or vector fields. In this situation fixed points or periodic orbits become functions
of this parameter. Bifurcations appear when their linearized spectrum changes its
structure. The main role in the theory is played by the so-called versal deformations,
i.e. by special families such that arbitrary families can be represented as some
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projections of versal deformations (see, for example [1]). In this approach the
positions of bifurcating orbits and their dependence on the parameter are known.

In this paper we consider a dynamical system generated by the 2-dimensional
Navier–Stokes System and deformations are produced by solutions of this system.
Certainly, this is a very special case of a much more general problem in which
Navier–Stokes System is replaced by linear or non-linear PDE for which strong
existence and uniqueness results are known. The next step is to choose fixed points
or periodic orbits and sometimes this can be a difficult problem. In our case this is
done under the assumption of an additional symmetry of the problem.

We write Navier–Stokes System for the stream function  D  . Qx1; Qx2; t/ on the
2-dimensional square 0 � Qx1; Qx2 � �:

@ 

@t
C��1

�
@ 

@ Qx1 �
@� 

@Qx2
� @ 
@ Qx2 �

@� 

@ Qx1
�

D � : (1)

In (1) the viscosity is taken to be 1 and the external forcing terms are absent. The
velocity of the fluid u D .u1; u2/ is expressed from  through the relations

u1 D � @ 
@ Qx2 ; u2 D @ 

@ Qx1 (2)

which show that u is a local function of  . This is one of the advantages of  .
Moreover, the velocity u given by (2) always satisfies incompressibility condition

div.u/ D @u1
@ Qx1 C

@u2
@x2
D 0:

We consider the space of functions  written as a series

 . Qx1; Qx2; t/ D
X

m2Cn2¤0
fmn sinm Qx1 sin n Qx2: (3)

The coefficients fmn are odd functions of its arguments and decay fast enough so
that all appearing series converge. In Sect. 2 we reproduce the proof of the theorem
from [4] in which we show that the space of such  is invariant under the dynamics
generated by (1).

In (1) the operator��1 has the form

��1 D �
X

m2Cn2¤0

1

m2 C n2 sinm Qx1 sin n Qx2:

The formulas (2) and (3) show that on the boundary the velocity vector u is
directed along the boundary. This situation is called the slip boundary condition.
From the physical point of view it is not so natural but it is quite satisfactory as a
mathematical model.



Bifurcations of Solutions of the 2-Dimensional Navier–Stokes System 243

Let us write down an infinite-dimensional system of ODE for the coefficients fmn

which follows from (1) and actually is equivalent to (1)

df mn

dt
� 1

m2 C n2
X

m0Cm00Dm
n0Cn00Dn

fm0n0fm00n00 � ..m00/2 C .n00/2/ � .m0n00 �m00n0/

D �.m2 C n2/fmn: (4)

Introduce the vorticity

! D � D
X

m;n

!mn sinm Qx1 sin n Qx2

which shows that !mn D �.m2 C n2/fmn. For the coefficients !mn we have even a
simpler system of ODE equivalent to (4)

d!mn

dt
C

X

m0Cm00Dm
n0Cn00Dn

!m0n0!m00n00 � m
0n00 �m00n0

.m0/2 C .n0/2

D �.m2 C n2/!mn: (5)

In [2–4], the following theorem was proven

Theorem 1 (Global wellposedness and decay). Let 	 > 1, A > 0 and

j!mn.0/j � A

.m2 C n2/ 	2 ; (6)

for all m; n, m2 C n2 ¤ 0. Then for some absolute constantK1 > 0 and all t > 0,

j!mn.t/j � AK1

.m2 C n2/ 	2 : (7)

The proof of Theorem 1 is given in Sect. 2. In the periodic case it was given in [3]
and [4] and extended to other boundary conditions in [2]. The inequality (7) implies
that for the stream function

jfmn.t/j � AK1

.m2 C n2/ 	2 C1 ; 8m; n:

We shall take 	 to be so large that the decay of fmn will be sufficient for our
purposes. Actually the decay of fmn is much faster but we do not dwell on this here.
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Remark 1. Our flow (1)–(3) is closely connected with a special class of 2�-periodic
flows on the whole plane. Namely suppose Q D Q . Qx1; Qx2; t/ is a solution to the
Navier–Stokes equation with 2�-periodic boundary condition, and satisfy

Q .�Qx1; Qx2; t/ D � Q . Qx1; Qx2; t/ D Q . Qx1;�Qx2; t/; 8 Qx1; Qx2: (8)

It is not difficult to check that the special symmetry (8) is preserved under the
dynamics of the Navier–Stokes flow. Furthermore if we write

Q . Qx1; Qx2; t/ D
X

m;n

Qfmne
i.m Qx1Cn Qx2/;

then

� Qfmn D Qf�m;n D Qfm;�n; 8m; n:

Therefore from a simple computation

Q . Qx1; Qx2; t/ D �
X

m;n

Qfmn sinm Qx1 sin n Qx2 (9)

which corresponds exactly to (3) up to a minus sign. This shows that Q is also a
solution to our problem (1)–(3).

We shall call extremal points of the stream function the points of local minima
or maxima of  . Near these points the velocity u is tangent to the level sets of  
(or Q ) which are closed curves. It is natural to call extremal points of  viscous
vortices. The main purpose of this paper is to show that these vortices can split or
merge.

Now we can formulate our main results of this paper.

Theorem 2 (Existence of bifurcations). There exists an open set A in the space
of stream functions such that the following holds true:

For each stream function  0 2 A, there is an open neighborhood U of the point
. Qx1; Qx2/ D .�

2
; �
2
/, two moments of times 0 < t1 < t2 such that the corresponding

stream function  D  . Qx1; Qx2; t/ solves (1) with initial data  0 and satisfy

1. At t D 0, .�
2
; �
2
/ is a non-degenerate minimum of  in the neighborhoodU .

2. For any 0 < t � t1,  has only one critical point in U given by . Qx1; Qx2/ D
.�
2
; �
2
/.

3. At t D t1, . Qx1; Qx2/ D .�2 ; �2 / is a degenerate local minimum of  in U .
4. For t1 < t � t2,  has exactly three critical points in U . The point .�

2
; �
2
/

becomes a saddle. Two other critical points are of the form .�
2
C x�; �

2
C y�/,

.�
2
� x�; �

2
� y�/ where x� ¤ 0, y� ¤ 0 and are local minima.
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Remark 2. Under our conditions the point .�
2
; �
2
/ is the extremal point of the stream

function for all time. This property plays the same role as the knowledge of fixed
points or periodic orbits in the usual theory of bifurcations.

Remark 3. The fact that the extra critical points emerge in the form .�
2
C x�;

�
2
C y�/, .�

2
� x�; �

2
� y�/ is not surprising. As we shall see later in Sect. 3, by

the inversion symmetry (18), our stream function  is invariant under the reflection
about the point .�

2
; �
2
/.

Our next result is in some sense the reversal of the process described in
Theorem 2. For a class of initial data having three critical points near the special
point .�

2
; �
2
/, we show that they merge into one critical point in finite time.

Theorem 3 (Merging of critical points). There exists an open set A in the space
of stream functions such that the following holds true:

For each stream function  0 2 A, there is an open neighborhood U of the point
. Qx1; Qx2/ D .�

2
; �
2
/, two moments of times 0 < t1 < t2 such that the corresponding

stream function  D  . Qx1; Qx2; t/ solves (1) with initial data  0 and satisfy

1. For 0 � t < t1,  has exactly three critical points in U . The point .�
2
; �
2
/ is a

saddle. Two other critical points are of the form .�
2
Cx�; �

2
Cy�/, .�

2
�x�; �

2
�

y�/ where x� ¤ 0, y� ¤ 0 and are local minima.
2. At t D t1, .�2 ; �2 / is a degenerate minimum of  in the neighborhood U .
3. For any t1 < t � t2,  has only one critical point in U given by . Qx1; Qx2/ D
.�
2
; �
2
/.

This paper is organized as follows. In Sect. 2 we give the proof of Theorem 1.
In Sect. 3 we derive the equation for extremal points and formulate sufficient
conditions for bifurcations needed in Theorem 2. Section 4 is devoted to the
construction of bifurcations in the degenerate case. In Sect. 5 we prove the existence
of bifurcation for non-degenerate initial data by using a perturbation argument.
In Sect. 6 we give the construction of stream functions satisfying the needed
conditions. In Sects. 7 and 8 we describe the proof of Theorem 3 and construction
of initial conditions.

2 Proof of Theorem 1

In this section we give the proof of Theorem 1 using the trapping argument from [4].
We shall use the letter C with or without indices to denote different absolute

constants whose values may vary from line to line. The actual value of C does not
play any role in our arguments.

To simplify notations, denote Z2� D f.m; n/ 2 Z
2; m ¤ 0; n ¤ 0g and r D

.m; n/ 2 Z
2�, r 0 D .m0; n0/ 2 Z

2�, r 00 D .m00; n00/ 2 Z
2�, and also denote !r D !mn,

!r 0 D !m0n0 and so on.
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By standard enstrophy inequality, we have

k!.t/kL2
Qx1 Qx2

.Œ0;���Œ0;��/ � E0; 8 t > 0;

where E0 > 0 is the enstrophy at t D 0.
By Fourier transform, this implies

0

@
X

r2Z2
�

j!r.t/j2
1

A

1
2

� C1E0;8 t > 0: (10)

Let K1 > 0 be a constant depending on A which will be taken sufficiently large.
By (10), we get

j!r.t/j � C1K1E0
jr j 	2 ; 8 jr j � K

2
	

1 ; 8 t > 0:

Define the trapping set

˝.K1/ D
(

. Q!r/ W j Q!r j � C1K1E0
jr j 	2 ; 8 jr j � K

2
	

1

)

: (11)

Now we show that for all t > 0 the trajectories of our system remain inside the
set ˝.K1/. Indeed at t D 0, by choosingK1 > 2A (see (6)), we get that our system
lies strictly inside ˝.K1/. Assume t1 > 0 is the first moment of time when our
system reaches the boundary @˝.K1/.1

Then for some jr�j � K
2
	

1 ,

j!r�.t1/j D C1K1E0
jr�j	 :

WLOG assume

!r�.t1/ D C1K1E0
jr�j	 :

The case !r�.t1/ D �C1K1E0jr�j	 is similar and therefore its discussion is omitted.
We then aim to show that

@t!r� .t/
ˇ
ˇ
ˇ
tDt1

< 0:

1Strictly speaking, we should consider the Galerkin approximations of our system to avoid issues
connected with the infinite dimensionality of our system.
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This will guarantee that the trajectory of our system cannot exit the trapping set
˝.K1/ and will remain inside ˝.K1/.

Recall the vorticity equation

@t! C��1r?! � r! D �!: (12)

By using (12), we have

��1r?! � r! D
X

.m;n/2Z2
�

Nmn sinm Qx1 sin n Qx2;

where

jNmnj �
X

r 0Cr 00Dr

j!r 0 j
jr 0j � jr

00j � j!r 00 j: (13)

There are two cases.

Case 1. jr 0j > 1
3
jr j. Then

jr 00j
jr 0j �

jr j C jr 0j
jr 0j � C:

Hence

RHS of (13) � C
X

r 0Cr 00Dr
jr 0j> 1

3 jr j

j!r 0 j � j!r 00 j

� C
0

@
X

jr 0j> 1
3 jr j
j!r 0 j2

1

A

1
2

�
 
X

r 00

j!r 00 j2
! 1

2

� CK1

jr j	�1 E1:

Case 2. jr 00j > 1
3
jr j and jr 0j � 1

3
jzj. Then

RHS of (12) � CK1

jr j	�1
X

jr 0j� 1
3 jr j

j!r 0 j
jr 0j

� CK1

jr j	�1 log jr j � E1:
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Concluding from the above cases, we get

jNr�.t1/j � CK1E1
jr�j	�1 log jr�j

and hence by (12)

@t!r�.t/

ˇ
ˇ
ˇ
ˇ
ˇ
tDt1
� CK1E1
jr�j	�1 log jr�j � C1K1E1

jr�j	�2

< 0;

ifK1 is sufficiently large (recall that by (11), jr�j � K
2
	

1 ). This finishes the trapping
argument and Theorem 1 is proved.

3 The Equation for Extremal Points

We consider a special class of flows

 . Qx1; Qx2; t/ D
X

mC n is even

fmn sin.m Qx1/ sin.n Qx2/: (14)

It is also invariant under the Navier–Stokes dynamics. If this condition is valid, then
on the vertical boundaries, for any 0� Qx2�� , the velocity vector at the point .0; Qx2/
has the same magnitude but opposite direction to the velocity at the point .0; �� Qx2/.
In some sense they form a dipole with center at .�

2
; �
2
/. Similar statements also hold

for the horizontal boundaries.
In this paper we study bifurcations of the stream function near the point .�

2
; �
2
/.

After the change of variables,

Qx1 D �

2
C x; Qx2 D �

2
C y; (15)

we shift our coordinate system and define

�.x; y; t/ D  .�
2
C x; �

2
C y; t/: (16)

By (16), (14) and (9), we get

�.x; y; t/ D �
X

mC n is even

fmne
i. mCn

2 �CmxCny/

D �
X

mC n is even

fmn.�1/mCn
2 ei.mxCny/:
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Since � and fmn are both real-valued, we get

�.x; y; t/ D �
X

mC n is even

fmn.�1/mCn
2 cos.mx C ny/ (17)

D �.�x;�y; t/; (18)

i.e. � satisfies the inversion symmetry. It implies that at the point .x; y/ D .0; 0/ the
gradient of � vanishes.

Introduce a neighborhood Uı D f.x; y/ W x2 C y2 � ı2g. Later we shall choose
ı to be sufficiently small.

For sufficiently small t2 > 0 consider the time interval Œ0; t2� and write the
following expansion of � in the neighborhoodUı:

�.x; y; t/ D �.0; 0; t/C a1.t/x2 C a2.t/y2 C a3.t/xy
C b1.t/x4 C b2.t/y4 C b3.t/x3y C b4.t/x2y2 C b5.t/xy3
C �.x; y; t/; (19)

where the remainder term satisfies the inequalities

�.x; y; t/ D O.x6 C y6/;
@�

@x
.x; y; t/ D O.jxj5 C jyj5/;

@�

@y
.x; y; t/ D O.jxj5 C jyj5/: (20)

In the expansion (19), terms of odd degree are not present because of the
symmetry (18).

The first equation for the critical point takes the form

@x� D 0:

By (19), we get

2a1x C a3y C 4b1x3 C 3b3x2y C 2b4xy2

C b5y3 C @�

@x
D 0: (21)

Here and later we occasionally suppress the time dependence and write ai .t/,
bi.t/ simply as ai , bi when the context is clear.

Assume for 0 � t � t2
a3.t/ � O.1/: (22)
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More precisely

const � a3.t/ � const:

The values of constants play some role later. This will be clarified below (see (34)).
Equation 21 takes the form

y D �2a1
a3
x � 4b1

a3
x3 � 3b3

a3
x2y � 2b4

a3
xy2

� b5
a3
y3 � 1

a3

@�

@x
: (23)

Assume also that in formula (19)

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (24)

For sufficiently small t2 it implies that for 0 � t � t2,

bi.t/ � O.t/; i D 2; � � � ; 5: (25)

Write (23) in the form

y D �2a1
a3
x � 4b1

a3
x3 CO.t/ �O.jxj3 C jyj3/

CO.jxj5 C jyj5/: (26)

Since .x; y/ 2 Uı, we have the rough estimate

y D O.x/: (27)

Consider the other critical point equation

@�

@y
D 0:

By (19), we get

2a2y C a3x C 4b2y3 C b3x3 C 2b4x2y

C 3b5xy2 C @�

@y
D 0:

In view of the assumptions (25) and (20), we obtain

2a2y C a3x CO.t/ �O.jxj3 C jyj3/CO.jxj5 C jyj5/ D 0:
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Using (27), we get

2a2y C a3x CO.t/ �O.jxj3/CO.jxj5/ D 0: (28)

Substituting (26) into (28) and using again (27), we have

2a2

�

�2a1
a3
x � 4b1

a3
x3
�

C a3x CO.t/ �O.jxj3/CO.jxj5/ D 0:

Or simply,

a23 � 4a1a2
a3

x � 8a2b1
a3

x3 CO.t/ �O.jxj3/CO.jxj5/ D 0: (29)

It is obvious that (29) has a solution x D 0. We now look for other possible
solutions in Uı. Dividing both sides of (29) by x

a3
, we obtain

.a23 � 4a1a2/� 8a2b1x2 CO.t/ �O.x2/CO.x4/ D 0: (30)

We shall choose initial data very carefully so that the needed bifurcation happens
on the time interval Œ0; t2�. This will be done in two stages. At the first stage we
consider the degenerate case in which the bifurcation happens immediately for
t > 0. In the second stage we perturb the degenerate data so that the bifurcation
is “delayed” to a later time 0 < t1 < t2. In other words, we show that for sufficiently
small (and special) perturbations, the desired bifurcation happens at t D t1.

4 Stage 1: The Bifurcation in the Degenerate Case

Rewrite (30) as

�.a23 � 4a1a2/C 8a2b1x2 CO.t/ �O.x2/CO.x4/ D 0: (31)

Choose �0 D �0.x; y/ so that

a3.0/
2 � 4a1.0/a2.0/ D 0;

d

dt

�
a23.t/ � 4a1.t/a2.t/

	 jtD0 > 0;
a2.0/ > 0; a3.0/ > 0; b1.0/ > 0: (32)

In addition, we also need

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (33)
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The possibility of choosing �0 with properties (32)–(33) will be shown later (see
Sect. 6). Assume for the moment that these conditions are met, then for sufficiently
small t2 > 0, we have for 0 < t � t2,

A00
3 � a3.t/ � A0

3 > 0;

A00
2 � a2.t/ � A0

2 > 0;

B 00
1 �

d

dt

�
a23.t/ � 4a1.t/a2.t/

�
� B 0

1 > 0;

B 00
2 � b1.t/ � B 0

2 > 0; (34)

where A0
i , A

00
i , B 0

i , B
00
i are constants.

By (32)–(34), we have for 0 < t � t2
.a23.t/ � 4a1.t/a2.t// � t;

which means that

const � t � a23.t/ � 4a1.t/a2.t/ � const � t:

Also we have

8a2.t/b1.t/ � const:

It follows that for 0 < t � t2, the equation (31) is of the form

�O.t/CO.1/ � x2 CO.t/ �O.x2/CO.x4/ D 0: (35)

For sufficiently small ı and sufficiently small t2, the equation (35) has two and
only two solutions

x D ˙O.pt/
because O.t/ is of order of t , O.1/ > 0 and other terms do not play any essential
role. In this sense solutions to (31) bifurcates into two solutions for 0 < t � t2.

Remark that at t D 0, the only solution to (31) is x D 0 due to the conditions
a3.0/

2 � 4a1.0/a2.0/ D 0 and a2.0/b1.0/ � const.

5 Stage 2: Bifurcation from Non-degenerate Initial Data,
a Perturbation Argument

In stage 2 we finish our construction of bifurcation from non-degenerate initial data.
The main idea is to perturb the initial data considered in Stage 1. The perturbation
will be chosen so that initially we will have only one local non-degenerate minimum
located at .x; y/ D .0; 0/.
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To this end, consider Q�0 D Q�0.x; y/ 2 C1 with the following properties:

Q�0.x; y/ D Q�0.�x;�y/; 8 x; y;
@4 Q�0
@xm@yn

ˇ
ˇ
ˇ
.x;y/D.0;0/ D 0; 8mC n D 4; 0 � m � 4;

@2 Q�0
@x@y

ˇ
ˇ
ˇ
.x;y/D.0;0/ D 0;

@2 Q�0
@x2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0;

@2 Q�0
@y2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0: (36)

Fix �0 D �0.x; y/ taken from Stage 1 which has the properties (32)–(33). We
shall consider the perturbation by Q�0 having the form

Q��0.x; y/ D �0.x; y/C � Q�0.x; y/;

where � > 0 is sufficiently small.
Denote the corresponding solution of the main equation (1) (in the shifted

coordinates) by �� D ��.x; y; t/. To simplify the notations, we expand ��.x; y; t/
in the form corresponding to (19), i.e. we write

��.x; y; t/ D ��.0; 0; t/C a�1.t/x2 C a�2y2 C a�3xy
C b�1.t/x4 C b�2.t/y4 C b�3.t/x3y C b�4.t/x2y2 C b�5.t/xy3

C Q�.x; y; t/ (37)

where Q� satisfies an estimate similar to (20).
We now check the properties of ��.x; y; t/.

(a) At t D 0, the point .x; y/ D .0; 0/ is the unique extremum of ��.x; y; 0/ in the
neighborhoodUı. Also .0; 0/ is a non-degenerate local minimum.

To prove this, we note that due to (32), (33) and (36), the critical point
equation (30) still holds for ��.x; y; t/ for sufficiently small � > 0 with
corresponding coefficients a1, a2, a3, b1 now replaced by a�1, a

�
2, a

�
3, b

�
1. In

particular this gives us

.a�3.0//
2 � 4a�1.0/a�2.0/� 8a�2.0/b�1.0/x2 CO.x4/ D 0: (38)

Denote

Qa1 D @2 Q�0
@x2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0;

Qa2 D @2 Q�0
@y2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0:
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By (32) and (36), we have

.a�3.0//
2 � 4a�1.0/a�2.0/

D a3.0/2 CO.�2/ � 4.a1.0/C � Qa1/.a2.0/C � Qa2/
D �4.a1.0/ Qa2 C a2.0/ Qa1/� CO.�2/: (39)

On the other hand, for sufficiently small � > 0, by using (38) and (36), we have

a�2.0/b
�
1.0/ D .a2.0/CO.�// � .b1.0/CO.�2//
D a2.0/b1.0/CO.�/
� const: (40)

Therefore by (39) and (40), the equation (38) takes the form

�O.1/� �O.1/ � x2 CO.x4/ D 0;

or simply

O.1/ � � CO.1/ �O.x2/ D 0:

It is clear that for � > 0 this equation does not have any real-valued solution
in Uı.

To show that .0; 0/ is a non-degenerate local minimum at t D 0, we observe
that by (39), for sufficiently small � > 0,

.a�3.0//
2 � 4a�1.0/a�2.0/ < 0: (41)

Also we have by (32)

a�1.0/ > 0; a�2.0/ > 0: (42)

Equations 41 and 42 show that the Hessian matrix

�
a�1.0/

1
2
a�3.0/

1
2
a�3.0/ a�2.0/

�

is strictly positive definite. Hence .0; 0/ is a non-degenerate local minimum.
(b) Consider the function

D�.t/ D .a�3.t//2 � 4a�1.t/a�2.t/:
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It will be proven below that for sufficiently small � > 0, the following holds:
There exists unique t1 D t1.�/ > 0 such that

D�.t/ < 0; for 0 � t < t1;
D�.t/ D 0; for t D t1;
D�.t/ > 0; for t1 < t � t2: (43)

Furthermore, the reduced critical-point equation (see (30))

D�.t/ � 8a�2.t/b�1.t/x2 CO.t/ �O.x2/CO.x4/ D 0 (44)

has

• No solution for 0 � t < t1,
• Exactly one solution given by x D 0 for t D t1,
• Two nonzero solutions for t1 < t � t2.

To prove (43), we recall the bound (34) , where for 0 � t � t2

B 00
1 �

d

dt

�
a23.t/ � 4a1.t/a2.t/

	 � B 0
1 > 0: (45)

Since our initial data are given by

��0.x; y/ D �0.x; y/C � Q�0.x; y/;

it follows from simple perturbation theory that for sufficiently small � > 0 , we have

k��.x; y; t/ � �.x; y; t/kHm
t;x;y
� �.�;m/; (46)

where �.�;m/! 0 as � ! 0 andm is fixed.
The notationHm

t;x;y denotesmth Sobolev norms of  :

k kHm
t;x;y
D

X

0�˛CˇC	�m



@˛t @

ˇ
x@

	
y 



L2
:

Take m to be sufficiently large and then � sufficiently small. It follows from (45)
and (46) that

2B 00
1 �

d

dt

�
.a�3.t//

2 � 4a�1.t/a�2.t/
	 � B 0

1

2
> 0; (47)

for any 0 � t � t2.
This means in particular that D�.t/ is strictly increasing for 0 � t � t2.
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By (39), we have for t D 0 and � sufficiently small,

D�.0/ < 0: (48)

On the other hand for t D t2, by using the analysis from Stage 1, we have

.a3.t2//
2 � 4a1.t2/a2.t2/ > 0:

Since

D�.t2/ D .a3.t2//2 � 4a1.t2/a2.t2/CO.�/;

it follows easily that for � sufficiently small

D�.t2/ > 0: (49)

Now (47)–(49) easily yield (43).
Finally the conclusion after (44) is a simple corollary of the properties of D�.t/

and perturbation theory. We omit the details.
In summary, we have proved the following:
For sufficiently small � > 0, the function ��.x; y; t/ has the following properties

in the neighborhoodUı:
There exists 0 < t1 < t2, such that

• For 0 � t < t1, .x; y/ D .0; 0/ is the only critical point in Uı. Furthermore it is
a non-degenerate local minimum.

• For t D t1, .x; y/ D .0; 0/ is the only critical point in Uı.
• For t1 < t � t2, there are three critical points in Uı. The point .x; y/ D .0; 0/ is

a saddle. Two other critical points are of the form .x�; y�/, .�x�;�y�/, where
x� > 0, y� > 0.

Remark that due to our inversion symmetry (18), if .x�; y�/ is a critical point
with x� ¤ 0, then .�x�;�y�/ is also a critical point.

6 Construction of �0 Satisfying (32)–(33)

We now demonstrate the existence of �0 D �0.x; y/ which satisfies conditions
(32)–(33) and also has inversion symmetry (18).

By (17), we choose

�0.x; y/ D �
X

mC n is evenjmj�N;jnj�N

Qfmn.�1/mCn
2 cos.mx C ny/: (50)
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To simplify matters, we impose the following conditions on Qfmn:

• Qfmn is real-valued;
• Qfmn D 0 if m D 0 or n D 0;
• Qfmn are odd in each of its variablesm and n.

The above conditions imply that

�0.x; y/ D �
X

1�m;n�N
mC n is even

Qfmn �
�
2.�1/mCn

2 cos.mx C ny/

� .�1/�mCn
2 cos.�mx C ny/ � .�1/m�n

2 cos.mx � ny/
�

D �
X

1�m;n�N
mC n is even

2 Qfmn.�1/mCn
2

�
cos.mx C ny/ � .�1/n cos.mx � ny/

�
:

(51)

Define

fmn D �2 Qfmn.�1/mCn
2 :

Then we have

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn

�
cos.mx C ny/ � .�1/n cos.mx � ny/

�
; (52)

where fmn are the coefficients to be determined.
Now recall the conditions (32) and (33) and choose

a3.0/ D 2;
a1.0/ D a2.0/ D 1;
b1.0/ D r1

24
> 0;

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0; (53)

where r1 is a parameter whose value will be specified later.
We still have to check the second condition in (32). This condition can be

simplified a little bit. By (53),

d

dt

�
a23.t/ � 4a1.t/a2.t/

	ˇˇ
ˇ
tD0

D 4. Pa3.0/� Pa1.0/� Pa2.0//

D 2
�

@3�

@t@x@y
.0; 0; 0/�

�
@

@t
��

�

.0; 0; 0/

�

:
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By (1), (19), (16) and (53), we have

�
@

@t
��

�

.0; 0; 0/ D @

@t
� 

��

2
;
�

2
; 0
�

D �2 0

��

2
;
�

2

�
C .r? 0/

��

2
;
�

2

�
� .r� 0/

��

2
;
�

2

�

D r1:

Similarly

@3�

@t@x@y
.0; 0; 0/ D �@xy��1.r?�0 � r��0/

	
.0; 0/:

Therefore the condition

d

dt

�
a23.t/ � 4a1.t/a2.t/

�ˇ
ˇ
ˇ
tD0 > 0

is equivalent to

@xy�
�1.r?�0 � r��0/.0; 0/ > r1: (54)

Our goal is to find .fmn/ in (52) such that both (53) and (54) hold. In our formulae
below, the summation is understood to be in the region f.m; n/ W 1 � m; n � N and
mC n is eveng. In terms of fmn, the conditions (53) now take the form

X
fmn �mn � .1C .�1/n/ D �2;

X
fmn �m2 � .1 � .�1/n/ D �1;

X
fmn � n2 � .1 � .�1/n/ D �1;

X
fmn �m4 � .1 � .�1/n/ D r1;

X
fmn �m3n � .1C .�1/n/ D 0;

X
fmn �m2n2 � .1 � .�1/n/ D 0;

X
fmn �mn3 � .1C .�1/n/ D 0;

X
fmn � n4 � .1 � .�1/n/ D 0: (55)

Due to the factors .1˙ .�1/n/ which can vanish depending on the parity of n in
the summation, we distinguish two types of coefficients. We shall say fmn is even if
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bothm and n are even. Otherwise fmn is called odd. Notice that due to the constraint
that mC n is even we shall only have either odd or even coefficients.

We consider first the equations for even coefficients. From (55) we only need

X

m;n�2
m; n are even

fmn �mn D �1;

X

m;n�2
m; n are even

fmn �m3n D 0;

X

m;n�2
m; n are even

fmn �mn3 D 0; (56)

Now we assume that we only have two nonzero even coefficients f22 and f44.
Then from (56) we get

f22 � 22 C f44 � 42 D �1;
f22 � 24 C f44 � 44 D 0:

A simple computation gives that

f22 D �1=3; f44 D 1=48I (57)

Next we turn to odd coefficients.
From (55), we get

X

1�m;n�N
m; n are odd

fmn �m2 D �1
2
;

X

1�m;n�N
m; n are odd

fmn � n2 D �1
2
;

X

1�m;n�N
m;n are odd

fmn �m4 D r1

2
;

X

1�m;n�N
m; n are odd

fmn �m2n2 D 0;

X

1�m;n�N
m; n are odd

fmn � n4 D 0; (58)
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To simplify matters, we assume that the only nonzero odd coefficients are f11,
f31, f33, f15, f51.

Let r2 be another parameter whose value will be specified later. We shall choose
f51 D r2 and add this condition to (58). For the coefficients f11, f31, f33, f15, f51
we then have the matrix equation

0

B
B
B
B
B
B
B
B
B
@

1 1 32 32 1 52

1 32 1 32 52 1

1 1 34 34 1 54

1 32 32 92 52 52

1 34 1 34 54 1

0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
@

f11

f13

f31

f33

f15

f51

1

C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
@

� 1
2

� 1
2

r1
2

0

0

r2

1

C
C
C
C
C
C
C
C
C
A

(59)

Choose r1 D 1
10

and r2 D �10. From (59), we obtain

0

B
B
B
B
B
B
B
@

f11
f13

f31
f33
f15

f51

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

�580:5698
90:0012

90:0008

�6:6598
�10:0001
�10:0000

1

C
C
C
C
C
C
C
A

(60)

We have completely solved (53). It remains to check the condition (54).
To simplify the computation, we rewrite (52) as

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn � e
i.mxCny/C e�i.mxCny/

2

C
X

1�m;n�N
mC n is even

fmn � .�1/nC1 � e
i.mx�ny/ C e�i.mx�ny/

2
:

D
X

jmj�N;jnj�N
gmne

i.mxCny/; (61)

where the coefficients gmn satisfy

• gmn D 0 if .mC n/ is not even or m D 0 or n D 0.
• gmn D 1

2
fjmj;jnj if mn > 0.

• gmn D 1
2
fjmj;jnj � .�1/nC1 if mn < 0.
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To find the LHS of (54), we use the coefficients gmn and calculate

��1r�0.x; y/ D
X

jmj�N;jnj�N
gmn � i �

�
m
n

	

.�1/.m2 C n2/e
i.mxCny/;

r?�0.x; y/ D
X

j Qmj�N;jQnj�N
g QmQn � i �

 
�Qn
Qm

!

� ei. QmxCQny/:

Hence

.r�1r�0 � r?�0/.x; y/ D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2 � e

i
�
.mC Qm/xC.nCQn/y

	

:

(62)

Note that in the summation of the RHS of (62), the zero-th mode is not present
since if m D � Qm, n D �Qn then Qmn �m Qn D 0.

We then apply the operator @xy��1 to both sides of (62) to obtain

@xy�
�1
�
��1r�0 � r?�0

�ˇ
ˇ
ˇ
.x;y/D.0;0/

D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2 �

.mC Qm/.nC Qn/
.mC Qm/2 C .nC Qn/2 : (63)

By using (57), (60), (61), and (63) and a tedious calculation, we obtain

LHS of (54) D 0:1436 > 0:1 D r1:

Clearly this gives us all the needed estimates.
We have finished the construction of the desired initial data �0 needed in Stage 1.

The proof of Theorem 2 is now completed.

7 Proof of Theorem 3

In this section we give the proof of Theorem 3. The argument is similar to the proof
of Theorem 2 and is again done in two stages. We sketch the details as follows.

• Stage 1: degenerate case. Recall the reduced critical point equation,

�.a23 � 4a1a2/C 8a2b1x2 CO.t/ �O.x2/CO.x4/ D 0: (64)
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Choose �0 D �0.x; y/ so that

a3.0/
2 � 4a1.0/a2.0/ D 0;

d

dt

�
a23.t/ � 4a1.t/a2.t/

	
ˇ
ˇ
ˇ
ˇ
ˇ
tD0

< 0;

a2.0/ > 0; a3.0/ > 0; b1.0/ > 0; (65)

and also

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0: (66)

The possibility of choosing �0 with properties (65)–(66) will be shown in Sect. 8.
Assume for the moment that these conditions are met, then for sufficiently small
t2 > 0, we have for 0 < t � t2,

A00
3 � a3.t/ � A0

3 > 0;

A00
2 � a2.t/ � A0

2 > 0;

B 00
1 �

d

dt

�
4a1.t/a2.t/ � a23.t/

�
� B 0

1 > 0;

B 00
2 � b1.t/ � B 0

2 > 0; (67)

where A0
i , A

00
i , B 0

i , B
00
i are constants.

By (65)–(67), we have for 0 < t � t2
const � t � 4a1.t/a2.t/ � a23.t/ � const � t;

and also

8a2.t/b1.t/ � const:

It follows that for 0 < t � t2, the equation (64) is of the form

O.t/CO.1/ � x2 CO.t/ �O.x2/CO.x4/ D 0 (68)

which clearly has no real-valued solution for 0 < t � t2.
• Stage 2: a perturbation argument. In stage 2 we perturb the initial data considered

in Stage 1 so that initially we will have three critical points.
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To this end, consider Q�0 D Q�0.x; y/ 2 C1 with the following properties:

Q�0.x; y/ D Q�0.�x;�y/; 8 x; y;

@4 Q�0
@xm@yn

ˇ
ˇ
ˇ
.x;y/D.0;0/ D 0; 8mC n D 4; 0 � m � 4;

@2 Q�0
@x@y

ˇ
ˇ
ˇ
.x;y/D.0;0/ D 0;

@2 Q�0
@x2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0;

@2 Q�0
@y2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0: (69)

Fix �0 D �0.x; y/ taken from Stage 1 which has the properties (65)–(66) and
consider the perturbation by Q�0 having the form

Q��0.x; y/ D �0.x; y/ � � Q�0.x; y/; (70)

where � > 0 is sufficiently small.
Denote the corresponding solution of the main equation (1) (in the shifted

coordinates) by �� D ��.x; y; t/. Expand ��.x; y; t/ in the form

��.x; y; t/ D ��.0; 0; t/C a�1.t/x2 C a�2y2 C a�3xy

C b�1.t/x4 C b�2.t/y4 C b�3.t/x3y C b�4.t/x2y2 C b�5.t/xy3

C Q�.x; y; t/ (71)

where Q� satisfies an estimate similar to (20).

We now check that ��.x; y; t/ has the desired properties needed in Theorem 3.

(a) At t D 0, ��.x; y; 0/ has three critical points in the neighborhood Uı. Also
.0; 0/ is a saddle point.

To prove this, we note that due to (65), (66) and (69), the reduced critical
point equation for ��.x; y; t/ takes the form

.a�3.0//
2 � 4a�1.0/a�2.0/� 8a�2.0/b�1.0/x2 CO.x4/ D 0: (72)

Denote

Qa1 D @2 Q�0
@x2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0;

Qa2 D @2 Q�0
@y2

ˇ
ˇ
ˇ
.x;y/D.0;0/ > 0:
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By (65), (69), and (70), we have

.a�3.0//
2 � 4a�1.0/a�2.0/

D a3.0/2 CO.�2/ � 4.a1.0/� � Qa1/.a2.0/� � Qa2/
D 4.a1.0/ Qa2 C a2.0/ Qa1/� CO.�2/: (73)

On the other hand, for sufficiently small � > 0, by using (72), (69), and (70),
we have

a�2.0/b
�
1.0/ D .a2.0/�O.�// � .b1.0/CO.�2//
D a2.0/b1.0/�O.�/
� const: (74)

Therefore by (73) and (74), the equation (72) takes the form

O.1/� �O.1/ � x2 CO.x4/ D 0;

or simply

O.1/ � � �O.1/ �O.x2/ D 0:

It is clear that for � > 0 sufficiently small this equation has two real-valued
solutions in Uı.

To verify that .0; 0/ is a saddle point at t D 0, we observe that by (73), for
sufficiently small � > 0,

.a�3.0//
2 � 4a�1.0/a�2.0/ > 0: (75)

Also we have by (65)

a�1.0/ > 0; a�2.0/ > 0: (76)

Equations 75 and 76 show that the Hessian matrix

�
a�1.0/

1
2
a�3.0/

1
2
a�3.0/ a�2.0/

�

has one positive eigen-value and one negative eigen-value. Hence .0; 0/ is a
saddle.

(b) Consider the function

D�.t/ D .a�3.t//2 � 4a�1.t/a�2.t/:
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It will be proven below that for sufficiently small � > 0, the following holds:

There exists unique t1 D t1.�/ > 0 such that

D�.t/ > 0; for 0 � t < t1;
D�.t/ D 0; for t D t1;
D�.t/ < 0; for t1 < t � t2: (77)

Furthermore, the reduced critical-point equation

D�.t/ � 8a�2.t/b�1.t/x2 CO.t/ �O.x2/CO.x4/ D 0 (78)

has

• Two nonzero solutions for 0 � t < t1,
• Exactly one solution given by x D 0 for t D t1,
• No solutions for t1 < t � t2.

To prove (77), we recall the bound (67), where for 0 � t � t2

B 00
1 �

d

dt

�
a23.t/ � 4a1.t/a2.t/

	 � B 0
1 > 0: (79)

Since our initial data are given by

��0.x; y/ D �0.x; y/C � Q�0.x; y/;

it follows from simple perturbation theory that

2B 00
1 �

d

dt

�
4a�1.t/a

�
2.t/ � .a�3.t//2

	 � B 0
1

2
> 0; (80)

for any 0 � t � t2.
This means in particular that D�.t/ is strictly decreasing for 0 � t � t2.
By (73), we have for t D 0 and � sufficiently small,

D�.0/ > 0: (81)

On the other hand for t D t2, by using the analysis from Stage 1, we have

.a3.t2//
2 � 4a1.t2/a2.t2/ < 0:

Since

D�.t2/ D .a3.t2//2 � 4a1.t2/a2.t2/CO.�/;
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it follows easily that for � sufficiently small

D�.t2/ < 0: (82)

Now (80)–(82) easily yield (77).

8 Construction of �0 Satisfying (65)–(66)

We now demonstrate the existence of �0 D �0.x; y/ which satisfies conditions
(65)–(66). The construction is similar to the one in Sect. 6 and therefore we shall
only sketch the details.

Choose �0 in the form

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn .cos.mx C ny/ � .�1/n cos.mx � ny// ; (83)

where fmn are the coefficients to be determined.
Now recall the conditions (65) and (66) and set

a3.0/ D 2;
a1.0/ D a2.0/ D 1;
b1.0/ D r1

24
> 0;

b2.0/ D b3.0/ D b4.0/ D b5.0/ D 0; (84)

where r1 is a parameter whose value will be specified later.
The second condition in (65) simplifies to

@xy�
�1.r?�0 � r��0/.0; 0/ < r1: (85)

Our goal is to find .fmn/ in (83) such that both (84) and (85) hold. In our formulae
below, the summation is understood to be in the region f.m; n/ W 1 � m; n � N and
mC n is eveng. In terms of fmn, the conditions (84) now take the form

X
fmn �mn � .1C .�1/n/ D �2;

X
fmn �m2 � .1 � .�1/n/ D �1;

X
fmn � n2 � .1 � .�1/n/ D �1;

X
fmn �m4 � .1 � .�1/n/ D r1;
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X
fmn �m3n � .1C .�1/n/ D 0;

X
fmn �m2n2 � .1 � .�1/n/ D 0;

X
fmn �mn3 � .1C .�1/n/ D 0;

X
fmn � n4 � .1 � .�1/n/ D 0: (86)

Due to the factors .1˙ .�1/n/ which can vanish depending on the parity of n in
the summation, we distinguish two types of coefficients. We shall say fmn is even if
bothm and n are even. Otherwise fmn is called odd. Notice that due to the constraint
that mC n is even we shall only have either odd or even coefficients.

Consider first the equations for even coefficients. From (86) we only need

X

m;n�2
m; n are even

fmn �mn D �1;

X

m;n�2
m; n are even

fmn �m3n D 0;

X

m;n�2
m; n are even

fmn �mn3 D 0; (87)

Now we assume that we only have two nonzero even coefficients f22 and f44.
Then from (87) we get

f22 � 22 C f44 � 42 D �1;
f22 � 24 C f44 � 44 D 0:

A simple computation gives that

f22 D �1=3; f44 D 1=48I (88)

Next we turn to odd coefficients.
From (86), we get

X

1�m;n�N
m; n are odd

fmn �m2 D �1
2
;

X

1�m;n�N
m; n are odd

fmn � n2 D �1
2
;
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X

1�m;n�N
m;n are odd

fmn �m4 D r1

2
;

X

1�m;n�N
m; n are odd

fmn �m2n2 D 0;

X

1�m;n�N
m; n are odd

fmn � n4 D 0; (89)

To simplify matters, we assume that the only nonzero odd coefficients are f11,
f31, f33, f15, f51.

Let r2 be another parameter whose value will be specified later. We shall choose
f51 D r2 and add this condition to (89). For the coefficients f11, f31, f33, f15, f51
we then have the matrix equation

0

B
B
B
B
B
B
B
@

1 1 32 32 1 52

1 32 1 32 52 1

1 1 34 34 1 54

1 32 32 92 52 52

1 34 1 34 54 1

0 0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
@

f11

f13
f31
f33

f15
f51

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

� 1
2

� 1
2

r1
2

0

0

r2

1

C
C
C
C
C
C
C
A

(90)

Choose r1 D r2 D 1. From (90), we obtain
0

B
B
B
B
B
B
B
@

f11

f13
f31
f33

f15
f51

1

C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

57:3646

�8:9883
�8:9922
0:6727

0:9987

1:0000

1

C
C
C
C
C
C
C
A

(91)

We have completely solved (84). It remains to check the condition (85).
For this purpose, we rewrite (83) as

�0.x; y/ D
X

1�m;n�N
mC n is even

fmn � e
i.mxCny/C e�i.mxCny/

2

C
X

1�m;n�N
mC n is even

fmn � .�1/nC1 � e
i.mx�ny/ C e�i.mx�ny/

2
:

D
X

jmj�N;jnj�N
gmne

i.mxCny/; (92)
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where the coefficients gmn satisfy

• gmn D 0 if .mC n/ is not even or m D 0 or n D 0.
• gmn D 1

2
fjmj;jnj if mn > 0.

• gmn D 1
2
fjmj;jnj � .�1/nC1 if mn < 0.

In terms of the coefficients gmn, the LHS of (85) takes the form

.r�1r�0 � r?�0/.x; y/ D
X

jmj�N;jnj�N
j Qmj�N;jQnj�N

gmng QmQn � Qmn �m Qn
m2 C n2 � e

i
�
.mC Qm/xC.nCQn/y

	

:

By a tedious calculation, we obtain

LHS of (85) D �0:1420 < 1 D r1:

Clearly this gives us all the needed estimates.
We have finished the construction of the desired initial data �0 needed in Stage 1

of Sect. 7. The proof of Theorem 3 is now completed.
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Arnold Diffusion by Variational Methods

John N. Mather

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract In this paper, we correct results announced in Mather (J Math Sci NY
124:5275–5289, 2003) and make some observations on the proofs of these results.
The principal result, Theorem 1, is a strong form of Arnold diffusion in two and
one half degrees of freedom, under suitable genericity hypotheses. After (Mather, J
Math Sci NY 124:5275–5289, 2003) appeared, we realized that there is an oversight
in our planned proof. Because of the oversight, the genericity conditions that we
imposed on U in Mather (J Math Sci NY 124:5275–5289, 2003) are not enough. In
this paper, we state further genericity conditions, which are enough for our revised
proof. In addition, we note that a slightly stronger differentiability hypothesis than
we stated in Mather (J Math Sci NY 124:5275–5289, 2003) is needed. In the later
sections of this paper, we make some observations related to the proof of Theorem 1.
The complete (revised) proof will appear elsewhere.

1 Introduction

In [4], I announced results about Arnold diffusion. It has taken me far longer than I
ever imagined possible to write up the proofs and I am still not finished. In addition,
I have found some errors in the results that I announced in [4]. In Sect. 2 of this
paper, I will correct the errors that I found and then make some observations about
the proofs in later sections.

I have circulated several versions of a preprint “Arnold diffusion, II” to whoever
asked me for a copy. Each version of the preprint contains part of the proof of the
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results announced in [4]. Each of the later versions is the previous version with more
material added at the end, together with minor reorganization of the earlier material.
All results stated in any of these versions are proved in that version.

When I wrote [4], my plan was to write a paper “Arnold Diffusion, II,” giving
the proofs of the results announced in [4]. At any time, the version of the preprint
that I made available was the part of the planned paper written up to that time.

I have now changed my plan because it was taking me much too long to write the
complete proof. My new plan is to publish the complete proof as a series of papers,
“Arnold Diffusion, II, III,” etc. I plan to publish parts of the preprint as “Arnold
Diffusion, II,” etc. The later parts of this series will contain material not yet written.

The reader will need to have [4] before him to read Sect. 2. I have tried to write
the rest of this paper so that it can be read without reference to [4].

2 Errata for [4]

Since I wrote [4], I have discovered mistakes in the proof that necessitate errata
for it.

The first mistake can be remedied by replacing “3” by “ 4” in any hypothesis
involving L r , e.g. in $ 2, replace L 3 by L 4; bL 3 by bL 4I L r ; r � 3 by L r ; r �
4I and in Theorems 1c and 2c replace “Let r be !;1, or an integer � 300 by “Let
r be !;1; or an integer � 4.” This slightly changes the statements of the main
theorems (Theorems 1 and 2 in $ 2). No other changes in the statements of the main
theorems are needed.

The other mistakes can be remedied by changing Definition 2 in $ 12, which
defines U r

� D U r
�;`0

. For Theorem 1a to be true, it is required that U r
� be open

and dense in Pr for r � 3. The argument I had in mind to prove that U r
� is open

contains an error. This can be remedied by changing the conditions .C4/! � .C8/!
listed in Definition 2 in $ 12.

Making these changes does not change the statements of the results in $ 2. Each of
the theorems in $ 2 asserts the existence of a function ı with certain properties. The
“partial definition” of U r

`0
in $ 12 amounts to asserting that there exists a function ı

having not only the properties stated in Theorem 1 but also the properties given
in $ 12 by conditions .C1/ � .C3/ and .C4/! � .C8/! for rational ! 2 � with
small denominator. These are stated as properties of U r

� D U r
�;`0

, where � stands
for one of �1 ; � � � ; �n. They may be interpreted as conditions on ı since U r

`0
D

U r
�1;`0
\ � � � \ U r

�n;`0
D f�P W � > 0; P 2Pr , and ı.P; `0/ > 0g.

One problem is that the shortest geodesic 	 referred to in .C8/! need not be
simple. In the case that it is not simple, the conditions in $ 12 do not define an
open set. There are also other problems, described below. These problems can be
remedied by replacing the conditions .C4/! � .C8/! by the conditions .C4/0! �
.C10/0! listed below.
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To correctly state what I can prove, I need to strengthen .C4/! . In $ 10, I defined
a function K! W T .T2!/ ! R whose restriction to each fiber T .T2!/' of the tangent
bundle T .T2!/ of T2! is quadratic and positive definite. The physical interpretation of
K! is that it is the “kinetic energy” associated to a Riemannian metric g! WD 2K!

on T
2
! .

In $ 10, I also defined a functionP! W T2! ! R. I recall the definitions of T2!; K!

and P! in $ 3 below. In $ 12, I stated .C4/! as follows:
.C4/! The function P! on T

2
! has only one global minimum n! and is non-

degenerate in the sense of Morse at n! , i.e. the quadratic form d2P!.n!/ is non-
singular.

Both g.n!/ and d2P!.n!/ are positive definite quadratic forms on the two
dimensional vector space T .T!/n! . A basic result in linear algebra states that
these quadratic forms can be simultaneously diagonalized. In the present context,
it is convenient to state this result as follows: There exists a C1 local coordinate
system x; y defined on an open neighborhood of n! in T .T2!/ such that g!.n!/ D
dx2Cdy2 and d2P!.n!/ D �dx2C�dy2, where 0 < � � �. The numbers� and�
are called the eigenvalues of d2P!.n!/ with respect to g!.n!/: The fact that these
eigenvalues are positive is equivalent to the condition that n! is non-degenerate in
the sense of Morse. The condition � � � is a labeling convention, i.e. if the two
eigenvalues are different, we label the smaller one � and the larger one �.

To have an Arnold diffusion result that I can prove, I need to assume the following
strengthened condition:
.C4/0! 0 < � < �:

In [6], I set E0 WD �P!.n!/ and gE WD .P! C E/g!; for E � E0: For
E > E0; gE is a Riemannian metric. On the other hand, gE0 vanishes at n! ,
although it is a Riemannian metric on the complement of n! in T

2
! . For E >

E0; a gE -shortest closed curve in h0 is simple, where h0 is an indivisible element
ofH1.T

2
! IR/, whose definition (from [4]). I recall in $ 5 below. WhenE D E0, this

is no longer true, although I thought it is true when I wrote [4]. Although I did not
state there that gE0 -shortest closed curve in h0 is simple, my belief that this is so led
to several errors.

To remedy these errors, I replace .C8/! with conditions .C5/0! � .C7/0! below.
.C5/0! There is only one gE0 -shortest closed curve 	 in h0.
Under these conditions, there are three possibilities:

• 	 is simple and does not pass through n! ,
• 	 is simple and passes through n! .
• 	 D p	1 C q	2, where p and q are relatively prime positive integers; 	1 and 	2

are simple closed curves that pass through n! but do not meet elsewhere; and
	1 and 	2 are gE0 -shortest closed curves in homology classes h1 and h2, which
generate the abelian groupH1.T

2
! I Z/:

That 	 has one of these forms is a consequence of Theorem 2 in [6], together
with the assumption that 	 is unique. Lemma 1 in [6] implies that if � is an element
of T2! sufficiently close to n! then there is a unique gE0 -shortest curve �� in T

2
!
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connecting � to n! . Lemma 2 in [6] implies that there exists a C1 curve C in T
2
!

passing through n! and tangent to the y-axis at n! such that the following holds: If
� 2 C and is sufficiently close to n! then �� 2 C: If � … C and is sufficiently close
to n! the �! is tangent to the x-axis at n! .

From this, it follows that the next condition holds generically:
.C6/0! If the gE0 -shortest curve 	 in h0 is simple and passes through n! then

it is tangent to the x�axis at n! . If 	 is not simple and so has the form p	1 C q	2
then 	1 and 	2 are tangent to the x-axis at n! .

In the definition of “nondegenerate in the sense of Morse” following the
statement of .C8/! in [4], I asserted that the function P 7! `E.	P / is C r . (I repeat
the relevant definitions in $ 5.) I meant to say that this is true for P sufficiently close
to �\	 . My belief that I could prove this was mistaken. I can, however, prove that it
is C2 for P close enough to �\	 in the case that .C6/0! holds. When .C6/0! holds,
I can thus define what it means for 	 to be nondegenerate in the sense of Morse in
the case that 	 is simple and passes through n! and what it means for 	1 and 	2 to
be nondegenerate in the sense of Morse when 	 D p	1 C q	2. For example, when
	 is simple, I define 	 to be non-degenerate in the sense of Morse if the second
derivative of P 7! `E.	P / at 	 \� does not vanish. The same definition applies to
	1 and 	2 when 	 D p	1 C q	2. Of course, when 	 does not pass through n! , the
usual definition applies.

This permits the formulation of the next condition:
.C7/0! If the gE0-shortest curve 	 is simple, it is nondegenerate in the sense of

Morse. If 	 D p	1 C p	2, both 	1 and 	2 are nondegenerate in the sense of Morse.
The remaining conditions in the revised partial definition of U r

� are slight mod-
ifications of the conditions .C5/!; .C6/!; and .C7/! in the original definitions.
In the case that the gE0 -shortest curve 	 in h0 is simple, the condition E > E0

is replaced with bE0 � E > E0, where bE0 is a large positive number. In the
case that 	 is not simple, the condition E > E0 is replaced with a condition
bE0 > E � E�

0 , where E�
0 is a little larger than E0. Moreover, E�

0 and bE0 depend
only on �; `0; P; and !: The definition of E�

0 and bE0 is a quantitative aspect of
the definition of U r

� that will be postponed to a later paper.
Thus, .C5/! is replaced by:
.C8/0! Each gE -shortest closed curve in h0 is nondegenerate in the sense of

Morse, for bE0 � E > E0 in the case that 	 is simple and for bE0 � E � E�
0 in the

case that 	 is not simple.
Likewise, .C6/! is replaced by:
.C9/0! There are at most two gE -shortest closed curves in h0 for bE0 � E > E0

in the case that 	 is simple and for bE0 � E � E�
0 in the case that 	 is not simple.

Finally, .C7/! is replaced by a condition concerning an E1 for which there are
two gE1 -shortest curves 	 and 	 0 in h0:
.C10/0! d.`E.	E//=dEjEDE1 ¤ d.`E.	

0
E//=dEjEDE1 for bE0 � E1 > E0 in

the case that 	 is simple and for bE0 � E1 � E�
0 in the case that 	 is not simple.

Here, 	E and 	 0
E are gE -locally shortest curves in h0 that continue 	 and 	 0 for

E in a neighborhood of E1.
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3 Statement of the Main Theorem

In order to make it possible to read this and later sections without having read [4],
we will repeat some material from there.

We recall that we announced Arnold diffusion-type results for a periodic
Lagrangian in two degrees of freedom whose Lagrangian has the formL.�; P�; t/ D
`0. P�/C �P.�; P�; t/;where � D .�1; �2/ 2 T

2 WD R
2=Z2; P� D . P�1; P�2/ is a member

of a 2-ball B2 in R
2, and t 2 T WD R=Z:

We assumed that `0 and P are three times continuously differentiable. As
we pointed out in Sect. 2, we actually need to assume that `0 is four times
continuously differentiable for our proofs of Arnold diffusion to work. We assumed
that kP kC3 D 1 and that the Hessian matrix d2`0. P�/ of second partial derivatives
of `0 is positive definite for every P� 2 B2. Our announced results were for � > 0

small, i.e. the case when L is a small perturbation of the integrable system `0.
We let L r denote the topological space of C r functions `0 W B2 ! R such

that d2`0 > 0, provided with the C r topology. We let Pr denote the topological
space of C r functions P W T2 
 B2 
 T! R such that kP kC3 D 1, provided with
the C r topology. We let RCC denote the set of positive numbers and RC the set of
non-negative numbers, both provided with the usual topology.

The corrected (per Sect. 2) version of Theorem 1 can be formulated in terms of
three sets U; V; andW , which satisfy:

(a) W � V � RCC 
 U ;
(b) U � L 4 
P3;
(c) U is open and dense relative to L 4 
P3;
(d) there exists a continuous function ı W L 4 
P3 ! RC that is positive on U

such that if `0 2 L 4; P 2P3, and 0 < � < ı.`0; P / then .�; `0; P / 2 V ;
(e) W is open and dense relative to V ;
(f) For any `0 2 L 4 and any r � 3; U \ .`0 
Pr / is dense relative to Pr , and
(g) For any `0 2 L 4 and r � 3; f.�; P / 2 RCC 
Pr W .�; `0; P / 2 W g is dense

relative to V \ .RCC 
 `0 
Pr /.

The corrected version (per Sect. 2) of Theorem 1 may be formulated as follows:

Theorem 1. Let ˝1; � � � ; ˝k be open, nonvoid subsets of B2. There exist sets
U; V; and W that satisfy a)-g) such that if .�; `0; P / 2 W then there exists a
trajectory � of L D `0 C �P that visits the ˝i ’s in any pre-assigned order.

Remark 1. Let � W J ! T
2 be a trajectory of L, where J is an open subset of R.

In saying that � visits ˝i , we mean that there exists t 2 ˝i such that P�.t/ 2 ˝i . In
saying that it visits the ˝i ’s in any pre-assigned order, we mean:

Let K be a (finite or infinite) set of integers and let ' W K ! f1; � � � ; kg be a
mapping. Then there exists an order-preserving mapping t W K ! J such that
t./ 2 J and P�.t.// 2 ˝'./ for  2 K .
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Remark 2. The sets U; V; and W depend on the choice of sets ˝1; � � � ; ˝k. They
are independent of the choice of pre-assigned order.

Remark 3. We can also prove a corrected version of Theorem 2 of [4], but we
will not state it here. The corrections to Theorem 2 are similar to the corrections to
Theorem 1 given in Sect. 2.

4 The Averaged Lagrangian Associated to a Rational
Frequency

In this section, we repeat material from [4], $ 10.
We consider! D .!1; !2/ 2 Q

2\B2, and set T1! WD f.�!1; �!2; �/ 2 T
2
T1 W

� 2 Rg; T2! WD
�
T
2 
 T

	
=T1!; and

P!.'/ D
Z

.�;t /2'
P.�; !; t/dH

Here, ' denotes an element of T2! , i.e. a coset of T 1! in T
2 
 T and dH denotes

Haar measure on ', normalized to have total mass 1.
The projection � W T2 
 T ! T

2
! restricted to T

2 
 0 induces a vector space
isomorphism d� W R2 D TT2.�;t/ ! T .T2!/' , for any ' 2 T

2
! and any .�; t/ 2 '.

This isomorphism is independent of the choice of .�; t/ 2 '. Since `0 is a C4

real valued function on B2, its total second derivative d2`0.!/ is a quadratic form
on R

2. We set K! WD d2`0.!/=2: Thus, K! may be regarded as a quadratic form
on T .T2!/' in view of the identification of R2 with T .T2!/' given by d� . Since this
is defined for any ' 2 T

2
! , we have that K! is a real valued function on T .T2!/.

We set L! WD K! C P! ı pr W T .T2!/! R, where pr W T .T2!/! T
2
! denotes

the projection. This is the averaged Lagrangian associated to ! 2 Q
2 \ B2.

5 The Averaged Lagrangian Associated to a Frequency
and a Resonance of It

In this section, we repeat material from [4], $ 11.
We consider ! 2 B2 and k D .k0; k1; k2/ 2 Z

3 such that .k1; k2/ ¤ .0; 0/ and
k0 C k1!1 C k2!2 D 0.

We set � D �k WD f.!1; !2/ 2 R
2 W k0 C k1!1 C k2!2 D 0g. Thus, � is the

line of all ! 2 R
2 for which k is a resonance. We set T2� WD f.�1; �2; t/ 2 T

2 
 T W
k0t C k1!1 C k2!2 D 0.mod 1/g; T 1� WD .T2 
 T/=T2�, and
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P!;�.'/ WD
Z

.�;t /2'
P.�; !; t/dH :

Here, ' denotes an element of T1�, i.e. a coset of T2� in T
2 
 T and dH denotes

normalized Haar measure on '.
The projection � W T2 
 T ! T

1
� restricted to T

2 
 0 induced a vector space
epimorphism d� W R2 D TT2.�;t/ ! T .T1�/' for any ' 2 T

1
� and any .�; t/ 2 '.

This epimorphism is independent of the choice of .�; t/ 2 '. We letN � R
2 denote

the null space of d� and N?
! its orthogonal complement with respect to d2`0.!/:

We setK!;� WD .d 2`0.!/=2/jN?
! . Thus,K!;� may be regarded as a quadratic form

on T .T1�/' in view of the identification of N?
! with T .T1�/' given by d� . Since

K!;� is defined on T .T1�/' for any ' 2 T
1
�, we have definedK!;� W T .T1�/! R.

We set L!;� WD K!;� C P!;� ı pr W T .T1�/ ! R, where pr W T .T1�/ ! T
1
�

is the projection. This is the averaged Lagrangian associated to ! 2 B2 and the
resonance k of it.

6 Definition of U

In this section, we define the set U of $ 2. Theorem 1 may be strengthened as
follows: the set U whose existence is asserted there may be taken to be the set U
defined here, provided that certain conditions stated at the end of this section hold.

We consider a resonance, i.e. .k0; k1; k2/ 2 Z
3 satisfying .k1; k2/ ¤ .0; 0/. We

let � be a compact line segment in �k \ int B2, where int B2 denotes the interior
of B2. We consider a positive number q0 and define bU� D bU�;`0 to be the set
of P 2 P3 such that the conditions .C1/ � .C3/ below hold and the conditions
.C4/0! � .C10/0! in Sect. 2 hold when ! 2 � \Q

2 and ! has small denominator in
the sense that ! D .p1=q; p2=q/; where .p1; p2/ 2 Z

2 and q 2 Z; 0 < q � q0.
The number q0 depends on �; `0; and P; continuously on .`0; P / 2 L 4 
 P3,

where L 4 is provided with the C4 topology and P3 is provided with the C3

topology.
.C1/ For each ! 2 � , each global minimum m! of P!;� is non-degenerate,

i.e. P 00
!;�.m!/ > 0.

.C2/ For each ! 2 � , there are at most two global minima of P!;�.
We consider !0 2 � and suppose that P!0;� has two global minima m!0 and m0

!0
.

We may continue these to local minima m! and m0
! of P!;� for ! 2 � near !0,

in view of .C1/. Thus, m! and m0
! depend continuously on ! and are the given

minima for ! D !0.
.C3/ dP!;�.m!/=d! j!D!0 ¤ dP!;�.m0

!/=dwj!D!0 :
We call this the first transversality condition. We call .C10/0! the second transver-
sality condition.

These are the same as the conditions .C1/� .C3/ in [4].
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We consider ! 2 Q\& . The subset T2�=T
1
! of T2! WD T

2 
T=T1! is a circle. We
choose a generator h0 of H1

�
T
2
�=T

1
! IZ

	
and regard it is an element of H1

�
T
2
! IR

	

via the inclusions H1

�
T
2
�=T

1
! IZ

	 � H1.T
2
! IZ/ � H1.T

2
! IR/. This repeats the

definition of h0 that we gave in [4].
These definitions should suffice for the reader to understand conditions .C4/0! �

.C6/0! in Sect. 2 without reading [4]. Next, we explain what we mean when we say
that a gE0 -shortest curve is non-degenerate in the sense of Morse.

If � is a curve in T
2
! and E � E0, we let `E.�/ denote the gE -length of �.

We consider a gE -shortest curve 	 in h0. We consider a transversal � to 	 ,
intersecting 	 in one point, not n! in the case that E D E0. For � 2 �, we let
	� be the gE -shortest curve through � .

If E > E0, we have that gE is a Riemannian metric. It is well known that in
this circumstance � 7! `E.	� / is C2 in a neighborhood of � \ 	 and gE is non-
degenerate in the sense Morse if and only if the second derivative of this function
on � is positive at � \ 	 . This is also well known in the case that E D E0 and 	
does not pass through n! , in view of the fact that gE0 is a Riemannian metric in the
complement of n! .

In the case that E D E0; 	 is simple and passes through n! , and .C6!/0 holds,
it is still true that � 7! `E.�/ is C2 for � 2 � in a neighborhood of � \ 	 . This is
a consequence of Lemma 3 in $ 7 and Proposition 2 in $ 8 of [6], as we will explain
in detail in a subsequent paper.

In this case, we say that 	 is non-degenerate in the sense of Morse if the second
derivative of this function is positive.

These definitions should suffice for the reader to understand the remaining
conditions .C7/0! � .C10/0! in Sect. 2, without reading [4].

We have thus defined bU� D bU�;`0 � P3. This definition depends, however,
on the choice of q0 and, for each ! 2 � of the form ! D .p1=q; p2=q/ with
p1; p2; q 2 Z and 0 < q � q0; numbers bE0 and E�

0 . (We can omit E�
0 for those !

for which the gE0 -shortest curve 	 in h0 is simple. We note that E0 and 	 , as well
as bE0 andE�

0 , depend on �; `0; P; and !. The dependence on .`0; P / 2 L 4
P3

is continuous.)
The set U r

� that we discussed in Sect. 2 is related to the set bU� that we just
defined as follows: U r

� D f�P W � > 0 and P 2 bU� \Prg, for r � 3:
We say that a line segment � � R

2 is rational if there exists a resonance k such
that � � �k . To define U , we choose a finite number of rational line segments
�1; � � � ; �n in int B2 such that �1 [ � � � [ �n is connected and meets each ˝i . We

set bU `0 WD bU�1;`0 \ � � � \ bU�n;`0 . We set U WD
n
.`0; P / W `0 2 L 4 and P 2 bU `0

o
.

Here is the strengthened version of Theorem 1, mentioned at the beginning of this
section: The set U in Theorem 1 may be taken to be the set U defined in this section,
provided that for each i , the function q0 associated to �i is large enough and for each
! 2 �i of the form ! D .p1=q; p2=q/ with .p1; p2/ 2 Z

2 and q 2 Z; 0 < q � q0,
the function bE0 is large enough and (in the relevant cases) the function E�

0 is small
enough, subject to the condition E�

0 > E0.
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7 Properties of U

In this section, we discuss conditions (b), (c), and (f), stated before Theorem 1.
By definition, U satisfies (b).
For a rational line segment � � int B2 and q0 > 0, there are only a finite

number of ! 2 B2 that may be expressed in the form .p1=q; p2=q/ with p1; p2,
q 2 Z and 0 < q < q0. It follows that the number of the conditions .C1/�.C3/ and
.C4/0! � .C10/0! is locally finite, in the following sense: For .`0; P / 2 L 4 
 P3,
there exists a neighborhood N of .`0; P / relative to L 4
P3 and for i D 1; � � � ; n,
only a finite number of ! 2 �i of the form ! D .p1=q; p2=q/ with p1; p2; q 2 Z

and 0 < q � q0.�i ; `
�
0 ; P

�/ for some .`�
0 ; P

�/ 2 N . This is true because q0
depends continuously on `0 and P .

Consequently, to prove that U is open, it is enough to prove that the conditions
.C1/� .C3/ define an open set, that .C4/0! defines an open set, that .C5/0!� .C7/0!
define an open set, and that .C8/0!�.C10/0! define an open subset of the set defined
by .C5/0! � .C7/0! .

That .C1/� .C3/ define an open set and that .C4/0! defines an open set are well
known.

The condition .C5/0! by itself does not define an open set. Moreover, the
formulations of .C6/0! and .C7/0! are meaningful only when .C5/0! holds. For this
reason, we formulate more general conditions .C6/�! and .C7/�!, which reduce to
.C6/0! and .C7/0! when .C5/0! holds.

According to Theorem 2 in [6], if n! 2 	 then, even if there is more than one gE0 -
shortest curve 	 in h0, every gE0 -shortest curve 	 in h0 has the form 	 D P

i

pi	i ,

where pi is a positive integer, 	i is a simple closed curve, and 	i \ 	j D n! for
i ¤ j .
.C6/�! If 	 is a gE0 -shortest curve in h0 and n! 2 	 , then each 	i is tangent to

the x-axis at n! .
.C7/�! Under the same conditions, each 	i is non-degenerate in the sense of

Morse.
These conditions define an open set. Moreover, the set of .`0; P / 2 L 4 
P3

such that .C5/0!; .C6/�! , and .C7/�! hold is open in the set of .`0; P / such that
.C6/�! and .C7/�! hold. Since .C6/�! is the same as .C6/0! and .C7/�! is the same as
.C7/0! when .C5/0! holds, it follows that the set of .`0; P / for which .C5/0!; .C6/0!;
and .C7/0! hold is open.

In the case that the gE0 -shortest curve in h0 is not simple, the fact that .C8/0! �
.C10/0! define an open set follows by well-known arguments. In the case that 	
is simple, an additional argument is need, viz. conditions .C4/0! � .C7/0! imply
that .C8/0! � .C10/0! hold for sufficiently small E > E0. We will prove this in a
subsequent paper.

This finishes our sketch of a proof that U is open in L 4 
P3.
In defining the conditions .C8/0! � .C10/0!, we treated the cases when the gE0 -

shortest curve 	 in h0 is simple and when 	 is not simple differently. This seems
necessary. On the one hand, when 	 is not simple, the conditions .C4/0! � .C7/0!
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do not imply that .C8/0! � .C10/0! hold for sufficiently small E > E0, and there
does not seem to be any reason that the modified conditions .C8/0!�.C10/0!, where
bE0 � E � E�

0 is replaced by bE0 � E > E0, would define an open set. This is why
we restricted E by bE0 � E � E�

0 in the case 	 is not simple. On the other hand,
if we were to restrict E in this way when 	 is simple, we would not know how to
prove our Arnold diffusion result.

Since U is open in L 4 
P3, we have that for any `0 2 L 4 and any r � 3,
U \ .`0 
Pr / is open relative to Pr . Since the intersection of open and dense
sets is open and dense, to prove (f) it is enough to prove that each of the conditions
.C1/� .C3/ and .C4/0! � .C10/0! defines a dense subset of Pr . For each of these
conditions, this is well known. This finishes our sketch of the proof of conditions (f)
and also of condition (c), since the denseness of U \ .`0 
Pr / in Pr for `0 2 L
and r � 3 implies the denseness of U in L 4 
P3.

8 The Legendre–Fenchel Transform

In [2], we associated to a Tonelli Lagrangian L W TM 
 T ! R a convex function
ˇL W H1.M IR/ ! R with superlinear growth. For h 2 H1.M IR/, we called
ˇL.h/ the minimal average action of h. We defined ˇL.h/ to be the minimum of
A.�/ where A.�/ is the average action associated to an invariant Borel probability
measure � on TM 
 T and the minimum is taken over all such � whose rotation
number �.�/ is h. Here, M is an arbitrary closed (i.e. compact and boundaryless)
manifold. By Tonelli Lagrangian, we mean an L as above satisfying the conditions
introduced in [2]. We explained the terminology and results that we are using here
in [5] $ 2 and we will not repeat this explanation here. The results mostly come from
[2] and [3], but the terminology is not always the same as in those papers.

The LagrangianL D `0C�P introduced in $ 2 is not a Tonelli Lagrangian, since
it is defined only on T

2 
 B2 
 T and not all of TT2 
 T D T
2 
 R

2 
 T. We may,
however, extend it to all of TT2 
T so as to be a Tonelli Lagrangian, in the manner
described in [4] $ 3. In the subsequent discussion, we will use the results of [2] and
[3] (as recalled in [4] $ 2) applied to this extension of L.

Since ˇL is convex and has superlinear growth, its Fenchel conjugate ˛L W
H1.M IR/ ! R is convex and has superlinear growth. It is defined by ˛L.c/ WD
�min fˇL.h/ � hh; ci W h 2 H1.M IR/g, where hh; ci is the canonical pairing be-
tween h 2 H1.M IR/ and c 2 H1.M IR/. The Fenchel inequality ˇL.h/C˛L.c/ �
hh; ci for h 2 H1.M IR/ and c 2 H1.M IR/ follows immediately. The Legendre–
Fenchel transform L F .h/ D L FˇL.h/ of h 2 H1.M IR/ is defined to be
fc 2 H1.M IR/ W ˇL.h/ C ˛L.c/ D hh; cig. It is a compact, convex, non-empty
subset of H1.M IR/. More generally, we define the Legendre–Fenchel transform
L F .S/ of a subset S of H1.M IR/ as L F .S/ D [

h2S L F .h/.

In this section, we consider a rational line segment & � int B2 and state
properties of L FˇL.&/ that hold when .�; `0; P / 2 V . Here, L W TT2 
 T! R
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is a Tonelli Lagrangian that extends `0 C �P in the fashion described in [4] $ 3.
Proving these properties are a step in our proof of Theorem 1, but we will not prove
them in this paper.

We let .k0; k1; k2/ generate the group of resonances of & . For c 2 R
2, the

function P� 7! `0. P�/ � h P�; ci W & ! R has everywhere positive second derivative,
so it has a unique minimum !c 2 & . If !c is in the relative interior int & of & ,
then c � d`0.!c/ is in the one dimensional subspace of R2 spanned by .k1; k2/. In
this case, the line parallel to this one dimensional subspace and passing through c
meets d`0.&/ in exactly one point d`0.!c/, and crosses d`0.&/ transversely there.
We note that since B2 is convex, and d2`0. P�/ is positive definite for every P� 2 B2,
it follows that the mapping P� 7! d`0. P�/ W B2 ! R

2 is injective and its derivative at
any point in B2 is an isomorphism.

The diagram

T
2 
 0 � T

2 
 T
pr!T

1
�;

where pr denotes the projection of T2 
 T on T
1
� WD

�
T
2 
 T

	
=T2�, induces the

linear mapping
pr� W H1

�
T
1
�IR

	! H1.T2IR/ D R
2

whose image is the one dimensional subspace of R2 spanned by .k1; k2/.
We let

L F!;� W H1

�
T
1
�IR

	! ˚
compact, convex, non-empty subsets of H1

�
T
1
�IR

	�

denote the Legendre–Fenchel transform associated to ˇL in the case thatL D L!;�.
The assumption that P!;� is not constant implies that L F!;�.0/ is not reduced to
a point. It is easily seen that ˇL is an even function in the case that L D L!;�.
Hence, L F!;�.0/ is symmetric about 0, i.e. it is a closed interval Œ�a!; a!� with
a! D a!;� > 0 where we identifyH1.T1�IR/ with R by identifying a generator of
H1

�
T
1
�IZ

	
with 1.

In view of .C3/, there are at most finitely many ! 2 & whereP!;� has more than
one global minimum, and by .C2/, it has two global minima at any such point. The
function ! 7! a! W & ! RCC is continuous except at those ! at which P!;� has
two global minima. At !0 2 & where P!0;� has two global minima, the one-sided
limits a!0� WD lim

!"!0
a! and a!0C WD lim

!#!0
a! exist and

a!0 D max .a!0�; a!0C/ :

We let

L F W H1.T
2IR/! ˚

compact, convex, non-empty subsets of H1
�
T
2IR	�

denote the Legendre–Fenchel transform associated to ˇL in the case that L is a
Tonelli extension of `0 C �P in the fashion of [4] $ 3. In the case that ! 2 & �
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int B2 � R
2 D H1.T

2IR/ and � is sufficiently small, we have that L F .!/ �
H1.T2IR/ D R

2 is independent of the choice of extension L of `0 C �P .
We describe the sets L F .!/ for ! 2 & by means of three functions

b˙ W & ! R and z W & ! �. We choose an orientation for � and order �
accordingly. The functions b˙ and z have the following properties:

• z is monotone increasing;
• b� � bC ;
• The one-sided limits b˙.!0�/ WD lim

!"!0
b˙.!/ and b˙.!0C/ WD lim

!#!0
b˙.!/

exist for all !0 2 & , with the exception of the endpoints, where only one one-
sided limit exists (from below for the top endpoint and from above for the bottom
endpoint);

• bC.!/ D max.bC.!�/; bC.!C// and b�.!/ D min.b�.!�/; b�.!C//I and
• L F .!/ D fd`0.!�/Cp� pr�bc W z.!�/ � !� � z.!C/ and b�.!/ �bc �
bC.!/g.
In the discussion above, we have held �; `0; and P fixed. Next, we discuss

convergence properties of b˙ and z as � goes to zero. For z, we have z.!˙/ ! !

as � # 0. For b˙, we introduce the quantity B.!/ WD lim sup
�#0
fminŒmax. jb�.!/C

a!�j; jbC.!/�a!�j /; max.jb�.!/Ca!Cj ; jbC.!/�a!Cj/�g:We will show in a
subsequent paper thatB.!/ D 0 if ! is irrational, and that ! 7! B.!/ is continuous
at all irrational ! in & .

This says that the interval Œb�.!/; bC.!/� is approximated by one of the
intervals Œ�a!�; a!�� or Œ�a!C; a!C� under the conditions that � is small and !
is irrational or rational with large denominator. This result is incomplete, however,
since it is not uniform in � and it says nothing about rational ! with small
denominator.

For our proof of Arnold diffusion, what we would like to show is that there exists
a connected component of the interior of L F .&/ that intersects both L F .!0/

and L F .!1/ where !0 and !1 are the endpoints of & . We can show this under the
assumptions .C1/ � .C3/ and .C4/! � .C10/! for rational ! 2 & with small
denominator and the additional assumption that for rational ! 2 & with small
denominator the unique gE0 -shortest curve in h0 is simple.

We cannot show this, however, without the additional assumption. Fortunately,
for our proof of Arnold diffusion there is a way to overcome this difficulty, which
we will discuss in a subsequent paper. Nevertheless, it is useful to first explain some
results used in showing that this can be proved under the additional assumption.

To show that there is a connected component of the interior of L F .&/ that
meets both L F .!0/ and L F .!1/, it is enough to obtain a uniform (in �) lower
bound for bC � b�. This can be done under the additional assumption. Next, we
state some more results relevant to obtaining such a lower bound, to explain some
of the ideas in our proof of Arnold diffusion.

We can show that Œb�.!/; bC.!/� can be approximated uniformly in � by one of
the intervals Œ�ab!; ab!�with j!�b!j � ıp�, provided that there is no !0 with small
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denominator such that j!�!0j � C1p�. Here, ı > 0 is arbitrary andC1 is a suitably
large number. More precisely, if ı > 0 is given, then there exist C1; q0; �0 > 0,
which depend only on `0; P; and ı, such that if 0 < � � �0 and ! 2 & and
there is no !0 D .p1=q; p2=q/ 2 & with p1; p2; q 2 Z; 0 < q � q0, and
j!�!0j � C1p�, then there existsb! 2 & with j!�b!j � ıp�; jb�.!/Cab! j < ı,
and jbC.!/ � ab! j < ı.

Since q0 is independent of �, the conditions j! � !0j � C1
p
� with !0 as

above exclude a finite number of intervals each of length 2C1
p
�, and the number

of intervals excluded is independent of �. Under the conditions .C1/ � .C3/, the
function ! 7! a! W & ! RCC has a positive lower bound B that depends only on
`0 and P . We may take ı D B=2, so q0 depends only on `0 and P . Then bC � b�
has the lower bound B on & outside of the intervals of length 2C1

p
� centered at

points of the form .p1=q; p2=q/ 2 & with p1; p2; q 2 Z and 0 < q � q0.
We consider !0 2 int & \Q. We let

L F!0 W H1

�
T
2
!0
IR	! fcompact, convex, non-empty subsets of H1

�
T
2
!0
IR	g

denote the Legendre–Fenchel transform associated to ˇL in the case that L D L!0 .
We let h0 be as in $ 5, i.e. a generator ofH1

�
T
2
�=T

1
!0
IZ	, regarded as an element of

H1

�
T
2
!0
IR	. The diagram

T
2 
 0 � T

2 
 T
pr�!T

2
!;

where pr denotes the projection of T2 
 T on T
2
! WD

�
T
2 
 T

	
=T1! , induces an

isomorphism
pr� W R2 D H1.T

2IR/! H1

�
T
2
! IR

	
:

For � 2 R, we set !� WD !0 Cp��pr�1� .h0/ 2 �.
We choose h1 2 H1

�
T
2
!0
IZ	 such that h0 and h1 generate this abelian group.

In particular, .h0; h1/ is a basis of the vector space H1

�
T
2
!0
IR	. We let .c0; c1/ be

a dual basis of H1
�
T
2
!0
IR	, i.e., we suppose that hhi ; cj i D ıij (Kronecker delta

symbol) for i; j D 0; 1.
We set ˇ!0 WD ˇL whereL D L!0 and set b̌!0 WD ˇ!0 jR �h0. Then b̌!0 W R! R

is an even, convex function with superlinear growth. It is differentiable except at
the origin, where it is not differentiable under the assumption that condition .C4/0!0
holds. There exist functions c˙ W R! R such that the following hold:

• If � ¤ 0 then L F!0.�h0/ D
n
b̌0
!0
.�/c0 C �c1 W c�

�
b̌0
!0
.�/
�
� � � cC

�
b̌0
!0
.�/
�o

;

• L F!0.0/ D
n
�c0 C �c1 W b̌0

!0
.0�/ � � � b̌0

!0
.0C/ and c�.�/ � � � cC.�/

o
;

and
• For � 2 R; c˙.��/ D �c
.�/.
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There exists an ergodic action minimizing probability measure � for L!0 with
rotation vector �.�/ D �h0 in the case when � is an extremal point of the
epigraph of b̌!0 . If furthermore � ¤ 0, then � is evenly supported on an L!0 -
invariant simple closed curve 	� on T

2
!0

. Since the Lagrangian L!0 is autonomous,
the corresponding Hamiltonian H!0 is invariant, so the curve is contained in an
energy level fH!0 D Eg. According to a result of Dias Carneiro [1],E D �b̌0

!0
.�/�

ˇ!0.�/ � E0 and the curve 	� (apart from parameterization) is a gE -shortest
geodesic on T

2
!0

.
The assumptions .C8/0!0 � .C10/0!0 imply that for E in the range

• E0 < E � bE0 if the gE0-shortest curve in h0 is simple, or
• E�

0 � E � bE0 if the gE0 -shortest curve in h0 is not simple,

we have the following

• If there is only one gE -shortest curve in h0 then there is a unique � > 0 such that
�b̌0

!0
.�/� b̌!0.�/ D E and �h0 is an extremal point of ˇ!0 , and

• If there are two gE -shortest curves in h0 then the set of � > 0 such that �b̌0
!0
.�/�

b̌
!0.�/ D E is a closed interval Œ�0; �1� and �0h0 and �1h0 are extremal points

of ˇ!0 .

In the first case, there is a unique action minimizing probability measure for L!0
with rotation vector �h0. In the second case, this is true for � D �0 and � D �1, but
there does not exist an action minimizing probability measure for L!0 with rotation
vector �h0 when �0 < � < �1. In the first case, the measure is supported in the
gE -shortest curve in h0. In the second case, each of the measures is supported in
one of the two gE -shortest curves.

In the case that the gE0 -shortest curve in h0 is simple, the functions c� and cC
are continuous on the set J of b̌0

!0
.�/ such that �b̌0

!0
.�/ � b̌0

!0
.�/ � bE0, with the

exception of the finite set of discontinuities. These occur only at b̌0
!0
.�/ for which

there are two gE -shortest curve in h0 with E D �b̌0
!0
.�/ � b̌!0.�/, and b̌0

!0
.0˙/.

In the other case, the same statement is true for K in place of J , where K is the set
of b̌0

!0
.�/ such that E�

0 � �b̌0
!0
.�/ � b̌!0.�/ � bE0.

We note that J is a symmetric closed interval about the origin andK is the union
of a closed interval in RCC and its reflection about the origin. Moreover, cC � c�
has a lower bound B 2 RCC on J in the first case and on K in the second case.

If � is in J or K (according to the case) we can show that


b�.!�/; bC.!�/

�

can be approximated by
h
c�
�
b̌0
!0
.�0/

�
; cC

�
b̌0
!0
.�0/

�i
, with �0 close to �. More

precisely, if ı > 0 is given, then there exists �0 > 0, which depends only on
`0; P; and ı such that if 0 < � � �0 and � 2 J or � 2 K (depending on the

case) then there exists �0 with j� � �0j < ı such that
ˇ
ˇ
ˇb�.!�/� c�

�
b̌0
!0
.�0/

�ˇ
ˇ
ˇ < ı

and
ˇ
ˇ
ˇbC.!�/� cC

�
b̌0
!0
.�0/

�ˇ
ˇ
ˇ < ı.
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This finishes our sketch of why there exists a connected component of the interior
of L F .&/ that intersects both L F .!0/ and L F .!1/ in the case that for any
rational !0 in & with small denominator the gE0 -shortest curve in h0 is simple.
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Turning Washington’s Heuristics in Favor
of Vandiver’s Conjecture

Preda Mihăilescu

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract A famous conjecture bearing the name of Vandiver states that p − hC
p

in the p – cyclotomic extension of Q. Heuristics arguments of Washington, which
have been briefly exposed in Lang (Cyclotomic fields I and II, Springer, New York,
1978/1980, p 261) and Washington (Introduction to cyclotomic fields, Springer,
New York/London, 1996, p 158) suggest that the Vandiver conjecture should be
false if certain conditions of statistical independence are fulfilled. In this note, we
assume that Greenberg’s conjecture is true for the p�th cyclotomic extensions and
prove an elementary consequence of the assumption that Vandiver’s conjecture fails
for a certain value of p: the result indicates that there are deep correlations between
this fact and the defect �� > i.p/, where i.p/ is like usual the irregularity index
of p, i.e. the number of Bernoulli numbers B2k 	 0 mod p; 1 < k < .p� 1/=2. As
a consequence, this result could turn Washington’s heuristic arguments, in a certain
sense into an argument in favor of Vandiver’s conjecture.

1 Introduction

Let p be an odd prime and K D QŒ�� be the p�th cyclotomic field and G D
Gal .K=Q/. IfX is a finite abelian group, we denote byXp its p – Sylow group; let
A D idC.K/p, the p – Sylow subgroup of the class group idC.K/ and hC; h� the
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sizes1 ofAC respectivelyA�. Kummer explained to Kronecker in a letter from 1849

his ideas for approaching Fermat’s Last Theorem ([4], Chap. IX, $ 8) on base of two
assumptions. One was still unsolved in 1853 when he referred to it in a new letter
to Kronecker as a theorem “still to be established” (noch zu beweisender Satz): this
is what we presently call the Vandiver conjecture. The second assumption, which
implies that units of K which are local p2�th powers must be global p�th powers,
is neither proved nor disproved, but it is not known as a conjecture with a particular
name.

In [3, p. 261], Washington gives a heuristic argument which suggests that there
might be an asymptotic amount of O.log log.N // of primes p � N for which
�.A�1/ D i.p/ C 1, where i.p/ is the irregularity index of p, i.e. the number of
Bernoulli numbers B2k; 1 < k < .p � 1/=2 that vanish modulo p. In [5, p. 158],
Washington starts with a naive argument, on base of which the cyclotomic unit
�2k WD e2k.1 � �/��1 (see below for the definition of the idempotents ej 2 FpŒG�)
may be a p�th power with probability 1=p: this yields a probability of almost
one half, for the failure of Vandiver’s conjecture, so the argument is obviously too
crude. Washington assumes then that the conditional probability that a cyclotomic
unit �2k is a p-power, given that B2k 	 0 mod p is 1=p: this heuristic leads to a
frequence of O.log log.N // primes p < N for which the conjecture fails. As a
consequence, various specialists in the field expect that the conjecture should not
always hold. Our result in this note shows that if Vandiver’s conjecture fails, then
one has the additional condition �� > i.p/. If one considers this condition also
as statistically independent (!) from the two conditions in Washington’s heuristics,
then the same argument suggests that there may be O.1/ primes p < N for
which Vandiver’s conjecture fails, thus possibly none. As a consequence of this
result, the failing of Vandiver appears to require for a sequence of conditions that
might have been considered previously as statistically independent. The foundation
of statistical heuristics becomes herewith more uncertain. It is thus preferable to
state that the conditional probability in Washington’s heuristics should be sensibly
smaller than 1=p.

No direct consequence can be drawn as to the truth of the Kummer – Vandiver
conjecture; however we have an explicit theorem which indicates an unknown
dependence, and also a method of investigation which may be extended for the
purpose of investigating more possible consequences of the assumption that the
Kummer-Vandiver conjecture is false. The central idea of our proof can be extended,
with additional detail, to the general case, and this shall be done in a subsequent
paper.

The result of this paper is the following:

Theorem 1. Let p be an odd prime with irregularity index i.p/ D 1, for which
Greenberg’s conjecture holds. If p j hC

p , then �� � 2.

1One may encounter also the notation hC D jidC.KC/j, but we refer strictly to the p-part in this
paper.
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Since �� > 1 is an implication of hC
p > 1, the two events cannot be considered

as independent events, each one with probability 1=p. But this implication can also
suggest that the probability that �2k is a p�th power has rather the probability 1=p2

than 1=p since it implies the vanishing of a higher order Bernoulli number.
Note that we restrict our analysis, for simplicity, to the case of irregularity index

1. However, this is the critical case in Washington’s heuristics, and if the assumption
of “statistical independence” is close to reality,2 then the probability of failure of the
conjecture for higher values of i.p/ can only be smaller, so the argument stays valid.

2 Proof of the Theorem

We let K D QŒ�� be the p�th cyclotomic extension and Kn D KŒ�1=p
n
�; n � 1, the

pn�th extension. The galois groups are

G D Gal .K=Q/ D f�a W a D 1; 2; : : : ; p � 1; � 7! �ag Š .Z=p � Z/�;
Gn D Gal .Kn=Q/ D G 
 h�i; �.�pn / D �1Cppn ;

so � generates Gal .Kn=K/, in particular. If g 2 Fp is a generator of .Z=p � Z/�,
then � D �g generates G multiplicatively. We write | 2 G for complex
multiplication. For � 2 G and R 2 fFp;Zp;Z=.pm � Z/g we let $.�/ 2 R be
the value of the Teichmüller character on � ; for R D Fp we may also write O� for
this values. The orthogonal idempotents ek 2 RŒG� are

ek D 1

p � 1
p�1X

aD1
$k.�a/ � ��1

a :

If X is a finite abelian p – group on which G acts, then ek.Zp/ acts via its
approximants to the pm�th order; we shall not introduce additional notations for
these approximants. A fortiori, complex conjugation acts on X splitting it in the
canonical plus and minus parts: X D XC ˚ X�, with XC D X1C| ; X� D X1�| .
The units of K and Kn are denoted by E;En and the cyclotomic units by C;Cn. If
F is an arbitrary field, we let E 0.F/ denote the p-units of the number field F, i.e.
the units of the smallest ring containing E.F/ and in which all the primes above p
are invertible. In particular E 0

n D �Zn � En, with �n D 1 � �pn ; it is customary to
denote by A0.F/ the p-part of the ideal class group of the p-integers of F. If L=K is
an unramified abelian p-extension in which all the primes above p in K are totally
split, then it is known (see e.g. [2], $ 4) that

Ker .� W A.K/! A.L// D Ker .�0 W A0.K/! A0.L//: (1)

2Washington mentions explicitly that this is the critical point in the various heuristics of this kind.
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The Iwasawa invariants �.K/; ��.K/ are related to the cyclotomic Zp-extension
K1 D [nKn and An D .idC.Kn//p are the p-parts of the ideal class groups
of Kn. They form a projective sequence with respect to the relative norms Nm;n D
NormKm=Kn ; m > n � 1 and A D lim �n An. Likewise, A0 D lim �n A

0
n and we also

write A;A0 for A1;A0
1. We shall write in general A.L/ D .idC.L//p for the p-part

of the class group of an arbitrary number field L, so A D A.K/, etc. We also write
�n D 1��pn , the primes abovep which should not be confounded with the Iwasawa
invariants.

We fix now an odd prime p such that

1. Greenberg’s conjecture holds for p, so AC is finite and �C D 0. In particular,
there is an n0 � n, such that for all n � n0 we have jAC

n j D jAC
nC1j.

2. Vandiver’s conjecture fails for p.
3. There is a unique irregular index 2k such that Ap�2k D ep�2kA ¤ f1g.

Additionally A2k ¤ f1g, as a consequence of 2.

Under these premises, we show that Zp-rk.ep�2kA/ > 1, which is the statement
of the theorem. We prove the statement by contraposition, so we assume that
Zp-rk.ep�2kA/ D 1. Since there is a unique irregular index, the minimal polynomial
of A is linear. Let Hn=Kn be the maximal p-abelian unramified extensions. They
split in plus and minus parts according to An D AC

n ˚ A�
n and our assumption

implies that HC
n =Kn are cyclic extensions of degree

dn WD ŒHC
n W Kn� D jAC

n j:

We may also consider H
C
n as the compositum of Kn with the full p-part of the

Hilbert class field of K
C
n � Kn, the maximal real subextension of Kn: thus H

C
n

is a canonical subfield, with galois group corresponding by the Artin map to AC
n .

It follows that HC
n =K

C
n is an abelian extension, and thus HC

n is a CM field (see also
[5], Lemma 9.2 for a detailed proof).

There is a canonic construction of radicals from A�
n , such that H

�
n � Km �

KmŒ.A
�
m/

1=pm � for sufficiently largem. For such n > n0 like in point 1., let an 2 A�
n

generate this cyclic group. Let Q 2 an and ˛0 2 K
�
n with .˛0/ D Qord .an/; there

is an ˛ D � � ˛1�|0 ; � 2 �pn which is well defined up to roots of unity, such that
H

C
n � KnŒ˛

1=pn �. The radical Bn of HC
n is then the multiplicative group generated

by ˛ and .K�
n /
dn .

Since H
C
n =Kn is cyclic, a folklore result, which we prove for completeness in

Lemma 2 of the Appendix below, implies that

.A.HC
n //

C D ..idC.HC
n //p/

C D f1g: (2)

For an arbitrary field K we denote by PK the principal ideals of K. If L=K is a
galois extension with group G, we denote by idA.L=K/ D PG

L =PK the quotient of
the principal ambig idealsPG

L � PL by the lift of the principal ideals of K. The first
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can be either ideals from K that capitulate in L or (powers of) ramified primes. A
classical result, proved by Iwasawa [2] in a general cohomological language, states
that for an arbitrary galois extension L=K of finite number fields, there is a canonical
isomorphism

H1. Gal .L=K/; E.L// Š idA.L=K/: (3)

As a consequence, if L=K is a cyclic unramified p-extension, the factor idA is a
capitulation kernel and we obtain:

H1. Gal .L=K/; E.L// Š Ker .� W A.K/! A.L//: (4)

This applies in particular to the extensions HC
n =Kn.

We shall in the sequel consider the homology groups H0;H1 for the unit
groups. We are only interested in the real units, so we tacitly assume that E.L/ D
EC.L/ for CM extensions L=K. We may then write, for simplicity Hi.L=K/ WD
Hi. Gal .L=K/; E.L// for i D 1; 2. The isomorphism in (3) restricts also to one
of p-parts of the respective groups; furthermore, complex conjugation also induces
canonical isomorphisms of the plus and minus parts of Hi . The extensions HC

n =Kn

being cyclic of degree dn, the Herbrand quotient is dn and thus

jH1.HC
n =Kn/j D dn � jH0.HC

n =Kn/j:

We claim that
�
H0.HC

n =Kn/
	C D f1g. Indeed, since dn D jAC

n j by definition, we
have, in view of (4), exactly jidA.HC

n =Kn/j D d2n . This follows from the fact that
the plus part capitulates completely, while the minus part is cyclic too and generates
the radical of the extension, thus capitulating too. Since Q.1�|/ord .an/=dn D .˛

1=dn
n /

is principal in H
C
n , the claimed size for the group of ambig ideals follows, and thus

jidA.HC
n =Kn/j D d2n and jidA.HC

n =Kn/
�j D jidA.HC

n =Kn/
Cj D dn:

Therefore, jH0.HC
n =Kn/j D dn.

The roots of unity �pn 62 Norm
H

C

n =Kn
.E.HC

n //: indeed, if �pm DN.ı/ for

ı 2 E.HC
n / and m�n, then "D ı=ı is well defined in the CM field H

C
n and

it is a root of unity, by Kronecker’s unit Theorem – so " 2 Kn. Moreover, we
have Norm

H
C

n =Kn
."/ D "dn D �2pm . Since p is odd, it follows from the above that

�pn=�pn=dn � H0.HC
n =Kn/; by comparing orders of the groups, we conclude that

H0.HC
n =Kn/ D �pn=�.pn=dn/ D

�
H0.HC

n =Kn/
	�
:
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We have proved:

Lemma 1. Notations being like above,

�
H0.HC

n =Kn/
	C D f1g:

In particular

Norm
H

C

n =Kn
.EC.HC

n // D EC.Kn/; (5)

where for a CM field F we write EC.F/ D fe � e W e 2 E.F/g.
In our case, EC are the real units and the units of KC

n , resp. H.KC
n / � H

C
n ; the

prime p is odd and we are interested in p-parts, so the implicit exponent 2 in the
above definition has no further consequences: the norm is surjective on the real units
in our class field.

From H
C
nC1DKnC1 � HC

n and we have a commutative diagram of fields. For
n > n0, the capitulation kernel Ker .�n;nC1 W AC

n ! AC
nC1/ has constant size p,

since AC
n is cyclic. Thus jH0.KnC1=Kn/j D p. The idea of the proof will be to

show that

N
H

C

nC1=H
C

n
.E.HC

nC1// � Ker .N W E.HC
n /! E.Kn// D E.HC

n /: (6)

In view of (5), we obtain N
H

C

nC1=Kn
.E.HC

nC1// D E.Kn/, which contradicts the

fact that jH0.KnC1=Kn/j D p established above, for sufficiently large n. The core
observation of our proof is

Proposition 1. Let �nD 1 � �pn . Then the ramified prime }nD .�n/�Kn above
p splits totally in H

C
n in p-principal ideals and there is a �n 2 H

C
n with

Norm
H

C

n =Kn
.�n/ D �cn; .c; p/ D 1.

Proof. The Lemma 2 implies that

.A.HC
n //

C D f1g; (7)

the plus part of Hilbert class fields being canonical. Since }nD .�n/ is principal,
the Principal Ideal Theorem (for the p-part of the Hilbert class field of K

C
n )

implies that it splits completely in the unramified extension H
C
n =Kn and the primes

above }n must be real; but .A.HC
n //

CDf1g, so they must be p-principal. Let
.�n/D pc be a principal prime power with p a prime above }n and .c; p/D 1. Then
N

H
C

n =Kn
.�n/D "�cn and in view of (5) we may assume that the unit "D 1, which

completes the proof.
The proof of this proposition is made particularly simple by the use of (2).

However, a more involved proof shows that the facts hold in more generality and
the primes above � are principal in any subfield of the Hilbert class field Hn.
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We complete the proof of the theorem as indicated above, before Proposition 1.
Recall that the irregular components are e2kA and ep�2kA. Since H

C
nC1=Hn is

abelian, �n, a generator of Gal .KnC1=Kn/ lifts naturally to Gal .HC
nC1=HC

n / and
we write T D �n � 1. We denote by � 2 Gal .HC

n =Kn/ a generator of this group.
For n large enough,H0.KnC1=Kn/ D e2kH0.KnC1=Kn/ Š Z=.p � Z/. We shall

prove (6). Since N
H

C

n =Kn
.E.HC

n // D E.Kn/, there is some unit en 2 E.HC
n / with

non trivial image in E.HC
n /=E

.p;.��1// and such that eZn \ NH
C

nC1
=H

C

n
.E.HC

nC1// D
e
pZ
n . Since C.Kn/ � N

H
C

nC1=Kn
.E.HC

nC1// as a consequence of Proposition 1, we

must have "n WD N
H

C

n =Kn
.en/ 2 E.Kn/ n C.Kn/. Let concretely enC1 2 E.HC

nC1/
with epn D N

H
C

nC1=H
C

n
.enC1/ and e D enC1=en, so N

H
C

nC1=H
C

n
.e/ D 1. Let us write

"m WD N
H

C

m =Km
.em/;m 2 fn; nC 1g;

and ı WD "nC1="n D N
H

C

nC1=KnC1
.e/. Note that by construction we have "mE.Km/

p

2 e2kE.Km/=E
p.Km/. The components e2kE.Km/=E.Km/

p are cyclic, and due to
vertical capitulation, there is an ambig ideal .!/ � KnC1 such that ı D !T .

By construction, we also have ı 2 E.KnC1/ n C.KnC1/. It follows from Hilbert
90 that e D �T ; � 2 E 0.HnC1/. Indeed, since �T 2 E.HnC1/, it follows that .�/
is an ambig ideal, so .�/ D RidO.HnC1/ for some ideal R � Hn, which is either
ramified or capitulates in HnC1=Hn. Since A.HC

n /
C D f1g, the second alternative is

not possible, so it remains that R is a ramified ideal: but the only primes ramifying
in HnC1=Hn are the primes above p and we may conclude that � 2 E 0.HnC1/.
Taking the norm N

H
C

nC1=KnC1
we obtain .!=NormHnC1=KnC1

.�//T D 1, hence

ı D NormHnC1=KnC1
.�/�T 2 E 0.KnC1/T . But then ı 2 E 0.KT

nC1/ \ E.KnC1/ �
C.KnC1/ is a cyclotomic unit, in contradiction with the choice of en; enC1 and
the remark above. This contradiction confirms (6) and completes the proof of
Theorem 1.

A Appendix

For the sake of completeness, we give a proof of the following

Lemma 2. Let K be a number field andA be the p – part of its class group, while H
is the p – part of its Hilbert class field. If A is cyclic, thenA.H/ WD idC.H/p D f1g.
Proof. Since A is cyclic, Gal .H=K/ Š A is a cyclic group and the ideals
of a generating class a 2 A are inert and become principal in H. Let � D
'.a/2 Gal .H=K/ be a generator and s D ��1. Suppose that b 2 A.H/nA.H/.s;p/
is a non trivial class and let Q 2 b be an ideal above a rational prime q � K, which
splits completely in H=K: such a prime must exist, by Tchebotarew’s Theorem.
Since H=K is the p-part of the Hilbert class field of K, and q is totally split, it
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must be a principal ideal, so b0 D Œq� D 1. Therefore NormH=K.b/ D b0 D 1,
and Furtwängler’s Hilbert 90 Theorem for ideal class groups in unramified cyclic
extensions [1] says that Ker .NormWA.H/!A.K//�A.H/s , which implies that
b 2A.H/s . This contradicts the choice of b and completes the proof.

Acknowledgements I thank the anonymous referee for helpful questions and suggestions, which
helped improve the clarity of the exposition.
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Schwartzman Cycles and Ergodic Solenoids

Vicente Muñoz and Ricardo Pérez Marco

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract We extend Schwartzman theory beyond dimension 1 and provide a
unified treatment of Ruelle-Sullivan and Schwartzman theories via Birkhoff’s
ergodic theorem for the class of immersions of solenoids with a trapping region.

1 Introduction

This is the second paper of a series of articles [1–5] in which we aim to give a
geometric realization of real homology classes in smooth manifolds. This paper is
devoted to the definition of Schwartzman homology classes and its relationship with
the generalized currents associated to solenoids defined in [2].

Let M be a smooth manifold. A closed oriented submanifold N � M of
dimension k � 0 determines a homology class inHk.M;Z/. This homology class in
Hk.M;R/, as dual of de Rham cohomology, is explicitly given by integration of the
restriction toN of differential k-forms onM . Unfortunately, because of topological
reasons dating back to Thom [8], not all integer homology classes in Hk.M;Z/ can
be realized in such a way. Geometrically, we can realize any class in Hk.M;Z/

by topological k-chains. The real homologyHk.M;R/ classes are only realized by
formal combinations with real coefficients of k-cells. This is not fully satisfactory.
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For various reasons, it is important to have an explicit realization, as geometric as
possible, of real homology classes.

The first contribution in this direction came in 1957 from the work of Schwartz-
man [7]. Schwartzman showed how, by a limiting procedure, one-dimensional
curves immersed in M can define a real homology class in H1.M;R/. More
precisely, he proved that this happens for almost all curves solutions to a differential
equation admitting an invariant ergodic probability measure. Schwartzman’s idea
consists on integrating 1-forms over large pieces of the parametrized curve and
normalizing this integral by the length of the parametrization. Under suitable
conditions, the limit exists and defines an element of the dual of H1.M;R/, i.e. an
element of H1.M;R/. This procedure is equivalent to the more geometric one of
closing large pieces of the curve by relatively short closing paths. The closed curve
obtained defines an integer homology class. The normalization by the length of the
parameter range provides a class in H1.M;R/. Under suitable hypothesis, there
exists a unique limit in real homology when the pieces exhaust the parametrized
curve, and this limit is independent of the closing procedure. In Sects. 4 and 5,
we shall study this circle of ideas in great generality. In Sect. 4 we shall define
Schwartzman cycles for parametrized and unparametrized curves in M , and study
their properties. In Sect. 5, we explore an alternative route to define real homology
classes associated to curves in M by using the universal covering � W QM !M .

It is natural to ask whether it is possible to realize every real homology class
using Schwartzman limits. By the result of [4], we can realize any real homology
class by the generalized current associated to an immersed oriented uniquely ergodic
solenoid. A solenoid (see [2]) is an abstract laminated space endowed with a
transversal structure. For these oriented solenoids we can consider k-forms that
we can integrate, provided that we are given a transversal measure invariant by
the holonomy group. An immersion of a solenoid S into M is a regular map
f W S ! M that is an immersion in each leaf. If the solenoid S is endowed with
a transversal measure � D .�T /, then any smooth k-form in M can be pulled
back to S by f and integrated. The resulting numerical value only depends on the
cohomology class of the k-form. Therefore we have defined a closed current that we
denote by .f; S�/ and that we call a generalized current [2]. It defines a homology
class Œf; S�� 2 Hk.M;R/. This is reviewed in Sect. 2.

In Sect. 6, we study the relation between the generalized current defined by an
immersed oriented measured 1-solenoid S� and the Schwartzman measure defined
by any one of its leaves. The relationship is best expressed for ergodic and uniquely
ergodic solenoids. In the first case, almost all �T -leaves define Schwartzman classes
which represent Œf; S��. In the second case, the property holds for all leaves.

Section 7 is devoted to the generalization of the Schwartzman theory to higher
dimensions. For a complete k-dimensional immersed submanifold N � M of a
Riemannian manifold, we define a Schwartzman class by taking large balls, closing
them with small caps, normalizing the homology class thus obtained and finally
taking the limit. This process is only possible when such capping exist. If S is a
k-solenoid immersed in M , one would naturally expect that there is some relation
between the generalized currents and the Schwartzman current (if defined) of the
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leaves. The main result is that there is such relation for the class of minimal,
ergodic solenoids with a trapping region (see Definition 26). For such solenoids, the
holonomy group is generated by a single map. Then the bridge between generalized
currents and Schwartzman currents of the leaves is provided by Birkhoff’s ergodic
theorem. We prove the following:

Theorem 1. Let S� be an oriented and minimal solenoid endowed with an ergodic
transversal measure �, and possessing a trapping region W . Let f W S� ! M

be an immersion of S� into M such that f .W / is contained in a ball. Then for
�T -almost all leaves l � S�, the Schwartzman homology class of f .l/ �M is well
defined and coincides with the homology class Œf; S��.

We are particularly interested in uniquely ergodic solenoids, with only one
ergodic transversal measure. As is well known, in this situation we have uniform
convergence of Birkhoff’s sums, which implies the stronger result:

Theorem 2. Let S� be a minimal, oriented and uniquely ergodic solenoid which
has a trapping regionW . Let f W S� !M be an immersion of S� intoM such that
f .W / is contained in a ball. Then for all leaves l � S�, the Schwartzman homology
class of f .l/ �M is well defined and coincides with the homology class Œf; S��.

2 Solenoids and Generalized Currents

Let us review the main concepts introduced in [2], and that we shall use later in this
paper.

Definition 1. A k-solenoid, where k � 0, of class C r;s, is a compact Hausdorff
space endowed with an atlas of flow-boxes A D f.Ui ; 'i /g,

'i W Ui ! Dk 
K.Ui/;

where Dk is the k-dimensional open ball, and K.Ui/ � R
l is the transversal set of

the flow-box. The changes of charts 'ij D 'i ı '�1
j are of the form

'ij .x; y/ D .X.x; y/; Y.y//; (1)

where X.x; y/ is of class C r;s and Y.y/ is of class C s .

Let S be a k-solenoid, and U Š Dk 
 K.U / be a flow-box for S . The sets
Ly D Dk 
 fyg are called the (local) leaves of the flow-box. A leaf l � S of the
solenoid is a connected k-dimensional manifold whose intersection with any flow-
box is a collection of local leaves. The solenoid is oriented if the leaves are oriented
(in a transversally continuous way).

A transversal for S is a subset T which is a finite union of transversals of flow-
boxes. Given two local transversals T1 and T2 and a path contained in a leaf from a
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point of T1 to a point of T2, there is a well-defined holonomy map h W T1 ! T2. The
holonomy maps form a pseudo-group.

A k-solenoid S is minimal if it does not contain a proper sub-solenoid.
By [2, Sect. 2], minimal solenoids exist. If S is minimal, then any transversal is
a global transversal, i.e., it intersects all leaves. In the special case of an oriented
minimal 1-solenoid, the holonomy return map associated to a local transversal,

RT W T ! T

is known as the Poincaré return map (see [2, Sect. 4]).

Definition 2. Let S be a k-solenoid. A transversal measure � D .�T / for S
associates to any local transversal T a locally finite measure �T supported on T ,
which are invariant by the holonomy pseudogroup, i.e. if h W T1 ! T2 is a holonomy
map, then h��T1 D �T2 .

We denote by S� a k-solenoid S endowed with a transversal measure� D .�T /.
We refer to S� as a measured solenoid. Observe that for any transversal measure
� D .�T / the scalar multiple c � D .c �T /, where c > 0, is also a transversal
measure. Notice that there is no natural scalar normalization of transversal measures.

Definition 3 (Transverse ergodicity). A transversal measure � D .�T / on a
solenoid S is ergodic if for any Borel set A � T invariant by the pseudo-group
of holonomy maps on T , we have

�T .A/ D 0 or �T .A/ D �T .T /:

We say that S� is an ergodic solenoid.

Definition 4. Let S be a k-solenoid. The solenoid S is uniquely ergodic if it has a
unique (up to scalars) transversal measure � and its support is the whole of S .

Now letM be a smooth manifold of dimension n. An immersion of a k-solenoid
S into M , with k < n, is a smooth map f W S ! M such that the differential
restricted to the tangent spaces of leaves has rank k at every point of S . The solenoid
f W S ! M is transversally immersed if for any flow-box U � S and chart
V � M , the map f W U D Dk 
 K.U / ! V � R

n is an embedding, and the
images of the leaves intersect transversally in M . If moreover f is injective, then
we say that the solenoid is embedded.

Note that under a transversal immersion, resp. an embedding, f W S ! M , the
images of the leaves are immersed, resp. injectively immersed, submanifolds.

Let Ck.M/ denote the space of k-dimensional currents onM .

Definition 5. Let S� be an oriented measured k-solenoid. An immersion f W S !
M defines a generalized Ruelle-Sullivan current .f; S�/ 2 Ck.M/ as follows. Let
S D S

i Si be a measurable partition such that each Si is contained in a flow-box
Ui . For ! 2 ˝k.M/, we define
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h.f; S�/; !i D
X

i

Z

K.Ui /

 Z

Ly\Si
f �!

!

d�K.Ui /.y/;

where Ly denotes the horizontal disk of the flow-box.

In [2] it is proved that .f; S�/ is a closed current. Therefore, it defines a real
homology class

Œf; S�� 2 Hk.M;R/:

In their original article [6], Ruelle and Sullivan defined this notion for the restricted
class of solenoids embedded in M .

3 Schwartzman Measures

Let S be a Riemannian k-solenoid, that is, a solenoid endowed with a Riemannian
metric on each leaf. In some situations, we may define transversal measures
associated to S by considering large chunks of a single leaf l � S . These will be
called Schwartzman measures. We start by recalling some notions from [2, Sect. 6].

Definition 6 (daval measures). Let� be a measure supported on S . The measure�
is a daval measure if it disintegrates as volume along leaves of S , i.e. for any flow-
box .U; '/ with local transversal T D '�1.f0g 
K.U //, we have a measure �U;T
supported on T such that for any Borel set A � U

�.A/ D
Z

T

Volk.Ay/ d�U;T .y/; (2)

where Ay D A\ '�1.Dk 
 fyg/ � U .

We denote by ML.S/ the space of probability daval measures, by MT .S/ the
space of (non-zero) transversal measures on S , and by MT .S/ the quotient of
MT .S/ by positive scalars. The following result is Theorem 6.8 in [2].

Theorem 3 (Transverse measures of the Riemannian solenoid). There is a
one-to-one correspondence between transversal measures .�T / and finite daval
measures �. Furthermore, there is an isomorphism

MT .S/ ŠML.S/:

The correspondence follows from (2). If S is a uniquely ergodic Riemannian
solenoid, then the above result allows to normalize the transversal measure in a
unique way, by imposing that the corresponding daval measure has total mass 1.

Now we introduce a subclass of solenoids for which daval measures do exist.
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Definition 7 (Controlled growth solenoids). Let S be a Riemannian solenoid. Fix
a leaf l � S and an exhaustion .Cn/ by subsets of l . For a flow-box .U; '/ write

Cn \ U D An [ Bn;

where An is composed by all full disks Ly D '�1.Dk 
 fyg/ contained in Cn, and
Bn contains those connected components B of Cn \ U such that B 6D Ly \ U for
any y. The solenoid S has controlled growth with respect to l and .Cn/ if for any
flow-box U in a finite covering of S

lim
n!C1

Volk.Bn/

Volk.An/
D 0:

The solenoid S has controlled growth if S contains a leaf l and an exhaustion
.Cn/ such that S has controlled growth with respect to l and .Cn/.

For a Riemannian solenoid S , it is natural to consider the exhaustion by
Riemannian balls B.x0;Rn/ in a leaf l centered at a point x0 2 l and with Rn !
C1, and test the controlled growth condition with respect to such exhaustions.

The controlled growth condition depends a priori on the Riemannian metric.
As we see next, it guarantees the existence of daval measures, hence the existence
of transversal measures on S . Indeed the measures we construct are Schwartzman
measures defined as:

Definition 8 (Schwartzman limits and measures). We say that a measure � is a
Schwartzman measure if it is obtained as the limit

� D lim
n!C1�n;

where the measures .�n/ are the normalized k-volume of the exhaustion .Cn/ (that
is, �n are normalized to have total mass 1). We denote by MS.S/ the space of
(probability) Schwartzman measures.

Compactness of probability measures show:

Proposition 1. There are always Schwartzman measures on S ,

MS.S/ 6D ;:

Theorem 4. If S is a solenoid with controlled growth, then any Schwartzman
measure is a daval measure,

MS.S/ �ML.S/:

In particular, ML.S/ 6D ; and S admits transversal measures.
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Proof. Let �n ! � be a Schwartzman limit as in Definition 8. For any flow-box U
we prove that � disintegrates as volume on leaves of U . Since S has controlled
growth, pick a leaf and an exhaustion which satisfy the controlled growth condition.
Let

Cn \ U D An [ Bn;
be the decomposition forCn\U described before. The setAn is composed of a finite
number of horizontal disks. We define a new measure �n with support in U which is
the restriction of �n to An, i.e. it is proportional to the k-volume on horizontal disks.
The measure �n disintegrates as volume on leaves in U . The transversal measure is
a finite sum of Dirac measures. Moreover the controlled growth condition implies
that .�n/ and .�njU / must converge to the same limit. But we know that ML.S/
is closed, thus the limit measure �jU disintegrates on leaves in U . So � is a daval
measure.

For uniquely ergodic solenoids we have:

Corollary 1. The volume � of a uniquely ergodic solenoid with controlled growth
is the unique Schwartzman measure. Therefore there is only one Schwartzman limit

� D lim
n!C1�n;

which is independent of the leaf and the exhaustion.

Proof. There are always Schwartzman limits. Theorem 4 shows that any such
limit � disintegrates as volume on leaves. Thus the measure � defines the unique
(up to scalars) transversal measure .�T /. But, conversely, the transversal measure
determines the measure � uniquely. Therefore there is only possible limit �, which
is the volume of the uniquely ergodic solenoid.

4 Schwartzman Clusters and Asymptotic Cycles

Let M be a compact C1 Riemannian manifold. Observe that since H1.M;R/ is a
finite dimensional real vector space, it comes equipped with a unique topological
vector space structure.

The map 	 7! Œ	� that associates to each loop its homology class inH1.M;Z/ �
H1.M;R/ is continuous when the space of loops is endowed with the Hausdorff
topology. Therefore, by compactness, oriented rectifiable loops in M of uniformly
bounded length define a bounded set in H1.M;R/.

We have a more precise quantitative version of this result.

Lemma 1. Let .	n/ be a sequence of oriented rectifiable loops in M , and .tn/ be a
sequence with tn > 0 and tn !C1. If

lim
n!C1

l.	n/

tn
D 0;
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then in H1.M;R/ we have

lim
n!C1

Œ	n�

tn
D 0:

Proof. Via the map

! 7!
Z

	

!;

each loop 	 defines a linear map L	 on H1.M;R/ that only depends on the
homology class of 	 . We can extend this map to R˝H1.M;Z/ by

c ˝ 	 7! c � L	 :

We have the isomorphism

H1.M;R/ D R˝H1.M;Z/ Š
�
H1.M;R/

	�
:

The Riemannian metric gives a C0-norm on forms. We consider the norm in
H1.M;R/ given as

jjŒ!�jjC0 D min
!2Œ!� jj!jj;

and the associated operator norm in H1.M;R/ Š
�
H1.M;R/

	�
.

We have

jL	.Œ!�/j D
ˇ
ˇ
ˇ
ˇ

Z

	

!

ˇ
ˇ
ˇ
ˇ � l.	/jjøjjC0 � l.	/jjŒø�jjC0;

so

jjL	 jj � l.	/:

Hence l.	n/=tn ! 0 implies L	n=tn ! 0 which is equivalent to Œ	n�=tn ! 0.

Definition 9 (Schwartzman asymptotic 1-cycles). Let c be a parametrized contin-
uous curve c W R!M defining an immersion of R. For s; t 2 R, s < t , we choose
a rectifiable oriented curve 	s;t joining c.s/ to c.t/ such that

lim
t!C1

s!�1

l.	s;t /

t � s D 0 :

The parametrized curve c is a Schwartzman asymptotic 1-cycle if the juxtapo-
sition of cjŒs;t � and 	s;t , denoted cs;t (which is a 1-cycle), defines a homology class
Œcs;t � 2 H1.M;Z/ such that the limit

lim
t!C1

s!�1

Œcs;t �

t � s 2 H1.M;R/ (3)

exists.
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We define the Schwartzman asymptotic homology class as

Œc� WD lim
t!C1

s!�1

Œcs;t �

t � s :

Thanks to Lemma 1 this definition does not depend on the choice of the closing
curves .	s;t /. If we take another choice .	 0

s;t /, then as homology classes,

Œcs;t � D Œc0
s;t �C Œ	 0

s;t � 	s;t �;

and
l.	 0

s;t � 	s;t /
t � s D l.	 0

s;t /

t � s C
l.	s;t /

t � s ! 0;

as t !1, s ! �1. By Lemma 1,

lim
t!C1

s!�1

Œ	s;t � 	 0
s;t �

t � s D 0;

thus

Œc� D lim
t!C1

s!�1

Œcs;t �

t � s D lim
t!C1

s!�1

Œc0
s;t �

t � s :

Note that we do not assume that c.R/ is an embedding of R, i.e. c.R/ could
be a loop. In that case, the Schwartzman asymptotic homology class coincides
with a scalar multiple (the scalar depending on the parametrization) of the integer
homology class Œc.R/�. This shows that the Schwartzman homology class is a
generalization to the case of immersions c W R!M . More precisely we have:

Proposition 2. If c W R ! M is a loop then it is a Schwartzman asymptotic
1-cycle and the Schwartzman asymptotic homology class is a scalar multiple of
the homology class of the loop Œc.R/� 2 H1.M;Z/.

If c W R ! M is a rectifiable loop with its arc-length parametrization, and l.c/
is the length of the loop c, then

Œc� D 1

l.c/
Œc.R/�:

Proof. Let t0 > 0 be the minimal period of the map c W R!M . Then

Œcs;t � D
�
t � s
t0

�

Œc.R/�CO.1/:

Then

lim
t!C1

s!�1

Œcs;t �

t � s D
1

t0
Œc.R/�:
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When c W R!M is the arc-length parametrization of a rectifiable loop, the period
t0 coincides with the length of the loop.

Remark 1. In Definition 9, we have required that .	s;t / satisfies l.	s;t /=.t � s/ !
0 uniformly and separately on s and t when t ! C1 and s ! �1, i.e., that
l.	s;t / D o.t � s/ D o.jt j C jsj/. Actually, as M is compact, we can choose paths
	s;t with length bounded by the diameter of M , i.e., l.	s;t / D O.1/. Even more, we
can take f	s;t I s < tg contained in a compact subset of the space of continua of M .
Then the uniform boundedness will hold for any Riemannian metric and the notions
defined will not depend on the Riemannian structure. For simplicity, we shall do this
in the sequel.

Definition 10 (Positive and negative asymptotic cycles). Under the assumptions of
Definition 9, if the limit

lim
t!C1

Œcs;t �

t � s 2 H1.M;R/ (4)

exists then it does not depend on s, and we say that the parametrized curve c defines
a positive asymptotic cycle. The positive Schwartzman homology class is defined as

ŒcC� D lim
t!C1

Œcs;t �

t � s :

The definition of negative asymptotic cycle and negative Schwartzman homology
class is the same but taking s ! �1,

Œc�� D lim
s!�1

Œcs;t �

t � s :

The independence of the limit (4) on s follows from

lim
t!C1

Œcs0;t �

t � s0 D lim
t!C1

Œcs;t �C Œcs0 ;s �CO.1/
t � s � t � s

t � s0 D lim
t!C1

Œcs;t �

t � s :

Proposition 3. A parametrized curve c is a Schwartzman asymptotic 1-cycle if and
only if it is both a positive and a negative asymptotic cycle and

ŒcC� D Œc��:

In that case we have
Œc� D ŒcC� D Œc��:

Proof. If c is a Schwartzman asymptotic 1-cycle, then for t ! C1 take s ! �1
very slowly, say satisfying the relation t D s2 l.cjŒs;0�/, which defines s D s.t/ < 0

uniquely as a function of t > 0. Then
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Œc� D lim
t!1

sDs.t/!�1

Œcs;t �

t � s D lim
t!C1

Œcs;0�C Œc0;t �CO.1/
t � s

D lim
t!C1

�
Œcs;0�CO.1/

t
C Œc0;t �

t

�
t

t � s D lim
t!C1

Œc0;t �

t
;

since t
t�s ! 1 because s

t
! 0, and Œcs;0�

t
! 0 by Lemma 1. So c is a positive

asymptotic cycle and Œc� D ŒcC�. Analogously, c is a negative asymptotic cycle and
Œc� D Œc��.

Conversely, assume that c is a positive and negative asymptotic cycle with ŒcC� D
Œc��. For t large we have

Œc0;t �

t
D ŒcC�C o.1/:

For �s large we have
Œcs;0�

�s D Œc��C o.1/:
Now

Œcs;t �

t � s D
�s
t � s �

Œcs;0�

�s C
t

t � s �
Œc0;t �

t
C O.1/

t � s D
�s
t � s ŒcC�C t

t � s Œc��C o.1/:

As ŒcC� D Œc��, we get that this limit exists and equals Œc� D ŒcC� D Œc��.

Definition 11 (Schwartzman clusters). Under the assumptions of Definition 9, we
can consider, regardless of whether (3) exists or not, all possible limits

lim
n!C1

Œcsn;tn �

tn � sn 2 H1.M;R/; (5)

with tn ! C1 and sn ! �1, that is, the derived set of .Œcs;t �=.t � s//t!1;s!�1.
The limits (5) are called Schwartzman asymptotic homology classes of c, and they
form the Schwartzman cluster of c,

C.c/ � H1.M;R/:

A Schwartzman asymptotic homology class (5) is balanced when the two limits

lim
n!C1

Œc0;tn �

tn
2 H1.M;R/;

and

lim
n!C1

Œcsn;0�

�sn 2 H1.M;R/;

do exist in H1.M;R/, but are not necessarily equal. We denote by Cb.c/ � C.c/ �
H1.M;R/ the set of those balanced Schwartzman asymptotic homology classes.
The set Cb.c/ is named the balanced Schwartzman cluster.
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We define also the positive and negative Schwartzman clusters, CC.c/ and C�.c/,
by taking only limits tn ! C1 and sn ! �1 respectively.

Proposition 4. The Schwartzman clusters C.c/, CC.c/ and C�.c/ are closed
subsets of H1.M;R/.

If fŒcs;t �=.t � s/I s < tg is bounded in H1.M;R/, then the Schwartzman clusters
C.c/, CC.c/ and C�.c/ are non-empty, compact and connected subsets ofH1.M;R/.

Proof. The Schwartzman cluster C.c/ is the derived set of

.Œcs;t �=.t � s//t!1;s!�1;

in H1.M;R/, hence closed.
Under the boundedness assumption, non-emptiness and compactness follow.

Also the oscillation of .Œcs;t �/s;t is bounded by the size of Œ	s;t �. Therefore the
magnitude of the oscillation of .Œcs;t �=.t�s//s;t tends to 0 as t !1, s ! �1. This
forces the derived set to be connected under the boundedness assumption, since it is
�-connected for each � > 0. (A compact metric space is �-connected for all � > 0 if
and only if it is connected.)

Also CC.c/, resp. C�.c/, is closed because it is the derived set of

.Œc0;t �=t/t!1;

resp.
.Œcs;0�=.�s//s!�1;

in H1.M;R/. Non-emptiness, compactness and connectedness under the bounded-
ness assumption follow for the cluster sets C˙.c/ in the same way as for C.c/.

Note that all these cluster sets may be empty if the parametrization is too fast.
The balanced Schwartzman cluster Cb.c/ does not need to be closed, as shown in

the following counter-example.

Counter-example 5 We consider the torus M D T
2. We identify H1.M;R/ Š

R
2, with H1.M;Z/ corresponding to the lattice Z

2 � R
2. Consider a line l in

H1.M;R
2/ of irrational slope passing through the origin, y D p2 x for example.

We can find a sequence of pairs of points .an; bn/ 2 Z
2 
 Z

2 in the open lower
half plane Hl determined by the line l , such that the sequence of segments Œan; bn�
do converge to the line l , and the middle point .an C bn/=2 ! 0 (this is an easy
exercise in diophantine approximation). We assume that the first coordinate of bn
tends to C1, and the first coordinate of an tends to �1. Now we can construct
a parametrized curve c on T

2 such that for all n � 1 there are an infinite number
of times tn;i ! C1 with Œc0;tn;i �=tn;i D bn, and for an infinite number of times
sn;i ! �1, Œcsn;i ;0�=.�sn;i / D an. Thus in homology the curve c oscillates wildly.
We can adjust the velocity of the parametrization so that �sn;i D tn;i . Hence for
these times
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Œcsn;i ;tn;i �

tn;i � sn;i D
an.�sn;i /C bn.tn;i /CO.1/

tn;i � sn;i ! an C bn
2

;

when i ! C1, and the two ends balance each other. We have great freedom in
constructing c, so that we may arrange to have always Œcs;t � � Hl . Then we get that
0 2 C.c/ and all .an C bn/=2 2 Cb.c/ but 0 … Cb.c/.

We have that c is a Schwartzman asymptotic 1-cycle (resp. positive, negative)
if and only if C.c/ (resp. CC.c/, C�.c/) is reduced to one point. In that case
the Schwartzman asymptotic 1-cycle is balanced. The next result generalizes
Proposition 3. We need first a definition.

Definition 12. Let A;B � V be subsets of a real vector space V . For a; b 2 V the
segment Œa; b� � V is the convex hull of fa; bg in V . The additive hull of A and B
is

AbCB D
[

a2A
b2B

Œa; b�:

Proposition 5. The Schwartzman balanced cluster Cb.c/ is contained in the addi-
tive hull of CC.c/ and C�.c/

Cb.c/ � CC.c/bC C�.c/:

Moreover, for each a 2 CC.c/ and b 2 C�.c/, we have

Cb.c/ \ Œa; b� 6D ;:

Proof. Let x 2 Cb.c/,
x D lim

n!C1
Œcsn;tn �

tn � sn :
We write

Œcsn;tn �

tn � sn D
Œcsn;0�

�sn �
�sn
tn � sn C

Œc0;tn �

tn
� tn

tn � sn C o.1/;
and the first statement follows.

For the second, consider

a D lim
n!C1

Œc0;tn �

tn
2 CC.c/;

and

b D lim
n!C1

Œcsn;0�

�sn 2 C�.c/:

Then taking any accumulation point � 2 Œ0; 1� of the sequence .tn=.tn � sn//n �
Œ0; 1� and taking subsequences in the above formulas, we get a balanced Schwartz-
man homology class

c D �aC .1 � �/b 2 Cb.c/:
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Corollary 2. If CC.c/ and C�.c/ are non-empty, then Cb.c/ is non-empty, and
therefore C.c/ is also non-empty.

Note that we can have CC.c/ D C�.c/ D ; (then Cb.c/ D ;) but C.c/ 6D ;
(modify appropriately Counter-example 5).

There is one situation where we can assert that the balanced Schwartzman cluster
set is closed.

Proposition 6. If B D fŒcs;t �=.t � s/I s < tg � H1.M;R/ is a bounded set, then
C.c/, CC.c/, C�.c/ and Cb.c/ are all compact sets. More precisely, they are all
contained in the convex hull of B .

Proof. Obviously C.c/, CC.c/ and C�.c/ are bounded as cluster sets of bounded
sets, hence compact by Proposition 4.

In order to prove that Cb.c/ is bounded, we observe that the additive hull of
bounded sets is bounded, therefore boundedness follows from Proposition 5. We
show that Cb.c/ is closed. Since Cb.c/ � C.c/ and C.c/ is closed, any accumulation
point x of Cb.c/ is in C.c/. Let

x D lim
n!C1

Œcsn;tn �

tn � sn ;

and write as before

Œcsn;tn �

tn � sn D
Œcsn;0�

�sn �
�sn
tn � sn C

Œc0;tn �

tn
� tn

tn � sn C o.1/:

Note that .Œcsn;0�=.�sn//n and .Œc0;tn �=tn/n stay bounded. Therefore we can extract
converging subsequences and also for the sequence .tn=.tn � sn//n � Œ0; 1�. The
limit along these subsequences tnk ! C1 and snk ! �1 give the Schwartzman
homology class x, which turns out to be balanced.

The final statement follows from the above proofs.

The situation described in Proposition 6 is indeed quite natural. It arises each
time that M is a Riemannian manifold and c is an arc-length parametrization of a
rectifiable curve. In the following proposition we make use of the natural norm jj � jj
in the homology of a Riemannian manifold defined in the Appendix A.

Proposition 7. Let M be a Riemannian manifold and denote by jj � jj the norm in
homology. If c is a rectifiable curve parametrized by arc-length then the cluster sets
C.c/, CC.c/, C�.c/ and Cb.c/ are compact subsets of NB.0; 1/, the closed ball of
radius 1 for the norm in homology.

So C.c/ and C˙.c/ are non-empty, compact and connected, and Cb.c/ is non-
empty and compact.

Proof. Observe that we have

l.cs;t / D l.cjŒs;t �/C l.	s;t / D t � s C l.	s;t /:
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Thus
l.Œcs;t �/ � t � s C l.	s;t /:

By Theorem 13,
jjŒcs;t �jj � t � s C l.	s;t /;

and 



Œcs;t �

t � s



 � 1C

l.	s;t /

t � s :

Since l.	s;t /

t�s ! 0 uniformly, we get that B D fŒcs;t �=.t � s/I s < tg � H1.M;R/ is
a bounded set.

By Proposition 4, C.c/ and C˙.c/ are non-empty, compact and connected. By
Corollary 2, Cb.c/ is non-empty and by Proposition 6, it is compact.

Obviously the previous notions depend heavily on the parametrization. For a
non-parametrized curve we can also define Schwartzman cluster sets.

Definition 13. For a non-parametrized oriented curve c � M , we define the
Schwartzman cluster C.c/ as the union of the Schwartzman clusters for all ori-
entation preserving parametrizations of c. We define the positive CC.c/, resp.
negative C�.c/, Schwartzman cluster set as the union of all positive, resp. negative,
Schwartzman cluster sets for all orientation preserving parametrizations.

For this notion to make sense we are forced to use curves 	s;t which satisfy
l.	s;t / D O.1/ (see Remark 1).

Proposition 8. For an oriented curve c � M the Schwartzman clusters C.c/,
CC.c/ and C�.c/ are non-empty closed cones of H1.M;R/. These cones are
degenerate (i.e. reduced to f0g) if and only if fŒcs;t �I s < tg is a bounded subset
of H1.M;Z/.

Proof. We can choose the closing curves 	s;t only depending on c.s/ and c.t/ and
not on the parameter values s and t , nor on the parametrization. Then the integer
homology class Œcs;t � only depends on the points c.s/ and c.t/ and not on the
parametrization. Therefore, we can adjust the speed of the parametrization so that
Œcs;t �=.t � s/ remains in a ball centered at 0. This shows that C.c/ is not empty.
Adjusting the speed of the parametrization we equally get that it contains elements
that are not 0, provided that the set fŒcs;t �I s < tg is not bounded in H1.M;Z/.
Certainly, if fŒcs;t �I s < tg is bounded, all the cluster sets are reduced to f0g.
Observe also that if a 2 C.c/ then any multiple �a, � > 0, belongs to C.c/, by
considering the new parametrization with velocity multiplied by �. So C.c/ is a
cone in H1.M;R/.

Now we prove that C.c/ is closed. Let an 2 C.c/ with an ! a 2 H1.M;R/.
For each n we can choose a parametrization of c, say c.n/ D Qc ı  n (here Qc is a
fixed parametrization and  n is an orientation preserving homeomorphism of R),
and parameters sn and tn such that jjŒc.n/sn;tn ��ajj � 1=n (considering any fixed norm
in H1.M;R/). For each n we can choose tn as large as we like, and sn negative as
we like. Choose them inductively such that .tn/ and . n.tn// are both increasing
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sequences converging toC1, and .sn/ and . n.sn// are both decreasing sequences
converging to �1. Construct a homeomorphism  of R with  .tn/ D  n.tn/

and  .sn/ D  n.sn/. It is clear that a is obtained as Schwartzman limit for the
parametrization Qc ı  at parameters sn; tn.

The proofs for CC.c/ and C�.c/ are similar.

Remark 2. The image of these cluster sets in the projective space PH1.M;R/ is not
necessarily connected: On the torus M D T

2 D R
2=Z2, choose a curve in R

2 that
oscillates between the half y-axis fy > 0g and the half x-axis fx > 0g, remaining
in a small neighborhood of these axes and being unbounded for t ! C1, and
being bounded when s ! �1. Then its Schwartzman cluster consists of two lines
through 0 in H1.T

2;R/ Š R
2, and its projection in the projective space consists of

two distinct points.

Remark 3. Let c be a parametrized Schwartzman asymptotic 1-cycle, and consider
the unparametrized oriented curve defined by c, denoted by Nc. Assume that the
asymptotic Schwartzman homology class is a D Œc� ¤ 0. Then

C˙. Nc/ D C. Nc/ D R�0 � a ;

as a subset of H1.M;R/. This follows since any parametrization of Nc is of the form
c0 D c ı  , where  W R! R is a positively oriented homeomorphism of R. Then

c0
s;t

t � s D
c .s/; .t/

 .t/ �  .s/ �
 .t/ �  .s/

t � s : (6)

The first term in the right hand side tends to a when t ! C1, s ! �1. If the left
hand side is to converge, then the second term in the right hand side stays bounded.
After extracting a subsequence, it converges to some � � 0. Hence (6) converges
to �a.

We define now the notion of asymptotically homotopic curves.

Definition 14 (Asymptotic homotopy). Let c0; c1 W R ! M be two parametrized
curves. They are asymptotically homotopic if there exists a continuous family cu,
u 2 Œ0; 1�, interpolating between c0 and c1, such that

c W R 
 Œ0; 1�!M; c.t; u/ D cu.t/;

satisfies that ıt .u/ D c.t; u/, u 2 Œ0; 1� is rectifiable with

l.ıt / D o.jt j/: (7)

Two oriented curves are asymptotically homotopic if they have orientation
preserving parametrizations that are asymptotically homotopic.
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Proposition 9. If c0 and c1 are asymptotically homotopic parametrized curves then
their cluster sets coincide:

C˙.c0/ D C˙.c1/;

Cb.c0/ D Cb.c1/;

C.c0/ D C.c1/:

If c0 and c1 are asymptotically homotopic oriented curves then their cluster sets
coincide:

C˙.c0/ D C˙.c1/;

C.c0/ D C.c1/:

Proof. For parametrized curves we have

Œc0;s;t � D Œc1;s;t �C Œıs � 	1;s;t � ıt C 	0;s;t �:

The length of the displacement by the homotopy is bounded by (7), so

l.ıs � 	1;s;t � ıt C 	0;s;t / D l.	1;s;t /C l.	0;s;t /C o.jt j C jsj/;

thus

Œc0;s;t �

t � s D
Œc1;s;t �

t � s C o.1/:

An homotopy for non-parametrized curves is an homotopy between two par-
ticular parametrizations, but we must require l.ıt / D O.1/ in place of (7). The
homotopy yields a one-to-one correspondence between points in the curves

c0.t/ 7! c1.t/:

Using this correspondence, we have a correspondence of pairs of points .a; b/ D
.c0.s/; c0.t// with pairs of points .a0; b0/ D .c1.s/; c1.t//. Thus if the sequence of
pairs of points .an; bn/ gives a cluster value for c0, then the corresponding sequence
.a0
n; b

0
n/ gives a proportional cluster value, since (with obvious notation)

Œc0;an;bn � D Œc1;a0

n;b
0

n
�CO.1/:

So we can always normalize the speed of the parametrization of c1 in order to assure
that the limit value is the same. This proves that the clusters sets coincide.
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5 Calibrating Functions

LetM be a C1 smooth compact manifold. We define now the notion of calibrating
function.

Let � W QM ! M be the universal cover of M and let � be the group of deck
transformations of the cover. Fix a point Qx0 2 QM and x0 D �. Qx0/. There is a
faithful and transitive action of � in the fiber ��1.x0/ induced by the action of �
in QM , and we have a group isomorphism � Š �1.M; x0/. Thus from the group
homomorphism

�1.M; x0/! H1.M;Z/;

we get a group homomorphism

� W � ! H1.M;Z/:

Definition 15 (Calibrating function). A map ˚ W QM ! H1.M;R/ is a calibrating
function if the diagram

� Š �1.M; x0/ ,! QM
� # # ˚

H1.M;Z/ ! H1.M;R/

is commutative and ˚ is equivariant for the action of � on QM , i.e. for any g 2 �
and Qx 2 QM ,

˚.g � Qx/ D ˚. Qx/C �.g/:
If Qx0 2 QM we say that the calibrating function˚ is associated to Qx0 if˚. Qx0/ D 0.

Proposition 10. There are smooth calibrating functions associated to any point
Qx0 2 QM .

Proof. Fix a smooth non-negative function ' W QM ! R with compact support
K D U with U D f' > 0g such that �.U / D M . Moreover, we can request that
U \ ��1.x0/ D f Qx0g.

For any g0 2 � , define 'g0. Qx/ D '.g�1
0 � Qx/. The support of 'g0 is g0 K , and

.g0 K/g02� is a locally finite covering of QM , as follows from the compactness ofK .
Set

 g0. Qx/ WD
'g0. Qx/P
g2� 'g. Qx/

:

Then  g0. Qx/ D  e.g�1
0 � Qx/ and

X

g2�
 g 	 1:
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Also  g0 has compact support g0 K , and it is a smooth function since the
denominator is strictly positive (because �.U / D M ) and it is at each point a finite
sum of smooth functions.

We define the map
˚ W QM ! H1.M;R/ ;

by
˚. Qx/ D

X

g2�
 g. Qx/ �.g/:

We check that ˚ is a calibrating function:

˚.g � Qx/ D
X

h2�
 h.g � Qx/ �.h/

D
X

h2�
 g�1h. Qx/ .�.g/C �.g�1h//

D
X

h02�
 h0. Qx/ �.g/ C

X

h02�
 h0. Qx/ �.h0/

D �.g/C ˚. Qx/:

Notice that by construction ˚. Qx0/ D 0.

We note also that choosing a function � of rapid decay, we may do a similar
construction, as long as

P
g2� �g is summable (we may need to add a translation to

˚ in order to ensure ˚. Qx0/ D 0).
Observe that the calibrating property implies that for a curve 	 W Œa; b�!M , the

quantity ˚. Q	.b//�˚. Q	.a// does not depend on the lift Q	 of 	 , because for another
choice Q	 0, we would have for some g 2 � ,

Q	 0.a/ D g � Q	.a/;

and
Q	 0.b/ D g � Q	.b/:

Therefore

˚. Q	 0.b//� ˚. Q	 0.a// D ˚.g � Q	.b//� ˚.g � Q	.a// D ˚. Q	.b//� ˚. Q	.a//:

This justifies the next definition.

Definition 16. Given a calibrating function ˚ , for any curve 	 W Œa; b� ! M , we
define ˚.	/ WD ˚. Q	.b//� ˚. Q	.a// for any lift Q	 of 	 .

Proposition 11. For any loop 	 �M we have

˚.	/ D Œ	� 2 H1.M;Z/:
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Proof. Modifying 	 , but without changing its endpoints nor ˚.	/ nor Œ	�, we can
assume that x0 2 	 . Since � Š �1.M; x0/, let h0 2 � be the element corresponding
to 	 . Then 	 lifts to a curve joining Qx0 to h0 � Qx0, and

˚.	/ D ˚.h0 � Qx0/ �˚. Qx0/ D �.h0/ D Œ	� 2 H1.M;Z/:

Proposition 12. We assume thatM is endowed with a Riemannian metric and that
the calibrating function ˚ is smooth. Then for any rectifiable curve 	 we have

j˚.	/j � C � l.	/;

where l.	/ is the length of 	 , and C > 0 is a positive constant depending only on
the metric.

Proof. The calibrating function ˚ is a smooth function on QM and � -equivariant,
hence it is bounded as well as its derivatives. The result follows.

Example 1. For M D T, QM D R, H1.M;Z/ D Z � R D H1.M;R/, � D Z and
� W � ! H1.M;Z/ is given (with these identifications) by �.n/ D n. We can take
'.x/ D j1 � xj, for x 2 Œ�1; 1�, and '.x/ D 0 elsewhere. Then

1X

nD�1
'.x � n/ D 1;

and
 n.x/ D 'n.x/ D '.x � n/:

Therefore we get the calibrating function

˚.x/ D
1X

nD�1
'.x � n/ n D x :

It is a smooth calibrating function (despite that ' is not).
A similar construction works for higher dimensional tori.

Proposition 13. Let c W R ! M be a C1 curve. Consider two sequences .sn/ and
.tn/ such that sn < tn, sn ! �1, and tn ! C1.

Then the following conditions are equivalent:

1. The limit

Œc� D lim
n!C1

Œcsn;tn �

tn � sn 2 H1.M;R/

exists.
2. The limit

Œc�˚ D lim
n!1

˚.cjŒsn ;tn�/
tn � sn 2 H1.M;R/

exists.
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3. For any closed 1-form ˛ 2 ˝1.M/, the limit

Œc�.˛/ D lim
n!1

1

tn � sn
Z

c.Œsn;tn�/

˛

exists.
4. For any cohomology class Œ˛� 2 H1.M;R/, the limit

Œc�Œ˛� D lim
n!1

1

tn � sn
Z

c.Œsn;tn�/

˛

exists, and does not depend on the closed 1-form ˛ 2 ˝1.M/ representing the
cohomology class.

5. For any continuous map f W M ! T, let Af ı c W R ! R be a lift of f ı c, the
limit

�.f / D lim
n!C1

Af ı c.tn/ �Af ı c.sn/
tn � sn

exists.
6. For any (two-sided, embedded, transversally oriented) hypersurface H � M

such that all intersections c.R/ \H are transverse, the limit

Œc� � ŒH � D lim
n!1

#fu 2 Œsn; tn� I c.u/ 2 H g
tn � sn

exists. The notation # means a signed count of intersection points.

When these conditions hold, we have Œc� D Œc�˚ for any calibrating function ˚ .
If ˛ 2 ˝1.M/ is a closed form, then Œc�.˛/ D Œc�Œ˛� D hŒc�; Œ˛�i. If f WM ! T is
a continuous map and a D f �Œdx� 2 H1.M;Z/ is the pull-back of the generator
Œdx� 2 H1.T;Z/, and H is a hypersurface such that ŒH � is the Poincaré dual of a,
then hŒc�; ai D �.f / D Œc� � ŒH �.
Proof. The equivalence of (1) and (2) follows from the properties of˚ . Let c W R!
M be a curve. Then

˚.cjŒsn;tn�/ D ˚.Œcsn;tn �/ � ˚.	sn;tn / D Œcsn;tn �CO.l.	sn;tn //:

Dividing by tn � sn and passing to the limit the equivalence of (1) and (2) follows.
We prove that (1) is equivalent to (3). First note that

ˇ
ˇ
ˇ
ˇ
ˇ

Z

	sn;tn

˛

ˇ
ˇ
ˇ
ˇ
ˇ
� C l.	sn;tn / jj˛jjC0 :
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We have when tn � sn ! C1,

1

tn � sn
Z

c.Œsn;tn�/

˛ D 1

tn � sn
Z

csn;tn

˛ CO
�
l.	sn;tn /

tn � sn
�

D Œcsn;tn �.˛/

tn � sn C o.1/:

and the equivalence of (1) and (3) results.
The equivalence of (3) and (4) results from the fact that the limit

Œc�.˛/ D lim
n!1

1

tn � sn
Z

c.Œsn;tn�/

˛

does not depend on the representative of the cohomology class a D Œ˛�. If ˇ D
˛ C d�, with � WM ! R smooth, then Œc�.˛/ D Œc�.ˇ/ since

Œc�.d�/ D lim
n!1

1

tn � sn
Z

c.Œsn;tn�/

d� D lim
n!1

�.c.tn// � �.c.sn//
tn � sn ! 0;

since � is bounded. Also Œc�Œ˛� D Œc�.˛/.
We turn now to (4) implies (5) . First note that there is an identification

H1.M;Z/ Š ŒM;K.Z; 1/� D ŒM;T�, where any cohomology class Œ˛� 2
H1.M;Z/ is associated to a (homotopy class of a) map f W M ! T such
that Œ˛� D f �ŒT�, where ŒT� 2 H1.T;Z/ is the fundamental class. To prove
(5), assume first that f is smooth. With the identification T D R=Z, the class
f �.dx/ D df 2 ˝1.M/ represents Œ˛�. Therefore

Af ı c.tn/ �Af ı c.sn/
tn � sn D 1

tn � sn
Z

Œsn; tn�

d.f ı c/ D

D 1

tn � sn
Z

Œsn; tn�

.df /.c0/ D 1

tn � sn
Z

c.Œsn; tn�/

df;

(8)

and from the existence of the limit in (4) we get the limit in (5) that we identify as

�.f / D Œc�Œdf �:

If f is only continuous, we approximate it by a smooth function, which does not
change the limit in (5) .

Conversely, if (5) holds, then any integer cohomology class admits a representa-
tive of the form ˛ D df , where f W M ! T is a smooth map. Then using (8) we
have

1

tn � sn
Z

c.Œsn;tn�/

˛! �.f /:

So the limit in (4) exists for ˛ D df . This implies that the limit in (4) exists for any
closed ˛ 2 ˝1.M/, since H1.M;Z/ spansH1.M;R/.
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We check the equivalence of (5) and (6). First, let us see that (6) implies (5).
As before, it is enough to prove (5) for a smooth map f W M ! T. Let x0 2 T

be a regular value of f , so that H D f �1.x0/ � M is a smooth (two-sided)
hypersurface. Then ŒH � represents the Poincaré dual of Œdf � 2 H1.M;Z/. Choose
x0 such that it is also a regular value of f ıc, so all the intersections of c.R/ withH
are transverse. Now for any s < t ,

Œcs;t � � ŒH � D #c.Œs; t �/ \H C #	s;t \H;

where # denotes signed count of intersection points (we may assume that all
intersections of 	s;t andH are transverse, by a small perturbation of 	s;t ; also we do
not count the extremes of 	s;t in #	s;t\H in case that either c.s/ 2 H or c.t/ 2 H ).

Now

#c.Œs; t �/ \H D ŒAf ı c.t/�C Œ�Af ı c.s/� DAf ı c.t/ �Af ı c.s/CO.1/;

where Œ�� denotes the integer part, and j#	s;t \H j is bounded by the total variation

of Bf ı 	s;t , which is bounded by the maximum of df times the total length of 	s;t ,
which is o.t � s/ by assumption. Hence

lim
n!C1

Af ı c.tn/�Af ı c.sn/
tn � sn D lim

n!C1
#c.Œsn; tn�/ \H

tn � sn
exists.

Conversely, if (5) holds, consider a two-sided embedded topological hypersur-
face H � M . Then there is a collar Œ0; 1� 
 H embedded in M such that H is
identified with f 1

2
g 
 H . There exists a continuous map f W M ! T such that

H D f �1.x0/ for x0 D 1
2
2 T, constructed by sending Œ0; 1� 
 H ! Œ0; 1� ! T

and collapsing the complement of Œ0; 1� 
H to 0.
Now if all intersections of c.R/ and H are transverse, that means that for any

t 2 R such that c.t/ 2 H , we have that c.t � �/ and c.tC�/ are at opposite sides of
the collar, for � > 0 small (the sign of the intersection point is given by the direction
of the crossing). So f .c.s// crosses x0 increasingly or decreasingly (according to
the sign of the intersection). Hence

#fu 2 Œsn; tn� I c.u/ 2 H g
tn � sn D

Af ı c.tn/ �Af ı c.sn/
tn � sn C o.1/:

The required limit exists.

Remark 4. Proposition 13 holds if we only assume the curve c to be rectifiable.

Corollary 3. Let c W R ! M be a C1 curve. The following conditions are
equivalent:

1. The curve c is a Schwartzman asymptotic cycle.
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2. The limit

lim
t!C1

s!�1

˚.cjŒs;t �/
t � s 2 H1.M;R/

exists.
3. For any closed 1-form ˛ 2 ˝1.M/, the limit

lim
t!C1

s!�1

1

t � s
Z

c.Œs;t �/

˛

exists.
4. For any cohomology class Œ˛� 2 H1.M;R/, the limit

Œc�Œ˛� D lim
t!C1

s!�1

1

t � s
Z

c.Œs;t �/

˛

exists, and does not depend on the closed 1-form ˛ 2 ˝1.M/ representing the
cohomology class.

5. For any continuous map f W M ! T, let Af ı c W R ! R be a lift of f ı c, we
have that the limit

lim
t!C1

s!�1

Af ı c.t/ �Af ı c.s/
t � s

exists.
6. For a (two-sided, embedded, transversally oriented) hypersurface H � M such

that all intersections c.R/ \H are transverse, the limit

lim
t!C1

s!�1

#fu 2 Œs; t � I c.u/ 2 H g
t � s

exists.

When c is a Schwartzman asymptotic cycle, we have Œc� D Œc�˚ for any
calibrating function ˚ . If ˛ 2 ˝1.M/ is a closed form then

Œc�.˛/ D Œc�Œ˛� D hŒ˛�; Œc�i:

If f W M ! T and a D f �Œdx� 2 H1.M;Z/, where Œdx� 2 H1.T;Z/ is the
generator, and H � M is a hypersurface such that ŒH � is the Poincaré dual of a,
then we have

hŒc�; Œ˛�i D �.f / D Œc� � ŒH �:
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6 Schwartzman 1-Dimensional Cycles

We assume that M is a compact C1 Riemannian manifold, with Riemannian
metric g.

Definition 17 (Schwartzman representation of homology classes). Let f WS !M

be an immersion inM of an oriented 1-solenoidS . Then S is a Riemannian solenoid
with the pull-back metric f �g.

1. If S is endowed with a transversal measure � D .�T / 2MT .S/, the immersed
measured solenoid f W S� ! M represents a homology class a 2 H1.M;R/ if
for .�T /-almost all leaves c W R! S , parametrized positively and by arc-length,
we have that f ı c is a Schwartzman asymptotic 1-cycle with Œf ı c� D a.

2. The immersed solenoid f W S ! M fully represents a homology class a 2
H1.M;R/ if for all leaves c W R! S , parametrized positively and by arc-length,
we have that f ı c is a Schwartzman asymptotic 1-cycle with Œf ı c� D a.

Note that if f W S !M fully represents an homology class a 2 H1.M;R/, then
for all oriented leaves c � S , we have that f ı c is a Schwartzman asymptotic cycle
and

CC.f ı c/ D C�.f ı c/ D C.f ı c/ D R�0 � a � H1.M;R/;

by Remark 3.
Observe that contrary to what happens with Ruelle-Sullivan cycles, we can have

an immersed solenoid fully representing an homology class without the need of a
transversal measure on S .

Definition 18 (Cluster of an immersed solenoid). Let f W S ! M be an
immersion in M of an oriented 1-solenoid S . The homology cluster of .f; S/,
denoted by C.f; S/ � H1.M;R/, is defined as the derived set of .Œ.f ı c/s;t �=.t �
s//c;t!1;s!�1, taken over all images of orientation preserving parametrizations
c of all leaves of S , and t ! C1 and s ! �1. Analogously, we define the
corresponding positive and negative clusters.

The Riemannian cluster of .f; S/, denoted by Cg.f; S/, is defined in a similar
way, using arc-length orientation preserving parametrizations. Analogously, we
define the positive, negative and balanced Riemannian clusters.

As in Sect. 4, we can prove with arguments analogous to those of Propositions 7
and 8 :

Proposition 14. The homology clusters C.f; S/, C˙.f; S/ are non-empty, closed
cones of H1.M;R/. If these cones are non-degenerate, their images in PH1.M;R/

are non-empty and compact sets.
The Riemannian homology clusters Cg.f; S/, Cg˙.f; S/ are non-empty, compact

and connected subsets of H1.M;R/.

The following proposition is clear, and gives the relationship with the clusters of
the images by f of the leaves of S .
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Proposition 15. Let f W S!M be an immersion in M of an oriented 1-sole-
noid S . We have [

c�S
C.f ı c/ � C.f; S/;

where the union runs over all parametrizations of leaves of S . We also have

[

c�S
C˙.f ı c/ � C˙.f; S/;

and [

c�S
Cb.f ı c/ � Cb.f; S/:

And similarly for all Riemannian clusters with C�.f ı c/ denoting the Schwartzman
clusters for the arc-length parametrization.

We recall that given an immersion f W S ! M of an oriented 1-solenoid, S
becomes a Riemannian solenoid and Theorem 3 gives a one-to-one correspondence
between the space of transversal measures (up to scalar normalization) and the space
of probability daval measures,

MT .S/ ŠML.S/:

Moreover, in the case of 1-solenoids that we consider here, they do satisfy the
controlled growth condition of Definition 7. Therefore all Schwartzman measures
disintegrate as length on leaves by Theorem 4.

Giving any transversal measure � we can consider the associated generalized
current .f; S�/ 2 Ck.M/.

Definition 19. We define the Ruelle-Sullivan map

� WMT .S/! H1.M;R/

by
� 7! �.�/ D Œf; S��:

The Ruelle-Sullivan cluster cone of .f; S/ is the image of �

CRS.f; S/ D �.MT .S// D
˚
Œf; S�� I � 2MT .S/

� � H1.M;R/:

The Ruelle-Sullivan cluster set is

P CRS.f; S/ Š
˚
Œf; S�� I � 2ML.S/

� � H1.M;R/;

i.e. using transversal measures which are normalized (using the Riemannian metric
of M ).
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Proposition 16. Let VT .S/ be the set of all signed measures, with finite absolute
measure and invariant by holonomy, on the solenoid S . The Ruelle-Sullivan map �
extended by linearity to VT .S/ is a linear continuous operator,

� W VT .S/! H1.M;R/:

Proof. Coming back to the definition of generalized current, it is clear that � 7!
Œf; S�� is linear in flow-boxes, therefore globally. It is also continuous because if
�n ! �, then Œf; S�n �! Œf; S�� as can be seen in a fixed flow-box covering of S .

Corollary 4. The Ruelle-Sullivan cluster CRS.f; S/ is a non-empty, convex, com-
pact cone of H1.M;R/. Extremal points of the convex set CRS.f; S/ come from the
generalized currents of ergodic measures in ML.S/.

Proof. Since ML.S/ is non-empty, convex and compact set, its image by the
continuous linear map� is also a non-empty, convex and compact set. Any extremal
point of CRS.f; S/ must have an extremal point of ML.S/ in its pre-image, and
these are the ergodic measures in ML.S/ (according to the identification of ML.S/
to MT .S/ and by Proposition 5.10 in [2]).

It is natural to investigate the relation between the Schwartzman cluster and the
Ruelle-Sullivan cluster.

Theorem 6. Let S be a 1-solenoid. For any immersion f W S !M we have

[

c�S
C.f ı c/ � CRS.f; S/:

Proof. It is enough to prove the theorem for minimal solenoids, since each leaf
c � S is contained in a minimal solenoid S0 � S , and

C.f ı c/ � CRS.f; S0/ � CRS.f; S/:

The last inclusion holds because if � is a transversal measure for S0, then it defines
a transversal measure �0 for S , which is clearly invariant by holonomy. Now the
generalized currents coincide, .f; S�0/ D .f; S0;�/, as can be seen in a fixed flow-
box covering of S . Therefore, the Ruelle-Sullivan homology classes are the same,
Œf; S�0 � D Œf; S0;��.

The statement for minimal solenoids follows from Theorem 7 below.

Theorem 7. Let S be a minimal 1-solenoid. For any immersion f W S ! M we
have

C.f; S/ � CRS.f; S/:

Proof. Consider an element a 2 C.f; S/ obtained as limit of a sequence .Œ.f ı
cn/sn;tn �/, where cn is a positively oriented parametrized leaf of S and sn < tn,
sn ! �1, tn ! 1. The points .cn.tn// must accumulate a point x 2 S , and
taking a subsequence, we can assume they converge to it. Choose a small local
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transversal T of S at this point, such that f .T / � B whereB �M is a contractible
ball in M . By minimality, the return map RT W T ! T is well defined.

Note that we may assume that NT � T 0, where T 0 is also a local transversal. By
compactness of NT , the return time for RT 0 W T 0 ! T 0 of any leaf, measured with
the arc-length parametrization, for any x 2 NT , is universally bounded. Therefore
we can adjust the sequences .sn/ and .tn/ such that cn.sn/ 2 NT and cn.tn/ 2 NT , by
changing each term by an amount O.1/. Now, after further taking a subsequence,
we can arrange that cn.sn/; cn.tn/ 2 T .

Taking again a subsequence if necessary we can assume that we have a
Schwartzman limit of the measures �n which correspond to the arc-length on
cn.Œsn; tn�/ normalized with total mass 1. The limit measure� disintegrates on leaves
because of Theorem 4, so it defines a transversal measure �.

The transversal measures corresponding to �n are atomic, supported on T \
cn.Œsn; tn//, assigning equal weights to each point in T \cn.Œsn; tn//. The transversal
measure corresponding to � is its normalized limit. For each 1-cohomology class,
we may choose a closed 1-form ! representing it and vanishing on B (this is so
because H1.M;B/ D H1.M/, since B is contractible). Assume that we have
constructed Œ.f ı cn/sn;tn � by using 	n;sn;tn inside B . So

hŒf; S�n �; !i D
Z

S

f �! d�n D
Z

f ıcn.Œsn;tn�/
! D hŒ.f ı cn/sn;tn �; Œ!�i;

thus

hŒf; S��; Œ!�i D lim
n!1

1

tn � sn hŒf; S�n �; !i D lim
n!1h

Œ.f ı cn/sn;tn �
tn � sn ; Œ!�i D ha; Œ!�i:

Thus the generalized current of the limit measure coincides with the Schwartzman
limit.

We use the notation @�C for the extremal points of a compact convex set C . For
the converse result, we have:

Theorem 8. Let S be a minimal solenoid and an immersion f W S !M . We have

@�CRS.f; S/ �
[

c�S
C.f ı c/ � C.f; S/:

Proof. We have seen that the points in @�CRS.f; S/ come from ergodic measures in
ML.S/ by the Ruelle-Sullivan map. Therefore it is enough to prove the following
theorem that shows that the Schwartzman cluster of almost all leaves is reduced to
the generalized current for an ergodic 1-solenoid.

Theorem 9. Let S be a minimal 1-solenoid endowed with an ergodic measure � 2
ML.S/. Consider an immersion f W S ! M . Then for �-almost all leaves c � S
we have that f ı c is a Schwartzman asymptotic 1-cycle and
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Œf ı c� D Œf; S�� 2 H1.M;R/:

Therefore the immersion f W S� ! M represents its Ruelle-Sullivan homology
class.

In particular, this homology class is independent of the metric g on M up to a
scalar factor.

Proof. The proof is an application of Birkhoff’s ergodic theorem. Choose a small
local transversal T such that f .T / � B , where B �M is a small contractible ball.
Consider the associated Poincaré first return map RT W T ! T . Denote by �T the
transversal measure supported on T .

For each x 2 T we consider 'T .x/ to be the homology class in M of the loop
image by f of the leaf Œx; RT .x/� closed by a segment in B joining x with RT .x/.
In this way we have defined a measurable map

'T W T ! H1.M;Z/:

Also for x 2 S , we denote by lT .x/ the length of the leaf joining x with its first
impact on T (which is RT .x/ for x 2 T ). We have then an upper semi-continuous
map

lT W S ! RC:

Therefore lT is bounded by compactness of S . In particular, lT is bounded on T and
thus in L1.T; �T /. The boundedness of lT implies also the boundedness of 'T by
Lemma 1.

Consider x0 2 T and its return points xi D RiT .x0/. Let 0 < t1 < t2 < t3 < : : :

be the times of return for the positive arc-length parametrization. We have

tiC1 � ti D lT .xi /:

Therefore

tn D
n�1X

iD0
.tiC1 � ti / D

n�1X

iD0
lT ıRiT .x0/;

and by Birkhoff’s ergodic theorem

lim
n!C1

1

n
tn D

Z

T

lT .x/ d�T .x/ D �.S/ D 1:

Now observe that, by contracting B , we have

Œf ı c0;tn � D Œf ı c0;t1 �C Œf ı ct1;t2 �C : : :C Œf ı ctn�1;tn �

D 'T .x0/C 'T ıRT .x0/C : : :C 'T ıRn�1
T .x0/:



324 V. Muñoz and R.P. Marco

We recognize a Birkhoff’s sum and by Birkhoff‘s ergodic theorem we get the limit

lim
n!C1

1

n
Œf ı c0;tn � D

Z

T

'T .x/ d�T .x/ 2 H1.M;R/:

Finally, putting these results together,

lim
n!C1

1

tn
Œf ıc0;tn �D lim

n!C1
Œf ı c0;tn �=n

tn=n
D
R
T
'T .x/ d�T .x/

R
T
lT .x/ d�T .x/

D
Z

T

'T .x/ d�T .x/:

Let us see that this equals the generalized current. Take a closed 1-form ! 2
˝1.M/, which we can assume to vanish on B . Then

hŒf; S��; !i D
Z

T

�Z

Œx;RT .x/�

f �!
�

d�T .x/ D
Z

T

h'T .x/; !id�T .x/;

and so

Œf; S�� D
Z

T

'T .x/ d�T .x/:

Observe that so far we have only proved that CgC.f ıc/ D fŒf; S��g for almost all
leaves c � S . Considering the reverse orientation, the result follows for the negative
clusters, and finally for the whole cluster of almost all leaves.

The last statement follows since Œf; S�� only depends on � 2 MT .S/, which
is independent of the metric up to scalar factor, thanks to the isomorphism of
Theorem 3.

Therefore for a minimal oriented ergodic 1-solenoid, the generalized current
coincides with the Schwartzman asymptotic homology class of almost all leaves.
It is natural to ask when this holds for all leaves, i.e. when the solenoid fully
represents the generalized current. This indeed happens when the solenoid S is
uniquely ergodic (unique ergodicity for a 1-solenoid implies that all orbits are dense
and therefore minimality, by Proposition 5.8 in [2]).

Theorem 10. Let S be a uniquely ergodic oriented 1-solenoid, and let ML.S/ D
f�g. Let f W S !M be an immersion. Then for each leaf c � S we have that f ı c
is a Schwartzman asymptotic cycle with

Œf ı c� D Œf; S�� 2 H1.M;R/;

and we have

Cg.f ı c/ D Cg.f; S/ D P CRS.f; S/ D fŒf; S��g � H1.M;R/:

Therefore f W S ! M fully represents its Ruelle-Sullivan homology class
Œf; S��.
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7 Schwartzman k-Dimensional Cycles

We study in this section how to extend Schwartzman theory to k-dimensional
submanifolds of M . We assume that M is a compact C1 Riemannian manifold.

Given an immersion c W N ! M from an oriented smooth manifold N of
dimension k � 1, it is natural to consider exhaustions .Un/ of N with Un � N

being k-dimensional compact submanifolds with boundary @Un. We closeUn with a
k-dimensional oriented manifold �n with boundary @�n D �@Un (that is, @Un with
opposite orientation, so that Nn D Un [ �n is a k-dimensional compact oriented
manifold without boundary), in such a way that cjUn extends to a piecewise smooth
map cn W Nn ! M . We may consider the associated homology class Œcn.Nn/� 2
Hk.M;Z/. By analogy with Sect. 4, we consider

1

tn
Œcn.Nn/� 2 Hk.M;R/; (9)

for increasing sequences .tn/, tn > 0, and tn ! C1, and look for sufficient
conditions for (9) to have limits inHk.M;R/. Lemma 1 extends to higher dimension
to show that, as long as we keep control of the k-volume of cn.�n/, the limit is
independent of the closing procedure.

Lemma 2. Let .�n/ be a sequence of closed (i.e. compact without boundary)
oriented k-dimensional manifolds with piecewise smooth maps cn W �n ! M , and
let .tn/ be a sequence with tn > 0 and tn ! C1. If

lim
n!C1

Volk.cn.�n//

tn
D 0;

then in Hk.M;R/ we have

lim
n!C1

Œcn.�n/�

tn
D 0:

The proof follows the same lines as the proof of Lemma 1. We define now k-
dimensional Schwartzman asymptotic cycles.

Definition 20 (Schwartzman asymptotic k-cycles and clusters). Let c W N ! M

be an immersion from a k-dimensional oriented manifold N into M . For all
increasing sequences .tn/, tn ! C1, and exhaustions .Un/ of N by k-dimensional
compact submanifolds with boundary, we consider all possible Schwartzman limits

lim
n!C1

Œcn.Nn/�

tn
2 Hk.M;R/;

where Nn D Un [ �n is a closed oriented manifold with
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Volk.cn.�n//

tn
! 0: (10)

Each such limit is called a Schwartzman asymptotic k-cycle. These limits form the
Schwartzman cluster C.c;N / � Hk.M;R/ of N .

Observe that a Schwartzman limit does not depend on the choice of the sequence
.�n/, as long as it satisfies (10). Note that this condition is independent of the
particular Riemannian metric chosen forM .

As in dimension 1 we have

Proposition 17. The Schwartzman cluster C.c;N / is a closed cone of Hk.M;R/.

The Riemannian structure onM induces a Riemannian structure onN by pulling
back by c. We define the Riemannian exhaustions .Un/ of N as exhaustions of the
form

Un D NB.x0;Rn/;

i.e. the Un are Riemannian (closed) balls in N centered at a base point x0 2 N and
Rn !C1. If the Rn are generic, then the boundary of Un is smooth

We define the Riemannian Schwartzman cluster ofN as follows. It plays the role
of the balanced Riemannian cluster of Sect. 4 for dimension 1.

Definition 21. The Riemann-Schwartzman cluster of c W N !M , Cg.c;N /, is the
set of all limits, for all Riemannian exhaustions .Un/,

lim
n!C1

1

Volk.cn.Nn//
Œcn.Nn/� 2 Hk.M;R/;

such that Nn D Un [ �n and

Volk.cn.�n//

Volk.cn.Nn//
! 0: (11)

All such limits are called Riemann-Schwartzman asymptotic k-cycles.

Definition 22. The immersed manifold c W N ! M represents a homology class
a 2 Hk.M;R/ if the Riemann-Schwartzman cluster Cg.c;N / contains only a,

Cg.c;N / D fag:

We denote Œc; N � D a, and call it the Schwartzman homology class of .c;N /. We
say that .c;N / is a Riemann-Schwartzman asymptotic k-cycle.

Now we can define the notion of representation of homology classes by immersed
solenoids extending Definition 17 to higher dimension.
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Definition 23 (Schwartzman representation of homology classes). Let f W S !
M be an immersion in M of an oriented k-solenoid S . Then S is a Riemannian
solenoid with the pull-back metric f �g.

1. If S is endowed with a transversal measure � D .�T / 2MT .S/, the immersed
solenoid f W S� ! M represents a homology class a 2 H1.M;R/ if for
.�T /-almost all leaves l � S , we have that .f; l/ is a Riemann-Schwartzman
asymptotic k-cycle with Œf; l � D a.

2. The immersed solenoid f W S ! M fully represents a homology class a 2
H1.M;R/ if for all leaves l � S , we have that .f; l/ is a Riemann-Schwartzman
asymptotic k-cycle with Œf; l � D a.

Definition 24 (Equivalent exhaustions). Two exhaustions .Un/ and . OUn/ are
equivalent if

Volk.Un � OUn/CVolk. OUn � Un/
Volk.Un/

! 0:

Note that if two exhaustions .Un/ and . OUn/ are equivalent, then

Volk. OUn/
Volk.Un/

! 1:

Moreover, if Nn D Un [ �n are closings satisfying (11), then we may close OUn as
follows: after slightly modifying OUn so that Un and OUn have boundaries intersecting
transversally, we glue F1 D Un � OUn to OUn along F1 \ @ OUn, then we glue a copy
of F2 D OUn � Un (with reversed orientation) to OUn along F2 \ @ OUn. The boundary
of OUn [ F1 [ F2 is homeomorphic to @Un, so we may glue �n to it, to get ONn DOUn [ F1 [ F2 [ �n. Note that

Volk. ONn/ D Volk.Nn/C 2Volk. OUn � Un/ � Volk.Nn/:

Define Ocn by OcnjF1 D cj.Un� OUn/, OcnjF2 D cj. OUn�Un/ and Ocnj�n D cnj�n . Then

Œcn.Nn/� D Œ Ocn. ONn/� ;

so both exhaustions define the same Schwartzman asymptotic k-cycles.

Definition 25 (Controlled solenoid). Let V � S be an open subset of a solenoid
S . We say that S is controlled by V if for any Riemann exhaustion .Un/ of any leaf
of S there is an equivalent exhaustion . OUn/ such that for all n we have @ OUn � V .

Definition 26 (Trapping region). An open subset W � S of a solenoid S is a
trapping region if there exists a continuous map � W S ! T such that

1. For some 0 < �0 < 1=2,W D ��1..��0; �0//.
2. There is a global transversal T � ��1.f0g/.
3. Each connected component of ��1.f0g/ intersects T in exactly one point.
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4. 0 is a regular value for � , that is, � is smooth in a neighborhood of ��1.f0g/ and
it d� is surjective at each point of ��1.f0g/ (the differential d� is understood
leaf-wise).

5. For each connected component L of ��1.T � f0g/ we have L \ T D fx; yg,
where fxg 2 L\ T \ ��1..��0; 0�/ and fyg 2 L\ T \ ��1.Œ0; �0//. We define
RT W T ! T by RT .x/ D y.

Let Cx be the (unique) component of ��1.f0g/ through x 2 T . By (4),
Cx is a smooth .k � 1/-dimensional manifold. By (5), there is no holonomy
in ��1..��0; �0//, so Cx is a compact submanifold. Let Lx be the connected
component of ��1.T � f0g/ with Lx \ T D fx; yg. This is a compact manifold
with boundary

@Lx D Cx [ Cy D Cx [ CRT .x/: (12)

Proposition 18. If S has a trapping region W with global transversal T , then
holonomy group of T is generated by the map RT .

Proof. If 	 is a path with endpoints in T , we may homotope it so that each time it
traverses ��1.f0g/, it does it through T . Then we may split 	 into sub-paths such
that each path has endpoints in T and no other points in ��1.f0g/. Each of this
sub-paths therefore lies in some Lx and has holonomyRT , R�1

T or the identity. The
result follows.

Theorem 11. A solenoid S with a trapping regionW is controlled by W .

Proof. Fix a base point y0 2 S and a exhaustion .Un/ of the leaf l through y0 of the
form Un D NB.y0;Rn/, Rn !C1. Consider x0 2 T so that y0 2 Lx0 . The leaf l is
the infinite union

l D
[

n2Z
LRnT .x0/:

IfRnT .x0/ D x0 for some n � 1 then l is a compact manifold. Then for some N , we
have UN D l , so the controlled condition of Definition 25 is satisfied for l .

Assume that RT .x0/ 6D x0. Then l is a non-compact manifold. For integers a <
b, denote

OUa;b WD
b�1[

kDa
LRkT .x0/

: (13)

This is a manifold with boundary

@ OUa;b D CRaT .x0/ [ CRbT .x0/:

Given Un, pick the maximum b � 1 and minimum a � 0 such that OUa;b � Un,
and denote OUn D OUa;b for such a and b. Clearly @ OUn � W . Let us see that .Un/ and
. OUn/ are equivalent exhaustions, i.e. that

Volk.Un � OUn/
Volk.Un/

! 0:
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Let b0 � 1 the minimum and a0 � 0 the maximum such that Un � OUa0;b0 . Let us
prove that

Volk. OUa0;b0 � OUa;b/
is bounded. This clearly implies the result.

Take y 2 L
Rb

0
�1

T .x0/
\ Un. Then d.y0; y/ � Rn. By compactness of T , there is a

lower bound c0 > 0 for the distance from Cx to CRT .x/ in Lx , for all x 2 T . Taking
the geodesic path from y0 to y, we see that there are points in yi 2 LRb0

�i
T .x0/

with

d.y0; yi / � Rn � .i � 2/ c0, for 2 � i � b0.
As LRbT .x0/ is not totally contained in Un, we may take z 2 LRbT .x0/ � Un, so

d.y0; z/ > Rn. Both z and yb0�b are on the same leaf L
0
RbT .x0/

. By compactness

of T , the diameter for a leaf Lx is bounded above by some c1 > 0, for all x 2 T . So

Rn � .b0 � b � 2/ c0 � d.y0; yb0�b/ � d.y0; z/ � d.yb0�b; z/ > Rn � c1;

hence
b0 � b < c1

c0
C 2:

Analogously,

a � a0 <
c1

c0
C 2:

Again by compactness of T , the k-volumes of Lx are uniformly bounded by
some c2 > 0, for all x 2 T . So

Volk. OUa0;b0 � OUa;b/ � .b0 � b C a � a0/c2 < 2
�
c1

c0
C 2

�

c2 ;

concluding the proof.

Theorem 12. Let S be a minimal oriented k-solenoid endowed with a transversal
ergodic measure � 2 ML.S/ and with a trapping region W � S . Consider an
immersion f W S ! M such that f .W / is contained in a contractible ball in M .
Then f W S� ! M represents its Ruelle-Sullivan homology class Œf; S��, i.e. for
�T -almost all leaves l � S ,

Œf; l � D Œf; S�� 2 Hk.M;R/:

If S� is uniquely ergodic, then f W S� ! M fully represents its Ruelle-Sullivan
homology class.

In particular, this homology class is independent of the metric g on M up to a
scalar factor.

Proof. We define a map 'T W T !Hk.M;Z/ as follows: given x 2 T , consider
f .Lx/. Since @f .Lx/ is contained in a contractible ball B of M , we can close
f .Lx/ locally as NxD f .Lx/ [ �x and define an homology class 'T .x/D ŒNx� 2



330 V. Muñoz and R.P. Marco

Hk.M;Z/. This is independent of the choice of the closing. This map 'T is
measurable and bounded in Hk.M;Z/ since the k-volume of �x may be chosen
uniformly bounded. Also we can define a map lT W T ! RC by lT .x/D Volk.Lx/.
It is also a measurable and bounded map.

We have seen that every Riemann exhaustion .Un/ is equivalent to an exhaustion
. OUn/ with @ OUn � W . Note also that we can saturate the exhaustion . OUn/ into
. OUn;m/n�0�m, with OUn;m defined in (13), where @ OUn;m D CRnT .x0/ [ CRmT .x0/, and
x0 2 T is a base point. Since f .W / is contained in a contractible ball B of M , we
can always close f . OUn;m/, with a closing insideB , to getNn;m defining an homology
class ŒNn;m� 2 Hk.M;Z/. Moreover we have

ŒNn;m� D
m�1X

iDn
'T .R

i
T .x0//:

Thus by ergodicity of � and Birkhoff’s ergodic theorem, we have that for�T -almost
all x0 2 T ,

1

m � nŒNn;m�!
Z

T

'T d�T :

Also

Volk. OUn;m/ D
m�1X

iDn
lT .R

i
T .x0//;

where Volk.Nn;m/ differs from Volk. OUn;m/ by a bounded quantity due to the
closings. By Birkhoff’s ergodic theorem, for �T -almost all x0 2 T ,

1

m � n Volk f . OUn;m/!
Z

T

lT d�T D �.S/ D 1:

Thus we conclude that for �T -almost x0 2 T ,

1

Volk.Nn;m/
ŒNn;m�!

Z

T

'T d�T ;

It is easy to see as in Theorem 9 that
R
T
'T d�T is the Ruelle-Sullivan homology

class Œf; S��.

Actually, when f W S ! M is an immersed oriented uniquely ergodic
k-solenoid with a trapping region which is mapped to a contractible ball in M , we
may prove that f W S� ! M fully represents the Ruelle-Sullivan homology class
Œf; S�� by checking that the exhaustion OUn satisfies the controlled growth condition
(see Definition 7) and using Corollary 1 which guarantees that the normalized
measures �n supported on OUn converge to the unique Schwartzman limit �.
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A Appendix: Norm on the Homology

Let M be a compact C1 Riemannian manifold. For each a 2 H1.M;Z/ we define

l.a/ D inf
Œ	�Da l.	/;

where 	 runs over all closed loops in M with homology class a and l.	/ is the
length of 	 ,

l.	/ D
Z

	

dsg:

By application of Ascoli-Arzela it is classical to get

Proposition 19. For each a 2 H1.M;Z/ there exists a minimizing geodesic loop 	
with Œ	� D a such that

l.	/ D l.a/:
Note that the minimizing property implies the geodesic character of the loop. We

also have

Proposition 20. There exists a universal constant C0 D C0.M/ > 0 only
depending on M , such that for a; b 2 H1.M;Z/ and n 2 Z, we have

l.n � a/ � jnj l.a/;

and
l.aC b/ � l.a/C l.b/C C0:

(We can take for C0 twice the diameter of M .)

Proof. Given a loop 	 , the loop n	 obtained from 	 running through it n times (in
the direction compatible the sign of n) satisfies

Œn	� D n Œ	�;

and
l.n	/ D jnj l.	/:

Therefore
l.n � a/ � l.n	/ D jnj l.	/;

and we get the first inequality taking the infimum over 	 .
Let C0 be twice the diameter of M . Any two points of M can be joined by an

arc of length smaller than or equal to C0=2. Given two loops ˛ and ˇ with Œ˛� D a
and Œˇ� D b, we can construct a loop 	 with Œ	� D a C b by picking a point in ˛
and another point in ˇ and joining them by a minimizing arc which pastes together
˛ and ˇ running through it back and forth. This new loop satisfies

l.	/ D l.˛/C l.ˇ/C C0;
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therefore
l.aC b/ � l.˛/C l.ˇ/C C0:

and the second inequality follows.

Remark 5. It is not true that l.n � a/ D n l.	/ if l.a/ D l.	/. To see this take a
surfaceM of genus g � 2 and two elements e1; e2 2 H1.M;Z/ such that

l.e1/C l.e2/ < l.e1 C e2/:

(For instance we can take M to be the connected sum of a large sphere with two
small 2-tori at antipodal points, and let e1, e2 be simple closed curves, non-trivial in
homology, inside each of the two tori.) Let a D e1 C e2. Then

l.n � a/ D l.n � .e1 C e2// � n l.e1/C n l.e2/C C0;

we get for n large
l.n � a/ < n l.a/:

Theorem 13 (Norm in homology). Let a 2 H1.M;Z/. The limit

jjajj D lim
n!C1

l.n � a/
n

;

exists and is finite. It satisfies the properties

(i) For a 2 H1.M;Z/, we have jjajj D 0 if and only if a is torsion.
(i) For a 2 H1.M;Z/ and n 2 Z, we have jjn � ajj D jnj jjajj .

(iii) For a; b 2 H1.M;Z/, we have

jjaC bjj � jjajj C jjbjj:

(iv) jjajj � l.a/.
Proof. Let un D l.n � a/ C C0. By the properties proved before, the sequence .un/
is sub-additive

unCm � un C um;

therefore
lim sup
n!C1

un
n
D lim inf

n!C1
un
n
:

Moreover, we have also
un
n
� l.a/ < C1;

thus the limit exists and is finite. Property (iv) holds.
Property (ii) follows from

jjn � ajj D lim
m!1

l.mn � a/
m

D jnj lim
m!1

l.mjnj � a/
mjnj D jnj jjajj:
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Property (iii) follows from

l.n � .aC b// � l.n � a/C l.n � b/C C0 � n l.a/C n l.b/C C0;

dividing by n and passing to the limit.
Let us check property (i). If a is torsion then n �a D 0, so jjajj D 1

n
jjn �ajj D 0. If

a is not torsion, then there exists a smooth map � W M ! S1 which corresponds to
an element Œ�� 2 H1.M;Z/ with m D hŒ��; ai > 0. Then for any loop 	 W Œ0; 1�!
M representing n � a, n > 0, we take � ı 	 and lift it to a map Q	 W Œ0; 1�! R. Thus

Q	.1/ � Q	.0/ D hŒ��; n � ai D mn:

Now let C be an upper bound for jd�j. Then

mn D j Q	.1/� Q	.0/j D l.� ı 	/ � C l.	/;

so l.	/ � mn=C , hence l.n � a/ � mn=C and jjajj � m=C .

Now we can define a norm in H1.M;Q/ D Q˝H1.M;Z/ by

jj�˝ ajj D j�j � jjajj;

and extend it by continuity to H1.M;R/ D R˝H1.M;Z/.
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An Additive Functional Equation
in Orthogonality Spaces
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Abstract By applying the fixed point method as well as the direct method,
we provide a proof of the Hyers-Ulam stability of linear mappings, isometric
linear mappings and 2-isometric linear mappings in Banach modules over a unital
C �-algebra and in non-Archimedean Banach modules over a unital C �-algebra
associated with an orthogonally additive functional equation. Moreover, we prove
the Hyers-Ulam stability of homomorphisms in C �-algebras associated with an
orthogonally additive functional equation.

1 Introduction and Preliminaries

Assume that X is a real inner product space and f W X ! R is a solution of the
orthogonally Cauchy functional equation f .x C y/ D f .x/ C f .y/ for x; y 2 X
with hx; yi D 0. By the Pythagorean theorem f .x/ D kxk2 is a solution of the
conditional equation. Of course, this function does not satisfy the additivity equation
everywhere. Thus the orthogonally Cauchy equation is not equivalent to the classic
Cauchy equation on the whole inner product space.
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Pinsker [65] characterized orthogonally additive functionals on an inner product
space when the orthogonality is the ordinary one in such spaces. Sundaresan [78]
generalized this result to arbitrary Banach spaces equipped with the Birkhoff-James
orthogonality. The orthogonal Cauchy functional equation

f .x C y/ D f .x/C f .y/; x ? y;

in which ? is an abstract orthogonality relation, was first investigated by Gudder
and Strawther [27]. They defined ? by a system consisting of five axioms and
described the general semi-continuous real-valued solution of conditional Cauchy
functional equation. In 1985, Rätz [75] introduced a new definition of orthogonality
by using more restrictive axioms than those of Gudder and Strawther. Moreover, he
investigated the structure of orthogonally additive mappings. Rätz and Szabó [76]
investigated the problem in a rather more general framework.

Let us recall the orthogonality in the sense of Rätz; cf. [75].
Suppose X is a real vector space (algebraic module) with dimX � 2 and ? is a

binary relation on X with the following properties:

.O1/ totality of ? for zero: x ? 0; 0 ? x for all x 2 X ;

.O2/ independence: if x; y 2 X �f0g; x ? y, then x; y are linearly independent;

.O3/ homogeneity: if x; y 2 X; x ? y, then ˛x ? ˇy for all ˛; ˇ 2 R;

.O4/ the Thalesian property: if P is a 2-dimensional subspace of X; x 2 P and
� 2 RC, which is the set of nonnegative real numbers, then there exists y0 2 P
such that x ? y0 and x C y0 ? �x � y0.
The pair .X;?/ is called an orthogonality space (module). By an orthogonality

normed space (normed module) we mean an orthogonality space (module) having a
normed (normed module) structure.

Some interesting examples are the following:

1. The trivial orthogonality on a vector space X defined by .O1/, and for non-zero
elements x; y 2 X , x ? y if and only if x; y are linearly independent.

2. The ordinary orthogonality on an inner product space .X; h:; :i/ given by x ? y
if and only if hx; yi D 0.

3. The Birkhoff-James orthogonality on a normed space .X; k:k/ defined by x ? y
if and only if kx C �yk � kxk for all � 2 R.

The relation? is called symmetric if x ? y implies that y ? x for all x; y 2 X .
Clearly examples 1 and 2 are symmetric but example 3 is not. It is remarkable to
note, however, that a real normed space of dimension greater than 2 is an inner
product space if and only if the Birkhoff-James orthogonality is symmetric. There
are several orthogonality notions on a real normed space such as Birkhoff-James,
Boussouis, Singer, Carlsson, unitary-Boussouis, Roberts, Phythagorean, isosceles
and Diminnie (see [2, 3, 5, 10, 20, 32, 33, 55]).

Assume that ifA is aC �-algebra andX is a module overA and if x; y 2 X; x?y,
then ax ? by for all a; b 2 A. Then .X; jj:jj/ is called an orthogonality module
over A.
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The stability problem of functional equations originated from the following
question of Ulam [80]: Under what condition does there exist an additive mapping
near an approximately additive mapping? In 1941, Hyers [29] gave a partial
affirmative answer to the question of Ulam in the context of Banach spaces. In 1978,
Rassias [67] extended the theorem of Hyers by considering the unbounded Cauchy
difference kf .x C y/ � f .x/ � f .y/k � ".kxkp C kykp/; ." > 0; p 2 Œ0; 1//.
The result of Rassias has provided a lot of influence in the development of what
we now call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of
functional equations. During the last decades several stability problems of functional
equations have been investigated in the spirit of Hyers-Ulam-Rassias. The reader
is referred to [17, 30, 35, 73] and references therein for a detailed information on
stability properties of functional equations.

Ger and Sikorska [24] investigated the orthogonal stability of the Cauchy
functional equation f .x C y/ D f .x/ C f .y/, namely, they showed that if f
is a mapping from an orthogonality space X into a real Banach space Y and

kf .x C y/� f .x/ � f .y/k � "

for all x; y 2 X with x ? y and some " > 0, then there exists exactly one
orthogonally additive mapping g W X ! Y such that kf .x/ � g.x/k � 16

3
" for

all x 2 X .
The first author treating the stability of the quadratic equation was Skof [77]

by proving that if f is a mapping from a normed space X into a Banach space Y
satisfying kf .xCy/Cf .x�y/�2f .x/�2f .y/k � " for some " > 0, then there is a
unique quadratic mapping g W X ! Y such that kf .x/� g.x/k � "

2
. Cholewa [12]

extended the Skof’s theorem by replacing X by an abelian group G. The Skof’s
result was later generalized by Czerwik [15] in the spirit of Hyers-Ulam-Rassias.
The stability problem of functional equations has been extensively investigated by
several mathematicians (see [16, 34, 58, 69–71]).

The orthogonally quadratic equation

f .x C y/C f .x � y/ D 2f .x/C 2f .y/; x ? y

was first investigated by Vajzović [81] when X is a Hilbert space, Y is the scalar
field, f is continuous and ? means the Hilbert space orthogonality. Later, Drljević
[22], Fochi [23], Moslehian [50, 51], Moslehian and Rassias [52] and Szabó [79]
provided a generalization of this result.

In 1897, Hensel [28] introduced a normed space which does not satisfy the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications (see [18, 43, 44, 54]).

Definition 1. By a non-Archimedean field we mean a field K equipped with a
function (valuation) j � j W K ! Œ0;1/ such that for all r; s 2 K, the following
conditions hold:
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(1) jr j D 0 if and only if r D 0;
(2) jrsj D jr jjsj;
(3) jr C sj � maxfjr j; jsjg:
Definition 2 ([53]). Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation j � j. A function jj � jj W X!R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:

(1) jjxjj D 0 if and only if x D 0;
(2) jjrxjj D jr jjjxjj .r 2 K, x 2 X/;
(3) The strong triangle inequality (ultrametric); namely,

jjx C yjj � maxfjjxjj; jjyjjg; x; y 2 X:

Then .X; jj:jj/ is called a non-Archimedean space.

Assume that if A is a C �-algebra and X is a module over A, which is a non-
Archimedean space, and if x; y 2 X; x ? y, then ax ? by for all a; b 2 A. Then
.X; jj:jj/ is called an orthogonality non-Archimedean module over A.

It follows from (3) of Definition 2 that

jjxn � xmjj � maxfjjxjC1 � xj jj W m � j � n � 1g .n > m/:

Definition 3. A sequence fxng is a Cauchy sequence if and only if fxnC1 � xng
converges to zero in a non-Archimedean space. By a complete non-Archimedean
space we mean one in which every Cauchy sequence is convergent.

Let X be a set. A function d W X 
 X ! Œ0;1� is called a generalized metric
on X if d satisfies

1. d.x; y/ D 0 if and only if x D y;
2. d.x; y/ D d.y; x/ for all x; y 2 X ;
3. d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X .

We recall a fundamental result in fixed point theory.

Theorem 1 ([7, 19]) Let .X; d/ be a complete generalized metric space and let J W
X ! X be a strictly contractive mapping with Lipschitz constant ˛ < 1. Then for
each given element x 2 X , either

d.J nx; J nC1x/ D1
for all nonnegative integers n or there exists a positive integer n0 such that

1. d.J nx; J nC1x/ <1; 8n � n0;
2. the sequence fJ nxg converges to a fixed point y� of J ;
3. y� is the unique fixed point of J in the set Y D fy 2 X j d.J n0x; y/ <1g;
4. d.y; y�/ � 1

1�˛ d.y; Jy/ for all y 2 Y .
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In 1996, Isac and Rassias [31] provided applications of stability theory of
functional equations for the proof of new fixed point theorems. By using fixed
point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [8, 9, 37–39, 49, 56, 57, 66]).

Let X and Y be metric spaces. A mapping f W X ! Y is called an isometry if
f satisfies

dY
�
f .x/; f .y/

	 D dX.x; y/
for all x; y 2 X , where dX.�; �/ and dY .�; �/ denote the metrics in the spacesX and Y ,
respectively. For some fixed number r > 0, suppose that f preserves distance r ,
i.e., for all x; y in X with dX.x; y/ D r , we have dY

�
f .x/; f .y/

	 D r . Then r is
called a conservative (or preserved) distance for the mapping f . Aleksandrov [1]
posed the following problem:

Remark 1 (Aleksandrov problem). Examine whether the existence of a single con-
servative distance for some mapping T implies that T is an isometry.

The Aleksandrov problem has been investigated by several mathematicians (see
[4, 6, 13, 14, 21, 25, 26, 36, 40, 41, 45–47, 68, 72, 82]). Rassias and Šemrl [74] proved
the following theorem for mappings satisfying the strong distance one preserving
property (SDOPP), i.e., for every x; y 2 X with kx � yk D 1 it follows that
kf .x/ � f .y/k D 1 and conversely.

Theorem 2 ([74]) Let X and Y be real normed linear spaces such that one of them
has dimension greater than one. Suppose that f W X ! Y is a Lipschitz mapping
with Lipschitz constant  � 1. Assume that f is a surjective mapping satisfying
(SDOPP). Then f is an isometry.

Definition 4 ([11]). Let X be a real linear space with dimX � N and k�; � � � ; �k W
XN ! R a function. Then .X; k�; � � � ; �k/ is called a linear N -normed space if

.N1/ kx1; � � � ; xN k D 0” x1; � � � ; xN are linearly dependent

.N2/ kx1; � � � ; xN k D kxj1 ; � � � ; xjN k for every permutation

.j1; � � � jN / of .1; � � � ; N /
.N3/ k˛x1; � � � ; xN k D j˛jkx1; � � � ; xN k
.N4/ kx C y; x2; � � � ; xN k � kx; x2; � � � ; xnk C ky; x2; � � � ; xN k

for all ˛ 2 R and all x; y; x1; � � � ; xN 2 X . The function k�; � � � ; �k is called the
N -norm on X .

Note that the notion of 1-norm is the same as that of norm.
In [59], it was defined the notion of N -isometry and proved the Rassias and

Šemrl’s theorem in linear N -normed spaces.

Definition 5 ([59]). We call f W X ! Y an N -Lipschitz mapping if there is a
 � 0 such that
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kf .x1/� f .y1/; � � � ; f .xN /� f .yN /k � kx1 � y1; � � � ; xN � yN k

for all x1; � � � ; xN ; y1; � � � ; yN 2 X . The smallest such  is called the N -Lipschitz
constant.

Definition 6 ([59]). Let X and Y be linear N -normed spaces and f W X ! Y a
mapping. We call f an N -isometry if

kx1 � y1; � � � ; xN � yN k D kf .x1/ � f .y1/; � � � ; f .xN / � f .yN /k

for all x1; � � � ; xN ; y1; � � � ; yN 2 X .

Park and Rassias [60–64] investigated the Hyers-Ulam stability problems forN -
isometric linear mappings in linear N -normed Banach modules over a C �-algebra
and for isometric linear mappings in Banach modules over a C �-algebra.

This paper is organized as follows: In Sect. 2, we prove the Hyers-Ulam stability
of the following orthogonally additive functional equation

2f
�x

2
C y

�
D f .x/C f .2y/; x ? y; (1)

in Banach modules over a unital C �-algebra by using the fixed point method. In
Sect. 3, we prove the Hyers-Ulam stability of the orthogonally additive functional
equation (1) in non-Archimedean Banach modules over a unital C �-algebra by
using the fixed point method. In Sect. 4, we prove the Hyers-Ulam stability of the
orthogonally additive functional equation (1) in Banach modules over a unital C �-
algebra by using the direct method. In Sect. 5, we prove the Hyers-Ulam stability
of homomorphisms in unital C �-algebras associated with the orthogonally additive
functional equation (1) by using the fixed point method. In Sect. 6, we prove the
Hyers-Ulam stability of homomorphisms in unital C �-algebras associated with the
orthogonally additive functional equation (1) by using the direct method. In Sect. 7,
we prove the Hyers-Ulam stability of isometric linear mappings in Banach modules
over a unital C �-algebra associated with the orthogonally additive functional
equation (1) by using the fixed point method. In Sect. 8, we prove the Hyers-Ulam
stability of isometric linear mappings in non-Archimedean Banach modules over a
unital C �-algebra associated with the orthogonally additive functional equation (1)
by using the direct method. In Sect. 9, we prove the Hyers-Ulam stability of
isometric linear mappings in Banach modules over a unital C �-algebra associated
with the orthogonally additive functional equation (1) by using the direct method.
In Sect. 10, we prove the Hyers-Ulam stability of 2-isometric linear mappings
in Banach modules over a unital C �-algebra associated with the orthogonally
additive functional equation (1) by using the fixed point method. In Sect. 11, we
prove the Hyers-Ulam stability of 2-isometric linear mappings in non-Archimedean
Banach modules over a unital C �-algebra associated with the orthogonally additive
functional equation (1) by using the fixed point method. In Sect. 12, we prove the
Hyers-Ulam stability of 2-isometric linear mappings in Banach modules over a
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unital C �-algebra associated with the orthogonally additive functional equation (1)
by using the direct method.

Furthermore, applying some ideas from [24, 30], we deal with the stability
problem for the orthogonally additive functional equation (1).

2 Stability of the Orthogonally Additive Functional
Equation (1) in Banach Modules Over a C �-Algebra:
Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/ WD fu 2 A j u�u D uu� D eg, .X;?/ is an orthogonality normed
module over A and .Y; k:kY / is a Banach module over A.

Definition 7. An orthogonally additive mapping f W X!Y is called an orthogo-
nally additive A-linear mapping if f .ax/ D af .x/ for all a 2 A and all x 2 X .

Lemma 1. Let V andW be vector spaces. A mappingf WV !W satisfies f .0/ D 0
and

2f
�x

2
C y

�
D f .x/C f .2y/

for all x; y 2 V if and only if the mapping f W V ! W is Cauchy additive, i.e.,

f .x C y/ D f .x/C f .y/

for all x; y 2 V .

Proof. The proof is obvious.

Theorem 3 Let ' W X 
X ! Œ0;1/ be a function such that there exists an ˛ < 1
with

'.x; y/ � 2˛'
�x

2
;
y

2

�
(2)

for all x; y 2 X with x ? y. Let f W X ! Y be a mapping satisfying f .0/ D 0

and


2uf

�x

2
C y

�
� f .ux/ � f .2uy/




Y
� '.x; y/ (3)

for all u 2 U.A/ and all x; y 2 X with x ? y. If for each x 2 X the mapping
f .tx/ is continuous in t 2 R, then there exists a unique orthogonally additive
A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � ˛

1 � ˛' .x; 0/ (4)

for all x 2 X .
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Proof. Putting y D 0 and u D e in (3), we get



2f

�x

2

�
� f .x/




Y
� '.x; 0/ (5)

for all x 2 X , since x ? 0. So




f .x/ �

1

2
f .2x/





Y

� 1

2
'.2x; 0/ � ˛ � '.x; 0/ (6)

for all x 2 X .
Consider the set

S WD fh W X ! Y g
and introduce the generalized metric on S :

d.g; h/ D inf f� 2 RC W kg.x/ � h.x/kY � �' .x; 0/ ; 8x 2 Xg ;

where, as usual, inf' D C1. It is easy to show that the space .S; d/ is complete
(see [38, Theorem 3.1] or [48, Lemma 2.1]).

Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 1

2
g .2x/

for all x 2 X .
Let g; h 2 S be given such that d.g; h/ D ". Then

kg.x/ � h.x/kY � "' .x; 0/

for all x 2 X . Hence

kJg.x/ � Jh.x/kY D




1

2
g .2x/ � 1

2
h .2x/





Y

� ˛"' .x; 0/

for all x 2 X . So d.g; h/ D " implies that d.Jg; Jh/ � ˛". This means that

d.Jg; Jh/ � ˛d.g; h/

for all g; h 2 S .
It follows from (6) that d.f; Jf / � ˛.
By Theorem 1, there exists a mapping L W X ! Y satisfying the following:

1. L is a fixed point of J , i.e.,

L.2x/ D 2L.x/ (7)
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for all x 2 X . The mapping L is a unique fixed point of J in the set

M D fg 2 S W d.f; g/ <1g:

This implies that L is a unique mapping satisfying (7) such that there exists a
� 2 .0;1/ for which

kf .x/ � L.x/kY � �' .x; 0/

for all x 2 X ;
2. d.J nf;L/! 0 as n!1. This implies the equality

lim
n!1

1

2n
f .2nx/ D L.x/

for all x 2 X ;
3. d.f;L/ � 1

1�˛d.f; Jf /, which yields the inequality

d.f;L/ � ˛

1 � ˛ :

Thus (4) holds true.

Let u D e in (3). It follows from (2) and (3) that



2L

�x

2
C y

�
� L.x/ � L.2y/




Y

D lim
n!1

1

2n
k2f .2n�1x C 2ny/� f .2nx/ � f .2nC1y/kY

� lim
n!1

1

2n
'.2nx; 2ny/ � lim

n!1
2n˛n

2n
'.x; y/ D 0

for all x; y 2 X with x ? y. So

2L
�x

2
C y

�
�L.x/ �L.2y/ D 0

for all x; y 2 X with x ? y. Hence L W X ! Y is an orthogonally additive
mapping.

Let y D 0 in (3). It follows from (2) and (3) that



2uL

�x

2

�
� L.ux/




Y
D lim

n!1
1

2n
k2uf .2n�1x/ � f .2nux/kY

� lim
n!1

1

2n
'.2nx; 0/ � lim

n!1
2n˛n

2n
'.x; 0/ D 0
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for all x 2 X . Therefore,

2uL
�x

2

�
� L.ux/ D 0

for all x 2 X . Hence

L.ux/ D 2uL
�x

2

�
D uL.x/ (8)

for all u 2 U.A/ and all x 2 X .
By the same reasoning as in [67], we can show that L W X ! Y is R-linear,

since the mapping f .tx/ is continuous in t 2 R for each x 2 X and L W X ! Y is
additive.

Since L is R-linear and each a 2 A is a finite linear combination of unitary
elements (see [42, Theorem 4.1.7]), i.e., a D Pm

jD1 �juj .�j 2 C, uj 2 U.A//, it
follows from (8) that

L.ax/ D L.
mX

jD1
�j uj x/ D L

0

@
mX

jD1
j�j j � �jj�j juj x

1

A D
mX

jD1
j�j jL

�
�j

j�j juj x
�

D
mX

jD1
j�j j � �jj�j jujL.x/ D

mX

jD1
�j ujL.x/ D aL.x/

for all x 2 X . It is obvious that �j
j�j j uj 2 U.A/. Thus L W X ! Y is a unique

orthogonally additive A-linear mapping satisfying (4).

Corollary 1 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and



2uf

�x

2
C y

�
� f .ux/ � f .2uy/




Y
� �.kxkp C kykp/ (9)

for all u 2 U.A/ and all x; y 2 X with x ? y. If for each x 2 X the mapping
f .tx/ is continuous in t 2 R, then there exists a unique orthogonally additive
A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � 2p�

2 � 2p kxk
p (10)

for all x 2 X .

Proof. The proof follows from Theorem 3 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D 2p�1 and the result follows.

Theorem 4 Let f W X ! Y be a mapping satisfying (3) and f .0/ D 0 for which
there exists a function ' W X 
X ! Œ0;1/ such that there exists an ˛ < 1 with
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'.x; y/ � ˛

2
' .2x; 2y/ (11)

for all x; y 2 X with x ? y. If for each x 2 X the mapping f .tx/ is continuous in
t 2 R, then there exists a unique orthogonally additive A-linear mapping L W X !
Y such that

kf .x/ � L.x/kY � 1

1 � ˛' .x; 0/ (12)

for all x 2 X .

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theorem 3.
Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (5) that d.f; Jf / � 1.
The rest of the proof is similar to the proof of Theorem 3.

Corollary 2 Let � be a positive real number and p a real number with p > 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and (9). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � 2p�

2p � 2kxk
p (13)

for all x 2 X .

Proof. The proof follows from Theorem 4 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D 21�p and the result follows.

3 Stability of the Orthogonally Additive Functional
Equation (1) in Non-Archimedean Banach Modules
Over a C �-Algebra: Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality non-Archimedean normed module over A
and .Y; k:kY / is a non-Archimedean Banach module over A. Assume that j2j ¤ 1.

Theorem 5 Let ' W X 
X ! Œ0;1/ be a function such that there exists an ˛ < 1
with



346 C. Park and T.M. Rassias

'.x; y/ � j2j˛'
�x

2
;
y

2

�
(14)

for all x; y 2 X with x ? y. Let f W X ! Y be a mapping satisfying f .0/ D 0

and (3). If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there
exists a unique orthogonally additive A-linear mapping L W X ! Y satisfying (4).

Proof. It follows from (5) that




f .x/ �

1

2
f .2x/





Y

� 1

j2j'.2x; 0/ � ˛ � '.x; 0/ (15)

for all x 2 X .
Let .S; d/ be the generalized metric space defined in the proof of Theorem 3.
We consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (15) that d.f; Jf / � ˛.
By Theorem 1, there exists a mapping L W X ! Y satisfying the following:

1. d.J nf;L/! 0 as n!1. This implies the equality

lim
n!1

1

2n
f .2nx/ D L.x/

for all x 2 X ;
2. d.f;L/ � 1

1�˛d.f; Jf /, which yields the inequality

d.f;L/ � ˛

1 � ˛ :

Thus (4) holds true.

It follows from (14) and (3) that



2uL

�x

2
C y

�
� L.ux/� L.2uy/




Y

D lim
n!1

1

j2jn k2uf .2n�1x C 2ny/ � f .2nux/ � f .2nC1uy/kY

� lim
n!1

1

j2jn '.2
nx; 2ny/ � lim

n!1
j2jn˛n
j2jn '.x; y/ D 0

for all u 2 U.A/ and all x; y 2 X with x ? y. So
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2uL
�x

2
C y

�
� L.ux/� L.2uy/ D 0

for all u 2 U.A/ and all x; y 2 X with x ? y.
The rest of the proof is similar to the proof of Theorem 3.

Corollary 3 Let � be a positive real number and p a real number with p > 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and (9). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � j2jp�
j2j � j2jp kxk

p (16)

for all x 2 X .

Proof. The proof follows from Theorem 5 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D j2jp�1 and the result follows.

Theorem 6 Let f W X ! Y be a mapping satisfying (3) and f .0/ D 0 for which
there exists a function ' W X 
X ! Œ0;1/ such that there exists an ˛ < 1 with

'.x; y/ � ˛

j2j' .2x; 2y/ (17)

for all x; y 2 X with x ? y. If for each x 2 X the mapping f .tx/ is continuous
in t 2 R, then there exists a unique orthogonally additive A-linear mapping L W
X! Y satisfying (12).

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theorem 3.
We consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (5) that d.f; Jf / � 1.
The rest of the proof is similar to the proofs of Theorems 3 and 5.

Corollary 4 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and (9). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � j2jp�
j2jp � j2jkxk

p (18)

for all x 2 X .
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Proof. The proof follows from Theorem 6 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D j2j1�p and the result follows.

4 Stability of the Orthogonally Additive Functional
Equation (1) in Banach Modules Over a C �-Algebra:
Direct Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality normed module over A and .Y; k:kY / is a
Banach module over A.

Theorem 7 Let ' W X 
X ! Œ0;1/ be a function satisfying

˚.x; y/ WD
1X

jD1
2j '

� x

2j
;
y

2j

�
<1 (19)

for all x; y 2 X with x ? y. Let f W X ! Y be a mapping satisfying f .0/ D 0

and (3). If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there
exists a unique orthogonally additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � 1

2
˚ .0; x/ (20)

for all x 2 X .

Proof. Putting x D 0 and u D e in (3), we get

k2f .y/� f .2y/kY � '.0; y/ (21)

for all y 2 X , since y ? 0. So



f .x/ � 2f

�x

2

�


Y
� '

�
0;
x

2

�
(22)

for all x 2 X .
It follows from (22) that



2lf .

x

2l
/� 2mf . x

2m
/



Y
�

mX

jDlC1
2j'

�
0;
x

2j

�
(23)

for all nonnegative integersm and l with m > l and all x 2 X . It follows from (19)
and (23) that the sequence f2kf . x

2k
/g is Cauchy for all x 2 X . Since Y is complete,

the sequence f2kf . x
2k
/g converges. So one can define the mapping L W X ! Y by
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L.x/ WD lim
k!1 2kf

� x

2k

�

for all x 2 X .
By (19) and (3),



2L

�x

2
C y

�
� L.x/ �L.2y/




Y
D lim

k!1 2k


2f

� x

2kC1 C
y

2k

�

�f
� x

2k

�
� f

� y

2k�1
�


Y

� lim
k!1 2k'

� x

2k
;
y

2k

�
D 0

for all x; y 2 X with x ? y. So 2L
�
x
2
C y	 � L.x/ � L.2y/ D 0. Thus the

mapping L W X ! Y is orthogonally additive. Moreover, letting l D 0 and passing
the limit m ! 1 in (23), we get (20). Therefore, there exists an orthogonally
additive mapping L W X ! Y satisfying (20).

Now, let T W X ! Y be another orthogonally additive mapping satisfying (1)
and (20). Then we have

kL.x/ � T .x/kY D 2q


L

� x

2q

�
� T

� x

2q

�


Y

� 2q


L

� x

2q

�
� f

� x

2q

�


Y
C 2q



T

� x

2q

�
� f

� x

2q

�


Y

� 2 � 2q˚
�
0;
x

2q

�
;

which tends to zero as q !1 for all x 2 X . So we can conclude thatL.x/ D T .x/
for all x 2 X . This proves the uniqueness of L.

The rest of the proof is similar to the proof of Theorem 3.

Corollary 5 Let � be a positive real number and p a real number with p > 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and (9). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � �

2p � 2kxk
p (24)

for all x 2 X .

Proof. The proof follows from Theorem 7 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y.

Theorem 8 Let ' W X 
X ! Œ0;1/ be a function satisfying
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˚.x; y/ WD
1X

jD0

1

2j
'
�
2j x; 2j y

	
<1 (25)

for all x; y 2 X with x ? y. Let f W X ! Y be a mapping satisfying f .0/ D 0

and (3). If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there
exists a unique orthogonally additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � 1

2
˚ .0; x/ (26)

for all x 2 X .

Proof. It follows from (21) that




f .x/ �

1

2
f .2x/





Y

� 1

2
'.0; x/

for all x 2 X . So





1

2l
f .2lx/ � 1

2m
f .2mx/





Y

�
m�1X

jDl

1

2 � 2j '.0; 2
j x/ (27)

for all nonnegative integersm and l with m > l and all x 2 X . It follows from (25)
and (27) that the sequence f 1

2k
f .2kx/g is Cauchy for all x 2 X . Since the space

Y is complete, the sequence f 1
2k
f .2kx/g converges. So one can define the mapping

L W X ! Y by

L.x/ WD lim
k!1

1

2k
f .2kx/

for all x 2 X .
The rest of the proof is similar to the proofs of Theorems 3 and 7.

Corollary 6 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and (9). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive A-linear mapping L W X ! Y such that

kf .x/ � L.x/kY � �

2 � 2p kxk
p (28)

for all x 2 X .

Proof. The proof follows from Theorem 8 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y.
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5 Stability of C �-Algebra Homomorphisms Associated with
the Orthogonally Additive Functional Equation (1): Fixed
Point Method

Let X be a C �-algebra and x; y 2 X . Define hx; yi D xy�. Then both .O1/ and
.O3/ hold, i.e., if x; y 2 X; x ? y, then ˛x ? ˇy for all ˛; ˇ 2 C. We say that x
and y are called orthogonal if xy D 0 D yx.

Throughout this section, assume that X is a unital C �-algebra with unit e and
unitary group U.X/ and .Y; k:kY / is a unital C �-algebra.

Definition 8. An orthogonally additive C-linear mapping f W X ! Y is called
an orthogonally additive C �-algebra homomorphism if f .xz/ D f .x/f .z/ and
f .x�/ D f .x/� for all x; z 2 X .

Theorem 9 Let ' W X 
X ! Œ0;1/ be a function such that there exists an ˛ < 1
with

'.x; y/ � 2˛'
�x

2
;
y

2

�
(29)

for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0 and



2�f

�x

2
C y

�
� f .�x/ � f .2�y/




Y
� '.x; y/; (30)

kf .xz/ � f .x/f .z/kY � '.x; z/; (31)

f

�
x�	 � f .x/�

Y
� '.x; x/ (32)

for all � 2 T WD f� 2 C j j�j D 1g and all x; y; z 2 X with x ? y. If for
each x 2 X the mapping f .tx/ is continuous in t 2 R, then there exists a unique
orthogonally additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � ˛

1 � ˛' .x; 0/ (33)

for all x 2 X .

Proof. Putting y D 0 and � D 1 in (30), we get



2f

�x

2

�
� f .x/




Y
� '.x; 0/ (34)

for all x 2 X , since x ? 0. So




f .x/ �

1

2
f .2x/





Y

� 1

2
'.2x; 0/ � ˛ � '.x; 0/ (35)

for all x 2 X .
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Consider the set
S WD fh W X ! Y g

and introduce the generalized metric on S :

d.g; h/ D inf f� 2 RC W kg.x/ � h.x/kY � �' .x; 0/ ; 8x 2 Xg ;

where, as usual, inf� D C1. It is easy to show that .S; d/ is complete (see [48,
Lemma 2.1]).

We consider the linear mapping J W S ! S such that

Jg.x/ WD 1

2
g .2x/

for all x 2 X .
It follows from (35) that d.f; Jf / � ˛.
By Theorem 1, there exists a mappingH W X ! Y satisfying the following:

1. H is a fixed point of J , i.e.,

H .2x/ D 2H.x/ (36)

for all x 2 X . The mappingH is a unique fixed point of J in the set

M D fg 2 S W d.h; g/ <1g:

This implies that H is a unique mapping satisfying (36) such that there exists a
� 2 .0;1/ satisfying

kf .x/ �H.x/kY � �' .x; 0/

for all x 2 X ;
2. d.J nf;H/! 0 as n!1. This implies the equality

lim
n!1

1

2n
f .2nx/ D H.x/

for all x 2 X ;
3. d.f;H/ � 1

1�˛ d.f; Jf /, which yields the inequality

d.f;H/ � ˛

1 � ˛ :

Thus (33) holds true.
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By the same reasoning as in the proof of Theorem 6, one can show that the
mapping H W X ! Y is an orthogonally additive and C-linear mapping satisfying
(33).

It follows from (29) and (31) that

kH .xz/ �H.x/H.z/kY D lim
n!1

1

4n
kf .2nx � 2nz/� f .2nx/f .2nz/kY

� lim
n!1

1

4n
'.2nx; 2nz/ � lim

n!1
2n˛n

4n
'.x; z/ D 0

for all x; z 2 X . So
H.xz/ �H.x/H.y/ D 0

for all x; z 2 X . Hence H W X ! Y is multiplicative.
It follows from (29) and (32) that


H

�
x�	 �H.x/�

Y
D lim

n!1
1

2n
kf .2nx�/ � f .2nx/�kY

� lim
n!1

1

2n
'.2nx; 2nx/ � lim

n!1
2n˛n

2n
'.x; x/ D 0

for all x 2 X . Therefore,
H
�
x�	 �H.x/� D 0

for all x 2 X . Hence

H.x�/ D H.x/�

for all x 2 X . Thus H W X ! Y is a unique orthogonally additive C �-algebra
homomorphism satisfying (33).

Corollary 7 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0 and



2�f

�x

2
C y

�
� f .�x/ � f .2�y/




Y
� �.kxkp C kykp/; (37)

kf .xz/ � f .x/f .z/kY � �.kxkp C kzkp/; (38)

f

�
x�	 � f .x/�

Y
� 2�kxkp (39)

for all � 2 T and all x; y; z 2 X with x ? y. If for each x 2 X the mapping f .tx/
is continuous in t 2 R, then there exists a unique orthogonally additive C �-algebra
homomorphismH W X ! Y such that
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kf .x/ �H.x/kY � 2p�

2 � 2p kxk
p

for all x 2 X .

Proof. The proof follows from Theorem 9 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D 2p�1 and the result follows.

Theorem 10 Let f W X ! Y be a mapping satisfying (30)–(32) and f .0/ D 0 for
which there exists a function ' W X 
 X ! Œ0;1/ such that there exists an ˛ < 1

with

'.x; y/ � ˛

2
' .2x; 2y/

for all x; y 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then
there exists a unique orthogonally additive C �-algebra homomorphism H W X !
Y such that

kf .x/ �H.x/kY � 1

1 � ˛' .x; 0/

for all x 2 X .

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theorem 9.
We consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x

2

�

for all x 2 X .
It follows from (34) that d.f; Jf / � 1.
The rest of the proof is similar to the proof of Theorem 9.

Corollary 8 Let � be a positive real number and p a real number with p > 2. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (37)–(39). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � 2p�

2p � 2kxk
p

for all x 2 X .

Proof. The proof follows from Theorem 10 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D 21�p and the result follows.
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6 Stability of C �-Algebra Homomorphisms Associated
with the Orthogonally Additive Functional Equation (1):
Direct Method

Throughout this section, assume that X is a unital C �-algebra with unit e and
unitary group U.X/ and .Y; k:kY / is a unital C �-algebra.

Theorem 11 Let ' W X 
X ! Œ0;1/ be a function satisfying

˚.x; y/ WD
1X

jD1
2j '

� x

2j
;
y

2j

�
<1 (40)

for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (30)–(32).
If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there exists a
unique orthogonally additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � 1

2
˚ .0; x/ (41)

for all x 2 X .

Proof. Putting x D 0 and � D 1 in (30), we get

k2f .y/� f .2y/kY � '.0; y/ (42)

for all y 2 X , since y ? 0. So



f .x/ � 2f

�x

2

�


Y
� '

�
0;
x

2

�
(43)

for all x 2 X .
It follows from (43) that

k2lf . x
2l
/� 2mf . x

2m
/kY �

mX

jDlC1
2j '

�
0;
x

2j

�
(44)

for all nonnegative integersm and l with m > l and all x 2 X . It follows from (40)
and (44) that the sequence f2kf . x

2k
/g is Cauchy for all x 2 X . Since Y is complete,

the sequence f2kf . x
2k
/g converges. So one can define the mapping L W X ! Y by

L.x/ WD lim
k!1 2kf

� x

2k

�

for all x 2 X .
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By (40) and (30),

k2L
�x

2
C y

�
� L.x/ �L.2y/kY D lim

k!1 2k


2f

� x

2kC1 C
y

2k

�

�f
� x

2k

�
� f

� y

2k�1
�


Y

� lim
k!1 2k'

� x

2k
;
y

2k

�
D 0

for all x; y 2 X with x ? y. So 2L
�
x
2
C y	 � L.x/ � L.2y/ D 0. Thus the

mapping L W X ! Y is orthogonally additive. Moreover, letting l D 0 and passing
the limit m ! 1 in (44), we get (41). Therefore, there exists an orthogonally
additive mapping L W X ! Y satisfying (41).

Now, let T W X ! Y be another orthogonally additive mapping satisfying (1)
and (41). Then we have

kL.x/ � T .x/kY D 2q


L

� x

2q

�
� T

� x

2q

�


Y

� 2q


L

� x

2q

�
� f

� x

2q

�


Y
C 2q



T

� x

2q

�
� f

� x

2q

�


Y

� 2 � 2q˚
�
0;
x

2q

�
;

which tends to zero as q !1 for all x 2 X . So we can conclude thatL.x/ D T .x/
for all x 2 X . This proves the uniqueness of L.

The rest of the proof is similar to the proofs of Theorem 3 and 7.

Corollary 9 Let � be a positive real number and p a real number with p > 2. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (37)–(39). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � �

2p � 2kxk
p

for all x 2 X .

Proof. The proof follows from Theorem 11 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X .

Theorem 12 Let ' W X 
X ! Œ0;1/ be a function satisfying

˚.x; y/ WD
1X

jD0

1

2j
'
�
2j x; 2j y

	
<1 (45)
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for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (30)–(32).
If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there exists a
unique orthogonally additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � 1

2
˚ .0; x/ (46)

for all x 2 X .

Proof. It follows from (42) that




f .x/ �

1

2
f .2x/





Y

� 1

2
'.0; x/

for all x 2 X . So





1

2l
f .2lx/ � 1

2m
f .2mx/





Y

�
m�1X

jDl

1

2 � 2j '.0; 2
j x/ (47)

for all nonnegative integers m and l with m > l and all x 2 X . It follows from
(45) and (47) that the sequence f 1

2k
f .2kx/g is Cauchy for all x 2 X . Since Y is a

complete space, the sequence f 1
2k
f .2kx/g converges. So one can define the mapping

L W X ! Y by

L.x/ WD lim
k!1

1

2k
f .2kx/

for all x 2 X .
The rest of the proof is similar to the proofs of Theorems 3 and 11.

Corollary 10 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (37)–(39). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive C �-algebra homomorphismH W X ! Y such that

kf .x/ �H.x/kY � �

2 � 2p kxk
p

for all x 2 X .

Proof. The proof follows from Theorem 12 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X .
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7 Stability of Isometric Linear Mappings in Banach Modules
Over a C �-Algebra Associated with the Orthogonally
Additive Functional Equation (1): Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality normed module over A and .Y; k:kY / is a
Banach module over A.

Definition 9. An orthogonally additive A-linear mapping f W X ! Y is called an
orthogonally additive isometricA-linear mapping if kf .x/kY D jjxjj for all x 2 X .

Theorem 13 Let ' W X 
X ! Œ0;1/ be a function satisfying (2). Let f W X ! Y

be a mapping satisfying f .0/ D 0, (3) and

j kf .x/kY � jjxjj j � '.x; 0/ (48)

for all x 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then
there exists a unique orthogonally additive isometric A-linear mappingL W X ! Y

satisfying (4).

Proof. By Theorem 3, there exists a unique orthogonally additiveA-linear mapping
L W X ! Y satisfying (4).

It follows from (2) and (48) that

j kL.x/kY � jjxjj j D lim
n!1

1

2n
j kf .2nx/kY � jj2nxjj j

� lim
n!1

1

2n
'.2nx; 0/ � lim

n!1
2n˛n

2n
'.x; 0/ D 0

for all x 2 X . So kL.x/kY � jjxjj D 0 for all x 2 X . Hence

kL.x/kY D jjxjj

for all x 2 X . Thus L W X ! Y is a unique orthogonally isometric A-linear
mapping satisfying (4).

Corollary 11 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and

j kf .x/kY � jjxjj j � �kxkp (49)

for all x 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then
there exists a unique orthogonally additive isometric A-linear mappingL W X ! Y

satisfying (10).

Proof. The proof follows from Theorem 13 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D 2p�1 and the result follows.
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Theorem 14 Let f W X ! Y be a mapping satisfying (3), (48) and f .0/ D 0 for
which there exists a function ' W X 
X ! Œ0;1/ satisfying (11). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (12).

Proof. The proof is similar to the proofs of Theorems 3 and 13.

Corollary 12 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (49). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (13).

Proof. The proof follows from Theorem 14 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D 21�p and the result follows.

8 Stability of Isometric Linear Mappings in
Non-Archimedean Banach Modules Over a C �-Algebra:
Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality non-Archimedean normed module over A
and .Y; k:kY / is a non-Archimedean Banach module over A. Assume that j2j ¤ 1.

Theorem 15 Let ' W X
X ! Œ0;1/ be a function satisfying (14). Let f W X ! Y

be a mapping satisfying f .0/ D 0, (3) and (48). If for each x 2 X the mapping
f .tx/ is continuous in t 2 R, then there exists a unique orthogonally additive
isometric A-linear mapping L W X ! Y satisfying (4).

Proof. The proof is similar to the proofs of Theorems 3, 5 and 13.

Corollary 13 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (49). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (16).

Proof. The proof follows from Theorem 15 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D j2jp�1 and the result follows.

Theorem 16 Let f W X ! Y be a mapping satisfying (3), (48) and f .0/ D 0 for
which there exists a function ' W X 
X ! Œ0;1/ satisfying (17). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (12).

Proof. The proof is similar to the proofs of Theorems 3, 5 and 13.
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Corollary 14 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (49). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (18).

Proof. The proof follows from Theorem 16 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y. Then we can choose ˛ D j2j1�p and the result follows.

9 Stability of Isometric Linear Mappings in Banach Modules
Over a C �-Algebra Associated with the Orthogonally
Additive Functional Equation (1): Direct Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality normed module over A and .Y; k:kY / is a
Banach module over A.

Theorem 17 Let ' W X
X ! Œ0;1/ be a function satisfying (19). Let f W X ! Y

be a mapping satisfying f .0/ D 0, (3) and (48). If for each x 2 X the mapping
f .tx/ is continuous in t 2 R, then there exists a unique orthogonally additive
isometric A-linear mapping L W X ! Y satisfying (20).

Proof. By Theorem 7, there exists a unique orthogonally additiveA-linear mapping
L W X ! Y satisfying (20).

The rest of the proof is similar to the proof of Theorem 13.

Corollary 15 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (49). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (24).

Proof. The proof follows from Theorem 17 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y.

Theorem 18 Let ' W X
X ! Œ0;1/ be a function satisfying (25). Let f W X ! Y

be a mapping satisfying f .0/ D 0, (3) and (48). If for each x 2 X the mapping
f .tx/ is continuous in t 2 R, then there exists a unique orthogonally additive
isometric A-linear mapping L W X ! Y satisfying (26).

Proof. The proof is similar to the proofs of Theorems 3, 8 and 13.

Corollary 16 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (49). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive isometric A-linear mapping L W X ! Y satisfying (28).

Proof. The proof follows from Theorem 18 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X with x ? y.
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10 Stability of 2-Isometric Linear Mappings in Banach
Modules Over a C �-Algebra Associated with
the Orthogonally Additive Functional Equation (1):
Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality normed module over A and .Y; k � kY / is a
Banach module over A.

Definition 10. An orthogonally additive A-linear mapping f W X ! Y is called
an orthogonally additive 2-isometric linear mapping if kf .x/; f .z/kY D jjx; zjj for
all x; z 2 X .

Theorem 19 Let ' W X 
X ! Œ0;1/ be a function such that there exists an ˛ < 1
with

'.x; y/ � 2˛'
�x

2
;
y

2

�
(50)

for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (3) and

j kf .x/; f .z/kY � jjx; zjj j � '.x; z/ (51)

for all x; z 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R,
then there exists a unique orthogonally additive 2-isometric A-linear mapping L W
X ! Y satisfying (4).

Proof. By Theorem 3, there exists a unique orthogonally additiveA-linear mapping
L W X ! Y satisfying (4).

It follows from (50) and (51) that

j kL.x/; L.z/kY � jjx; zjj j D lim
n!1

1

2n
j kf .2nx/; f .2nz/kY � jj2nx; 2nzjj j

� lim
n!1

1

2n
'.2nx; 2nz/ � lim

n!1
2n˛n

2n
'.x; z/ D 0

for all x; z 2 X . So kL.x/; L.z/kY � jjx; zjj D 0 for all x; z 2 X . Hence

kL.x/; L.z/kY D jjx; zjj

for all x; z 2 X . Thus L W X ! Y is a unique orthogonally 2-isometric A-linear
mapping satisfying (4).

Corollary 17 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and

j kf .x/; f .z/kY � jjx; zjj j � �kxkp (52)
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for all x; z 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R,
then there exists a unique orthogonally additive 2-isometric A-linear mapping L W
X!Y satisfying (10).

Proof. The proof follows from Theorem 19 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D 2p�1 and the result follows.

Theorem 20 Let f W X ! Y be a mapping satisfying (3), (51) and f .0/ D 0 for
which there exists a function ' W X 
 X ! Œ0;1/ such that there exists an ˛ < 1

with

'.x; y/ � ˛

2
' .2x; 2y/

for all x; y 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R,
then there exists a unique orthogonally additive 2-isometric A-linear mapping L W
X!Y satisfying (12).

Proof. The proof is similar to the proofs of Theorems 3 and 19.

Corollary 18 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (52). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive 2-isometric A-linear mapping L W X ! Y satisfying (13).

Proof. The proof follows from Theorem 20 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D 21�p and the result follows.

11 Stability of 2-Isometric Linear Mappings in
Non-Archimedean Banach Modules Over a C �-Algebra
Associated with the Orthogonally Additive Functional
Equation (1): Fixed Point Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality non-Archimedean normed module over A
and .Y; k:kY / is a non-Archimedean Banach module over A. Assume that j2j ¤ 1.

Theorem 21 Let ' W X 
X ! Œ0;1/ be a function such that there exists an ˛ < 1
with

'.x; y/ � j2j˛'
�x

2
;
y

2

�

for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (3) and (51).
If for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there
exists a unique orthogonally additive 2-isometric A-linear mapping L W X ! Y

satisfying (4).
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Proof. The proof is similar to the proofs of Theorems 3, 5 and 19.

Corollary 19 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (52). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive 2-isometric A-linear mapping L W X ! Y satisfying (16).

Proof. The proof follows from Theorem 21 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D j2jp�1 and the result follows.

Theorem 22 Let f W X ! Y be a mapping satisfying (3), (51) and f .0/ D 0 for
which there exists a function ' W X 
 X ! Œ0;1/ such that there exists an ˛ < 1

with

'.x; y/ � ˛

j2j' .2x; 2y/

for all x; y 2 X . If for each x 2 X the mapping f .tx/ is continuous in t 2 R,
then there exists a unique orthogonally additive 2-isometric A-linear mapping L W
X!Y satisfying (12).

Proof. The proof is similar to the proofs of Theorems 3, 5 and 19.

Corollary 20 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (52). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive 2-isometric A-linear mapping L W X ! Y satisfying (18).

Proof. The proof follows from Theorem 22 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X . Then we can choose ˛ D j2j1�p and the result follows.

12 Stability of 2-Isometric Linear Mappings in Banach
Modules Over a C �-Algebra Associated
with the Orthogonally Additive Functional
Equation (1): Direct Method

Throughout this section, assume thatA is a unitalC �-algebra with unit e and unitary
group U.A/, .X;?/ is an orthogonality normed module over A and .Y; k:kY / is a
Banach module over A.

Theorem 23 Let ' W X 
X ! Œ0;1/ be a function satisfying

˚.x; y/ WD
1X

jD1
2j '

� x

2j
;
y

2j

�
<1
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for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (3) and (51). If
for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there exists a unique
orthogonally additive 2-isometric A-linear mapping L W X ! Y satisfying (20).

Proof. By Theorem 7, there exists a unique orthogonally additiveA-linear mapping
L W X ! Y satisfying (20).

The rest of the proof is similar to the proof of Theorem 19.

Corollary 21 Let � be a positive real number and p a real number with p > 1. Let
f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (52). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive 2-isometric A-linear mapping L W X ! Y satisfying (24).

Proof. The proof follows from Theorem 23 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X .

Theorem 24 Let ' W X 
X ! Œ0;1/ be a function satisfying

˚.x; y/ WD
1X

jD0

1

2j
'
�
2j x; 2j y

	
<1

for all x; y 2 X . Let f W X ! Y be a mapping satisfying f .0/ D 0, (3) and (51). If
for each x 2 X the mapping f .tx/ is continuous in t 2 R, then there exists a unique
orthogonally additive 2-isometric A-linear mapping L W X ! Y satisfying (26).

Proof. The proof is similar to the proofs of Theorems 3, 8 and 19.

Corollary 22 Let � be a positive real number and p a real number with 0 < p < 1.
Let f W X ! Y be a mapping satisfying f .0/ D 0, (9) and (52). If for each x 2 X
the mapping f .tx/ is continuous in t 2 R, then there exists a unique orthogonally
additive 2-isometric A-linear mapping L W X ! Y satisfying (28).

Proof. The proof follows from Theorem 3 by taking '.x; y/ D �.kxkp C kykp/
for all x; y 2 X .
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Abstract Exotic heat equations that allow to prove the Poincaré conjecture and
its generalizations to any dimension are considered. The methodology used is the
PDE’s algebraic topology, introduced by A. Prástaro in the geometry of PDE’s,
in order to characterize global solutions. In particular it is shown that this theory
allows us to identify n-dimensional exotic spheres, i.e., homotopy spheres that are
homeomorphic, but not diffeomorphic to the standard Sn.

1 Introduction

How exotic are exotic spheres?

The term “exotic sphere” was used by J. Milnor to characterize smooth manifolds
that are homotopy equivalent and homeomorphic to Sn, but not diffeomorphic to
Sn.1 This strange mathematical phenomenon, never foreseen before the introduction
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just by J. Milnor of the famous 7-dimensional exotic sphere [20], has stimulated
a lot of mathematical research in algebraic topology. The starting points, were,
other than the cited paper by J. W. Milnor, also a joint paper with Kervaire [18]
and some papers by Smale [45], Freedman [7] and Cerf [4] on generalizations
of the Poincaré conjecture in dimension n� 4. There the principal mathematical
tools utilized were Morse theory (Milnor), h-cobordism theory (Smale), surgery
techniques and Hirzebruch signature formula. Surprising, from this beautiful mathe-
matical architecture was remained excluded just the famous Poincaré conjecture for
3-dimensional manifolds. In fact, the surgery techniques do not give enough
tools in low dimension (n<5), where surgery obstructions disappear. Really,
it was necessary to recast the Poincaré problem as a problem to find solu-
tions in a suitable PDE equation (Ricci flow equation), to be able to obtain
more informations just on dimension three. (See works by Hamilton [11–15],
Perelman [24, 25] and Prástaro [1, 40].) The idea by R.S. Hamilton to recast
the problem in the study of the Ricci flow equation has been the real angu-
lar stone that has allowed to look to the solution of the Poincaré conjecture
from a completely new point of view. In fact, with this new prospective it
was possible to G. Perelman to obtain his results and to A. Prástaro to give
a new proof of this conjecture, by using his PDE’s algebraic topologic the-
ory. To this respect, let us emphasize that the usual geometric methods for
PDE’s (Spencer, Cartan), were able to formulate for nonlinear PDE’s, local ex-
istence theorems only, until the introduction, by A. Prástaro, of the algebraic
topologic methods in the PDE’s geometric theory. These give suitable tools to
calculate integral bordism groups in PDE’s, and to characterize global solu-
tions. Then, on the ground of integral bordism groups, a new geometric theory
of stability for PDE’s and solutions of PDE’s has been built. These general
methodologies allowed to A. Prástaro to solve fundamental mathematical problems
too, other than the Poincaré conjecture and some of its generalizations, like
characterization of global smooth solutions for the Navier-Stokes equation and
global smooth solutions with mass-gap for the quantum Yang-Mills superequation.
(See [29–41].2)

The main purpose of this paper is to show how, by using the PDE’s algebraic
topology, introduced by A. Prástaro, one can prove the Poincaré conjecture in
any dimension for the category of smooth manifolds, but also to identify exotic
spheres. In the part I [42] we have just emphasized as in dimension 3, the method
followed by A. Prástaro allows us to prove the Poincaré conjecture and to state also
that 3-dimensional homotopy spheres are diffeomorphic to S3. (Related problems
are considered there too.) In the framework of the PDE’s algebraic topology, the
identification of exotic spheres is possible thanks to an interaction between integral
bordism groups of PDE’s, conservation laws, surgery and geometric topology of

2See also [1, 2, 44], where interesting related applications of the PDE’s Algebraic Topology are
given.
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manifolds. With this respect we shall enter in some details on these subjects, in
order to well understand and explain the meaning of such interactions. So the
paper splits in three sections other this Introduction. 2. Integral bordism groups
in Ricci flow PDE’s. 3. Morse theory in Ricci flow PDE’s. 4. h-Cobordism in
Ricci flow PDE’s. The main result is contained just in this last section and it is
Theorem 30.3

2 Integral Bordism Groups in Ricci Flow PDE’s

In this section we shall characterize the local and global solutions of the Ricci
flow equation, following the geometric approach of some our previous works
on this equation [1, 30, 38, 40]. Let M be a n-dimensional smooth manifold

and let us consider the following fiber bundle N� WE	R 
 AS02M!R 
 M ,

.t; xi ; yij /1�i;j�n 7! .t; xi /	 .x˛/0�˛�n, where AS02M � S02M is the open subbun-
dle of non-degenerate Riemannian metrics on M . Then the Ricci flow equation is
the closed second order partial differential relation, (in the sense of Gromov [10]),
on the fiber bundle N� W E ! R 
M , .RF / � JD2.E/, defined by the differential
polynomials on JD2.E/ given in (1):

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Fjl 	 jyjŒyik�.yil;jk C yjk;i l � yjl;ik � yik;jl /

CŒyik�Œyrs �.Œjk; r�Œi l; s� � Œjl; r�Œik; s�/ C jyj
2

2
yjl;t

	 Sjl .yrs; yrs;˛; yrs;pq/C jyj
2

2
yjl;t D 0;

(1)

where Œij; r� are the usual Christoffels symbols, given by means of the coordinates
yrs;i , jyj D det.yik/, and Œyik� is the algebraic complement of yik . The ideal p 	<
Fjl > is not prime in RŒyrs ; yrs; ˛; yrs; ij �. However, an irreducible component is
described by the system in solved form: yrs;t D � 2

jyj2 Sjl . This is formally integrable

and also completely integrable.4 In fact,

3In order to allow a more easy understanding, this paper has been written in a large expository
style. (A first version of this paper has been put in arxiv: [43].)
4We shall denote with the same symbol .RF / the corresponding algebraic manifold. For a
geometric algebraic theory of PDE’s see the monograph [29], and references quoted there.
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

dimJD2Cs.E/ D nC 1CP0�r�2Cs
.nC 1/n

2

.nC r/Š
rŠnŠ

dim.RF /Cs D nC 1C .nC 1/n
2

�
P

0�r�2Cs
.nC r/Š
rŠnŠ

�P0�r 0�s
.nC r 0/Š
r 0ŠnŠ

�

dimg2Cs D .nC 1/n
2

.nC 2C s/Š
.2C s/ŠnŠ �

.nC 1/n
2

.nC s/Š
sŠnŠ

:

(2)

Therefore, one has: dim.RF /Cs D dim.RF /C.s�1/Cdimg2Cs . This assures that
one has the exact sequences in (3).

.RF /Cs �� .RF /C.s�1/ �� 0; s � 1: (3)

One can also see that the symbol g2 is not involutive. By the way a general
theorem of the formal geometric theory of PDE’s assures that after a finite
number of prolongations, say s, the corresponding symbol g2Cs becomes invo-
lutive. (See [9, 29].) Then, taking into account the surjectivity of the mappings
(3), we get that .RF / is formally integrable. Furthermore, from the algebraic
character of this equation, we get also that is completely integrable. Therefore,
in the neighborhood of any of its points q 2 .RF / we can find solutions.
(These can be analytic ones, but also smooth if we consider to work on the
infinity prolongation .RF /C1, where the Cartan distribution is “involutive” and
of dimension .n C 1/.) Finally, taking into account that dim.RF / > 2.n C
1/ C 1 D 2n C 3, we can use Theorem 2.15 in [30] to calculate the n-
dimensional singular integral bordism group, ˝.RF /

n;s , for n-dimensional closed
smooth admissible integral manifolds bording by means of (singular) solutions.
(Note that the symbols of .RF / and its prolongations are non-zero.) This group
classifies the structure of the global singular solutions of the Ricci-flow equation.
One has:

˝.RF /
n;s Š

M

rCsDn
Hr.M IZ2/˝Z2 ˝s; (4)

where˝s is the bordism group for s-dimensional closed smooth manifolds.5

5We used the fact that the fiber of E ! M is contractible.
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0

���
��

��
��

� 0

��

K
.RF /

n

���
��

��
��

�
�� K.RF/

n;sIn

��

�� 0

0 �� K.RF/
n;s

��

�� ˝.RF/
n

c

���
��

��
��

��
�

a
�� ˝.RF/

n;s

b

��

�� 0

0

��

�� ˝n

��
0

(5)

It is important to underline that with the term “n-dimensional closed smooth
admissible integral manifolds” we mean smooth integral manifolds, N � .RF / �
JD2.E/, that diffeomorphically project on their image on E , via the canonical
projection �2;0WJD2.E/ ! E . In [40] we have proved, that any smooth section

gWM ! AS02M , identifies a space-like n-dimensional smooth integral manifold
N � .RF/, and that for such a Cauchy manifold pass local smooth solutions,
contained in a tubular neigbourhood N 
 Œ0; �/ � .RF /, for suitable � >

0. Therefore, we can represent any n-dimensional smooth compact Riemannian
manifold .M; 	/ as a space-like Cauchy manifold N0 � .RF /t0 , for some initial
time t0, and ask if there are solutions that bord N0 with .Sn; 	 0/, where 	 0 is
the canonical metric of Sn, identified with another space-like Cauchy manifold
N1 � .RF /t1 , with t0 < t1. The answer depends on the class of solution that
we are interested to have. For weak-singular solutions the corresponding integral
bordism group ˝

.RF/
n;s is given in (4). The relation with the integral bordism

group ˝.RF/
n , for smooth solutions of .RF / is given by the exact commutative

diagram (5) where is reported the relation with the bordism group ˝n for smooth
manifolds.

Theorem 1. Let M in the Ricci flow equation .RF / � JD2.E/ � J 2n .W / be a
smooth compact n-dimensional manifold homotopy equivalent to Sn. Then the n-
dimensional singular integral bordism group of .RF / is given in (6).

˝.RF/
n;s D ˝n

M
Z2: (6)

Then one has the exact commutative diagram given in (7)
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0

���
��

��
��

� 0

��

K
.RF /

n

���
��

��
��

�
�� K.RF/

n;sIn

��

�� 0

0 �� K.RF/
n;s

��

�� ˝.RF/
n

c

		�
��

��
��

��
�

a
�� ˝n

L
Z2

b

��

�� 0

0

��

�� ˝n

��
0

(7)

One has the isomorphisms reported in (8).

8
<̂

:̂

.a/ W ˝.RF/
n =K

.RF/
n;s Š ˝.RF/

n;s

.b/ W ˝.RF/
n =K

.RF /

n Š ˝n

(8)

Proof. Since we have assumed that M is homotopy equivalent to Sn, (M Ñ Sn),
we can state that M has the same homology groups of Sn. Therefore we get the
isomorphisms reported in (9).

Hp.M IZ2/ Š Hp.S
nIZ2/ Š

�
Z2 ; p D 0; n
0 ; otherwise

(9)

Therefore, taking into account (4) we get the isomorphism (6).

Example 1. In Table 1 we report some explicitly calculated cases of integral
singular bordism groups for 1 � n � 7.

3 Morse Theory in Ricci Flow PDE’s

Let us now give the fundamental theorem that describe quantum tunnel effects in
solutions of PDEs, i.e., the change of sectional topology in the (singular) solutions
of .RF /.

Theorem 2 (Topology transitions as quantum tunnel effects in Ricci flow equa-
tion). Let N0;N1 � .RF / � JD2.E/ be space-like Cauchy manifolds of .RF /,
at two different times t0 6D t1. Let V � .RF / be a (singular) solution such that
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Table 1 Examples of
singular integral bordism
groups for n-dimensional
homotopy spheres

n ˝
.RF /
n;s

1 Z2

2 Z2 ˚ Z2

3 Z2

4 Z2 ˚ Z2 ˚ Z2

5 Z2 ˚ Z2

6 Z2 ˚ Z2 ˚ Z2 ˚ Z2

7 Z2 ˚ Z2

@V D N0tN1. Then there exists an admissible Morse function f W V ! Œa; b� � R

such that:

(A) (Simple quantum tunnel effect). If f has a critical point q of index k then there
exists a k-cell ek � V �N1 and an .n � k C 1/-cell e�n�kC1 � V �N0 such
that:

(i) ek \N0 D @ek;
(ii) e�n�kC1 \N1 D @e�n�kC1;

(iii) there is a deformation retraction of V onto N0 [ ek;
(iv) there is a deformation retraction of V onto N1 [ e�n�kC1;
(v) e�n�kC1 \ ek D q; e�n�kC1 t ek .

(B) (Multi quantum tunnel effect). If f is of type .�0; � � � ; �nC1/ where �k denotes
the number of critical points with index k such that f has only one critical
values c, a < c < b, then there are disjoint k-cells eki � V n N1 and disjoint
.n�kC1/-cells .e�/n�kC1

i � V nN0, 1 � i � �k , kD0; � � � ; nC1, such that:

(i) eki \N0 D @eki ;
(ii) e�n�kC1

i \N1 D @e�n�kC1
i ;

(iii) there is a deformation retraction of V onto N0
S˚[i;k.e�/ki

�
;

(iv) there is a deformation retraction of V onto N1
S˚[i;k.e�/n�k

i

�
;

(v) .e�/n�k
i \ eki D qi ; .e�/n�kC1

i t eki .

(C) (No topology transition). If f has no critical point then V Š N0 
 I where
I 	 Œ0; 1�.

Proof. The proof can be conducted by adapting to the Ricci flow equation .RF /
Theorem 23 in [26]. Let us emphasize here some important lemmas only.

Lemma 1 (Morse-Smale functions).

(1) On a closed connected compact smooth manifold M , there exists a Morse
function f W M ! R such that the critical values are ordened with respect to
the indexes, i.e., f .x�/Df .x�/, if �D�, and f .x�/>f .x�/, if � > �, where
x�, (resp. x�), is the critical point of f with index � (resp. �). Such functions
are called regular functions, or Morse-Smale functions, and are not dense in
C1.M;R/, as Morse functions instead are. Furthermore, such functions can
be chosen in such a way that they have an unique maximum point (with index
�DnD dimM ), and an unique minimum point (with index � D 0).
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(2) To such functions are associated vector fields � D grad f W M ! TM such
that �.x�/ D 0 iff x� is a critical point. Then in a neighborhood of a x�, the
integral curves of � are of two types: ingoing in x�, and outgoing from x�.
These fit in two different disks D� and Dn�� contained in M called separatrix
diagram. (See Fig. 1.)

Lemma 2 (Morse functions and CW complexes).

(1) Let M be a compact n-dimension manifold and f WM ! Œa; b� an admissible
Morse function of type .�0; � � � ; �n/ such that @M D f �1.b/. Then M has
the homotopy type of a finite CW complex having �k cells at each dimension
k D 0; � � � ; n. Furthermore .M; @M/ has the homotopy type of a CW-pair of
dimension n.
Furthermore .M; f �1.a// has the homotopy of relative CW complex having �k
cells of dimension k, for each k D 0; � � � ; n.6

(2) An n-dimension manifold M has the homotopy type of a CW complex of
dimension � n.

(3) Let M be a compact manifold and N �M a compact submanifold with @N D
@M D ¿. Then .M;N / has the homotopy type of CW pair.

(4) The cell decomposition of a closed connected compact smooth manifold M ,
related to a Morse-Smale function, is obtained attaching step-by-step a cell of
higher dimension to the previous ones.

Lemma 3 (Homological Euler characteristic).

(1) If the compact solution V of .RF / is characterized by an admissible Morse
function f W V ! Œa; b� of type .�0; � � � ; �nC1/, then its homological Euler
characteristic 
hom.V / is given by the formula (10).


hom.V / D
X

0�k�.nC1/
.�1/kˇk; ˇk D dimF Hk.V; f

�1.a/IF / (10)

where F is any field.7 Furthermore, if f �1.a/ D ¿, then ˇk in (10) is given by
ˇk D dimF Hk.V IF /, and 
hom.V / D 
.V /.

(2) IfM is a compact odd dimensional manifold with @M D¿, then 
hom.M/D 0.
(3) Let M be a compact manifold such that its boundary can be divided in two

components: @M D @�M
S
@CM , then 
hom.M; @CM/ D 
hom.M; @�M/.

(4) Let M be a compact manifold such that @M D N0 t N1, with Ni , i D 0; 1,
disjoint closed sets. Let f W M ! R be a C2 map without critical points, such

6A relative CW complex .Y; X/ is a space Y and a closed subspace X such that Y D 1S

rD�1

Yr ,

such that X D Y�1 � Y0 � � � � , and Yr is obtained from Yr�1 by attaching r-cells.
7Let Hk.Y;XIF / denote the singular homology group of the pair .Y; X/ with coefficients in the
field F . ˇk D dimF Hk.Y; XIF / are called the F -Betti numbers of .Y; X/. If these numbers
are finite and only finitely are nonzero, then the homological Euler characteristic of .Y; X/ is
defined by the formula: 
hom.Y; X/ D P

0�k�1
.�1/kˇk . When Y is a compact manifold
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that f .N0/ D 0, f .N1/ D 1. Then one has the diffeomorphisms:M Š N0 
 I ,
M Š N1 
 I .

(5) Let M be a compact n-dimensional manifold with @M D ¿, such that has
a Morse function f W M ! R with only two critical points. Then M is
homeomorphic to Sn.

Lemma 4. Let X and Y be closed compact differentiable manifolds without
boundaries, then there exists a compact manifold V , such that @V D X t Y iff Y is
obtained from X by a sequence of surgeries. (For details see below Theorem 13.)

Theorem 3 (Smooth solutions and characteristic vector fields). The charac-
teristic vector field �, propagating a space-like n-dimensional smooth, compact,
Cauchy manifoldN � V , where V is a smooth solution of .RF /, hence a time-like,
.nC 1/-dimensional smooth integral manifold of .RF /, cannot have zero points.

Proof. In fact, the characteristic vector field � coincides with the time-like �0 	
@x0 C P

jˇj�0 y
j

˛ˇ@y
ˇ
j , where yj˛ˇ are determined by the infinity prolongation

.RF /C1 of .RF /. Therefore such a vector field cannot have zero points on a
compact smooth solution V , of .RF /, such that @V DN0 tN1. On the other hand,
if f W V ! R is the Morse function whose gradient gives just the vector field �,
then f cannot have critical points.8

Corollary 4. A .n C 1/-dimensional smooth, compact, manifold V � .RF /,
smooth solution of .RF /, such that @V D N0 tN1, where Ni , i D 0; 1, are smooth
Cauchy manifolds, cannot produce a change of topology fromN0 toN1, hence these
manifolds must necessarily be homeomorphic.

The following theorem emphasizes the difference between homeomorphic man-
ifolds and diffeomorphic ones.

and X is a compact submanifold, then 
hom.Y; X/ is defined. The evaluation of homological
Euler characteristic for topological spaces coincides with that of Euler characteristic for CW
complexes X given by 
.X/ D P

i�0.�1/i ki , where ki is the number of cells of dimension i .
For closed smooth manifolds M , 
.M/ coincides with the Euler number, that is the Euler class
of the tangent bundle TM , evalued on the fundamental class of M . For closed Riemannian
manifolds, 
.M/ is given as an integral on the curvature, by the generalized Gauss-Bonnet
theorem: 
.V / D 1

.2�/n

R
V Pf .˝/, where @V D ¿, dimV D 2n, ˝ is the curvature of

the Levi-Civita connection and Pf .˝/ D 1
2nnŠ

P
�2S2n

�.�/
Qn
iD1 ˝�.2i�1/�.2i/ , where .˝rs/

is the skew-symmetric .2n/ � .2n/ matrix representing ˝ W V ! so.2n/
N
�0
2.V /, hence

Pf .˝/ W V ! �0
2n.V /. In Table 2 are reported some important properties of Euler characteristic,

that are utilized in this paper.
8Let us recall that a compact connected manifold M with boundary @M 6D ¿, admits a
nonvanishing vector field. Furthermore, a compact, oriented n-dimensional submanifoldM � R

2n

has a nonvanishing normal vector field. Therefore, above statements about smooth solutions of
.RF / agree with well known results of differential topology. (See, e.g., [17]).
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Theorem 5 (Exotic differentiable structures on compact smooth manifolds).
Let M and N be n-dimensional homeomorphic compact smooth manifolds. Then
it does not necessitate thatM is diffeomorphic to N .

Proof. Since M is considered homeomorphic to N , there exist continuous map-
pings f WM ! N and g W N !M , such that g ı f D idM , and f ı g D idN . Let
us consider, now, the following lemma.

Lemma 5. Let M and N be C s manifolds, 1 � s � 1, without boundary. Then
C s.M;N / is dense in C r

S.M;N /, (in the strong topology), 0 � r < s.
Proof. See, e.g., [17].

From Lemma 5 we can state that the above continuous mappings f and g can
be approximated with differentiable mapping, but these do no necessitate to be
diffeomorphisms. In fact we have the following lemma.

Lemma 6. Let Gk.M;N / � Ck.M;N /, k � 1, denote any one of the following
subsets: diffeomorphisms, embeddings, closed embeddings, immersions, submer-
sions, proper maps. Let M and N be compact C s manifolds, 1 � s � 1, without
boundary. ThenGs.M;N / is dense inGr.M;N / in the strong topology, 1 � r < s.
In particular, M and N are C s diffeomorphic iff they are C r diffeomorphic with
r � 1.

Proof. See, e.g., [17].

Above lemma can be generalized also to compact manifolds with boundary. In fact,
we have the following lemma.

Lemma 7. Let us consider compact manifolds with boundary. Then the following
propositions hold.

(i) Every C r manifold M , 1 � r < 1, is C1 diffeomorphic to a C1 manifold
and the latter is unique up to C1 diffeomorphisms.

(ii) Let .M; @M/ and .N; @N /, be C s manifold pairs, 1 � s � 1. Then, the
inclusion C s.M; @M IN; @N/ ,! C r.M; @M IN; @N/, 0 � r < s, is dense
in the strong topology. If, 1 � r < s and .M; @M/ and .N; @N / are C r

diffeomorphic, they are also C s diffeomorphic.

Proof. See, e.g., [17].

Therefore, it is not enough to assume that compact smooth manifolds should be
homeomorphic in order to state that they are also diffeomorphic, hence the proof
of Theorem 5 is complete. (To complement Theorem 5 see also Lemmas 12 and 13
below.)

From Theorem 5 we are justified to give the following definition.

Definition 1. Let M and N be two n-dimensional smooth manifolds that are
homeomorphic but not diffeomorphic. Then we say that N is an exotic substitute
of M .
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Example 2. The sphereS7 has 28 exotic substitutes, just called exotic 7-dimensional
spheres. (See [18, 20].) These are particular 7-dimensional manifolds, built starting
from oriented fiber bundle pairs over S4. More precisely let us consider .D4; S3/!
.W; V /! S4. The 4-plane bundleD4 ! S4 is classified by the isomorphism

ŒS4; BSO.4/� Š Z

M
Z;

given by ! 7! . 1
4
.2
.!/ C p1.!//;

1
4
.2
.!/ � p1.!///, where 
.!/; p1.!/ 2

H4.S4/ D Z are respectively the Euler number and the Pontrjagin class of !,
related by the congruencep1.!/ D 2
.!/.mod 4/. Let us denote by .W.!/; V .!//
the above fiber bundle pair identified by !. The homology groups of V.!/ ! S4,
are given in (11).9

Hp.V.!// D

8
ˆ̂
<

ˆ̂
:

Z if p D 0; 7
coker .
.!/ W Z! Z/ if p D 3
ker.
.!/ W Z! Z/ if p D 4
0 otherwise:

(11)

The Euler number 
.!/ is the Hopf invariant of J.!/ 2 �7.S
4/, i.e., 
.!/ D

Hopf .J.!// 2 Z. If 
.!/ D 1 2 Z, then V.!/ is a homotopy 7-sphere which is
boundary of an oriented 8-dimensional manifold W.!/. In fact C˝7 D 0 and for

.!/ D 1 2 Z one has Hp.V.!// D Hp.S

7/. Let k be an odd integer and let
!k W S4 ! BSO.4/ be the classifying map for orientable 4-plane bundle over S4

with p1.!k/ D 2k, 
.!k/ D 1 2 Z. There exists a Morse function V.!k/! R with
two critical points, such that V.!k/ n fptg Š R

7, hence V.!k/ is homeomorphic
to S7. Let us investigate under which conditions V.!k/ is diffeomorphic to S7 too.
So let us assume that such diffeomorphism f W V.!k/ Š S7 exists. Then let us
consider the closed oriented 8-dimensional manifoldM D W.!k/Sf D

8. For such
a manifold we report in (12) its intersection form and signature.

�
.H4.M/; �/ D .Z; 1/
�.M/ D �.H4.M/; �/ D 1: (12)

By the Hirzebruch signature theorem one has �.M/ D< L2.p1; p2/; ŒM � >D
1 2 Z, with < L2.p1; p2/; ŒM � >D 1

45
.7p2.M/ � p1.M/2/ D 1 2 H8.M/ D Z,

p1.M/ D 2k, p2.M/ D 1
7
.45 C 4k2/ D 4

7
.k2 � 1/ C 7 2 H4.M/ D Z. Since

p2.M/ is an integer, it follows that must be k2 	 1 .mod 7/. This condition on k,
comes from the assumption that V.!k/ is diffeomorphic to S7, therefore, it follows
that under the condition k2 6	 1 .mod 7/, V.!k/ can be only homeomorphic to S7,

9Recall that an odd dimensional oriented compact manifold M , with @M D ¿ has 
.M/ D 0.
In particular 
.S2kC1/ D 0, instead 
.S2k/ D 2. Furthermore, if M and N are compact oriented
manifolds with @M D @N D ¿, then 
.M �N/ D 
.M/
.N /.
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but not diffeomorphic, hence it is an exotic sphere, and M is only a 8-dimensional
topological manifold, to which the Hirzebruch signature theorem does not apply.

Example 3. The 4-dimensional affine space R
4 has infinity exotic substitutes, just

called exotic R4. (See [5, 7].)

The surgery theory is a general algebraic topological framework to decide if a
homotopy equivalence between n-dimensional manifolds is a diffeomorphism. (See,
e.g., [49].) We shall resume here some definitions and results about this theory. In the
following section we will enter in some complementary informations and we will
continue to develop such approach in connection with other algebraic topological
aspects.

Definition 2. An n-dimensional geometric Poincaré complex is a finite CW com-
plex such that one has the isomorphismHp.X I�/ Š Hn�p.X I�/, induced by the
cap product, i.e., Œ!� 7! ŒX� \ Œ!�, for every ZŒ�1.X/�-module�.

Theorem 6 (Geometric Poincaré complex properties).

(1) An n-dimensional manifold is an n-dimensional geometric Poincaré complex.
(2) Let X be a geometric Poincaré complex and Y another CW complex homotopy

related to X . Then also Y is a geometric Poincaré complex.
(3) Any CW complex homotopy equivalent to a manifold is a geometric Poincaré

complex.
(4) Geometric Poincaré complexes that are not homotopy equivalent to a manifold

may be obtained by gluing together n-dimensional manifolds with boundary,
.M; @M/, .N; @N /, having an homotopic equivalence on the boundaries, f W
@M Ñ @N , which is not homotopic to a diffeomorphism.

(5) (Transfer or Umkehr map). Let f W N ! M be a mapping between oriented,
compact, closed manifolds of arbitrary dimensions. Then the Poincaré duality
identifies an homomorphism � W H 	.N IZ/ ! H 	�d .M IZ/, where d D
dimN � dimM . More precisely one has the commutative diagram (13) that
defines � .

H 	.N IZ/
DN

��

�
�� H 	�d .M IZ/

HdimN�	.N IZ/
f�

�� HdimM�	.M IZ/

D�1
M

��
(13)

where d D dimN �dimM .DN andDM are the Poincaré isomorphisms onN
andM respectively. One has �.f �.x/[ y/ D x [ �.y/, 8x 2 H 	.M IZ/ and
y 2 H 	.N IZ/.10 In particular when f WfM !M is a covering map, then one
can write �.x/.�/ D x.Pf .e�/D� /e� , 8x 2 C 	.fM/ and � 2 C	.M/.

10If f W N ! M is an orientable fiber bundle with compact, orientable fiber F , integration over
the fiber provides another definition of the transfer map: � W H�

de�Rham.N / ! Hde�Rham.M/��r ,
where r D dimF .
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Definition 3. Let X be a closed n-dimensional geometric Poincaré complex. A
manifold structure .M; f / on X is a closed n-dimensional manifold M together
with a homotopy equivalence f W M Ñ X . We say hat such two manifold
structures .M; f /, .N; g/ on X are equivalent if there exists a bordism .F If; g/ W
.V IM;N/! X 
 .I I f0g; f1g/, with F a homotopy equivalence. (This means that
.V IM;N/ is an h-cobordism, (see the next section).) Let S.X/ denote the set of
such equivalence classes. We call S.X/ the manifold structure set ofX . S.X/ D ¿
means that X is without manifold structures.

Theorem 7 (Manifold structure set properties).

(1) S.X/ is homotopy invariant of X , i.e., a homotopy equivalence f W X Ñ Y

induces a bijection S.X/! S.Y /.
(2) A homotopy equivalence f W M Ñ N of n-dimensional manifolds determines

an element .M; f / 2 S.N /, such that f is h-cobordant to 1 W N ! N iff
.M; f / 2 Œ.N; 1/� 2 S.N /.

(3) LetM be a n-dimensional closed differentiable manifold. If S.X/ D fptg then
M does not admit exotic substitutes.

(4) (Differential structures by gluing manifolds together). Let M and N be
n-dimensional manifolds such that their boundary are diffeomorphic: @MŠ@N .
Let ˛ and ˇ be two differential structures on M

S
f N that agree with

the differential structures on M and N respectively. Then there exists a
diffeomorphism h W W˛ Š Wˇ such that hjM D 1M .

Definition 4. A degree 1 normal map from an n-dimensional manifold M to an
n-dimensional geometric Poincaré complex X is given by a couple .f; b/, where
f W M ! X is a mapping such that f�ŒM � D ŒX� 2 Hn.X/, and b W �M ! � is
a stable bundle map over f , from the stable normal bundle �M W M ! BO to the
stable bundle � W X ! BO . We write also .f; b/ WM ! X .

Theorem 8 (Obstructions for manifold structures on geometric Poincaré
complex).

(1) Let X be an n-dimensional geometric Poincaré complex. Then the criterion to
decide ifX is homotopy equivalent to an n-dimensional manifoldM , is to verify
that are satisfied the following two conditions.

(i) X admits a degreee 1 normal map .f; b/ W M ! X . This is the case when
the map t.�X/ W X ! B.G=O/, given in (14), is null-homotopic.

X

t.�X /




�� BG �� B.G=O/ (14)

Then there exists a null-homotopy t.�X/ ' f�g iff the Spivak normal
fibration �X W X ! BG D lim�!

k

BG.k/ admits a vector bundle reduction

f�X W X ! BO .
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Table 3 Simply connected
surgery obstruction groups

n .mod 4/ 0 1 2 3

Ln.Z/ Z 0 Z2 0

(ii) .f; b/ WM ! X is bordant to a homotopy equivalence .g; h/ W N Ñ X .

(2) (J. H. C. Whitehad’s theorem). f W M ! X is a homotopy equivalence iff
��.f / D 0. Let n D 2k, or n D 2k C 1. It is always possible to kill �i .f /,
for i � k, i.e., there is a bordant degree 1 normal map .h; b/ W N ! X ,
with �i .h/ D 0 for i � k. There exists a normal bordism of .f; b/ to a
homotopy equivalence iff it is also possible kill �kC1.h/. In general there exists
an obstruction to killing �kC1.h/, which for n � 5 is of algebraic nature.

(3) (C. T. C. Wall’s surgery obstruction theorem).[49] For any group � there are
defined algebraic L-groups Ln.ZŒ��/ depending only on n.mod 4/ as group
of stable isomorphism classes of .�1/k-quadratic forms over ZŒ�� for n D
2k, or as group of stable automorphisms of such forms for n D 2k C 1. An
n-dimensional degree 1 normal map .f; b/ W N ! X has a surgery obstruction
��.f; b/ 2 Ln.ZŒ�1.X/�/, such that ��.f; b/ D 0 if (and for n � 5 only if)
.f; b/ is bordant to a homotopy equivalence.

Example 4. The simply-connected surgery obstruction groups are given in Table 3.
In particular, we have the following.

• The surgery obstruction of a 4k-dimensional normal map .f; b/ W M ! X

with �1.X/ D f1g is ��.f; b/ D 1
8
�.K2k.M/; �/ 2 L4k.Z/ D Z, with �

the nonsingular symmetric form on the middle-dimensional homology kernel
Z-module

K2k.M/ D ker.f� W H2k.M/! H2k.X//:

• The surgery obstruction of a .4kC 2/-dimensional normal map .f; b/ WM ! X

with �1.X/ D f1g is ��.f; b/ D Arf .K2kC1.M IZ2/; �; �/ 2 L4kC2.Z/ D Z2,
with �;� the nonsingular quadratic form on the middle-dimensional homology
Z2-coefficient homology kernel Z2-module

K2kC1.M IZ2/ D ker.f� W H2kC1.M IZ2/! H2kC1.X IZ2//:

Theorem 9 (Browder-Novikov-Sullivan-Wall’s surgery exact sequence). One
has the following propositions.

(i) Let X be an n-dimensional geometric Poincaré complex with n � 5. The man-
ifold structure set S.X/ 6D ¿ iff there exists a normal map .f; b/ WM ! X

with surgery obstruction ��.f; b/ D 0 2 Ln.ZŒ�1.X/�/.
(ii) Let M be an n-dimensional manifold. Then S.M/ fits into the surgery exact

sequence of pointed sets reported in (15).

� � �LnC1.ZŒ�1.M/�/ �� S.M/ �� ŒM;G=O�! Ln.ZŒ�1.M/�/:

(15)
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4 h-Cobordism in Ricci Flow PDE’s

In this section we shall relate the h-cobordism with the geometric properties of the
Ricci flow equation considered in the previous two sections. With this respect let us
recall first some definitions and properties about surgery on manifolds.

Definition 5. (1) The n-dimensional handle, of index p, is hp 	 Dp 
 Dn�p .
Its core is Dp 
 f0g. The boundary of the core is Sp�1 
 f0g. Its cocore is
f0g 
Dn�p and its transverse sphere is f0g 
 Sn�p�1.

(2) Given a topological space Y , the images of continuous maps Dn ! Y are
called the n-cells of Y .

(3) Given a topological space X and a continuous map ˛ W Sn�1 ! X , we call
Y 	 XS˛ D

n obtained from X by attaching a n-dimensional cell to X .
(4) We call CW-complex a topological space X obtained from ¿ by successively

attaching cells of non-decreasing dimension:

X 	 .[D0/ [D1 [D2/ [ � � � (16)

We call Xn 	S1�i�n Di , n � 0, the .n/-skeleta.

Definition 6. (Homotopy groups.)

(1) We define homotopy groups of manifold, (resp. CW-complex),M , the groups

�p.M/ D ŒSp;M �; p � 0: (17)

(2) Let X be a manifold over a CW-complex and an element x 2 �n.X/, n � 1.
Let Y D X

S
'n D

nC1 be the CW-complex obtained from X by attaching an
.nC 1/-cell with map 'n W Sn ! X , with x D Œ'n� 2 �n.X/. The operation of
attaching the .nC 1/-cell is said to kill x.

Theorem 10. (CW-substitute)

(1) For any manifold,M , we can construct a CW-complexX and a weak homotopy
equivalence f W X ! M , (i.e., the induced maps f� W �r.X 0/ ! �r .X/ on
the Hurewicz homotopy groups are bijective for r � 0).11 Then X 0 is called the
CW-substitute of X . This is unique up to homotopy.

(2) Furthermore if h W X ! Y is a continuous map between manifolds, and
.X 0; f /, .Y 0; g/ are the corresponding CW-substitutes, then we can find a
cellular map h W X 0 ! Y 0 so that the following diagram is commutative:

11Note that an homotopy equivalence is an weak homotopy equivalence, but the vice versa is
not true. Recall that two pointed topological spaces .X; x0/ and .Y; y0/ have the same homotopy
type if �1.X; x0/ Š �1.Y; y0/, and �n.X; x0/ and �n.Y; y0/ are isomorphic as modules over
ZŒ�1.X; x0/� for n � 2. A simply homotopy equivalence between m-dimensional manifolds,
(or finite CW complexes), is a homotopy equivalence f W M Ñ N such that the Whitehead
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X 0

h0

��

f
�� X

h

��
Y 0

g

�� Y

(18)

h0 is unique up to homotopy.

Definition 7. An n-dimensional bordism .W IM0; f0IM1; f1/ consists of a com-
pact manifold W of dimension n, and closed .n � 1/-dimensional manifolds M0,
M1, such that @W D N0 t N1, and diffeomorphisms fi W Mi Š Ni , i D 0; 1. An
n-dimensional h-bordism (resp. s-bordism) is a n-dimensional bordism as above,
such that the inclusions Ni ,! W , i D 0; 1, are homotopy equivalences (resp.
simply homotopy equivalences).12 W is a trivial h-bordism if W Š M0 
 Œ0; 1�. In
such a case M0 is diffeomorphic to M1: M0 ŠM1

We will simply denote also by .W IM0;M1/ a n-dimensional bordism.
If 'p W SpC1 
Dn�p�1 !M1 is an embedding, then

W C .'p/ 	 W
[

'p

Dp 
Dn�p 	 W
[
hp (19)

is said obtained from W by attaching a handle, hp 	 Dp 
Dn�p , of index p by
'p.13 Put @.W C 'p/0 DM0, @.W C 'p/1 D @.W C 'p/�M0.

Theorem 11 (CW-substitute of manifold and Hurewicz morphisms). For any
manifoldM we can construct a CW-complexM 0 and a weak homotopy equivalence

torsion �.f / 2 W h.�1.M//, where W h.�1.M// is the Whitehead group of �1.M/. With this
respect, let us recall that if A is an associative ring with unity, such that Am is isomorphic
to An iff m D n, put GL.A/ � S

n�1 GLn.A/, the infinite general linear group of A and
E.A/ � ŒGL.A/; GL.A/� G GL.A/. E.A/ is the normal subgroup generated by the elementary

matrices
�
1 a

0 1

�

. The torsion group K1.A/ is the abelian group K1.A/ D GL.A/=E.A/. Let A�

denote the multiplicative group of units in the ring A. For a commutative ring A, the inclusion
A� ,! K1.A/ splits by the determinant map det W K1.A/ ! A�, �.'/ 7! det.'/ and one has
the splitting K1.A/ D A�

L
SK1.A/, where SK1.A/ D ker.det W K1.A/ ! A�/. If A is a

field, then K1.A/ Š A� and SK1.A/ D 0. The torsion �.f / of an isomorphism f W L Š K

of finite generated free A-modules of rank n, is the torsion of the corresponding invertible matrix
.f i
j / 2 GLn.A/, i.e., �.f / D �.f

j
i / 2 K1.A/. The isomorphism is simple if �.f / D 0 2 K1.A/.

The Whitehead group of a group G is the abelian group W h.G/ � K1.ZŒG�/=f�.
g/jg 2 Gg.
W h.G/ D 0 in the following cases: (a)G D f1g; (b)G D �1.M/, withM a surface; (c)G D Z

m,
m � 1. There is a conjecture, (Novikov) that extends the case (b) also to m-dimensional compact
manifolds M with universal cover eM D R

m. This conjecture has been verified in many cases [6].
12Let us emphasize that to state that the inclusionsMi ,! W , i D 0; 1, are homotopy equivalences
is equivalent to state the Mi are deformation retracts of W .
13In general W

S
hp is not a manifold but a CW-complex.
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f W M 0 ! M . Then M 0 is called the CW-substitute of M . M 0 is unique up to
homotopy. Then the homotopy groups of M and M 0 are isomorphic, i.e., one has
the top horizontal exact short sequence reported in the commutative diagram (20).
There the vertical lines represent the Hurewicz morphisms relating homotpy groups
and homology groups.

0 �� �p.M/

a

��

�� �p.M 0//

a0

��

�� 0

0 �� Hp.M/ �� Hp.M
0/ �� 0

(20)

If M is .n � 1/-connected, n � 2, then the morphisms a, a0, become isomorphisms
for p � n and epimorphisms for p D nC 1.

We call the morphisms a and a0 the Hurewicz morphisms of the manifold M
andM 0 respectively.

Definition 8. A p-surgery on a manifold M of dimension n is the procedure of
construction a new n-dimensional manifold14:

N 	 .M n Sp 
Dn�p/
[

Sp�Sn�p�1

DpC1 
 Sn�p�1: (21)

Example 5. Since for the n-dimensional sphere Sn we can write

Sn D @DnC1 D @.DpC1 
Dn�p/
D Sp 
Dn�pSDpC1 
 Sn�p�1 (22)

it follows that the surgery removing Sp 
Dn�p � Sn converts Sn into the product
of two spheres

DpC1 
 Sn�p�1 [

Sp�Sn�p�1

DpC1 
 Sn�p�1 D SpC1 
 Sn�p�1: (23)

Theorem 12 (Surgery and Euler characteristic).

(1) Let M be a 2n-dimensional smooth manifold and let apply to N obtained by
M with a p-surgery as defined in (21). Then the Euler characteristic of N is
related to the M one, by the relation reported in (24).


.N / D
�

.M/C 2 p D odd

.M/� 2 p D even:

(24)

14We say also that a p-surgery removes a framed p-embedding g W Sp � Dn�p ,! M . Then it
kills the homotopy class Œg� 2 �p.M/ of the core g D gj W Sp � f0g ,! M .
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(2) Let M D 2nC 1, n � 0. If M D @V , then V can be chosen a manifold with

.V / D 0, i.e., having the same Euler characteristic of M .

(3) Let M D 2n, n � 0. If M D @V , then 
.M/ D 2
.V /.
Proof. (1) Let us first note that we can write M D .M n Sp 
Dn�p/

S
.Sp 


D2n�p/, hence we get

8
<

:


.M/ D 
..M n Sp 
Dn�p//C 
.Sp 
D2n�p/

D 
.M n Sp 
Dn�p/C .1C .�1/p/:
(25)

From (25) we get


.M n Sp 
Dn�p/ D 
.M/� .1C .�1/p/ D
�

.M/ p D odd

.M/� 2 p D even:

(26)

On the other hand one has

8
<

:


.N / D 
.M n Sp 
Dn�p/C 
.DpC1 
 S2n�p�1/� 
.Sp 
 S2n�p�1/

D 
.M n Sp 
Dn�p/C
�
2 p D odd
0 p D even

�

:

(27)
Then from (26) and (27) we get


.N / D
�

.M/C 2 p D odd

.M/� 2 p D even:

(28)

(2) In fact, if n D 1 then M can be considered the boundary of a Möbius strip
Mob , that has just 
.Mob/ D 0. If n � 3, and 
.V / D 2q, we can add to V q

times p-surgeries with p even in order to obtain a manifold V 0 that has the same
dimension and boundary of V but with Euler characteristic zero. Furthermore,
if 
.V / D 2q C 1, we consider the manifold V 00 D V t RP2nC1 that has the
same dimension and boundary of V , but 
.V 00/ is even. Then we can proceed
as before on V 00.

(3) Let us consider V 0 D V SM V . Then one has 
.V 0/ D 0 D 2
.V / � 
.M/.

Example 6. A connected sum of connected n-dimensional manifolds M and N is
the connected n-dimensional manifold

M]N D .M nDn/
[
.Sn�1 
D1/

[
.N nDn/: (29)

M]N is the effect of the 0-surgery on the disjoint union M t N which removes
the framed 0-embedding S0 
Dn ,! M 
 N defined by the disjoint union of the
embeddingsDn ,!M , Dn ,! N .
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Example 7. Given a .nC 1/-dimensional manifold with boundary .M; @M/ and an
embeddingSi�1
Dn�iC1 ,! @M , 0 � i � nC1, we define the .nC1/-dimensional
manifold .W; @W / obtained from M by attaching a i -handle:

W D M
[

Si�1�Dn�iC1

Di 
Dn�iC1 DM
[
hi : (30)

Then @W is obtained from @M by an .i � 1/-surgery:

@W D .@M n Si�1 
Dn�iC1/
[

Si�1�Sn�i

Di 
 Sn�1: (31)

Definition 9. An elementary .nC1/-dimensional bordism of index i is the bordism
.W IM;N/ obtained from M 
D1 by attaching a i -handle at Si�1 
 Dn�iC1 ,!
M 
 f1g. The dual of an elementary .n C 1/-dimensional bordism .W IM;N/
of index i is the elementary .n C 1/-dimensional bordism .W IN;M/ of index
.n�iC1/, obtained by reversing the ends and regarding the i -handle attached to
M 
D1 as a .n � i C 1/-handle attached to N 
D1.

Theorem 13 (Handle decomposition of bordisms in the category M1).

(1) Every bordism .W IM;N/, dimW D n C 1, dimM D dimN D n, has a
handle decomposition of the union of a finite sequence

.W IM;N/ D .W1IM0;M1/
[
.W2IM1;M2/

[
� � �
[
.Wk IMk�1;Mk/

(32)
of adjoining elementary bordisms .WsIMs�1;Ms/ with index .is/ such that 0 �
i1 � i2 � � � � � ik � nC 1.

(2) Closed n-dimensional manifoldsM , N are bordant iff N can be obtained from
M by a sequence of surgeries.

(3) Every closed n-dimensional manifold M can be obtained from ¿ by attaching
handles:

M D hi0
[
hi1
[
� � �
[
hik : (33)

Furthermore, M has a Morse function f W M ! R with critical points
fxi0 ; xi1 ; � � � ; xik ; g, where x� is a critical point with index �, and the corre-
sponding vector field � D grad f W M ! TM has zero-value only at such
critical points. (See Fig. 1.)

Proof. In fact any n-dimensional manifold can be characterized by means of its
corresponding CW-substitute.

Example 8 (Sphere S2). In this case one has the following handle decomposition:
S2 D h0

S
h2, with h0 D D0 
 D2 D f0g 
 D2, the south hemisphere, and

h2 D D2 
D0 D D2 
 f1g, the north hemisphere.
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Fig. 1 Passing through
critical point x� 2 M ,
(index �), of Morse function
f W M ! R, identified by
attaching handle to a
manifold N . (Separatrix
diagram)

Example 9 (Torus T 2 D S1 
 S1). This 2-dimensional manifold has the following
CW-complex structure: T 2 D h0

S
h1
S
h1
S
h2, with h0 D f0g 
 D2, h1 D

D1 
D1, h2 D D2 
D0 D D2 
 f1g.
Remark 1. One way to prove whether two manifolds are diffeomorphic is just to
suitably use bordism and surgery techniques. (See, e.g., [48, 49].) In fact we should
first prove that they are bordant and then see if some bordism can be modified by
successive surgeries on the interior to become an s-bordism.

Theorem 14 (Homology properties in M1.). Let M be a n-dimensional mani-
fold. One has the following homology structures.

Let fC	.M IA/ Š A˝R C	.M IR/; @g be the chain complex extension of the
singular chain complex of M . Then one has the exact commutative diagram (34).

0 0

0 B•(M;A) Z•(M;A) H•(M;A)

C•(M;A) C•(M;A)

0 ΩA •;s(M) Bor•(M;A) Cyc•(M;A) 0

0

0 0 (34)

where:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

B	.M IA/ D ker.@j NC�.M IA//I Z	.M IA/ D im .@jC�.M IA//I
H	.M IA/ D Z	.M IA/=B	.M IA/;
b 2 Œa� 2 Bor	.M IA/) a � b D @c; c 2 C	.M IA/I
b 2 Œa� 2 Cyc	.M IA/) @.a � b/ D 0I

b 2 Œa� 2 A˝	;s.M /)
�
@a D @b D 0
a � b D @c; c 2 C	.M IA/

�

:

Furthermore, one has the following canonical isomorphism: A˝	;s.M /ŠH	.M IA/.
As C	.M IA/ is a free two-sided projective A-module, one has the unnatural
isomorphism: Bor	.M IA/ Š A˝	;s.M /

L
Cyc	.M IA/.
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Proof. It follows from standard results in homological algebra and homology in
topological spaces. (For more details about see also [28].)

0 0

0 B•(M;A) Z•(M;A) H•(M;A) 0

C•(M;A) C•(M;A)

0 WA •
s (M) Bor•(M;A) Cyc•(M;A) 0

0 0 (35)

Theorem 15 (Cohomology properties in M1). Let M be a n-dimensional mani-
fold. One has the following cohomology structures.

Let fC 	.M IA/ 	 HomA.C	.M IA/IA/ Š HomR.C	.M IR/IA/; ıg be the
dual of the chain complex C	.M IA/ considered in above theorem. Then one has
the exact commutative diagram (35).

where:
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

B	.M IA/ D ker.ıj NC�.M IA//I Z	.M IA/ D im .ıjC�.M IA//I
H 	.M IA/ D Z	.M IA/=B	.M IA/I
b 2 Œa� 2 Bor	.M IA/) a � b D ıcI c 2 C 	.M IA/I
b 2 Œa� 2 Cyc	.M IA/) ı.a � b/ D 0I
b 2 Œa� 2 A˝	

s .M/)
�
ıa D ıb D 0
a � b D ıc; c 2 C 	.M IA/

�

:

Furthermore, one has the following canonical isomorphism: A˝	
s .M/ Š H 	.M IA/.

As C 	.M IA/ is a free two-sided projective A-module, one has the unnatural
isomorphism: Bor	.M IA/ Š A˝	

s .M/
L
Cyc	.M IA/.

Proof. It follows from standard results in cohomological algebra and cohomology
in topological spaces. (See also [28].)

Definition 10. We say that a manifold M is cohomologically trivial if all the
cohomology groupsHr.M IA/ vanish for r � 1.

Theorem 16. Let M be a n-dimensional manifold. The following propositions are
equivalent.

(i) M is cohomologically trivial.
(ii) Hr.M IK/ D 0, 8r � 1.

(iii) Hr.M IA/ Š Hr.M IK/ D 0, 8r � 1.
(iv) The complex fC 	.M IA/; ıg is acyclic, i.e., the sequence
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0 �� Z0
�

�� C0.M IA/
ı

�� C1.M IA/
ı

�� � � �
ı

�� Cn.M IA/
ı

�� 0

(36)
is exact.

Proof. (i),(ii) since Hr.M IA/ Š Hr.M IK/N
K
A.

(i),(iii) since Hr.M IA/ Š HomA.Hr.M IA/IA/ and considering the following
isomorphismHr.M IA/ Š Hr.M IK/NK

A.
(i),(iv) since the exactness of the sequence (36) is equivalent to Hr.M IA/ D 0,
for r � 1.

Theorem 17. Let M be a n-dimensional manifold modeled on the algebra A. The
following propositions are equivalent.

(i) M is cohomologically trivial.
(ii) Hr.M IA/ D 0, r � 1.

(iii) Hr.M IK/ D Hr.M IK/ D 0, r � 1.

Example 10. A manifold contractible to a point is cohomologically trivial.

Theorem 18 (h-Cobordism groups).

(1) If .W IX0;X1/, @W D X0 t X1, is a h-cobordant and Xi , i D 0; 1, are simply
connected, thenW is a trivial h-cobordism. (For n D 4 the h-cobordism is true
topologically.)

(2) A simply connected manifold M is h-cobordant to the sphere Sn iff M bounds
a contractible manifold.

(3) If M is a homotopy sphere, then M].�M/ bounds a contractible manifold.
(4) If a homotopy sphere of dimension 2k bounds an stably-parallelizable mani-

fold M then it bounds a contractible manifoldM1. (See Definition 12.)
(5) Let �n denote the collection of all h-cobordism classes of homotopy n-spheres.

�n is an additive group with respect the connected sum,15 where the sphere Sn

serves as zero element. The opposite of an elementX is the same manifold with
reversed orientation, denoted by �X . In Table 8 are reported the expressions of
some calculated groups �n.16

Proof. There are topological manifolds that have not smooth structure. Further-
more, there are examples of topological manifolds that have smooth structure

15The connected sum of two connected n-dimensional manifolds X and Y is the n-dimensional
manifold X]Y obtained by excising the interior of embedded discs Dn � X , Dn � Y , and
joining the boundary components Sn�1 � X nDn, Sn�1 � Y nDn, by Sn�1 � I .
16It is interesting to add that another related notion of cobordism is the H-cobordism of
n-dimensional manifold, .V IM;N/, @V D M t N , with H�.M/ Š H�.N / Š H�.V /. An
n-dimensional manifold ˙ is a homology sphere if H�.˙/ D H�.S

n/. Let �H
n be the abelian

group of H -cobordism classes of n-dimensional homology spheres, with addition by connected
sum. (Kervaire’s theorem.) For n � 4 every n-dimensional homology sphere ˙ is H-cobordant to
a homology sphere and the forgethful map �n ! �H

n is an isomorphism.
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everywhere except a single point. If a neighborhood of that point is removed, the
smooth boundary is a homotopy sphere. Any smooth manifold may be triangulated,
i.e., admits a PL structure, and the underlying PL manifold is unique up to a PL
isomorphism.17 The vice versa is false. No all topological or PL manifolds have at
least one smooth structure.

The h-cobordism classes �n of n-dimensional homotopy spheres are trivial
for 1 � n � 6, i.e., �n Š 0, and ŒSn�D 0. For nD 1; 2 this follows from
the fact that each of such topological manifolds have a unique smooth structure
uniquely determined by its homology. For nD 3 this follows from the proof of the
Poincaré conjecture (see [40]). Furthermore, each topological 3-manifold has an
unique differential structure [21, 23, 50]. Therefore, since from the proof of the
Poincaré conjecture it follows that all 3-homotpy spheres are homeomorphic to
S3, it necessarily follows that all 3-homotpy spheres are diffeomorphic to S3 too.
Furthermore, for n D 4, the triviality of �4 follows from the works by Freedman
[7]. (See also Cerf [4].)

Lemma 8 (Freedman’s theorem [7]). Two closed simply connected 4-manifolds
are homeomorphic iff they have the same symmetric bilinear form � W H2.M IZ/˝
H2.M IZ/! H4.M IZ/ Š Z, (with determinant˙1, induced by the cup product),
and the same Kirby-Siebermann invariant .18 Any � can be realized by such a
manifold. If �.x˝ x/ is odd for some x 2 H2.M IZ/, then either value of  can be
realized also. However, if �.x˝x/ is always even, then  is determined by � , being
congruent to 1

8
� .

In particular, if M is homotopy sphere, then H2.M;Z/ D 0 and  	 0, so M is
homeomorphic to S4.19

The cases n D 5; 6, can be proved by using surgery theory and depend by the
Smale’s h-cobordism theorem.20

Lemma 9 (Smale’s h-cobordism theorem). [45] Any n-dimensional simply con-
nected h-cobordism W , n > 5, with @W D M t .�N/, is diffeomorphic to

17A topological manifold M is piecewise linear, i.e., admits a PL structure, if there exists an atlas
fU˛; '˛g such that the composities '˛ ı '�1

˛0 , are piecewise linear. Then there is a polyehdron
P � R

s , for some s and a homeomorphism ' W P Ð M , (triangulation), such that each composite
'˛ ı ' is piecewise linear.
18 is Z2-valued and vanishes iff the product manifold M � R can be given a differentiable
structure.
19It is not known which 4-manifolds with  D 0 actually possess differentiable structure, and it is
not known when this structure is essentially unique.
20There exists also a s-cobordism version of such a theorem for non-simply connected manifolds.
More precisely, an .n C 1/-dimensional h-cobordism .V IN;M/ with n � 5, is trivial iff it is an
s-cobordism. This means that for n � 5 h-cobordant n-dimensional manifolds are diffeomorphic
iff they are s-cobordant. Since the Whitehead group of the trivial group is trivial, i.e.,W h.f1g/D 0,
it follows that h-cobordism theorem is the simply-connected special case of the s-cobordism.
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M 
 Œ1; 0�. (All manifolds are considered smooth and oriented. �N denotes the
manifold N with reversed orientation.)21

If n � 5 any two homotopy n-sphere are PL homeomorphic, and diffeomorphic
too except perhaps at a single point. (If n D 5, (resp. n D 6), then any homotopy
n-sphere˙ bounds a contractible 6-manifold, (resp. 7-manifold), and is diffeomor-
phic to S5, (resp. S6). Every smooth manifold M of dimension n > 4, having the
homotopy of a sphere is a twisted sphere, i.e., M can be obtained by taking two
disks Dn and gluing them together by a diffeomorphism f W Sn�1 Š Sn�1 of their
boundaries. More precisely one has the isomorphism �0.DiffC.Sn// Š �nC1,
Œf � 7! ˙f 	 DnC1S

f .�DnC1/, where �0.DiffC.Sn// denotes the group of
isotopy classes of oriented preserving diffeomorphisms of Sn.

See the paper by Kervaire and Milnor [18] and the following ones by Smale [45,46].
In the following we shall give a short summary of this proof for n � 5. This is really
an application of the Browder-Novikov theorem.

Lemma 10. Let #n denote the set of smooth n-dimensional manifolds homeomor-
phic to Sn. Let �d denote the equivalence relation in #n induced by diffeomorphic
manifolds. Put �n 	 #n= �d .22 Then the operation of connected sum makes �n an
abelian group for n � 1.

Proof. Let us first remark that since we are working in #n, the operation of
connected sum there must be considered in smooth sense. Then it is easy to see that
the for M1;M2;M3 2 #n, one has M1]M2 Š M2]M1 and that .M1]M2/]M3 Š
M1].M2]M3/. Therefore, it is well defined the commutative and associative
composition mapC W �n
�n ! �n, ŒM1�CŒM2� D ŒM1]M2�. The zero of this com-
position is the equivalence class ŒSn� 2 �n. In fact, since Sn nDn

S
Sn�1.Sn�1 


I / Š Dn, we get M]Sn Š M nDn
S
Sn�1 .Sn nDn

S
Sn�1 .Sn�1 
 I // Š

M nDn
S
Sn�1 Dn Š M . Therefore, ŒSn� D 0 2 �n. Furthermore, each element

M 2 #n admits, up to diffeomorphisms, an unique opposite M 0 2 #n. In fact,
since M nDn Š Dn, it follows that M Š Dn

S
� D

n Š Dn
S
Sn�1 Dn, where

21The proof utilizes Morse theory and the fact that for an h-cobordism H�.W;M/ŠH�

.W;N / Š 0, gives W Š M � Œ0; 1�. The motivation to work with dimensions n � 5 is in the
fact that it is used the Whitney embedding theorem that states that a map f W N ! M , between
manifolds of dimension n and m respectively, such that either 2n C 1 � m or m D 2n � 6 and
�1.M/ D f1g, is homotopic to an embedding.
22�n can be identified with the set of twisted n-spheres up to orientation-preserving diffeomor-
phisms, for n 6D 4. One has the exact sequences given in (37).

�0.DiffC.Dn// �� �0.DiffC.Sn�1// �� �n �� 0 (37)

If the used diffeomorphism Sn�1 ! Sn�1 to obtain a twisted n-sphere by gluing the correspond-
ing boundaries of two disks Dn, is not smoothly isotopic to the identity, one obtains an exotic
n-sphere. For n > 4 every exotic n-sphere is a twisted sphere. For n D 4, instead, twisted spheres
are standard ones [4].



394 A. Prástaro

Fig. 2 Connected sum
representations. M1]M2 D
.M1 nDn/

S
.Sn�1 �D1/S

.M2 nDn/

� W Sn�1 ! Sn�1 is a given diffeomorphism that identifies the two copies of
Sn�1. Then M 0 is defined by M 0 D Dn

S
��1 Dn. In fact one has M]M 0 Š

.Dn
S
� D

n/].Dn
S
��1 Dn/ Š Dn

S
1 D

n Š Sn, where 1 D � ı ��1 W Sn�1 !
Sn�1. (See Fig. 2.)

Lemma 11. One has the group isomorphisms �n Š �n for any n � 1 and
n 6D 4. So these groups classify all possible differentiable structures on Sn, up
to orientation preserving diffeomorphisms.

Remark 2 (Strange phenomena on dimension four). It is well known that on R
4

there are uncountably many inequivalent differentiable structures, i.e., one has
exotic R

4, say fR4. (This is a result by Freedman [7], starting from some results by
Donaldson [5].) On the other hand by the fact that �4 Š �4 D 0 it follows for any 4-
dimensional homotopy sphere˙ Š S4. So taking in to account that S4nfptg Š R

4,
it natural arises the question: Do exotic 4-sphere ė exist such that ė n fptg Š f

R
4

? The answer to this question, conjecturing the isomorphism �4 Š �4 D 0, should
be in the negative. This means that all exotic fR4 collapse on the unique one S4 by
the process of one point compactification ! However this is generally considered
an open problem in geometric topology and called the smooth Poincaré conjecture.
(See, e.g., [8].)

Lemma 12 (Hirsch and Munkres [16, 23]). The obstructions to the existence of
a smooth structure on a n-dimensional combinatorial (or PL) manifold lie in the
groups HkC1.M I�k/; while the obstruction to the uniqueness of such a smooth
structures, when it exists, are elements of Hk.M I�k/.
Lemma 13 (Kirby and Siebenman [19]). For a topological manifold M of
dimension n � 5, there is only one obstruction to existence of a PL-structure, living
inH4.M IZ2/, and only one obstruction to the uniqueness of this structure (when it
exists), living in H3.M IZ2/.23

23This result by Kirby and Siebenman does not exclude that every manifold of dimension n > 4

can possess some triangulation, even if it cannot be PL-homeomorphic to Euclidean space.
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Definition 11 (Intersection form and signature of manifold).

(1) The intersection form of a 2n-dimensional topological manifold with boundary
.M; @M/ is the .�1/n-symmetric form � over the Z-module H	Hn.M; @/=

torsion, �.x; y/ D< x [ y; ŒM � >2 Z.24

(2) (Milnor’s plumbing theorem.) For n � 3 every .�1/n-quadratic form .H; �; �/

over Z is realized by an .n � 1/-connected 2n-dimensional framed manifold
with boundary .V; @V / with Hn.V / D H . The form .H; �; �/ is nonsingular
iff H	.@V / D H	.S2n�1/. Let .H; �/ be a nonsingular .�1/-symmetric form
over Z and fbj ; cj g1�j�p a basis for the Z-moduleH , such that �.br ; bs/ D 0,
�.cr ; cs/ D 0, �.br ; cs/ D 0, for r 6D s, and �.br ; cr / D 1. Let � W
H ! Q�1.Z/ D Z2 be a .�1/-quadratic function associated to .H; �/. Then
the Arf invariant of a nonsingular .�1/-quadratic form .H; �; �/ over Z is
Arf .H; �; �/ DP1�j�p �.bj /�.cj / 2 Z2 	 f0; 1g.
If @M D ¿, orH	.@M/ D H	.S2n�1/, then � is nonsingular.

(3) The signature �.M/ of a 4k-dimensional manifold .M; @M/ is �.M/ D
�.�/ 2 Z, where � is the symmetric form over the Z-moduleH2k.M/=torsion.

(4) Let M be an oriented manifold with empty boundary, @M D ¿, dimM D
n D 4k. Then Hi.M IZ/ is finitely generated for each i and H2k.M IZ/ Š
Z
s
L

Tor, where Tor is the torsion subgroup. Let ŒM � 2 H4k.M IZ/ be the
orientation class of M . Let <;>W H2k.M IZ/ 
 H2k.M IZ/ ! Z, be the
symmetric bilinear form given by .a; b/ 7!< a; b >D< a[b; ŒM � >2 Z. This
form vanishes on the torsion subgroup, hence it factors on H2k.M IZ/=Tor 

H2k.M IZ/=Tor Š Z

s 
 Z
s ! Z. This means that the adjoint map ' W

H2k.M IZ/=Tor! HomZ.H
2k.M IZ/=TorIZ/ D .H2k.M IZ/=Tor//�, a 7!

'.a/.b/ D< a; b >, is an isomorphism. This is a just a direct consequence of
Poincaré duality: H2k.M IZ/=Tor D .H2k.M IZ/=Tor/� and a.b \ ŒM �/ D<
a [ b; ŒM � >. Then the signature of this bilinear form is the usual signature

24Let R be a commutative ring and H a finite generated free R-module. A �-symmetric form over
H is a bilinear mapping � W H � H ! R, such that �.x; y/ D ��.y; x/, with � 2 fC1;�1g.
The form � is nonsingular if the R-module morphism H ! H� � HomR.H IR/, x 7! .y 7!
�.x; y// is an isomorphism. A �-quadratic form associated to a �-symmetric form � over H , is a
function � W H ! Q�.R/ � coker .1 � � W R ! R/, such that: (i) �.x; y/ D �.x C y/ �
�.x/ � �.y/; (ii) �.x; x/ D .1 C �/�.x/ 2 im .1 C � W R ! R/  ker.1 � � W R ! R/,
8x; y 2 H , a 2 R. If R D Z and � D 1, we say signature of �, �.�/ D p � q 2 Z, where
p and q are respectively the number of positive and negative eigenvalues of the extended form
on R

N
Z
H . Then � has a 1-quadratic function � W H ! QC1.Z/ iff � has even diagonal

entries, i.e., �.x; x/ � 0 .mod 2/, with �.x/ D �.x; x/=2, 8x 2 H . If � is nonsingular then
�.�/ � 0 .mod 8/. Examples. (1) R D H D Z, � D 1, �.�/ D 1.

(2) R D Z, H D Z
8, � D E8-form, given by

�
�ij
	D

�
ars brs
crs drs

�

with .ars/D
0

B
B
@

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

1

C
C
A,

.brs/ D
0

B
B
@

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1

C
C
A , .crs/ D

0

B
B
@

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

1

C
C
A , .drs/ D

0

B
B
@

2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

1

C
C
A.
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of the form after tensoring with the rationals Q, i.e., of the symmetrix matrix
associated to the form, after choosing a basis for Qs . Hence the signature is
the difference between the number of C1 eigenvalues with the number of �1
eigenvalues of such a matrix. Let us denote by �.M/ the signature of the above
nondegenerate symmetric bilinear form, and call it signature of M .

Theorem 19 (R. Thom’s properties of signature).

(1) If M has dimM D 4k, and it is a boundary, then �.M/ D 0.
(2) �.�M/ D ��.M/.
(3) Let M and L be two 4k-dimensional closed, compact, oriented manifolds

without boundary. Then we have �.M tL/ D �.M/C�.L/ and �.M 
L/ D
�.M/:�.L/, where the orientation onM 
 L is ŒM 
 L� D ŒM �˝ ŒL�.

(4) (Rohlin’s signature theorem). The signature of a closed oriented 4k-dimensional
manifold is an oriented cobordism invariant, i.e., if @W D M t N , it follows
that �.M/ D �.N / 2 Z. More precisely, the signature for oriented boundary
4k-dimensional manifolds is zero and it defines a linear form � W C˝4k ! Z.
Furthermore, let M and N be 4k-dimensional manifolds with differentiable
boundaries: @M D Sj Xj , @N DSi Yi , such that X1 D Y1. Then one has the
formula (38).

�.M
[

X1DY1
N / D �.M/C �.N /: (38)

(5) (Hirzebruch’s signature theorem (1952)). The signature of a closed oriented
4k-dimensional manifoldM is given by

�.M/ D< Lk.p1; � � � ; pk/; ŒM � >2 Z (39)

with Lk.p1; � � � ; pk/ polynomial in the Pontrjagin classes pj of M , i.e.,
pj .M/ 	 pj .TM/ 2 H4j .M/, representing the L genus, i.e., the genus of
the formal power series given in (40).25

25A genus for closed smooth manifolds with someX-structure, is a ring homomorphism˝X
�

! R,
where R is a ring. For example, if the X-structure is that of oriented manifolds, i.e., X D SO ,
then the signature of these manifolds just identifies a genus � W C˝� D ˝SO

�
! Z, such that

�.1/ D 1, and � W C˝p ! 0 if p 6D 4q. Therefore the genus identifies also a Q-algebra
homomorphism ˝SO

�

N
Q
Q ! Q. More precisely, let A � QŒt1; t2; � � � � be a graded commutative

algebra, where ti has degree i . Set A � AŒŒa0; a1; � � � ��, where ai 2 A is homogeneous of
degree i , i.e., the elements of A are infinite formal sums a � a0 C a1 C a2 C � � � . Let
A� � A denote the subgroup of the multiplicative group of A of elements with leading term
1. Let K1.t1/, K2.t1; t2/, K3.t1; t2; t3/; � � � 2 A, be a sequence of polynomials of A, where Kn

is homogeneous of degree n. For a D a0 C a1 C a2 C � � � 2 A�, we define K.a/ 2 A�

by K.a/ D 1 C K1.a1/ C K2.a1; a2/ C � � � . We say that Kn form a multiplicative sequence
if K.ab/ D K.a/K.b/, 8a; b 2 A�. An example is with Kn.t1; � � � ; tn/ D �ntn, � 2 Q.

Another example is given by the formal power series given in (40) with �k D .�1/k�1 2
2kB2k
.2k/Š

.
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Table 4 Polynomials
sI .�1; � � � ; �n/, for
0 � n � 4

n sI .�1; � � � ; �n/
0 s D 1

1 s.1/.�1/ D �1
2 s.2/.�1; �2/ D �21 � 2�2

s.1;1/.�1; �2/ D �2
3 s.3/.�1; �2; �3/ D �31 � 3�1�2 C 3�3

s.1;2/.�1; �2; �3/ D �1�2 � 3�3
s.1;1;1/.�1; �2; �3/ D �3

4 s.4/.�1; �2; �3; �4/ D �41 � 4�21 �2 C 2�22 C 4�1�3 � 4�4
s.1;3/.�1; �2; �3; �4/ D �21 �2 � 2�22 � �1�3 C 4�4
s.2;2/.�1; �2; �3; �4/ D �22 � 2�1�3 C 2�4
s.1;1;2/.�1; �2; �3; �4/ D �1�3 � 4�4
s.1;1;1;1/.�1; �2; �3; �4/ D �4

p
z

tanh.
p

z/
D
X

k�0

22kB2kzk

.2k/Š
D 1C z

3
� z2

45
C � � � (40)

where the numbers B2k are the Bernoulli numbers.26

(6) The intersection form of a 4k-dimensional manifold M has a 1-quadratic
function iff it has 2kth Wu class v2k.M/ D 0 2 H2k.M IZ2/, in which case
�.M/ 	 0 .mod 8/.

Definition 12. An n-dimensional manifold M is parallelizable if its tangent
n-plane bundle �M WM ! BO.n/ is trivial, i.e., isomorphic toM
Rn !M 	 �n.

For any partition I D .i1; i2; � � � ; ik/ of n, set �I D �i1�i2 � � ��ik . Now define polynomials
Ln.t1; � � � ; tn/ 2 A by Ln.t1; � � � ; tn/ D P

I �I sI .t1; � � � ; tn/, where the sum is over all partitions
of n and sI is the unique polynomial belonging to ZŒt1; � � � ; tn� such that sI .�1; � � � ; �n/ D P

t I ,
where �1; � � � ; �n are the elementary symmetric functions that form a polynomial basis for the ring
Sn of symmetric functions in n variables. (Sn is the graded subring of ZŒt1; � � � ; tn� of polynomials
that are fixed by every permutation of the variables. Therefore we can write Sn D ZŒ�1; � � � ; �n�,
with �i of degree i . In Table 4 are reported the polynomials sI .�1; � � � ; �n/, for 0 � n � 4.) Ln
form a multiplicative sequence. In fact L.ab/ D P

I sI .ab/ D P
I �I

P
I1I2DI sI1 .a/sI2 .b/ DP

I1I2DI �I1sI1 .a/�I2 sI2 .b/ D L.a/L.b/. Then for an n-dimensional manifold M one defines
L-genus, LŒM � D 0 if n 6D 4k, and LŒM � D< Kk.p1.TM/; � � � ; pk.TM//; �M > if n D 4k,
where �M is the rational fundamental class of M and Kk.p1.TM/; � � � ; pk.TM// 2 Hn.M IZ/.
26Formula (39) is a direct consequence of Thom’s computation of C˝�

N
Z
Q Š QŒy4k jk � 1�,

with y4k D ŒCP 2k�. (C˝j

N
Z
Q D 0 for j 6D 4k.) In Fact, one has pj .CPn/ D pj .TCP

n/ D
�
nC1
j

	 2 H4j .CPn/ D Z, 0 � j � n
2

. For n D 2k the evaluation < Lk; ŒCP 2k� >D 1 2 Z

coincides with the signature of CP 2k : �.CP 2k/ D �.H2k.CP 2k/; �/ D �.Z; 1/ D 1 2 Z.
Therefore, the signature identifies a Q-algebra homomorphism ˝SO

�

N
Z
Q ! Q. So the Hirze-

bruch signature theorem states that this last homomorhism induced by the signature, coincides with
the one induced by the genus. In Table 5 are reported some Hirzebruch’s polynomials for CP 2k . In
Table 6 are reported also the Bernoulli numbers Bn, with the Kronecker’s formula, and explicitly
calculated for 0 � n � 18.
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Table 5 Lk-polynomials for CP 2k , with k D 1; 2; 3; 4 and related objects

k Lk pj .CP
2k/ �.CP 2k/

1 L1.p1/ D 1

3
p1.CP

2/ D 3 �.CP 2/ D 1

3
� 3 D 1

2 L2.p1; p2/D 1

45
.7p2 � p21/ p1.CP

4/ D 5 �.CP 4/ D 1

45
.7� 10� 25/ D 1

p2.CP
4/ D 10

3 L3.p1; p2; p3/ p1.CP
6/ D 7 �.CP 6/ D 1

945
.62 � 35� 13�21

D 1

945
.62p3 � 13p2p1 C 2p31/ p2.CP

6/ D 21 �7C 2� 343/ D 1

p3.CP
6/ D 35

4 L3.p1; p2; p3; p4/ D p1.CP
8/ D 9 �.CP 8/ D 1

14175
.48006 � 53676

1

14175
.381p4 � 71p3p1 � 19p22 p2.CP

8/ D 36 �24624 C 64152 � 19683/ D 1

C22p2p21 � 3p41/ p3.CP
8/ D 84

p4.CP
8/ D 126

Table 6 Bernoulli numbers Bn D �P
1�k�nC1

.�1/k

k

�
nC1
k

	 DP
1�j�k j

n 2 Q, n � 0

n Numerator Denominator

0 1 1
1 �1 2
2 1 6
4 �1 30
6 1 42
8 �1 30
10 5 66
12 �691 2,730
14 7 6
16 �3,617 510
18 43,862 798

Bn D 0, n D odd > 1

Two vector bundles �1 and �2 over a same base M are stably isomorphic if
�1
L
�1 Š �2

L
�1, where �i , i D 1; 2 are vector bundles over M with dimensions

such that ifM is a complex of dimension r , the total fiber dimensions of the Whitney
sums exceeds r . Such bundles are said to be in stable range.

Proposition 1. A connected compact n-manifold M with non-trivial boundary, is
parallelizable iff it is stably parallelizable.

Proof. In fact M has the homotopy type of an .n � 1/-complex and thus TM is in
the stable range.

Proposition 2. The set of framed n-manifolds properly contains the set of paral-
lelizable n-manifolds.
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Table 7 Parallelizable Sn n 1 2 3 4 5 6 7 > 7

parallelizable Yes No Yes No No No Yes No

Example 11 (Bott-Milnor [3]).

(1) The sphere Sn is framed with Sn 
 R � R
nC1, TSn

L
� Š �nC1, but not

necessarily parallelizable. (See Table 7.)
(2) All spheres are stably parallelizable.
(3) Every homotopy sphere˙n is stably parallelizable.

Definition 13 (Pontrjagin-Thom construction framed-cobordism). If .M; '/ is
any n-manifold with framing ' W �.M/ Š M 
 R

k�n of the normal bundle in R
k ,

the same definition yields a map p.M; '/ 2 �sn. If .M1; '1/ t .M2; '2/ � R
k form

the framed boundary of a .nC 1/-manifold .W; @W;˚/ � .Rk 
 Œ0;1/;Rk 
 f0g/,
we say that are framed cobordant. The framed cobordism is an equivalence relation
and the corresponding set of framed cobordism classes is denoted by˝fr

n . This is an
abelian additive group with respect the operation of disjoint union t. The class Œ¿�
is the zero of ˝fr

n . Then one has the canonical isomorphism given in (41).27

(
˝
fr
n Š �sn

M 7! fM W SnCk ! SnCk=.SnCk n .M 
R
k// D ˙kMC ! Sk

(41)

whereMC 	M Sfptg, and˙k is the k-suspension functor for spectra.

Example 12 (Smale’s paradox and framed cobordism). Let us consider the so-
called Smale’s paradox turning a sphere S2 � R

3 inside out. (See also [42].) Let
us denote by �S2 the sphere S2 with reversed orientation. Let us first note that
these surfaces are characterized by the same generalized curvature integra. It is
useful to recall here some definitions and results about this topological invariant.
The generalized Gauss map of an n-dimensional framed manifold M with f W
M ,! R

nCk, �f Š �k , is the map c W M ! VnCk;k, x 7! ..�f /x D R
k ,!

Tf.x/R
nCk D R

nCk/ and classifies the tangent n-planes bundle �M WM ! BO.n/,
with the k-stable trivialization TM

L
�k Š TM

L
�f D �nCk D TRnCkjM .28

The generalized curvatura integra ofM is the degree of the generalized Gauss map.

27In Table 8 are reported the n-stems for 0 � n � 17.
28VnCk;k Š O.nCk/=O.n/ is the Stiefel space of orthonormal k-frames in R

nCk , or equivalently
of isometries Rk ! R

nCk . VnCk;k is .n�1/-connected withHn.VnCk;k/ D Z, if n � 0.mod 2/ or
if k D 1, and Hn.VnCk;k/ D Z2, if n � 1 .mod 2/ and k > 1. One has GnCk;k D VnCk;k=O.k/,
where GnCk;k is the Grassmann space of k-dimensional subspaces of RnCk . Then the classifying
space for n-planes is BO.n/ D lim

�!

k

GnCk;k , and the corresponding stable classifying space is

BO D lim
�!n

BO.n/.
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c�ŒM � 2 Hn.VnCk; k/ D
�
Z; if n 	 0 .mod 2/
Z2; if n 	 1 .mod 2/

�

.k > 1/: (42)

The curvatura integra of an n-dimensional framed manifold M can be expressed
with the Kervaire’s formula given in (43).

c�ŒM � D Hopf .M/C
�

.M/=2 2 Z; if n 	 0 .mod 2/

1=2.M/ 2 Z2; if n 	 1 .mod 2/

(43)

where

1=2.M/ D

X

0�j�.n�1/=2
dimZ2 Hj .M IZ/ 2 Z2 (44)

is called the Kervaire semicharacteristic, and

Hopf ŒM � D
�
0 2 Z; if n 	 0 .mod 2/
H2.F / 2 Z2; if n 	 1 .mod 2/

(45)

with F W SnCk ! Sk the Pontrjagin-Thom map, and H2.F / determined by the
mod 2 Hopf invariant. This is the morphism

�
H2 W �nCk.Sk/! Z

.F W SnCk ! Sk/ 7! H2.F /; .m � 1/ (46)

determined by the Steenrod square in the mapping cone X DSkSF D
nCkC1. If

aD 12Hk.X IZ2/DZ2, bD 12HnCkC1.X IZ2/DZ2, then SnC1
q .a/DH2.F /b 2

HnCkC1.X IZ2/. One has (Adams) that H2D 0 for n 6 D 1; 3; 7. Hopf .M/ is a
framed cobordism invariant.

Taking into account that 
.S2/D
.�S2/D 2, and that Hopf .S2/DHopf
.�S2/D 0, we get c�ŒS2�D c�Œ�S2�D 1. Furthermore one has ˝fr

2 Š �s2 D;Z2
Š ˝2. In order to see that S2 is cobordant with �S2 it is enough to prove that �S2
can be obtained by S2 by a sequence of surgeries. (See Theorem 13.) In fact, we can
write the oriented S2 as S2DD2

W

S
S1 D

2
E , where D2

W and D2
E are two oriented

discs in such a way that S2 is oriented with outgoing normal unitary vector field.
(Fig. 3a.) By a surgery we can removeD2

E and smoothly add anotherD2
E on the left

of D2
W . (Fig. 3b.) Next by an orientation preserving diffeomorphisms, we get �S2,

the surface represented in Fig. 3c.
In conclusion S2 t �S2 D @W , where W Š .S2 
 f0g/ 
 I Š .�S2 


f1g/
 I � R
3 
 Œ0;1/. Therefore, S2 is framed cobordant with �S2. Furthermore

S2 Š �S2 (diffeomorphism reversing orientation), that agrees with the well known
result in differential topology that two connected, compact, orientable surfaces are
diffeomorphic iff they have the same genus, the same Euler characteristics and the
same number of boundaries. (See, e.g., [17].)
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Fig. 3 Surgery and Smale’s paradox turning a sphere S2 � R
3 inside out

Another proof that S2 and �S2 are cobordant can be obtained by the Arf
invariant. Let us recall that ifM is a framed surfaceM
Rk � R

kC2, the intersection
form .H1.M/; �/ has a canonical .�1/-quadratic function �WH1.M/DH1.M/!
Q�1.Z/D˝fr

1 DZ2, given by x 7! .x W S1 ,! M/, sending each x 2 H1.M/

to an embedding x W S1 ,! M with a corresponding framing S1 
 R
kC1 � R

kC2,
ı�x W �xL �k Š �kC1. Then one has the isomorphism Arf W ˝fr

2 D�s2 Š Z2,
ŒM � 7! Arf .H1.M/; �; �/. In the particular case that M DS2 t �S2, we get
H1.M/D 0 and Arf .H1.M/; �; �/D 0, hence must necessarily be ŒM DS2 t
�S2�D 0 2 ˝

fr
2 . This agrees with the fact that ˝fr

2 DZ2D˝2, and that both
surfaces S2 and �S2 belong to 0 2 ˝2 since are orientable ones.

Definition 14. An n-dimensional manifold V with boundary @V , is almost framed
if the open manifold V nfptg framed: .V nfptg/
Rk � R

nCk (for k large enough).

Theorem 20 (Properties of almost framed manifold).

(1) An almost framed manifold V , with @V 6D ¿ is a framed manifold and a
parallelizable manifold.

(2) If V is an almost framed manifold with @V D ¿, then there is a framing
obstruction

o.V / 2 ker.J W �n�1.O/! �sn�1/ (47)

in the sense that V is framed iff o.V / D 0.
(3) (Kervaire invariant for almost framed manifolds). Let .M; @M/ be a .4k C 2/-

dimensional almost framed manifold with boundary such that either @M D ¿
or H	.M/ D H	.S4kC1/, so that .H2kC1.M IZ2/; ��/ is a nonsingular
quadratic form over Z2. The Kervaire of M is defined in (48).

Kervaire.M/ D Arf .H2kC1.M IZ2/; ��/: (48)

One has the following propositions.

(i) If @M D ¿ andM D @N is the boundary of a .4kC 3/-dimensional almost
framed manifoldN , then Kervaire.M/ D 0 2 Z2.

(ii) The Kervaire of a manifold identifies a framed cobordism invariant, i.e., it
defines a map Kervaire W ˝fr

4kC2 D �s4kC2 ! Z2 that is 0 if k 6D 2i � 1.
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(iii) There exist .4k C 2/-dimensional framed manifolds M with Kervaire
.M/ D 1, for k D 0; 1; 3; 7. For k D 0; 1; 3 can take M D S2kC1 
 S2kC1.

(4) (Kervaire-Milnor’s theorem on almost framed manifolds). Let us denote by
˝
af r
n the cobordism group of closed n-dimensional almost framed manifolds.

One has the exact sequence in (49).

˝
af r
n

o
�� �n�1.O/

J
�� �sn�1 (49)

• For a 4k-dimensional almost framed manifold V one has the framing
obstruction reported in (50).29

8
<

:

o.V / D pk.V /=.ak.2k � 1/Š/
ker.J W �4k�1.O/! �s4k�1/
D jkZ � �4k�1.O/ D Z

9
=

;

pk.V / 2 H4k.V / D Z (Pontryagin class) (50)

ak D
�
1 for k 	 0 .mod 2/
2 for k 	 1 .mod 2/

�

jk D den

�
Bk

4k

�

(5) (Kervaire-Milnor’s theorem on almost framed manifolds-2). Let Pn be the
cobordism group of n-dimensional framed manifolds with homotopy sphere
boundary. (Pn is called the n-dimensional simply-connected surgery obstruction
group.) For n � 4 �n is finite, with the short exact sequence given in (51).

0 �� coker .a W ˝af r

nC1 ! PnC1/
b

�� �n
c
�� ker.a W ˝af r

n ! Pn/ �� 0

(51)
and

ker.a/ � coker .J W �n ! �sn/ D ker.o W ˝afr
n ! ��n�1.O//:

• In (52) are reported the calculated groups Pn.

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

P2nC1 D 0

Pn D

8
ˆ̂
<

ˆ̂
:

Z if n 	 0 .mod 4/
0 if n 	 1 .mod 4/
Z2 if n 	 2 .mod 4/
0 if n 	 3 .mod 4/

9
>>=

>>;

(52)

29For k D 1 one has j1 D 24; o.V / D p1.V /=2 2 24Z � �3.O/ D Z.
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(6) (Kervaire-Milnor’s braid n � 5). For n � 5 there is the exact commutative
braid diagram given in (53).

(53)
In (53) the mappings a, b and c are defined in (54).

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

a W ˝afr
2n ! P2n; a.M/ D

8
<

:

1

8
�.M/ 2 Z if n 	 0 .mod 2/

Kervaire.M/ 2 Z2 if n 	 1 .mod 2/

9
=

;
2 P2n:

b W P2n ! �2n�1; b.M/ D plumbing construction˙ D @M .
c W �n ! ˝

af r
n ; c.˙/ D Œ˙�2˝afr

n

(54)
The image of b is denoted bPnG�n�1. Then if˙ 2 bPn, then˙ D @V , where V
is a n-dimensional framed differentiable manifold. Furthermore, by considering
the mapping c as c W �n ! �n.G=O/, it sends an n-dimensional exotic sphere
˙ to its fibre-homotopy trivialized stable normal bundle.

(7) (Kervaire-Milnor’s braid n D 4k C 2 � 5). For n D 4k C 2 � 5 the exact
commutative braid diagram given in (53) becomes the one reported in (55).

(55)
K is the Kervaire invariant on the .4kC2/-dimensional stable homotopy group
of spheres 8

<

:

K W �4kC2.G/ D �s4kC2 D lim�!
j

�jC4kC2.Sj /

D ˝fr

4kC2 ! P4kC2 D Z2:

(56)

• K is the surgery obstruction: K D 0 iff every .4k C 2/-dimensional framed
differentiable manifold is framed cobordant to a framed exotic sphere.
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• The exotic sphere group�4kC2 fits into the exact sequence (57).

0 �� �4kC2
�� �4kC2.G/

K

�� Z2
�� ker.�4kC1.PL/!�4kC1.G// �� 0

(57)
• a W �4kC2.G=O/ ! Z2 is the surgery obstruction map sending a normal map
.f; b/ WM ! S4kC2 to the Kervaire invariant of M .

• b W P4kC2 D Z2 ! �4kC1 sends the generator 1 2 Z2 to the boundary b.1/ D
˙4kC1 D @W of the Milnor plumbing W of two copies of TS2kC1 using the

standard rank 2 quadratic form

�
1 1

0 1

�

over Z with Arf invariant 1. The subgroup

bP4kC2G�4kC1 represents the .4kC1/-dimensional exotic spheres˙4kC1 D @V
that are boundaries of framed .4k C 2/-dimensional differentiable manifolds V .
If k is such thatKD 0 (e.g., kD 2) then bP4kC2DZ2G�4kC1 and if˙4kC1D 1 2
bP4kC2, then the .4k C 2/-dimensional manifoldM DV S˙4kC1 D4kC2 is a PL
manifold without a differentiable structure.

• For any k � 1 the following propositions are equivalent.

(i) K W �4kC2.G/ D �s4kC2 ! Z2 is K D 0.
(ii) �4kC2 Š �4kC2.G/.

(iii) ker.�4kC1.PL/! �4kC1.G// Š Z2.
(iv) Every simply-connected .4k C 2/-dimensional Poincaré complex X with

a vector bundle reduction e�x W X!BO of the Spivak normal fibration
�x W X ! BG is homotopy equivalent to a closed .4k C 2/-dimensional
differentiable manifold.

Theorem 21 (Pontrjagin, Thom, Kervaire-Milnor).

(1) Let bPnC1 denote the set of those h-cobordism classes of homotopy spheres
which bound parallelizable manifolds.30 For n 6D 3, there is a short exact
sequence

0 �� bPnC1 �� �n �� �n=bPnC1 �� 0 (58)

where the left hand group is finite cyclic. Furthermore, there exists an homo-
morphism J W �n.SO/ ! �sn such that �n=bPnC1 injects into �sn=J.�n.SO//
via the Pontrjagin-Thom construction. When n 6D 2j � 2, the right hand group
is isomorphic to �sn=J.�n.SO//.

(2) If ˙n bounds a parallelizable manifold, it bounds a parallelizable manifold W
such that �j .W / D 0, j < n=2.

(3) For any k � 1, bP2kC1 D 0.

30 bPnC1 is a subgroup of �n. If #1;#2 2 bPnC1, with bounding parallelizable manifolds W1

and W2 respectively, then #1]#2 bounds the parallelizable manifold W1]W2, (commutative sum
along the boundary).
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Proof. For any manifoldM with stably trivial normal bundle with framing ', there
is a homotopy class p.M; '/, depending on the framed cobordism class of .M; '/.
If p.M/ � �sn is the set of all p.M; '/ where ' ranges over framings of the normal
bundle, it follows that 0 2 p.M/ iff M bounds a parallelizable manifold. (This
is a result by Pontrjagin and Thom.) In particular, the set p.Sn/ has an explicit
description. More precisely, the Whitehead J -homomorphism W �n.SO.r// !
�nCr .Sr/ is defined by J W .˛ W Sn ! SO.r// 7! .J.˛/ W SnCr ! Sr/ that
is the Pontrjagin-Thom map of Sn � SnCr , with the framing b˛ W Sn 
 Dr �
SnCr D Sn 
 Dr

S
DnC1 
 Sr�1, .x; y/ 7! .x; ˛.x/.y//. Therefore, the map

J.˛/ W SnCr ! Sr , is obtained by considering SnCr D .Sn
Dr/
S
.DnC1
Sr�1/

and sending .x; y/ 2 Dn 
 Dr to ˛.x/y 2 Dr=@Dr D Sr and DnC1 
 Sr�1 to
the collapsed @Dr . Then J W �n.SO/ D lim�!r

�n.SO.r// ! lim�!r
�nCr .Sr / D �sn is

the stable limit of the maps J.˛/ as r !1, and p.Sn/ is the image J.�n.SO// �
�sn D ˝

fr
n , hence one has that to ˛ there corresponds the framed cobordism class

.Sn; b˛/.

The characterization of global solutions of a PDE Ek � J kn .W /, in the category
M1, can be made by means of its integral bordism groups ˝Ek

p , p 2 f0; 1; : : : ;
n � 1g. Let us shortly recall some fundamental definitions and results about.

Definition 15. Let fi W Xi ! Ek, fi .Xi/ 	 Ni � Ek, i D 1; 2, be p-dimensional
admissible compact closed smooth integral manifolds of Ek. The admissibility
requires that Ni should be contained into some solution V � Ek , identified with a
n-chain, with coefficients in A. Then, we say that they areEk-bordant if there exists
a .p C 1/-dimensional smooth manifolds f W Y ! Ek , such that @Y DX1 t X2,
f jXi Dfi , i D 1; 2, and V 	 f .Y / � Ek is an admissible integral manifold of
Ek of dimension .p C 1/. We say that Ni , i D 1; 2, are Ek-bordant if there exists a
.pC1/-dimensional smooth manifolds f W Y ! J k

mjn.W /, such that @Y DX1tX2,
f jXi Dfi , i D 1; 2, and V 	 f .Y / � J kn .W / is an admissible integral manifold of
J kn .W / of dimension .p C 1/. Let us denote the corresponding bordism groups by
˝Ek
p and˝p.Ek/, p 2 f0; 1; : : : ; n� 1g, called respectively p-dimensional integral

bordism group of Ek and p-dimensional quantum bordism group of Ek . Therefore
these bordism groups work, for pD .n � 1/, in the category of manifolds that are
solutions of Ek, and .J kn .W /;Ek/. Let us emphasize that singular solutions of Ek
are, in general, (piecewise) smooth manifolds into some prolongation .Ek/Cs �
J kCs
n .W /, where the set, ˙.V /, of singular points of a solution V is a non-where

dense subset of V . Here we consider Thom-Boardman singularities, i.e., q 2 ˙.V /,
if .�k;0/�.TqV / 6Š TqV . However, in the case where Ek is a differential equation
of finite type, i.e., the symbols gkCsD 0, s � 0, then it is useful to include also in
˙.V /, discontinuity points, q; q0 2 V , with �k;0.q/D�k;0.q0/D a 2 W , or with
�k.q/D�k.q0/Dp 2 M , where �k D� ı �.k; 0/ W J kn .W / ! M . We denote
such a set by ˙.V /S , and, in such cases we shall talk more precisely of singular
boundary of V , like .@V /S D @V n ˙.V /S . Such singular solutions are also called
weak solutions.
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Remark 3. Let us emphasize that weak solutions are not simply exotic solutions,
introduced in Mathematical Analysis in order to describe “non-regular phenomena”.
But their importance is more fundamental in a theory of PDE’s. In fact, by means
of such solutions we can give a full algebraic topological characterization of PDE’s.
This can be well understood in Theorem 22 below, where it is shown the structural
importance played by weak solutions. In this respect, let us, first, define some
notation to distinguish between some integral bordisms group types.

0

��

0

��

0

��

0 �� KEk
n�1;w=.s;w/

��

�� KEk
n�1;w

��

�� KEk
n�1;s;w

��

�� 0

0 �� KEk
n�1;s

��

�� ˝Ek
n�1

��

�� ˝Ek
n�1;s

��

�� 0

0 �� ˝Ek
n�1;w

��

�� ˝Ek
n�1;w

��

�� 0

0 0

(59)

Definition 16. Let ˝Ek
n�1, (resp. ˝Ek

n�1;s , resp. ˝Ek
n�1;w), be the integral bordism

group for .n � 1/-dimensional smooth admissible regular integral manifolds con-
tained inEk , borded by smooth regular integral manifold-solutions, (resp. piecewise-
smooth or singular solutions, resp. singular-weak solutions), of Ek .

Theorem 22. Let Ek � J kn .W / be a PDE on the fiber bundle � W W ! M , with
dim.W / D mC n and dimM D n.

(1) One has the exact commutative diagram (59). Therefore, one has the canonical
isomorphisms:

8
<

:

K
Ek
n�1;w=.s;w/ Š KEk

n�1;sI ˝
Ek
n�1=K

Ek
n�1;s Š ˝Ek

n�1;sI

˝
Ek
n�1;s=K

Ek
n�1;s;w Š ˝Ek

n�1;wI ˝Ek
n�1=K

Ek
n�1;w Š ˝Ek

n�1;w:
(60)

If Ek is formally integrable, then one has the following isomorphisms:
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˝
Ek
n�1 Š ˝E1

n�1 Š ˝E1

n�1;sI ˝
Ek
n�1;w Š ˝E1

n�1;w: (61)

(2) Let Ek � J kn .W / be a quantum super PDE that is formally integrable, and
completely integrable. We shall assume that the symbols gkCs 6D 0, s D 0; 1.
(This excludes the case k D 1.) Then one has the following isomorphisms:
˝Ek
p;s Š ˝Ek

p;w Š ˝p.Ek/, with p 2 f0; : : : ; n � 1g.
(3) Let Ek � J kn .W / be a PDE, that is formally integrable and completely

integrable. One has the following isomorphisms: ˝Ek
n�1;w Š ˝n�1.Ek/ Š

˝
EkCh

n�1;w Š ˝E1

n�1;w Š ˝n�1;w.EkCh/ Š ˝n�1.E1/.

Proof. See [30, 40].

In order to distinguish between manifolds V representing singular solutions, where
˙.V / has no discontinuities, and integral manifolds where ˙.V / contains discon-
tinuities, we can also consider “conservation laws” valued on integral manifolds N
representing the integral bordism classes ŒN �Ek 2 ˝Ek

p .

Definition 17. Set
8
<̂

:̂

I.Ek/ 	Lp�0
˝p.Ek/\ d�1.C˝pC1.Ek//

d˝p�1.Ek/˚ fC˝p.Ek/ \ d�1.C˝pC1.Ek//g
	Lp�0 I.Ek/p:

(62)

Here C˝p.Ek/ denotes the space of all Cartan quantum p-forms on Ek . Then
we define integral characteristic numbers of N , with ŒN �Ek 2 ˝Ek

p , the numbers
i ŒN � 	< ŒN �Ek ; Œ˛� >2 R, for all Œ˛� 2 I.Ek/

p .

Then, one has the following theorems.

Theorem 23. Let us assume that I.Ek/p 6D 0. One has a natural homomorphism:

(
j
p
W ˝Ek

p ! Hom.I.Ek/
pIR/; ŒN �Ek 7! j

p
.ŒN �Ek /;

j
p
.ŒN �Ek /.Œ˛�/ D

R
N
˛ 	< ŒN �Ek ; Œ˛� > :

(63)

Then, a necessary condition thatN 0 2 ŒN �Ek is the following: i ŒN � D i ŒN 0�, 8Œ˛� 2
I.Ek/

p. Furthermore, if N is orientable then above condition is sufficient also in
order to say that N 0 2 ŒN �Ek .

Proof. See [27, 28, 30, 31].

Corollary 24. Let Ek � J kn .W / be a PDE. Let us consider admissible
p-dimensional, 0 � p � n � 1, orientable integral manifolds. Let N1 2 ŒN2�Ek 2
˝Ek
p , then there exists a .pC1/-dimensional admissible integral manifold V � Ek ,

such that @V D N1tN2, where V is without discontinuities iff the integral numbers
of N1 and N2 coincide.
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Above considerations can be generalized to include more sophisticated solutions
of PDEs.

Definition 18. LetEk � J kn .W / be a PDE and let B be an algebra. Let us consider
the following chain complex (bar chain complex of Ek): f NC	.Ek IB/; @g, induced
by B on the corresponding bar chain complex of Ek , i.e., f NC	.Ek IB/; @g. (See
[27, 28, 30].) More precisely NCp.Ek IB/ is the free two-sided B-module of formal
linear combinations with coefficients in B ,

P
�ici , where ci is a singular p-chain

f W 4p ! Ek , that extends on a neighborhood U � R
pC1, such that f on U is

differentiable and Tf .4p/ � Ekn, where Ekn is the Cartan distribution of Ek.

Theorem 25. The homology NH	.EkIB/ of the bar chain complex of Ek is isomor-
phic to (closed) bar integral singular .p/-bordism groups, with coefficients in B , of
Ek: B N̋ Ekp;s Š NHq.Ek IB/ Š . N̋ Ekp;s ˝R B/, p 2 f0; 1; : : : ; n � 1g. (If B D R we
omit the apex B). The relation between closed bordism and bordism, is given by the
following unnatural isomorphism31:

Bor	.Ek IB/ Š B˝	;s .Ek/
M

Cyc	.Ek IB/: (64)

Proof. It follows from above results, and the following exact commutative diagram
naturally associated to the bar quantum chain complex of Ek .

(65)

where NB	.Ek IB/D ker.@j NC�.EkIB//, and NZ	.Ek IB/D im .@j NC�.EkIB//, NH	.EkI
B/D NZ	.Ek IB/= NB	.EkIB/. Furthermore,

31Note that if X is a compact space with boundary @X , the boundary of X � I , I � Œ0; 1� � R,
is @.X � I / D .X � f0g/S.@X � I /

S
.X � f1g/ � X0

S
P
S
X1, with X0 � X � f0g,

X1 � X � f1g, P � @X � I . One has @P D .@X � f0g/S.@X � f1g/ D @X0
S
@X1. On

the other hand, whether X is closed, then @.X � I / D X0
S
X1. Furthermore we shall denote

by ŒN �Ek the equivalence class of the integral admissible bordism of N � Ek , even if N is not
necessarily closed. So, if N is closed one has ŒN �Ek 2 B˝

Ek
�;s , and if N is not closed one has

ŒN �Ek 2 NB�.EkIB/.
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8
ˆ̂
<

ˆ̂
:

b 2 Œa� 2 NBor	.EkIB/) a � b D @c; c 2 NC	.EkIB/;
b 2 Œa� 2 NCyc	.Ek IB/) @.a � b/ D 0;
b 2 Œa� 2 A˝	;s.Ek/)

�
@a D @b D 0
a � b D @c; c 2 NC	.Ek IB/

�

:

Furthermore, one has the following canonical isomorphism: B˝	;s.Ek/ Š NH	.EkI
B/. As NC	.Ek IB/ is a free two-sided projective B-module, one has the unnatural
isomorphism: NBor	.EkIB/ Š B˝	;s.Ek/

L NCyc	.EkIB/.
The spaces of conservation laws of PDEs, identify Hopf algebras. (Hopf algebras

considered here are generalizations of usual Hopf algebras [28].)

Definition 19. The full space of p-conservation laws, (or full p-Hopf algebra), of

Ek is the following one: Hp.Ek/ 	 R
˝
Ek
p . We call full Hopf algebra, of Ek , the

following: Hn�1.E1/ 	 R
˝
E1

n�1 .

Definition 20. The space of (differential) conservation laws of Ek � J kn .W /, is
Cons.Ek/ D I.E1/n�1.

Theorem 26. The full p-Hopf algebra of a PDE Ek � J kn .W / has a natural struc-
ture of Hopf algebra (in extended sense). Furthermore, the space of conservation
laws of Ek has a canonical representation in Hn�1.E1/.

Proof. See [27, 28].

Theorem 27. Set: Hn�1.Ek/ 	 R
˝
Ek
n�1 , Hn�1;s.Ek/ 	 R

˝
Ek
n�1;s , Hn�1;w.Ek/ 	

R
˝
Ek
n�1;w. One has the exact and commutative diagram reported in (66), that define

the following spaces: KEk
n�1;w=.s;w/, KEk

n�1;w, KEk
n�1;s;w, KEk

n�1;s .

0 0 0

0 KEk
n�1;w=.s;w/��

��

KEk
n�1;w��

��

KEk
n�1;s;w��

��

0��

0 KEk
n�1;s��

��

Hn�1.Ek/��

��

Hn�1;s.Ek/��

��

0��

0

��

Hn�1;w.Ek/��

��

Hn�1;w.Ek/��

��

0��

0

��

0

��

(66)
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More explicitly, one has the following canonical isomorphisms:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

KEk
n�1;w=.s;w/ Š KK

Ek
n�1;s I

KEk
n�1;w=KEk

n�1;s;w Š KK
Ek
n�1;w=.s;w/ I

Hn�1.Ek/=Hn�1;s.Ek/ Š KEk
n�1;sI

Hn�1.Ek/=Hn�1;w.Ek/ Š KEk
n�1;w

Š Hn�1;s.Ek/=Hn�1;w.Ek/ Š KEk
n�1;s;w:

(67)

Furthermore, under the same hypotheses of Theorem 4.44(2) one has the
following canonical isomorphism: Hn�1;s.Ek/ Š Hn�1;w.Ek/. Furthermore, we can
represent differential conservation laws of Ek in Hn�1;w.Ek/.

Proof. The proof follows directly for duality from the exact commutative dia-
gram (59).

Definition 21. We define crystal obstruction of Ek the following quotient algebra:
cry.Ek/ 	 Hn..Ek/1/=R˝n . We say that Ek is a 0-crystal PDE if cry.Ek/ D 0.

Remark 4. An extended 0-crystal equation Ek � J kn .W / does not necessitate to be
a 0-crystal PDE. In fact Ek is an extended 0-crystal PDE if˝Ek

n;w D 0. This does not
necessarily imply that ˝Ek

n D 0.

Corollary 28. Let Ek � J kn .W / be a 0-crystal PDE. Let N0;N1 � Ek be two
closed compact .n � 1/-dimensional admissible integral manifolds of Ek such that
X 	 N0 t N1 2 Œ0� 2 ˝n. Then there exists a smooth solution V � Ek such that
@V D X . (See also [34–37, 40].)

Let us consider, now, the interaction between surgery and global solutions in
PDE’s of the category M1. Since the surgery is a proceeding to obtain manifolds
starting from other ones, or eventually from ¿, in any theory of PDE’s, where we
are interested to characterize nontrivial solutions, surgery is a fundamental tool to
consider. We have just seen that integral bordism groups are the main structures
able to characterize global solutions of PDE’s. On the other hand surgery is strictly
related to bordism groups, as it is well known in algebraic topology. Therefore, in
this section, we shall investigate as integral surgery interacts with integral bordism
groups.

Definition 22. Let � W W ! M be a smooth fiber bundle of dimension m C n
over a n-dimensional manifold M . Let Ek � J kn .W / be a PDE of order k for n-
dimensional submanifolds of W . Let N � Ek be an admissible integral manifold
of dimension p 2 f0; 1; � � � ; n� 1g. Therefore, there exists a solution V � Ek such
thatN � V . An admissible integral i -surgery, 0 � i � n�1, onN is the procedure
of constructing a new p-dimensional admissible integral manifold N 0:
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N 0 	 N n Si 
Dp�1�i [

Si�Sp�2�i

DiC1 
 Sp�2�i (68)

such thatDiC1
Sp�2�i � V . Here Y is the closure of the topological subspace
Y � X , i.e., the intersection of all closed subsets Z � X , with Y � Z.

Theorem 29. Let N1;N0 � Ek be two integral compact (non-necessarily closed)
admissible p-dimensional submanifolds of the PDE Ek � J kn .W /, such that there
is an admissible .p C 1/-dimensional integral manifold V � Ek , such that @V D
N0tN1. Then it is possible to identify an integral admissible manifoldN 0

1, obtained
from N1 by means of an integral i -surgery, iff N 0

1 is integral bording with N0, i.e.,
N 0
1 2 ŒN0�Ek .

Proof. As it is well known N 0
1 is bording with N0, i.e., there exists a .p C 1/-

dimensional manifold Y , with @Y D N0 t N 0
1. More precisely we can take Y D

N0 
 I SDiC1 
Dp�1�i . By the way, in order N 0
1 should be integral admissible,

it is necessary that should be contained into a solution passing from N1. Then N 0
1 is

integral bording with N1, hence it is also integral bording with N0.

Theorem 30 (Integral h-cobordism in Ricci flow PDE).
The generalized Poincaré conjecture, for any dimension n � 1 is true, i.e., any

n-dimensional homotopy sphere M is homeomorphic to Sn: M � Sn.
For 1 � n � 6 one has also that M is diffeomorphic to Sn: M Š Sn. But for

n � 7, it does not necessitate thatM is diffeomorphic to Sn. This happens when the
Ricci flow equation, under the homotopy equivalence full admissibility hypothesis,
(see below for definition), becomes a 0-crystal.

Moreover, under the sphere full admissibility hypothesis, the Ricci flow equation
becomes a 0-crystal in any dimension n � 1.

Proof. Let us first consider the following lemma.

Lemma 14. Let N0;N1 � .RF / be two space-like connected smooth compact
Cauchy manifolds at two different instant t0 6D t1, identified respectively with two
different Riemannian structures .M; 	0/ and .M; 	1/. Then one has N0 Ñ N1.
Proof. In fact this follows directly from the fact the diffeomorphisms .M; 	i / Š Ni ,
i D 0; 1, and from the fact that any Riemannian metric on M can be continuously
deformed into another one. More precisely we shall prove that there exists two
continuous functions f W N0 ! N1 and h W N1 ! N0, such that h ı f ' 1N0
and f ı h ' 1N1 . Realy we can always find homotopies F;G W I 
M ! M , that
continuosly deform 	1 into 	0 and vice versa. More precisely F0 D idM ,G0 D idM ,
F �
1 	1 D 	0, and G�

1 	0 D 	1. Therefore, we get G1 ı F1 ' G0 ı F0 D 1M and
F1 ıG1 ' F0 ıG0 D 1M . Thus we can identify f with F1 and h with G1.

Lemma 15. Let N0;N1 � .RF /C1 be two space-like, smooth, compact closed,
homotopy equivalent Cauchy n-manifolds, corresponding to two different times
t0 6D t1. Then N0 and N1, have equal all the the integral characteristic numbers.
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Proof. Since we have assumedN0 Ñ N1, there are two mappings f W N0 ! N1 and
h W N1! N0, such that hıf ' 1N0 and f ıh ' 1N1 . These mappings for functorial
property induce canonical homomorphisms between the groups �p.Ni /, Hp.Ni/,
Hp.Ni/, i D 0; 1, that we shall simply denote by f� and h� or f � and h� according
to respectively the direct or inverse character of functoriality. Then one has the
following properties f� ı h� D 1, h� ı f� D 1 and similarly for the controvariant
cases, i.e., f � ı h� D 1, h� ı f � D 1. These relations means that the induced
morphisms f� and f � are isomorphisms with inverse h� and h� respectively. In
other words one has the isomorphisms �p.N0/ Š �p.N1/, Hp.Ni / Š Hp.Ni/,
Hp.Ni/ Š Hp.Ni /. As a by-product we get also the commutative diagram reported
in (69).

Hn.N0IR/ 
Hn.N0IR/

o.f�;.f
�1/�/

<;>

����
���

���
���

���

R

Hn.N1IR/ 
Hn.N1IR/
<;>

��������������

(69)

SinceHn.Ni IR/ Š R Š Hn.Ni IR/, i D 0; 1, let the isomorphism f� be identified
with a non-zero number � 2 R n f0g, then .f �1/� D 1=�, and we get that <
f�ŒN0�; .f �1/�˛ >D< �;�=� >D � where � is the number that represents the
n-differential form ˛. On the other hand one has < ŒN0�; ˛ >D 1:� D �.

Lemma 16. Under the same hypotheses of Lemma 15, let us add that we assume
admissible orientable Cauchy manifolds only. Then N0 2 ŒN1� 2 ˝

.RF /C1

n . In
other words, N D @V , where V is a smooth solution, iff < Œ˛�; ŒN � >D 0 for all
the conservation laws ˛.

Proof. If we assume admissible only orientable Cauchy manifolds, then the canon-
ical homomorphism jn W ˝.RF /C1

n ! .I.RF /nC1/� is injective, (see [27]),

therefore N0 2 ŒN1� 2 ˝.RF/C1

n iff N0 and have equal all integral characteristic
numbers.

Since Lemma 16 is founded on the assumption that the space of conservation
laws of .RF / is not zero, in the following lemma we shall prove that such an
assumption is true.

Lemma 17. The space I.RF /nC1 Š E0;n
1 of conservation laws of the .RF / is not

zero. In fact any differential n-form given in (70) is a conservation law of .RF /.32

32E
0;n
1 is the spectral term, in the Cartan spectral sequence of a PDE Ek � J kn .W /, just

representing the conservation laws space of Ek . (See e.g., [27, 28, 31].)
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! D Tdx1 ^ � � � ^ dxn CXp.�1/pdt ^ dx1 ^ � � � ^bdxp ^ � � � ^ dxn (70)

with

�
T D gij 'ij
Xp D  R �Rij .g/ 'ij � Rij .'/ gij

	
dxp C cp

�

W
�
'ij ;t � Rij .'/ D 0
gij;t C Rij .g/ D 0

�

:

(71)
cp 2 R are arbitrary constants and 'ij , 1 � i; j � n, are functions on R 
M ,
symmetric in the indexes, solutions of the equation given in (71).

Proof. Let us prove that d!jV D 0 for any solution V of .RF /. In fact, by a direct
calculation we get

d! D 
.gij;t C Rij .g//'ij C gij .'ij ;t � Rij .'//
�
dt ^ dx1 ^ � � � ^ dxn: (72)

Therefore, the conservation laws in (70) are identified with the solutions of the PDE
given in (71) for 'ij . This is an equation of the same type of the Ricci flow equation,
hence its set of solutions is not empty.

Now, let M belong to the same integral bordism class of Sn in .RF /: M 2
ŒSn� 2 ˝.RF/

n . It follows from Theorems 3 and 2, that M is necessarily homeomor-
phic to Sn. However, if n � 4, the smooth solution V such that @V D M t Sn
does not necessitate to be a trivial h-cobordism. This happens iff the homotopy
equivalence f W M Ñ Sn is such that f ' 1Sn . (See Theorem 7.) This surely
is the case at low dimensions n D 1; 2; 3; 5; 6, and also for n D 4, if the
smooth Poincaré conjecture holds. But for n � 7 an homotopy sphere may have
different structures with respect to this property. (See Table 8, Lemmas 10 and
11.) In fact it is well known that there are homotopy spheres characterized by
rational Pontrjagin numbers. Since rational Pontrjagin classes pq 2 H4q.M IQ/ are
homeomorphic invariants, such manifolds cannot admit a differentiable structure,
taking into account the fact that the signature is a topological invariant. Such
homotopy spheres are obtained by gluing a disk Dn, along its boundary Sn�1, with
the boundary of a disk-Dq-fiber bundle over a sphere Sm, E ! Sm, such that
q D n �m. When the .n � 1/-dimensional boundary @E is diffeomorphic to Sn�1,
gives to eE 	 E

S
Dn a differentiable structure. But whether @E Ð Sn�1, ˙n

cannot, in general, have a differentiable structure, since it is characterized by rational
Pontrjagin numbers. Therefore there are exotic spheres, (for example˙n�1 	 @E),
that are homeomorphic, but not diffeomorphic to Sn�1. In such cases the solution V
of the Ricci flow equation such that @V D ˙n�1 t Sn�1, cannot be, in general, a
trivial h-cobordism.

By conclusion we get that not all n-dimensional homotopy spheres M can,
in general, belong to the same integral boundary class of ŒSn� 2 ˝

.RF/
n , even

if there exist singular solutions V � .RF / such that @V D M t Sn. In fact,
it does not necessitate, in general, that V should be a trivial h-cobordism, i.e.,
that the homotopy equivalence between M and Sn should be a diffeomorphism
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Fig. 4 Neck-pinching singular solutions type, V , @V D M t Sn, in Ricci flow equations, with
singular points p, q in (a) and r in (b). In (b) is reported also a smooth solution V 0, bording M
and Sn as well as a neck-pinching singular solution V bording the same manifolds

of Sn isotopic to the identity. This has, as a by-product, that in general M is only
homeomorphic to Sn but not diffeomorphic to Sn. In order to better understand
this aspect in the framework of PDE’s algebraic topology, let us first show how
solutions with neck-pinching singular points are related to smooth solutions. Recall
the commutative diagram in Theorem 2.24 in [27], here adapted in (73) to .RF /C1
and in dimension p D n.

0

��

˝
.RF/C1

n

jn

��

in
�� ˝

.RF/C1

n;s Š NHn..RF /C1IR/

��

0 �� .I..RF /C1//� �� . NHn..RF /C1IR//� �� 0

(73)
There NHn..RF /C1IR/ is the n-dimensional bar de Rham cohomology of .RF /C1.
The isomorphism ˝

.RF /C1

n;s Š NHn..RF /C1IR/ is a direct by-product of the
exact commutative diagram in Definition 4.8(3) in [28]. Then, taking into account
that in solutions of .RF /C1 cannot be present Thom-Boardman singularities, it
follows that solutions bording smooth Cauchy manifolds in the bordism classes of
3

˝
.RF/C1

n 	 in.˝
.RF/C1

n / G ˝
.RF/C1

n;s , can have singularities of neck-pinching
type. (See Fig. 4a.)

From Corollary 2.5 in [27] it follows that if M is an homotopy sphere belonging

to the integral bordism class ŒSn� 2 3

˝
.RF/C1

n , one has surely M t Sn D @V 0,
for some smooth solution V 0 of .RF /, but can be also M t Sn D @V for some
solution V � .RF /C1 having some neck-pinching singularity. (See Fig. 4b.) In
general V cannot be considered isotopic to V 0. HoweverM is diffeomorphic to Sn,
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(the diffeomorphism is that induced by the smooth solution V 0), and all the singular
points, in the neck-pinching singular solutions, bordingM with Sn, are “solved” by
the smooth bordism V 0. Let us also emphasize that if an n-dimensional homotopy
sphere M 2 ŒSn� 2 ˝.RF /C1

n , i.e., there exists a smooth solution V � .RF /C1
such that @V DM tSn, then the characteristic flow on V is without singular points,
hence from Theorem 2 it follows that V ŠM 
I , and V Š Sn
I , henceM Š Sn.
If this happens for all n-dimensional homotopy sphere, then�n D 0 and vice versa.
However, it is well known that there are homotopy spheres of dimensions n � 7

for the which �n 6D 0. (For example the Milnor spheres.) This is equivalent to say
that �0.DiffC.Sn�1// 6D 0, since �n Š �0.DiffC.Sn�1// (Smale). This happens
when there are homotopy spheres that bound non-contractible manifolds. In fact, if
there exists a trivial h-bordism V bording Sn with M , then W D V

S
Sn D

nC1 Š
DnC1 and @W D M . However, since the conservation laws of .RF / depend on
a finite derivative order (second order), the fact that all n-dimensional homotopy
spheres have the same integral characteristic numbers of the sphere Sn, implies
that there are smooth integral manifolds bording them at finite order. There the
symbols of the Ricci flow equation, and its finite order prolongations, are not trivial
ones, hence in general such solutions present Thom-Boardman singular points.
As a by-product of Theorem 2.25 in [27], (see also [28]), and Theorems 2.1,
2.12 and 3.6 in [30] between such solutions, there are ones that are not smooth,
but are topological solutions inducing the homeomorphisms between M and Sn:
M � Sn. Therefore, if we consider admissible in .RF / only space-like Cauchy
integral manifolds, corresponding to homotopy spheres, (homotopy equivalence full
admissibility hypothesis), then one has the short exact sequence (74).

0 �� K.RF/
n;s

�� ˝.RF /
n

�� ˝.RF/
n;s D 0 �� 0 (74)

We get

˝.RF /
n Š K.RF/

n;s D fŒM �jM D @V; V D singular solution of .RF /g (75)

and M 2 ŒSn� 2 ˝.RF/
n iff M Š Sn. Furthermore, two n-dimensional homotopy

spheres 0˙n and ˙n belong to the same bordism class in ˝.RF/
n iff 0˙n Š ˙n.

Therefore we get the following canonical mapping �n ! ˝
.RF/
n , Œ˙n��n 7!

Œ˙n�
˝
.RF/
n

, such that 0 f2 �ng 7! ŒSn�
˝
.RF/
n

. (For n 6D 4, one can take �n D �n.)
This mapping is not an isomorphism. Therefore, in the full admissibility hypothesis,
and in the case that �n D 0, we get that the Ricci flow equation becomes a 0-crystal
PDE, so all homotopy spheres are diffeomorphic to Sn. This is the case, for example,
of n D 3, corresponding to the famous Poincaré conjecture. Finally, if we consider
admissible in .RF/ only space-like Cauchy integral manifolds, corresponding to
manifolds diffeomorphic to spheres, (sphere full admissibility hypothesis), then
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˝
.RF/
n Š K

.RF/
n;s Š ˝

.RF/
n;s D 0 and one has cry.RF/ D 0, i.e., .RF/ becomes a

0-crystal for any dimension n � 1.33
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37. A. Prástaro, Extended crystal PDE’s stability. II: the extended crystal MHD-PDE’s. Math.

Comput. Model. 49(9–10), 1781–1801 (2009)
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41. A. Prástaro, Quantum extended crystal super PDEs (2009). http://arxiv.org/abs/0906.1363
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Topology at a Scale in Metric Spaces

Nat Smale

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract This is an expository article that discusses some developments in joint
work with Laurent Bartholdi, Thomas Schick and Steve Smale in [1] and also in
[10]. Recently, in various contexts, there has been interest in the topology of certain
spaces (even finite data sets) at a “scale”, for example, in reconstruction of manifolds
or other spaces from a discrete sample as in [8] and [4], and also in connection with
learning theory [9,11] and [7]. In persistence homology, [3,5] mathematicians have
been computing topological features at a range of scales, to find the fundamental
structures of spaces and data sets. See also [2]. In this paper, we will first give an
explicit description of homology at a scale, for a compact metric space. We will then
describe a Hodge theory for the corresponding cohomology when the space has a
Borel probability measure.

1 The Čech Complex of a Metric Space at a Fixed Scale

Let .X; d/ be a compact metric space. The closed ball of radius r > 0 centered
at p in X is denoted by Br.p/ D fq 2 X W d.p; q/ � rg. Now, let ˛ > 0 be any
positive number. This will be what we call the scale, and the goal is to in some sense
understand the homology of X at the scale ˛. We will want to consider two points
to be in some sense connected, if they are close relative to ˛. For k � 0 an integer,
we will denote by XkC1, the kC 1-fold Cartesian product of X , that is all points of
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the form .x0; : : : xk/ where xi 2 X for each i . We will denote the diagonal of XkC1
by �kC1. Thus �kC1 will denote all points in XkC1 of the form .p; : : : ; p/ where
p 2 X . We will make XkC1 into a metric space by defining the distance between
two points x D .x0; : : : ; xk/ and y D .y0; : : : ; yk/ in X` by

dkC1.x; y/ D maxfd.xi ; yi / W i D 0; : : : ; kg

The distance from a point x 2 XkC1 to �kC1 is just

dist.x;�/ D minfdkC1.x; y/ W y 2 �kC1g

Thus, for example if x D .x0; : : : ; xk/ 2 XkC1 satisfies dist.x;�kC1/ � ˛, then
there exists (by compactness ofXkC1) q D .t; : : : ; t/ 2 �kC1 with dkC1.x; q/ � ˛.
This is equivalent to saying there is a t 2 X such that d.xi ; t/ � ˛ for i D 0; : : : ; k.
Another way of stating this is that dist.x;�/ � ˛ if and only if \kiD0B˛.xi / is non-
empty. Of fundamental importance in scaled homology is the closed ˛ neighborhood
of the diagonal

U kC1
˛ D fx 2 XkC1 W dist.x;�kC1/ � ˛g

Thus, for a point p D .p0; : : : ; pk/ 2 U kC1
˛ , there exists t 2 \kiD0B˛.pi /. Any

such t is sometimes called a “witness” for p or a witness for p0; : : : ; pk . For k D 0,
U kC1
˛ D X .
We will consider points in U kC1

˛ as k-dimensional simplices. Thus a point
.x0; x1/ 2 U 2

˛ will be thought of as an edge (a 1-dimensional simplex) between
x0 and x1, and a point .x0; x1; x2/ 2 U 3

˛ will be thought of as a triangle
(a 2-dimensional simplex) with vertices x0; x1 and x2. Of course, if .x0; : : : ; xk/ 2
U kC1
˛ , and � is any permutation of of the numbers 0; 1; : : : ; k, then, intuitively,
.x�.0/; : : : ; x�.k// should be the same simplex, as it has the same vertices. However,
it will be important to impose an orientation on our simplices. We will thus think
of a point .x0; x1/ in U 2

˛ as an edge with a direction from x0 towards x1. In
general k-simplices will have two possible orientations. Formally, we will put an
equivalence relation � on U kC1

˛ as follows. Two points x D .x0; : : : ; xk/ and
y D .y0; : : : ; yk/ in U kC1

˛ are equivalent, x � y, if there is an even permutation
(the composition of an even number of transpositions) � on the numbers 0; : : : ; k
such that .y0; : : : ; yk/ D .x�.0/; : : : ; x�.k//. Thus .x0; x1/ and .x1; x0/ will be in
different equivalence classes. The points .x0; x1; x2/ and .x2; x0; x1/ are in the same
equivalence class in U 3

˛ but .x0; x1; x2/ and .x2; x1; x0/ are in different equivalence
classes. We will denote the set of equivalence classes in U kC1

˛ by OU kC1
˛ and the

equivalence class of a point .x0; : : : ; xk/ will be denoted by Œx0; : : : ; xk�, and these
will be referred to as simplices (or more precisely as k-dimensional simplices at
scale ˛). If Œx0; : : : ; xk� 2 OU kC1

˛ such that xi D xj for some i ¤ j , then Œx0; : : : ; xk�
will be called a degenerate simplex. Of course, elements in OU 1

˛ are just vertices
(points in X ). Note that if Œx0; : : : ; xk� 2 OU kC1

˛ , then if we delete k � j (j < k)
vertices to get the point .xi0 ; : : : ; : : : ; xij / then Œxi0 ; : : : ; : : : ; xij � is in U jC1

˛ because
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if t is a witness for .x0; : : : ; xk/, it is also a witness for .xi0 ; : : : ; : : : ; xij /. Thus, the

collection OU 1
˛ ;
OU 2
˛ ; : : : gives rise to an abstract simplicial complex on X .

We will now construct a vector space out of the simplices OU kC1
˛ . For k � 0, the

set of k chains, denoted by Ck;˛.X/ is the set of all formal linear combinations
over R of elements in OU kC1

˛ . For a simplex � D Œx0; : : : ; xk� we define it’s
additive inverse to be �� D Œx�.0/; : : : ; x�.k/� where � is any odd permutation
of 0; : : : ; k. Thus for example, Œx0; x1� D �Œx1; x0�. With this rule, it is easy to
check that Ck;˛.X/ can be made into a vector (linear) space, with addition and
scalar multiplication carried out in the obvious way. Of course the requirement that
Œx0; : : : ; xk� D �Œx�.0/; : : : ; x�.k/� forces degenerate simplices to be the zero element
of Ck;˛.X/.

Remark 1. Instead of defining a chain to be a linear combination of simplices
over R, one sometimes defines a chain to simply be a sum of simplices. This
makes Ck;˛.X/ into an abelian group. That is, elements in Ck;˛.X/ are then linear
combinations of elements in OU kC1

˛ with coefficients that are in Z (the integers). This
makes certain aspects of the theory a little simpler, and others a little more difficult
(the structure of abelian groups is in general more complicated than vector spaces).

Finally, the Čech complex of X at scale ˛, denoted by C˛.X/, is just the union
[k�0C`;˛.X/. This is a simplicial complex with the usual simplicial boundary
operator defined as follows. For Œx0; : : : ; xk� 2 OU kC1

˛ we define

@kŒx0; : : : ; xk� D
kX

iD0
.�1/i Œx0; : : : ; Oxi ; : : : ; xk�

where Oxi indicates that xi is deleted. We will usually omit the k in the notation.
Thus for � 2 OU kC1

˛ , @� 2 Ck�1;˛.X/. One can easily check that for � 2 OU kC1
˛ ,

@.��/ D �@.�/, and so @ extends to a linear map

@ W Ck;˛.X/! Ck�1;˛.X/

An easy computation shows that @k�1 ı @k D 0 or more simply @2 D 0 and we have
the chain complex

� � � @kC1���! Ck;˛.X/
@k�! Ck�1;˛.X/

@k�1���! � � �C0;˛.X/ @0�! 0 (1)

We will denote byBk;˛ the image of @kC1 (the k-boundaries), andZk;˛ the kernel
of @k (the k-cycles), both of which are linear subspaces of Ck;˛.X/. Since @2 D 0,
Bk;˛ � Zk;˛ , and the quotient space

Hk;˛.X/ D Zk˛

Bk;˛
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is called the homology of X at scale ˛ and degree k. Thus, two cycles are
equivalent (represent the same homology class) if their difference is a boundary
(an element of Bk;˛). The zero element of Hk;˛.X/ is represented by any element
of Bk;˛ . A non-trivial cycle thus represents a “topological feature” of X that we
can observe at scale ˛. It is shown in [1] that H1;˛.X/ is always finite dimensional,
though examples of X are given (due to Anthony Baker) where H2;˛.X/ is infinite
dimensional for specific scales.

Example 1. Let X be the set of 12 points on the unit circle �=6 radians apart
fe n�i6 W n D 0; 1; : : : ; 11g equipped with metric induced as a subspace of R2. We will
investigate H1;˛.X/. To simplify notation, let en D e

n�i
6 . The distance between

adjacent points en; enC1 is
p
2 �p3, and if ˛ <

p
2 �p3, thenH1;˛.X/ D 0 since

there are no non-trivial 1-chains. No two distinct en, em have a common witness. For
˛ D

p
2 �p3, the following 1-chain

� D
10X

nD0
Œen; enC1�C Œe11; e0�

is easily verified to be a cycle, and in fact one can show that it is non-trivial. Each
Œen; enC1� has en and enC1 as witnesses. More simply, the following chain

	 D
8X

nD0
Œen; enC2�C Œe10; e0�

is also a non-trivial cycle, with enC1 serving as a witness for Œen; enC2�. If we define

� D
8X

nD0
Œen; enC1; enC2�C Œe10; e11; e0�

then � 2 C2;˛.X/, since enC1 is a witness for Œen; enC1; enC2�, and one can easily
check that @� D ��	 . Thus � and 	 represent the same homology class at scale ˛.
For ˛ large enough, these cycles become homologically trivial. In fact if ˛ � p3
(the distance between en and enC4) one can easily check that

	 D @.Œe0; e2; e4�C Œe4; e6; e8�C Œe8; e10; e0�C Œe0; e4; e8�/

For any compact metric space, Hk;˛.X/ D 0 for k > 0, when ˛ is big enough, for
example if X is contained in a ball of radius ˛.

Note that if X is any finite metric space as in a data set, all of the spaces Ck;˛,
Zk;˛ and Bk;˛ are finite dimensional and the homology at scale ˛ can be computed
with linear algebra.
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2 Cohomology and Hodge Theory

It is often useful to consider the cohomology of a space instead of homology, as there
are additional structures that can give more insight. We first consider the simplicial
cohomology of the Čech complex above. Thus (X , d ) is a compact metric space
and ˛ > 0. Consider the co-chain complex corresponding to (1)

0! C0
˛ .X/

ı0�! C1
˛ .X/

ı1�! � � � ık�1���! Ck
˛ .X/

ı`�! � � � (2)

That is, Ck
˛ .X/ is the dual space to the k-chains, or the space of linear functions

from Ck;˛.X/ to R, and ı W Ck;˛.X/ ! CkC1;˛.X/ is the co-boundary operator or
the adjoint of @. Thus for f 2 Ck

˛ .X/, and � 2 CkC1;˛.X/,

ıf .�/ D f .@�/

By functoriality, ıkC1 ı ık D 0. Now, linear functions on Ck;˛.X/ are uniquely
determined by their values on a basis, that is elements of OU kC1

˛ . Thus Ck
˛ .X/

is equivalent to the vector space of all functions on OU kC1
˛ . On the other hand, a

function f on OU kC1
˛ which is linear on Ck;˛.X/ must satisfy f .��/ D �f .�/

for � 2 OU kC1
˛ , and therefore defines an alternating function on U kC1

˛ . Thus
f .x0; : : : ; xk/ D .�1/�f .x�.0/; : : : ; x�.k// for .x0; : : : ; xk/ 2 U kC1

˛ , and for
permutations � , of k+1 elements, where .�1/� is the sign of the permutation. Thus
we have identified Ck

˛ .X/ with Fa.U kC1
˛ /, the set of all alternating functions on

U kC1
˛ . We will rewrite the co-chain complex (1) as

0! F.X/
ı0�! Fa.U

2
˛ /

ı1�! � � � ık�1���! Fa.U
kC1
˛ /

ı`�! � � � (3)

It is standard that the co-boundary operator ı W Fa.U kC1
˛ /! Fa.U

kC2
˛ / is given by

ıf .x0; : : : ; xkC1/ D
kC1X

iD0
.�1/iC1f .x0; : : : ; Oxi ; xiC1; : : : ; xkC1/

We define Zk
˛ to be the kernel of ık (co-cycles at scale ˛ and degree k) and Bk

˛ to
be the image of ık�1 (the co-boundaries at scale ˛). Since ı2 D 0, Bk

˛ � Zk
˛ and

the quotient space

Hk
˛ .X/ D

Zk
˛

Bk
˛

is called the cohomology of X at scale ˛ and degree k. Since the complexes (1)
and (2) are over a field, R, the Universal Coefficients theorem of algebraic topology
implies that Hk;˛.X/ and Hk

˛ are isomorphic, and so Hk
˛ also describes in some

sense the topology of X at scale ˛.
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It turns out that one can impose further structures on the space of functions on
U kC1
˛ such as continuity, or square integrability with respect to a measure, and get

co-chain complexes analogous to (3). Let � be a Borel probability measure on X ,
and �kC1 the corresponding product measure on XkC1, k � 0. This induces a
measure (which we will still call �kC1) on U kC1

˛ . We will denote by L2a.U
kC1
˛ / the

space of alternating, real valued functions on U kC1
˛ which are in L2 with respect to

�kC1. The following proposition was proved in [1].

Proposition 1. The co-boundary operator ı W L2a.U kC1
˛ / ! L2a.U

kC2
˛ / defines a

bounded linear map between Hilbert spaces, for all k � 0.

To motivate our Hodge theory, let us recall the classical Hodge and de Rham
theorems. Let X be a smooth, compact manifold of dimension n, and let, for
k � 0, ˝k.X/ denote the space of smooth k-forms on X . The exterior derivative
d W ˝k.X/ ! ˝kC1.X/ is a first order, linear differential operator extending the
notion of the differential of a function (a 0-form), and satisfies d ı d D 0. The de
Rham complex is the co-chain complex

0! ˝0.X/
d�! ˝1.X/

d�! � � � d�! ˝n.X/
d�! 0

The de Rham cohomology of degree k is the quotient space

Hk
dR.X/ D

kerd W ˝k ! ˝kC1

Imd W ˝k�1 ! ˝k

and the de Rham Theorem states that Hk
dR.X/ is isomorphic to to the usual

cohomology groups (singular, simplicial, or Čech) of X and is thus a topological
invariant of X . Now assume that X has a Riemannian metric g. This induces
an inner product on alternating k-tensors on the tangent space at each point, and
thus on ˝k.X/ by integration of this with respect to the volume form. Then
d W˝k.X/ ! ˝kC1.X/ has a formal adjoint d� W˝kC1.X/ ! ˝k.X/, and the
Hodge Laplacian is the second order, self adjoint, elliptic operator

�k D d�d C dd� W ˝k.X/! ˝k.X/

When k D 0, this is the classical Laplacian on functions. The classical Hodge
theorem [6] is a beautiful synthesis of analysis, topology and geometry.

Theorem 1 (Hodge theorem). For k D 0; : : : ; n, we have the orthogonal, direct
sum decomposition

˝k.X/ D Image .d/˚ Image .d�/˚ Kernel�k

and Kernel�k is isomorphic to Hk
dR.X/.
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For a compact metric space, and scale ˛ > 0 we view the co-chain complex

0! L2.X/
ı0�! L2a.U

2
˛ /

ı1�! � � � ık�1���! L2a.U
kC1
˛ /

ık�! � � � (4)

as analogous to the de Rham complex. The cohomology of this complex is the
quotient space

Hk
˛ .X/ D

ker ı W L2a.U kC1
˛ /! L2a.U

kC2
˛ /

Im ı W ı W L2a.U k
˛ /! L2a.U

kC1
˛ /

and we view this space as another form of topology at scale ˛. Now, from the above
proposition, the cobounday operator has a bounded adjoint

ı� W L2a.U kC2
˛ /! L2a.U

kC1
˛ /

One can compute the explicit formula for ı�

ı�f .x0; : : : ; xk/ D .k C 2/
Z

Sx0;:::;xk

f .t; x0; : : : ; xk/ dt

where
Sx0;:::;xk D ft 2 X W .t; x0; : : : ; xk/ 2 U kC2

˛ g
is the slice of of x D .x0; : : : ; xk/. The corresponding Hodge operator at scale ˛

�k;˛ D ıı� C ı�ı W L2.U kC1
˛ /! L2.U kC1

˛ /

is a bounded, self adjoint positive operator of Hilbert spaces. A natural question in
this context is

Hodge Question at Scale ˛. Under what conditions on X; d; �; ˛ do we have

L2.U kC1
˛ / D Im ı ˚ Im ı� ˚ Ker�k;˛

and Ker�k;˛ is isomorphic to Hk
L2;˛

.
We call elements of Ker�k;˛ ˛-harmonic functions. Note that

< �k;˛f; f >D< ı�ıf C ıı�f >D kıf k2 C kı�f k2

and so �k;˛f D 0 if and only if ıf D 0 and ı�f D 0.
The answer to the Hodge question is affirmative, precisely when ı has closed

range in L2˛.U
kC1
˛ / (see the Hodge Lemma in [1]). In particular, this will hold

when the image has finite codimension, that is dimHk
L2;˛

.X/ < 1. In [1] some
sufficient conditions are given on ˛ and the metric d . Roughly, the witness set
w˛.x0; : : : ; xk/ D \kiD0B˛.xi /

w˛ W U kC1
˛ ! K.X/
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must be continuous (here K.X/ is the metric space of compact subsets of X with
the Hausdorff metric), and the radius of intersections of ˛ balls must be controlled.
As a special case, it is shown to be consistent with the classical Hodge-de Rham
theory for Riemannian manifolds at small scales.

Theorem 2. Let .X; g/ be a compact Riemannian manifold. Then for ˛ >0

sufficiently small, the answer to the Hodge question above is affirmative, and
furthermore Ker�k;˛ is isomorphic to Hk

L2;˛
as well as Hk

˛ andHk
dR.X/.

The proof is a bit lengthy and is carried out using a bi-complex argument.

2.1 An Explicit Isomorphism

The proof of the theorem in [1] does not give an explicit isomorphism between
Hk
dR.X/ and Hk

L2;˛
. In [10], we construct a co-chain map (in the case of a

Riemannian manifold and small ˛) between the de Rham complex and the L2; ˛
complex (4), which induces isomorphisms on cohomology. Let M be a compact
Riemannian manifold, and let ˛ > 0 be small enough so that closed balls of radius
2˛ are strictly convex. We construct a co-chain map, that is for each k, a linear map

� W ˝k.M/! L2a.U
kC1
˛ /

such that
� ı d D ı ı �

For .x0; : : : ; xk/ 2 U kC1
˛ we define a smooth k-simplex S.x0; : : : ; xk/ inM , induc-

tively on k. S.x0; x1/ is just the minimizing geodesic from x0 to x1. S.x0; x1; x2/ is
the union of geodesics from x2 to points on S.x0; x1/, and so on. We then define

�0 W ˝k.M/! L2.U kC1
˛ /

by

.�0!/.x0; : : : ; xk/ D
Z

S.x0;:::;xk/

!

In general, �0! will not be alternating, unless k D 0; 1, or M has constant
curvature. We therefore alternate �0! and define

�!.x0; : : : ; xk/ D Alt .�0!/.x0; : : : ; xk/

Theorem 3. � is a co-chain map of co-chain complexes, and induces an isomor-
phism on cohomology.

The proof that � is a co-chain map is essentially Stoke’s theorem. The proof that
� is an isomorphism on cohomology follows by constructing a left inverse for � ,
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and using the fact from [1] that the cohomology groups have the same dimension.
To describe the left inverse, which we will call ˚ , note that �! is actually a smooth
alternating function. That is, � is really a co-chain map into the sub-complex

0! C1.X/ ı�! C1
a .U

2
˛ /

ı�! � � � ı�! C1
a .U

k
˛ /

ı�! � � �

Where C1
a .U

k
˛ / is the space of smooth, alternating functions on U k

˛ . In [1] it was
shown that the inclusion map from this complex to the L2 complex induces an
isomorphism on cohomology, thus it suffices to define the left inverse ˚ on smooth
alternating functions. In fact, if we define ˚ W C1

a .U
kC1
˛ /! ˝k.M/ by

.˚f /.p/.v1; : : : ; vk/ D D1D2 � � �Dkf .p; t1; : : : ; tk/.v1; : : : ; vk/

for p 2 M and v1; : : : ; vk 2 TpM (Di is the derivative of f taken at ti D p), then
it can be shown that ˚ ı � D Id.

2.2 Further Results

It is shown that in general, for a harmonic 1 form !, �! is harmonic in the
abstract sense, and so � is an isomorhism between classical harmonic 1 forms, and
˛-harmonic functions on U 2

˛ . For the flat n-dimensional torus, � takes harmonic
k-forms to harmonic functions on U kC1

˛ for all k. We conjecture that this might be
true for constant curvature in general.

For k D 0, we can compare the classical and abstract Hodge Laplacian since
both act on functions on M . When appropriately scaled, the ˛-Laplacian is close to
the classical Laplacian.

Theorem 4. There is a universal constant cn such that for a C3 function f on M ,
we have

k�f � cn˛�n�2�˛f k1 � Ckf kC3˛
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Riemann, Hurwitz and Hurwitz-Lerch Zeta
Functions and Associated Series and Integrals

H.M. Srivastava

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract The main object of this article is to present a survey-cum-expository
account of some recent developments involving the Riemann Zeta function �.s/,
the Hurwitz (or generalized) Zeta function �.s; a/, and the Hurwitz-Lerch Zeta
function ˚.z; s; a/ as well as its various interesting extensions and generalizations.
We first investigate the problems associated with the evaluations and representations
of � .s/ when s 2 N n f1g, N being the set of natural numbers, emphasizing
upon several interesting classes of rapidly convergent series representations for
� .2nC 1/ .n 2 N/ which have been developed in recent years. In two of many
computationally useful special cases considered here, it is observed that � .3/ can
be represented by means of series which converge much more rapidly than that in
Euler’s celebrated formula as well as the series which was used more recently by
Roger Apéry (1916–1994) in his proof of the irrationality of � .3/. Symbolic and
numerical computations using Mathematica (Version 4.0) for Linux show, among
other things, that only 50 terms of one of these series are capable of producing an
accuracy of seven decimal places. We also consider a variety of series and integrals
associated with the Hurwitz-Lerch Zeta function ˚.z; s; a/ as well as its various
interesting extensions and generalizations.

1 Introduction, Definitions and Preliminaries

Throughout this article, we use the following standard notations:
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N WD f1; 2; 3; � � � g; N0 WD f0; 1; 2; 3; � � � g D N [ f0g

and
Z

� WD f�1;�2;�3; � � � g D Z
�
0 n f0g:

Also, as usual, Z denotes the set of integers, R denotes the set of real numbers and
C denotes the set of complex numbers.

Some rather important and potentially useful functions in Analytic Number
Theory include (for example) the Riemann Zeta function �.s/ and the Hurwitz
(or generalized) Zeta function �.s; a/, which are defined (for < .s/ > 1) by

� .s/ WD

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1P
nD1

1

ns
D 1

1 � 2�s
1P
nD1

1

.2n � 1/s
�< .s/ > 1	

1

1 � 21�s
1P
nD1

.�1/n�1

ns

�< .s/ > 0I s ¤ 1	
(1)

and

� .s; a/ WD
1X

nD0

1

.nC a/s
�< .s/ > 1I a 2 C n Z�

0

	
; (2)

and (for< .s/ 5 1I s ¤ 1) by their meromorphic continuations (see, for details, the
excellent work by Titchmarsh [54] and the monumental treatise by Whittaker and
Watson [57]; see also [1, Chap. 23] and [43, Chap. 2]), so that (obviously)

� .s; 1/ D � .s/ D .2s � 1/�1 �
�

s;
1

2

�

and � .s; 2/ D � .s/� 1: (3)

More generally, we have the following relationships:

� .s/ D 1

ms � 1
m�1X

jD1
�

�

s;
j

m

�

(4)

.m 2 N n f1g I N WD f1; 2; 3; : : :g/

and

� .s;ma/ D 1

ms

m�1X

jD0
�

�

s; a C j

m

�

.m 2 N/ : (5)

A fascinatingly and tantalizingly large number of seemingly independent solu-
tions of the so-called Basler problem of evaluating the Riemann Zeta function � .s/
when s D 2, which was of vital importance to Leonhard Euler (1707–1783) and
the Bernoulli brothers [Jakob Bernoulli (1654–1705) and Johann Bernoulli (1667–
1748)], have appeared in the mathematical literature ever since Euler first solved
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this problem in the year 1736. In this context, one other remarkable classical result
involving Riemann’s �-function �.s/ is the following elegant series representation
for � .3/:

� .3/ D �4�
2

7

1X

kD0

� .2k/

.2k C 1/ .2k C 2/ 22k ; (6)

which was actually contained in Euler’s 1772 paper entitled “Exercitationes
Analyticae” (cf., e.g., Ayoub [6, pp. 1084–1085]). In fact, This 1772 result of
Euler was rediscovered (among others) by Ramaswami [34] (see also a paper by
Srivastava [37, p. 7, Eq. 2.23]) and (more recently) by Ewell [12]. Moreover, just as
pointed out by (for example) Chen and Srivastava [4, pp. 180–181], another series
representation:

� .3/ D 5

2

1X

kD1

.�1/k�1

k3

 
2k

k

! ; (7)

which played a key rôle in the celebrated proof (see, for details, [3]) of the
irrationality of � .3/ by Roger Apéry (1916–1994), was derived independently by
(among others) Hjortnaes [21], Gosper [17], and Apéry [3].

It is easily observed that Euler’s series in (6) converges faster than the defining
series for � .3/, but obviously not as fast as the series in (7). Evaluations of such
Zeta values as � .3/, � .5/, et cetera are known to arise naturally in a wide variety
of applications such as those in Elastostatics, Quantum Field Theory, et cetera (see,
for example, Tricomi [55], Witten [58], and Nash and O’Connor [29, 30]). On the
other hand, in the case of even integer arguments, we already have the following
computationally useful relationship:

� .2n/ D .�1/n�1 .2�/
2n

2 � .2n/Š B2n .n 2 N0 WD N [ f0g/ (8)

with the well-tabulated Bernoulli numbers defined by the following generating
function:

z

ez � 1 D
1X

nD0
Bn

zn

nŠ
.jzj < 2�/ ; (9)

as well as the familiar recursion formula:

� .2n/ D
�

nC 1

2

��1 n�1X

kD1
� .2k/ � .2n � 2k/ .n 2 N n f1g/ : (10)

Our presentation in this article consistes of two major parts. First of all,
motivated essentially by a genuine need (for computational purposes) for expressing
� .2nC 1/ as a rapidly converging series for all n 2 N, we propose to present
a rather systematic investigation of the various interesting families of rapidly
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convergent series representations for the Riemann � .2nC 1/ .n 2 N/. Relevant
connections of the results presented here with many other known series represen-
tations for � .2nC 1/ .n 2 N/ are also briefly indicated. In fact, for two of the
many computationally useful special cases considered here, we observe that � .3/
can be represented by means of series which converge much more rapidly than that
in Euler’s celebrated formula (6) as well as that in the series (7) which was used re-
cently by Apéry [3] in his proof of the irrationality of � .3/. Symbolic and numerical
computations using Mathematica (Version 4.0) for Linux show, among other things,
that only 50 terms of one of these series are capable of producing an accuracy of
seven decimal places. In the second part of this article, we consider a variety of
series and integrals associated with the Hurwitz-Lerch Zeta function ˚.z; s; a/ as
well as its various interesting extensions and generalizations (see Sect. 6).

2 Series Representations for � .2n C 1/ .n 2 N/

The following simple consequence of the binomial theorem and the definition (1):

1X

kD0

.s/k

kŠ
� .s C k; a/ tk D � .s; a � t/ .jt j < jaj/ ; (11)

yields, for a D 1 and t D ˙1=m, a useful the series identity in the form:

1X

kD0

.s/2k

.2k/Š

� .s C 2k/
m2k

D

8
ˆ̂
<̂

ˆ̂
:̂

.2s � 1/ � .s/ � 2s�1 .m D 2/

1

2

"

.ms � 1/ � .s/ �ms �
m�2P
jD2

�

�

s;
j

m

�#

.m 2 N n f1; 2g/ ;
(12)

where .�/� denotes the Pochhammer symbol or the shifted factorial, since

.1/n D nŠ .n 2 N0/;

which is defined for �; � 2 C, in terms of the familiar Gamma function, by

.�/� WD � .�C �/
� .�/

D
8
<

:

1 .� D 0I � 2 C n f0g/

�.�C 1/ � � � .�C n � 1/ .� D n 2 NI � 2 C/;

it being understood conventionally that .0/0 WD 1. (See, for details, [38, 43]).
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Making use of the familiar harmonic numbersHn given by

Hn WD
nX

jD1

1

j
.n 2 N/ ; (13)

the following set of series representations for � .2nC 1/ .n 2 N/ were proven by
Srivastava [40] by appealing appropriately to the series identity (12) in its special
cases whenm D 2; 3; 4; and 6, and also to many other properties and characteristics
of the Riemann Zeta function such as the familiar functional equation:

� .s/ D 2 � .2�/s�1 sin

�
1

2
�s

�

� .1 � s/ � .1 � s/ (14)

or, equivalently,

� .1 � s/ D 2 � .2�/�s cos

�
1

2
�s

�

� .s/ � .s/ ; (15)

the familiar derivative formula:

� 0 .�2n/ D lim
"!0

�
� .�2nC "/

"

�

D .�1/n
2 � .2�/2n .2n/Š � .2nC 1/ .n 2 N/ (16)

with, of course,

� .0/ D �1
2
I � .�2n/ D 0 .n 2 N/ I � 0 .0/ D �1

2
log .2�/ ; (17)

and each of the following limit relationships:

lim
s!�2n

(
sin
�
1
2
�s
	

s C 2n

)

D .�1/n �
2

.n 2 N/ (18)

and

lim
s!�2n

�
� .s C 2k/
s C 2n

�

D .�1/n�k

2 � .2�/2.n�k/ .2n � 2k/Š � .2n� 2k C 1/

.k D 1; : : : ; n � 1I n 2 N n f1g/ : (19)
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First Series Representation:

� .2nC 1/ D .�1/n�1 .2�/2n

22nC1 � 1

"
H2n � log�

.2n/Š
C

n�1X

kD1

.�1/k
.2n � 2k/Š

� .2k C 1/
�2k

C2
1X

kD1

.2k � 1/Š
.2nC 2k/Š

� .2k/

22k

#

.n 2 N/ : (20)

Second Series Representation:

� .2nC 1/ D .�1/n�1 2 � .2�/2n
32nC1 � 1

"
H2n � log

�
2
3
�
	

.2n/Š
C

n�1X

kD1

.�1/k
.2n � 2k/Š

� .2k C 1/
�
2
3
�
	2k

C2
1X

kD1

.2k � 1/Š
.2nC 2k/Š

� .2k/

32k

#

.n 2 N/ : (21)

Third Series Representation:

� .2nC 1/ D .�1/n�1 2 � .2�/2n
24nC1 C 22n � 1

"
H2n � log

�
1
2
�
	

.2n/Š

C
n�1X

kD1

.�1/k
.2n � 2k/Š

� .2k C 1/
�
1
2
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k/Š

� .2k/

42k

#

.n 2 N/ : (22)

Fourth Series Representation:

� .2nC 1/ D .�1/n�1 2 � .2�/2n
32n .22n C 1/C 22n � 1

"
H2n � log

�
1
3
�
	

.2n/Š

C
n�1X

kD1

.�1/k
.2n � 2k/Š

� .2k C 1/
�
1
3
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k/Š

� .2k/

62k

#

.n 2 N/ : (23)

Here, as well as elsewhere in this presentation, an empty sum is understood (as
usual) to be zero.

The first series representation (20) is markedly different from each of the series
representations for � .2nC 1/, which were given earlier by Zhang and Williams
[60, p. 1590, Eq. 3.13] and (subsequently) by Cvijović and Klinowski [8, p. 1265,
Theorem A] (see also [61, 62]). Since � .2k/ ! 1 as k ! 1; the general term in
the series representation (20) has the following order estimate:

O
�
2�2k � k�2n�1	 .k !1I n 2 N/ ;
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whereas the general term in each of the aforecited earlier series representations has
the order estimate given below:

O
�
2�2k � k�2n	 .k !1I n 2 N/ :

In case we suitably combine (20) and (22), we readily obtain the following series
representation:

� .2nC 1/ D .�1/n�1 2 � .2�/2n
.22n � 1/ .22nC1 � 1/

"
log 2

.2n/Š

C
n�1X

kD1

.�1/k �22k � 1	

.2n � 2k/Š
� .2k C 1/
�2k

� 2
1X

kD1

.2k � 1/Š �22k � 1	

.2nC 2k/Š
� .2k/

24k

#

.n 2 N/ : (24)

Moreover, in terms of the Bernoulli numbers Bn and the Euler polynomials En .x/
defined by the generating functions (9) and

2exz

ez C 1 D
1X

nD0
En .x/

zn

nŠ
.jzj < �/ ; (25)

respectively, it is known that (cf., e.g., [27, p. 29])

En .0/ D .�1/n En .1/ D 2
�
1 � 2nC1	

nC 1 BnC1 .n 2 N/ : (26)

Thus, by combining (26) with the identity (8), we find that

E2n�1 .0/ D 4 � .�1/n
.2�/2n

.2n � 1/Š �22n � 1	 � .2n/ .n 2 N/ : (27)

If we apply the relationship (27), the series representation (24) can immediately be
put in the following alternative form:

� .2nC 1/ D .�1/n�1 2 � .2�/2n
.22n � 1/ .22nC1 � 1/

"
log 2

.2n/Š

C
n�1X

kD1

.�1/k �22k � 1	

.2n� 2k/Š
� .2k C 1/
�2k

C 1

2

1X

kD1

.�1/k�1

.2nC 2k/Š
��

2

�2k
E2k�1 .0/

#

.n 2 N/ ; (28)



438 H.M. Srivastava

which is a slightly modified and corrected version of a result proven, using a
significantly different technique, by Tsumura [56, p. 383, Theorem B].

One other interesting combination of the series representations (20) and (22)
leads us to the following variant of Tsumura’s result (24) or (28):

� .2nC 1/ D .�1/n�1 �2n

22nC1 � 1

"
H2n � log

�
1
4
�
	

.2n/Š

C
n�1X

kD1

.�1/k �22kC1 � 1	

.2n� 2k/Š
� .2k C 1/
�2k

�4
1X

kD1

.2k � 1/Š �22k�1 � 1	

.2nC 2k/Š
� .2k/

24k

#

.n 2 N/ ; (29)

which is essentially the same as the determinantal expression for � .2nC 1/ derived
by Ewell [13, p. 1010, Corollary 3] by employing an entirely different technique
from ours.

A number of other similar combinations of the series representations (20) to (23)
would yield some interesting companions of Ewell’s result (29).

Next, by setting t D 1
m

and differentiating both sides with respect to s, we find
from the following obvious consequence of the series identity (11):

1X

kD0

.s/2kC1
.2k C 1/Š � .s C 2k C 1; a/ t

2kC1

D 1

2
Œ� .s; a � t/ � � .s; aC t/� .jt j < jaj/ (30)

that

1X

kD0

.s/2kC1
.2k C 1/Š m2k

2

4� 0 .s C 2k C 1; a/C � .s C 2k C 1; a/
2kX

jD0

1

s C j

3

5

D m

2

@

@s

�

�

�

s; a � 1

m

�

� �
�

s; aC 1

m

��

.m 2 N n f1g/ : (31)

In the particular case when m D 2; (31) immediately yields

1X

kD0

.s/2kC1
.2k C 1/Š 22k

2

4� 0 .s C 2k C 1; a/C � .s C 2k C 1; a/
2kX

jD0

1

s C j

3

5

D �
�

a � 1
2

��s
log

�

a � 1
2

�

: (32)
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Upon letting s ! �2n � 1 .n 2 N/ in the further special of this last identity (32)
when a D 1; Wilton [43, p. 92] deduced the following series representation for
� .2nC 1/ (see also [20, p. 357, Entry (54.6.9)]):

� .2nC 1/ D .�1/n�1 �2n
"
H2nC1 � log�

.2nC 1/Š C
n�1X

kD1

.�1/k
.2n � 2k C 1/Š

� .2k C 1/
�2k

C2
1X

kD1

.2k � 1/Š
.2nC 2k C 1/Š

� .2k/

22k

#

.n 2 N/ ; (33)

which, in light of the elementary identity:

.2k/Š

.2nC 2k/Š D
.2k � 1/Š

.2nC 2k � 1/Š � 2n
.2k � 1/Š
.2nC 2k/Š .n 2 N/ ; (34)

would combine with the result (20) to yield the following series representation:

� .2nC 1/ D .�1/n .2�/2n

n .22nC1 � 1/

"
n�1X

kD1

.�1/k�1 k
.2n � 2k/Š

� .2k C 1/
�2k

C
1X

kD0

.2k/Š

.2nC 2k/Š
� .2k/

22k

#

.n 2 N/ : (35)

This last series representation (35) is precisely the aforementioned main result
of Cvijović and Klinowski [8, p. 1265, Theorem A]. As a matter of fact, in view
of a known derivative formula [40, p. 389, Eq. 2.8], the series representation (35) is
essentially the same as a result given earlier by Zhang and Williams [60, p. 1590,
Eq. 3.13] (see also Zhang and Williams [60, p. 1591, Eq. 3.16] where an obviously
more complicated (asymptotic) version of (35) was proven similarly).

In light of another elementary identity:

.2k/Š

.2nC 2k C 1/Š D
.2k � 1/Š
.2nC 2k/Š � .2nC 1/

.2k � 1/Š
.2nC 2k C 1/Š .n; k 2 N/ ;

(36)
we can obtain the following yet another series representation for � .2nC 1/ by
applying (20) and (33):

� .2nC 1/ D .�1/n 2 � .2�/2n
.2n� 1/ 22n C 1

"
n�1X

kD1

.�1/k�1 k
.2n � 2k C 1/Š

� .2k C 1/
�2k

C
1X

kD0

.2k/Š

.2nC 2k C 1/Š
� .2k/

22k

#

.n 2 N/ ; (37)
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which provides a significantly simpler (and much more rapidly convergent) version
of the following other main result of Cvijović and Klinowski [8, p. 1265, Theo-
rem B]:

� .2nC 1/ D .�1/n 2 � .2�/
2n

.2n/Š

1X

kD0
˝n;k

� .2k/

22k
.n 2 N/ ; (38)

where the coefficients ˝n;k .n 2 NI k 2 N0/ are given explicitly as a finite sum
of Bernoulli numbers [8, p. 1265, Theorem B(i)] (see, for details, Srivastava [40,
pp. 393–394]):

˝n;k WD
2nX

jD0

 
2n

j

!
B2n�j

.j C 2k C 1/ .j C 1/ 2j .n 2 NI k 2 N0/ : (39)

3 Other Families of Series Representations
for � .2n C 1/ .n 2 N/

In this section, we start once again from the identity (11) with (of course) a D 1;

t D ˙1=m; and s replaced by s C 1: Thus, by applying (12), we find yet another
class of series identities including, for example,

1X

kD1

.s C 1/2k
.2k/Š

� .s C 2k/
22k

D .2s � 2/ � .s/ (40)

and

1X

kD1

.s C 1/2k
.2k/Š

� .s C 2k/
m2k

D 1

2m

"

m.ms � 3/ � .s/C �msC1 � 1	 � .s C 1/� 2�
�

s C 1; 1
m

�

�
m�2X

jD2

�

m�

�

s;
j

m

�

C �
�

s C 1; j
m

�� #

.m 2 N n f1; 2g/ : (41)

In fact, it is the series identity (40) which was first applied by Zhang and Williams
[60] (and, subsequently, by Cvijović and Klinowski [8]) with a view to proving
two (only seemingly different) versions of the series representation (35). Indeed,
if we appeal to (41) with m D 4, we can derive the following much more rapidly
convergent series representation for � .2nC 1/ (see [39, p. 9, Eq. 41]):
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� .2nC 1/ D .�1/n 2 � .2�/2n
n .24nC1 C 22n � 1/

"
4n�1 � 1
.2n/Š

B2n log 2

� 22n�1 � 1
2 .2n � 1/Š �

0 .1 � 2n/ � 42n�1

.2n � 1/Š �
0
�

1 � 2n; 1
4

�

C
n�1X

kD1

.�1/k�1 k
.2n � 2k/Š

� .2k C 1/
�
1
2
�
	2k C

1X

kD0

.2k/Š

.2nC 2k/Š
� .2k/

42k

#

(42)

.n 2 N/ ;

where (and in what follows) a prime denotes the derivative of � .s/ or � .s; a/ with
respect to s.

By virtue of the identities (34) and (36), the results (22) and (42) would lead us
eventually to the following additional series representations for � .2nC 1/ .n 2 N/

(see [39, p. 10, Eqs. 42 and 43]):

� .2nC 1/ D .�1/n�1 ��
2

�2n
"
H2nC1 � log

�
1
2
�
	

.2nC 1/Š C 2 .4n � 1/
.2nC 2/Š B2nC2 log 2

� 2
2nC1 � 1
.2nC 1/Š �

0 .�2n � 1/� 24nC3

.2nC 1/Š �
0
�

�2n � 1; 1
4

�

C
n�1X

kD1

.�1/k
.2n � 2k C 1/Š

� .2k C 1/
�
1
2
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k C 1/Š

� .2k/

42k

#

(43)

.n 2 N/

and

� .2nC 1/ D .�1/n 4 � .2�/2n
n � 42nC1 � 22n C 1

"
22nC1 � 1
2 � .2n/Š �

0 .�2n � 1/

C 42nC1

.2n/Š
� 0
�

�2n � 1; 1
4

�

� .2nC 1/ .4
n � 1/

.2nC 2/Š B2nC2 log 2

C
n�1X

kD1

.�1/k�1 k
.2n � 2k C 1/Š

� .2k C 1/
�
1
2
�
	2k C

1X

kD0

.2k/Š

.2nC 2k C 1/Š
� .2k/

42k

#

(44)

.n 2 N/ :

Explicit expressions for the derivatives � 0 .�2n˙ 1/ and � 0 ��2n˙ 1; 1
4

	
, occurring

in the series representations (42)–(44), can be found and substituted into these
results in order to represent � .2nC 1/ in terms of Bernoulli numbers and poly-
nomials and various rapidly convergent series of the �-functions (see, for details,
the work by Srivastava [39, Sect. 3]).



442 H.M. Srivastava

Out of the four seemingly analogous results (22), (42), (43), and (44), the infinite
series in (43) would obviously converge most rapidly, with its general term having
the order estimate:

O
�
k�2n�2 � 4�2k	 .k !1I n 2 N/ :

From the work by Srivastava and Tsumura [45], we recall the following three
new members of the class of the series representations (22) and (43):

� .2nC 1/ D .�1/n�1
�
2�

3

�2n
"
H2nC1 � log

�
2
3
�
	

.2nC 1/Š C
�
32nC2 � 1	�
2
p
3 .2nC 2/Š B2nC2

C .�1/n�1
p
3 .2�/2nC1 �

�

2nC 2; 1
3

�

C
n�1X

kD1

.�1/k
.2n � 2k C 1/Š

� .2k C 1/
�
2
3
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k C 1/Š

� .2k/

32k

#

(45)

.n 2 N/ :

� .2nC 1/ D .�1/n�1 ��
2

�2n
"
H2nC1 � log

�
1
2
�
	

.2nC 1/Š C 22n
�
22nC2 � 1	�
.2nC 2/Š B2nC2

C .�1/n�1

2 � .2�/2nC1 �
�

2nC 2; 1
4

�

C
n�1X

kD1

.�1/k
.2n � 2k C 1/Š

� .2k C 1/
�
1
2
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k C 1/Š

� .2k/

42k

#

(46)

.n 2 N/

and

� .2nC 1/ D .�1/n�1 ��
3

�2n
"
H2nC1 � log

�
1
3
�
	

.2nC 1/Š C 22n
�
32nC2 � 1	�p
3 .2nC 2/Š B2nC2

C .�1/n�1

2
p
3 .2�/2nC1

�

�

�

2nC 2; 1
3

�

C �
�

2nC 2; 1
6

��

C
n�1X

kD1

.�1/k
.2n � 2k C 1/Š

� .2k C 1/
�
1
3
�
	2k C 2

1X

kD1

.2k � 1/Š
.2nC 2k C 1/Š

� .2k/

62k

#

(47)

.n 2 N/ :
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The general terms of the infinite series occurring in these three members (45)–(47)
have the order estimates:

O
�
k�2n�2 �m�2k	 .k !1I n 2 NI m D 3; 4; 6/ ; (48)

which exhibit the fact that each of these last three series representations (45)–(47)
converges more rapidly than Wilton’s result (33) and two of them [cf. (46) and (47)]
at least as rapidly as Srivastava’s result (43).

We next recall that, in their aforementioned work on the Ray-Singer torsion
and topological field theories, Nash and O’Connor [29, 30] obtained a number of
remarkable integral expressions for � .3/, including (for example) the following
result [26, p. 1489 et seq.]:

� .3/ D 2�2

7
log 2 � 8

7

Z �=2

0

z2 cot z d z: (49)

In fact, in view of the following series expansion [10, p. 51, Eq. 1.20(3)]:

z cot z D �2
1X

kD0
� .2k/

� z

�

�2k
.jzj < �/ ; (50)

the result (49) equivalent to the series representation ( cf. the work by Da̧browski
[9, p. 202]; see also the paper by Chen and Srivastava [13, p. 191, Eq. 3.19]):

� .3/ D 2�2

7

 

log 2C
1X

kD0

� .2k/

.k C 1/ 22k
!

: (51)

Moreover, if we integrate by parts, we easily find that

Z �=2

0

z2 cot z d z D �2
Z �=2

0

z log sin z d z; (52)

so that the result (49) is equivalent also to the following integral representation:

� .3/ D 2�2

7
log 2C 16

7

Z �=2

0

z log sin z d z; (53)

which was proven in the aforementioned 1772 paper by Euler (cf., e.g., [6, p. 1084]).
Furthermore, since

i cot iz D coth z D 2

e2z � 1 C 1
�
i WD p�1

�
; (54)
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by replacing z in the known expansion (50) by 1
2
i�z; it is easily seen that (cf., e.g.,

[13, p. 25]; see also [10, p. 51, Eq. 1.20(1)])

�z

e�z � 1 C
�z

2
D

1X

kD0

.�1/kC1 � .2k/
22k�1 z2k .jzj < 2/ : (55)

Upon setting z D i t in (55), multiplying both sides by tm�1 .m 2 N/, and then
integrating the resulting equation from t D 0 to t D � .0 < � < 2/, Srivastava [27]
derived the following series representations for � .2nC 1/ (see also the work by
Srivastava et al. [49]):

� .2nC 1/ D .�1/n�1 .2�/2n

.2n/Š .22nC1 � 1/

�
2

4log 2C
n�1X

jD1
.�1/j

 
2n

2j

!
.2j /Š

�
22j � 1	

.2�/2j
� .2j C 1/C

1X

kD0

� .2k/

.k C n/ 22k

3

5

(56)
.n 2 N/

and

� .2nC 1/ D .�1/n�1 .2�/2n

.2nC 1/Š .22n � 1/

�
"

log 2C
n�1X

jD1
.�1/j

 
2nC 1
2j

!
.2j /Š

�
22j � 1	

.2�/2j
� .2j C 1/

C
1X

kD0

� .2k/
�
k C nC 1

2

	
22k

#

.n 2 N/ : (57)

Upon setting n D 1; (57) immediately reduces to the following series represen-
tation for � .3/:

� .3/ D 2�2

9

 

log 2C 2
1X

kD0

� .2k/

.2k C 3/ 22k
!

; (58)

which was proven independently by (among others) Glasser [16, p. 446, Eq. 12],
Zhang and Williams [60, p. 1585, Eq. 2.13], and Da̧browski [9, p. 206] (see also the
work by Chen and Srivastava [13, p. 183, Eq. 2.15]). Furthermore, a special case of
(56) when n D 1 yields (cf. Da̧browski [9, p. 202]; see also Chen and Srivastava
[13, 5, p. 191, Eq. 3.19])
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� .3/ D 2�2

7

 

log 2C
1X

kD0

� .2k/

.k C 1/ 22k
!

: (59)

In fact, in view of the following familiar sum:

1X

kD0

� .2k/

.2k C 1/ 22k D �
1

2
log 2; (60)

Euler’s formula (6) is indeed a rather simple consequence of (59).
In passing, we find it worthwhile to remark that an integral representation

for � .2nC 1/, which is easily seen to be equivalent to the series representation
(56), was given by Da̧browski [9, p. 203, Eq. 16], who [9, p. 206] mentioned the
existence of (but did not fully state) the series representation (57) as well. The series
representation (56) was derived also in a paper by Borwein et al. (cf. [11, p. 269,
Eq. 57]).

If we suitably combine the series occurring in (51), (58), and (60), it is not
difficult to deduce several other series representations for � .3/, which are analogous
to Euler’s formula (6). More generally, since

�k2 C �k C �
.2k C 2n � 1/ .2k C 2n/ .2k C 2nC 1/

D A
2k C 2n � 1 C

B
2k C 2n C

C
2k C 2nC 1; (61)

where, for convenience,

A D An .�; �; �/ WD 1

2

�

�n2 � .�C �/ nC 1

4
.�C 2�C 4�/

�

; (62)

B D Bn .�; �; �/ WD �
�
�n2 � �nC �	 ; (63)

and

C D Cn .�; �; �/ WD 1

2

�

�n2 C .� � �/ nC 1

4
.� � 2�C 4�/

�

; (64)

by applying (56), (57), and another result (proven by Srivastava [41, p. 341,
Eq.3̇.17]):

nX

jD1
.�1/j�1

 
2nC 1
2j

!
.2j /Š

�
22j � 1	

.2�/2j
� .2j C 1/

D log 2C
1X

kD0

� .2k/
�
k C nC 1

2

	
22k

.n 2 N0/ ; (65)
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with n replaced by n�1; Srivastava [41] derived the following unification of a large
number of known (or new) series representations for � .2nC 1/ .n 2 N/, including
(for example) Euler’s formula (6):

� .2nC 1/ D .�1/n�1 .2�/2n

.2n/Š f.22nC1 � 1/BC .2nC 1/ .22n � 1/ Cg

�
2

41

4
� log 2C

n�1X

jD1
.�1/j

 
2n� 1
2j � 2

!

�
�

2j .2j � 1/AC Œ� .4n � 1/� 2�� nj C �n
�

nC 1

2

��

� .2j � 2/Š
�
22j � 1	

.2�/2j
� .2j C 1/

C
1X

kD0

�
�k2 C �k C �	 � .2k/

.2k C 2n � 1/ .k C n/ .2k C 2nC 1/ 22k
#

(66)

.n 2 NI �;�; � 2 C/ ;

where A; B; and C are given by (62)–(64), respectively.
Numerous other interesting series representations for � .2nC 1/, which are

analogous to (56) and (57), were also given by Srivastava et al. [49].

4 Computationally Useful Deductions and Consequences

In this section, we suitably specialize the parameter �;�; and � in (66) and
then apply a rather elaborate scheme. We thus eventually arrive at the following
remarkably rapidly convergent series representation for � .2nC 1/ .n 2 N/, which
was derived by Srivastava [41, pp. 348–349, Eq. 3.50]):

� .2nC 1/ D .�1/n�1 .2�/2n

.2n/Š�n

2

4
n�1X

jD1
.�1/j

�
 
n
.2n � 3/ 22nC2 � 2n

o
( 
2n � 1
2j

!

�
 
2nC 2
2j

!

C 6n
 
2n � 1
2j � 2

!)

�
�
22nC3 � 1

�

�
( 
2n

2j

!

�
 
2nC 3
2j

!

C 3
 
2nC 1
2j � 1

!)!
.2j /Š

�
22j � 1	

.2�/2j
� .2j C 1/
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C12
1X

kD0

.�nk C �n/ � .2k/
.2k C 2n � 1/ .2k C 2n/ .2k C 2nC 1/ .2k C 2nC 2/ .2k C 2nC 3/ 22k

#

(67)

.n 2 N/ ;

where, for convenience,

�n WD
�
22nC3 � 1	

�
1

3
.2nC 1/ �2n2 � 4nC 3	 �22n � 1	 � 22nC1 C 1

�

� ˚.2n� 3/ 22nC2 � 2n� ˚22nC2 C n .2n � 3/ �22n � 1	� 1� ; (68)

�n WD 2
˚
.2n � 5/ 22nC2 � 2nC 1� ; (69)

and
�n WD

�
4n2 � 4n � 7	 22nC2 � .2nC 1/2 : (70)

In its special case when n D 1; (67) yields the following (rather curious) series
representation:

� .3/ D �6�
2

23

1X

kD0

.98k C 121/ � .2k/
.2k C 1/ .2k C 2/ .2k C 3/ .2k C 4/ .2k C 5/ 22k ; (71)

where the series obviously converges much more rapidly than that in each of the
celebrated results (6) and (7).

An interesting companion of (71) in the following form:

� .3/ D � 120
1573

�2

�
1X

kD0

8576k2 C 24286kC 17283
.2k C 1/ .2k C 2/ .2k C 3/ .2k C 4/ .2k C 5/ .2k C 6/ .2k C 7/

� .2k/

22k
:

(72)

was deduced by Srivastava and Tsumura [47], who indeed presented an inductive
construction of several general series representations for � .2nC 1/ .n 2 N/ (see
also [46]).

5 Numerical Verifications and Symbolic Computations
Based Upon Mathematica

In this section, we first summarize the results of numerical verifications and
symbolic computations with the series in (71) by using Mathematica (Version 4.0)
for Linux:
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In[1] WD .98k C 121/ Zeta Œ2k� =..2k C 1/ .2k C 2/ .2k C 3/

 .2k C 4/ .2k C 5/ 2q .2k//

Out[1] D .121C 98k/Zeta Œ2k�

22k .1C 2k/ .2C 2k/ .3C 2k/ .4C 2k/ .5C 2k/
In[2] WD SumŒ%; fk; 1; Infinityg�== Simplify

Out[2] D 121

240
� 23 Zeta[3]

6Pi2

In[3] WD NŒ%�

Out[3] D 0:0372903

In[4] WD Sum ŒN Œ%1� == Evaluate, fk; 1; 50g�
Out[4] D 0:0372903

In[5] WD N Sum Œ%1 // Evaluate, fk; 1; Infinityg�
Out[5] D 0:0372903

Since

� .0/ D �1
2
;

Out[2] evidently validates the series representation (71) symbolically. Furthermore,
our numerical computations in Out[3], Out[4], and Out[5], together, exhibit the fact
that only 50 terms .k D 1 to k D 50/ of the series in (71) can produce an accuracy
of as many as seven decimal places.

Our symbolic computations and numerical verifications with the series in (72)
using Mathematica (Version 4.0) for Linux lead us to the following table:

Number of terms Precision of computation

4 6
10 11
20 18
50 38
98 69

In fact, since the general term of the series in (72) has the following order estimate:

O
�
2�2k � k�5	 .k �!1/ ;

for getting p exact digits, we must have

2�2k � k�5 < 10�p:
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Upon solving this inequality symbolically, we find that

k Š 5

log 4
ProductLog

�
10p=5 log 4

5

�

;

where the function ProductLog (also known as Lambert’s function) is the solution
of the equation:

xex D a:
Some relevant details about the symbolic computations and numerical verifica-

tions with the series in (72) using Mathematica (Version 4.0) for Linux are being
summarized below.

In [1] WD expr D .8576kq2C 24286kC 17283/ ZetaŒ2k�=

..2k C 1/.2k C 2/.2k C 3/.2k C 4/.2k C 5/.2k C 6/.2k C 7/2q.2k//

Out [1] D .17283C 24286kC 8576k2/ ZetaŒ2k�

22k.1C 2k/.2C 2k/.3C 2k/.4C 2k/.5C 2k/.6C 2k/.7C 2k/
In [2] WD SumŒexpr; fk; 0; infinityg�== Simplify

Out [2] D � 1573

120Pi2
Zeta[3]

In [3] WD NŒ�1573=.120Piq2/ ZetaŒ3�; 50�

�SumŒexpr; fk; 0; 50g�
Out [3] D 4:00751120011 � 10�38

In [4] WD NŒ�1573=.120Piq2/ ZetaŒ3�; 100�

�Sum Œexpr; fk; 0; 50g�
Out [4] D 4:0075112001<skip>3481 � 10�38

Thus, clearly, the result does not change appreciably when we increase the precision
of computation of the symbolic result from 50 to 100. This is expected, because of
the following numerical computation of the last term for k D 50:

In [5] WD N Œexpr =:k ! 50; 50�

Out [5] D 1:3608530374922376861443887454551514233575702860179 � 10�37
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6 The Hurwitz-Lerch Zeta Function ˚.z; s; a/ W Extensions
and Generalizations

The potentially and computationally useful foregoing developments (which we have
attempted to present here in a rather concise form) have essentially motivated a large
number of further investigations on the subject, not only involving the Riemann Zeta
function �.s/ and the Hurwitz (or generalized) Zeta function �.s; a/ (and their such
relatives as the multiple Zeta functions and the multiple Gamma functions), but
indeed also the substantially general Hurwitz-Lerch Zeta function˚.z; s; a/ defined
by (cf., e.g., [10, p. 27. Eq. 1.11 (1)]; see also [43, p. 121, et seq.])

˚.z; s; a/ WD
1X

nD0

zn

.nC a/s (73)

�
a 2 C n Z�

0 I s 2 C when jzj < 1I <.s/ > 1 when jzj D 1	 :
Just as in the cases of the Riemann Zeta function �.s/ and the Hurwitz (or gen-
eralized) Zeta function �.s; a/, the Hurwitz-Lerch Zeta function ˚.z; s; a/ can be
continued meromorphically to the whole complex s-plane, except for a simple pole
at s D 1 with its residue 1. It is also known that [10, p. 27, Eq. 1.11 (3)]

˚.z; s; a/ D 1

� .s/

Z 1

0

t s�1 e�at

1 � ze�t dt D
1

� .s/

Z 1

0

t s�1 e�.a�1/t

et � z
dt (74)

.<.a/ > 0I <.s/ > 0 when jzj 5 1.z ¤ 1/I <.s/ > 1 when z D 1/:
The Hurwitz-Lerch Zeta function ˚.z; s; a/ defined by (73) contains, as its spe-

cial cases, not only the Riemann Zeta function �.s/ and the Hurwitz (or generalized)
Zeta function �.s; a/ [cf. (1) and (2)]:

�.s/ D ˚.1; s; 1/ and �.s; a/ D ˚.1; s; a/ (75)

and the Lerch Zeta function `s.�/ defined by (see, for details, [10, Chap. I] and [43,
Chap. 2])

`s.�/ WD
1X

nD1

e2n�i�

ns
D e2�i� ˚ �e2�i� ; s; 1	 (76)

.� 2 RI <.s/ > 1/ ;
but also such other important functions of Analytic Function Theory as the
Polylogarithmic function (or Jonquère’s function) Lis.z/:

Lis.z/ WD
1X

nD1

zn

ns
D z ˚.z; s; 1/ (77)
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�
s 2 C when jzj < 1I <.s/ > 1 when jzj D 1	

and the Lipschitz-Lerch Zeta function (cf. [43, p. 122, Eq. 2.5 (11)]):

�.�; a; s/ WD
1X

nD0

e2n�i�

.nC a/s D ˚
�
e2�i� ; s; a

	 DW L.�; s; a/ (78)

�
a 2 C n Z�

0 I <.s/ > 0 when � 2 R n ZI <.s/ > 1 when � 2 Z
	
;

which was first studied by Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–
1922) in connection with Dirichlet’s famous theorem on primes in arithmetic
progressions. For details, the interested reader should be referred, in connection with
some of these developments, to the recent works including (among others) [2, 6] to
[5, 14, 22, 23, 26].

Yen et al. [59, p. 100, Theorem] derived the following sum-integral representa-
tion for the Hurwitz (or generalized) Zeta function �.s; a/ defined by (2):

�.s; a/ D 1

� .s/

k�1X

jD0

Z 1

0

t s�1 e�.aCj /t

1 � e�kt dt (79)

�
k 2 NI <.s/ > 1I <.a/ > 0	;

which, for k D 2, was given earlier by Nishimoto et al. [31, p. 94, Theorem 4].
A straightforward generalization of the sum-integral representation (79) was given
subsequently by Lin and Srivastava [25, p. 727, Eq. 7] in the form:

˚.z; s; a/ D 1

� .s/

k�1X

jD0
zj
Z 1

0

t s�1 e�.aCj /t

1 � zke�kt dt (80)

�
k 2 NI <.a/ > 0I <.s/ > 0 when jzj 5 1 .z ¤ 1/I <.s/ > 1 when z D 1	:
Motivated essentially by the sum-integral representations (79) and (80), a

generalization of the Hurwitz-Lerch Zeta function ˚.z; s; a/ was introduced and
investigated by Lin and Srivastava [25] in the following form [25, p. 727, Eq. 8]:

˚.�;�/
�;� .z; s; a/ WD

1X

nD0

.�/�n

.�/�n

zn

.nC a/s (81)

�
� 2 CI a; � 2 C n Z�

0 I �; � 2 R
CI � < � when s; z 2 CI

� D � and s 2 C when jzj < ı WD ��� �� I
� D � and <.s � �C �/ > 1 when jzj D ı	;
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where .�/� denotes the Pochhammer symbol defined in conjunction with (11) and
(12). Clearly, we find from the definition (81) that

˚.�;�/
�;� .z; s; a/ D ˚.0;0/

�;� .z; s; a/ D ˚.z; s; a/ (82)

and

˚
.1;1/
�;1 .z; s; a/ D ˚�

�.z; s; a/ WD
1X

nD0

.�/n

nŠ

zn

.nC a/s (83)

�
� 2 CI a 2 C n Z�

0 I s 2 C when jzj < 1I <.s � �/ > 1 when jzj D 1	;
where, as already noted by Lin and Srivastava [25], ˚�

�.z; s; a/ is a generalization
of the Hurwitz-Lerch Zeta function considered by Goyal and Laddha [18, p. 100,
Eq. 1.5]. For further results involving these classes of generalized Hurwitz-Lerch
Zeta functions, see the recent works by Garg et al. [14] and Lin et al. [26].

A generalization of the above-defined Hurwitz-Lerch Zeta functions ˚.z; s; a/
and ˚�

�.z; s; a/ was studied by Garg et al. [15] in the following form [15, p. 313,
Eq. 1.7]:

˚�;�I�.z; s; a/ WD
1X

nD0

.�/n.�/n

.�/n � nŠ
zn

.nC a/s (84)

�
�;� 2 CI �; a 2 C n Z�

0 I s 2 C when jzj < 1I
<.s C � � � � �/ > 1 when jzj D 1	:

By comparing the definitions (81) and (83), it is easily observed that the function
˚�;�I�.z; s; a/ studied by Garg et al. [15] does not provide a generalization of the

function ˚.�;�/
�;� .z; s; a/ which was introduced earlier by Lin and Srivastava [25].

Indeed, for � D 1, the function ˚�;�I�.z; s; a/ coincides with a special case of the

function ˚.�;�/
�;� .z; s; a/ when � D � D 1.

For the Riemann-Liouville fractional derivative operator D�
z defined by (see, for

example, [11, p. 181], [35] and [24, p. 70 et seq.])

D�
z ff .z/g WD

8
ˆ̂
<̂

ˆ̂
:̂

1

� .��/
Z z

0

.z � t/���1f .t/ dt
�< .�/ < 0	

dm

d zm

n
D��m

z ff .z/g
o �

m � 1 5 < .�/ < m .m 2 N/
	
;

(85)
it is known that

D�
z

˚
z�
� D � .�C 1/

� .� � �C 1/ z��� �< .�/ > �1	; (86)

which, in view of the definition (81), yields the following fractional derivative
formula for the generalized Hurwitz-Lerch Zeta function ˚.�;�/

�;� .z; s; a/ with � D �
[25, p. 730, Eq. 24]:
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D���
z

˚
z��1 ˚ .z� ; s; a/

� D � .�/

� .�/
z��1 ˚.�;�/

�;� .z� ; s; a/ (87)

�< .�/ > 0I � 2 R
C	:

In particular, when � D � D 1; the fractional derivative formula (87) would reduce
at once to the following form:

˚�
� .z; s; a/ D

1

� .�/
D��1

z

˚
z��1 ˚ .z; s; a/

� �<.�/ > 0	; (88)

which (as already remarked by Lin and Srivastava [25, p. 730]) exhibits the
interesting (and useful) fact that ˚�

�.z; s; a/ is essentially a Riemann-Liouville
fractional derivative of the classical Hurwitz-Lerch function ˚ .z; s; a/. Moreover,
it is easily deduced from the fractional derivative formula (86) that

˚�;�I�.z; s; a/ D � .�/

� .�/
z1�� D���

z

n
z��1 ˚�

�.z; s; a/
o

D � .�/

� .�/� .�/
z1��

�D���
z

n
z��1 D��1

z

˚
z��1 ˚�.z; s; a/

� o
; (89)

which exhibits the hitherto unnoticed fact that the function ˚�;�I�.z; s; a/ studied
by Garg et al. [15] is essentially a consequence of the classical Hurwitz-Lerch
Zeta function ˚.z; s; a/ when we apply the Riemann-Liouville fractional derivative
operator D�

z two times as indicated above (see also [53]). Many other explicit
representations for ˚�

�.z; s; a/ and ˚
.�;�/
�;� .z; s; a/, including a potentially useful

Eulerian integral representation of the first kind [25, p. 731, Eq. 28], were proven
by Lin and Srivastava [25].

A multiple (or, simply, n-dimentional) Hurwitz-Lerch Zeta function ˚n.z; s; a/
was studied recently by Choi et al. [7, p. 66, Eq. 6]. Răducanu and Srivastava (see
[33] and the references cited therein), on the other hand, made use of the Hurwitz-
Lerch Zeta function ˚.z; s; a/ in defining a certain linear convolution operator
in their systematic investigation of various analytic function classes in Geometric
Function Theory in Complex Analysis. Furthermore, Gupta et al. [19] revisited the
study of the familiar Hurwitz-Lerch Zeta distribution by investigating its structural
properties, reliability properties and statistical inference. These investigations by
Gupta et al. [19] and others (see, for example, [42, 43, 51, 52]), fruitfully using
the Hurwitz-Lerch Zeta function ˚.z; s; a/ and some of its above-mentioned
generalizations, motivated Srivastava et al. [53] to present a further generalization
and analogous investigation of a new family of Hurwitz-Lerch Zeta functions
defined in the following form [53, p. 491, Eq. 1.20]:
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˚
.�;�;/

�;�I� .z; s; a/ WD
1X

nD0

.�/�n.�/�n

.�/n � nŠ
zn

.nC a/s (90)

�
�;� 2 CI a; � 2 C n Z�

0 I �; �;  2 R
CI  � � � � > �1 when s; z 2 CI

 � � � � D �1 and s 2 C when jzj < ı� WD ��� ���  I
 � � � � D �1 and <.s C � � � � �/ > 1 when jzj D ı�	:

For the above-defined function in (90), Srivastava et al. [53] established various
integral representations, relationships with the H -function which is defined by
means of a Mellin-Barnes type contour integral (see, for example, [50, 53]),
fractional derivative and analytic continuation formulas, as well as an extension of
the generalized Hurwitz-Lerch Zeta function ˚.�;�;/

�;�I� .z; s; a/ in (90). This natural

further extension and generalization of the function ˚.�;�;/

�;�I� .z; s; a/ was indeed
accomplished by introducing essentially arbirary numbers of numerator and denom-
inator parameters in the definition (90). For this purpose, in addition to the symbol
r� defined by

r� WD
0

@
pY

jD1
�

��j
j

1

A �
0

@
qY

jD1
�
�j
j

1

A ; (91)

the following notations will be employed:

� WD
qX

jD1
�j �

pX

jD1
�j and # WD s C

qX

jD1
�j �

pX

jD1
�j C p � q

2
: (92)

Then the extended Hurwitz-Lerch Zeta function

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/

is defined by [53, p. 503, Eq. 6.2]

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/ WD

1X

nD0

pQ

jD1
.�j /n�j

nŠ
qQ

jD1
.�j /n�j

zn

.nC a/s (93)

�

p; q 2 N0I �j 2 C .j D 1; � � � ; p/I a; �j 2 C nZ�
0 .j D 1; � � � ; q/I

�j ; �k 2 R
C .j D 1; � � � ; pI k D 1; � � � ; q/I

� > �1 when s; z 2 CI � D �1 and s 2 C when jzj < r�I

� D �1 and <.#/ > 1

2
when jzj D r�

�

:
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The special case of the definition (93) when p � 1 D q D 1 would obviously
correspond to the above-investigated generalized Hurwitz-Lerch Zeta function
˚
.�;�;/

�;�I� .z; s; a/ defined by (90).
If we set

p 7! p C 1 �
�1 D � � � D �p D 1I �pC1 D �pC1 D 1

	

and
q 7! q C 1 �

�1 D � � � D �q D 1I �qC1 D ˇI �qC1 D ˛
	
;

then (93) reduces to the following generalized M -series which was recently
introduced by Sharma and Jain [36] as follows:

˛;ˇ

pMq.a1; � � � ; apI b1; � � � ; bqI z/

D
1X

kD0

.a1/k � � � .ap/k

.b1/k � � � .bq/k
zk

� .˛k C ˇ/

D 1

� .ˇ/
pC1��

qC1

2

4
.a1; 1/ ; � � � ;

�
ap; 1

	
; .1; 1/I

.b1; 1/ ; � � � ;
�
bq; 1

	
; .ˇ; ˛/I

z

3

5 : (94)

This last relationship (94) exhibits the fact that the so-called generalized M -series
is, in fact, an obvious variant of the Fox-Wright function p�

�
q or p�

�
q .p; q 2

N0/, which is a generalization of the familiar generalized hypergeometric function
pFq.p; q 2 N0/, with p numerator parameters a1; � � � ; ap and q denominator
parameters b1; � � � ; bq such that

aj 2 C .j D 1; � � � ; p/ and bj 2 C n Z�
0 .j D 1; � � � ; q/;

defined by (see, for details, [10, p. 183] and [44, p. 21]; see also [24, p. 56], [28,
p. 30] and [48, p. 19])

p�
�
q

2

4
.a1; A1/ ; � � � ;

�
ap;Ap

	 I

.b1; B1/ ; � � � ;
�
bq; Bq

	 I
z

3

5

WD
1X

nD0

.a1/A1n � � �
�
ap
	
Apn

.b1/B1n � � �
�
bq
	
Bqn

zn

nŠ

D � .b1/ � � ��
�
bq
	

� .a1/ � � ��
�
ap
	 p�q

2

4
.a1; A1/ ; � � � ;

�
ap;Ap

	 I

.b1; B1/ ; � � � ;
�
bq; Bq

	 I
z

3

5 (95)
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0

@Aj > 0 .j D 1; � � � ; p/ I Bj > 0 .j D 1; � � � ; q/ I 1C
qX

jD1
Bj �

pX

jD1
Aj = 0

1

A ;

where the equality in the convergence condition holds true for suitably bounded
values of jzj given by

jzj < r WD
0

@
pY

jD1
A

�Aj
j

1

A �
0

@
qY

jD1
B
Bj
j

1

A :

In the particular case when

Aj D Bk D 1 .j D 1; � � � ; pI k D 1; � � � ; q/;

we have the following relationship (see, for details, [44, p. 21]):

p�
�
q

2

4
.a1; 1/ ; � � � ;

�
ap; 1

	 I

.b1; 1/ ; � � � ;
�
bq; 1

	 I
z

3

5

D pFq

2

4
a1; � � � ; apI

b1; � � � ; bqI
z

3

5

D � .b1/ � � ��
�
bq
	

� .a1/ � � ��
�
ap
	 p�q

2

4
.a1; 1/ ; � � � ;

�
ap; 1

	 I

.b1; 1/ ; � � � ;
�
bq; 1

	 I
z

3

5 ; (96)

in terms of the generalized hypergeometric function pFq .p; q 2 N0/.

Each of the following results involving the extended Hurwitz-Lerch Zeta function

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/

can be proven by applying the definition (93) in precisely the same manner as
for the corresponding result involving the general Hurwitz-Lerch Zeta function
˚
.�;�;/

�;�I� .z; s; a/ (see, for details, [53, Sect. 6]).

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/

D 1

� .s/

Z 1

0

t s�1 e�at
p�

�
q

2

4
.�1; �1/; � � � ; .�p; �p/I

.�1; �1/; � � � ; .�q; �q/I
ze�t

3

5 dt (97)

�
minf<.a/;<.s/g > 0	;
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˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/ D

qQ

jD1
�
�
�j
	

pQ

jD1
�
�
�j
	

� 1

2�i

Z

L

� .��/ f� .� C a/gs
pQ

jD1
�
�
�j C �j �

	

f� .� C aC 1/gs
qQ

jD1
�
�
�j C �j �

	
.�z/� d� (98)

�j arg.�z/j < �	

or, equivalently,

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/ D

qQ

jD1
�
�
�j
	

pQ

jD1
�
�
�j
	

�H1;pC1
pC1;qC2

2

4�z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.1 � �1; �1I 1/; � � � ; .1 � �p; �pI 1/; .1� a; 1I s/

.0; 1/; .1� �1; �1I 1/; � � � ; .1 � �q; �q I 1/; .�a; 1I s/

3

5 ;

(99)

provided that both sides of the assertions (97)–(99) exist, the path of integration L
in (99) being a Mellin-Barnes type contour in the complex �-plane; which starts at
the point �i1 and terminates at the point i1 with indentations; if necessary; in
such a manner as to separate the poles of � .��/ from the poles of �

�
�j C �j �

	

.j D 1; � � � ; p/.
The H -function representation given by (99) can be applied in order to derive

various properties of the extended Hurwitz-Lerch Zeta function

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/

from those of the H -function. Thus, for example, by making use of the following
fractional-calculus result due to Srivastava et al. [50, p. 97, Eq. 2.4]:

D�
z

n
z��1 Hm;n

p;q .!z/
o
D z����1

�Hm;nC1
pC1;qC1

2

6
4!z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.1 � �; I 1/ ; �aj ; Aj I˛j
	n
jD1 ;

�
aj ; Aj

	p
jDnC1

�
bj ; Bj

	m
jD1 ;

�
bj ; Bj Iˇj

	q
jDmC1 ; .1 � �C �; I 1/

3

7
5 (100)

�<.�/ > 0I  > 0	;
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we readily obtain an extension of such fractional derivative formulas as (for
example) (87) given by

D���
z

n
z��1 ˚.�1;��� ;�p ;�1;��� ;�q /

�1;��� ;�p I�1;��� ;�q .z
; s; a/

o
D

qQ

jD1
�
�
�j
	

pQ

jD1
�
�
�j
	

z��1

�H1;pC2
pC2;qC3

2

6
4�z

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.1 � �1; �1I 1/; � � � ; .1 � �p; �p I 1/; .1 � �; I 1/; .1 � a; 1I s/

.0; 1/; .1 � �1; �1I 1/; � � � ; .1 � �q; �q I 1/; .1� �; I 1/; .�a; 1I s/

3

7
5

D � .�/

� .�/
z��1 ˚.�1;��� ;�p ;;�1;��� ;�q;/

�1;��� ;�p;�I�1;��� ;�q ;� .z
; s; a/

�<.�/ > 0I  > 0	: (101)

Finally, we present the following extension of a known result [53, p. 496,
Theorem 3] (see also [53, p. 505, Theorem 9].

Theorem 1. Let
�
˛n
	
n2N0 be a positive sequence such that the following infinite

series: 1X

nD0
e�˛nt

converges for any t 2 R
C. Then

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/ D

1

� .s/

1X

nD0

Z 1

0

t s�1 e�.a�˛0C˛n/t �1 � e�.˛nC1�˛n/t 	

� p��
q

2

4
.�1; �1/; � � � ; .�p; �p/I

.�1; �1/; � � � ; .�q; �q/I
ze�t

3

5 dt (102)

�
minf<.a/;<.s/g > 0	;

provided that each member of (102) exists.

It would be nice and worthwhile to be able to extend the results presented in
Sects. 2–5 of this article to hold true for the Hurwitz-Lerch Zeta function ˚ .z; s; a/
and for some of its generalizations given by the Lin-Srivastava Zeta function
˚
.�;�/
�;� .z; s; a/ and the extended Hurwitz-Lerch Zeta function

˚
.�1;��� ;�p ;�1;��� ;�q /
�1;��� ;�p I�1;��� ;�q .z; s; a/

defined by (93) for special values of the varous parameters involved in the definitions
(81) and (93).
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Gyrations: The Missing Link Between Classical
Mechanics with Its Underlying Euclidean
Geometry and Relativistic Mechanics
with Its Underlying Hyperbolic Geometry

Abraham Albert Ungar

Dedicated to the 80th Anniversary of Professor Stephen Smale

Abstract The present article on the hyperbolic geometric interpretation of the
relativistic mechanical effect known as Thomas precession is dedicated to the 80th
Anniversary of Steve Smale for his leadership and commitment to excellence in
the field of geometric mechanics. A study of Thomas precession in terms of its
underlying hyperbolic geometry and elegant algebra is presented here in order to
clarify the concept of Thomas precession. We review the studies of both Thomas
precession and its abstract version, gyration. Based on the review we derive the
correct Thomas precession angular velocity. We demonstrate here convincingly that
the Thomas precession angle � and its generating angle � have opposite signs. We
present the path from Einstein velocity addition to the gyroalgebra of gyrogroups
and gyrations, and to the gyrogeometry that coincides with the hyperbolic geometry
of Bolyai and Lobachevsky. We, then, demonstrate that the concept of Thomas
precession in Einstein’s special theory of relativity is a concrete realization of the
abstract concept of gyration in gyroalgebra.

1 Introduction

It has been the lifetime desire of Steve Smale to improve our understanding of
geometric mechanics [36], a theory that fits extraordinarily well into dynamical
systems framework, as he explains in his 1967 survey article [35]. An overview
of his involvement with geometric mechanics, without entering into technical
details, is presented by Marsden in [25]. The impact of Einstein’s work [29] led
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Smale to remark in [36, p. 365] that relativity theory respects classical mechanics
since “Einstein worked from a very deep understanding of Newtonian theory”.
The present article on the hyperbolic geometric interpretation of the relativistic
mechanical effect known as Thomas precession is therefore dedicated to the 80th
Anniversary of Steve Smale for his leadership and commitment to excellence in the
field of geometric mechanics.

Thomas precession of Einstein’s special theory of relativity is a physical
realization of the abstract gyration. The latter, in turn, is an automorphism (defined
in Definition 4) that provides the missing link between Einstein’s special theory
of relativity and the hyperbolic geometry of Bolyai and Lobachevsky. Named after
Llewellyn Hilleth Thomas (1902–1992) who discovered its physical significance in
1926 [1, 41, 42], Thomas precession is a special relativistic kinematic effect that
regulates Einstein velocity addition both algebraically and geometrically [52]. In an
exhaustive review of the vast literature on Thomas precession [24], G.B. Malykin
emphasizes the importance of the frequency of the precession, pinpointing related
erroneous results that are common in the literature.

Accordingly, a study of Thomas precession in terms of its underlying hyperbolic
geometry and elegant algebra is presented here in order to clarify the concept of
Thomas precession. Thomas precession is an important special relativistic rotation
that results from the nonassociativity of Einstein velocity addition and, hence, does
not exist classically. Indeed, it was discovered in 1988 [45] that Thomas precession
regulates Einstein velocity addition, endowing it with a rich algebraic structure.
As such, Thomas precession admits extension by abstraction, in which precession
becomes gyration. The latter, in turn, gives rise to two new algebraic structures
called a gyrogroup and a gyrovector space, thus introducing new realms to explore.
The basic importance of gyrations is emphasized in gyrolanguage, where we prefix
a gyro to any term that describes a concept in Euclidean geometry and in associative
algebra to mean the analogous concept in hyperbolic geometry and nonassociative
algebra.

Gyrovector spaces turn out to form the algebraic setting for the hyperbolic
geometry of Bolyai and Lobachevsky just as vector spaces form the algebraic setting
for Euclidean geometry [51, 52, 66]. This discovery resulted in the extension by
abstraction of Thomas precession into gyration, and in subsequent studies presented
in several books [52, 54, 56, 58–60] reviewed, for instance, in [66] and [28]. The
hyperbolic geometric character of Thomas precession is emphasized here by the
observation that it can be interpreted as the defect of a related hyperbolic triangle.
Other novel relationships between the special relativity theory of Einstein and the
hyperbolic geometry of Bolyai and Lobachevsky are presented in [57, 61].

Following Malykin’s observations in [24], there is a need to demonstrate that
our study of Thomas precession does lead to the correct Thomas precession angular
velocity. Accordingly, in this article we review the studies in [52, 54, 56, 58–60] of
both Thomas precession and its abstract version, gyration. Based on the review we
derive the correct Thomas precession angular velocity, illustrated in Fig. 4, p. 484.
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A boost is a Lorentz transformation without rotation [48]. The Thomas preces-
sion angle � is generated by the application of two successive boosts with velocity
parameters, say, u and v. The angle � between u and v is the generating angle of the
resulting Thomas precession angle �, shown in Fig. 4.

An important question about the Thomas precession angle � and its generating
angle � is whether or not � and � have equal signs. According to Malykin [24], some
explorers claim that � and � have equal signs while some other explorers claim that
� and � have opposite signs. In particular, Malykin claims that these angles have
equal signs while, in contrast, we demonstrate here convincingly that these angles
have opposite signs. Our demonstration is convincing since it accompanies a focal
identity, (118), that interested explorers can test (both theoretically and) numerically
in order to corroborate our claim that � and � have opposite signs.

In order to pave the way to the study Thomas precession we present the path
from Einstein velocity addition to the gyroalgebra of gyrogroups and gyrations,
and to the gyrogeometry that coincides with the hyperbolic geometry of Bolyai
and Lobachevsky. We, then, demonstrate that the concept of Thomas precession in
Einstein’s special theory of relativity is a concrete realization of the abstract concept
of gyration in gyroalgebra.

A signed angle � , �� < � < � , between two non-parallel vectors u and v
in the Euclidean 3-space R

3 is positive (negative) if the angle � drawn from u
to v is drawn counterclockwise (clockwise). The relationship between the Thomas
precession signed angle of rotation, �, and its generating signed angle, � , shown
in Fig. 4, is important. Hence, finally, we pay special attention to the relationship
between the Thomas precession signed angle of rotation � and its generating signed
angle � , demonstrating that these have opposite signs.

2 Einstein Velocity Addition and Scalar Multiplication

Let .R3;C; �/ be the Euclidean 3-space with its common vector addition, C, and
inner product, �, and let

R
3
c D fv 2 R

3 W kvk < cg (1)

be the c-ball of all relativistically admissible velocities of material particles, where
c is the vacuum speed of light.

Einstein velocity addition is a binary operation, ˚, in the c-ball R
3
c of all

relativistically admissible velocities, given by the equation, [52], [33, Eq. 2.9.2],[27,
p. 55] and [11],

u˚v D 1

1C u�v
c2

�

uC 1

	u
vC 1

c2
	u

1C 	u
.u�v/u

�

D 1

1C u�v
c2

�

uC vC 1

c2
	u

1C 	u
.u 
 .u 
 v//

�
(2)
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for all u; v 2 R
3
c , where 	u is the gamma factor given by the equation

	v D
1

r

1 � kvk
2

c2

(3)

Here u�v and kvk are the inner product and the norm in the ball, which the ball R3c
inherits from its space R

3, kvk2 D v�v D v2. Recalling that a nonempty set with
a binary operation is called a groupoid, the Einstein groupoid .R3c;˚/ is called an
Einstein gyrogroup. A formal definition of the abstract gyrogroup will be presented
in Definition 4.

Einstein addition admits scalar multiplication ˝, giving rise to the Einstein
gyrovector space .R3c;˚;˝/. Remarkably, the resulting Einstein gyrovector spaces
.Rnc ;˚;˝/ form the setting for the Cartesian-Beltrami-Klein ball model of
hyperbolic geometry, just as vector spaces form the setting for the standard Cartesian
model of Euclidean geometry, as we will see in the sequel.

Let k˝v be the Einstein addition of k copies of v 2 R
n
c , that is k˝v D

v˚v : : :˚v (k terms). Then,

k˝v D c

�

1C kvk
c

�k
�
�

1 � kvk
c

�k

�

1C kvk
c

�k
C
�

1 � kvk
c

�k
v
kvk (4)

The definition of scalar multiplication in an Einstein gyrovector space requires
analytically continuing k off the positive integers, thus obtaining the following
definition:

Definition 1. (Einstein Scalar Multiplication; Einstein Gyrovector Spaces). An
Einstein gyrovector space .Rns ;˚;˝/ is an Einstein gyrogroup .Rns ;˚/ with scalar
multiplication˝ given by

r˝v D s

�

1C kvk
s

�r
�
�

1 � kvk
s

�r

�

1C kvk
s

�r
C
�

1 � kvk
s

�r
v
kvk D s tanh.r tanh�1 kvk

s
/

v
kvk (5)

where r is any real number, r 2 R, v 2 R
n
s , v ¤ 0, and r˝0 D 0, and with which

we use the notation v˝r D r˝v.

In the Newtonian limit of large c, c !1, the ball R3c expands to the whole of its
space R3, as we see from (1), and Einstein addition˚ in R

3
c reduces to the ordinary

vector additionC in R
3, as we see from (2) and (3).

Einstein addition (2) of relativistically admissible velocities was introduced by
Einstein in his 1905 paper [7] and [8, p. 141] that founded the special theory of
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relativity. One has to remember here that the Euclidean 3-vector algebra was not
so widely known in 1905 and, consequently, was not used by Einstein. Einstein
calculated in [7] the behavior of the velocity components parallel and orthogonal
to the relative velocity between inertial systems, which is as close as one can get
without vectors to the vectorial version (2) of Einstein addition.

We naturally use the abbreviation u�v D u˚.�v/ for Einstein subtraction, so
that, for instance, v�v D 0,�v D 0�v D �v and, in particular,

�.u˚v/ D �u�v (6)

and
�u˚.u˚v/ D v (7)

for all u; v in the ball R3c , in full analogy with vector addition and subtraction in R
3.

Identity (6) is known as the automorphic inverse property, and Identity (7) is known
as the left cancellation law of Einstein addition [56]. We may note that Einstein
addition does not obey the naive right counterpart of the left cancellation law (7)
since, in general,

.u˚v/�v ¤ u (8)

The seemingly lack of a right cancellation law for Einstein addition is repaired
in (83) by the introduction of a second binary operation, called Einstein coaddi-
tion, (81), which captures important analogies with classical results.

Einstein addition and the gamma factor are related by the gamma identity,

	u˚v D 	u	v

�
1C u�v

c2

�
(9a)

which can be written, equivalently, as

	�u˚v D 	u	v

�
1 � u�v

c2

�
(9b)

for all u; v 2 R
3
c . Here, (9b) is obtained from (9a) by replacing u by�u D �u.

A frequently used identity that follows immediately from (3) is

v2

c2
D kvk

2

c2
D 	2v � 1

	2v
(10)

and, similarly, useful identities that follow immediately from (9) are

u�v
c2
D �1C 	u˚v

	u	v
(11a)

and
u�v
c2
D 1 � 	�u˚v

	u	v
(11b)
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implying
	u˚v � 	u	v D �	�u˚v C 	u	v (11c)

In Identity (11c) the left-hand side seems to be more elegant, in form, than
the right-hand side. Geometrically, however, the right-hand side of this identity is
advantageous over its left-hand side because the gamma factor 	�u˚v that appears
on the right-hand side possesses a geometric interpretation. It has a geometric
interpretation in hyperbolic triangles, called gyrotriangles, as explained in [60,
Sect. 2.10]. To be more specific, we recall in Sect. 4 relevant results from [60].

Einstein addition is noncommutative. Indeed, in general,

u˚v ¤ v˚u (12)

u; v 2 R
3
c . Moreover, Einstein addition is also nonassociative since, in general,

.u˚v/˚w ¤ u˚.v˚w/ (13)

u; v;w 2 R
3
c .

It seems that following the breakdown of commutativity and associativity in
Einstein addition some mathematical regularity has been lost in the transition from
Newton’s velocity vector addition in R

3 to Einstein’s velocity addition (2) in R
3
c .

This is, however, not the case since gyrations come to the rescue, as we will see
in Sect. 5. Owing to the presence of gyrations, the Einstein groupoid .R3c;˚/ has
a grouplike structure [49] that we naturally call an Einstein gyrogroup [52]. The
formal definition of the resulting abstract gyrogroup will be presented in Definition 4
and Sect. 7.

3 Linking Einstein Addition to Hyperbolic Geometry

The Einstein gyrodistance function, d.u; v/, in an Einstein gyrovector space
.Rnc ;˚;˝/ is given by the equation

d.u; v/ D ku�vk (14)

u; v 2 R
n
c . We call it a gyrodistance function in order to emphasize the analogies it

shares with its Euclidean counterpart, the distance function ku � vk in R
n. Among

these analogies is the gyrotriangle inequality according to which

ku˚vk � kuk˚kvk (15)

for all u; v 2 R
n
c . For this and other analogies that distance and gyrodistance

functions share see [54, 56].
In a two dimensional Einstein gyrovector space .R2s ;˚;˝/ the squared gyrodis-

tance between a point x 2 R
2
s and an infinitesimally nearby point x C dx 2 R

2
s ,

dx D .dx1; dx2/, is given by the equation [56, Sect. 7.5] and [54, Sect. 7.5]
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ds2 D k.xC dx/�xk2

D Edx21 C 2Fdx1dx2 CGdx22 C : : : (16)

where, if we use the notation r2 D x21 C x22 , we have

E D c2 c2 � x22
.c2 � r2/2

F D c2 x1x2

.c2 � r2/2

G D c2 c2 � x21
.c2 � r2/2

(17)

The triple .g11; g12; g22/ D .E; F;G/ along with g21 D g12 is known in
differential geometry as the metric tensor gij [21]. It turns out to be the metric tensor
of the Beltrami-Klein disc model of hyperbolic geometry [26, p. 220]. Hence, ds2

in (16) and (17) is the Riemannian line element of the Beltrami-Klein disc model
of hyperbolic geometry, linked to Einstein velocity addition (2) and to Einstein
gyrodistance function (14) [55].

The link between Einstein gyrovector spaces and the Beltrami-Klein ball model
of hyperbolic geometry, already noted by Fock [11, p. 39], has thus been established
in (14)–(17) in two dimensions. The extension of the link to higher dimensions is
presented in [52, Sect. 9, Chap. 3], [56, Sect. 7.5] [54, Sect. 7.5] and [55]. For a brief
account of the history of linking Einstein’s velocity addition law with hyperbolic
geometry see [30, p. 943].

4 Gyrotriangle, the Hyperbolic Triangle

In this inspirational section we present recollections from [60] that intend to mo-
tivate Thomas precession explorers to study the gyrostructure of Einstein addition
and its underlying hyperbolic geometry.

Let U , V and W be the three vertices of a gyrotriangle UVW in an Einstein
gyrovector space .R3c;˚;˝/, shown in Fig. 1. Then, in full analogy with Euclidean
geometry, the three sides of the gyrotriangle form the three gyrovectors

u D �W˚V
v D �W˚U
w D �U˚V

(18)

and the corresponding three side-gyrolengths of the gyrotriangle are
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Fig. 1 The gyrotriangle UVW in an Einstein gyrovector space .Rns ;˚;˝/ is shown for n D 2.
Its sides are presented graphically as gyrosegments that join the vertices. They form the gyrovectors
u; v;w, side-gyrolengths, u; v;w, and gyroangles, ˛; ˇ; 	 . The gyrotriangle gyroangle sum is less
than � , the difference, ı D � � .˛C ˇC 	/, being the gyrotriangular defect. For similar figures,
which illustrate Einsteinian gyrotriangle gyroangles vs. Euclidean triangle angles( see, for instance,
[60, Fig. 7.1, p. 150] and [60, Fig. 7.2, p. 155])

u D kuk D k�W˚V k
v D kvk D k�W˚U k
w D kwk D k�U˚V k D k�u˚vk

(19)

and the side gamma factors of the gyrotriangle are, accordingly, 	u , 	v and

	w D 	�u˚v (20)

Hence, by (20), the gamma factors 	u , 	v and 	�u˚v in (11c) can be interpreted
geometrically as the gamma factors of the three sides of a gyrotriangle UVW .

For later reference we recall here that the gyrotriangular defect ı of the
gyrotriangle UVW is given in terms of the gyrotriangle side gamma factors by
the equation [59, Theorem 2.32] [60, Theorem 6.11]
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tan ı
2
D
p
1C 2	u	v	w � 	2u � 	2v � 	2w

1C 	u C 	v C 	w
(21)

where 	w D 	�u˚v.
It is the gamma identity (9a) that signaled the emergence of hyperbolic geometry

in special relativity when it was first studied by Sommerfeld [38] and Varičak [62,
63]. Historically, it formed the first link between special relativity and the hyperbolic
geometry of Bolyai and Lobachevsky, recently leading to the novel trigonometry in
hyperbolic geometry that became known as gyrotrigonometry, studied in [52,54,56,
58–60].

If, unlike what we see in Fig. 1, U; V;W 2 R
3
c � R

3 are viewed as points of the
Euclidean 3-space R3, then they give rise to the two vectors

u D �W C U
v D �W C V (22)

that emanate from the point W . The point W , in turn, forms the vertex of the
included angle 	 D †UW V that satisfies the equation

cos 	 D �W C U
k �W C U k �

�W C U
k �W C U k (23)

In full analogy, if U; V;W 2 R
3
c � R

3 are viewed as points of the Einsteinian
3-gyrospace R3c , as we see in Fig. 1, then they give rise to the two gyrovectors

u D �W˚U
v D �W˚V (24)

that emanate from the point W . The point W , in turn, forms the vertex of the
included gyroangle 	 D †UW V that satisfies the equation

cos 	 D �W˚U
k�W˚U k �

�W˚U
k�W˚U k (25)

Accordingly, as an example, if the velocities u and v in Fig. 4, p. 484, are viewed
as Newtonian, classical velocities, then these velocities are vectors such that their
included angle is the angle � in Fig. 4. The measure of angle � , in turn, is given by
an equation like (23).

If, however, the velocities u and v in Fig. 4 are viewed as Einsteinian, relativistic
velocities, then these velocities are gyrovectors such that their included gyroangle
is the gyroangle � in Fig. 4. The measure of gyroangle � , in turn, is given by an
equation like (25).
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Remarkably, the cosine functions in (23) and (25) are identically the same
functions with different arguments: the argument of the cosine function in (23)
is an angle, while the argument of the cosine function in (25) is a gyroangle.
Yet, it is useful to give them different names, calling the cosine function that is
applied to gyroangles the gyrocosine function of gyrotrigonometry, as opposed to
the cosine function of trigonometry. Accordingly, (23) expresses the cosine function
of trigonometry, while (25) expresses the cosine function of gyrotrigonometry.

5 The Gyrostructure of Einstein Addition

Vector addition,C, in R
3 is both commutative and associative, satisfying

uC v D vC u Commutative Law

uC .vCw/ D .uC v/C w Associative Law

(26)

for all u; v;w 2 R
3. In contrast, Einstein addition,˚, in R

3
c is neither commutative

nor associative.
In order to measure the extent to which Einstein addition deviates from associa-

tivity we introduce gyrations, which are maps that are trivial in the special cases
when the application of ˚ is associative. For any u; v 2 R

3
c the gyration gyrŒu; v�

is an automorphism of the Einstein groupoid .R3c;˚/ onto itself, given in terms of
Einstein addition by the equation

gyrŒu; v�w D �.u˚v/˚fu˚.v˚w/g (27)

for all u; v;w 2 R
3
c .

We recall that an automorphism of a groupoid .S;˚/ is a one-to-one map f of S
onto itself that respects the binary operation, that is, f .a˚b/ D f .a/˚f .b/ for all
a; b 2 S . The set of all automorphisms of a groupoid .S;˚/ forms a group, denoted
Aut.S;˚/, where the group operation is given by automorphism composition. To
emphasize that the gyrations of an Einstein gyrogroup .R3c;˚/ are automorphisms
of the gyrogroup, gyrations are also called gyroautomorphisms.

A gyration gyrŒu; v�, u; v 2 R
3
c , is trivial if gyrŒu; v�w D w for all w 2 R

3
c .

Thus, for instance, the gyrations gyrŒ0; v�, gyrŒv; v� and gyrŒv;�v� are trivial for all
v 2 R

3
c , as we see from (27) and (7).

Einstein gyrations, which possess their own rich structure, measure the extent to
which Einstein addition deviates from both commutativity and associativity as we
see from the gyrocommutative and the gyroassociative laws of Einstein addition in
the following list of identities [52, 54, 56, 58–60], each of which has a name:
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u˚v D gyrŒu; v�.v˚u/ Gyrocommutative Law

u˚.v˚w/ D .u˚v/˚gyrŒu; v�w Left Gyroassociative Law

.u˚v/˚w D u˚.v˚gyrŒv;u�w/ Right Gyroassociative Law

gyrŒu˚v; v� D gyrŒu; v� Gyration Left Loop Property

gyrŒu; v˚u� D gyrŒu; v� Gyration Right Loop Property

gyrŒ�u;�v� D gyrŒu; v� Gyration Even Property

.gyrŒu; v�/�1 D gyrŒv;u� Gyration Inversion Law

(28)

for all u; v;w 2 R
3
c .

Einstein addition is thus regulated by gyrations to which it gives rise owing
to its nonassociativity, so that Einstein addition and its gyrations are inextricably
linked. The resulting gyrocommutative gyrogroup structure of Einstein addition was
discovered in 1988 [45]. Interestingly, gyrations are the mathematical abstraction of
the relativistic mechanical effect known as Thomas precession [56, Sect. 10.3], as
we will see in Sect. 9.

6 Gyrations

Owing to its nonassociativity, Einstein addition gives rise in (27) to gyrations

gyrŒu; v� W R3c ! R
3
c (29)

for any u; v 2 R
3
c . Gyrations, in turn, regulate Einstein addition, endowing it with

the rich structure of a gyrocommutative gyrogroup that will be formalize in Sect. 7.
The gyration equation is expressed in (27) in terms of Einstein addition.

Expressing it explicitly, in terms of vector addition and vector scalar product rather
than Einstein addition, we obtain the equation

gyrŒu; v�w D wC AuC Bv
D

(30)

where

A D � 1
c2

	2u
.	u C 1/

.	v � 1/.u�w/C
1

c2
	u	v .v�w/

C 2

c4
	2u	

2
v

.	u C 1/.	v C 1/
.u�v/.v�w/
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B D � 1
c2

	v

	v C 1
f	u.	v C 1/.u�w/C .	u � 1/	v .v�w/g

D D 	u	v .1C
u�v
c2
/C 1 D 	u˚v C 1 > 1 (31)

for all u; v;w 2 R
3
c . Clearly, the domain of u and v in (31) must be restricted to

the open ball R3c to insure the reality of the Lorentz factors 	u and 	v . In contrast,
however, the domain of w need not be restricted to the ball.

Allowing w 2 R
3 � R

3
c in (30) and (31), that is, extending the domain of w

from R
3
c to R

3, gyrations gyrŒu; v� are expendable from self-maps of R3c to linear
self-maps of R3 for all u; v 2 R

3
c . Indeed,

gyrŒu; v�.r1w1 C r2w2/ D r1gyrŒu; v�w1 C r2gyrŒu; v�w2 (32)

for all u; v 2 R
3
c , w 2 R

3 and r
1
; r

2
2 R.

In each of the three special cases when (1) u D 0, or (2) v D 0, or (3) u and v are
parallel in R

3, ukv, we have AuCBv D 0, so that in these cases gyrŒu; v� is trivial.
Thus, we have

gyrŒ0; v�w D w

gyrŒu; 0�w D w

gyrŒu; v�w D w; ukv
(33)

for all u; v 2 R
3
c � R

3 and all w 2 R
3.

It follows from (30) and (31) that

gyrŒv;u�.gyrŒu; v�w/ D w (34)

for all u; v 2 R
3
c , w 2 R

3, so that gyrations are invertible linear maps of R3, the
inverse, gyr�1Œu; v�, (28), of gyrŒu; v� being gyrŒv;u�. We thus obtain from (34) the
gyration inversion property in (28),

gyr�1Œu; v� D gyrŒv;u� (35)

for all u; v 2 R
3
c .

Gyrations keep the inner product of elements of the ball R3c invariant, that is,

gyrŒu; v�a�gyrŒu; v�b D a�b (36)

for all a;b;u; v 2 R
3
c . Hence, in particular, gyrŒu; v� is an isometry of R3c , keeping

the norm of elements of the ball R3c invariant,

kgyrŒu; v�wk D kwk (37)
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Accordingly, for any u; v 2 R
3
c , gyrŒu; v� represents a rotation of the ball R3c about

its origin.
The invertible self-map gyrŒu; v� of R3c respects Einstein addition in R

3
c ,

gyrŒu; v�.a˚b/ D gyrŒu; v�a˚gyrŒu; v�b (38)

for all a;b;u; v 2 R
3
c , so that, by (35) and (38), gyrŒu; v� is an automorphism of the

Einstein groupoid .R3c;˚/.

7 Gyrogroups

Taking the key features of the Einstein groupoid .R3c;˚/ as axioms, and guided
by analogies with groups, we are led to the formal gyrogroup definition in which
gyrogroups turn out to form a most natural generalization of groups. Definitions
related to groups and gyrogroups thus follow.

Definition 2. (Groups). A groupoid .G; C/ is a group if its binary operation
satisfies the following axioms. In G there is at least one element, 0, called a left
identity, satisfying
(G1) 0C a D a
for all a 2 G. There is an element 0 2 G satisfying axiom .G1/ such that for each
a 2 G there is an element �a 2 G, called a left inverse of a, satisfying
(G2) �aC a D 0
Moreover, the binary operation obeys the associative law
(G3) .aC b/C c D aC .b C c/
for all a; b; c 2 G.

Groups are classified into commutative and noncommutative groups.

Definition 3. (Commutative Groups). A group .G; C/ is commutative if its
binary operation obeys the commutative law
(G6) aC b D b C a
for all a; b 2 G.

Definition 4. (Gyrogroups). A groupoid .G;˚/ is a gyrogroup if its binary
operation satisfies the following axioms. In G there is at least one element, 0, called
a left identity, satisfying
(G1) 0˚a D a
for all a 2 G. There is an element 0 2 G satisfying axiom .G1/ such that for each
a 2 G there is an element�a 2 G, called a left inverse of a, satisfying
(G2) �a˚a D 0 :
Moreover, for any a; b; c 2 G there exists a unique element gyrŒa; b�c 2 G such
that the binary operation obeys the left gyroassociative law
(G3) a˚.b˚c/ D .a˚b/˚gyrŒa; b�c :
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The map gyrŒa; b� W G ! G given by c 7! gyrŒa; b�c is an automorphism of the
groupoid .G;˚/, that is,
(G4) gyrŒa; b� 2 Aut.G;˚/ ;
and the automorphism gyrŒa; b� of G is called the gyroautomorphism, or the
gyration, of G generated by a; b 2 G. The operator gyr W G 
 G ! Aut.G;˚/
is called the gyrator of G. Finally, the gyroautomorphism gyrŒa; b� generated by
any a; b 2 G possesses the left loop property
(G5) gyrŒa; b� D gyrŒa˚b; b� :

The gyrogroup axioms (G1)–(G5) in Definition 4 are classified into three
classes:

1. The first pair of axioms, .G1/ and .G2/ in Definition 4, is a reminiscent of the
group axioms .G1/ and .G2/ in Definition 2.

2. The last pair of axioms, .G4/ and .G5/ in Definition 4, presents the gyrator
axioms.

3. The middle axiom, .G3/ in Definition 4, is a hybrid axiom linking the two pairs
of axioms in Items (1) and (2).

As in group theory, we use the notation a�b D a˚.�b/ in gyrogroup theory as
well.

In full analogy with groups, gyrogroups are classified into gyrocommutative and
non-gyrocommutative gyrogroups.

Definition 5. (Gyrocommutative Gyrogroups). A gyrogroup .G;˚/ is gyrocom-
mutative if its binary operation obeys the gyrocommutative law
(G6) a˚ b D gyrŒa; b�.b ˚ a/
for all a; b 2 G.

Gyrogroups, finite and infinite, gyrocommutative and non-gyrocommutative, [32,
37, 53], abound in group theory, as demonstrated in [9, 10, 12, 13], forming fertile
areas for research published in six books over the last 10 years [52, 54, 56, 58–60].
Some first gyrogroup theorems, some of which are analogous to group theorems,
are presented, for instance, in [54, Chap. 2].

While it is clear how to define a right identity and a right inverse in a gyrogroup,
the existence of such elements is not presumed. Indeed, the existence of a unique
identity and a unique inverse, both left and right, is a consequence of the gyrogroup
axioms, as the following theorem shows, along with other immediate results.

Theorem 1 (First Gyrogroup Properties). Let .G; ˚/ be a gyrogroup. For any
elements a; b; c; x 2 G we have the following results:

1. If a˚b D a˚c, then b D c (general left cancellation law; see Item (9) below).
2. gyrŒ0; a� D I for any left identity 0 in G.
3. gyrŒx; a� D I for any left inverse x of a in G.
4. gyrŒa; a� D I
5. There is a left identity which is a right identity.
6. There is only one left identity.
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7. Every left inverse is a right inverse.
8. There is only one left inverse,�a, of a, and�.�a/ D a.
9. The Left Cancellation Law:

�a˚.a˚b/ D b (39)

10. The Gyrator Identity:

gyrŒa; b�x D �.a˚b/˚fa˚.b˚x/g (40)

11. gyrŒa; b�0 D 0 :
12. gyrŒa; b�.�x/ D �gyrŒa; b�x :
13. gyrŒa; 0� D I :

Proof.

1. Let x be a left inverse of a corresponding to a left identity, 0, in G. We have
x˚.a˚b/ D x˚.a˚c/, implying .x˚a/˚gyrŒx; a�b D .x˚a/˚gyrŒx; a�c
by left gyroassociativity. Since 0 is a left identity, gyrŒx; a�b D gyrŒx; a�c.
Since automorphisms are bijective, b D c.

2. By left gyroassociativity we have for any left identity 0 of G, a˚x D
0˚.a˚x/ D .0˚a/˚gyrŒ0; a�x D a˚gyrŒ0; a�x. Hence, by Item 1 above
we have x D gyrŒ0; a�x for all x 2 G so that gyrŒ0; a� D I .

3. By the left loop property and by Item 2 above we have gyrŒx; a� D gyrŒx˚a; a�
D gyrŒ0; a� D I .

4. Follows from an application of the left loop property and Item 2 above.
5. Let x be a left inverse of a corresponding to a left identity, 0, of G. Then by

left gyroassociativity and Item 3 above, x˚.a˚0/D .x˚a/˚gyrŒx; a�0D 0˚
0D 0Dx˚a. Hence, by (1), a˚0Da for all a 2 G so that 0 is a right identity.

6. Suppose 0 and 0� are two left identities, one of which, say 0, is also a right
identity. Then 0 D 0�˚0 D 0�.

7. Let x be a left inverse of a. Then x˚.a˚x/ D .x˚a/˚gyrŒx; a�x D 0˚x D
x D x˚0, by left gyroassociativity, (G2) of Definition 4 and Items 3, 5, 6
above. By Item 1 we have a˚x D 0 so that x is a right inverse of a.

8. Suppose x and y are left inverses of a. By Item 7 above, they are also right
inverses, so a˚x D 0 D a˚y. By Item 1, x D y. Let �a be the resulting
unique inverse of a. Then�a˚a D 0 so that the inverse�.�a/ of�a is a.

9. By left gyroassociativity and by 3 we have

�a˚.a˚b/ D .�a˚a/˚gyrŒ�a; a�b D b (41)

10. By an application of the left cancellation law in Item 9 to the left gyroassociative
law (G3) in Definition 4 we obtain the result in Item 10.

11. We obtain Item 11 from 10 with x D 0.
12. Since gyrŒa; b� is an automorphism of .G;˚/ we have from 11



478 A.A. Ungar

gyrŒa; b�.�x/˚gyrŒa; b�x D gyrŒa; b�.�x˚x/
D gyrŒa; b�0 D 0 (42)

and hence the result.
13. We obtain Item 13 from 10 with b D 0, and a left cancellation, Item 9. ut

Einstein addition admits scalar multiplication, giving rise to gyrovector spaces.
Studies of gyrogroup theory and gyrovector space theory along with applications in
hyperbolic geometry and in Einstein’s special theory of relativity are presented in
[52, 54, 56, 58–60].

We thus see in this section that Einsteinian velocity addition,˚, inR3c of relativis-
tically admissible velocities gives rise to the gyrocommutative gyrogroup .R3c;˚/,
just as Newtonian velocity addition, C, in R

3 of classical, Newtonian velocities
gives rise to the commutative group .R3;C/. Newtonian velocity addition, in turn,
is given by the common vector addition in R

3. Clearly, it is owing to the presence of
nontrivial gyrations that gyrogroups are generalized groups. Accordingly, gyrations
provide the missing link between the common vector addition and Einstein velocity
addition.

8 The Euclidean and Hyperbolic Lines

As shown in Figs. 2 and 3, we introduce Cartesian coordinates into R
n in the usual

way in order to specify uniquely each point P of the Euclidean n-space R
n by an

n-tuple of real numbers, called the coordinates, or components, of P . Cartesian
coordinates provide a method of indicating the position of points and rendering
graphs on a two-dimensional Euclidean plane R

2 and in a three-dimensional
Euclidean space R3.

As an example, Fig. 2 presents a Euclidean plane R
2 equipped with a Cartesian

coordinate system ˙ . The position of points A and B and their midpointMAB with
respect to ˙ are shown.

The set of all points
AC .�AC B/t (43)

t 2 R, forms a Euclidean line. The segment of this line, corresponding to 1 � t � 1,
and a generic point P on the segment, are shown in Fig. 2. Being collinear, the
pointsA;P and B obey the triangle equality d.A;P /Cd.P;B/ D d.A;B/, where
d.A;B/ D k �AC Bk is the Euclidean distance function in R

n.
Figure 2 demonstrates the use of the standard Cartesian model of Euclidean

geometry for graphical presentations. In a fully analogous way, Fig. 3 demonstrates
the use of the Cartesian-Beltrami-Klein model of hyperbolic geometry; see also [60,
Figs. 2.3 and 2.4].

Now, let A;B 2 R
n
s be two distinct points of the Einstein gyrovector space

.Rns ;˚;˝/, and let t 2 R be a real parameter. Then, in full analogy with the



Gyrations: The Missing Link 479

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

formula00

formula01

formula02

formula03

formula04

formula05

a

b

mab

pabPSfrag replacements
A
B

mA,B

P
d(A,P)+d(P,B) =d(A,B)

A+(−A+B)t

− ≤ t≤
mA,B =A+(−A+B) 1

2
d(A,B) = A−B

d(A,mA,B) = d(B,mA,B)

Fig. 2 Cartesian coordinates for the Euclidean plane R
2, .x1; x2/, x21 C x22 < 1, are shown. The

points A and B in the Euclidean plane R2 are given, with respect to these Cartesian coordinates, by
A D .�0:60;�0:15/ and B D .0:18; 0:80/. The distance function, d.A; B/ D kA� Bk, and the
equation of the line through A and B are shown along with the triangle equality for a generic point
P on the segment AB . The midpoint mA;B of the segment AB is reached when the line parameter
is t D 1=2
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Fig. 3 Cartesian coordinates for the unit disc in the Euclidean plane R
2, .x1; x2/, x21 C x22 < 1,

are shown. These, inside the disc, are viewed as Cartesian coordinates for the Einstein gyrovector
plane .R2;˚;˝/. The points A and B in the Einstein gyrovector plane .R2;˚;˝/ are given,
with respect to these Cartesian coordinates, by A D .�0:60;�0:15/ and B D .0:18; 0:80/. The
gyrodistance function, d.A; B/ D kA�Bk, and the equation of the gyroline through A and B
are shown along with the gyrotriangle equality for a generic point P on the gyrosegment AB . The
gyromidpoint mA;B of the gyrosegment AB , reached when the gyroline parameter is t D 1=2,
shares obvious analogies with its Euclidean counterpart, the midpoint in Fig. 2.
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Euclidean line (43), the graph of the set of all points, Fig. 3,

A˚.�A˚B/˝t (44)

t 2 R, in the Einstein gyrovector space .Rns ;˚;˝/ is a chord of the ball Rns . As
such, it is a geodesic line of the Cartesian-Beltrami-Klein ball model of hyperbolic
geometry.

The geodesic line (44) is the unique geodesic passing through the pointsA andB .
It passes through the point A when t D 0 and, owing to the left cancellation
law, (39), it passes through the point B when t D 1. Furthermore, it passes through
the midpoint MA;B of A and B when t D 1=2. Accordingly, the gyrosegment that
joins the points A and B in Fig. 3 is obtained from gyroline (44) with 0 � t � 1.

9 Thomas Precession

It is owing to the gyrocommutative law, (28), of Einstein addition that Thomas
precession of Einstein’s special theory of relativity is recognized as a concrete
example of the abstract gyrogroup gyration in Definition 4. Accordingly, the
gyrogroup gyration is an extension by abstraction of the relativistic mechanical
effect known as Thomas precession.

The gyrocommutative law of Einstein velocity addition was already known
to Silberstein in 1914 [34] in the following sense: According to his 1914 book,
Silberstein knew that the Thomas precession generated by u; v 2 R

3
c is the unique

rotation that takes v˚u into u˚v about an axis perpendicular to the plane of
u and v through an angle < � in R

3, thus giving rise to the gyrocommutative
law. However, obviously, Silberstein did not use the terms “Thomas precession”
and “gyrocommutative law”. These terms have been coined later, respectively,
(1) following Thomas’ 1926 paper [41], and (2) in 1991 [49, 50], following the
discovery of the accompanying gyroassociative law of Einstein addition in 1988
[45].

A description of the 3-space rotation, which since 1926 is named after Thomas,
is found in Silberstein’s 1914 book [34]. In 1914 Thomas precession did not have
a name, and Silberstein called it in his 1914 book a “certain space-rotation” [34,
p. 169]. An early study of Thomas precession, made by the famous mathematician
Émile Borel in 1913, is described in his 1914 book [2] and, more recently, in [39].
According to Belloni and Reina [1], Sommerfeld’s route to Thomas precession dates
back to 1909. However, prior to Thomas discovery the relativistic peculiar 3-space
rotation had a most uncertain physical status [65, p. 119]. The only knowledge
Thomas had in 1925 about the peculiar relativistic gyroscopic precession [19],
however, came from De Sitter’s formula describing the relativistic corrections for
the motion of the moon, found in Eddington’s book [5], which was just published at
that time [52, Sect. 1, Chap. 1].
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The physical significance of the peculiar rotation in special relativity emerged in
1925 when Thomas relativistically re-computed the precessional frequency of the
doublet separation in the fine structure of the atom, and thus rectified a missing
factor of 1/2. This correction has come to be known as the Thomas half [4],
presented in (101). Thomas’ discovery of the relativistic precession of the electron
spin on Christmas 1925 thus led to the understanding of the significance of the
relativistic effect which became known as Thomas precession. Llewellyn Hilleth
Thomas died in Raleigh, NC, on April 20, 1992. A paper [3] dedicated to the
centenary of the birth of Llewellyn H. Thomas (1902–1992) describes the Bloch
gyrovector of quantum information and computation.

Once recognized as gyration, it is clear that Thomas precession owes its
existence solely to the nonassociativity of Einstein addition of Einsteinian velocities.
Accordingly, Thomas precession has no classical counterpart since the addition of
classical, Newtonian velocities is associative.

It is widely believed that special relativistic effects are negligible when the
velocities involved are much less than the vacuum speed of light c. Yet, Thomas
precession effect in the orbital motion of spinning electrons in atoms is clearly
observed in resulting spectral lines despite the speed of electrons in atoms being
small compared with the speed of light. One may, therefore, ask whether it is
possible to furnish a classical background to Thomas precession [23]. Hence, it
is important to realize that Thomas precession stems from the nonassociativity of
Einsteinian velocity addition, so that it has no echo in Newtonian velocities.

In 1966, Ehlers, Rindler and Robinson [6] proposed a new formalism for dealing
with the Lorentz group. Their formalism, however, did not find its way to the
mainstream literature. Therefore, 33 years later, two of them suggested considering
the “notorious Thomas precession formula” (in their words [31, p. 431]) as an
indicator of the quality of a formalism for dealing with the Lorentz group. The
idea of Rindler and Robinson to use the “notorious Thomas precession formula”
as an indicator works fine in our analytic hyperbolic geometric viewpoint of
special relativity [56], where the ugly duckling of special relativity, the “notorious
Thomas precession formula”, becomes the beautiful swan of special relativity and
its underlying analytic hyperbolic geometry. The abstract Thomas precession, called
gyration, is now recognized as the missing link between classical mechanics with
its underlying Euclidean geometry and relativistic mechanics with its underlying
hyperbolic geometry.

10 Thomas Precession Matrix

For any two vectors a;b 2 R
3, a D .a1; a2; a3/, etc., determined by their

components with respect to a given Cartesian coordinate system, we define the
square 3 
 3 matrix ˝.a;b/ by the equation
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˝.a;b/ D �
0

@
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

1

AC
0

@
a1b1 a2b1 a3b1
a1b2 a2b2 a3b2

a1b3 a2b3 a3b3

1

A (45)

or, equivalently,

˝.a;b/ D �
0

@
0 !3 �!2
�!3 0 !1
!2 �!1 0

1

A (46)

where
w D .!1; !2; !3; / D a 
 b (47)

Accordingly,
˝.a;b/x D .a 
 b/ 
 x D �a.b�x/C b.a�x/ (48)

for any x 2 R
3. Hence,

1. ˝.a;b/ D 0 if and only if a 
 b D 0;
2. and

˝.a;b/.a 
 b/ D 0 (49)

3. and, for˝ D ˝.a;b/,
˝3 D �.a 
 b/2˝ (50)

The matrix ˝ D ˝.u; v/ can be used to simplify the presentation of both
Einstein addition u˚v and its associated gyration gyrŒu; v�,

u˚v D 1

1C u�v
c2

�

uC v � 1

c2
	u

1C 	u
˝u

�

(51)

gyrŒu; v� D I C ˛˝ C ˇ˝2 (52)

where I is the 3 
 3 identity matrix, and where

˛ D ˛.u; v/ D � 1
c2

	u	v .1C 	u C 	v C 	u˚v/

.1C 	u/.1C 	v /.1C 	u˚v/

ˇ D ˇ.u; v/ D 1

c4
	2u	

2
v

.1C 	u/.1C 	v /.1C 	u˚v/

(53)

satisfying ˛ < 0, ˇ > 0, and

˛2 C Œu2v2 � .u�v/2�ˇ2 � 2ˇ D 0 (54)

for all u; v 2 R
3
c .
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The gyration matrix gyrŒu; v� in (52) satisfies the cubic equation

gyr3Œu; v� � trace.gyrŒu; v�/gyr2Œu; v�

C trace.gyrŒu; v�/gyrŒu; v� � I D 0
(55)

called the trace identity.
The trace identity (55) characterizes 3
3matrices that represent proper rotations

of the Euclidean 3-space R3 about its origin.
The matrix representation of gyrŒu; v� in R

3 relative to an orthonormal basis is
thus an orthogonal 3 
 3 matrix with determinant 1. It follows from (49) and (52)
that

gyrŒu; v�.u 
 v/ D u 
 v (56)

so that the vector u
v lies on the rotation axis of the gyration gyrŒu; v�. Accordingly,
the gyrocommutative law in (28) implies that the gyration gyrŒu; v� generated by two
non-parallel, non-zero vectors u; v 2 R

3
c is the rotation that rotates the vector v˚u

into the vector u˚v through a rotation axis perpendicular to the plane spanned by u
and v by an angle < � .

Interesting studies of the trace identity, using analysis, algebra and geometry is
found in an elementary form in [20] and in a more advanced form in [14–17].

11 Thomas Precession Graphical Presentation

Let˙ 00,˙ 0 and˙ be three inertial frames in the Euclidean 3-space R3 with respec-
tive spatial coordinates .x00; y00/, .x0; y0/ and .x; y/. The third spatial coordinate of
each frame is omitted for simplicity. Accordingly, these are shown in Fig. 4 in R

2

rather than R
3. Frame ˙ 00 moves with velocity v 2 R

3
c , without rotation, relative to

frame ˙ 0 which, in turn, moves with velocity u 2 R
3
c , without rotation, relative to

frame˙ . The angle between u and v is � , shown in Fig. 4, satisfying

cos � D u
kuk �

v
kvk (57)

so that, by (10),
1

c2
	u	v u�v D

q
	2u � 1

q
	2v � 1 cos � (58)

Observers at rest relative to˙ and observers at rest relative to˙ 0 agree that their
coordinates .x; y/ and .x0; y0/ are parallel. Similarly, observers at rest relative to˙ 0
and observers at rest relative to˙ 00 agree that their coordinates .x0; y0/ and .x00; y00/
are parallel, as shown in the left part of Fig. 4.
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Fig. 4 In the Euclidean plane R
2 an inertial frame ˙ 00 moves uniformly, without rotation, with

velocity v 2 R
2
s relative to inertial frame˙ 0. The latter, in turn, moves uniformly, without rotation,

with velocity u 2 R
2
s relative to inertial frame ˙ . Owing to the presence of Thomas precession,

the inertial frame ˙ 00 moves uniformly, with rotation angle �, with a composite velocity relative to
the inertial frame ˙ . Is the composite velocity of ˙ 00 relative to ˙ u˚v or v˚u? The answer is:
neither; see (81). The Thomas precession signed angle �, �� < � < � , turns out to be the unique
rotation angle with rotation axis parallel to u � v in R

3
c that takes v˚u into u˚v according to

the gyrocommutative law u˚v D gyrŒu; v�.v˚u/. Being related by (61), the Thomas precession
signed angle � and its generating signed angle � from u and v have opposite signs, illustrated
graphically in Figs. 5–6

Counterintuitively, if � ¤ 0 and � ¤ � , observers at rest relative to ˙ and
observers at rest relative to ˙ 00 agree that their coordinates are not parallel. Rather,
they find that their coordinates are oriented relative to each other by a Thomas
precession angle �, 0 < � < � , as shown in the right part of Fig. 4.

Let u and v be two nonzero vectors in the ball R3c . By the gyrocommutative law
in (28), the gyration gyrŒu; v� takes the composite velocity v˚u into u˚v. Indeed,
gyrŒu; v� is the unique rotation with rotation axis parallel to u 
 v that takes v˚u
into u˚v through the gyration angle �, 0 � � < � . We call � the Thomas precession
(or, rotation) angle of the gyration gyrŒu; v�, and use the notation

� D †gyrŒu; v� (59)

Accordingly, the Thomas precession angle � D †gyrŒu; v� generated by u; v 2
R
3
c , shown in the right part of Fig. 4, satisfies the equations

cos � D .u˚v/ � .v˚u/
ku˚vk2

sin � D ˙k.u˚v/ 
 .v˚u/k
ku˚vk2

(60)
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Fig. 5 A graphical presentation of the cosine of the Thomas precession angle �, cos �, (61), as a
function of the angle � between its two generating relativistically admissible velocities u; v 2 R

3

for several values of �, � being a function, (62), of 	u and 	v

where the ambigious sign of sin � is determined in (61). Indeed, the sign of sin � is
selected to be opposite to that of sin � , as shown in (61) below.

The Herculean task of simplifying (60) was accomplished in [45–47, 49],
obtaining

cos � D .�C cos �/2 � sin2 �

.�C cos �/2 C sin2 �

sin � D �2.�C cos �/ sin �

.�C cos �/2 C sin2 �

(61)

where � , 0 � � < 2� , is the angle between the vectors u; v 2 R
3, forming the

horizontal axes in Figs. 5–6, and where �, � > 1, is a velocity parameter given by
the equation

�2 D 	u C 1
	u � 1

	v C 1
	v � 1

(62)
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Fig. 6 A graphical presentation of the negative sine of the Thomas precession angle �,
� sin �, (61), as a function of the angle � between its two generating relativistically admissible
velocities u; v 2 R

3 for several values of �, � being a function, (62), of 	u and 	v

The parameter � approaches 1 when both kuk and kvk approach c. We clearly
have the limits

lim
�!1

cos � D cos �

lim
�!1

sin � D � sin �
(63)

for 0 � � � 2� , � ¤ � , seen in Figs. 5 and 6.
Figures 5 and 6 present graphically cos � and � sin � as functions of � for several

values of �. As expected, the graphs in these figures show that for all values of the
parameter �, � > 1, Thomas precession angle � vanishes when � D 0, when � D � ,
and again, when � D 2� . In the limit of high relativistic speeds approaching the
vacuum speed of light c, kuk; kvk ! c, the parameter � approaches unity, � ! 1,
and � ! �� for all � in the punctured interval Œ0; �/

S
.�; 2��. The punctured

interval is the union of the two connected intervals Œ0; �/ and .�; 2�� which is the
closed connected interval Œ0; 2�� from which the point � has been removed. Thus,
there is no Thomas precession angle � , that is, � ¤ �; see also (75).



Gyrations: The Missing Link 487

The extension by abstraction of Thomas precession into gyration enables the
development of techniques that explain the non-existence of a gyration whose
rotation angle is �; see the Gyration Exclusion Theorem in [56, Theorem 3.36].

As we see from Figs. 5 and 6, the variation of � for 0 � � � 2� is over the
interval Œ0; 2�� punctured by a �-dependent subinterval centered at � D � .

It is interesting to derive cos �
2

and sin �
2

from (61):

cos
�

2
D ˙

r
1C cos �

2
D �C cos �
q
.�C cos �/2 C sin2 �

sin
�

2
D ˙

r
1 � cos �

2
D � sin �

q
.�C cos �/2 C sin2 �

(64)

so that
tan

�

2
D � sin �

�C cos �
(65)

Equation 65 modulo�1 is found, for instance, in [44, Eq. 6.37, p. 171]. The validity
and the importance of the negative sign in (65) is explained in detail in Sect. 15.

Following Fig. 4, the ambiguous signs in (64) are selected such that cos �
2
> 0

while sin �
2

and sin � have opposite signs.

12 Thomas Precession Angle

Thomas precession gyrŒu; v� in (52) can be recast into a form familiar as the
representation of a rotation about an axis by an angle �,

gyrŒu; v� D
(
I C sin � ˝.u;v/

!�
C .1 � cos �/˝

2.u;v/
!2�

; !� ¤ 0
I; !� D 0

(66)

where u; v 2 R
3
c , and where � is the Thomas precession angle shown in Fig. 4.

Comparing (66) with (52), we see that

sin � D ˛.u; v/!�
1 � cos � D ˇ.u; v/!�

(67)

and

!� D ˙ku 
 vk
D kukkvk sin �

D c2
p
	2u � 1

p
	2v � 1

	u	v
sin �

(68)

where the ambiguous sign is selected such that !� and sin � have equal signs.
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It follows from (67) and (68), and from the definition of ˛.u; v/ and ˇ.u; v/
in (53) that

cos � D 1 � .	u � 1/.	v � 1/
	u˚v C 1

sin2 �

sin � D �
p
	2u � 1

p
	2v � 1C .	u � 1/.	v � 1/ cos �

	u˚v C 1
sin �

(69)

Following (9)–(11) and (58) we have

	u˚v D 	u	v C
q
	2u � 1

q
	2v � 1 cos � (70a)

and

	�u˚v D 	u	v �
q
	2u � 1

q
	2v � 1 cos � (70b)

so that, by (69) and (70a)

cos � D 1 � .	u � 1/.	v � 1/
1C 	u	v C

p
	2u � 1

p
	2v � 1 cos �

sin2 �

sin � D � .	u � 1/.	v � 1/.�C cos �/

1C 	u	v C
p
	2u � 1

p
	2v � 1 cos �

sin �

(71)

where � > 1 is given by (62).
The special case when u and v have equal magnitudes is required for later

reference related to Fig. 4. In this special case 	u D 	v , so that � in (71) reduces to
�s given by

cos �s D 1 � .	v � 1/2 sin2 �

1C 	2v C .	2v � 1/ cos �

sin �s D � .	
2
v � 1/C .	v � 1/2 cos �

1C 	2v C .	2v � 1/ cos �
sin �

(72)

Solving (70) for cos � we obtain the equations

cos � D 	u˚v � 	u	vp
	2u � 1

p
	2v � 1

D �	�u˚v C 	u	vp
	2u � 1

p
	2v � 1

sin2 � D 1 � cos2 �

D 1 � 	2u � 	2v � 	2u˚v C 2	u	v	u˚v

.	2u � 1/.	2v � 1/

(73)
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The substitution of (73) into (69) gives

cos � D 1

.	u C 1/.	v C 1/.	u˚v C 1/

 f�	u	v	u˚v C 	2u C 	2v C 	2u˚v

C 	u	v C 	u	u˚v C 	v	u˚v C 	u C 	v C 	u˚vg

(74)

so that, finally, we obtain the elegant expression

1C cos � D .1C 	u C 	v C 	u˚v/
2

.1C 	u/.1C 	v /.1C 	u˚v/
> 0 (75)

which agrees with McFarlane’s result, cited in [33, Eq. 2.10.7]. It implies that � ¤ �
for all u; v 2 R

3
c ; and that

cos
�

2
D
r
1C cos �

2
D 1C 	u C 	v C 	u˚vp

2
p
1C 	u

p
1C 	v

q
1C 	u˚v

(76)

Consequently, we also have the elegant identity

tan2
�

2
D
�

sin �

1C cos �

�2
D 1C 2	u	v	u˚v � 	2u � 	2v � 	2u˚v

.1C 	u C 	v C 	u˚v/
2

(77)

Hence, (59), the Thomas precession angle � D †gyrŒu; v� in Fig. 4 is given by
the equation

tan2
†gyrŒu; v�

2
D 1C 2	u	v	u˚v � 	2u � 	2v � 	2u˚v

.1C 	u C 	v C 	u˚v/
2

(78)

Noting the gyration even property in (28) and replacing u by�u in (78), we obtain
the equations

tan2
†gyrŒu;�v�

2
D tan2

†gyrŒ�u; v�
2

D 1C 2	u	v	�u˚v � 	2u � 	2v � 	2�u˚v

.1C 	u C 	v C 	�u˚v/
2

D tan2 ı
2

(79)
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so that
†gyrŒu;�v� D ı (80)

The extreme right-hand side of (79) follows from (20) and (21).
Interestingly, it follows from (80) that the Thomas precession angle generated

by u and �v, that is, †gyrŒu;�v�, possesses an important hyperbolic geometric
property [56, 64]. It equals the defect ı of the gyrotriangle generated by u and v in
R
3
c , shown in Fig. 1; see also [52, pp. 236–237] and the Gyration–Defect Theorem

in [56, Theorem 8.55, p. 317].
The gyration gyrŒu;�v� possesses an important gyroalgebraic property as well.

It gives rise to a second binary operation�, called Einstein coaddition, given by the
equation

u� v D u˚gyrŒu;�v�v (81)

which can be dualized into the equation [56, Theorem 2.14]

u˚v D u� gyrŒu; v�v (82)

Unlike Einstein addition, which is gyrocommutative, Einstein coaddition is
commutative. Furthermore, it possesses a geometric interpretation as a gyroparal-
lelogram addition law, and it gives rise to the two mutually dual right cancellation
laws [56]

.v˚u/ˇ u D v

.v� u/�u D v
(83)

Einstein coaddition � captures useful analogies with classical results, two of
which are the right cancellation laws in (83). Another important analogy that
Einstein coaddition captures is associated with the gyromidpoint. Indeed, the
midpoint M

A;B
shown in Fig. 2 is expressed in terms of the points A and B by the

equation
M

A;B
D AC .�AC B/1

2
D 1

2
.AC B/ (84)

while, in full analogy, the gyromidpointMA;B shown in Fig. 3 is expressed in terms
of the points A and B by the equation [56]

MA;B D A˚.�A˚B/˝ 1
2
D 1

2
˝.A� B/ (85)

The right part of Fig. 4 raises the question as to whether the composite velocity
of frame ˙ 00 relative to frame ˙ is u˚v or v˚u. The answer is that the composite
velocity of frame ˙ 00 relative to frame ˙ is neither u˚v nor v˚u. Rather, it is
given by the commutative composite velocity u � v. Indeed, it is demonstrated
in [60, Chap. 10–Epilogue], and in more details in [56, Chap. 13], that looking
at the relativistic velocity addition law and its underlying hyperbolic geometry
through the lens of the cosmological stellar aberration effect leads to a startling
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conclusion: relativistic velocities are gyrovectors that add in the cosmos according
to the gyroparallelogram addition law of hyperbolic geometry, that is, according to
the commutative addition u� v, rather than either Einstein addition u˚v or v˚u.

13 Thomas Precession Frequency

Let us consider a spinning spherical object moving with velocity v of uniform
magnitude v D kvk along a circular path in some inertial frame ˙ . We assume that
the spin axis lies in the plane containing the circular orbit, as shown in Fig. 7. The
spinning object acts like a gyroscope, maintaining the direction of its spin axis in
the transition from one inertial frame into another one, as seen by inertial observers
moving instantaneously with the accelerated object. Following Taylor and Wheeler,
we approximate the circular path by a regular polygon of n sides [40], as shown in
Fig. 7 for n D 8. In moving once around this orbit the object moves with uniform
velocity v in straight-line paths interrupted by n sudden changes of direction, each
through an angle �n D 2�=n.

An observer at rest relative to the laboratory frame ˙ views the motion of the
object along the polygonal path as the result of successive boosts (A boost being a
Lorentz transformation without rotation [48]); see Sect. 14. He therefore measures
a Thomas precession angle �n by which the object spin axis is precessed when the
object rounds a corner. By (72), this Thomas precession angle �n is determined by
the equations

cos �n D 1 �
.	v � 1/2 sin2 2�

n

.	2v C 1/C .	2v � 1/ cos 2�
n

sin �n D �
.	2v � 1/C .	v � 1/2 cos 2�

n

.	2v C 1/C .	2v � 1/ cos 2�
n

sin
2�

n

(86)

By Euler’s equation we have

ei�n D cos �n C i sin �n

D 1C f .2�
n
/

(87)

where i D p�1 and

f .�/ D � .	v � 1/2 sin � C if.	2v � 1/C .	v � 1/2 cos�g
2C .	2v � 1/.1C cos�/

sin� (88)

� 2 R.
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Fig. 7 A regular polygonal path in R
3 as an approximation to the Newtonian circular path of a

spinning spherical object. The change of direction at each vertex of the polygon is �n D 2�=n,
where n is the number of the polygon sides. Here, n D 8. In the limit n ! 1, the polygonal
path tends to the circular path. A spinning spherical object is moving with velocity of uniform
magnitude along the polygonal path. The points A;B; C 2 R

3 are three adjacent vertices of the
polygon in the rest (laboratory) frame ˙ . When the object moves from A to B it is at rest relative
to the frame ˙ 0, and when the object moves from B to C it is at rest relative to the frame ˙ 00. The
relationship between the three inertial frames ˙ , ˙ 0 and ˙ 00 is thus the one shown in Fig. 4 with
� D �n. Accordingly, since the object moves in the counterclockwise direction, it precesses in the
clockwise direction.
Initially, the spin of the object is vertical when the object moves uniformly from A to B . After
completing its first closed orbit in the counterclockwise direction, the object returns to is original
position, now moving from A to B with a spin that is precessed in the clockwise direction. The
initial spin and the final spin for the first closed orbit starting at A are shown

As the spinning object moves around its polygonal orbit, its spin axis, as observed
in ˙ , precesses by the Thomas precession angle �n when it rounds each of the n
corners of the polygon as shown in Fig. 7. The total angle of precession is thus n�n,
represented by the unimodular complex number

ein�n D
�

1C f .2�
n
/

�n
(89)

In the limit n!1 the polygonal path becomes a circular path, and the frame of
reference in which the center of momentum of the spinning object is momentarily
at rest is being changed continually. The total Thomas precession is thus the angle
�t given by the equation
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ei�t D lim
n!1 ein�n D lim

n!1

�

1C f .2�
n
/

�n
(90)

Let g.x/, x 2 R, be the function

g.x/ D lim
n!1

n
1C f .x

n
/
on

(91)

The function f .�/ is continuous on R, satisfying f .0/ D 0. Hence,

lim
n!1f .

x

n
/ D 0 (92)

for any x 2 R.
Interchanging the limit in (91) with a differentiation with respect to x we find

that the function g.x/ satisfies the initial value problem

g0.x/ D f 0.0/g.x/

g.0/ D 1 (93)

for x 2 R.
The unique solution of the initial value problem (93) is

g.x/ D ef 0.0/x (94)

Hence, in particular for x D 2� , it follows from (90), (91) and (94) that

ei�t D g.2�/ D e2�f 0.0/ (95)

But,

f 0.0/ D �i 	v � 1
	v

(96)

Hence, by (95) and (96), the Thomas precession angle �t is given by the equation

�t D �2� 	v � 1
	v

(97)

The Thomas precession angle �t is the angle through which the spin axis
precesses in one complete circular orbit. It requires, therefore, 2�=�t orbits for the
object to precess to its original orientation through 2� radians. Hence, if the angular
velocity of the circular motion of the object is !, then the angular velocity !t of the
Thomas precession angle of the object is given by the equation

!t D �t

2�
! D �	v � 1

	v
! (98)
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The quantity !t in (98) is the angular velocity of the Thomas precession angle �t
of a particle that moves in a circular orbit with angular velocity !.

Equation (98) relates the angular velocity !t of the Thomas precession angle �t
to its generating angular velocity !. It demonstrates that the angular velocities !t
and ! are oppositely directed, as shown graphically in Fig. 4.

If the magnitude of the velocity v and the acceleration a of the spinning object
are v and a then its angular velocity is given by the equation ! D a=v. Hence, the
angular velocity !t of the Thomas precession angle �t is given by the equation

!t D �	v � 1
	v

a

v
(99)

Taking into account the direction of the Thomas precession axis and the velocity
and the acceleration of the spinning object, and noting (10), the Thomas precession
angular velocity !t in (99) can be written as a vector equation,

!!!t D 	v � 1
	v

a 
 v
v2
D 	v

1C 	v

a 
 v
c2

(100)

The coordinate axes in the rest frame of any body in torque-free, accelerated
motion precesses with respect to the laboratory axes with an angular velocity !!!t is
given by (100). Since 	v=.1C	v / D 1=2C .1=8/.v2=c2/C : : :, the angular velocity
!!!t of the resulting Thomas precession, for the case when v D kvk << c, is given
approximately by the equation

!!!t D 1

2

a 
 v
c2

(101)

As noted by Herbert Goldstein [18, p. 288],!!!t in (101) is known as the Thomas
precession frequency.

Thomas precession frequency (101) involves the famous factor 1=2, known
as Thomas half. The experimental significance of this factor is well known. The
spinning electron of the Goudsmit-Uhlenbeck model gives twice the observed
precession effect, which is reduced to the observed one by means of the Thomas
half [43].

14 Thomas Precession and Boost Composition

Einstein addition underlies the Lorentz transformation group of special relativity. A
Lorentz transformation is a linear transformation of spacetime coordinates that fixes
the spacetime origin. A Lorentz boost, B.v/, is a Lorentz transformation without
rotation, parametrized by a velocity parameter v 2 R

3
c . The velocity parameter

is given by its components, v D .v1; v2; v3/, with respect to a given Cartesian
coordinate system of R3c . Being linear, the Lorentz boost has a matrix representation,
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which turns out to be [27],

B.v/ D
0

B
B
B
B
B
B
B
@

	v c�2	v v1 c�2	v v2 c�2	v v3

	v v1 1C c�2 	2v
	v C1v21 c�2 	2v

	v C1v1v2 c�2 	2v
	v C1v1v3

	v v2 c�2 	2v
	v C1v1v2 1C c�2 	2v

	v C1v22 c�2 	2v
	v C1v2v3

	v v3 c�2 	2v
	v C1v1v3 c�2 	2v

	v C1v2v3 1C c�2 	2v
	v C1v23

1

C
C
C
C
C
C
C
A

(102)

Employing the matrix representation (102) of the Lorentz transformation boost,
the Lorentz boost application to spacetime coordinates takes the form

B.v/
�
t

x

�

D B.v/

0

B
B
B
B
@

t

x1

x2

x3

1

C
C
C
C
A
DW

0

B
B
B
B
@

t 0

x0
1

x0
2

x0
3

1

C
C
C
C
A
D
 
t 0

x0

!

(103)

where v D .v1; v2; v3/t 2 R
3
c , x D .x1; x2; x3/

t 2 R
3, x0 D .x0

1; x
0
2; x

0
3/
t 2 R

3, and
t; t 0 2 R, where exponent t denotes transposition.

A 2-dimensional boost is obtained in the special case when v3 D x3 D 0 in (102)
and (103). For simplicity, the boosts of inertial frames in Fig. 4 are two dimensional
boosts, and time coordinates are not shown. In this figure, the spacetime coordinate
systems˙ ,˙ 0 and˙ 00 (only two space coordinates are shown) are related by boosts.
Specifically, in Fig. 4,

1. The application of the boost B.u/ to the spacetime coordinate system ˙ gives
the spacetime coordinate system ˙ 0,

2. The application of the boost B.v/ to the spacetime coordinate system ˙ 0 gives
the spacetime coordinate system ˙ 00, and

3. The application of the boost B.u˚v/, or B.v˚u/, to the spacetime coordinate
system˙ , preceded, or followed respectively, by a Thomas precession (see (107)
and (108) in Theorem 2 below) gives the spacetime coordinate system ˙ 00.

The Lorentz boost (102) and (103) can be written vectorially in the form

B.u/
�
t

x

�

D
0

@
	u.t C 1

c2
u�x/

	uut C xC 1
c2

	2u
1C	u

.u�x/u

1

A (104)

Rewriting (104) with x D vt 2 R
3, u; v 2 R

3
c � R

3, we have
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B.u/
�
t

x

�

D B.u/
�
t

vt

�

D
0

@
	u .t C 1

c2
u�vt/

	uut C vt C 1
c2

	2u
1C	u

.u�vt/u

1

A

D

0

B
@

	u˚v
	v
t

	u˚v

	v
.u˚v/t

1

C
A

D
�
t 0
x0
�

(105)

The equations in (105) reveal explicitly the way Einstein velocity addition
underlies the Lorentz boost. The third equality in (105) follows from (9a) and (2).

In general, the composition of two boosts is equivalent to a single boost preceded,
or followed, by the space rotation that Thomas precession generates, as we see from
the following theorem:

Theorem 2 (The Boost Composition Theorem). Let u; v;w 2 R
3
c be relativisti-

cally admissible velocities, let x D wt , t > 0, and let B.u/ and B.v/ be two boosts.
Furthermore, let GyrŒu; v� be the spacetime gyration of space coordinates, given by

GyrŒu; v�
�

t

x D wt

�

WD
�

t

.gyrŒu; v�w/t

�

(106)

Then, boost composition is given by each of the two equations

B.u/B.v/ D B.u˚v/GyrŒu; v� (107)

B.u/B.v/ D GyrŒv;u�B.v˚u/ (108)

Proof. We will show that (107) follows from the gyroassociative law of Einstein
addition and that that (108) follows from (107) and the gyrocommutative law of
Einstein addition.

Let us consider the chain of equations below, which are numbered for subsequent
explanation:
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(109)

ut
Derivation of the numbered equalities in (109) follows:

1. Follows from the definition x D wt .
2. Follows from 1 by a boost application to spacetime coordinates according

to (105).
3. Follows from 2 by the obvious definition

t 0 D 	v˚w

	w
t (110)

4. Follows from 3 by a boost application to spacetime coordinates according
to (105).

5. Follows from 4 by the substitution of (110) for t 0.
6. Follows from 5 by the gyroassociative law of Einstein addition.

Hence, following (109) we have the equation
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1
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Now, let us consider another chain of equations, which are numbered for
subsequent explanation:

B.u˚v/GyrŒu; v�
�
t

x

� .1/
‚…„ƒDDD B.u˚v/

�
t

gyrŒu; v�x

�
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(112)

Derivation of the numbered equalities in (112) follows:

1. Follows from the definition of the spacetime gyration GyrŒu; v� in terms of the
space gyration gyrŒu; v� in (106).

2. Follows from 1 by definition, x D wt .
3. Follows from 2 by a boost application to spacetime coordinates according

to (105).
4. Follows from 3 by the identity 	w D 	gyrŒu;v�w that, in turn, follows from the

definition of gamma factors in (3) along with the invariance (37) of relativistically
admissible velocities under gyrations.

Hence, following (112) we have the equation
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Finally, (107) follows from (111) and (113).
In order to verify (108), let us now consider the chain of equations below, which

are numbered for subsequent explanation:
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The chain of equations (114) is valid for all spacetime events .t; x/t , t 2 R, x D wt ,
w 2 R

3
c , thus verifying (108)¡ and the proof of Theorem 2 is complete. Derivation

of the numbered equalities in (114) follows:
1. Follows by definition, x D wt .
2. Follows from 1 by a boost application to spacetime coordinates according to

(105).
3. Follows from 2 by the definition of the spacetime gyration GyrŒv;u� in terms of

the space gyration gyrŒv;u� in (106).
4. Follows from 3 by the identity �w D �gyrŒu;v�w, u; v;w 2 R

3
c , that, in turn, follows

from the definition of gamma factors in (3) along with the invariance (37) of
relativistically admissible velocities under gyrations.

5. Follows from 4 by the linearity of gyrations along with the gyrocommutative law
of Einstein addition.

6. Follows from 5 by a boost application to spacetime coordinates according to
(105).

7. Follows from 6 by definition, x D wt .
8. Follows from 7 by the definition of the spacetime gyration GyrŒv;u� in terms of

the space gyration gyrŒv;u� in (106).

�
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The Boost Composition Theorem 2 and its proof establish the following two
results:

1. The composite velocity of frame ˙ 00 relative to frame ˙ in Fig. 4 may,
paradoxically, be both u˚v and v˚u. Indeed, we see from the result (107) and
(108) of Theorem 2 that

(a) The composite velocity of frame ˙ 00 relative to frame ˙ in Fig. 4 is u˚v in
the sense that ˙ 00 is obtained from˙ by a boost of velocity u˚v preceded by
the gyration GyrŒu; v�; and, equivalently,

(b) The composite velocity of frame ˙ 00 relative to frame˙ in Fig. 4 is v˚u in
the sense that ˙ 00 is obtained from˙ by a boost of velocity v˚u followed by
the gyration GyrŒv;u�.

2. The relationships (107) and (108) between boosts and Thomas precession are
equivalent to the gyroassociative law and the gyrocommutative law of Einstein
velocity addition as we see from the proof of Theorem 2.

In view of these two results of the Boost Composition Theorem, the validity
of the Thomas precession frequency, as shown graphically in Fig. 4, and the
relationship between the Thomas precession angle � and its generating angle �
stem from the gyroassociative law of Einstein velocity addition. Hence, in particular,
the result that � and � have opposite signs is embedded in the gyroassociative law
of Einstein addition. In the next section we will present a convincing numerical
demonstration that interested readers may follow to determine that, indeed, � and �
in Fig. 4 have opposite signs.

15 Thomas Precession Angle and Generating Angle Have
Opposite Signs

As in Fig. 4, let � and � be the Thomas Precession Angle and its generating angle,
respectively. As verified analytically, and as shown graphically in Fig. 4, the angles
� and � are related by (71) and, hence, they have opposite signs.

Without loss of generality, as in Fig. 4, we limit our considerations to two space
dimensions. Let u; v 2 R

2
s be two nonzero relativistically admissible velocities with

angle � between their directions, as shown in Fig. 4. Then, they are related by the
equation

v
kvk D

�
cos � � sin �
sin � cos �

�
u
kuk (115)

Let w 2 R
2
s be the velocity of an object relative to frame ˙ 00 in Fig. 4. Then, the

velocity of the object relative to frame ˙ in Fig. 4 is

u˚.v˚w/ D .u˚v/˚gyrŒu; v�w (116)
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so that the velocity w of the object is rotated relative to˙ by the Thomas precession
gyrŒu; v�, which corresponds to the rotation angle � given by (71). Hence,

gyrŒu; v�w D
�

cos � � sin �
sin � cos �

�

w (117)

where � is given by (71).
Substituting v from (115) into (117), we obtain the equation

gyrŒu;
kvk
kuk

�
cos � � sin �
sin � cos �

�

u�w D
�

cos � � sin �
sin � cos �

�

w (118)

In (118), � is the angle shown in the left part of Fig. 4, which generates the
Thomas precession angle � shown in the right part of Fig. 4, where � is determined
by � according to (71) and, hence, where � and � have opposite signs. The validity
of (118) can readily be corroborated numerically. The numerical corroboration of
the validity of (118), in turn, provides a simple way to convincingly confirm our
claim that indeed � and � have opposite signs.
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