
J.M.C. Rodríguez et al. (Eds.): Trends in PAAMS, AISC 157, pp. 125–132.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Automatic Optimization of Web Navigation
Sequences

José Losada, Juan Raposo, Alberto Pan, and Javier López*

Abstract. Web automation applications are widely used for different purposes
such as B2B integration, automated testing of web applications or technology and
business watch. In this work-in-progress paper we outline a set of techniques
which constitute the basis to build a web navigation component able to analyze a
web navigation sequence and automatically optimize it, detecting which parts of
the loaded pages are needed, and which ones can be discarded in the following ex-
ecutions of the sequence. Our techniques build on the Document Object Model
and the first tests executed with real web sources have found them to be very
effective.

1 Introduction

Web automation applications are widely used for different purposes such as B2B
integration, web mashups, automated testing of web applications, Internet meta-
search or technology and business watch. One crucial part in web automation ap-
plications is how to easily generate and reproduce navigation sequences. We can
identify two distinct stages in this process:

• In the generation stage the user specifies the navigation sequence to reproduce.
The most common approach, cf. [1, 6, 7, 9], is using the ‘recorder’ metaphor.

• In the execution phase the sequence generated in the previous stage is provided
as input to an automatic navigation component which is able to reproduce it.

The automatic navigation component used in the execution phase can be devel-
oped by using the APIs of popular browsers, cf. [4, 7, 8, 10, 11], or simplified cus-
tom browsers specially built for the task, cf. [1, 3, 5, 9].

José Losada . Juan Raposo . Alberto Pan . Javier López
Information and Communications Technology Department, University of A Coruña
Facultad de Informática, Campus de Elviña, s/n, 15071, A Coruña (Spain)
e-mail: {jlosada,jrs,apan,jmato}@udc.es

126 J. Losada et al.

The approach of using the APIs of commercial web browsers have some advan-
tages: no effort is required to develop a navigation component, and the accessed
web pages behave the same as when they are accessed by a regular user navigating
with the commercial web browser. But, on the contrary, the performance of the
component is limited by the commercial browser performance and the functional-
ities that the browser API provides. The main purpose of commercial web brows-
ers is to be used by human users, and they consume a significant amount of
resources, both memory and CPU. So, this approach is not the most appropriate to
execute intensive or real time web automation tasks, which need to execute a sig-
nificant number of navigation sequences in the less possible time.

The approach of creating a custom browser, supporting technologies such as
scripting code and AJAX requests, is effort-intensive and can be vulnerable to
implementation differences that can make a web page behave differently when ac-
cessed with the custom browser. Nevertheless, the main advantage is the perform-
ance: custom browsers can consume fewer resources (memory and CPU), and they
are able to execute navigation sequences faster than commercial browsers.

Current systems which use the approach of creating custom browsers to execute
navigation sequences, like [3] or [5], can avoid some steps executed by commer-
cial web browsers (e.g. the page rendering phase), but they replicate its function-
ing when loading and building the internal representation of the web pages. The
pages are always completely loaded (e.g. all the scripts contained in the page are
executed).

In this work-in-progress paper we present the basis for a web navigation com-
ponent able to analyze a web navigation sequence and automatically optimize it,
detecting which parts of the loaded pages can be discarded:

− In the optimization phase the sequence is executed once, and in the meantime
the execution component automatically calculates which nodes of the HTML
DOM [2] tree of the loaded pages are needed to execute the sequence and
which ones can be discarded. Then, it stores some information to be able to
detect those elements in subsequent sequence executions.

− In the execution phase the execution component executes the sequence using
the optimization information. When each page is loaded, a reduced HTML
DOM tree is built, containing only the relevant nodes needed to execute the
sequence.

This way, smaller HTML DOM trees are built when each page is loaded resulting
in less memory usage. Besides, the script code, including AJAX requests, con-
tained in elements not loaded in the simplified tree are not executed, and the ex-
ternal resources (e.g. JavaScript or CSS files) referenced from elements not loaded
in the tree are not retrieved, therefore optimizing CPU time and network usage.

The step of searching which elements must be loaded in the simplified HTML
DOM tree is the unique latency that the navigation component adds at execution
time. As we will demonstrate in the experimental evaluation, this latency is insig-
nificant compared to the time savings derived from building the simplified tree.

Automatic Optimization of Web Navigation Sequences 127

2 Models

In this section we briefly describe the model we use to characterize the component
used to automatically optimize web navigation sequences.

The main model we rely on is the Document Object Model (DOM) [2]. This
model describes how browsers internally represent the HTML web page currently
loaded in the browser and how they respond to user-performed actions on it. An
HTML page is modelled as a tree, where each HTML element is represented by an
appropriate type of node. An important type of nodes are the script nodes, used to
place and execute a script code within the document (typically written in a script
language such as JavaScript). The script nodes can contain the script code directly
or can reference an external file containing it. Those scripts are processed when
the page is loaded and they can contain element declarations (e.g. a function or a
variable) that are used from other script nodes or event listeners.

Each node in the tree can receive events produced (directly or indirectly) by the
user actions. Event types exist for actions such as clicking on an element (click),
moving the mouse cursor over it (mouseover), or to indicate that a new page has
just been loaded (load), to name but a few. Each node can register a set of event
listeners for different types of events. Each event is dispatched following a path
from the root of the tree to the target node, and it can be handled locally at the
target node or at any target's ancestors in the tree (this is called "bubbling").
An event listener executes arbitrary code, which normally calls a function declared
in script nodes.

In the context of the Document Object Model, we say that there exists a de-
pendency between two nodes N1 and N2 when the node N1 is necessary for the cor-
rect execution of the node N2. We say that the node N1 is a dependency of the node
N2. The following rules define the dependencies involving nodes which execute
script code (script nodes or nodes containing event listeners):

1. If the script code of a node S1 uses an element (e.g. a function or a variable) de-
clared in a script node S2, then S2 is a dependency of S1. To be able to execute
the script code of the node S1 the node S2 must be loaded.

2. If the script code of a node S uses a node N (e.g. using the JavaScript function
document.getElementById), then N is a dependency of S. To be able to execute
the script code of the node S, the node N must be loaded.

3. If the script code of a node S makes a modification in a node N (e.g. it modifies
the action attribute of a form node), then S is a dependency of N. If the node N
is going to be used, then the script node S needs to be loaded to perform the
modification in the node N.

Note that, node dependencies are transitive. For example, if an event listener of a
node N1 invokes a function f which is defined in a node N2, and the implementa-
tion of f uses the node N3, then both N2 and N3 are dependencies of N1.

128 J. Losada et al.

3 Description of the Solution

3.1 Optimization Phase

The optimization phase involves one execution of the navigation sequence where
the navigation component automatically calculates which nodes of the DOM trees
of the loaded pages are needed to execute the sequence (relevant nodes), and
which ones can be discarded (irrelevant nodes). Then, it stores some information
to be able to identify these nodes in the following executions of the sequence.

First, we will explain the techniques designed to calculate the set of relevant
nodes and the set of irrelevant nodes. While executing a navigation sequence we
can differentiate two steps for each page loaded:

1. The page loading step involves loading the page, generating the DOM tree,
downloading external elements (e.g. style sheets, script files) and executing the
script nodes defined in the page. Finally, some predefined events are automati-
cally fired when the new page is completely loaded (e.g. the load event is fired
over the body node), and some event listeners can be executed as response.

2. The page interaction step involves executing the pertinent actions and firing
the necessary events, to execute the navigation sequence commands which
emulate the user interaction with the page (e.g. clicking on elements, firing
mouse movement events, etc.), until a navigation to a new page is started.

In both steps, there may be multiple interactions among nodes in the page, which
must be taken in consideration to determine which nodes of the DOM tree are re-
quired for the correct execution of the navigation sequence.

During the page loading step, the navigation component can use the rules
explained in section 2 to build a node dependency graph, containing the node de-
pendencies for all the script nodes that are executed, and for all the nodes which
contain event listeners that are executed as response to the events fired. In a simi-
lar way, during the page interaction step, for each event which is fired, a depend-
ency graph is calculated for all the nodes which execute event listeners in response
to the event. Finally, all these node dependency graphs are merged into a unique
global dependency graph.

Then, the set of relevant nodes can be built using the following rules:

1. The target nodes of each of the actions to be executed or the events to be fired
during the page interaction step are relevant.

2. If a node is relevant, all its ancestors are relevant. This is needed because of the
"bubbling" stage in the DOM event execution model (see section 2).

3. By definition, if a node is relevant, all its dependencies are relevant.
4. If an input node is relevant, the form node containing it is relevant.
5. If a form node is relevant, all the input and select nodes contained in the form

are relevant.
6. If a select node is relevant, all its child option nodes are relevant (this rule and

the two previous ones are needed to be able to properly submit forms).
7. A small set of node types are always considered relevant (e.g. base nodes).

Automatic Optimization of Web Navigation Sequences 129

To calculate the set of irrelevant nodes, first, all the DOM tree nodes not contained
in the set of relevant nodes are added to it. Then, all the irrelevant nodes which
have an ancestor also contained in the set of irrelevant nodes are removed from the
set. The resulting set contains only the root nodes of the sub-trees whose descen-
dants are all irrelevant (we call them irrelevant sub-trees).

Now, we will briefly explain the techniques used to generate expressions to
identify the root nodes of the irrelevant sub-trees at execution time. On one hand,
the generated expressions should be resilient to small changes in the page because
in real web sites there are usually small differences between the DOM tree of the
same page loaded at different moments (e.g. different data records can be shown
in dynamically generated sections). On the other hand, the process of testing if a
node matches an expression should be very efficient, because, at the execution
phase the browser should check if each node matches with any of that expressions
before creating and adding it to the HTML DOM tree.

To uniquely identify a node in the DOM tree we use an XPath-like expression.
XPath [12] expressions allow identifying a node in a DOM tree by considering
information such as the node type, the text associated to the node, the value of its
attributes and its ancestors. Our proposal starts from a very simple XPath-like ex-
pression using only the type, text and attributes associated to the target node and,
if it does not uniquely identify the node, the expression is progressively aug-
mented including information from some appropriate ancestors, until it does. We
build the least restrictive expression that still uniquely identifies the target node.
Besides, these type of expressions can be evaluated efficiently at the execution
phase. The algorithm is not deeply described due to space constraints.

3.2 Execution Phase

The general functioning of the navigation component at this phase is the following
one: before loading each page, it checks if it has optimization information asso-
ciated to that page, that is, a set of expressions to identify the root nodes of the
page irrelevant sub-trees. That information is used during the parsing stage to
build a reduced version of the page HTML DOM tree, containing only the relevant
fragments. If a node matches with any expression of the set, the node is not added
to the tree and the entire page fragment below that node is completely discarded.

The process of checking if a node is the root of an irrelevant sub-tree should be
very efficient because it is executed for all the elements present in the page to de-
cide if they must be added to the HTML DOM tree or not. Due to the method used
to create the XPath-like expressions that identify the root nodes of the irrelevant
sub-trees, an efficient algorithm has been designed to check if a node matches
with an expression. The algorithm is not described due to space constraints.

Another important issue to deal with during the execution phase, is the identifi-
cation of the pages where the optimizations should be applied. In most cases, the
order in which the pages are loaded when the navigation sequence is executed
could be used to identify them, but further investigation is required to design a
more robust method for identifying the pages. This task is currently in progress.

130 J. Losada et al.

4 Evaluation

To evaluate the validity of our approach a custom browser was implemented. This
browser emulates Microsoft Internet Explorer (MSIE) version 8 and was fully im-
plemented in Java using open-source libraries including Apache Commons-
Httpclient to handle HTTP requests, Neko HTML parser to build DOM structures,
and Mozilla Rhino as JavaScript engine. The custom browser has proved very ef-
ficient. It works in most of the navigation sequences and it is faster than MSIE and
other commercial browsers (like Firefox, Chrome, etc.) is most of the cases. To
evaluate the techniques and algorithms proposed in this paper they have been im-
plemented in the core of this custom browser.

This section explains the preliminary set of experiments that we have de-
signed and executed, which can be divided in two different types. For the first
type, we selected a set of popular websites of different domains. In each website
we recorded a navigation sequence involving several pages. We ran a first exe-
cution of the navigation sequence to collect the optimization information. Then,
we ran two more executions, the first one without using the optimization infor-
mation, and the second one using it. Table 1 shows the metrics measured for
each of this two executions in a representative subset of the selected websites.
(each cell shows the result of the normal execution followed by the result of the
optimized one). Note that one execution is enough to calculate these metrics be-
cause they will have the same values in all the executions while the website
pages remain without changes.

The results of the first type of experiments show that in almost every source
more than the 50% of the nodes are identified as irrelevant. In half the sources,
the nodes identified as irrelevant are more than the 75% (up to 96,5%) of the to-
tal nodes. Those irrelevant nodes include scripts, style sheets and frames.
Discarding those nodes, the browser also avoids unnecessary downloads and the
execution of unnecessary scripts, so the memory and CPU usage required to ex-
ecute the navigation sequence is highly minimized when the optimization infor-
mation is used.

The second type of experiments consists of a benchmark using 5 instances of
our custom browser running in parallel, executing the same navigation sequence
during a fixed amount of time (10 minutes). To avoid the latency of the network,
some of the websites used in the first type of experiments were replicated in a lo-
cal web server, simulating the original website. Table 2 shows the number of ex-
ecutions completed, using and without using the optimization information.

The results of the second type of experiments show that the executions using
the optimization information are, in average, 41,7% (it varies from 21,7% to 70%)
faster than normal executions. Note that these experiments use the sources repli-
cated locally, so they do not include the time savings derived from downloading
fewer resource files (CSS, JavaScript, etc.) from remote servers.

Automatic Optimization of Web Navigation Sequences 131

Table 1 Metrics comparing normal and optimized executions in some websites

Website HTML DOM
Nodes created

Scripts
Executed

Frames and
Windows

HTML pages
Downloaded

External objects
Downloaded

AJAX
Requests

Reuters 3264 / 1463 303 / 168 6 / 3 9 / 7 176 / 103 4 / 4

Pixmania 3808 / 1527 156 / 96 2 / 1 5 / 5 75 / 46 1 / 0

Optize 2699 / 734 102 / 53 1 / 1 3 / 3 36 / 25 0 / 0

Wikipedia 4742 / 1168 69 / 58 5 / 1 5 / 5 47 / 43 4 / 4

Amazon 8319 / 5046 295 / 201 28 / 13 30 / 15 63 / 37 9 / 7

Ebay 5474 / 2603 119 / 111 10 / 8 14 / 13 33 / 31 0 / 0

Vueling 37865 / 7237 3504 / 894 178 / 31 78 / 28 1115 / 340 123 / 3

Bloomberg 6585 / 1160 351 / 212 8 / 3 12 / 7 162 / 103 2 / 0

Fnac 6993 / 1309 232 / 107 13 / 7 23 / 15 104 / 54 0 / 0

AppleStore 1914 / 67 40 / 17 1 / 1 3 / 3 12 / 11 0 / 0

NYTimes 6911 / 2016 279 / 223 8 / 5 14 / 11 192 / 155 4 / 4

Imdb 5033 / 1633 285 / 166 41 / 6 47 / 11 112 / 75 6 / 6

CNet 6117 / 1067 247 / 168 10 / 6 15 / 11 116 / 90 0 / 0

AbeBooks 3553 / 730 172 / 104 6 / 2 8 / 5 82 / 71 2 / 2

AllBooks4Less 2959 / 545 69 / 30 6 / 2 9 / 6 20 / 11 9 / 3

Table 2 Benchmarking normal versus optimized executions

� Pixmanía Optize Wikipedia Amazon Ebay Vueling

Normal 111 390 244 130 173 18

Optimized 195 635 323 277 218 60

5 Related Work

Currently, web automation applications are widely used for different purposes.
The automatic navigation component used by these applications is developed by
using the APIs of popular browsers or simplified custom browsers specially built
for the task. WebVCR [1] and WebMacros [9] rely on simple HTTP clients that
lack the ability to execute complex scripting code or to support AJAX requests.
Wargo [7], Smart Bookmarks [4], Sahi [10], Selenium [11] and QEngine [8] use a
commercial browser as execution engine. Therefore, the performance of the com-
ponent is limited by the commercial browser performance, which consumes a sig-
nificant amount of resources. HtmlUnit [3] and Kapow [5] use their own custom
browser with support for many JavaScript and AJAX functionalities. They are
more efficient than commercial web browsers, but they replicate its functioning
when loading pages and building its internal representation, without allowing any
type of extra optimizations.

6 Conclusions and Future Work

In this paper, we have presented a novel set of techniques and algorithms to op-
timize automatic web navigation sequences. Our approach is based on executing
the navigation sequence once, to automatically collect information about the

132 J. Losada et al.

elements of the loaded pages that are irrelevant for that navigation sequence.
Then, that information is used in the next executions of the sequence, to load only
the required elements. According to a preliminary set of experiments they seem to
be very effective, but further experimentation is required. We also plan to refine
some of the algorithms like, for example, the method used to identify the pages
that are loaded in order to apply them the correct optimizations.

Acknowledgments. This research was partially supported by the Spanish Ministry of
Science and Innovation under project TIN2010-09988-E, and the European Commission
under project FP7-SEC-2007-01 Proposal Nº 218223.

References

[1] Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with
the WebVCR. In: WWW 2000, pp. 503–517 (2000)

[2] Document Object Model (DOM), http://www.w3.org/DOM/
[3] HtmlUnit, http://htmlunit.sourceforge.net/
[4] Hupp, D., Miller, R.C.: Smart Bookmarks: automatic retroactive macro recording

on the web. In: ACM Symposium on User Interface Software and Technology
(UIST), pp. 81–90 (2007)

[5] Kapow, http://www.openkapow.com
[6] Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., Kandogan, E.: Koala: Capture,

Share, Automate, Personalize Business Processes on the Web. In: SIGCHI Confe-
rence on Human Factors in Computing Systems, pp. 943–946 (2007)

[7] Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, A.: Semi automatic wrapper-
generation for commercial web sources. In: IFIP WG8.1 Working Conference on
Engineering Information Systems in the Internet Context, pp. 265–283 (2002)

[8] QEngine,
http://www.adventnet.com/products/qengine/index.html

[9] Safonov, A., Konstan, J., Carlis, J.: Beyond Hard-to-Reach Pages: Interactive,
Parametric Web Macros. In: 7th Conference on Human Factors & the Web (2001)

[10] Sahi, http://sahi.co.in/w/
[11] Selenium, http://seleniumhq.org/
[12] XML Path Language (XPath), http://www.w3.org/TR/xpath

	Automatic Optimization of Web Navigation Sequences
	Introduction
	Models
	Description of the Solution
	Optimization Phase
	Execution Phase

	Evaluation
	Related Work
	Conclusions and Future Work
	References

