
Applying Model-Based Techniques to the
Development of UIs for Agent Systems

Sebastian Ahrndt∗, Dirk Roscher, Marco Lützenberger, Andreas Rieger,
and Sahin Albayrak

Abstract. To counter difficulties of user interface (UI) development, model based
techniques became firmly established over the last years. The basic idea of model
based user interface development (MBUID) is to formally specify a UIs appearance
and behaviour by means of several models. Especially for distributed multi-agent
systems, the appliance of MBUID can be most promising. Agent applications in-
volve many different execution platforms and heterogeneous devices and perfectly
fit for Ambient Assisted Living landscapes due to their innate characteristics of dis-
tribution and autonomy. When it comes to agent systems, one always has to consider
the fact that humans have to communicate with agents in the end. It is our opinion
that most approaches neglect this fact and thus cut the dynamics and the capabilities
of distributed multi-agent systems. Hence in this work, we present an approach for
the development of UIs for software agents which applies model based techniques
and also retains all degrees of freedom for the underlying multi-agent system.

1 Introduction

Ambient Assisted Living (AAL) is strongly facilitated by the vision of ubiquitous
computing, where smart interacting devices are integrated into the everyday life. As
a matter of fact, the importance of AAL services increases over time as a result of
demographic changes. In order to maintain the quality of life – especially for the
elderly – technologies are required which support a living at home in many aspects,
such as autonomy, security and health.

Over the last years, Agent Oriented Software Engineering (AOSE) has evolved
as suitable technique for the development of AAL systems [6]. The reason for this
is that multi-agent systems (MAS) perfectly fit for AAL landscapes due to their

Sebastian Ahrndt · Dirk Roscher · Marco Lützenberger · Andreas Rieger · Sahin Albayrak
DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
e-mail: sebastian.ahrndt@dai-labor.de
∗Corresponding author.

J.M.C. Rodrı́guez et al. (Eds.): Trends in PAAMS, AISC 157, pp. 1–8.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

sebastian.ahrndt@dai-labor.de


2 S. Ahrndt et al.

innate characteristics of distribution and autonomy. In fact, agent-based systems are
able to match many requirements of Ambient Assisted Living. However, it is gen-
erally agreed, that the success of software applications is not only founded by the
capability of the application itself, but also by the quality of its handling and also
by its usability. When it comes to AAL, one always has to consider, that the target
audience is usually the elderly. This raises many challenges for software develop-
ers as elderly people are not as experienced in handling software as younger people
are [7]. Further, the situation is aggravated, as different device types and many in-
teraction modalities (such as voice-, mouse-, touch- and gesture-based interaction)
have to be taken into account. To sum up, in order to support users in the spirit of
AAL, developers have to provide users with intuitive and yet non-intrusive control
mechanisms.

However, serving multi-modal interaction possibilities and also supporting dif-
ferent device types results in countless UI variations and even more configuration
options. To counter this problem, user interfaces for similar application areas are
frequently developed in compliance with the Model-Based User Interface Develop-
ment (MBUID) paradigm. The basic idea of MBUID is to formally specify a user
interface’s appearance and behaviour by means of several models from which exe-
cutable code can be derived. Further, interpreter-based Model-based User Interfaces
(MBUI) have the ability to manipulate their models at runtime and to dynamically
adjust to the current execution context.

In this paper, we argue that the combination of software agents and MBUIs is a
sophisticated way to increase the comfortability when developing AAL services. We
start with a survey on related approaches (see Section 2). Afterwards, we present an
approach that enables the development of agent-applications with MBUIs that are
interpreted at runtime in order to provide a holistic user experience for AAL envi-
ronments (see Section 3). Subsequently, we will illustrate a proof-of-concept imple-
mentation of an AAL service which we currently present in the showroom of our
research institute (see Section 4). We proceed by discussing practical experiences
we have made thus far and finally wrap up with a conclusion (see Section 5).

2 Related Work

Prior to our development, we performed a survey on existing approaches. The HCI
community provides an established body of works regarding MBUIs and MBUI
development environments [11, 14]. However, these works do not contribute to the
integration of MBUIs into the agent domain. As a matter of fact, this area of research
is only sparely covered. The agent community for instance tries to counter the com-
plexity of UI development by web-based solutions [1, 15]. As these approaches are
not directly comparable with our architecture, we identified some others which are
described next.

Braubach et al. [4], for instance, introduce Vesuf, a development environment for
MBUIs. Vesuf was not streamlined for agent applications, however, the



Applying Model-Based Techniques to the Development of UIs for Agent Systems 3

framework was tested in real life, in an urban hospital facility1, where it demon-
strated its capability to generate adaptable UIs for software agents. In their work,
the authors emphasise the difficulties in developing UIs for agent systems and ar-
gue, that interpreter-based MBUIs are capable to overcome most of the mentioned
problems.

Eisenstein and Rich [8] propose an architecture which is based on task-models
and which facilitates the development of collaborative interface agents. The authors
apply task-models to control the behaviour of agents and also as foundation for the
UI. Development is done in compliance with the underlying task-model and sup-
ported by a set of editors, each one geared towards a specific part of the application.

Tran et al. [18] present an approach which applies MBUID for data systems. The
authors present an agent-based framework, that allows for the automated generation
of database UIs and application code, which is based on a combination of task-,
context-, and domain model. As the different models have different roles, agents are
used for the code generation as well.

Pruvost and Bellik [16] present a framework for multi-modal interaction in ubiq-
uitous systems. The framework is a part of the European ATRACO project2. One
interesting aspect of this work is that agents negotiate on how to render the MBUIs.

Braubach et al. [4] impressively demonstrate the capabilities of merging MBUIs
with agent systems, although their approach was not intended for agent systems in
the first place. As a result to this design decision, their architectural presentation
model lacks depth. In our opinion, the used presentation model does not provide
enough information. Hence, it has to be extended with modality-dependent infor-
mations, which leads to one UI descriptions for each supported modality. Further,
although Vesuf is an interpreter-based MBUID environment, there is no context-
model available. Hence, the UIs cannot adapt to the actual context-of-use at runtime.
The other examinees focus on particular aspects and disregard the bigger picture of a
holistic user experience. Nevertheless, Pruvost and Bellik present interesting ideas,
which gives us visions for future extensions of our work, as for instance agents
which negotiate about the most adequate way of interaction.

To sum up, our survey shows, that although there are many approaches to develop
MBUIs, only a few of them have been applied and tested in conjunction with agent
systems. Yet, it is our believe, that a multi-agent systems and MBUIs is a promising
combination for AAL environments.

3 Approach

As mentioned above, the development of multi-modal UIs is a complex task.
Interpreter-based MBUID can be used as it counters many difficulties and also suits
well for the realm of AAL. Based on our survey we can state that current MBUI
technology has, as yet, not found its way into the agent domain and vice versa. It is

1 MedPAge (Medical Path Agents), see http://vsis-www.informatik.
uni-hamburg.de/projects/medpage

2 Adaptive and Trusted Ambient Ecologies, see www.uni-ulm.de/in/atraco

http://vsis-www.informatik.
uni-hamburg.de/projects/medpage
www.uni-ulm.de/in/atraco


4 S. Ahrndt et al.

Fig. 1 Abstract illustration of the approach, enabling agents to perform the application tasks
of the task-model.

our objective to narrow the gap between both technologies and in the following we
describe our way to achieve this goal. We start by outlining the target system and
proceed by getting granular on our approach. Subsequently, we introduce applied
technologies and finally, we argue on how the presented systems works together
and fosters the interplay between MBUIs and multi-agent system technology.

3.1 AOSE meets MBUID

MBUI development applies several models in order to ensure device independence,
multi-modal interaction and context-awareness. Each model encapsulates particular
information on some part of the application as a whole. Runtime systems interpret
these models and derive UIs which are optimised for a given execution context.

However, although there are several different models available, one is involved
in the majority of MBUID environments – the task-model [5]. The task-model for-
malises the general workflow3 of the application and distinct between tasks of the
user and tasks that belong to the application’s logic. Task-models can be described
by using many languages, and reach from static to dynamic and executable ones.

Agents on the other hand are usually compelled to some application goal and
manage the application’s logic accordingly. In order to enable MBUIs for multi-
agent systems we have to ensure that the application’s tasks can be interpreted and
performed by the agents. Figure 1 illustrates the principle.

In the example, the task-model is represented as a chain of application- and user
tasks. Whenever the runtime system detects an application task, a referenced back-
end service should be called – in our case an agent. Further, required data should be
forwarded to the agent, yet, as MBUIs and multi-agent systems are usually based
on different technologies and have different conflicting properties (straight defini-
tion vs. degrees of freedom), this task is not easily accomplished. In order to foster
communication between MBUIs and multi-agent systems, we developed the Hu-
man Agent Interface [2] (HAI). HAI was designed to facilitate the integration of
user interface technologies into agent applications. During runtime, HAI acts as a
gateway between UIs and MAS, hiding particular UI details from the agent applica-
tion and vice versa. Thus, to convert and deliver UI messages to the agent world and
to forward responses from the agent application back to the user interfaces is HAI’s

3 A workflow is considered to be the tasks that can be reached.



Applying Model-Based Techniques to the Development of UIs for Agent Systems 5

main purpose. We designed HAI to be independent from any specific UI technology
and also as extension to the Model-View-Controller (MVC) architecture. Due to its
characteristics, HAI constitutes a suitable foundation for the problem we address in
this work.

3.2 From Theory to Practice

Before presenting a system which takes AOSE and MBUID into account we want to
provide a short outline of the applied technologies. Although HAI is not restricted
to a particular agent framework, we frequently used HAI in combination with the
Java-based Intelligent Agents Componentware [10] (JIAC V). JIAC V is a Java
based agent framework which has been developed at the Technical University of
Berlin since 1998. It combines service-oriented with agent-oriented concepts and
offers conformity to FIPA standards4.

Using model-based development to implement user interfaces provides many ad-
vantages. Nevertheless, as an objective of our work, we want to prevent UI- and
agent developers from affecting each other. In order to do so, we applied the Multi-
Access Service Platform [3] (MASP), as it allows model-based development and
clearly distinct between UI and application. MASP task-models are based on the
widely accepted ConcurTaskTree notation [13] (CTT). CTT separates task-models
into four types of tasks: User tasks, application tasks, interaction tasks and abstract
tasks. User and interaction tasks are performed by the user. Application tasks are
executed by the system and abstract tasks are complex actions which can not be
expressed by the other ones. In order to provide information on the execution se-
quence (e.g. parallel, step-by-step) and interdependencies between them, the tasks
are ordered by means of LOTUS operators. Although CTT is a good foundation for
user-centric design, it neglects some requirements for AAL sceneries and had to be
extended in some aspects [9]. To start with, AAL environments – especially those
with agents – continuously collect sensor data and may identify situations in which
user interaction tasks have to be triggered or disabled. Classical CTT do not sup-
port this kind of behaviour and therefore prevents proactive agents to adjust the user
interface to the latest set of environmental data.

Figure 2 illustrates the architecture of the implemented system including MASP,
HAI and the MAS. Once an application task occurs, the additional backend service
is executed. In order to assure that agents are able to manage the respective appli-
cation tasks, we have implemented the HAIService, which manages the mapping
process. After the HAIService was called a HAI service message is generated and
send to the HAI (1). This message contains additional data (e.g. name, required ca-
pabilities or supported input/output parameters) and an identifier for the designated
agent, which is used by HAI to establish a permanent connection to the responding
agent for further UI requests. Subsequently, HAI converts the UI message into an
agent message (in compliance with the FIPA ACL standard) and forwards the mes-
sage to the agent system (2). The agent system now processes the incoming message

4 FIPA – The Foundation for Intelligent Physical Agents – see www.fipa.org

www.fipa.org


6 S. Ahrndt et al.

Fig. 2 Architecture of the system, consisting of three top-level tiers: MASP, HAI and the
MAS.

and responds by a message as well (3). As a result, HAI notifies the interpreter that
the task has been accomplished and updates the data model if necessary (4). Finally,
the runtime system of MASP forces the view to apply to the potential changes.

4 Proof of Concept

As we strongly believe, that a combination of MBUID and AOSE facilitates the de-
velopment of AAL environments, we proceed by describing an agent-based AAL
service which we developed within the SmartSenior project5. As security is an in-
herent part of the AAL vision we recently implemented an agent-based assistant
which is able to detect anomalies in an AAL environment and to inform a user
about them by different interaction modalities [12]. The assistant comprises three
logical components: sensor-, analysis- and reaction unit. While the sensor unit for
itself is not agent-based, the others are. The analysis unit is a multi-agent system
consisting of a situation recognition agent, that collects sensor data, a rule eval-
uation agent and an anomaly detection agent to manage situations which are not
covered by rules. While the rule evaluation agent reacts on same event types always
in the same fashion, the anomaly detection agent is able to learn a user’s regular be-
haviour and reacts when discrepancies to this regular behaviour are identified using
statistical methods. Once an event occurs, it is forwarded to the reaction component.
The reaction component is an agent that determines the best interaction possibility
to inform the user. This process is straightforward and makes only use of the locali-
sation data gathered from the sensor unit. MASP was utilised to develop and furnish
three different UIs [17]. Once the user is close to a screen, a popup will provide
informations and options about an occurring event. In case the user is not in scope
of a screen but at home, a bracelet the user wears informs about the event. Finally,

5 SmartSenior – longer independence for senior citizens, see www.smart-senior.de

www.smart-senior.de


Applying Model-Based Techniques to the Development of UIs for Agent Systems 7

in case the user is currently not at home, the users smart phone is used as interaction
device.

5 Conclusion

In this paper, we introduced an approach that facilitates the development of device-
and modality independent UIs for agent applications. In order to do this, we argued
that MBUID is a suitable foundation for the implementation of agent applications
for AAL environments. Furthermore, we emphasised that this area of research is
only sparely covered and that existing solutions have severe shortcomings, on either
the agent- or on the MBUI side. We further described how the task-model, that
is available in most MBUID environments, can be utilised to apply model driven
techniques for the development of UIs for agents. Subsequently, we provided an
outline of our example system, that makes use of MASP as MBUID environment
and JIAC as agent framework. In order to exploit the MBUIs of the MASP for JIAC
agent systems, we made use of HAI. Due to HAIs independence from specific UI
technologies or agent frameworks, our approach is easily adaptable to other MBUID
environments and agent frameworks. After presenting our approach, we illustrated
a proof-of-concept implementation of an agent-based AAL service.

It is our opinion that, as sophisticated model driven UI techniques are, the sup-
port for the dynamics and the capabilities of distributed multi-agent systems for
AAL environments often fall short. To counter this issue, we extended the CTT in
a way that allows agents to act proactively. We also used the MVC paradigm to
strictly separate between agent and UI specific parts. Nevertheless, currently there
are unsolved issues regarding our approach. While agent technology offers capa-
bilities for coordinated and orchestrated the increasing number of applications in
AAL environments, a mechanism is required to ensure a reasonable UI. Hence, a
first step is to find a more sophisticated possibility to negotiate about the best way
of interaction for a given situation, even for the whole AAL environment.

Evaluating design-oriented approaches is usually a tedious task. In the future,
we want to demonstrate that a combination of MBUID and AOSE facilitates the
development of AAL environments. In order to measure the impact on the develop-
ment effort of AAL services, we intent to compare different developer teams with
equal capabilities performing the same task – some using the presented approach,
the others not. We will present the results of this evaluation in a succeeding work.

References

1. Agent Oriented Software Pty. Ltd.: JACK Intelligent Agents – WebBot Manual, 5.3 edn.
Agent Oriented Software Pty. Ltd., Victoria, Australia (2009)

2. Ahrndt, S., Lützenberger, M., Heßler, A., Albayrak, S.: HAI – A Human Agent Interface
for JIAC. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973, pp. 149–156.
Springer, Heidelberg (2011)



8 S. Ahrndt et al.

3. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal user interfaces for smart en-
vironments: The multi-access service platform. In: Bottoni, P., Levialdi, S. (eds.) Pro-
ceedings of the Working Conference on Advanced Visual Interfaces. ACM (2008)

4. Braubach, L., Pokahr, A., Moldt, D., Bartelt, A., Lamersdorf, W.: Tool-supported
interpreter-based user interface architecture for ubiquitous computing. In: P. Forbrig,
Q. Limbourg, B. Urban, J. Vanderdonckt (eds.) Interactive Systems - Design, Specifica-
tion, and Verification, pp. 89–103. Springer (2002)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interacting with Comput-
ers 15(3), 289–308 (2003)

6. Corchado, J.M., Perez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds.): Work-
shop on Agents for Ambient Assisted Living. AISC, vol. 90. Springer, Heidelberg (2011)

7. Dutton, W.H., Blank, G.: Next generation users: The internet in britain. Oxford Internet
Institute, University of Oxford (2011)

8. Eisenstein, J., Rich, C.: Agents and guis from task models. In: Proceedings of the 7th
International Conference on Intelligent User Interfaces, pp. 47–54. ACM (2002)

9. Feuerstack, S., Blumendorf, M., Albayrak, S.: Prototyping of Multimodal Interactions
for Smart Environments Based on Task Models. In: Mühlhäuser, M., Ferscha, A., Aiten-
bichler, E. (eds.) AmI 2007 Workshops, CCIS, vol. 11, pp. 139–146. Springer, Heidel-
berg (2008)

10. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services – the JIAC agent plat-
form. In: Bordini, R.H., Dastani, M., Dix, J., Amal, E.F.S. (eds.) Multi-Agent Program-
ming: Languages, Tools and Applications, pp. 159–185. Springer, Heidelberg (2009)

11. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.:
USIXML: A Language Supporting Multi-path Development of User Interfaces. In:
Bastide, R., Palanque, P., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425,
pp. 200–220. Springer, Heidelberg (2005)

12. Mustafić, T., Clausen, J., Messerman, A., Chinnow, J.: Concept of a sensor based emer-
gency detection in a home environment. In: Ambient Assisted Living 2010, p. 4. VDE
Verlag (2010)

13. Paterno, F., Mancini, C., Meniconi, S.: Concurtasktrees: A diagrammatic notation for
specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Proceedings
of Interact 1997. Human-Computer Interaction Conference. Chapman and Hall (1997)

14. Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments.
ACM Transactions on Computer-Human Interaction (TOCHI) 16(4), 1–30 (2009)

15. Pokahr, A., Braubach, L.: The Webbridge Framework for Building Web-Based Agent
Applications. In: Dastani, M., El Fallah Seghrouchni, A., Leite, J., Torroni, P. (eds.)
LADS 2007. LNCS (LNAI), vol. 5118, pp. 173–190. Springer, Heidelberg (2008)

16. Pruvost, G., Bellik, Y.: Ambient multimodal human-computer interaction. In: Proceed-
ings of the Poster Session at The European Future Technologies Conference, pp. 1–2
(2009)

17. Raddatz, K., Schmidt, A.D., Thiele, A., Chinnow, J., Grunnewald, D., Albayrak, S.:
Sensor-based detection and reaction in ambient environments. In: Ambient Assisted Liv-
ing 2012. VDE Verlag (to appear, 2012)

18. Tran, V., Kolp, M., Vanderdonckt, J., Wautelet, Y., Faulkner, S.: Agent-Based User In-
terface Generation from Combined Task, Context and Domain Models. In: England, D.,
Palanque, P., Vanderdonckt, J., Wild, P.J. (eds.) TAMODIA 2009. LNCS, vol. 5963, pp.
146–161. Springer, Heidelberg (2010)


	Applying Model-Based Techniques to the Development of UIs for Agent Systems
	Introduction
	Related Work
	Approach
	AOSE meets MBUID
	From Theory to Practice

	Proof of Concept
	Conclusion
	References




