
Chapter 9
Semi-explicit Distributed NMPC

Abstract. In this chapter, a suboptimal approach to distributed NMPC for systems
consisting of nonlinear subsystems with linearly coupled dynamics, subject to both
state and input constraints, is considered. The approach applies the dynamic dual de-
composition method and reformulates the original centralized NMPC problem into
a distributed quasi-NMPC problem by linearization of the nonlinear system dynam-
ics. The approach is based on distributed on-line optimization (by gradient itera-
tions) and can be applied to large-scale nonlinear systems. Further, a semi-explicit
NMPC approach to efficiently solve the distributed NMPC problem for small- and
medium-scale systems is described. It combines the explicit approximate solution
with the on-line optimization and the result is a decrease of the on-line computa-
tional complexity. Both the on-line optimization based distributed NMPC and the
semi-explicit distributed NMPC are illustrated in a problem to solve a NMPC prob-
lem for a nonlinear system consisting of two subsystems.

9.1 Introduction

Recall that NMPC involves the solution at each sampling instant of a finite horizon
optimal control problem subject to the system dynamics, and state and input con-
straints. However, solving in a centralized way NMPC problems for medium- and
large-scale systems may be impractical due to the complexity of the Nonlinear Pro-
gramming (NLP) problem, the topology of the plant and data communication, and
the large number of decision variables. Therefore, there is a strong motivation for
development of methods for distributed solution of NMPC problems. At the same
time, the multi-core computer architectures available nowadays would encourage
parallel and distributed NMPC computations [5]. Recently, several approaches for
decentralized implementation of MPC algorithms have been developed, [19]. As it
is pointed out in [15], the possibility to use MPC in a decentralized fashion has the
advantage to reduce the original, large size, optimization problem into a number of
smaller and more tractable ones. In [20], [13], [22], [9], approaches for distributed
MPC for systems consisting of linear interconnected subsystems have been devel-
oped. The approach in [9] is based on the dual decomposition methods [1, 6, 4],
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where large-scale optimization problems are handled by using Lagrange multipliers
to relax the couplings between the sub-problems. In [17, 18], the dual decomposi-
tion is used for analysis and synthesis of distributed feedback controllers.

Further, approaches for distributed MPC for systems composed of several non-
linear subsystems have been proposed in [15, 7, 12]. In [15], a stabilizing decen-
tralized MPC algorithm for nonlinear systems consisting of several interconnected
local subsystems is developed. It is derived under the main assumptions that no in-
formation can be exchanged between local control laws, i.e. the coupling between
the subsystems is ignored, and only input constraints are imposed on the system.
In [7], it is supposed that the dynamics and constraints of the nonlinear subsystems
are decoupled, but their state vectors are coupled in a single cost function of a finite
horizon optimal control problem. In [12], an optimal control problem for a set of
dynamically decoupled nonlinear systems, where the cost function and constraints
couple the dynamical behavior of the systems, is solved.

In this chapter, the suboptimal approach [11] to distributed NMPC for a more
general class of systems consisting of nonlinear subsystems with coupled dynamics
subject to both state and input constraints is considered. Like in [15], it is supposed
that the couplings between the subsystems are linear. However in difference to [15],
the distributed NMPC method proposed here takes into account these couplings,
as well as state constraints. The approach [11] applies the dynamic dual decompo-
sition method [4, 18, 9] and reformulates the original centralized NMPC problem
into a distributed quasi-NMPC problem by linearization of the nonlinear system
dynamics. The approach is based entirely on distributed on-line optimization (by
gradient iterations) and can be applied to large-scale nonlinear systems. Further, a
semi-explicit NMPC approach to efficiently solve the distributed NMPC problem
for small- and medium-scale systems is proposed.

9.2 Formulation of NMPC Problem for Interconnected Systems

Consider a system composed by the interconnection of M subsystems (shown in
Fig. 9.1), which is described by the following nonlinear discrete-time models [15]:

xi(t + 1) = fi(xi(t),ui(t))+ gi(x(t))+ di(t) , i = 1, 2, ... , M (9.1)

where xi(t) ∈ R
ni , ui(t) ∈ R

mi , and di(t) ∈ R
ni are the state, control input, and

disturbance vectors, related to the i-th subsystem, and fi : Rni ×R
mi → R

ni and
gi : Rn→ R

ni are nonlinear functions.
In (9.1), the mutual influence of the M subsystems is described by the functions

gi, which depend on the overall state:

x(t) = [x1(t), x2(t), ... , xM(t)] ∈ R
n , n =

M

∑
i=1

ni (9.2)
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Fig. 9.1 System composed by the interconnection of M subsystems.

Similarly, the overall control input is denoted:

u(t) = [u1(t), u2(t), ... , uM(t)] ∈ R
m , m =

M

∑
i=1

mi (9.3)

The following control input and state constraints are imposed on the subsystems:

umin,i ≤ ui(t)≤ umax,i , xmin,i ≤ xi(t)≤ xmax,i , i = 1, 2, ... , M (9.4)

and the following assumptions are made [11]:

Assumption 9.1. The functions fi and gi, i=1, ... , M are C1 functions with fi(0,0)=
0, gi(0) = 0.

Assumption 9.2. xmin,i < 0 < xmax,i, umin,i < 0 < umax,i, i = 1, ... , M.

Assumption 9.3. The disturbances di, i = 1, ... , M are bounded by:

|di(t)| ≤ dmax,i , i = 1, 2, ... , M (9.5)

with dmax,i ∈ R
ni
>0, dmax,i < |xmin,i| and dmax,i < xmax,i, i = 1, 2, ... , M, where the

operation | · | is taken element-wise.

It is supposed that a full measurement x = [x1, x2, ... , xM] of the overall state is
available at the current time t. The optimal regulation problem is considered where
the goal is to steer the overall state of the system (9.1) to the origin. For the current
x = [x1, x2, ... , xM], the regulation NMPC solves the optimization problem [11]:

Problem 9.1 (Centralized NMPC):

V opt(x) = min
U

J(U,x) (9.6)

subject to xt|t = x and:
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xi,t+k|t ∈Xi , i = 1, ... , M , k = 1, ... , N− 1 (9.7)

ui,t+k ∈Ui , i = 1, ... , M , k = 0, 1, ... , N− 1 (9.8)

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ gi(xt+k|t ) , i = 1, ... , M , k = 0, 1, ... , N− 2(9.9)

xt+k|t = [x1,t+k|t , x2,t+k|t , ... , xM,t+k|t ] , k = 0, 1, ... , N− 1 (9.10)

ut+k = [u1,t+k, u2,t+k, ... , uM,t+k] , k = 0, 1, ... , N− 1 (9.11)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x) =
N−1

∑
k=0

M

∑
i=1

li(xi,t+k|t ,ui,t+k) (9.12)

Here, li(xi,t+k|t ,ui,t+k) = ‖xi,t+k|t‖2
Qi
+‖ui,t+k‖2

Ri
is the stage cost for the i-th subsys-

tem with weighting matrices Qi, Ri � 0, and N is a finite horizon. The sets Xi and
Ui are defined by:

Xi = {λi ∈ R
ni |xmin,i + dmax,i ≤ λi ≤ xmax,i− dmax,i} (9.13)

Ui = {ηi ∈ R
mi |umin,i ≤ ηi ≤ umax,i} (9.14)

It follows from (9.13)–(9.14) that Xi and Ui are convex (polyhedral) sets, which
include the origin in their interior (due to Assumptions 9.2 and 9.3).

It should be noted that the state constraints (9.7) with the admissible set Xi de-
fined by (9.13) guarantee the robust feasibility of the solution in sense that the orig-
inal state constraints (9.4) will be satisfied for the worst-case disturbances.

9.3 Distributed NMPC for Interconnected Nonlinear Systems
with Linear Couplings

9.3.1 Distributed NMPC by Dual Decomposition

Problem 9.1 can be decomposed by using the dynamic dual decomposition approach
[4, 18]. First, the following assumption is made [11]:

Assumption 9.4. The functions gi(x(t)) have the form:

gi(x(t)) =
M

∑
j=1, j �=i

Ai jx j(t) , i = 1, ... , M (9.15)

where Ai j ∈ R
ni×n j are constant matrices.

The following decoupled state equations can be formulated:

xi(t + 1) = fi(xi(t),ui(t))+ vi(t)+ di(t) , i = 1, ... , M (9.16)

with the additional constraints, [18]:
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vi(t) =
M

∑
j=1, j �=i

Ai jx j(t) , i = 1, ... , M for all t (9.17)

The variable vi ∈ R
ni can be interpreted as the influence of the other subsystems in

the update of xi.
Then, similar to [18], the constraints (9.17) are relaxed by introducing the cor-

responding vectors of Lagrange multipliers pi ∈ R
ni in the cost function (9.12) and

the Problem 9.1 is reformulated as a distributed NMPC problem [11]:

Problem 9.2 (Distributed NMPC):

V opt(x) =

max
P

min
U,X ,V

N−1

∑
k=0

M

∑
i=1

[li(xi,t+k|t ,ui,t+k)+ pT
i,t+k(vi,t+k−

M

∑
j=1
j �=i

Ai jx j,t+k|t )] =

max
P

M

∑
i=1

( min
Ui ,Xi,Vi

N−1

∑
k=0

[li(xi,t+k|t ,ui,t+k)+ pT
i,t+kvi,t+k− xT

i,t+k|t
M

∑
j=1
j �=i

AT
jip j,t+k]

︸ ︷︷ ︸

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P)

) (9.18)

subject to xt|t = x, constraints (9.7)–(9.8) and:

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ vi,t+k , i = 1, ... , M , k = 0, 1, ... , N− 2 (9.19)

pt+N−1 = 0 (9.20)

Here:

P = [pt , pt+1, ... , pt+N−1] with pt+k = [p1,t+k, p2,t+k, ... , pM,t+k] ,

k = 0, 1, ... , N− 1

U = [ut , ut+1, ... , ut+N−1] , Ui = [ui,t , ui,t+1, ... , ui,t+N−1]

X = [xt|t , xt+1|t , ... , xt+N−1|t ] , Xi = [xi,t|t , xi,t+1|t , ... , xi,t+N−1|t ] (9.21)

V = [vt , vt+1, ... , vt+N−1] , Vi = [vi,t , vi,t+1, ... , vi,t+N−1]

with vt+k = [v1,t+k, v2,t+k, ... , vM,t+k] , k = 0, 1, ... , N− 1

The Lagrange multipliers P are also referred to as prices [18] and the Problem 9.2
can be interpreted as a game with two players for each subsystem. Given the prices,
the objective of the first player for the i-th subsystem is to select the inputs Ui =
[ui,t , ui,t+1, ... , ui,t+N−1] to minimize the local cost ∑N−1

k=0 lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P).

The other player for the i-th subsystem chooses Pi = [pi,t , pi,t+1, ... , pi,t+N−1] with
the objective to maximize ∑N−1

k=0 pT
i,t+k(vi,t+k−∑M

j=1, j �=i Ai jx j,t+k|t).
The inner decoupled optimization problems in Problem 9.2 represent Nonlinear

Programming (NLP) sub-problems corresponding to the NMPC of the i-th
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subsystem, since the constraints (9.19) are nonlinear in the optimization variables.
Each NLP sub-problem is presented as follows [11]:

Problem 9.3i (i-th NLP sub-problem):

V opt
i (P,xi) = min

Ui,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.22)

subject to xi,t|t = xi and:

xi,t+k|t ∈Xi , k = 1, ... , N− 1 (9.23)

ui,t+k ∈Ui , k = 0, 1, ... , N− 1 (9.24)

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ vi,t+k , k = 0, 1, ... , N− 2 (9.25)

Denote with Uopt
i = [uopt

i,t , uopt
i,t+1, ... , uopt

i,t+N−1], Xopt
i = [xopt

i,t|t , xopt
i,t+1|t , ... , xopt

i,t+N−1|t ]
and V opt

i = [vopt
i,t , vopt

i,t+1, ... , vopt
i,t+N−1] the optimal solution of Problem 9.3i.

9.3.2 Local QP Approximations of the NLP Sub-problems

The cost functions ∑N−1
k=0 lP

i (xi,t+k|t ,ui,t+k,vi,t+k,P) in the Problems 9.3i, i =
1, 2, ... , M are convex, however the constraints (9.25) may be non-convex in the
general case. In [11], the constraints (9.25) are locally approximated by linear con-
straints, leading to a quasi-nonlinear approach. Let xi,t|t = x0

i ∈Xi be arbitrary and
denote the corresponding optimal solution to the sub-problem 9.3i with:

U0
i =Uopt

i (x0
i ) = [u0

i,t , u0
i,t+1, ... , u0

i,t+N−1]

X0
i = Xopt

i (x0
i ) = [x0

i,t|t , x0
i,t+1|t , ... , x0

i,t+N−1|t ] (9.26)

V 0
i =V opt

i (x0
i ) = [v0

i,t , v0
i,t+1, ... , v0

i,t+N−1]

The optimal solution (9.26) depends on the values of the prices P. In Section 9.3.3,
it is described how P and the solution (9.26) are updated iteratively. Further, a first
order truncated Taylor series expansions of the right-hand side of constraints (9.25)
around the point (U0

i , X0
i ,V 0

i , x0
i ) lead to the locally linear constraints [11]:

X̃+
i = SXi(X̃i− X̃0

i )+ SUi(Ũi−Ũ0
i )+ (Ṽi− Ṽ 0

i )+E0
i (9.27)

where:

X̃i = [xi,t|t , ... , xi,t+N−2|t ] , X̃0
i = [x0

i,t|t , ... , x0
i,t+N−2|t ]

Ũi = [ui,t , ... , ui,t+N−2] , Ũ0
i = [u0

i,t , ... , u0
i,t+N−2]

Ṽi = [vi,t , ... , vi,t+N−2] , Ṽ 0
i = [v0

i,t , ... , v0
i,t+N−2]

X̃+
i = [xi,t+1|t , ... , xi,t+N−1|t ]
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Here, the matrices SXi , SUi , and E0
i are given by:

SXi =

⎡

⎢

⎢

⎣

∇xi fi(x0
i,t|t ,u

0
i,t) 0ni . . . 0ni

...
0ni 0ni . . . ∇xi fi(x0

i,t+N−2|t ,u
0
i,t+N−2)

⎤

⎥

⎥

⎦

(9.28)

SUi =

⎡

⎢

⎢

⎣

∇ui fi(x0
i,t|t ,u

0
i,t) 0ni,mi . . . 0ni,mi

...
0ni,mi 0ni,mi . . . ∇ui fi(x0

i,t+N−2|t ,u
0
i,t+N−2)

⎤

⎥

⎥

⎦

(9.29)

E0
i =

⎡

⎢

⎢

⎣

fi(x0
i,t|t ,u

0
i,t)+ v0

i,t
...

fi(x0
i,t+N−2|t ,u

0
i,t+N−2)+ v0

i,t+N−2

⎤

⎥

⎥

⎦

(9.30)

where 0ni is the ni-dimensional square zero matrix and 0ni,mi is the ni × mi-
dimensional zero matrix. It can be observed that (9.27) is a linear time-varying
approximation of the constraints (9.25). Then, the NLP sub-problems 9.3i for the
subsystems are approximated with the QP sub-problems [11]:

Problem 9.4i (i-th QP sub-problem):

V ∗i (P,xi) = min
Ui ,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.31)

subject to xi,t|t = xi, (9.23), (9.24), and (9.27).
Denote with U∗i = [u∗i,t , ... , u∗i,t+N−1], X∗i = [x∗i,t|t , ... , x∗i,t+N−1|t ] and V ∗i = [v∗i,t , ... ,

v∗i,t+N−1] the optimal solution of Problem 9.4i. Then, the following centralized
NMPC problem with linearized constraints is formulated [11]:

Problem 9.5 (Centralized NMPC with linearized constraints):

V ∗(x) = min
U

J(U,x) (9.32)

subject to xt|t = x, constraints (9.7), (9.8), and:

xi,t+k+1|t = ∇xi fi(x
0
i,t+k|t ,u

0
i,t+k)(xi,t+k|t − x0

i,t+k|t)+

∇ui fi(x
0
i,t+k|t ,u

0
i,t+k)(ui,t+k− u0

i,t+k)+
M

∑
j=1, j �=i

Ai j(x j,t+k|t − x0
j,t+k|t)

+ fi(x
0
i,t+k|t ,u

0
i,t+k)+

M

∑
j=1, j �=i

Ai jx
0
j,t+k|t

i = 1, ... , M , k = 0, 1, ... , N− 2 (9.33)
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where the cost function J(U,x) is given by (9.12). Here, (9.33) includes the
constraints due to the linearized dynamics for all subsystems.

Then, the distributed NMPC problem with linearized dynamic constraints is as
follows [11]:

Problem 9.6 (Distributed NMPC with linearized constraints):

max
P

M

∑
i=1

V ∗i (P,xi) = max
P

M

∑
i=1

min
Ui,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.34)

subject to xt|t = x, constraints (9.7), (9.8), and:

X̃+
i = SXi(X̃i− X̃0

i )+ SUi(Ũi−Ũ0
i )+ (Ṽi− Ṽ 0

i )+E0
i , i = 1, ... , M (9.35)

pt+N−1 = 0 (9.36)

Then, the decomposition of the optimization Problem 9.5 is given by the following
proposition [11]:

Proposition 9.1. Suppose that x = [x1, x2, ... , xM] is a feasible point for Problem
9.5. Then:

V ∗(x) = max
P

M

∑
i=1

V ∗i (P,xi) (9.37)

where maximization is subject to pt+N−1 = 0.

Proof. [11] The proof follows similar arguments as in [9]. Since the stage cost
functions li(xi,t+k|t ,ui,t+k), i = 1, 2, ... , M are convex, from the duality theory [2]
it follows that there is no duality gap between the dual Problem 9.6 and the Prob-
lem 9.5. The requirement pt+N−1 = 0 follows from the optimality conditions of
Pontryagin’s maximum-principle for discrete-time systems [3] and the fact that
the state is not specified at the terminal time t +N − 1. Therefore, (9.37) holds.
Further, the maximum in (9.37) is attained when all elements of the gradient
of ∑M

i=1 V ∗i (P,xi) with respect to P are zero, i.e. v∗i,t+k −∑M
j=1, j �=i Ai jx∗j,t+k|t = 0,

i = 1, ... , M, k = 0, 1, ... , N − 1. This means that the constraints (9.17) are satis-
fied at the optimum.

Proposition 9.1 shows that the computation of U∗i , X∗i and V ∗i for given prices
P is completely decentralized. However, as described in [9], finding the opti-
mal prices requires coordination. According to the duality theory [2], V ∗i (P,xi),
i = 1, ... , M are concave functions of P. Therefore, the optimal price sequence
P∗ = [p∗t , p∗t+1, ... , p∗t+N−1] can be found as the limits of a gradient iteration [9].
Given a price prediction sequence Pr

i = [pr
i,t , ... , pr

i,t+N−1] for the r-th iteration, the
corresponding sequences U∗ri = [u∗ri,t , ... , u∗ri,t+N−1], X∗ri = [x∗ri,t|t , ... , x∗ri,t+N−1|t ] and

V ∗ri = [v∗ri,t , ... , v∗ri,t+N−1] are computed locally by solving Problem 9.4i. Then, the
prices can be updated distributedly by a gradient step:
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pr+1
i,t+k = pr

i,t+k + γ
r
i (v
∗r
i,t+k−

M

∑
j=1
j �=i

Ai jx
∗r
j,t+k|t ) , k = 0, 1, ... , N− 2

with pr+1
i,t+N−1 = pr

i,t+N−1 = 0 (9.38)

It should be noted that Proposition 9.1 holds only locally due to linearization,
in a neighborhood of the optimal solution U0

i , X0
i ,V 0

i to sub-problems 9.3i, i =
1, 2, ... , M, where the linear constraints (9.33) can sufficiently accurately approx-
imate the nonlinear constraints (9.19). Therefore, it would be necessary to period-
ically update the linear constraints (9.33) and then to apply formula (9.38) for a
number of steps.

9.3.3 A Suboptimal Approach to Distributed NMPC Based on
On-Line Optimization

In [9], an approach to distributed MPC for linear systems in the absence of dis-
turbances has been suggested, where the prices are updated according to (9.38).
In [11], a suboptimal algorithm to distributed quasi-NMPC is proposed that con-
siders a more general class of systems, since it refers to nonlinear systems with
linear couplings in the presence of bounded disturbances (see Section 9.2). The
suggested algorithm includes two loops. In the outer loop, the NLP sub-problems
9.3i, i = 1, 2, ... , M, are solved and the matrices of the linear constraints of the ap-
proximating QP sub-problems 9.4i, i = 1, 2, ... , M are computed. Then, in the inner
loop, the price sequences and solution are updated based on Proposition 9.1 and
applying formula (9.38) for a given number of steps. The algorithm is described by
[11]:

Algorithm 9.1. Distributed quasi-NMPC by on-line optimization.

1. Given numbers Q and L, step sizes γi, i = 1, 2, ... , M and arbitrary guesses P0
i ,

i = 1, 2, ... , M for the price sequences. Let t = 0.
2. Let the state at time t be x(t) = x = [x1, ... , xM].
3. for q = 1, 2, ... , Q do
4. For xi,t|t = xi compute distributedly the optimal solutions U0

i =Uopt
i (xi),

X0
i = Xopt

i (xi), V 0
i =V opt

i (xi) to the NLP sub-problems 9.3i, i = 1, 2, ... , M,
corresponding to the price sequences P0

i = [p0
i,t , ... , p0

i,t+N−1]. Compute the
matrices SXi , SUi , and E0i associated to the approximating QP sub-problems
9.4i, i = 1, 2, ... , M.

5. for r = 0, 1, ... , L− 1 do
6. For i-th subsystem, i = 1, 2, ... , M, communicate the price sequences

Pr
j = [pr

j,t , ... , pr
j,t+N−1], j = 1, ... , M, j �= i of the interconnected

subsystems.
7. Compute the sequences U∗ri = [u∗ri,t , ... , u∗ri,t+N−1], X∗ri = [x∗ri,t|t , ... , x∗ri,t+N−1|t ]
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and V ∗ri = [v∗ri,t , ... , v∗ri,t+N−1] corresponding to the price sequence
Pr = [pr

t , ... , pr
t+N−1] by solving distributedly the QP sub-problems 9.4i,

i = 1, 2, ... , M.
8. For i-th subsystem, i = 1, 2, ... , M, communicate the state trajectories

X∗rj = [x∗rj,t|t , x∗rj,t+1|t , ... , x∗rj,t+N−1|t ], j = 1, ... , M, j �= i of the interconnected
subsystems.

9. Compute distributedly the updates Pr+1
i =[pr+1

i,t , ... , pr+1
i,t+N−1], i=1, 2, ... , M

of the price sequences by applying (9.38) for γr
i = γi, i = 1, 2, ... , M.

10. end
11. Let P0

i = PL
i , i = 1, 2, ... , M.

12. end
13. Apply to the overall system the control inputs ui(t) = u∗L−1

i,t , i = 1, 2, ... , M.
14. Let t = t + 1 and go to step 2.

The steps 4 to 11 in Algorithm 9.1 include an iterative solution of the NLP sub-
problems 9.3i, approximating them with the QP sub-problems 9.4i, and then updat-
ing the prices by utilizing Proposition 9.1.

It should be noted that alternatively, an approach similar to [14, 16] can be ap-
plied, where the idea would be to avoid solving the NLP sub-problems 9.3i in step
4 and to formulate the approximating QP sub-problems 9.4i by using the optimal
sequences U∗i , X∗i and V ∗i , computed in the previous time instant.

9.4 A Semi-explicit Approach to Efficient Distributed NMPC
for Interconnected Systems with Linear Couplings

Although the original centralized NMPC problem (Problem 9.1) has been repre-
sented as a distributed quasi-NMPC problem (Problem 9.6), its approximate solu-
tion with Algorithm 9.1 may still require significant computational efforts. This is
mainly due to step 4, where the NLP sub-problems 9.3i, i = 1, 2, ... , M are solved
and approximated with QP sub-problems. Therefore, there is a motivation to pre-
compute off-line the optimal price sequence P∗ = [p∗t , p∗t+1, ..., p∗t+N−1] as an ex-
plicit function of the overall state x by applying a parametric programming ap-
proach. However, it is known that the off-line computational complexity with the
explicit approach tends to increase rapidly with the number of states and thus they
can be applied only to small-scale processes. Therefore, the use of a semi-explicit
approach to efficiently solve distributed NMPC problems for interconnected non-
linear systems (which are supposed to be of medium-scale) is more appropriate.
The idea of the semi-explicit approaches has been used in [21] to solve central-
ized linear MPC problems and later applied to nonlinear MPC formulations [10].
The semi-explicit approaches [21, 10] combine the two paradigms of explicit and
on-line MPC in order to overcome their individual limitations. They consist in us-
ing a piecewise linear (PWL) approximation of the optimal control law (which is
computed off-line) to warm-start the on-line optimization.
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9.4.1 Formulation of the Distributed NMPC Problem as an
mp-NLP Problem

Here, a semi-explicit NMPC approach to efficiently solve the distributed NMPC
problem (Problem 9.2) is proposed. With off-line computations, an approximate ex-
plicit solution P̂(x) for the price sequences is obtained. Then, on-line, this solution
is used as an initial guess (warm start) for a gradient iterations algorithm, similar to
Algorithm 9.1. The expected result would be a decrease of the number of iterations
in the gradient algorithm and thus of the on-line computational efforts. The follow-
ing multi-parametric Nonlinear Programming (mp-NLP) problem is solved:

Problem 9.7 (mp-NLP):

V opt(x) = max
P

M

∑
i=1

V opt
i (P,xi) subject to pt+N−1 = 0 (9.39)

In general, V opt
i (P,xi) are nonlinear functions of the initial state xi because they are

obtained by solving the NLP sub-problems 9.3i, i = 1, 2, ... , M where the dynamic
equality constraints are eliminated using direct single shooting. Thus, the Problem
9.7 is a mp-NLP problem since it is a NLP problem in P parameterized by x [8].
Define the set of N-step feasible initial states as follows:

Xf = {x ∈R
n |Problems 9.3i , i = 1, ... , M are feasible for some P ∈ R

Nn} (9.40)

If Problem 9.2 is feasible, then Xf is a non-empty set. The purpose of the semi-
explicit approach is to obtain first an approximate explicit solution P̂(x) to Problem
9.7 in some set X ⊆ Xf ⊆ R

n by applying an approximate mp-NLP method.

9.4.2 Approximate mp-NLP Approach to Semi-explicit
Distributed NMPC

Let X ⊂ R
n be a hyper-rectangle where we seek to approximate the optimal solu-

tion Popt(x) to the Problem 9.7. The approximate solution P̂(x) to Popt(x) is found
by applying the approximate mp-NLP approach, described in Chapter 1.Thus, it
is required that the state space partition is orthogonal and can be represented as a
k− d tree. The idea is to construct a piecewise linear (PWL) approximation P̂(x) to
Popt(x) on X , where the constituent affine functions are defined on hyper-rectangles
covering X . The computation of an affine approximation P̂0(x) = K0x+ g0, associ-
ated to a given region X0, includes the following steps. First, the optimal solution of
Problem 9.7 is computed at the vertices and the center point of X0. Then, based on
the solutions at these points, a local linear approximation P̂0(x) to the optimal so-
lution Popt(x), valid in the whole hyper-rectangle X0, is determined. By taking into
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account that the constraint pt+N−1 = 0 should be satisfied, K0 and g0 should have
the form:

K0 =

[

K̃0

01,n

]

, g0 =

[

g̃0

0

]

(9.41)

where 01,n is a zero vector with dimension 1× n. Then, K̃0 and g̃0 are determined
by applying the following procedure:

Procedure 9.1 (Computation of explicit approximate solution). Consider any
hyper-rectangle X0 ⊆ X with center point w0 and vertices {w1, w2, ... , w2n}. Com-
pute K0 and g0 by solving the following NLP:

min
K̃0, g̃0

2n

∑
q=0

(
M

∑
i=1

V opt
i (K0wq+g0,w

i
q)−V opt(wq)+μ‖K0wq+g0−Popt(wq)‖2

2) (9.42)

subject to (9.41).

In (9.42), wq is the value of the overall state, i.e. wq = [w1
q, w2

q, ... , wM
q ], while

wi
q is the value of the state associated to the i-th subsystem. Also in (9.42),

V opt
i (K0wq + g0,wi

q) is the i-th optimal local cost obtained by solving the local
NLP Problem 9.3i for P = K0wq + g0, V opt(wq) denotes the optimal cost asso-
ciated to the whole system, corresponding to the optimal solution Popt(wq), i.e.
V opt(wq) = ∑M

i=1 V opt
i (Popt(wq),wi

q), and the parameter μ > 0 is a weighting co-
efficient.

After a linear approximation P̂0(x) = K0x+ g0 has been determined, an estimate
ε̂0 of the maximal cost function approximation error ε0 in X0 is computed as follows:

ε̂0 = max
q∈{0,1,2, ... ,2n}

(
M

∑
i=1

V opt
i (K0wq + g0,w

i
q)−V opt(wq)) (9.43)

If the maximal cost function approximation error ε0 in X0 is greater than a specified
tolerance ε̄ > 0, the region X0 is split and the above procedure is repeated for the
new regions, as described in Chapter 1.

After an approximate PWL solution P̂(x) for the price sequences has been found,
the control inputs are determined on-line by applying a modification of Algorithm
9.1 (where the approximate solution P̂(x) is used as a warm start). It should be noted
that with the semi-explicit approach the number of gradient iterations at which the
NLP Problems 9.3i, i = 1, 2, ... , M are solved can be smaller than that with the ap-
proach based entirely on on-line optimization.

Although the semi-explicit approach is characterized with less off-line computa-
tional complexity compared to the purely explicit approach, the complexity would
increase with the number of the parameters in the mp-NLP problem [10]. There-
fore, the application of the proposed semi-explicit approach is restricted to small-
and medium-scale systems.
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9.5 Application: Distributed NMPC of a Nonlinear System
Consisting of Two Sub-systems

Consider the following second order system composed of two subsystems S1 and S2

[15]:

S1 : x1(t + 1) =
√

x1(t)2 + 1+ u1(t)− 1+η1x2(t)+ d1(t) (9.44)

S2 : x2(t + 1) = e− sin(x2(t)) + u2(t)− 1+η2x1(t)+ d2(t) (9.45)

Thus, the functions fi, gi, i = 1, 2 in the formulation (9.1) are:

f1(x1(t),u1(t)) =
√

x1(t)2 + 1+ u1(t)− 1 (9.46)

f2(x2(t),u2(t)) = e− sin(x2(t)) + u2(t)− 1 (9.47)

g1(x(t)) = η1x2(t) , g2(x(t)) = η2x1(t) (9.48)

The functions gi satisfy Assumption 9.4 and they describe the mutual influence of
the two subsystems. The disturbances are assumed to be the states of the following
asymptotically stable first order systems [15]:

di(t + 1) = 0.9di(t) , i = 1, 2 (9.49)

and they are bounded by:
|di(t)| ≤ 1 , i = 1, 2 (9.50)

The following constraints are imposed on the system (9.44)–(9.45):

−0.3≤ ui(t)≤ 0.5 , i = 1, 2 (9.51)

−2≤ x1(t)≤ 2 , −1.5≤ x2(t)≤ 1.5 (9.52)

It should be noted that here the input constraints are different from those in [15].
Also in addition, state constraints are imposed on the system (while in [15] only
input constraints are considered). The coefficients related to the couplings between
the two subsystems are η1 = η2 = 0.4. The prediction horizon in the centralized
NMPC problem (Problem 9.1) is N = 5 and the weighting matrices are Qi = Ri = 1,
i = 1, 2.

9.5.1 Results with the Distributed NMPC Based on On-Line
Optimization

The centralized NMPC problem is represented as a distributed NMPC problem
(Problem 9.6) by applying the dual decomposition approach. Then, Algorithm 9.1
with parameters Q = 5, L = 3, γi = 0.3, i = 1, 2 is used to generate the two control
inputs for an initial state x(0) = [0.3 0.3] and initial disturbances d(0) = [1 1]. The
corresponding trajectories of the prices p1, p2, the control inputs u1, u2, the states
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x1, x2 and the disturbances d1, d2 associated to the two subsystems are depicted in
Fig. 9.2 to Fig. 9.5. The trajectories obtained with the following approaches are
compared:

– The suboptimal distributed NMPC approach with linearization of the nonlinear
constraints (9.25) (described in Section 9.3);

– A suboptimal distributed NMPC approach without linearization of the nonlinear
constraints (9.25). In this case, a modification of Algorithm 9.1 is used for the
on-line computation of the control inputs. It has only one loop, where the optimal
solutions of the NLP sub-problems 9.3i, i = 1, 2, ... , M are computed distribut-
edly, and then the price sequences are updated by applying (9.38) by using the
computed optimal solutions. The loop is repeated Q = 5 times and the step size
in (9.38) is γi = 0.3, i = 1, 2.

– The exact distributed NMPC approach, which solves Problem 9.6 at each time
instant.

– The centralized NMPC approach, which solves Problem 9.1 at each time instant.

The computational complexity of both suboptimal distributed NMPC approaches
is compared to that of the exact distributed NMPC approach and the centralized
NMPC approach. For this aim, the respective trajectories are determined for 100
initial states, obtained by gridding the state space [−1, 1]× [−1, 1]. The results are
presented in Table 9.1, where also the possibility of these approaches to find a fea-
sible solution is compared and expressed in terms of percentage from the total num-
ber of initial states. The computations are performed on a 3 GHz Intel Core 2 Duo
processor.

Table 9.1 Comparison of different NMPC approaches

Method Percentage of Average Maximal
feasible solutions CPU time [s] CPU time [s]

Suboptimal distributed NMPC 79 % 0.66 0.74
without linearization

Suboptimal distributed NMPC 79 % 1.81 1.86
with linearization

Exact distributed NMPC 79 % 10.28 14.86
Centralized NMPC 28 % 0.66 2.30

It can be seen from Table 9.1 that the suboptimal distributed NMPC approach
without linearization of the nonlinear constraints is the most computationally effi-
cient approach. Both suboptimal approaches are more efficient in comparison to the
exact distributed NMPC approach. A disadvantage of the centralized approach is
that it fails to find a feasible solution for a significant number of initial states (in this
sense it is about three times less efficient than the distributed NMPC approaches).
A possible reason for this is the fact that in the presence of disturbances, the worst-
case state constraints related to both subsystems (constraints (9.7) in the Problem
9.1) can be difficult to be satisfied at the same time for some of the initial states.
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Fig. 9.2 The prices p1 and p2.

In contrast, the distributed NMPC approaches lead to two completely decentralized
NMPC problems, where worst-case disturbance assumptions of only the individual
subsystems are made (not simultaneously).

9.5.2 Results with the Semi-explicit Distributed NMPC

The semi-explicit approach from Section 9.4 is used to obtain an approximate PWL
solution P̂(x) for the price sequences. The state space partition of this solution is
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Fig. 9.3 The control inputs u1 and u2 for subsystems S1 and S2.

shown in Fig. 9.6. Then on-line, a modified version of Algorithm 9.1 is used to
generate the two control inputs for the initial state x(0) = [0.3 0.3] and initial dis-
turbances d(0) = [1 1]. In the modified Algorithm 9.1, the number of gradient it-
erations, performed on-line is Q = 3 and the step sizes are γi = 0.3, i = 1, 2. The
corresponding trajectories of the prices p1, p2, the control inputs u1, u2, and the
states x1, x2, associated to the two subsystems, are depicted in Fig. 9.7 to Fig. 9.9.
For comparison, in Fig. 9.7 to Fig. 9.9, the trajectories, obtained with the distributed
NMPC approach, based entirely on on-line optimization (with number of gradient
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Fig. 9.4 The states x1 and x2 of subsystems S1 and S2.

iterations Q = 5 and step sizes γi = 0.3, i = 1, 2) and those, obtained with the exact
distributed NMPC are also shown.

In Table 9.2, the computational complexity of the semi-explicit suboptimal dis-
tributed NMPC and the on-line optimization-based distributed NMPC is compared,
as well as their possibility to find a feasible solution and the average accumulated
cost function value. For this aim, the respective trajectories are determined for 100
initial states, obtained by gridding the state space [−1, 1]× [−1, 1]. The computa-
tions are performed on a 3 GHz Intel Core 2 Duo processor.
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explicit distributed NMPC with number of gradient iterations Q = 3 (the solid curve) and
with the exact distributed NMPC (the dashed curve).
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Fig. 9.7 The prices p1 and p2.
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Fig. 9.8 The control inputs u1 and u2 for subsystems S1 and S2.
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Fig. 9.9 The states x1 and x2 of subsystems S1 and S2.
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Table 9.2 Comparison of the semi-explicit distributed NMPC approach (with number of
gradient iterations Q = 3) and the on-line optimization-based distributed NMPC approach
(with number of gradient iterations Q = 5)

Method Percentage of Average accumulated Average Maximal
feasible solutions cost function value CPU time [s] CPU time [s]

Semi-explicit
distributed NMPC 74 % 25.31 0.39 0.46

with Q = 3
On-line optimization

-based distributed NMPC 79 % 25.35 0.66 0.74
with Q = 5

It can be seen from Table 9.2 that the semi-explicit suboptimal distributed NMPC
approach allows to use less number of gradient iterations in comparison to the dis-
tributed NMPC approach based entirely on on-line optimization. Thus, it leads to
a decrease in the on-line computational complexity, while keeping nearly the same
ability to find a feasible solution and control quality (in terms of the average accu-
mulated cost function value).
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