
Chapter 8
Explicit NMPC Based on Neural Network
Models

Abstract. This chapter considers an approximate mp-NLP approach to explicit solu-
tion of deterministic NMPC problems for constrained nonlinear systems described
by neural network NARX models. The approach builds an orthogonal search tree
structure of the regressor space partition and consists in constructing a piecewise
linear (PWL) approximation to the optimal control sequence. A dual-mode control
strategy is proposed in order to achieve an offset-free closed-loop response in the
presence of bounded disturbances and/or model errors. It consists in using the ex-
plicit NMPC (based on NARX model) when the output variable is far from the origin
and applying an LQR in a neighborhood of the origin. The LQR design is based on
an augmented linear ARX model which takes into account the integral regulation
error. The approximate mp-NLP approach and the dual-mode approach are applied
to design an explicit output-feedback NMPC for regulation of a pH maintaining
system.

8.1 Introduction

The NMPC algorithms are based on various nonlinear models. Often these mod-
els are developed as first-principles models, but other approaches, like black-box
identification approaches are also popular. In Chapters 3, 4, 5, 6 and in Section 7.2,
approaches to explicit solution of NMPC problems based on first-principles models
were presented, which assume that the state variables can be measured.

Alternatively, there exists a number of NMPC approaches based on various black-
box models e.g. based on neural network models (e.g. [16, 22]), fuzzy models (e.g.
[12]), local model networks (e.g. [18]), Gaussian process models (e.g. [11]). The
common feature of these NMPC approaches is that an on-line optimization needs
to be performed in order to compute the optimal control input. Consequently, the
computation is time consuming and the real-time NMPC implementation is lim-
ited to processes where the sampling time is sufficient to support the computational
needs. However, the on-line computational complexity can be circumvented with an
explicit approach to NMPC, where the only computation performed on-line would
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be a simple function evaluation. Thus, in Section 7.3, an approach for off-line com-
putation of explicit stochastic NMPC controller for constrained nonlinear systems
based on a stochastic black-box model (Gaussian process model) was described.

In this chapter, the approximate mp-NLP approach [5, 6] to explicit solution of
deterministic NMPC problems for constrained nonlinear systems described by neu-
ral network NARX models [2] is considered. The NMPC problem based on neural
network model will be referred to as NN-NMPC problem. The approach builds an
orthogonal search tree structure of the regressor space partition and consists in con-
structing a piecewise linear (PWL) approximation to the optimal control sequence.
A dual-mode control strategy is proposed in order to achieve an offset-free closed-
loop response in the presence of bounded disturbances and/or model errors. It is
similar to the dual-mode receding horizon control concept developed in [15] (based
on state space models), however here black-box models are considered and an ex-
plicit solution of the NMPC problem is sought. Thus, the suggested strategy consists
in using the explicit NMPC (based on NARX model) when the output variable is far
from the origin and applying an LQR in a neighborhood of the origin. The LQR
design is based on an augmented linear ARX model which takes into account the
integral regulation error. The main motivations behind the dual-mode control strat-
egy are the following. First, it may be beneficial to use a separate linear model in a
neighborhood of the equilibrium, since the nonlinear black-box model may not have
accurate linearizations unlike a first-principles model, and the requirement for accu-
rate control is highest at the equilibrium. Second, it leads to a reduced complexity of
the explicit NMPC compared to augmenting the nonlinear model with an integrator
to achieve an integral action directly in the NMPC.

8.2 Formulation of the NN-NMPC Problem as an mp-NLP
Problem

8.2.1 Modeling of Dynamic Systems with Neural Networks

The black-box identification of nonlinear systems is an area which is quite diverse.
It covers topics from mathematical approximation theory, estimation theory, non-
parametric regression and concepts like neural networks, fuzzy models, wavelets
etc. A unified overview of this topic is given in [20].

Consider a nonlinear dynamical system with input u∈Rm and output y∈Rp and
let U = [u(1), u(2), ... ,u(M)] and Y = [y(1), y(2), ... ,y(M)] be sets of observed
values of u and y to the number of M. Based on these data, the dynamics of the
system can be described with a neural network NARX model [2], where the fu-
ture predicted output y(i+ 1) depends on previous estimated outputs, as well as on
previous control inputs:

y(i+ 1) = f (z(i),θ ) (8.1)

z(i) = [y(i), y(i− 1), ... , y(i−L), u(i), u(i− 1), ... , u(i−L)] (8.2)
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Here, L is a given lag, i denotes the consecutive index of data samples (i ≥ L), z(i)
is the regressor vector, f is the function realized by the black-box model, and θ is
a finite-dimensional vector of parameters. Thus, the function f is a concatenation
of two mappings: one that takes the increasing number of the past values of the ob-
served inputs and outputs and maps them into the finite dimensional regressor vec-
tor and one that takes this vector to the space of the outputs. The nonlinear mapping
from the regressor space to the output space can be of various kinds. In our case we
will use neural network with sigmoid basis functions in the hidden layer and linear
basis functions in the output layer. This form of neural network is called Multilayer
Perceptron (MLP), which is probably the most frequently considered member of the
neural network family (e.g. [16]) and can be used as an universal approximator. This
particular choice was subjective. Any other choice of regressor vector composition
or any other choice of mapping is possible until it enables satisfactory description
of the modeled dynamic system. It should be noted that the results given in [5, 6]
are not limited to MLP approach only.

The parameters of the MLP are the weights of its units. After the structure (num-
ber of layers and units) is determined, the model parameters are obtained with op-
timization, based on a chosen cost function. This cost function is most frequently a
least squares combination of errors between estimated and measured output signals:

E =
1

2M

M

∑
i=1

‖y(i)− ŷ(i|θ )‖2 (8.3)

where ŷ(i|θ ) is estimated output signal, θ is a vector containing the weights, and
M is the number of measured output signals y(i). The quality of prediction can be
assessed with evaluation of residuals, estimation of the average prediction error or
visualization of the network model’s ability to predict. The reader is referred to [16]
for more details.

8.2.2 Formulation of the NN-NMPC Problem

Consider the discrete-time nonlinear system:

x(t + 1) = h(x(t),u(t)) (8.4)

y(t) = g(x(t),u(t)) (8.5)

where x(t)∈Rn, u(t)∈Rm, and y(t)∈Rp are the state, input and output vectors, and
h : Rn×R

m→ R
n and g : Rn×R

m → R
p are nonlinear functions. The following

input and output constraints are imposed on the system (8.4)–(8.5):

umin ≤ u(t)≤ umax , ymin ≤ y(t)≤ ymax (8.6)
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Assume that the dynamics of the nonlinear system (8.4)–(8.5) is approximated with
an MLP neural network with NARX structure of the form (8.1)–(8.2). Then for
t ≥ L, define a modified regressor vector:

z̃(t) =

{

[y(t), y(t− 1), ... , y(t−L), u(t− 1), ... , u(t−L)] , if L > 0
y(t) , if L = 0

, (8.7)

where u(t− 1), ... , u(t−L) and y(t), y(t− 1), ... , y(t−L) are the measured values
of the input u and the output y. Thus, z̃(t) ∈ R

q with q = (L+ 1)p+Lm. Then, the
NARX model, used to obtain one-step ahead prediction of the output for t ≥ L, is
represented:

ŷ(t + 1|θ ) = fNN(z̃(t),u(t),θ ) , (8.8)

where fNN is the function realized by the neural network (NN) and θ contains the
network weights. Suppose the initial regressor vector z̃(t) = z̃t|t is known and the
control inputs u(t + k) = ut+k , k = 0, 1, ... , N− 1 are given. Then, the model (8.8)
can be used to obtain the predicted output yt+k+1|t , k = 0, 1, ... , N− 1 through it-
erative one-step ahead predictions, where at each step the predicted output value is
fed back to the regressor vector:

yt+k+1|t = fNN(z̃t+k|t ,ut+k,θ ) (8.9)

z̃t+k|t =
{

[yt+k|t , yt+k−1|t , ... , yt+k−L|t , ut+k−1, ... , ut+k−L] , if L > 0
yt+k|t , if L = 0

(8.10)

The following assumptions are made [5, 6]:

Assumption 8.1. There exists uNN
st ∈Rm satisfying umin≤ uNN

st ≤ umax, and such that
fNN(z̃0,uNN

st ,θ ) = 0, where z̃0 is obtained from (8.10) with yt+k|t = yt+k−1|t = ... =

yt+k−L|t = 0, ut+k−1 = ... = ut+k−L = uNN
st .

Assumption 8.2. ymin < 0 < ymax.

Assumption 8.1 means that the point y = 0, u = uNN
st , is an equilibrium point for the

NARX model (8.8), and Assumption 8.2 means that it is feasible for (8.6).
We consider the optimal regulation problem where the goal is to steer the output

variable y to the origin by minimizing a certain performance criterion. Suppose that
a full measurement of the modified regressor vector z̃(t) is available at the current
time t ≥ L. Then, for the current z̃(t), the regulation NN-NMPC solves the following
optimization problem [5, 6]:

Problem 8.1:
V ∗(z̃(t)) = min

U
J(U, z̃(t)) (8.11)

subject to z̃t|t = z̃(t) and:
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ymin ≤ yt+k|t ≤ ymax, k = 1, ...,N (8.12)

umin ≤ ut+k ≤ umax, k = 0,1, ...,N− 1 (8.13)

z̃c
t+N|t ∈Ω (8.14)

yt+k+1|t = fNN(z̃t+k|t ,ut+k,θ ), k = 0,1, ...,N− 1 (8.15)

z̃t+k|t =
{

[yt+k|t ,yt+k−1|t , ... ,yt+k−L|t ,ut+k−1, ... ,ut+k−L], ifL > 0
yt+k|t , ifL = 0 ,

(8.16)

k = 0,1, ...,N− 1

with U = [ut ,ut+1, ... ,ut+N−1] and the cost function given by:

J(U, z̃(t)) =
N−1

∑
k=0

[‖yt+k|t‖2
Q + ‖ut+k− uNN

st ‖2
R

]

+ ‖yt+N|t‖2
F (8.17)

and z̃c = z̃− [0T
(L+1)p uNNT

st ... uNNT

st ]T , where 0(L+1)p is a zero vector with dimension
(L+1)p. In (8.17), N is a finite horizon and Q, R, F � 0. In (8.14),Ω is the terminal
set defined by Ω = {z̃c ∈R

q |‖z̃c‖2 ≤ δ} with δ > 0. From a stability point of view
it is desirable to choose δ as small as possible [14]. If the system is asymptotically
stable (or pre-stabilized) and N is large, then it is more likely that the choice of a
small δ will be possible.

Let z̃ be the value of the modified regressor vector at the current time t. Then, the
optimization Problem 8.1 can be formulated in a compact form as follows [5, 6]:

Problem 8.2:
V ∗(z̃) = min

U
J(U, z̃) subject to G(U, z̃)≤ 0 (8.18)

The NN-NMPC problem defines an mp-NLP, since it is an NLP in U parameter-
ized by z̃. We remark that the constraints function G(U, z̃) in (8.18) is implicitly
defined by (8.12)–(8.16), and that all equality constraints are eliminated due to
the direct single shooting strategy. An optimal solution to this problem is denoted
U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the control input is chosen according to the receding
horizon policy u(t) = u∗t . Define the set of N-step feasible initial regressor vectors
as follows:

Zf = {z̃ ∈ R
q |G(U, z̃)≤ 0 for some U ∈R

Nm} (8.19)

In parametric programming problems one seeks the solution U∗(z̃) as an explicit
function of the parameters z̃ in some set Z ⊆ Zf ⊆ R

q [3].

8.3 Approximate mp-NLP Approach to Explicit NN-NMPC

In [5, 6], an approximate mp-NLP approach is proposed to explicitly solve the
output-feedback NN-NMPC problem formulated in the previous section. It is simi-
lar to the approximate mp-NLP approach to explicit solution of state-space NMPC
problems. Let Z ⊂ R

q be a hyper-rectangle where we seek to approximate the
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optimal solution U∗(z̃) to Problem 8.2. It is required that the regressor space parti-
tion is orthogonal and can be represented as a k− d tree. The idea of the approxi-
mate mp-NLP approach is to construct a PWL approximation ̂U(z̃) to U∗(z̃) on Z,
where the constituent affine functions are defined on hyper-rectangles covering Z.
The computation of an affine regressor feedback associated to a given region Z0

includes the following steps [5, 6]. First, a close-to-global solution of Problem 8.2
is computed at a set of points V0 = {v0, v1, v2, ... , vN1} ⊂ Z0. Then, based on the
solutions at these points, a local linear approximation ̂U0(z̃) = K0z̃+g0 to the close-
to-global solution U∗(z̃), valid in the whole hyper-rectangle Z0, is determined by
applying the following procedure [5, 6]:

Procedure 8.1 (Computation of explicit approximate solution). Consider any
hyper-rectangle Z0⊆ Z with a set of points V0 = {v0, v1, v2, ... , vN1}⊂ Z0. Compute
K0 and g0 by solving the following NLP:

min
K0,g0

N1

∑
i=0

(J(K0vi + g0,vi)−V ∗(vi)+α‖K0vi + g0−U∗(vi)‖2) (8.20)

subject to G(K0vi + g0,vi)≤ 0 , ∀vi ∈V0 (8.21)

In (8.20), J(K0vi + g0,vi) is the sub-optimal cost, V ∗(vi) denotes the cost corre-
sponding to the close-to-global solution U∗(vi), i.e. V ∗(vi) = J(U∗(vi),vi), and the
parameter α is a weighting coefficient (tuned in an ad-hoc fashion). Note that the
computed linear regressor feedback ̂U0(z̃) = K0z̃ + g0 satisfies the constraints in
Problem 8.2 only at the discrete set of points V0 ⊂ Z0. After the feedback ̂U0(z̃) has
been determined, an estimate ̂ε0 of the maximal cost function approximation error
in Z0 is computed as follows:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(J(K0vi + g0, vi)−V ∗(vi)) (8.22)

If ̂ε0 > ε̄ , where ε̄ > 0 is the specified tolerance of the approximation error, the
region Z0 is divided and the procedure is repeated for the new regions. The approx-
imate PWL regressor feedback law is found by applying the approximate mp-NLP
algorithm, described in Section 1.1.5.2. The mp-NLP algorithm terminates with a
PWL function ̂U(z̃) = [û0(z̃), û1(z̃), ... , ûN−1(z̃)] that is defined on an inner approx-
imation ZΠ of the set Z∩Zf .

8.4 Design of Explicit Dual-Mode Controller

Generally, it will be difficult to guarantee that the local linearization at a nomi-
nal equilibrium point of an NN ARX model is accurate. The inaccuracies of the
model may result in a steady-state offset of the explicit NN-NMPC controller. In
[5, 6], a dual-mode control strategy is proposed which aims at achieving an offset-
free closed-loop response in the presence of bounded disturbances and/or model
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errors. With this strategy, the control is performed by the explicit NN-NMPC con-
troller when the system is far from equilibrium, and by a Linear Quadratic Regulator
(LQR) with integral action when it is close to equilibrium.

8.4.1 Design of LQR with Integral Action in a Neighborhood of
the Equilibrium

Consider a linear ARX model ([13]):

y(t + 1) = A1y(t)+A2y(t− 1)+ ...+Al+1y(t− l)+B1(u(t)− u∗st)+
B2(u(t− 1)− u∗st)+ ...+Bl+1(u(t− l)− u∗st) , (8.23)

that is valid in a neighborhood of the equilibrium y = 0, u = u∗st of the consid-
ered nonlinear dynamical system (8.4)–(8.5). In (8.23), the matrices Ai ∈ R

p×p and
Bi ∈ R

p×m, i = 1, 2, ... , l + 1 contain the coefficients of the model, and l is a given
lag. To estimate the parameters of the model (8.23), the least squares estimation
method or the four-stage instrumental variable method can be applied ([13]). Based
on the linear ARX model, an LQR that will regulate the system (8.23) to the origin,
is designed. In order to achieve an offset-free performance, the model (8.23) is aug-
mented with the following output yint ∈ R

p, which takes into account the integral
error:

yint(t + 1) = yint(t)+Tsy(t) (8.24)

where Ts is the sampling time. Let ue(t) ≡ u(t)− u∗st . Then, the extended system
with input ue and output ye = [y, yint ] is described by the linear ARX model:

ye(t + 1) = Ae
1ye(t)+Ae

2ye(t− 1)+ ...+Ae
l+1ye(t− l)+

Be
1ue(t)+Be

2ue(t− 1)+ ...+Be
l+1ue(t− l) , (8.25)

where Ae
1 =

[

A1 0p

TsIp Ip

]

, Ae
i =

[

Ai 0p

0p 0p

]

, i= 2, 3, ... , l+1, Be
i =

[

Bi

0p,m

]

, i= 1, 2, ... , l+

1. Here, Ip is the p-dimensional identity matrix, 0p is the p-dimensional square zero
matrix, and 0p,m is the p×m-dimensional zero matrix. The following regressor vec-
tor is introduced [5, 6]:

z̃e(t) =

{

[ye(t),ye(t− 1), ...,ye(t− l),ue(t− 1),ue(t− 2), ...,ue(t− l)] , if l > 0
ye(t) , if l = 0

(8.26)

Thus, z̃e(t) ∈ R
qe with qe = (l + 1)2p+ lm. This vector can also be represented as

z̃e(t) = [z1(t),z2(t), ...,zl+l+1(t)], where z1(t), ...,zl+1(t) are the shifted values of ye

and zl+2(t), ...,zl+l+1(t) are the shifted values of ue. The following relations hold
[5, 6]:
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ye(t + 1) = z1(t + 1)

z1(t) = ye(t) = z2(t + 1)

z2(t) = ye(t− 1) = z3(t + 1)
... (8.27)

zl(t) = ye(t− l+ 1) = zl+1(t + 1)

zl+1(t) = ye(t− l)

ue(t) = zl+2(t + 1)

zl+2(t) = ue(t− 1) = zl+3(t + 1)

zl+3(t) = ue(t− 2) = zl+4(t + 1)
... (8.28)

zl+l(t) = ue(t− l+ 1) = zl+l+1(t + 1)

zl+l+1(t) = ue(t− l)

Then, the system (8.25) can be represented:

z̃e(t + 1) = Ãez̃e(t)+ B̃eue(t) (8.29)

For l > 0, the matrices Ãe and B̃e in (8.29) are given by:

Ãe =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ae
1 Ae

2 ... Ae
l Ae

l+1 Be
2 ... Be

l Be
l+1

I2p 02p ... 02p 02p 02p,m ... 02p,m 02p,m

02p I2p ... 02p 02p 02p,m ... 02p,m 02p,m
...

02p 02p ... I2p 02p 02p,m ... 02p,m 02p,m

0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... 0m 0m

0m,2p 0m,2p ... 0m,2p 0m,2p Im ... 0m 0m
...

0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... Im 0m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8.30)

B̃e = [Be
1 02p,m 02p,m ... 02p,m Im 0m ... 0m]

T (8.31)

In (8.30), (8.31), I2p and Im are identity matrices, 02p and 0m are square zero ma-
trices, and 02p,m and 0m,2p are zero matrices with dimensions 2p×m and m× 2p
respectively. If l = 0, then Ãe = Ae

1 and B̃e = Be
1.

The unconstrained LQR problem for system (8.29) solves the following opti-
mization problem:

min
{ue(t),ue(t+1), ...}

∞

∑
k=0

[‖z̃e(t + k)‖2
Qe

+ ‖ue(t + k)‖2
Re

]

(8.32)
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where Qe, Re � 0. The solution to (8.32) is the linear feedback control law:

ue(t + k) =−Kz̃e(t + k) , k ≥ 0 , (8.33)

where the controller gain K is given by [17]:

K =
(

B̃eT PB̃e +Re
)−1

B̃eT PÃe (8.34)

P = ÃeT PÃe +Qe− ÃeT PB̃e (B̃eT PB̃e +Re
)−1 (

ÃeT PB̃e)T
(8.35)

By taking into account that ue(t)≡ u(t)−u∗st, it follows from (8.33) that the control
input applied to the system is [5, 6]:

u(t + k) =−Kz̃e(t + k)+ u∗st , k ≥ 0 (8.36)

8.4.2 Explicit Dual-Mode Controller

Consider the closed-loop system:

z̃e(t + k) = (Ãe− B̃eK)z̃e(t + k− 1), k ≥ 0 , (8.37)

where z̃e(t + k) is defined by (8.26) if t is replaced by t + k. Assume that Acl =
Ãe− B̃eK is strictly Hurwitz. Let Γe = {z̃e ∈ R

qe | z̃T
e Sz̃e ≤ σ} with S � 0, σ > 0, be

a positively invariant admissible set for the system (8.37). It means that ∀z̃e(t) ∈ Γe,
z̃e(t + k) ∈ Γe, ∀k > 0 and:

ymin < [Ψ 02p...02p 0m...0m]z̃e(t + k)< ymax, k ≥ 0 (8.38)

umin <−Kz̃e(t + k)+ u∗st < umax, k ≥ 0 (8.39)

whereΨ = [Ip 0p] and Ip, 0p, 02p, 0m are defined above. Γe can be determined in a
way similar to Lemma 1 in [1]. If S satisfies the Lyapunov equation:

AT
clSAcl− S =−μS−Qe−KT ReK (8.40)

for some μ > 0, then there exists a constant σ > 0 such that the set Γe is a positively
invariant admissible set for the system (8.37). For l≤ L, let ˜Γ 1

e = {ξ ∈Rq̃e |ξ T
˜S1ξ ≤

σ̃1} with ˜S1� 0, σ̃1 > 0 be the orthogonal projection of Γe onto R
q̃e , q̃e = (l+1)p+

lm, by omitting all integrator elements from the regressor vector z̃e. Let ˜Ω 1 = {ζ ∈
R

q̃e |ζT
˜S1ζ ≤ ‖˜S1‖δ̃1} be the orthogonal projection of the terminal set Ω onto R

q̃e ,
where ‖˜S1‖ is the induced norm of matrix ˜S1. Then, it is required ‖˜S1‖δ̃1 < σ̃1,
so that ˜Ω 1 ⊂ ˜Γ 1

e . For l > L, let ˜Γ 2
e = {ξ ∈ R

q |ξ T
˜S2ξ ≤ σ̃2} with ˜S2 � 0, σ̃2 > 0

be the orthogonal projection of Γe onto R
q, q = (L + 1)p + Lm, by omitting all

integrator elements and the elements y(t − L− 1), ...,y(t − l) from z̃e. Let ˜Ω 2 =

{ζ ∈ R
q |ζT

˜S2ζ ≤ ‖˜S2‖δ̃2}, with δ̃2 > 0 be a set such that Ω ⊆ ˜Ω 2. Similar to
above it is required ‖˜S2‖δ̃2 < σ̃2, so that ˜Ω 2 ⊂ ˜Γ 2

e .
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In order to define the dual-mode controller, the regressor vector, associated to the
system (8.37), is introduced:

z̃r(t) =

⎧

⎨

⎩

[Ψye(t),Ψye(t− 1), ...,Ψye(t− l),
ue(t− 1)+ u∗st, ...,ue(t− l)+ u∗st] , if l > 0
Ψye(t) , if l = 0

(8.41)

whereΨ is defined above. Thus, z̃r(t) ∈ R
qr with qr = (l + 1)p+ lm. Let Γr ∈ R

qr

be the orthogonal projection of Γe onto R
qr , specified by (8.41) (note that qr < qe).

Further, for l = L, it is required Γr ⊂ ZΠ ⊂ R
q. For l < L, Γr ⊂ ˜ZΠ ⊂ R

qr , where
˜ZΠ is the orthogonal projection of ZΠ onto R

qr , obtained by omitting the regressors
with lag larger than l. For l > L, ˜Γr ⊂ ZΠ ⊂R

q, where ˜Γr is the orthogonal projection
of Γr onto R

q, obtained by omitting the regressors with lag larger than L.
Let z̃, z̃e, and z̃r be the values of the regressor vectors (8.7), (8.26), and (8.41) at

the current time t. Then, the explicit dual-mode controller is defined as follows:

ud �
{

û0(z̃) , if z̃r /∈ Γr

−Kz̃e + u∗st , if z̃r ∈ Γr
(8.42)

The expression in the first row of (8.42) means that the control is performed by the
explicit NN-NMPC controller when the system is far from equilibrium. The expres-
sion in the second row implies that the control will be switched to the LQR when
z̃r enters the set Γr and the LQR will continue controlling the system until z̃r leaves
this set due to a large disturbance, for example. The integrator output yint is used
only when z̃r ∈ Γr. In the case when z̃r /∈ Γr, yint is set to zero and not used.

If the NN ARX model describes exactly the system dynamics far from the origin
(outside the set Γr) and the problem (8.18) is convex, then the closed-loop system
stability can be ensured by conditions similar to those in [10]. In presence of model
errors far from the origin, it would be necessary to apply approaches to explicit ro-
bust NMPC ([4]). If the problem (8.18) is non-convex, then the closed-loop stability
can not be guaranteed, but it can be verified by off-line simulations.

8.5 Application: Regulation of a pH Maintaining System

In [5, 6], the dual-mode approach to explicit output-feedback NMPC, described in
the previous two sections, is applied to design an explicit NMPC for regulation of
a pH maintaining system. The motivation for this particular example is not to sug-
gest that the mp-NLP approach is particularly suitable for this kind of process, but
rather to demonstrate a potential engineering applications of the mp-NLP approach
to processes which are modeled with higher order black-box models. Particularly
attractive for suggested control method from engineering applications aspect is a
benefit to be able to execute the NMPC code in a low-cost PLC type of hardware.
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8.5.1 The pH Maintaining System

A simplified schematic diagram of the pH maintaining system taken from [9] is
given in Fig. 8.1. The process consists of an acid stream (Q1), buffer stream (Q2)
and base stream (Q3) that are mixed in a tank T1. Prior to mixing, the acid stream
enters the tank T2. The acid and buffer flow rates are assumed to be constant. The
effluent pH is the measured variable, which is controlled by manipulating the base
flow rate.

Q1 Q2

Q3

Q4

Q1e 

T1

T2 

h1 

h2 

pH

Fig. 8.1 Scheme of the pH maintaining system.

In [9], a dynamic model of the pH maintaining system is derived using con-
servation equations and equilibrium relations. The model also includes hydraulic
relationships for the tank outlet flows. Modeling assumptions include perfect mix-
ing, constant density, and complete solubility of the ions involved. The model is
presented briefly according to [9].

The chemical reactions for the system are:

H2CO3 ←→ HCO−3 +H+ (8.43)

HCO−3 ←→ CO=
3 +H+ (8.44)

H2O ←→ OH−+H+ (8.45)

The corresponding equilibrium constants are:

Ka1 =
[HCO−3 ][H

+]

[H2CO3]
, Ka2 =

[CO=
3 ][H

+]

[HCO−3 ]
, Kw = [H+][OH−] (8.46)

The chemical equilibria is modeled by defining two reaction invariants for each of
the streams Qi, i ∈ {1,2,3,4} [9]:
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Wai = [H+]i− [OH−]i− [HCO−3 ]i− 2[CO=
3 ]i (8.47)

Wbi = [H2CO3]i +[HCO−3 ]i +[CO=
3 ]i (8.48)

The invariant Wa is a charge related quantity, while Wb represents the concentration
of the CO=

3 ion. The pH can be determined from Wa and Wb using the following
relations [9]:

Wb

Ka1
[H+]

+ 2Ka1Ka2
[H+]2

1+ Ka1
[H+]

+ Ka1Ka2
[H+]2

+Wa +
Kw

[H+]
− [H+] = 0 (8.49)

pH =− log([H+]) (8.50)

In [9], a simplified model of the pH maintaining system is developed, where the
dynamics of the pH transmitter and the flow dynamics of tank T2 are neglected. The
mass balance on tank T1 yields:

A1
dh1

dt
= Q1e +Q2 +Q3−Q4 , (8.51)

where h1 is the liquid level and A1 is the cross-sectional area of tank T1. The exit
flow rate Q4 is modeled as:

Q4 =Cv(h1 + l)s , (8.52)

where Cv is a constant valve coefficient, s is a constant valve exponent, and l is the
vertical distance between the bottom of tank T1 and the outlet for Q4. By combining
mass balances on each of the ionic species in the system, the following differential
equations for the effluent reaction invariants Wa4 and Wb4 are derived [9]:

A1h1
dWa4

dt
= Q1e(Wa1−Wa4)+Q2(Wa2−Wa4)+Q3(Wa3−Wa4) (8.53)

A1h1
dWb4

dt
= Q1e(Wb1−Wb4)+Q2(Wb2−Wb4)+Q3(Wb3−Wb4) (8.54)

Based on the above relations, a state space model of the pH maintaining system is
obtained by defining the following state, input and output variables:

x = [Wa4 Wb4 h1]
T , ũ = Q3 , ỹ = pH (8.55)

The state space model has the form [9]:

ẋ = f̃ (x)+ g̃(x)ũ (8.56)

c(x, ỹ) = 0 , (8.57)

where:

f̃ (x) =

⎡

⎢

⎣

Q1(Wa1−x1)+Q2(Wa2−x1)
A1x3

Q1(Wb1−x2)+Q2(Wb2−x2)
A1x3

Q1−Cv(x3+l)s+Q2
A1

⎤

⎥

⎦
, g̃(x) =

⎡

⎢

⎣

Wa3−x1
A1x3

Wb3−x2
A1x3

1
A1

⎤

⎥

⎦
(8.58)
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c(x, ỹ) = x1 + 10ỹ−14− 10−ỹ+
x2(1+ 2× 10ỹ−pK2)

1+ 10pK1−ỹ + 10ỹ−pK2
(8.59)

The relation between the constants Ka1, Ka2 in (8.49) and the constants K1, K2 in
(8.59) is:

Ka1 = 10−pK1 , Ka2 = 10−pK2 , p > 0 . (8.60)

The parameters of the model (8.56)–(8.60) are given in [9].

8.5.2 ARX Model Identification

8.5.2.1 Neural Network ARX Model Identification

The identification and the validation of the NN model of the pH maintaining sys-
tem is based on simulation data, generated with the model (8.56)–(8.57), where the
liquid level h1 in tank T1 is assumed to be constant [5, 6]. Thus, it is presumed that
a controller has been already designed to keep the level h1 on the nominal value
h∗1 = 14 [cm] by manipulating the exit flow rate Q4. To get an idea about the system
dynamics, necessary for sampling time and regressor vector selection, some pre-
liminary tests were pursued. The process model (8.56)–(8.57) was excited with a
combination of step-like signals for estimation of the dominant time constant and
settling time. The dominant time constant was estimated in range between 65 [s] and
185 [s] and settling time between 135 [s] and 325 [s]. This ’provisional’ dynamics
is necessary for the estimation of appropriate sampling time. Based on responses
and iterative cut-and-try procedure, a sampling time of 25 [s] was selected for these
tests. Based on these preliminary tests, the chosen identification signal (400 sam-
ples) was generated from a uniform random distribution and a rate of change of the
signal of 50 [s]. The validation signal was obtained using a generator of random
noise with uniform distribution and a rate of change of the signal of 500 [s], so it
has lower magnitude and frequency components than the identification signal. The
rationale behind this is that if the model was identified using a rich signal, then it
should respond well to a signal with less components.

The NN model represents a NARX model of the form (8.7)–(8.8). The hidden
layer has sigmoid activation functions and the output layer has linear activation
function. The choice of regressors is a difficult one and is common to all black-
box modeling approaches. The number of regressors (delayed inputs and outputs)
was determined by the method described in [8]. A trade-off between modeling error
and complexity was taken into the account. The final selection was that the system
model has the form:

y(t + 1) = fNN(z̃(t),u(t),θ ) (8.61)

z̃(t) = [y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)] (8.62)

It should be noted that in difference to the state space model (8.56)–(8.57) where
ỹ = pH, in the NN model (8.61)–(8.62) the variable y represents the deviation of
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the pH from the desired set point pHsp = 4.8, i.e. y = pH− pHsp. In general, any
other value for pHsp can be pursued if the developed black-box model describes the
specified operating range. Also, while in [9] the goal is to keep the pH at value 7
(a pH neutralization system), here the task is to maintain the pH at value 4.8 (a pH
maintaining system). The data used for identification of the NN model (8.61)–(8.62)
and for validation of its performance were scaled to zero mean and variance 1. This
means that u(t) and y(t) can take both positive and negative values.

The optimal number of neurons in the hidden layer was determined systemati-
cally. The network was optimized for each possible number of hidden neurons in
a certain range. The Levenberg-Marquardt method was used for minimization of
the mean-square error criteria (8.3), due to its rapid convergence properties and ro-
bustness. At the end of this lengthy procedure and after removing the unimportant
weights, the optimal parameters of the model (8.61)–(8.62) were obtained, with thir-
teen neurons in the hidden layer. More about systematic network structure selection,
pruning and other issues regarding neural networks modeling can be found in vari-
ous literature describing this topic and its applications (e.g. [16], [2], [8], [7], [19],
[21]).

Fig. 8.2 depicts a comparison between the simulated NN response and the process
response to the identification and the validation input signals. From the validation,
it can be concluded that the black-box model captures the dynamics of the pH main-
taining system relatively well. The resulting black-box model is not too large to be
handled and was relatively routinely obtained with the selected software tool.

8.5.2.2 Linear ARX Model Identification

The equilibrium point of the pH maintaining system (8.56)–(8.57) is ỹ = 4.8, ũ∗st =
10.94[ml/s] (respectively y = 0, u∗st = 0.1732 after scaling). A validation of the
obtained NN ARX model near this point clearly shows that it is not accurate (see
Fig. 8.3).

In order to obtain accurate predictions when the output variable is close to zero,
the following 1-st order linear ARX model is identified [5, 6]:

y(t + 1) = 0.7704y(t)+ 0.0539(u(t)−u∗st) (8.63)

Higher order linear ARX models have been also obtained, however simulations have
shown that the dynamics of the pH maintaining system around the equilibrium is
captured best by the 1-st order model (8.63). The simulated response of the ARX
model (8.63) is depicted in Fig. 8.3.

8.5.3 Design of Explicit Dual-Mode Controller

The approach described in Sections 8.3 and 8.4 is applied to design an explicit dual-
mode controller for the pH maintaining system based on its NN model (8.61)–(8.62)
and linear ARX model (8.63) [5, 6]. Recall that due to scaling, the variables u and y
can take both positive and negative values.
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Fig. 8.2 Response of the NN model to the excitation signal used for identification (top) and
to the excitation signal used for validation (bottom).
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Fig. 8.3 Validation of the NN ARX and the linear ARX models. The dotted curve is with the
NN model (8.61)–(8.62), the solid curve is with the linear ARX model (8.63), and the dashed
curve is with the first-principles model (8.56)–(8.57). Constant control input u = u∗st is used
as an excitation signal.

First, the approach in Section 8.3 is applied to design an explicit approximate
NN-NMPC controller. The following control input constraint is imposed on the
system:

−0.4≤ u≤ 0.4 (8.64)

The horizon is N = 8 and the terminal constraint in Problem 8.1 is:

z̃c
t+N|t ∈Ω , (8.65)

where Ω = {z̃c ∈ R
5 |‖z̃c‖2 ≤ 0.05}. The weighting matrices in the cost func-

tion (8.17) are Q = 10, R = 1, F = 10. The NN-NMPC minimizes the cost func-
tion (8.17) subject to the model (8.61)–(8.62) and the constraints (8.64)–(8.65). In
(8.20), it is chosen α = 10. The regressor space to be partitioned is defined by
Z = ([−1.2; 1.2]× [−1.2; 1.2]× [−1.2; 1.2]× [−0.4; 0.4]× [−0.4; 0.4]). The cost
function approximation tolerance is chosen as ε̄(Z0)=max(ε̄a, ε̄r min

z̃∈Z0
V ∗(z̃)), where

ε̄a = 0.005 and ε̄r = 0.1 are the absolute and the relative tolerances, respectively. The
partition has 5512 regions and 23 levels of search in a binary search tree representa-
tion. Totally, 33 arithmetic operations are needed in real-time to compute the control
input by traversing the binary search tree (23 comparisons, 5 multiplications and 5
additions).
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Further, an unconstrained LQR is designed, which is used in a neighborhood of
the origin. For this purpose, consider the extended linear system, where an integral
error is added to the linear ARX model (8.63):

y(t + 1) = 0.7704y(t)+ 0.0539ue(t) (8.66)

yint(t + 1) = yint(t)+Tsy(t) (8.67)

Here, ue(t)≡ u(t)− u∗st . Thus, we obtain the following system:

z̃e(t + 1) = Ãez̃e(t)+ B̃eue(t) , (8.68)

which is characterized with regressor vector z̃e(t) = ye(t) = [y(t), yint(t)] and matri-
ces Ãe =

[

0.7704 0
Ts 1

]

and B̃e =
[

0.0539
0

]

. The computed LQR law for the system (8.68)
is:

ue =−Kz̃e =−k1y− k2yint , where K = [0.7994, 0.0069] (8.69)

This control law solves the optimization problem (8.32) with weighting matrices
Qe = diag{10, 0.0005}, Re = 10.

Then, the explicit dual-mode controller for the pH maintaining system is defined
according to (8.42) with Γr = {z̃r ∈ R | z̃2

r ≤ 0.09}, where z̃r(t) = y(t).
In order to study the robustness of the explicit dual-mode controller against

model inaccuracies, its performance is simulated in closed-loop with the first-
principles model (8.56)–(8.57). Further, it is assumed that there are persistent
disturbances in the acid and the buffer flow rates, which have the following
values Q̃1 = 16.8[ml/s], Q̃2 = 0.53[ml/s] (different from the nominal values
Q∗1 = 16.6[ml/s], Q∗2 = 0.55[ml/s]). In addition to the explicit dual-mode controller
which maintains the pH on the required set point, a second controller (an LQR)
is applied, which keeps the liquid level h1 on the nominal value h∗1 = 14 [cm] by
manipulating the exit flow rate Q4. The obtained trajectories of the control input
u and the output variable y are shown in Fig. 8.4, while the trajectories of the exit
flow rate Q4 and the liquid level h1 are depicted in Fig. 8.5.

It can be seen from Fig. 8.4 that the output variable is steered to the origin despite
of the presence of persistent disturbances and the control input achieves a new
equilibrium value ũst = 0.2380 (recall that the equilibrium value corresponding to
the nominal model parameters is u∗st = 0.1732). It would be necessary to distinguish
how the exact NMPC and the approximate explicit NMPC trajectories in Figs. 8.4
and 8.5 are obtained. The exact NMPC response is computed by solving at each
time instant an open-loop NMPC problem formulated for the first-principles model
(8.56)–(8.57). In contrast, the approximate explicit NMPC solution is first computed
off-line as an approximation to Problem 8.1, in which the NN ARX model by itself
represents another approximation. Then, its performance is simulated in closed-loop
with the first-principles model (8.56)–(8.57). Thus, the performance degradation
far from the origin is due to the approximations in the model and in the NMPC
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Fig. 8.4 Control input u (top) and output variable y (bottom) obtained with the explicit dual-
mode controller in closed-loop with the first-principles model (8.56)–(8.57). The solid curves
are with the approximate explicit NN-NMPC and the dotted curves are with the exact NN-
NMPC.
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Fig. 8.5 The exit flow rate Q4 (top) and liquid level h1 (bottom). The solid curves are with
the approximate explicit NN-NMPC and the dotted curves are with the exact NN-NMPC.
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solution, while near the origin it is related to the use of LQR (pursuing an offset-free
response) which differs from the exact NMPC (where no integral action is taken).
It also should be noted that the response depicted in Figs. 8.4 and 8.5 has a typical
amount of performance degradation being representative for other initial conditions
and scenarios.
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