
Chapter 7
Explicit Stochastic NMPC

Abstract. This chapter considers two approaches to explicit stochastic NMPC of
general constrained nonlinear discrete-time systems in the presence of disturbances
and/or parameter uncertainties with known probability distributions. In Section 7.2,
an approach to explicit solution of closed-loop (feedback) stochastic NMPC prob-
lems for constrained nonlinear systems, described by stochastic parametric models,
is considered. The approach constructs a piecewise nonlinear (PWNL) approxima-
tion to the optimal sequence of feedback control policies. It is applied to design
an explicit feedback stochastic NMPC controller for the cart and spring system. In
Section 7.3, an explicit approximate approach to open-loop stochastic NMPC based
on Gaussian process models is presented. The Gaussian process models are non-
parametric probabilistic black-box models, whose advantage in comparison to the
stochastic parametric models is that they provide information about the prediction
uncertainty. The approach in Section 7.3 constructs a piecewise linear (PWL) ap-
proximation to the optimal control sequence and it is applied to design an explicit
stochastic NMPC reference tracking controller for a combustion plant.

7.1 Introduction

Mathematical models of engineering systems usually contain some amount of un-
certainty (typically unknown additive disturbances and/or uncertain model parame-
ters). In the robust MPC problem formulation, the model uncertainty is taken into
account. In some applications, the system to be controlled is described by a stochas-
tic model where the probabilistic distribution of the uncertainty is assumed to be
known. Several approaches for constrained open-loop MPC based on stochastic
parametric models are proposed in [32, 44, 46, 31, 7, 8, 5, 6, 24]. The approaches
[32, 44, 46] are based on linear state space models with stochastic parameters and/or
additive noise and they optimize the expected value of the cost function subject to
hard input constraints [32] or probabilistic constraints [44, 46]. In [31, 7, 8, 5],
stochastic linear MPC approaches incorporating a probabilistic cost and probabilis-
tic constraints are developed. The method suggested in [31] is based on a moving
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average (MA) model with random coefficients. It was further extended to linear
time-varying MA models [8] and to state space models with stochastic uncertainty
in the output or the input map [7, 5]. Methods for open-loop stochastic MPC for
nonlinear systems have been proposed in [6, 24].

The stochastic MPC methods mentioned above employ an open-loop formula-
tion, which guarantees the robust stability and the robust feasibility of the system,
but it may be conservative. This is related to the fact that the control sequence
has to ensure constraints fulfillment for all possible uncertainty scenarios with-
out considering the fact that future measurements of the state contain information
about past uncertain values. Similar to the closed-loop min-max NMPC approaches
[35, 34, 36], the conservativeness of the open-loop stochastic NMPC can be over-
come by a closed-loop stochastic NMPC formulation, where the optimization is
performed over a sequence of feedback control policies. In [18, 1], methods for
closed-loop stochastic NMPC based on on-line optimization have been proposed
and an approximate mp-NLP approach to explicit closed-loop min-max NMPC has
been suggested in [21]. Based on the approach in [21], in [22] the explicit solu-
tion of closed-loop (feedback) stochastic NMPC problems for constrained nonlin-
ear systems in the presence of uncertainty is considered by employing stochastic
parametric models. The approach [22] constructs a piecewise nonlinear (PWNL)
approximation to the optimal sequence of feedback control policies for efficient on-
line implementation. This approach is considered in Section 7.2.

The stochastic MPC approaches [32, 44, 46, 31, 7, 8, 5, 6, 24, 18, 1, 22] are based
on parametric probabilistic models. Alternatively, the stochastic systems can be
modeled with non-parametric models which can offer a significant advantage com-
pared to the parametric models. This is related to the fact that the non-parametric
probabilistic models provide information about prediction uncertainties which are
difficult to evaluate appropriately with the parametric models. The Gaussian process
model is an example of a non-parametric probabilistic black-box model and up to
now it has been applied to model mainly static nonlinearities. Its use and properties
for modeling are reviewed in [41]. The use of Gaussian processes in the modeling of
dynamic systems is a relatively recent development e.g. [17, 43, 26, 2, 29, 28, 39].
An on-line optimization approach and an approximate explicit approach to open-
loop stochastic NMPC based on Gaussian process models have been proposed in
[38, 30, 33] and in [19, 20], respectively. The approach [19, 20] constructs a piece-
wise linear (PWL) approximation to the optimal control sequence and it is consid-
ered in Section 7.3. A recent state-of-the-art survey of control algorithms based on
Gaussian process models is provided in [27].

7.2 Explicit Stochastic NMPC Based on Parametric
Probabilistic Models

This section considers the approximate mp-NLP approach [22] to explicit solu-
tion of closed-loop (feedback) stochastic NMPC problems for constrained nonlin-
ear systems, described by stochastic parametric models. It is assumed that the dis-
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crete probability distribution of the uncertainty is known. The approach constructs
a piecewise nonlinear (PWNL) approximation to the optimal sequence of feedback
control policies, defined on an orthogonal partition of the state space.

7.2.1 Formulation of the Feedback Stochastic NMPC Problem as
an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),w(t))

y(t) = h(x(t),u(t),w(t)), (7.1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
s and w(t) ∈ R

n are the state, input, output
and uncertainty variables, and t ∈ Z≥0 is the discrete time. The input and the output
variables are required to fulfill the following constraints:

umin ≤ u≤ umax, ymin ≤ y≤ ymax. (7.2)

The following assumptions are made [22]:

Assumption 7.1. f and h are C2 functions with f (0,0,0) = 0, h(0,0,0) = 0.

Assumption 7.2. The uncertainty w(t) = [w1(t), w2(t), ... , wn(t)] includes both in-
ternal (state-dependent) and external uncertainty, i.e. it has the form wi(t) =
λixi(t)+ γi(t), where xi(t) is the i-th element of the state vector x(t). Here λi is a
discrete random parameter, associated to the internal (model) uncertainty. It takes
values in the set Λi = {λ 1

i , λ 2
i , ... , λ

nλi
i } and is characterized with the probability

mass function ϕi : Λi → [0, 1]:

ϕi(λ j
i ) = Pr(λi = λ j

i ) , j = 1, 2, ... , nλi
with

nλi

∑
j=1

ϕi(λ j
i ) = 1. (7.3)

The external uncertainty γi(t) is stochastic and piecewise constant with infrequent
changes in the sense that γi(t) = const for periods of time, which are not less than
Nγ (Nγ ∈ N is supposed to be sufficiently large). It is assumed that γi takes values
in the set Γi = {γ1

i , γ2
i , ... , γ

nγi
i }, which contains the nominal value γi = 0, and it is

characterized with the probability mass function ψi : Γi → [0, 1]:

ψi(γ j
i ) = Pr(γi = γ j

i ) , j = 1, 2, ... , nγi with
nγi

∑
j=1

ψi(γ j
i ) = 1. (7.4)

The overall vector of uncertain model parameters is denoted λ = [λ1, λ2, ... , λn]∈Λ
with Λ = Λ1×Λ2× ... ×Λn. Given λ j = [λ i1

1 , λ i2
2 , ... , λ in

n ], i1 ∈ {1, 2, ... , nλ1
}, ...

, in ∈ {1, 2, ... , nλn}, the probability mass function ϕ : Λ → [0, 1] is:
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ϕ(λ j) = Pr(λ = λ j) = ϕ1(λ i1
1 )ϕ2(λ i2

2 )...ϕn(λ in
n ) (7.5)

with j = 1, ... , nλ and nλ = nλ1
nλ2

...nλn . Similarly, the overall vector of external
uncertainty is denoted γ = [γ1, γ2, ... , γn] ∈ Γ with Γ = Γ1×Γ2× ... ×Γn. Given
γ j = [γ i1

1 , γ i2
2 , ... , γ in

n ], i1 ∈ {1, 2, ... , nγ1}, ... , in ∈ {1, 2, ... , nγn}, the probability
mass function ψ : Γ → [0, 1] is:

ψ(γ j) = Pr(γ = γ j) = ψ1(γ i1
1 )ψ2(γ i2

2 )...ψn(γ in
n ) (7.6)

with j = 1, ... , nγ and nγ = nγ1nγ2 ...nγn .
Then, the overall uncertainty is:

w = diag(λ )x+ γ. (7.7)

Further, the following assumption is made:

Assumption 7.3. ymin < 0 < ymax and umin < 0 < umax.

As in [35], first a H∞ control problem is defined:

Problem 7.1 (H∞ control problem):
Design a state-feedback control law:

u = k(x) (7.8)

guaranteeing that the closed-loop system (7.1)–(7.8) with input w = diag(λ )x+ γ ,
λ ∈Λ , γ ∈Γ , and output y has a finite l2-gain≤ α in a bounded positively invariant
set Ω , that is, ∀x(t) ∈Ω :

i. x(t + i) ∈Ω , ∀i > 0.
ii. umin ≤ k(x(t + i))≤ umax and ymin ≤ h(x(t + i),k(x(t + i)),w(t + i))≤ ymax,
∀i≥ 0.

iii.There exists a positive definite function β (x(t)), such that ∀T ≥ 0:

T

∑
i=0
‖y(t + i)‖2 ≤ α2

T

∑
i=0
‖w(t + i)‖2 +β (x(t)) (7.9)

for any non-zero w.

The following assumption is also made [35]:

Assumption 7.4. There exists an auxiliary control law u = ka(x) that solves the H∞
control problem, with a domain of attractionΩa(ka,α), whose boundary is assumed
to be a level curve of a positive function Vka(x) such that:

Vka( f (x,ka(x),w))−Vka(x)<−
1
2
(‖y‖2−α2‖w‖2)

∀x ∈Ωa(ka,α) , ∀λ ∈Λ , ∀γ ∈ Γ (7.10)

and Vka(0) = 0.
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Denote with:

K = {k0, k1, ... , kN−1}� {k0(xt|t), k1(xt+1|t), ... , kN−1(xt+N−1|t )} (7.11)

a vector of feedback control policies. It is supposed that a full measurement x of the
state is available at the current time t. We consider the following feedback stochastic
NMPC problem [22]:

Problem 7.2 (Constrained feedback stochastic NMPC problem):
Suppose that Assumptions 7.1–7.4 hold. For the current x, the feedback stochastic
NMPC solves the following optimization problem:

V ∗E (x) = min
K

E
λ∈Λ ,γ∈Γ

{J(K,x,λ ,γ)} (7.12)

subject to xt|t = x and:

ymin ≤ yt+i|t ≤ ymax, ∀λ ∈Λ , ∀γ ∈ Γ , i = 1, ... , N (7.13)

umin ≤ ut+i ≤ umax, i = 0, 1, ... , N− 1 (7.14)

xt+N|t ∈Ωa(ka,α), ∀λ ∈Λ , ∀γ ∈ Γ (7.15)

ut+i = ki(xt+i|t), i = 0, 1, ... , N− 1 (7.16)

xt+i+1|t = f (xt+i|t ,ut+i,wt+i), i≥ 0 (7.17)

yt+i|t = h(xt+i|t ,ut+i,wt+i), i≥ 0 (7.18)

and the cost function given by:

J(K,x,λ ,γ) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2−α2‖wt+i‖2]+Vka(xt+N|t ). (7.19)

Here, N is a finite horizon, α is the l2-gain which is interpreted as the uncertainty
attenuation level, and E {.} means mathematical expectation. It is supposed that
N�Nγ , and by Assumption 7.2 it can be accepted that γt+i = const, i= 0, 1, ... , N−
1. Then by Assumption 7.2, the expectation can be expressed:

E
λ∈Λ ,γ∈Γ

{J(K,x,λ ,γ)}=
nλ

∑
i=1

nγ

∑
j=1

J(K,x,λ i,γ j)ϕ(λ i)ψ(γ j) (7.20)

An auxiliary control law ka(x) is typically obtained by solving the H∞ control
problem for the linearized system [35]. Thus, a practical way to compute a non-
linear control ka(x) satisfying Assumption 7.4 for nonlinear input-affine systems is
suggested in [35].

An optimal solution to the feedback stochastic NMPC problem (7.12)–(7.19) is
denoted K∗ = {k∗0, k∗1, ... , k∗N−1} and the control input is chosen according to the
receding horizon policy u(xt|t) = k∗0(xt|t ).
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The following assumption is made:

Assumption 7.5. Each feedback control policy ki(xt+i|t ), i = 0, ... , N − 1 has the
form:

ki(xt+i|t ) = ηika(xt+i|t)+ ri(ξi,xt+i|t) = gi(pi,xt+i|t), (7.21)

where pi = [ηT
i ξ T

i ]T ∈ R
ni are the parameters that need to be optimized, ka(xt+i|t )

is an auxiliary control law that satisfies Assumption 7.4, and ri(ξi,xt+i|t) is a pa-
rameterized continuous function with ri(ξi,0) = 0.

In general, the parameterization of the form (7.21) would lead to an approximate
solution to the feedback stochastic NMPC problem (7.12)–(7.19). Denote with P
the whole set of parameters that need to be determined, i.e.:

P = [pT
0 pT

1 ... pT
N−1]

T ∈ R
np , np =

N−1

∑
i=0

ni. (7.22)

Then, the expected value (7.20) of the cost function is:

VE(P,x) = E
λ∈Λ ,γ∈Γ

{J(P,x,λ ,γ)} . (7.23)

It should be noted that the argument K in the cost function (7.19) is now replaced
with the argument P.

Using the ideas of direct single shooting to eliminate the equality constraints, the
optimization problem (7.12)–(7.19) can be formulated in a compact form as follows
[22]:

Problem 7.3:

V ∗E (x) = min
P

nλ

∑
i=1

nγ

∑
j=1

J(P,x,λ i,γ j)ϕ(λ i)ψ(γ j) (7.24)

subject to : G(P,x,λ ,γ)≤ 0 , ∀λ ∈Λ , ∀γ ∈ Γ . (7.25)

Problem 7.3 defines a multi-parametric Nonlinear Programming (mp-NLP) prob-
lem, since it is NLP in P parameterized by x. We remark that the constraints func-
tion G(P,x,λ ,γ) in (7.25) is implicitly defined by (7.13)–(7.18). Also, since Λ and
Γ are discrete sets, (7.25) represents a finite number of constraints. It should be
noted that the number of constraints (7.25) increases rapidly with the increase of
the horizon and the sizes nλ and nγ of the uncertainty sets Λ and Γ . Thus, as the
horizon increases from N1 to N2 and the sizes of the sets Λ and Γ increase from
n1
λ to n2

λ , and from n1
γ to n2

γ , respectively, the number of constraints will increase
(N2n2

λn2
γ )/(N1n1

λn1
γ) times. This leads to a stronger motivation for an explicit ap-

proach, where the computational complexity is handled in off-line.
Define the set of N-step robustly feasible initial states:

Xf = {x ∈ R
n |G(P,x,λ ,γ)≤ 0, ∀λ ∈Λ , ∀γ ∈ Γ for some P ∈R

np}. (7.26)
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In parametric programming problems one seeks the solution P∗(x) as an explicit
function of the parameters x in some set X ⊆ Xf ⊆ R

n [14].

7.2.2 Approximate mp-NLP Approach to Explicit Feedback
Stochastic NMPC

The approximate mp-NLP approach [22] to explicit feedback stochastic NMPC
is similar to the approach to explicit feedback min-max NMPC (described in
Section 6.3.2). Thus, we restrict our attention to a hyper-rectangle X ⊂ R

n

where we seek to approximate the optimal sequence of control policies K∗ =
{k∗0, k∗1, ... , k∗N−1}. The associated optimal control input is

u∗t+i = k∗i (xt+i|t ) = gi(p∗i ,xt+i|t), i = 0, 1, ... , N− 1, (7.27)

where P∗ = [p∗T0 p∗T1 ... p∗TN−1]
T is determined by solving Problem 7.3. We re-

quire that the state space partition is orthogonal and can be represented as a k− d
tree. The main idea of the approximate mp-NLP approach [22] is to construct a
piecewise nonlinear (PWNL) approximation K̂ = {k̂0, k̂1, ... , k̂N−1} to the optimal
feedback K∗ = {k∗0, k∗1, ... , k∗N−1} on X , where the constituent nonlinear control
functions KXi = {k0,Xi , k1,Xi , ... , kN−1,Xi} are defined on hyper-rectangles Xi cov-
ering X . Let KX0 = {k0,X0 , ... , kN−1,X0} be an approximation to the optimal so-
lution K∗ = {k∗0, ... , k∗N−1}, valid in the whole hyper-rectangle X0. Denote with
PX0 = [pT

0,X0
... pT

N−1,X0
]T the parameters of KX0 . The corresponding approximate

value of the control input is

ût+i = ki,X0(xt+i|t) = gi(pi,X0 ,xt+i|t), i = 0, 1, ... , N− 1. (7.28)

Let V̂E(PX0 ,x) be the cost function value due to initial state x = xt|t and control
function KX0 , i.e.

V̂E(PX0 ,x) = E
λ∈Λ ,γ∈Γ

{

J(PX0 ,x,λ ,γ)
}

. (7.29)

Then, the approximate control function KX0 is determined by applying the following
procedure [22]:

Procedure 7.1 (Computation of explicit approximate solution). Suppose As-
sumptions 7.1–7.5 hold. Consider any hyper-rectangle X0 ⊆ Xf with a set of points
V0 = {v0, v1, v2, ... , vN1} ⊆ X0. Compute the parameters PX0 = [pT

0,X0
... pT

N−1,X0
]T

of the control function KX0 = {k0,X0 , ... , kN−1,X0} by solving the following NLP:

min
PX0

N1

∑
i=0

(

V̂E(PX0 ,vi)−V ∗E (vi)+ μ‖g0(p0,X0 ,vi)− g0(p∗i0 ,vi)‖2) (7.30)

subject to G(PX0 ,vi,λ ,γ)≤ 0, ∀vi ∈V0, ∀λ ∈Λ , ∀γ ∈ Γ . (7.31)
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We remark that the optimal parameters p∗i0 in the feedback function k∗0(vi) =
g0(p∗i0 ,vi) in (7.30) are determined by solving Problem 7.3 for x = vi, and the pa-
rameter μ > 0 is a weighting coefficient.

Note that the control function KX0 = {k0,X0 , ... , kN−1,X0}, computed with Proce-
dure 7.1, satisfies the constraints in Problem 7.3 only for the discrete set of points V0

in the hyper-rectangle X0 and for the discrete sets of values Λ and Γ of the internal
and external uncertainties.

Suppose that the parameter vector PX0 of the control function KX0 , valid in X0,
has been determined by applying Procedure 7.1. Then, for the cost function approx-
imation error in X0 we have:

ε(x) = V̂E(PX0 ,x)−V ∗E (x)≤ ε0, x ∈ X0. (7.32)

An estimate ε̂0 of the error bound ε0 is computed as:

ε̂0 = max
i∈{0,1,2, ... ,N1}

(V̂E(PX0 ,vi)−V ∗E (vi)). (7.33)

If ε̂0 > ε̄ , where ε̄ > 0 is the specified tolerance of the cost function approximation
error, the region X0 is divided and the procedure is repeated for the new regions.

The approximate mp-NLP algorithm for design of explicit feedback stochas-
tic NMPC represents a slight modification of the algorithm, described in Sec-
tion 6.3.2.4.

It should be noted that in case of non-convexity of Problem 7.3, it can not be
guaranteed that the approximation error ε(x) associated to the explicit feedback
stochastic NMPC will satisfy the requirement ε(x) ≤ ε̄ for all x ∈ X . The non-
convexity may also imply that the constraints (7.25) are violated at some points of
the state space. In this respect, the described computational method does not neces-
sarily lead to guaranteed properties, but when combined with verification and anal-
ysis methods gives a practical tool for development and implementation of explicit
feedback stochastic NMPC. The possibility for implementation verification is a sig-
nificant advantage of the explicit NMPC in comparison to NMPC based on real-time
optimization.

7.2.3 Application 1: Stochastic MPC of the Cart and Spring
System

Consider the cart and spring system, described in Section 6.3.4. The damping fac-
tor hd is uncertain, but it is known that hd = h̄d + λ . Here, h̄d = 1.1 and λ is a
stochastic parameter. It is supposed that −0.5≤ λ ≤ 0.5 and the following discrete
set of values is considered λ ∈ Λ = {−0.5, 0, 0.5} with the corresponding values
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of the probability mass function ϕ(−0.5) = 0.2, ϕ(0) = 0.6, ϕ(0.5) = 0.2. The
external uncertainty for this system is γ = 0. Recall that the system is described by
the following nonlinear discrete-time model [35]:

x1(t + 1) = x1(t)+Tsx2(t) (7.34)

x2(t + 1) = x2(t)−Ts
ρ0

M
e−x1(t)x1(t)−Ts

hd

M
x2(t)+Ts

u(t)
M

+Tsw(t), (7.35)

where x2 is the carriage velocity, w(t) = − λ
M x2(t) is a state dependent (internal)

uncertainty, Ts = 0.4 is the sampling time, M = 1 and ρ0 = 0.33. The following
input and state constraints are imposed on the system:

−4≤ u≤ 4, −1.3≤ x2 ≤ 1.3. (7.36)

The horizon is N = 15 and the terminal constraint is:

xt+N|t ∈Ωa , Ωa = {x ∈ R
n |xTΣx≤ δ}, (7.37)

where δ = 0.001 [35] and Σ = [1.3 1.9
1.9 3.0 ].

The mp-NLP approach described in Section 7.2.2 is applied to design an explicit
feedback stochastic NMPC controller for the cart [22]. The NMPC minimizes the
mathematical expectation (7.20) of the cost function (7.19) subject to the system
equations (7.34)–(7.35) and the constraints (7.36)–(7.37). In (7.19), it is chosen α =
1 and the terminal penalty is given by Vka = xTΣx [35]. Like in Section 6.3.4, the
feedback functions ki(xt+i|t ), i = 0, ... , N− 1 have the form:

ki(pi,xt+i|t) = ηika(xt+i|t)+ ξi,1x2
1,t+i|t + ξi,2x2

2,t+i|t , (7.38)

where pi = [ηi ξi,1 ξi,2]
T are the parameters that need to be optimized and ka(xt+i|t )

is the auxiliary control law. The control law ka(xt+i|t ) is determined in the way de-
scribed in Section 6.3.4 (respectively in [35]).

In [23], a condition on the approximation tolerance has been derived such that
the asymptotic stability of the nonlinear system in closed-loop with the approximate
explicit NMPC is guaranteed. According to this condition, the tolerance is chosen
to be dependent on the state, which would lead to a state space partition with less
complexity in comparison to that corresponding to an uniform tolerance. In [22], a
similar approach is applied and the approximation tolerance is chosen to be depen-
dent on the state as ε̄(X0) = max(ε̄a, ε̄r min

x∈X0
V ∗E (x)), where ε̄a = 0.005 and ε̄r = 0.03

are the absolute and the relative tolerances.
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Fig. 7.1 State space partition of the explicit approximate feedback stochastic NMPC and the
state trajectories corresponding to λ =−0.5, λ = 0, λ = 0.5.

The state space partition of the explicit approximate feedback stochastic NMPC
controller is shown in Fig. 7.1. The partition has 150 regions and 11 levels in a binary
search tree representation. Totally, 27 arithmetic operations are needed in real-time
to compute the control input by traversing the binary search tree (11 comparisons,
10 multiplications, 5 additions and 1 exponential).

The performance of the closed-loop system was simulated for initial state x(0) =
[4 1.5]T and for the three values of the stochastic parameter λ . The response is
depicted in the state space (Fig. 7.1), as well as trajectories in time (Fig. 7.2 and
Fig. 7.3). In Fig. 7.2 and Fig. 7.3, the control and state trajectories obtained with
the explicit min-max NMPC controller (designed in Section 6.3.4) are given for
comparison. The cost function values corresponding to the closed-loop trajectories
associated to the explicit stochastic NMPC and to the explicit min-max NMPC
are V̂E = 121.64 and V̂min−max = 122.57 (for hd = 0.6), and V̂E = 141.59 and
V̂min−max = 141.70 (for hd = 1.6). Therefore, the explicit min-max NMPC appears
to be slightly more conservative, since it is characterized with larger values of the
cost function in comparison to the explicit stochastic NMPC. It can be seen that
the explicit feedback stochastic NMPC controller brings the cart to the equilibrium
despite of the presence of stochastic uncertainty, and the constraints imposed on the
system are satisfied.
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Fig. 7.2 Control input and state trajectory for hd = 0.6.
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Fig. 7.3 Control input and state trajectory for hd = 1.6.
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7.3 Explicit Stochastic NMPC Based on Gaussian Process
Models

In this section, the approximate mp-NLP approach [19, 20] to explicit open-loop
stochastic NMPC based on Gaussian process models (abbreviated as GP-NMPC) is
presented. The approach constructs a piecewise linear (PWL) approximation to the
optimal control sequence, defined on an orthogonal partition of the state space.

7.3.1 Modeling of Dynamic Systems with Gaussian Processes

A Gaussian process is an example of the use of a flexible, probabilistic, nonpara-
metric model which directly provides us with quantification of the uncertainty of
predictions. Its use and properties for modeling are reviewed in [41].

A Gaussian process is a collection of random variables which have a joint mul-
tivariate Gaussian distribution. Assuming a relationship of the form y = f (z) be-
tween an input z ∈ R

D and output y ∈ R, we have y(1), y(2), ... , y(M) ∼N (0,K),
where Kpq = Cov(y(p),y(q)) =C(z(p),z(q)) gives the covariance between the out-
put points y(p) and y(q) corresponding to the input points z(p) and z(q). Thus, the
mean μ(z) (usually assumed to be zero) and the covariance function C(z(p),z(q))
fully specify the Gaussian process. Note that the covariance function C(z(p),z(q))
can be any function with the property that it generates a positive definite covariance
matrix. A common choice is the Gaussian covariance function [45, 41]:

C(z(p),z(q)) = v1 exp

[

−1
2

D

∑
i=1

wi(zi(p)− zi(q))
2

]

+ v0αpq (7.39)

whereΘ = [w1, ... , wD, v0, v1] is a vector of parameters called hyperparameters and
zi denotes the i-th component of the D-dimensional input vector z. The hyperpa-
rameter v1 controls the magnitude of the covariance and the hyperparameters wi

represent the relative importance of each component zi of vector z. The part v0αpq

represents the covariance between outputs due to white noise, where αpq is the Kro-
necker operator and v0 is the white noise variance (when assuming different kinds
of noise the covariance function should be changed appropriately, e.g. [15]). For a
given problem, the hyperparameters are learned (identified) using the data at hand.
After the learning, one can use the w parameters as indicators of ’how important’
the corresponding input components (dimensions) are: if wi is zero or near zero it
means that the inputs in dimension i contain little information and could possibly be
removed.

Consider a set of M D-dimensional input vectors Z = [z(1), z(2), ... , z(M)]T and
a vector of output data Y = [y(1), y(2), ... , y(M)]T . Based on the data (Z,Y ), and
given a new input vector z∗, we wish to estimate the probability distribution of the
corresponding output y∗. Unlike other models, there is no model parameter deter-
mination as such, within a fixed model structure. With this model, most of the effort
consists in tuning the parameters of the covariance function. This is done by maxi-
mizing the log-likelihood with the vector of hyperparametersΘ :
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L (Θ) = log(p(Y |Z)) =−1
2

log(|K|)− 1
2

Y T K−1Y − M
2

log(2π) (7.40)

where K is the M×M training covariance matrix with determinant |K| and the
hyperparameters distribution p(Θ |Y, Z) is approximated with their most likely val-
ues. The optimization requires the computation of the derivative of L with respect
to each of the parameters:

∂L (Θ)

∂θi
=−1

2
trace

(

K−1 ∂K
∂θi

)

+
1
2

Y T K−1 ∂K
∂θi

K−1Y (7.41)

Here, it involves the computation of the inverse of the M×M covariance matrix K
at every iteration, which can be computationally demanding for large M. The reader
is referred to [41] for a detailed description of the parameter optimization methods.

Given that the hyperparameters are known, we can estimate the probability dis-
tribution of the corresponding output y∗ at some new input vector z∗:

p(y∗ |Y, Z, z∗) =
p(Y, y∗, Z, z∗)

p(Y |Z, z∗)
(7.42)

It can be shown that this distribution is Gaussian with mean and variance [45]:

μ(z∗) = k(z∗)T K−1Y (7.43)

σ2(z∗) = k0(z
∗)− k(z∗)T K−1k(z∗) (7.44)

where k(z∗) = [C(z(1),z∗), ... ,C(z(M),z∗)]T is the M× 1 vector of covariances be-
tween the test input and the training inputs and k0(z∗) = C(z∗,z∗) is the autoco-
variance of the test input. The vector k(z∗)T K−1 in (7.43) can be interpreted as a
vector of smoothing terms which weights the training outputs Y to make a predic-
tion at the test point z∗. If the new input is far away from the data points, the term
k(z∗)T K−1k(z∗) in (7.44) will be small, so that the predicted variance σ2(z∗) will be
large. Thus, from the system identification point of view equation (7.43) provides
the model prediction and equation (7.44) its confidence.

Gaussian processes can be used to model static nonlinearities and can therefore
be used for modeling of dynamic systems if delayed input and output signals are
used as regressors [26]. In such cases an autoregressive model is considered, such
that the current predicted output depends on previous estimated outputs, as well as
on previous control inputs:

z(t) = [ŷ(t− 1), ŷ(t− 2), ... , ŷ(t−L), u(t− 1), u(t− 2), ... , u(t−L)]T

ŷ(t) = f (z(t))+η(t) (7.45)

where t denotes consecutive number of data sample, L is a given lag, and η(t) is
the prediction error. The quality of the predictions with a Gaussian process model is
assessed by computing the average squared error (ASE):
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ASE =
1
M

M

∑
i=1

[μ(ŷ(i))− y(i)]2 (7.46)

and by the log predictive density error (LD) [26]:

LD =
1
2

log(2π)+
1

2M

M

∑
i=1

(

log[σ2(ŷ(i))]+
[μ(ŷ(i))− y(i)]2

σ2(ŷ(i))

)

(7.47)

In (7.46), (7.47), μ(ŷ(i)) and σ2(ŷ(i)) are the prediction mean and variance, y(i) is
the system’s output and M is the number of the training points.

The Gaussian process model now not only describes the dynamic characteris-
tics of the non-linear system, but at the same time provides information about the
confidence in the predictions. The Gaussian process can highlight areas of the in-
put space where prediction quality is poor, due to the lack of data, by indicating
the higher variance around the predicted mean. The Gaussian process modelling
approach in [26] has been applied to model the dynamics of various systems e.g.
[2, 29, 20, 28, 39].

7.3.2 Formulation of the Stochastic GP-NMPC Problem as an
mp-NLP Problem

Consider a stochastic nonlinear discrete-time system:

x(t + 1) = f (x(t),u(t))+ ξ (t) (7.48)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and input variables, ξ (t) ∈ R
n are

Gaussian disturbances, and f : Rn×R
m → R

n is a nonlinear continuous function.
Suppose that a Gaussian process model of the system (7.48) is obtained by applying
the approach described in Section 7.3.1. Suppose the initial state x(t) = xt|t and the
control inputs u(t + k) = ut+k, k = 0, 1, ... , N− 1 are given. Then, the probability
distribution of the predicted states xt+k+1|t , k = 0, 1, ... , N− 1 which correspond to
the given initial state xt|t and control inputs ut+k, k = 0, 1, ... , N−1 can be obtained
[16]:

xt+k+1|t |xt+k|t , ut+k ∼N (μ(xt+k+1|t ),σ2(xt+k+1|t)), k = 0, 1, ... , N− 1 (7.49)

The 95% confidence interval of the random variable xt+k+1|t is [μ(xt+k+1|t)−
2σ(xt+k+1|t); μ(xt+k+1|t) + 2σ(xt+k+1|t)], where σ(xt+k+1|t) is the standard
deviation.

In [19, 20], a reference tracking NMPC problem based on a Gaussian process
model (GP-NMPC) is considered, where the goal is to have the state vector x(t)
track the reference signal r(t) ∈Rn. In the problem formulation, the type of the cost
function is like the one used in [3]. Suppose that a full measurement of the state
x(t) is available at the current time t. For the current x(t), the reference tracking
GP-NMPC solves the following optimization problem [19, 20]:
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Problem 7.4:

V ∗(x(t),r(t),u(t− 1)) = min
U

J(U,x(t),r(t),u(t− 1)) (7.50)

subject to xt|t = x(t) and:

μ(xt+k|t)− 2σ(xt+k|t)≥ xmin, k = 1, ... , N (7.51)

μ(xt+k|t)+ 2σ(xt+k|t)≤ xmax, k = 1, ... , N (7.52)

umin ≤ ut+k ≤ umax, k = 0, 1, ... , N− 1 (7.53)

Δumin ≤ Δut+k ≤ Δumax, k = 0, 1, ... , N− 1 (7.54)

max{‖μ(xt+N|t)− 2σ(xt+N|t)− r(t)‖,
‖μ(xt+N|t)+ 2σ(xt+N|t)− r(t)‖} ≤ δ (7.55)

Δut+k = ut+k− ut+k−1, k = 0, 1, ... , N− 1 (7.56)

xt+k+1|t |xt+k|t , ut+k ∼N (μ(xt+k+1|t),σ2(xt+k+1|t))
k = 0, 1, ... , N− 1 (7.57)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x(t),r(t),u(t− 1)) =
N−1

∑
k=0

[‖μ(xt+k|t)− r(t)‖2
Q+ ‖Δut+k‖2

R

]

+‖μ(xt+N|t)− r(t)‖2
P (7.58)

Here, N is a finite horizon and P, Q, R � 0. From a stability point of view it is de-
sirable to choose δ in the terminal constraint (7.55) sufficiently small [37]. If the
horizon N is large and the Gaussian process model has a small prediction uncer-
tainty, then it is more likely that the choice of a small δ will be possible.

It should be noted that a more general stochastic MPC problem is formulated
in [31, 7, 8, 5], where a probabilistic formulation of the cost includes the proba-
bilistic bounds of the predicted variable. The stochastic MPC problem considered
here (Problem 7.4) is of a more special form since the cost function (7.58) includes
the mean value of the random variable. However, the approximate approach to the
explicit solution of Problem 7.4 (which is based on the approximate mp-NLP algo-
rithms, given in Section 1.1.5) can be easily extended to the more general case of
stochastic MPC problem formulation where the optimization is performed on the
expected value of the cost function.

We introduce a parameter vector:

x̃(t) = [x(t), r(t), u(t− 1)] ∈R
ñ, ñ = 2n+m (7.59)

Let x̃ be the value of the parameter vector at the current time t. Using a direct single
shooting strategy, the equality constraints are eliminated and the optimization Prob-
lem 7.4 can be formulated in a compact form as follows [19, 20]:
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Problem 7.5:
V ∗(x̃) = min

U
J(U, x̃) subject to G(U, x̃)≤ 0 (7.60)

The GP-NMPC problem defines an mp-NLP, since it is NLP in U parameterized by
x̃. An optimal solution to this problem is denoted U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the
control input is chosen according to the receding horizon policy u(t) = u∗t . Define
the set of feasible parameter vectors as follows:

Xf = {x̃ ∈R
ñ |G(U, x̃)≤ 0 for some U ∈ R

Nm} (7.61)

If δ in (7.55) is chosen such that the Problem 7.4 is feasible, then Xf is a non-empty
set. In parametric programming problems one seeks the solution U∗(x̃) as an explicit
function of the parameters x̃ in some set X ⊆ Xf ⊆ R

ñ [14]. In case the Problem 7.5
is convex, its approximate solution can be found by applying the approximate mp-
NLP approach, described in Section 1.1.5.1. Otherwise, the approximate mp-NLP
approach from Section 1.1.5.2 should be used, where in addition to the set of ver-
tices of a given hyper-rectangle in the parameter space, the optimal solution is also
computed at several interior points and global optimization methods are applied.

7.3.3 Application 2: Reference Tracking Control of a Combustion
Plant

Energy production is one of the largest sources of air pollution and CO2. Therefore
a rational and ecological use of energy is the main task of the thermoelectric power
plants. A feasible method to reduce the NOx, CO, CO2 emissions and to increase
the efficiency is to improve the control strategies of existing power plants, i.e. to
optimize the combustion process [11]. The objectives for the improvement of the
power plant combustion process are energy saving, pollution reduction, longer plant
lifetime, less downtime and maintenance effort, increased safety in operation, i.e.
overall cost reduction. These goals can be achieved through application of modern
control algorithms with low on-line computational complexity and high reliability
of the implementation. Feedback combustion control is possible since continuous
flue gases analyzers are available [11]. For control purposes it would be ideal to
measure all flue gases components. But the price for such a realization would cur-
rently be too high in comparison with the savings achieved. Therefore the control
of the oxygen fraction in the flue gases, measured on-line by the well known in-situ
ZrO2 analyzers, is often the best solution [10]. Based on that, different algorithms
for combustion control have been studied in [42, 9, 4, 10, 25] and more recent in e.g.
[40, 13]. It should be noted that these methods assume that the combustion model
is known exactly. However, the mathematical models are only an approximation of
the real process and they usually contain some amount of uncertainty (unknown ad-
ditive disturbances and/or uncertain model parameters). In order to achieve a robust
performance of the control system it would be necessary to take into account the
uncertainty when designing the controller.
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In [20], a Gaussian process model of a combustion plant (a steam boiler PK 401
at Cinkarna Celje Company, Celje, Slovenia) is obtained. Then, the approximate
mp-NLP approach (described in Section 1.1.5.2) is applied to design an explicit
reference tracking GP-NMPC controller that brings the air factor of the combustion
plant to its optimal value with every change of the load factor. Thus, an efficient on-
line optimization of the combustion plant is achieved where both the economic and
the environmental aspects are taken into account. Because of the operation safety
of the considered combustion plant and because interrupts in plant operation are
not favored by company management, the results obtained in [20] are based on
simulation data to show the potential use of the approximate mp-NLP approach to
the optimal control of industrial combustion plants.

7.3.3.1 Optimal Operation of Combustion Plants

Fuel composition can be expressed with percentage of carbon C, hydrogen H, oxy-
gen O, nitrogen N, sulphur S, ash A and water W [12]:

C + H + O + N + S + A + W = 100% (7.62)

Composition of the air is usually expressed only with the percentage of oxygen O2

and nitrogen N2:
O2 +N2 = 21%+ 79%= 100% (7.63)

The combustion process is schematically shown in Fig. 7.4. The limited fuel sources,
considerable increase in the fuel prices and the enormous environment pollution
require decreasing the fuel use, the heat losses and the amount of harmful flue gases
emissions, i.e. to optimize the combustion process [9]. It has been shown in [9] that
in order to achieve an optimal operation of the combustion plants, it is necessary to
optimize the air factor λ defined as:

λ =
Vair

Vair,stoich
(7.64)

COMBUSTION 

Fuel 
(C+H+O+N+S+A+W) 

Air 
(O2 + N2)

Incomplete combustion 
CO, CO2, H2O, O2, N2

NOx, SOx

Complete combustion 
CO2, H2O, O2, N2

NOx, SOx

Heat

Fig. 7.4 Input and output flows of the combustion process.
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Fig. 7.5 Techno-
economical and environ-
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where Vair is the volume of the air which goes into the combustion chamber and
Vair,stoich is the stoichiometrically required volume of the air necessary for complete
combustion of 1 kg fuel. The combustion plant is working with air deficiency when
λ < 1, and with air excess when λ > 1. Fig. 7.5 from [9] shows the aspects of the
optimal combustion of fuel. From techno-economical viewpoint, the losses of the
combustion can be reduced in two ways: 1) by reducing the quantity of the unburned
fuel and 2) by reducing the quantity of the flue gases, i.e. of the heat losses. This
leads to the optimal value λopt,t of the air factor (cf. Fig. 7.5). From environmental
viewpoint, it is desired to minimize the quantity of the harmful emissions and the
corresponding optimal value of the air factor is λopt,e (cf. Fig. 7.5). By taking into
account both the techno-economical and the environmental aspects of combustion
operation, it follows that the value λ of the air factor should be kept within the
interval [λopt,t; λopt,e].

It has been also shown in practice that the optimal air factor λopt depends on the
load factor β defined as:

β =
Φfuel

Φfuel,max
(7.65)

where Φfuel and Φfuel,max are respectively the current and the maximal allowed fuel
flowrate. The relation λopt = f (β ) is shown in Fig. 7.6, where it can be seen that the
optimal operation of the combustion plant is achieved with an air excess.

Therefore, the goal is to apply control algorithms that will maintain the air factor
on its optimal value with every change of the load factor. Due to the importance of
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Fig. 7.6 The dependence of
the optimal air factor on the
load factor [9].
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the described issue from economic and also environmental aspect, the combustion
control is the field of constant development and research. This is also the driver
for the development of the modeling and control approaches presented in the next
sections.

7.3.3.2 Gaussian Process Model of a Combustion Plant

In [20], the system under investigation is a process of combustion in a steam boiler
PK 401 at Cinkarna Celje Company, Celje, Slovenia. It was not possible to perform
experiments on this plant during its operation because of plant safety and because
interrupts in plant operation are not favored by company management. Therefore,
the Gaussian process model identification was based on simulation data generated
by adding a Gaussian disturbance to the analytical model developed in [12].

The fuel composition is expressed with the percentages of carbon C, hydrogen H,
oxygen O, nitrogen N, sulphur S, ash A and water H2O (denoted respectively with
xfuel

C , xfuel
H , xfuel

O , xfuel
N , xfuel

S , xfuel
A , xfuel

H2O):

xfuel
C + xfuel

H + xfuel
O + xfuel

N + xfuel
S + xfuel

A + xfuel
H2O = 100% (7.66)

The composition of the air is assumed to be 21% oxygen and 79% nitrogen. The
equations of the developed analytical model [12] are based on the stoichiometric
chemical reactions of combustion:

C+O2→ CO2 +Q1 (7.67)

C+
1
2

O2→ CO+Q2 (7.68)

2H2 +O2→ 2H2O+Q3 (7.69)

S+O2→ SO2 +Q4 (7.70)
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where Q1, Q2, Q3, Q4 are the heats of the reactions. The composition of the flue
gases, resulting from the combustion process, is expressed in the following way
[12]:

xO2 + xCO + xCO2 + xSO2 + xN2 + xH2O = 100% (7.71)

where xO2, xCO, xCO2, xSO2 , xN2 and xH2O are the volume percentages of oxygen,
carbon monoxide, carbon dioxide, sulphur dioxide, nitrogen and water. Then, the
volume balances for the separate components of the flue gases are described by the
following equations [12]:

dxO2

dt
=

1
Vk
{−xO2 [Φair +Φfuel(Vd−Vo)]+ 21Φair− 100VoΦfuel} (7.72)

dxCO

dt
=

1
Vk
{−xCO[Φair +Φfuel(Vd−Vo)]+ 1.866axfuel

C Φfuel} (7.73)

dxCO2

dt
=

1
Vk
{−xCO2 [Φair +Φfuel(Vd−Vo)]+ 1.866(1− a)xfuel

C Φfuel} (7.74)

dxSO2

dt
=

1
Vk
{−xSO2 [Φair +Φfuel(Vd−Vo)]+ 0.699xfuel

S Φfuel} (7.75)

dxN2

dt
=

1
Vk
{−xN2 [Φair +Φfuel(Vd−Vo)]+ 79Φair+ 0.8xfuel

N Φfuel} (7.76)

dxH2O

dt
=

1
Vk
{−xH2O[Φair +Φfuel(Vd−Vo)]+ 11.117xfuel

H Φfuel

+1.244xfuel
H2OΦfuel} (7.77)

In (7.72)–(7.77),Vk is the volume of the combustion chamber [m3], Φfuel is the nor-
malized total flow of fuel [kg s−1],Φair is the normalized total flow of air [N m3 s−1],
Vo is the theoretically required oxygen volume for the combustion of one unit of
fuel [N m3 kg−1], Vd is the theoretically obtained gas volume from one unit of fuel
[N m3 kg−1], a is the relative portion of carbon converted into CO.

The model (7.72)–(7.77) enables the simulation of the six flue gases components.
However, for control design purposes only its O2-part (equation (7.72)) named also
O2-model is used [9, 10]. The input to the O2-model is the angular position of the
damper, which is used to control the air flow Φair. The model output is the oxygen
concentration in the flue gases. As the damper is a part of the closed-loop, it has to
be modeled and added to the O2-model (7.72). The dependence of the air flow Φair

on the angle φ of the damper is given by the following relation [9]:

Φair =
Φair,max

2
exp

(

3(φ − 45)
45

)

, 0◦ ≤ φ ≤ 45◦ (7.78)

Φair =
Φair,max

2

(

2− exp

(−3(φ − 45)
45

))

, 45◦ ≤ φ ≤ 90◦ (7.79)

where Φair,max is the maximum flow of air.



178 7 Explicit Stochastic NMPC

The O2-model (7.72) is a deterministic model, which does not take into account
the stochastic disturbances (e.g. change in the fuel composition, change of the hu-
midity of the air flow) that may influence the combustion process. In order to con-
sider the stochastic nature of plant operation, the dynamics of xO2 is represented by
the following stochastic discrete-time model [20]:

xO2(t + 1) = f (xO2(t),Φfuel(t),φ(t))+ ξ (t) (7.80)

Here, ξ (t) ∈ R is a Gaussian disturbance which represents the additive effect of the
unmeasured stochastic disturbances. The sampling time, determined according to
system dynamics, was selected to be Ts = 1 [s].

In [20], the signals φ andΦfuel for identification were generated by random num-
ber generators with normal distributions. The signal xO2 was computed from the
O2-model (7.72) and a Gaussian disturbance ξ with zero mean and variance 0.05
was added to it. The φ signal blocking was Tφ = 5Ts, i.e. it is kept constant for 5 time
instants. TheΦfuel signal blocking was TΦfuel = 100Ts. The number M of the signals
samples used for the identification determines the dimension of the covariance ma-
trix. In our case, M = 1000. Based on the generated data set, the discrete-time system
(7.80) is approximated with a Gaussian process with the following hyperparameters
[20]:

Θ = [w1,w2,w3,v0,v1] = [0.01346,0.02847,0.00036,0.21984,55.56554] (7.81)

The maximum likelihood framework was used to determine the hyperparameters.
The optimization method applied for identification of the Gaussian process model
was the conjugate gradient method with line searches [16]. The response of the
Gaussian process model to the identification signal is shown in Fig. 7.7. The asso-
ciated average squared error and log density error are respectively ASE=0.6051 and
LD=143.4835.

In [20], the signals φ and Φfuel for validation were generated by random num-
ber generator with normal distribution and rate of change that is different from the
one used for the identification signals. The mean and the variance of xO2 predicted
with the identified Gaussian process model are obtained by iterative one-step ahead
predictions, where at each step the predicted mean of xO2 is fed back to the input.
The response of the Gaussian process model to the validation signals is shown in
Fig. 7.8. The associated prediction errors are ASE=0.9177 and LD=188.8626.

7.3.3.3 Design and Performance of Explicit Stochastic Reference Tracking
Controller for the Combustion Plant

In [20], an explicit stochastic reference tracking GP-NMPC controller for the com-
bustion plant considered in Section 7.3.3.2 is designed. The block-scheme of the
control system is shown in Fig. 7.9. The controller brings the air factor (respectively
the concentration of oxygen in the flue gases) on its optimal value with every change
of the load factor and thus an optimal operation of the combustion plant is achieved.
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Fig. 7.7 Response of the Gaussian process model to the excitation signal used for identifica-
tion.
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Fig. 7.8 Response of the Gaussian process model to the excitation signal used for validation.
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Fig. 7.9 Block scheme of the control system.

Table 7.1 Reference values for the percentage of O2 in the flue gases

Φfuel 0.7 0.8 0.9 1.0 1.1 1.2 1.3
[kg s−1]

rO2 4.5 4.1 3.7 3.4 3.2 3.0 2.8
[vol%]

The control input is u = φ (the angle of the damper for the air flow), the state
variable is x = xO2 (the percentage of O2 in the flue gases), and the reference signal
is r = rO2 (the required percentage of O2 in the flue gases). For this particular com-
bustion plant, the reference values rO2 corresponding to different values of the fuel
flowrate Φfuel have been obtained by experiments and are given in Table 7.1 [9]. In
case the fuel flowrate Φfuel does not take a value from this table, then the reference
value rO2 is computed through linear interpolation between the neighboring points
in the table.

The mp-NLP approach described in Section 1.1.5.2 is applied to design an ex-
plicit stochastic reference tracking GP-NMPC controller for the combustion plant
based on its Gaussian process model obtained in Section 7.3.3.2:

xO2(t + 1) |xO2(t),Φfuel(t), φ(t)∼N (μ(xO2(t + 1)),σ2(xO2(t + 1))) (7.82)

The following control input and rate constraints are imposed on the plant:

30◦ ≤ φ ≤ 60◦ , −3◦ ≤ Δφ ≤ 3◦ (7.83)

The prediction horizon is N = 10 and the terminal constraint is:
∣

∣μ(xO2(t +N))− rO2(t)
∣

∣≤ 0.001 (7.84)
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The weighting matrices in the cost function (7.58) are Q = 20, R = 1, P = 20.
The GP-NMPC minimizes the cost function (7.58) subject to the Gaussian pro-
cess model (7.82) and the constraints (7.83)–(7.84). The parameter vector is x̃(t) =
[xO2(t), Φfuel(t), φ(t − 1)] ∈ R

3, which leads to a 3-dimensional parameter space
to be partitioned. The latter is defined by X = [0; 7]× [0.7; 1.3]× [30; 60]. The
cost function approximation tolerance is chosen as ε̄(X0) = max(ε̄a, ε̄r min

x̃∈X0
V ∗(x̃)),

where ε̄a = 0.005 and ε̄r = 0.1 are the absolute and the relative tolerances, respec-
tively. The partition of the explicit GP-NMPC controller is shown in Fig. 7.10. It has
513 regions and 12 levels of a binary search tree representation. Totally, 18 arith-
metic operations are needed in real-time to compute the control input by traversing
the binary search tree (12 comparisons, 3 multiplications and 3 additions).
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Fig. 7.10 Parameter space partition of the explicit approximate GP-NMPC controller.

The performance of the closed-loop system was simulated for the following
change in the fuel flowrate:

Φfuel(t) = 1.1 [kg s−1], t ∈ [0; 50];

Φfuel(t) = 1.25 [kg s−1], t ∈ [51; 100]; (7.85)

Φfuel(t) = 1.05 [kg s−1], t ∈ [101; 150]

and initial conditions for the state and control variable xO2(0) = 3.3 [vol%] and
φ(0) = 46◦, respectively. The resulting closed-loop response is depicted in Fig. 7.11
and Fig. 7.12.

The results show that the exact and the approximate solutions are almost indis-
tinguishable.
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Fig. 7.11 Top: Change of
the fuel flowrate. Bottom:
The control input with the
approximate explicit GP-
NMPC (the solid curve) and
with the exact GP-NMPC
(the dotted curve).
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Fig. 7.12 Top: The mean
value of the state variable
predicted with the Gaussian
process model. Bottom: The
95% confidence interval of
the state variable predicted
with the Gaussian process
model. The solid curves
are with the approximate
explicit GP-NMPC, the
dotted curves are with the
exact GP-NMPC and the
dashed curve is the set
point.
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Allgöwer, F. (eds.) Nonlinear Model Predictive Control: Towards New Challenging Ap-
plications. LNCIS, vol. 384, pp. 235–248. Springer, Heidelberg (2009)

19. Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit stochastic nonlinear predictive
control based on Gaussian process models. In: Proceedings of the European Control
Conference, Kos, Greece, pp. 2340–2347 (2007)

20. Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit stochastic predictive control of
combustion plants based on Gaussian process models. Automatica 44, 1621–1631 (2008)

21. Grancharova, A., Johansen, T.A.: Computation, approximation and stability of ex-
plicit feedback min-max nonlinear model predictive control. Automatica 45, 1134–1143
(2009)

22. Grancharova, A., Johansen, T.A.: A computational approach to explicit feedback
stochastic nonlinear model predictive control. In: Proceedings of the IEEE Conference
on Decision and Control, Atlanta, USA, pp. 6083–6088 (2010)

23. Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear
systems. Automatica 40, 293–300 (2004)



References 185

24. Kantas, N., Maciejowski, J.M., Lecchini-Visintini, A.: Sequential Monte Carlo for
Model Predictive Control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlin-
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