
Chapter 6
Explicit Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

Abstract. This chapter considers two approaches to explicit min-max NMPC of
general constrained nonlinear discrete-time systems in the presence of bounded dis-
turbances and/or parameter uncertainties. The approach in Section 6.2 is based on
an open-loop min-max NMPC formulation and constructs a piecewise linear (PWL)
approximation of the optimal solution. An explicit open-loop min-max NMPC con-
troller is designed for a continuous stirred tank reactor, whose heat transfer coeffi-
cient is an uncertain parameter. The approach in Section 6.3 adopts a closed-loop
(also referred to as feedback) min-max NMPC formulation and builds a piecewise
nonlinear (PWNL) approximation of the optimal sequence of feedback control poli-
cies. The approach is applied to design an explicit feedback min-max NMPC con-
troller for a cart and spring system in the presence of bounded disturbances.

6.1 Introduction

Models are only an approximation of the real process, and therefore it is important
for NMPC to be robust with respect to model uncertainties and disturbances. One
approach to robust NMPC design is to optimize the nominal performance while
guaranteeing robust feasibility and robust stability of the closed-loop system. Thus
in [25], a Lyapunov-based robust NMPC design for input-affine nonlinear systems
subject to uncertainty and input constraints is developed, which allows for an ex-
plicit characterization of the closed-loop stability region. Another robust NMPC
strategy consists of solving a min-max problem to optimize the robust performance
while enforcing the state and input constraints for all possible uncertainties. The
min-max robust MPC was first proposed in [5]. There are two formulations of min-
max NMPC: the open-loop and the closed-loop (also referred to as feedback) for-
mulation (see [22] for review of the min-max NMPC approaches). The open-loop
min-max NMPC [26, 19, 22] guarantees the robust stability and the robust feasibil-
ity of the system, but it may be very conservative since the control sequence has to
ensure constraints fulfillment for all possible uncertainty scenarios without consid-
ering the fact that future measurements of the state contain information about past
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uncertainty values. As a result, the open-loop min-max NMPC controllers may have
a small feasible set and sub-optimal performance. An approximate multi-parametric
Nonlinear Programming (mp-NLP) approach to explicit solution of open-loop min-
max NMPC problems has been suggested in [8]. This approach is considered in
Section 6.2.

The conservativeness of the open-loop approaches is overcome by the closed-
loop min-max NMPC [21, 22, 20], where the optimization is performed over a se-
quence of feedback control policies. With the closed-loop approach, the min-max
NMPC problem represents a differential game where the controller is the minimiz-
ing player and the disturbance is the input of the maximizing player (’the nature’)
[21]. The controller chooses the control input as a function of the current state so as
to ensure that the effect of the disturbance on the system output is sufficiently small
for any choice made by ’the nature’. In this way, the closed-loop min-max NMPC
would guarantee a larger feasible set and a higher level of performance compared to
the open-loop min-max NMPC [21]. Recently, several approaches have been devel-
oped for explicit solution of min-max MPC problems for special classes of uncertain
nonlinear systems. Thus, for constrained linear systems with polytopic uncertainty,
approaches for explicit solution of the open-loop and the closed-loop min-max MPC
problems have been developed, respectively in [6] and in [31, 4, 29]. The method
in [2] applies to linear systems with polyhedral parametric uncertainty and additive
bounded disturbances and both the open-loop and the closed-loop min-max control
problems are solved explicitly. Approaches for explicit solution of robust finite hori-
zon optimal control problems for constrained piecewise affine systems with bounded
disturbances have been proposed, based on an open-loop formulation in [27], and
on a closed-loop formulation in [16, 30]. Methods for explicit solution of min-max
MPC or H∞ problems for constrained linear systems with additive bounded uncer-
tainties are suggested in [28] for the open-loop formulation, and in [15, 24] for the
closed-loop formulation. In [11], an approximate mp-NLP approach to explicit so-
lution of closed-loop min-max NMPC problems for general nonlinear systems with
state and input constraints has been developed. This approach is considered in Sec-
tion 6.3.

6.2 Explicit Open-Loop Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

This section considers the approximate mp-NLP approach [8] to explicit solution of
open-loop min-max NMPC problems for constrained nonlinear systems in the pres-
ence of model uncertainty. It is based on an orthogonal search tree structure of the
state space partition and thus represents an extension of the approach in [14]. The
explicit NMPC controller is designed by formulating a min-max optimization prob-
lem, i.e. by minimizing the worst-case with respect to the uncertain parameters cost
function value. The controller formulation is robust in the sense that all constraints
are attempted satisfied for all possible values of the uncertain parameters.
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6.2.1 Formulation of the Open-Loop Min-Max NMPC Problem
as an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),θ ) (6.1)

y(t) =Cx(t) (6.2)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input and output variable,

θ is the vector of time-invariant uncertain parameters that is assumed to belong to a
bounded polyhedral set θ ∈ΘA ⊂R

s. It is assumed that the function f is sufficiently
smooth. It is also supposed that a full measurement of the state x(t) is available at
the current time t. We consider the following open-loop robust NMPC problem: For
the current x(t), NMPC minimizes the worst-case cost function through the follow-
ing optimization:

Problem 6.1:
V ∗max(x(t)) = min

U
max
θ∈ΘA

J(U,x(t),θ ) (6.3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax , ∀θ ∈ΘA , k = 1, ... , N (6.4)

umin ≤ ut+k ≤ umax , k = 0, 1, ... , N− 1 (6.5)

xT
t+N|t xt+N|t ≤ δ , ∀θ ∈ΘA (6.6)

xt+k+1|t = f (xt+k|t ,ut+k,θ ) , θ ∈ΘA , k ≥ 0 (6.7)

yt+k|t =Cxt+k|t , k ≥ 0 (6.8)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x(t),θ ) =
N−1

∑
k=0

[

xT
t+k|tQxt+k|t + uT

t+kRut+k

]

+ xT
t+N|tPxt+N|t (6.9)

Here, N is a finite horizon. The formulation implies that a direct single shooting
strategy is employed, see Section 2.2.2.1, i.e. the equality constraints (6.7)–(6.8) are
substituted and eliminated in the cost and constraint functions. In (6.3), the existence
of the minimum and maximum are implicitly assumed. From a stability point of
view it is desirable to choose δ in (6.6) as small as possible [23]. However, due to
the fact that xt+N|t depends on the unknown θ , the feasibility of Problem 6.1 will
rely on δ being sufficiently large. A part of the NMPC design will be to address this
trade-off. If the system is asymptotically stable (or pre-stabilized), N is large, and
possibly an integral action is introduced to account for the steady-state effect of the
uncertainty, then it is more likely that the choice of a small δ will be possible.
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The following assumptions are made:

Assumption 6.1. P, Q, R� 0.

Assumption 6.2. ymin < 0 < ymax.

Assumption 6.3. θ is time-invariant uncertainty that belongs to a bounded poly-
hedral set, i.e. θ = const ∈ ΘA. The polyhedral set ΘA is defined by ΘA = {θ ∈
R

s |θL ≤ θ ≤ θU}, where θL and θU represent given lower and upper bounds
on θ .

Assumption 6.4. For each θ ∈ΘA there exists ust ∈Rm satisfying umin≤ ust ≤ umax,
and such that f (0,ust ,θ ) = 0.

Assumption 6.4 means that the point x = 0, u = ust is a feasible steady state point
for system (6.1)–(6.2). It also implies that the steady state value of the control input
may be different for the different values of the uncertain parameters.

The worst-case value of cost function (6.9) with respect to the uncertain parame-
ters is denoted by:

Vmax(U,x(t)) = max
θ∈ΘA

J(U,x(t),θ ) (6.10)

An optimal solution to the min-max NMPC Problem 6.1 is denoted U∗ = [u∗t , u∗t+1,
... , u∗t+N−1] and the control input is chosen according to the receding horizon pol-
icy u(t) = u∗t . The optimization problem can be formulated in a compact form as
follows:

Problem 6.2:

V ∗max(x(t)) = min
U

max
θ∈ΘA

J(U,x(t),θ ) subject to G(U,x(t),θ )≤ 0 , ∀θ ∈ΘA (6.11)

This min-max NMPC problem defines an mp-NLP, since it is NLP in U parameter-
ized by x. Since the equality constraints are eliminated by the direct single shooting
strategy, (6.11) contains only inequality constraints. Define the set of N-step ro-
bustly feasible initial states as follows:

Xf = {x ∈R
n |G(U,x,θ )≤ 0 , ∀θ ∈ΘA for some U ∈R

Nm} (6.12)

If Assumption 6.4 is satisfied and δ is chosen such that the Problem 6.1 is feasible,
then Xf is a non-empty set. Then, due to Assumption 6.2, the origin is an interior
point in Xf .

6.2.2 Approximate mp-NLP Approach to Explicit Open-Loop
Min-Max NMPC

The numerical computations involved in constructing the approximate explicit state
feedback are simplified under the following convexity assumption:
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Assumption 6.5. G(U,x,θ ) is jointly convex for all (U, x, θ )∈UA×X×ΘA, where
UA = [umin, umax]

N is the set of admissible inputs and X ⊆ Xf ⊆ R
n is a polytopic

set.

We exploit the result in [12], where it has been shown that if the constraint function
G(U,x,θ ) is jointly convex in U and θ , and there is U that is feasible at the vertices
ofΘA, then U is feasible for all θ ∈ΘA. This is formulated in the following lemma:

Lemma 6.1. Suppose Assumptions 6.3 and 6.5 hold and denote the vertices of the
polyhedron ΘA ⊂ R

s with {θ1, θ2, ... , θL}. Denote also ˜Gi(U,x) = G(U,x,θi). If
there exist U that satisfies the following constraints:

˜Gi(U,x)≤ 0 , i ∈ {1, 2, ... , L} (6.13)

then U satisfies the constraints in (6.11).

Thus, we can replace the infinite number of constraints in (6.11) with the following
finite set of jointly convex constraints which are function only of U and x:

˜G(U,x)≤ 0 , ˜G(U,x) = { ˜Gi(U,x) , i = 1, 2, ... , L} (6.14)

Then, the Problem 6.2 can be reformulated as:

Problem 6.3:

V ∗max(x) = min
U

Vmax(U,x) subject to ˜G(U,x)≤ 0 (6.15)

where Vmax(U,x) is defined by (6.10).
Problem 6.3 defines a mp-NLP problem, since it is an NLP in U parameterized

by x. In case the Problem 6.3 is convex, its approximate solution can be found by ap-
plying the approximate mp-NLP approach, described in Section 1.1.5.1. Otherwise,
the approximate mp-NLP approach from Section 1.1.5.2 should be used, where in
addition to the set of vertices of a given hyper-rectangle in the parameter space, the
optimal solution is also searched for at several interior points and global optimiza-
tion methods are applied. Further, if Assumption 6.5 does not hold, then it would
not be sufficient to consider the constraints G(U,x,θ ) only at the vertices of the set
ΘA, i.e. it would not be possible to apply Lemma 6.1, but it would be advisable to
impose these constraints also at a finite set of interior points of the setΘA.

6.2.3 Application 1: Min-Max MPC of a Continuous Stirred Tank
Reactor

The considered approximate mp-NLP approach is applied to design an explicit min-
max NMPC controller for the continuous stirred tank reactor (CSTR), described in
Section 5.5. We consider the set point c̃∗ = 0.41, T̃ ∗ = 3.3. Then, the model of the
reactor can be written in the form [13]:
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dx1

dt
=

(1− c̃∗− x1)

q
− k0e

− E
(T̃∗+x2) (c̃∗+ x1) (6.16)

dx2

dt
=

(T̃f − T̃ ∗ − x2)

q
+ k0e

− E
(T̃∗+x2) (c̃∗+ x1)−αu(T̃ ∗+ x2− T̃c) (6.17)

where x1 and x2 denote the deviations of the dimensionless concentration and tem-
perature from the set point values (x1 = c̃− c̃∗, x2 = T̃ − T̃ ∗). The coolant flow-rate
u is a real-valued control variable. The heat transfer coefficient α is an uncertain
parameter that belongs to the interval:

1.9 ·10−4≤ α ≤ 2.5 ·10−4 (6.18)

The values of the other parameters are given in Section 5.5. The coolant flow-rate is
constrained to be:

0≤ u≤ 600 (6.19)

We discretize the model (6.16)–(6.17) using a sampling time Ts = 1. The forward
Euler method with step size TE = 0.01 is used to integrate the equations (6.16)–
(6.17).

The mp-NLP formulation described in Section 6.2.2 is applied to design an ex-
plicit open-loop min-max NMPC controller for this reactor. The NMPC minimizes
the worst-case (maximal) value with respect to the uncertain parameter θ = α of the
cost function (6.9) subject to the system equations (6.16)–(6.17) and the input con-
straint (6.19). In (6.9), the cost matrices are Q = P = diag{100, 300}, R = 1 ·10−6.
The horizon is N = 30. In (6.6), it is chosen δ = 0.002. The state space to be parti-
tioned is defined by X = [−0.4, 0.6]× [−0.4, 0.5].

The state space partition of the approximate min-max NMPC controller resulting
from the algorithms and procedures in Section 1.1.5.2 is shown in Fig. 6.1. It has 94
regions and 10 levels of search. With one scalar comparison required at each level
of the k− d tree, 10 arithmetic operations are required in the worst case to deter-
mine which region the state belongs to. Totally, 14 arithmetic operations are needed
in real-time to compute the control input (10 comparisons, 2 multiplications and 2
additions).

The performance of the closed-loop system was simulated for initial condition
x(0) = [0.58, 0.3]T and for three values of the uncertain parameter (α = 1.9 ·10−4,
α = 2.2 ·10−4, α = 2.5 ·10−4). The resulting closed-loop response is depicted in the
state space (Fig. 6.1), as well as trajectories in time (Fig. 6.2 and Fig. 6.3). It can be
seen that the explicit approximate min-max NMPC controller brings the reactor to
the desired set point despite of the model uncertainty, and the constraints imposed
on the system are satisfied. In order to avoid a possible offset, the dual-mode control
strategy of [26] was applied and a locally stabilizing control law was used in a
neighborhood of the origin.
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Fig. 6.1 State space partition of the approximate explicit open-loop min-max NMPC and the
state trajectories corresponding to α = 1.9 ·10−4, α = 2.2 ·10−4, α = 2.5 ·10−4.

Fig. 6.2 Control input and
state trajectory correspond-
ing to α = 1.9 ·10−4.
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Fig. 6.3 Control input and
state trajectory correspond-
ing to α = 2.5 ·10−4.
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6.3 Explicit Closed-Loop Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

This section considers the approximate mp-NLP approach [11] to explicit solu-
tion of closed-loop (feedback) min-max NMPC problems for general constrained
nonlinear discrete-time systems in the presence of bounded disturbances and/or pa-
rameter uncertainties. The approach consists in constructing a piecewise nonlinear
(PWNL) approximation to the optimal sequence of feedback control policies, de-
fined on an orthogonal state space partition. Conditions guaranteeing the l2-stability
of the closed-loop system are derived.

6.3.1 Formulation of the Closed-Loop Min-Max NMPC Problem
as an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),w(t))

y(t) = h(x(t),u(t),w(t)), (6.20)

where x(t) ∈R
n, u(t) ∈R

m, y(t) ∈R
r and w(t) ∈Rq are the state, input, output and

disturbance variable. The following constraints are imposed:
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umin ≤ u(t)≤ umax, ymin ≤ y(t)≤ ymax (6.21)

Following [21],

Assumption 6.6. f and h are C2 functions with f (0,0,0) = 0, h(0,0,0) = 0.

Assumption 6.7. ymin < 0 < ymax and umin < 0 < umax.

Assumption 6.8. Let ˜X be a non-empty set containing the origin as an interior
point, and let t0 be a positive integer. The system (6.20) is zero-state detectable
in ˜X, i.e. ∀x(0) ∈ ˜X and ∀u(·) such that constraints (6.21) are satisfied ∀t ≥ 0 and
x(t) ∈ ˜X, ∀t ≥ t0, we have y(t)|w=0 = 0, ∀t ≥ t0⇒ lim

t→∞x(t) = 0.

Assumption 6.9. There exists a positive constant γΔ , such that the disturbance w
satisfies:

‖w(t)‖2 ≤ γ2
Δ‖y(t)‖2, t ≥ t0. (6.22)

Let x(t) = x and u(t) = u. Then, the space of the admissible disturbances is denoted
by W A(u,x)⊂R

q. As mentioned in [21], inequality (6.22) can also represent a wide
class of modeling errors. As in [21], first a H∞ control problem is defined:

Definition 6.1 (H∞ control problem). Design a state-feedback control law:

u = k(x) (6.23)

guaranteeing that the closed-loop system (6.20)–(6.23) with input w ∈W A(u,x) and
output y has a finite l2-gain ≤ γ in a bounded positively invariant set Ω , that is,
∀x(t) ∈Ω :

i. x(t + i) ∈Ω , ∀i > 0.
ii. umin ≤ k(x(t + i))≤ umax and ymin ≤ h(x(t + i),k(x(t + i)),w(t + i))≤ ymax,
∀i≥ 0.

iii.There exists a positive definite function β (x(t)), such that ∀T ≥ 0:

T

∑
i=0
‖y(t + i)‖2 ≤ γ2

T

∑
i=0
‖w(t + i)‖2 +β (x(t)) (6.24)

for any non-zero w ∈W A(u,x).

The following assumption is also made [21]:

Assumption 6.10. Suppose that there exists an auxiliary control law u = ka(x) that
solves the H∞ control problem, with a domain of attraction Ωa, whose boundary is
assumed to be a level curve of a positive function Vka(x) such that:

Vka( f (x,ka(x),w))−Vka(x)≤−
1
2
(‖y‖2− γ2‖w‖2),

∀x ∈Ωa, ∀w ∈W A(u,x) (6.25)

and Vka(0) = 0.
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Definition 6.2 (Admissible disturbance realization). Let K = {k0,k1, ... ,kN−1}�
{k0(xt|t ),k1(xt+1|t), ... ,kN−1(xt+N−1|t )} be a vector of feedback control policies and
N be a finite horizon. Consider the closed-loop system for i = 0,1,2, ... ,N− 1:

xt+i+1|t = f (xt+i|t ,ki(xt+i|t ),wt+i)

yt+i|t = h(xt+i|t ,ki(xt+i|t),wt+i) (6.26)

with initial state xt|t = x. Then, the disturbance realization W = {wt , ... ,wt+N−1} ∈
R

qN is admissible for the given K and x if the following holds:

‖wt+i‖2 ≤ γ2
Δ‖yt+i|t‖2, i = 0,1,2, ... ,N− 1. (6.27)

The space of the admissible disturbance realizations over horizon N and correspond-
ing to the given K and x is denoted by W B(K,x)⊂ R

qN .

It is supposed that a full measurement x of the state is available at the current time
t. We consider the feedback min-max NMPC problem [22]:

Definition 6.3 (Constrained feedback min-max NMPC problem). Suppose that
Assumptions 6.6–6.10 hold. For the current x, the feedback min-max NMPC solves
the following optimization problem:

V o
max(x) = min

K
max

W∈W B(K,x)
J(K,x,W ) (6.28)

subject to xt|t = x and:

ymin ≤ yt+i|t ≤ ymax, i = 1, ... ,N− 1 (6.29)

umin ≤ ut+i ≤ umax, i = 0, 1, ... ,N− 1 (6.30)

xt+N|t ∈Ωa (6.31)

ut+i = ki(xt+i|t ), i = 0, 1, ... ,N− 1 (6.32)

xt+i+1|t = f (xt+i|t ,ut+i,wt+i), wt+i ∈W A(ut+i,xt+i|t), 0≤ i≤ N− 1 (6.33)

yt+i|t = h(xt+i|t ,ut+i,wt+i), wt+i ∈W A(ut+i,xt+i|t ), 0≤ i≤ N− 1 (6.34)

and the cost function given by:

J(K,x,W ) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N|t ) (6.35)

Here, N is the finite horizon and γ is the l2-gain which is interpreted as the distur-
bance attenuation level. Note that in (6.28)–(6.35) wt+i denotes a single disturbance
at time instant t + i, while W is an admissible disturbance realization as specified in
Definition 6.2. An auxiliary control law ka(x) is typically obtained by solving the
H∞ control problem for the linearized system [26]. Thus, a practical way to compute
a nonlinear control ka(x) satisfying Assumption 6.10 is suggested in [21].
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An optimal solution to the feedback min-max NMPC problem (6.28)–(6.35) is
denoted Ko = {ko

0,k
o
1, ... ,k

o
N−1} � {ko

0(xt|t),ko
1(xt+1|t), ... ,ko

N−1(xt+N−1|t )} and the
control input is chosen according to the receding horizon policy u(xt|t) = ko

0(xt|t ). It
is assumed that:

Assumption 6.11. Each feedback control policy ki(xt+i|t ), i = 0,1, ... ,N − 1, has
the form:

ki(xt+i|t ) = αika(xt+i|t)+ ri(ξi,xt+i|t) = gi(pi,xt+i|t), (6.36)

where pi = [αT
i ξ T

i ]T ∈ R
ni are the parameters that need to be optimized, ka(xt+i|t )

is an auxiliary control law that satisfies Assumption 6.10, and ri(ξi,xt+i|t) is a con-
tinuous function with ri(ξi,0) = 0.

In general, the parameterization of the form (6.36) would lead to an approximate
solution to the feedback min-max NMPC problem (6.28)–(6.35). Denote with P the
whole set of parameters that need to be determined, i.e. P= [pT

0 pT
1 ... pT

N−1]
T ∈Rnp ,

where np =
N−1
∑

i=0
ni. Then, the worst-case value of cost function (6.35) with respect

to the disturbances is denoted by:

Vmax(P,x) = max
W∈W B(P,x)

J(P,x,W ) (6.37)

Note that the argument K is now substituted with the argument P. Using a direct
single shooting strategy to eliminate all the equality constraints (6.32)–(6.34), the
optimization problem (6.28)–(6.35) can be formulated in a compact form as follows
[11]:

Problem 6.4:

V o
max(x) = min

P
max

W∈W B(P,x)
J(P,x,W ) (6.38)

subject to G(P,x,W )≤ 0, ∀W ∈W B(P,x) (6.39)

Problem 6.4 defines an mp-NLP, since it is NLP in P parameterized by x. We remark
that the constraints function G(P,x,W ) in (6.39) is implicitly defined by (6.29)–
(6.34). Define the set of N-step robustly feasible initial states:

Xf = {x ∈R
n |G(P,x,W )≤ 0, ∀W ∈W B(P,x) for some P ∈ R

np} (6.40)

If the problem (6.28)–(6.35) is feasible, then Xf is a non-empty set. Then, due to
Assumption 6.7, the origin is an interior point in Xf .

As mentioned in Chapter 1, in parametric programming problems one seeks the
solution Po(x) as an explicit function of the parameters x in some set X ⊆ Xf ⊆ R

n

[7]. However, in the general case, an exact explicit solution of Problem 6.4 with the
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associated shape of the state space partition can not be found. Therefore, it would
be necessary to use methods for approximate explicit solution by preliminary spec-
ifying the structure of the partition. In [9, 11], practical computational methods for
constructing an explicit approximate solution of feedback min-max NMPC prob-
lems for general constrained nonlinear systems are suggested, which are based on
an orthogonal structure of the state space partition. Since the regions in the partition
do not overlap (except at the boundary), the approximation corresponds to orthogo-
nal basis-functions that form a complete basis on the space of continuous functions.
This ensures an arbitrarily good approximation if the optimal solution is a continu-
ous function. Note that this type of partition does not impose any restrictions on the
class of problems that can be solved.

6.3.2 Approximate mp-NLP Approach to Explicit Closed-Loop
Min-Max NMPC

In [9, 11], an approximate mp-NLP approach to explicit solution of the feedback
(closed-loop) min-max NMPC problem (Definition 6.3) is proposed. In contrast to
the method in [8] (considered in Section 6.2) where a sequence of control actions is
optimized, here the optimization is performed over a sequence of feedback control
policies. Another difference from most approximate mp-NLP approaches, where
a piecewise linear solution is obtained, is that the presented method constructs an
explicit approximate solution, which represents a piecewise nonlinear function.

6.3.2.1 Non-convexity and Close-to-Global Solutions

From a physical insight on the considered system (6.20), it is supposed that the
disturbance w can vary in the range:

wmin ≤ w(t)≤ wmax, (6.41)

with known wmin, wmax. The procedure used to generate a discrete set of admissible
disturbance realizations is the following [11]:

Procedure 6.1 (Generation of discrete set of admissible disturbance realiza-
tions). Consider system (6.20), where w(t) ∈ [wmin; wmax]. Let N be a finite hori-
zon and K = {k0,k1, ... ,kN−1} be a vector of feedback control policies where each
feedback function ki(x), i = 0, ... ,N− 1 , has the form (6.36). Suppose that the ini-
tial state of the system (6.20) is xt|t = x and let jmax be a positive integer. Then, for
a given vector P = [pT

0 pT
1 ... pT

N−1]
T of parameters of K, a finite set W 0(P,x) =

{W1,W2, ... ,WNW } of admissible disturbance realizations is generated where each
realization Ws = {ws

t ,w
s
t+1, ... ,w

s
t+i, ... ,w

s
t+N−1}, s = 1,2, ... ,NW is determined by

applying Algorithm 6.1.
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Algorithm 6.1. Generation of an admissible disturbance realization.

Input: N, P = [pT
0 pT

1 ... pT
N−1]

T , x, jmax.
Output: Ws = {ws

t ,w
s
t+1, ... ,w

s
t+i, ... ,w

s
t+N−1}.

1. Let i = 0.
2. while i≤ N− 1 do
3. Let f lag = 0, j = 0.
4. while f lag = 0 do
5. Generate value ws

t+i ∈ [wmin; wmax] by using random generator
with uniform distribution.

6. j = j+ 1.
7. if ‖ws

t+i‖2 ≤ γ2
Δ‖h(xt+i|t ,ki(xt+i|t),ws

t+i)‖2 then
8. Compute xt+i+1|t = f (xt+i|t ,ki(xt+i|t),ws

t+i).
9. f lag = 1.
10. else
11. if j > jmax, terminate (an admissible disturbance realization

is not found).
12. end if
13. end while
14. i = i+ 1.
15. end while

In Algorithm 6.1, the parameter jmax denotes the maximal allowed number of un-
successful iterations and it is typically chosen to be jmax = 100q, where q is the di-
mension of w. A special case is the case when the disturbance is of the form w(t) =
dT y(t), where d ∈Rr is a vector of uncertain parameters with dmin≤ d≤ dmax. Then,
the set of the admissible disturbance realizations can be generated by simulating the
closed-loop system response for different values ds ∈ [dmin; dmax], s = 1,2, ... ,NW

of d.
The procedure used to approximate Problem 6.4 is [11]:

Procedure 6.2 (Approximation of Problem 6.4). Suppose that Assumptions 6.6–
6.11 hold. Let P be a given vector of parameters of the sequence K of feedback
control policies. Suppose that a finite set W 0(P,x) = {W1,W2, ... ,WNW } of admis-
sible disturbance realizations has been determined by applying Procedure 6.1. An
estimate ˜Vmax(P,x) of Vmax(P,x) is computed as follows:

˜Vmax(P,x) = max
Wi∈W0(P,x)

J(P,x,Wi) (6.42)

Denote with ˜G(P,x) the set of constraints functions:

˜G(P,x) = {G(P,x,Wi),Wi ∈W 0(P,x)} (6.43)
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Then Problem 6.4 is approximated with the following mp-NLP problem:

Problem 6.5:

˜V o
max(x) = min

P
˜Vmax(P,x) subject to ˜G(P,x)≤ 0. (6.44)

Thus, we can approximate the infinite number of constraints (6.39) with a finite
amount of constraints which are functions only of P and x. For a given min-max
NMPC problem it would be necessary to analyze how the size of the set of admis-
sible disturbance realizations generated with Procedure 6.1 would effect the worst-
case cost function value and the satisfaction of constraints in Problem 6.4. It should
be expected that with the increase of the number of the generated disturbance se-
quences, the probability of satisfaction of the constraints in Problem 6.4 would be
higher. On the other hand, this will lead to an increase of the computational efforts
related to the design of the explicit NMPC controller. Therefore, for every specific
min-max NMPC problem, a tradeoff should be made and a reasonable number of
admissible disturbance realizations should be determined. Hereafter, let X ⊂ R

n be
a hyper-rectangle where we seek an explicit approximate solution of Problem 6.5.

Problem 6.5 can be non-convex with multiple local minima. Therefore, it would
be necessary to apply an efficient initialization of Problem 6.5 so to find a close-to-
global solution. One possible way to obtain this is to find a close-to-global solution
at a point v0 ∈ X0 (where X0 is a hyper-rectangle in the state space) by comparing
the local minima corresponding to several initial guesses and then to use this so-
lution as an initial guess at the neighboring points vi ∈ X0, i = 1,2, ... ,N1, i.e. to
propagate the solution. For this purpose, Procedures 1.1 and 1.2 from Chapter 1 can
be used to generate a set of points V0 = {v0,v1,v2, ... ,vN1}, associated to X0, and to
find a close-to-global solution at these points, respectively. It should be noted that
the notation used here is different from the one in Chapter 1. Thus here, the points
and the set of points are denoted with vi and V0 (instead of wi and W0), the vector
of optimization variables is P (instead of z), the objective function and the con-
straints function in the mp-NLP problem are ˜Vmax(·, ·) and ˜G(·, ·) (instead of f (·, ·)
and g(·, ·)).

6.3.2.2 Computation of Explicit Approximate Solution

We restrict our attention to a hyper-rectangle X ⊂ R
n where we seek to approx-

imate the close-to-global sequence of control policies K∗ = {k∗0,k∗1, ... ,k∗N−1} �
{k∗0(xt|t),k∗1(xt+1|t), ... ,k∗N−1(xt+N−1|t )}. We require that the state space partition
is orthogonal and can be represented as a k− d tree [3]. The main idea of the
approximate mp-NLP approach is to construct a piecewise nonlinear (PWNL)
approximation ̂K = {̂k0,̂k1, ... ,̂kN−1} � {̂k0(xt|t ),̂k1(xt+1|t), ... ,̂kN−1(xt+N−1|t)}
to the close-to-global feedback K∗ = {k∗0,k∗1, ... ,k∗N−1} on X . The constituent se-

quences of nonlinear control policies are denoted with ̂KXi = {̂k0,Xi , ... ,
̂kN−1,Xi} �

{̂k0,Xi(xt|t ), ... ,̂kN−1,Xi(xt+N−1|t )} and are defined on hyper-rectangles Xi covering
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X . This means that a sequence ̂KXi is applied for ∀xt|t ∈ Xi. Let ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} be an approximation to the close-to-global solution K∗ = {k∗0, ... ,k∗N−1},
valid in X0. Denote with PX0 = [pT

0,X0
... pT

N−1,X0
]T the parameters of ̂KX0 . Ac-

cording to Assumption 6.11, ̂ki,X0(xt+i|t ) = gi(pi,X0 ,xt+i|t ), i = 0,1, ... ,N − 1. Let
̂

˜V max(PX0 ,x) be the cost function value due to initial state x = xt|t and sequence ̂KX0

of control policies, i.e.

̂

˜V max(PX0 ,x) = max
Wi∈W0(PX0 ,x)

J(PX0 ,x,Wi). (6.45)

Then, the approximate sequence

̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0}� {g0(p0,X0 ,xt|t ), ... ,gN−1(pN−1,X0 ,xt+N−1|t)}, (6.46)

valid for ∀xt|t ∈ X0, is computed with the following procedure [11]:

Procedure 6.3 (Computation of explicit approximate solution). Suppose that As-
sumptions 6.6–6.11 hold. Consider any hyper-rectangle X0 ⊆ X with a set of points
V0 = {v0,v1,v2, ... ,vN1} determined with Procedure 1.1. Suppose that a close-to-
global solution of Problem 6.5 at the points vi ∈ V0, i = 0,1,2, ... ,N1 has been
obtained by applying Procedure 1.2 and let ˜V ∗max(vi), i = 0,1,2, ... ,N1 be the close-
to-global cost function values. Compute the parameters PX0 = [pT

0,X0
... pT

N−1,X0
]T of

the sequence ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} by solving the NLP:

min
PX0

N1

∑
i=0

(

̂

˜V max(PX0 ,vi)− ˜V ∗max(vi)+ μ‖g0(p0,X0 ,vi)− k∗0(vi)‖2
2

)

(6.47)

subject to ˜G(PX0 ,vi)≤ 0, ∀vi ∈V0. (6.48)

In (6.47), the parameter μ > 0 is a weighting coefficient. Note that the sequence
̂KX0 = {̂k0,X0 , ... ,

̂kN−1,X0}, computed with Procedure 6.3, satisfies the constraints in
Problem 6.5 only for the discrete set of points V0 ⊂ X0.

6.3.2.3 Estimation of Error Bounds

Suppose that the parameters PX0 of the sequence ̂KX0 , valid in X0, has been computed
with Procedure 6.3. Then, for the cost function approximation error in X0 we have:

˜ε(x) = ̂˜V max(PX0 ,x)− ˜V ∗max(x)≤ ε0, x ∈ X0. (6.49)

The following procedure can be used to obtain an estimate ̂ε0 of the maximal ap-
proximation error ε0 in X0 [11]:
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Procedure 6.4 (Computation of error bound approximation). Consider a hyper-
rectangle X0 ⊆ X with a set of points V0 = {v0,v1,v2, ... ,vN1} determined by ap-
plying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through the
following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(
̂

˜V max(PX0 ,vi)− ˜V ∗max(vi)). (6.50)

The estimate ̂ε0 represents an approximate degree of sub-optimality, since it depends
on the finite set of admissible disturbance realizations generated with Procedure 6.1.

6.3.2.4 Approximate mp-NLP Algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given. Denote
with SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂ R

n, i.e. SX0 =
n
∏
i=1
Δxi, whereΔxi is the size of X0 along the state variable xi. Let Smin be the minimal

allowed volume of the regions in the partition of X . The following algorithm is
proposed to compute the explicit approximate feedback min-max NMPC controller
on X [11]:

Algorithm 6.2. Explicit feedback min-max NMPC.

Input: Data to Problem 6.5, the number N0 of internal regions (used in
Procedure 1.1), the parameter μ (used in Procedure 6.3), the approximation
tolerance ε̄ .
Output: Partition Π = {X1,X2, ...,XNX } and associated PWNL control function
̂KΠ = {̂KX1 ,

̂KX2 , ... ,
̂KXNX
}.

1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}.
Mark the hyper-rectangle X as unexplored, f lag := 1.

2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π .
5. Compute a solution to Problem 6.5 at the center point v0 of X0 by applying

Procedure 1.2a.
6. if Problem 6.5 has a feasible solution at v0 then
7. Define a set of points V0 = {v0,v1,v2, ... ,vN1} by applying Procedure 1.1.
8. Compute a solution to Problem 6.5 for x fixed to each of the points vi,

i = 1,2, ... ,N1 by applying Procedure 1.2b.
9. if Problem 6.5 has a feasible solution at all points vi, i = 1,2, ... ,N1 then
10. if 0 ∈ X0 then
11. Let ̂KX0 = ka(x).
12. If X0 ⊆Ωa, mark X0 as explored and feasible. Otherwise,

mark X0 to be split.
13. else
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14. Compute a sequence ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} of control policies

using Procedure 6.3, as an approximation to be used in X0.
15. if a sequence of control policies was found then
16. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying

Procedure 6.4.
17. If ̂ε0 > ε̄ , mark the hyper-rectangle X0 to be split. Otherwise,

mark X0 as explored and feasible.
18. else
19. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
20. end if
21. end if
22. else
23. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
24. end if
25. else
26. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
27. end if
28. end while
29. f lag := 0
30. if ∃ hyper-rectangles in Π that are marked to be split then
31. f lag := 1
32. while ∃ hyper-rectangles in Π that are marked to be split do
33. Select any hyper-rectangle X0 ∈Π marked to be split.
34. Split X0 into hyper-rectangles X1, ... , XNs by applying heuristic splitting

rules. Mark X1, ... , XNs unexplored, remove X0 from Π , and add
X1, ... , XNs to Π .

35. end while
36. end if
37. end while

In step 34, the heuristic splitting rules from [10] (described in details in
Section 1.1.5.2) are applied to partition a given hyper-rectangle X0. Thus, if a se-
quence of control policies valid in X0 is computed, but the required accuracy is not
achieved, then X0 is split by a hyperplane through its center and orthogonal to that
axis where a maximal reduction of the approximation error can be achieved. If there
is no feasible solution of Problem 6.5 at the center point v0 of X0, or the NLP prob-
lem (6.47)–(6.48) is infeasible, then X0 is split by a hyperplane through its center
and orthogonal to an arbitrary axis. If some of the points associated to X0 are feasi-
ble and others are not, then X0 is split into hyper-rectangles such that some of them
will include only feasible points.
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6.3.3 Stability

6.3.3.1 Computation of Approximate Region of Attraction for the
Sub-optimal Closed-Loop System

Let XΠ =
NX
⋃

i=1
Xi, Xi ∈Π be the set associated to the partitionΠ obtained with Algo-

rithm 6.2. Consider the suboptimal closed-loop system:

x(t + 1) = f (x(t),̂k0(x(t)),w(t)) (6.51)

y(t) = h(x(t),̂k0(x(t)),w(t)), (6.52)

where ̂k0(x(t)) is the approximate PWNL feedback law determined with Algorithm
6.2 and is defined on the set XΠ . The fact that the explicit NMPC controller is speci-
fied for an initial condition x(t) ∈ XΠ does not imply that x(t) is within the region of
attraction for the system (6.51)–(6.52). Therefore, the set XΠ may not be a domain
of attraction for this system. In fact, although a feasible control law exists at state
x(t) ∈ XΠ , the successor state x(t + 1) may go out of the set XΠ . Moreover, the set
XΠ may not be convex (see the simulation example in Section 6.3.4). Therefore, first
it would be useful to find a set Ω1 ⊆ XΠ , which is an inner convex approximation
of the set XΠ . Then, a convex set Ω2 ⊆Ω1 should be determined such thatΩ2 ⊃Ωa

and for every initial state that belongs to the setΩ2, the state trajectory of the system
(6.51)–(6.52) will lie in the setΩ1. This is specified in the following definition [11].

Definition 6.4 (Approximate region of attraction for the suboptimal closed-loop

system). LetΠ = {X1,X2, ... ,XNX }, XΠ =
NX
⋃

i=1
Xi, Xi ∈Π and ̂K = {̂k0,̂k1, ... ,̂kN−1}

be respectively the state space partition, the associated set in the state space and
the approximate PWNL sequence of feedback control policies, determined with Al-
gorithm 6.2. Let ̂P = [p̂T

0 p̂T
1 ... p̂T

N−1]
T be the parameters of ̂K. Assume that XΠ

is a non-empty set. Suppose that there exist polyhedral sets Ω1 and Ω2, such that
Ωa ⊂ Ω2 ⊆ Ω1 ⊆ XΠ . Let EΩ2 = {x j |x j ∈ Ω2, j = 1,2 ... ,Np2} denote a finite set
of randomly generated points. Let the state of the system (6.51)–(6.52) at time t be
xt|t = x j ∈ EΩ2 . Consider a finite set W 0(̂P,x j) = {W1,W2 ... ,WNW } of admissible
disturbance realizations Ws = {ws

t ,w
s
t+1, ... ,w

s
t+N−1}, s = 1,2 ... ,NW , generated by

applying Procedure 6.1. Let Xs, j = {xs, j
t+1|t ,x

s, j
t+2|t , ... ,x

s, j
t+N|t} denote the state trajec-

tory of the system (6.51)–(6.52) obtained with ̂K and corresponding to initial state
x j ∈ EΩ2 and disturbance realization Ws ∈W 0(̂P,x j), i.e.:

xs, j
t+i+1|t = f (xs, j

t+i|t ,̂k0(x
s, j
t+i|t),w

s
t+i) , i = 0,1,2, ... ,N− 1, (6.53)

Then, if:
Xs, j ∈Ω1, ∀x j ∈ EΩ2 and ∀Ws ∈W 0(̂P,x j), (6.54)

the set Ω2 is referred to as an approximate region of attraction for the suboptimal
closed-loop system (6.51)–(6.52).
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Let SΩ1 and SΩ2 denote the volumes of the polyhedral sets Ω1 and Ω2 defined as
their Lebesgue measures, i.e. SΩ1 =

∫

Ω1
dx and SΩ2 =

∫

Ω2
dx. The volume of the

set XΠ is SXΠ =
NX

∑
i=1

∫

Xi
dx, i.e. it represents the sum of the Lebesgue measures of all

regions Xi ∈Π . Then, the following procedure is applied to compute an approximate
region of attraction for the closed-loop system (6.51)–(6.52) [11]:

Procedure 6.5 (Computation of approximate region of attraction for the sub-

optimal closed-loop system). Let Π = {X1,X2, ... ,XNX }, XΠ =
NX
⋃

i=1
Xi, Xi ∈ Π and

̂K = {̂k0,̂k1, ... ,̂kN−1} be respectively the state space partition, the associated set
in the state space and the approximate PWNL sequence of feedback control poli-
cies, determined with Algorithm 6.2. Assume the set XΠ is non-empty. Suppose
that there exist polyhedral sets Ω1 = {x ∈ XΠ |a1

i ≤ h1
i x≤ b1

i , i = 1,2, ... ,NΩ1} and
Ω2 = {x∈ XΠ |a2

i ≤ h2
i x≤ b2

i , i = 1,2, ... ,NΩ2}, such thatΩa⊂Ω2⊆Ω1⊆ XΠ . Let
EΩ1 = {xk |xk ∈Ω1, k = 1,2, ... ,Np1} and EΩ2 = {x j |x j ∈Ω2, j = 1,2, ... ,Np2} de-
note finite sets of randomly generated points. Then, for specified NΩ1 , NΩ2 , Np1 and
Np2, the approximate region of attraction for the closed-loop system (6.51)–(6.52)
is computed by implementing the following steps:

1. Determine the polyhedron Ω ∗1 = {x ∈ XΠ |a1∗
i ≤ h1∗

i x ≤ b1∗
i , i = 1,2, ... ,NΩ1},

where a1∗
i , h1∗

i , b1∗
i , i = 1,2, ... ,NΩ1 are computed by solving the optimization

problem:

{a1∗
i ,h1∗

i ,b1∗
i , i = 1,2, ... ,NΩ1}= arg min

a1
i ,h

1
i ,b

1
i ,i=1,...,NΩ1

∣

∣SΩ1− SXΠ

∣

∣

subject to EΩ1 ⊆ XΠ . (6.55)

2. Determine the approximate region of attraction as the following polyhedronΩ∗2 =

{x∈ XΠ |a2∗
i ≤ h2∗

i x≤ b2∗
i , i= 1,2, ... ,NΩ2}, where a2∗

i , h2∗
i , b2∗

i , i= 1,2, ... ,NΩ2

are computed by solving the optimization problem:

{a2∗
i ,h2∗

i ,b2∗
i , i = 1,2, ... ,NΩ2}= arg min

a2
i ,h

2
i ,b

2
i ,i=1,...,NΩ2

∣

∣SΩ2− SΩ1

∣

∣

subject to EΩ2 ⊆Ω1,Ωa ⊂Ω2, and condition (6.54). (6.56)

Problems (6.55) and (6.56) are nonlinear programming problems and nonlinear pro-
gramming techniques [1] can be used to solve them. Further in the paper, the sets
Ω ∗2 and Ω ∗1 determined with Procedure 6.5 will be denoted as Ω2 and Ω1.

After Procedure 6.5 is implemented, a partition ΠRH = {R1,R2, ... ,RNR} is built

such thatΩ1 =
NR
⋃

i=1
Ri. Each region Ri ∈ΠRH represents either a hyper-rectangular re-

gion, i.e. Ri≡Xj or a polyhedral region, i.e. Ri =Xj∩Ω1, where Xj ∈Π . The PWNL
function associated to the partitionΠRH is defined as ̂KΠRH = {̂KR1 ,

̂KR2 , ... ,
̂KRNR
},

where ̂KRi ≡ ̂KXj , ̂KXj ∈ ̂KΠ , given that Ri ≡ Xj or Ri = Xj∩Ω1. As result, we obtain
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a partition ΠRH and an approximate PWNL sequence of feedback control policies
̂KRH = {̂kRH

0 ,̂kRH
1 , ... ,̂kRH

N−1} defined on the set Ω1.

6.3.3.2 Stability Result

This section considers the stability of the closed-loop system:

x(t + 1) = f (x(t),̂kRH
0 (x(t)),w(t)) (6.57)

y(t) = h(x(t),̂kRH
0 (x(t)),w(t)), (6.58)

where ̂kRH
0 (x(t)) is the approximate PWNL feedback law determined with Algo-

rithm 6.2 and Procedure 6.5 and is defined on the approximate region of attraction
Ω2 computed with Procedure 6.5.

The following notation is introduced. Let N be the prediction horizon and xt|t = x

is the initial state of the system (6.57)–(6.58). For any x ∈ Ω1, let ̂KN ≡ ̂KRH =
{̂kRH

0 (xt|t ), ... ,̂kRH
N−1(xt+N−1|t )} denote the approximate solution to the optimiza-

tion Problem 6.5. Let XN = {xt+1|t , ... ,xt+N|t} and YN = {yt|t , ... ,yt+N−1|t} de-

note the state and output trajectories of system (6.57)–(6.58) obtained with ̂KN

and corresponding to a disturbance realization WN = {wt , ... ,wt+N−1} ∈W B(̂KN ,x)
(W B(̂KN ,x)⊂R

qN is the set of the admissible disturbance realizations over horizon
N). Let ̂Vmax(x,N) be the worst-case cost function value due to initial state xt|t = x

and sequence ̂KN , i.e.:

̂Vmax(x,N) = max
WN∈WB(̂KN ,x)

J(x, ̂KN ,WN ,N), (6.59)

where

J(x, ̂KN ,WN ,N) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N|t ). (6.60)

Consider the sequence

̂KN+1 = {̂kRH
0 (xt|t), ... ,̂kRH

N−1(xt+N−1|t),ka(xt+N|t )} (6.61)

for the Problem 6.5 with horizon N + 1. Then, XN+1 = {xt+1|t , ... ,xt+N|t , xt+N+1|t}
and YN+1 = {yt|t , ... ,yt+N−1|t ,yt+N|t} are the associated state and output trajecto-
ries of the system (6.57)–(6.58) corresponding to initial state xt|t = x and a dis-

turbance realization WN+1 = {wt , ... ,wt+N−1,wt+N} ∈WC(̂KN+1,x) (WC(̂KN+1,x)
⊂ R

q(N+1) is the set of the admissible disturbance realizations over horizon N + 1).
Let ̂Vmax(x,N + 1) be the worst-case cost function value due to initial state xt|t = x

and sequence ̂KN+1, i.e.:

̂Vmax(x,N + 1) = max
WN+1∈WC(̂KN+1,x)

J(x, ̂KN+1,WN+1,N + 1), (6.62)
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where J(x, ̂KN+1,WN+1,N + 1) = 1
2

N
∑

i=0
[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N+1|t ).

Let ̂PRH be the parameters of ̂KRH . The following assumption is made on the so-
lution ̂KRH and the sets Ω1 and Ω2 resulting from Algorithm 6.2 and Procedure 6.5
[11]:

Assumption 6.12 (Constraints satisfaction). The constraints G(̂PRH ,x,W )≤ 0 are
satisfied for all x ∈ Ω1 and all W ∈W B(̂PRH ,x). The sets Ω1 and Ω2 are such that
Ωa ⊂ Ω2 ⊆ Ω1 ⊆ XΠ and xt+i+1|t = f (xt+i|t ,̂kRH

i (xt+i|t ),wt+i) ∈ Ω1, ∀xt|t ∈ Ω2,

∀wt+i ∈W A(̂kRH
i (xt+i|t ),xt+i|t), i = 0,1,2, ... ,N− 1.

Here, the stability result is formulated [11]:

Theorem 6.1. Given an auxiliary control law ka(x) and an associated invariant set
Ωa, consider two positive constants γ and γΔ with γΔγ < 1. Suppose that a non-
empty region of attraction Ω2 and associated set Ω1 have been determined by ap-
plying Procedure 6.5. Let ̂KRH with parameters ̂PRH be the approximate PWNL
feedback law determined with Algorithm 6.2 and Procedure 6.5. Consider the
closed-loop system (6.57)–(6.58), wherêkRH

0 (x(t)) = [I 0 ... 0] ̂KRH. Then, under As-
sumptions 6.6–6.12, the following holds for the closed-loop system (6.57)–(6.58):

i). In the absence of disturbance the origin is asymptotically stable for all x ∈Ω2.
ii).In the presence of disturbance it has l2-gain less than or equal to γ for all x∈Ω2.

Proof ([11]).

i). From Assumption 6.9 it follows that ‖yt+i|t‖2 ≥ ‖wt+i‖2

γ2
Δ

, i ≥ 0. Then, the

condition γΔγ < 1 leads to ‖yt+i|t‖2 > γ2‖wt+i‖2, i ≥ 0. Therefore, the stage cost
L(yt+i|t ,wt+i) =

1
2 (‖yt+i|t‖2− γ2‖wt+i‖2) is a positive definite function. Then, by

taking into account that Vka(x) is a positive definite function too (cf.
Assumption 6.10), it follows:

̂Vmax(x,N)≥ 0,∀x ∈Ω2. (6.63)

In the absence of disturbance, the stage cost is L(y,0) = L(h(x,̂kRH
0 (x),0),0) and it

is a positive definite function defined on the set Ω2 which contains the origin in its
interior (according to Assumption 6.7). Then, it follows from Lemma 4.3 from [17]
that there exist a K -function α1(‖x‖) such that L(h(x,̂kRH

0 (x),0),0) ≥ α1(‖x‖),
∀x ∈ Ω2. Similarly, there exists a K -function α2(‖x‖) such that Vka(x) ≤ α2(‖x‖),
∀x ∈Ωa (the reader is referred to [17] for the definition of K -functions). Assump-
tion 6.10 holds also in the case of absence of disturbance and therefore the setΩa is a
positively invariant set for the nominal system (system (6.57)–(6.58) with w(t) = 0)
in closed-loop with the auxiliary control law ka(x) and the inequality (6.25) takes
the form:

Vka( f (x,ka(x),0))−Vka(x)+L(h(x,ka(x),0),0)≤ 0, ∀x ∈Ωa. (6.64)

Therefore, according to Theorem 1 with Assumption 1 in [18] x = 0 is asymptoti-
cally stable for all x ∈Ω2 when w(t) = 0.
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ii). In a way similar to that in [21], it can be proved that for the worst-case cost
function values defined by (6.59) and (6.62) the following holds:

̂Vmax(x,N + 1)≤ ̂Vmax(x,N),∀x ∈Ω2. (6.65)

Following similar arguments as in [21] and by taking into account (6.65), for ∀x ∈
Ω2 and for wt ∈W A(̂kRH

0 (x),x), we have:

̂Vmax(x,N) ≥ ̂Vmax( f (x,̂kRH
0 (x),wt ),N− 1)+

1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}

≥ ̂Vmax( f (x,̂kRH
0 (x),wt ),N)+

1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}.
(6.66)

Inequality (6.66) can be represented:

̂Vmax( f (x,̂kRH
0 (x),wt ),N)− ̂Vmax(x,N) ≤

−1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}. (6.67)

Further, by considering that xt+1|t = f (x,̂kRH
0 (x),wt ) and yt|t = h(x,̂kRH

0 (x),wt ), the
inequality (6.67) is written in the form:

̂Vmax(xt+1|t ,N)− ̂Vmax(x,N)≤−1
2
{‖yt|t‖2− γ2‖wt‖2}. (6.68)

In a similar way, it can be shown that:

̂Vmax(xt+i+1|t ,N)− ̂Vmax(xt+i|t ,N)≤−1
2
{‖yt+i|t‖2− γ2‖wt+i‖2}

i = 0,1, ... ,T. (6.69)

After summing the inequalities (6.69) and by taking into account (6.63), we obtain:

T

∑
i=0

1
2
‖yt+i|t‖2 ≤ γ2

T

∑
i=0

1
2
‖wt+i‖2 + ̂Vmax(x,N) (6.70)

∀x ∈ Ω2, ∀T ≥ 0, ∀WN ∈ W B(̂KN ,x). Therefore, the closed-loop system (6.57)–
(6.58) has l2-gain less than or equal to γ in Ω2. �
In the case when Assumption 6.12 does not hold, no guarantee on the l2-gain can be
given and only an estimate of its upper bound can be computed.

6.3.4 Application 2: Min-Max MPC of Cart and Spring System

Consider a cart with a mass M moving on a plane [21], shown in Fig. 6.4.
The carriage is attached to the wall via a spring with elasticity ρ = ρ0e−x1 , where

x1 is the displacement of the carriage from the equilibrium position associated with
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Fig. 6.4 Cart and spring
system [21].  

the external force u = 0. A damper with damping factor hd affects the system in a
resistive way. The damping factor hd is an uncertain parameter and it is only known
that hd = hd +Δhd , where hd = 1.1 and−0.5≤ Δhd ≤ 0.5. The system is described
by the nonlinear discrete-time model [21]:

x1(t + 1) = x1(t)+Tsx2(t) (6.71)

x2(t + 1) = x2(t)−Ts
ρ0

M
e−x1(t)x1(t)−Ts

hd

M
x2(t)+Ts

u(t)
M

+Tsw(t), (6.72)

where x2 is the carriage velocity, w(t) = −Δhd
M x2(t), Ts = 0.4 is the sampling time,

M = 1 and ρ0 = 0.33. Like in [21], we choose y = [x1 x2 u]T and it follows that
w(t) = [0 − Δhd

M 0]y(t). Therefore, ‖w(t)‖2 ≤ γ2
Δ‖y(t)‖2 with γΔ = 0.5, according

to Assumption 6.9. The following input and state constraints are imposed on the
system:

−4≤ u≤ 4, −1.3≤ x2 ≤ 1.3. (6.73)

Therefore, the disturbances vary in the range −1.3γΔ ≤ w ≤ 1.3γΔ . The horizon is
N = 15 and the terminal constraint is:

xt+N|t ∈Ωa, Ωa = {x ∈ R
n |xTΣx≤ δ}, (6.74)

where δ = 0.001 [21] and Σ = [1.3 1.9
1.9 3.0 ].

In [11], the approximate mp-NLP approach (described in Section 6.3.2) is applied
to design an explicit feedback min-max NMPC controller for the cart. The NMPC
minimizes the worst-case of the cost function (6.35) subject to the system equations
(6.71)–(6.72) and the constraints (6.73)–(6.74). In (6.35), it is chosen γ = 1 and
the terminal penalty is Vka = xTΣx [21]. Like in [21], the feedback functions ki(x),
i = 0,1, ... ,N− 1 have the form:

ki(pi,x) = αika(x)+ ξi,1x2
1 + ξi,2x2

2, (6.75)

where pi = [αi ξi,1 ξi,2]
T are the parameters that need to be optimized and ka(x)

is the auxiliary control law. The expression (6.75) implies that for relatively small
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absolute deviations from the equilibrium (small x2
1,t+i|t and x2

2,t+i|t ) the control input
value will be generated mainly by the auxiliary control law ka(xt+i|t). The control
law ka(xt+i|t ) is determined by applying the method in [21]:

ka(xt+i|t ) =−
[

1 0
]

R−1
[

FT
2

FT
3

]

Σ f1(xt+i|t), (6.76)

where:

f1(xt+i|t) =

[

x1,t+i|t +Tsx2,t+i|t
x2,t+i|t −Ts

ρ0
M e−x1, t+i|t x1,t+i|t −Ts

h̄d
M x2,t+i|t

]

(6.77)

F2 =

[

0
Ts
M

]

, F3 =

[

0
Ts

]

, R =

[

FT
2 ΣF2 + I FT

2 ΣF3

(FT
2 ΣF3)

T FT
3 ΣF3−α2I

]

(6.78)

A set of three admissible disturbance realizations is generated which correspond to
three values for the uncertain parameter Δhd (Δhd = −0.5, Δhd = 0, Δhd = 0.5).
One internal region X1

0 ⊂ X0 is used in Procedure 1.1. In (6.47), it is chosen μ = 10.
The approximation tolerance is chosen to be ε̄(X0) =max(ε̄a, ε̄rmin

x∈X0

˜V ∗max(x)), where

ε̄a = 0.003 and ε̄r = 0.01 are the absolute and the relative tolerances.
The state space partition of the feedback min-max NMPC controller (the set XΠ )

and the associated sets Ω1 and Ω2 are shown in Fig. 6.5. It is noticed that in some
part of the set X = [−3, 5]× [−2, 2] a feasible solution does not exist. The number of
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Fig. 6.5 State space partition of the explicit feedback min-max NMPC (the set XΠ ), the
associated sets Ω1 and Ω2, and the state trajectories for hd = 0.6, hd = 1.1, hd = 1.6.
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the inequalities describing the sets Ω1 and Ω2 is specified to be 5 and Procedure 6.5
is applied to determine them. The set Ω1 is obtained graphically by minimizing the
difference between its area and the area of the set XΠ . The computations of the state
trajectories of the suboptimal closed-loop system, performed according to equation
(6.53), have shown that the setΩ2 can be determined simply by increasing the bound
in one of the inequalities describing the setΩ1. The partition (the setΩ1 in Fig. 6.5)
has 537 regions and 14 levels of search. Totally, 32 arithmetic operations are needed
in real-time to compute the control input (14 comparisons, 11 multiplications, 6
additions and 1 exponential).

In Fig. 6.6, the optimal and the suboptimal feedback functions, respectively
u∗(x1,x2) = k∗0(x1,x2) and û(x1,x2) = ̂k0(x1,x2), are shown. In Fig. 6.7, the opti-
mal cost function and the cost function approximation error, associated with the
explicit approximate feedback min-max NMPC, are shown.

Fig. 6.6 The suboptimal
(top) and the optimal (bot-
tom) feedback functions
(views rotated on 140◦).
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Fig. 6.7 The optimal cost
function (top) and the cost
function approximation er-
ror (bottom) (views rotated
on 140◦).
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The performance of the suboptimal closed-loop system was simulated for initial
state x(0) = [−1.6 − 2]T and for three values of hd . The response is depicted in
the state space (Fig. 6.5) and as trajectories in time (Fig. 6.8 and Fig. 6.9). It can
be seen that the explicit feedback min-max NMPC controller brings the cart to the
equilibrium despite of the presence of disturbance, and the constraints imposed on
the system are satisfied. It can also be observed that the state trajectory does not
leave the set Ω1.
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Fig. 6.8 Control input and
state trajectory for hd = 0.6.
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Fig. 6.9 Control input and
state trajectory for hd = 1.6.
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