
Chapter 5
Explicit MPC of Constrained Nonlinear Systems
with Quantized Inputs

Abstract. This chapter presents an approximate multi-parametric Nonlinear Inte-
ger Programming (mp-NIP) approach to design explicit MPC controllers for con-
strained nonlinear systems with quantized control inputs. It is organized as follows.
In Section 5.2, general regulation and reference tracking quantized NMPC problems
are formulated and represented as an mp-NIP problem. Then, in Section 5.3, an ap-
proximate mp-NIP approach to explicit quantized NMPC is described. The idea of
the approach is to construct a piecewise constant (PWC) approximation to the opti-
mal solution of the mp-NIP problem on a hyper-rectangle of interest by imposing an
orthogonal state space partition. In Section 5.4, an explicit quantized NMPC con-
troller for the electropneumatic clutch actuator (described in Section 4.5) is designed
and its performance is compared to that of the explicit NMPC with continuous con-
trol input. In Section 5.5, the approximate mp-NIP approach is applied to design an
explicit quantized NMPC controller for optimal regulation of a continuous stirred
tank reactor.

5.1 Introduction

In several control engineering problems, the system to be controlled is characterized
by a finite set of possible control actions. Such systems are referred to as systems
with quantized control input and the possible values of the input represent the lev-
els of quantization. For example, hydraulic systems using on/off valves are systems
with quantized input. In order to achieve a high quality of the control system per-
formance it would be necessary to take into account the effect of the control input
quantization. Thus, in [10] receding horizon optimal control ideas were proposed
for synthesizing quantized control laws for linear systems with quantized inputs
and quadratic optimality criteria. Further in [1], a method for explicit solution of
optimal control problems with quantized control input was developed. It is based
on solving multi-parametric Nonlinear Integer Programming (mp-NIP) problems,
where the cost function and the constraints depend linearly on the vector of param-
eters. In [4, 3], an MPC problem for constrained nonlinear systems with quantized
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input is formulated and represented as an mp-NIP problem. Then, a computational
method for explicit approximate solution of the resulting mp-NIP problem is sug-
gested. The benefits of the explicit solution consist in efficient on-line computations
using a binary search tree and verifiability of the design and implementation. The
mp-NIP method proposed in [4, 3] is more general compared to the mp-NIP method
in [1], since it allows the cost function and the constraints to depend nonlinearly on
the vector of parameters.

Note that the term Nonlinear Integer Programming is used instead of the more
general Mixed-Integer Nonlinear Programming (MI-NLP) since the problem for-
mulation contains only integer free variables. This is possible since continuous vari-
ables are eliminated using a direct single shooting strategy, and all control inputs are
assumed to be quantized. The general ideas can, however, be extended to MI-NLP
to account for situations with mixed continuous and integer variables.

5.2 Formulation of the Quantized NMPC Problem as an
mp-NIP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t)) (5.1)

y(t) =Cx(t), (5.2)

where x(t) ∈R
n is the state variable, y(t) ∈Rp is the output variable, and u(t) ∈Rm

is the control input, which is constrained to belong to the finite set of values UA =
{u1,u2, ... ,uL}, ui ∈ R

m, ∀i = 1,2, ... ,L, i.e. u(t) ∈UA. Here, u1,u2, ... ,uL repre-
sent the levels of quantization of the control input u. In (5.1), f : Rn×UA �−→ R

n

is a nonlinear function. It is supposed that a full measurement of the state x(t) is
available at the current time t.

First, consider the optimal regulation problem where the goal is to steer the sys-
tem state to the origin by minimizing a certain performance criterion. For the current
x(t), the quantized NMPC regulation solves the optimization problem:

Problem 5.1:
V ∗(x(t)) = min

U∈UB
J(U,x(t)) (5.3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... , N (5.4)

ut+k ∈UA = {ū1, ū2, ... , ūL} , k = 0, 1, ... , N− 1 (5.5)

‖xt+N|t‖2 ≤ δx (5.6)

xt+k+1|t = f (xt+k|t ,ut+k) , k ≥ 0 (5.7)

yt+k|t =Cxt+k|t , k ≥ 0 (5.8)
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Here, U = [ut , ut+1, ... , ut+N−1] ∈ R
Nm is the set of free control moves, UB �

(UA)N=UA× ... ×UA. The set UB is also represented as UB={Ūj | j=1, 2, ... , M},
where Ūj ∈ R

Nm are the levels of quantization of the control vector U and M = LN .
The cost function is given by:

J(U,x(t)) =
N−1

∑
k=0

[‖xt+k|t‖2
Qx

+ ‖h(xt+k|t ,ut+k)‖2
R

]

+ ‖xt+N|t‖2
Px

(5.9)

Here, N is a finite horizon and h : R
n×UA �→ R

s is a nonlinear function. It is as-
sumed that δx > 0 and Px, Qx, R� 0.

Now, consider the reference tracking problem where the goal is to have the output
variable y(t) track the reference signal r(t) ∈R

p. For the current x(t), the reference
tracking quantized NMPC solves the following optimization problem:

Problem 5.2:
V ∗(x(t),r(t)) = min

U∈UB
J(U,x(t),r(t)) (5.10)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... ,N (5.11)

ut+k ∈UA = {u1,u2, ... ,uL}, k = 0,1, ... ,N− 1 (5.12)
∥

∥yt+N|t − r(t)
∥

∥≤ δy (5.13)

xt+k+1|t = f (xt+k|t ,ut+k), k ≥ 0 (5.14)

yt+k|t =Cxt+k|t , k≥ 0 (5.15)

Here, U = [ut ,ut+1, ... ,ut+N−1] ∈ R
Nm is the set of free control moves, UB =

(UA)N =UA× ... ×UA and the cost function is given by:

J(U,x(t),r(t)) =
N−1

∑
k=0

[

‖yt+k|t − r(t)‖2
Qy

+ ‖h(xt+k|t ,ut+k)‖2
R

]

+‖yt+N|t − r(t)‖2
Py

(5.16)

Similar to above, N is a finite horizon and h :Rn×UA �−→R
s is a nonlinear function.

It is assumed that δy > 0 and Py, Qy, R� 0.
From a stability point of view it is desirable to choose δx in (5.6) or δy in (5.13) as

small as possible [9]. However, in the case of quantized input, the equilibrium point
of the closed-loop system may either have an offset from the reference, or there may
be a limit cycle about the reference. Therefore, the feasibility of Problems 5.1 and
5.2 will rely on δx and δy being sufficiently large. A part of the NMPC design will
be to address this tradeoff.
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The optimization Problems 5.1 and 5.2 can be formulated in a compact form as
follows:

Problem 5.3:

V ∗(x̃(t)) = min
U∈UB

J(U, x̃(t)) subject to G(U, x̃(t))≤ 0 (5.17)

Here x̃(t) ∈R
ñ and for the regulation Problem 5.1 it is:

x̃(t) = x(t), ñ = n (5.18)

while for the reference tracking Problem 5.2 it is:

x̃(t) = [x(t), r(t)] ∈ R
ñ, ñ = n+ p (5.19)

Problem 5.3 defines a multi-parametric Nonlinear Integer Programming (mp-NIP)
problem, since it is NIP in U parameterized by x̃(t). An optimal solution to this prob-
lem is denoted U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the control input is chosen according
to the receding horizon policy u(t) = u∗t . Define the set of feasible parameters as fol-
lows:

Xf = {x̃ ∈ R
ñ| G(U, x̃)≤ 0 for some U ∈UB} (5.20)

For Problem 5.1, Xf is the set of N-step feasible initial states. If δx, δy and N are
such that the Problem 5.1 or 5.2 is feasible, then Xf is a non-empty set. In parametric
programming problems one seeks the solution U∗(x̃) as an explicit function of the
parameters x̃ in a set X ⊆ Xf ⊆ R

ñ [2].

5.3 Approximate mp-NIP Approach to Explicit Quantized
NMPC

5.3.1 Computation of Explicit Approximate Solution

We restrict our attention to a hyper-rectangle X ⊂ R
ñ where we seek to approx-

imate the optimal solution U∗(x̃) to Problem 5.3. We require that the state space
partition is orthogonal and can be represented as a k− d tree. The main idea of the
approximate mp-NIP approach in [4, 3] is to construct a piecewise constant (PWC)
approximation ̂U(x̃) to U∗(x̃) on X , where the constituent constant functions are de-
fined on hyper-rectangles covering X . The solution of Problem 5.3 is computed at
the 2ñ vertices of a considered hyper-rectangle X0, as well as at some interior points.
These additional points represent the vertices and the facets centers of one or more
hyper-rectangles contained in the interior of X0. The Procedure 1.1 is used to gen-
erate a set of points W0 = {w0,w1,w2, ... ,wN1} associated to a hyper-rectangle X0.
Then, a close-to-global solution U∗(wi) of Problem 5.3 at a point wi ∈W0 is com-
puted by using the routine ’glcSolve’ of the TOMLAB optimization environment in
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Matlab [7]. The routine ’glcSolve’ implements an extended version of the DIRECT
algorithm [8], that handles problems with both nonlinear and integer constraints.
The DIRECT algorithm (DIviding RECTangles) [8] is a deterministic sampling al-
gorithm for searching for the global minimum of a multivariate function subject to
constraints, using no derivative information. It is a modification of the standard Lip-
schitzian approach that eliminates the need to specify a Lipschitz constant.

Based on the close-to-global solutions U∗(wi) at all points wi ∈W0, a local con-
stant approximation ̂U0(x̃) = K0 to the optimal solution U∗(x̃), valid in the whole
hyper-rectangle X0, is determined by applying the following procedure [4]:

Procedure 5.1 (computation of explicit approximate solution). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1, ... ,wN1} determined by
applying Procedure 1.1. Compute K0 by solving the following NIP:

min
K0∈UB

N1

∑
i=0

(J(K0,wi)−V ∗(wi)) subject to G(K0,wi)≤ 0 , ∀wi ∈W0 (5.21)

5.3.2 Estimation of Error Bounds

Suppose that a constant function ̂U0(x̃) = K0, associated to the hyper-rectangle X0

has been determined by applying Procedure 5.1. Then, for the cost function approx-
imation error in X0 we have:

ε(x̃) = ̂V (x̃)−V ∗(x̃)≤ ε0 , x̃ ∈ X0 (5.22)

where ̂V (x̃) = J(̂U0(x̃), x̃) is the sub-optimal cost and V ∗(x̃) denotes the cost corre-
sponding to the close-to-global solution U∗(x̃), i.e. V ∗(x̃) = J(U∗(x̃), x̃). The follow-
ing procedure can be used to obtain an estimate ̂ε0 of the maximal approximation
error ε0 in X0.

Procedure 5.2 (computation of error bound approximation). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1, ... ,wN1} determined by
applying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through the
following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(̂V (wi)−V ∗(wi)) (5.23)

5.3.3 Approximate mp-NIP Algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given. The
following algorithm is proposed to design explicit reference tracking quantized
NMPC [4]:
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Algorithm 5.1. Explicit reference tracking quantized NMPC.

Step 1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}. Mark
the hyper-rectangle X as unexplored.

Step 2. Select any unexplored hyper-rectangle X0 ∈Π . If no such hyper-rectangle
exists, terminate.

Step 3. Generate a set of points W0 = {w0,w1,w2, ... ,wN1} associated to X0 by
applying Procedure 1.1.

Step 4. Compute a solution to Problem 5.3 for x̃ fixed to each of the points
wi , i = 0,1,2, ... ,N1 by using routine ’glcSolve’ of TOMLAB optimization envi-
ronment. If Problem 5.3 has a feasible solution at all these points, go to step 7.
Otherwise, go to step 5.

Step 5. Compute the size of X0 using some metric. If it is smaller than some given
tolerance, mark X0 infeasible and explored and go to step 2. Otherwise, go to step 6.

Step 6. If at least one of the points wi , i = 0,1,2, ... ,N1 is feasible, split X0 into
hyper-rectangles X1, X2, ... , XNs by applying the Heuristic splitting rule 1.1. Mark
X1, X2, ... , XNs unexplored, remove X0 from Π , add X1, X2, ... , XNs to Π , and go
to step 2. If none of the points wi , i = 0,1,2, ... ,N1 are feasible, split X0 into two
hyper-rectangles X1 and X2 by a hyperplane through its center point and orthogonal
to an arbitrary axis. Mark X1 and X2 unexplored, remove X0 from Π , add X1 and X2

to Π , and go to step 2.
Step 7. Compute a constant function ̂U0(x̃) using Procedure 5.1, as an approxi-

mation to be used in X0. If a feasible solution was found, go to step 8. Otherwise,
split X0 into two hyper-rectangles X1 and X2 by a hyperplane through its center point
and orthogonal to an arbitrary axis. Mark X1 and X2 unexplored, remove X0 fromΠ ,
add X1 and X2 to Π , and go to step 2.

Step 8. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying Proce-
dure 5.2. If ̂ε0 ≤ ε̄ , mark X0 as explored and feasible and go to step 2. Otherwise,
split X0 into two hyper-rectangles X1 and X2 by applying a procedure that is similar
to Procedure 1.5. Mark X1 and X2 unexplored, remove X0 fromΠ , add X1 and X2 to
Π , and go to step 2.

5.4 Application 1: Reference Tracking Quantized Control of an
Electropneumatic Clutch Actuator Using On/Off Valves

Consider the electropneumatic clutch actuator, whose mathematical model is de-
scribed in Section 4.5.1. With the quantized control input the two valves are only
allowed to be fully open or fully closed (no pulse-width modulation is used). Thus,
the control input is an integer variable which can take only three values, i.e. u ∈
UA = {1,2,3}. This is related to the mass flow rate wv(pA,u) to/from chamber A in
the following way:



5.4 Reference Tracking Quantized Control of an Electropneumatic Clutch Actuator 117

u = 1⇒ wv(pA,1) =−wv,out , forθ ∈ [tTs;(t + 1)Ts]
u = 2⇒ wv(pA,2) = 0, forθ ∈ [tTs;(t + 1)Ts]
u = 3⇒ wv(pA,3) = wv,in, forθ ∈ [tTs;(t + 1)Ts]

(5.24)

where wv,out and wv,in are determined from (5.7)-(5.8), and θ is the time variable.
Therefore, u = 1 corresponds to maximal flow from chamber A, u = 2 means no
flow, and u = 3 corresponds to maximal flow to chamber A during the whole sam-
pling period Ts.

5.4.1 Design of Explicit NMPC with Quantized Control Input

In [4, 5], an explicit quantized NMPC controller for the clutch actuator is designed,
which is based on the simplified 3-rd order model (4.57)–(4.59), introduced in Sec-
tion 4.5.1. The quantized NMPC has sampling time Ts = 0.01 [s] and it minimizes
the cost function (4.64) in Section 4.5.2 (with ut+k and U being here the quantized
control input and the quantized control input sequence, respectively), subject to the
system equations (4.57)–(4.59) and the constraint (4.65). In (4.64), the horizon is
N = 10 and the weighting coefficients are Qy = Py = 1, R = 0.1. The extended state
vector x̃(t) and the state space X to be partitioned are the same as for the NMPC con-
troller with continuous control input, designed in Section 4.5.2. The cost function
approximation tolerance is ε̄(X0) = max(ε̄a, ε̄rmin

x̃∈X0
V ∗(x̃)), where ε̄a = 0.001 and

ε̄r = 0.02. The partition has 10871 regions. The performance of the explicit quan-
tized NMPC was simulated for the typical clutch reference signal and the resulting
response is depicted in Fig. 5.1 and Fig. 5.2. The simulations of the closed-loop
system are based on the full 5-th order model (4.40)–(4.44) of the clutch actuator
dynamics, described in Section 4.5.1.

0 1 2 3 4 5
1

2

3
u(t)

t [s]

Fig. 5.1 The control input u.
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Fig. 5.2 The clutch actuator position y with the explicit quantized NMPC (the dashed curve
is the reference signal).

5.4.2 Comparison between the Explicit NMPC with Quantized
Control Input and the Explicit NMPC with Continuous
Control Input

In [5], a comparative study of the explicit quantized NMPC controller and the ex-
plicit NMPC controller with continuous control input for reference tracking control
of the electropneumatic clutch actuator is made.

5.4.2.1 Chattering

The chattering of the explicit quantized NMPC controller, designed in this sec-
tion, and the explicit NMPC controller with continuous control input (using a PWM
scheme), the SMC controller, and the PID controller, considered in Section 4.5.2,
is studied. In Table 5.1, statistics about the chattering in the control input u (only
for the controllers which generate a continuous control input) and in the actuator
position y is given. The chattering is expressed as:

Δu(t) = |u(t)− u(t− 1)| , Δy(t) = |y(t)− y(t− 1)| (5.25)

where t = 2, 3, ... , 500 is the discrete time instant. It can be seen that the control
input chattering of the explicit NMPC with PWM is comparable to that of the PID
controller and it is significantly smaller than that of the SMC controller. Also, the
explicit NMPC with PWM leads to the smallest position chattering among the four
studied controllers.
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Table 5.1 Statistics about chattering

Controller Average Maximal Average Maximal
Δu [%] Δu [%] Δy [m] Δy [m]

NMPC with PWM 4.65 81.99 5.66 ·10−5 6.22 ·10−4

SMC controller 12.16 168.96 5.94 ·10−5 10.63 ·10−4

PID controller 1.23 52.49 6.63 ·10−5 10.63 ·10−4

Quantized NMPC − − 9.83 ·10−5 7.23 ·10−4

5.4.2.2 Tracking Performance

In Table 5.2, statistics about the absolute reference tracking error ey(t) = |y(t)−r(t)|
and the sum squared relative reference tracking error Sy for the four controllers are
given. The error ey(t) is considered after the position settles near the first reference
value r = 0.015 [m] (after 0.8 [s] of time). The reason is that the trajectories from
the initial state y = 0 [m] to a neighborhood of r = 0.015 [m] for the four controllers
are characterized by the same maximal reference tracking error ey = 0.015 [m]. The
error Sy is computed on the entire transients as:

Sy =
1

500

500

∑
t=1

(

y(t)− r(t)
r(t)

)2

(5.26)

It can be seen that the explicit NMPC with PWM provides the highest quality of
tracking performance.

Table 5.2 Statistics about reference tracking error

Controller Average Maximal Sum squared
ey(t) [m] ey(t) [m] error Sy

NMPC with PWM 2.48 ·10−4 6.89 ·10−4 0.431 ·10−1

SMC controller 3.05 ·10−4 6.30 ·10−4 0.679 ·10−1

PID controller 2.77 ·10−4 10.36 ·10−4 0.839 ·10−1

Quantized NMPC 3.27 ·10−4 10.39 ·10−4 1.063 ·10−1

5.4.2.3 Real-Time Computational Complexity and Storage Requirements

The explicit approximate solutions of the two explicit NMPC controllers are im-
plemented as binary search trees by applying the method in [11]. In Table 5.3, the
real-time computational complexity (the worst-case number of arithmetic opera-
tions needed to compute the control input) and the storage requirements (in terms
of numbers that have to be stored), associated to the binary search trees of the two
controllers, are given. It can be observed that the number of on-line arithmetic op-
erations is negligibly small with both controllers. The explicit NMPC with PWM
requires significantly more storage in comparison to the explicit quantized NMPC
controller. It can be explained with the fact that for each region of the partition of
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Table 5.3 On-line computational complexity and storage requirements

Controller arithmetic ops. stored stored
per sample reals integers

Explicit NMPC with PWM 152 39960 36771
Explicit quantized NMPC 143 295 7831

this controller, an affine control law needs to be stored (while only one constant
needs to be stored with the quantized controller). Further, since the total number of
solutions for the quantized controller is only 3, merging of regions with the same
solutions into one convex region leads to a significant decrease of the complexity of
the search tree.

5.5 Application 2: Regulation of a Continuous Stirred Tank
Reactor with Quantized Control Input

In [3], the approximate mp-NIP approach (described in Section 5.3) is applied to de-
sign an explicit quantized NMPC controller for optimal regulation of a continuous
stirred tank reactor (CSTR). In the CSTR, a first-order irreversible reaction A→ B
takes place (Fig. 5.3). The mathematical model of CSTR and the values of the pa-
rameters are taken from [6]. The mass and heat balance of CSTR expressed through
dimensionless concentration c̃ and temperature T̃ are [6]:

dc̃
dt

=
(1− c̃)

q
− k0e−

E
T̃ c̃ (5.27)

dT̃
dt

=
(T̃f − T̃ )

q
+ k0e−

E
T̃ c̃−αu(T̃ − T̃c) (5.28)

Fig. 5.3 Continuous stirred
tank reactor.

A B 

cf, Tf 

c, T 

u 
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where the dimensionless quantities c̃, T̃ , T̃c and T̃f are defined as follows:

c̃ =
c
c f

, T̃ =
T

Jc f
, T̃c =

Tc

Jc f
, T̃f =

Tf

Jc f
(5.29)

The coolant flowrate u is a quantized control variable. The values of the parameters
are taken from [6] and are q = 10, c f = 1, Tc = 290, Tf = 300, J = 100, E = 25.2,
k0 = 300, α = 1.95 ·10−4.

We consider the set point c̃∗ = 0.41, T̃ ∗ = 3.3. Then, the model of the reactor can
be written in the form:

dx1

dt
=

(1− c̃∗− x1)

q
− k0e

− E
(T̃∗+x2) (c̃∗+ x1) (5.30)

dx2

dt
=

(T̃f − T̃ ∗ − x2)

q
+ k0e

− E
(T̃∗+x2) (c̃∗+ x1)−αu(T̃ ∗+ x2− T̃c) (5.31)

where x1 and x2 denote the deviations of the concentration and temperature from
the set point values (x1 = c̃− c̃∗, x2 = T̃ − T̃ ∗). The forward Euler method with step
size TE = 0.01 is used to integrate the equations (5.30)–(5.31).

The coolant flowrate u is quantized with the following levels of quantization:

u ∈UA = {umin, ust , umax} (5.32)

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

x − space

x
1

x 2

Fig. 5.4 State space partition of the explicit approximate quantized NMPC.
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where umin = 250, umax = 500, and ust = 370 is the steady state value corresponding
to the set point c̃∗ = 0.41, T̃ ∗ = 3.3.

The suggested approximate mp-NIP approach is applied to design an explicit
quantized NMPC controller for this reactor. The NMPC minimizes the cost func-
tion (5.9) subject to the system equations (5.30)–(5.31) and the input constraint

Fig. 5.5 From top to bot-
tom: The control input,
the state variable x1, and
the state variable x2 for
α = 1.95 ·10−4.

0 20 40 60 80
250

300

350

400

450

500
Coolant flowrate u(t)

time instants

0 20 40 60 80
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
x1(t)

time instants

0 20 40 60 80
-0.1

0

0.1

0.2

0.3

0.4
x2(t)

time instants



5.5 Regulation of a CSTR with Quantized Control Input 123

(5.32). In (5.9), h(xt+k|t ,ut+k) ≡ ut+k − ust and the cost matrices are Qx = Px =

diag{100, 300}, R = 1 · 10−4. The horizon is N = 30 with a sampling time for the
control input Ts = 1. In (5.6), it is chosen δx = 0.002. The state space to be parti-
tioned is defined by X = [−0.4, 0.6]× [−0.4, 0.5]. The state space partition of the
explicit quantized NMPC controller is shown in Fig. 5.4. It has 341 regions and 14
levels of search. Thus, 14 arithmetic operations are needed in real-time to compute
the control input (14 comparisons). Due to quantization, it would be straightforward
to join neighboring regions with the same solution at the first sample of the control
trajectory in a postprocessing step. This would lead to a significant reduction of the
complexity of the partition.

The performance of the closed-loop system was simulated for initial condition
x(0) = [0.58, 0.2]T . The resulting closed-loop response corresponding to the ex-
plicit approximate quantized NMPC (the solid curves) and to the exact quantized
NMPC (the dotted curves) is depicted in the state space (Fig. 5.4), as well as tra-
jectories in time (Fig. 5.5). The results show that the exact and the approximate
solutions are indistinguishable.

Fig. 5.6 Top: The subop-
timal state feedback law
û(x1,x2). Bottom: The op-
timal state feedback law
u∗(x1,x2).
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The suboptimal and the optimal state feedback laws are shown in Fig. 5.6.
In order to study the robustness of the explicit controller, we assume that the real

value of the heat transfer coefficient is α = 1.85 · 10−4 (instead of α = 1.95 · 10−4

used to design the controller). The closed-loop response corresponding to α = 1.85 ·
10−4 and initial condition x(0) = [0.58, 0.2]T is depicted in Fig. 5.7. It can be seen

Fig. 5.7 From top to bot-
tom: The control input,
the state variable x1, and
the state variable x2 for
α = 1.85 ·10−4.
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that the closed-loop trajectory has an offset due to the fact that the steady state value
ust (cf. equation (5.32)) corresponding to the set point c̃∗ = 0.41, T̃ ∗ = 3.3 is a
function of the coefficient α .
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