
Chapter 3
Explicit NMPC Using mp-QP Approximations
of mp-NLP

Abstract. A numerical algorithm for approximate multi-parametric nonlinear pro-
gramming (mp-NLP) is developed. The algorithm locally approximates the mp-NLP
with a multi-parametric quadratic program (mp-QP). This leads to an approximate
mp-NLP solution that is composed from the solution of a number of mp-QP solu-
tions. The method allows approximate solutions to nonlinear optimization problems
to be computed as explicit piecewise linear functions of the problem parameters.
In control applications such as nonlinear constrained model predictive control this
allows efficient online implementation in terms of an explicit piecewise linear state
feedback without any real-time optimization.

3.1 Introduction

For multi-parametric nonlinear programs (mp-NLPs) one cannot expect to find exact
solutions, in general. There is a large body of theory that develops local regularity
conditions and local sensitivity results [7, 17], and algorithms for non-local param-
eter variations are derived for single-parametric problems [12]. Here we describe an
approximate mp-NLP algorithm utilizing NLP and mp-QP algorithms to solve local
sub-problems, first proposed in [13].

Before we describe the main idea behind the algorithm, we recall that a widely
used family of algorithms for the numerical solution of nonlinear programs (NLPs)
is Sequential Quadratic Programming (SQP) algorithms, e.g. [20]. They are iterative
algorithms, where at each iteration the nonlinear program is locally approximated
by a convex quadratic program (QP) at the current candidate solution point. This
means that the nonlinear cost function is locally approximated by a positive definite
quadratic function, and the nonlinear constraints are locally approximated by linear
constraints. The QP is then solved to find a search direction towards a better point,
a step in this direction is made, and the procedure is repeated and will eventually
converge to a locally optimal solution for the NLP.

In the approximate mp-NLP algorithm described in this chapter, the idea is to
locally approximate mp-NLPs with mp-QPs, similar to the use of QPs within SQP.
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An iterative (recursive) partitioning of the parameter space is used to control the ac-
curacy of the approximation. It refines the partition in order to improve the accuracy
of the local mp-QP approximation in the parts of the parameter space where this is
needed in order to meet accuracy specifications in terms of sub-optimality bounds
on the cost.

The proposed method is different from the approximate mp-NLP algorithm in
Section 1.1.5, and the function approximation methods for non-linear optimal con-
trol are described in [1, 21, 22, 4, 23, 15, 2, 19]. While these references approximate
the mp-NLP solution based on solution points computed for an extensive number of
parameter values using an NLP algorithm, in the present chapter the mp-NLP is ap-
proximated by a number of mp-QPs that are solved using the mp-QP algorithm [28].
In [5], several alternative multi-parametric programming algorithms for explicit ap-
proximate solution of convex mp-NLP problems are compared, and a modification
of the algorithm described in this section was found to be efficient. The main modi-
fications is a different approach for the partitioning outside the mp-QP solutions.

The mp-NLP problem is formulated as follows:

min
z

V (z,x) (3.1)

subject to

G(z,x) ≤ 0 (3.2)

for all x ∈ X , where X is some parameter set. Eqs. (3.1) - (3.2) define an mp-NLP,
since it is an NLP in z parameterized by the parameter vector x. Assume the solution
exists, and let it be denoted z∗(x). In the special case when V and G are quadratic and
linear, respectively, in both z and x, a solution can be found explicitly and exactly as
a continuous PWL mapping z∗(x) using mp-QP.

In [13] it is suggested to utilize an mp-QP algorithm to approximately solve the
mp-NLP (3.1)-(3.2). In the mp-QP case, this algorithm will iteratively build a poly-
hedral partition of the state-space with an exact solution corresponding to a fixed
active set within each polyhedral critical region. This leads to a PWL solution z∗(x)
since a fixed active set leads to a solution that is linear in x, [3]. In the mp-NLP
case we keep the PWL structure of the solution, but in each polyhedral region we
approximate the (exact) nonlinear solution by a PWL approximate solution found
by solving a mp-QP constructed as a locally accurate quadratic approximation to V
and linear approximation to G. Under regularity assumptions on V and G, one may
expect that the approximation error and constraint violations will be small if each of
the regions are sufficiently small. We therefore suggest to analyze the approxima-
tion error within each region and introduce a sub-partitioning of some regions when
needed in order to keep the approximation error and constraint violations within
specified bounds.
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3.2 Local mp-QP Approximation to mp-NLP

In this section we study how the cost function and constraints can be locally ap-
proximated by mp-QP problems, based on [13]. Let x0 ∈ X be arbitrary and denote
the corresponding optimal solution z0 = z∗(x0). Taylor series expansions of V and G
about the point (z0,x0) leads to the following locally approximate mp-QP problem:

V0(z,x) �
1
2
(z− z0)

T H0(z− z0)+ (D0 +F0(x− x0))(z− z0)+Y0(x) (3.3)

subject to

G0(z− z0) ≤ E0(x− x0)+T0 (3.4)

The cost and constraints are defined by the matrices

H0 � ∇2
zzV (z0,x0), F0 � ∇2

xzV (z0,x0)

D0 � ∇zV (z0,x0), G0 � ∇zG(z0,x0)

E0 �−∇xG(z0,x0), T0 �−G(z0,x0)

Y0(x)�V (z0,x0)+∇xV (z0zx0)(x− x0)+
1
2 (x− x0)

T∇2
xxV (z0,x0)(x− x0)

Let the PWL solution to the mp-QP (3.3) - (3.4) be denoted zQP(x) with associated
Lagrange multipliers λQP(x). This solution satisfies the following KKT conditions

H0 (zQP(x)− z0)+F0(x− x0)+D0 +GT
0 λQP(x) = 0 (3.5)

diag(λQP(x))(G0(zQP(x)− z0)−E0(x− x0)−T0) = 0 (3.6)

λQP(x) ≥ 0 (3.7)

G0 (zQP(x)− z0)−E0(x− x0)−T0 ≤ 0 (3.8)

Consider the optimal active set A of the QP (3.3) - (3.4) at a given x ∈ X , and let
G0,A and λQP,A denote the rows of G0 and λQP, respectively, with indices in A .
Eqs. (3.5) - (3.6) define the following linear equations

(

H0 GT
0,A

G0,A 0

)(

zQP,A (x)− z0

λQP,A (x)

)

=

(

F0(x− x0)+D0

E0(x− x0)+T0

)

(3.9)

The following results is an extension of Theorem 2 in [3] (where H0 > 0 was as-
sumed in addition to LICQ).

Assumption 3.1. V and G are twice continuously differentiable in a neighborhood
of (z0,x0).

Assumption 3.2. The sufficient conditions (1.7)-(1.10) and (1.12) for a local mini-
mum at z0 hold.
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Assumption 3.3. Linear independence constraint qualification (LICQ) holds, i.e.
the active constraint gradients ∇zGA0(z0,x0) are linearly independent.

Assumption 3.4. Strict complementary slackness holds, i.e. (λ0)A0 > 0.

Assumption 3.5. For an optimal active set A , the matrix G0,A has full row rank
(LICQ) and ZT

0,A H0Z0,A > 0, where the columns of Z0,A is a basis for null(G0,A ).

Theorem 3.1. Consider the problem (3.3)-(3.4), and let X be a polyhedral set with
x0 ∈ X. The system of linear equations (3.9) has a unique solution

(

zQP,A (x)− z0

λQP,A (x)

)

=

(

H0 GT
0,A

G0,A 0

)−1(
FT

0 (x− x0)+D0

E0(x− x0)+T0

)

(3.10)

and the critical region where the solution is optimal is given by the polyhedral set

X0,A �
{

x ∈ X | λQP,A (x)≥ 0,G0(zQP,A (x)− z0)≤ E0(x− x0)+T0
}

Hence, zQP(x) = zQP,A (x) and λQP(x) = λQP,A (x) if x∈X0,A , and the solution zQP

is a continuous, PWL function of x defined on a polyhedral partition of X.

Proof ([13]). Non-singularity of the matrix on the left-hand-side of (3.9) follows
from standard 2nd order considerations such as Lemma 16.1 in [20], due to As-
sumption 3.5. The rest of the proof is similar to [3]. �

Algorithms for solving such an mp-QP (with straightforward modifications to ac-
count for the relaxed second-order condition of Assumption 3.5) are given in Section
1.2. The following result compares the primal and dual local QP solution with the
global NLP solution.

Theorem 3.2. Consider the problem (3.1)-(3.2). Let x0 ∈ X and suppose there exists
a z0 satisfying the above assumptions. Then for x in a neighborhood of x0

zQP(x)− z∗(x) = O(||x− x0||22) (3.11)

λQP(x)−λ ∗(x) = O(||x− x0||22) (3.12)

Proof ([13]). Let the neighborhood of x0 under consideration be restricted to X0,A0 ,
where A0 is the optimal active set at x0. This is without loss of generality since the
assumptions imply that x0 is an interior point in X0,A0 . The first KKT condition for
the QP is

H0
(

zQP(x)− z0)+F0(x− x0)+ (D0 +GT
0 λQP(x)

)

= 0 (3.13)

Since z0 = z∗(x0) we have z∗(x)− z0 = O(||x− x0||2), and the first KKT condition
(1.7) for the NLP can be rewritten as follows using a Taylor series expansion
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0 = ∇zV (z∗(x),x)+∇T
z G(z∗(x),x)λ ∗(x) (3.14)

= ∇zV (z0,x0)+∇2
zzV (z0,x0)(z

∗(x)− z0)

+∇2
xzV (z0,x0)(x− x0)

+
(

∇T
z G(z0,x0)+O(||x− x0||2)

)

λ ∗(x)+O(||x− x0||22) (3.15)

= D0 +H0(z
∗(x)− z0)+F0(x− x0)+GT

0 λQP(x)

+GT
0 (λ ∗(x)−λQP(x))+O(||x− x0||22)

+O(||x− x0||2)(λ ∗(x)−λQP(x)) (3.16)

Comparing (3.13) and (3.16) we get

H0 (zQP(x)− z∗(x))+GT
0 (λQP(x)−λ ∗(x)) = O(||x− x0||22) (3.17)

From Theorem 1.1, part 3, it is known that the set of active constraints is unchanged
in a neighborhood of x0. Hence, for the QP we have

G0 (zQP(x)− z0) = E0(x− x0)+T0 (3.18)

When x is in a neighborhood of x0, Taylor expanding the NLP constraints gives

0 = G(z∗(x),x) (3.19)

= G(z0,x0)+∇zG(z0,x0)(z
∗(x)− z0)+∇xG(z0,x0)(x− x0)+O(||x− x0||22)

= G0(z
∗(x)− z0)−E0(x− x0)−T0 +O(||x− x0||22)

Comparing (3.18) and (3.19) it follows that

G0 (zQP(x)− z∗(x)) = O(||x− x0||2) (3.20)

and the result follows by inverting the system (3.17) and (3.20). This system is in-
deed invertible: Due to Assumption 3.4 it follows that ∇zGA0(z0,x0)ζ = 0 for all
ζ ∈F . Since G0,A0 = ∇zGA0(z0,x0), it is clear that F = null(G0,A0) and Assump-
tions 3.2 and 3.3 (and in particular eq. (1.12)) ensures that Assumption 3.5 holds
and non-singularity of

(

H0 GT
0

G0 0

)

follows from Lemma 16.1 in [20]. �

Theorem 3.2 concerns only a small neighborhood of x0 and is therefore of lim-
ited computational use. However, it provides a qualitative indication that the mp-
QP approximation of the mp-NLP is locally accurate, under some assumptions. We
therefore proceed by deriving some quantitative estimates and bounds on the cost
and solution errors, as well as the maximum constraint violation. The solution error
bound is defined as
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ρ � max
x∈X0
|wT (μ(0,zQP(x))− μ(0,z∗(x)))| (3.21)

where X0 ⊂ X is arbitrary, and w is a vector with positive weights. Likewise, we
define the cost error bound

ε � max
x∈X0
|V (zQP(x),x)−V ∗(x)| (3.22)

where V ∗(x) � V (z∗(x);x). In addition, one may compute the maximum constraint
violation

δ � max
x∈X0

ωT G(zQP(x),x) (3.23)

where ω is a vector of non-negative weights. Typically, the elements of w corre-
sponding to the first sample of the trajectory will be positive, while the remaining
will be zero since in receding horizon control the primary interest is the first sam-
ple of the trajectory. The maximum constraint violation (3.23) can be computed by
solving an NLP, while the solution and cost error bounds (3.21) and (3.22) are not
easily computed without introducing additional assumptions or allowing underes-
timation. A further problem is that they require computation of the exact z∗(x) for
several x, which relies on the solution of several NLPs and is therefore expensive.
Obvious estimation techniques for ρ and ε is to take the maximum over a finite
number of points X0, such as extreme points (vertices), points generated by Monte
Carlo methods, or combinations. It should be emphasized that these methods can
underestimate the bounds, in general.

3.3 Convexity

For the case when V and G are convex functions, it is possible to derive a guaranteed
bound on ε from knowledge of z∗(x) only at all the vertices V = {v1,v2, ...,vM} of
the bounded polyhedron X0, see section 1.1.5.1. This immediately gives the follow-
ing bounds on the cost function error−ε1 ≤V ∗(x)−V(zQP(x),x) ≤ ε2, where

ε1 = max
x∈X0

(V (zQP(x),x)−V (x)) (3.24)

ε2 = max
x∈X0

(

V (x)−V(zQP(x),x)
)

(3.25)

Hence, the cost error bound ε̃ � max(ε1,ε2) ≥ ε can be computed by solving two
NLPs. A solution error bound can be shown to exist as in Chapter 9.7 of [7].

3.4 Algorithm

So far it has been established that under some regularity conditions, local mp-QP
solutions give accurate approximation to the mp-NLP solution when restricted to a
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sufficiently small subset X0 ⊂ X . It remains to determine a sub-partition of the poly-
hedral region X such that the local mp-QP solutions associated with each region are
sufficiently accurate. In [13] the following algorithm was suggested to approximate
the mp-NLP solution, based on recursive sub-partitioning guided by the approxima-
tion errors discussed above.

Algorithm 3.1. Approximate mp-NLP.

Step 1. Let X0 := X .
Step 2. Select x0 as the Chebychev center of X0, by solving an LP.
Step 3. Compute z0 = z∗(x0) by solving the NLP (3.1)-(3.2) with x(0) = x0.
Step 4. Compute the local mp-QP problem (3.3) - (3.4) at (z0,x0). If H0 is

not positive definite, then modify H0 such that it is positive definite (e.g. by an
eigenvalue decomposition where negative eigenvalues are replaced by small posi-
tive numbers) and the mp-QP is convex.

Step 5. Estimate the approximation errors ε , ρ and δ on X0.
Step 6. If ε > ε , ρ > ρ , or δ > δ , then sub-partition X0 into polyhedral regions

using the heuristic rules described in Section 1.1.5.2.
Step 7. Select a new X0 from the partition. If no further sub-partitioning is needed,

go to step 8. Otherwise, repeat Steps 2-7 until the tolerances ε , ρ and δ are respected
in all polyhedral regions in the partition of X .

Step 8. For all sub-partitions X0, solve the mp-QP (3.3) - (3.4) using the mp-QP
solver [28, 26].

Computation of the approximation errors in Step 5 are carried out based on the
results in Section 3.3 if the cost function and constraints are known to be con-
vex. If not, we suggest to estimate error bounds by solving NLPs at a number of
points in X0, typically the vertices and possibly other points, as in [10]. If the con-
vexity assumption does not hold, this seems to be a fairly robust strategy. The sub-
partitioning in Step 6 is based on heuristic criteria, where the purpose is to select one
axis-orthogonal hyperplane to split X0 such that the approximation error after split-
ting is minimized (as described in Section 1.1.5.2). Alternatively, the hyperplane is
selected such that the change of error at the vertices (before splitting) across the
hyperplane is maximal (as used in [9]).

3.5 Example: Compressor Surge Control

3.5.1 NMPC Formulation

Consider the following 2nd-order compressor model [11, 8] with x1 being normal-
ized mass flow, x2 normalized pressure and u normalized mass flow through a close
coupled valve in series with the compressor
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ẋ1 = B(Ψe(x1)− x2− u) (3.26)

ẋ2 =
1
B
(x1−Φ(x2)) (3.27)

The following compressor and valve characteristics are used

Ψe(x1) = ψc0 +H

(

1+ 1.5
(x1

W
− 1
)

− 0.5
(x1

W
− 1
)3
)

Φ(x2) = γsign(x2)
√

|x2|

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. The control objective is to
avoid surge, i.e. stabilize the system. This may be formulated as

J(u[0,T ],x[0,T ]) �
∫ T

0
l(x(t),u(t), t)dt + S(x(T ),T )+Rv2 (3.28)

where

l(x,u) = α(x− x∗)T (x− x∗)+κu2

S(x) = β (x− x∗)T (x− x∗)

with α,β ,κ ,ρ ≥ 0 and the setpoint x∗1 = 0.40, x∗2 = 0.60 corresponds to an unstable
equilibrium point, subject to the inequality constraints for t ∈ [0,T ]

umin ≤ u(t) ≤ umax (3.29)

−x2 + 0.4 ≤ v (3.30)

−v ≤ 0 (3.31)

and the ordinary differential equation (ODE) given by

d
dt

x(t) = f (x(t),u(t)) (3.32)

with given initial condition x(0) ∈ X ⊂ R
n. Valve capacity requires the constraint

0 ≤ u(t) ≤ 0.3 to hold, and the pressure constraint x2 ≥ 0.4− v avoids operation
too far left of the operating point. The variable v≥ 0 is a slack variable introduced
in order to avoid infeasibility and R = 8 is a large weight. The input signal u[0,T ]
is assumed to be piecewise constant and parameterized by a vector U ∈ R

p such
that u(t) = μ(t,U) ∈ R

r is piecewise constant. The solution to (3.32) is assumed
in the form x(t) = φ(t,U,x(0)) for t ∈ [0,T ] and some piecewise continuous func-
tion φ . Relaxing the inequality constraints (3.30) to hold only at N time instants
{t1, t2, ..., tN} ⊂ [0,T ], we can rewrite the optimization problem in the following
standard parametric form (direct single shooting, Section 2.2.2.1) where the ODE
constraint (3.32) has been eliminated by substituting its solution φ into the cost and
constraints; minimize with respect to z = (U,v) the cost
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V (z,x(0)) �
∫ T

0
l(φ(t,U,x(0)),μ(t,U), t)dt + S(φ(T,U,x(0)),T )+Rv2(3.33)

subject to

G(z,x(0)) �

⎛

⎜

⎜

⎝

G̃(U ;x(0))
U−Umax

Umin−U
−v

⎞

⎟

⎟

⎠

≤ 0 (3.34)

with blocks G̃i(U ;x(0))� ĝ(φ(ti,U,x(0)),μ(ti,U)) as defined by (3.30). Eqs. (3.33)
- (3.34) define an mp-NLP, since it is an NLP in z parameterized by the initial state
vector x(0).

3.5.2 Tuning and Settings

We have chosen α = 1, β = 0, and κ = 0.08. The horizon is chosen as T = 12,
which is split into N = p = 15 equal-sized intervals, leading to a piecewise constant
control input parameterization. Numerical analysis of the cost function shows that
it is non-convex. It should be remarked that the constraints on u and v are linear,
such that any mp-QP solution is feasible for the mp-NLP. The bounds ε and ρ are
estimates by computing the errors at the vertices only, and the tolerances ε = 0.5
and ρ = 0.03 were applied.

3.5.3 Results

The mp-NLP contains 16 free variables, 47 constraints and 2 parameters. The par-
tition contains 379 regions, resulting from 45 mp-QPs, cf. Fig. 3.1. This can be re-
duced to 101 polyhedral regions without loss of accuracy in a postprocessing step,
where regions with the same solution at the first sample are joined whenever their
union remains polyhedral, as in [3]. The computed approximate PWL feedback is
shown in Fig. 3.2, together with the exact feedback computed by solving the NLP
on a dense grid. The corresponding optimal costs are shown in Fig. 3.3, and simu-
lation results are shown in Fig. 3.4, where the controller is switched on after t = 20.
We note that it quickly stabilizes the deep surge oscillations. Euler integration with
step size 0.02 is applied to solve the ODE.

By generating a search tree using the method of [27], the PWL mapping with
379 regions can be represented as a binary search tree with 329 nodes, of depth
9. Real-time evaluation of the controller therefore requires 49 arithmetic opera-
tions, in the worst case, and 1367 numbers needs to be stored in real-time computer
memory.
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Fig. 3.1 State space partition (top), and after reduction (bottom).
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Fig. 3.2 Piecewise linear approximate feedback control law (top) and exact feedback control
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