
Chapter 1
Multi-parametric Programming

Abstract. This chapter presents an overview of the approaches to solve multi-
parametric programming problems. It is organized as follows. In Section 1.1, a
general multi-parametric nonlinear programming (mp-NLP) problem is formulated
and the Karush-Kuhn-Tucker (KKT) optimality conditions are presented. Then, the
three main groups of methods to find a local minimum of a NLP problem for a
given parameter vector are reviewed (Newton-type methods, penalty function meth-
ods and direct search methods). The Basic Sensitivity Theorem, which addresses
the local regularity conditions for the optimal solution as function of the parameters
is reviewed. Then, algorithms to find an approximate explicit solution of mp-NLP
problems are described, which are based on an orthogonal (k–d tree) partition of
the parameter space. Both convex and non-convex mp-NLP problems are consid-
ered. Procedures and heuristic rules for efficient splitting of a region in the param-
eter space and for handling the infeasible cases are formulated. In Section 1.2, a
multi-parametric quadratic programming (mp-QP) problem is formulated and two
approaches to find its exact explicit solution are described.

1.1 Multi-parametric Nonlinear Programming

There are two ways to address the parameter variations in mathematical programs:
sensitivity analysis, which characterizes the change of the solution with respect to
small perturbations of the parameters, and parametric programming, where the char-
acterization of the solution is found for a full range of parameter values. Mathemat-
ical programs which depend only on one scalar parameter are referred to as para-
metric programs, while problems depending on a vector of parameters are referred
to as multi-parametric programs.

The basic results within multi-parametric nonlinear programming (mp-NLP) can
be found in [26]. Main topics in [26] include local regularity conditions, local sen-
sitivity results and calculation of the parameter derivatives of the optimal solution
vector.

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 1–37.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

2 1 Multi-parametric Programming

1.1.1 Problem Formulation

Consider the nonlinear mathematical program dependent on a parameter x appearing
in the objective function and in the constraints:

V ∗(x) = min
z

f (z,x) (1.1)

s.t. g(z,x)≤ 0 , (1.2)

where z ∈ R
s is the vector of optimization variables, x ∈ R

n is the vector of param-
eters, f : Rs×R

n �→ R is the objective function, and g : Rs×R
n �→ R

q is the con-
straints function. In (1.1), it is supposed that the minimum exists. It should be noted
that the problem (1.1)–(1.2) includes only inequality constraints, and we remark that
equality constraints can be incorporated with a straightforward modification since
they are always included in the optimal active set.

Let X be a closed polytopic set of parameters, defined by X = {x ∈ R
n | Ax≤ b}.

In multi-parametric programming, it is of interest to characterize the solution or so-
lutions of the mp-NLP problem (1.1)–(1.2) for the set X [26]. As described in [2],
the solution of an mp-NLP problem is a triple (V ∗(x),Z∗(x),Xf), where:

i. the set of feasible parameters Xf is the set of all x ∈ X for which the problem
(1.1)–(1.2) admits a solution, i.e.:

Xf = {x ∈ X | g(z,x)≤ 0 for some z ∈ R
s} ; (1.3)

ii. the optimal value function V ∗ : Xf �→ R associates with every x ∈ Xf the corre-
sponding optimal value of (1.1)–(1.2);

iii. the optimal set Z∗(x) associates to each parameter x ∈ Xf the corresponding set
of optimizers Z∗(x) = {z ∈ R

s | f (z,x) =V ∗(x)} of problem (1.1)–(1.2). If Z∗(x)
is a singleton for all x ∈ Xf , then z∗(x)� Z∗(x) is called the optimizer function.

In this book we will assume that Xf is closed and V ∗(x) is finite for every x ∈ Xf .
We denote by gi(z,x) the i-th component of the vector valued function g(z,x).

Let z be a feasible point of (1.1)–(1.2) for a given parameter x. The active con-
straints are the constraints that fulfill (1.2) at equality, while the remaining con-
straints are called inactive constraints. The active set A (z,x) is the set of indices of
the active constraints, i.e.:

A (z,x)� {i ∈ {1, 2, ... ,q} | gi(z,x) = 0} . (1.4)

The optimal active set A ∗(x) is the set of indices of the constraints that are active
for all z ∈ Z∗(x), for a given x ∈ X , i.e.:

A ∗(x)� {i | i ∈A (z,x), ∀z ∈ Z∗(x)} . (1.5)

1.1 Multi-parametric Nonlinear Programming 3

Given an index set A ⊆ {1, 2, ... ,q}, the critical region CRA is the set of parame-
ters for which the optimal active set is equal to A , i.e.:

CRA � {x ∈ X |A ∗(x) = A } . (1.6)

As it will be shown in Section 1.2, for strictly convex quadratic function f and
linear constraints g, the critical regions CRA are polyhedrons and the optimizer z∗ is
unique, piecewise affine, and continuous. However, for general nonlinear functions
f and g, the exact solution of the multi-parametric programming problem (1.1)–(1.2)
can not be found, and suboptimal methods for approximating its optimizer function
z∗(x) (or selection in case the optimizer function is not unique) are described in
Section 1.1.5.

1.1.2 Optimality Conditions

For a given x0 ∈ X , a local minimum z0 of problem (1.1)–(1.2) has to satisfy the
well known Karush-Kuhn-Tucker (KKT) first-order conditions [56]:

∇zL(z0,x0,λ0) = 0 (1.7)

diag(λ0)g(z0,x0) = 0 (1.8)

λ0 ≥ 0 (1.9)

g(z0,x0) ≤ 0 , (1.10)

with associated Lagrange multiplier λ0 and the Lagrangian defined as:

L(z,x,λ) � f (z,x)+λ T g(z,x) . (1.11)

Here, sufficient regularity (smoothness) is assumed, and this will be discussed later
in Section 1.1.4.

Consider the optimal active set A0 at x0, i.e. a set of indices to active constraints
in (1.10). The above conditions are sufficient provided the following second order
condition holds [56]:

vT∇2
zzL(z0,x0,λ0)v > 0, ∀v ∈F −{0} (1.12)

with F being the set of all directions where it is not given from the first order
conditions if the objective function will increase or decrease:

F = {v ∈ R
s | ∇zgA0(z0,x0)v≥ 0,

∇zgi(z0,x0)v = 0, for all i with (λ0)i > 0} . (1.13)

The notation gA0 means the rows of g with indices in A0.

4 1 Multi-parametric Programming

1.1.3 Nonlinear Programming Methods

There exist various methods to numerically compute a local minimum z0 of the
problem (1.1)–(1.2) for a given x0 ∈ X . The most commonly used methods can be
classified in the following three groups.

1.1.3.1 Newton-Type Methods

The Newton type methods [20] appear to be the most widely used optimization
methods. They try to find a point satisfying the KKT conditions (1.7)–(1.10) by
using successive linearizations of the problem functions. The motivation behind
this is that the linearized KKT system can be solved by using standard numeric
linear algebra tools. Depending on how the conditions (1.8)–(1.10) (related to the
imposed constraints) are treated, the two main groups of Newton type methods are
the Sequential Quadratic Programming (SQP) methods and the Interior Point (IP)
methods.

• Sequential Quadratic Programming (SQP) methods.
The SQP methods iteratively solve the KKT system (1.7)–(1.10) by linearizing
the nonlinear functions included in it. The resulting linearized KKT system at
the k+ 1-th iteration can be considered as the KKT conditions of the following
quadratic program (QP):

V ∗qp(z
k,x0) = min

z
fqp(z,z

k,x0) (1.14)

s.t. g(zk,x0)+∇zg(z
k,x0)(z− zk)≤ 0 , (1.15)

with the quadratic objective function given by:

fqp(z,z
k,x0) = ∇z f (zk,x0)

T z+
1
2
(z− zk)T∇2

z L(zk,x0,λ k)(z− zk) . (1.16)

Here, zk and λ k represent, respectively, the values of optimization variables and
Lagrange multipliers, which solve the k-th sequential iteration of the KKT sys-
tem (1.7)–(1.10). It is assumed that an initial guess z0 is provided. In the case
when the Hessian matrix ∇2

z L(zk,x0,λ k) is positive semi-definite, the QP prob-
lem (1.14)–(1.16) is convex and its unique solution can be found.

Typically, the QP sub-problem (1.14)–(1.16) is solved by using an Active
Set (AS) method [56, 49], which identifies the active set of its solution z∗.
The method begins with finding a feasible initial guess A0(z,zk,x0) = {i ∈
{1,2, ...,q} | gi(zk,x0) +∇zgi(zk,x0)(z− zk) = 0} of the active set by solving
a linear programming problem [56]. In the next iteration, A0(z,zk,x0) is re-
fined by deleting a constraint from A0(z,zk,x0) or by adding a constraint to
A0(z,zk,x0). In this way, the active set is refined iteratively until the optimal
active set A ∗(zk,x0) is found.

There are several SQP methods which use approximations of the Hessian
matrix ∇2

z L(zk,x0,λ k) and the constraints Jacobian matrix ∇zg(zk,x0), and they

1.1 Multi-parametric Nonlinear Programming 5

are referred to as quasi-Newton methods. They usually lead to slower conver-
gence rates, but computationally less expensive iterations, in comparison to the
exact SQP method. One of the quasi-Newton SQP methods is the method by
Powell [61]. It uses exact constraints Jacobian matrix, but replaces the Hessian
matrix ∇2

z L(zk,x0,λ k) by an approximation Hk. Each new Hessian approxima-
tion Hk+1 is obtained from the previous approximation Hk by an update formula
that uses the difference of the Lagrange gradients, ψ = ∇zL(zk+1,x0,λ k+1)−
∇zL(zk,x0,λ k+1), and the step τ = zk+1 − zk in order to obtain second order
information in Hk+1. The most widely used update formula is the one by Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [56]:

Hk+1 = Hk +
ψψT

ψT τ
− HkττT Hk

τT Hkτ
. (1.17)

Another successful quasi-Newton SQP method is the constrained Gauss-Newton
method [21]. It uses approximations of the Hessian matrix, based on some Jaco-
bian, and is applicable when the objective function is a sum of squares.

• Interior Point (IP) methods.
The IP methods represent an alternative way to solve the KKT system (1.7)–
(1.10), which consists in replacing the nonsmooth KKT condition (1.8) by a
smooth nonlinear approximation [16, 76]:

∇zL(z0,x0,λ0) = 0 (1.18)

λ0,igi(z0,x0) = ρ , i = 1,2, ...,q (1.19)

λ0 ≥ 0 (1.20)

g(z0,x0) ≤ 0 , (1.21)

where ρ > 0 is a slack variable and gi(z0,x0) is the i-th constraint function. This
system is then solved with a Newton-type method. The obtained solution is not
a solution to the original NLP problem (1.1)–(1.2), but to the following problem
[16, 76, 8]:

Q∗(x0,ρ) = inf
z
[f (z,x0)+ρB(z,x0)] . (1.22)

Here, B(z,x0) is the so called barrier function, which is nonnegative and contin-
uous over the region {z ∈R

s |g(z,x0)< 0} and approaches ∞ as the boundary of
the feasible region {z ∈ R

s |g(z,x0) ≤ 0} is approached from the interior. Thus,
the function B(z,x0) sets a barrier against leaving the feasible region. The solu-
tion of the barrier problem (1.22) requires for the optimization to start from a
point inside the region {z ∈Rs |g(z,x0)< 0}. The IP methods are also referred to
as barrier function methods. They generate a sequence of feasible points whose
limit is an optimal solution to the original problem (1.1)–(1.2) [8]. If the optimal
solution occurs at the boundary of the feasible region, the procedure moves from
the interior to the boundary. Typically, the barrier function B(z,x0) has the form
[8]:

6 1 Multi-parametric Programming

B(z,x0) =
q

∑
i=1

−1
gi(z,x0)

or B(z,x0) =−
q

∑
i=1

ln[−gi(z,x0)] . (1.23)

The solution of problem (1.22) is closer to the true solution the smaller ρ gets. An
important feature of the IP methods is that once a solution for a given ρ is found,
the parameter ρ can be reduced by a constant factor and an accurate solution
of the original NLP problem (1.1)–(1.2) is obtained after a limited number of
Newton iterations [16, 76]. The relation between the original problem (1.1)–(1.2)
and the barrier problem (1.22) is given by [8]:

V ∗(x0) = lim
ρ→0+

Q∗(x0,ρ) = inf
ρ>0

Q∗(x0,ρ) . (1.24)

1.1.3.2 Penalty Function Methods

Methods using penalty functions transform a constrained problem into a single un-
constrained problem or into a sequence of unconstrained problems [8]. The con-
straints are placed into the objective function via a penalty parameter in a way that
penalizes any violation of the constraints. The penalty function methods are also
referred to as the exterior penalty function methods, since they generate a sequence
of infeasible points whose limit is an optimal solution to the original problem [8].
Consider the problem (1.1)–(1.2) for a given x0 ∈ X . A penalty is desired only if
the point z is not feasible, i.e., if g(z,x0) > 0. A suitable unconstrained problem is
therefore given by [8]:

J∗(x0,η) = inf
z
[f (z,x0)+η p(z,x0)] s.t. z ∈R

s , (1.25)

where p(z,x0) = ∑q
i=1[max{0, gi(z,x0)}]l is the so called penalty function, l ≥ 2 is

an integer, and η > 0 is a penalty parameter. If gi(z,x0) ≤ 0, ∀i = 1,2, ...,q then
max{0, gi(z,x0)} = 0, ∀i = 1,2, ...,q and no penalty is incurred, i.e., p(z,x0) = 0.
On the other hand, if gi(z,x0) > 0, for some i, then max{0, gi(z,x0)} > 0 and the
penalty term η p(z,x0) is realized [8]. The condition l ≥ 2 ensures that the penalty
function p(z,x0) will be differentiable.

An important issue in the penalty function methods is the selection of the penalty
parameter η . Consider the penalty problem [8]:

W ∗ = sup
η>0

W (η) , (1.26)

where W (η) = J∗(x0,η). The relation between the primal problem (1.1)–(1.2) and
the penalty problem (1.26) is given by [8]:

V ∗(x0) = sup
η>0

W (η) = lim
η→∞W (η) (1.27)

From this result it is clear that we can get arbitrarily close to the optimal objective
value of the primal problem (1.1)–(1.2) by computing W (η) for a sufficiently large

1.1 Multi-parametric Nonlinear Programming 7

η . However, as pointed out in [8], there are computational difficulties associated
with large penalty parameters, due to ill-conditioning. Therefore, most algorithms
using penalty functions solve a sequence of problems (1.25) for an increasing se-
quence of penalty parameters. With each new value of the penalty parameter, an
optimization technique is employed, starting with the optimal solution of prob-
lem (1.25) obtained for the parameter value chosen previously. Such an approach
is sometimes referred to as a sequential unconstrained minimization technique [8].
More details about the penalty function methods can be found in [8].

For a given η , the optimization problem (1.25) can be solved by applying the
steepest descent method [18]. Let h(z,x0,η) = f (z,x0)+η p(z,x0). Then, the steep-
est descent direction from z is −∇zh(z,x0,η). With the method of steepest descent
[18], the values of optimization variables at the k+1-th iteration are obtained by the
formula:

zk+1 = zk−α∇zh(z
k,x0,η) , (1.28)

where α > 0 is the step length. In order for the steepest descent method to be suc-
cessful, it is important to choose the step length α . One way to do this is to let
α = βm, where β ∈ (0,1) and m ≥ 0 is the smallest nonnegative integer such that
there is a sufficient decrease in h(z,x0,η). This means that:

h(zk−α∇zh(z
k,x0,η),x0,η)− h(zk,x0,η)<−μ∇zh(z

k,x0,η) , (1.29)

where μ ∈ (0,1). This strategy, introduced in [3], is an example of a line search in
which one searches on a ray from zk in a direction in which h(z,x0,η) is locally
decreasing. More details about the method of steepest descent can be found in [44].
Unfortunately, the methods based on steepest descent have slow local convergence,
even for very simple functions [44]. This is due to the fact that the steepest descent
direction scales with h(z,x0,η) and therefore the speed of convergence depends on
conditioning and scaling. A good alternative to the steepest descent method is the
conjugate gradient method [28, 1], which has improved local convergence proper-
ties. Also, the Newton-type methods can be successfully applied to solve the opti-
mization problem (1.25).

1.1.3.3 Direct Search Methods

The direct search methods do not use or approximate the objective function’s gradi-
ent, i.e. they represent derivative-free methods for optimization. These methods use
values of the objective function and constraints taken from a set of sample points
and use that information to continue the sampling. More precisely, the direct search
methods consist in a sequential examination of trial solutions involving comparison
of each trial solution with the best obtained up to that time together with a strategy
for determining (as a function of earlier results) what the next trial solution will be
[35]. There is a number of direct search methods for unconstrained optimization (see
for example [44, 51]). However, here, the most widely used direct search methods
for constrained nonlinear optimization are outlined.

8 1 Multi-parametric Programming

• The method of Box (the Complex method).
The Complex method of Box [15] has been developed from the Simplex method
[66, 54]. It requires for the NLP problem to be of the form:

V ∗(x0) = min
z

f (z,x0) (1.30)

subject to :

zl,i ≤ zi ≤ zu,i , i = 1, 2, ..., s (1.31)

g j(z,x0)≤ 0 , j = 1, 2, ..., q (1.32)

where zi is the i-th optimization variable, and zl,i and zu,i are the lower and upper
bound on this variable.

It is assumed that an initial point z1, which satisfies both constraints (1.31)
and (1.32) is available. In this method, a set of m≥ s+ 1 points is used (referred
to as complex), of which one is the given point z1 (recall that s is the dimension of
the optimization vector z). The further (m−1) points required to set up the initial
configuration are obtained one at a time by the use of pseudo-random numbers
and ranges for each of the independent variables, i.e., zi = zl,i + ri(zu,i − zl,i),
where ri is a pseudo-random deviate rectangularly distributed over the interval
(0,1) [15]. A point so selected must satisfy the bound constraints (1.31), but
need not satisfy all the functional constraints (1.32). If a functional constraint is
violated, the trial point is moved halfway towards the centroid of those points
already selected (where the given initial point is included) [15]. Ultimately, a
satisfactory point will be found. It is assumed that the feasible region is convex.
Proceeding in this way, (m−1) points are found which satisfy all the constraints.

The function is evaluated at each vertex of the complex, and the vertex of the
worst (maximal) function value is replaced by a point γ ≥ 1 times as far from the
centroid of the remaining points as the reflection of the worst point in the centroid
(the new point is collinear with the rejected point and the centroid of the retained
vertices) [15]. If this trial point is also the worst, it is moved halfway towards the
centroid of the remaining points to give a new trial point. The above procedure
is repeated until some constraint is violated. If a trial vertex does not satisfy
the lower or the upper bound on some optimization variable zi, that variable is
reset to a value zl,i + ε or value zu,i− ε (depending on which bound has been
violated), with ε being a small positive number. If a functional constraint g j(z,x0)
is violated, the trial point is moved halfway towards the centroid of the remaining
points. Ultimately, a permissible point is found. Thus, as long as the complex has
not collapsed into the centroid, progress will continue.

The idea of the Box’s method is illustrated in Fig. 1.1 for the case when s = 2
and the number of points is m = s+1 = 3, i.e., for a simplex of points. The point
z2 is considered to be the worst point and c is the center of mass of the other two
points (z1 and z3).

• DIRECT method.
The DIRECT algorithm (DIViding RECTangles) is a direct search method for
global optimization, which was first introduced in [43, 42]. In [30, 27],

1.1 Multi-parametric Nonlinear Programming 9

Fig. 1.1 The simplex with
reflection of the point z2 into
point z4 and two consecutive
contractions (z5, z6) due to
infeasibility.

z1

z2

z3c

z4

z5

z6

rigorous new analysis and algorithmic improvements to the DIRECT algorithm
have been presented. The DIRECT algorithm is a deterministic sampling algo-
rithm developed in the spirit of Lipschitz optimization, and designed to overcome
some of the shortcomings of traditional Lipschitzian algorithms (like the algo-
rithm in [59]). One problem of the algorithm in [59] is its reliance on an accurate
estimation of the Lipschitz constant. DIRECT solves this problem by replacing
the Lipschitz constant with an adaptive internal parameter.

The DIRECT method solves the following mixed-integer nonlinear program-
ming (MINLP) problem [42]:

V ∗(x0) = min
z

f (z,x0) (1.33)

subject to :

zl,i ≤ zi ≤ zu,i , i = 1, 2, ..., r (1.34)

zi ∈ Z , i = r+ 1, r+ 2, ..., s (1.35)

g j(z,x0)≤ 0 , j = 1, 2, ..., q (1.36)

where Z is the set of integer numbers. The vector of optimization variables
z = [z1, z2, ... ,zr, zr+1, ... ,zs] includes both real variables (z1, z2, ... ,zr) and in-
teger variables (zr+1, zr+2, ... ,zs). The bounds on the variables limit the search
to an s-dimensional hyper-rectangle. DIRECT proceeds by partitioning this rect-
angle into smaller rectangles, each of which has a sampled point at its center,
i.e., a point where the functions have been evaluated [43, 42]. Fig. 1.2 shows the

10 1 Multi-parametric Programming

Fig. 1.2 Partitioning of the
optimization variables space
with DIRECT algorithm
[43, 42].

Start Trisect and sample

Iter. 1

Iter. 2

Iter. 3

Select

first three iterations of DIRECT on a hypothetical problem with two optimization
variables. At the start of each iteration, the space is partitioned into rectangles.
DIRECT then selects one or more of these rectangles for further search using a
technique described below. Finally, each selected rectangle is trisected along one
of its long sides, after which the center points of the new rectangles are sampled.
The key step in the algorithm is the selection of rectangles, since this determines
how search effort is allocated across the space. The rectangles are selected using
all possible relative weightings of local versus global search [43, 42]. First, it
would be necessary to describe how the inequality constraints (1.36) are treated
by the DIRECT method. The key to handling constraints in DIRECT is to work
with an auxiliary function that combines information on the objective and con-
straint functions in a special manner [42]. To express this auxiliary function, an
additional notation needs to be introduced. Let zp be the center point of the p-th
rectangle. Let ϕ1, ϕ2, ... , ϕq be positive weighting coefficients for the inequality
constraints. Let the minimal value of the objective function at the current itera-
tion be Vmin(x0). Let ˜V be any value that satisfies ˜V <Vmin(x0)−δ , where δ > 0.
The auxiliary function, evaluated at the center of the p-th rectangle, is as follows
[42]:

V a
p (˜V ,x0) = max{ f (zp,x0)− ˜V ,0}+

q

∑
j=1

ϕ j max{g j(zp,x0),0} (1.37)

The first term of the auxiliary function represents a penalty for any deviation
of the function value f (zp,x0) above the value ˜V . The second term is a sum of
weighted constraint violations. If ˜V is the global minimum, the lowest possible
value of the auxiliary function is zero and occurs only at the global minimum. At
any other point, the auxiliary function is positive either due to suboptimality or
infeasibility. For the global minimum to occur in the p-th rectangle, the auxiliary

1.1 Multi-parametric Nonlinear Programming 11

function must fall to zero starting from its positive value at the center point [42].
Moreover, the maximum distance over which this change can occur is the center-
vertex distance dp in the rectangle. Thus, to reach the global minimum in the p-th
rectangle, the auxiliary function (1.37) must undergo a minimum rate of change,
given by ep(˜V ,x0)=V a

p (˜V ,x0)/dp [42]. Since the point x0 in the MINLP problem
(1.33)–(1.36) is fixed, the rate of change function ep depends only on the argu-
ment ˜V . The DIRECT procedure of selecting rectangles for further exploration
identifies and selects all rectangles whose rate of change functions ep(˜V ,x0) par-
ticipate in the lower envelope of all curves V a

p (˜V ,x0)/dp for ˜V < Vmin(x0)− δ
[42]. More details about the DIRECT method can be found in [43, 42].

In this book, the DIRECT algorithm is applied to design explicit model pre-
dictive controllers for constrained nonlinear systems with quantized inputs (see
Chapter 5).

1.1.4 Sensitivity Results

The solution of a mathematical program can behave in a variety of ways when per-
turbing the problem parameters. Depending on the problem, the solution may vary
smoothly or change drastically for arbitrary small perturbations of parameter val-
ues. Let x0 ∈ X , z0 satisfy the KKT conditions, and A0 be the optimal active set at
x0. The Basic Sensitivity Theorem [26] gives local regularity conditions for the opti-
mal solution, Lagrange multipliers and optimal objective function value as functions
of x:

Theorem 1.1. If:

i). the functions f (z,x) and g(z,x) are twice continuously differentiable in z, and
their gradients with respect to z and the constraints are once continuously differ-
entiable in x in a neighborhood of (z0,x0),

ii).the second order sufficient condition (1.12) for a local minimum of (1.1)–(1.2)
holds at z0, with associated Lagrange multiplier λ0,

iii).the active constraint gradients ∇zgA0(z0,x0) are linearly independent,
iv).(λ0)i > 0 when gi(z0,x0) = 0 (strict complementary slackness),

Then:

a). z0 is a local isolated minimizing point with unique associated Lagrange multi-
plier λ0,

b). for x in the neighborhood of x0, there exist unique, once continuously differ-
entiable functions z∗(x) and λ ∗(x) such that z∗(x0) = z0 and z∗(x) is a locally
unique local minimum of (1.1)–(1.2) with associated Lagrange multiplier λ ∗(x),

c). in a neighborhood of x0, the set of active constraints is unchanged, strict com-
plementary slackness holds, and the active constraint gradients at z∗(x) remain
linearly independent.

12 1 Multi-parametric Programming

Related results for slightly different conditions, and extensions that show the exis-
tence and computation of directional derivatives of the solution with respect to x at
x0 can be found in [45, 50, 62] and others.

For the fixed active set A0 the KKT conditions (1.7)–(1.8) reduce to the following
system of equations parameterized by x:

∇z f (z(x),x)+ ∑
i∈A0

λi(x)∇zgi(z(x),x) = 0 (1.38)

gA0(z(x),x) = 0 . (1.39)

The functions z(x) and λ (x) implicitly defined by (1.38)–(1.39) are optimal only for
those x where the active set A0 is optimal. Assuming z and λ are well defined on
X , we characterize the critical region CRA0 where the solution corresponding to the
fixed active set A0 is optimal:

CRA0 � {x ∈ X | λ (x)≥ 0, g(z(x),x) ≤ 0} . (1.40)

There is a finite number of candidate active sets, so this result suggests a finite
partition of X with a piecewise solution to the mp-NLP. Although explicit exact
solutions cannot be found in the general nonlinear case, the above result indicates
that it is meaningful to search for a continuous approximation to the optimal solution
as a function of x. Continuity of the optimal solution depends on several assumptions
that may be hard to verify in the general nonlinear case. However, many optimal
control problems tend to lead to continuous solution functions.

1.1.5 Algorithms for Approximate Multi-parametric Nonlinear
Programming

Consider the nonlinear multi-parametric program (1.1)–(1.2) dependent on the pa-
rameter x. Let X be a polytopic set of parameters, defined by X = {x ∈ R

n | Ax≤ b}.
In multi-parametric programming, it is of interest to characterize the solution of the
mp-NLP problem (1.1)–(1.2) for the set X . The solution of an mp-NLP problem is
a triple (V ∗(x),z∗(x),Xf) (see Section 1.1.1), where Xf is the set of feasible param-
eters, V ∗(x) is the optimal value function, and z∗(x) is the optimizer function. It is
assumed that Xf is closed and V ∗(x) is finite for every x ∈ Xf .

1.1.5.1 Approximate Solution of Convex mp-NLP

1. Convexity results.
The following assumption is made.

Assumption 1.1. The functions f and g in the nonlinear multi-parametric program
(1.1)–(1.2) are jointly convex functions of (z,x).

The following basic result for convex multi-parametric programming was proved in
[52]:

1.1 Multi-parametric Nonlinear Programming 13

Theorem 1.2. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds. Then, Xf is a convex set and V ∗ : Xf �→ R is
a convex and continuous function of x.

Convexity of Xf and V ∗ is a direct consequence of the convexity of f and g, while
continuity of V ∗ can be established under weaker conditions [26].

The main idea is to construct a feasible piecewise approximation to z∗(x) on X ,
where the constituent functions pieces are defined on hyper-rectangles covering X .
The accuracy of approximation is measured by the difference between the optimal
and sub-optimal function values rather than the difference between the exact and
approximation solutions. Since the optimal function value V ∗ cannot be assumed
known, convexity is exploited to compute simple bounds to be used for constructing
the approximate solution, similar to Chapter 9 in [26]. The method is applicable for
piecewise linear (PWL) and piecewise nonlinear (PWNL) approximations.

Consider the verticesΘ = {θ1,θ2, ... ,θNθ } of any bounded polyhedron X0 ⊆ Xf .
Define the affine function V̄ (x) = V̄0x+ l̄0 as the solution to the following linear
program (LP) [38]:

min
V̄0,l̄0

(V̄0θ + l̄0) (1.41)

subject to V̄0θi + l̄0 ≥V ∗(θi), ∀θi ∈Θ . (1.42)

Likewise, define the convex PWL function [38]:

V (x) = max
θi∈Θ

(V ∗(θi)+∇TV ∗(θi)(x−θi)) (1.43)

If V ∗ is not differentiable at θi, then ∇V ∗(θi) is taken as any sub-gradient of V ∗ at
θi [63]. V and V̄ have the following properties [26, 39]:

Theorem 1.3. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds. Consider any bounded polyhedron X0 ⊆ Xf .
Then V (x)≤V ∗(x)≤ V̄ (x) for all x ∈ X0.

In [38], it is suggested to select a local linear approximation to the solution that
minimizes the objective function approximation error subject to feasibility of the
solution, similar to [9].

Lemma 1.1. Consider the nonlinear multi-parametric program (1.1)–(1.2) and sup-
pose that Assumption 1.1 holds. Consider any bounded polyhedron X0 ⊆ Xf with
verticesΘ = {θ1,θ2, ... ,θNθ }. If K0 and h0 solve the convex NLP:

min
K0,h0

Nθ

∑
i=1

(f (K0θi + h0,θi)−V ∗(θi)+ μ‖K0θi + h0− z∗(θi)‖2
2) (1.44)

subject to g(K0θi + h0,θi)≤ 0, ∀θi ∈Θ , (1.45)

then ẑ0(x) = K0x+ h0 is feasible for the mp-NLP (1.1)–(1.2) for all x ∈ X0.

14 1 Multi-parametric Programming

In (1.44), μ > 0 is a weighting coefficient. In general, the NLP defined in Lemma 1.1
need not have a feasible solution. As a partial remedy, the following result shows
that at least for sufficiently small polyhedron X0, feasibility can be guaranteed [38].

Lemma 1.2. Consider the nonlinear multi-parametric program (1.1)–(1.2) and sup-
pose that Assumption 1.1 holds. Let X0 ⊆ Xf be a sufficiently small bounded poly-
hedron with non-empty interior. Then there exists an affine function z̃(x) such that
g(z̃(x),x) ≤ 0 for all x ∈ X0.

Proof ([38]). Since X0 ⊆ Xf is small, it follows from [26] that some unique and
continuous feasible solution function z(x) exists in a neighborhood that contains X0.
Since g is convex, it is straightforward to construct an affine support z̃(x). �

Since ẑ0(x) defined in Lemma 1.1 is feasible in X0, it follows that the suboptimal
objective function ̂V (x) = f (ẑ0(x),x) is an upper bound on V ∗(x) in X0 such that for
all x ∈ X0 we have:

0≤ ̂V (x)−V ∗(x)≤ ε0 (1.46)

where:

ε0 =−min
x∈X0

(−̂V (x)+V (x)) . (1.47)

Computing ε0 requires the solution of the NLP (1.47). If V is conservatively chosen
as affine V (x) =V ∗(θi)+∇TV ∗(θi)(x−θi) (cf. (1.43)), this NLP is concave since ̂V
is convex. Hence, the optimization can be done efficiently since X0 is a polyhedron
and it suffices to compare the solution at its vertices due to the concavity [36].

2. Algorithm for approximate explicit solution of convex mp-NLPs.
Consider a hyper-rectangle X ⊂R

n where we seek to approximate the solution func-
tion z∗(x) to the mp-NLP (1.1)–(1.2). In many problems of interest the approximate
solution function will be evaluated in an embedded computer architecture under
strict real-time requirements and with highly limited computational resources. In
order to keep the computational complexity at a minimum, we require that the ap-
proximating function is PWL with a parameter space partition that is orthogonal
and can be represented by a k− d tree [14], [39, 31], such that the real-time search
complexity is logarithmic with respect to the number of regions in the partition.
The k− d tree (Fig. 1.3) is a hierarchical data structure where a hyper-rectangle
can be sub-divided into smaller hyper-rectangles allowing the local resolution to be
adapted. When searching the tree, only one scalar comparison is required at each
level. Initially the algorithm will consider the whole region X0 = X . Under the con-
vexity Assumption 1.1, the main idea of the approximate mp-NLP algorithm is to
compute the solution of problem (1.1)–(1.2) at the 2n vertices of the hypercube X0,
by solving up to 2n NLPs. Based on these solutions, assuming they are all feasi-
ble, we compute a feasible local linear approximation function ẑ0(x) to the optimal
solution function z∗(x), restricted to the hyper-rectangle X0, using Lemma 1.1. If
such an approximation exists, and the maximal objective function error ε0 in X0 is

1.1 Multi-parametric Nonlinear Programming 15

Fig. 1.3 k−d tree partition
of a rectangular region. X0

smaller than some prescribed tolerance ε̄ > 0, no further refinement of the region
X0 is needed. Otherwise, we split X0 into two hyper-rectangles, and repeat the pro-
cedure for each of these.

Assume the tolerance ε̄ > 0 of the objective function approximation error is
given. For simplicity, we consider uniform tolerance in this chapter. In later chapters,
sometimes the tolerance will depend on x, which causes no problems. Denote with

SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂R
n, i.e. SX0 =

n
∏
i=1
Δxi,

where Δxi is the size of X0 along the axis xi. Let Smin be the minimal allowed volume
of the regions in the partition of X . A nonzero Smin is required to ensure termination
of the algorithm in finite time. The following algorithm is proposed to determine an
explicit approximate solution of convex mp-NLP (1.1)–(1.2) [38].

Algorithm 1.1. Explicit approximate solution of convex mp-NLP.

Input: Data to problem (1.1)–(1.2), the parameter μ (used in Lemma 1.1),
the approximation tolerance ε̄ , the minimal allowed volume Smin.
Output: Partition Π = {X1,X2, ...,XNX } and associated PWL solution
ẑΠ = {ẑX1 , ẑX2 , ... , ẑXNX

}.
1. Initialize the partition to the whole hyper-rectangle, i.e., Π = {X}. Mark the

hyper-rectangle X as unexplored, and let f lag = 1.
2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π and compute its volume SX0 .
5. Solve problem (1.1)–(1.2) for x fixed to each of the vertices θi, i = 1, ... ,Nθ

of the hyper-rectangle X0.
6. if (1.1)–(1.2) has a feasible solution at all points θi, i = 1, ... ,Nθ then
7. Compute a linear approximation ẑ0(x) = K0x+ h0 using Lemma 1.1,

as an approximation to be used in X0.
8. if a solution ẑ0(x) was found then
9. Compute the error bound ε0, using (1.41)–(1.43), and (1.47).

16 1 Multi-parametric Programming

10. If ε0 > ε̄ and SX0 > Smin, mark the hyper-rectangle X0 to be split.
Otherwise, mark X0 as explored and feasible.

11. else
12. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
13. end if
14. else
15. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
16. end if
17. end while
18. f lag := 0
19. if ∃ hyper-rectangles in Π that are marked to be split then
20. f lag := 1
21. while ∃ hyper-rectangles in Π that are marked to be split do
22. Select any hyper-rectangle X0 ∈Π marked to be split.
23. Split X0 into two hyper-rectangles X1 and X2 by applying an heuristic

splitting rule. Mark X1 and X2 unexplored, remove X0 from Π ,
and add X1 and X2 to Π .

24. end while
25. end if
26. end while

The PWL approximation generated by Algorithm 1.1 is denoted ẑΠ : X �→R
s, where

X is the union of the hyper-rectangles where a feasible solution has been found. It is
an inner approximation to Xf and the approximation accuracy is determined by the
minimal allowed volume Smin of the regions. The boundary of the feasible region
Xf can thus be approximated more closely by allowing smaller infeasible regions
by choosing Smin small. We remark that ẑΠ is generally not continuous.

Step 23 needs further specification of how a hyper-rectangle is being partitioned.
A hyper-rectangle is split into two equal parts by an axis-orthogonal hyperplane
that goes through its center. As in [31], the main idea is to select the hyperplane
where the change of error between the solutions on each side of the hyperplane is
largest (before splitting). This is implemented by comparing the solutions at the ver-
tices of the hyper-rectangle. It is reasonable to expect that this heuristics may give
a significant reduction in the error in both hyper-rectangles after splitting and its
effectiveness is observed in a number of examples.

Theorem 1.4. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds and Smin is sufficiently small. Assume that the
partitioning rule in step 23 guarantees that the error decreases by some minimum
amount or factor at each split. Then Algorithm 1.1 terminates with an approximate
solution function ẑΠ that is feasible and satisfies 0≤ f (ẑΠ (x),x)−V ∗(x)≤ ε̄ for all
x ∈ X.

1.1 Multi-parametric Nonlinear Programming 17

Proof ([38]). If the algorithm terminates, the specified tolerance is met because of
steps 9, 10, and 23. Since V ∗ is continuous, it is clear that a k− d tree partition will
lead to an approximation with arbitrary uniform accuracy provided the hypercubes
are sufficiently small. According to Lemma 1.2, this approximation will be feasible,
and since the partitioning rule ensures that the error decreases by some minimum
amount or factor at each step, the algorithm will indeed terminate after a finite num-
ber of steps. �

In [22], several alternative multi-parametric programming algorithms for explicit
approximate solution of convex mp-NLP problems are discussed. Thus, in [24] a
multi-parametric outer approximation algorithm for mp-NLP problems and multi-
parametric mixed-integer nonlinear programming (mp-MINLP) problems is pre-
sented. A multi-parametric quadratic approximation algorithm is proposed in [37]
and recently revisited in [23]. An approximate multi-parametric algorithm is pro-
posed in [11], where the parameter space is divided into a set of simplices. Recently,
a geometric vertex search algorithm is proposed in [53]. Some of these algorithms
are extended to consider the non-convex case (see [58]).

1.1.5.2 Approximate Solution of Non-convex mp-NLP

If convexity does not hold (Assumption 1.1), then global optimization, e.g. [43, 42,
36], is generally needed in several steps of the algorithm to maintain its theoretical
properties [38]:

(1) The NLP (1.1)–(1.2) must be solved using global optimization in step 5.
(2) The NLP (1.44)–(1.45) must be reformulated and solved using global optimiza-

tion in step 7. It is not sufficient to impose the constraints at the vertices of the
polyhedron X0 if g is not convex. In order to resolve this problem, one may use
(a conservative) convex underestimation in combination with global optimiza-
tion as suggested in [26].

(3) The computation of the error bound ε0 in step 9 assumes the knowledge of a
lower bound V on the optimal objective function. The bound (1.43) does not
necessarily hold if V ∗ is not convex. Again, convex underestimation and global
optimization may be used.

On the other hand, one may argue in the favor of a computationally more efficient
ad hoc approach to handle non-convex problems [38]. The reason for this is that
an explicit representation of the approximate solution is available, which makes
rigorous verification and validation of its properties possible. One heuristic approach
is to include some interior points in addition to the set of vertices Θ when used
in (1.43)–(1.45). Hence, any non-convexity related error in the computed bounds
and approximation of the constraints are likely to be reduced. Moreover, based on
the solutions of the associated NLPs one may locally estimate the Hessian of the
optimal objective function at the points in Θ and may thus be able to detect if it is
locally convex or non-convex, and adjust the number of additional interior points to
be added toΘ . The introduction of such additional points does not necessarily lead

18 1 Multi-parametric Programming

to additional complexity of the PWL approximate solution, but may only serve to
verify its accuracy [38].

Here, practical computational methods for explicit approximate solution of
non-convex mp-NLP problems are presented. They don’t necessarily lead to
guaranteed properties of the explicit approximate solution, but when combined with
verification and analysis methods may give a practical tool for explicit approximate
solution of non-convex mp-NLPs.

1. Close-to-global solution of non-convex mp-NLPs.
In general, the objective function f can be non-convex with multiple local min-
ima. Therefore, it would be necessary to apply an effective initialization of the mp-
NLP problem (1.1)–(1.2) so to find a close-to-global solution. One possible way
to obtain this is to find a close-to-global solution at a point w0 ∈ X0 by comparing
the local minima corresponding to several initial guesses and then to use this so-
lution as an initial guess at the neighboring points wi ∈ X0, i = 1,2, ...,N1, i.e. to
propagate the solution. The following procedure is used to generate a set of points
W0 = {w0,w1,w2, ... ,wN1} ⊂ X0 [32].

Procedure 1.1 (generation of set of points). Consider any hyper-rectangle X0 ⊆
X with vertices Θ 0 = {θ 0

1 ,θ
0
2 , ... ,θ

0
Nθ
} and center point w0. Consider also

the hyper-rectangles X j
0 ⊂ X0, j = 1,2, ... ,N0 with vertices respectively Θ j =

{θ j
1 ,θ

j
2 , ... ,θ

j
Nθ
}, j = 1,2, ... ,N0. Suppose X1

0 ⊂ X2
0 ⊂ ... ⊂ XN0

0 . For each of the

hyper-rectangles X0 and X j
0 ⊂ X0, j = 1,2, ... ,N0, denote the set of its facets cen-

ters with Ψ j = {ψ j
1 ,ψ

j
2 , ... ,ψ

j
Nψ }, j = 0,1,2, ... ,N0. Define the set of all points

W0 = {w0,w1,w2, ... ,wN1}, where wi ∈
{

N0
⋃

j=0
Θ j

}

∪
{

N0
⋃

j=0
Ψ j

}

, i = 1,2, ... ,N1.

For a hyper-rectangle in the n-dimensional parameter space, the number of its ver-
tices is Nθ = 2n and the number of its facets centers is Nψ = 2n. Therefore, the
number of all points generated with Procedure 1.1 is 1+(N0 +1)(Nθ +Nψ), where
N0 is the number of interior hyper-rectangles.

The following procedure is applied to search for a close-to-global solution at the
points wi ∈W0, i = 0,1,2, ... ,N1 [32].

Procedure 1.2 (close-to-global solution of mp-NLP). Consider any hyper-
rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined by
applying Procedure 1.1. Then:

a). Suppose local minima of the NLP (1.1)–(1.2) at the center point w0 of X0 have
been computed. Then, determine a close-to-global solution of (1.1)–(1.2) at w0

through the following minimization:

z∗(w0) = arg min
z∈{zlocal

1 ,zlocal
2 , ... ,zlocal

Nz
}

f (z,w0) . (1.48)

Here, zlocal
i , i = 1,2, ... ,Nz correspond to local minima of the objective function

f (z,w0) obtained for a number of initial guesses z0
i , i = 1,2, ... ,Nz.

1.1 Multi-parametric Nonlinear Programming 19

b). Determine a close-to-global solution of the NLP (1.1)–(1.2) at the points wi ∈W0,
i = 1,2, ... ,N1 in the following way:

1. Let z∗(w0) be the close-to-global solution of the NLP (1.1)–(1.2) at the center
point w0, obtained by solving problem (1.48) in step a). Let i = 1.

2. Let W s = {w0,w1,w2, ... ,wN2}⊂W0 be the subset of points at which a feasible
solution of the NLP (1.1)–(1.2) has been already determined.

3. Find the point w̃∈W s that is most close to the point wi, i.e., w̃ = arg min
w∈Ws
‖w−

wi‖. Let the solution at w̃ be denoted z∗(w̃).
4. Solve the NLP (1.1)–(1.2) at the point wi with initial guess for the optimization

variables set to z∗(w̃).
5. If a solution of the NLP (1.1)–(1.2) at the point wi has been found, mark wi as

feasible and add it to the set W s. Otherwise, mark wi as infeasible.
6. Let i = i+ 1. If i≤ N1, go to step 2. Otherwise, terminate.

With some abuse of notation we do not distinguish between the global solution and
the close-to-global solution, and denote both with z∗(x). Procedure 1.2 is illustrated
on Fig. 1.4. First, a close-to-global solution to the NLP (1.1)–(1.2) is determined at
the center point w0 of the hyper-rectangle X0 (the case when no feasible solution
at the center point w0 exists is discussed later). Then, this solution is used as an
initial guess when solving the NLP at the points w1,w2, ... ,w8 which represent the
vertices and the facets centers of the smallest interior hyper-rectangle X1

0 . Then, the
solutions at these points are used as initial guesses when solving the NLP at the
points w9,w10, ... ,w16 which are the vertices and the facets centers of the interior

0X

3
0X

2
0X

1
0X

1x

2x

0w

1w 2w 3w

4w

5w
6w7w

8w16w

9w
10w 11w

12w

13w
14w15w

17w 18w 19w

20w

21w
22w23w

24w

25w 26w 27w

28w

29w30w31w

32w

Fig. 1.4 Illustration of Procedure 1.2.

20 1 Multi-parametric Programming

hyper-rectangle X2
0 . Next, the solutions at these points are used as initial guesses

when solving the NLP at the points w17,w18, ... ,w24 which represent the vertices
and the facets centers of the interior hyper-rectangle X3

0 . At the end, the solutions
at these points are used as initial guesses when solving the NLP at the points
w25,w26, ...,w32 which are the vertices and the facets centers of the hyper-rectangle
X0.

2. Computation of explicit approximate solution.
We restrict our attention to a hyper-rectangle X ⊂R

n where we seek to approximate
the solution z∗(x) to the non-convex mp-NLP (1.1)–(1.2). Like in Section 1.1.5.1,
we require that the parameter space partition is orthogonal and can be represented
as a k−d tree [14], [39, 31]. The main idea of the approach to explicit approximate
solution of non-convex mp-NLPs is to construct a PWL approximation ẑ(x) to the
close-to-global solution z∗(x) on X , where the constituent affine functions are de-
fined on hyper-rectangles covering X . It should be noted that sometimes it may be
more appropriate to use a piecewise nonlinear (PWNL) approximation. In case of
non-convexity, it would not be sufficient to impose the constraints only at the ver-
tices of the hyper-rectangle X0. This problem is resolved by including some interior
points in addition to the set of vertices of X0 [32]. These additional points represent
the vertices and the facets centers of one or more hyper-rectangles contained in the
interior of X0 (see Procedure 1.1). Based on the solutions at all points, a local linear
approximation ẑ0(x) = K0x+ h0 to the close-to-global solution z∗(x), to be used as
an approximation in the whole hyper-rectangle X0, is determined by applying the
following procedure [32].

Procedure 1.3 (computation of approximate solution). Consider any hyper-
rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined by
applying Procedure 1.1. Compute K0 and h0 by solving the following NLP:

min
K0,h0

N1

∑
i=0

(f (K0wi + h0,wi)−V∗(wi)+ μ‖K0wi + h0− z∗(wi)‖2
2) (1.49)

subject to g(K0wi + h0,wi)≤ 0, ∀wi ∈W0 . (1.50)

In (1.49), the parameter μ > 0 is a weighting coefficient. Note that the linear approx-
imation ẑ0(x) = K0x+ h0, computed with Procedure 1.3, satisfies the constraints in
the mp-NLP problem (1.1)–(1.2) only for the discrete set of points W0⊂ X0. In order
to give an appropriate initialization of the NLP problem (1.49)–(1.50) for the region
X0, the already computed solutions of this problem in some of the neighboring re-
gions can be used as initial guesses.

3. Estimation of error bounds. Suppose that a linear approximation ẑ0(x) = K0x+
h0 for the region X0 has been computed by applying Procedure 1.3. Then it follows
that the sub-optimal objective function ̂V (x) = f (ẑ0(x),x) is an approximate upper
bound on V ∗(x) in X0, such that for all x ∈ X0, where ẑ0(x) is feasible, we have:

0≤ ̂V (x)−V ∗(x)≤ ε0 . (1.51)

1.1 Multi-parametric Nonlinear Programming 21

As already mentioned, the objective function f can be non-convex with multiple
local minima. Therefore, (1.51) is only valid if global solutions are found to all
sub-problems and feasibility of ẑ0(x) and z∗(x) holds for all x ∈ X0. The following
procedure can be used to obtain an estimate ̂ε0 of the maximal approximation error
ε0 in X0 [32].

Procedure 1.4 (computation of error bound approximation). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined
by applying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through
the following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(̂V (wi)−V∗(wi)) . (1.52)

4. Procedure and heuristic rules for splitting a region.
The following procedure is applied to determine the split of a region X0 for which
a local linear approximation ẑ0(x) = K0x+ h0 is found, but the required accuracy
ε̄ > 0 of objective function approximation is not achieved [32].

Procedure 1.5 (Determination of the split of a region). Consider a hyper-rectangle
X0 and suppose that a local linear approximation ẑ0(x) = K0x+ h0 was found by
applying Procedure 1.3. Suppose also that the required accuracy ε̄ is not achieved.
Then, determine the split of X0 in the following way:

1. Let j = 1.
2. Consider splitting X0 by a hyperplane through its center and orthogonal to the

axis x j. Denote the new hyper-rectangles with X j
1 and X j

2 .

3. Compute local linear approximations ẑ j
1(x) and ẑ j

2(x), candidates for use in X j
1

and X j
2 , respectively, by applying Procedure 1.3.

4. Compute estimates ̂ε j
1 and ̂ε j

2 , respectively of the error bounds ε j
1 in X j

1 and ε j
2 in

X j
2 , by applying Procedure 1.4. Let ̂ε j = ̂ε j

1 +̂ε
j

2 .
5. Let j = j+ 1. If j ≤ n, go to step 2.
6. Split X0 by a hyperplane through its center and orthogonal to the axis x j where
̂ε j is minimal.

In step 4, the metric ̂ε j = ̂ε j
1 +̂ε

j
2 could be replaced by other metrics such as ̂ε j =

max(̂ε j
1 ,̂ε

j
2).

The following rule is applied when no feasible solution to the NLP problem
(1.1)–(1.2) was found at some of the points wi ∈W0, wi �= w0 [32]. Here, the set
W0 = {w0,w1,w2, ... ,wN1} is defined in Procedure 1.1.

Heuristic splitting rule 1.1 (handling infeasibility). Consider the following two
cases:

1. The set of the feasible points in X0 includes the center point w0 and some non-
empty subset of the points wi ∈W0, wi �= w0 (the set W0 = {w0,w1,w2, ... ,wN1}
is defined in Procedure 1.1). Then, split X0 into two types of hyper-rectangles by
hyperplanes containing some of the feasible points wi ∈W0:

22 1 Multi-parametric Programming

i. Hyper-rectangles X f
1 , X f

2 , ... , X f
Nf

containing only feasible points.

ii. Hyper-rectangles Xn f
1 , Xn f

2 , ... , Xn f
Nn f

containing some infeasible points.

2. The center point w0 of X0 is the only feasible point. Then, split X0 on all param-
eter space axes by hyperplanes through w0.

This rule is illustrated in Fig. 1.5, where the hyper-rectangle X0 will be split into
the hyper-rectangles X f

1 with vertices {w24, w8, w17, α1}, X f
2 with vertices

{w23, w21, w24, w20} and Xn f
1 with vertices {w8, w20, α1, w19}.

0X

2
0X

1
0X

1x

2x

8w

1w 2w 3w

4w

5w
6w7w

9w 10w 11w

12w

13w
14w15w

16w

17w 18w 19w

20w

21w22w23w

24w 0w

Legend:
 feasible
 infeasible

1

fX 2

fX1

nfX1

Fig. 1.5 Illustration of Heuristic splitting rule 1.1.

The following rule is applied when there is no feasible solution to the NLP prob-
lem (1.1)–(1.2) at the center point w0 of the hyper-rectangle X0 [32].

Heuristic splitting rule 1.2 (handling infeasibility). If there is no feasible solution
of the NLP problem (1.1)–(1.2) at the center point w0 of X0, split the hyper-rectangle
X0 by a hyperplane through w0 and orthogonal to an arbitrary axis.

The following rule is used when the NLP problem (1.49)–(1.50) in Procedure 1.3
has no solution [32].

Heuristic splitting rule 1.3 (handling infeasibility). If the NLP problem (1.49)–
(1.50) in Procedure 1.3 is infeasible, split the hyper-rectangle X0 by a hyperplane
through its center and orthogonal to an arbitrary axis.

1.1 Multi-parametric Nonlinear Programming 23

5. Algorithm for explicit approximate solution of non-convex mp-NLPs.
Assume the tolerance ε̄ > 0 of the objective function approximation error is given.
Denote with SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂ R

n, i.e.

SX0 =
n
∏
i=1
Δxi, where Δxi is the size of X0 along the variable xi. Let Smin > 0 be

the minimal allowed volume of the regions in the partition of X . The following al-
gorithm is proposed to determine an explicit approximate solution of non-convex
mp-NLP (1.1)–(1.2) [32].

Algorithm 1.2. Explicit approximate solution of non-convex mp-NLP.

Input: Data to problem (1.1)–(1.2), the number N0 of internal regions (used in
Procedure 1.1), the parameter μ (used in Procedure 1.3), the approximation
tolerance ε̄ , the minimal allowed volume Smin.
Output: Partition Π = {X1,X2, ...,XNX } and associated PWL solution function
ẑΠ = {ẑX1 , ẑX2 , ... , ẑXNX

}.
1. Initialize the partition to the whole hyper-rectangle, i.e., Π = {X}. Mark the

hyper-rectangle X as unexplored, f lag := 1.
2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π and compute its volume SX0 .
5. Search for a close-to-global solution to problem (1.1)–(1.2) at the center

point w0 of X0 by applying Procedure 1.2a.
6. if a feasible solution was found to problem (1.1)–(1.2) at w0 then
7. Define a set of points W0 = {w0,w1,w2, ... ,wN1} by applying

Procedure 1.1.
8. Search for a close-to-global solution to problem (1.1)–(1.2) for x fixed to

each of the points wi, i = 1,2, ... ,N1 by applying Procedure 1.2b.
9. if (1.1)–(1.2) has a feasible solution at all points wi, i = 1, ... ,N1 then
10. Search for a linear approximation ẑ0(x) = K0x+ h0 using

Procedure 1.3, as an approximation to be used in X0.
11. if a solution ẑ0(x) was found then
12. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying

Procedure 1.4.
13. If ̂ε0 > ε̄ and SX0 > Smin, mark the hyper-rectangle X0 to be split.

Otherwise, mark X0 as explored and feasible.
14. else
15. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
16. end if
17. else
18. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
19. end if
20. else

24 1 Multi-parametric Programming

21. If SX0 < Smin, mark X0 infeasible and explored.
Otherwise, mark X0 to be split.

22. end if
23. end while
24. f lag := 0
25. if ∃ hyper-rectangles in Π that are marked to be split then
26. f lag := 1
27. while ∃ hyper-rectangles in Π that are marked to be split do
28. Select any hyper-rectangle X0 ∈Π marked to be split.
29. Split X0 into hyper-rectangles X1, ... , XNs by applying the heuristic

splitting rules. Mark X1, ... , XNs unexplored, remove X0 from Π ,
and add X1, ... , XNs to Π .

30. end while
31. end if
32. end while

1.2 Convex Multi-parametric Quadratic Programming

1.2.1 Problem Formulation

Consider the convex quadratic mathematical program dependent on a parameter x:

V ∗(x) = min
z

1
2

zT Hz (1.53)

s.t. Gz≤W + Sx , (1.54)

where z ∈ R
s is the vector of optimization variables, x ∈ R

n is the vector of pa-
rameters, and H ∈ R

s×s, G ∈ R
q×s, W ∈ R

q, and S ∈ R
q×n are matrices. Here, it

is supposed that H � 0, which leads to a strictly convex multi-parametric quadratic
programming (mp-QP) problem (1.53)–(1.54). The case when the multi-parametric
programming problem (1.53)–(1.54) is only convex, i.e. H � 0, is considered in
[73, 69].

Let X be a polytopic set of parameters, defined by X = {x ∈ R
n | Ax≤ b}. In

parametric programming, it is of interest to characterize the solution of the mp-QP
problem (1.53)–(1.54) for the set X . The solution of an mp-QP problem is a triple
(V ∗(x),z∗(x),Xf) (see Section 1.1.1), where Xf is the set of feasible parameters,
V ∗(x) is the optimal value function, and z∗(x) is the optimizer function. It is as-
sumed that Xf is closed and V ∗(x) is finite for every x ∈ Xf .

In [12, 13], an algorithm has been developed, which expresses the solution z∗(x)
and the optimal value V ∗(x) of the mp-QP problem (1.53)–(1.54) as an explicit func-
tion of the parameters x, and the analytical properties of these functions have been
characterized. In particular it has been proved that the solution z∗(x) is a continuous
piecewise linear function of x in the following sense [12, 13]:

1.2 Convex Multi-parametric Quadratic Programming 25

Definition 1.1. A function z(x) : X �→R
s, where X ⊆R

n is a polyhedral set, is piece-
wise linear if it is possible to partition X into convex polyhedral regions, CRi, and
z(x) = Kix+ hi, ∀x ∈CRi.

Piecewise quadraticity is defined analogously by letting z(x) be a quadratic function
xT Qix+Kix+ hi.

1.2.2 Optimality Conditions

The solution of mp-QP problems can be approached by employing the principles
of multi-parametric nonlinear programming and in particular the first-order Karush-
Kuhn-Tucker (KKT) optimality conditions, which lead to the Basic Sensitivity The-
orem (see Section 1.1). Instead, in [12, 13] a more direct approach has been adopted
which exploits the linearity of the constraints and the fact that the function to be
minimized is quadratic. The approach [12, 13] is described as follows. In order to
start solving the mp-QP problem, an initial vector x0 inside the polyhedral set X of
parameters is needed, such that the QP problem (1.53)–(1.54) is feasible for x = x0.
Such a vector can be found for instance by solving the linear program (LP) [12, 13]:

max
x,z,ε

ε (1.55)

subject to :

Gz− Sx+ ε ≤W (1.56)

ε ≥ 0 (1.57)

x ∈ X . (1.58)

If the LP (1.55)–(1.58) is infeasible, then the QP problem (1.53)–(1.54) is infeasible
for all x ∈ X . Otherwise, the QP problem (1.53)–(1.54) is solved with x = x0 in
order to obtain the corresponding optimal solution z0. Such a solution is unique
because H � 0 and therefore uniquely determines a set of active constraints G̃z0 =
S̃x0 +W̃ among the constraints (1.54). Let G̃, S̃ and W̃ denote the rows of G, S and
W corresponding to the active constraints. Then, the following theorem is proved
[12, 13]:

Theorem 1.5. Let H � 0. Consider a combination of active constraints G̃, S̃, W̃
and assume that the rows of G̃ are linearly independent. Let CR0 be the set of all
vectors x for which such a combination is active at the optimum (CR0 is referred
to as critical region). Then, the optimal z and the associated vector of Lagrange
multipliers λ are uniquely defined linear functions of x over CR0.

Proof ([13]). The first-order KKT conditions for the mp-QP are given by:

Hz+GTλ = 0 , λ ∈ R
q (1.59)

λi(G
iz−Wi− Six) = 0 , i = 1,2, ... ,q (1.60)

λ ≥ 0 , (1.61)

26 1 Multi-parametric Programming

where the superscript i denotes the i-th row. Equality (1.59) is solved for z:

z =−H−1GTλ (1.62)

and the result is substituted into (1.60) to obtain the complementary slackness con-
dition:

λi(−GiH−1GiTλi−Wi− Six) = 0 , i = 1,2, ... ,q (1.63)

Let λ̆ and λ̃ denote the Lagrange multipliers corresponding to inactive and ac-
tive constraints, respectively. For inactive constraints λ̆ = 0. For active constraints
−G̃H−1G̃T λ̃ −W̃ − S̃x = 0 and therefore:

λ̃ =−(G̃H−1G̃T)−1(W̃ + S̃x) , (1.64)

where G̃, W̃ , S̃ correspond to the set of active constraints and (G̃H−1G̃T)−1 exists
because the rows of G̃ are linearly independent. Thus λ is a linear function of x
for all x ∈CR0, where the active constraints set is optimal. By substituting λ̃ from
(1.64) into (1.62), it is obtained:

z∗(x) = H−1G̃T (G̃H−1G̃T)−1(W̃ + S̃x) (1.65)

and it is noted that z∗ is also a linear function of x in CR0. �

Theorem 1.5 characterizes the solution only locally in the neighborhood of a specific
x0, as it does not provide the construction of the set CR0 where this characterization
remains valid. On the other hand, this region can be characterized immediately [12,
13]. The variable z from (1.65) must satisfy the constraints (1.54):

GH−1G̃T (G̃H−1G̃T)−1(W̃ + S̃x)≤W + Sx (1.66)

and by (1.61) the Lagrange multipliers in (1.64) must remain nonnegative:

− (G̃H−1G̃T)−1(W̃ + S̃x)≥ 0 (1.67)

as x varies. After removing the redundant inequalities from (1.66) and (1.67), a
compact representation of CR0 is obtained. Obviously, CR0 is a polyhedron in the
x-space and represents a subset of X such that the combination of active constraints
at the minimizer remains unchanged (Fig. 1.6(a)). Then, the algorithm in [12, 13]
continues with the division of the rest of the parameter space CRrest = X −CR0 as
in Fig. 1.6(b) and (c) by reversing one by one the hyperplanes defining the critical
region CR0. Iteratively each new region Ri is subdivided in a similar way as was done
with X . An effective approach for partitioning the rest of the space was proposed in
[25]. The following theorem justifies such a procedure to characterize the rest of the
region CRrest [13].

1.2 Convex Multi-parametric Quadratic Programming 27

Theorem 1.6. Let Y ⊆ R
n be a polyhedron, and CR0 = {x ∈ Y | Ax ≤ b} a polyhe-

dral subset of Y , CR0 �= /0. Also let:

Ri = {x ∈ Y | Aix > bi, A jx≤ b j , ∀ j < i} , i = 1, 2, ... , m , (1.68)

where m = dim(b), and let CRrest =
⋃m

i=1 Ri. Then:
(i) CRrest⋃CR0 = Y .
(ii) CR0

⋂

Ri = /0, Ri
⋂

R j = /0, ∀i �= j, i.e., {CR0, R1, ... , Rm} is a partition of Y .

Fig. 1.6 Parameter space
exploration strategy in [12,
13].

CR0 R1
CR0

R4

R

R1
CR0

R5

R3

X

R1
CR0

CR1

x0

2

(a) (b)

(c) (d)

The properties of the set of feasible parameters Xf ⊆ X (i.e. the set of parame-
ters x ∈ X such that a feasible solution z∗(x) exists to the optimization problem
(1.53)–(1.54), the value function V ∗(x) and the solution z∗(x) are formulated in the
following theorem [13]:

Theorem 1.7. Consider the convex multi-parametric quadratic program
(1.53)–(1.54) with H � 0, X convex. Then the set of feasible parameters Xf ⊆ X
is convex, the optimizer z∗(x) : Xf �→R

s is continuous and piecewise linear and the
value function V ∗(x) : Xf �→ R is continuous, convex and piecewise quadratic.

1.2.3 Algorithms for Exact Convex Multi-parametric Quadratic
Programming

Based on the above results, the main steps of the off-line mp-QP solver are outlined
in the following algorithm [13]:

28 1 Multi-parametric Programming

Algorithm 1.3. Exact mp-QP.

Step 1. Let the current region be the whole polyhedron X ⊆ R
n.

Step 2. Choose a vector x0 in the current region by solving the linear program
(1.55)–(1.58).

Step 3. For x = x0, compute the corresponding optimal solution (z0, λ0) by solv-
ing a QP.

Step 4. Determine the set of active constraints when z = z0, x = x0, and build G̃,
W̃ , S̃.

Step 5. If r = rankG̃ is less than the number l of rows of G̃, take a subset of r
linearly independent rows and redefine G̃, W̃ , S̃ accordingly.

Step 6. Determine λ̃ (x), z∗(x) from (1.64) and (1.65).
Step 7. Characterize the CR0 from (1.66) and (1.67).
Step 8. Define and partition the rest of the region as illustrated in Fig. 1.6.
Step 9. For each nonempty new sub-region, go to step 2.
Step 10. When all regions have been explored, for all polyhedral regions where

z∗(x) is the same and whose union is a convex set, compute such a union.

In conclusion, Algorithm 1.3 provides the explicit solution z∗(x) to the mp-QP prob-
lem (1.53)–(1.54), as the piecewise affine function:

z∗(x) = Kix+ hi if Dix≤ di , i = 1, 2, ... , Nr , (1.69)

where the polyhedral sets Dix ≤ di , i = 1, 2, ... , Nr are critical regions that form a
partition of the given set of states X .

1.2.3.1 Efficient Implementation of the Exact Approach to Explicit Solution
of mp-QP Problems

1. Main theoretical result.
As noted in [72], the main drawback of this algorithm is that the regions Ri are
not related to optimality, as they can split some of the critical regions like CR1 in
Fig. 1.6(d). A consequence is that CR1 will be detected at least twice. The approach
in [72] modifies the explicit approach in [12, 13] by analyzing several properties of
the geometry of the polyhedral partition and its relation to the combination of active
constraints at the optimum of the quadratic program. Based on that, they derive a
new exploration strategy for sub-dividing the parameter space, which aims to:

(1) Avoid unnecessary partitioning.
(2) Avoid the solution to LP problems for determining an interior point in each new

region of the parameter space.
(3) Avoid the solution to the QP problem for such an interior point.

1.2 Convex Multi-parametric Quadratic Programming 29

As a consequence, there is a significant improvement of efficiency with respect to
the algorithm in [12, 13]. Before describing the main idea of the approach in [72],
some definitions are made [72]:

Definition 1.2. Let z∗(x) be the optimal solution to (1.53)–(1.54) for a given x.
We define active constraints the constraints with Giz∗(x)−W i − Six = 0 and in-
active constraints the constraints with Giz∗(x)−W i − Six < 0. The optimal ac-
tive set A ∗(x) is the set of indices of active constraints at the optimum A ∗(x) =
{i | Giz∗(x) = W i + Six} (a superscript index is used to denote a row of a matrix).
We also define as weakly active constraint an active constraint with an associated
zero Lagrange multiplier λi and as strongly active constraint an active constraint
with a positive Lagrange multiplier λi.

Definition 1.3. For an active set, we say that the linear independence constraint
qualification (LICQ) holds if the set of active constraint gradients are linearly inde-
pendent, i.e. G̃ has full row rank.

Below, the linear expression of the PWL function z∗(x) over the critical region CRk

is denoted by z∗k(x).

Definition 1.4. Two polyhedra are called neighboring polyhedra if they have a com-
mon facet.

Definition 1.5. Let a polyhedron X be represented by A0x ≤ b. We say that Ai
0x ≤

bi is redundant if A j
0x ≤ b j, ∀ j �= i ⇒ Ai

0x ≤ bi (i.e. it can be removed from the
description of the polyhedron). The inequality i is redundant with degree h if it is
redundant but there exists a h-dimensional subset Y of X such that Ai

0x = bi for all
x ∈Y .

Let us consider a hyperplane defining the common facet between two polyhedra
CR0, CRi in the optimal partition of the state space. There are two different kinds of
hyperplanes [72]. The first (Type I) are those described by (1.66), which represent
a non-active constraint that becomes active at the optimum as x moves from CR0 to
CRi. This means that if a polyhedron is bounded by a hyperplane which originates
from (1.66), the corresponding constraint will be activated on the other side of the
facet defined by this hyperplane. In addition, the corresponding Lagrange multiplier
may become positive. The other kind (Type II) of hyperplanes which bounds the
polyhedra are those described by (1.67). In this case, the corresponding constraint
will be non-active on the other side of the facet defined by this hyperplane. This is
formulated in the following theorem [72]:

Theorem 1.8. Consider an optimal active set {i1, i2, ... , ik} and its corresponding
n-minimal representation of the critical region CR0 obtained by (1.66)–(1.67) after
removing redundant inequalities. Let CRi be a full-dimensional neighboring critical
region to CR0 and assume LICQ holds on their common facet Φ =CR0

⋂

Ψ where
Ψ is the separating hyperplane between CR0 and CRi. Moreover, assume that there
are no constraints which are weakly active at the optimizer z∗(x) for all x ∈ CR0.
Then:

30 1 Multi-parametric Programming

Type I. IfΨ is given by Gik+1z∗0(x) =W ik+1 +Sik+1x, then the optimal active set in
CRi is {i1, ... , ik, ik+1}.

Type II. If Ψ is given by λ ik
0 (x) = 0, then the optimal active set in CRi is

{i1, ... , ik−1}.
In degenerate cases, when the LICQ condition does not hold or there are weakly
active constraints, Theorem 1.8 provides no conclusion. In particular, when moving
across the facet of one critical region there may not be a single unique critical region
that shares the same facet, [67]. As discussed in [72, 73, 67, 69], the method in
[12, 13] is effective to handle these special cases.

2. Example.
The example represents a Model Predictive Control (MPC) problem for a double
integrator [72, 40], which is transformed into the equivalent mp-QP problem (1.53)–
(1.54) with H, G, W , S given by:

H =

[

1.079 0.076
0.076 1.073

]

(1.70)

GT =

[

1 0 −1 0 0.05 0.05 −0.05 −0.05
0 1 0 −1 0 0.05 0 −0.05

]

(1.71)

W T =
[

1 1 1 1 0.5 0.5 0.5 0.5
]

(1.72)

ST =

[

1.0 0.9 −1.0 −0.9 0.1 0.1 −0.1 −0.1
1.4 1.3 −1.4 −1.3 −0.9 −0.9 0.9 0.9

]

(1.73)

The partitioning starts with finding the region where no constraints are active. As
the mp-QP is created from a feasible MPC problem, the empty active set will be op-
timal in some full-dimensional region (A0 = /0 and G̃, W̃ and S̃ are empty matrices,
z∗(x) = 0). This critical region is then described by 0 ≤W + Sx which contains 8
inequalities. Two of these inequalities are redundant with degree 0 (#2 and #4), the
remaining 6 hyperplanes are facet inequalities of the polyhedron (see Fig. 1.7(a)).
By crossing the facet given byΨ1, defined by inequality 1 and of Type I, as predicted
by Theorem 1.8 the optimal active set across this facet is A1 = {1}, which leads to
the critical region CR1 (see Fig. 1.7(b)). After removing redundant inequalities we
are left with an n-minimal representation of CR1 containing 4 facets. The first of
these is of Type II, λ1(x) = 0. The other three are of Type I. These are inequalities
#2, #6 and #7. Consider first the other side of the facet which comes from λ1(x) = 0,
see Fig. 1.7(c). The region should not have constraint 1 active, so the optimal active
set is A2 = /0. This is the same combination of active constraints as A0, as expected,
so A2 is not pursued. Next, consider crossing the respective facets of inequalities
#2, #6 and #7, see Fig. 1.7(d)–Fig. 1.7(f). This results in three different active sets:
A3 = {1, 2}, A4 = {1, 6} and A5 = {1, 7}. The sets A3 and A4 lead to new poly-
hedra as shown in the figures. The combination A5 leads to an interesting case of
“degeneracy”. The associated matrix G̃ has linearly dependent rows, which violates
the LICQ assumption. In this case, A5 leads to an infeasible part of the state space.

1.2 Convex Multi-parametric Quadratic Programming 31

−2 −1 0 1 2

−0.5

0

0.5

(a) A
0
 = {}

x 2 CR
 0H

1

−2 −1.5 −1 −0.5 0

−0.5

0

0.5

(b) A
1
 = {1}

x 2

CR
 1

−2 −1.5 −1 −0.5 0

−0.5

0

0.5

(c) A
2
 = A

0
⇒ A

2
 is rejected

x 2

−2 −1.5 −1 −0.5 0

−0.5

0

0.5

(d) A
3
 = {1,2}

x 2

CR
 3

−2 −1.9 −1.8 −1.7 −1.6 −1.5
0.35

0.4

0.45

(e) A
4
 = {1,6}

x 2 CR
 4

−1 −0.8 −0.6 −0.4 −0.2 0

−0.5

−0.4

−0.3

−0.2

−0.1

(f) A
5
 = {1,7} ⇒ infeasibility

x 2

Fig. 1.7 Parameter space exploration strategy in [72].

The parameter space partition of the explicit solution to the mp-QP characterized
by (1.70)–(1.73) has 14 polyhedral critical regions and it is given in Fig. 1.8.

1.2.4 Remarks on Alternative mp-QP Algorithms

This section has described in mp-QP algorithms presented in [13] and [72]. A com-
bination of these algorithms, that uses the strategy of [72] to step over facets between
neighboring regions, in combination with the QP solution of [13] in order to iden-
tify the optimal active set, is given by [4]. Like the algorithm in [72], it depends
on the facet-to-facet property and the modifications described in [69] are useful.
The mp-QP algorithm of [4] is the primary mp-QP algorithm of the widely used
Multi-Parametric Toolbox (MPT), [46].

The combinatorial approach of [65] considers the combinations of potentially
optimal active constraints. In many cases, this is not efficient since it tends to lead
to many critical regions that are not full dimensional and must therefore be disre-
garded. An approach that exploits double representation (vertices and hyperplanes)
of polyhedrons was given in [57]. It was shown in [34] that a more efficient

32 1 Multi-parametric Programming

−4 −3 −2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x 2 R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

Partition of state space

Fig. 1.8 Partition of the explicit solution to the mp-QP characterized by (1.70)–(1.73).

”non-geometric” combinatorial algorithm can be implemented by pruning infea-
sible candidate active sets.

Approximate and sub-optimal mp-QP algorithms have also been proposed, pur-
suing close approximations of lower complexity. The algorithm of [39] relies on an
orthogonal partitioning of the parameter space that is built recursively to achieve
an acceptable guaranteed maximum approximation error when approximating the
solution with an affine function within each hyper-rectangle of the parameter space.
A similar approach was taken in [9], using a simplex partition instead of hyper-
rectangles, and in [64] that exploits the Delaunay tessellation. A reformulation of
the MPC problem solving a sequence of simpler explicit MPC problems of horizon
N = 1 and a nested sequence of terminal sets, a la dynamic programming, was pro-
posed in [33]. Another sub-optimal approach based on short horizons was proposed
in [40]. The use of nested invariant sets and interpolation techniques is pursued for
approximations in [55]. An approximate solution for explicit MPC using set mem-
bership approximation has been introduced in [17]. While all the above approxima-
tions lead to PWA representations, [48] considers polynomial approximations.

For further review of existing algorithms, as well as multi-parametric linear pro-
gramming (mp-LP) algorithms, we refer to [2].

1.3 Evaluating Piecewise Functions

Both mp-NLP and mp-QP algorithms provide the solution as some piecewise func-
tion representation, where the function pieces are defined a polyhedral partitioning
into regions. All mp-QP algorithms, and most mp-NLP algorithms, return affine
function pieces. Since the complexity of representation may be large even for rel-
atively low order systems with constraints on some horizon (often thousands of
regions), explicit MPC depend on efficient methods to evaluate piecewise functions.

1.3 Evaluating Piecewise Functions 33

The direct approach is to evaluate directly for each region if the current parameter
(given by the current state, plus other auxiliary variables, perhaps) belongs to that
region. This is clearly computationally demanding and may require more computa-
tions than solving the corresponding QP using an active-set solver, in particular if a
good initialization is available for warm start. Still, it is very simple, and may even
be very fast if implemented on a massively parallel computer architecture. The par-
allel implementation is entirely straightforward since all regions can be evaluated
concurrently.

A much more computationally efficient approach was proposed in [71, 74], re-
lying on a binary search tree representation of the polyhedral partitioning where at
each level of the search tree one is able to exclude a significant fraction of the re-
maining candidate regions by evaluating on which side of a given hyperplane the
current parameter belongs (typically a reduction of 1/3 is possible to achieve, as a
rule of thumb). Hence, due to logarithmic complexity in the number of regions, the
search among thousands of regions would amount of evaluating less than 20 hyper-
planes. For mp-QP, the weakness of this approach is that extensive off-line com-
putations are needed to construct a balanced binary search tree, and the piecewise
function representation may still require extensive on-line computer memory. This
is also true for methods that exploit optimal algorithms for selection of the hyper-
planes for decisions [29]. To address this issue, the use of a truncated binary search
tree in combination with direct search [6] or the lattice representation of piecewise
linear functions [5] has been proposed. The realization of such piecewise affine
function evaluation algorithms in dedicated hardware is investigated in [60, 41]. It
should be mentioned that orthogonal partitions such as [38, 39] builds such a binary
search tree as an integral part of the multi-parametric programming strategy.

Data structures other than binary search trees are also useful to support efficient
evaluation. Bounding-boxes [19] and hash-tables [7] are proposed as supporting
data structures to efficiently narrow down the search for the optimal polyhedral
regions.

In MPC, the parameter (state) at one time instant is likely to be close to the pa-
rameter at the previous time instant, due to the continuity of trajectories of dynamic
systems. Several algorithms have been proposed to build data structures that repre-
sent the topology of the polyhedral partitioning in order to quickly identify neigh-
boring regions along the path from one parameter to the next parameter [68, 75].

Complexity of piecewise function representations can also be reduced by joining
convex unions of polyhedrons, which share the same affine function piece (for the
first control sample) [10]. In particular, the fact that input saturation will typically
occur in a large number of regions can be directly exploited, [47]. Several methods
for further compression of representation and efficient evaluation are investigated in
[70].

34 1 Multi-parametric Programming

References

1. Adams, L., Nazareth, J.L. (eds.): Linear and nonlinear conjugate gradient-related meth-
ods. Society for Industrial and Applied Mathematics, Philadelphia (1996)

2. Alessio, A., Bemporad, A.: A Survey on Explicit Model Predictive Control. In: Magni,
L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control: Towards
New Challenging Applications. LNCIS, vol. 384, pp. 345–369. Springer, Heidelberg
(2009)

3. Armijo, L.: Minimization of functions having Lipschitz-continuous first partial deriva-
tives. Pacific J. Math. 16, 1–3 (1966)

4. Baotič, M.: An efficient algorithm for multi-parametric quadratic programming. Techni-
cal Report AUT02-05. Institut für Automatik, ETH Zürich (2002)

5. Bayat, F., Johansen, T.A., Jalali, A.A.: Flexible piecewise function evaluation methods
with application to explicit model predictive control. In: Proceedings of the IEEE Inter-
national Conference on Mechatronics, Istanbul (2011)

6. Bayat, F., Johansen, T.A., Jalali, A.A.: Combining truncated binary search tree and
direct search for flexible piecewise function evaluation for explicit MPC in embed-
ded microcontrollers. In: Proceedings of the IFAC World Congress, Milano (2011),
www.IFAC-PapersOnLine.net

7. Bayat, F., Johansen, T.A., Jalali, A.A.: Using hash tables to manage time-storage com-
plexity in point location problem: Application to explicit MPC. Automatica 47, 571–577
(2011)

8. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: Theory and algo-
rithms, 3rd edn. Wiley-Interscience, New Jersey (2006)

9. Bemporad, A., Filippi, C.: Suboptimal explicit MPC via approximate quadratic pro-
gramming. In: Proceedings of the IEEE Conference on Decision and Control, Orlando,
pp. 4851–4856 (2001)

10. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhe-
dra. Computational Geometry: Theory and Applications 18, 141–154 (2001)

11. Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex pro-
gramming. Computational Optimization and Applications 35, 87–108 (2006)

12. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit solution of model
predictive control via multiparametric quadratic programming. In: Proceedings of the
American Control Conference, Chicago, Illinois, pp. 872–876 (2000)

13. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic
regulator for constrained systems. Automatica 38, 3–20 (2002)

14. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18, 509–517 (1975)

15. Box, M.J.: A new method of constrained optimization and a comparison with other meth-
ods. Computer J. 8, 42–52 (1965)

16. Boyd, S., Vandenberghe, L.: Convex optimization. University Press, Cambridge (2004)
17. Canale, M., Fagiano, L., Milanese, M.: Set membership approximation theory for fast

implementation of model predictive control laws. Automatica 45, 45–54 (2009)
18. Cauchy, A.: Methode generale pour la resolution des systemes d’equations simultanees.

Comp. Rend. Acad. Sci. Paris 536–538 (1847)
19. Christophersen, F., Kvasnica, M., Jones, C.N., Morari, M.: Efficient evaluation of piece-

wise control laws defined over a large number of polyhedra. In: Proceedings of the Eu-
ropean Control Conference, pp. 2360–2367 (2007)

20. Deuflhard, P.: Newton methods for nonlinear problems. Springer, New York (2004)

www.IFAC-PapersOnLine.net

References 35

21. Diehl, M., Bock, H.G., Schlöder, J.P.: Newton-type methods for the approximate solution
of nonlinear programming problems in real-time. In: Di Pillo, G., Murli, A. (eds.) High
Performance Algorithms and Software for Nonlinear Optimization, pp. 177–200. Kluwer
Academic Publishers B.V. (2003)

22. Domı́nguez, L.F., Narciso, D.A., Pistikopoulos, E.N.: Recent advances in multiparamet-
ric nonlinear programming. Computers and Chemical Engineering 34, 707–716 (2010)

23. Domı́nguez, L.F., Pistikopoulos, E.N.: Quadratic approximation algorithm for multipara-
metric nonlinear programming problems. Technical report. Imperial College London
(2009)

24. Dua, V., Pistikopoulos, E.N.: Algorithms for the solution of multi-parametric mixed-
integer nonlinear optimization problems. Industrial & Engineering Chemistry Re-
search 38, 3976–3987 (1999)

25. Dua, V., Pistikopoulos, E.N.: An algorithm for the solution of multiparametric mixed in-
teger linear programming problems. Annals of Operations Research 99, 123–139 (2000)

26. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming.
Academic Press, Orlando (1983)

27. Finkel, D.E.: Global optimization with the DIRECT algorithm. Ph.D. thesis. North Car-
olina State University (2005)

28. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7,
149–154 (1964)

29. Fuchs, A.N., Jones, C.N., Morari, M.: Optimized decision trees for point location in poly-
topic data sets - Application to explicit MPC. In: Proceedings of the American Control
Conference, Baltimore, pp. 5507–5512 (2010)

30. Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis. North Carolina
State University (2001)

31. Grancharova, A., Johansen, T.A.: Approximate explicit model predictive control incor-
porating heuristics. In: Proceedings of IEEE International Symposium on Computer
Aided Control System Design, Glasgow, Scotland, U.K., pp. 92–97 (2002)

32. Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate ex-
plicit nonlinear model predictive control. In: Findeisen, R., Allgöwer, F., Biegler, L.
(eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. LNCIS,
vol. 358, pp. 181–192. Springer, Heidelberg (2007)

33. Grieder, P., Morari, M.: Complexity reduction of receding horizon control. In: Pro-
ceedings of the 42th IEEE Conference on Decision and Control, Maui, Hawaii, USA,
pp. 3179–3184 (2003)

34. Gupta, A., Bhartiua, S., Nataraj, P.S.V.: A novel approach to multiparametric quadratic
programming. Automatica 47, 2112–2117 (2011)

35. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J.
Assoc. Comput. Mach. 8, 212–229 (1961)

36. Horst, R., Tuy, H.: Global optimization. Springer, Berlin (1995)
37. Johansen, T.A.: On multi-parametric nonlinear programming and explicit nonlinear

model predictive control. In: Proceedings of the IEEE Conference on Decision and Con-
trol, Las Vegas, NV, vol. 3, pp. 2768–2773 (2002)

38. Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear
systems. Automatica 40, 293–300 (2004)

39. Johansen, T.A., Grancharova, A.: Approximate explicit constrained linear model pre-
dictive control via orthogonal search tree. IEEE Transactions on Automatic Control 48,
810–815 (2003)

40. Johansen, T.A., Petersen, I., Slupphaug, O.: Explicit sub-optimal linear quadratic regu-
lation with state and input constraints. Automatica 38, 1099–1111 (2002)

36 1 Multi-parametric Programming

41. Johansen, T.A., Jackson, W., Schreiber, R., Tøndel, P.: Hardware synthesis of ex-
plicit model predictive controllers. IEEE Transactions Control Systems Technology 15,
191–197 (2007)

42. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos,
P.M. (eds.) Encyclopedia of Optimization, vol. 1, pp. 431–440. Kluwer, Dordrecht (2001)

43. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lip-
schitz constant. Journal of Optimization Theory and Applications 79, 157–181 (1993)

44. Kelley, C.T.: Iterative methods for optimization. Society for Industrial and Applied Math-
ematics, Philadelphia (1999)

45. Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson,
S.M. (ed.) Analysis and Computation of Fixed Points, pp. 93–138. Academic Press, New
York (1980)

46. Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-Parametric Toolbox (MPT). In:
Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, HSCC 2004.
LNCS, vol. 2993, pp. 448–462. Springer, Heidelberg (2004)

47. Kvasnica, M., Fikar, M.: Performance-lossless complexity reduction in explicit MPC. In:
Proceedings of the IEEE Conference on Decision and Control, pp. 5270–5275 (2010)

48. Kvasnica, M., Löfberg, J., Fikar, M.: Stabilizing polynomial approximation of explicit
MPC. Automatica 47, 2292–2297 (2011)

49. Lau, M.S.K., Yue, S.P., Ling, K.V., Maciejowski, J.M.: A comparison of interior point
and active set methods for FPGA implementation of model predictive control. In: Pro-
ceedings of the European Control Conference 2009, Budapest, Hungary, pp. 156–161
(2009)

50. Levitin, E.S.: Perturbation theory in mathematical programming. Wiley (1994)
51. Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now. Journal

of Computational and Applied Mathematics 124, 191–207 (2000)
52. Mangasarian, O.L., Rosen, J.B.: Inequalities for stochastic nonlinear programming prob-

lems. Operations Research 12, 143–154 (1964)
53. Narciso, D.: Developments in nonlinear multiparametric programming and control. PhD

thesis, London, U.K. (2009)
54. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer J. 7,

308–313 (1965)
55. Nguyen, H.N., Gutman, P.O., Olaru, S., Hovd, M.: Explicit constrained control

based on interpolation techniques for time-varying and uncertain linear discrete-
time systems. In: Proceedings of the IFAC World Congress, Milano (2011),
www.IFAC-PapersOnLine.net

56. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)
57. Olaru, S., Dumur, D.: A parameterized polyhedra approach for explicit contrained pre-

dictive control. In: Proceedings of the IEEE Conference on Decision and Control, Ba-
hamas, pp. 1580–1585 (2004)

58. Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-parametric programming: Theory,
algorithms, and applications. Wiley-VCH (2007)

59. Piyawksii, S.A.: An algorithm for finding the absolute extremum of a function. USSR
Computational Mathematics and Mathematical Physics 12, 57–67 (1972)

60. Poggi, T., Comaschi, F., Storace, M.: Digital circuit realization of piecewise affine func-
tions with non-uniform resolution: Theory and FPGA implementation. IEEE Trans. Cir-
cuits and Systems - II: Express Briefs 57, 131–135 (2010)

61. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations.
In: Watson, G.A. (ed.) Numerical Analysis, Dundee 1977. Lecture Notes in Mathematics,
vol. 630. Springer, Berlin (1978)

www.IFAC-PapersOnLine.net

References 37

62. Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear
program. Mathematical Programming 70, 159–172 (1995)

63. Rockafellar, R.T.: Convex analysis. Princeton University Press, New Jersey (1970)
64. Scibilia, F., Olaru, S., Hovd, M.: Approximate explicit linear MPC via Delaunay tessel-

lation. In: Proceedings of the European Control Conference, Budapest, Hungary (2009)
65. Seron, M.M., Goodwin, G.C., De Doná, J.A.: Characterization of receding horizon con-

trol for constrained linear systems. Asian J. Control 5, 271–286 (2003)
66. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential applications of simplex designs

in optimisation and evolutionary operation. Technometrics 4, 441 (1962)
67. Spjøtvold, J., Kerrigan, E.C., Jones, C.N., Tøndel, P., Johansen, T.A.: On the facet-to-

facet property of solutions to convex parametric quadratic programs. Automatica 42,
2209–2214 (2006)

68. Spjøtvold, J., Rakovic, S.V., Tøndel, P., Johansen, T.A.: Utilizing reachability analysis
in point location problems. In: Proceedings of the IEEE Conference on Decision and
Control, San Diego (2006)

69. Spjøtvold, J., Tøndel, P., Johansen, T.A.: Continuous selection and unique polyhedral
representation of solutions to convex parametric quadratic programs. Journal of Opti-
mization Theory and Applications 134, 177–189 (2007)

70. Szücs, A., Kvasnica, M., Fikar, M.: A memory-efficient representation of explicit MPC
solutions. In: Proceedings of the IEEE Conference on Decision and Control, Orlando
(2011)

71. Tøndel, P., Johansen, T.A.: Complexity reduiction in explicit model predictive control.
In: Proceedings of the IFAC World Congress, Barcelona (2002),
www.IFAC-PapersOnLine.net

72. Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic
programming and explicit MPC solutions. Automatica 39, 489–497 (2003)

73. Tøndel, P., Johansen, T.A., Bemporad, A.: Further results on multi-parametric quadratic
programming. In: Proceedings of the IEEE Conference on Decision and Control, Maui
(2003)

74. Tøndel, P., Johansen, T.A., Bemporad, A.: Evaluation of piecewise affine control via
binary search tree. Automatica 39, 743–749 (2003)

75. Wang, Y., Jones, C.N., Maciejowski, J.: Efficient point location via subdivision walking
with application to explicit MPC. In: Proceedings of the European Control Conference,
pp. 447–453 (2007)

76. Wright, S.J.: Primal-dual interior-point methods. SIAM Publications, Philadelphia
(1997)

www.IFAC-PapersOnLine.net

	Multi-parametric Programming
	Multi-parametric Nonlinear Programming
	Problem Formulation
	Optimality Conditions
	Nonlinear Programming Methods
	Sensitivity Results
	Algorithms for Approximate Multi-parametric Nonlinear Programming

	Convex Multi-parametric Quadratic Programming
	Problem Formulation
	Optimality Conditions
	Algorithms for Exact Convex Multi-parametric Quadratic Programming
	Remarks on Alternative mp-QP Algorithms

	Evaluating Piecewise Functions
	References

