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Preface

Model predictive control (MPC) has become the accepted methodology to solve
complex control problems related to process industries. It allows the design of multi-
input multi-output (MIMO) control systems that minimize a certain performance in-
dex in the presence of input and output constraints. The Nonlinear Model Predictive
Control (NMPC) is an optimization-based method for control which involves the
solution at each sampling instant of a finite horizon optimal control problem sub-
ject to the nonlinear system dynamics and input and output constraints imposed on
the system. However, the solution of an on-line nonlinear optimization problem is
often computationally complex and time consuming and the real-time NMPC imple-
mentation is usually limited to slow processes where the sampling time is sufficient
to support the computational needs. The on-line computational complexity can be
circumvented with an explicit approach to NMPC, where an explicit approximate
representation of the solution is computed using multi-parametric Nonlinear Pro-
gramming (mp-NLP).

Motivation
The main motivation behind explicit MPC is that an explicit state feedback law
avoids the need for executing a numerical optimization algorithm in real time, and
is therefore potentially useful for applications where MPC has not traditionally been
used. It has been shown that the feedback solution to MPC problems for constrained
linear systems has an explicit representation as a piecewise linear state feedback
defined on a polyhedral partition of the state space. The benefits of an explicit so-
lution, in addition to the efficient on-line computations, include also verifiability of
the implementation (which is an essential issue in safety-critical applications) and
the possibility to design embedded control systems with low software and hardware
complexity. For nonlinear MPC the prospects of explicit solutions are even higher
than for linear MPC, since the benefits of computational efficiency and verifiability
are even more important.
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The main reasons to develop methods for explicit NMPC can be summarized as
follows:

• Dramatical reduction in online computations, since online nonlinear numerical
optimization is avoided and replaced by piecewise function evaluation. This may
lead to significant reduction in the requirements to real-time embedded computer
hardware.

• NMPC optimization depends on appropriate initialization in order to avoid local
minima, and appropriate formulation of constraints in order to avoid infeasibility.
With explicit NMPC the validation of initialization procedures and infeasibility
handling can be conducted based on a complete and explicit solution.

• Significant reduction in online software complexity since the code for piecewise
function evaluation is much simpler than a nonlinear numerical optimization
solver. This may lead to formal software verification being a feasible practical
tool.

• Approximate explicit solutions with reduced complexity, and with guaranteed
levels of sub-optimality, may be computed offline. Formal analysis of perfor-
mance, sub-optimality and stability may be possible since an explicit representa-
tion of the controller is known.

• Formulations such as stochastic NMPC and robust NMPC may not lead to in-
creased online computations in an explicit NMPC approach, compared to a nom-
inal NMPC formulation, although they will require more offline computations.

Main contributions of the book
This book considers the mp-NLP approaches to explicit approximate NMPC of con-
strained nonlinear systems, developed by the authors, as well as their applications
to various NMPC problem formulations and several case studies. The proposed mp-
NLP methods are based on orthogonal partition of the state space and they are gen-
eral in sense that they can be applied to solve both convex and non-convex optimiza-
tion problems. The following types of nonlinear systems are considered, resulting
in different NMPC problem formulations:

• Nonlinear systems described by first-principles models and nonlinear systems
described by black-box models;

• Nonlinear systems with continuous control inputs and nonlinear systems with
quantized control inputs;

• Nonlinear systems without uncertainty and nonlinear systems with uncertainties
(polyhedral description of uncertainty and stochastic description of uncertainty);

• Nonlinear systems, consisting of interconnected nonlinear sub-systems.

The proposed mp-NLP approaches to explicit solution of various NMPC problems
are illustrated with applications to several case studies, which present mathemati-
cal models, NMPC formulations, mp-NLP computational results, and closed loop
simulations. They are taken from diverse areas such as automotive mechatronics,
compressor control, combustion plant control, reactor control, pH maintaining sys-
tem control, cart and spring system control, and diving computers.
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Intended audience
The book is intended to support graduate courses and the study of Ph.D. and ad-
vanced M.Sc. students in nonlinear control and optimization. Readers should be
familiar with the basics of linear model predictive control, numerical optimization
methods, and linear and nonlinear control theory. The book could be also useful for
academic researchers working in the field of NMPC, as well as researchers from
industrial companies, including automotive and aerospace, whose responsibilities
include the development of embedded optimal control systems.

Book organization
The book is structured as follows:

• In Chapter 1, basic theory and algorithms to find an explicit approximate solu-
tion of mp-NLP problems, based on orthogonal (k− d tree) partition of the pa-
rameter space, are described by considering both the convex and the non-convex
case. Procedures and heuristic rules for efficient splitting of a region in the pa-
rameter space and for handling the infeasible cases are formulated.

• In Chapter 2, the main aspects of formulation of the NMPC optimization prob-
lem are considered, which is an essential part of the control design and involves
numerous decisions that are important for the control performance, feasibility,
stability, and robustness as well as the computational complexity and the numer-
ical challenges of computing the solution.

• In Chapter 3, an algorithm for explicit NMPC, which locally approximates the
mp-NLP problem with a multi-parametric quadratic program is described. The
approach is applied to a case study.

• Chapter 4 considers the design of explicit NMPC controllers for several case
studies by applying the approximate mp-NLP algorithms, described in Chapter 1.
The case studies present mathematical models, NMPC formulations, mp-NLP
computational results, and closed loop simulations. They are taken from diverse
areas such as automotive mechatronics, compressor control, and diving comput-
ers. In this chapter, it is also shown that bounding the approximation error of the
explicit approximate solution to convex regulation NMPC problems ensures the
asymptotic stability of the suboptimal closed-loop system.

• Chapter 5 presents an approximate multi-parametric Nonlinear Integer Pro-
gramming (mp-NIP) approach to design explicit NMPC controllers for con-
strained nonlinear systems with quantized control inputs. The approach is applied
to two case studies.

• In Chapter 6, two approaches to explicit min-max NMPC of constrained nonlin-
ear systems in the presence of bounded disturbances and/or parameter uncertain-
ties are considered. The first approach is based on an open-loop min-max NMPC
problem statement, while the second approach adopts a closed-loop min-max
NMPC formulation. With the latter approach, conditions for guaranteeing the l2-
stability of the closed-loop system are derived. Two case studies are considered.

• In Chapter 7, two approaches to explicit stochastic NMPC of constrained non-
linear systems in the presence of disturbances and/or parameter uncertainties
with known probability distributions are presented. The first approach constructs
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explicit approximate NMPC solution for systems, described by stochastic para-
metric models, while the second approach considers systems, described by Gaus-
sian process models. The approaches are applied to two case studies.

• Chapter 8 considers an approximate mp-NLP approach to explicit solution of
output-feedback NMPC problems for constrained nonlinear systems described
by neural network NARX models. A dual-mode control strategy is proposed in
order to achieve an offset-free closed-loop response in the presence of bounded
disturbances and/or model errors. One case study is considered.

• In Chapter 9, a suboptimal approach to distributed NMPC for systems consist-
ing of nonlinear subsystems with linearly coupled dynamics, subject to both state
and input constraints, is considered. The approach is based entirely on distributed
on-line optimization and can be applied to large-scale nonlinear systems. Also,
a semi-explicit NMPC approach to efficiently solve the distributed NMPC prob-
lem for small- and medium-scale systems is proposed. Both distributed NMPC
approaches are applied to an example nonlinear system.

Alexandra Grancharova has been the main contributor to Chapters 1 and 4 – 9, and
Tor Arne Johansen has been the main contributor to Chapters 2 and 3.

Sofia, Alexandra Grancharova
Trondheim, Tor Arne Johansen
January 2012
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Chapter 1
Multi-parametric Programming

Abstract. This chapter presents an overview of the approaches to solve multi-
parametric programming problems. It is organized as follows. In Section 1.1, a
general multi-parametric nonlinear programming (mp-NLP) problem is formulated
and the Karush-Kuhn-Tucker (KKT) optimality conditions are presented. Then, the
three main groups of methods to find a local minimum of a NLP problem for a
given parameter vector are reviewed (Newton-type methods, penalty function meth-
ods and direct search methods). The Basic Sensitivity Theorem, which addresses
the local regularity conditions for the optimal solution as function of the parameters
is reviewed. Then, algorithms to find an approximate explicit solution of mp-NLP
problems are described, which are based on an orthogonal (k–d tree) partition of
the parameter space. Both convex and non-convex mp-NLP problems are consid-
ered. Procedures and heuristic rules for efficient splitting of a region in the param-
eter space and for handling the infeasible cases are formulated. In Section 1.2, a
multi-parametric quadratic programming (mp-QP) problem is formulated and two
approaches to find its exact explicit solution are described.

1.1 Multi-parametric Nonlinear Programming

There are two ways to address the parameter variations in mathematical programs:
sensitivity analysis, which characterizes the change of the solution with respect to
small perturbations of the parameters, and parametric programming, where the char-
acterization of the solution is found for a full range of parameter values. Mathemat-
ical programs which depend only on one scalar parameter are referred to as para-
metric programs, while problems depending on a vector of parameters are referred
to as multi-parametric programs.

The basic results within multi-parametric nonlinear programming (mp-NLP) can
be found in [26]. Main topics in [26] include local regularity conditions, local sen-
sitivity results and calculation of the parameter derivatives of the optimal solution
vector.

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 1–37.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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1.1.1 Problem Formulation

Consider the nonlinear mathematical program dependent on a parameter x appearing
in the objective function and in the constraints:

V ∗(x) = min
z

f (z,x) (1.1)

s.t. g(z,x)≤ 0 , (1.2)

where z ∈ R
s is the vector of optimization variables, x ∈ R

n is the vector of param-
eters, f : Rs×R

n �→ R is the objective function, and g : Rs×R
n �→ R

q is the con-
straints function. In (1.1), it is supposed that the minimum exists. It should be noted
that the problem (1.1)–(1.2) includes only inequality constraints, and we remark that
equality constraints can be incorporated with a straightforward modification since
they are always included in the optimal active set.

Let X be a closed polytopic set of parameters, defined by X = {x ∈ R
n | Ax≤ b}.

In multi-parametric programming, it is of interest to characterize the solution or so-
lutions of the mp-NLP problem (1.1)–(1.2) for the set X [26]. As described in [2],
the solution of an mp-NLP problem is a triple (V ∗(x),Z∗(x),Xf ), where:

i. the set of feasible parameters Xf is the set of all x ∈ X for which the problem
(1.1)–(1.2) admits a solution, i.e.:

Xf = {x ∈ X | g(z,x)≤ 0 for some z ∈ R
s} ; (1.3)

ii. the optimal value function V ∗ : Xf �→ R associates with every x ∈ Xf the corre-
sponding optimal value of (1.1)–(1.2);

iii. the optimal set Z∗(x) associates to each parameter x ∈ Xf the corresponding set
of optimizers Z∗(x) = {z ∈ R

s | f (z,x) =V ∗(x)} of problem (1.1)–(1.2). If Z∗(x)
is a singleton for all x ∈ Xf , then z∗(x)� Z∗(x) is called the optimizer function.

In this book we will assume that Xf is closed and V ∗(x) is finite for every x ∈ Xf .
We denote by gi(z,x) the i-th component of the vector valued function g(z,x).

Let z be a feasible point of (1.1)–(1.2) for a given parameter x. The active con-
straints are the constraints that fulfill (1.2) at equality, while the remaining con-
straints are called inactive constraints. The active set A (z,x) is the set of indices of
the active constraints, i.e.:

A (z,x)� {i ∈ {1, 2, ... ,q} | gi(z,x) = 0} . (1.4)

The optimal active set A ∗(x) is the set of indices of the constraints that are active
for all z ∈ Z∗(x), for a given x ∈ X , i.e.:

A ∗(x)� {i | i ∈A (z,x), ∀z ∈ Z∗(x)} . (1.5)
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Given an index set A ⊆ {1, 2, ... ,q}, the critical region CRA is the set of parame-
ters for which the optimal active set is equal to A , i.e.:

CRA � {x ∈ X |A ∗(x) = A } . (1.6)

As it will be shown in Section 1.2, for strictly convex quadratic function f and
linear constraints g, the critical regions CRA are polyhedrons and the optimizer z∗ is
unique, piecewise affine, and continuous. However, for general nonlinear functions
f and g, the exact solution of the multi-parametric programming problem (1.1)–(1.2)
can not be found, and suboptimal methods for approximating its optimizer function
z∗(x) (or selection in case the optimizer function is not unique) are described in
Section 1.1.5.

1.1.2 Optimality Conditions

For a given x0 ∈ X , a local minimum z0 of problem (1.1)–(1.2) has to satisfy the
well known Karush-Kuhn-Tucker (KKT) first-order conditions [56]:

∇zL(z0,x0,λ0) = 0 (1.7)

diag(λ0)g(z0,x0) = 0 (1.8)

λ0 ≥ 0 (1.9)

g(z0,x0) ≤ 0 , (1.10)

with associated Lagrange multiplier λ0 and the Lagrangian defined as:

L(z,x,λ ) � f (z,x)+λ T g(z,x) . (1.11)

Here, sufficient regularity (smoothness) is assumed, and this will be discussed later
in Section 1.1.4.

Consider the optimal active set A0 at x0, i.e. a set of indices to active constraints
in (1.10). The above conditions are sufficient provided the following second order
condition holds [56]:

vT∇2
zzL(z0,x0,λ0)v > 0, ∀v ∈F −{0} (1.12)

with F being the set of all directions where it is not given from the first order
conditions if the objective function will increase or decrease:

F = {v ∈ R
s | ∇zgA0(z0,x0)v≥ 0,

∇zgi(z0,x0)v = 0, for all i with (λ0)i > 0} . (1.13)

The notation gA0 means the rows of g with indices in A0.
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1.1.3 Nonlinear Programming Methods

There exist various methods to numerically compute a local minimum z0 of the
problem (1.1)–(1.2) for a given x0 ∈ X . The most commonly used methods can be
classified in the following three groups.

1.1.3.1 Newton-Type Methods

The Newton type methods [20] appear to be the most widely used optimization
methods. They try to find a point satisfying the KKT conditions (1.7)–(1.10) by
using successive linearizations of the problem functions. The motivation behind
this is that the linearized KKT system can be solved by using standard numeric
linear algebra tools. Depending on how the conditions (1.8)–(1.10) (related to the
imposed constraints) are treated, the two main groups of Newton type methods are
the Sequential Quadratic Programming (SQP) methods and the Interior Point (IP)
methods.

• Sequential Quadratic Programming (SQP) methods.
The SQP methods iteratively solve the KKT system (1.7)–(1.10) by linearizing
the nonlinear functions included in it. The resulting linearized KKT system at
the k+ 1-th iteration can be considered as the KKT conditions of the following
quadratic program (QP):

V ∗qp(z
k,x0) = min

z
fqp(z,z

k,x0) (1.14)

s.t. g(zk,x0)+∇zg(z
k,x0)(z− zk)≤ 0 , (1.15)

with the quadratic objective function given by:

fqp(z,z
k,x0) = ∇z f (zk,x0)

T z+
1
2
(z− zk)T∇2

z L(zk,x0,λ k)(z− zk) . (1.16)

Here, zk and λ k represent, respectively, the values of optimization variables and
Lagrange multipliers, which solve the k-th sequential iteration of the KKT sys-
tem (1.7)–(1.10). It is assumed that an initial guess z0 is provided. In the case
when the Hessian matrix ∇2

z L(zk,x0,λ k) is positive semi-definite, the QP prob-
lem (1.14)–(1.16) is convex and its unique solution can be found.

Typically, the QP sub-problem (1.14)–(1.16) is solved by using an Active
Set (AS) method [56, 49], which identifies the active set of its solution z∗.
The method begins with finding a feasible initial guess A0(z,zk,x0) = {i ∈
{1,2, ...,q} | gi(zk,x0) +∇zgi(zk,x0)(z− zk) = 0} of the active set by solving
a linear programming problem [56]. In the next iteration, A0(z,zk,x0) is re-
fined by deleting a constraint from A0(z,zk,x0) or by adding a constraint to
A0(z,zk,x0). In this way, the active set is refined iteratively until the optimal
active set A ∗(zk,x0) is found.

There are several SQP methods which use approximations of the Hessian
matrix ∇2

z L(zk,x0,λ k) and the constraints Jacobian matrix ∇zg(zk,x0), and they
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are referred to as quasi-Newton methods. They usually lead to slower conver-
gence rates, but computationally less expensive iterations, in comparison to the
exact SQP method. One of the quasi-Newton SQP methods is the method by
Powell [61]. It uses exact constraints Jacobian matrix, but replaces the Hessian
matrix ∇2

z L(zk,x0,λ k) by an approximation Hk. Each new Hessian approxima-
tion Hk+1 is obtained from the previous approximation Hk by an update formula
that uses the difference of the Lagrange gradients, ψ = ∇zL(zk+1,x0,λ k+1)−
∇zL(zk,x0,λ k+1), and the step τ = zk+1 − zk in order to obtain second order
information in Hk+1. The most widely used update formula is the one by Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [56]:

Hk+1 = Hk +
ψψT

ψT τ
− HkττT Hk

τT Hkτ
. (1.17)

Another successful quasi-Newton SQP method is the constrained Gauss-Newton
method [21]. It uses approximations of the Hessian matrix, based on some Jaco-
bian, and is applicable when the objective function is a sum of squares.

• Interior Point (IP) methods.
The IP methods represent an alternative way to solve the KKT system (1.7)–
(1.10), which consists in replacing the nonsmooth KKT condition (1.8) by a
smooth nonlinear approximation [16, 76]:

∇zL(z0,x0,λ0) = 0 (1.18)

λ0,igi(z0,x0) = ρ , i = 1,2, ...,q (1.19)

λ0 ≥ 0 (1.20)

g(z0,x0) ≤ 0 , (1.21)

where ρ > 0 is a slack variable and gi(z0,x0) is the i-th constraint function. This
system is then solved with a Newton-type method. The obtained solution is not
a solution to the original NLP problem (1.1)–(1.2), but to the following problem
[16, 76, 8]:

Q∗(x0,ρ) = inf
z
[ f (z,x0)+ρB(z,x0) ] . (1.22)

Here, B(z,x0) is the so called barrier function, which is nonnegative and contin-
uous over the region {z ∈R

s |g(z,x0)< 0} and approaches ∞ as the boundary of
the feasible region {z ∈ R

s |g(z,x0) ≤ 0} is approached from the interior. Thus,
the function B(z,x0) sets a barrier against leaving the feasible region. The solu-
tion of the barrier problem (1.22) requires for the optimization to start from a
point inside the region {z ∈Rs |g(z,x0)< 0}. The IP methods are also referred to
as barrier function methods. They generate a sequence of feasible points whose
limit is an optimal solution to the original problem (1.1)–(1.2) [8]. If the optimal
solution occurs at the boundary of the feasible region, the procedure moves from
the interior to the boundary. Typically, the barrier function B(z,x0) has the form
[8]:
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B(z,x0) =
q

∑
i=1

−1
gi(z,x0)

or B(z,x0) =−
q

∑
i=1

ln[−gi(z,x0)] . (1.23)

The solution of problem (1.22) is closer to the true solution the smaller ρ gets. An
important feature of the IP methods is that once a solution for a given ρ is found,
the parameter ρ can be reduced by a constant factor and an accurate solution
of the original NLP problem (1.1)–(1.2) is obtained after a limited number of
Newton iterations [16, 76]. The relation between the original problem (1.1)–(1.2)
and the barrier problem (1.22) is given by [8]:

V ∗(x0) = lim
ρ→0+

Q∗(x0,ρ) = inf
ρ>0

Q∗(x0,ρ) . (1.24)

1.1.3.2 Penalty Function Methods

Methods using penalty functions transform a constrained problem into a single un-
constrained problem or into a sequence of unconstrained problems [8]. The con-
straints are placed into the objective function via a penalty parameter in a way that
penalizes any violation of the constraints. The penalty function methods are also
referred to as the exterior penalty function methods, since they generate a sequence
of infeasible points whose limit is an optimal solution to the original problem [8].
Consider the problem (1.1)–(1.2) for a given x0 ∈ X . A penalty is desired only if
the point z is not feasible, i.e., if g(z,x0) > 0. A suitable unconstrained problem is
therefore given by [8]:

J∗(x0,η) = inf
z
[ f (z,x0)+η p(z,x0) ] s.t. z ∈R

s , (1.25)

where p(z,x0) = ∑q
i=1[max{0, gi(z,x0)}]l is the so called penalty function, l ≥ 2 is

an integer, and η > 0 is a penalty parameter. If gi(z,x0) ≤ 0, ∀i = 1,2, ...,q then
max{0, gi(z,x0)} = 0, ∀i = 1,2, ...,q and no penalty is incurred, i.e., p(z,x0) = 0.
On the other hand, if gi(z,x0) > 0, for some i, then max{0, gi(z,x0)} > 0 and the
penalty term η p(z,x0) is realized [8]. The condition l ≥ 2 ensures that the penalty
function p(z,x0) will be differentiable.

An important issue in the penalty function methods is the selection of the penalty
parameter η . Consider the penalty problem [8]:

W ∗ = sup
η>0

W (η) , (1.26)

where W (η) = J∗(x0,η). The relation between the primal problem (1.1)–(1.2) and
the penalty problem (1.26) is given by [8]:

V ∗(x0) = sup
η>0

W (η) = lim
η→∞W (η) (1.27)

From this result it is clear that we can get arbitrarily close to the optimal objective
value of the primal problem (1.1)–(1.2) by computing W (η) for a sufficiently large
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η . However, as pointed out in [8], there are computational difficulties associated
with large penalty parameters, due to ill-conditioning. Therefore, most algorithms
using penalty functions solve a sequence of problems (1.25) for an increasing se-
quence of penalty parameters. With each new value of the penalty parameter, an
optimization technique is employed, starting with the optimal solution of prob-
lem (1.25) obtained for the parameter value chosen previously. Such an approach
is sometimes referred to as a sequential unconstrained minimization technique [8].
More details about the penalty function methods can be found in [8].

For a given η , the optimization problem (1.25) can be solved by applying the
steepest descent method [18]. Let h(z,x0,η) = f (z,x0)+η p(z,x0). Then, the steep-
est descent direction from z is −∇zh(z,x0,η). With the method of steepest descent
[18], the values of optimization variables at the k+1-th iteration are obtained by the
formula:

zk+1 = zk−α∇zh(z
k,x0,η) , (1.28)

where α > 0 is the step length. In order for the steepest descent method to be suc-
cessful, it is important to choose the step length α . One way to do this is to let
α = βm, where β ∈ (0,1) and m ≥ 0 is the smallest nonnegative integer such that
there is a sufficient decrease in h(z,x0,η). This means that:

h(zk−α∇zh(z
k,x0,η),x0,η)− h(zk,x0,η)<−μ∇zh(z

k,x0,η) , (1.29)

where μ ∈ (0,1). This strategy, introduced in [3], is an example of a line search in
which one searches on a ray from zk in a direction in which h(z,x0,η) is locally
decreasing. More details about the method of steepest descent can be found in [44].
Unfortunately, the methods based on steepest descent have slow local convergence,
even for very simple functions [44]. This is due to the fact that the steepest descent
direction scales with h(z,x0,η) and therefore the speed of convergence depends on
conditioning and scaling. A good alternative to the steepest descent method is the
conjugate gradient method [28, 1], which has improved local convergence proper-
ties. Also, the Newton-type methods can be successfully applied to solve the opti-
mization problem (1.25).

1.1.3.3 Direct Search Methods

The direct search methods do not use or approximate the objective function’s gradi-
ent, i.e. they represent derivative-free methods for optimization. These methods use
values of the objective function and constraints taken from a set of sample points
and use that information to continue the sampling. More precisely, the direct search
methods consist in a sequential examination of trial solutions involving comparison
of each trial solution with the best obtained up to that time together with a strategy
for determining (as a function of earlier results) what the next trial solution will be
[35]. There is a number of direct search methods for unconstrained optimization (see
for example [44, 51]). However, here, the most widely used direct search methods
for constrained nonlinear optimization are outlined.
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• The method of Box (the Complex method).
The Complex method of Box [15] has been developed from the Simplex method
[66, 54]. It requires for the NLP problem to be of the form:

V ∗(x0) = min
z

f (z,x0) (1.30)

subject to :

zl,i ≤ zi ≤ zu,i , i = 1, 2, ..., s (1.31)

g j(z,x0)≤ 0 , j = 1, 2, ..., q (1.32)

where zi is the i-th optimization variable, and zl,i and zu,i are the lower and upper
bound on this variable.

It is assumed that an initial point z1, which satisfies both constraints (1.31)
and (1.32) is available. In this method, a set of m≥ s+ 1 points is used (referred
to as complex), of which one is the given point z1 (recall that s is the dimension of
the optimization vector z). The further (m−1) points required to set up the initial
configuration are obtained one at a time by the use of pseudo-random numbers
and ranges for each of the independent variables, i.e., zi = zl,i + ri(zu,i − zl,i),
where ri is a pseudo-random deviate rectangularly distributed over the interval
(0,1) [15]. A point so selected must satisfy the bound constraints (1.31), but
need not satisfy all the functional constraints (1.32). If a functional constraint is
violated, the trial point is moved halfway towards the centroid of those points
already selected (where the given initial point is included) [15]. Ultimately, a
satisfactory point will be found. It is assumed that the feasible region is convex.
Proceeding in this way, (m−1) points are found which satisfy all the constraints.

The function is evaluated at each vertex of the complex, and the vertex of the
worst (maximal) function value is replaced by a point γ ≥ 1 times as far from the
centroid of the remaining points as the reflection of the worst point in the centroid
(the new point is collinear with the rejected point and the centroid of the retained
vertices) [15]. If this trial point is also the worst, it is moved halfway towards the
centroid of the remaining points to give a new trial point. The above procedure
is repeated until some constraint is violated. If a trial vertex does not satisfy
the lower or the upper bound on some optimization variable zi, that variable is
reset to a value zl,i + ε or value zu,i− ε (depending on which bound has been
violated), with ε being a small positive number. If a functional constraint g j(z,x0)
is violated, the trial point is moved halfway towards the centroid of the remaining
points. Ultimately, a permissible point is found. Thus, as long as the complex has
not collapsed into the centroid, progress will continue.

The idea of the Box’s method is illustrated in Fig. 1.1 for the case when s = 2
and the number of points is m = s+1 = 3, i.e., for a simplex of points. The point
z2 is considered to be the worst point and c is the center of mass of the other two
points (z1 and z3).

• DIRECT method.
The DIRECT algorithm (DIViding RECTangles) is a direct search method for
global optimization, which was first introduced in [43, 42]. In [30, 27],
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Fig. 1.1 The simplex with
reflection of the point z2 into
point z4 and two consecutive
contractions (z5, z6) due to
infeasibility.

z1

z2

z3c

z4

z5

z6

rigorous new analysis and algorithmic improvements to the DIRECT algorithm
have been presented. The DIRECT algorithm is a deterministic sampling algo-
rithm developed in the spirit of Lipschitz optimization, and designed to overcome
some of the shortcomings of traditional Lipschitzian algorithms (like the algo-
rithm in [59]). One problem of the algorithm in [59] is its reliance on an accurate
estimation of the Lipschitz constant. DIRECT solves this problem by replacing
the Lipschitz constant with an adaptive internal parameter.

The DIRECT method solves the following mixed-integer nonlinear program-
ming (MINLP) problem [42]:

V ∗(x0) = min
z

f (z,x0) (1.33)

subject to :

zl,i ≤ zi ≤ zu,i , i = 1, 2, ..., r (1.34)

zi ∈ Z , i = r+ 1, r+ 2, ..., s (1.35)

g j(z,x0)≤ 0 , j = 1, 2, ..., q (1.36)

where Z is the set of integer numbers. The vector of optimization variables
z = [z1, z2, ... ,zr, zr+1, ... ,zs] includes both real variables (z1, z2, ... ,zr) and in-
teger variables (zr+1, zr+2, ... ,zs). The bounds on the variables limit the search
to an s-dimensional hyper-rectangle. DIRECT proceeds by partitioning this rect-
angle into smaller rectangles, each of which has a sampled point at its center,
i.e., a point where the functions have been evaluated [43, 42]. Fig. 1.2 shows the
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Fig. 1.2 Partitioning of the
optimization variables space
with DIRECT algorithm
[43, 42].

Start Trisect and sample 

Iter. 1 

Iter. 2 

Iter. 3 

Select

first three iterations of DIRECT on a hypothetical problem with two optimization
variables. At the start of each iteration, the space is partitioned into rectangles.
DIRECT then selects one or more of these rectangles for further search using a
technique described below. Finally, each selected rectangle is trisected along one
of its long sides, after which the center points of the new rectangles are sampled.
The key step in the algorithm is the selection of rectangles, since this determines
how search effort is allocated across the space. The rectangles are selected using
all possible relative weightings of local versus global search [43, 42]. First, it
would be necessary to describe how the inequality constraints (1.36) are treated
by the DIRECT method. The key to handling constraints in DIRECT is to work
with an auxiliary function that combines information on the objective and con-
straint functions in a special manner [42]. To express this auxiliary function, an
additional notation needs to be introduced. Let zp be the center point of the p-th
rectangle. Let ϕ1, ϕ2, ... , ϕq be positive weighting coefficients for the inequality
constraints. Let the minimal value of the objective function at the current itera-
tion be Vmin(x0). Let ˜V be any value that satisfies ˜V <Vmin(x0)−δ , where δ > 0.
The auxiliary function, evaluated at the center of the p-th rectangle, is as follows
[42]:

V a
p (˜V ,x0) = max{ f (zp,x0)− ˜V ,0}+

q

∑
j=1

ϕ j max{g j(zp,x0),0} (1.37)

The first term of the auxiliary function represents a penalty for any deviation
of the function value f (zp,x0) above the value ˜V . The second term is a sum of
weighted constraint violations. If ˜V is the global minimum, the lowest possible
value of the auxiliary function is zero and occurs only at the global minimum. At
any other point, the auxiliary function is positive either due to suboptimality or
infeasibility. For the global minimum to occur in the p-th rectangle, the auxiliary
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function must fall to zero starting from its positive value at the center point [42].
Moreover, the maximum distance over which this change can occur is the center-
vertex distance dp in the rectangle. Thus, to reach the global minimum in the p-th
rectangle, the auxiliary function (1.37) must undergo a minimum rate of change,
given by ep(˜V ,x0)=V a

p (˜V ,x0)/dp [42]. Since the point x0 in the MINLP problem
(1.33)–(1.36) is fixed, the rate of change function ep depends only on the argu-
ment ˜V . The DIRECT procedure of selecting rectangles for further exploration
identifies and selects all rectangles whose rate of change functions ep(˜V ,x0) par-
ticipate in the lower envelope of all curves V a

p (˜V ,x0)/dp for ˜V < Vmin(x0)− δ
[42]. More details about the DIRECT method can be found in [43, 42].

In this book, the DIRECT algorithm is applied to design explicit model pre-
dictive controllers for constrained nonlinear systems with quantized inputs (see
Chapter 5).

1.1.4 Sensitivity Results

The solution of a mathematical program can behave in a variety of ways when per-
turbing the problem parameters. Depending on the problem, the solution may vary
smoothly or change drastically for arbitrary small perturbations of parameter val-
ues. Let x0 ∈ X , z0 satisfy the KKT conditions, and A0 be the optimal active set at
x0. The Basic Sensitivity Theorem [26] gives local regularity conditions for the opti-
mal solution, Lagrange multipliers and optimal objective function value as functions
of x:

Theorem 1.1. If:

i). the functions f (z,x) and g(z,x) are twice continuously differentiable in z, and
their gradients with respect to z and the constraints are once continuously differ-
entiable in x in a neighborhood of (z0,x0),

ii).the second order sufficient condition (1.12) for a local minimum of (1.1)–(1.2)
holds at z0, with associated Lagrange multiplier λ0,

iii).the active constraint gradients ∇zgA0(z0,x0) are linearly independent,
iv).(λ0)i > 0 when gi(z0,x0) = 0 (strict complementary slackness),

Then:

a). z0 is a local isolated minimizing point with unique associated Lagrange multi-
plier λ0,

b). for x in the neighborhood of x0, there exist unique, once continuously differ-
entiable functions z∗(x) and λ ∗(x) such that z∗(x0) = z0 and z∗(x) is a locally
unique local minimum of (1.1)–(1.2) with associated Lagrange multiplier λ ∗(x),

c). in a neighborhood of x0, the set of active constraints is unchanged, strict com-
plementary slackness holds, and the active constraint gradients at z∗(x) remain
linearly independent.
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Related results for slightly different conditions, and extensions that show the exis-
tence and computation of directional derivatives of the solution with respect to x at
x0 can be found in [45, 50, 62] and others.

For the fixed active set A0 the KKT conditions (1.7)–(1.8) reduce to the following
system of equations parameterized by x:

∇z f (z(x),x)+ ∑
i∈A0

λi(x)∇zgi(z(x),x) = 0 (1.38)

gA0(z(x),x) = 0 . (1.39)

The functions z(x) and λ (x) implicitly defined by (1.38)–(1.39) are optimal only for
those x where the active set A0 is optimal. Assuming z and λ are well defined on
X , we characterize the critical region CRA0 where the solution corresponding to the
fixed active set A0 is optimal:

CRA0 � {x ∈ X | λ (x)≥ 0, g(z(x),x) ≤ 0} . (1.40)

There is a finite number of candidate active sets, so this result suggests a finite
partition of X with a piecewise solution to the mp-NLP. Although explicit exact
solutions cannot be found in the general nonlinear case, the above result indicates
that it is meaningful to search for a continuous approximation to the optimal solution
as a function of x. Continuity of the optimal solution depends on several assumptions
that may be hard to verify in the general nonlinear case. However, many optimal
control problems tend to lead to continuous solution functions.

1.1.5 Algorithms for Approximate Multi-parametric Nonlinear
Programming

Consider the nonlinear multi-parametric program (1.1)–(1.2) dependent on the pa-
rameter x. Let X be a polytopic set of parameters, defined by X = {x ∈ R

n | Ax≤ b}.
In multi-parametric programming, it is of interest to characterize the solution of the
mp-NLP problem (1.1)–(1.2) for the set X . The solution of an mp-NLP problem is
a triple (V ∗(x),z∗(x),Xf ) (see Section 1.1.1), where Xf is the set of feasible param-
eters, V ∗(x) is the optimal value function, and z∗(x) is the optimizer function. It is
assumed that Xf is closed and V ∗(x) is finite for every x ∈ Xf .

1.1.5.1 Approximate Solution of Convex mp-NLP

1. Convexity results.
The following assumption is made.

Assumption 1.1. The functions f and g in the nonlinear multi-parametric program
(1.1)–(1.2) are jointly convex functions of (z,x).

The following basic result for convex multi-parametric programming was proved in
[52]:
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Theorem 1.2. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds. Then, Xf is a convex set and V ∗ : Xf �→ R is
a convex and continuous function of x.

Convexity of Xf and V ∗ is a direct consequence of the convexity of f and g, while
continuity of V ∗ can be established under weaker conditions [26].

The main idea is to construct a feasible piecewise approximation to z∗(x) on X ,
where the constituent functions pieces are defined on hyper-rectangles covering X .
The accuracy of approximation is measured by the difference between the optimal
and sub-optimal function values rather than the difference between the exact and
approximation solutions. Since the optimal function value V ∗ cannot be assumed
known, convexity is exploited to compute simple bounds to be used for constructing
the approximate solution, similar to Chapter 9 in [26]. The method is applicable for
piecewise linear (PWL) and piecewise nonlinear (PWNL) approximations.

Consider the verticesΘ = {θ1,θ2, ... ,θNθ } of any bounded polyhedron X0 ⊆ Xf .
Define the affine function V̄ (x) = V̄0x+ l̄0 as the solution to the following linear
program (LP) [38]:

min
V̄0,l̄0

(V̄0θ + l̄0) (1.41)

subject to V̄0θi + l̄0 ≥V ∗(θi), ∀θi ∈Θ . (1.42)

Likewise, define the convex PWL function [38]:

V (x) = max
θi∈Θ

(V ∗(θi)+∇TV ∗(θi)(x−θi)) (1.43)

If V ∗ is not differentiable at θi, then ∇V ∗(θi) is taken as any sub-gradient of V ∗ at
θi [63]. V and V̄ have the following properties [26, 39]:

Theorem 1.3. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds. Consider any bounded polyhedron X0 ⊆ Xf .
Then V (x)≤V ∗(x)≤ V̄ (x) for all x ∈ X0.

In [38], it is suggested to select a local linear approximation to the solution that
minimizes the objective function approximation error subject to feasibility of the
solution, similar to [9].

Lemma 1.1. Consider the nonlinear multi-parametric program (1.1)–(1.2) and sup-
pose that Assumption 1.1 holds. Consider any bounded polyhedron X0 ⊆ Xf with
verticesΘ = {θ1,θ2, ... ,θNθ }. If K0 and h0 solve the convex NLP:

min
K0,h0

Nθ

∑
i=1

( f (K0θi + h0,θi)−V ∗(θi)+ μ‖K0θi + h0− z∗(θi)‖2
2) (1.44)

subject to g(K0θi + h0,θi)≤ 0, ∀θi ∈Θ , (1.45)

then ẑ0(x) = K0x+ h0 is feasible for the mp-NLP (1.1)–(1.2) for all x ∈ X0.
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In (1.44), μ > 0 is a weighting coefficient. In general, the NLP defined in Lemma 1.1
need not have a feasible solution. As a partial remedy, the following result shows
that at least for sufficiently small polyhedron X0, feasibility can be guaranteed [38].

Lemma 1.2. Consider the nonlinear multi-parametric program (1.1)–(1.2) and sup-
pose that Assumption 1.1 holds. Let X0 ⊆ Xf be a sufficiently small bounded poly-
hedron with non-empty interior. Then there exists an affine function z̃(x) such that
g(z̃(x),x) ≤ 0 for all x ∈ X0.

Proof ([38]). Since X0 ⊆ Xf is small, it follows from [26] that some unique and
continuous feasible solution function z(x) exists in a neighborhood that contains X0.
Since g is convex, it is straightforward to construct an affine support z̃(x). �

Since ẑ0(x) defined in Lemma 1.1 is feasible in X0, it follows that the suboptimal
objective function ̂V (x) = f (ẑ0(x),x) is an upper bound on V ∗(x) in X0 such that for
all x ∈ X0 we have:

0≤ ̂V (x)−V ∗(x)≤ ε0 (1.46)

where:

ε0 =−min
x∈X0

(−̂V (x)+V (x)) . (1.47)

Computing ε0 requires the solution of the NLP (1.47). If V is conservatively chosen
as affine V (x) =V ∗(θi)+∇TV ∗(θi)(x−θi) (cf. (1.43)), this NLP is concave since ̂V
is convex. Hence, the optimization can be done efficiently since X0 is a polyhedron
and it suffices to compare the solution at its vertices due to the concavity [36].

2. Algorithm for approximate explicit solution of convex mp-NLPs.
Consider a hyper-rectangle X ⊂R

n where we seek to approximate the solution func-
tion z∗(x) to the mp-NLP (1.1)–(1.2). In many problems of interest the approximate
solution function will be evaluated in an embedded computer architecture under
strict real-time requirements and with highly limited computational resources. In
order to keep the computational complexity at a minimum, we require that the ap-
proximating function is PWL with a parameter space partition that is orthogonal
and can be represented by a k− d tree [14], [39, 31], such that the real-time search
complexity is logarithmic with respect to the number of regions in the partition.
The k− d tree (Fig. 1.3) is a hierarchical data structure where a hyper-rectangle
can be sub-divided into smaller hyper-rectangles allowing the local resolution to be
adapted. When searching the tree, only one scalar comparison is required at each
level. Initially the algorithm will consider the whole region X0 = X . Under the con-
vexity Assumption 1.1, the main idea of the approximate mp-NLP algorithm is to
compute the solution of problem (1.1)–(1.2) at the 2n vertices of the hypercube X0,
by solving up to 2n NLPs. Based on these solutions, assuming they are all feasi-
ble, we compute a feasible local linear approximation function ẑ0(x) to the optimal
solution function z∗(x), restricted to the hyper-rectangle X0, using Lemma 1.1. If
such an approximation exists, and the maximal objective function error ε0 in X0 is
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Fig. 1.3 k−d tree partition
of a rectangular region. X0

smaller than some prescribed tolerance ε̄ > 0, no further refinement of the region
X0 is needed. Otherwise, we split X0 into two hyper-rectangles, and repeat the pro-
cedure for each of these.

Assume the tolerance ε̄ > 0 of the objective function approximation error is
given. For simplicity, we consider uniform tolerance in this chapter. In later chapters,
sometimes the tolerance will depend on x, which causes no problems. Denote with

SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂R
n, i.e. SX0 =

n
∏
i=1
Δxi,

where Δxi is the size of X0 along the axis xi. Let Smin be the minimal allowed volume
of the regions in the partition of X . A nonzero Smin is required to ensure termination
of the algorithm in finite time. The following algorithm is proposed to determine an
explicit approximate solution of convex mp-NLP (1.1)–(1.2) [38].

Algorithm 1.1. Explicit approximate solution of convex mp-NLP.

Input: Data to problem (1.1)–(1.2), the parameter μ (used in Lemma 1.1),
the approximation tolerance ε̄ , the minimal allowed volume Smin.
Output: Partition Π = {X1,X2, ...,XNX } and associated PWL solution
ẑΠ = {ẑX1 , ẑX2 , ... , ẑXNX

}.
1. Initialize the partition to the whole hyper-rectangle, i.e., Π = {X}. Mark the

hyper-rectangle X as unexplored, and let f lag = 1.
2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π and compute its volume SX0 .
5. Solve problem (1.1)–(1.2) for x fixed to each of the vertices θi, i = 1, ... ,Nθ

of the hyper-rectangle X0.
6. if (1.1)–(1.2) has a feasible solution at all points θi, i = 1, ... ,Nθ then
7. Compute a linear approximation ẑ0(x) = K0x+ h0 using Lemma 1.1,

as an approximation to be used in X0.
8. if a solution ẑ0(x) was found then
9. Compute the error bound ε0, using (1.41)–(1.43), and (1.47).
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10. If ε0 > ε̄ and SX0 > Smin, mark the hyper-rectangle X0 to be split.
Otherwise, mark X0 as explored and feasible.

11. else
12. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
13. end if
14. else
15. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
16. end if
17. end while
18. f lag := 0
19. if ∃ hyper-rectangles in Π that are marked to be split then
20. f lag := 1
21. while ∃ hyper-rectangles in Π that are marked to be split do
22. Select any hyper-rectangle X0 ∈Π marked to be split.
23. Split X0 into two hyper-rectangles X1 and X2 by applying an heuristic

splitting rule. Mark X1 and X2 unexplored, remove X0 from Π ,
and add X1 and X2 to Π .

24. end while
25. end if
26. end while

The PWL approximation generated by Algorithm 1.1 is denoted ẑΠ : X �→R
s, where

X is the union of the hyper-rectangles where a feasible solution has been found. It is
an inner approximation to Xf and the approximation accuracy is determined by the
minimal allowed volume Smin of the regions. The boundary of the feasible region
Xf can thus be approximated more closely by allowing smaller infeasible regions
by choosing Smin small. We remark that ẑΠ is generally not continuous.

Step 23 needs further specification of how a hyper-rectangle is being partitioned.
A hyper-rectangle is split into two equal parts by an axis-orthogonal hyperplane
that goes through its center. As in [31], the main idea is to select the hyperplane
where the change of error between the solutions on each side of the hyperplane is
largest (before splitting). This is implemented by comparing the solutions at the ver-
tices of the hyper-rectangle. It is reasonable to expect that this heuristics may give
a significant reduction in the error in both hyper-rectangles after splitting and its
effectiveness is observed in a number of examples.

Theorem 1.4. Consider the nonlinear multi-parametric program (1.1)–(1.2) and
suppose that Assumption 1.1 holds and Smin is sufficiently small. Assume that the
partitioning rule in step 23 guarantees that the error decreases by some minimum
amount or factor at each split. Then Algorithm 1.1 terminates with an approximate
solution function ẑΠ that is feasible and satisfies 0≤ f (ẑΠ (x),x)−V ∗(x)≤ ε̄ for all
x ∈ X.
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Proof ([38]). If the algorithm terminates, the specified tolerance is met because of
steps 9, 10, and 23. Since V ∗ is continuous, it is clear that a k− d tree partition will
lead to an approximation with arbitrary uniform accuracy provided the hypercubes
are sufficiently small. According to Lemma 1.2, this approximation will be feasible,
and since the partitioning rule ensures that the error decreases by some minimum
amount or factor at each step, the algorithm will indeed terminate after a finite num-
ber of steps. �

In [22], several alternative multi-parametric programming algorithms for explicit
approximate solution of convex mp-NLP problems are discussed. Thus, in [24] a
multi-parametric outer approximation algorithm for mp-NLP problems and multi-
parametric mixed-integer nonlinear programming (mp-MINLP) problems is pre-
sented. A multi-parametric quadratic approximation algorithm is proposed in [37]
and recently revisited in [23]. An approximate multi-parametric algorithm is pro-
posed in [11], where the parameter space is divided into a set of simplices. Recently,
a geometric vertex search algorithm is proposed in [53]. Some of these algorithms
are extended to consider the non-convex case (see [58]).

1.1.5.2 Approximate Solution of Non-convex mp-NLP

If convexity does not hold (Assumption 1.1), then global optimization, e.g. [43, 42,
36], is generally needed in several steps of the algorithm to maintain its theoretical
properties [38]:

(1) The NLP (1.1)–(1.2) must be solved using global optimization in step 5.
(2) The NLP (1.44)–(1.45) must be reformulated and solved using global optimiza-

tion in step 7. It is not sufficient to impose the constraints at the vertices of the
polyhedron X0 if g is not convex. In order to resolve this problem, one may use
(a conservative) convex underestimation in combination with global optimiza-
tion as suggested in [26].

(3) The computation of the error bound ε0 in step 9 assumes the knowledge of a
lower bound V on the optimal objective function. The bound (1.43) does not
necessarily hold if V ∗ is not convex. Again, convex underestimation and global
optimization may be used.

On the other hand, one may argue in the favor of a computationally more efficient
ad hoc approach to handle non-convex problems [38]. The reason for this is that
an explicit representation of the approximate solution is available, which makes
rigorous verification and validation of its properties possible. One heuristic approach
is to include some interior points in addition to the set of vertices Θ when used
in (1.43)–(1.45). Hence, any non-convexity related error in the computed bounds
and approximation of the constraints are likely to be reduced. Moreover, based on
the solutions of the associated NLPs one may locally estimate the Hessian of the
optimal objective function at the points in Θ and may thus be able to detect if it is
locally convex or non-convex, and adjust the number of additional interior points to
be added toΘ . The introduction of such additional points does not necessarily lead
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to additional complexity of the PWL approximate solution, but may only serve to
verify its accuracy [38].

Here, practical computational methods for explicit approximate solution of
non-convex mp-NLP problems are presented. They don’t necessarily lead to
guaranteed properties of the explicit approximate solution, but when combined with
verification and analysis methods may give a practical tool for explicit approximate
solution of non-convex mp-NLPs.

1. Close-to-global solution of non-convex mp-NLPs.
In general, the objective function f can be non-convex with multiple local min-
ima. Therefore, it would be necessary to apply an effective initialization of the mp-
NLP problem (1.1)–(1.2) so to find a close-to-global solution. One possible way
to obtain this is to find a close-to-global solution at a point w0 ∈ X0 by comparing
the local minima corresponding to several initial guesses and then to use this so-
lution as an initial guess at the neighboring points wi ∈ X0, i = 1,2, ...,N1, i.e. to
propagate the solution. The following procedure is used to generate a set of points
W0 = {w0,w1,w2, ... ,wN1} ⊂ X0 [32].

Procedure 1.1 (generation of set of points). Consider any hyper-rectangle X0 ⊆
X with vertices Θ 0 = {θ 0

1 ,θ
0
2 , ... ,θ

0
Nθ
} and center point w0. Consider also

the hyper-rectangles X j
0 ⊂ X0, j = 1,2, ... ,N0 with vertices respectively Θ j =

{θ j
1 ,θ

j
2 , ... ,θ

j
Nθ
}, j = 1,2, ... ,N0. Suppose X1

0 ⊂ X2
0 ⊂ ... ⊂ XN0

0 . For each of the

hyper-rectangles X0 and X j
0 ⊂ X0, j = 1,2, ... ,N0, denote the set of its facets cen-

ters with Ψ j = {ψ j
1 ,ψ

j
2 , ... ,ψ

j
Nψ }, j = 0,1,2, ... ,N0. Define the set of all points

W0 = {w0,w1,w2, ... ,wN1}, where wi ∈
{

N0
⋃

j=0
Θ j

}

∪
{

N0
⋃

j=0
Ψ j

}

, i = 1,2, ... ,N1.

For a hyper-rectangle in the n-dimensional parameter space, the number of its ver-
tices is Nθ = 2n and the number of its facets centers is Nψ = 2n. Therefore, the
number of all points generated with Procedure 1.1 is 1+(N0 +1)(Nθ +Nψ ), where
N0 is the number of interior hyper-rectangles.

The following procedure is applied to search for a close-to-global solution at the
points wi ∈W0, i = 0,1,2, ... ,N1 [32].

Procedure 1.2 (close-to-global solution of mp-NLP). Consider any hyper-
rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined by
applying Procedure 1.1. Then:

a). Suppose local minima of the NLP (1.1)–(1.2) at the center point w0 of X0 have
been computed. Then, determine a close-to-global solution of (1.1)–(1.2) at w0

through the following minimization:

z∗(w0) = arg min
z∈{zlocal

1 ,zlocal
2 , ... ,zlocal

Nz
}

f (z,w0) . (1.48)

Here, zlocal
i , i = 1,2, ... ,Nz correspond to local minima of the objective function

f (z,w0) obtained for a number of initial guesses z0
i , i = 1,2, ... ,Nz.
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b). Determine a close-to-global solution of the NLP (1.1)–(1.2) at the points wi ∈W0,
i = 1,2, ... ,N1 in the following way:

1. Let z∗(w0) be the close-to-global solution of the NLP (1.1)–(1.2) at the center
point w0, obtained by solving problem (1.48) in step a). Let i = 1.

2. Let W s = {w0,w1,w2, ... ,wN2}⊂W0 be the subset of points at which a feasible
solution of the NLP (1.1)–(1.2) has been already determined.

3. Find the point w̃∈W s that is most close to the point wi, i.e., w̃ = arg min
w∈Ws
‖w−

wi‖. Let the solution at w̃ be denoted z∗(w̃).
4. Solve the NLP (1.1)–(1.2) at the point wi with initial guess for the optimization

variables set to z∗(w̃).
5. If a solution of the NLP (1.1)–(1.2) at the point wi has been found, mark wi as

feasible and add it to the set W s. Otherwise, mark wi as infeasible.
6. Let i = i+ 1. If i≤ N1, go to step 2. Otherwise, terminate.

With some abuse of notation we do not distinguish between the global solution and
the close-to-global solution, and denote both with z∗(x). Procedure 1.2 is illustrated
on Fig. 1.4. First, a close-to-global solution to the NLP (1.1)–(1.2) is determined at
the center point w0 of the hyper-rectangle X0 (the case when no feasible solution
at the center point w0 exists is discussed later). Then, this solution is used as an
initial guess when solving the NLP at the points w1,w2, ... ,w8 which represent the
vertices and the facets centers of the smallest interior hyper-rectangle X1

0 . Then, the
solutions at these points are used as initial guesses when solving the NLP at the
points w9,w10, ... ,w16 which are the vertices and the facets centers of the interior

0X  

3
0X

2
0X

1
0X  

1x

2x  

0w

1w 2w 3w

4w

5w
6w7w

8w16w

9w
10w 11w

12w

13w
14w15w

17w  18w 19w

20w

21w
22w23w  

24w  

25w  26w 27w

28w

29w30w31w  

32w  

Fig. 1.4 Illustration of Procedure 1.2.
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hyper-rectangle X2
0 . Next, the solutions at these points are used as initial guesses

when solving the NLP at the points w17,w18, ... ,w24 which represent the vertices
and the facets centers of the interior hyper-rectangle X3

0 . At the end, the solutions
at these points are used as initial guesses when solving the NLP at the points
w25,w26, ...,w32 which are the vertices and the facets centers of the hyper-rectangle
X0.

2. Computation of explicit approximate solution.
We restrict our attention to a hyper-rectangle X ⊂R

n where we seek to approximate
the solution z∗(x) to the non-convex mp-NLP (1.1)–(1.2). Like in Section 1.1.5.1,
we require that the parameter space partition is orthogonal and can be represented
as a k−d tree [14], [39, 31]. The main idea of the approach to explicit approximate
solution of non-convex mp-NLPs is to construct a PWL approximation ẑ(x) to the
close-to-global solution z∗(x) on X , where the constituent affine functions are de-
fined on hyper-rectangles covering X . It should be noted that sometimes it may be
more appropriate to use a piecewise nonlinear (PWNL) approximation. In case of
non-convexity, it would not be sufficient to impose the constraints only at the ver-
tices of the hyper-rectangle X0. This problem is resolved by including some interior
points in addition to the set of vertices of X0 [32]. These additional points represent
the vertices and the facets centers of one or more hyper-rectangles contained in the
interior of X0 (see Procedure 1.1). Based on the solutions at all points, a local linear
approximation ẑ0(x) = K0x+ h0 to the close-to-global solution z∗(x), to be used as
an approximation in the whole hyper-rectangle X0, is determined by applying the
following procedure [32].

Procedure 1.3 (computation of approximate solution). Consider any hyper-
rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined by
applying Procedure 1.1. Compute K0 and h0 by solving the following NLP:

min
K0,h0

N1

∑
i=0

( f (K0wi + h0,wi)−V∗(wi)+ μ‖K0wi + h0− z∗(wi)‖2
2) (1.49)

subject to g(K0wi + h0,wi)≤ 0, ∀wi ∈W0 . (1.50)

In (1.49), the parameter μ > 0 is a weighting coefficient. Note that the linear approx-
imation ẑ0(x) = K0x+ h0, computed with Procedure 1.3, satisfies the constraints in
the mp-NLP problem (1.1)–(1.2) only for the discrete set of points W0⊂ X0. In order
to give an appropriate initialization of the NLP problem (1.49)–(1.50) for the region
X0, the already computed solutions of this problem in some of the neighboring re-
gions can be used as initial guesses.

3. Estimation of error bounds. Suppose that a linear approximation ẑ0(x) = K0x+
h0 for the region X0 has been computed by applying Procedure 1.3. Then it follows
that the sub-optimal objective function ̂V (x) = f (ẑ0(x),x) is an approximate upper
bound on V ∗(x) in X0, such that for all x ∈ X0, where ẑ0(x) is feasible, we have:

0≤ ̂V (x)−V ∗(x)≤ ε0 . (1.51)
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As already mentioned, the objective function f can be non-convex with multiple
local minima. Therefore, (1.51) is only valid if global solutions are found to all
sub-problems and feasibility of ẑ0(x) and z∗(x) holds for all x ∈ X0. The following
procedure can be used to obtain an estimate ̂ε0 of the maximal approximation error
ε0 in X0 [32].

Procedure 1.4 (computation of error bound approximation). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1,w2, ... ,wN1} determined
by applying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through
the following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(̂V (wi)−V∗(wi)) . (1.52)

4. Procedure and heuristic rules for splitting a region.
The following procedure is applied to determine the split of a region X0 for which
a local linear approximation ẑ0(x) = K0x+ h0 is found, but the required accuracy
ε̄ > 0 of objective function approximation is not achieved [32].

Procedure 1.5 (Determination of the split of a region). Consider a hyper-rectangle
X0 and suppose that a local linear approximation ẑ0(x) = K0x+ h0 was found by
applying Procedure 1.3. Suppose also that the required accuracy ε̄ is not achieved.
Then, determine the split of X0 in the following way:

1. Let j = 1.
2. Consider splitting X0 by a hyperplane through its center and orthogonal to the

axis x j. Denote the new hyper-rectangles with X j
1 and X j

2 .

3. Compute local linear approximations ẑ j
1(x) and ẑ j

2(x), candidates for use in X j
1

and X j
2 , respectively, by applying Procedure 1.3.

4. Compute estimates ̂ε j
1 and ̂ε j

2 , respectively of the error bounds ε j
1 in X j

1 and ε j
2 in

X j
2 , by applying Procedure 1.4. Let ̂ε j = ̂ε j

1 +̂ε
j

2 .
5. Let j = j+ 1. If j ≤ n, go to step 2.
6. Split X0 by a hyperplane through its center and orthogonal to the axis x j where
̂ε j is minimal.

In step 4, the metric ̂ε j = ̂ε j
1 +̂ε

j
2 could be replaced by other metrics such as ̂ε j =

max(̂ε j
1 ,̂ε

j
2).

The following rule is applied when no feasible solution to the NLP problem
(1.1)–(1.2) was found at some of the points wi ∈W0, wi �= w0 [32]. Here, the set
W0 = {w0,w1,w2, ... ,wN1} is defined in Procedure 1.1.

Heuristic splitting rule 1.1 (handling infeasibility). Consider the following two
cases:

1. The set of the feasible points in X0 includes the center point w0 and some non-
empty subset of the points wi ∈W0, wi �= w0 (the set W0 = {w0,w1,w2, ... ,wN1}
is defined in Procedure 1.1). Then, split X0 into two types of hyper-rectangles by
hyperplanes containing some of the feasible points wi ∈W0:



22 1 Multi-parametric Programming

i. Hyper-rectangles X f
1 , X f

2 , ... , X f
Nf

containing only feasible points.

ii. Hyper-rectangles Xn f
1 , Xn f

2 , ... , Xn f
Nn f

containing some infeasible points.

2. The center point w0 of X0 is the only feasible point. Then, split X0 on all param-
eter space axes by hyperplanes through w0.

This rule is illustrated in Fig. 1.5, where the hyper-rectangle X0 will be split into
the hyper-rectangles X f

1 with vertices {w24, w8, w17, α1}, X f
2 with vertices

{w23, w21, w24, w20} and Xn f
1 with vertices {w8, w20, α1, w19}.
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Fig. 1.5 Illustration of Heuristic splitting rule 1.1.

The following rule is applied when there is no feasible solution to the NLP prob-
lem (1.1)–(1.2) at the center point w0 of the hyper-rectangle X0 [32].

Heuristic splitting rule 1.2 (handling infeasibility). If there is no feasible solution
of the NLP problem (1.1)–(1.2) at the center point w0 of X0, split the hyper-rectangle
X0 by a hyperplane through w0 and orthogonal to an arbitrary axis.

The following rule is used when the NLP problem (1.49)–(1.50) in Procedure 1.3
has no solution [32].

Heuristic splitting rule 1.3 (handling infeasibility). If the NLP problem (1.49)–
(1.50) in Procedure 1.3 is infeasible, split the hyper-rectangle X0 by a hyperplane
through its center and orthogonal to an arbitrary axis.



1.1 Multi-parametric Nonlinear Programming 23

5. Algorithm for explicit approximate solution of non-convex mp-NLPs.
Assume the tolerance ε̄ > 0 of the objective function approximation error is given.
Denote with SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂ R

n, i.e.

SX0 =
n
∏
i=1
Δxi, where Δxi is the size of X0 along the variable xi. Let Smin > 0 be

the minimal allowed volume of the regions in the partition of X . The following al-
gorithm is proposed to determine an explicit approximate solution of non-convex
mp-NLP (1.1)–(1.2) [32].

Algorithm 1.2. Explicit approximate solution of non-convex mp-NLP.

Input: Data to problem (1.1)–(1.2), the number N0 of internal regions (used in
Procedure 1.1), the parameter μ (used in Procedure 1.3), the approximation
tolerance ε̄ , the minimal allowed volume Smin.
Output: Partition Π = {X1,X2, ...,XNX } and associated PWL solution function
ẑΠ = {ẑX1 , ẑX2 , ... , ẑXNX

}.
1. Initialize the partition to the whole hyper-rectangle, i.e., Π = {X}. Mark the

hyper-rectangle X as unexplored, f lag := 1.
2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π and compute its volume SX0 .
5. Search for a close-to-global solution to problem (1.1)–(1.2) at the center

point w0 of X0 by applying Procedure 1.2a.
6. if a feasible solution was found to problem (1.1)–(1.2) at w0 then
7. Define a set of points W0 = {w0,w1,w2, ... ,wN1} by applying

Procedure 1.1.
8. Search for a close-to-global solution to problem (1.1)–(1.2) for x fixed to

each of the points wi, i = 1,2, ... ,N1 by applying Procedure 1.2b.
9. if (1.1)–(1.2) has a feasible solution at all points wi, i = 1, ... ,N1 then
10. Search for a linear approximation ẑ0(x) = K0x+ h0 using

Procedure 1.3, as an approximation to be used in X0.
11. if a solution ẑ0(x) was found then
12. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying

Procedure 1.4.
13. If ̂ε0 > ε̄ and SX0 > Smin, mark the hyper-rectangle X0 to be split.

Otherwise, mark X0 as explored and feasible.
14. else
15. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
16. end if
17. else
18. If SX0 < Smin, mark X0 infeasible and explored.

Otherwise, mark X0 to be split.
19. end if
20. else
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21. If SX0 < Smin, mark X0 infeasible and explored.
Otherwise, mark X0 to be split.

22. end if
23. end while
24. f lag := 0
25. if ∃ hyper-rectangles in Π that are marked to be split then
26. f lag := 1
27. while ∃ hyper-rectangles in Π that are marked to be split do
28. Select any hyper-rectangle X0 ∈Π marked to be split.
29. Split X0 into hyper-rectangles X1, ... , XNs by applying the heuristic

splitting rules. Mark X1, ... , XNs unexplored, remove X0 from Π ,
and add X1, ... , XNs to Π .

30. end while
31. end if
32. end while

1.2 Convex Multi-parametric Quadratic Programming

1.2.1 Problem Formulation

Consider the convex quadratic mathematical program dependent on a parameter x:

V ∗(x) = min
z

1
2

zT Hz (1.53)

s.t. Gz≤W + Sx , (1.54)

where z ∈ R
s is the vector of optimization variables, x ∈ R

n is the vector of pa-
rameters, and H ∈ R

s×s, G ∈ R
q×s, W ∈ R

q, and S ∈ R
q×n are matrices. Here, it

is supposed that H � 0, which leads to a strictly convex multi-parametric quadratic
programming (mp-QP) problem (1.53)–(1.54). The case when the multi-parametric
programming problem (1.53)–(1.54) is only convex, i.e. H � 0, is considered in
[73, 69].

Let X be a polytopic set of parameters, defined by X = {x ∈ R
n | Ax≤ b}. In

parametric programming, it is of interest to characterize the solution of the mp-QP
problem (1.53)–(1.54) for the set X . The solution of an mp-QP problem is a triple
(V ∗(x),z∗(x),Xf ) (see Section 1.1.1), where Xf is the set of feasible parameters,
V ∗(x) is the optimal value function, and z∗(x) is the optimizer function. It is as-
sumed that Xf is closed and V ∗(x) is finite for every x ∈ Xf .

In [12, 13], an algorithm has been developed, which expresses the solution z∗(x)
and the optimal value V ∗(x) of the mp-QP problem (1.53)–(1.54) as an explicit func-
tion of the parameters x, and the analytical properties of these functions have been
characterized. In particular it has been proved that the solution z∗(x) is a continuous
piecewise linear function of x in the following sense [12, 13]:
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Definition 1.1. A function z(x) : X �→R
s, where X ⊆R

n is a polyhedral set, is piece-
wise linear if it is possible to partition X into convex polyhedral regions, CRi, and
z(x) = Kix+ hi, ∀x ∈CRi.

Piecewise quadraticity is defined analogously by letting z(x) be a quadratic function
xT Qix+Kix+ hi.

1.2.2 Optimality Conditions

The solution of mp-QP problems can be approached by employing the principles
of multi-parametric nonlinear programming and in particular the first-order Karush-
Kuhn-Tucker (KKT) optimality conditions, which lead to the Basic Sensitivity The-
orem (see Section 1.1). Instead, in [12, 13] a more direct approach has been adopted
which exploits the linearity of the constraints and the fact that the function to be
minimized is quadratic. The approach [12, 13] is described as follows. In order to
start solving the mp-QP problem, an initial vector x0 inside the polyhedral set X of
parameters is needed, such that the QP problem (1.53)–(1.54) is feasible for x = x0.
Such a vector can be found for instance by solving the linear program (LP) [12, 13]:

max
x,z,ε

ε (1.55)

subject to :

Gz− Sx+ ε ≤W (1.56)

ε ≥ 0 (1.57)

x ∈ X . (1.58)

If the LP (1.55)–(1.58) is infeasible, then the QP problem (1.53)–(1.54) is infeasible
for all x ∈ X . Otherwise, the QP problem (1.53)–(1.54) is solved with x = x0 in
order to obtain the corresponding optimal solution z0. Such a solution is unique
because H � 0 and therefore uniquely determines a set of active constraints G̃z0 =
S̃x0 +W̃ among the constraints (1.54). Let G̃, S̃ and W̃ denote the rows of G, S and
W corresponding to the active constraints. Then, the following theorem is proved
[12, 13]:

Theorem 1.5. Let H � 0. Consider a combination of active constraints G̃, S̃, W̃
and assume that the rows of G̃ are linearly independent. Let CR0 be the set of all
vectors x for which such a combination is active at the optimum (CR0 is referred
to as critical region). Then, the optimal z and the associated vector of Lagrange
multipliers λ are uniquely defined linear functions of x over CR0.

Proof ([13]). The first-order KKT conditions for the mp-QP are given by:

Hz+GTλ = 0 , λ ∈ R
q (1.59)

λi(G
iz−Wi− Six) = 0 , i = 1,2, ... ,q (1.60)

λ ≥ 0 , (1.61)
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where the superscript i denotes the i-th row. Equality (1.59) is solved for z:

z =−H−1GTλ (1.62)

and the result is substituted into (1.60) to obtain the complementary slackness con-
dition:

λi(−GiH−1GiTλi−Wi− Six) = 0 , i = 1,2, ... ,q (1.63)

Let λ̆ and λ̃ denote the Lagrange multipliers corresponding to inactive and ac-
tive constraints, respectively. For inactive constraints λ̆ = 0. For active constraints
−G̃H−1G̃T λ̃ −W̃ − S̃x = 0 and therefore:

λ̃ =−(G̃H−1G̃T )−1(W̃ + S̃x) , (1.64)

where G̃, W̃ , S̃ correspond to the set of active constraints and (G̃H−1G̃T )−1 exists
because the rows of G̃ are linearly independent. Thus λ is a linear function of x
for all x ∈CR0, where the active constraints set is optimal. By substituting λ̃ from
(1.64) into (1.62), it is obtained:

z∗(x) = H−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x) (1.65)

and it is noted that z∗ is also a linear function of x in CR0. �

Theorem 1.5 characterizes the solution only locally in the neighborhood of a specific
x0, as it does not provide the construction of the set CR0 where this characterization
remains valid. On the other hand, this region can be characterized immediately [12,
13]. The variable z from (1.65) must satisfy the constraints (1.54):

GH−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x)≤W + Sx (1.66)

and by (1.61) the Lagrange multipliers in (1.64) must remain nonnegative:

− (G̃H−1G̃T )−1(W̃ + S̃x)≥ 0 (1.67)

as x varies. After removing the redundant inequalities from (1.66) and (1.67), a
compact representation of CR0 is obtained. Obviously, CR0 is a polyhedron in the
x-space and represents a subset of X such that the combination of active constraints
at the minimizer remains unchanged (Fig. 1.6(a)). Then, the algorithm in [12, 13]
continues with the division of the rest of the parameter space CRrest = X −CR0 as
in Fig. 1.6(b) and (c) by reversing one by one the hyperplanes defining the critical
region CR0. Iteratively each new region Ri is subdivided in a similar way as was done
with X . An effective approach for partitioning the rest of the space was proposed in
[25]. The following theorem justifies such a procedure to characterize the rest of the
region CRrest [13].
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Theorem 1.6. Let Y ⊆ R
n be a polyhedron, and CR0 = {x ∈ Y | Ax ≤ b} a polyhe-

dral subset of Y , CR0 �= /0. Also let:

Ri = {x ∈ Y | Aix > bi, A jx≤ b j , ∀ j < i} , i = 1, 2, ... , m , (1.68)

where m = dim(b), and let CRrest =
⋃m

i=1 Ri. Then:
(i) CRrest⋃CR0 = Y .
(ii) CR0

⋂

Ri = /0, Ri
⋂

R j = /0, ∀i �= j, i.e., {CR0, R1, ... , Rm} is a partition of Y .

Fig. 1.6 Parameter space
exploration strategy in [12,
13].
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The properties of the set of feasible parameters Xf ⊆ X (i.e. the set of parame-
ters x ∈ X such that a feasible solution z∗(x) exists to the optimization problem
(1.53)–(1.54), the value function V ∗(x) and the solution z∗(x) are formulated in the
following theorem [13]:

Theorem 1.7. Consider the convex multi-parametric quadratic program
(1.53)–(1.54) with H � 0, X convex. Then the set of feasible parameters Xf ⊆ X
is convex, the optimizer z∗(x) : Xf �→R

s is continuous and piecewise linear and the
value function V ∗(x) : Xf �→ R is continuous, convex and piecewise quadratic.

1.2.3 Algorithms for Exact Convex Multi-parametric Quadratic
Programming

Based on the above results, the main steps of the off-line mp-QP solver are outlined
in the following algorithm [13]:
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Algorithm 1.3. Exact mp-QP.

Step 1. Let the current region be the whole polyhedron X ⊆ R
n.

Step 2. Choose a vector x0 in the current region by solving the linear program
(1.55)–(1.58).

Step 3. For x = x0, compute the corresponding optimal solution (z0, λ0) by solv-
ing a QP.

Step 4. Determine the set of active constraints when z = z0, x = x0, and build G̃,
W̃ , S̃.

Step 5. If r = rankG̃ is less than the number l of rows of G̃, take a subset of r
linearly independent rows and redefine G̃, W̃ , S̃ accordingly.

Step 6. Determine λ̃ (x), z∗(x) from (1.64) and (1.65).
Step 7. Characterize the CR0 from (1.66) and (1.67).
Step 8. Define and partition the rest of the region as illustrated in Fig. 1.6.
Step 9. For each nonempty new sub-region, go to step 2.
Step 10. When all regions have been explored, for all polyhedral regions where

z∗(x) is the same and whose union is a convex set, compute such a union.

In conclusion, Algorithm 1.3 provides the explicit solution z∗(x) to the mp-QP prob-
lem (1.53)–(1.54), as the piecewise affine function:

z∗(x) = Kix+ hi if Dix≤ di , i = 1, 2, ... , Nr , (1.69)

where the polyhedral sets Dix ≤ di , i = 1, 2, ... , Nr are critical regions that form a
partition of the given set of states X .

1.2.3.1 Efficient Implementation of the Exact Approach to Explicit Solution
of mp-QP Problems

1. Main theoretical result.
As noted in [72], the main drawback of this algorithm is that the regions Ri are
not related to optimality, as they can split some of the critical regions like CR1 in
Fig. 1.6(d). A consequence is that CR1 will be detected at least twice. The approach
in [72] modifies the explicit approach in [12, 13] by analyzing several properties of
the geometry of the polyhedral partition and its relation to the combination of active
constraints at the optimum of the quadratic program. Based on that, they derive a
new exploration strategy for sub-dividing the parameter space, which aims to:

(1) Avoid unnecessary partitioning.
(2) Avoid the solution to LP problems for determining an interior point in each new

region of the parameter space.
(3) Avoid the solution to the QP problem for such an interior point.
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As a consequence, there is a significant improvement of efficiency with respect to
the algorithm in [12, 13]. Before describing the main idea of the approach in [72],
some definitions are made [72]:

Definition 1.2. Let z∗(x) be the optimal solution to (1.53)–(1.54) for a given x.
We define active constraints the constraints with Giz∗(x)−W i − Six = 0 and in-
active constraints the constraints with Giz∗(x)−W i − Six < 0. The optimal ac-
tive set A ∗(x) is the set of indices of active constraints at the optimum A ∗(x) =
{i | Giz∗(x) = W i + Six} (a superscript index is used to denote a row of a matrix).
We also define as weakly active constraint an active constraint with an associated
zero Lagrange multiplier λi and as strongly active constraint an active constraint
with a positive Lagrange multiplier λi.

Definition 1.3. For an active set, we say that the linear independence constraint
qualification (LICQ) holds if the set of active constraint gradients are linearly inde-
pendent, i.e. G̃ has full row rank.

Below, the linear expression of the PWL function z∗(x) over the critical region CRk

is denoted by z∗k(x).

Definition 1.4. Two polyhedra are called neighboring polyhedra if they have a com-
mon facet.

Definition 1.5. Let a polyhedron X be represented by A0x ≤ b. We say that Ai
0x ≤

bi is redundant if A j
0x ≤ b j, ∀ j �= i ⇒ Ai

0x ≤ bi (i.e. it can be removed from the
description of the polyhedron). The inequality i is redundant with degree h if it is
redundant but there exists a h-dimensional subset Y of X such that Ai

0x = bi for all
x ∈Y .

Let us consider a hyperplane defining the common facet between two polyhedra
CR0, CRi in the optimal partition of the state space. There are two different kinds of
hyperplanes [72]. The first (Type I) are those described by (1.66), which represent
a non-active constraint that becomes active at the optimum as x moves from CR0 to
CRi. This means that if a polyhedron is bounded by a hyperplane which originates
from (1.66), the corresponding constraint will be activated on the other side of the
facet defined by this hyperplane. In addition, the corresponding Lagrange multiplier
may become positive. The other kind (Type II) of hyperplanes which bounds the
polyhedra are those described by (1.67). In this case, the corresponding constraint
will be non-active on the other side of the facet defined by this hyperplane. This is
formulated in the following theorem [72]:

Theorem 1.8. Consider an optimal active set {i1, i2, ... , ik} and its corresponding
n-minimal representation of the critical region CR0 obtained by (1.66)–(1.67) after
removing redundant inequalities. Let CRi be a full-dimensional neighboring critical
region to CR0 and assume LICQ holds on their common facet Φ =CR0

⋂

Ψ where
Ψ is the separating hyperplane between CR0 and CRi. Moreover, assume that there
are no constraints which are weakly active at the optimizer z∗(x) for all x ∈ CR0.
Then:
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Type I. IfΨ is given by Gik+1z∗0(x) =W ik+1 +Sik+1x, then the optimal active set in
CRi is {i1, ... , ik, ik+1}.

Type II. If Ψ is given by λ ik
0 (x) = 0, then the optimal active set in CRi is

{i1, ... , ik−1}.
In degenerate cases, when the LICQ condition does not hold or there are weakly
active constraints, Theorem 1.8 provides no conclusion. In particular, when moving
across the facet of one critical region there may not be a single unique critical region
that shares the same facet, [67]. As discussed in [72, 73, 67, 69], the method in
[12, 13] is effective to handle these special cases.

2. Example.
The example represents a Model Predictive Control (MPC) problem for a double
integrator [72, 40], which is transformed into the equivalent mp-QP problem (1.53)–
(1.54) with H, G, W , S given by:

H =

[

1.079 0.076
0.076 1.073

]

(1.70)

GT =

[

1 0 −1 0 0.05 0.05 −0.05 −0.05
0 1 0 −1 0 0.05 0 −0.05

]

(1.71)

W T =
[

1 1 1 1 0.5 0.5 0.5 0.5
]

(1.72)

ST =

[

1.0 0.9 −1.0 −0.9 0.1 0.1 −0.1 −0.1
1.4 1.3 −1.4 −1.3 −0.9 −0.9 0.9 0.9

]

(1.73)

The partitioning starts with finding the region where no constraints are active. As
the mp-QP is created from a feasible MPC problem, the empty active set will be op-
timal in some full-dimensional region (A0 = /0 and G̃, W̃ and S̃ are empty matrices,
z∗(x) = 0). This critical region is then described by 0 ≤W + Sx which contains 8
inequalities. Two of these inequalities are redundant with degree 0 (#2 and #4), the
remaining 6 hyperplanes are facet inequalities of the polyhedron (see Fig. 1.7(a)).
By crossing the facet given byΨ1, defined by inequality 1 and of Type I, as predicted
by Theorem 1.8 the optimal active set across this facet is A1 = {1}, which leads to
the critical region CR1 (see Fig. 1.7(b)). After removing redundant inequalities we
are left with an n-minimal representation of CR1 containing 4 facets. The first of
these is of Type II, λ1(x) = 0. The other three are of Type I. These are inequalities
#2, #6 and #7. Consider first the other side of the facet which comes from λ1(x) = 0,
see Fig. 1.7(c). The region should not have constraint 1 active, so the optimal active
set is A2 = /0. This is the same combination of active constraints as A0, as expected,
so A2 is not pursued. Next, consider crossing the respective facets of inequalities
#2, #6 and #7, see Fig. 1.7(d)–Fig. 1.7(f). This results in three different active sets:
A3 = {1, 2}, A4 = {1, 6} and A5 = {1, 7}. The sets A3 and A4 lead to new poly-
hedra as shown in the figures. The combination A5 leads to an interesting case of
“degeneracy”. The associated matrix G̃ has linearly dependent rows, which violates
the LICQ assumption. In this case, A5 leads to an infeasible part of the state space.
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Fig. 1.7 Parameter space exploration strategy in [72].

The parameter space partition of the explicit solution to the mp-QP characterized
by (1.70)–(1.73) has 14 polyhedral critical regions and it is given in Fig. 1.8.

1.2.4 Remarks on Alternative mp-QP Algorithms

This section has described in mp-QP algorithms presented in [13] and [72]. A com-
bination of these algorithms, that uses the strategy of [72] to step over facets between
neighboring regions, in combination with the QP solution of [13] in order to iden-
tify the optimal active set, is given by [4]. Like the algorithm in [72], it depends
on the facet-to-facet property and the modifications described in [69] are useful.
The mp-QP algorithm of [4] is the primary mp-QP algorithm of the widely used
Multi-Parametric Toolbox (MPT), [46].

The combinatorial approach of [65] considers the combinations of potentially
optimal active constraints. In many cases, this is not efficient since it tends to lead
to many critical regions that are not full dimensional and must therefore be disre-
garded. An approach that exploits double representation (vertices and hyperplanes)
of polyhedrons was given in [57]. It was shown in [34] that a more efficient
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Fig. 1.8 Partition of the explicit solution to the mp-QP characterized by (1.70)–(1.73).

”non-geometric” combinatorial algorithm can be implemented by pruning infea-
sible candidate active sets.

Approximate and sub-optimal mp-QP algorithms have also been proposed, pur-
suing close approximations of lower complexity. The algorithm of [39] relies on an
orthogonal partitioning of the parameter space that is built recursively to achieve
an acceptable guaranteed maximum approximation error when approximating the
solution with an affine function within each hyper-rectangle of the parameter space.
A similar approach was taken in [9], using a simplex partition instead of hyper-
rectangles, and in [64] that exploits the Delaunay tessellation. A reformulation of
the MPC problem solving a sequence of simpler explicit MPC problems of horizon
N = 1 and a nested sequence of terminal sets, a la dynamic programming, was pro-
posed in [33]. Another sub-optimal approach based on short horizons was proposed
in [40]. The use of nested invariant sets and interpolation techniques is pursued for
approximations in [55]. An approximate solution for explicit MPC using set mem-
bership approximation has been introduced in [17]. While all the above approxima-
tions lead to PWA representations, [48] considers polynomial approximations.

For further review of existing algorithms, as well as multi-parametric linear pro-
gramming (mp-LP) algorithms, we refer to [2].

1.3 Evaluating Piecewise Functions

Both mp-NLP and mp-QP algorithms provide the solution as some piecewise func-
tion representation, where the function pieces are defined a polyhedral partitioning
into regions. All mp-QP algorithms, and most mp-NLP algorithms, return affine
function pieces. Since the complexity of representation may be large even for rel-
atively low order systems with constraints on some horizon (often thousands of
regions), explicit MPC depend on efficient methods to evaluate piecewise functions.
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The direct approach is to evaluate directly for each region if the current parameter
(given by the current state, plus other auxiliary variables, perhaps) belongs to that
region. This is clearly computationally demanding and may require more computa-
tions than solving the corresponding QP using an active-set solver, in particular if a
good initialization is available for warm start. Still, it is very simple, and may even
be very fast if implemented on a massively parallel computer architecture. The par-
allel implementation is entirely straightforward since all regions can be evaluated
concurrently.

A much more computationally efficient approach was proposed in [71, 74], re-
lying on a binary search tree representation of the polyhedral partitioning where at
each level of the search tree one is able to exclude a significant fraction of the re-
maining candidate regions by evaluating on which side of a given hyperplane the
current parameter belongs (typically a reduction of 1/3 is possible to achieve, as a
rule of thumb). Hence, due to logarithmic complexity in the number of regions, the
search among thousands of regions would amount of evaluating less than 20 hyper-
planes. For mp-QP, the weakness of this approach is that extensive off-line com-
putations are needed to construct a balanced binary search tree, and the piecewise
function representation may still require extensive on-line computer memory. This
is also true for methods that exploit optimal algorithms for selection of the hyper-
planes for decisions [29]. To address this issue, the use of a truncated binary search
tree in combination with direct search [6] or the lattice representation of piecewise
linear functions [5] has been proposed. The realization of such piecewise affine
function evaluation algorithms in dedicated hardware is investigated in [60, 41]. It
should be mentioned that orthogonal partitions such as [38, 39] builds such a binary
search tree as an integral part of the multi-parametric programming strategy.

Data structures other than binary search trees are also useful to support efficient
evaluation. Bounding-boxes [19] and hash-tables [7] are proposed as supporting
data structures to efficiently narrow down the search for the optimal polyhedral
regions.

In MPC, the parameter (state) at one time instant is likely to be close to the pa-
rameter at the previous time instant, due to the continuity of trajectories of dynamic
systems. Several algorithms have been proposed to build data structures that repre-
sent the topology of the polyhedral partitioning in order to quickly identify neigh-
boring regions along the path from one parameter to the next parameter [68, 75].

Complexity of piecewise function representations can also be reduced by joining
convex unions of polyhedrons, which share the same affine function piece (for the
first control sample) [10]. In particular, the fact that input saturation will typically
occur in a large number of regions can be directly exploited, [47]. Several methods
for further compression of representation and efficient evaluation are investigated in
[70].
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Chapter 2
Nonlinear Model Predictive Control

Abstract. A nonlinear model predictive control (NMPC) strategy requires the for-
mulation of an optimization problem. For online NMPC the nonlinear program-
ming problem must be solved numerically at every sampling interval, while explicit
NMPC assumes that an explicit representation of the solution can be computed using
multi-parametric nonlinear programming. This chapter considers the formulation of
the optimization problem, which is an essential part of the control design and in-
volves numerous decisions that are important for the control performance, stability,
and robustness as well as the computational complexity and the numerical chal-
lenges of computing the solution. Key elements are discretization and parameteri-
zation procedures that leads to a finite-dimensional numerical optimal control prob-
lem that can be addressed using e.g. direct single shooting, direct multiple shooting,
or collocation methods. Fundamental properties like feasibility and continuity of
solutions are discussed, before various modifications that are needed to explicitly
guarantee stability, feasibility, and robustness, are discussed. We then discuss fur-
ther extensions for handling integer variables, output feedback, decentralized and
distributed implementations, before some remarks on numerical and computational
challenges are discussed at the end.

2.1 Introduction

Consider the problem of controlling a multi-variable nonlinear system, subject to
physical and operational constraints on the input and state. Well known systematic
nonlinear control methods such as feedback linearization, [59, 83, 94], and construc-
tive Lyapunov-based methods, [69, 109], lead to very elegant solutions, but they de-
pend on complicated design procedures that does not scale well to large systems and
they are not developed in order to handle constraints in a systematic manner. The
concept of optimal control, and in particular its practical implementation in terms
of Nonlinear Model Predictive Control (NMPC) is an attractive alternative since the
complexity of the control design and specification increases moderately with the
size and complexity of the system. In particular for systems that can be adequately

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 39–69.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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modeled with linear models, MPC has become the de-facto standard advanced con-
trol method in the process industries, [100]. This is due to its ability to handle large
scale multi-variable processes with tens or hundreds of inputs and states that must
fulfill physical and operational constraints.

MPC involves the formulation and solution of a numerical optimization prob-
lem corresponding to a finite-horizon optimal control problem at each sampling
instant. Since the state of the system is updated during each sampling period, a new
optimization problem must be solved at each sampling interval. This is known as
the receding horizon approach. With linear models the MPC problem is typically
a quadratic or linear program, which is known to be convex and for which there
exists a variety of numerical methods and software. While the numerical complex-
ity of linear MPC may be a reasonable challenge with powerful computers being
available, there is no doubt that NMPC is limited in its industrial impact due to the
challenges of guaranteeing a global (or at least sufficiently good) solution to the
resulting nonlinear optimization problem within the real-time requirements ([101]).
Other limiting factors are the challenges of developing nonlinear dynamic models
and state estimators. The nonlinear programming problem may have multiple lo-
cal minima and will demand a much larger number of computations, even without
providing any hard guarantees on the solution. However, it is a powerful approach
of great promise that has proven itself in several applications, [101, 45], and with
further research in the direction of numerical implementation technology and ex-
plicit NMPC methods, it may strengthen its position as the most powerful method
available for certain classes of systems.

NMPC has its roots in nonlinear optimal control theory that was developed in
the 1950’s and 1960’s, resulting in powerful characterizations such as the maximum
principle, [7] and dynamic programming, [12]. In the direct numerical optimal con-
trol literature, [57, 36, 19, 23, 17, 48, 24, 113], numerical methods to compute open
loop control trajectories were central research topics. Problem formulations that in-
cluded constraints on control and state variables were treated using numerical op-
timization. NMPC involves the repetitive solution of an optimal control problem at
each sampling instant in a receding horizon fashion. Unfortunately, there is no guar-
antee that the receding horizon implementation of a sequences of open loop optimal
control solutions will perform well, or even be stable, when considering the closed
loop system. This challenge, in combination with the tremendous success of lin-
ear MPC in the process industries, [100], lead to an increasing academic interest in
NMPC research with focus on stability analysis and design modifications that guar-
antee stability and robustness. The early results [31, 63, 84] boosted a large series
of research, including [87, 2, 32, 93, 108, 79, 80, 60, 85]. Industrial applications of
NMPC have been reported, and are surveyed in [101, 45].

One of the early contributions of NMPC are given in [73], that uses lineariza-
tion procedures and Gauss-Newton methods to provide a numerical procedure for
NMPC based on SQP that makes only one Newton-iteration at each sampling in-
stant. Theoretical results are also given in [74]. The continuation/GMRES method
of [97] is based on a similar philosophy of only one Newton-iteration per sample,
while it is based on interior point methods. Recent NMPC research along similar



2.2 NMPC Optimization Problem Formulation 41

ideas has benefited considerably from progress in numerical optimization, being
able to take advantage of structural properties on the NMPC problem and general
efficiency improvements, e.g. [18, 39, 114, 124], in addition to important issues such
as robustness [81, 78, 76].

2.2 NMPC Optimization Problem Formulation

This section will focus on the formulation of the NMPC problem, leading to a for-
mulation such as (1.1)-(1.2), while the detailed issues related to its numerical so-
lution are postponed until section 2.3. It is, however, important to have in mind
that these two issues are closely linked. While the NMPC problem formulation is
driven by the specification of the control objective, constraints and dynamic model
formulations, one should also consider potential numerical challenges at this point.
In particular, important characteristics of the tradeoff between numerical accuracy,
computational complexity and complexity of an approximate explicit representa-
tion, are determined already at the point when the NMPC optimization problem is
formulation through discretization, choice of parameterizations, and choice of de-
cision variables and constraint formulations in the optimization problem. Some of
these relationships are treated also in this section, together with fundamental proper-
ties of the optimization problem, including stability, convexity and the link between
controllability and well-posedness of the optimization problem.

2.2.1 Continuous-Time Model, Discretization and Finite
Parameterization

This section will introduce a basic nonlinear optimal control formulation starting
from a continuous time model and a finite horizon where the objective is to minimize
a cost function

J(u[0,T ],x[0,T ]) �
∫ T

0
�(x(t),u(t), t)dt + S(x(T),T ) (2.1)

(2.2)

subject to the inequality constraints for all t ∈ [0,T ]

umin ≤ u(t) ≤ umax (2.3)

g(x(t),u(t), t) ≤ 0 (2.4)

and the evolution of the ordinary differential equation (ODE) given by

d
dt

x(t) = f (x(t),u(t), t) (2.5)

with given initial condition x(0) ∈ R
n. The function � is know as the stage cost, S

is the terminal cost, T > 0 is the horizon, and together these define the cost
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function J. The evolution of the state x(t) is given by the function f according to
(2.5) and depends on the input signal u(t) ∈ R

m and time t, and forms an infinite-
dimensional equality constraint to the optimal solution in the formulation above. In
addition there is saturation on the input with minimum and maximum thresholds
umin and umax, respectively, and general inequality constraints jointly on states and
inputs, point-wise in time t ∈ [0,T ], defined by the function g. These constraints
may result from both physical and operational constraints of the control system and
stability-preserving terminal sets that will be discussed later in section 2.2.3, see
also [85].The properties of � and S have consequences for the control performance,
including stability, and must be carefully understood and tuned, [85]. We will re-
turn to this important issue in section 2.2.3. The explicit time-dependence in f ,g, �
allows for time-varying reference trajectories, known disturbances and exogenous
input signals to be accounted for in the optimal control problem formulation. The
solving multi-parametric programs, the time or some parameterization of these ex-
ogenous signals, should then be included in the parameter vector. Throughout this
chapter we implicitly assume all the functions involved satisfy the necessary regu-
larity assumptions, such as continuity and smoothness.

The above formulation basically defines an infinite-dimensional optimal control
problem whose solution can be characterized using classical tools like calculus of
variations, Pontryagin’s maximum principle ([7]) and dynamic programming, [12].
In these indirect methods such characterizations of the solution can help us only in
a very limited number of special cases to find an analytic exact representation of the
solution.

Although numerical solutions can be found based on the characterizations of the
indirect methods, in the context of NMPC we choose to restrict our attention to
so-called direct methods that seems most promising and popular. They are charac-
terized by discretization and finite parameterization being introduced in the optimal
control problem formulation which is then directly solved with numerical methods.
The principle of NMPC is to repeatedly solve finite-horizon optimal control prob-
lems of the above kind at each sampling instant. This means that the initial state
x(0) to (2.5) is viewed as the current state based on the most recent measurements,
and the optimal control trajectory u[0,T ] solving the above problem is implemented
for a short period of time (usually one sampling interval, typically much smaller
than T ) until the procedure is repeated and an updated optimal control trajectory
is available. However, the solution of the above optimal control problem, requires
reformulations for the following reasons:

• The solution to the ordinary differential equation (2.5) with given initial condi-
tions must generally be based on discretized to be handled by numerical inte-
gration since exact closed-form solutions of the ODE are usually not possible to
formulate in the general nonlinear case. Viewed in a different way, the infinite
number of equality constraints (2.5) must be represented by a finite approxima-
tion.

• The infinite-dimensional unknown solution u[0,T ] should be replaced by a finite
number of decision variables to be able to define a finite-dimensional optimiza-
tion problem that can be solved using numerical optimization.
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• Measurements are typically sampled data available only at the sampling instants,
such that an updated initial state x(0) will normally be available only at defined
sampling instants.

• Arbitrary control trajectories cannot be implemented since typically the control
command can only be changed at defined sampling instants and is typically as-
sumed to be constant (or some other simple sample-and-hold function such as
linear) between the sampling instants.

In order to reformulate the problem into a finite-dimensional and practical setting,
we will make the following assumptions that will allow the integral and differentia-
tion operators to be approximated by numerical integration methods.

• The horizon T is finite and given.
• The input signal u[0,T ] is assumed to be piecewise constant with a regular sam-

pling interval ts such that T is an integer multiple of ts, and parameterized by a
vector U ∈R

p such that u(t) = μ(t,U) ∈R
r is piecewise continuous.

• An (approximate) solution to (2.5) is assumed to be defined in the form x(t) =
φ(t,U,x(0)) at N discrete time instants Td = {t1, t2, ..., tN}⊂ [0,T ] for some ODE
solution function φ(·). The discrete set of time instants Td results from discretiza-
tion of the ODEs and its time instants may not be equidistant. A simulation of
the ODEs embedded in the function φ(·) may incorporate additional intermediate
time-steps not included in Td , since the purpose of Td is primarily to discretize
the inequality constraints (2.3)-(2.4) at a finite number of representative points
in time and to approximate the integral in (2.1) with a finite sum. In general, the
time instants Td need not coincide with sampling instants.

The assumption of given horizon T is typical for many NMPC problems, but there
are important exceptions such as minimum-time formulations in e.g. robotics, [112],
batch process control ([46, 91, 92]), and other problems such as diving decompres-
sion ([41]), where the horizon T may be considered a free variable. The resulting
modifications to the problem formulations may lead to additional challenges related
to the time discretization and may make the optimization problem more challenging.

The basis for the NMPC is the nominal model (2.5), and we remark that model
uncertainty, unknown disturbances and measurement errors are not accounted for in
this formulation of the NMPC problem. Various extensions and variations that can
relax many of the assumptions above can be made relatively easy as straightforward
modifications to the basic problem formulation. For simplicity of presentation, we
stick to the formulation above and return to some alternatives and opportunities that
will be discussed in later sections.

The parameterization of the input signal μ(t,U) on the horizon t ∈ [0,T ] is im-
portant and will influence both the control performance and computational perfor-
mance. In general, it should satisfy the following objectives

• Be sufficiently flexible in order to allow for a solution of the reformulated optimal
control problem close to the solution original problem (2.1)-(2.5).

• Be parsimonos in the sense that it does not contain unnecessary parameters that
will lead to unnecessary computational complexity, complexity of an approxi-
mate explicit representation, and numerical sensitivity.
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• Be implementable within the capabilities of the control system hardware and
software, meaning that particular consideration may be needed for any parame-
terization beyond a piecewise constant input trajectory that is restricted to change
its value only at the sampling instants.

Based on the last very practical point, a general choice is the piecewise constant
control input μ(t,U) = Uk for tk ≤ t < tk+1 parameterized by the vector
U = col(U0, ...,UN−1) ∈R

mN . Practical experience shows that the receding horizon
implementation offers considerable flexibility for a NMPC to recover performance
due to sub-optimality at each step. Consequently, it is common practice to imple-
ment move-blocking strategies such that a smaller number of parameters is required
by restricted the input from change at every sampling instant on the horizon, in
particular towards the end of the horizon. For example, MPC has been successfully
implemented for stable plants based on linear models by optimizing a constant input
on the whole horizon, [100].

2.2.2 Numerical Optimal Control

In this section the basic optimal control formulation in section 2.2.1 is reformulated
into a form suitable for numeric solution by a nonlinear optimization solver.

As classified in [39] there are two main avenues to direct numerical optimal
control

• The sequential approach. The ODE constraint (2.5) is solved via numeric sim-
ulation when evaluating the cost and constraint functions. This means that the
intermediate states x(t1), ....,x(tN) disappear from the problem formulation by
substitution into the cost and constraint functions, while the control trajectory
parameters U are treated as unknowns. This leads to a sequence of simulate-
optimize iterations, often known as Direct Single Shooting, [57, 105, 68].

• The simultaneous approach. The ODE constraints (2.5) are discretized in time
and the resulting finite set of nonlinear algebraic equations are treated as non-
linear equality constraints. The intermediate states x(t1), ....,x(tN) are treated as
unknown variables together with the control trajectory parameters U , and the cost
function is evaluated simply by replacing the integral (2.1) by a finite sum. This
leads to simultaneous solution of the ODEs and the optimization problem with
a larger number of constraints and variables. The most well known methods of
this type are Direct Multiple Shooting, [36, 23, 24, 72], and Collocation methods,
[116, 19, 113].

It is fair to say that all the above mentioned approaches have advantages that could
make them the method of choice when considering a specific problem:

• The simultaneous approach involves a larger number of constraints and variables
and therefore leads to ”bigger problems”. On the other hand, the cost and con-
straint function evaluation is much simpler and there are structural properties of
the equations and numerical advantages that can be exploited in some cases. This
will be discussed in section 2.3.
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• Neglecting errors due to discretization and numerical approximations, all meth-
ods results in the same optimal control trajectory. Hence, one may expect the
main difference between these alternatives to be related to numerical properties
and complexity of computation and explicit representation. Numerical accuracy
of the solution is a consequence of discretization, round-off errors, sensitivity
to initial conditions and input, differences in linear algebraic methods, etc. and
must be balanced against computational cost. These aspects will be treated in
more detail in section 2.3.

• Nonlinear optimization problems are generally non-convex, and the convergence
and success of a given optimization algorithm depend largely on the initial guess
provided for the solution. The sequential and simultaneous approach are in this
sense fundamentally different, since the simultaneous approach not only requires
an initial control trajectory guess, but also one for the state trajectory. The avail-
ability of a good initial guess for the state trajectory is an advantage that can be
exploited by the simultaneous approach. On the other hand, the presence of non-
linear equality constraints (which by definition are non-convex) in the simultane-
ous approach, one cannot expect feasible initial guesses, which has consequences
for the choice of numerical methods, and will be further discussed in section 2.3.

• The sequential approach may use more or less arbitrary and separate ODE and
optimization solvers, which may in some cases be simple and convenient when
compared to the simultaneous approach that tend to require more specialized and
integrated numeric software combining these tasks. This may be a particularly
important issue for industrial users that must use software tools based on an ex-
tensive set of requirements and constraints.

2.2.2.1 Direct Single Shooting

In direct single shooting ([57, 105, 68]), the ODE constraint (2.5) is eliminated by
substituting its discretized numerical solution x(tk) = φ(tk,U,x(0)) into the cost and
constraints;

V ∗(x(0)) = min
U∈Rp

V (U ;x(0)) �
N

∑
k=1

�(φ(tk,U,x(0)),μ(tk,U), tk)(tk− tk−1)

+S(φ(T,U,x(0)),T ) (2.6)

subject to

umin ≤ μ(tk,U) ≤ umax, tk ∈ Td (2.7)

g(φ(tk,U,x(0)),μ(tk,U), tk) ≤ 0, tk ∈ Td (2.8)

and the ODE solution function φ(·) is the result of a numerical integration scheme.
In its simplest form, an explicit integration scheme may be used

x(tk+1) = F(x(tk),μ(tk,U), tk), x(t0) = x(0) given, (2.9)
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for k = 0, ...,N− 1, leading to

φ(tk,U,x(0)) = F(. . .F(F(x(0),μ(t0,U), t0),μ(t1,U), t1), ...,μ(tk−1,U), tk−1)

(2.10)

However, φ(tk,U,x(0)) may also be computed using any other (implicit) discretiza-
tion scheme in the simulation.

The problem (2.6) - (2.8) is a nonlinear program in U parameterized by the ini-
tial state vector x(0) and time, and hence in the multi-parametric nonlinear pro-
gramming form (1.1)-(1.2). Dependence on time-varying external signals such as
references and known disturbances are left implicit in order to keep the notation
simple. They can be included in the parameter vector in a straightforward manner.
The receding horizon MPC strategy will therefore re-optimize U when new state
or external input information appears, typically periodically at each sample. We as-
sume the solution exists, and let it be denoted U∗.

We note that the introduction of common modifications such as terminal con-
straints and infeasibility relaxations still gives a nonlinear multi-parametric pro-
gram, but with additional decision variables and constraints.

2.2.2.2 Direct Collocation

In direct collocation ([116, 19, 113]) the numerical solution for x(tk) is not substi-
tuted into the cost and constraint functions, but the associated nonlinear algebraic
equations resulting of an ODE discretization scheme are kept. Hence, the variables
x(tk), k = 1, ...N are treated as unknown decision variables:

V ∗(x(0)) = min
U∈Rp,x(t1)∈Rn,...,x(tN )∈Rn

V (U,x(t1), ...,x(tN);x(0))

�
N

∑
k=1

�(x(tk),μ(tk,U), tk)(tk− tk−1)+ S(x(tN),T ) (2.11)

subject to

umin ≤ μ(tk,U) ≤ umax, tk ∈ Td (2.12)

g(x(tk),μ(tk,U), tk) ≤ 0, tk ∈ Td (2.13)

F(x(tk+1),x(tk),μ(tk,U), tk) = 0, k = 0, ...,N− 1 (2.14)

x(t0) = x(0) given (2.15)

where F is a function defined by the discretization scheme of the ODE (2.5). We
observe from (2.14) that it directly allows for implicit numerical integration methods
to be used, and that the algebraic equations resulting from the implicit integration
scheme will be solved simultaneously with the optimization.

The problem (2.11) - (2.13) is a nonlinear program in the variables U,x(t1), ...,
x(tN) parameterized by the initial state vector x(0). It is therefor in the multi-
parametric nonlinear programming form (1.1)-(1.2), except that equality constraints
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are present. They pose no difficulty, as they should always be included in the optimal
active set, and can be treated by standard nonlinear programming solvers. In addi-
tion, dependence on time-varying external signals such as references and known
disturbances are left implicit in order to keep the notation simple. The receding
horizon MPC strategy will therefore re-optimize U when new state or external input
information appears, typically periodically at each sample. We assume the solution
exists, and let it be denoted U∗,x∗(t1), ...,x∗(tN).

2.2.2.3 Direct Multiple Shooting

Direct multiple shooting ([36, 23, 24, 72]) combines elements of both direct single
shooting and direct collocation. It is a simultaneous approach in the sense it refor-
mulates the ODE (2.5) to a set of nonlinear algebraic equality constraints that are
solved simultaneously with the optimization. It differs from the direct collocation
method since an ODE solver is used to simulate the ODE (2.5) in each time interval
tk ≤ t ≤ tk+1 for k = 0, ...,N− 1:

V ∗(x(0)) = min
U∈Rp ,(x(t1),...,x(tN ))T∈RnN

V (U,x(t1), ...,x(tN);x(0))

�
N

∑
k=1

�(x(tk),μ(tk,U), tk)(tk− tk−1)+ S(x(tN),T ) (2.16)

subject to

umin ≤ μ(tk,U) ≤ umax, tk ∈ Td (2.17)

g(x(tk),μ(tk,U), tk) ≤ 0, tk ∈ Td (2.18)

x(tk+1) = φ(x(tk),μ(tk,U), tk), k = 0, ...,N− 1 (2.19)

x(t0) = x(0) given, (2.20)

where φ is a function defined by the simulation of the ODE (2.5). The main dif-
ference between direct multiple shooting and direct collocation is due to the use of
an arbitrary ODE solver between the time-instants in Td . Direct multiple shooting
may have advantages when adaptive discretization schemes are needed (due to stiff
dynamics, for example) since they might require a varying number of grid points
for each iteration of the solver. With multiple shooting this can in principle be ”hid-
den” within the direct single shooting solver used between each time-instant in Td ,
while it directly leads to a change in the dimensions of the optimization problem at
each iteration with a direct collocation method. Direct multiple shooting decouples
the grids required for the point-wise discretization of the constraints (2.18) and the
discretization grid required to integrated the ODE. In a sense, direct multiple shoot-
ing provides additional flexibility compared to both direct single shooting and direct
collocation. On the other hand, direct collocation leads to a more sparse structure
that can be exploited by the numerical optimization solver.
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2.2.2.4 The Nonlinear Program – Feasibility and Continuity

This section summarizes some features of the numeric optimization problem re-
sulting from the direct approach to numerical optimal control in NMPC. Important
issues related to the well-posedness of the problem are reviewed. They are related to
existence and uniqueness of the solution and continuous dependence of the solution
on data such as the initial state x(0). These are again related to regularity properties
and fundamental properties such as controllability.

In summary, all formulations reviewed in this section lead to a nonlinear opti-
mization problem of the form

V ∗(θ ) = min
z

V (z,θ ) (2.21)

subject to

G(z,θ ) ≤ 0 (2.22)

H(z,θ ) = 0 (2.23)

where z is a vector of decision variables (control trajectory parameters, intermediate
states, slack variables, etc.) while θ is a vector of parameters to the problem (initial
states, parameters of reference trajectories, exogenous inputs, etc.).

Existence of a solution corresponds to feasibility of the optimization problem.
We define the feasible set of parametersΘF as the set that contains all θ for which
the optimization problem (2.21)-(2.23) has a solution z∗(θ )

ΘF = {z | there exists a z such that G(z,θ )≤ 0, H(z,θ ) = 0} (2.24)

The feasible set is a result of the dynamics of the systems and basically all design
parameters of the NMPC problem. Generally speaking, it is desired to make this set
as large as possible while fulfilling the physical and operational constraints of the
control system. We will return to this design issue in section 2.2.3.

The concept of controllability of nonlinear systems can be defined in several
ways. One may take a pragmatic point of view, and focus on conditions that leads to
feasibility of the solution, and continuity of the value function or solution as a func-
tion of the time-varying data θ that includes the initial conditions (see section 1.1.4).
In the context of numerical optimal control, issues related to lack of controllability
or inappropriate design choices will typically manifest themselves in terms of in-
feasibility (no solution exists), indefiniteness of the Hessian (a global solution is not
found), or singularity or poor conditioning of the Hessian (the solution is not unique
and continuously dependent on the input data, or is highly sensitive to changes in
decision variables). The latter case means that small changes in the state may re-
quire very large control actions to compensate. Since the above sufficient optimality
conditions are practically impossible to verify a priori, these are important issues to
be analysed in the solution of the approximate multi-parametric programming algo-
rithms, based on output from the numerical solver and other verification methods,
in order to asses the quality of the NMPC design and identify problems related to
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lack of controllability or inappropriate design or tuning of the NMPC criterion and
constraints. It is a great advantage of explicit NMPC that this can be analyzed dur-
ing the design phase. The simplest special case for which strong properties can be
guarantees a priori is the case of joint convexity (see section 1.1.5.1).

2.2.3 Tuning and Stability

The specification of the NMPC control functionality and dynamic performance is
essentially provided through the cost function and the constraints. We will not go
into details on the practical tuning tradeoffs and the types of physical and operational
constraints, but note that one may typically choose l2 or l1 type cost function

�(x,u, t) = ||x− rx(t))|2Q + ||u− ru(t)||2R (2.25)

�(x,u, t) = ||Q(x− rx(t))||1 + ||R(u− ru(t)||1 (2.26)

where the properties of the weight matrices Q � 0 and R � 0 are essential for per-
formance, and in some cases also stability. In the simplest case when there exists an
ε > 0 such that

�(x,u, t)≥ ε(||x||2 + ||u||2) (2.27)

it is clear that all states and control actions are directly observable through the cost
function, an it follows intuitively that minimization of the cost function will influ-
ence all states that are controllable. Based on the similar arguments, it is in fact
sufficient for stabilization that only the unstable modes of the system are observable
through the cost function, such that Q � 0 may be sufficient if weights are given
on the unstable modes, [85]. In order to ensure uniqueness of the control trajec-
tory it is generally recommended that R� 0. In summary, conventional LQR tuning
guidelines (e.g. [7]) are very helpful as a starting point also for NMPC. We note that
parameterization of the reference trajectories rx(t) and ru(t) will enter the parameter
vector of the multi-parametric nonlinear program, and may significantly contribute
to complexity of the representation of an explicit solution approximation.

Although the effect of modeling errors and disturbances will be discussed in
section 2.2.4.2, we remark that incorrect choice of the reference ru(t) for the control
input may lead to a steady-state error that will be important to compensate for in
many applications.

NMPC is based on the receding horizon control principle, where a finite horizon
open loop optimal control solution is implemented until a new optimized control
trajectory is available at the next sampling instant. This leads to closed-loop con-
trol since each new optimized control trajectory is based on the most recent state
information. However, the numerical optimal control problem updated at each sam-
pling instant provides essentially an open-loop control trajectory. The finite-horizon
cost function imposes in principle no stability requirement by itself, and with an
unfortunate choice of design parameters (horizon T , weight matrices Q and R, ter-
minal cost S, and certain constraints) the closed loop NMPC may be unstable. In



50 2 Nonlinear Model Predictive Control

particular for open loop unstable systems, it is important to understand how these
design parameters should be chosen to avoid an unstable NMPC.

2.2.3.1 Stability Preserving Constraints and Cost-to-Go

This section discusses stability of the NMPC in more depth, and how this property
is related to design parameters in the cost function and constraints. The description
will be fairly informal, and we avoid the technical details in order to focus on the
most important concepts. For simplicity we assume that the objective is regulation
to a constant set-point r. Further details and a more rigorous treatment of the topic
are found in [32, 85, 87, 63, 84], and we remark that the concepts relevant for NMPC
are essentially the same as for linear MPC.

The following principles are generally useful to ensure stability of an NMPC
[85]:

• The control trajectory parameterization μ(t,U) must be ”sufficiently rich” - most
theoretical work assume piecewise constant control input trajectory that is al-
lowed to move at each sampling instant.

• From the optimality principle of dynamic programming, [12], an infinite horizon
cost may be expected to have a stabilizing property. Theoretically, this leads to an
infinite dimensional problem (except in simple special cases), so more practical
approaches are

– Sufficiently large horizon T . However, it is not obvious to know what is large
enough, in particular for an open loop unstable system and when the con-
strained outputs are non-minimum phase (see [104] for results on the impor-
tance of the zero-dynamics of the constrained outputs for the linear case).

– A terminal cost chosen to approximate the cost-to-go, i.e. S(x(T ),T ) ≈
∫ ∞

t=T �(x(t),u(t), t)dt such that the total cost function approximates an infi-
nite horizon cost. Unfortunately, the cost-to-go is generally hard to compute
and simple (quadratic) approximations are usually chosen.

• Terminal set constraints of the type x(tN) ∈ Ω that ensures that the state is reg-
ulated ”close enough” to the set-point such that after T it is a priori known that
there exists a feasible and stabilizing controller that will ensure that x(t), t ≥ T
never leaves Ω and eventually goes asymptotically to the set-point. There are
many algorithms based on this philosophy, some of them are defined as dual
mode NMPC ([87]) since they switch to a stabilizing simpler (non-NMPC) con-
trol law once Ω is reached, while others continue to use NMPC also in Ω with
the confidence that there exist an (explicit or implicit) stabilizing control law that
the NMPC may improve upon.

• Terminal equality constraints of the type x(tN) = r, [63], that ensures conver-
gence in finite time. This basically implies that the cost after time T is zero, and
is therefore related to both an infinite-cost strategy and a stability-preserving-
constraint strategy. However, this may be a demanding constraint, both due to
numerical issues of nonlinear equality constraints, and feasibility issues with a
short horizon T .
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• Finally, the idea of choosing the cost-to-go to approximate an infinite-horizon
cost and the use of a terminal set may be combined. With the use of a terminal
set it will be sufficient to approximate the cost-to-go for states that are within the
terminal set, and simple tools like local linearization can be applied to make this
a fairly practical approach; [32].

A formal treatment of these issues are found in the references, see [85] for addi-
tional references. The main tools are the use of either the value function V ∗(x) as
a Lyapunov function, or investigating monotony of a sequences of function values.
Instead, we provide an example that is similar to the method in [32].

Example. Consider the discrete-time non-linear system

x(tk+1) = F(x(tk),u(tk)) (2.28)

where x∈Rn is the state, and u∈Rm is the input. We assume the control objective is
regulation to the origin. For the current x(tk), we formulate the optimization problem

V ∗(x(tk)) = min
U

J(U,x(tk)) (2.29)

subject to xk|k = x(tk) and

ymin ≤ yk+i|k ≤ ymax, i = 1, ...,N

umin ≤ uk+i ≤ umax, i = 0,1, ...,N− 1,

xk+N|k ∈Ω (2.30)

xk+i+1|k = F(xk+i|k,uk+i), i = 0,1, ...,N− 1

yk+i|k =Cxk+i|k, i = 1,2, ...,N

with U = {uk,uk+1, ...,uk+N−1} and the cost function given by

J(U,x(tk)) =
N−1

∑
i=0

(||xk+i|k||2Q + ||uk+i||2R
)

+ ||xk+N|k||2P (2.31)

The compact and convex terminal set Ω is defined by

Ω = {x ∈ R
n | xT Px≤ α} (2.32)

where P = PT � 0 and α > 0 will be specified shortly. An optimal solution to the
problem (2.29)-(2.30) is denoted U∗ = {u∗t ,u∗t+1, ...,u

∗
t+N−1}, and the control input

is chosen according to the receding horizon policy u(tk) = u∗t . This and similar op-
timization problems can be formulated in a concise form

V ∗(x) = min
U

J(U,x) subject to G(U,x)≤ 0 (2.33)
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Define the set of N-step feasible initial states as follows

XF = {x ∈R
n |G(U,x)≤ 0 for some U ∈ R

Nm} (2.34)

Suppose Ω is a control invariant set, such that XF is a subset of the N-step stabi-
lizable set, [64]. Notice that the origin is an equilibrium and interior point in XF .
It remains to specify P � 0 and α > 0 such that Ω is a control invariant set. For
this purpose, we use the ideas of [32], where one simultaneously determine a linear
feedback such that Ω is positively invariant under this feedback. Define the local
linearization at the origin

A =
∂ f
∂x

(0,0), B =
∂F
∂u

(0,0) (2.35)

Now, the following assumptions are made:

• (A,B) is stabilizable.
• P,Q,R� 0.
• ymin < 0 < ymax and umin < 0 < umax.
• The function f is twice continuously differentiable, with f (0,0) = 0.

Since (A,B) is stabilizable, let K denote the associated LQ optimal gain matrix, such
that A0 = A−BK is strictly Hurwitz. A discrete-time reformulation of Lemma 1 in
[32] can be made, [61]:

Lemma 2.1. If P� 0 satisfies the Lyapunov-equation

AT
0 PA0−P = −κP−Q−KT RK (2.36)

for some κ > 0, there exists a constant α > 0 such thatΩ defined in (2.32) satisfies

1. Ω ⊂ C = {x ∈ R
n | umin ≤−Kx≤ umax,ymin ≤Cx≤ ymax}.

2. The autonomous nonlinear system

x(tk+1) = F(x(tk),−Kx(tk)) (2.37)

is asymptotically stable for all x(0) ∈Ω , i.e. Ω is positively invariant.
3. The infinite-horizon cost for the system (2.37)

J∞(x(tk)) =
∞

∑
i=0

(||xk+i|k||2Q + ||Kxk+i|k||2R
)

(2.38)

satisfies J∞(x)≤ xT Px for all x ∈Ω .

Proof. In order to prove this result we first remark that the Lyapunov-equation
(2.36) is generally satisfied for sufficiently small κ > 0 because A0 is strictly Hur-
witz and the right-hand side is negative definite. One may define a set of the form

Ωα1 = {x ∈ R
n | xT Px≤ α1} (2.39)
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with α1 > 0, such that Ωα1 ⊆ C , i.e. an ellipsoidal inner approximation Ωα1 to the
polyhedron C where the input and state constraints are satisfied. Hence, the first
claim holds for all α ∈ (0,α1].

Define the positive definite function W (x) = xT Px. Along trajectories of the au-
tonomous system (2.37) we have

W (x(tk+1))−W (x(tk)) = (A0x(tk)+φ(x(tk)))T P(A0x(tk)+φ(x(tk)))
−xT (tk)Px(tk)

= xT (tk)
(

AT
0 PA0−P

)

x(tk)+φT (x(tk))Pφ(x(tk))
+xT (tk)(A

T
0 P+PA0)φ(x(tk))

where φ(x) = F(x,−Kx)−A0x satisfies φ(0) = 0. From (2.36)

W (x(tk+1))−W(x(tk)) = −xT (tk)
(

Q+KT RK +κP
)

x(tk)

+xT (tk)(A
T
0 P+PA0)φ(x(tk))+φT (x(tk))Pφ(x(tk))

Let Lφ be a Lipschitz constant for φ in Ωα (which must exist because f is differ-
entiable). Since ∂φ/∂x(0) = 0 and φ is twice differentiable we can choose Lφ > 0
as close to zero as desired by selecting α > 0 sufficiently small. Hence, there exist
α ∈ (0,α1] such that

W (x(tk+1))−W (x(tk)) ≤ −xT (tk)
(κ

2
P+Q+KT RK

)

x(tk) (2.40)

for all x(tk) ∈Ω and positive invariance of Ω follows since Ω is a level set of W .
Notice that from (2.40) we have

W (x(∞))−W (x(0)) ≤ −J∞(x(0))− κ2
∞

∑
k=0

||x(tk)||2P (2.41)

and the third claim holds because W (x(∞)) = 0 for all x(0) ∈Ω .
Hence, the result is proven, and it follows from [85, 32] that the RHC makes the

origin asymptotically stable with region of attraction equal to the feasible set XF .

A procedure for selecting P,κ and α can be adapted from [32].

2.2.4 Extensions and Variations of the Problem Formulation

2.2.4.1 Infeasibility Handling and Slack Variables

Feasibility of the NMPC optimization problem is an essential requirement for any
meaningful state and reference command, and it is importance in practice that the
NMPC optimization problem is formulated such that feasibility is ensured as far
as possible by relaxing the constraints when needed and when possible. Obviously,
physical constraints like input saturation can never be relaxed, but operational con-
straints can generally be relaxed according to certain priorities under the additional
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requirement that safety constraints are fulfilled by a separate system (like an emer-
gency shutdown system, pressure relief valves, or by functions in a decentralized
control system). Stability-enforcing terminal constraints may also be relaxed in
practice, or even skipped completely, since they tend to be conservative and often
not needed when the NMPC is otherwise carefully designed, in particular for open
loop stable systems.

A general way to reformulate an optimization problem to guarantee feasibility is
to use slack variables (e.g. [118]). Taking the fairly general NLP formulation (2.21)-
(2.23) as the starting point, we reformulate it in the following way

V ∗s (θ ) = min
z,s,q

V (z,θ )+ ||Wss||1 + ||Wqq||1 (2.42)

subject to

G(z,θ ) ≤ s (2.43)

H(z,θ ) = q (2.44)

s ≥ 0 (2.45)

where Ws � 0 and Wq � 0 are weight matrices of appropriate dimension. They
are usually chosen such that the two latter penalty terms of (2.42) dominates the
first term in order to ensure that the feasibility constraints are not relaxed when not
needed. We observe that this formulation is still in the multi-parametric non-linear
programming form, although with an augmentation of the vector of decision param-
eters.

2.2.4.2 Robustness

Practical industrial experience shows that MPC tend to be inherently robust, [100,
101], even without any particular consideration in the design phase beyond ensuring
the accuracy of dynamic models and formulating realistic specifications in terms of
operational constraints, prediction horizon, and cost function weights. In addition,
mechanisms to handle steady state model errors (integral action like mechanisms)
are usually implemented, and the processes tend to have a low-level conventional
control system that stabilizes and counteracts uncertainties in the plant.

As a contrast to this practical experience, it is shown by examples, [55], that when
the NMPC problem involves state constraints, or terminal constraints in combina-
tion with short prediction horizons, the asymptotic stability of the closed-loop may
have not be robust. A necessary condition for lack of robustness is that the value
function and state feedback law are discontinuous, [55], while at the same time lack
of continuity does not necessarily lead to lack of robustness, [70].

There exist a wide range of NMPC formulations that include robustness into the
formulation of the optimization problem. One can mainly distinguish between three
types of approaches; stochastic NMPC, min-max NMPC, and mechanisms to avoid
steady-state errors.
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There are two formulations of min-max NMPC: the open-loop and the closed-
loop formulation (see [78] for review of the min-max NMPC approaches). The
open-loop min-max NMPC ([87, 75, 78]) guarantees the robust stability and the
robust feasibility of the system, but it may be very conservative since the control
sequence has to ensure constraints fulfillment for all possible uncertainty scenarios
without considering the fact that future measurements of the state contain informa-
tion about past uncertainty values. As a result, the open-loop min-max NMPC con-
trollers may have a small feasible set and a poor performance because they do not
include the effect of feedback provided by the receding horizon strategy of MPC.

Most min-max MPC robustness approaches assume a fairly simple additive un-
certainty model of the form

xk+1 = F(xk,uk)+wk (2.46)

where some bound on the unknown uncertainty wk is assumed. The conservativeness
of the open-loop approaches is overcome by the closed-loop min-max NMPC ([81,
78, 76]), where the optimization is performed over a sequence of feedback control
policies. With the closed-loop approach, the min-max NMPC problem represents a
differential game where the controller is the minimizing player and the disturbance
is the output of the maximizing player. The controller chooses the control input as a
function of the current state so as to ensure that the effect of the disturbance on the
system output is sufficiently small for any choice made by the maximizing player. In
this way, the closed-loop min-max NMPC would guarantee a larger feasible set and
a higher level of performance compared to the open-loop min-max NMPC ([81]).

Stochastic NMPC formulations are based on a probabilistic description of uncer-
tainty, and can also be characterized as open-loop [28, 62] and closed-loop [50, 6]
similarly to min-max robust NMPC as described above. They also share similar
challenges due to significantly increased computational complexity when compared
to nominal NMPC formulations.

The reformulation of nonlinear models as Linear Parameter Varying (LPV) mod-
els allows for the use of linear and bi-linear matrix inequality formulations of robust
NMPC, [5, 29, 119]. The embedding of nonlinear systems into the class of LPV
models

xk+1 = A(pk)xk +B(pk)uk +w(pk) (2.47)

causes loss of information in the model that leads to more conservative robust con-
trol. However, using tools of semi-definite and convex programming, [26], the LPV
re-formulation allows for the computational complexity to be significantly reduced
in many cases. In (2.47), pk is a parameter whose value is known to belong to some
bounded set, and some approaches also assume that its time-derivative has a known
bound, and the LPV re-formulation clearly allows a richer class of uncertainty to be
modeled, compared to (2.46).

Steady-state control errors may result if there are steady-state model errors. While
linear control design offers several tools to deal with this problem (including integral
action, integrating models in linear MPC, and others), not all of them are directly
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transferable to nonlinear systems. The commonly used cure for steady-state errors
in MPC, which can be directly transferred to NMPC, appears to be the use of a
state estimator or observer that estimates an input or output disturbance for direct
compensation in the NMPC cost function, [90, 99, 98, 25].

2.2.4.3 Observers and Output Feedback

Most formulations of nonlinear MPC assume state feedback. They are usually based
on state space models, e.g. [8, 45], although certain black-box using discrete-time
nonlinear input/output models have also been proposed [95, 1]. Since all states are
usually not measured, implementation of NMPC based on a state space model may
require a state estimator, which is often a critical component of an NMPC. State
space models have the advantage that they are most conveniently based on first
principles.

Although practical rules of thumb for observer design such as separation of time-
scales (typically one order of magnitude faster state estimator relative to the con-
trol loop response time) tend to be applicable in practical implementations also for
NMPC, there also exist a number of rigorous theoretical results on the stability of
the combination of observers with NMPC, see [43] for an overview. Although a
general separation principles does not exists for NMPC, there are some results in
this direction, [44, 86, 103].

2.2.4.4 Mixed-Integer MPC

General NMPC formulations based on nonlinear models suffer from the fact that it
is hard to verify whether the underlying optimization problem is convex or not, such
that in general it must be assumed to be non-convex. At the same time, all practi-
cal optimization solvers will assume some form of local convexity and guarantee
convergence only with good initial guesses for the solution. This challenge will be
further discussed in section 2.3. On the other hand, NMPC based on piecewise lin-
ear (PWL) models and cost functions will in general lead to mixed-integer linear
programs (MI-LP) for which there exists solvers that guarantee global convergence,
[117, 15, 14]. The equivalence between a wide class of hybrid systems models,
mixed logic models and PWL models, [56], makes this approach attractive in many
practical applications. Despite its applicability and importance, we only remark that
the MI-LP theory and software are well developed, and refer to the references above
and the large literature on MI-LP, [120].

Mixed-integer programming also allows for general classes of models that are
formulated using logic and integer variables, including on/off type of inputs and
system modes in combination with nonlinear dynamics. More generally, mixed-
integer nonlinear programming (MI-NLP) solvers are available for problems that
cannot be converted into PWL or equivalent form.
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2.2.4.5 Decentralized and Distributed NMPC

Recently, several approaches for decentralized and distributed implementation of
NMPC algorithms have been developed. A review of architectures for distributed
and hierarchical MPC can be found in [106]. The possibility to use MPC in a de-
centralized fashion has the advantage to reduce the original, large size, optimization
problem into a number of smaller and more tractable ones.

In [77], a stabilizing decentralized MPC algorithm for nonlinear systems con-
sisting of several interconnected local subsystems is developed. It is derived under
the main assumptions that no information can be exchanged between local control
laws, i.e. the coupling between the subsystems is ignored, and only input constraints
are imposed on the system. In [40], it is supposed that the dynamics and constraints
of the nonlinear subsystems are decoupled, but their state vectors are coupled in a
single cost function of a finite horizon optimal control problem. In [65], an opti-
mal control problem for a set of dynamically decoupled nonlinear systems, where
the cost function and constraints couple the dynamical behavior of the systems, is
solved.

2.3 Numerical Optimization

The topic of this book is on explicit NMPC, with the goal that numerical optimiza-
tion can be avoided in the online real-time computer. Still, nonlinear programming
solutions of NMPC problems is the work-horse in the offline computations that are
necessary to construct the data structures needed for the online explicit NMPC com-
putations. As a complement to the introduction to numerical optimization methods
in Chapter 1, we selectively review some additional aspects of numerical optimiza-
tion methods that are particularly important for NMPC, both online optimization
and in offline multi-parametric nonlinear programming to construct explicit NMPC
solutions.

2.3.1 Problem Structure

The choice of numerical optimization solver strategy will have significant impact on
both the need for computational resources and the quality of the solution in online
NMPC as well as for the offline computations in explicit NMPC. In this context,
computational resources usually means the CPU time required for the solution to
converge to meet the tolerance requirements, while quality of solution is related to
lack of convergence or high sensitivity to initial guesses.

There are several features of NMPC problems that are relevant to consider

• Formulation of the numerical optimal control, e.g. sequential or simultaneous
approaches. The sequential approach leads to a smaller, denser problem with a
computationally complex cost function usually without nonlinear equality con-
straints, while the simultaneous approach leads to a larger, more structured, sparse
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problem with nonlinear equality constrains and relatively simple cost and con-
straint functions to evaluate.

• Online NMPC solves a sequence of numerical optimal control or estimation
problems, where the parameters of the problem are usually subject to fairly small
changes from one run to the next. There is usually benefits of warm starting the
next optimization run using the solution and other internal data from the previous
run as initial guesses, data or conditions. Likewise, neighboring solutions provide
useful warm start information also in multi-parametric nonlinear programming
for use in explicit NMPC.

• In online NMPC, the optimization will be repeated at the next sample, and the
optimization problem is formulated using uncertain data, it may not always be
essential that the solver has converged (or equivalently that the tolerances may
not need to be very strict) due to the forgiving effect of feedback in asymptot-
ically stable systems. However, a feasible solution is generally required at each
run in order to operate the control and monitoring systems. This means that prob-
lems tend to be re-formulated using slack variables with some prioritization of
constraints that can be relaxed, and that is it generally desirable to start the next
optimization run with a feasible initial guess generated from the previous run
such that even with a limited number of iterations one can guarantee feasibility.
Explicit NMPC will in general not give exact solutions, and various forms of
approximations are essential to limit the offline computations.

• Safety and reliability are essential features of most control and monitoring sys-
tems, which means that post-optimal analysis and checks on the quality of the
solution must usually be implemented. Issues such as non-convexity and non-
smoothness of models and constraints are essential to understand and take into
account. In explicit NMPC, such verification can be made offline, which means
that more rigorous testing can be made compared to online NMPC.

Although all NMPC problems have certain features in common, they may also differ
considerably with respect to size, models, cost functions and constraints. This means
that there will not be a single numerical method that will be the best, in general.
In section 1.1.3, we briefly outlined some commonly used numerical methods and
remark that sequential quadratic programming and interior point methods are most
commonly used in NMPC. Below, we discuss some important details that result
from the structure of NMPC problems.

2.3.1.1 Numerical Linear Algebra

At heart of both the QP sub-problems of SQP and the Newton-step of IP methods are
the solution of a set of linear algebraic equations resulting from the Karush-Kuhn-
Tucker conditions. Efficiency of the numerical optimization solver heavily depends
on the efficiency of solving this problem, since it will be repeated many times to-
wards the solution of the NLP at each sampling instant of an NMPC. Exploiting
structural properties is essential.

Sequential approaches such as direct single shooting formulation will in general
lead to a dense set of linear algebraic equations, for which there is not much structure
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to exploit. Simultaneous approaches such as direct multiple shooting and colloca-
tion methods retain a large set of nonlinear algebraic equations that links groups
of variables, where each group can be associated with the selected time-intervals.
Hence, the links between groups may be limited to the previous or next time-interval
only, leading to a sparseness structure that can be exploited in the numerical linear
algebra.

Generally, useful structural properties are often related to symmetry and positive
definiteness of the Hessian (approximation), sparseness and block-diagonal struc-
ture of the linear systems of equations, and what information from the previous
optimization run can be used to initialize the next run. Using factorization meth-
ods one may solve triangular equation systems efficiently, eliminate algebraic vari-
ables, and operate in reduced spaces to save computations. Being able to efficiently
maintain and update factorized matrices between the various iterations is usually
essential to implement this. We refer to excellent and comprehensive treatments in
[96, 39, 48, 47] and the references therein.

2.3.1.2 Initialization

A NLP problem may be closely related to the NLP problem at either the previ-
ous sampling instant in online NMPC, since the sampling interval is usually short
compared to the dynamics of the plant and the controller, or the NLP problem at
neighboring states (or parameters, more generally) in explicit NMPC. Assuming the
reference signals and other input to the controller changes slowly, this means that
the solution in terms of future input and state trajectories (for MPC problems) can
be time shifted one sampling period and still provide a reasonably accurate solution
to the next NLP. Assuming no uncertainty in MPC problems, this is a perfectly valid
assumption and is commonly used to guarantee feasibility at the next step in stabil-
ity arguments, e.g [108, 85]. Even without time-shifting, the previous solution itself
may also provide a good initialization for warm start purposes in NMPC, [24, 38].

Unlike SQP methods, IP methods can usually not make effective use of initial
guesses of the solution due to the reformulation of the KKT conditions that fol-
lows the parameterized center path controlled by the parameter τ > 0 that is se-
quentially reduced towards zero. This does not necessarily imply that IP methods
are less suited for NMPC and NMHE problems, in particular for large scale prob-
lems where IP methods have advantages that may compensate for this shortcoming.
Modified IP methods that can efficiently incorporate warm start is a current research
topic, [49, 111].

Warm start is potentially most efficient when including data beyond just the so-
lution point, but also consider the internal data of the optimization algorithm such
as initial estimates of the Hessian approximation (in case exact Hessians are not
computed), or initial estimates of factorizations of the Hessian (approximation), ini-
tial estimates of optimal active sets, and other data. This is in particular a challenge
when the dimensions and structure of these internal data will change from one sam-
ple to the next. This may for example be the case in the simultaneous formulations
(in particular direct collocation) of numerical optimal control (see section 2.2.2),
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since the discretization may be changed from one sample to the next, in general.
One must also have in mind that simultaneous formulations require that both state
and control trajectories are initialized, while sequential formulations only require
the control trajectory initialization. What is most beneficial will depend on the ac-
curacy of the available information for initialization, amongst other things. We refer
to [39, 58] and the references therein for a deeper treatment of this topic.

2.3.2 Computation of Jacobian and Hessian Matrices

The computation of the Jacobians of the cost and constraint functions is often the
main computational cost of numerical optimization methods, and even fairly small
inaccuracies in the calculation of the Jacobians due to may lead to severe conver-
gence problems.

Simultaneous approaches offer advantages over sequential approaches with re-
spect to Jacobian computations:

• The prediction horizon is broken up into several intervals where ODE solutions
are computed from given initial conditions. Since these intervals will be shorter
than the single interval of a single shooting approach, numerical errors due to the
ODE solver tend to accumulate less.

• Implicit ODE solvers, which generally have more stable numerical properties
than explicit solvers, can in general be used in simultaneous approach.

• Simultaneous approaches are characterized by simpler cost and constraint func-
tions, where automatic differentiation is more easily exploited to avoid numerical
Jacobian computation errors, see section 2.3.2.2.

The numerical challenges are in particular important to consider for plants that are
unstable or marginally stable. Like in linear MPC, there may be advantages of pre-
stabilizing an open-loop unstable plant model with a feedback compensator before
used in NMPC, [27].

2.3.2.1 Finite Difference

The finite difference method approximates the (i, j)-th element of the Jacobian of a
vector function f (z) as

(∇z f (z))i, j ≈ fi(z j + δ )− fi(z j)

δ
(2.48)

for some small δ > 0. If δ is too large there will be inaccuracies due to the nonlin-
earity of fi, since the method computes the average slope between two points. If the
two points are not infinitely close and the function is not linear, there will be a ”non-
linearity error”. If δ is too small, any finite numerical error ε1 in the computation of
fi(z j +δ ) and ε2 in the computation of fi(z j) will lead to an error ε = (ε1−ε2)/δ in
the computation of the derivative. Obviously, this error may be large when δ → 0,
since ε1− ε2 may not go to zero, so a tradeoff between these errors must be made.
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It should be noticed that the finite difference approximation error ε depends on the
difference between the errors in the two point-wise evaluations of fi. This means
that systematic errors (i.e. the same error in both ε1 and ε2) will cancel each other
and have a much smaller effect than a random error of the same magnitude. Prac-
tical experience shows that the use of variable-step (adaptive) ODE solvers tend to
give a small random numerical error, while the use of fixed-step ODE solvers tend
to give a larger systematic error, but even smaller random error. For the reasons
described above, one may find that a fixed-step ODE solver leads to considerably
smaller error in finite difference Jacobian computations and performs better with
less convergence problems in many numerical methods for NMPC.

It is also worthwhile to emphasize that scaling of all variables involved in the op-
timization problem to the same order of magnitude is in many cases a pre-requisite
for numerical nonlinear optimization methods to work satisfactorily. This is evident
in the context of finite difference Jacobian computations, but also relevant for other
numeric computations.

As a final remark, it is possible to exploit square-root factorizations (like Cholesky
factorization) for improved numerical accuracy and computational complexity in fi-
nite difference computations, [107].

2.3.2.2 Symbolic and Automatic Differentiation

The most accurate result and computationally most efficient approach is to calculate
gradients by symbolically differentiating the cost and constraint functions. Doing
this by hand, or even using symbolic computations in Matlab, Maple or Mathemat-
ica, may easily become intractable for NMPC problems that may contain a large
number of variables, equations and inequalities. A more convenient solution is to
rely on so-called automatic differentiation software ([53]) that achieved this objec-
tive either by overlaying operators in object oriented languages such as C++ ([54]),
or automatically generates source code for gradient functions based on source code
of the original function, [20].

2.4 Motivation for Explicit Nonlinear Model Predictive Control

The NMPC problem is formulated in (2.21)-(2.23) as a multi-parametric nonlinear
program, in a form that is suited to use the computational algorithms outlined in
Chapter 1. The solution of the multi-parametric nonlinear program leads to an ex-
plicit representation of the approximate solution that can be directly exploited in an
explicit NMPC. The explicit solution tend to have a quite extensive representation,
often in the form of a piecewise affine function that consists of a binary search tree
representation of a large number of polyhedral regions with associated affine func-
tions. This requires online computations that include traversal of binary search trees,
[115], and sometimes with the use of additional data structures such as hash tables,
[9], lattice representations, [11], bounding boxes, [33], and combination with direct
search [10]. The same type of representations and computations can in some cases
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be used in piecewise nonlinear function approximation and evaluation that results
from some explicit NMPC approaches, e.g. [52].

This has several benefits that serves as the main motivation behind the idea of
explicit MPC:

• Dramatical reduction in online computations, since online numerical optimiza-
tion is avoided and replaced by piecewise function evaluation. This may lead to
significant reduction in the requirements to real-time embedded computer hard-
ware. In particular, since recursive numerical computations are avoided there will
be no accumulation of round-off errors such that fixed point arithmetic or single
precision floating point arithmetic is generally sufficient.

• NMPC optimization depend on appropriate initialization in order to avoid local
minima, and appropriate formulation of constraints in order to avoid infeasibility.
With explicit NMPC the validation of initialization procedures and infeasibility
handling can be conducted based on a complete and explicit solution, which is
much simpler than evaluating the input and result of a nonlinear numerical opti-
mization solver. In effect, this greatly enhances the reliability and validity of the
computations which is essential in a safety-critical application.

• Significant reduction in online software complexity since the code for piecewise
function evaluation is much simpler than a nonlinear numerical optimization
solver. This may lead to formal software verification being a feasible practical
tool, and the need to detailed tuning of numerical parameters such as thresh-
olds, tolerances, iteration limits, and finite difference perturbation steps can be
avoided. In effect, this greatly enhances the reliability and validity of the compu-
tations which is essential in a safety-critical application.

• Approximate explicit solutions with reduced complexity, and with guaranteed
levels of sub-optimality, may be computed offline. Formal analysis of perfor-
mance, sub-optimality and stability may be possible since an explicit representa-
tion of the controller is known.

• Formulations such as stochastic NMPC and robust NMPC may not lead to in-
creased online computations in an explicit NMPC approach, compared to a nom-
inal NMPC formulation, although they will require more offline computations.

Certainly, there are also drawbacks and challenges, which is why explicit MPC is
an active research topic that still has not found its way into a wide number of com-
mercial products and applications yet:

• Extensive offline computations in order to solve multi-parametric nonlinear pro-
grams and generate the associated data structures for online implementation of
explicit NMPC. This can in some cases be prohibitive for NMPC problems of
high order or large prediction horizons.

• The computer memory required to store the data structures required for the online
computations, may be prohibitive for NMPC problems of high order.

• Analysis of sub-optimality and stability for approximate solutions may be com-
putationally complex, and computationally prohibitive for NMPC problems of
high complexity.
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• Introduction of flexibility in terms of time-varying model parameters, reference
trajectories, setpoints, time-varying constraint limits, and other auxiliary vari-
ables, will add to the number of parameters to the multi-parametric nonlinear
program and lead to multi-parametric nonlinear programs that may be prohibitive
from an offline computational point of view.

While linear MPC may have exact solutions that can be computed explicitly, the
explicit NMPC will in general be an approximation. A feature of such approxima-
tions, based on our extensive experience with the methods described in this book,
is that the main driver behind complexity is the number of parameters to the prob-
lem, i.e. the number of states and auxiliary parameters such as reference trajectory
parameters, setpoints, or variable constraint limits. This implies that the prediction
horizon, the number of constraints, and the fact that the system is nonlinear, are not
the main contributions to complexity of the solution representation in approximate
explicit MPC based on the main methods in this book. However, it may significantly
contribute to offline computational complexity. This is distinct from exact explicit
linear MPC, where the prediction horizon and number of constraints are the main
drivers for complexity.

The experience that the online solution complexity of explicit NMPC is typically
not more than that of a linear MPC for a system of the same order (e.g. a lineariza-
tion of the nonlinear system) is a strong encouragement for future research into ex-
plicit NMPC since it may indicate that explicit MPC will have stronger motivation
for nonlinear systems than for linear systems.
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R., Allgöwer, F., Biegler, L.T. (eds.) Assessment and Future Directions of Nonlinear
Model Predictive Control. LNCIS, vol. 358, pp. 465–472. Springer, Heidelberg (2007)

93. Nicolao, G.D., Magni, L., Scattolini, R.: Stability and robustness of nonlinear reced-
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Chapter 3
Explicit NMPC Using mp-QP Approximations
of mp-NLP

Abstract. A numerical algorithm for approximate multi-parametric nonlinear pro-
gramming (mp-NLP) is developed. The algorithm locally approximates the mp-NLP
with a multi-parametric quadratic program (mp-QP). This leads to an approximate
mp-NLP solution that is composed from the solution of a number of mp-QP solu-
tions. The method allows approximate solutions to nonlinear optimization problems
to be computed as explicit piecewise linear functions of the problem parameters.
In control applications such as nonlinear constrained model predictive control this
allows efficient online implementation in terms of an explicit piecewise linear state
feedback without any real-time optimization.

3.1 Introduction

For multi-parametric nonlinear programs (mp-NLPs) one cannot expect to find exact
solutions, in general. There is a large body of theory that develops local regularity
conditions and local sensitivity results [7, 17], and algorithms for non-local param-
eter variations are derived for single-parametric problems [12]. Here we describe an
approximate mp-NLP algorithm utilizing NLP and mp-QP algorithms to solve local
sub-problems, first proposed in [13].

Before we describe the main idea behind the algorithm, we recall that a widely
used family of algorithms for the numerical solution of nonlinear programs (NLPs)
is Sequential Quadratic Programming (SQP) algorithms, e.g. [20]. They are iterative
algorithms, where at each iteration the nonlinear program is locally approximated
by a convex quadratic program (QP) at the current candidate solution point. This
means that the nonlinear cost function is locally approximated by a positive definite
quadratic function, and the nonlinear constraints are locally approximated by linear
constraints. The QP is then solved to find a search direction towards a better point,
a step in this direction is made, and the procedure is repeated and will eventually
converge to a locally optimal solution for the NLP.

In the approximate mp-NLP algorithm described in this chapter, the idea is to
locally approximate mp-NLPs with mp-QPs, similar to the use of QPs within SQP.

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 71–85.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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An iterative (recursive) partitioning of the parameter space is used to control the ac-
curacy of the approximation. It refines the partition in order to improve the accuracy
of the local mp-QP approximation in the parts of the parameter space where this is
needed in order to meet accuracy specifications in terms of sub-optimality bounds
on the cost.

The proposed method is different from the approximate mp-NLP algorithm in
Section 1.1.5, and the function approximation methods for non-linear optimal con-
trol are described in [1, 21, 22, 4, 23, 15, 2, 19]. While these references approximate
the mp-NLP solution based on solution points computed for an extensive number of
parameter values using an NLP algorithm, in the present chapter the mp-NLP is ap-
proximated by a number of mp-QPs that are solved using the mp-QP algorithm [28].
In [5], several alternative multi-parametric programming algorithms for explicit ap-
proximate solution of convex mp-NLP problems are compared, and a modification
of the algorithm described in this section was found to be efficient. The main modi-
fications is a different approach for the partitioning outside the mp-QP solutions.

The mp-NLP problem is formulated as follows:

min
z

V (z,x) (3.1)

subject to

G(z,x) ≤ 0 (3.2)

for all x ∈ X , where X is some parameter set. Eqs. (3.1) - (3.2) define an mp-NLP,
since it is an NLP in z parameterized by the parameter vector x. Assume the solution
exists, and let it be denoted z∗(x). In the special case when V and G are quadratic and
linear, respectively, in both z and x, a solution can be found explicitly and exactly as
a continuous PWL mapping z∗(x) using mp-QP.

In [13] it is suggested to utilize an mp-QP algorithm to approximately solve the
mp-NLP (3.1)-(3.2). In the mp-QP case, this algorithm will iteratively build a poly-
hedral partition of the state-space with an exact solution corresponding to a fixed
active set within each polyhedral critical region. This leads to a PWL solution z∗(x)
since a fixed active set leads to a solution that is linear in x, [3]. In the mp-NLP
case we keep the PWL structure of the solution, but in each polyhedral region we
approximate the (exact) nonlinear solution by a PWL approximate solution found
by solving a mp-QP constructed as a locally accurate quadratic approximation to V
and linear approximation to G. Under regularity assumptions on V and G, one may
expect that the approximation error and constraint violations will be small if each of
the regions are sufficiently small. We therefore suggest to analyze the approxima-
tion error within each region and introduce a sub-partitioning of some regions when
needed in order to keep the approximation error and constraint violations within
specified bounds.
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3.2 Local mp-QP Approximation to mp-NLP

In this section we study how the cost function and constraints can be locally ap-
proximated by mp-QP problems, based on [13]. Let x0 ∈ X be arbitrary and denote
the corresponding optimal solution z0 = z∗(x0). Taylor series expansions of V and G
about the point (z0,x0) leads to the following locally approximate mp-QP problem:

V0(z,x) �
1
2
(z− z0)

T H0(z− z0)+ (D0 +F0(x− x0))(z− z0)+Y0(x) (3.3)

subject to

G0(z− z0) ≤ E0(x− x0)+T0 (3.4)

The cost and constraints are defined by the matrices

H0 � ∇2
zzV (z0,x0), F0 � ∇2

xzV (z0,x0)

D0 � ∇zV (z0,x0), G0 � ∇zG(z0,x0)

E0 �−∇xG(z0,x0), T0 �−G(z0,x0)

Y0(x)�V (z0,x0)+∇xV (z0zx0)(x− x0)+
1
2 (x− x0)

T∇2
xxV (z0,x0)(x− x0)

Let the PWL solution to the mp-QP (3.3) - (3.4) be denoted zQP(x) with associated
Lagrange multipliers λQP(x). This solution satisfies the following KKT conditions

H0 (zQP(x)− z0)+F0(x− x0)+D0 +GT
0 λQP(x) = 0 (3.5)

diag(λQP(x))(G0(zQP(x)− z0)−E0(x− x0)−T0) = 0 (3.6)

λQP(x) ≥ 0 (3.7)

G0 (zQP(x)− z0)−E0(x− x0)−T0 ≤ 0 (3.8)

Consider the optimal active set A of the QP (3.3) - (3.4) at a given x ∈ X , and let
G0,A and λQP,A denote the rows of G0 and λQP, respectively, with indices in A .
Eqs. (3.5) - (3.6) define the following linear equations

(

H0 GT
0,A

G0,A 0

)(

zQP,A (x)− z0

λQP,A (x)

)

=

(

F0(x− x0)+D0

E0(x− x0)+T0

)

(3.9)

The following results is an extension of Theorem 2 in [3] (where H0 > 0 was as-
sumed in addition to LICQ).

Assumption 3.1. V and G are twice continuously differentiable in a neighborhood
of (z0,x0).

Assumption 3.2. The sufficient conditions (1.7)-(1.10) and (1.12) for a local mini-
mum at z0 hold.
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Assumption 3.3. Linear independence constraint qualification (LICQ) holds, i.e.
the active constraint gradients ∇zGA0(z0,x0) are linearly independent.

Assumption 3.4. Strict complementary slackness holds, i.e. (λ0)A0 > 0.

Assumption 3.5. For an optimal active set A , the matrix G0,A has full row rank
(LICQ) and ZT

0,A H0Z0,A > 0, where the columns of Z0,A is a basis for null(G0,A ).

Theorem 3.1. Consider the problem (3.3)-(3.4), and let X be a polyhedral set with
x0 ∈ X. The system of linear equations (3.9) has a unique solution

(

zQP,A (x)− z0

λQP,A (x)

)

=

(

H0 GT
0,A

G0,A 0

)−1(
FT

0 (x− x0)+D0

E0(x− x0)+T0

)

(3.10)

and the critical region where the solution is optimal is given by the polyhedral set

X0,A �
{

x ∈ X | λQP,A (x)≥ 0,G0(zQP,A (x)− z0)≤ E0(x− x0)+T0
}

Hence, zQP(x) = zQP,A (x) and λQP(x) = λQP,A (x) if x∈X0,A , and the solution zQP

is a continuous, PWL function of x defined on a polyhedral partition of X.

Proof ([13]). Non-singularity of the matrix on the left-hand-side of (3.9) follows
from standard 2nd order considerations such as Lemma 16.1 in [20], due to As-
sumption 3.5. The rest of the proof is similar to [3]. �

Algorithms for solving such an mp-QP (with straightforward modifications to ac-
count for the relaxed second-order condition of Assumption 3.5) are given in Section
1.2. The following result compares the primal and dual local QP solution with the
global NLP solution.

Theorem 3.2. Consider the problem (3.1)-(3.2). Let x0 ∈ X and suppose there exists
a z0 satisfying the above assumptions. Then for x in a neighborhood of x0

zQP(x)− z∗(x) = O(||x− x0||22) (3.11)

λQP(x)−λ ∗(x) = O(||x− x0||22) (3.12)

Proof ([13]). Let the neighborhood of x0 under consideration be restricted to X0,A0 ,
where A0 is the optimal active set at x0. This is without loss of generality since the
assumptions imply that x0 is an interior point in X0,A0 . The first KKT condition for
the QP is

H0
(

zQP(x)− z0)+F0(x− x0)+ (D0 +GT
0 λQP(x)

)

= 0 (3.13)

Since z0 = z∗(x0) we have z∗(x)− z0 = O(||x− x0||2), and the first KKT condition
(1.7) for the NLP can be rewritten as follows using a Taylor series expansion
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0 = ∇zV (z∗(x),x)+∇T
z G(z∗(x),x)λ ∗(x) (3.14)

= ∇zV (z0,x0)+∇2
zzV (z0,x0)(z

∗(x)− z0)

+∇2
xzV (z0,x0)(x− x0)

+
(

∇T
z G(z0,x0)+O(||x− x0||2)

)

λ ∗(x)+O(||x− x0||22) (3.15)

= D0 +H0(z
∗(x)− z0)+F0(x− x0)+GT

0 λQP(x)

+GT
0 (λ ∗(x)−λQP(x))+O(||x− x0||22)

+O(||x− x0||2)(λ ∗(x)−λQP(x)) (3.16)

Comparing (3.13) and (3.16) we get

H0 (zQP(x)− z∗(x))+GT
0 (λQP(x)−λ ∗(x)) = O(||x− x0||22) (3.17)

From Theorem 1.1, part 3, it is known that the set of active constraints is unchanged
in a neighborhood of x0. Hence, for the QP we have

G0 (zQP(x)− z0) = E0(x− x0)+T0 (3.18)

When x is in a neighborhood of x0, Taylor expanding the NLP constraints gives

0 = G(z∗(x),x) (3.19)

= G(z0,x0)+∇zG(z0,x0)(z
∗(x)− z0)+∇xG(z0,x0)(x− x0)+O(||x− x0||22)

= G0(z
∗(x)− z0)−E0(x− x0)−T0 +O(||x− x0||22)

Comparing (3.18) and (3.19) it follows that

G0 (zQP(x)− z∗(x)) = O(||x− x0||2) (3.20)

and the result follows by inverting the system (3.17) and (3.20). This system is in-
deed invertible: Due to Assumption 3.4 it follows that ∇zGA0(z0,x0)ζ = 0 for all
ζ ∈F . Since G0,A0 = ∇zGA0(z0,x0), it is clear that F = null(G0,A0) and Assump-
tions 3.2 and 3.3 (and in particular eq. (1.12)) ensures that Assumption 3.5 holds
and non-singularity of

(

H0 GT
0

G0 0

)

follows from Lemma 16.1 in [20]. �

Theorem 3.2 concerns only a small neighborhood of x0 and is therefore of lim-
ited computational use. However, it provides a qualitative indication that the mp-
QP approximation of the mp-NLP is locally accurate, under some assumptions. We
therefore proceed by deriving some quantitative estimates and bounds on the cost
and solution errors, as well as the maximum constraint violation. The solution error
bound is defined as
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ρ � max
x∈X0
|wT (μ(0,zQP(x))− μ(0,z∗(x)))| (3.21)

where X0 ⊂ X is arbitrary, and w is a vector with positive weights. Likewise, we
define the cost error bound

ε � max
x∈X0
|V (zQP(x),x)−V ∗(x)| (3.22)

where V ∗(x) � V (z∗(x);x). In addition, one may compute the maximum constraint
violation

δ � max
x∈X0

ωT G(zQP(x),x) (3.23)

where ω is a vector of non-negative weights. Typically, the elements of w corre-
sponding to the first sample of the trajectory will be positive, while the remaining
will be zero since in receding horizon control the primary interest is the first sam-
ple of the trajectory. The maximum constraint violation (3.23) can be computed by
solving an NLP, while the solution and cost error bounds (3.21) and (3.22) are not
easily computed without introducing additional assumptions or allowing underes-
timation. A further problem is that they require computation of the exact z∗(x) for
several x, which relies on the solution of several NLPs and is therefore expensive.
Obvious estimation techniques for ρ and ε is to take the maximum over a finite
number of points X0, such as extreme points (vertices), points generated by Monte
Carlo methods, or combinations. It should be emphasized that these methods can
underestimate the bounds, in general.

3.3 Convexity

For the case when V and G are convex functions, it is possible to derive a guaranteed
bound on ε from knowledge of z∗(x) only at all the vertices V = {v1,v2, ...,vM} of
the bounded polyhedron X0, see section 1.1.5.1. This immediately gives the follow-
ing bounds on the cost function error−ε1 ≤V ∗(x)−V(zQP(x),x) ≤ ε2, where

ε1 = max
x∈X0

(V (zQP(x),x)−V (x)) (3.24)

ε2 = max
x∈X0

(

V (x)−V(zQP(x),x)
)

(3.25)

Hence, the cost error bound ε̃ � max(ε1,ε2) ≥ ε can be computed by solving two
NLPs. A solution error bound can be shown to exist as in Chapter 9.7 of [7].

3.4 Algorithm

So far it has been established that under some regularity conditions, local mp-QP
solutions give accurate approximation to the mp-NLP solution when restricted to a
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sufficiently small subset X0 ⊂ X . It remains to determine a sub-partition of the poly-
hedral region X such that the local mp-QP solutions associated with each region are
sufficiently accurate. In [13] the following algorithm was suggested to approximate
the mp-NLP solution, based on recursive sub-partitioning guided by the approxima-
tion errors discussed above.

Algorithm 3.1. Approximate mp-NLP.

Step 1. Let X0 := X .
Step 2. Select x0 as the Chebychev center of X0, by solving an LP.
Step 3. Compute z0 = z∗(x0) by solving the NLP (3.1)-(3.2) with x(0) = x0.
Step 4. Compute the local mp-QP problem (3.3) - (3.4) at (z0,x0). If H0 is

not positive definite, then modify H0 such that it is positive definite (e.g. by an
eigenvalue decomposition where negative eigenvalues are replaced by small posi-
tive numbers) and the mp-QP is convex.

Step 5. Estimate the approximation errors ε , ρ and δ on X0.
Step 6. If ε > ε , ρ > ρ , or δ > δ , then sub-partition X0 into polyhedral regions

using the heuristic rules described in Section 1.1.5.2.
Step 7. Select a new X0 from the partition. If no further sub-partitioning is needed,

go to step 8. Otherwise, repeat Steps 2-7 until the tolerances ε , ρ and δ are respected
in all polyhedral regions in the partition of X .

Step 8. For all sub-partitions X0, solve the mp-QP (3.3) - (3.4) using the mp-QP
solver [28, 26].

Computation of the approximation errors in Step 5 are carried out based on the
results in Section 3.3 if the cost function and constraints are known to be con-
vex. If not, we suggest to estimate error bounds by solving NLPs at a number of
points in X0, typically the vertices and possibly other points, as in [10]. If the con-
vexity assumption does not hold, this seems to be a fairly robust strategy. The sub-
partitioning in Step 6 is based on heuristic criteria, where the purpose is to select one
axis-orthogonal hyperplane to split X0 such that the approximation error after split-
ting is minimized (as described in Section 1.1.5.2). Alternatively, the hyperplane is
selected such that the change of error at the vertices (before splitting) across the
hyperplane is maximal (as used in [9]).

3.5 Example: Compressor Surge Control

3.5.1 NMPC Formulation

Consider the following 2nd-order compressor model [11, 8] with x1 being normal-
ized mass flow, x2 normalized pressure and u normalized mass flow through a close
coupled valve in series with the compressor
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ẋ1 = B(Ψe(x1)− x2− u) (3.26)

ẋ2 =
1
B
(x1−Φ(x2)) (3.27)

The following compressor and valve characteristics are used

Ψe(x1) = ψc0 +H

(

1+ 1.5
(x1

W
− 1
)

− 0.5
(x1

W
− 1
)3
)

Φ(x2) = γsign(x2)
√

|x2|

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. The control objective is to
avoid surge, i.e. stabilize the system. This may be formulated as

J(u[0,T ],x[0,T ]) �
∫ T

0
l(x(t),u(t), t)dt + S(x(T ),T )+Rv2 (3.28)

where

l(x,u) = α(x− x∗)T (x− x∗)+κu2

S(x) = β (x− x∗)T (x− x∗)

with α,β ,κ ,ρ ≥ 0 and the setpoint x∗1 = 0.40, x∗2 = 0.60 corresponds to an unstable
equilibrium point, subject to the inequality constraints for t ∈ [0,T ]

umin ≤ u(t) ≤ umax (3.29)

−x2 + 0.4 ≤ v (3.30)

−v ≤ 0 (3.31)

and the ordinary differential equation (ODE) given by

d
dt

x(t) = f (x(t),u(t)) (3.32)

with given initial condition x(0) ∈ X ⊂ R
n. Valve capacity requires the constraint

0 ≤ u(t) ≤ 0.3 to hold, and the pressure constraint x2 ≥ 0.4− v avoids operation
too far left of the operating point. The variable v≥ 0 is a slack variable introduced
in order to avoid infeasibility and R = 8 is a large weight. The input signal u[0,T ]
is assumed to be piecewise constant and parameterized by a vector U ∈ R

p such
that u(t) = μ(t,U) ∈ R

r is piecewise constant. The solution to (3.32) is assumed
in the form x(t) = φ(t,U,x(0)) for t ∈ [0,T ] and some piecewise continuous func-
tion φ . Relaxing the inequality constraints (3.30) to hold only at N time instants
{t1, t2, ..., tN} ⊂ [0,T ], we can rewrite the optimization problem in the following
standard parametric form (direct single shooting, Section 2.2.2.1) where the ODE
constraint (3.32) has been eliminated by substituting its solution φ into the cost and
constraints; minimize with respect to z = (U,v) the cost
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V (z,x(0)) �
∫ T

0
l(φ(t,U,x(0)),μ(t,U), t)dt + S(φ(T,U,x(0)),T )+Rv2(3.33)

subject to

G(z,x(0)) �

⎛

⎜

⎜

⎝

G̃(U ;x(0))
U−Umax

Umin−U
−v

⎞

⎟

⎟

⎠

≤ 0 (3.34)

with blocks G̃i(U ;x(0))� ĝ(φ(ti,U,x(0)),μ(ti,U)) as defined by (3.30). Eqs. (3.33)
- (3.34) define an mp-NLP, since it is an NLP in z parameterized by the initial state
vector x(0).

3.5.2 Tuning and Settings

We have chosen α = 1, β = 0, and κ = 0.08. The horizon is chosen as T = 12,
which is split into N = p = 15 equal-sized intervals, leading to a piecewise constant
control input parameterization. Numerical analysis of the cost function shows that
it is non-convex. It should be remarked that the constraints on u and v are linear,
such that any mp-QP solution is feasible for the mp-NLP. The bounds ε and ρ are
estimates by computing the errors at the vertices only, and the tolerances ε = 0.5
and ρ = 0.03 were applied.

3.5.3 Results

The mp-NLP contains 16 free variables, 47 constraints and 2 parameters. The par-
tition contains 379 regions, resulting from 45 mp-QPs, cf. Fig. 3.1. This can be re-
duced to 101 polyhedral regions without loss of accuracy in a postprocessing step,
where regions with the same solution at the first sample are joined whenever their
union remains polyhedral, as in [3]. The computed approximate PWL feedback is
shown in Fig. 3.2, together with the exact feedback computed by solving the NLP
on a dense grid. The corresponding optimal costs are shown in Fig. 3.3, and simu-
lation results are shown in Fig. 3.4, where the controller is switched on after t = 20.
We note that it quickly stabilizes the deep surge oscillations. Euler integration with
step size 0.02 is applied to solve the ODE.

By generating a search tree using the method of [27], the PWL mapping with
379 regions can be represented as a binary search tree with 329 nodes, of depth
9. Real-time evaluation of the controller therefore requires 49 arithmetic opera-
tions, in the worst case, and 1367 numbers needs to be stored in real-time computer
memory.
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Fig. 3.1 State space partition (top), and after reduction (bottom).
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Chapter 4
Explicit NMPC via Approximate mp-NLP

Abstract. This chapter considers the design of explicit MPC controllers for con-
strained nonlinear systems by applying the approximate multi-parametric Nonlin-
ear Programming (mp-NLP) approaches, described in Section 1.1. It is organized as
follows. In Section 4.2, general regulation and reference tracking NMPC problems
are formulated and represented as an mp-NLP problem. In Section 4.3, it is shown
that bounding the approximation error of the approximate explicit solution to con-
vex regulation NMPC problems ensures the asymptotic stability of the suboptimal
closed-loop system. In Section 4.4, an explicit approximate NMPC for compressor
surge regulation is designed. In Section 4.5, the approximate mp-NLP approach is
applied to design an explicit reference tracking NMPC controller for position con-
trol of an electropneumatic clutch actuator. The performance of the explicit NMPC
controller is compared with that of a sliding mode controller and of a PID con-
troller. Section 4.6 briefly discusses an explicit NMPC application to time-optimal
decompression of divers for implementation in low cost diving computers.

4.1 Introduction

The main objective of this chapter is to present some examples on how to use the
approximate mp-NLP algorithms of Section 1.1.5 together with various NMPC for-
mulations, as described in Chapter 2. Formulations and conditions that guarantee
stability of the closed loop system may require some attention, since the control
strategy will be sub-optimal due to the approximation errors of the mp-NLP algo-
rithms.

The main emphasis in this chapter is on case studies that present mathematical
models, NMPC formulations, mp-NLP computational results, and closed loop sim-
ulations. The case studies are taken from diverse areas such as automotive mecha-
tronics, compressor control, and diving computers. They share common features
such as safety-critical requirements in combination with very limited computational
resources per updated control computation. While the mechatronics and compressor
control examples are relatively fast dynamics that require fast sampling, the diving

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 87–110.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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computers are extremely inexpensive devices with very low computational capabil-
ities although the update frequencies are not very high.

4.2 Formulation of the NMPC Problem as an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t)) (4.1)

y(t) =Cx(t) (4.2)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input and output variable,

and f : Rn×R
m → R

n is a nonlinear function. It is supposed that a full measure-
ment of the state x(t) is available at the current time t.

First, consider the optimal regulation problem where the goal is to steer the sys-
tem state to the origin. For the current x(t), the regulation NMPC solves the opti-
mization problem:

Problem 4.1:
V ∗(x(t)) = min

U
J(U,x(t)) (4.3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... , N (4.4)

umin ≤ ut+k ≤ umax, k = 0, 1, ... , N− 1 (4.5)

xt+N|t ∈Ω (4.6)

xt+k+1|t = f (xt+k|t ,ut+k), k ≥ 0 (4.7)

yt+k|t =Cxt+k|t , k ≥ 0 (4.8)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x(t)) =
N−1

∑
k=0

[‖xt+k|t‖2
Qx

+ ‖ut+k‖2
R

]

+ ‖xt+N|t‖2
Px

(4.9)

Here, N is a finite horizon, Px, Qx, R are weighting matrices, andΩ ⊂R
n is a termi-

nal set. The following assumptions are made:

Assumption 4.1. Px, Qx, R� 0.

Assumption 4.2. ymin < 0 < ymax and umin < 0 < umax.

Assumption 4.3. The function f : Rn×R
m → R

n is twice continuously differen-
tiable, with f (0,0) = 0.

The compact and convex terminal set Ω is defined by:

Ω = {x ∈ R
n| xT Pxx≤ α} (4.10)

where α > 0 is specified in Section 4.3.
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Now, consider the optimal reference tracking problem where the goal is to have
the output vector y(t) track the reference signal r(t) ∈ R

p. For the current x(t), the
reference tracking NMPC solves the optimization problem:

Problem 4.2:

V ∗(x(t),r(t),u(t− 1)) = min
U

J(U,x(t),r(t),u(t− 1)) (4.11)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... , N (4.12)

umin ≤ ut+k ≤ umax, k = 0, 1, ... , N− 1 (4.13)

Δumin ≤ Δut+k ≤ Δumax, k = 0, 1, ... , N− 1 (4.14)

‖yt+N|t − r(t)‖ ≤ δ (4.15)

Δut+k = ut+k− ut+k−1, k = 0, 1, ... , N− 1 (4.16)

xt+k+1|t = f (xt+k|t ,ut+k), k ≥ 0 (4.17)

yt+k|t =Cxt+k|t , k ≥ 0 (4.18)

with U = [ut , ut+1, ... , ut+N−1] and the cost function:

J(U,x(t),r(t),u(t− 1)) =
N−1

∑
k=0

[

‖yt+k|t − r(t)‖2
Qy

+ ‖Δut+k‖2
R

]

+‖yt+N|t − r(t)‖2
Py

(4.19)

Similar to above, N is a finite horizon and Py, Qy, R are weighting matrices. This
formulation is also somewhat extended since it includes input-rate constraints and
cost. The following assumptions are made:

Assumption 4.4. Py, Qy, R� 0.

Assumption 4.5. Δumin < 0 < Δumax.

From a stability point of view it is desirable to choose Ω in (4.6) or δ in (4.15) as
small as possible [24]. However, the feasibility of Problems 4.1 and 4.2 will rely
on either Ω , δ or N being sufficiently large. A part of the NMPC design will be to
address this tradeoff.

The optimization Problems 4.1 and 4.2 can be formulated in a compact form as
follows using direct single shooting formulation (see Section 2.2.2):

Problem 4.3:

V ∗(x̃(t)) = min
U

J(U, x̃(t)) subject to G(U, x̃(t))≤ 0 (4.20)
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Here x̃(t)∈Rñ is the parameter vector. For the regulation Problem 4.1 it is given by:

x̃(t) = x(t), ñ = n (4.21)

while for the reference tracking Problem 4.2 it is [3]:

x̃(t) = [x(t), r(t), u(t− 1)] ∈R
ñ, ñ = n+ p+m (4.22)

Problem 4.3 defines an mp-NLP, since it is an NLP in U parameterized by x̃(t).
An optimal solution to this problem is denoted U∗ = [u∗t , u∗t+1, ... , u∗t+N−1] and the
control input is chosen according to the receding horizon policy u(t) = u∗t . Define
the set of feasible parameters as follows:

Xf = {x̃ ∈ R
ñ| G(U, x̃)≤ 0 for some U ∈R

Nm} (4.23)

For Problem 4.1, Xf is the set of N-step feasible initial states. IfΩ , δ and N are such
that the Problem 4.1 or 4.2 is feasible, then Xf is a non-empty set. In parametric
programming problems one seeks the solution U∗(x̃) as an explicit function of the
parameters x̃ in a set X ⊆ Xf ⊆ R

ñ [10]. In case the Problem 4.3 is convex, its
approximate solution can be found by applying the approximate mp-NLP approach,
described in Section 1.1.5.1. Otherwise, the approximate mp-NLP approach from
Section 1.1.5.2 should be used, where in addition to the set of vertices of a given
hyper-rectangle in the parameter space, the optimal solution is also computed at
several interior points and global optimization methods are applied.

4.3 Stability of Regulation NMPC

Consider the regulation NMPC Problem 4.1. As in [18], it is supposed that Ω is a
control invariant set, such that Xf is a subset of the N-step stabilizable set [20]. The
Assumptions 4.2 and 4.3 imply that the origin is an equilibrium and interior point in
Xf . Then, it remains to specify Px � 0 and α > 0 such that Ω is a control invariant
set. For this purpose in [18], the ideas in [7] are used, where one simultaneously
determines a linear feedback such thatΩ is positively invariant under this feedback.
Define the local linearization at the origin:

A =
∂ f
∂x

(0,0), B =
∂ f
∂u

(0,0) (4.24)

and make the following assumption:

Assumption 4.6. (A, B) is stabilizable.

Let K denote the associated LQ optimal gain matrix, such that A0 = A− BK is
strictly Hurwitz. The following lemmas from [18] are discrete-time versions of
Lemma 1 in [7]:
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Lemma 4.1. If κ > 0 is such that A0+κI is strictly Hurwitz, the Lyapunov equation:

(A0 +κI)T Px(A0 +κI)−Px =−Qx−KT RK (4.25)

has a unique solution Px � 0.

Proof ([18]). The result is trivial since Qx +KT RK � 0. �

Lemma 4.2. Let κ and Px satisfy the conditions in Lemma 4.1. Then there exists a
constant α > 0 such that Ω defined in (4.10) satisfies:
(1) Ω ⊂ C = {x ∈ R

n| umin ≤−Kx≤ umax, ymin ≤Cx≤ ymax}.
(2) The autonomous nonlinear system:

x(t + 1) = f (x(t),−Kx(t)) (4.26)

is asymptotically stable for all x(0) ∈Ω , i.e. Ω is positively invariant.
(3) The infinite-horizon cost for the system (4.26):

J∞(x(t)) =
∞

∑
k=0

[‖xt+k|t‖2
Qx

+ ‖Kxt+k|t‖2
R

]

(4.27)

satisfies J∞(x)≤ xT Pxx for all x ∈Ω .

The proof of this lemma can be found in Section 2.2.3.
It follows from [24, 7] that the exact NMPC makes the origin asymptotically

stable with region of attraction Xf . A procedure for selecting Px, κ and α is given
in [7]. It is mentioned in [18] that one feature of the explicit approach to NMPC is
that it is not generally desirable to select Ω as large as possible since this may lead
to loss of performance and robustness. Moreover, any computational advantages of
choosing Ω large are less important since the optimization is carried out entirely
off-line.

Consider the mp-NLP Problem 4.3 and recall that for the regulation NMPC x̃≡ x
and ñ≡ n, and that the explicit solution is sought in a set X ⊆ Xf ⊆R

n. In [18], it is
shown that the asymptotic stability is inherited by the approximate explicit NMPC
under the following additional assumptions.

Assumption 4.7. J and G in Problem 4.3 are jointly convex for all (U,x) ∈ U×X,
where U= [umin,umax]

N is the set of admissible inputs.

Assumption 4.8. The explicit approximate NMPC is obtained by applying Algo-
rithm 1.1 in Chapter 1 with the following additional steps, which are applied imme-
diately after step 6:
6a. If 0 ∈ X0, let Û0(x) =−Kx and go to step 6b. Otherwise, go to step 7.
6b. If X0 ⊆Ω , mark X0 as explored and feasible and go to step 17. Otherwise, mark
X0 to be split and go to step 17.

This assumption requires that in a neighborhood of the origin the LQ optimal gain
matrix is used, as in dual-mode MPC [25].
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Assumption 4.9. Assume the approximation tolerances are set such that the parti-
tion Π generated by Algorithm 1.1, extended with Assumption 4.8, has the property
that for any hypercube X0 ∈Π that does not contain the origin:

ε̄ ≤ γmin
x∈X0
‖x‖2

Qx
(4.28)

where γ ∈ (0, 1) is given.

The PWL approximation generated by Algorithm 1.1, extended with Assumption
4.8, is denoted Û : X ′ → R

Nm, where X ′ is the union of the hyper-rectangles of the
partition where a feasible solution has been found. Let the associated sub-optimal
cost function be denoted V̂ : X ′ → R, i.e. V̂ (x) = J(Û(x),x). The set X ′ is an inner
approximation to Xf and the approximation accuracy is determined by the minimal
allowed regions volume Smin (used as an input parameter to Algorithm 1.1). The
boundary of the feasible region Xf can thus be approximated more closely by al-
lowing smaller regions.

Then, the following theorem is formulated in [18].

Theorem 4.1. Suppose that Assumptions 4.1, 4.2, 4.3, 4.6, 4.7, and 4.9 hold. Then,
the origin is an asymptotically stable equilibrium point for the system (4.1)–(4.2) in
closed loop with the explicit approximate NMPC given by Algorithm 1.1, extended
with Assumption 4.8, for all x(0) ∈ X ′.

Proof ([18]). Let x(t) ∈ X ′ be arbitrary and the associated optimal control be de-
noted U∗. At time t + 1 consider Ũ(t + 1) = [u∗t+1, u∗t+2, ... , u∗t+N−1,−Kx∗t+N|t ],
where x∗t+k|t is the state at time t + k associated with U∗. Since U∗ is N-step fea-

sible, x∗t+N|t ∈ Ω . Hence, Ũ(t + 1) is feasible and the tail of the trajectories remain

feasible since Ω is positively invariant. Since V̂ (x) is an upper bound on V ∗(x),
standard arguments, [6], give:

V ∗(x(t + 1)) ≤ V̂ (x(t + 1))

= V̂ (x(t))−‖x(t)‖2
Qx
−‖u(t)‖2

R−‖x∗t+N|t‖2
Px

+‖ f (x∗t+N|t ,−Kx∗t+N|t‖2
Px
+ ‖x∗t+N|t‖2

Qx
+ ‖Kx∗t+N|t‖2

R

≤ V̂ (x(t))−‖x(t)‖2
Qx
−‖u(t)‖2

R (4.29)

The first inequality is due to Theorem 1.3 in Chapter 1. The second inequality is due
to Lemma 4.2 since the following holds:

‖ f (x∗t+N|t ,−Kx∗t+N|t‖2
Px
−‖x∗t+N|t‖2

Px
≤−‖x∗t+N|t‖2

Qx
−‖Kx∗t+N|t‖2

R (4.30)

DefineΩα2 = {x∈Ω | xT Pxx≤ α2} such that it is contained in the set of x where the
explicit approximate NMPC coincides with u = −Kx. Such a set with non-empty
interior exists due to Assumption 4.8. Then, for x /∈Ωα2 it follows from (4.29) and
Assumption 4.9 that:
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V ∗(x(t + 1))−V∗(x(t)) ≤ ε̄−‖x(t)‖2
Qx
−‖u(t)‖2

R

≤−(1− γ)‖x(t)‖2
Qx

< 0 (4.31)

It follows that x(t)→Ωα2 as t → ∞. Asymptotic stability of the origin can be con-
cluded due to Lemma 4.2 because u =−Kx in the positively invariant set Ωα2 such
that the closed loop satisfies (4.26). �

As it is mentioned in [18], the tolerance ε̄ can be chosen a priori for each hyper-
rectangle X0 to satisfy (4.28). Hence, one can guarantee a priori that the PWL
feedback law generated by Algorithm 1.1, extended with Assumption 4.8, will be
asymptotically stabilizing. The parameter γ in (4.28) determines the approximation
accuracy and degree of sub-optimality. A γ close to one is sufficient for stability, but
γ close to zero gives less approximation error and sub-optimality.

4.4 Application 1: Compressor Surge Regulation

Consider the following 2-nd order compressor model introduced in Chapter 3 ([16])
with x1 being normalized mass flow, x2 normalized pressure and u normalized mass
flow through a close-coupled valve in series with the compressor:

ẋ1 = B(Ψe(x1)− x2− u) (4.32)

ẋ2 =
1
B
(x1−Φ(x2)) (4.33)

The following compressor and valve characteristics are used:

Ψe(x1) = ψc0 +H

(

1+ 1.5
(x1

W
− 1
)

− 0.5
(x1

W
− 1
)3
)

(4.34)

Φ(x2) = γsign(x2)
√

|x2| (4.35)

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. Like in [17], the control
objective is to avoid surge. This is formulated as [17]:

J(U,x(t)) =
N−1

∑
k=0

[

α(xt+k|t − x∗)T (xt+k|t − x∗)+ ku2
t+k

]

+Rv2

+β (xt+N|t − x∗)T (xt+N|t − x∗) (4.36)

with α,β ,k,R ≥ 0 and the set-point x∗1 = 0.4, x∗2 = 0.6 corresponds to an unstable
equilibrium point. We have chosenα = 1, β = 0 and k = 0.08. The horizon is chosen
as T = 12, which is split into N = 15 equal-sized intervals, leading to a piecewise
constant control input parameterization. Valve capacity requires the following con-
straint to hold:

0≤ u(t)≤ 0.3 (4.37)
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The pressure constraint:
x2(t)≥ 0.4− v (4.38)

avoids operation too far left of the operating point. The variable v ≥ 0 is a slack
variable introduced in order to avoid infeasibility and R = 8 is a large weight. Nu-
merical analysis of the cost function shows that it is non-convex [17]. It can be seen
that this NMPC problem formulation differs from Problem 4.1 in Section 4.2 in the
absence of a terminal constraint and in the use of a slack variable.

A version of Algorithm 1.2 in Section 1.1.5.2, based on parallel computations, is
applied to obtain an explicit approximate solution to the NMPC problem formulated
above. The resulting mp-NLP problem (4.20) has 16 free variables, 46 constraints,
and 2 parameters, while the NLP problem in Procedure 1.3 has 46 free variables
and 811 constraints. One internal region X1

0 ⊂ X0 is used in Procedure 1.1. In Pro-
cedure 1.3, it is chosen μ = 10 and the control input only at the first sample is
considered. The approximation tolerance is chosen to depend on X0 such that:

ε̄(X0) = max(ε̄a, ε̄rV
∗
min) (4.39)

where ε̄a = 0.0001 and ε̄r = 0.02 can be interpreted as absolute and relative tol-
erances, respectively, and V ∗min = min

x∈X0
V ∗(x). Here, V ∗(x) denotes a close-to-global

solution.
The partition of the approximate explicit NMPC controller is shown in Fig. 4.1

[13]. It has 595 regions and 12 levels of search. With one scalar comparison required
at each level of the k−d tree, 12 arithmetic operations are required in the worst case
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Fig. 4.1 State space partition of the approximate explicit NMPC. The solid curves are with
the approximate explicit NMPC and the dotted curves are with the exact NMPC.
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to determine which region the state belongs to. Totally, 16 arithmetic operations are
needed in real-time to compute the control input and 1368 numbers needs to be
stored in real-time computer memory.

The off-line computation of the partition is performed on a 0.8 GHz Intel(R)
Core(TM) i7 CPU x8 cores. The CPU time corresponding to 11 consecutive itera-
tions (steps 3 to 31) of Algorithm 1.2 in Section 1.1.5.2, performed by using single-
core (non-parallel), dual-core, and quad-core computations, is shown in Fig. 4.2.
The reason why the CPU time per iteration increases along the iterations is that the
state space partition is refined with each iteration and the number of new regions,
which have to be processed, increases. The average CPU time necessary to compute
a single region of the partition is 74 sec with single-core computations, 39 sec with
dual-core computations, and 22 sec with quad-core computations. As it should be
expected, the partitioning algorithm based on parallel computations performs faster
than the non-parallel algorithm. However, it should be noted that with this computer
architecture, using more cores (for example 6 or 8) does not improve the computa-
tional efficiency of the partitioning algorithm. The reason for this may be the fact
that the computational efficiency is influenced not only by the number of cores, but
also by the amount of computer memory.
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2 cores
4 cores
non−parallel computations

Fig. 4.2 CPU time corresponding to 11 consecutive iterations of Algorithm 1.2.

The performance of the closed-loop system is simulated for initial condition
x(0) = [0.1 0.05]T and with sampling time Ts = 0.02. Euler integration with step
size Ts is applied to solve the ordinary differential equations (4.32)–(4.33). The re-
sulting closed-loop response is depicted in the state space (Fig. 4.1), as well as
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Fig. 4.3 From top to bot-
tom: The control input, the
state variable x1, and the
state variable x2. The solid
curves are with the explicit
approximate NMPC and the
dotted curves are with the
exact NMPC.
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trajectories in time (Fig. 4.3) [13]. In Fig. 4.1 and Fig. 4.3, the exact NMPC solution
is also shown, which at each time step is determined by comparing the local minima
of the cost function (4.36) corresponding to several initial guesses for the optimiza-
tion variables.

The approximate and the optimal PWL feedback laws, as well as the associated
cost functions are shown in Fig. 4.4. It can be seen from Fig. 4.4 that the cost func-
tion is non-convex.
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Fig. 4.4 The approximate PWL feedback law (top left), the associated sub-optimal cost func-
tion (top right), the optimal PWL feedback law (bottom left), and the optimal cost function
(bottom right).

4.5 Application 2: Reference Tracking Control of an
Electropneumatic Clutch Actuator Using On/Off Valves
and Pulse-Width Modulation

In [14, 15], the design and performance of explicit NMPC for the position control of
an electropneumatic clutch actuator for heavy duty trucks is considered. This clutch
system is well suited for Automated Manual Transmissions (AMT) systems, which
consist of an automated actuated clutch during gear shifts and a direct transmission
through the clutch disc. Some of the AMT’s largest advantages are low cost, high
efficiency, reduced clutch wear and improved fuel consumption.

It is known that pneumatic actuators can be controlled both with proportional
valves [23, 30, 19] and with on/off valves [27, 31, 28, 1, 26, 29, 21, 22]. The advan-
tage of the on/off valves in comparison to proportional valves is that they are smaller
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and cheaper. For this reason, the electropneumatic clutch actuator, considered in this
paper, is controlled by using on/off valves. The on/off valves can be controlled by
pulse-width modulation (PWM) as it was described in [31, 28, 1]. This allows con-
trollers designed for servo valves to be applied to control the on/off valves. Recently,
sliding mode techniques are applied to control the on/off valves (see for example
[26]). Alternatively, the case when the valves have a pure on/off behavior, i.e. fully
opened and fully closed are the only possible states of the valves, is considered in
[29, 21, 22]. Then in [29, 21], two controllers are designed to govern switches be-
tween these states based on backstepping and Lyapunov theory. Both controllers
show promising results, but also have some weaknesses. Therefore in [22], a dual-
mode controller is derived, which is a combination of the two switched controllers.
It should be noted however, that the mentioned methods can not explicitly handle
state constraints (constraints imposed on the actuator position). On the other hand,
Nonlinear Model Predictive Control (NMPC) is an optimization based method for
control which can handle both state and input constraints [24, 4]. This makes the
NMPC methodology suitable to the optimal control of clutch actuators. Another ad-
vantage of the NMPC approach is that the effect of the tuning parameters is well
known, while with the switched controllers in [29, 21, 22] not all tuning parame-
ters are straightforward to choose. The fast dynamics of the considered electrop-
neumatic clutch actuator would require the design of an explicit NMPC controller,
where the only computation performed on-line would be a simple function evalua-
tion. It should be mentioned that MPC approaches (based on on-line optimization or
on pre-computed explicit solution) have been already applied to design controllers
for hydraulic clutch actuators in cars (see for example [2, 5]).

Explicit NMPC is a highly promising control method. The motivation of the
work in [15] is to illustrate how it allows improvements in control performance,
and demonstrate how it can be implemented with low computational complexity
in a fast mechatronic system. In [15], two different types of explicit NMPC con-
trollers for reference tracking control of an electropneumatic clutch actuator using
on/off valves are designed and compared. The first explicit controller has a continu-
ous control input since it applies a PWM scheme. The other controller represents an
explicit quantized NMPC, where the valves are allowed to be only fully opened or
fully closed. The closed-loop performance of the two controllers is compared based
on the experimentally validated 5-th order model in [19]. The real-time computa-
tional complexity and storage requirements of the two controllers are studied. Also,
a performance comparison with a sliding mode controller and a PID controller is
considered.

4.5.1 Mathematical Model of the Clutch Actuator Dynamics

A pneumatic actuator of an electropneumatic clutch system is considered. The pneu-
matic actuator acts on the clutch plates through the clutch spring, and the state of
the clutch directly depends on the actuator position. The clutch actuator system is
shown in Fig. 4.5. To control both supply to and exhaust from the clutch actuator
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Fig. 4.5 Electropneumatic clutch actuator ([19], [29]).

chamber one pair of on/off valves is used. The electronic control unit (ECU) cal-
culates and sets voltage signals to control the on/off valves. These signals control
whether the valve should open or close, and thus also the flow into the actuator. A
position sensor measures position and feeds it back to the ECU. To calculate the
control signals, knowledge of other states of the system (actuator velocity, cylinder
chamber pressures, friction state) are also needed, and these can be obtained either
by sensors or by estimation [19]. The full 5-th order model of the clutch actuator
dynamics, which has been experimentally validated in [19], is the following:

ẏ = v (4.40)

v̇ =
1
M
(A0P0 +AApA−ABpB− f f (v,z)− fl(y)) (4.41)

ṗA =− AA

VA(y)
vpA +

RT0

VA(y)
wv(pA,u) (4.42)

ṗB =
AB

VB(y)
vpB +

RT0

VB(y)
wr(pB) (4.43)

ż = v− Kz

FC
|v|qz (4.44)

where y is the position, v is the velocity, pA is the pressure in chamber A, pB is
the pressure in chamber B, z is the friction state, wv(pA,u) is the mass flow rate
to/from chamber A, wr(pB) is the mass flow rate to/from chamber B, u is the control
input. In (4.42), (4.43), VA(y) = VA0 +AAy and VB(y) = VB0−ABy are the volumes
of chambers A and B, and VA0, VB0 are the dead volumes of these chambers. The
meaning of the parameters is the following: AA and AB are the cross-section areas of
chambers A and B, A0 = AB−AA is the cross-section piston area, M is piston mass,
P0 is the ambient pressure, T0 is the temperature, R is the gas constant of air, Kz is
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asperity stiffness, FC is Coulomb friction. In (4.44), |v|q =
√

v2 +σ2, where σ > 0 is
an arbitrary small design parameter. In (4.41), fl(y) and f f (v,z) are the clutch load
and the friction force, described by [19], [29]:

fl(y) = Kl(1− e−Lly)−Mly (4.45)

f f (v,z) = Dvv+Kzz+Dżż(v,z) (4.46)

Here, Kl , Ll , Ml are the load characteristic parameters, and Dv and Dż are the viscous
and the micro viscous effects.

Depending on the control input u at a given time instant, there can be one of the
following three situations for the mass flow rate wv(pA,u):

1) The exhaust valve is on and the supply valve is off⇒ wv(pA,u) =−wv,out .
2) Both the exhaust and the supply valves are off⇒ wv(pA,u) = 0.
3) The exhaust valve is off and the supply valve is on⇒ wv(pA,u) = wv,in.

Here, wv,out is the mass flow rate from chamber A and wv,in is the mass flow rate to
chamber A, and they are determined by the following expressions [19]:

wv,out = ρ0Cv,outψ(r,Bv,out )pA , r =
P0

pA
(4.47)

wv,in = ρ0Cv,inψ(r,Bv,in)PS , r =
pA

PS
(4.48)

Here, ρ0 is the flow density, Cv,out and Cv,in are flow conductances, Bv,out and Bv,in

are critical flow parameters, and PS is the supply pressure.
The valve flow function ψ(r,Bv,in/out) is given by [19]:

ψ(r,Bv,in/out) = ψ0(r,0)+

Bv,in/out

{

ψ0(r,B0)−ψ0(r,0), Bv,in/out ≥ 0
ψ0(r,0)+ r− 1, Bv,in/out < 0

(4.49)

where:

ψ0(r,B0) =

⎧

⎨

⎩

1 , r < B0
√

1−
(

r−B0
1−B0

)2
, r ≥ B0

(4.50)

Here, B0 is the critical flow parameter for air. It follows from (4.50) that ψ0(r,0) =√
1− r2.
The mass flow rate wr(pB) to/from chamber B is [19]:

wr(pB) = wr,in(pB)−wr,out(pB) (4.51)

where:

wr,in(pB) = ρ0Crψin(r)P0 , r =
pB

P0
(4.52)

wr,out(pB) = ρ0Crψout(r)pB , r =
P0

pB
(4.53)
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Here, Cr is the flow conductance. The restriction flow function ψin/out(r) is given
by [19]:

ψin/out(r) =Ω0(r)+ bΩ1(r,sign(b)) , b ∈ [−1, 1] (4.54)

In (4.54),Ω0(r) is defined by:

Ω0(r) =

{√
1− r2 , r ∈ [0, 1]

0 , r > 1
(4.55)

We have b = 0.5 and Ω1(r,+1) is given by:

Ω1(r,+1) =−Ω0(r)+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 , r ∈ [0, B0]
√

1−
(

r−B0
1−B0

)2
, r ∈ (B0, 1]

0 , r > 1

(4.56)

Further, in order to reduce the computational burden, the design of the explicit
NMPC controllers is based on the following simplified 3-rd order model [29]:

ẏs = vs (4.57)

v̇s =
1
M
(−AAP0 +AAps

A− f ∗f (v
s)− fl(y

s)) (4.58)

ṗs
A =− AA

VA(ys)
vs ps

A +
RT0

VA(ys)
wvs(ps

A,u) (4.59)

where the states are the actuator position ys, the velocity vs and the pressure ps
A in

chamber A. The term f ∗f (v
s) represents the static sliding friction characteristic [19]:

f ∗f (v
s) = Dvvs +FC

vs
√

vs2 +σ2
(4.60)

The values of the clutch actuator parameters are given in Table 4.1.
The on/off valves are controlled by applying a pulse-width modulation (PWM)

scheme and their duty cycle depends on the control input u. The use of the traditional
linear PWM scheme would result in the valves failing to respond when the on-time
is less than their response time. In order to avoid this, the approach in [31] is applied.
Thus, the duty cycle of either the exhaust or the supply valve is not allowed to fall
below dmin, the minimum possible duty cycle where the valve will still respond,
given by:

dmin =
Tvr

TPWM
·100% (4.61)

Here, Tvr is the valve response time and TPWM is the PWM period. For the considered
clutch actuator, Tvr = 0.002 [s] and the PWM period is equal to the sampling time,
i.e. TPW M = Ts = 0.01 [s]. Therefore, the minimum duty cycle is dmin = 20%. The
PWM scheme is illustrated in Fig. 4.6.



102 4 Explicit NMPC via Approximate mp-NLP

Table 4.1 Parameters of the electropneumatic clutch actuator

Parameter Value Unit Description
AA 1.7 ·10−2 m2 Area of chamber A
AB 1.9 ·10−2 m2 Area of chamber B
A0 0.2 ·10−2 m2 Piston area
VA0 0.8 ·10−3 m3 Dead volume of chamber A
VB0 5.7 ·10−4 m3 Dead volume of chamber B
P0 1.095 ·105 Pa Ambient pressure
PS 9.5 ·105 Pa Supply pressure
T0 293 K Temperature
R 288 J/(kg ·K) Gas constant of air
M 10 kg Mass of piston
Dv 5000 N · s/m Viscous effect
Kz 1 ·106 N/m Asperity stiffness
Dż 5000 N · s/m Micro viscous effect
FC 200 N Coulomb friction
ρ0 1.185 kg/m3 Flow density
Bv,in 0.5 - Critical flow parameter
Bv,out -0.5 - Critical flow parameter
Cv,in 1.5 ·10−8 m3/(Pa · s) Conductance
Cv,out 2 ·10−8 m3/(Pa · s) Conductance
B0 0.528 - Critical flow parameter for air
Cr 1 ·10−8 m3/(Pa · s) Conductance
Kl 5000 N/m Load characteristic parameter
Ll 500 - Load characteristic parameter
Ml 25000 N/m Load characteristic parameter

Fig. 4.6 Pulse-width modu-
lation scheme.

Va
lv

e 
du

ty
 c

yc
le

, [
%

] 

Control u, [%] 
-100 1000-ud ud

0

100

50

dmin 

Exhaust 
valve 

Supply 
valve 

No 
flow



4.5 Application 2: Control of an Electropneumatic Clutch Actuator 103

It can be seen that the range of the control input u is divided into the following
three parts:

1) u ∈ [−100;−ud).
In this case, the exhaust valve is on and its duty cycle de is computed from the linear
characteristic de = aeu+ be. Let t ∈ Z≥0 be the discrete time and θ ∈ R≥0 be the
continuous time. Then, during the sampling time Ts the following applies:

wv(pA,u) =

{−wv,out , ifθ ∈ [tTs;(t + de/100)Ts]
0, ifθ ∈ ((t + de/100)Ts;(t + 1)Ts]

(4.62)

where wv,out is determined from (4.47).
2) u ∈ [−ud; ud].

In this range, both valves are off and there is no flow to/from chamber A, i.e.
wv(pA,u) = 0 for θ ∈ [tTs; (t + 1)Ts].

3) u ∈ (ud ; 100].
In this case, the supply valve is on and its duty cycle ds is computed from the linear
characteristic ds = asu+bs. Then, during the sampling time Ts the following applies:

wv(pA,u) =

{

wv,in, ifθ ∈ [tTs;(t + ds/100)Ts]
0, ifθ ∈ ((t + ds/100)Ts;(t + 1)Ts]

(4.63)

where wv,in is determined from (4.48).
In the PWM scheme, ud is a design parameter which determines the slopes of the

linear characteristics and the width of the “no flow” range. In our case, ud = 10%.

4.5.2 Design and Performance of Explicit Reference Tracking
Controller with Continuous Control Input

In [15], an explicit NMPC controller for optimal reference tracking control of the
electropneumatic clutch actuator is designed. The values of the prediction horizon
and the weighting coefficients in the NMPC problem formulation are chosen among
a set of values such that the corresponding optimal solution has the best reference
tracking quality. The approximate mp-NLP approach described in Section 1.1.5.2
is applied to design an explicit NMPC with continuous control input for reference
tracking control of the electropneumatic clutch actuator. The controller design is
based on the simplified 3-rd order model (4.57)–(4.59) of the clutch actuator dy-
namics, introduced in Section 4.5.1. The sampling time is Ts = 0.01 [s] and the
PWM scheme described in Section 4.5.1 is applied to control the exhaust and the
supply valves. The forward Euler method with stepsize TE = 0.0001 [s] is used to
integrate the equations (4.57)–(4.59). The control objective is to have the actuator
position ys track a reference signal r(t) > 0, which is achieved by minimizing the
following cost function:
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J(U,ys(t),r(t)) =
N−1

∑
k=0

⎡

⎣Qy

(

ys
t+k|t − r(t)

r(t)

)2

+Rh(ut+k)
2

⎤

⎦

+Py

(

ys
t+N|t − r(t)

r(t)

)2

(4.64)

where h(ut+k) = wvs(ps
A,t+k|t ,ut+k)/(wvs,max−wvs,min). Here, N = 5 is the horizon,

Qy = Py = 10, R = 0.1 are the weighting coefficients, and wvs,max and wvs,min are the
maximal and the minimal mass flow rates to/from chamber A. The control input u
determines the duty cycle of the on/off valves (see Section 4.5.1) and it should sat-
isfy the constraint −100 %≤ ut+k ≤ 100 %, k = 0,1, ...,N− 1. The piston position
y for this clutch actuator is allowed to be between 0 [m] and 0.025 [m], which leads
to the constraint:

0 [m]≤ ys
t+k|t ≤ 0.025 [m] , k = 1, ... , N (4.65)

In order to further reduce the partition complexity of the explicit controller, a projec-
tion of the reference tracking error is used. Thus in Problem 4.3, the extended state
vector is x̃(t) = [e(t), vs(t), ps

A(t), r(t)] ∈ R
4, where e(t) = r(t)− ys(t) is the refer-

ence tracking error. Note, that the state vector x̃(t) does not include u(t−1) since it
is not used in the expression (4.64) of the cost function. The state space to be parti-
tioned is 4-dimensional and it is defined by X = [−0.005; 0.005]× [−0.05; 0.15]×
[P0; PS]× [0.0001; 0.024] where P0 and PS are given in Table 4.1. The values of e(t)
outside this hyper-rectangle are projected onto its boundary. It has been shown in
[18] that bounding the approximation error of the approximate explicit solution to
regulation NMPC problems ensures stability of the sub-optimal closed-loop system.
Here, a similar approach is applied and the cost function approximation tolerance is
chosen as ε̄(X0) = max(ε̄a, ε̄r min

x̃∈X0
V ∗(x̃)), where ε̄a = 0.001 and ε̄r = 0.02 are the

absolute and the relative tolerances. The stability of the closed-loop system is ver-
ified by simulations. It should be noted that the possibility for implementation ver-
ification is a significant advantage of the explicit NMPC in comparison to NMPC
based on real-time optimization. The partition of the explicit continuous NMPC
controller has 9035 regions. Its performance was simulated for a typical clutch refer-
ence signal and compared with that of a sliding mode controller (SMC) and of a PID
controller. The SMC controller is designed by applying the approach in [12]. The
responses associated to the three controllers are depicted in Fig. 4.7 to Fig. 4.12. The
simulations of the closed-loop system are based on the full 5-th order model (4.40)–
(4.44). It is required for the tracking error to be less than 0.0002 [m] in the area
where the clutch engages/disengages and it is relaxed outside this area. All three
controllers meet this requirement. However, it can be observed from Fig. 4.7 that
the control input of the explicit NMPC controller has less chattering in comparison
to that of the SMC controller. Also, the explicit NMPC has a higher quality of the
overall tracking performance compared to that of the PID controller (characterized
with an overshoot).
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4.6 Time-Optimal Diver Decompression

Diving sickness (or decompression sickness) is known as an injury that affects as-
cending divers who have breathed gas which is at a higher pressure than the surface
pressure due to the pressure of the surrounding water. To prevent decompression
sickness one should set up a sufficiently large gradient for gas elimination. This
leads to another question - how close to optimal in terms of total decompression
time will a decompression procedure be, [11, 8]?

Using a physiological nonlinear dynamic model of the inert gas dynamics in the
diver’s tissue and blood, the minimum time decompression problem can be formu-
lated as a time-optimal control problem subject to constraints that are set up to avoid
inert gas bubbles of too large size or amount in the diver’s blood stream, [11]. This
optimal control problem can be discretized and solved to compute practical diving
decompression procedures that will provide the diver with advice about stop depths
and stop depths during ascent to the surface, [9, 11]. Since the model should be
updated dynamically based on the water depth profile during the dive, the decom-
pression profile should be updated at minute intervals in a receding horizon fashion
in order to account for the actions of the diver, [11].

An obstacle for practical implementation of such procedures is the limited CPU
capacity and power consumption requirements for a typical low-cost diving com-
puter. The real-time nonlinear optimization and the receding horizon algorithm re-
quires a large amount of floating point numerical computations per re-optimization,
[9]. For safety reasons the convergence and correctness of the numerical optimiza-
tion result needs to be verified. In [8], an mp-NLP problem is solved to pre-compute
an explicit NMPC controller suitable for implementation in a diving computer.
Rather than re-computing numerically the optimal solution at each sampling instant
based on updated physiological state information, the solution is simply obtained by
evaluating a piecewise approximation to the optimal solution function. Since such
piecewise function representation can be precomputed off-line and stored in mem-
ory on the diving computer, the computational load on the diving computer will
be dramatically relaxed. Moreover, since the solution function is pre-computed, it
is easier to verify the correctness and will benefit in the safety-critical applications
such as a diving computer, [8].
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7. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability. Automatica 34, 1205–1217 (1998)

8. Feng, L., Gutvik, C.R., Johansen, T.A.: Optimal decompression through multi-
parametric nonlinear programming. In: IFAC NOLCOS, Bologna, Italy (2010),
http://www.IFAC-PapersOnLine.net

9. Feng, L., Gutvik, C.R., Johansen, T.A., Sui, D.: Barrier function nonlinear optimization
for optimal decompression of divers. In: IEEE Conf. Decision and Control, Shanghai
(2009)

10. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming.
Academic Press, Orlando (1983)

11. Gutvik, C.R., Johansen, T.A., Brubakk, A.O.: Optimal Decompression of Divers - Proce-
dures for constraining predicted bubble growth. IEEE Control Systems Magazine 31(1),
19–28

12. Gjone, K.: Robustness tests and analysis of control strategies on an electropneumatic
actuator. M.Sc. thesis, Norwegian University of Science and Technology, Trondheim,
Norway (2007)

13. Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate ex-
plicit nonlinear model predictive control. In: Findeisen, R., Allgöwer, F., Biegler, L.
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Chapter 5
Explicit MPC of Constrained Nonlinear Systems
with Quantized Inputs

Abstract. This chapter presents an approximate multi-parametric Nonlinear Inte-
ger Programming (mp-NIP) approach to design explicit MPC controllers for con-
strained nonlinear systems with quantized control inputs. It is organized as follows.
In Section 5.2, general regulation and reference tracking quantized NMPC problems
are formulated and represented as an mp-NIP problem. Then, in Section 5.3, an ap-
proximate mp-NIP approach to explicit quantized NMPC is described. The idea of
the approach is to construct a piecewise constant (PWC) approximation to the opti-
mal solution of the mp-NIP problem on a hyper-rectangle of interest by imposing an
orthogonal state space partition. In Section 5.4, an explicit quantized NMPC con-
troller for the electropneumatic clutch actuator (described in Section 4.5) is designed
and its performance is compared to that of the explicit NMPC with continuous con-
trol input. In Section 5.5, the approximate mp-NIP approach is applied to design an
explicit quantized NMPC controller for optimal regulation of a continuous stirred
tank reactor.

5.1 Introduction

In several control engineering problems, the system to be controlled is characterized
by a finite set of possible control actions. Such systems are referred to as systems
with quantized control input and the possible values of the input represent the lev-
els of quantization. For example, hydraulic systems using on/off valves are systems
with quantized input. In order to achieve a high quality of the control system per-
formance it would be necessary to take into account the effect of the control input
quantization. Thus, in [10] receding horizon optimal control ideas were proposed
for synthesizing quantized control laws for linear systems with quantized inputs
and quadratic optimality criteria. Further in [1], a method for explicit solution of
optimal control problems with quantized control input was developed. It is based
on solving multi-parametric Nonlinear Integer Programming (mp-NIP) problems,
where the cost function and the constraints depend linearly on the vector of param-
eters. In [4, 3], an MPC problem for constrained nonlinear systems with quantized

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 111–125.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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input is formulated and represented as an mp-NIP problem. Then, a computational
method for explicit approximate solution of the resulting mp-NIP problem is sug-
gested. The benefits of the explicit solution consist in efficient on-line computations
using a binary search tree and verifiability of the design and implementation. The
mp-NIP method proposed in [4, 3] is more general compared to the mp-NIP method
in [1], since it allows the cost function and the constraints to depend nonlinearly on
the vector of parameters.

Note that the term Nonlinear Integer Programming is used instead of the more
general Mixed-Integer Nonlinear Programming (MI-NLP) since the problem for-
mulation contains only integer free variables. This is possible since continuous vari-
ables are eliminated using a direct single shooting strategy, and all control inputs are
assumed to be quantized. The general ideas can, however, be extended to MI-NLP
to account for situations with mixed continuous and integer variables.

5.2 Formulation of the Quantized NMPC Problem as an
mp-NIP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t)) (5.1)

y(t) =Cx(t), (5.2)

where x(t) ∈R
n is the state variable, y(t) ∈Rp is the output variable, and u(t) ∈Rm

is the control input, which is constrained to belong to the finite set of values UA =
{u1,u2, ... ,uL}, ui ∈ R

m, ∀i = 1,2, ... ,L, i.e. u(t) ∈UA. Here, u1,u2, ... ,uL repre-
sent the levels of quantization of the control input u. In (5.1), f : Rn×UA �−→ R

n

is a nonlinear function. It is supposed that a full measurement of the state x(t) is
available at the current time t.

First, consider the optimal regulation problem where the goal is to steer the sys-
tem state to the origin by minimizing a certain performance criterion. For the current
x(t), the quantized NMPC regulation solves the optimization problem:

Problem 5.1:
V ∗(x(t)) = min

U∈UB
J(U,x(t)) (5.3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... , N (5.4)

ut+k ∈UA = {ū1, ū2, ... , ūL} , k = 0, 1, ... , N− 1 (5.5)

‖xt+N|t‖2 ≤ δx (5.6)

xt+k+1|t = f (xt+k|t ,ut+k) , k ≥ 0 (5.7)

yt+k|t =Cxt+k|t , k ≥ 0 (5.8)
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Here, U = [ut , ut+1, ... , ut+N−1] ∈ R
Nm is the set of free control moves, UB �

(UA)N=UA× ... ×UA. The set UB is also represented as UB={Ūj | j=1, 2, ... , M},
where Ūj ∈ R

Nm are the levels of quantization of the control vector U and M = LN .
The cost function is given by:

J(U,x(t)) =
N−1

∑
k=0

[‖xt+k|t‖2
Qx

+ ‖h(xt+k|t ,ut+k)‖2
R

]

+ ‖xt+N|t‖2
Px

(5.9)

Here, N is a finite horizon and h : R
n×UA �→ R

s is a nonlinear function. It is as-
sumed that δx > 0 and Px, Qx, R� 0.

Now, consider the reference tracking problem where the goal is to have the output
variable y(t) track the reference signal r(t) ∈R

p. For the current x(t), the reference
tracking quantized NMPC solves the following optimization problem:

Problem 5.2:
V ∗(x(t),r(t)) = min

U∈UB
J(U,x(t),r(t)) (5.10)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax, k = 1, ... ,N (5.11)

ut+k ∈UA = {u1,u2, ... ,uL}, k = 0,1, ... ,N− 1 (5.12)
∥

∥yt+N|t − r(t)
∥

∥≤ δy (5.13)

xt+k+1|t = f (xt+k|t ,ut+k), k ≥ 0 (5.14)

yt+k|t =Cxt+k|t , k≥ 0 (5.15)

Here, U = [ut ,ut+1, ... ,ut+N−1] ∈ R
Nm is the set of free control moves, UB =

(UA)N =UA× ... ×UA and the cost function is given by:

J(U,x(t),r(t)) =
N−1

∑
k=0

[

‖yt+k|t − r(t)‖2
Qy

+ ‖h(xt+k|t ,ut+k)‖2
R

]

+‖yt+N|t − r(t)‖2
Py

(5.16)

Similar to above, N is a finite horizon and h :Rn×UA �−→R
s is a nonlinear function.

It is assumed that δy > 0 and Py, Qy, R� 0.
From a stability point of view it is desirable to choose δx in (5.6) or δy in (5.13) as

small as possible [9]. However, in the case of quantized input, the equilibrium point
of the closed-loop system may either have an offset from the reference, or there may
be a limit cycle about the reference. Therefore, the feasibility of Problems 5.1 and
5.2 will rely on δx and δy being sufficiently large. A part of the NMPC design will
be to address this tradeoff.
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The optimization Problems 5.1 and 5.2 can be formulated in a compact form as
follows:

Problem 5.3:

V ∗(x̃(t)) = min
U∈UB

J(U, x̃(t)) subject to G(U, x̃(t))≤ 0 (5.17)

Here x̃(t) ∈R
ñ and for the regulation Problem 5.1 it is:

x̃(t) = x(t), ñ = n (5.18)

while for the reference tracking Problem 5.2 it is:

x̃(t) = [x(t), r(t)] ∈ R
ñ, ñ = n+ p (5.19)

Problem 5.3 defines a multi-parametric Nonlinear Integer Programming (mp-NIP)
problem, since it is NIP in U parameterized by x̃(t). An optimal solution to this prob-
lem is denoted U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the control input is chosen according
to the receding horizon policy u(t) = u∗t . Define the set of feasible parameters as fol-
lows:

Xf = {x̃ ∈ R
ñ| G(U, x̃)≤ 0 for some U ∈UB} (5.20)

For Problem 5.1, Xf is the set of N-step feasible initial states. If δx, δy and N are
such that the Problem 5.1 or 5.2 is feasible, then Xf is a non-empty set. In parametric
programming problems one seeks the solution U∗(x̃) as an explicit function of the
parameters x̃ in a set X ⊆ Xf ⊆ R

ñ [2].

5.3 Approximate mp-NIP Approach to Explicit Quantized
NMPC

5.3.1 Computation of Explicit Approximate Solution

We restrict our attention to a hyper-rectangle X ⊂ R
ñ where we seek to approx-

imate the optimal solution U∗(x̃) to Problem 5.3. We require that the state space
partition is orthogonal and can be represented as a k− d tree. The main idea of the
approximate mp-NIP approach in [4, 3] is to construct a piecewise constant (PWC)
approximation ̂U(x̃) to U∗(x̃) on X , where the constituent constant functions are de-
fined on hyper-rectangles covering X . The solution of Problem 5.3 is computed at
the 2ñ vertices of a considered hyper-rectangle X0, as well as at some interior points.
These additional points represent the vertices and the facets centers of one or more
hyper-rectangles contained in the interior of X0. The Procedure 1.1 is used to gen-
erate a set of points W0 = {w0,w1,w2, ... ,wN1} associated to a hyper-rectangle X0.
Then, a close-to-global solution U∗(wi) of Problem 5.3 at a point wi ∈W0 is com-
puted by using the routine ’glcSolve’ of the TOMLAB optimization environment in
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Matlab [7]. The routine ’glcSolve’ implements an extended version of the DIRECT
algorithm [8], that handles problems with both nonlinear and integer constraints.
The DIRECT algorithm (DIviding RECTangles) [8] is a deterministic sampling al-
gorithm for searching for the global minimum of a multivariate function subject to
constraints, using no derivative information. It is a modification of the standard Lip-
schitzian approach that eliminates the need to specify a Lipschitz constant.

Based on the close-to-global solutions U∗(wi) at all points wi ∈W0, a local con-
stant approximation ̂U0(x̃) = K0 to the optimal solution U∗(x̃), valid in the whole
hyper-rectangle X0, is determined by applying the following procedure [4]:

Procedure 5.1 (computation of explicit approximate solution). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1, ... ,wN1} determined by
applying Procedure 1.1. Compute K0 by solving the following NIP:

min
K0∈UB

N1

∑
i=0

(J(K0,wi)−V ∗(wi)) subject to G(K0,wi)≤ 0 , ∀wi ∈W0 (5.21)

5.3.2 Estimation of Error Bounds

Suppose that a constant function ̂U0(x̃) = K0, associated to the hyper-rectangle X0

has been determined by applying Procedure 5.1. Then, for the cost function approx-
imation error in X0 we have:

ε(x̃) = ̂V (x̃)−V ∗(x̃)≤ ε0 , x̃ ∈ X0 (5.22)

where ̂V (x̃) = J(̂U0(x̃), x̃) is the sub-optimal cost and V ∗(x̃) denotes the cost corre-
sponding to the close-to-global solution U∗(x̃), i.e. V ∗(x̃) = J(U∗(x̃), x̃). The follow-
ing procedure can be used to obtain an estimate ̂ε0 of the maximal approximation
error ε0 in X0.

Procedure 5.2 (computation of error bound approximation). Consider any
hyper-rectangle X0 ⊆ X with a set of points W0 = {w0,w1, ... ,wN1} determined by
applying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through the
following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(̂V (wi)−V ∗(wi)) (5.23)

5.3.3 Approximate mp-NIP Algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given. The
following algorithm is proposed to design explicit reference tracking quantized
NMPC [4]:
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Algorithm 5.1. Explicit reference tracking quantized NMPC.

Step 1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}. Mark
the hyper-rectangle X as unexplored.

Step 2. Select any unexplored hyper-rectangle X0 ∈Π . If no such hyper-rectangle
exists, terminate.

Step 3. Generate a set of points W0 = {w0,w1,w2, ... ,wN1} associated to X0 by
applying Procedure 1.1.

Step 4. Compute a solution to Problem 5.3 for x̃ fixed to each of the points
wi , i = 0,1,2, ... ,N1 by using routine ’glcSolve’ of TOMLAB optimization envi-
ronment. If Problem 5.3 has a feasible solution at all these points, go to step 7.
Otherwise, go to step 5.

Step 5. Compute the size of X0 using some metric. If it is smaller than some given
tolerance, mark X0 infeasible and explored and go to step 2. Otherwise, go to step 6.

Step 6. If at least one of the points wi , i = 0,1,2, ... ,N1 is feasible, split X0 into
hyper-rectangles X1, X2, ... , XNs by applying the Heuristic splitting rule 1.1. Mark
X1, X2, ... , XNs unexplored, remove X0 from Π , add X1, X2, ... , XNs to Π , and go
to step 2. If none of the points wi , i = 0,1,2, ... ,N1 are feasible, split X0 into two
hyper-rectangles X1 and X2 by a hyperplane through its center point and orthogonal
to an arbitrary axis. Mark X1 and X2 unexplored, remove X0 from Π , add X1 and X2

to Π , and go to step 2.
Step 7. Compute a constant function ̂U0(x̃) using Procedure 5.1, as an approxi-

mation to be used in X0. If a feasible solution was found, go to step 8. Otherwise,
split X0 into two hyper-rectangles X1 and X2 by a hyperplane through its center point
and orthogonal to an arbitrary axis. Mark X1 and X2 unexplored, remove X0 fromΠ ,
add X1 and X2 to Π , and go to step 2.

Step 8. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying Proce-
dure 5.2. If ̂ε0 ≤ ε̄ , mark X0 as explored and feasible and go to step 2. Otherwise,
split X0 into two hyper-rectangles X1 and X2 by applying a procedure that is similar
to Procedure 1.5. Mark X1 and X2 unexplored, remove X0 fromΠ , add X1 and X2 to
Π , and go to step 2.

5.4 Application 1: Reference Tracking Quantized Control of an
Electropneumatic Clutch Actuator Using On/Off Valves

Consider the electropneumatic clutch actuator, whose mathematical model is de-
scribed in Section 4.5.1. With the quantized control input the two valves are only
allowed to be fully open or fully closed (no pulse-width modulation is used). Thus,
the control input is an integer variable which can take only three values, i.e. u ∈
UA = {1,2,3}. This is related to the mass flow rate wv(pA,u) to/from chamber A in
the following way:
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u = 1⇒ wv(pA,1) =−wv,out , forθ ∈ [tTs;(t + 1)Ts]
u = 2⇒ wv(pA,2) = 0, forθ ∈ [tTs;(t + 1)Ts]
u = 3⇒ wv(pA,3) = wv,in, forθ ∈ [tTs;(t + 1)Ts]

(5.24)

where wv,out and wv,in are determined from (5.7)-(5.8), and θ is the time variable.
Therefore, u = 1 corresponds to maximal flow from chamber A, u = 2 means no
flow, and u = 3 corresponds to maximal flow to chamber A during the whole sam-
pling period Ts.

5.4.1 Design of Explicit NMPC with Quantized Control Input

In [4, 5], an explicit quantized NMPC controller for the clutch actuator is designed,
which is based on the simplified 3-rd order model (4.57)–(4.59), introduced in Sec-
tion 4.5.1. The quantized NMPC has sampling time Ts = 0.01 [s] and it minimizes
the cost function (4.64) in Section 4.5.2 (with ut+k and U being here the quantized
control input and the quantized control input sequence, respectively), subject to the
system equations (4.57)–(4.59) and the constraint (4.65). In (4.64), the horizon is
N = 10 and the weighting coefficients are Qy = Py = 1, R = 0.1. The extended state
vector x̃(t) and the state space X to be partitioned are the same as for the NMPC con-
troller with continuous control input, designed in Section 4.5.2. The cost function
approximation tolerance is ε̄(X0) = max(ε̄a, ε̄rmin

x̃∈X0
V ∗(x̃)), where ε̄a = 0.001 and

ε̄r = 0.02. The partition has 10871 regions. The performance of the explicit quan-
tized NMPC was simulated for the typical clutch reference signal and the resulting
response is depicted in Fig. 5.1 and Fig. 5.2. The simulations of the closed-loop
system are based on the full 5-th order model (4.40)–(4.44) of the clutch actuator
dynamics, described in Section 4.5.1.

0 1 2 3 4 5
1

2

3
u(t)

t [s]

Fig. 5.1 The control input u.



118 5 Explicit Quantized NMPC

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
y(t) [m]

t [s]

Fig. 5.2 The clutch actuator position y with the explicit quantized NMPC (the dashed curve
is the reference signal).

5.4.2 Comparison between the Explicit NMPC with Quantized
Control Input and the Explicit NMPC with Continuous
Control Input

In [5], a comparative study of the explicit quantized NMPC controller and the ex-
plicit NMPC controller with continuous control input for reference tracking control
of the electropneumatic clutch actuator is made.

5.4.2.1 Chattering

The chattering of the explicit quantized NMPC controller, designed in this sec-
tion, and the explicit NMPC controller with continuous control input (using a PWM
scheme), the SMC controller, and the PID controller, considered in Section 4.5.2,
is studied. In Table 5.1, statistics about the chattering in the control input u (only
for the controllers which generate a continuous control input) and in the actuator
position y is given. The chattering is expressed as:

Δu(t) = |u(t)− u(t− 1)| , Δy(t) = |y(t)− y(t− 1)| (5.25)

where t = 2, 3, ... , 500 is the discrete time instant. It can be seen that the control
input chattering of the explicit NMPC with PWM is comparable to that of the PID
controller and it is significantly smaller than that of the SMC controller. Also, the
explicit NMPC with PWM leads to the smallest position chattering among the four
studied controllers.
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Table 5.1 Statistics about chattering

Controller Average Maximal Average Maximal
Δu [%] Δu [%] Δy [m] Δy [m]

NMPC with PWM 4.65 81.99 5.66 ·10−5 6.22 ·10−4

SMC controller 12.16 168.96 5.94 ·10−5 10.63 ·10−4

PID controller 1.23 52.49 6.63 ·10−5 10.63 ·10−4

Quantized NMPC − − 9.83 ·10−5 7.23 ·10−4

5.4.2.2 Tracking Performance

In Table 5.2, statistics about the absolute reference tracking error ey(t) = |y(t)−r(t)|
and the sum squared relative reference tracking error Sy for the four controllers are
given. The error ey(t) is considered after the position settles near the first reference
value r = 0.015 [m] (after 0.8 [s] of time). The reason is that the trajectories from
the initial state y = 0 [m] to a neighborhood of r = 0.015 [m] for the four controllers
are characterized by the same maximal reference tracking error ey = 0.015 [m]. The
error Sy is computed on the entire transients as:

Sy =
1

500

500

∑
t=1

(

y(t)− r(t)
r(t)

)2

(5.26)

It can be seen that the explicit NMPC with PWM provides the highest quality of
tracking performance.

Table 5.2 Statistics about reference tracking error

Controller Average Maximal Sum squared
ey(t) [m] ey(t) [m] error Sy

NMPC with PWM 2.48 ·10−4 6.89 ·10−4 0.431 ·10−1

SMC controller 3.05 ·10−4 6.30 ·10−4 0.679 ·10−1

PID controller 2.77 ·10−4 10.36 ·10−4 0.839 ·10−1

Quantized NMPC 3.27 ·10−4 10.39 ·10−4 1.063 ·10−1

5.4.2.3 Real-Time Computational Complexity and Storage Requirements

The explicit approximate solutions of the two explicit NMPC controllers are im-
plemented as binary search trees by applying the method in [11]. In Table 5.3, the
real-time computational complexity (the worst-case number of arithmetic opera-
tions needed to compute the control input) and the storage requirements (in terms
of numbers that have to be stored), associated to the binary search trees of the two
controllers, are given. It can be observed that the number of on-line arithmetic op-
erations is negligibly small with both controllers. The explicit NMPC with PWM
requires significantly more storage in comparison to the explicit quantized NMPC
controller. It can be explained with the fact that for each region of the partition of
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Table 5.3 On-line computational complexity and storage requirements

Controller arithmetic ops. stored stored
per sample reals integers

Explicit NMPC with PWM 152 39960 36771
Explicit quantized NMPC 143 295 7831

this controller, an affine control law needs to be stored (while only one constant
needs to be stored with the quantized controller). Further, since the total number of
solutions for the quantized controller is only 3, merging of regions with the same
solutions into one convex region leads to a significant decrease of the complexity of
the search tree.

5.5 Application 2: Regulation of a Continuous Stirred Tank
Reactor with Quantized Control Input

In [3], the approximate mp-NIP approach (described in Section 5.3) is applied to de-
sign an explicit quantized NMPC controller for optimal regulation of a continuous
stirred tank reactor (CSTR). In the CSTR, a first-order irreversible reaction A→ B
takes place (Fig. 5.3). The mathematical model of CSTR and the values of the pa-
rameters are taken from [6]. The mass and heat balance of CSTR expressed through
dimensionless concentration c̃ and temperature T̃ are [6]:

dc̃
dt

=
(1− c̃)

q
− k0e−

E
T̃ c̃ (5.27)

dT̃
dt

=
(T̃f − T̃ )

q
+ k0e−

E
T̃ c̃−αu(T̃ − T̃c) (5.28)

Fig. 5.3 Continuous stirred
tank reactor.
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c, T 

u 
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where the dimensionless quantities c̃, T̃ , T̃c and T̃f are defined as follows:

c̃ =
c
c f

, T̃ =
T

Jc f
, T̃c =

Tc

Jc f
, T̃f =

Tf

Jc f
(5.29)

The coolant flowrate u is a quantized control variable. The values of the parameters
are taken from [6] and are q = 10, c f = 1, Tc = 290, Tf = 300, J = 100, E = 25.2,
k0 = 300, α = 1.95 ·10−4.

We consider the set point c̃∗ = 0.41, T̃ ∗ = 3.3. Then, the model of the reactor can
be written in the form:

dx1

dt
=

(1− c̃∗− x1)

q
− k0e

− E
(T̃∗+x2) (c̃∗+ x1) (5.30)

dx2

dt
=

(T̃f − T̃ ∗ − x2)

q
+ k0e

− E
(T̃∗+x2) (c̃∗+ x1)−αu(T̃ ∗+ x2− T̃c) (5.31)

where x1 and x2 denote the deviations of the concentration and temperature from
the set point values (x1 = c̃− c̃∗, x2 = T̃ − T̃ ∗). The forward Euler method with step
size TE = 0.01 is used to integrate the equations (5.30)–(5.31).

The coolant flowrate u is quantized with the following levels of quantization:

u ∈UA = {umin, ust , umax} (5.32)
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Fig. 5.4 State space partition of the explicit approximate quantized NMPC.
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where umin = 250, umax = 500, and ust = 370 is the steady state value corresponding
to the set point c̃∗ = 0.41, T̃ ∗ = 3.3.

The suggested approximate mp-NIP approach is applied to design an explicit
quantized NMPC controller for this reactor. The NMPC minimizes the cost func-
tion (5.9) subject to the system equations (5.30)–(5.31) and the input constraint

Fig. 5.5 From top to bot-
tom: The control input,
the state variable x1, and
the state variable x2 for
α = 1.95 ·10−4.
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(5.32). In (5.9), h(xt+k|t ,ut+k) ≡ ut+k − ust and the cost matrices are Qx = Px =

diag{100, 300}, R = 1 · 10−4. The horizon is N = 30 with a sampling time for the
control input Ts = 1. In (5.6), it is chosen δx = 0.002. The state space to be parti-
tioned is defined by X = [−0.4, 0.6]× [−0.4, 0.5]. The state space partition of the
explicit quantized NMPC controller is shown in Fig. 5.4. It has 341 regions and 14
levels of search. Thus, 14 arithmetic operations are needed in real-time to compute
the control input (14 comparisons). Due to quantization, it would be straightforward
to join neighboring regions with the same solution at the first sample of the control
trajectory in a postprocessing step. This would lead to a significant reduction of the
complexity of the partition.

The performance of the closed-loop system was simulated for initial condition
x(0) = [0.58, 0.2]T . The resulting closed-loop response corresponding to the ex-
plicit approximate quantized NMPC (the solid curves) and to the exact quantized
NMPC (the dotted curves) is depicted in the state space (Fig. 5.4), as well as tra-
jectories in time (Fig. 5.5). The results show that the exact and the approximate
solutions are indistinguishable.

Fig. 5.6 Top: The subop-
timal state feedback law
û(x1,x2). Bottom: The op-
timal state feedback law
u∗(x1,x2).
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The suboptimal and the optimal state feedback laws are shown in Fig. 5.6.
In order to study the robustness of the explicit controller, we assume that the real

value of the heat transfer coefficient is α = 1.85 · 10−4 (instead of α = 1.95 · 10−4

used to design the controller). The closed-loop response corresponding to α = 1.85 ·
10−4 and initial condition x(0) = [0.58, 0.2]T is depicted in Fig. 5.7. It can be seen

Fig. 5.7 From top to bot-
tom: The control input,
the state variable x1, and
the state variable x2 for
α = 1.85 ·10−4.
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that the closed-loop trajectory has an offset due to the fact that the steady state value
ust (cf. equation (5.32)) corresponding to the set point c̃∗ = 0.41, T̃ ∗ = 3.3 is a
function of the coefficient α .
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Chapter 6
Explicit Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

Abstract. This chapter considers two approaches to explicit min-max NMPC of
general constrained nonlinear discrete-time systems in the presence of bounded dis-
turbances and/or parameter uncertainties. The approach in Section 6.2 is based on
an open-loop min-max NMPC formulation and constructs a piecewise linear (PWL)
approximation of the optimal solution. An explicit open-loop min-max NMPC con-
troller is designed for a continuous stirred tank reactor, whose heat transfer coeffi-
cient is an uncertain parameter. The approach in Section 6.3 adopts a closed-loop
(also referred to as feedback) min-max NMPC formulation and builds a piecewise
nonlinear (PWNL) approximation of the optimal sequence of feedback control poli-
cies. The approach is applied to design an explicit feedback min-max NMPC con-
troller for a cart and spring system in the presence of bounded disturbances.

6.1 Introduction

Models are only an approximation of the real process, and therefore it is important
for NMPC to be robust with respect to model uncertainties and disturbances. One
approach to robust NMPC design is to optimize the nominal performance while
guaranteeing robust feasibility and robust stability of the closed-loop system. Thus
in [25], a Lyapunov-based robust NMPC design for input-affine nonlinear systems
subject to uncertainty and input constraints is developed, which allows for an ex-
plicit characterization of the closed-loop stability region. Another robust NMPC
strategy consists of solving a min-max problem to optimize the robust performance
while enforcing the state and input constraints for all possible uncertainties. The
min-max robust MPC was first proposed in [5]. There are two formulations of min-
max NMPC: the open-loop and the closed-loop (also referred to as feedback) for-
mulation (see [22] for review of the min-max NMPC approaches). The open-loop
min-max NMPC [26, 19, 22] guarantees the robust stability and the robust feasibil-
ity of the system, but it may be very conservative since the control sequence has to
ensure constraints fulfillment for all possible uncertainty scenarios without consid-
ering the fact that future measurements of the state contain information about past

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 127–156.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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uncertainty values. As a result, the open-loop min-max NMPC controllers may have
a small feasible set and sub-optimal performance. An approximate multi-parametric
Nonlinear Programming (mp-NLP) approach to explicit solution of open-loop min-
max NMPC problems has been suggested in [8]. This approach is considered in
Section 6.2.

The conservativeness of the open-loop approaches is overcome by the closed-
loop min-max NMPC [21, 22, 20], where the optimization is performed over a se-
quence of feedback control policies. With the closed-loop approach, the min-max
NMPC problem represents a differential game where the controller is the minimiz-
ing player and the disturbance is the input of the maximizing player (’the nature’)
[21]. The controller chooses the control input as a function of the current state so as
to ensure that the effect of the disturbance on the system output is sufficiently small
for any choice made by ’the nature’. In this way, the closed-loop min-max NMPC
would guarantee a larger feasible set and a higher level of performance compared to
the open-loop min-max NMPC [21]. Recently, several approaches have been devel-
oped for explicit solution of min-max MPC problems for special classes of uncertain
nonlinear systems. Thus, for constrained linear systems with polytopic uncertainty,
approaches for explicit solution of the open-loop and the closed-loop min-max MPC
problems have been developed, respectively in [6] and in [31, 4, 29]. The method
in [2] applies to linear systems with polyhedral parametric uncertainty and additive
bounded disturbances and both the open-loop and the closed-loop min-max control
problems are solved explicitly. Approaches for explicit solution of robust finite hori-
zon optimal control problems for constrained piecewise affine systems with bounded
disturbances have been proposed, based on an open-loop formulation in [27], and
on a closed-loop formulation in [16, 30]. Methods for explicit solution of min-max
MPC or H∞ problems for constrained linear systems with additive bounded uncer-
tainties are suggested in [28] for the open-loop formulation, and in [15, 24] for the
closed-loop formulation. In [11], an approximate mp-NLP approach to explicit so-
lution of closed-loop min-max NMPC problems for general nonlinear systems with
state and input constraints has been developed. This approach is considered in Sec-
tion 6.3.

6.2 Explicit Open-Loop Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

This section considers the approximate mp-NLP approach [8] to explicit solution of
open-loop min-max NMPC problems for constrained nonlinear systems in the pres-
ence of model uncertainty. It is based on an orthogonal search tree structure of the
state space partition and thus represents an extension of the approach in [14]. The
explicit NMPC controller is designed by formulating a min-max optimization prob-
lem, i.e. by minimizing the worst-case with respect to the uncertain parameters cost
function value. The controller formulation is robust in the sense that all constraints
are attempted satisfied for all possible values of the uncertain parameters.
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6.2.1 Formulation of the Open-Loop Min-Max NMPC Problem
as an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),θ ) (6.1)

y(t) =Cx(t) (6.2)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input and output variable,

θ is the vector of time-invariant uncertain parameters that is assumed to belong to a
bounded polyhedral set θ ∈ΘA ⊂R

s. It is assumed that the function f is sufficiently
smooth. It is also supposed that a full measurement of the state x(t) is available at
the current time t. We consider the following open-loop robust NMPC problem: For
the current x(t), NMPC minimizes the worst-case cost function through the follow-
ing optimization:

Problem 6.1:
V ∗max(x(t)) = min

U
max
θ∈ΘA

J(U,x(t),θ ) (6.3)

subject to xt|t = x(t) and:

ymin ≤ yt+k|t ≤ ymax , ∀θ ∈ΘA , k = 1, ... , N (6.4)

umin ≤ ut+k ≤ umax , k = 0, 1, ... , N− 1 (6.5)

xT
t+N|t xt+N|t ≤ δ , ∀θ ∈ΘA (6.6)

xt+k+1|t = f (xt+k|t ,ut+k,θ ) , θ ∈ΘA , k ≥ 0 (6.7)

yt+k|t =Cxt+k|t , k ≥ 0 (6.8)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x(t),θ ) =
N−1

∑
k=0

[

xT
t+k|tQxt+k|t + uT

t+kRut+k

]

+ xT
t+N|tPxt+N|t (6.9)

Here, N is a finite horizon. The formulation implies that a direct single shooting
strategy is employed, see Section 2.2.2.1, i.e. the equality constraints (6.7)–(6.8) are
substituted and eliminated in the cost and constraint functions. In (6.3), the existence
of the minimum and maximum are implicitly assumed. From a stability point of
view it is desirable to choose δ in (6.6) as small as possible [23]. However, due to
the fact that xt+N|t depends on the unknown θ , the feasibility of Problem 6.1 will
rely on δ being sufficiently large. A part of the NMPC design will be to address this
trade-off. If the system is asymptotically stable (or pre-stabilized), N is large, and
possibly an integral action is introduced to account for the steady-state effect of the
uncertainty, then it is more likely that the choice of a small δ will be possible.
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The following assumptions are made:

Assumption 6.1. P, Q, R� 0.

Assumption 6.2. ymin < 0 < ymax.

Assumption 6.3. θ is time-invariant uncertainty that belongs to a bounded poly-
hedral set, i.e. θ = const ∈ ΘA. The polyhedral set ΘA is defined by ΘA = {θ ∈
R

s |θL ≤ θ ≤ θU}, where θL and θU represent given lower and upper bounds
on θ .

Assumption 6.4. For each θ ∈ΘA there exists ust ∈Rm satisfying umin≤ ust ≤ umax,
and such that f (0,ust ,θ ) = 0.

Assumption 6.4 means that the point x = 0, u = ust is a feasible steady state point
for system (6.1)–(6.2). It also implies that the steady state value of the control input
may be different for the different values of the uncertain parameters.

The worst-case value of cost function (6.9) with respect to the uncertain parame-
ters is denoted by:

Vmax(U,x(t)) = max
θ∈ΘA

J(U,x(t),θ ) (6.10)

An optimal solution to the min-max NMPC Problem 6.1 is denoted U∗ = [u∗t , u∗t+1,
... , u∗t+N−1] and the control input is chosen according to the receding horizon pol-
icy u(t) = u∗t . The optimization problem can be formulated in a compact form as
follows:

Problem 6.2:

V ∗max(x(t)) = min
U

max
θ∈ΘA

J(U,x(t),θ ) subject to G(U,x(t),θ )≤ 0 , ∀θ ∈ΘA (6.11)

This min-max NMPC problem defines an mp-NLP, since it is NLP in U parameter-
ized by x. Since the equality constraints are eliminated by the direct single shooting
strategy, (6.11) contains only inequality constraints. Define the set of N-step ro-
bustly feasible initial states as follows:

Xf = {x ∈R
n |G(U,x,θ )≤ 0 , ∀θ ∈ΘA for some U ∈R

Nm} (6.12)

If Assumption 6.4 is satisfied and δ is chosen such that the Problem 6.1 is feasible,
then Xf is a non-empty set. Then, due to Assumption 6.2, the origin is an interior
point in Xf .

6.2.2 Approximate mp-NLP Approach to Explicit Open-Loop
Min-Max NMPC

The numerical computations involved in constructing the approximate explicit state
feedback are simplified under the following convexity assumption:
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Assumption 6.5. G(U,x,θ ) is jointly convex for all (U, x, θ )∈UA×X×ΘA, where
UA = [umin, umax]

N is the set of admissible inputs and X ⊆ Xf ⊆ R
n is a polytopic

set.

We exploit the result in [12], where it has been shown that if the constraint function
G(U,x,θ ) is jointly convex in U and θ , and there is U that is feasible at the vertices
ofΘA, then U is feasible for all θ ∈ΘA. This is formulated in the following lemma:

Lemma 6.1. Suppose Assumptions 6.3 and 6.5 hold and denote the vertices of the
polyhedron ΘA ⊂ R

s with {θ1, θ2, ... , θL}. Denote also ˜Gi(U,x) = G(U,x,θi). If
there exist U that satisfies the following constraints:

˜Gi(U,x)≤ 0 , i ∈ {1, 2, ... , L} (6.13)

then U satisfies the constraints in (6.11).

Thus, we can replace the infinite number of constraints in (6.11) with the following
finite set of jointly convex constraints which are function only of U and x:

˜G(U,x)≤ 0 , ˜G(U,x) = { ˜Gi(U,x) , i = 1, 2, ... , L} (6.14)

Then, the Problem 6.2 can be reformulated as:

Problem 6.3:

V ∗max(x) = min
U

Vmax(U,x) subject to ˜G(U,x)≤ 0 (6.15)

where Vmax(U,x) is defined by (6.10).
Problem 6.3 defines a mp-NLP problem, since it is an NLP in U parameterized

by x. In case the Problem 6.3 is convex, its approximate solution can be found by ap-
plying the approximate mp-NLP approach, described in Section 1.1.5.1. Otherwise,
the approximate mp-NLP approach from Section 1.1.5.2 should be used, where in
addition to the set of vertices of a given hyper-rectangle in the parameter space, the
optimal solution is also searched for at several interior points and global optimiza-
tion methods are applied. Further, if Assumption 6.5 does not hold, then it would
not be sufficient to consider the constraints G(U,x,θ ) only at the vertices of the set
ΘA, i.e. it would not be possible to apply Lemma 6.1, but it would be advisable to
impose these constraints also at a finite set of interior points of the setΘA.

6.2.3 Application 1: Min-Max MPC of a Continuous Stirred Tank
Reactor

The considered approximate mp-NLP approach is applied to design an explicit min-
max NMPC controller for the continuous stirred tank reactor (CSTR), described in
Section 5.5. We consider the set point c̃∗ = 0.41, T̃ ∗ = 3.3. Then, the model of the
reactor can be written in the form [13]:
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dx1

dt
=

(1− c̃∗− x1)

q
− k0e

− E
(T̃∗+x2) (c̃∗+ x1) (6.16)

dx2

dt
=

(T̃f − T̃ ∗ − x2)

q
+ k0e

− E
(T̃∗+x2) (c̃∗+ x1)−αu(T̃ ∗+ x2− T̃c) (6.17)

where x1 and x2 denote the deviations of the dimensionless concentration and tem-
perature from the set point values (x1 = c̃− c̃∗, x2 = T̃ − T̃ ∗). The coolant flow-rate
u is a real-valued control variable. The heat transfer coefficient α is an uncertain
parameter that belongs to the interval:

1.9 ·10−4≤ α ≤ 2.5 ·10−4 (6.18)

The values of the other parameters are given in Section 5.5. The coolant flow-rate is
constrained to be:

0≤ u≤ 600 (6.19)

We discretize the model (6.16)–(6.17) using a sampling time Ts = 1. The forward
Euler method with step size TE = 0.01 is used to integrate the equations (6.16)–
(6.17).

The mp-NLP formulation described in Section 6.2.2 is applied to design an ex-
plicit open-loop min-max NMPC controller for this reactor. The NMPC minimizes
the worst-case (maximal) value with respect to the uncertain parameter θ = α of the
cost function (6.9) subject to the system equations (6.16)–(6.17) and the input con-
straint (6.19). In (6.9), the cost matrices are Q = P = diag{100, 300}, R = 1 ·10−6.
The horizon is N = 30. In (6.6), it is chosen δ = 0.002. The state space to be parti-
tioned is defined by X = [−0.4, 0.6]× [−0.4, 0.5].

The state space partition of the approximate min-max NMPC controller resulting
from the algorithms and procedures in Section 1.1.5.2 is shown in Fig. 6.1. It has 94
regions and 10 levels of search. With one scalar comparison required at each level
of the k− d tree, 10 arithmetic operations are required in the worst case to deter-
mine which region the state belongs to. Totally, 14 arithmetic operations are needed
in real-time to compute the control input (10 comparisons, 2 multiplications and 2
additions).

The performance of the closed-loop system was simulated for initial condition
x(0) = [0.58, 0.3]T and for three values of the uncertain parameter (α = 1.9 ·10−4,
α = 2.2 ·10−4, α = 2.5 ·10−4). The resulting closed-loop response is depicted in the
state space (Fig. 6.1), as well as trajectories in time (Fig. 6.2 and Fig. 6.3). It can be
seen that the explicit approximate min-max NMPC controller brings the reactor to
the desired set point despite of the model uncertainty, and the constraints imposed
on the system are satisfied. In order to avoid a possible offset, the dual-mode control
strategy of [26] was applied and a locally stabilizing control law was used in a
neighborhood of the origin.
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Fig. 6.1 State space partition of the approximate explicit open-loop min-max NMPC and the
state trajectories corresponding to α = 1.9 ·10−4, α = 2.2 ·10−4, α = 2.5 ·10−4.

Fig. 6.2 Control input and
state trajectory correspond-
ing to α = 1.9 ·10−4.

0 10 20 30 40 50 60 70 80
300

350

400

450

500

550

600

650
u(t)

time instants

0 10 20 30 40 50 60 70 80
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x1(t), x2(t)

time instants

x1

x2



134 6 Explicit Min-Max NMPC

Fig. 6.3 Control input and
state trajectory correspond-
ing to α = 2.5 ·10−4.
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6.3 Explicit Closed-Loop Min-Max MPC of Constrained
Nonlinear Systems with Bounded Uncertainties

This section considers the approximate mp-NLP approach [11] to explicit solu-
tion of closed-loop (feedback) min-max NMPC problems for general constrained
nonlinear discrete-time systems in the presence of bounded disturbances and/or pa-
rameter uncertainties. The approach consists in constructing a piecewise nonlinear
(PWNL) approximation to the optimal sequence of feedback control policies, de-
fined on an orthogonal state space partition. Conditions guaranteeing the l2-stability
of the closed-loop system are derived.

6.3.1 Formulation of the Closed-Loop Min-Max NMPC Problem
as an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),w(t))

y(t) = h(x(t),u(t),w(t)), (6.20)

where x(t) ∈R
n, u(t) ∈R

m, y(t) ∈R
r and w(t) ∈Rq are the state, input, output and

disturbance variable. The following constraints are imposed:
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umin ≤ u(t)≤ umax, ymin ≤ y(t)≤ ymax (6.21)

Following [21],

Assumption 6.6. f and h are C2 functions with f (0,0,0) = 0, h(0,0,0) = 0.

Assumption 6.7. ymin < 0 < ymax and umin < 0 < umax.

Assumption 6.8. Let ˜X be a non-empty set containing the origin as an interior
point, and let t0 be a positive integer. The system (6.20) is zero-state detectable
in ˜X, i.e. ∀x(0) ∈ ˜X and ∀u(·) such that constraints (6.21) are satisfied ∀t ≥ 0 and
x(t) ∈ ˜X, ∀t ≥ t0, we have y(t)|w=0 = 0, ∀t ≥ t0⇒ lim

t→∞x(t) = 0.

Assumption 6.9. There exists a positive constant γΔ , such that the disturbance w
satisfies:

‖w(t)‖2 ≤ γ2
Δ‖y(t)‖2, t ≥ t0. (6.22)

Let x(t) = x and u(t) = u. Then, the space of the admissible disturbances is denoted
by W A(u,x)⊂R

q. As mentioned in [21], inequality (6.22) can also represent a wide
class of modeling errors. As in [21], first a H∞ control problem is defined:

Definition 6.1 (H∞ control problem). Design a state-feedback control law:

u = k(x) (6.23)

guaranteeing that the closed-loop system (6.20)–(6.23) with input w ∈W A(u,x) and
output y has a finite l2-gain ≤ γ in a bounded positively invariant set Ω , that is,
∀x(t) ∈Ω :

i. x(t + i) ∈Ω , ∀i > 0.
ii. umin ≤ k(x(t + i))≤ umax and ymin ≤ h(x(t + i),k(x(t + i)),w(t + i))≤ ymax,
∀i≥ 0.

iii.There exists a positive definite function β (x(t)), such that ∀T ≥ 0:

T

∑
i=0
‖y(t + i)‖2 ≤ γ2

T

∑
i=0
‖w(t + i)‖2 +β (x(t)) (6.24)

for any non-zero w ∈W A(u,x).

The following assumption is also made [21]:

Assumption 6.10. Suppose that there exists an auxiliary control law u = ka(x) that
solves the H∞ control problem, with a domain of attraction Ωa, whose boundary is
assumed to be a level curve of a positive function Vka(x) such that:

Vka( f (x,ka(x),w))−Vka(x)≤−
1
2
(‖y‖2− γ2‖w‖2),

∀x ∈Ωa, ∀w ∈W A(u,x) (6.25)

and Vka(0) = 0.
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Definition 6.2 (Admissible disturbance realization). Let K = {k0,k1, ... ,kN−1}�
{k0(xt|t ),k1(xt+1|t), ... ,kN−1(xt+N−1|t )} be a vector of feedback control policies and
N be a finite horizon. Consider the closed-loop system for i = 0,1,2, ... ,N− 1:

xt+i+1|t = f (xt+i|t ,ki(xt+i|t ),wt+i)

yt+i|t = h(xt+i|t ,ki(xt+i|t),wt+i) (6.26)

with initial state xt|t = x. Then, the disturbance realization W = {wt , ... ,wt+N−1} ∈
R

qN is admissible for the given K and x if the following holds:

‖wt+i‖2 ≤ γ2
Δ‖yt+i|t‖2, i = 0,1,2, ... ,N− 1. (6.27)

The space of the admissible disturbance realizations over horizon N and correspond-
ing to the given K and x is denoted by W B(K,x)⊂ R

qN .

It is supposed that a full measurement x of the state is available at the current time
t. We consider the feedback min-max NMPC problem [22]:

Definition 6.3 (Constrained feedback min-max NMPC problem). Suppose that
Assumptions 6.6–6.10 hold. For the current x, the feedback min-max NMPC solves
the following optimization problem:

V o
max(x) = min

K
max

W∈W B(K,x)
J(K,x,W ) (6.28)

subject to xt|t = x and:

ymin ≤ yt+i|t ≤ ymax, i = 1, ... ,N− 1 (6.29)

umin ≤ ut+i ≤ umax, i = 0, 1, ... ,N− 1 (6.30)

xt+N|t ∈Ωa (6.31)

ut+i = ki(xt+i|t ), i = 0, 1, ... ,N− 1 (6.32)

xt+i+1|t = f (xt+i|t ,ut+i,wt+i), wt+i ∈W A(ut+i,xt+i|t), 0≤ i≤ N− 1 (6.33)

yt+i|t = h(xt+i|t ,ut+i,wt+i), wt+i ∈W A(ut+i,xt+i|t ), 0≤ i≤ N− 1 (6.34)

and the cost function given by:

J(K,x,W ) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N|t ) (6.35)

Here, N is the finite horizon and γ is the l2-gain which is interpreted as the distur-
bance attenuation level. Note that in (6.28)–(6.35) wt+i denotes a single disturbance
at time instant t + i, while W is an admissible disturbance realization as specified in
Definition 6.2. An auxiliary control law ka(x) is typically obtained by solving the
H∞ control problem for the linearized system [26]. Thus, a practical way to compute
a nonlinear control ka(x) satisfying Assumption 6.10 is suggested in [21].
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An optimal solution to the feedback min-max NMPC problem (6.28)–(6.35) is
denoted Ko = {ko

0,k
o
1, ... ,k

o
N−1} � {ko

0(xt|t),ko
1(xt+1|t), ... ,ko

N−1(xt+N−1|t )} and the
control input is chosen according to the receding horizon policy u(xt|t) = ko

0(xt|t ). It
is assumed that:

Assumption 6.11. Each feedback control policy ki(xt+i|t ), i = 0,1, ... ,N − 1, has
the form:

ki(xt+i|t ) = αika(xt+i|t)+ ri(ξi,xt+i|t) = gi(pi,xt+i|t), (6.36)

where pi = [αT
i ξ T

i ]T ∈ R
ni are the parameters that need to be optimized, ka(xt+i|t )

is an auxiliary control law that satisfies Assumption 6.10, and ri(ξi,xt+i|t) is a con-
tinuous function with ri(ξi,0) = 0.

In general, the parameterization of the form (6.36) would lead to an approximate
solution to the feedback min-max NMPC problem (6.28)–(6.35). Denote with P the
whole set of parameters that need to be determined, i.e. P= [pT

0 pT
1 ... pT

N−1]
T ∈Rnp ,

where np =
N−1
∑

i=0
ni. Then, the worst-case value of cost function (6.35) with respect

to the disturbances is denoted by:

Vmax(P,x) = max
W∈W B(P,x)

J(P,x,W ) (6.37)

Note that the argument K is now substituted with the argument P. Using a direct
single shooting strategy to eliminate all the equality constraints (6.32)–(6.34), the
optimization problem (6.28)–(6.35) can be formulated in a compact form as follows
[11]:

Problem 6.4:

V o
max(x) = min

P
max

W∈W B(P,x)
J(P,x,W ) (6.38)

subject to G(P,x,W )≤ 0, ∀W ∈W B(P,x) (6.39)

Problem 6.4 defines an mp-NLP, since it is NLP in P parameterized by x. We remark
that the constraints function G(P,x,W ) in (6.39) is implicitly defined by (6.29)–
(6.34). Define the set of N-step robustly feasible initial states:

Xf = {x ∈R
n |G(P,x,W )≤ 0, ∀W ∈W B(P,x) for some P ∈ R

np} (6.40)

If the problem (6.28)–(6.35) is feasible, then Xf is a non-empty set. Then, due to
Assumption 6.7, the origin is an interior point in Xf .

As mentioned in Chapter 1, in parametric programming problems one seeks the
solution Po(x) as an explicit function of the parameters x in some set X ⊆ Xf ⊆ R

n

[7]. However, in the general case, an exact explicit solution of Problem 6.4 with the
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associated shape of the state space partition can not be found. Therefore, it would
be necessary to use methods for approximate explicit solution by preliminary spec-
ifying the structure of the partition. In [9, 11], practical computational methods for
constructing an explicit approximate solution of feedback min-max NMPC prob-
lems for general constrained nonlinear systems are suggested, which are based on
an orthogonal structure of the state space partition. Since the regions in the partition
do not overlap (except at the boundary), the approximation corresponds to orthogo-
nal basis-functions that form a complete basis on the space of continuous functions.
This ensures an arbitrarily good approximation if the optimal solution is a continu-
ous function. Note that this type of partition does not impose any restrictions on the
class of problems that can be solved.

6.3.2 Approximate mp-NLP Approach to Explicit Closed-Loop
Min-Max NMPC

In [9, 11], an approximate mp-NLP approach to explicit solution of the feedback
(closed-loop) min-max NMPC problem (Definition 6.3) is proposed. In contrast to
the method in [8] (considered in Section 6.2) where a sequence of control actions is
optimized, here the optimization is performed over a sequence of feedback control
policies. Another difference from most approximate mp-NLP approaches, where
a piecewise linear solution is obtained, is that the presented method constructs an
explicit approximate solution, which represents a piecewise nonlinear function.

6.3.2.1 Non-convexity and Close-to-Global Solutions

From a physical insight on the considered system (6.20), it is supposed that the
disturbance w can vary in the range:

wmin ≤ w(t)≤ wmax, (6.41)

with known wmin, wmax. The procedure used to generate a discrete set of admissible
disturbance realizations is the following [11]:

Procedure 6.1 (Generation of discrete set of admissible disturbance realiza-
tions). Consider system (6.20), where w(t) ∈ [wmin; wmax]. Let N be a finite hori-
zon and K = {k0,k1, ... ,kN−1} be a vector of feedback control policies where each
feedback function ki(x), i = 0, ... ,N− 1 , has the form (6.36). Suppose that the ini-
tial state of the system (6.20) is xt|t = x and let jmax be a positive integer. Then, for
a given vector P = [pT

0 pT
1 ... pT

N−1]
T of parameters of K, a finite set W 0(P,x) =

{W1,W2, ... ,WNW } of admissible disturbance realizations is generated where each
realization Ws = {ws

t ,w
s
t+1, ... ,w

s
t+i, ... ,w

s
t+N−1}, s = 1,2, ... ,NW is determined by

applying Algorithm 6.1.
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Algorithm 6.1. Generation of an admissible disturbance realization.

Input: N, P = [pT
0 pT

1 ... pT
N−1]

T , x, jmax.
Output: Ws = {ws

t ,w
s
t+1, ... ,w

s
t+i, ... ,w

s
t+N−1}.

1. Let i = 0.
2. while i≤ N− 1 do
3. Let f lag = 0, j = 0.
4. while f lag = 0 do
5. Generate value ws

t+i ∈ [wmin; wmax] by using random generator
with uniform distribution.

6. j = j+ 1.
7. if ‖ws

t+i‖2 ≤ γ2
Δ‖h(xt+i|t ,ki(xt+i|t),ws

t+i)‖2 then
8. Compute xt+i+1|t = f (xt+i|t ,ki(xt+i|t),ws

t+i).
9. f lag = 1.
10. else
11. if j > jmax, terminate (an admissible disturbance realization

is not found).
12. end if
13. end while
14. i = i+ 1.
15. end while

In Algorithm 6.1, the parameter jmax denotes the maximal allowed number of un-
successful iterations and it is typically chosen to be jmax = 100q, where q is the di-
mension of w. A special case is the case when the disturbance is of the form w(t) =
dT y(t), where d ∈Rr is a vector of uncertain parameters with dmin≤ d≤ dmax. Then,
the set of the admissible disturbance realizations can be generated by simulating the
closed-loop system response for different values ds ∈ [dmin; dmax], s = 1,2, ... ,NW

of d.
The procedure used to approximate Problem 6.4 is [11]:

Procedure 6.2 (Approximation of Problem 6.4). Suppose that Assumptions 6.6–
6.11 hold. Let P be a given vector of parameters of the sequence K of feedback
control policies. Suppose that a finite set W 0(P,x) = {W1,W2, ... ,WNW } of admis-
sible disturbance realizations has been determined by applying Procedure 6.1. An
estimate ˜Vmax(P,x) of Vmax(P,x) is computed as follows:

˜Vmax(P,x) = max
Wi∈W0(P,x)

J(P,x,Wi) (6.42)

Denote with ˜G(P,x) the set of constraints functions:

˜G(P,x) = {G(P,x,Wi),Wi ∈W 0(P,x)} (6.43)
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Then Problem 6.4 is approximated with the following mp-NLP problem:

Problem 6.5:

˜V o
max(x) = min

P
˜Vmax(P,x) subject to ˜G(P,x)≤ 0. (6.44)

Thus, we can approximate the infinite number of constraints (6.39) with a finite
amount of constraints which are functions only of P and x. For a given min-max
NMPC problem it would be necessary to analyze how the size of the set of admis-
sible disturbance realizations generated with Procedure 6.1 would effect the worst-
case cost function value and the satisfaction of constraints in Problem 6.4. It should
be expected that with the increase of the number of the generated disturbance se-
quences, the probability of satisfaction of the constraints in Problem 6.4 would be
higher. On the other hand, this will lead to an increase of the computational efforts
related to the design of the explicit NMPC controller. Therefore, for every specific
min-max NMPC problem, a tradeoff should be made and a reasonable number of
admissible disturbance realizations should be determined. Hereafter, let X ⊂ R

n be
a hyper-rectangle where we seek an explicit approximate solution of Problem 6.5.

Problem 6.5 can be non-convex with multiple local minima. Therefore, it would
be necessary to apply an efficient initialization of Problem 6.5 so to find a close-to-
global solution. One possible way to obtain this is to find a close-to-global solution
at a point v0 ∈ X0 (where X0 is a hyper-rectangle in the state space) by comparing
the local minima corresponding to several initial guesses and then to use this so-
lution as an initial guess at the neighboring points vi ∈ X0, i = 1,2, ... ,N1, i.e. to
propagate the solution. For this purpose, Procedures 1.1 and 1.2 from Chapter 1 can
be used to generate a set of points V0 = {v0,v1,v2, ... ,vN1}, associated to X0, and to
find a close-to-global solution at these points, respectively. It should be noted that
the notation used here is different from the one in Chapter 1. Thus here, the points
and the set of points are denoted with vi and V0 (instead of wi and W0), the vector
of optimization variables is P (instead of z), the objective function and the con-
straints function in the mp-NLP problem are ˜Vmax(·, ·) and ˜G(·, ·) (instead of f (·, ·)
and g(·, ·)).

6.3.2.2 Computation of Explicit Approximate Solution

We restrict our attention to a hyper-rectangle X ⊂ R
n where we seek to approx-

imate the close-to-global sequence of control policies K∗ = {k∗0,k∗1, ... ,k∗N−1} �
{k∗0(xt|t),k∗1(xt+1|t), ... ,k∗N−1(xt+N−1|t )}. We require that the state space partition
is orthogonal and can be represented as a k− d tree [3]. The main idea of the
approximate mp-NLP approach is to construct a piecewise nonlinear (PWNL)
approximation ̂K = {̂k0,̂k1, ... ,̂kN−1} � {̂k0(xt|t ),̂k1(xt+1|t), ... ,̂kN−1(xt+N−1|t)}
to the close-to-global feedback K∗ = {k∗0,k∗1, ... ,k∗N−1} on X . The constituent se-

quences of nonlinear control policies are denoted with ̂KXi = {̂k0,Xi , ... ,
̂kN−1,Xi} �

{̂k0,Xi(xt|t ), ... ,̂kN−1,Xi(xt+N−1|t )} and are defined on hyper-rectangles Xi covering
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X . This means that a sequence ̂KXi is applied for ∀xt|t ∈ Xi. Let ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} be an approximation to the close-to-global solution K∗ = {k∗0, ... ,k∗N−1},
valid in X0. Denote with PX0 = [pT

0,X0
... pT

N−1,X0
]T the parameters of ̂KX0 . Ac-

cording to Assumption 6.11, ̂ki,X0(xt+i|t ) = gi(pi,X0 ,xt+i|t ), i = 0,1, ... ,N − 1. Let
̂

˜V max(PX0 ,x) be the cost function value due to initial state x = xt|t and sequence ̂KX0

of control policies, i.e.

̂

˜V max(PX0 ,x) = max
Wi∈W0(PX0 ,x)

J(PX0 ,x,Wi). (6.45)

Then, the approximate sequence

̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0}� {g0(p0,X0 ,xt|t ), ... ,gN−1(pN−1,X0 ,xt+N−1|t)}, (6.46)

valid for ∀xt|t ∈ X0, is computed with the following procedure [11]:

Procedure 6.3 (Computation of explicit approximate solution). Suppose that As-
sumptions 6.6–6.11 hold. Consider any hyper-rectangle X0 ⊆ X with a set of points
V0 = {v0,v1,v2, ... ,vN1} determined with Procedure 1.1. Suppose that a close-to-
global solution of Problem 6.5 at the points vi ∈ V0, i = 0,1,2, ... ,N1 has been
obtained by applying Procedure 1.2 and let ˜V ∗max(vi), i = 0,1,2, ... ,N1 be the close-
to-global cost function values. Compute the parameters PX0 = [pT

0,X0
... pT

N−1,X0
]T of

the sequence ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} by solving the NLP:

min
PX0

N1

∑
i=0

(

̂

˜V max(PX0 ,vi)− ˜V ∗max(vi)+ μ‖g0(p0,X0 ,vi)− k∗0(vi)‖2
2

)

(6.47)

subject to ˜G(PX0 ,vi)≤ 0, ∀vi ∈V0. (6.48)

In (6.47), the parameter μ > 0 is a weighting coefficient. Note that the sequence
̂KX0 = {̂k0,X0 , ... ,

̂kN−1,X0}, computed with Procedure 6.3, satisfies the constraints in
Problem 6.5 only for the discrete set of points V0 ⊂ X0.

6.3.2.3 Estimation of Error Bounds

Suppose that the parameters PX0 of the sequence ̂KX0 , valid in X0, has been computed
with Procedure 6.3. Then, for the cost function approximation error in X0 we have:

˜ε(x) = ̂˜V max(PX0 ,x)− ˜V ∗max(x)≤ ε0, x ∈ X0. (6.49)

The following procedure can be used to obtain an estimate ̂ε0 of the maximal ap-
proximation error ε0 in X0 [11]:
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Procedure 6.4 (Computation of error bound approximation). Consider a hyper-
rectangle X0 ⊆ X with a set of points V0 = {v0,v1,v2, ... ,vN1} determined by ap-
plying Procedure 1.1. Compute an estimate ̂ε0 of the error bound ε0 through the
following maximization:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(
̂

˜V max(PX0 ,vi)− ˜V ∗max(vi)). (6.50)

The estimate ̂ε0 represents an approximate degree of sub-optimality, since it depends
on the finite set of admissible disturbance realizations generated with Procedure 6.1.

6.3.2.4 Approximate mp-NLP Algorithm

Assume the tolerance ε̄ > 0 of the cost function approximation error is given. Denote
with SX0 the volume of a given hyper-rectangular region X0 ⊂ X ⊂ R

n, i.e. SX0 =
n
∏
i=1
Δxi, whereΔxi is the size of X0 along the state variable xi. Let Smin be the minimal

allowed volume of the regions in the partition of X . The following algorithm is
proposed to compute the explicit approximate feedback min-max NMPC controller
on X [11]:

Algorithm 6.2. Explicit feedback min-max NMPC.

Input: Data to Problem 6.5, the number N0 of internal regions (used in
Procedure 1.1), the parameter μ (used in Procedure 6.3), the approximation
tolerance ε̄ .
Output: Partition Π = {X1,X2, ...,XNX } and associated PWNL control function
̂KΠ = {̂KX1 ,

̂KX2 , ... ,
̂KXNX
}.

1. Initialize the partition to the whole hyper-rectangle, i.e. Π = {X}.
Mark the hyper-rectangle X as unexplored, f lag := 1.

2. while f lag = 1 do
3. while ∃ unexplored hyper-rectangles in Π do
4. Select any unexplored hyper-rectangle X0 ∈Π .
5. Compute a solution to Problem 6.5 at the center point v0 of X0 by applying

Procedure 1.2a.
6. if Problem 6.5 has a feasible solution at v0 then
7. Define a set of points V0 = {v0,v1,v2, ... ,vN1} by applying Procedure 1.1.
8. Compute a solution to Problem 6.5 for x fixed to each of the points vi,

i = 1,2, ... ,N1 by applying Procedure 1.2b.
9. if Problem 6.5 has a feasible solution at all points vi, i = 1,2, ... ,N1 then
10. if 0 ∈ X0 then
11. Let ̂KX0 = ka(x).
12. If X0 ⊆Ωa, mark X0 as explored and feasible. Otherwise,

mark X0 to be split.
13. else
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14. Compute a sequence ̂KX0 = {̂k0,X0 , ... ,
̂kN−1,X0} of control policies

using Procedure 6.3, as an approximation to be used in X0.
15. if a sequence of control policies was found then
16. Compute an estimate ̂ε0 of the error bound ε0 in X0 by applying

Procedure 6.4.
17. If ̂ε0 > ε̄ , mark the hyper-rectangle X0 to be split. Otherwise,

mark X0 as explored and feasible.
18. else
19. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
20. end if
21. end if
22. else
23. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
24. end if
25. else
26. Compute the volume SX0 of the hyper-rectangle X0. If SX0 < Smin,

mark X0 infeasible and explored. Otherwise, mark X0 to be split.
27. end if
28. end while
29. f lag := 0
30. if ∃ hyper-rectangles in Π that are marked to be split then
31. f lag := 1
32. while ∃ hyper-rectangles in Π that are marked to be split do
33. Select any hyper-rectangle X0 ∈Π marked to be split.
34. Split X0 into hyper-rectangles X1, ... , XNs by applying heuristic splitting

rules. Mark X1, ... , XNs unexplored, remove X0 from Π , and add
X1, ... , XNs to Π .

35. end while
36. end if
37. end while

In step 34, the heuristic splitting rules from [10] (described in details in
Section 1.1.5.2) are applied to partition a given hyper-rectangle X0. Thus, if a se-
quence of control policies valid in X0 is computed, but the required accuracy is not
achieved, then X0 is split by a hyperplane through its center and orthogonal to that
axis where a maximal reduction of the approximation error can be achieved. If there
is no feasible solution of Problem 6.5 at the center point v0 of X0, or the NLP prob-
lem (6.47)–(6.48) is infeasible, then X0 is split by a hyperplane through its center
and orthogonal to an arbitrary axis. If some of the points associated to X0 are feasi-
ble and others are not, then X0 is split into hyper-rectangles such that some of them
will include only feasible points.
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6.3.3 Stability

6.3.3.1 Computation of Approximate Region of Attraction for the
Sub-optimal Closed-Loop System

Let XΠ =
NX
⋃

i=1
Xi, Xi ∈Π be the set associated to the partitionΠ obtained with Algo-

rithm 6.2. Consider the suboptimal closed-loop system:

x(t + 1) = f (x(t),̂k0(x(t)),w(t)) (6.51)

y(t) = h(x(t),̂k0(x(t)),w(t)), (6.52)

where ̂k0(x(t)) is the approximate PWNL feedback law determined with Algorithm
6.2 and is defined on the set XΠ . The fact that the explicit NMPC controller is speci-
fied for an initial condition x(t) ∈ XΠ does not imply that x(t) is within the region of
attraction for the system (6.51)–(6.52). Therefore, the set XΠ may not be a domain
of attraction for this system. In fact, although a feasible control law exists at state
x(t) ∈ XΠ , the successor state x(t + 1) may go out of the set XΠ . Moreover, the set
XΠ may not be convex (see the simulation example in Section 6.3.4). Therefore, first
it would be useful to find a set Ω1 ⊆ XΠ , which is an inner convex approximation
of the set XΠ . Then, a convex set Ω2 ⊆Ω1 should be determined such thatΩ2 ⊃Ωa

and for every initial state that belongs to the setΩ2, the state trajectory of the system
(6.51)–(6.52) will lie in the setΩ1. This is specified in the following definition [11].

Definition 6.4 (Approximate region of attraction for the suboptimal closed-loop

system). LetΠ = {X1,X2, ... ,XNX }, XΠ =
NX
⋃

i=1
Xi, Xi ∈Π and ̂K = {̂k0,̂k1, ... ,̂kN−1}

be respectively the state space partition, the associated set in the state space and
the approximate PWNL sequence of feedback control policies, determined with Al-
gorithm 6.2. Let ̂P = [p̂T

0 p̂T
1 ... p̂T

N−1]
T be the parameters of ̂K. Assume that XΠ

is a non-empty set. Suppose that there exist polyhedral sets Ω1 and Ω2, such that
Ωa ⊂ Ω2 ⊆ Ω1 ⊆ XΠ . Let EΩ2 = {x j |x j ∈ Ω2, j = 1,2 ... ,Np2} denote a finite set
of randomly generated points. Let the state of the system (6.51)–(6.52) at time t be
xt|t = x j ∈ EΩ2 . Consider a finite set W 0(̂P,x j) = {W1,W2 ... ,WNW } of admissible
disturbance realizations Ws = {ws

t ,w
s
t+1, ... ,w

s
t+N−1}, s = 1,2 ... ,NW , generated by

applying Procedure 6.1. Let Xs, j = {xs, j
t+1|t ,x

s, j
t+2|t , ... ,x

s, j
t+N|t} denote the state trajec-

tory of the system (6.51)–(6.52) obtained with ̂K and corresponding to initial state
x j ∈ EΩ2 and disturbance realization Ws ∈W 0(̂P,x j), i.e.:

xs, j
t+i+1|t = f (xs, j

t+i|t ,̂k0(x
s, j
t+i|t),w

s
t+i) , i = 0,1,2, ... ,N− 1, (6.53)

Then, if:
Xs, j ∈Ω1, ∀x j ∈ EΩ2 and ∀Ws ∈W 0(̂P,x j), (6.54)

the set Ω2 is referred to as an approximate region of attraction for the suboptimal
closed-loop system (6.51)–(6.52).
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Let SΩ1 and SΩ2 denote the volumes of the polyhedral sets Ω1 and Ω2 defined as
their Lebesgue measures, i.e. SΩ1 =

∫

Ω1
dx and SΩ2 =

∫

Ω2
dx. The volume of the

set XΠ is SXΠ =
NX

∑
i=1

∫

Xi
dx, i.e. it represents the sum of the Lebesgue measures of all

regions Xi ∈Π . Then, the following procedure is applied to compute an approximate
region of attraction for the closed-loop system (6.51)–(6.52) [11]:

Procedure 6.5 (Computation of approximate region of attraction for the sub-

optimal closed-loop system). Let Π = {X1,X2, ... ,XNX }, XΠ =
NX
⋃

i=1
Xi, Xi ∈ Π and

̂K = {̂k0,̂k1, ... ,̂kN−1} be respectively the state space partition, the associated set
in the state space and the approximate PWNL sequence of feedback control poli-
cies, determined with Algorithm 6.2. Assume the set XΠ is non-empty. Suppose
that there exist polyhedral sets Ω1 = {x ∈ XΠ |a1

i ≤ h1
i x≤ b1

i , i = 1,2, ... ,NΩ1} and
Ω2 = {x∈ XΠ |a2

i ≤ h2
i x≤ b2

i , i = 1,2, ... ,NΩ2}, such thatΩa⊂Ω2⊆Ω1⊆ XΠ . Let
EΩ1 = {xk |xk ∈Ω1, k = 1,2, ... ,Np1} and EΩ2 = {x j |x j ∈Ω2, j = 1,2, ... ,Np2} de-
note finite sets of randomly generated points. Then, for specified NΩ1 , NΩ2 , Np1 and
Np2, the approximate region of attraction for the closed-loop system (6.51)–(6.52)
is computed by implementing the following steps:

1. Determine the polyhedron Ω ∗1 = {x ∈ XΠ |a1∗
i ≤ h1∗

i x ≤ b1∗
i , i = 1,2, ... ,NΩ1},

where a1∗
i , h1∗

i , b1∗
i , i = 1,2, ... ,NΩ1 are computed by solving the optimization

problem:

{a1∗
i ,h1∗

i ,b1∗
i , i = 1,2, ... ,NΩ1}= arg min

a1
i ,h

1
i ,b

1
i ,i=1,...,NΩ1

∣

∣SΩ1− SXΠ

∣

∣

subject to EΩ1 ⊆ XΠ . (6.55)

2. Determine the approximate region of attraction as the following polyhedronΩ∗2 =

{x∈ XΠ |a2∗
i ≤ h2∗

i x≤ b2∗
i , i= 1,2, ... ,NΩ2}, where a2∗

i , h2∗
i , b2∗

i , i= 1,2, ... ,NΩ2

are computed by solving the optimization problem:

{a2∗
i ,h2∗

i ,b2∗
i , i = 1,2, ... ,NΩ2}= arg min

a2
i ,h

2
i ,b

2
i ,i=1,...,NΩ2

∣

∣SΩ2− SΩ1

∣

∣

subject to EΩ2 ⊆Ω1,Ωa ⊂Ω2, and condition (6.54). (6.56)

Problems (6.55) and (6.56) are nonlinear programming problems and nonlinear pro-
gramming techniques [1] can be used to solve them. Further in the paper, the sets
Ω ∗2 and Ω ∗1 determined with Procedure 6.5 will be denoted as Ω2 and Ω1.

After Procedure 6.5 is implemented, a partition ΠRH = {R1,R2, ... ,RNR} is built

such thatΩ1 =
NR
⋃

i=1
Ri. Each region Ri ∈ΠRH represents either a hyper-rectangular re-

gion, i.e. Ri≡Xj or a polyhedral region, i.e. Ri =Xj∩Ω1, where Xj ∈Π . The PWNL
function associated to the partitionΠRH is defined as ̂KΠRH = {̂KR1 ,

̂KR2 , ... ,
̂KRNR
},

where ̂KRi ≡ ̂KXj , ̂KXj ∈ ̂KΠ , given that Ri ≡ Xj or Ri = Xj∩Ω1. As result, we obtain
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a partition ΠRH and an approximate PWNL sequence of feedback control policies
̂KRH = {̂kRH

0 ,̂kRH
1 , ... ,̂kRH

N−1} defined on the set Ω1.

6.3.3.2 Stability Result

This section considers the stability of the closed-loop system:

x(t + 1) = f (x(t),̂kRH
0 (x(t)),w(t)) (6.57)

y(t) = h(x(t),̂kRH
0 (x(t)),w(t)), (6.58)

where ̂kRH
0 (x(t)) is the approximate PWNL feedback law determined with Algo-

rithm 6.2 and Procedure 6.5 and is defined on the approximate region of attraction
Ω2 computed with Procedure 6.5.

The following notation is introduced. Let N be the prediction horizon and xt|t = x

is the initial state of the system (6.57)–(6.58). For any x ∈ Ω1, let ̂KN ≡ ̂KRH =
{̂kRH

0 (xt|t ), ... ,̂kRH
N−1(xt+N−1|t )} denote the approximate solution to the optimiza-

tion Problem 6.5. Let XN = {xt+1|t , ... ,xt+N|t} and YN = {yt|t , ... ,yt+N−1|t} de-

note the state and output trajectories of system (6.57)–(6.58) obtained with ̂KN

and corresponding to a disturbance realization WN = {wt , ... ,wt+N−1} ∈W B(̂KN ,x)
(W B(̂KN ,x)⊂R

qN is the set of the admissible disturbance realizations over horizon
N). Let ̂Vmax(x,N) be the worst-case cost function value due to initial state xt|t = x

and sequence ̂KN , i.e.:

̂Vmax(x,N) = max
WN∈WB(̂KN ,x)

J(x, ̂KN ,WN ,N), (6.59)

where

J(x, ̂KN ,WN ,N) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N|t ). (6.60)

Consider the sequence

̂KN+1 = {̂kRH
0 (xt|t), ... ,̂kRH

N−1(xt+N−1|t),ka(xt+N|t )} (6.61)

for the Problem 6.5 with horizon N + 1. Then, XN+1 = {xt+1|t , ... ,xt+N|t , xt+N+1|t}
and YN+1 = {yt|t , ... ,yt+N−1|t ,yt+N|t} are the associated state and output trajecto-
ries of the system (6.57)–(6.58) corresponding to initial state xt|t = x and a dis-

turbance realization WN+1 = {wt , ... ,wt+N−1,wt+N} ∈WC(̂KN+1,x) (WC(̂KN+1,x)
⊂ R

q(N+1) is the set of the admissible disturbance realizations over horizon N + 1).
Let ̂Vmax(x,N + 1) be the worst-case cost function value due to initial state xt|t = x

and sequence ̂KN+1, i.e.:

̂Vmax(x,N + 1) = max
WN+1∈WC(̂KN+1,x)

J(x, ̂KN+1,WN+1,N + 1), (6.62)
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where J(x, ̂KN+1,WN+1,N + 1) = 1
2

N
∑

i=0
[‖yt+i|t‖2− γ2‖wt+i‖2]+Vka(xt+N+1|t ).

Let ̂PRH be the parameters of ̂KRH . The following assumption is made on the so-
lution ̂KRH and the sets Ω1 and Ω2 resulting from Algorithm 6.2 and Procedure 6.5
[11]:

Assumption 6.12 (Constraints satisfaction). The constraints G(̂PRH ,x,W )≤ 0 are
satisfied for all x ∈ Ω1 and all W ∈W B(̂PRH ,x). The sets Ω1 and Ω2 are such that
Ωa ⊂ Ω2 ⊆ Ω1 ⊆ XΠ and xt+i+1|t = f (xt+i|t ,̂kRH

i (xt+i|t ),wt+i) ∈ Ω1, ∀xt|t ∈ Ω2,

∀wt+i ∈W A(̂kRH
i (xt+i|t ),xt+i|t), i = 0,1,2, ... ,N− 1.

Here, the stability result is formulated [11]:

Theorem 6.1. Given an auxiliary control law ka(x) and an associated invariant set
Ωa, consider two positive constants γ and γΔ with γΔγ < 1. Suppose that a non-
empty region of attraction Ω2 and associated set Ω1 have been determined by ap-
plying Procedure 6.5. Let ̂KRH with parameters ̂PRH be the approximate PWNL
feedback law determined with Algorithm 6.2 and Procedure 6.5. Consider the
closed-loop system (6.57)–(6.58), wherêkRH

0 (x(t)) = [I 0 ... 0] ̂KRH. Then, under As-
sumptions 6.6–6.12, the following holds for the closed-loop system (6.57)–(6.58):

i). In the absence of disturbance the origin is asymptotically stable for all x ∈Ω2.
ii).In the presence of disturbance it has l2-gain less than or equal to γ for all x∈Ω2.

Proof ([11]).

i). From Assumption 6.9 it follows that ‖yt+i|t‖2 ≥ ‖wt+i‖2

γ2
Δ

, i ≥ 0. Then, the

condition γΔγ < 1 leads to ‖yt+i|t‖2 > γ2‖wt+i‖2, i ≥ 0. Therefore, the stage cost
L(yt+i|t ,wt+i) =

1
2 (‖yt+i|t‖2− γ2‖wt+i‖2) is a positive definite function. Then, by

taking into account that Vka(x) is a positive definite function too (cf.
Assumption 6.10), it follows:

̂Vmax(x,N)≥ 0,∀x ∈Ω2. (6.63)

In the absence of disturbance, the stage cost is L(y,0) = L(h(x,̂kRH
0 (x),0),0) and it

is a positive definite function defined on the set Ω2 which contains the origin in its
interior (according to Assumption 6.7). Then, it follows from Lemma 4.3 from [17]
that there exist a K -function α1(‖x‖) such that L(h(x,̂kRH

0 (x),0),0) ≥ α1(‖x‖),
∀x ∈ Ω2. Similarly, there exists a K -function α2(‖x‖) such that Vka(x) ≤ α2(‖x‖),
∀x ∈Ωa (the reader is referred to [17] for the definition of K -functions). Assump-
tion 6.10 holds also in the case of absence of disturbance and therefore the setΩa is a
positively invariant set for the nominal system (system (6.57)–(6.58) with w(t) = 0)
in closed-loop with the auxiliary control law ka(x) and the inequality (6.25) takes
the form:

Vka( f (x,ka(x),0))−Vka(x)+L(h(x,ka(x),0),0)≤ 0, ∀x ∈Ωa. (6.64)

Therefore, according to Theorem 1 with Assumption 1 in [18] x = 0 is asymptoti-
cally stable for all x ∈Ω2 when w(t) = 0.
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ii). In a way similar to that in [21], it can be proved that for the worst-case cost
function values defined by (6.59) and (6.62) the following holds:

̂Vmax(x,N + 1)≤ ̂Vmax(x,N),∀x ∈Ω2. (6.65)

Following similar arguments as in [21] and by taking into account (6.65), for ∀x ∈
Ω2 and for wt ∈W A(̂kRH

0 (x),x), we have:

̂Vmax(x,N) ≥ ̂Vmax( f (x,̂kRH
0 (x),wt ),N− 1)+

1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}

≥ ̂Vmax( f (x,̂kRH
0 (x),wt ),N)+

1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}.
(6.66)

Inequality (6.66) can be represented:

̂Vmax( f (x,̂kRH
0 (x),wt ),N)− ̂Vmax(x,N) ≤

−1
2
{‖h(x,̂kRH

0 (x),wt )‖2− γ2‖wt‖2}. (6.67)

Further, by considering that xt+1|t = f (x,̂kRH
0 (x),wt ) and yt|t = h(x,̂kRH

0 (x),wt ), the
inequality (6.67) is written in the form:

̂Vmax(xt+1|t ,N)− ̂Vmax(x,N)≤−1
2
{‖yt|t‖2− γ2‖wt‖2}. (6.68)

In a similar way, it can be shown that:

̂Vmax(xt+i+1|t ,N)− ̂Vmax(xt+i|t ,N)≤−1
2
{‖yt+i|t‖2− γ2‖wt+i‖2}

i = 0,1, ... ,T. (6.69)

After summing the inequalities (6.69) and by taking into account (6.63), we obtain:

T

∑
i=0

1
2
‖yt+i|t‖2 ≤ γ2

T

∑
i=0

1
2
‖wt+i‖2 + ̂Vmax(x,N) (6.70)

∀x ∈ Ω2, ∀T ≥ 0, ∀WN ∈ W B(̂KN ,x). Therefore, the closed-loop system (6.57)–
(6.58) has l2-gain less than or equal to γ in Ω2. �
In the case when Assumption 6.12 does not hold, no guarantee on the l2-gain can be
given and only an estimate of its upper bound can be computed.

6.3.4 Application 2: Min-Max MPC of Cart and Spring System

Consider a cart with a mass M moving on a plane [21], shown in Fig. 6.4.
The carriage is attached to the wall via a spring with elasticity ρ = ρ0e−x1 , where

x1 is the displacement of the carriage from the equilibrium position associated with
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Fig. 6.4 Cart and spring
system [21].  

the external force u = 0. A damper with damping factor hd affects the system in a
resistive way. The damping factor hd is an uncertain parameter and it is only known
that hd = hd +Δhd , where hd = 1.1 and−0.5≤ Δhd ≤ 0.5. The system is described
by the nonlinear discrete-time model [21]:

x1(t + 1) = x1(t)+Tsx2(t) (6.71)

x2(t + 1) = x2(t)−Ts
ρ0

M
e−x1(t)x1(t)−Ts

hd

M
x2(t)+Ts

u(t)
M

+Tsw(t), (6.72)

where x2 is the carriage velocity, w(t) = −Δhd
M x2(t), Ts = 0.4 is the sampling time,

M = 1 and ρ0 = 0.33. Like in [21], we choose y = [x1 x2 u]T and it follows that
w(t) = [0 − Δhd

M 0]y(t). Therefore, ‖w(t)‖2 ≤ γ2
Δ‖y(t)‖2 with γΔ = 0.5, according

to Assumption 6.9. The following input and state constraints are imposed on the
system:

−4≤ u≤ 4, −1.3≤ x2 ≤ 1.3. (6.73)

Therefore, the disturbances vary in the range −1.3γΔ ≤ w ≤ 1.3γΔ . The horizon is
N = 15 and the terminal constraint is:

xt+N|t ∈Ωa, Ωa = {x ∈ R
n |xTΣx≤ δ}, (6.74)

where δ = 0.001 [21] and Σ = [1.3 1.9
1.9 3.0 ].

In [11], the approximate mp-NLP approach (described in Section 6.3.2) is applied
to design an explicit feedback min-max NMPC controller for the cart. The NMPC
minimizes the worst-case of the cost function (6.35) subject to the system equations
(6.71)–(6.72) and the constraints (6.73)–(6.74). In (6.35), it is chosen γ = 1 and
the terminal penalty is Vka = xTΣx [21]. Like in [21], the feedback functions ki(x),
i = 0,1, ... ,N− 1 have the form:

ki(pi,x) = αika(x)+ ξi,1x2
1 + ξi,2x2

2, (6.75)

where pi = [αi ξi,1 ξi,2]
T are the parameters that need to be optimized and ka(x)

is the auxiliary control law. The expression (6.75) implies that for relatively small
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absolute deviations from the equilibrium (small x2
1,t+i|t and x2

2,t+i|t ) the control input
value will be generated mainly by the auxiliary control law ka(xt+i|t). The control
law ka(xt+i|t ) is determined by applying the method in [21]:

ka(xt+i|t ) =−
[

1 0
]

R−1
[

FT
2

FT
3

]

Σ f1(xt+i|t), (6.76)

where:

f1(xt+i|t) =

[

x1,t+i|t +Tsx2,t+i|t
x2,t+i|t −Ts

ρ0
M e−x1, t+i|t x1,t+i|t −Ts

h̄d
M x2,t+i|t

]

(6.77)

F2 =

[

0
Ts
M

]

, F3 =

[

0
Ts

]

, R =

[

FT
2 ΣF2 + I FT

2 ΣF3

(FT
2 ΣF3)

T FT
3 ΣF3−α2I

]

(6.78)

A set of three admissible disturbance realizations is generated which correspond to
three values for the uncertain parameter Δhd (Δhd = −0.5, Δhd = 0, Δhd = 0.5).
One internal region X1

0 ⊂ X0 is used in Procedure 1.1. In (6.47), it is chosen μ = 10.
The approximation tolerance is chosen to be ε̄(X0) =max(ε̄a, ε̄rmin

x∈X0

˜V ∗max(x)), where

ε̄a = 0.003 and ε̄r = 0.01 are the absolute and the relative tolerances.
The state space partition of the feedback min-max NMPC controller (the set XΠ )

and the associated sets Ω1 and Ω2 are shown in Fig. 6.5. It is noticed that in some
part of the set X = [−3, 5]× [−2, 2] a feasible solution does not exist. The number of
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Fig. 6.5 State space partition of the explicit feedback min-max NMPC (the set XΠ ), the
associated sets Ω1 and Ω2, and the state trajectories for hd = 0.6, hd = 1.1, hd = 1.6.
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the inequalities describing the sets Ω1 and Ω2 is specified to be 5 and Procedure 6.5
is applied to determine them. The set Ω1 is obtained graphically by minimizing the
difference between its area and the area of the set XΠ . The computations of the state
trajectories of the suboptimal closed-loop system, performed according to equation
(6.53), have shown that the setΩ2 can be determined simply by increasing the bound
in one of the inequalities describing the setΩ1. The partition (the setΩ1 in Fig. 6.5)
has 537 regions and 14 levels of search. Totally, 32 arithmetic operations are needed
in real-time to compute the control input (14 comparisons, 11 multiplications, 6
additions and 1 exponential).

In Fig. 6.6, the optimal and the suboptimal feedback functions, respectively
u∗(x1,x2) = k∗0(x1,x2) and û(x1,x2) = ̂k0(x1,x2), are shown. In Fig. 6.7, the opti-
mal cost function and the cost function approximation error, associated with the
explicit approximate feedback min-max NMPC, are shown.

Fig. 6.6 The suboptimal
(top) and the optimal (bot-
tom) feedback functions
(views rotated on 140◦).
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Fig. 6.7 The optimal cost
function (top) and the cost
function approximation er-
ror (bottom) (views rotated
on 140◦).
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The performance of the suboptimal closed-loop system was simulated for initial
state x(0) = [−1.6 − 2]T and for three values of hd . The response is depicted in
the state space (Fig. 6.5) and as trajectories in time (Fig. 6.8 and Fig. 6.9). It can
be seen that the explicit feedback min-max NMPC controller brings the cart to the
equilibrium despite of the presence of disturbance, and the constraints imposed on
the system are satisfied. It can also be observed that the state trajectory does not
leave the set Ω1.
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Fig. 6.8 Control input and
state trajectory for hd = 0.6.
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Fig. 6.9 Control input and
state trajectory for hd = 1.6.
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Chapter 7
Explicit Stochastic NMPC

Abstract. This chapter considers two approaches to explicit stochastic NMPC of
general constrained nonlinear discrete-time systems in the presence of disturbances
and/or parameter uncertainties with known probability distributions. In Section 7.2,
an approach to explicit solution of closed-loop (feedback) stochastic NMPC prob-
lems for constrained nonlinear systems, described by stochastic parametric models,
is considered. The approach constructs a piecewise nonlinear (PWNL) approxima-
tion to the optimal sequence of feedback control policies. It is applied to design
an explicit feedback stochastic NMPC controller for the cart and spring system. In
Section 7.3, an explicit approximate approach to open-loop stochastic NMPC based
on Gaussian process models is presented. The Gaussian process models are non-
parametric probabilistic black-box models, whose advantage in comparison to the
stochastic parametric models is that they provide information about the prediction
uncertainty. The approach in Section 7.3 constructs a piecewise linear (PWL) ap-
proximation to the optimal control sequence and it is applied to design an explicit
stochastic NMPC reference tracking controller for a combustion plant.

7.1 Introduction

Mathematical models of engineering systems usually contain some amount of un-
certainty (typically unknown additive disturbances and/or uncertain model parame-
ters). In the robust MPC problem formulation, the model uncertainty is taken into
account. In some applications, the system to be controlled is described by a stochas-
tic model where the probabilistic distribution of the uncertainty is assumed to be
known. Several approaches for constrained open-loop MPC based on stochastic
parametric models are proposed in [32, 44, 46, 31, 7, 8, 5, 6, 24]. The approaches
[32, 44, 46] are based on linear state space models with stochastic parameters and/or
additive noise and they optimize the expected value of the cost function subject to
hard input constraints [32] or probabilistic constraints [44, 46]. In [31, 7, 8, 5],
stochastic linear MPC approaches incorporating a probabilistic cost and probabilis-
tic constraints are developed. The method suggested in [31] is based on a moving

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 157–186.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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average (MA) model with random coefficients. It was further extended to linear
time-varying MA models [8] and to state space models with stochastic uncertainty
in the output or the input map [7, 5]. Methods for open-loop stochastic MPC for
nonlinear systems have been proposed in [6, 24].

The stochastic MPC methods mentioned above employ an open-loop formula-
tion, which guarantees the robust stability and the robust feasibility of the system,
but it may be conservative. This is related to the fact that the control sequence
has to ensure constraints fulfillment for all possible uncertainty scenarios with-
out considering the fact that future measurements of the state contain information
about past uncertain values. Similar to the closed-loop min-max NMPC approaches
[35, 34, 36], the conservativeness of the open-loop stochastic NMPC can be over-
come by a closed-loop stochastic NMPC formulation, where the optimization is
performed over a sequence of feedback control policies. In [18, 1], methods for
closed-loop stochastic NMPC based on on-line optimization have been proposed
and an approximate mp-NLP approach to explicit closed-loop min-max NMPC has
been suggested in [21]. Based on the approach in [21], in [22] the explicit solu-
tion of closed-loop (feedback) stochastic NMPC problems for constrained nonlin-
ear systems in the presence of uncertainty is considered by employing stochastic
parametric models. The approach [22] constructs a piecewise nonlinear (PWNL)
approximation to the optimal sequence of feedback control policies for efficient on-
line implementation. This approach is considered in Section 7.2.

The stochastic MPC approaches [32, 44, 46, 31, 7, 8, 5, 6, 24, 18, 1, 22] are based
on parametric probabilistic models. Alternatively, the stochastic systems can be
modeled with non-parametric models which can offer a significant advantage com-
pared to the parametric models. This is related to the fact that the non-parametric
probabilistic models provide information about prediction uncertainties which are
difficult to evaluate appropriately with the parametric models. The Gaussian process
model is an example of a non-parametric probabilistic black-box model and up to
now it has been applied to model mainly static nonlinearities. Its use and properties
for modeling are reviewed in [41]. The use of Gaussian processes in the modeling of
dynamic systems is a relatively recent development e.g. [17, 43, 26, 2, 29, 28, 39].
An on-line optimization approach and an approximate explicit approach to open-
loop stochastic NMPC based on Gaussian process models have been proposed in
[38, 30, 33] and in [19, 20], respectively. The approach [19, 20] constructs a piece-
wise linear (PWL) approximation to the optimal control sequence and it is consid-
ered in Section 7.3. A recent state-of-the-art survey of control algorithms based on
Gaussian process models is provided in [27].

7.2 Explicit Stochastic NMPC Based on Parametric
Probabilistic Models

This section considers the approximate mp-NLP approach [22] to explicit solu-
tion of closed-loop (feedback) stochastic NMPC problems for constrained nonlin-
ear systems, described by stochastic parametric models. It is assumed that the dis-
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crete probability distribution of the uncertainty is known. The approach constructs
a piecewise nonlinear (PWNL) approximation to the optimal sequence of feedback
control policies, defined on an orthogonal partition of the state space.

7.2.1 Formulation of the Feedback Stochastic NMPC Problem as
an mp-NLP Problem

Consider the discrete-time nonlinear system:

x(t + 1) = f (x(t),u(t),w(t))

y(t) = h(x(t),u(t),w(t)), (7.1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
s and w(t) ∈ R

n are the state, input, output
and uncertainty variables, and t ∈ Z≥0 is the discrete time. The input and the output
variables are required to fulfill the following constraints:

umin ≤ u≤ umax, ymin ≤ y≤ ymax. (7.2)

The following assumptions are made [22]:

Assumption 7.1. f and h are C2 functions with f (0,0,0) = 0, h(0,0,0) = 0.

Assumption 7.2. The uncertainty w(t) = [w1(t), w2(t), ... , wn(t)] includes both in-
ternal (state-dependent) and external uncertainty, i.e. it has the form wi(t) =
λixi(t)+ γi(t), where xi(t) is the i-th element of the state vector x(t). Here λi is a
discrete random parameter, associated to the internal (model) uncertainty. It takes
values in the set Λi = {λ 1

i , λ 2
i , ... , λ

nλi
i } and is characterized with the probability

mass function ϕi : Λi → [0, 1]:

ϕi(λ j
i ) = Pr(λi = λ j

i ) , j = 1, 2, ... , nλi
with

nλi

∑
j=1

ϕi(λ j
i ) = 1. (7.3)

The external uncertainty γi(t) is stochastic and piecewise constant with infrequent
changes in the sense that γi(t) = const for periods of time, which are not less than
Nγ (Nγ ∈ N is supposed to be sufficiently large). It is assumed that γi takes values
in the set Γi = {γ1

i , γ2
i , ... , γ

nγi
i }, which contains the nominal value γi = 0, and it is

characterized with the probability mass function ψi : Γi → [0, 1]:

ψi(γ j
i ) = Pr(γi = γ j

i ) , j = 1, 2, ... , nγi with
nγi

∑
j=1

ψi(γ j
i ) = 1. (7.4)

The overall vector of uncertain model parameters is denoted λ = [λ1, λ2, ... , λn]∈Λ
with Λ = Λ1×Λ2× ... ×Λn. Given λ j = [λ i1

1 , λ i2
2 , ... , λ in

n ], i1 ∈ {1, 2, ... , nλ1
}, ...

, in ∈ {1, 2, ... , nλn}, the probability mass function ϕ : Λ → [0, 1] is:
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ϕ(λ j) = Pr(λ = λ j) = ϕ1(λ i1
1 )ϕ2(λ i2

2 )...ϕn(λ in
n ) (7.5)

with j = 1, ... , nλ and nλ = nλ1
nλ2

...nλn . Similarly, the overall vector of external
uncertainty is denoted γ = [γ1, γ2, ... , γn] ∈ Γ with Γ = Γ1×Γ2× ... ×Γn. Given
γ j = [γ i1

1 , γ i2
2 , ... , γ in

n ], i1 ∈ {1, 2, ... , nγ1}, ... , in ∈ {1, 2, ... , nγn}, the probability
mass function ψ : Γ → [0, 1] is:

ψ(γ j) = Pr(γ = γ j) = ψ1(γ i1
1 )ψ2(γ i2

2 )...ψn(γ in
n ) (7.6)

with j = 1, ... , nγ and nγ = nγ1nγ2 ...nγn .
Then, the overall uncertainty is:

w = diag(λ )x+ γ. (7.7)

Further, the following assumption is made:

Assumption 7.3. ymin < 0 < ymax and umin < 0 < umax.

As in [35], first a H∞ control problem is defined:

Problem 7.1 (H∞ control problem):
Design a state-feedback control law:

u = k(x) (7.8)

guaranteeing that the closed-loop system (7.1)–(7.8) with input w = diag(λ )x+ γ ,
λ ∈Λ , γ ∈Γ , and output y has a finite l2-gain≤ α in a bounded positively invariant
set Ω , that is, ∀x(t) ∈Ω :

i. x(t + i) ∈Ω , ∀i > 0.
ii. umin ≤ k(x(t + i))≤ umax and ymin ≤ h(x(t + i),k(x(t + i)),w(t + i))≤ ymax,
∀i≥ 0.

iii.There exists a positive definite function β (x(t)), such that ∀T ≥ 0:

T

∑
i=0
‖y(t + i)‖2 ≤ α2

T

∑
i=0
‖w(t + i)‖2 +β (x(t)) (7.9)

for any non-zero w.

The following assumption is also made [35]:

Assumption 7.4. There exists an auxiliary control law u = ka(x) that solves the H∞
control problem, with a domain of attractionΩa(ka,α), whose boundary is assumed
to be a level curve of a positive function Vka(x) such that:

Vka( f (x,ka(x),w))−Vka(x)<−
1
2
(‖y‖2−α2‖w‖2)

∀x ∈Ωa(ka,α) , ∀λ ∈Λ , ∀γ ∈ Γ (7.10)

and Vka(0) = 0.
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Denote with:

K = {k0, k1, ... , kN−1}� {k0(xt|t), k1(xt+1|t), ... , kN−1(xt+N−1|t )} (7.11)

a vector of feedback control policies. It is supposed that a full measurement x of the
state is available at the current time t. We consider the following feedback stochastic
NMPC problem [22]:

Problem 7.2 (Constrained feedback stochastic NMPC problem):
Suppose that Assumptions 7.1–7.4 hold. For the current x, the feedback stochastic
NMPC solves the following optimization problem:

V ∗E (x) = min
K

E
λ∈Λ ,γ∈Γ

{J(K,x,λ ,γ)} (7.12)

subject to xt|t = x and:

ymin ≤ yt+i|t ≤ ymax, ∀λ ∈Λ , ∀γ ∈ Γ , i = 1, ... , N (7.13)

umin ≤ ut+i ≤ umax, i = 0, 1, ... , N− 1 (7.14)

xt+N|t ∈Ωa(ka,α), ∀λ ∈Λ , ∀γ ∈ Γ (7.15)

ut+i = ki(xt+i|t), i = 0, 1, ... , N− 1 (7.16)

xt+i+1|t = f (xt+i|t ,ut+i,wt+i), i≥ 0 (7.17)

yt+i|t = h(xt+i|t ,ut+i,wt+i), i≥ 0 (7.18)

and the cost function given by:

J(K,x,λ ,γ) =
1
2

N−1

∑
i=0

[‖yt+i|t‖2−α2‖wt+i‖2]+Vka(xt+N|t ). (7.19)

Here, N is a finite horizon, α is the l2-gain which is interpreted as the uncertainty
attenuation level, and E {.} means mathematical expectation. It is supposed that
N�Nγ , and by Assumption 7.2 it can be accepted that γt+i = const, i= 0, 1, ... , N−
1. Then by Assumption 7.2, the expectation can be expressed:

E
λ∈Λ ,γ∈Γ

{J(K,x,λ ,γ)}=
nλ

∑
i=1

nγ

∑
j=1

J(K,x,λ i,γ j)ϕ(λ i)ψ(γ j) (7.20)

An auxiliary control law ka(x) is typically obtained by solving the H∞ control
problem for the linearized system [35]. Thus, a practical way to compute a non-
linear control ka(x) satisfying Assumption 7.4 for nonlinear input-affine systems is
suggested in [35].

An optimal solution to the feedback stochastic NMPC problem (7.12)–(7.19) is
denoted K∗ = {k∗0, k∗1, ... , k∗N−1} and the control input is chosen according to the
receding horizon policy u(xt|t) = k∗0(xt|t ).
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The following assumption is made:

Assumption 7.5. Each feedback control policy ki(xt+i|t ), i = 0, ... , N − 1 has the
form:

ki(xt+i|t ) = ηika(xt+i|t)+ ri(ξi,xt+i|t) = gi(pi,xt+i|t), (7.21)

where pi = [ηT
i ξ T

i ]T ∈ R
ni are the parameters that need to be optimized, ka(xt+i|t )

is an auxiliary control law that satisfies Assumption 7.4, and ri(ξi,xt+i|t) is a pa-
rameterized continuous function with ri(ξi,0) = 0.

In general, the parameterization of the form (7.21) would lead to an approximate
solution to the feedback stochastic NMPC problem (7.12)–(7.19). Denote with P
the whole set of parameters that need to be determined, i.e.:

P = [pT
0 pT

1 ... pT
N−1]

T ∈ R
np , np =

N−1

∑
i=0

ni. (7.22)

Then, the expected value (7.20) of the cost function is:

VE(P,x) = E
λ∈Λ ,γ∈Γ

{J(P,x,λ ,γ)} . (7.23)

It should be noted that the argument K in the cost function (7.19) is now replaced
with the argument P.

Using the ideas of direct single shooting to eliminate the equality constraints, the
optimization problem (7.12)–(7.19) can be formulated in a compact form as follows
[22]:

Problem 7.3:

V ∗E (x) = min
P

nλ

∑
i=1

nγ

∑
j=1

J(P,x,λ i,γ j)ϕ(λ i)ψ(γ j) (7.24)

subject to : G(P,x,λ ,γ)≤ 0 , ∀λ ∈Λ , ∀γ ∈ Γ . (7.25)

Problem 7.3 defines a multi-parametric Nonlinear Programming (mp-NLP) prob-
lem, since it is NLP in P parameterized by x. We remark that the constraints func-
tion G(P,x,λ ,γ) in (7.25) is implicitly defined by (7.13)–(7.18). Also, since Λ and
Γ are discrete sets, (7.25) represents a finite number of constraints. It should be
noted that the number of constraints (7.25) increases rapidly with the increase of
the horizon and the sizes nλ and nγ of the uncertainty sets Λ and Γ . Thus, as the
horizon increases from N1 to N2 and the sizes of the sets Λ and Γ increase from
n1
λ to n2

λ , and from n1
γ to n2

γ , respectively, the number of constraints will increase
(N2n2

λn2
γ )/(N1n1

λn1
γ) times. This leads to a stronger motivation for an explicit ap-

proach, where the computational complexity is handled in off-line.
Define the set of N-step robustly feasible initial states:

Xf = {x ∈ R
n |G(P,x,λ ,γ)≤ 0, ∀λ ∈Λ , ∀γ ∈ Γ for some P ∈R

np}. (7.26)
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In parametric programming problems one seeks the solution P∗(x) as an explicit
function of the parameters x in some set X ⊆ Xf ⊆ R

n [14].

7.2.2 Approximate mp-NLP Approach to Explicit Feedback
Stochastic NMPC

The approximate mp-NLP approach [22] to explicit feedback stochastic NMPC
is similar to the approach to explicit feedback min-max NMPC (described in
Section 6.3.2). Thus, we restrict our attention to a hyper-rectangle X ⊂ R

n

where we seek to approximate the optimal sequence of control policies K∗ =
{k∗0, k∗1, ... , k∗N−1}. The associated optimal control input is

u∗t+i = k∗i (xt+i|t ) = gi(p∗i ,xt+i|t), i = 0, 1, ... , N− 1, (7.27)

where P∗ = [p∗T0 p∗T1 ... p∗TN−1]
T is determined by solving Problem 7.3. We re-

quire that the state space partition is orthogonal and can be represented as a k− d
tree. The main idea of the approximate mp-NLP approach [22] is to construct a
piecewise nonlinear (PWNL) approximation K̂ = {k̂0, k̂1, ... , k̂N−1} to the optimal
feedback K∗ = {k∗0, k∗1, ... , k∗N−1} on X , where the constituent nonlinear control
functions KXi = {k0,Xi , k1,Xi , ... , kN−1,Xi} are defined on hyper-rectangles Xi cov-
ering X . Let KX0 = {k0,X0 , ... , kN−1,X0} be an approximation to the optimal so-
lution K∗ = {k∗0, ... , k∗N−1}, valid in the whole hyper-rectangle X0. Denote with
PX0 = [pT

0,X0
... pT

N−1,X0
]T the parameters of KX0 . The corresponding approximate

value of the control input is

ût+i = ki,X0(xt+i|t) = gi(pi,X0 ,xt+i|t), i = 0, 1, ... , N− 1. (7.28)

Let V̂E(PX0 ,x) be the cost function value due to initial state x = xt|t and control
function KX0 , i.e.

V̂E(PX0 ,x) = E
λ∈Λ ,γ∈Γ

{

J(PX0 ,x,λ ,γ)
}

. (7.29)

Then, the approximate control function KX0 is determined by applying the following
procedure [22]:

Procedure 7.1 (Computation of explicit approximate solution). Suppose As-
sumptions 7.1–7.5 hold. Consider any hyper-rectangle X0 ⊆ Xf with a set of points
V0 = {v0, v1, v2, ... , vN1} ⊆ X0. Compute the parameters PX0 = [pT

0,X0
... pT

N−1,X0
]T

of the control function KX0 = {k0,X0 , ... , kN−1,X0} by solving the following NLP:

min
PX0

N1

∑
i=0

(

V̂E(PX0 ,vi)−V ∗E (vi)+ μ‖g0(p0,X0 ,vi)− g0(p∗i0 ,vi)‖2) (7.30)

subject to G(PX0 ,vi,λ ,γ)≤ 0, ∀vi ∈V0, ∀λ ∈Λ , ∀γ ∈ Γ . (7.31)
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We remark that the optimal parameters p∗i0 in the feedback function k∗0(vi) =
g0(p∗i0 ,vi) in (7.30) are determined by solving Problem 7.3 for x = vi, and the pa-
rameter μ > 0 is a weighting coefficient.

Note that the control function KX0 = {k0,X0 , ... , kN−1,X0}, computed with Proce-
dure 7.1, satisfies the constraints in Problem 7.3 only for the discrete set of points V0

in the hyper-rectangle X0 and for the discrete sets of values Λ and Γ of the internal
and external uncertainties.

Suppose that the parameter vector PX0 of the control function KX0 , valid in X0,
has been determined by applying Procedure 7.1. Then, for the cost function approx-
imation error in X0 we have:

ε(x) = V̂E(PX0 ,x)−V ∗E (x)≤ ε0, x ∈ X0. (7.32)

An estimate ε̂0 of the error bound ε0 is computed as:

ε̂0 = max
i∈{0,1,2, ... ,N1}

(V̂E(PX0 ,vi)−V ∗E (vi)). (7.33)

If ε̂0 > ε̄ , where ε̄ > 0 is the specified tolerance of the cost function approximation
error, the region X0 is divided and the procedure is repeated for the new regions.

The approximate mp-NLP algorithm for design of explicit feedback stochas-
tic NMPC represents a slight modification of the algorithm, described in Sec-
tion 6.3.2.4.

It should be noted that in case of non-convexity of Problem 7.3, it can not be
guaranteed that the approximation error ε(x) associated to the explicit feedback
stochastic NMPC will satisfy the requirement ε(x) ≤ ε̄ for all x ∈ X . The non-
convexity may also imply that the constraints (7.25) are violated at some points of
the state space. In this respect, the described computational method does not neces-
sarily lead to guaranteed properties, but when combined with verification and anal-
ysis methods gives a practical tool for development and implementation of explicit
feedback stochastic NMPC. The possibility for implementation verification is a sig-
nificant advantage of the explicit NMPC in comparison to NMPC based on real-time
optimization.

7.2.3 Application 1: Stochastic MPC of the Cart and Spring
System

Consider the cart and spring system, described in Section 6.3.4. The damping fac-
tor hd is uncertain, but it is known that hd = h̄d + λ . Here, h̄d = 1.1 and λ is a
stochastic parameter. It is supposed that −0.5≤ λ ≤ 0.5 and the following discrete
set of values is considered λ ∈ Λ = {−0.5, 0, 0.5} with the corresponding values
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of the probability mass function ϕ(−0.5) = 0.2, ϕ(0) = 0.6, ϕ(0.5) = 0.2. The
external uncertainty for this system is γ = 0. Recall that the system is described by
the following nonlinear discrete-time model [35]:

x1(t + 1) = x1(t)+Tsx2(t) (7.34)

x2(t + 1) = x2(t)−Ts
ρ0

M
e−x1(t)x1(t)−Ts

hd

M
x2(t)+Ts

u(t)
M

+Tsw(t), (7.35)

where x2 is the carriage velocity, w(t) = − λ
M x2(t) is a state dependent (internal)

uncertainty, Ts = 0.4 is the sampling time, M = 1 and ρ0 = 0.33. The following
input and state constraints are imposed on the system:

−4≤ u≤ 4, −1.3≤ x2 ≤ 1.3. (7.36)

The horizon is N = 15 and the terminal constraint is:

xt+N|t ∈Ωa , Ωa = {x ∈ R
n |xTΣx≤ δ}, (7.37)

where δ = 0.001 [35] and Σ = [1.3 1.9
1.9 3.0 ].

The mp-NLP approach described in Section 7.2.2 is applied to design an explicit
feedback stochastic NMPC controller for the cart [22]. The NMPC minimizes the
mathematical expectation (7.20) of the cost function (7.19) subject to the system
equations (7.34)–(7.35) and the constraints (7.36)–(7.37). In (7.19), it is chosen α =
1 and the terminal penalty is given by Vka = xTΣx [35]. Like in Section 6.3.4, the
feedback functions ki(xt+i|t ), i = 0, ... , N− 1 have the form:

ki(pi,xt+i|t) = ηika(xt+i|t)+ ξi,1x2
1,t+i|t + ξi,2x2

2,t+i|t , (7.38)

where pi = [ηi ξi,1 ξi,2]
T are the parameters that need to be optimized and ka(xt+i|t )

is the auxiliary control law. The control law ka(xt+i|t ) is determined in the way de-
scribed in Section 6.3.4 (respectively in [35]).

In [23], a condition on the approximation tolerance has been derived such that
the asymptotic stability of the nonlinear system in closed-loop with the approximate
explicit NMPC is guaranteed. According to this condition, the tolerance is chosen
to be dependent on the state, which would lead to a state space partition with less
complexity in comparison to that corresponding to an uniform tolerance. In [22], a
similar approach is applied and the approximation tolerance is chosen to be depen-
dent on the state as ε̄(X0) = max(ε̄a, ε̄r min

x∈X0
V ∗E (x)), where ε̄a = 0.005 and ε̄r = 0.03

are the absolute and the relative tolerances.
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Fig. 7.1 State space partition of the explicit approximate feedback stochastic NMPC and the
state trajectories corresponding to λ =−0.5, λ = 0, λ = 0.5.

The state space partition of the explicit approximate feedback stochastic NMPC
controller is shown in Fig. 7.1. The partition has 150 regions and 11 levels in a binary
search tree representation. Totally, 27 arithmetic operations are needed in real-time
to compute the control input by traversing the binary search tree (11 comparisons,
10 multiplications, 5 additions and 1 exponential).

The performance of the closed-loop system was simulated for initial state x(0) =
[4 1.5]T and for the three values of the stochastic parameter λ . The response is
depicted in the state space (Fig. 7.1), as well as trajectories in time (Fig. 7.2 and
Fig. 7.3). In Fig. 7.2 and Fig. 7.3, the control and state trajectories obtained with
the explicit min-max NMPC controller (designed in Section 6.3.4) are given for
comparison. The cost function values corresponding to the closed-loop trajectories
associated to the explicit stochastic NMPC and to the explicit min-max NMPC
are V̂E = 121.64 and V̂min−max = 122.57 (for hd = 0.6), and V̂E = 141.59 and
V̂min−max = 141.70 (for hd = 1.6). Therefore, the explicit min-max NMPC appears
to be slightly more conservative, since it is characterized with larger values of the
cost function in comparison to the explicit stochastic NMPC. It can be seen that
the explicit feedback stochastic NMPC controller brings the cart to the equilibrium
despite of the presence of stochastic uncertainty, and the constraints imposed on the
system are satisfied.
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Fig. 7.2 Control input and state trajectory for hd = 0.6.
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Fig. 7.3 Control input and state trajectory for hd = 1.6.
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7.3 Explicit Stochastic NMPC Based on Gaussian Process
Models

In this section, the approximate mp-NLP approach [19, 20] to explicit open-loop
stochastic NMPC based on Gaussian process models (abbreviated as GP-NMPC) is
presented. The approach constructs a piecewise linear (PWL) approximation to the
optimal control sequence, defined on an orthogonal partition of the state space.

7.3.1 Modeling of Dynamic Systems with Gaussian Processes

A Gaussian process is an example of the use of a flexible, probabilistic, nonpara-
metric model which directly provides us with quantification of the uncertainty of
predictions. Its use and properties for modeling are reviewed in [41].

A Gaussian process is a collection of random variables which have a joint mul-
tivariate Gaussian distribution. Assuming a relationship of the form y = f (z) be-
tween an input z ∈ R

D and output y ∈ R, we have y(1), y(2), ... , y(M) ∼N (0,K),
where Kpq = Cov(y(p),y(q)) =C(z(p),z(q)) gives the covariance between the out-
put points y(p) and y(q) corresponding to the input points z(p) and z(q). Thus, the
mean μ(z) (usually assumed to be zero) and the covariance function C(z(p),z(q))
fully specify the Gaussian process. Note that the covariance function C(z(p),z(q))
can be any function with the property that it generates a positive definite covariance
matrix. A common choice is the Gaussian covariance function [45, 41]:

C(z(p),z(q)) = v1 exp

[

−1
2

D

∑
i=1

wi(zi(p)− zi(q))
2

]

+ v0αpq (7.39)

whereΘ = [w1, ... , wD, v0, v1] is a vector of parameters called hyperparameters and
zi denotes the i-th component of the D-dimensional input vector z. The hyperpa-
rameter v1 controls the magnitude of the covariance and the hyperparameters wi

represent the relative importance of each component zi of vector z. The part v0αpq

represents the covariance between outputs due to white noise, where αpq is the Kro-
necker operator and v0 is the white noise variance (when assuming different kinds
of noise the covariance function should be changed appropriately, e.g. [15]). For a
given problem, the hyperparameters are learned (identified) using the data at hand.
After the learning, one can use the w parameters as indicators of ’how important’
the corresponding input components (dimensions) are: if wi is zero or near zero it
means that the inputs in dimension i contain little information and could possibly be
removed.

Consider a set of M D-dimensional input vectors Z = [z(1), z(2), ... , z(M)]T and
a vector of output data Y = [y(1), y(2), ... , y(M)]T . Based on the data (Z,Y ), and
given a new input vector z∗, we wish to estimate the probability distribution of the
corresponding output y∗. Unlike other models, there is no model parameter deter-
mination as such, within a fixed model structure. With this model, most of the effort
consists in tuning the parameters of the covariance function. This is done by maxi-
mizing the log-likelihood with the vector of hyperparametersΘ :
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L (Θ) = log(p(Y |Z)) =−1
2

log(|K|)− 1
2

Y T K−1Y − M
2

log(2π) (7.40)

where K is the M×M training covariance matrix with determinant |K| and the
hyperparameters distribution p(Θ |Y, Z) is approximated with their most likely val-
ues. The optimization requires the computation of the derivative of L with respect
to each of the parameters:

∂L (Θ)

∂θi
=−1

2
trace

(

K−1 ∂K
∂θi

)

+
1
2

Y T K−1 ∂K
∂θi

K−1Y (7.41)

Here, it involves the computation of the inverse of the M×M covariance matrix K
at every iteration, which can be computationally demanding for large M. The reader
is referred to [41] for a detailed description of the parameter optimization methods.

Given that the hyperparameters are known, we can estimate the probability dis-
tribution of the corresponding output y∗ at some new input vector z∗:

p(y∗ |Y, Z, z∗) =
p(Y, y∗, Z, z∗)

p(Y |Z, z∗)
(7.42)

It can be shown that this distribution is Gaussian with mean and variance [45]:

μ(z∗) = k(z∗)T K−1Y (7.43)

σ2(z∗) = k0(z
∗)− k(z∗)T K−1k(z∗) (7.44)

where k(z∗) = [C(z(1),z∗), ... ,C(z(M),z∗)]T is the M× 1 vector of covariances be-
tween the test input and the training inputs and k0(z∗) = C(z∗,z∗) is the autoco-
variance of the test input. The vector k(z∗)T K−1 in (7.43) can be interpreted as a
vector of smoothing terms which weights the training outputs Y to make a predic-
tion at the test point z∗. If the new input is far away from the data points, the term
k(z∗)T K−1k(z∗) in (7.44) will be small, so that the predicted variance σ2(z∗) will be
large. Thus, from the system identification point of view equation (7.43) provides
the model prediction and equation (7.44) its confidence.

Gaussian processes can be used to model static nonlinearities and can therefore
be used for modeling of dynamic systems if delayed input and output signals are
used as regressors [26]. In such cases an autoregressive model is considered, such
that the current predicted output depends on previous estimated outputs, as well as
on previous control inputs:

z(t) = [ŷ(t− 1), ŷ(t− 2), ... , ŷ(t−L), u(t− 1), u(t− 2), ... , u(t−L)]T

ŷ(t) = f (z(t))+η(t) (7.45)

where t denotes consecutive number of data sample, L is a given lag, and η(t) is
the prediction error. The quality of the predictions with a Gaussian process model is
assessed by computing the average squared error (ASE):
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ASE =
1
M

M

∑
i=1

[μ(ŷ(i))− y(i)]2 (7.46)

and by the log predictive density error (LD) [26]:

LD =
1
2

log(2π)+
1

2M

M

∑
i=1

(

log[σ2(ŷ(i))]+
[μ(ŷ(i))− y(i)]2

σ2(ŷ(i))

)

(7.47)

In (7.46), (7.47), μ(ŷ(i)) and σ2(ŷ(i)) are the prediction mean and variance, y(i) is
the system’s output and M is the number of the training points.

The Gaussian process model now not only describes the dynamic characteris-
tics of the non-linear system, but at the same time provides information about the
confidence in the predictions. The Gaussian process can highlight areas of the in-
put space where prediction quality is poor, due to the lack of data, by indicating
the higher variance around the predicted mean. The Gaussian process modelling
approach in [26] has been applied to model the dynamics of various systems e.g.
[2, 29, 20, 28, 39].

7.3.2 Formulation of the Stochastic GP-NMPC Problem as an
mp-NLP Problem

Consider a stochastic nonlinear discrete-time system:

x(t + 1) = f (x(t),u(t))+ ξ (t) (7.48)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and input variables, ξ (t) ∈ R
n are

Gaussian disturbances, and f : Rn×R
m → R

n is a nonlinear continuous function.
Suppose that a Gaussian process model of the system (7.48) is obtained by applying
the approach described in Section 7.3.1. Suppose the initial state x(t) = xt|t and the
control inputs u(t + k) = ut+k, k = 0, 1, ... , N− 1 are given. Then, the probability
distribution of the predicted states xt+k+1|t , k = 0, 1, ... , N− 1 which correspond to
the given initial state xt|t and control inputs ut+k, k = 0, 1, ... , N−1 can be obtained
[16]:

xt+k+1|t |xt+k|t , ut+k ∼N (μ(xt+k+1|t ),σ2(xt+k+1|t)), k = 0, 1, ... , N− 1 (7.49)

The 95% confidence interval of the random variable xt+k+1|t is [μ(xt+k+1|t)−
2σ(xt+k+1|t); μ(xt+k+1|t) + 2σ(xt+k+1|t)], where σ(xt+k+1|t) is the standard
deviation.

In [19, 20], a reference tracking NMPC problem based on a Gaussian process
model (GP-NMPC) is considered, where the goal is to have the state vector x(t)
track the reference signal r(t) ∈Rn. In the problem formulation, the type of the cost
function is like the one used in [3]. Suppose that a full measurement of the state
x(t) is available at the current time t. For the current x(t), the reference tracking
GP-NMPC solves the following optimization problem [19, 20]:
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Problem 7.4:

V ∗(x(t),r(t),u(t− 1)) = min
U

J(U,x(t),r(t),u(t− 1)) (7.50)

subject to xt|t = x(t) and:

μ(xt+k|t)− 2σ(xt+k|t)≥ xmin, k = 1, ... , N (7.51)

μ(xt+k|t)+ 2σ(xt+k|t)≤ xmax, k = 1, ... , N (7.52)

umin ≤ ut+k ≤ umax, k = 0, 1, ... , N− 1 (7.53)

Δumin ≤ Δut+k ≤ Δumax, k = 0, 1, ... , N− 1 (7.54)

max{‖μ(xt+N|t)− 2σ(xt+N|t)− r(t)‖,
‖μ(xt+N|t)+ 2σ(xt+N|t)− r(t)‖} ≤ δ (7.55)

Δut+k = ut+k− ut+k−1, k = 0, 1, ... , N− 1 (7.56)

xt+k+1|t |xt+k|t , ut+k ∼N (μ(xt+k+1|t),σ2(xt+k+1|t))
k = 0, 1, ... , N− 1 (7.57)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x(t),r(t),u(t− 1)) =
N−1

∑
k=0

[‖μ(xt+k|t)− r(t)‖2
Q+ ‖Δut+k‖2

R

]

+‖μ(xt+N|t)− r(t)‖2
P (7.58)

Here, N is a finite horizon and P, Q, R � 0. From a stability point of view it is de-
sirable to choose δ in the terminal constraint (7.55) sufficiently small [37]. If the
horizon N is large and the Gaussian process model has a small prediction uncer-
tainty, then it is more likely that the choice of a small δ will be possible.

It should be noted that a more general stochastic MPC problem is formulated
in [31, 7, 8, 5], where a probabilistic formulation of the cost includes the proba-
bilistic bounds of the predicted variable. The stochastic MPC problem considered
here (Problem 7.4) is of a more special form since the cost function (7.58) includes
the mean value of the random variable. However, the approximate approach to the
explicit solution of Problem 7.4 (which is based on the approximate mp-NLP algo-
rithms, given in Section 1.1.5) can be easily extended to the more general case of
stochastic MPC problem formulation where the optimization is performed on the
expected value of the cost function.

We introduce a parameter vector:

x̃(t) = [x(t), r(t), u(t− 1)] ∈R
ñ, ñ = 2n+m (7.59)

Let x̃ be the value of the parameter vector at the current time t. Using a direct single
shooting strategy, the equality constraints are eliminated and the optimization Prob-
lem 7.4 can be formulated in a compact form as follows [19, 20]:
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Problem 7.5:
V ∗(x̃) = min

U
J(U, x̃) subject to G(U, x̃)≤ 0 (7.60)

The GP-NMPC problem defines an mp-NLP, since it is NLP in U parameterized by
x̃. An optimal solution to this problem is denoted U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the
control input is chosen according to the receding horizon policy u(t) = u∗t . Define
the set of feasible parameter vectors as follows:

Xf = {x̃ ∈R
ñ |G(U, x̃)≤ 0 for some U ∈ R

Nm} (7.61)

If δ in (7.55) is chosen such that the Problem 7.4 is feasible, then Xf is a non-empty
set. In parametric programming problems one seeks the solution U∗(x̃) as an explicit
function of the parameters x̃ in some set X ⊆ Xf ⊆ R

ñ [14]. In case the Problem 7.5
is convex, its approximate solution can be found by applying the approximate mp-
NLP approach, described in Section 1.1.5.1. Otherwise, the approximate mp-NLP
approach from Section 1.1.5.2 should be used, where in addition to the set of ver-
tices of a given hyper-rectangle in the parameter space, the optimal solution is also
computed at several interior points and global optimization methods are applied.

7.3.3 Application 2: Reference Tracking Control of a Combustion
Plant

Energy production is one of the largest sources of air pollution and CO2. Therefore
a rational and ecological use of energy is the main task of the thermoelectric power
plants. A feasible method to reduce the NOx, CO, CO2 emissions and to increase
the efficiency is to improve the control strategies of existing power plants, i.e. to
optimize the combustion process [11]. The objectives for the improvement of the
power plant combustion process are energy saving, pollution reduction, longer plant
lifetime, less downtime and maintenance effort, increased safety in operation, i.e.
overall cost reduction. These goals can be achieved through application of modern
control algorithms with low on-line computational complexity and high reliability
of the implementation. Feedback combustion control is possible since continuous
flue gases analyzers are available [11]. For control purposes it would be ideal to
measure all flue gases components. But the price for such a realization would cur-
rently be too high in comparison with the savings achieved. Therefore the control
of the oxygen fraction in the flue gases, measured on-line by the well known in-situ
ZrO2 analyzers, is often the best solution [10]. Based on that, different algorithms
for combustion control have been studied in [42, 9, 4, 10, 25] and more recent in e.g.
[40, 13]. It should be noted that these methods assume that the combustion model
is known exactly. However, the mathematical models are only an approximation of
the real process and they usually contain some amount of uncertainty (unknown ad-
ditive disturbances and/or uncertain model parameters). In order to achieve a robust
performance of the control system it would be necessary to take into account the
uncertainty when designing the controller.
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In [20], a Gaussian process model of a combustion plant (a steam boiler PK 401
at Cinkarna Celje Company, Celje, Slovenia) is obtained. Then, the approximate
mp-NLP approach (described in Section 1.1.5.2) is applied to design an explicit
reference tracking GP-NMPC controller that brings the air factor of the combustion
plant to its optimal value with every change of the load factor. Thus, an efficient on-
line optimization of the combustion plant is achieved where both the economic and
the environmental aspects are taken into account. Because of the operation safety
of the considered combustion plant and because interrupts in plant operation are
not favored by company management, the results obtained in [20] are based on
simulation data to show the potential use of the approximate mp-NLP approach to
the optimal control of industrial combustion plants.

7.3.3.1 Optimal Operation of Combustion Plants

Fuel composition can be expressed with percentage of carbon C, hydrogen H, oxy-
gen O, nitrogen N, sulphur S, ash A and water W [12]:

C + H + O + N + S + A + W = 100% (7.62)

Composition of the air is usually expressed only with the percentage of oxygen O2

and nitrogen N2:
O2 +N2 = 21%+ 79%= 100% (7.63)

The combustion process is schematically shown in Fig. 7.4. The limited fuel sources,
considerable increase in the fuel prices and the enormous environment pollution
require decreasing the fuel use, the heat losses and the amount of harmful flue gases
emissions, i.e. to optimize the combustion process [9]. It has been shown in [9] that
in order to achieve an optimal operation of the combustion plants, it is necessary to
optimize the air factor λ defined as:

λ =
Vair

Vair,stoich
(7.64)

COMBUSTION 

Fuel 
(C+H+O+N+S+A+W) 

Air 
(O2 + N2)

Incomplete combustion 
CO, CO2, H2O, O2, N2

NOx, SOx

Complete combustion 
CO2, H2O, O2, N2

NOx, SOx

Heat

Fig. 7.4 Input and output flows of the combustion process.
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Fig. 7.5 Techno-
economical and environ-
mental viewpoints of com-
bustion [9].
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where Vair is the volume of the air which goes into the combustion chamber and
Vair,stoich is the stoichiometrically required volume of the air necessary for complete
combustion of 1 kg fuel. The combustion plant is working with air deficiency when
λ < 1, and with air excess when λ > 1. Fig. 7.5 from [9] shows the aspects of the
optimal combustion of fuel. From techno-economical viewpoint, the losses of the
combustion can be reduced in two ways: 1) by reducing the quantity of the unburned
fuel and 2) by reducing the quantity of the flue gases, i.e. of the heat losses. This
leads to the optimal value λopt,t of the air factor (cf. Fig. 7.5). From environmental
viewpoint, it is desired to minimize the quantity of the harmful emissions and the
corresponding optimal value of the air factor is λopt,e (cf. Fig. 7.5). By taking into
account both the techno-economical and the environmental aspects of combustion
operation, it follows that the value λ of the air factor should be kept within the
interval [λopt,t; λopt,e].

It has been also shown in practice that the optimal air factor λopt depends on the
load factor β defined as:

β =
Φfuel

Φfuel,max
(7.65)

where Φfuel and Φfuel,max are respectively the current and the maximal allowed fuel
flowrate. The relation λopt = f (β ) is shown in Fig. 7.6, where it can be seen that the
optimal operation of the combustion plant is achieved with an air excess.

Therefore, the goal is to apply control algorithms that will maintain the air factor
on its optimal value with every change of the load factor. Due to the importance of
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Fig. 7.6 The dependence of
the optimal air factor on the
load factor [9].

opt

1

1min

stoichiometrically required
volume of air 

the described issue from economic and also environmental aspect, the combustion
control is the field of constant development and research. This is also the driver
for the development of the modeling and control approaches presented in the next
sections.

7.3.3.2 Gaussian Process Model of a Combustion Plant

In [20], the system under investigation is a process of combustion in a steam boiler
PK 401 at Cinkarna Celje Company, Celje, Slovenia. It was not possible to perform
experiments on this plant during its operation because of plant safety and because
interrupts in plant operation are not favored by company management. Therefore,
the Gaussian process model identification was based on simulation data generated
by adding a Gaussian disturbance to the analytical model developed in [12].

The fuel composition is expressed with the percentages of carbon C, hydrogen H,
oxygen O, nitrogen N, sulphur S, ash A and water H2O (denoted respectively with
xfuel

C , xfuel
H , xfuel

O , xfuel
N , xfuel

S , xfuel
A , xfuel

H2O):

xfuel
C + xfuel

H + xfuel
O + xfuel

N + xfuel
S + xfuel

A + xfuel
H2O = 100% (7.66)

The composition of the air is assumed to be 21% oxygen and 79% nitrogen. The
equations of the developed analytical model [12] are based on the stoichiometric
chemical reactions of combustion:

C+O2→ CO2 +Q1 (7.67)

C+
1
2

O2→ CO+Q2 (7.68)

2H2 +O2→ 2H2O+Q3 (7.69)

S+O2→ SO2 +Q4 (7.70)
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where Q1, Q2, Q3, Q4 are the heats of the reactions. The composition of the flue
gases, resulting from the combustion process, is expressed in the following way
[12]:

xO2 + xCO + xCO2 + xSO2 + xN2 + xH2O = 100% (7.71)

where xO2, xCO, xCO2, xSO2 , xN2 and xH2O are the volume percentages of oxygen,
carbon monoxide, carbon dioxide, sulphur dioxide, nitrogen and water. Then, the
volume balances for the separate components of the flue gases are described by the
following equations [12]:

dxO2

dt
=

1
Vk
{−xO2 [Φair +Φfuel(Vd−Vo)]+ 21Φair− 100VoΦfuel} (7.72)

dxCO

dt
=

1
Vk
{−xCO[Φair +Φfuel(Vd−Vo)]+ 1.866axfuel

C Φfuel} (7.73)

dxCO2

dt
=

1
Vk
{−xCO2 [Φair +Φfuel(Vd−Vo)]+ 1.866(1− a)xfuel

C Φfuel} (7.74)

dxSO2

dt
=

1
Vk
{−xSO2 [Φair +Φfuel(Vd−Vo)]+ 0.699xfuel

S Φfuel} (7.75)

dxN2

dt
=

1
Vk
{−xN2 [Φair +Φfuel(Vd−Vo)]+ 79Φair+ 0.8xfuel

N Φfuel} (7.76)

dxH2O

dt
=

1
Vk
{−xH2O[Φair +Φfuel(Vd−Vo)]+ 11.117xfuel

H Φfuel

+1.244xfuel
H2OΦfuel} (7.77)

In (7.72)–(7.77),Vk is the volume of the combustion chamber [m3], Φfuel is the nor-
malized total flow of fuel [kg s−1],Φair is the normalized total flow of air [N m3 s−1],
Vo is the theoretically required oxygen volume for the combustion of one unit of
fuel [N m3 kg−1], Vd is the theoretically obtained gas volume from one unit of fuel
[N m3 kg−1], a is the relative portion of carbon converted into CO.

The model (7.72)–(7.77) enables the simulation of the six flue gases components.
However, for control design purposes only its O2-part (equation (7.72)) named also
O2-model is used [9, 10]. The input to the O2-model is the angular position of the
damper, which is used to control the air flow Φair. The model output is the oxygen
concentration in the flue gases. As the damper is a part of the closed-loop, it has to
be modeled and added to the O2-model (7.72). The dependence of the air flow Φair

on the angle φ of the damper is given by the following relation [9]:

Φair =
Φair,max

2
exp

(

3(φ − 45)
45

)

, 0◦ ≤ φ ≤ 45◦ (7.78)

Φair =
Φair,max

2

(

2− exp

(−3(φ − 45)
45

))

, 45◦ ≤ φ ≤ 90◦ (7.79)

where Φair,max is the maximum flow of air.
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The O2-model (7.72) is a deterministic model, which does not take into account
the stochastic disturbances (e.g. change in the fuel composition, change of the hu-
midity of the air flow) that may influence the combustion process. In order to con-
sider the stochastic nature of plant operation, the dynamics of xO2 is represented by
the following stochastic discrete-time model [20]:

xO2(t + 1) = f (xO2(t),Φfuel(t),φ(t))+ ξ (t) (7.80)

Here, ξ (t) ∈ R is a Gaussian disturbance which represents the additive effect of the
unmeasured stochastic disturbances. The sampling time, determined according to
system dynamics, was selected to be Ts = 1 [s].

In [20], the signals φ andΦfuel for identification were generated by random num-
ber generators with normal distributions. The signal xO2 was computed from the
O2-model (7.72) and a Gaussian disturbance ξ with zero mean and variance 0.05
was added to it. The φ signal blocking was Tφ = 5Ts, i.e. it is kept constant for 5 time
instants. TheΦfuel signal blocking was TΦfuel = 100Ts. The number M of the signals
samples used for the identification determines the dimension of the covariance ma-
trix. In our case, M = 1000. Based on the generated data set, the discrete-time system
(7.80) is approximated with a Gaussian process with the following hyperparameters
[20]:

Θ = [w1,w2,w3,v0,v1] = [0.01346,0.02847,0.00036,0.21984,55.56554] (7.81)

The maximum likelihood framework was used to determine the hyperparameters.
The optimization method applied for identification of the Gaussian process model
was the conjugate gradient method with line searches [16]. The response of the
Gaussian process model to the identification signal is shown in Fig. 7.7. The asso-
ciated average squared error and log density error are respectively ASE=0.6051 and
LD=143.4835.

In [20], the signals φ and Φfuel for validation were generated by random num-
ber generator with normal distribution and rate of change that is different from the
one used for the identification signals. The mean and the variance of xO2 predicted
with the identified Gaussian process model are obtained by iterative one-step ahead
predictions, where at each step the predicted mean of xO2 is fed back to the input.
The response of the Gaussian process model to the validation signals is shown in
Fig. 7.8. The associated prediction errors are ASE=0.9177 and LD=188.8626.

7.3.3.3 Design and Performance of Explicit Stochastic Reference Tracking
Controller for the Combustion Plant

In [20], an explicit stochastic reference tracking GP-NMPC controller for the com-
bustion plant considered in Section 7.3.3.2 is designed. The block-scheme of the
control system is shown in Fig. 7.9. The controller brings the air factor (respectively
the concentration of oxygen in the flue gases) on its optimal value with every change
of the load factor and thus an optimal operation of the combustion plant is achieved.
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Fig. 7.7 Response of the Gaussian process model to the excitation signal used for identifica-
tion.

0 200 400 600 800 1000
−2

0

2

4

6

8

10

12

14

O
2
 [vol%]

time [s]

validation data
model mean
95% confidence interval

Fig. 7.8 Response of the Gaussian process model to the excitation signal used for validation.
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Fig. 7.9 Block scheme of the control system.

Table 7.1 Reference values for the percentage of O2 in the flue gases

Φfuel 0.7 0.8 0.9 1.0 1.1 1.2 1.3
[kg s−1]

rO2 4.5 4.1 3.7 3.4 3.2 3.0 2.8
[vol%]

The control input is u = φ (the angle of the damper for the air flow), the state
variable is x = xO2 (the percentage of O2 in the flue gases), and the reference signal
is r = rO2 (the required percentage of O2 in the flue gases). For this particular com-
bustion plant, the reference values rO2 corresponding to different values of the fuel
flowrate Φfuel have been obtained by experiments and are given in Table 7.1 [9]. In
case the fuel flowrate Φfuel does not take a value from this table, then the reference
value rO2 is computed through linear interpolation between the neighboring points
in the table.

The mp-NLP approach described in Section 1.1.5.2 is applied to design an ex-
plicit stochastic reference tracking GP-NMPC controller for the combustion plant
based on its Gaussian process model obtained in Section 7.3.3.2:

xO2(t + 1) |xO2(t),Φfuel(t), φ(t)∼N (μ(xO2(t + 1)),σ2(xO2(t + 1))) (7.82)

The following control input and rate constraints are imposed on the plant:

30◦ ≤ φ ≤ 60◦ , −3◦ ≤ Δφ ≤ 3◦ (7.83)

The prediction horizon is N = 10 and the terminal constraint is:
∣

∣μ(xO2(t +N))− rO2(t)
∣

∣≤ 0.001 (7.84)
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The weighting matrices in the cost function (7.58) are Q = 20, R = 1, P = 20.
The GP-NMPC minimizes the cost function (7.58) subject to the Gaussian pro-
cess model (7.82) and the constraints (7.83)–(7.84). The parameter vector is x̃(t) =
[xO2(t), Φfuel(t), φ(t − 1)] ∈ R

3, which leads to a 3-dimensional parameter space
to be partitioned. The latter is defined by X = [0; 7]× [0.7; 1.3]× [30; 60]. The
cost function approximation tolerance is chosen as ε̄(X0) = max(ε̄a, ε̄r min

x̃∈X0
V ∗(x̃)),

where ε̄a = 0.005 and ε̄r = 0.1 are the absolute and the relative tolerances, respec-
tively. The partition of the explicit GP-NMPC controller is shown in Fig. 7.10. It has
513 regions and 12 levels of a binary search tree representation. Totally, 18 arith-
metic operations are needed in real-time to compute the control input by traversing
the binary search tree (12 comparisons, 3 multiplications and 3 additions).
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Fig. 7.10 Parameter space partition of the explicit approximate GP-NMPC controller.

The performance of the closed-loop system was simulated for the following
change in the fuel flowrate:

Φfuel(t) = 1.1 [kg s−1], t ∈ [0; 50];

Φfuel(t) = 1.25 [kg s−1], t ∈ [51; 100]; (7.85)

Φfuel(t) = 1.05 [kg s−1], t ∈ [101; 150]

and initial conditions for the state and control variable xO2(0) = 3.3 [vol%] and
φ(0) = 46◦, respectively. The resulting closed-loop response is depicted in Fig. 7.11
and Fig. 7.12.

The results show that the exact and the approximate solutions are almost indis-
tinguishable.
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Fig. 7.11 Top: Change of
the fuel flowrate. Bottom:
The control input with the
approximate explicit GP-
NMPC (the solid curve) and
with the exact GP-NMPC
(the dotted curve).
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Fig. 7.12 Top: The mean
value of the state variable
predicted with the Gaussian
process model. Bottom: The
95% confidence interval of
the state variable predicted
with the Gaussian process
model. The solid curves
are with the approximate
explicit GP-NMPC, the
dotted curves are with the
exact GP-NMPC and the
dashed curve is the set
point.
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10. Čretnik, J.: Modern combustion control. In: Proceedings of the Conference on Modeling
and Simulation, Barcelona, pp. 804–808 (1994)
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12. Čretnik, J., Strmčnik, S., Zupančič, B.: A model for combustion of fuel in the boiler.
In: Proceedings of the 3rd Symposium on Simulationstechnik, Bad Münster, Germany,
pp. 469–473 (1985)

13. Dong, X.C., Wang, H.B., Zhao, X.X.: Model reference neural network control for boiler
combustion system. In: Proceedings of the 2005 International Conference on Machine
Learning and Cybernetics, ICMLC 2005, pp. 4694–4698 (2005)

14. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming.
Academic Press, Orlando (1983)

15. Gibbs, M.N.: Bayesian Gaussian processes for regression and classification. Ph.D. thesis.
Cambridge University, Cambridge, UK (1997)

16. Girard, A., Murray-Smith, R.: Gaussian Processes: Prediction at a Noisy Input and Ap-
plication to Iterative Multiple-Step Ahead Forecasting of Time-Series. In: Murray-Smith,
R., Shorten, R. (eds.) Switching and Learning in Feedback Systems. LNCS, vol. 3355,
pp. 158–184. Springer, Heidelberg (2005)

17. Girard, A., Rasmussen, C.E., Quinonero Candela, J., Murray-Smith, R.: Gaussian pro-
cess priors with uncertain inputs & application to multiple-step ahead time series fore-
casting. In: Proceedings of NIPS 15. MIT Press, Vancouver (2003)

18. Goodwin, G.C., Østergaard, J., Quevedo, D.E., Feuer, A.: A Vector Quantization Ap-
proach to Scenario Generation for Stochastic NMPC. In: Magni, L., Raimondo, D.M.,
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Chapter 8
Explicit NMPC Based on Neural Network
Models

Abstract. This chapter considers an approximate mp-NLP approach to explicit solu-
tion of deterministic NMPC problems for constrained nonlinear systems described
by neural network NARX models. The approach builds an orthogonal search tree
structure of the regressor space partition and consists in constructing a piecewise
linear (PWL) approximation to the optimal control sequence. A dual-mode control
strategy is proposed in order to achieve an offset-free closed-loop response in the
presence of bounded disturbances and/or model errors. It consists in using the ex-
plicit NMPC (based on NARX model) when the output variable is far from the origin
and applying an LQR in a neighborhood of the origin. The LQR design is based on
an augmented linear ARX model which takes into account the integral regulation
error. The approximate mp-NLP approach and the dual-mode approach are applied
to design an explicit output-feedback NMPC for regulation of a pH maintaining
system.

8.1 Introduction

The NMPC algorithms are based on various nonlinear models. Often these mod-
els are developed as first-principles models, but other approaches, like black-box
identification approaches are also popular. In Chapters 3, 4, 5, 6 and in Section 7.2,
approaches to explicit solution of NMPC problems based on first-principles models
were presented, which assume that the state variables can be measured.

Alternatively, there exists a number of NMPC approaches based on various black-
box models e.g. based on neural network models (e.g. [16, 22]), fuzzy models (e.g.
[12]), local model networks (e.g. [18]), Gaussian process models (e.g. [11]). The
common feature of these NMPC approaches is that an on-line optimization needs
to be performed in order to compute the optimal control input. Consequently, the
computation is time consuming and the real-time NMPC implementation is lim-
ited to processes where the sampling time is sufficient to support the computational
needs. However, the on-line computational complexity can be circumvented with an
explicit approach to NMPC, where the only computation performed on-line would

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 187–207.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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be a simple function evaluation. Thus, in Section 7.3, an approach for off-line com-
putation of explicit stochastic NMPC controller for constrained nonlinear systems
based on a stochastic black-box model (Gaussian process model) was described.

In this chapter, the approximate mp-NLP approach [5, 6] to explicit solution of
deterministic NMPC problems for constrained nonlinear systems described by neu-
ral network NARX models [2] is considered. The NMPC problem based on neural
network model will be referred to as NN-NMPC problem. The approach builds an
orthogonal search tree structure of the regressor space partition and consists in con-
structing a piecewise linear (PWL) approximation to the optimal control sequence.
A dual-mode control strategy is proposed in order to achieve an offset-free closed-
loop response in the presence of bounded disturbances and/or model errors. It is
similar to the dual-mode receding horizon control concept developed in [15] (based
on state space models), however here black-box models are considered and an ex-
plicit solution of the NMPC problem is sought. Thus, the suggested strategy consists
in using the explicit NMPC (based on NARX model) when the output variable is far
from the origin and applying an LQR in a neighborhood of the origin. The LQR
design is based on an augmented linear ARX model which takes into account the
integral regulation error. The main motivations behind the dual-mode control strat-
egy are the following. First, it may be beneficial to use a separate linear model in a
neighborhood of the equilibrium, since the nonlinear black-box model may not have
accurate linearizations unlike a first-principles model, and the requirement for accu-
rate control is highest at the equilibrium. Second, it leads to a reduced complexity of
the explicit NMPC compared to augmenting the nonlinear model with an integrator
to achieve an integral action directly in the NMPC.

8.2 Formulation of the NN-NMPC Problem as an mp-NLP
Problem

8.2.1 Modeling of Dynamic Systems with Neural Networks

The black-box identification of nonlinear systems is an area which is quite diverse.
It covers topics from mathematical approximation theory, estimation theory, non-
parametric regression and concepts like neural networks, fuzzy models, wavelets
etc. A unified overview of this topic is given in [20].

Consider a nonlinear dynamical system with input u∈Rm and output y∈Rp and
let U = [u(1), u(2), ... ,u(M)] and Y = [y(1), y(2), ... ,y(M)] be sets of observed
values of u and y to the number of M. Based on these data, the dynamics of the
system can be described with a neural network NARX model [2], where the fu-
ture predicted output y(i+ 1) depends on previous estimated outputs, as well as on
previous control inputs:

y(i+ 1) = f (z(i),θ ) (8.1)

z(i) = [y(i), y(i− 1), ... , y(i−L), u(i), u(i− 1), ... , u(i−L)] (8.2)
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Here, L is a given lag, i denotes the consecutive index of data samples (i ≥ L), z(i)
is the regressor vector, f is the function realized by the black-box model, and θ is
a finite-dimensional vector of parameters. Thus, the function f is a concatenation
of two mappings: one that takes the increasing number of the past values of the ob-
served inputs and outputs and maps them into the finite dimensional regressor vec-
tor and one that takes this vector to the space of the outputs. The nonlinear mapping
from the regressor space to the output space can be of various kinds. In our case we
will use neural network with sigmoid basis functions in the hidden layer and linear
basis functions in the output layer. This form of neural network is called Multilayer
Perceptron (MLP), which is probably the most frequently considered member of the
neural network family (e.g. [16]) and can be used as an universal approximator. This
particular choice was subjective. Any other choice of regressor vector composition
or any other choice of mapping is possible until it enables satisfactory description
of the modeled dynamic system. It should be noted that the results given in [5, 6]
are not limited to MLP approach only.

The parameters of the MLP are the weights of its units. After the structure (num-
ber of layers and units) is determined, the model parameters are obtained with op-
timization, based on a chosen cost function. This cost function is most frequently a
least squares combination of errors between estimated and measured output signals:

E =
1

2M

M

∑
i=1

‖y(i)− ŷ(i|θ )‖2 (8.3)

where ŷ(i|θ ) is estimated output signal, θ is a vector containing the weights, and
M is the number of measured output signals y(i). The quality of prediction can be
assessed with evaluation of residuals, estimation of the average prediction error or
visualization of the network model’s ability to predict. The reader is referred to [16]
for more details.

8.2.2 Formulation of the NN-NMPC Problem

Consider the discrete-time nonlinear system:

x(t + 1) = h(x(t),u(t)) (8.4)

y(t) = g(x(t),u(t)) (8.5)

where x(t)∈Rn, u(t)∈Rm, and y(t)∈Rp are the state, input and output vectors, and
h : Rn×R

m→ R
n and g : Rn×R

m → R
p are nonlinear functions. The following

input and output constraints are imposed on the system (8.4)–(8.5):

umin ≤ u(t)≤ umax , ymin ≤ y(t)≤ ymax (8.6)
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Assume that the dynamics of the nonlinear system (8.4)–(8.5) is approximated with
an MLP neural network with NARX structure of the form (8.1)–(8.2). Then for
t ≥ L, define a modified regressor vector:

z̃(t) =

{

[y(t), y(t− 1), ... , y(t−L), u(t− 1), ... , u(t−L)] , if L > 0
y(t) , if L = 0

, (8.7)

where u(t− 1), ... , u(t−L) and y(t), y(t− 1), ... , y(t−L) are the measured values
of the input u and the output y. Thus, z̃(t) ∈ R

q with q = (L+ 1)p+Lm. Then, the
NARX model, used to obtain one-step ahead prediction of the output for t ≥ L, is
represented:

ŷ(t + 1|θ ) = fNN(z̃(t),u(t),θ ) , (8.8)

where fNN is the function realized by the neural network (NN) and θ contains the
network weights. Suppose the initial regressor vector z̃(t) = z̃t|t is known and the
control inputs u(t + k) = ut+k , k = 0, 1, ... , N− 1 are given. Then, the model (8.8)
can be used to obtain the predicted output yt+k+1|t , k = 0, 1, ... , N− 1 through it-
erative one-step ahead predictions, where at each step the predicted output value is
fed back to the regressor vector:

yt+k+1|t = fNN(z̃t+k|t ,ut+k,θ ) (8.9)

z̃t+k|t =
{

[yt+k|t , yt+k−1|t , ... , yt+k−L|t , ut+k−1, ... , ut+k−L] , if L > 0
yt+k|t , if L = 0

(8.10)

The following assumptions are made [5, 6]:

Assumption 8.1. There exists uNN
st ∈Rm satisfying umin≤ uNN

st ≤ umax, and such that
fNN(z̃0,uNN

st ,θ ) = 0, where z̃0 is obtained from (8.10) with yt+k|t = yt+k−1|t = ... =

yt+k−L|t = 0, ut+k−1 = ... = ut+k−L = uNN
st .

Assumption 8.2. ymin < 0 < ymax.

Assumption 8.1 means that the point y = 0, u = uNN
st , is an equilibrium point for the

NARX model (8.8), and Assumption 8.2 means that it is feasible for (8.6).
We consider the optimal regulation problem where the goal is to steer the output

variable y to the origin by minimizing a certain performance criterion. Suppose that
a full measurement of the modified regressor vector z̃(t) is available at the current
time t ≥ L. Then, for the current z̃(t), the regulation NN-NMPC solves the following
optimization problem [5, 6]:

Problem 8.1:
V ∗(z̃(t)) = min

U
J(U, z̃(t)) (8.11)

subject to z̃t|t = z̃(t) and:
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ymin ≤ yt+k|t ≤ ymax, k = 1, ...,N (8.12)

umin ≤ ut+k ≤ umax, k = 0,1, ...,N− 1 (8.13)

z̃c
t+N|t ∈Ω (8.14)

yt+k+1|t = fNN(z̃t+k|t ,ut+k,θ ), k = 0,1, ...,N− 1 (8.15)

z̃t+k|t =
{

[yt+k|t ,yt+k−1|t , ... ,yt+k−L|t ,ut+k−1, ... ,ut+k−L], ifL > 0
yt+k|t , ifL = 0 ,

(8.16)

k = 0,1, ...,N− 1

with U = [ut ,ut+1, ... ,ut+N−1] and the cost function given by:

J(U, z̃(t)) =
N−1

∑
k=0

[‖yt+k|t‖2
Q + ‖ut+k− uNN

st ‖2
R

]

+ ‖yt+N|t‖2
F (8.17)

and z̃c = z̃− [0T
(L+1)p uNNT

st ... uNNT

st ]T , where 0(L+1)p is a zero vector with dimension
(L+1)p. In (8.17), N is a finite horizon and Q, R, F � 0. In (8.14),Ω is the terminal
set defined by Ω = {z̃c ∈R

q |‖z̃c‖2 ≤ δ} with δ > 0. From a stability point of view
it is desirable to choose δ as small as possible [14]. If the system is asymptotically
stable (or pre-stabilized) and N is large, then it is more likely that the choice of a
small δ will be possible.

Let z̃ be the value of the modified regressor vector at the current time t. Then, the
optimization Problem 8.1 can be formulated in a compact form as follows [5, 6]:

Problem 8.2:
V ∗(z̃) = min

U
J(U, z̃) subject to G(U, z̃)≤ 0 (8.18)

The NN-NMPC problem defines an mp-NLP, since it is an NLP in U parameter-
ized by z̃. We remark that the constraints function G(U, z̃) in (8.18) is implicitly
defined by (8.12)–(8.16), and that all equality constraints are eliminated due to
the direct single shooting strategy. An optimal solution to this problem is denoted
U∗= [u∗t , u∗t+1, ... , u∗t+N−1] and the control input is chosen according to the receding
horizon policy u(t) = u∗t . Define the set of N-step feasible initial regressor vectors
as follows:

Zf = {z̃ ∈ R
q |G(U, z̃)≤ 0 for some U ∈R

Nm} (8.19)

In parametric programming problems one seeks the solution U∗(z̃) as an explicit
function of the parameters z̃ in some set Z ⊆ Zf ⊆ R

q [3].

8.3 Approximate mp-NLP Approach to Explicit NN-NMPC

In [5, 6], an approximate mp-NLP approach is proposed to explicitly solve the
output-feedback NN-NMPC problem formulated in the previous section. It is simi-
lar to the approximate mp-NLP approach to explicit solution of state-space NMPC
problems. Let Z ⊂ R

q be a hyper-rectangle where we seek to approximate the
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optimal solution U∗(z̃) to Problem 8.2. It is required that the regressor space parti-
tion is orthogonal and can be represented as a k− d tree. The idea of the approxi-
mate mp-NLP approach is to construct a PWL approximation ̂U(z̃) to U∗(z̃) on Z,
where the constituent affine functions are defined on hyper-rectangles covering Z.
The computation of an affine regressor feedback associated to a given region Z0

includes the following steps [5, 6]. First, a close-to-global solution of Problem 8.2
is computed at a set of points V0 = {v0, v1, v2, ... , vN1} ⊂ Z0. Then, based on the
solutions at these points, a local linear approximation ̂U0(z̃) = K0z̃+g0 to the close-
to-global solution U∗(z̃), valid in the whole hyper-rectangle Z0, is determined by
applying the following procedure [5, 6]:

Procedure 8.1 (Computation of explicit approximate solution). Consider any
hyper-rectangle Z0⊆ Z with a set of points V0 = {v0, v1, v2, ... , vN1}⊂ Z0. Compute
K0 and g0 by solving the following NLP:

min
K0,g0

N1

∑
i=0

(J(K0vi + g0,vi)−V ∗(vi)+α‖K0vi + g0−U∗(vi)‖2) (8.20)

subject to G(K0vi + g0,vi)≤ 0 , ∀vi ∈V0 (8.21)

In (8.20), J(K0vi + g0,vi) is the sub-optimal cost, V ∗(vi) denotes the cost corre-
sponding to the close-to-global solution U∗(vi), i.e. V ∗(vi) = J(U∗(vi),vi), and the
parameter α is a weighting coefficient (tuned in an ad-hoc fashion). Note that the
computed linear regressor feedback ̂U0(z̃) = K0z̃ + g0 satisfies the constraints in
Problem 8.2 only at the discrete set of points V0 ⊂ Z0. After the feedback ̂U0(z̃) has
been determined, an estimate ̂ε0 of the maximal cost function approximation error
in Z0 is computed as follows:

̂ε0 = max
i∈{0,1,2, ... ,N1}

(J(K0vi + g0, vi)−V ∗(vi)) (8.22)

If ̂ε0 > ε̄ , where ε̄ > 0 is the specified tolerance of the approximation error, the
region Z0 is divided and the procedure is repeated for the new regions. The approx-
imate PWL regressor feedback law is found by applying the approximate mp-NLP
algorithm, described in Section 1.1.5.2. The mp-NLP algorithm terminates with a
PWL function ̂U(z̃) = [û0(z̃), û1(z̃), ... , ûN−1(z̃)] that is defined on an inner approx-
imation ZΠ of the set Z∩Zf .

8.4 Design of Explicit Dual-Mode Controller

Generally, it will be difficult to guarantee that the local linearization at a nomi-
nal equilibrium point of an NN ARX model is accurate. The inaccuracies of the
model may result in a steady-state offset of the explicit NN-NMPC controller. In
[5, 6], a dual-mode control strategy is proposed which aims at achieving an offset-
free closed-loop response in the presence of bounded disturbances and/or model
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errors. With this strategy, the control is performed by the explicit NN-NMPC con-
troller when the system is far from equilibrium, and by a Linear Quadratic Regulator
(LQR) with integral action when it is close to equilibrium.

8.4.1 Design of LQR with Integral Action in a Neighborhood of
the Equilibrium

Consider a linear ARX model ([13]):

y(t + 1) = A1y(t)+A2y(t− 1)+ ...+Al+1y(t− l)+B1(u(t)− u∗st)+
B2(u(t− 1)− u∗st)+ ...+Bl+1(u(t− l)− u∗st) , (8.23)

that is valid in a neighborhood of the equilibrium y = 0, u = u∗st of the consid-
ered nonlinear dynamical system (8.4)–(8.5). In (8.23), the matrices Ai ∈ R

p×p and
Bi ∈ R

p×m, i = 1, 2, ... , l + 1 contain the coefficients of the model, and l is a given
lag. To estimate the parameters of the model (8.23), the least squares estimation
method or the four-stage instrumental variable method can be applied ([13]). Based
on the linear ARX model, an LQR that will regulate the system (8.23) to the origin,
is designed. In order to achieve an offset-free performance, the model (8.23) is aug-
mented with the following output yint ∈ R

p, which takes into account the integral
error:

yint(t + 1) = yint(t)+Tsy(t) (8.24)

where Ts is the sampling time. Let ue(t) ≡ u(t)− u∗st . Then, the extended system
with input ue and output ye = [y, yint ] is described by the linear ARX model:

ye(t + 1) = Ae
1ye(t)+Ae

2ye(t− 1)+ ...+Ae
l+1ye(t− l)+

Be
1ue(t)+Be

2ue(t− 1)+ ...+Be
l+1ue(t− l) , (8.25)

where Ae
1 =

[

A1 0p

TsIp Ip

]

, Ae
i =

[

Ai 0p

0p 0p

]

, i= 2, 3, ... , l+1, Be
i =

[

Bi

0p,m

]

, i= 1, 2, ... , l+

1. Here, Ip is the p-dimensional identity matrix, 0p is the p-dimensional square zero
matrix, and 0p,m is the p×m-dimensional zero matrix. The following regressor vec-
tor is introduced [5, 6]:

z̃e(t) =

{

[ye(t),ye(t− 1), ...,ye(t− l),ue(t− 1),ue(t− 2), ...,ue(t− l)] , if l > 0
ye(t) , if l = 0

(8.26)

Thus, z̃e(t) ∈ R
qe with qe = (l + 1)2p+ lm. This vector can also be represented as

z̃e(t) = [z1(t),z2(t), ...,zl+l+1(t)], where z1(t), ...,zl+1(t) are the shifted values of ye

and zl+2(t), ...,zl+l+1(t) are the shifted values of ue. The following relations hold
[5, 6]:
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ye(t + 1) = z1(t + 1)

z1(t) = ye(t) = z2(t + 1)

z2(t) = ye(t− 1) = z3(t + 1)
... (8.27)

zl(t) = ye(t− l+ 1) = zl+1(t + 1)

zl+1(t) = ye(t− l)

ue(t) = zl+2(t + 1)

zl+2(t) = ue(t− 1) = zl+3(t + 1)

zl+3(t) = ue(t− 2) = zl+4(t + 1)
... (8.28)

zl+l(t) = ue(t− l+ 1) = zl+l+1(t + 1)

zl+l+1(t) = ue(t− l)

Then, the system (8.25) can be represented:

z̃e(t + 1) = Ãez̃e(t)+ B̃eue(t) (8.29)

For l > 0, the matrices Ãe and B̃e in (8.29) are given by:

Ãe =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ae
1 Ae

2 ... Ae
l Ae

l+1 Be
2 ... Be

l Be
l+1

I2p 02p ... 02p 02p 02p,m ... 02p,m 02p,m

02p I2p ... 02p 02p 02p,m ... 02p,m 02p,m
...

02p 02p ... I2p 02p 02p,m ... 02p,m 02p,m

0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... 0m 0m

0m,2p 0m,2p ... 0m,2p 0m,2p Im ... 0m 0m
...

0m,2p 0m,2p ... 0m,2p 0m,2p 0m ... Im 0m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8.30)

B̃e = [Be
1 02p,m 02p,m ... 02p,m Im 0m ... 0m]

T (8.31)

In (8.30), (8.31), I2p and Im are identity matrices, 02p and 0m are square zero ma-
trices, and 02p,m and 0m,2p are zero matrices with dimensions 2p×m and m× 2p
respectively. If l = 0, then Ãe = Ae

1 and B̃e = Be
1.

The unconstrained LQR problem for system (8.29) solves the following opti-
mization problem:

min
{ue(t),ue(t+1), ...}

∞

∑
k=0

[‖z̃e(t + k)‖2
Qe

+ ‖ue(t + k)‖2
Re

]

(8.32)



8.4 Design of Explicit Dual-Mode Controller 195

where Qe, Re � 0. The solution to (8.32) is the linear feedback control law:

ue(t + k) =−Kz̃e(t + k) , k ≥ 0 , (8.33)

where the controller gain K is given by [17]:

K =
(

B̃eT PB̃e +Re
)−1

B̃eT PÃe (8.34)

P = ÃeT PÃe +Qe− ÃeT PB̃e (B̃eT PB̃e +Re
)−1 (

ÃeT PB̃e)T
(8.35)

By taking into account that ue(t)≡ u(t)−u∗st, it follows from (8.33) that the control
input applied to the system is [5, 6]:

u(t + k) =−Kz̃e(t + k)+ u∗st , k ≥ 0 (8.36)

8.4.2 Explicit Dual-Mode Controller

Consider the closed-loop system:

z̃e(t + k) = (Ãe− B̃eK)z̃e(t + k− 1), k ≥ 0 , (8.37)

where z̃e(t + k) is defined by (8.26) if t is replaced by t + k. Assume that Acl =
Ãe− B̃eK is strictly Hurwitz. Let Γe = {z̃e ∈ R

qe | z̃T
e Sz̃e ≤ σ} with S � 0, σ > 0, be

a positively invariant admissible set for the system (8.37). It means that ∀z̃e(t) ∈ Γe,
z̃e(t + k) ∈ Γe, ∀k > 0 and:

ymin < [Ψ 02p...02p 0m...0m]z̃e(t + k)< ymax, k ≥ 0 (8.38)

umin <−Kz̃e(t + k)+ u∗st < umax, k ≥ 0 (8.39)

whereΨ = [Ip 0p] and Ip, 0p, 02p, 0m are defined above. Γe can be determined in a
way similar to Lemma 1 in [1]. If S satisfies the Lyapunov equation:

AT
clSAcl− S =−μS−Qe−KT ReK (8.40)

for some μ > 0, then there exists a constant σ > 0 such that the set Γe is a positively
invariant admissible set for the system (8.37). For l≤ L, let ˜Γ 1

e = {ξ ∈Rq̃e |ξ T
˜S1ξ ≤

σ̃1} with ˜S1� 0, σ̃1 > 0 be the orthogonal projection of Γe onto R
q̃e , q̃e = (l+1)p+

lm, by omitting all integrator elements from the regressor vector z̃e. Let ˜Ω 1 = {ζ ∈
R

q̃e |ζT
˜S1ζ ≤ ‖˜S1‖δ̃1} be the orthogonal projection of the terminal set Ω onto R

q̃e ,
where ‖˜S1‖ is the induced norm of matrix ˜S1. Then, it is required ‖˜S1‖δ̃1 < σ̃1,
so that ˜Ω 1 ⊂ ˜Γ 1

e . For l > L, let ˜Γ 2
e = {ξ ∈ R

q |ξ T
˜S2ξ ≤ σ̃2} with ˜S2 � 0, σ̃2 > 0

be the orthogonal projection of Γe onto R
q, q = (L + 1)p + Lm, by omitting all

integrator elements and the elements y(t − L− 1), ...,y(t − l) from z̃e. Let ˜Ω 2 =

{ζ ∈ R
q |ζT

˜S2ζ ≤ ‖˜S2‖δ̃2}, with δ̃2 > 0 be a set such that Ω ⊆ ˜Ω 2. Similar to
above it is required ‖˜S2‖δ̃2 < σ̃2, so that ˜Ω 2 ⊂ ˜Γ 2

e .
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In order to define the dual-mode controller, the regressor vector, associated to the
system (8.37), is introduced:

z̃r(t) =

⎧

⎨

⎩

[Ψye(t),Ψye(t− 1), ...,Ψye(t− l),
ue(t− 1)+ u∗st, ...,ue(t− l)+ u∗st] , if l > 0
Ψye(t) , if l = 0

(8.41)

whereΨ is defined above. Thus, z̃r(t) ∈ R
qr with qr = (l + 1)p+ lm. Let Γr ∈ R

qr

be the orthogonal projection of Γe onto R
qr , specified by (8.41) (note that qr < qe).

Further, for l = L, it is required Γr ⊂ ZΠ ⊂ R
q. For l < L, Γr ⊂ ˜ZΠ ⊂ R

qr , where
˜ZΠ is the orthogonal projection of ZΠ onto R

qr , obtained by omitting the regressors
with lag larger than l. For l > L, ˜Γr ⊂ ZΠ ⊂R

q, where ˜Γr is the orthogonal projection
of Γr onto R

q, obtained by omitting the regressors with lag larger than L.
Let z̃, z̃e, and z̃r be the values of the regressor vectors (8.7), (8.26), and (8.41) at

the current time t. Then, the explicit dual-mode controller is defined as follows:

ud �
{

û0(z̃) , if z̃r /∈ Γr

−Kz̃e + u∗st , if z̃r ∈ Γr
(8.42)

The expression in the first row of (8.42) means that the control is performed by the
explicit NN-NMPC controller when the system is far from equilibrium. The expres-
sion in the second row implies that the control will be switched to the LQR when
z̃r enters the set Γr and the LQR will continue controlling the system until z̃r leaves
this set due to a large disturbance, for example. The integrator output yint is used
only when z̃r ∈ Γr. In the case when z̃r /∈ Γr, yint is set to zero and not used.

If the NN ARX model describes exactly the system dynamics far from the origin
(outside the set Γr) and the problem (8.18) is convex, then the closed-loop system
stability can be ensured by conditions similar to those in [10]. In presence of model
errors far from the origin, it would be necessary to apply approaches to explicit ro-
bust NMPC ([4]). If the problem (8.18) is non-convex, then the closed-loop stability
can not be guaranteed, but it can be verified by off-line simulations.

8.5 Application: Regulation of a pH Maintaining System

In [5, 6], the dual-mode approach to explicit output-feedback NMPC, described in
the previous two sections, is applied to design an explicit NMPC for regulation of
a pH maintaining system. The motivation for this particular example is not to sug-
gest that the mp-NLP approach is particularly suitable for this kind of process, but
rather to demonstrate a potential engineering applications of the mp-NLP approach
to processes which are modeled with higher order black-box models. Particularly
attractive for suggested control method from engineering applications aspect is a
benefit to be able to execute the NMPC code in a low-cost PLC type of hardware.
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8.5.1 The pH Maintaining System

A simplified schematic diagram of the pH maintaining system taken from [9] is
given in Fig. 8.1. The process consists of an acid stream (Q1), buffer stream (Q2)
and base stream (Q3) that are mixed in a tank T1. Prior to mixing, the acid stream
enters the tank T2. The acid and buffer flow rates are assumed to be constant. The
effluent pH is the measured variable, which is controlled by manipulating the base
flow rate.

Q1 Q2

Q3

Q4

Q1e 

T1

T2 

h1 

h2 

pH

Fig. 8.1 Scheme of the pH maintaining system.

In [9], a dynamic model of the pH maintaining system is derived using con-
servation equations and equilibrium relations. The model also includes hydraulic
relationships for the tank outlet flows. Modeling assumptions include perfect mix-
ing, constant density, and complete solubility of the ions involved. The model is
presented briefly according to [9].

The chemical reactions for the system are:

H2CO3 ←→ HCO−3 +H+ (8.43)

HCO−3 ←→ CO=
3 +H+ (8.44)

H2O ←→ OH−+H+ (8.45)

The corresponding equilibrium constants are:

Ka1 =
[HCO−3 ][H

+]

[H2CO3]
, Ka2 =

[CO=
3 ][H

+]

[HCO−3 ]
, Kw = [H+][OH−] (8.46)

The chemical equilibria is modeled by defining two reaction invariants for each of
the streams Qi, i ∈ {1,2,3,4} [9]:
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Wai = [H+]i− [OH−]i− [HCO−3 ]i− 2[CO=
3 ]i (8.47)

Wbi = [H2CO3]i +[HCO−3 ]i +[CO=
3 ]i (8.48)

The invariant Wa is a charge related quantity, while Wb represents the concentration
of the CO=

3 ion. The pH can be determined from Wa and Wb using the following
relations [9]:

Wb

Ka1
[H+]

+ 2Ka1Ka2
[H+]2

1+ Ka1
[H+]

+ Ka1Ka2
[H+]2

+Wa +
Kw

[H+]
− [H+] = 0 (8.49)

pH =− log([H+]) (8.50)

In [9], a simplified model of the pH maintaining system is developed, where the
dynamics of the pH transmitter and the flow dynamics of tank T2 are neglected. The
mass balance on tank T1 yields:

A1
dh1

dt
= Q1e +Q2 +Q3−Q4 , (8.51)

where h1 is the liquid level and A1 is the cross-sectional area of tank T1. The exit
flow rate Q4 is modeled as:

Q4 =Cv(h1 + l)s , (8.52)

where Cv is a constant valve coefficient, s is a constant valve exponent, and l is the
vertical distance between the bottom of tank T1 and the outlet for Q4. By combining
mass balances on each of the ionic species in the system, the following differential
equations for the effluent reaction invariants Wa4 and Wb4 are derived [9]:

A1h1
dWa4

dt
= Q1e(Wa1−Wa4)+Q2(Wa2−Wa4)+Q3(Wa3−Wa4) (8.53)

A1h1
dWb4

dt
= Q1e(Wb1−Wb4)+Q2(Wb2−Wb4)+Q3(Wb3−Wb4) (8.54)

Based on the above relations, a state space model of the pH maintaining system is
obtained by defining the following state, input and output variables:

x = [Wa4 Wb4 h1]
T , ũ = Q3 , ỹ = pH (8.55)

The state space model has the form [9]:

ẋ = f̃ (x)+ g̃(x)ũ (8.56)

c(x, ỹ) = 0 , (8.57)

where:

f̃ (x) =

⎡

⎢

⎣

Q1(Wa1−x1)+Q2(Wa2−x1)
A1x3

Q1(Wb1−x2)+Q2(Wb2−x2)
A1x3

Q1−Cv(x3+l)s+Q2
A1

⎤

⎥

⎦
, g̃(x) =

⎡

⎢

⎣

Wa3−x1
A1x3

Wb3−x2
A1x3

1
A1

⎤

⎥

⎦
(8.58)
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c(x, ỹ) = x1 + 10ỹ−14− 10−ỹ+
x2(1+ 2× 10ỹ−pK2)

1+ 10pK1−ỹ + 10ỹ−pK2
(8.59)

The relation between the constants Ka1, Ka2 in (8.49) and the constants K1, K2 in
(8.59) is:

Ka1 = 10−pK1 , Ka2 = 10−pK2 , p > 0 . (8.60)

The parameters of the model (8.56)–(8.60) are given in [9].

8.5.2 ARX Model Identification

8.5.2.1 Neural Network ARX Model Identification

The identification and the validation of the NN model of the pH maintaining sys-
tem is based on simulation data, generated with the model (8.56)–(8.57), where the
liquid level h1 in tank T1 is assumed to be constant [5, 6]. Thus, it is presumed that
a controller has been already designed to keep the level h1 on the nominal value
h∗1 = 14 [cm] by manipulating the exit flow rate Q4. To get an idea about the system
dynamics, necessary for sampling time and regressor vector selection, some pre-
liminary tests were pursued. The process model (8.56)–(8.57) was excited with a
combination of step-like signals for estimation of the dominant time constant and
settling time. The dominant time constant was estimated in range between 65 [s] and
185 [s] and settling time between 135 [s] and 325 [s]. This ’provisional’ dynamics
is necessary for the estimation of appropriate sampling time. Based on responses
and iterative cut-and-try procedure, a sampling time of 25 [s] was selected for these
tests. Based on these preliminary tests, the chosen identification signal (400 sam-
ples) was generated from a uniform random distribution and a rate of change of the
signal of 50 [s]. The validation signal was obtained using a generator of random
noise with uniform distribution and a rate of change of the signal of 500 [s], so it
has lower magnitude and frequency components than the identification signal. The
rationale behind this is that if the model was identified using a rich signal, then it
should respond well to a signal with less components.

The NN model represents a NARX model of the form (8.7)–(8.8). The hidden
layer has sigmoid activation functions and the output layer has linear activation
function. The choice of regressors is a difficult one and is common to all black-
box modeling approaches. The number of regressors (delayed inputs and outputs)
was determined by the method described in [8]. A trade-off between modeling error
and complexity was taken into the account. The final selection was that the system
model has the form:

y(t + 1) = fNN(z̃(t),u(t),θ ) (8.61)

z̃(t) = [y(t), y(t− 1), y(t− 2), u(t− 1), u(t− 2)] (8.62)

It should be noted that in difference to the state space model (8.56)–(8.57) where
ỹ = pH, in the NN model (8.61)–(8.62) the variable y represents the deviation of
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the pH from the desired set point pHsp = 4.8, i.e. y = pH− pHsp. In general, any
other value for pHsp can be pursued if the developed black-box model describes the
specified operating range. Also, while in [9] the goal is to keep the pH at value 7
(a pH neutralization system), here the task is to maintain the pH at value 4.8 (a pH
maintaining system). The data used for identification of the NN model (8.61)–(8.62)
and for validation of its performance were scaled to zero mean and variance 1. This
means that u(t) and y(t) can take both positive and negative values.

The optimal number of neurons in the hidden layer was determined systemati-
cally. The network was optimized for each possible number of hidden neurons in
a certain range. The Levenberg-Marquardt method was used for minimization of
the mean-square error criteria (8.3), due to its rapid convergence properties and ro-
bustness. At the end of this lengthy procedure and after removing the unimportant
weights, the optimal parameters of the model (8.61)–(8.62) were obtained, with thir-
teen neurons in the hidden layer. More about systematic network structure selection,
pruning and other issues regarding neural networks modeling can be found in vari-
ous literature describing this topic and its applications (e.g. [16], [2], [8], [7], [19],
[21]).

Fig. 8.2 depicts a comparison between the simulated NN response and the process
response to the identification and the validation input signals. From the validation,
it can be concluded that the black-box model captures the dynamics of the pH main-
taining system relatively well. The resulting black-box model is not too large to be
handled and was relatively routinely obtained with the selected software tool.

8.5.2.2 Linear ARX Model Identification

The equilibrium point of the pH maintaining system (8.56)–(8.57) is ỹ = 4.8, ũ∗st =
10.94[ml/s] (respectively y = 0, u∗st = 0.1732 after scaling). A validation of the
obtained NN ARX model near this point clearly shows that it is not accurate (see
Fig. 8.3).

In order to obtain accurate predictions when the output variable is close to zero,
the following 1-st order linear ARX model is identified [5, 6]:

y(t + 1) = 0.7704y(t)+ 0.0539(u(t)−u∗st) (8.63)

Higher order linear ARX models have been also obtained, however simulations have
shown that the dynamics of the pH maintaining system around the equilibrium is
captured best by the 1-st order model (8.63). The simulated response of the ARX
model (8.63) is depicted in Fig. 8.3.

8.5.3 Design of Explicit Dual-Mode Controller

The approach described in Sections 8.3 and 8.4 is applied to design an explicit dual-
mode controller for the pH maintaining system based on its NN model (8.61)–(8.62)
and linear ARX model (8.63) [5, 6]. Recall that due to scaling, the variables u and y
can take both positive and negative values.
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Fig. 8.2 Response of the NN model to the excitation signal used for identification (top) and
to the excitation signal used for validation (bottom).
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Fig. 8.3 Validation of the NN ARX and the linear ARX models. The dotted curve is with the
NN model (8.61)–(8.62), the solid curve is with the linear ARX model (8.63), and the dashed
curve is with the first-principles model (8.56)–(8.57). Constant control input u = u∗st is used
as an excitation signal.

First, the approach in Section 8.3 is applied to design an explicit approximate
NN-NMPC controller. The following control input constraint is imposed on the
system:

−0.4≤ u≤ 0.4 (8.64)

The horizon is N = 8 and the terminal constraint in Problem 8.1 is:

z̃c
t+N|t ∈Ω , (8.65)

where Ω = {z̃c ∈ R
5 |‖z̃c‖2 ≤ 0.05}. The weighting matrices in the cost func-

tion (8.17) are Q = 10, R = 1, F = 10. The NN-NMPC minimizes the cost func-
tion (8.17) subject to the model (8.61)–(8.62) and the constraints (8.64)–(8.65). In
(8.20), it is chosen α = 10. The regressor space to be partitioned is defined by
Z = ([−1.2; 1.2]× [−1.2; 1.2]× [−1.2; 1.2]× [−0.4; 0.4]× [−0.4; 0.4]). The cost
function approximation tolerance is chosen as ε̄(Z0)=max(ε̄a, ε̄r min

z̃∈Z0
V ∗(z̃)), where

ε̄a = 0.005 and ε̄r = 0.1 are the absolute and the relative tolerances, respectively. The
partition has 5512 regions and 23 levels of search in a binary search tree representa-
tion. Totally, 33 arithmetic operations are needed in real-time to compute the control
input by traversing the binary search tree (23 comparisons, 5 multiplications and 5
additions).
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Further, an unconstrained LQR is designed, which is used in a neighborhood of
the origin. For this purpose, consider the extended linear system, where an integral
error is added to the linear ARX model (8.63):

y(t + 1) = 0.7704y(t)+ 0.0539ue(t) (8.66)

yint(t + 1) = yint(t)+Tsy(t) (8.67)

Here, ue(t)≡ u(t)− u∗st . Thus, we obtain the following system:

z̃e(t + 1) = Ãez̃e(t)+ B̃eue(t) , (8.68)

which is characterized with regressor vector z̃e(t) = ye(t) = [y(t), yint(t)] and matri-
ces Ãe =

[

0.7704 0
Ts 1

]

and B̃e =
[

0.0539
0

]

. The computed LQR law for the system (8.68)
is:

ue =−Kz̃e =−k1y− k2yint , where K = [0.7994, 0.0069] (8.69)

This control law solves the optimization problem (8.32) with weighting matrices
Qe = diag{10, 0.0005}, Re = 10.

Then, the explicit dual-mode controller for the pH maintaining system is defined
according to (8.42) with Γr = {z̃r ∈ R | z̃2

r ≤ 0.09}, where z̃r(t) = y(t).
In order to study the robustness of the explicit dual-mode controller against

model inaccuracies, its performance is simulated in closed-loop with the first-
principles model (8.56)–(8.57). Further, it is assumed that there are persistent
disturbances in the acid and the buffer flow rates, which have the following
values Q̃1 = 16.8[ml/s], Q̃2 = 0.53[ml/s] (different from the nominal values
Q∗1 = 16.6[ml/s], Q∗2 = 0.55[ml/s]). In addition to the explicit dual-mode controller
which maintains the pH on the required set point, a second controller (an LQR)
is applied, which keeps the liquid level h1 on the nominal value h∗1 = 14 [cm] by
manipulating the exit flow rate Q4. The obtained trajectories of the control input
u and the output variable y are shown in Fig. 8.4, while the trajectories of the exit
flow rate Q4 and the liquid level h1 are depicted in Fig. 8.5.

It can be seen from Fig. 8.4 that the output variable is steered to the origin despite
of the presence of persistent disturbances and the control input achieves a new
equilibrium value ũst = 0.2380 (recall that the equilibrium value corresponding to
the nominal model parameters is u∗st = 0.1732). It would be necessary to distinguish
how the exact NMPC and the approximate explicit NMPC trajectories in Figs. 8.4
and 8.5 are obtained. The exact NMPC response is computed by solving at each
time instant an open-loop NMPC problem formulated for the first-principles model
(8.56)–(8.57). In contrast, the approximate explicit NMPC solution is first computed
off-line as an approximation to Problem 8.1, in which the NN ARX model by itself
represents another approximation. Then, its performance is simulated in closed-loop
with the first-principles model (8.56)–(8.57). Thus, the performance degradation
far from the origin is due to the approximations in the model and in the NMPC
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Fig. 8.4 Control input u (top) and output variable y (bottom) obtained with the explicit dual-
mode controller in closed-loop with the first-principles model (8.56)–(8.57). The solid curves
are with the approximate explicit NN-NMPC and the dotted curves are with the exact NN-
NMPC.



8.5 Regulation of a pH Maintaining System 205

0 100 200 300 400 500 600 700
28

28.5

29

29.5

30
Q4(t) [ml/s]

t [s]

0 100 200 300 400 500 600 700
13.9

14

14.1

14.2

14.3
h1(t) [cm]

t [s]

Fig. 8.5 The exit flow rate Q4 (top) and liquid level h1 (bottom). The solid curves are with
the approximate explicit NN-NMPC and the dotted curves are with the exact NN-NMPC.
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solution, while near the origin it is related to the use of LQR (pursuing an offset-free
response) which differs from the exact NMPC (where no integral action is taken).
It also should be noted that the response depicted in Figs. 8.4 and 8.5 has a typical
amount of performance degradation being representative for other initial conditions
and scenarios.
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Chapter 9
Semi-explicit Distributed NMPC

Abstract. In this chapter, a suboptimal approach to distributed NMPC for systems
consisting of nonlinear subsystems with linearly coupled dynamics, subject to both
state and input constraints, is considered. The approach applies the dynamic dual de-
composition method and reformulates the original centralized NMPC problem into
a distributed quasi-NMPC problem by linearization of the nonlinear system dynam-
ics. The approach is based on distributed on-line optimization (by gradient itera-
tions) and can be applied to large-scale nonlinear systems. Further, a semi-explicit
NMPC approach to efficiently solve the distributed NMPC problem for small- and
medium-scale systems is described. It combines the explicit approximate solution
with the on-line optimization and the result is a decrease of the on-line computa-
tional complexity. Both the on-line optimization based distributed NMPC and the
semi-explicit distributed NMPC are illustrated in a problem to solve a NMPC prob-
lem for a nonlinear system consisting of two subsystems.

9.1 Introduction

Recall that NMPC involves the solution at each sampling instant of a finite horizon
optimal control problem subject to the system dynamics, and state and input con-
straints. However, solving in a centralized way NMPC problems for medium- and
large-scale systems may be impractical due to the complexity of the Nonlinear Pro-
gramming (NLP) problem, the topology of the plant and data communication, and
the large number of decision variables. Therefore, there is a strong motivation for
development of methods for distributed solution of NMPC problems. At the same
time, the multi-core computer architectures available nowadays would encourage
parallel and distributed NMPC computations [5]. Recently, several approaches for
decentralized implementation of MPC algorithms have been developed, [19]. As it
is pointed out in [15], the possibility to use MPC in a decentralized fashion has the
advantage to reduce the original, large size, optimization problem into a number of
smaller and more tractable ones. In [20], [13], [22], [9], approaches for distributed
MPC for systems consisting of linear interconnected subsystems have been devel-
oped. The approach in [9] is based on the dual decomposition methods [1, 6, 4],

A. Grancharova & T.A. Johansen: Explicit Nonlinear Model Predictive Ctrl., LNCIS 429, pp. 209–231.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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where large-scale optimization problems are handled by using Lagrange multipliers
to relax the couplings between the sub-problems. In [17, 18], the dual decomposi-
tion is used for analysis and synthesis of distributed feedback controllers.

Further, approaches for distributed MPC for systems composed of several non-
linear subsystems have been proposed in [15, 7, 12]. In [15], a stabilizing decen-
tralized MPC algorithm for nonlinear systems consisting of several interconnected
local subsystems is developed. It is derived under the main assumptions that no in-
formation can be exchanged between local control laws, i.e. the coupling between
the subsystems is ignored, and only input constraints are imposed on the system.
In [7], it is supposed that the dynamics and constraints of the nonlinear subsystems
are decoupled, but their state vectors are coupled in a single cost function of a finite
horizon optimal control problem. In [12], an optimal control problem for a set of
dynamically decoupled nonlinear systems, where the cost function and constraints
couple the dynamical behavior of the systems, is solved.

In this chapter, the suboptimal approach [11] to distributed NMPC for a more
general class of systems consisting of nonlinear subsystems with coupled dynamics
subject to both state and input constraints is considered. Like in [15], it is supposed
that the couplings between the subsystems are linear. However in difference to [15],
the distributed NMPC method proposed here takes into account these couplings,
as well as state constraints. The approach [11] applies the dynamic dual decompo-
sition method [4, 18, 9] and reformulates the original centralized NMPC problem
into a distributed quasi-NMPC problem by linearization of the nonlinear system
dynamics. The approach is based entirely on distributed on-line optimization (by
gradient iterations) and can be applied to large-scale nonlinear systems. Further, a
semi-explicit NMPC approach to efficiently solve the distributed NMPC problem
for small- and medium-scale systems is proposed.

9.2 Formulation of NMPC Problem for Interconnected Systems

Consider a system composed by the interconnection of M subsystems (shown in
Fig. 9.1), which is described by the following nonlinear discrete-time models [15]:

xi(t + 1) = fi(xi(t),ui(t))+ gi(x(t))+ di(t) , i = 1, 2, ... , M (9.1)

where xi(t) ∈ R
ni , ui(t) ∈ R

mi , and di(t) ∈ R
ni are the state, control input, and

disturbance vectors, related to the i-th subsystem, and fi : Rni ×R
mi → R

ni and
gi : Rn→ R

ni are nonlinear functions.
In (9.1), the mutual influence of the M subsystems is described by the functions

gi, which depend on the overall state:

x(t) = [x1(t), x2(t), ... , xM(t)] ∈ R
n , n =

M

∑
i=1

ni (9.2)
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Fig. 9.1 System composed by the interconnection of M subsystems.

Similarly, the overall control input is denoted:

u(t) = [u1(t), u2(t), ... , uM(t)] ∈ R
m , m =

M

∑
i=1

mi (9.3)

The following control input and state constraints are imposed on the subsystems:

umin,i ≤ ui(t)≤ umax,i , xmin,i ≤ xi(t)≤ xmax,i , i = 1, 2, ... , M (9.4)

and the following assumptions are made [11]:

Assumption 9.1. The functions fi and gi, i=1, ... , M are C1 functions with fi(0,0)=
0, gi(0) = 0.

Assumption 9.2. xmin,i < 0 < xmax,i, umin,i < 0 < umax,i, i = 1, ... , M.

Assumption 9.3. The disturbances di, i = 1, ... , M are bounded by:

|di(t)| ≤ dmax,i , i = 1, 2, ... , M (9.5)

with dmax,i ∈ R
ni
>0, dmax,i < |xmin,i| and dmax,i < xmax,i, i = 1, 2, ... , M, where the

operation | · | is taken element-wise.

It is supposed that a full measurement x = [x1, x2, ... , xM] of the overall state is
available at the current time t. The optimal regulation problem is considered where
the goal is to steer the overall state of the system (9.1) to the origin. For the current
x = [x1, x2, ... , xM], the regulation NMPC solves the optimization problem [11]:

Problem 9.1 (Centralized NMPC):

V opt(x) = min
U

J(U,x) (9.6)

subject to xt|t = x and:
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xi,t+k|t ∈Xi , i = 1, ... , M , k = 1, ... , N− 1 (9.7)

ui,t+k ∈Ui , i = 1, ... , M , k = 0, 1, ... , N− 1 (9.8)

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ gi(xt+k|t ) , i = 1, ... , M , k = 0, 1, ... , N− 2(9.9)

xt+k|t = [x1,t+k|t , x2,t+k|t , ... , xM,t+k|t ] , k = 0, 1, ... , N− 1 (9.10)

ut+k = [u1,t+k, u2,t+k, ... , uM,t+k] , k = 0, 1, ... , N− 1 (9.11)

with U = [ut , ut+1, ... , ut+N−1] and the cost function given by:

J(U,x) =
N−1

∑
k=0

M

∑
i=1

li(xi,t+k|t ,ui,t+k) (9.12)

Here, li(xi,t+k|t ,ui,t+k) = ‖xi,t+k|t‖2
Qi
+‖ui,t+k‖2

Ri
is the stage cost for the i-th subsys-

tem with weighting matrices Qi, Ri � 0, and N is a finite horizon. The sets Xi and
Ui are defined by:

Xi = {λi ∈ R
ni |xmin,i + dmax,i ≤ λi ≤ xmax,i− dmax,i} (9.13)

Ui = {ηi ∈ R
mi |umin,i ≤ ηi ≤ umax,i} (9.14)

It follows from (9.13)–(9.14) that Xi and Ui are convex (polyhedral) sets, which
include the origin in their interior (due to Assumptions 9.2 and 9.3).

It should be noted that the state constraints (9.7) with the admissible set Xi de-
fined by (9.13) guarantee the robust feasibility of the solution in sense that the orig-
inal state constraints (9.4) will be satisfied for the worst-case disturbances.

9.3 Distributed NMPC for Interconnected Nonlinear Systems
with Linear Couplings

9.3.1 Distributed NMPC by Dual Decomposition

Problem 9.1 can be decomposed by using the dynamic dual decomposition approach
[4, 18]. First, the following assumption is made [11]:

Assumption 9.4. The functions gi(x(t)) have the form:

gi(x(t)) =
M

∑
j=1, j �=i

Ai jx j(t) , i = 1, ... , M (9.15)

where Ai j ∈ R
ni×n j are constant matrices.

The following decoupled state equations can be formulated:

xi(t + 1) = fi(xi(t),ui(t))+ vi(t)+ di(t) , i = 1, ... , M (9.16)

with the additional constraints, [18]:



9.3 Distributed NMPC for Nonlinear Systems with Linear Couplings 213

vi(t) =
M

∑
j=1, j �=i

Ai jx j(t) , i = 1, ... , M for all t (9.17)

The variable vi ∈ R
ni can be interpreted as the influence of the other subsystems in

the update of xi.
Then, similar to [18], the constraints (9.17) are relaxed by introducing the cor-

responding vectors of Lagrange multipliers pi ∈ R
ni in the cost function (9.12) and

the Problem 9.1 is reformulated as a distributed NMPC problem [11]:

Problem 9.2 (Distributed NMPC):

V opt(x) =

max
P

min
U,X ,V

N−1

∑
k=0

M

∑
i=1

[li(xi,t+k|t ,ui,t+k)+ pT
i,t+k(vi,t+k−

M

∑
j=1
j �=i

Ai jx j,t+k|t )] =

max
P

M

∑
i=1

( min
Ui ,Xi,Vi

N−1

∑
k=0

[li(xi,t+k|t ,ui,t+k)+ pT
i,t+kvi,t+k− xT

i,t+k|t
M

∑
j=1
j �=i

AT
jip j,t+k]

︸ ︷︷ ︸

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P)

) (9.18)

subject to xt|t = x, constraints (9.7)–(9.8) and:

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ vi,t+k , i = 1, ... , M , k = 0, 1, ... , N− 2 (9.19)

pt+N−1 = 0 (9.20)

Here:

P = [pt , pt+1, ... , pt+N−1] with pt+k = [p1,t+k, p2,t+k, ... , pM,t+k] ,

k = 0, 1, ... , N− 1

U = [ut , ut+1, ... , ut+N−1] , Ui = [ui,t , ui,t+1, ... , ui,t+N−1]

X = [xt|t , xt+1|t , ... , xt+N−1|t ] , Xi = [xi,t|t , xi,t+1|t , ... , xi,t+N−1|t ] (9.21)

V = [vt , vt+1, ... , vt+N−1] , Vi = [vi,t , vi,t+1, ... , vi,t+N−1]

with vt+k = [v1,t+k, v2,t+k, ... , vM,t+k] , k = 0, 1, ... , N− 1

The Lagrange multipliers P are also referred to as prices [18] and the Problem 9.2
can be interpreted as a game with two players for each subsystem. Given the prices,
the objective of the first player for the i-th subsystem is to select the inputs Ui =
[ui,t , ui,t+1, ... , ui,t+N−1] to minimize the local cost ∑N−1

k=0 lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P).

The other player for the i-th subsystem chooses Pi = [pi,t , pi,t+1, ... , pi,t+N−1] with
the objective to maximize ∑N−1

k=0 pT
i,t+k(vi,t+k−∑M

j=1, j �=i Ai jx j,t+k|t).
The inner decoupled optimization problems in Problem 9.2 represent Nonlinear

Programming (NLP) sub-problems corresponding to the NMPC of the i-th
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subsystem, since the constraints (9.19) are nonlinear in the optimization variables.
Each NLP sub-problem is presented as follows [11]:

Problem 9.3i (i-th NLP sub-problem):

V opt
i (P,xi) = min

Ui,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.22)

subject to xi,t|t = xi and:

xi,t+k|t ∈Xi , k = 1, ... , N− 1 (9.23)

ui,t+k ∈Ui , k = 0, 1, ... , N− 1 (9.24)

xi,t+k+1|t = fi(xi,t+k|t ,ui,t+k)+ vi,t+k , k = 0, 1, ... , N− 2 (9.25)

Denote with Uopt
i = [uopt

i,t , uopt
i,t+1, ... , uopt

i,t+N−1], Xopt
i = [xopt

i,t|t , xopt
i,t+1|t , ... , xopt

i,t+N−1|t ]
and V opt

i = [vopt
i,t , vopt

i,t+1, ... , vopt
i,t+N−1] the optimal solution of Problem 9.3i.

9.3.2 Local QP Approximations of the NLP Sub-problems

The cost functions ∑N−1
k=0 lP

i (xi,t+k|t ,ui,t+k,vi,t+k,P) in the Problems 9.3i, i =
1, 2, ... , M are convex, however the constraints (9.25) may be non-convex in the
general case. In [11], the constraints (9.25) are locally approximated by linear con-
straints, leading to a quasi-nonlinear approach. Let xi,t|t = x0

i ∈Xi be arbitrary and
denote the corresponding optimal solution to the sub-problem 9.3i with:

U0
i =Uopt

i (x0
i ) = [u0

i,t , u0
i,t+1, ... , u0

i,t+N−1]

X0
i = Xopt

i (x0
i ) = [x0

i,t|t , x0
i,t+1|t , ... , x0

i,t+N−1|t ] (9.26)

V 0
i =V opt

i (x0
i ) = [v0

i,t , v0
i,t+1, ... , v0

i,t+N−1]

The optimal solution (9.26) depends on the values of the prices P. In Section 9.3.3,
it is described how P and the solution (9.26) are updated iteratively. Further, a first
order truncated Taylor series expansions of the right-hand side of constraints (9.25)
around the point (U0

i , X0
i ,V 0

i , x0
i ) lead to the locally linear constraints [11]:

X̃+
i = SXi(X̃i− X̃0

i )+ SUi(Ũi−Ũ0
i )+ (Ṽi− Ṽ 0

i )+E0
i (9.27)

where:

X̃i = [xi,t|t , ... , xi,t+N−2|t ] , X̃0
i = [x0

i,t|t , ... , x0
i,t+N−2|t ]

Ũi = [ui,t , ... , ui,t+N−2] , Ũ0
i = [u0

i,t , ... , u0
i,t+N−2]

Ṽi = [vi,t , ... , vi,t+N−2] , Ṽ 0
i = [v0

i,t , ... , v0
i,t+N−2]

X̃+
i = [xi,t+1|t , ... , xi,t+N−1|t ]
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Here, the matrices SXi , SUi , and E0
i are given by:

SXi =

⎡

⎢

⎢

⎣

∇xi fi(x0
i,t|t ,u

0
i,t) 0ni . . . 0ni

...
0ni 0ni . . . ∇xi fi(x0

i,t+N−2|t ,u
0
i,t+N−2)

⎤

⎥

⎥

⎦

(9.28)

SUi =

⎡

⎢

⎢

⎣

∇ui fi(x0
i,t|t ,u

0
i,t) 0ni,mi . . . 0ni,mi

...
0ni,mi 0ni,mi . . . ∇ui fi(x0

i,t+N−2|t ,u
0
i,t+N−2)

⎤

⎥

⎥

⎦

(9.29)

E0
i =

⎡

⎢

⎢

⎣

fi(x0
i,t|t ,u

0
i,t)+ v0

i,t
...

fi(x0
i,t+N−2|t ,u

0
i,t+N−2)+ v0

i,t+N−2

⎤

⎥

⎥

⎦

(9.30)

where 0ni is the ni-dimensional square zero matrix and 0ni,mi is the ni × mi-
dimensional zero matrix. It can be observed that (9.27) is a linear time-varying
approximation of the constraints (9.25). Then, the NLP sub-problems 9.3i for the
subsystems are approximated with the QP sub-problems [11]:

Problem 9.4i (i-th QP sub-problem):

V ∗i (P,xi) = min
Ui ,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.31)

subject to xi,t|t = xi, (9.23), (9.24), and (9.27).
Denote with U∗i = [u∗i,t , ... , u∗i,t+N−1], X∗i = [x∗i,t|t , ... , x∗i,t+N−1|t ] and V ∗i = [v∗i,t , ... ,

v∗i,t+N−1] the optimal solution of Problem 9.4i. Then, the following centralized
NMPC problem with linearized constraints is formulated [11]:

Problem 9.5 (Centralized NMPC with linearized constraints):

V ∗(x) = min
U

J(U,x) (9.32)

subject to xt|t = x, constraints (9.7), (9.8), and:

xi,t+k+1|t = ∇xi fi(x
0
i,t+k|t ,u

0
i,t+k)(xi,t+k|t − x0

i,t+k|t)+

∇ui fi(x
0
i,t+k|t ,u

0
i,t+k)(ui,t+k− u0

i,t+k)+
M

∑
j=1, j �=i

Ai j(x j,t+k|t − x0
j,t+k|t)

+ fi(x
0
i,t+k|t ,u

0
i,t+k)+

M

∑
j=1, j �=i

Ai jx
0
j,t+k|t

i = 1, ... , M , k = 0, 1, ... , N− 2 (9.33)
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where the cost function J(U,x) is given by (9.12). Here, (9.33) includes the
constraints due to the linearized dynamics for all subsystems.

Then, the distributed NMPC problem with linearized dynamic constraints is as
follows [11]:

Problem 9.6 (Distributed NMPC with linearized constraints):

max
P

M

∑
i=1

V ∗i (P,xi) = max
P

M

∑
i=1

min
Ui,Xi,Vi

N−1

∑
k=0

lP
i (xi,t+k|t ,ui,t+k,vi,t+k,P) (9.34)

subject to xt|t = x, constraints (9.7), (9.8), and:

X̃+
i = SXi(X̃i− X̃0

i )+ SUi(Ũi−Ũ0
i )+ (Ṽi− Ṽ 0

i )+E0
i , i = 1, ... , M (9.35)

pt+N−1 = 0 (9.36)

Then, the decomposition of the optimization Problem 9.5 is given by the following
proposition [11]:

Proposition 9.1. Suppose that x = [x1, x2, ... , xM] is a feasible point for Problem
9.5. Then:

V ∗(x) = max
P

M

∑
i=1

V ∗i (P,xi) (9.37)

where maximization is subject to pt+N−1 = 0.

Proof. [11] The proof follows similar arguments as in [9]. Since the stage cost
functions li(xi,t+k|t ,ui,t+k), i = 1, 2, ... , M are convex, from the duality theory [2]
it follows that there is no duality gap between the dual Problem 9.6 and the Prob-
lem 9.5. The requirement pt+N−1 = 0 follows from the optimality conditions of
Pontryagin’s maximum-principle for discrete-time systems [3] and the fact that
the state is not specified at the terminal time t +N − 1. Therefore, (9.37) holds.
Further, the maximum in (9.37) is attained when all elements of the gradient
of ∑M

i=1 V ∗i (P,xi) with respect to P are zero, i.e. v∗i,t+k −∑M
j=1, j �=i Ai jx∗j,t+k|t = 0,

i = 1, ... , M, k = 0, 1, ... , N − 1. This means that the constraints (9.17) are satis-
fied at the optimum.

Proposition 9.1 shows that the computation of U∗i , X∗i and V ∗i for given prices
P is completely decentralized. However, as described in [9], finding the opti-
mal prices requires coordination. According to the duality theory [2], V ∗i (P,xi),
i = 1, ... , M are concave functions of P. Therefore, the optimal price sequence
P∗ = [p∗t , p∗t+1, ... , p∗t+N−1] can be found as the limits of a gradient iteration [9].
Given a price prediction sequence Pr

i = [pr
i,t , ... , pr

i,t+N−1] for the r-th iteration, the
corresponding sequences U∗ri = [u∗ri,t , ... , u∗ri,t+N−1], X∗ri = [x∗ri,t|t , ... , x∗ri,t+N−1|t ] and

V ∗ri = [v∗ri,t , ... , v∗ri,t+N−1] are computed locally by solving Problem 9.4i. Then, the
prices can be updated distributedly by a gradient step:
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pr+1
i,t+k = pr

i,t+k + γ
r
i (v
∗r
i,t+k−

M

∑
j=1
j �=i

Ai jx
∗r
j,t+k|t ) , k = 0, 1, ... , N− 2

with pr+1
i,t+N−1 = pr

i,t+N−1 = 0 (9.38)

It should be noted that Proposition 9.1 holds only locally due to linearization,
in a neighborhood of the optimal solution U0

i , X0
i ,V 0

i to sub-problems 9.3i, i =
1, 2, ... , M, where the linear constraints (9.33) can sufficiently accurately approx-
imate the nonlinear constraints (9.19). Therefore, it would be necessary to period-
ically update the linear constraints (9.33) and then to apply formula (9.38) for a
number of steps.

9.3.3 A Suboptimal Approach to Distributed NMPC Based on
On-Line Optimization

In [9], an approach to distributed MPC for linear systems in the absence of dis-
turbances has been suggested, where the prices are updated according to (9.38).
In [11], a suboptimal algorithm to distributed quasi-NMPC is proposed that con-
siders a more general class of systems, since it refers to nonlinear systems with
linear couplings in the presence of bounded disturbances (see Section 9.2). The
suggested algorithm includes two loops. In the outer loop, the NLP sub-problems
9.3i, i = 1, 2, ... , M, are solved and the matrices of the linear constraints of the ap-
proximating QP sub-problems 9.4i, i = 1, 2, ... , M are computed. Then, in the inner
loop, the price sequences and solution are updated based on Proposition 9.1 and
applying formula (9.38) for a given number of steps. The algorithm is described by
[11]:

Algorithm 9.1. Distributed quasi-NMPC by on-line optimization.

1. Given numbers Q and L, step sizes γi, i = 1, 2, ... , M and arbitrary guesses P0
i ,

i = 1, 2, ... , M for the price sequences. Let t = 0.
2. Let the state at time t be x(t) = x = [x1, ... , xM].
3. for q = 1, 2, ... , Q do
4. For xi,t|t = xi compute distributedly the optimal solutions U0

i =Uopt
i (xi),

X0
i = Xopt

i (xi), V 0
i =V opt

i (xi) to the NLP sub-problems 9.3i, i = 1, 2, ... , M,
corresponding to the price sequences P0

i = [p0
i,t , ... , p0

i,t+N−1]. Compute the
matrices SXi , SUi , and E0i associated to the approximating QP sub-problems
9.4i, i = 1, 2, ... , M.

5. for r = 0, 1, ... , L− 1 do
6. For i-th subsystem, i = 1, 2, ... , M, communicate the price sequences

Pr
j = [pr

j,t , ... , pr
j,t+N−1], j = 1, ... , M, j �= i of the interconnected

subsystems.
7. Compute the sequences U∗ri = [u∗ri,t , ... , u∗ri,t+N−1], X∗ri = [x∗ri,t|t , ... , x∗ri,t+N−1|t ]
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and V ∗ri = [v∗ri,t , ... , v∗ri,t+N−1] corresponding to the price sequence
Pr = [pr

t , ... , pr
t+N−1] by solving distributedly the QP sub-problems 9.4i,

i = 1, 2, ... , M.
8. For i-th subsystem, i = 1, 2, ... , M, communicate the state trajectories

X∗rj = [x∗rj,t|t , x∗rj,t+1|t , ... , x∗rj,t+N−1|t ], j = 1, ... , M, j �= i of the interconnected
subsystems.

9. Compute distributedly the updates Pr+1
i =[pr+1

i,t , ... , pr+1
i,t+N−1], i=1, 2, ... , M

of the price sequences by applying (9.38) for γr
i = γi, i = 1, 2, ... , M.

10. end
11. Let P0

i = PL
i , i = 1, 2, ... , M.

12. end
13. Apply to the overall system the control inputs ui(t) = u∗L−1

i,t , i = 1, 2, ... , M.
14. Let t = t + 1 and go to step 2.

The steps 4 to 11 in Algorithm 9.1 include an iterative solution of the NLP sub-
problems 9.3i, approximating them with the QP sub-problems 9.4i, and then updat-
ing the prices by utilizing Proposition 9.1.

It should be noted that alternatively, an approach similar to [14, 16] can be ap-
plied, where the idea would be to avoid solving the NLP sub-problems 9.3i in step
4 and to formulate the approximating QP sub-problems 9.4i by using the optimal
sequences U∗i , X∗i and V ∗i , computed in the previous time instant.

9.4 A Semi-explicit Approach to Efficient Distributed NMPC
for Interconnected Systems with Linear Couplings

Although the original centralized NMPC problem (Problem 9.1) has been repre-
sented as a distributed quasi-NMPC problem (Problem 9.6), its approximate solu-
tion with Algorithm 9.1 may still require significant computational efforts. This is
mainly due to step 4, where the NLP sub-problems 9.3i, i = 1, 2, ... , M are solved
and approximated with QP sub-problems. Therefore, there is a motivation to pre-
compute off-line the optimal price sequence P∗ = [p∗t , p∗t+1, ..., p∗t+N−1] as an ex-
plicit function of the overall state x by applying a parametric programming ap-
proach. However, it is known that the off-line computational complexity with the
explicit approach tends to increase rapidly with the number of states and thus they
can be applied only to small-scale processes. Therefore, the use of a semi-explicit
approach to efficiently solve distributed NMPC problems for interconnected non-
linear systems (which are supposed to be of medium-scale) is more appropriate.
The idea of the semi-explicit approaches has been used in [21] to solve central-
ized linear MPC problems and later applied to nonlinear MPC formulations [10].
The semi-explicit approaches [21, 10] combine the two paradigms of explicit and
on-line MPC in order to overcome their individual limitations. They consist in us-
ing a piecewise linear (PWL) approximation of the optimal control law (which is
computed off-line) to warm-start the on-line optimization.
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9.4.1 Formulation of the Distributed NMPC Problem as an
mp-NLP Problem

Here, a semi-explicit NMPC approach to efficiently solve the distributed NMPC
problem (Problem 9.2) is proposed. With off-line computations, an approximate ex-
plicit solution P̂(x) for the price sequences is obtained. Then, on-line, this solution
is used as an initial guess (warm start) for a gradient iterations algorithm, similar to
Algorithm 9.1. The expected result would be a decrease of the number of iterations
in the gradient algorithm and thus of the on-line computational efforts. The follow-
ing multi-parametric Nonlinear Programming (mp-NLP) problem is solved:

Problem 9.7 (mp-NLP):

V opt(x) = max
P

M

∑
i=1

V opt
i (P,xi) subject to pt+N−1 = 0 (9.39)

In general, V opt
i (P,xi) are nonlinear functions of the initial state xi because they are

obtained by solving the NLP sub-problems 9.3i, i = 1, 2, ... , M where the dynamic
equality constraints are eliminated using direct single shooting. Thus, the Problem
9.7 is a mp-NLP problem since it is a NLP problem in P parameterized by x [8].
Define the set of N-step feasible initial states as follows:

Xf = {x ∈R
n |Problems 9.3i , i = 1, ... , M are feasible for some P ∈ R

Nn} (9.40)

If Problem 9.2 is feasible, then Xf is a non-empty set. The purpose of the semi-
explicit approach is to obtain first an approximate explicit solution P̂(x) to Problem
9.7 in some set X ⊆ Xf ⊆ R

n by applying an approximate mp-NLP method.

9.4.2 Approximate mp-NLP Approach to Semi-explicit
Distributed NMPC

Let X ⊂ R
n be a hyper-rectangle where we seek to approximate the optimal solu-

tion Popt(x) to the Problem 9.7. The approximate solution P̂(x) to Popt(x) is found
by applying the approximate mp-NLP approach, described in Chapter 1.Thus, it
is required that the state space partition is orthogonal and can be represented as a
k− d tree. The idea is to construct a piecewise linear (PWL) approximation P̂(x) to
Popt(x) on X , where the constituent affine functions are defined on hyper-rectangles
covering X . The computation of an affine approximation P̂0(x) = K0x+ g0, associ-
ated to a given region X0, includes the following steps. First, the optimal solution of
Problem 9.7 is computed at the vertices and the center point of X0. Then, based on
the solutions at these points, a local linear approximation P̂0(x) to the optimal so-
lution Popt(x), valid in the whole hyper-rectangle X0, is determined. By taking into
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account that the constraint pt+N−1 = 0 should be satisfied, K0 and g0 should have
the form:

K0 =

[

K̃0

01,n

]

, g0 =

[

g̃0

0

]

(9.41)

where 01,n is a zero vector with dimension 1× n. Then, K̃0 and g̃0 are determined
by applying the following procedure:

Procedure 9.1 (Computation of explicit approximate solution). Consider any
hyper-rectangle X0 ⊆ X with center point w0 and vertices {w1, w2, ... , w2n}. Com-
pute K0 and g0 by solving the following NLP:

min
K̃0, g̃0

2n

∑
q=0

(
M

∑
i=1

V opt
i (K0wq+g0,w

i
q)−V opt(wq)+μ‖K0wq+g0−Popt(wq)‖2

2) (9.42)

subject to (9.41).

In (9.42), wq is the value of the overall state, i.e. wq = [w1
q, w2

q, ... , wM
q ], while

wi
q is the value of the state associated to the i-th subsystem. Also in (9.42),

V opt
i (K0wq + g0,wi

q) is the i-th optimal local cost obtained by solving the local
NLP Problem 9.3i for P = K0wq + g0, V opt(wq) denotes the optimal cost asso-
ciated to the whole system, corresponding to the optimal solution Popt(wq), i.e.
V opt(wq) = ∑M

i=1 V opt
i (Popt(wq),wi

q), and the parameter μ > 0 is a weighting co-
efficient.

After a linear approximation P̂0(x) = K0x+ g0 has been determined, an estimate
ε̂0 of the maximal cost function approximation error ε0 in X0 is computed as follows:

ε̂0 = max
q∈{0,1,2, ... ,2n}

(
M

∑
i=1

V opt
i (K0wq + g0,w

i
q)−V opt(wq)) (9.43)

If the maximal cost function approximation error ε0 in X0 is greater than a specified
tolerance ε̄ > 0, the region X0 is split and the above procedure is repeated for the
new regions, as described in Chapter 1.

After an approximate PWL solution P̂(x) for the price sequences has been found,
the control inputs are determined on-line by applying a modification of Algorithm
9.1 (where the approximate solution P̂(x) is used as a warm start). It should be noted
that with the semi-explicit approach the number of gradient iterations at which the
NLP Problems 9.3i, i = 1, 2, ... , M are solved can be smaller than that with the ap-
proach based entirely on on-line optimization.

Although the semi-explicit approach is characterized with less off-line computa-
tional complexity compared to the purely explicit approach, the complexity would
increase with the number of the parameters in the mp-NLP problem [10]. There-
fore, the application of the proposed semi-explicit approach is restricted to small-
and medium-scale systems.
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9.5 Application: Distributed NMPC of a Nonlinear System
Consisting of Two Sub-systems

Consider the following second order system composed of two subsystems S1 and S2

[15]:

S1 : x1(t + 1) =
√

x1(t)2 + 1+ u1(t)− 1+η1x2(t)+ d1(t) (9.44)

S2 : x2(t + 1) = e− sin(x2(t)) + u2(t)− 1+η2x1(t)+ d2(t) (9.45)

Thus, the functions fi, gi, i = 1, 2 in the formulation (9.1) are:

f1(x1(t),u1(t)) =
√

x1(t)2 + 1+ u1(t)− 1 (9.46)

f2(x2(t),u2(t)) = e− sin(x2(t)) + u2(t)− 1 (9.47)

g1(x(t)) = η1x2(t) , g2(x(t)) = η2x1(t) (9.48)

The functions gi satisfy Assumption 9.4 and they describe the mutual influence of
the two subsystems. The disturbances are assumed to be the states of the following
asymptotically stable first order systems [15]:

di(t + 1) = 0.9di(t) , i = 1, 2 (9.49)

and they are bounded by:
|di(t)| ≤ 1 , i = 1, 2 (9.50)

The following constraints are imposed on the system (9.44)–(9.45):

−0.3≤ ui(t)≤ 0.5 , i = 1, 2 (9.51)

−2≤ x1(t)≤ 2 , −1.5≤ x2(t)≤ 1.5 (9.52)

It should be noted that here the input constraints are different from those in [15].
Also in addition, state constraints are imposed on the system (while in [15] only
input constraints are considered). The coefficients related to the couplings between
the two subsystems are η1 = η2 = 0.4. The prediction horizon in the centralized
NMPC problem (Problem 9.1) is N = 5 and the weighting matrices are Qi = Ri = 1,
i = 1, 2.

9.5.1 Results with the Distributed NMPC Based on On-Line
Optimization

The centralized NMPC problem is represented as a distributed NMPC problem
(Problem 9.6) by applying the dual decomposition approach. Then, Algorithm 9.1
with parameters Q = 5, L = 3, γi = 0.3, i = 1, 2 is used to generate the two control
inputs for an initial state x(0) = [0.3 0.3] and initial disturbances d(0) = [1 1]. The
corresponding trajectories of the prices p1, p2, the control inputs u1, u2, the states
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x1, x2 and the disturbances d1, d2 associated to the two subsystems are depicted in
Fig. 9.2 to Fig. 9.5. The trajectories obtained with the following approaches are
compared:

– The suboptimal distributed NMPC approach with linearization of the nonlinear
constraints (9.25) (described in Section 9.3);

– A suboptimal distributed NMPC approach without linearization of the nonlinear
constraints (9.25). In this case, a modification of Algorithm 9.1 is used for the
on-line computation of the control inputs. It has only one loop, where the optimal
solutions of the NLP sub-problems 9.3i, i = 1, 2, ... , M are computed distribut-
edly, and then the price sequences are updated by applying (9.38) by using the
computed optimal solutions. The loop is repeated Q = 5 times and the step size
in (9.38) is γi = 0.3, i = 1, 2.

– The exact distributed NMPC approach, which solves Problem 9.6 at each time
instant.

– The centralized NMPC approach, which solves Problem 9.1 at each time instant.

The computational complexity of both suboptimal distributed NMPC approaches
is compared to that of the exact distributed NMPC approach and the centralized
NMPC approach. For this aim, the respective trajectories are determined for 100
initial states, obtained by gridding the state space [−1, 1]× [−1, 1]. The results are
presented in Table 9.1, where also the possibility of these approaches to find a fea-
sible solution is compared and expressed in terms of percentage from the total num-
ber of initial states. The computations are performed on a 3 GHz Intel Core 2 Duo
processor.

Table 9.1 Comparison of different NMPC approaches

Method Percentage of Average Maximal
feasible solutions CPU time [s] CPU time [s]

Suboptimal distributed NMPC 79 % 0.66 0.74
without linearization

Suboptimal distributed NMPC 79 % 1.81 1.86
with linearization

Exact distributed NMPC 79 % 10.28 14.86
Centralized NMPC 28 % 0.66 2.30

It can be seen from Table 9.1 that the suboptimal distributed NMPC approach
without linearization of the nonlinear constraints is the most computationally effi-
cient approach. Both suboptimal approaches are more efficient in comparison to the
exact distributed NMPC approach. A disadvantage of the centralized approach is
that it fails to find a feasible solution for a significant number of initial states (in this
sense it is about three times less efficient than the distributed NMPC approaches).
A possible reason for this is the fact that in the presence of disturbances, the worst-
case state constraints related to both subsystems (constraints (9.7) in the Problem
9.1) can be difficult to be satisfied at the same time for some of the initial states.
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Fig. 9.2 The prices p1 and p2.

In contrast, the distributed NMPC approaches lead to two completely decentralized
NMPC problems, where worst-case disturbance assumptions of only the individual
subsystems are made (not simultaneously).

9.5.2 Results with the Semi-explicit Distributed NMPC

The semi-explicit approach from Section 9.4 is used to obtain an approximate PWL
solution P̂(x) for the price sequences. The state space partition of this solution is
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Fig. 9.3 The control inputs u1 and u2 for subsystems S1 and S2.

shown in Fig. 9.6. Then on-line, a modified version of Algorithm 9.1 is used to
generate the two control inputs for the initial state x(0) = [0.3 0.3] and initial dis-
turbances d(0) = [1 1]. In the modified Algorithm 9.1, the number of gradient it-
erations, performed on-line is Q = 3 and the step sizes are γi = 0.3, i = 1, 2. The
corresponding trajectories of the prices p1, p2, the control inputs u1, u2, and the
states x1, x2, associated to the two subsystems, are depicted in Fig. 9.7 to Fig. 9.9.
For comparison, in Fig. 9.7 to Fig. 9.9, the trajectories, obtained with the distributed
NMPC approach, based entirely on on-line optimization (with number of gradient
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Fig. 9.4 The states x1 and x2 of subsystems S1 and S2.

iterations Q = 5 and step sizes γi = 0.3, i = 1, 2) and those, obtained with the exact
distributed NMPC are also shown.

In Table 9.2, the computational complexity of the semi-explicit suboptimal dis-
tributed NMPC and the on-line optimization-based distributed NMPC is compared,
as well as their possibility to find a feasible solution and the average accumulated
cost function value. For this aim, the respective trajectories are determined for 100
initial states, obtained by gridding the state space [−1, 1]× [−1, 1]. The computa-
tions are performed on a 3 GHz Intel Core 2 Duo processor.
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Fig. 9.6 State space partition associated to P̂(x) and state trajectories obtained with the semi-
explicit distributed NMPC with number of gradient iterations Q = 3 (the solid curve) and
with the exact distributed NMPC (the dashed curve).
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Fig. 9.7 The prices p1 and p2.
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Fig. 9.8 The control inputs u1 and u2 for subsystems S1 and S2.
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Fig. 9.9 The states x1 and x2 of subsystems S1 and S2.
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Table 9.2 Comparison of the semi-explicit distributed NMPC approach (with number of
gradient iterations Q = 3) and the on-line optimization-based distributed NMPC approach
(with number of gradient iterations Q = 5)

Method Percentage of Average accumulated Average Maximal
feasible solutions cost function value CPU time [s] CPU time [s]

Semi-explicit
distributed NMPC 74 % 25.31 0.39 0.46

with Q = 3
On-line optimization

-based distributed NMPC 79 % 25.35 0.66 0.74
with Q = 5

It can be seen from Table 9.2 that the semi-explicit suboptimal distributed NMPC
approach allows to use less number of gradient iterations in comparison to the dis-
tributed NMPC approach based entirely on on-line optimization. Thus, it leads to
a decrease in the on-line computational complexity, while keeping nearly the same
ability to find a feasible solution and control quality (in terms of the average accu-
mulated cost function value).
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