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Introduction 

Condition monitoring of machines in non-stationary operations (CMMNO) can be 
seen as the major challenge for research in the field of machinery diagnostics. 

Condition Monitoring of Machines in Non-stationary Operations is the title of 
the presented book and the title of the Conference held in Hammamet - Tunisia 
March 26–28, 2012. It is the second conference under this title, first took place in 
Wroclaw - Poland, March 2011. 

The subject CMMNO comes directly from industry needs and observation  
of real objects. Most monitored and diagnosed objects used in industry works in 
non-stationary operations condition. The non-stationary operations come from 
fulfillment of machinery tasks, for which they are designed for. All machinery 
used in different kind of mines, transport systems, vehicles like: cars, buses etc, 
helicopters, ships and battleships and so on work in non-stationary operations. 

The papers included in the book are shaped by the organizing board of the  
conference and authors of the papers. 

The papers are divided into five sections, namely: 
 

Condition monitoring of machines in non-stationary operations 
Modeling of dynamics and fault in systems 
Signal processing and Pattern recognition for condition monitoring 
Monitoring and diagnostic systems 
Noise and vibration of machines 
 

The presented book gives the background to the main objective of the CMMNO 
2012 conference that is to bring together scientific community to discuss the major 
advances in the field of machinery condition monitoring in non-stationary conditions. 

In the first chapter, the main subject of the conference book is discussed. This 
subject comes directly from industry needs and industry observation of real ob-
jects. Most monitored machines used in industry works in non stationary opera-
tions condition. The non-stationary operations come from fulfillment of machinery 
tasks, for which they are designed for. The papers presented in this chapter try to 
generalize the solution and give individual response for individual applications of 
monitoring and diagnosing when object works in stationary operations. 

Second section discusses the vibration based faults detection in machinery such 
as misalignment, unbalance, local damages etc.; it is widely developed and exten-
sively used in practice. However, the quantification and the location of defects is 
still a research subject for many years. In the last decades, an increase of interest  
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was observed for model based approaches to provide mathematical explanation of 
the dynamics of machinery especially in presence of faults and in non-stationary 
operations. 

Third chapter shows that modern condition monitoring extensively exploits 
signal processing and pattern recognition techniques. Signal processing is used for 
both signal enhancement (de-noising, separation, reconstruction, filtering…etc) 
and feature extraction (parametric models, two dimensional plane representation). 

In some cases, damage detection can be performed using simple rules. How-
ever, when considering complex mechanical systems, especially in time varying 
conditions, problem of classification of features becomes complicated. In such a 
case, feature selection procedures are proposed and advanced data classifiers are 
used. 

Fourth chapter emphasizes that despite the fact that condition monitoring is 
well established as a scientific discipline, there is still a great need to implement 
results of research into the practice, as monitoring and diagnostic system. In this 
chapter,  several good examples of problem complexity is provided in the context 
of marine gas turbine, mining industry, wind turbine generator or even wind tur-
bines farms. In such practical implementation, as multi-channel online systems, 
even signal quality assessment seems to be serious data-mining task. 

Fifth section, where noise and vibration is discussed, different theoretical and 
practical methods are presented. The damping phenomenon is used for noise and 
vibration reduction. There are also given papers on more advanced techniques 
like: dynamic absorbers, floating supports, damper modeling and so on. 

The presented book gives the background to the main objective of the 
CMMNO 2012 conference that is to bring together scientific community to  
discuss the major advances in the field of machinery condition monitoring in  
non-stationary conditions. 
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Chapter 1 

Condition Monitoring in Non-stationary 
Operations 

Condition monitoring in non-stationary operations is the main subject of the 
conference. The subject comes directly from industry needs and observations of 
real objects. Most monitored machines used in industry work in non-stationary 
operations condition. The non-stationary operations are due to the fulfillment of 
machinery tasks, for which they are designed for. All machinery used in different 
kind mines, transport systems, the private or public vehicles like: cars, buses, 
helicopters, ships and battleships and so on work in non-stationary operations. The 
papers presented in this chapter try to generalize the solution and to give 
individual response for individual applications of monitoring and diagnosing when 
the machine works in stationary operations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Separation of Gear and Bearing Fault Signals 
from a Wind Turbine Transmission under 
Varying Speed and Load 

Robert B. Randall1, Nader Sawalhi2, and Michael Coats1 

1 School of Mechanical and Manufacturing Engineering,  
 University of New South Wales, Sydney 2052, Australia 
 b.randall@unsw.edu.au, m.coats@yahoo.com.au  
2 Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU)  
 P.O. Box 1664, AlKhobar 31952, Saudi Arabia 
 nadersaw@hotmail.com 

Abstract. Wind turbine transmissions are quite complex, with a multitude of gears 
and bearings. It is imperative that the different signals are separated from each 
other in order to locate the source of a problem. They differ from many other 
gearboxes by operating with a widely varying load over time periods correspond-
ing to individual analysis records, and this gives particular problems with gear 
vibrations, where the effects of load have to be separated from those of condition. 
The most efficient turbines operate with widely varying speed as well, and this 
also has to be compensated for in the analysis procedures. 

This paper discusses a number of ways of compensating for speed and load var-
iation, using signals obtained from a round robin study of naturally occurring 
faults in a wind turbine transmission. The gearbox was mounted on a test rig for 
the measurements, and so the speed variation was less than can occur in practice, 
but the way in which larger speed and load variations can be accounted for is 
demonstrated using signals from a simpler gearbox on another test rig, and another 
wind turbine.  

Keywords: gear diagnostics, bearing diagnostics, speed variation, load variation, 
order tracking. 

1   Introduction 

Wind turbine transmissions are quite complex, with a large ratio from input to 
output, and many different gears and shafts supported in bearings. They usually 
consist of a planetary section at the input, followed by one or two stages of paral-
lel gears. The arrangement is not unlike that of helicopter gearboxes, with which 
much experience has been gained over the years, but they differ in a number of 
ways that introduce new problems. Firstly, they are speedup gearboxes rather than 
reducers, though this does not appear to give great problems with the diagnostics. 
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They operate at a much lower speed, by a factor of ten or more, so that record 
lengths required for analysis of the low speed sections are typically of the order of 
minutes, and considerable load variation can occur over such time periods. Clas-
sical gear diagnostic techniques are usually based on the assumption of roughly 
constant load, since gear vibrations vary considerably with load as dynamic 
transmission error (TE) changes with tooth deflection. Bearing vibrations also 
vary with load, though not as much as for gears, and it is also a mitigating factor 
that initial faults tend to make the signal more impulsive, and therefore detectable 
independent of load, which is not always the case with gears.  

In any case, the characteristics of the signals can only be determined if the sig-
nal from each component can be separated from all others, and in particular bear-
ing signals are often masked by gear signals, even with no faults in the latter. A 
first separation is often into deterministic and random constituents, as gears fall 
into the first category, and bearings into the second. A number of methods are 
available for this [Randall ‘11], but a new method based on the cepstrum has some 
advantages [Randall, Sawalhi ‘11]. Extracting deterministic components usually 
involves resampling in the angular domain, to make the signals truly periodic, 
which they will not be in the case of speed variation, even when this is minor. The 
method, also known as order tracking, can also compensate for large speed varia-
tions, such as can be experienced with wind turbines, but other problems then 
arise. The method usually requires a speed reference signal (tacho or shaft encod-
er), but methods are described here for extracting a “pseudo-encoder” signal from 
the vibration signal. Other methods for enhancing and diagnosing the gear and 
bearing signals are described in the following. 

2   Typical Diagnosis of Wind Turbine Transmission Faults 

Much of the following is based on the results of our analysis of signals provided 
by the NREL (National Renewable Energy Labs) of the U.S. Department of Ener-
gy, in a round robin study. The signals were taken from a transmission which had 
experienced oil leakage and overheating in practice, and had then been installed 
on a test rig where the measurements were made. Initially, no information was 
given as to the faults, and the analysis was blind, but later an inspection report was 
provided and the initial predictions could be tested. At about the time of the in-
spection report, vibration spectra were also provided for the gearbox in healthy 
condition, so further diagnostic analysis could be done, in particular with respect 
to the gear condition, for which spectrum comparison is a very valuable technique. 
Signals were provided for several loads and nominal speeds, but the latter did not 
vary as much as can happen in practice. Full results of the round robin study will 
be published in the journal Wind Energy in mid 2012. 

The turbine studied had a fixed synchronous speed induction generator (nomi-
nally 1800 or 1200 rpm), so the speed variation was not great. The speed signal 
supplied was not suitable for order tracking so the instantaneous speed was ex-
tracted from the high speed gearmesh signal by the method illustrated in Fig. 1 
[Urbanek et al ‘11]. 
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Fig. 1 Reference (speed) signal extraction stages (a) Identifying a separable band (b) Ex-
tracting the band into a new buffer (c) inverse transform signal b into the time domain  

If as in this case the speed variation is not large, the correction can be made in 
one step, but if it is greater the correction can be done iteratively, starting if neces-
sary at a lower harmonic, using an alternative phase demodulation method  
described below. As the extracted band is progressively narrowed in the angle 
domain at each iteration, less noise is included in the inverse transformation to the 
time domain, making the time/angle mapping more accurate. The lowest harmonic 
that can be used is the fundamental, but this is well separated from the second 
harmonic, and it is possible to correct for variations up to nearly 30%. An example 
is shown later in the paper. Note that the zero crossings of the extracted signal 
represent phase increments of 180°, and amplitude modulation by any non-zero 
modulating function has no effect on this. 

The detected instantaneous shaft speeds for two of the signals are shown in 
Fig. 2, for the high speed shaft at nominal 1800 and 1200 rpm, respectively. 

As discussed in [Urbanek et al ‘11], an alternative method for angular resam-
pling is to phase demodulate the prominent signal used as a pseudo-encoder, and 
use this as a “map” between time and rotation angle. In [Urbanek et al ‘11], the 
results were virtually identical, but in a multi-stage iterative procedure the phase 
demodulation method is probably easier to use since the map is continually  
updated. 
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Fig. 2 High speed shaft estimates  (upper) 1800 rpm  (lower) 1200 rpm  

As mentioned above, the amount of correction for speed variation that can be 
made based on the signal itself is limited by Bedrosian’s condition that sidebands 
around different carrier harmonics should not overlap. This gives a limit of about 
30% for the first harmonic and for example 10% for the third harmonic [Coats et 
al ’10]. Fig. 3 shows an example from a simple gear test rig with a faulty bearing, 
where the speed was varied ± 10% sinusoidally around 6 Hz, with a period of 5s. 
Note that the amplitude modulation of the acceleration signal, with 5s period, is 
due to the fact that certain harmonics pass through fixed resonances every speed 
cycle. The spectrum of the tacho signal shows that the third harmonic is the high-
est that is separated from adjacent harmonics, and can still be used for speed cor-
rection. The spectrum of the acceleration signal shows that the first two harmonics 
are too weak to use, but the third has a similar spread to that of the tacho signal. 
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Fig. 3 Signal with ±10% speed variation (upper) tacho (lower) acceleration (left) time  
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Fig. 4 Spectra of order tracked tacho signal (a) using 3rd harmonic of tacho signal (b) using 
3rd harmonic of acceleration signal   

Figure 4 shows the results of using the third harmonic of the two signals to per-
form order tracking. In both cases, the spectrum of the corrected tacho signal is 
shown (cf Fig. 3 upper right). The frequency axis is scaled in terms of mean speed, 
but it is actually an order axis. It is seen that even though the tacho signal does a 
better job, the correction of 4(b) is still sufficient to allow envelope analysis of  
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Fig. 5 Spectrum of the squared envelope of the order tracked signal showing harmonics of 
BPFI as well as harmonics and sidebands spaced at shaft speed 6 Hz 
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bearing faults, where only the first few harmonics are required. A second iteration 
using say the 9th harmonic of Fig. 4(b) could have been used to greatly improve 
the correction, and this (and further iterations) would be required for gear analysis. 

Finally, Fig. 5 shows the averaged spectrum of the squared envelope of the ac-
celeration signal, demodulated in a high frequency band which maximised the  
kurtosis of the transmitted signal. The frequency axis is once again based on mean 
rotational speed. The first two harmonics of BPFI (ballpass frequency, inner race) 
are seen, along with low harmonics of shaft speed 6 Hz, and sidebands spaced at 
this frequency around BPFI. It should be noted that in the direct FFT spectrum of 
the envelope, there were modulation sidebands spaced at 0.2 Hz because of the 
amplitude modulation seen in Fig.3.   

This brings up an important point about compensating signals for changes in 
speed over a large range. If amplitude modulation occurs as in Fig. 3, it means that 
the “deterministic” components are no longer periodic in the angular domain. A 
synchronous average will produce a sinusoid with the average amplitude and if 
this is subtracted from the total signal a residual will be left. One thing that can be 
done to get around this problem is to make a series of averages over shorter 
lengths where the amplitude does not vary greatly, but this limits the number of 
averages in each section and thus the enhancement that can be achieved. It is the 
equivalent of removing the “discrete frequency” components by a sliding filter 
such as linear prediction or SANC (self adaptive noise cancellation) [Randall ‘11], 
where the notch filter is equally broad (with synchronous averaging the width of 
the notch filter is inversely proportional to the number of averages). 

Before leaving the discussion of pseudo-encoder signals based on a gearmesh 
frequency, it is instructive to view the results in Fig. 6, based on a blind analysis 
of another wind turbine with squirrel cage induction generator, and synchronous 
speed 30 Hz [Randall et al ‘11]. It shows the pseudo-encoder signal corresponding 
to the final gearmesh frequency at about 590 Hz. It also shows the corresponding  
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frequency modulation signal (derivative of the phase modulation signal used for 
order tracking) and amplitude modulation signal. It is interesting that both ampli- 
tude and frequency modulation follow approximately the same pattern, and is 
explained by the fact that both give a measure of the instantaneous torque load. As 
mentioned above, the amplitude at gearmesh frequency is approximately propor-
tional to tooth load because of increasing tooth deflection, while the instantaneous 
speed (minus synchronous speed) gives a measure of slip frequency in the genera-
tor, which is a more linear measure of torque load. It is suggested that it may be 
possible to use such a measure of slip frequency as a measure of load, and conse-
quently use it to account for the effects of load on gear vibrations. This has not yet 
been tested. For variable speed turbines, with a doubly fed (wound rotor) genera-
tor, it would be much more difficult to measure the slip frequency, as it then de-
pends also on the supply frequency fed to the rotor to control the speed, but it may 
be possible to extract this also from the vibration signal. In such a case it would no 
longer be possible to use the amplitude modulation as a measure of load, as it is 
also affected by running through resonances (see Fig. 3). 

Returning to the NREL round robin data, after order tracking based on the 
pseudo-encoder signals, the gear signals through the whole gear train were ex-
tracted by synchronous averaging, and an example for the 1800 rpm case is shown 
in Fig. 7. The highest frequency signal shown is for the intermediate speed shaft 
(ISS), because in this case the gear ratio to the high speed shaft (HSS) was exactly 
4:1 (88:22). An estimate for the vibrations of the ISS was thus obtained by averag-
ing the four sectors of the total signal (each corresponding to one revolution of the 
HSS) and subtracting the repeated average from the total. The residual is shown in 
Fig. 8 where it is compared with the total signal, apparently dominated by the HSS  
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Fig. 8 Averaged signals for ISS  (Upper) Original   (Lower) Residual 

signal. The corresponding spectra are shown in Fig. 9, where it is apparent that the 
HSS dominates the total signal. It is interesting that there are strong harmonics of 
the high speed gearmesh surrounded by sidebands from modulation at the HSS 
frequency, and this agrees [Randall ‘11] with the fact that both wear and localised 
faults were found on the HS pinion. On the other hand, the spectrum of the ISS 
had prominent components at harmonics of the secondary mesh, but without 
modulation sidebands, which is consistent [Randall ‘11] with the wear being dis-
tributed because this mesh is a “hunting tooth” ratio (23:82), one of the few in the 
gearbox. 
 
 

0 20 40 60 80 100 120 140 160 180 200
10

0

10
2

10
4

0 20 40 60 80 100 120 140 160 180 200
10

0

10
2

10
4

 

Fig. 9 Spectra of signals in Fig. 8. (a) Original, harmonic cursor at order 88 (HS mesh), 
sideband cursor at order 4 (HSS) (b) Residual, harmonic cursor at order 23 (IS mesh) 
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Fig. 10 Comparison of spectra and cepstra in faulty and healthy condition (a,b) Faulty  (c,d) 
Healthy (a,c) Spectra, harmonic cursor at IS mesh (b,d) Cepstra 

It is also interesting to compare the spectra in the high frequency range and the 
corresponding cepstra, for faulty and normal condition, which is done in Fig. 10. 
The increase in the harmonics of both gearmesh frequencies shows distributed 
wear of both gears, while the prominent sidebands in the faulty spectrum again 
testify to the growth of local faults on the HS pinion. Note that the corresponding 
rahmonics in the cepstrum are only for the faulty case. There has been some 
growth of harmonics/sidebands at the ISS, as testified by the corresponding rah-
monics in the cepstra, but these are not so prominent in the spectra, and probably 
explained by non-uniformity of the wear since local faults were not discovered. 

A couple of bearing faults were also successfully detected and diagnosed, al-
though one was not. The only indication for the undetected fault was the appear-
ance of the second harmonic of the ballpass frequency in the envelope spectrum, 
but this coincided with the 7th harmonic of another shaft speed, so was not consid-
ered definitive enough.   
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Fig. 11 Envelope spectrum for an inner race fault in a gearbox HSS bearing  
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Figure 11 shows the envelope spectrum of one of the detected faults, obtained 
from the residual signal after removing the averages for all gears, and applying 
cepstral pre-whitening [Randall, Sawalhi ‘11]. It is for one of the gearbox HSS 
bearings with the shaft running at 1200 rpm (20 Hz), but the fault was also de-
tected with the shaft running at 1800 rpm. The fault in this case was presumably 
due to thermal distortion of the race (indicated by discolouration from overheat-
ing), since local spalls were not found by inspection. 

3   Conclusion 

The paper discusses a number of solutions to the problems associated with the 
diagnostics of wind turbine transmissions, which are subject to large variations in 
load and speed over relatively short periods. Ways of extracting both the speed 
and load information from the acceleration signal are demonstrated for certain 
cases. Potential but untested improvements are also suggested. 
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Object and Operation Factor Oriented 
Diagnostics 

Walter Bartelmus 
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Abstract. In the paper is presented the object and operation factors oriented 
diagnostic. This idea is developed by the author in resent times. In the idea 
detailed machine/object design properties are taken into consideration. Four 
groups of factors are taken into consideration namely: design, production 
technology, operation, and change of condition. The system is treated as a unit or 
divided into subunits and degradation process is included into consideration. The 
further interpretations of the concept of load susceptibility of machine systems is 
explored. The paper is a kind of shortened summary on the use of the concept of 
load susceptibility for machinery condition monitoring.           

Keywords: diagnostic, machine, operation, load susceptibility, gearbox, wind 
turbine. 

1   Introduction 

The object and operation factor orientated diagnostics is based on factor analysis, 
which have influence on vibration signals. These factors are divided into four 
groups namely: design, production technology, operation and change of condition 
as it is given in Fig.1.  

 
 

design production technology

primary

operation change of condition

secondery

Factors division

 

Fig. 1 Introductory division of factors influencing vibration signals 

As one can see from the Fig.1 the factors can be also classified as primary and 
secondary. The object and operation factors orientated diagnostic should give the 
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solution how to make diagnostic when machines work under non-stationary 
operations. Such machines would include:  wind turbines, helicopters, mining and  
civil engineering machinery. Many established machine condition monitoring 
methods are geared to  stationary operations. Considering the influence of real fast 
varying load and rotation to generation of vibration signals there is a need to 
develop ways of signal analysis which take into consideration that machine is a 
unity of elements not a system of  separated elements (bearings, gears, shafts) and 
not degradation of  a specific element or fault. The developed method should solve 
the problem of condition monitoring of machinery under varying operation and 
under the degradation process. As an example, the gear tooth cracking could be a 
last agent in gear degradation process, and treating it as the first agent in the gear 
degradation process is only a special case of such process. The interferences 
existing in real industrial conditions will affect the signal quality. Needed are 
appropriate condition monitoring and diagnostic systems applicable to the 
automated diagnostic process.       

The issue of the influence of varying load on vibration signals the author has 
presented for the first time in (Bartelmus 1992) broader description is given in 
(Bartelmus 2006). 

The issues of influence varying load to vibration signals is also noticed by the 
others authors in papers (Bonnardot et al. 2005); (Baydar and Ball 2000); (Zhan et 
al 2005); (Stander et al. 2002); (Stander and Heyns 2005). However the issue is 
not seen in broader contacts as influence of  mutual interaction between machine 
elements, and treating the machine or its subsystem as a unity of elements. The 
scenario or scenarios of degradation process are not considered or is presumed that 
only one element of the system change its condition - degrades. To solve the  
problem of influence of load to vibration signal the author is presented several 
publications on gearbox mathematical modeling and computer simulations 
(Bartelmus 1999); (Bartelmus 2000); (Bartelmus  2001); (Bartelmus 2008);  and 
on the new term as the load susceptibility (Bartelmus and Zimroz 2009); 
(Bartelmus and Zimroz 2009 a); (Bartelmus and Zimroz 2009 b); (Bartelmus and 
Zimroz 2009 c); (Bartelmus and Zimroz d)  which is the new measure of machine 
condition.     

2   Factors Influencing Vibration Signal 

Better understanding of machine vibration signals is connected with deeper 
division of factors, which have influence to vibration signals as it is given in Fig.2 
and 3. It obvious that more detailed division factors influencing vibration signals 
and better understanding of their influence to the signals gives better diagnostic 
that means better fault identification, understanding of fault influence to the other 
elements of the diagnosed system, better prognosis would be obtained.     
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Fig. 2 Division of design and production technology factors having influence to vibration 
signal 
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Fig. 3 Division of operation and change of condition factors influencing vibration signal 
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3   Influence of Design Factors – Object Orientation   

According to (Bartelmus and Zimroz 2011)  the gearbox systems can be divided 
as: compound and complex gearboxes, and multifunction gearboxes. Fig.4 a) and 
b) shows the schemes of complex system gearboxes which can be reduced into 
compound  gear systems.   
 
 
a)                                                      b)                                                                  

Z3 Z1 
Z2 

Z4 

Z6 

Z5 
Z7 

Z9 

Z8  

Fig. 4 a) and b) Schemes of complex system of gearboxes which can be reduced into 
compound gear systems 

Using the principals of mechanics as it is given in (Bartelmus and Zimroz 2011)  
the ratio of planetary gearbox Fig.4a) can be presented by the statement 

1

31
z

z
up +=                                                           (1)  

Now the system Fig.4 can be treated as compound system with a ratio                          

321 cccpc uuuuu =                                                 (2) 

The system presented in Fig.4b may be noticed as a “more complex”, for which 
the ratio of a planetary gearbox (Bartelmus and Zimroz 2011) is given 

63

75

3

51
zz

zz

z

z
u p ++=                                                (3) 

and its ratio for compound system is 

cpbc uuuu =                                                       (4) 

There are also multifunction gearboxes (Bartelmus 2011) with complex gearboxes 
as it is in Fig.5.  
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Fig. 5 Scheme of driving system with multifuction gearbox for driving bucked wheel of 
bucked wheel excavator with overload mechanism 

The planetary gearboxes with ratios at a first function are as follow 
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and the total ratio for the compound system is 
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Second function  

In the case of overloading, where the bucket wheel is stopped and 05 =jn  so 

the planetary gearbox is redused to the cylindrical stage with an idle gear or third 

wheel 6z and the ratio of the fomer planetary gear (gears z5, z6, z7) is now   

7

5
2 z

z
ucy =                                                           (7) 

and transmited moment from the electric motor equels to bM ,which is a fixed 

friction moment of the overload mechanism; a brake. 
In this case power is transmited by a planetary gearbox with (gears z11, z12, z13), 

which works as multiplier with a ratio 
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1311

11
3 zz

z
up +

= .                                                    (8) 

And now one may treat the system as a compound gearbox where the total ratio of 
the gearbox from the motor to the brake is 

32 pcycybt uuuuu = .                                               (9) 

4   Interaction of Gearbox Elements  

Next step in the object and operation factor orientated diagnostics is take in 
consideration mutual interaction between drive system elements as it is given in 
Fig.6 and 7.   

 

Fig. 6 Interaction of gearbox elements and influence of environment (Bartelmus 1992)  

 

 
Fig. 7 The interaction of the elements of the whole system (Bartelmus and Zimroz 2009b) 

5   Planetary Gearbox Condition Monitoring  

In a paper (Bartelmus and Zimroz 2009c) the term load susceptibility is 
introduced. The load susceptibility is given by the regression characteristics in 
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Fig.8b) as diagnostic features for planetary gearbox as a function of rotation speed 
RPM; for a gearbox in good (“o” dots) and bad condition (“x” dots) (Bartelmus 
and Zimroz 2009c). In this case presentation of susceptibility characteristics an 
electric motor a linear relationship between the transmitted moment a rotation 
speed is used. It means that one may use the load susceptibility characteristics as 
the function of a load or function of a rotation speed RPM as it is given in Fig.8b). 
In the presented cases of the load susceptibilities the characteristics are interpreted 
as follows. The case for a good condition of gearbox shows that planetary gearbox 
behaves as a linear system under increasing load, that means with increasing load, 
the system deflection increases. In the case of  bad condition as result of frictional 
wear of bearings the gear mesh  under the condition of a shaft misalignment what 
gives a linear increase of the gear cooperation error and linear increase of inter 
teeth force, which cause linear increase of a vibration acceleration signal as it is 
presented by linear regression line Fig.8b in a case of the bad gear condition. 
Fig.8b) also shows very good separation of data for the good and bad condition. 
Better than is given in Fig.8a when the data distribution functions overlap each 
other. In (Bartelmus and Zimroz 2010) robust mechatronic condition monitoring 
and diagnostic method for gearboxes is given.                      
 
 
a)                                                                b) 

 

Fig. 8a) Data distribution of measured diagnostic parameters b) Load 
susceptibility/yielding characteristic as diagnostic features for planetary gearbox as a 
function of rotation speed RPM; for a gearbox in good (“o” dots) and bad condition (“x” 
dots) (Bartelmus and Zimroz 2009c)  

6   Load Susceptibility - Computer Simulations 

For better understanding of the load susceptibilities characteristics computer 
simulations have been done. Fig.9  shows influence of increase meshing errors to 
load susceptibility/yielding characteristics. Fig.9 shows linear relations. Fig.9 also 
shows that with increase of cooperation errors with equal steps of 5 mμ  there is 

also an equal step increase of a vibration signal with equal steps of  30 m/s2. It 
proves the linear increase of gear cooperation error as it is given in Fig.8b); bad 
condition. Further interpretations are given in (Bartelmus et al. 2010).     
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Fig. 9 Influence of increased gear errors to load susceptibility/yielding characteristics 

Taking into consideration another diagnostic parameter for condition monitoring 
and diagnostics, namely kurtosis, further computer simulations has been done. The 
kurtosis has been used for gear cracked tooth identification and influence of load on 
susceptibility/yielding characteristics, the results are given in Fig.10. 

 
 

 

Fig. 10 Influence of increased gear cracked tooth  to load susceptibility/yielding 
characteristics (Bartelmus and Zimroz 2009a)  

The load susceptibility characteristics can be used for the  robust mechatronic 
condition monitoring and diagnostic method for gearboxes as is given in 
(Bartelmus and Zimroz 2010).     

7   Wind Turbine Condition Monitoring  

In papers (Zimroz et al. 2011a); (Zimroz et al. 2011b) data analysis. which comes 
from vibration measurements of wind turbines are processed. For data processing  
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data distributions and load susceptibility characteristics are given as it is shown in 
Fig.11. If one compares that two ways of presentation. The way of data separation 
by the load susceptibility characteristic gives better data separation. 

 
 

 

Fig. 11 a) Data distributions b) load susceptibility for data from wind turbine main bearing 
for good and bad condition 

8   Conclusions 

The paper gives a discussion on a new way of a diagnostic data processing. The 
presented way of data processing is the part of new way of diagnostic which is 
based on the object and operation factors oriented analysis. The new way of data 
processing leads to presentation of data in the form of load susceptibility 
characteristics. The presented paper shows two types of susceptibility 
characteristics connected with type of a fault. The linear system shows its linearity 
properties that with increase in the load the mean value of generated vibration 
given by acceleration signals increases linearly. It is given in figures: 8b) (when 
object is in good condition), 9, 11b (object in good condition). In Figs. 9 and 11b 
if object condition is changed one can noticed almost parallel shift of a 
susceptibility characteristic. The shift is proportional to the value of a fault. As it 
is given in Fig.8b, 9, 11b  using the load susceptibility characteristic gives better 
separation in comparing with presenting them in terms of data distributions. 
Second type of  a susceptibility characteristic is presented in Fig.8b (when object 
is in bad condition) but with increase of the load the value of the fault increase 
linearly.  The load susceptibility characteristic when for condition assessment is 
used kurtosis shows no linearity as is given in Fig.10. The use of susceptibility 
characteristics and its interpretation comes from the result of a study on influence: 
design, production technology, operation and change of condition factors. Further 
examples of using the susceptibility characteristics are given in the cited papers 
and will be also given during the paper presentation. 
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Abstract. In this paper we propose an approach for gear fault prognostics in
presumably non-stationary and unknown operating conditions. The approach mon-
itors the evolution of the statistical complexity of the generated vibrations enve-
lope vis-à-vis its Rényi entropy. The statistical complexity is obtained through the
wavelet coefficients calculated from the generated vibrations. Such an approach al-
lows seamless estimation of the remaining useful life of the monitored drive without
any prior information about the operating conditions and no a priori data regarding
the physical characteristics of the monitored drive. The effectiveness of the approach
was evaluated on experiments monitoring natural gear fault progress under variable
load.

1 Introduction

Majority of the condition monitoring approaches for mechanical drives are based on
analysis of vibration signals generated under stationary and known operating condi-
tions. For such cases any change in the vibrational patterns can be unambiguously
associated with a change in the condition of the monitored drive. However, such
conditions are rarely met and in most cases mechanical drives are subjected to vari-
able load and speed. Consequently, the link between the condition of the mechan-
ical drive and the changes in the generated vibrational patterns becomes obscured.
Therefore, reliable condition monitoring and prognostics methods are of significant
practical merit.

Usually, condition monitoring of mechanical drives under variable operating con-
ditions is performed by incorporating precise information about the operating con-
ditions in the calculated feature set [18, 23, 21] as well as modelling links between
the feature values and the operating conditions [3]. Additionally, there are methods
that exploit some statistical properties of the acquired vibrations like instantaneous
power spectrum [5, 8, 22].

Conversely, the problems of estimation of the remaining useful life of mechani-
cal drives under variable operating conditions are left largely neglected. There are a
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few examples addressing the problems of prognostics under such conditions [9, 7].
Although the proposed approaches for condition monitoring and prognostics and
health management give satisfactory results they heavily depend on accurate mea-
surements of the current operating conditions.

For the purpose of prognostics, in this paper we propose an approach based on the
analysis of the statistical complexity of signals [16,20], a concept readily applied in
the analysis of EEG signals [14]. The idea exploits the fact that the presence of faults
is directly reflected as an increase of the number of random components compris-
ing the overall vibrations, hence increasing its statistical complexity. Therefore by
tracking the the evolution of the statistical complexity of the envelope of the gener-
ated vibrations in respect with the changes of its Rényi entropy, one can seamlessly
perform an estimation of the remaining useful life of the monitored drive.

We show that such an approach is robust to changes in the operating conditions
and in the same time sufficiently sensitive to changes in the drive’s condition. Ad-
ditionally, the calculation process requires no prior information about the operat-
ing conditions and no previous knowledge about the physical characteristics of the
monitored drive. The effectiveness of the proposed approach was evaluated on two
experiments monitoring natural gear fault evolution on a one-stage gearbox.

2 Statistical Complexity

The definitions of the statistical complexity of a signal vary depending of the con-
text, such as data compression, computational algorithms and predictability. Gen-
erally, the statistical complexity of a signal is linked with the complexity of the
patterns that occur in it. There are two classes of signals with minimal complex-
ity: periodic and purely random signals [1]. The former one, has simple pattern that
reoccurs with specified period. The latter, has no recognisable patterns at all, and
despite the erratic nature it has practically no complexity. Consequently, the “com-
plex” signals should be located somewhere in between. A typical candidates are
signals generated by a system with chaotic behaviour. Despite the deterministic na-
ture, the generated signals contain sufficiently complicated patterns that are difficult
to predict.

In this paper the statistical complexity is assessed through the information carried
by the signal [16,12]. This approach provides a link between the entropy of the ran-
dom source that generates the signal and the distance of the probability distribution
of the generating source p to the uniform distribution pe. Therefore, we will first
revisit the concepts of entropy and the concept of distance between two probability
distributions.

In our analysis we selected the Rényi entropy for discrete probability distribution
p defined on a finite set D [19]:

Hα(P) =
1

1−α
ln ∑

x∈D

pα(x), (1)

and the Jensen-Rényi divergence [4]:
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DHw
α (p1, · · · , pn) = Hα

(
n

∑
i=1

wi pi

)
−

n

∑
i=1

wiHα(pi), (2)

where wi ≥ 0 and ∑n
i=1 wi = 1. The values of the exponent α governs the sensitivity

of these two quantifiers to particular segments of the PDF, i.e. it specifies the relative
importance of small values versus large values of the probability mass [10].

Based on (1) and (2), the statistical complexity of a signal with PDF p is defined
as [16]:

C(p) = Q0DHw
α (p, pe)Hα(p), (3)

where pe is the uniform distribution and Q0 is a normalisation constant so that
Q0DHw

α (p, pe) ∈ [0,1]. The product (3) is in accordance with the initial idea that
signals with perfect order H(p) = 0 and maximal disorder D(p, pe) = 0 have the
lowest complexity.
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Fig. 1 Signal’s statistical complexity area

For the concept of prognostics, the time evolution of the statistical complexity (3)
is of great importance. The concept of time is present in (3) indirectly through the
entropy H(p) by using the fact that the system’s entropy increases in time. There-
fore, the statistical complexity C(p) is usually plotted versus the entropy H(p) [16].
This plot always covers a specific area depending on the number of bins used for the
calculation of the probability p, as shown in Figure 1. The pre-defined shape of the
plot outlines the possible time evolution of the signal’s complexity. By trending its
evolution, one can easily estimate the time moment when the complexity will reach
the apex of the plot.

3 Complexity of Gear Vibrations

Vibrations produced by healthy gears are dominated by components caused by the
alteration of the mesh contact stiffness as the number of gear teeth in contact varies
[11]. The effect of gear faults is expressed as localised change in the tooth stiffness
profile, which leads to the occurrence of additional modulation components around
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the mesh frequency and its higher harmonics. These modulations contain all the
necessary diagnostic information [17].

In cases when mechanical drive operates under variable operating conditions,
the generated vibration signals can be elegantly analysed using the concept of non-
stationary evolutionary processes [15]. Such a random process can be expressed in
the generalised form:

y(t) =
∫ ∞

−∞
A(ω , t)e jωt dZ(ω), (4)

where A(ω , t) is a slow varying time and frequency dependent modulating function,
and Z(ω) is a complex random process. For the case of gear vibrations, variations
in the operating conditions as well as presence of faults will alter the shape and,
in the same time, the statistical properties of the envelope A(ω , t). However, the
changes caused by faults are shown to be far more significant than the ones caused
by variations in the operating conditions [5]. Herewith, we can conclude that by
analysing the statistical complexity of the envelope A(ω , t) one can estimate the
remaining useful life of the monitored drive.

4 Wavelet Based Calculation of the Statistical Complexity

According to (3), the first step in the calculation of the statistical complexity is the
estimation of the PDF of the envelope A(ω , t) from (4). Due to the link between
the signal’s envelope A(ω , t) and its instantaneous power [2], in this approach we
estimated the underlying PDF through the energy distribution of the wavelet packet
coefficients.

Therefore, we used the so-called wavelet packet transform (WPT) [13]. The
structure of WPT is usually described by a binary tree structure, as shown in Fig-
ure 2. WPT allows arbitrary partition of the time-frequency plane. The wavelet co-
efficients in the set of terminal nodes contain all information regarding the analysed
signal. The analysis of the envelope A(ω , t) was performed by analysing the signal’s
energy within each terminal node.

Each terminal node (d,n) contains Nd wavelet coefficients Pn
d (k), where k =

0, . . . ,Nd − 1 and the number Nd depends on the length of the signal and the depth
d of the WPT tree. Using these coeficients, the portion of the signal’s energy Ed,n

contained within one node (d,n) reads [6]:

Ed,n =
Nd−1

∑
k=0

‖Pn
d (k)‖2 (5)

f(t)

(2,1)

(1,0)

(2,0)

(3,2)(3,1)(3,0) (3,3)

(2,3)

(1,1)

(2,2)

(3,6)(3,5)(3,4) (3,7)

Fig. 2 Example of a full WPT tree with depth D0 = 3
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The relative energy that each wavelet coefficient carries, for each terminal node
(d,n) is:

pd,n(k) =

∥∥Pn
d (k)

∥∥2

Ed,n
, k = 0, · · · ,Nd − 1. (6)

The probability distribution (6) is directly related to the PDF of the signal’s enve-
lope. Therefore, by introducing (6) into (3) one can calculate the statistical com-
plexity of the signals envelope.

5 Monitoring the Natural Gear Surface Fault Progress in
One-Stage Gearbox

The concept of statistical complexity was applied on two experimental runs using
same type of gears in a one-stage gearbox. The first experiment was conducted un-
der constant operating conditions, solely for the purpose of obtaining a reference
behaviour. The second experiment was conducted under variable load. For the cal-
culation of the probability density (6) we used db10 mother wavelet and wavelet
packet tree with depth 5. For the purpose of prognostics the statistical complexity
(3) was plotted vis-à-vis the Rényi entropy (1) as in Figure 1.
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Fig. 3 α-Jensen divergence vs. Rényi Entropy

Experiment #1: Constant operating conditions

The evolution of the statistical complexity for vibration signals from the first exper-
iment is shown in Figure 3. Several observations can be made. Firstly, the shape of
the plot, as expected, is quite similar to the one shown in Figure 1. Furthermore,
at the beginning of the experiment, the statistical complexity is the lowest and the
entropy is the highest. This is a result of the almost periodic patterns present in the
vibration signal. Namely, as the gears are fault-free, the generated vibrations contain
only components of the meshing frequencies. As the time evolves, the complexity
of the signal increases. However after reaching the apex point, the values of the sta-
tistical complexity tend to “oscillate” around the maximal point. The decrease of
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the statistical complexity occurs when the surface gear faults spread across multi-
ple teeth. Consequently, the modulation components decrease. From the complexity
point of view, such a signal is “similar” with the vibration signals from the beginning
of the experiment, hence the decrease of the statistical complexity.

Experiment #2: Variable load

The second experiment was performed by using the variable load profile shown in
Figure 4. Besides the direct and immediate effect of load variations on the machine
vibration, load variations also cause changes in the operating temperature, as shown
with the second line in Figure 4. Despite the obvious temperature influence on the
generated vibrations, the information about the temperature is rarely taken into ac-
count when performing fault detection.
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Fig. 5 α-Jensen divergence vs. Rényi Entropy

The statistical complexity plot is shown in Figure 5a. Similarly like in the first
experiment, at the beginning the vibration signals exhibit the lowest complexity. As
the time progresses the complexity gradually increases regardless of the variations
in the load. Unlike the first experiment, the second experiment was stopped around
the time moment when the complexity reached its maximum. At this point, pitting
fault was clearly visible on several teeth.
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The calculation the the PDF (6) was done using 20 bins. The theoretical limits
for the statistical complexity of a PDF with 20 bins is shown in Figure 5b. In can be
noticed that the experimental results are fully contained within these limits.

6 Conclusions

The calculation of the statistical complexity of the vibrations envelope can serve as
an indicator of the overall health of a mechanical drive. In addition, we showed that
the plot of the statistical complexity vs. entropy provides a way of estimating the
remaining useful life of the monitored drive regardless of the operating conditions.

The application of the statistical complexity has two main advantages. Firstly,
the statistical complexity vs. entropy plots have theoretically pre-defined trajectory
of evolution. Consequently, the prognostics algorithm reduces to a simple fitting
problem, thus the estimation of the remaining useful life is directly connected to the
estimation when the statistical complexity values will reach the maximal point in
this plot. Secondly, the calculation and the behaviour of the statistical complexity
does not depend on the variations in the operating conditions and it required no a
priori information regarding the physical characteristics of the monitored drive.
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Abstract. The aim of this research is to study the non-linear dynamic behaviour of 
a flexible shaft supported by hydrostatic squeeze film dampers which are filled 
with a Negative Electro-Rheological fluid (NERF). In order to study the effect of 
the electro-rheological fluid on the dynamic behaviour of a flexible shaft, a non 
linear model of a hydrostatic squeeze film damper has been developed and the re-
sults are discussed and compared with the linear model which is restricted to only 
small vibrations around the equilibrium position. A new control system is pro-
posed to reduce the transient response of the shaft, by applying an electric field in 
order to modify the viscosity of the NER fluid in the hydrostatic journal, and thus 
control its damping. The results of this control show that it is possible to effec-
tively monitor the electric field and the viscosity of the fluid inside the hydrostatic 
squeeze film dampers (HSFD) for controlling flexible shaft vibration.  

Keywords: Electro-rheological fluid, journal hydrostatic bearing, vibration con-
trol, Squeeze film dampers. 

1   Introduction 

The tendency towards higher speeds in turbo machinery has necessitated the 
creation of more flexible shafts, which run at angular speeds above several of their 
natural frequencies (Baaklini et al, 2002). For this reason, passive squeeze film 
dampers (SFD) are often used in high speed rotors for aircraft engines. As an 
effective vibration attenuation device, controllable SFDs working in an active or 
semi-active manner were recently studied and related research works are still in 
progress, including those focusing on semi-active-type SFDs using a controllable 
fluid as the working fluid. An ER fluid is a suspension of micron-sized polarizable 
particles dispersed in a dielectric liquid. Its rheological properties change when an 
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electric field is applied. The apparent viscosity of this controllable fluid varies in 
response to the applied field. Unfortunately, such industrial devices are not yet 
available on a large scale. In recent years, a few research reports have been 
published presenting an approach for controlling SFDs using the viscosity change 
of an ER fluid. Lee et al (2000) presented the vibration attenuation capacities of a 
pressurized, sealed, ER-SFD supported rotor. Guozhi et al (2000) designed a 
multi-layer ER fluid SFD, derived the Reynolds equation for the fluid film and 
studied both theoretically and experimentally the unbalance properties of a single-
disk mounted on a flexible rotor that is supported by the multi-layer ER fluid SFD. 
In order to suppress flexural vibrations of high-speed rotor systems, a compact 
damper incorporating ER fluid was designed by Seungchul et al (2005). Pecheux 
et al (1997) numerically investigated the application of squeeze film dampers for 
active control of flexible rotor dynamics using viscosity change of a negative ER 
fluid to control the dynamic behavior of the shaft. Bouzidane and Thomas (2008) 
have numerically simulated the effect of a negative electro-rheological fluid 
(NERF) within a four-pad hydrostatic bearing by using a linear method.  The 
objective of this research is to adapt ER technology to hydrostatic squeeze film 
damper in order to control the vibration of high speed flexible shafts. A non-linear 
model of the ER fluid hydrostatic squeeze film damper has been developed. The 
transient amplitude–speed responses are calculated for a flexible shaft supported 
partly by an NER fluid hydrostatic squeeze film damper. A control strategy is 
proposed for an NER hydrostatic squeeze film damper based on the application of 
an electric field with a trapezoidal variation according to the rotational speed. 

1.1   Negative Electro-Rheological Fluids 

An ER fluid is a suspension of micron-sized polarizable particles dispersed in a 
dielectric liquid. Negative electro-rheological (NER) fluids are suspensions of 
insulating particles in a high dielectric constant liquid. They are Newtonian fluids 
with a viscosity which decreases when an electric field is applied, and which is 
restored to its original value when the field is removed (Boissy et al 1995). The 
relationship between viscosity and electric field for the NER studied is presented 
in Figure 1. Figure 2 shows a hydrostatic squeeze film damper made of four 
identical plane hydrostatic bearing pads with indices 1, 2, 3 and 4 respectively 
indicating the lower, right, upper and left characteristics of the thrusts. The 
hydrostatic journal is fed with the negative electro-rheological (NER) fluid 
through recesses in the bearing, which are themselves supplied with external 
pressure PS through capillary restrictor-type hydraulic resistances.  

2   Mathematical Modeling 

The Reynolds equation allows for the computation of the pressure distribution Pi 
(xi, zi, t). If we consider that the fluid flow is incompressible, laminar, isoviscous, 
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and inertialess fluid, the Reynolds equation may be written as (Bouzidane and 
Tomas 2008):  
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where: ( )t,z,xP iii  is the hydrostatic pressure field of the ith hydrostatic bearing 

pad; ih  is the film thickness of the ith hydrostatic bearing pad ( )z,x(fh iii ≠ ),  

(xi, zi, yi) is the coordinate system used in the Reynolds equation, i=1, 2,3 and 4. 

2.1   Shaft Mode 

The rotor is modeled with typical beam finite elements including gyroscopic 
effects. Each element has four degree of freedom per node (Chen and Gunter, 
2005). The governing equations of motion become: 

[ ] [ ][ ]{ } [ ]{ } [ ] [ ][ ]{ } { } { } { }nlgrimbrt FFFGKGJM ++=++++ δϕδϕδ         (2) 

where [ ]tM  and [ ]rJ  are the translational and rotary mass matrices of the shaft, 

[ ]G  is the gyroscopic matrix, [ ]K  is the stiffness matrix of the shaft and rolling 

bearings, { δ } is the node displacement vector, { }imbF  are the imbalance 

forces, { }grF  are the gravity forces, and { }nlF  are the non-linear hydrostatic 

bearing forces.   
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Fig. 1 Variation of the viscosity of the suspension with an NER fluid 
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Fig. 2 NER Hydrostatic Squeeze Film Damper Geometry 

2.2   Forces Hydrostatics Bearings 

• Nonlinear model: The nonlinear hydrostatic force of the ith hydrostatic bearing 
pad can be obtained by integrating the pressure over the bearing area:  

∫∫∫ == iii

S

iipi dzdxPds PF

i

                     (3)  

where si and dsi are the contact surface and element on the surface of the ith 

bearing pad, respectively. The fluid film forces on the hydrostatic squeeze film 
damper in Cartesian coordinates (Oj, x, y) are determined as follows (Fig. 2): 
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• Linear model: The linear model is based on a small displacement and small 
velocity hypothesis (Bouzidane and Thomas 2008). Therefore, the linear 
hydrostatic force of the ith hydrostatic bearing (Fpi) can be expressed as follows:  

ipiipiPi hChKF −−=                             (5) 

where Kpi and Cpi represent the stiffness and damping of the ith hydrostatic bearing 
pad, and Fpi is the hydrostatic force of the ith hydrostatic bearing pad.  
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3   Numerical Results 

The non-linear dynamic behavior of the flexible rotor is simulated step by step on 
a modal basis. At each step the Reynolds equation (Eq.1) is solved to evaluate the 
film forces, and then the equations of motion (Eq.2) are integrated using the 
Newmark method with a step variable to obtain speeds and the position for  
the next step. Computation of the pressure distribution was done through 
resolution of the Reynolds equation by applying the centered finite difference 
method. The linear systems of the equation were solved using Gauss-Seidel 
methods including an over relaxation factor.  The shaft under investigation is a 
rotating flexible shaft supported at one end by two rolling bearings and at the other 
end by an NER Journal Hydrostatic Bearing (Figure 2).  The model of the shaft is 
presented in Figure 3. The shaft is divided into 11 beam elements and 12 nodes. 
Every node has four degrees of freedom including two translations and two 
rotations. The bearing characteristics are the following: bearing pad length A is 
0.09 m; bearing pad width B is 0.015; dimension ratio a/A=b/B is 0.5; film 
thickness h0 is 0.07 mm. The capillary diameter dc is 1.2 mm; lc the capillary 
length is 58 mm; the pressure supply is 2.5 MPa. The rotor system is subjected to 
an imbalance value 

imbF =80.10-6 kg.m located at the middle of the shaft (node 7). 

A linear variation of rotation speed between 5000 and 60 000 rpm over a 20 
second interval was made. All the amplitudes of transient responses given in this 
paper are non-dimensional (amplitude/film thickness). 
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Fig. 3 Schematic diagram of the model of shaft-bearings system 

As mentioned above, Figure 4 shows the comparison of linear and nonlinear 
results for computing the dimensionless vibration amplitudes (at the middle of the 
shaft and inside the NER-HSFD) for small vibrations around the static equilibrium 
position. The results obtained by using the non-linear method present a very good 
agreement and are validated since they are almost identical to those predicted by 
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the linear method. Note that the values of stiffness and damping (KHJB =3.026 107 
N/m; CHJB =86281.13 N.s/m) were determined numerically (Bouzidane and 
Thomas 2007/2008) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Transient response of the shaft at the middle and inside the NER-HSFD vs. speed 
and time 

3.1   Control Method for an NER Hydrostatic Journal Bearing 

A semi-active control system based on use of an NER-HSFD can be developed to 
control flexible shaft vibration, reduce excessively high amplitudes of forced 
vibration. This control system functions by applying an electric field according to 
the operating speed of the shaft in relation to its critical speeds. A trapezoidal 
variation of the electric field up to 3kV/mm is proposed (Figure 5a). When the 
electric field is applied (3kV/mm), the NER fluid viscosity decreases from 0.3 Pa.s 
to 0.0609 Pa.s, the amplitude of shaft movement in the HSFD increases and 
consequently the amplitude at the middle of the shaft decreases. Figure 5b shows 
the variation of viscosity according to rotational speed and time as the electric field 
is applied. This viscosity variation has been determined by interpolation of the 
experimental results presented in Figure 1. Figure 6 demonstrates the use of  
the control system and the corresponding vibratory response.  One can observe the 
effect of variations in the applied electric field on vibratory response versus speed 
and time at the middle of the shaft, the end of the shaft in the HSFD. It can be seen 
from these results that the application of an electric field to control the viscosity of 
a NER-HSFD is an effective way to reduce the vibration of a flexible shaft when 
operating close to critical speeds.  As speeds get further away from these critical 
frequencies, the same approach reduces vibration of the shaft inside the HSFD.  

 
 
 

At the middle Inside the NER-HSFD 
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Fig. 5 Electric field and fluid viscosity variation vs. speed and time 

 

Fig. 6 Control of vibration of the shaft vs. speed and time 

4   Conclusion 

Non-linear modeling of a hydrostatic squeeze film damper has been presented and 
applied in a control system to limit the vibration of high speed flexible shafts part-
ly supported by a NER-HSFD. The following conclusions can be obtained. 

(a)  To reduce the vibration of a flexible shaft, the results have revealed that the 
vibration inside the journal bearing must be kept large when operating close to 
critical speeds. This can be achieved by using a negative electro-rheological fluid 
inside the HSFD. Note that the large vibration inside NER-HSFD dissipates a lot 
of energy, by means of reducing the viscosity (damping in the HSFD decreases). 
In the other hand, a high viscosity is required for reducing rotor vibration at 
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speeds very different from the critical speeds. Results obtained with this kind of 
NER-HSFD are close to those of Electro-rheological SFD (Pecheux et al. 1997).  
(b)  Using the negative ER fluid inside NER-HSFD allows for achieving the 
objective to control the rotor vibration across the critical speeds. This effect is due 
to the fact that the viscosity of a negative electro-rheological fluid decreases when 
an electric field is applied. Consequently the command law asked for increasing 
the electric field in order to reduce the fluid viscosity inside the HSFD when 
crossing the critical speeds. When the speed is different from the critical speeds, 
the electric field is kept null.  
(c)  The results of experiments done during this study demonstrate that the 
viscosity of the fluid inside the HSFD can be controlled using an electric field and 
that this approach can effectively reduce rotor vibration. The research shows that 
the NER-HSFD has a promising potential future in vibration control of flexible 
shaft. 
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Abstract. This paper focuses on the diagnostics of ball bearings in direct-drive 
motors. These specific AC brushless motors are increasing their importance in au-
tomation machineries because they can work with a built-in flexibility. In  
particular the angular displacement of the shaft is continuously monitored by an 
embedded encoder while the control system allows to perform complex motion 
profiles such as polynomial ones, even with the inversion of the rotating direction. 
Direct-drive motors avoid the presence of a mechanical cams or gearboxes be-
tween the motor and the load with a subsequent money-saving. On the other side, 
unfortunately, the diagnostics of ball bearing in those motors is not trivial. In fact 
most of the solutions proposed in the literature require a constant frequency rota-
tion of the shaft since the characteristic fault frequencies are directly proportional 
to speed of the motor. It follows that in a varying speed application the fault cha-
racteristic frequencies change instantaneously as the rotational frequency does. In 
this paper an industrial application is considered, where the direct drive motors are 
used in the kinematic chain of an automated packaging machine performing a cyc-
lic polynomial profile. The basic idea is to focus on signal segmentation using the 
position profile of the shaft – directly measured by the encoder – as trigger. Next 
the single cycles of the machine is analysed in time domain, again using encoder 
signal machine contribution is deleted. Feature extraction for damage detection is 
done by applying the Short Time Fourier Transform (STFT), the STFT for each 
cycle is averaged in time-frequency domain in order to enhance fault signature. 
Finally, the sum of STFT coefficients is used as a simple indicators of damage. 

Keywords: Condition monitoring, time frequency, STFT, Spectral Kurtosis, non-
stationary speed conditions, bearings, damage detection. 

1   Introduction 

Ensuring continuity of production in the enterprise on a global scale is one of the  
key requirements. Modern production lines are automated, highly efficient, but  
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unfortunately they are not devoid of common problems in maintaining the machines. 
To avoid unexpected failures they apply monitoring and diagnostics [Sidahmed2001, 
Niemkiewicz2001, Martin1994, Randall2011]. The existing condition monitoring pro-
cedures have been successfully used for years in the petrochemical, paper manufactur-
ing, etc… industry, mainly focusing on specific components like rotating machinery 
[El-Shafei2003], gears [Dalpiaz2000] and bearings [Jardine2006, Randall2011]. In 
most of the cases condition monitoring used to diagnose mechanical systems working 
in steady conditions, e.g. usually at a constant speed, while only few techniques ana-
lysed load/speed variation [Potter1990, Fyfe1997, Baydar2000, Stander2002, 
Zhan2004, Coconcelli2008, Cocconcelli2012, Curcuru2010, Chaari2010, Makows-
ki2011, Zimroz2012]. 

This paper focuses on diagnostics of ball-bearing in motors operating in non-
stationary conditions. The non-stationary operating conditions influence the vibra-
tion signal, masking the presence of incipient faults or hiding fault impacts due to 
an higher energy of the machine impacts, i.e. those impacts related to the normal 
working activity of the machine. These motors are called servomotors.  

In particular the paper is focused but not limited to a recent class of motors 
called direct-drive motors. They are usually AC brushless motors controlled by a 
drive thanks to an embedded encoder that measure the displacement of the shaft at 
high frequency (e.g. 8 kHz). Servomotors tend to appear more and more often in 
recent machine designs, as their performances are more flexible than the mechani-
cal solutions for machine motion with respect to the time required to reconfigure 
the motion profile, since the absence of mechanical cams or gear reduction. 

It makes a difference from the problem defined in the literature for “classical” 
damage detection. Recovery of impulsive, cyclic signal from the noisy observation 
is well known in the literature. It can be done by simple bandpass filter around 
resonance, advanced adaptive filters, wavelet decomposition, blind cyclic Wiener 
filter etc. [[Antoni2002,2003,2006, Sawalhi2007, Boustany2008, Wang2008, 
Combet2009, Immovilli 2009, Barszcz 2009, Zimroz 2009] Unfortunately, none 
of these techniques fixed the problem due to wideband, cyclic, high energy 
contribution from the working environment and serious variation of shaft speed. 

This paper proposes a new procedure based on the segmentation of vibration 
signal guided by the speed profile of the control system. It should be noted that 
due to modulation phenomena in machinery systems [Chaari2012] it can be possi-
ble even if tachometer signal is not available [Combet2009, Zimroz2011]. The 
segmentation allows to remove the strong contribution of machine impacts. The 
residual signals are then analysed by the Short Time Fourier Transform (STFT) to 
highlight the presence of damage impacts in time-frequency domain. At last spec-
trograms for each segments are averaged to improve the signal-to-noise ratio.  
Finally, the sum of STFT coefficients is used as a simple indicator of damage. De-
tection of the status of the bearing can be performed automatically for single cycle 
or for averaged data using a simple decision scheme (if value of feature >thre-
shold then damage else healthy). 
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2   Test Machine and Signal Presentation 

The system under observation is a machine for the packaging of liquid products 
with a so-called roll-feed vertical filling and forming process: the monitored bear-
ings support the actuators of a module composed by two cinematic chains moved 
by servomotors via a belt-pulley. Brushless AC motors MPL-B680B by Rockwell 
Automation mounting a NSK 6309 single-raw bearing are used as actuators. The 
angular velocity signal of the motor was retrieved using one of the analogue out-
puts available in the motor drive, a Kinetix 6000 series BM-01.  

As mentioned in the introduction, the general working condition for a servomo-
tor provides for a cyclic polynomial speed profile of the shaft. An example is re-
ported in Fig. 1 where the lower plots show the speed profile performed by the 
motors in the specific cases analysed in the paper. The comparison between faulty 
and sound bearings clearly shows the contribution of two components: a strong 
contribution due to cyclic impacts which is present in both cases, and a small  
contribution which must be present only on the faulty case and represents the 
characteristic firm of the damage. The strong contribution in vibration data is a 
consequence of the variable load forward the motor. In fact the comparison with 
the speed profile reveals the impacts happen when the motor quickly changes the 
rotational speed at its maximum (absolute value) – from 0 to 500 to 0 rpm in less 
than 0.3 seconds – with an instantaneous change of the resisting moment of the 
load. It must be noted that the machine impacts are non-stationary, non-Gaussian 
signals and their amplitude covers the damage impacts making their detection dif-
ficult. The complexity of the machine and the serious influence of interference of 
the cyclic signal source make the condition monitoring non-trivial. 

3   Condition Monitoring Procedure 

The condition monitoring procedure proposed is made of four steps and requires 
as input the vibration data collected nearby the bearing and the synchronous speed 
profile of the motor. The speed profile is easily accessible in servomotors since it 
is however measured for control purpose and can be saved as output from the 
drive. 

3.1   Segmentation of Vibration Signal According to Machine 
Cycle 

In order to reject the influence of machine impacts, the vibration signal is seg-
mented according to speed profile. As noticed in Fig. 1 the machine impacts are 
related to the quick variation of speed from 100 rpm to -500 rpm (the sign of the 
speed has no influence on procedure, it’s just an example from a real application 
where the cyclic speed profile has its maximum – as absolute value – in the oppo-
site direction with respect to the assumed positive rotation). This part of the signal 
can be removed introducing a software trigger threshold in post processing of the 
data. 
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Fig. 1 Vibration data and speed profile for faulty and healthy bearings 

Low-pass filtering of the speed profile is recommended to reduce the noise (to 
smooth speed profile signal) and improve the segmentation of the vibration data. 
Figure 2 shows in details the extraction of segmentation indices from the speed 
profile. As requested the impacts related to the machines cycles are removed and 
only the residual part will be analysed. 

3.2   STFT of Every Residual Signal 

As the residual signal is very non-stationary (cycles between impulses are not 
equal, signal is highly impulsive) it has to be analysed in time-frequency domain 
to highlight the presence of impacts related to incipient faults. The choice of a 
time-frequency technique is need to overcome the variation of speed which is still 
present in the speed profile corresponding to the residual signal. Time-frequency 
domain allows to appreciates the frequency content of the signal as the time vary-
ing, independently of the periodicity of incidental impulses. In particular the Short 
Time Fourier Transform (STFT) answers to the need of a relatively simple tech-
niques with a clear interpretation of the output. 

The second step of the procedure consists in the computation of the STFT for 
each segment of residual signal obtained at the previous step. 

3.3   Average of the STFT Spectrograms 

In order to enhance indicators of local damage, STFT spectrograms are averaged 
in time-frequency domain. This step highlights the energy flow related to the im-
pacts between faulty elements of the bearing and increase the signal-to-noise ratio. 
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Fig. 2 Extraction of segmentation indices from the speed profile 

3.4   Marginal Time Integration 

Usually two quantities could be calculated from the STFT spectrogram, integrat-
ing the map along the time axis or the frequency axis. The integration along time 
is called marginal time integration (MTI) and it can be considered as the mean  
instantaneous power of the signal. The MTI is used as a simple indicators of dam-
age. Detection of the status of the bearing can be done automatically just monitor-
ing the overcoming of an appropriate threshold. 

4   Results 

The procedure has been tested on 13 bearings, 7 of them are healthy and 6 are 
faulty (in the paper they will be generally named “x#”, where # is the reference 
number of the bearing during the experiment setup). In particular, the healthy 
bearings are classified in two sets: 3 are brand-new healthy bearings, 4 are bear-
ings which ran for 1000 hours, then opened without any evidence of fault and 
classified as healthy. The faulty bearings are also divided in two sets: 2 bearings 
have been artificially damaged in the lab of the University and 5 come from the 
field, that is from other industries that claimed the motors as damaged. The vibra-
tion signal has been acquired by means of an accelerometer MTN 1100 CQ 
mounted on the motor in the load direction of the belt. The signal was connected 
to a NATIONAL INSTRUMENTS acquisition board, made by a CDAQ-9172 
back plane upon which a NI-9233 module collected the accelerometer output. The 
data from acquisition board was stored on a laptop via its USB interface and later 
post-processed with MATLAB. The sampling frequency used is 10kHz and the 
single acquisition lasted 50 seconds. 

For clearness of exposition this paper reports the graphical results (Figs. 3-4 re-
spectively) for just two significant cases: a sound bearing, an artificially damaged 
bearing (on the outer ring). Each figure shows the first three steps of the proce-
dure: the vibration data after the removal of machine impacts (only a single seg-
ment as example), the spectrogram of a single segment and averaged spectrogram  
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Fig. 3 Condition monitoring procedure for a healthy bearing 

 

 

Fig. 4 Condition monitoring procedure for an incipient faulty bearing 
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over all the segments available. The acquisition of data for 50 seconds allows 48 
complete cycles of the machine.  

In Fig. 3 the averaged spectrogram of a sound bearing doesn’t show any rele-
vant peaks and the frequency content of the signal is the same all along the time 
axis. 

In Fig. 4, the spectrogram of incipient faulty bearing clearly shows four impacts 
along the time axis with an excitation of the amplitude in all the frequency range. 
These four impacts (T={0.1 0.3 0.45 0.65}s) are related to the damage on the out-
er ring of the bearing and the comparison between the spectrogram of a single sig-
nal segment and the averaged spectrogram justifies the third step of the procedure 
since the peaks are highlighted by the average process. 

Figure 5 shows the marginal time integration of the STFT spectrogram for the 
faulty (left) and healthy (right) bearings. The two pictures are plotted in the same 
scale and the faulty bearing exhibits four severe peaks related to the damage con-
dition, while the healthy bearing doesn’t show any relevant peak. The introduction 
of an appropriate threshold allows an automatic detection of the bearing status. In 
particular Fig.5 shows the level of the mean value for the both healthy and faulty 
bearings.  

A suggested alarm-threshold and stop-threshold for the machinery may be set 
adding to the mean value of faulty bearings, respectively, half time the standard 
deviation, and one time the standard deviation. Both these two thresholds are re-
ported in Fig. 5. 

 

 

Fig. 5 Marginal time integration of the STFT spetrograms and definition of damage thre-
sholds (mean+0.5 sigma, mean + sigma) 
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The MTI of the averaged spectrogram produces a bi-dimensional representation 
of the results that proves the effectiveness of the procedure as diagnostics tool and 
its improvement in spikes detection. The peaks related to the fault are relevant, 
while the effect of machine impacts has been removed. 

5   Conclusions 

In this paper a new procedure for the condition monitoring of ball bearing in non-
stationary conditions is presented. The paper focuses on an industrial application, 
where a servomotor is used as actuator in a kinematic chain for packaging process. 
The speed profile of the motor is cyclic and follows a polynomial profile with con-
tinuously variation of speed and inversion of the motion. The main consequence in 
the vibration monitoring is the presence of a strong contribution from non-
stationary, non-Gaussian, impulsive, cyclic signal source which is strictly related 
with the variable load of the motor a part from the presence of damage in the  
bearing. This machine contribution makes hard the condition monitoring with 
techniques based on kurtosis indicator or simply the envelope analysis due to its 
strong influence on the rest of the signal. The suggested procedure starts with the 
removal of machine contribution thanks to the instantaneous speed profile syn-
chronous measured with the vibration data. The speed profile is low-pass filtered 
to reduce the noise and then a software trigger is used to determine the segmenta-
tion indices. Each single residual vibration segment is processed by the STFT in 
time-frequency domain. The spectrograms are averaged to enhance the indicators 
of local. Finally, the marginal time integration of the averaged STFT spectrogram 
is used as a simple indicators of damage. 
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Abstract. This paper focuses on the diagnostics of ball bearings under time varying 
speed conditions. Compared to classical demodulation techniques, time-frequency 
approach allows to take into account transient occurrence or non-stationary pheno-
mena along the timeline. Among the different time-frequency approaches available 
the simplest is the Short Time Fourier Transform (STFT). From a practical point of 
view, its implementation in an industrial environment has a main drawback: the in-
dustry usually needs a scalar value as output (like a semaphore: green, yellow and 
red light) to assess the bearing condition, while time-frequency approaches produce 
a bi-dimensional map that needs to be interpreted. The authors suggest to combine 
the information gathered by spectral kurtosis and energy distribution for the auto-
matic selection of a filtering band that could extract from the STFT map the most 
informative component in time domain, reducing the complexity of the output to a 
mono-dimensional vector. A simple check if the output exceed a given threshold 
can then be used to obtain a scalar value. 

Keywords: Condition monitoring, time frequency, STFT, Spectral Kurtosis, 
Energy distribution, bearings, damage detection. 

1   Introduction 

Predictive maintenance consists of estimating the remaining life of a mechanical com-
ponent based on data acquisitions and analysis. Among all the possible mechanical 
components of a generic machine, the predictive maintenance proved its effectiveness 
in rotating machinery [El-Shafei2003], especially for gears [Dalpiaz2000] and bear-
ings [Jardine2006, Randall2011]. In most of the cases condition monitoring used to di-
agnose mechanical systems working in steady conditions, e.g. usually at a constant 
speed, while only few techniques analysed load/speed variation [Potter1990, 
Fyfe1997, Baydar2000, Stander2002, Zhan2004, Coconcelli2008, Combet2009,  



52 M. Cocconcelli et al.
 

Bassi2010, Curcurù2010, Bartelmus2010, Makowaki2011, Cocconcelli2012, Chaa-
ri2010, Zimroz2012a, Zimroz2012b]. 

In particular the paper is focused but not limited to a recent class of motors 
called direct-drive motors. They are usually AC brushless motors controlled by a 
drive thanks to an embedded encoder that measures the angular displacement of 
the shaft at high frequency (e.g. 8 kHz).  

It makes a difference from the problem defined in the literature for “classical” 
damage detection. Recovery of impulsive, cyclic signal from the noisy observation 
is well known in the literature. It can be done by simple bandpass filtering around 
resonance, advanced adaptive filters, wavelet decomposition, blind cyclic Wiener 
filter etc. [Antoni2002,2003,2006, Sawalhi2007, Boustany2008,Wang2008, 
Combet2009, Immovili 2009, Barszcz 2009, Zimroz 2009] Unfortunately, none of 
these techniques is able to solve the problem due to wideband, cyclic, high energy 
contribution from the working environment and serious variation of shaft speed. 

This paper moves from a previous work of the authors that proposed a diagnos-
tic procedure based on the segmentation of vibration signal to highlight the vibra-
tion signal for each machine cycle. Each cyclic vibration data was analysed by the 
Short Time Fourier Transform (STFT) to highlight the presence of damage im-
pacts in time-frequency domain and then they are averaged to improve the signal-
to-noise ratio. Averaged STFT still may contain some high energy contributions 
that would mask fault signature. 

In order to eliminate high energy interference, this paper proposes a procedure 
for the optimal frequency band selection. This topics is of great interest in the lite-
rature, and several authors proposed a specific procedure to automatically identify 
the most informative band of the signal. Among the others Spectral Kurtosis (SK) 
proposed by Antoni and Randall (see Randall 2011 for rewiev) for bearing and 
gear diagnostics is the most promising. So far different application of SK have 
been developed and applied to real data (Barszcz 2009, Wang 2011, Wang 2012). 

In this paper frequency band is selected joining together the Spectral Kurtosis 
and Energy Distribution (ED) approaches. In particular they are normalized with 
respect their mean value along all the STFT map and then the ratio between them 
is computed. The highest value of this ratio highlights the optimal filtering band. 
Detection of the status of the bearing can be performed automatically for single 
cycle or for averaged data using a simple decision scheme (if value of feature 
>threshold then damage else healthy). 

2   Short Time Fourier Transform Enhancement 

As mentioned in the introduction there are a wide range of applications which use 
the direct-drive motors. Especially the industries which produce machinery with a 
high level of automation, e.g. the packaging industry, they experience similar 
working conditions. These conditions can be summarized as cyclic motion of the 
motor, varying speed, motion inversion and the presence of non-stationary phe-
nomena related to the dynamics of the processes after the motor (the kinematic 
chain moved by the motor, the presence of packaging material, etc…). Since the 
signal is very non-stationary (cycles between impulses are not equal, signal is 
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highly impulsive) it has to be analysed in time-frequency domain to highlight the 
presence of impacts related to incipient faults. The choice of a time-frequency 
technique is also needed to overcome the variation of speed. Time-frequency do-
main allows to appreciate the frequency content of the signal as the time varying, 
independently of the periodicity of incidental impulses. In particular the Short 
Time Fourier Transform (STFT) answers to the need of a relatively simple tech-
niques with a clear interpretation of the output. 

2.1   STFT Spectrogram 

The STFT could be seen as a series of filter banks in time domain. In particular 
the vibration signal is filtered by a fixed bandwidth window and the spectrum is 
computed. Then the window is shifted in time domain and the procedure repeated 
until the complete span of the signal. For a continuous-time data the mathematical 
expression of the STFT is reported in Eq.1. 

( ){ } ( ) ( ) ( ) ( )∫
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where w(t) is the window function and x(t) the acquired data. 
The output of the STFT is then a map in time-frequency domain called spectro-

gram which is defined as the squared magnitude of the STFT as reported in Eq.2. 
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Two other quantities could be calculated from the spectrogram, integrating the 
map along the time axis or the frequency axis. The integration along time is called 
marginal time integration and it can be considered as the mean instantaneous pow-
er of the signal. The integration along frequency is called marginal frequency in-
tegration and it can be considered as the mean power spectrum. 

2.2   Spectral Kurtosis 

The spectral kurtosis (SK) is a methodology used to select the most suitable fre-
quency band to highlight the presence of impacts due to incipient fault. Antoni and 
Randall (Antoni 2006, Randall2011) proved its effectiveness in bearing diagnos-
tics. The kurtosis is statistical parameter defined as the ratio between the fourth 
moment about the mean and the fourth power of the standard deviation as reported 
in Eq. 3. 
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where E is the expectation operator and σ is the standard deviation. 
The main idea is clear: a random mechanical noise follows a Gaussian distribu-

tion, that is the kurtosis of the signal is almost equal to 3, while the presence of 
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impacts, hidden in the vibration signal, change the value of kurtosis to higher val-
ues than 3. In order to select the most informative bandwidth, the signal is filtered 
using a series of filter banks (usually with different central frequency and different 
bandwidth) and the kurtosis of the filtered signal is computed. The frequency band 
corresponding to the higher kurtosis is selected as optimal filtering band. 

2.3   Energy Distribution 

It could happen in the SK that there are more than a unique frequency band where 
the kurtosis is high. Consequently the choice of the proper frequency band is not 
trivial. In this case the choice could be guided by a consideration on the energy 
distribution along the signal spectrum. A high level of energy around a frequency 
band may refer to the energy provided by the impacts caused by an incipient fault, 
but also to the energy coming from different sources, e.g. mechanical noise, other 
impacts after the motor, etc… A corresponding high level of kurtosis would be 
caused by both these reasons, that is may be a component not directly related with 
an incipient fault in the bearing. On the other hand a high level of kurtosis in cor-
respondence of a low level of energy may indicate the presence of short-duration 
phenomena like impacts, that they cannot change significantly the overall mean 
energy but they can increase the level of kurtosis. 

The Parseval’s theorem states that the total energy contained in a time domain 
waveform is equal to the total energy of the waveform's Fourier Transform along 
the frequency domain. The equality is reported in Eq. 4. 
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Referring to Eq. 2, the marginal frequency integration yields to a spectrum (let’s 
call it simply energy distribution (ED)) quite similar to the Eq. 4 – the STFT could 
imply an overlap between two subsequent shift of the window – that can be used 
to select the frequency band together with the spectral kurtosis. 

2.4   Kurtosis over Energy 

In order to collect together the information gathered by the spectral kurtosis and 
the energy distribution the authors propose to make the ratio between them. In-
deed a normalization is required in order to compare the SK and the ED.  

To increase the effect of a high level of kurtosis and a low level of the energy 
the normalization is made with reference to the mean value of the parameter com-
puted over the spectrum. Equations 5 and 6 shows the normalization process for 
the kurtosis and energy respectively, and Eq. 7 defines the kurtosis over energy 
(KoE) distribution. 
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where ( )0,ˆ ftx  indicates the filtering of waveform x(t) around the frequency f0. 

3   Results 

The system under observation is a machine for the packaging of liquid products 
with a so-called roll-feed vertical filling and forming process: the monitored bear-
ings support the actuators of a module composed by two cinematic chains moved 
by servomotors via a belt-pulley, opportunely synchronized for the packaging 
forming, transversal sealing and cutting. Brushless AC motors MPL-B680B by 
Rockwell Automation mounting a NSK 6309 single-raw bearing are used as ac-
tuators. The angular velocity signal of the motor was retrieved using one of the 
analogue outputs available in the motor drive, a Kinetix 6000 series BM-01 by 
Rockwell Automation. The vibration signal has been acquired by means of an ac-
celerometer MTN 1100 CQ mounted on the motor in the load direction of the belt. 
The signal was connected to a NATIONAL INSTRUMENTS acquisition board, 
made by a CDAQ-9172 back plane upon which a NI-9233 module collected the 
accelerometer output. The data from acquisition board was stored on a laptop via 
its USB interface and later post-processed with MATLAB. The sampling frequen-
cy used is 10kHz and the single acquisition lasted 50 seconds. 

Different bearings in different conditions have been tested (in both healthy and 
faulty conditions), but for a lack of space just the case of a generalized roughness 
bearing is reported in Fig. 1 and 2. This particular case refer to an inner race 
faulted bearing. The acquired vibration data have been processed as described in 
[Cocconcelli2011] and the averaged STFT spectrogram obtained. 

In the upper part of Fig. 1 are reported the normalized spectral kurtosis (on the 
left) and the energy distribution (on the right) along the frequency domain. The 
frequency axis starts at 500 Hz to remove high energy peak at low frequency for 
the energy distribution plot. In the bottom of the figure is shown the kurtosis over 
energy distribution and it is evident the effect of energy distribution that decreases 
the importance of the kurtosis peak at 2650 Hz but increase the peak at 3950 Hz. 
Figure 2 shows the selected spectra of the STFT based on the kurtosis over energy 
distribution and the maximum spectral kurtosis value. 
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Fig. 1 Normalized spectral kurtosis and energy distribution and the resulting kurtosis over 
energy distribution along frequency domain 

The filtering band has been chosen taking the maximum peak as central fre-
quency and -3db of amplitude reduction as bandwidth, resulting in [2226.57; 
2656,25] Hz and [3886.71; 4042,97] Hz for maximum spectral kurtosis and kurto-
sis over energy criterion respectively. 

 
 

 

Fig. 2 Comparison of energy flow in time for selected frequency band with Kurtosis over 
energy and maximum spectral kurtosis used as criterion 
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The comparison of the two energy flows in Fig. 2 shows that they both report 
the main peaks, but the kurtosis over energy spectrum allows to appreciate also 
minor impacts that happen subsequent the main ones. The first of this secondary 
impacts is also present in the maximum spectral kurtosis spectra but is not appre-
ciable. Among the specific peaks detected, it must be noted that the proposed  
distribution allows to take into account an informative band that would have been 
excluded if only SK had been considered. On the other hand the peak of the SK is 
still present. 

5   Conclusion 

In this paper a new procedure for the enhancement of ball bearing condition moni-
toring in non-stationary conditions is presented. The main consequence in the vi-
bration monitoring is the presence of a strong contribution from non-stationary, 
non-Gaussian, impulsive, cyclic signal source which is strictly related with the va-
riable load of the motor a part from the presence of damage in the bearing. This 
machine contribution makes hard the condition monitoring with techniques based 
on kurtosis indicator or simply the envelope analysis due to its strong influence on 
the residual signal. The suggested procedure starts from the computation of the 
STFT analysis of vibration data and allows to select an optimal informative fre-
quency band from the spectrogram. The methodology is based on the calculus of 
both the spectral kurtosis and the energy distribution. In the first stage these quan-
tities are normalized with respect to the mean values computed along the spec-
trum, and then the ratio between normalized kurtosis and energy is performed to 
obtain a distribution that selects bands in which there are simultaneously high kur-
tosis and low energy content. 
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Abstract. Rolling element bearing diagnosis using high frequency Acoustic Emis-
sion (AE) signals has been on-going since the late 1960’s. This paper attempts to 
demonstrate the use of AE measurements to detect natural defect initiation and 
propagation in a rolling element bearing. To facilitate the investigation a special 
purpose test-rig was built to allow for accelerated natural degradation of a bearing 
race. It is concluded that sub-surface initiation and crack propagation is detectable 
with AE technology.  

Keywords: condition monitoring, acoustic emission, and rolling element bearings. 

1   Introduction 

Acoustic Emission (AE) is transient elastic waves generated by the rapid release 
of energy from localized sources within a material [1]; typical frequency content 
of AE is between 100kHz to 1MHz. A tremendous amount of work has been un-
dertaken over the last 20-years in developing the application of the Acoustic 
Emission technology for bearing health monitoring [2]. The high sensitivity of AE 
in detecting the loss of mechanical integrity at early stages has become one of the 
significant advantages over the well-established vibration monitoring technique. 
Jamaludin et al. [3] presented the challenges faced with using the vibration tech-
nology to monitor the mechanical integrity of slow speed bearings (less than 
60rpm) and suggested that the AE technology could overcome such difficulties. 
Sources of AE in rotating machinery include impacting, cyclic fatigue, friction, 
turbulence, etc. For instance, the interaction of surface asperities and impingement 
of the bearing rollers over a defect on an outer race will result in the generation of 
acoustic emission. These emissions propagate on the surface of the material as 
Rayleigh waves and are measured with an AE sensor. Other wave types associated 
with the propagation of AE include Lamb, Longitudinal and Shear waves.  

To date most published work on the application of the AE to monitoring bear-
ing mechanical integrity have been conducted on artificially or ‘seeded’ damage 
which are generally induced with an electrical discharge system, engraving ma-
chine or by introducing debris into the lubricant [2 and 3]. However, Price et al. 
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[4] showed the applicability of AE to monitor naturally generated scuffing and pit-
ting defects in a four-ball lubricant test machine. To date the only published work 
of Yoshioka [5] could be considered the first that directly addressed identification 
of the onset of natural degradation in bearings with AE. It is worth noting that Yo-
shioka employed a bearing with only three rolling elements which is not repre-
sentative of a typical operational bearing. Moreover, Yoshioka terminated AE 
tests once AE activity increased as such the propagation of identified sub-surface 
defects to surface defects was not monitored. This work builds further on the work 
of Yoshioka by monitoring not only the initiation of cracks, but also its propaga-
tion to spalls or surface defects on a conventional bearing with the complete set of 
rolling elements. 

2   Test Rig Layout and Experimental Procedure 

One of the challenges is to enhance the crack signatures at the early stage of defect 
development. To implement this, bearing run to failure tests were performed under 
natural damage conditions on this specially designed test rig. A schematic of the 
data acquisition process is detailed in figure 1. To accelerate crack initiation, a 
combination of a thrust ball bearing and a thrust roller bearing was selected. One 
race of ball bearing (SKF 51210) was replaced with a flat race taken from the roll-
er bearing (SKF 81210 TN) of the same size. As a consequence the rolling ball 
elements on a flat track caused very high contact pressure in excess of 6,000MPa. 
The test bearing rotated at 72 rpm. A coupling system was carefully selected to 
absorb any vibration as a result of attaching the shaft to the geared motor. The 
procedure and theories employed to determine the test duration to the onset of  
surface fatigue has been previously described by Elforjani et al. [6]. The test rig 
rotational speed was 72 rpm and an axial load ranging from 20, 35 and 50kN was 
employed for these particular tests. 

A commercially available piezoelectric sensor (Physical Acoustic Corporation 
type “PICO”) with an operating range of 200 kHz – 1MHz was used. Four acous  
 

 

 

Fig. 1 Schematic of test-rig layout 
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tic sensors, together with two thermocouples were attached to the back of the flat 
raceway using superglue. One accelerometer (ENDEVCO-236-M-ISOEASE-
PF44), attached to the stationary block, was used to measure the vibration. The 
acoustic sensors were connected a data acquisition system via a preamplifier, set 
at 40db gain. The system was continuously set to acquire AE waveforms at a sam-
pling rate of 2MHz sampling rate. The software (signal processing package 
“AEWIN”) was incorporated within the PC to monitor AE parameters such as 
energy (recorded at a time constant of 10ms and sampling rate of 100Hz). 

3   Bearing Test 

Four experimental cases are presented that reflect the general observations asso-
ciated with over a dozen experimental tests. Two different approaches to ascer-
taining the applicability of the AE technology for monitoring cracks on slow speed 
bearings were undertaken. The first programme involved accelerating crack/spalls 
on the test bearing at three load conditions, 20, 35 and 50kN. The second involved 
running a test under conditions of grease starvation at two different loads of 20 
and 50kN. It is worth stating that for the lubricated test cases, the test bearing was 
lubricated during the testing with Castrol Moly Grease (650-EL). 

Observations of AE energy monitored continuously for all three load conditions 
are detailed in figure 2. It should be noted that each plot presents two different 
cases at the same applied load; for this particular paper, case I, II, III and IV are 
discussed.  Results showed that during the first hour of the test, an increase in AE 
energy levels was noted; see figures 2. This was attributed to the ‘run-in’ phase, as 
after this period (approximately 1-hr) the measured AE energy remained relatively 
constant. It was observed that for all tests AE energy levels started to rise approx-
imately few hours before the termination; 6.5-hrs for 50kN test, 6-hrs for 35kN 
test and 5-hrs for 20kN test. Also it was noted that during the final stages of bear-
ing life AE energy levels were higher for the higher load conditions. A sample of 
AE waveforms at the end of the tests are shown in figures 3. Interestingly the AE 
waveforms associated with the damaged bearing showed higher amplitude levels 
for the AE bursts associated with the higher test loads; for instance see 50kN and 
35kN of figure 3. Further, the defect frequency of the bearing was 9Hz. To ensure 
a consistent lubricant viscosity throughout the tests period, the measurement of lu-
bricant temperature was also undertaken. These tests clearly illustrated that sur-
face fatigue, such as flaking, could be initiated on the flat race within a few days 
depending on the load condition. It should be noted that the theoretical estimation 
of rolling contact fatigue is known to be subject to variability or scatter when 
compared to experimental results and this has been attributed to the probability of 
inclusions in the steel material located in the highest load zones of the race. It is 
also worth noting that the actual test period leading to visual damage on the race 
was much faster than the theoretical calculations. This variation was random but 
always earlier than predicted, see table1. This is attributed to issues such as misa-
lignment, unbalance, etc., which are not incorporated in theoretical life estimates; 
however, best efforts were undertaken to minimize these issues. 
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Table 1 Predicted and experimental life of test bearing races (Approach I). 

Case 
Load 
(kN) 

Predicted Life 
(hr) 

Experimental Life 
(hr) 

Flat Race Grooved Race Flat Race Grooved Race* 
I 50 24 432 16 - 
II 35 72 1272 20 - 
III 20 384 6864 50 - 

*Tested were terminated once the crack has occurred on the flat races. 
 
 

The second program (Grease Starvation Test) presents different trends to that 
noted in the prior cases, see figure 2. Observations of AE levels did not show any 
considerable rise at the start of the test. A significant rise in AE energy levels was 
observed at approximately 792-seconds and the AE activity gradually increased 
with time until the test was terminated (900-seconds). The increase in AE energy 
levels from the start of the test to the termination was in the order of 36,90 %. This 
significant rise in AE energy levels also suggested that damage had occurred on 
the bearing. 

 
 
 

 

Fig. 2 General trend of AE energy throughout the bearing tests (Approach I & II) 
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Fig. 3 AE waveforms on the termination of bearing tests 

4   Fault Index Extraction Techniques 

The Acoustic Emission technique was successfully employed by Elforjani et al. 
[7] to identify the presence and size of a natural defect on bearings that were 
tested throughout this investigation. Having established that AE parameters such 
as energy showed sensitivity to changes in AE activity it was thought prudent to 
correlate other processing techniques with the natural defect size on bearings. To 
accomplish this, a dimensionless ratio (R), which is a ratio between the defect size 
(L) and the rolling element diameter (D), was used. The techniques employed for 
this assessment included the Information Entropy, Kurtosis and Energy Index. 
These techniques were calculated using the following mathematical equations [8, 
9, and 10]. A notation list of the mathematical symbols used in the equations is 
presented in the table 2. 

N

i i
i=1

Information Entropy = - P  x log(P )∑                       (1) 

4
N

i

i=1

X - 1
Kurtosis=

N 

μ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑                          (2) 
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⎛ ⎞
⎜ ⎟
⎝ ⎠

                     (3) 

Table 2 Notation list of the mathematical symbols used in the analysis 

Mathematical Symbol Definition Unit 
Pi Probability Distribution - 
N Date Points - 
Xi Signal Amplitude Volt 
µ Mean of AE Waveform Volt 
σ Standard Deviation of AE Waveform Volt 

RMS Root Mean Square of AE Waveform Volt 

 
From the results presented in figure 4, it can be concluded that as the presence 

of the small defects on bearings is pronounced all factors become very sensitive 
indicators, whilst Kurtosis and Energy Index values come down when the damage 
size is well advanced. This can be attributed to the surface of the damage, which 
becomes greater than the space among two consecutive rolling elements. As con-
sequence of this, continuous, not impulsive, signals will be produced; i.e. the first 
impulse does not expire before the second one is produced and eventually a Gaus-
sian distribution in the values of Kurtosis and Energy Index may be observed. 
 

 

 

Fig. 4 General trend of fault indicators associated with the defect size 
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Results also revealed that Information Entropy is more sensitive and representa-
tive than Kurtosis and Energy Index with increasing defect size. Further, a steady 
increase in the Information Entropy levels was noted. This was expected as in sta-
tistical mechanics, the Entropy is described as the measure of the amount of  
disorder or chaos in a given system and it is highly depending on the probability 
distribution [8 and 11]. As the defect size increases, the internal randomness, or 
molecular chaos within the test bearing will increase. Hence the continuous moni-
toring of bearings employing techniques such as the Information Entropy would 
offer the operator a relatively more sensitive tool for observing high transient type 
activity. 

5   Conclusion 

This paper presents the early developments in the application of the AE technolo-
gy to monitoring sub-surface crack initiation in rolling element bearings. The 
study has demonstrated that AE parameters such as energy are more reliable, ro-
bust and sensitive to the detection of incipient cracks and surface spalls in slow 
speed bearing. It was also shown that by employing a range of data analysis tech-
niques such as Information Entropy, the growth of the natural defect size on bear-
ings could successfully be identified. 

References 

1. ISO (International Standards Organization Documents) 22096; Condition monitoring 
and diagnosis of machines – Acoustic Emission (2008) 

2. Mba, D., Rao, R.B.K.N.: Development of Acoustic Emission Technology for Condi-
tion Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, 
Engines, and Rotating Structures. The Shock and Vibration Digest 38, 3–16 (2006) 

3. Jamaludin, N., Mba, D., Bannister, R.H.: Condition Monitoring of Slow-Speed Rolling 
Element Bearings Using Stress Waves. In: Proceedings of the IMECHE Part E Journal 
of Process Mechanical Engineering 215(4), 245–271(27) 

4. Price, E.D., Lees, A.W., Friswell, M. I.: Detection of Severe Sliding and Pitting Fati-
gue Wear Regimes Through the use of Broadband Acoustic Emission. IMechE Journal 
of Engineering Tribology 219(2), 85–98 (2005) 

5. Yoshioka, T.: Detection of Rolling Contact Subsurface Fatigue Cracks Using Acoustic 
Emission Technique. Journal of the Society of Tribologists and Lubrication Engi-
neers 49 (1992) 

6. Elforjani, M., Mba, D.: Observations and Location of Acoustic Emissions for a Natu-
rally Degrading Rolling Element Thrust Bearing. Journal of Failure Analysis and Pre-
vention (May 2008); ISSN: 1547-7029 (Print) 1864-1245 (Online) 

7. Elforjani, M., Mba, D.: Accelerated Natural Fault Diagnosis in Slow Speed Bearings 
with Acoustic Emission. Journal of Engineering Fracture Mechanics 77(1), 112–127 
(2010) 

8. Liangsheng, Q., Liangming, L., Jay, L.: Enhanced Diagnostic Certainty Using Infor-
mation Entropy Theory. Advanced Engineering Informatics, vol. 17, pp. 141–150 
(2003) 



68 M. Elforjani and D. Mba
 

9. Lihui, W., Robert, X.G., Pham, D.T.: Condition Monitoring and Control for Intelligent 
Manufacturing. (Springer Series in Advanced Manufacturing). Springer-Verlag  
London Limited, London (2006) 

10. Al-Balushi, R., Samanta, B.: Gear Fault Diagnosis Using Energy-Based Features of 
Acoustic Emission Signals. Proceedings of the Institution of Mechanical Engineers 
Part I, Journal of Systems and Control Engineering 216, 249–263 (2002) 

11. Sethna, P.J.: Statistical Mechanics: Entropy, Order Parameters and Complexity. (Ox-
ford Master Series in Physics). Clarendon Press, Oxford (2011) 



Leak Detection in Viscoelastic Pipe  
by Transient Analysis  

Lamjed Hadj Taïeb, Lazhar Ayed, and Ezzeddine Hadj Taïeb 

UR Mécanique des Fluides Appliquée et Modélisation,  
Ecole Nationale d’Ingénieurs de Sfax, B. P. W 3038 Sfax, Tunisia 
{lamjed_hadjtaieb,hlzed}@yahoo.fr, Ezed.Hadj@enis.run.tn 

Abstract. The use of fluid transients has the potential to provide insight into effect 
of leaks in pipeline systems and hence provide leak detection method. This paper 
presents a technique for detection and location of leaks in a single viscoelastic 
pipe by means of transient analysis. The method uses transient pressure waves ini-
tiated by the sudden closure of an upstream valve. The presence of a leak in a pipe 
partially reflects these pressure waves and allows for the location and magnitude 
of leaks. The two constitutive equations of continuity and momentum yield a set 
of two partial differential equations of hyperbolic type. The viscoelastic behaviour 
of the pipe wall material is represented by a generalized Kelvin-Voigt model. The 
computed results obtained by the method of characteristics describe the influence 
of the leak on head and discharge time-histories. The effect of the pipe wall vis-
coelasticity on the leak detection and sizing is also discussed. 

Keywords: leak detection, viscoelastic pipe, water hammer. 

1   Introduction 

In current years the management of pressurised pipe systems has been of great at-
tention not only to guarantee their security and good performance but also to more 
understand their physical behaviour among existing problems. The detection and 
location of leaks in pipeline systems are one of major problems and leakage con-
trol has become high priorities for water supply utilities and authorities (Covas 
2003). This is not only because there is a greater understanding of the economic 
and social costs associated with water losses, but there is also an imperative to 
make best possible use of the natural source that is water.  

Several techniques for leak detection in pipe have been presented in the litera-
ture using different methods include acoustic technology (Tafuri 2000), ground 
penetration radar or infrared spectroscope (Hunaidi and Giamou 1998), transmis-
sion and reflection of pressure waves (Brunone 1999) and (Misiunas 2005),  
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sequential statistical analysis (Buchberger and Nadimpalli 2005), and transient 
analysis methods (Brunone and Ferrante 2001).  

Some of the current numerical methods for locating and identifying leaks are 
either complicated or imprecise; most of them are time consuming. These methods 
usually used the acquisition and the analysis of extensive real-time data. Often, 
these data are either not available or costly to obtain. 

The ideal technology for leak detection and location should be non-intrusive, 
faster and cheaper and should not require cessation of pipeline operations for long 
period of time. Since transient test data can give more information about a pipe 
system than steady state measurements, leak detection methodologies based on 
transient analysis can achieve this goal. 

The purpose of this paper is to detect leaks in a single plastic pipe system using 
transient event (water hammer signals) generated by the sudden closure of a 
downstream valve. A pressure wave travels along the system at high speed and is 
modified by the system during its travel. To apply the procedure of leak detection 
with confidence and success, special attention has to be given to the dynamic ef-
fects related to the energy dissipation, namely the friction and the mechanical be-
haviour of the viscoelastic pipe wall (Soares and Covas 2007). 

Although the viscoelastic behaviour of polymers is well known, this behaviour 
tends to be forgotten in hydraulic transient analysis in plastic pipes (Covas et al. 
2004, 2005). The viscoelastic behavior is characterized by elastic strain and grad-
ual retarded strain. This retarded behaviour of the pipe wall causes significant 
transient pressure attenuation which poses difficulty in detecting leak reflection. 

The focus here is mainly to study the leak affects on transient pressure and to 
locate leak in viscoelastic pipe. 

Leaks within a viscoelastic pipe partially reflect these pressure signals and al-
low for the accurate location and sizing of a leak by measuring the period of time 
which the pressure wave takes to travel from the measurement section to the leak 
and vice-versa. 

In this study, we proceed to develop a mathematical model through the simpli-
fied formulations for the transient flow of fluid in viscoelastic pipes. 

The characteristics method is used for the numerical solution of the obtained 
equations. The viscoelastic behavior of the pipe wall material is simulated by a 
generalized Kelvin-Voigt model. 

2   Water Hammer Model  

2.1   Basic Equations 

Viscoelastic pipes have different behaviour in comparison with metal and concrete 
pipes. In this case, strain can be decomposed into an instantaneous elastic 
strain e

φε , and retarded strain r
φε  
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Taking into account the relationship between the pipe cross-section A  and the 
total circumferential strain, the elastic strain, the retarded strain and the state equa-
tion of a barotropic fluid, the simplified one-dimensional continuity and momen-
tum equations that describe transient flow in viscoelastic pipe are (Hadj Taieb and 
Hadj Taieb 2009):  

22 2
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r r
H H C Q C

V V
t x gA x g t x

φ φ⎛ ⎞∂ε ∂ε∂ ∂ ∂+ + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠                           

(1) 
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1
0

2

g Q QH Q Q
g V

x A t x DA

λ∂ ∂ ∂⎛ ⎞+ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠                             
(2) 

where H is the pressure head, Q is the flow rate, C is the elastic wave speed, g is 
the gravitational acceleration, A is the pipe cross-sectional area, D is the internal 
pipe diameter, λ  is the coefficient of friction, x is the spacial coordinate and t is 
the time. 

The pressure wave celerity C is defined by the following expression (Stucken-
bruck et al. 1985): 

1 2
cD

C
K Ee

−ρ⎛ ⎞= + ρ⎜ ⎟
⎝ ⎠                                                 

(3) 

where K is the bulk modulus of liquid, c is the pipe constraint factor, e is the pipe-
wall thickness and E is the Young's modulus of elasticity of the pipe. 

The retarded circumferential strain is represented by a generalized Kelvin-
Voigt model of n elements: 
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where  J is the creep compliance function described by (Cavas et al. 2005): 
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in which 0J  represents the creep-compliance of the first spring, jJ  is the creep-

compliance of the spring of j-element and jτ  is the retardation time of the dash-

pot of j-element (figure 1). 
The retarded strain time-derivative in equations (1) is calculated by: 
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Fig. 1 Generalized Kelvin-Voigt model 

2.2   Leak Modeling  

A leak represents a flow loss without head loss. A leak is modelled as an orifice 
and the discharge, Q , through it is assumed to be given by the following equa-
tion (Brunone and Ferrante 2001): 

( )
ρ

02 pp
ACQ d

−
=

                                               
(7) 

where dC  is a discharge coefficient, A  is the orifice area and p  is the pressure 

on either side of the orifice assumed to be equivalent. 

3   Numerical Resolution  

The equations (1) and (2) are of hyperbolic type so they can be solved by the 
method of characteristics (MOC).  

When the fluid is water, the fluid velocity is negligible compared to the elastic 
wave speed (V C<< ), the convective terms in equation systems (1) and (2) can be 
neglected. This leads to approximately straight characteristic lines d dx t C= ±  

Equations (1) and (2) can be transformed into a system of ordinary differential 
equations and solved by MOC. The compatibility equations are: 
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along the positive characteristic line ( Ctx +=ΔΔ ), and 
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along the negative characteristic line ( Ctx −=ΔΔ ),  

where i  is the node number, xΔ  and tΔ  are the distance ant the time steps re-
spectively (figure 2). 
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Fig. 2 Characteristic lines: Regular grid 

3.1   Initial Conditions 

Initial conditions must be provided at the time 0 in order to solve the problem. 
These conditions can be determined by computing the solution of the following 
system of ordinary differential equations deduced from equations (1) and (2): 

2

2

0

2

J

J J

dQ

dx

dH Q

dx gDA

⎧ =⎪
⎪
⎨

λ⎪ = −⎪⎩

                                           (11) 

where subscript J  refers to the pipe number. 
The solution of this system is 
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At the leak 

( ) ( )1 00 0 0J JQ ,L X Q , Q+− = +
                            

(13) 

3.2   Boundary Conditions 

Transient flow is created by the fast closure of the valve at the downstream end 
( Lx = ). At this section ( ) 0Q t,L = . At the upstream end, 0=x  and 0>t , the 

condition is given by the reservoir at fixed level ( ) 00H t, H= . 
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At a leak, equation (7) is implemented in the MOC as an internal boundary 
condition. The tow relationships that relate the upstream head and flow to the 
downstream head and flow are (figure 3): 

P,PN,P HHH ==+ 1211 1                                         
(14) 

PdPPNP gHACQQQQ 21,21,21,1 1
+=+=+                 

(15) 

The compatibility equations either side of the leak are given by equations (16)  
and (17):  
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Equations (15) to (17) form a set of quadratic equation in PH  that is solved us-

ing the quadratic formula: 
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Once PH  is determined the upstream and downstream flows are calculated using 

the positive and negative compatibility equations (9) and (10) respectively. 
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Fig. 3 Leak implementation in the MOC 

4   Application and Results  

As an example, considering the polyetelene pipe rig at Imperial college (Covas et 
al. 2004). The pipeline is made of high-density polyetelene SDR11 PE100 with 
50.6 mm inner diameter; 6.2 mm wall thickness and the total length of pipeline is 
277 m (length between the reservoir and the global valve). Numerical results are 
calculated for the initial flow of 11 008. ls− and for a leak located at intermediate 

section. The transient event is caused by the valve closure, the pipeline rheological 
behaviour linear viscoelastic is described by the creep compliance function repre-
sented by three-element Kelvin-Voigt model. Parameters kJ  and kτ  are:  
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Figure 4 shows the head history at the valve obtained by the numerical simulation 
for leaks located at various positions along the pipe 
( )65,54,43,32,53,2 LLLLLLX = , where X is the location of the far from the 

valve. Friction effects are ignored ( )0=λ to highlight the impact of the leak on 

the head of pressure evolution. To more observe the leak effect on pressure head, 
Figure 5 is plotted to calculate the instance at which wave is reflected by the leak 
( 1ft ). 

Figure 6 shows the head pressure history at leaks located at the previous posi-
tions but the friction effects are considered ( )08.0=λ . One can observe the sig-

nificant difference. In fact, the transient event is damped much more rapidly than 
in the system where the leak does not exist. It can be interpreted by the effect of 
the leak on the features of the pressure wave propagating along the pipe. Indeed, 
the leak causes partial reflections of wave fronts that became small pressure dis-
continuities in the original pressure trace and increase the damping of the overall  
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pressure signal. Hence, through correctly interpreting the head-time history at the 
valve it is possible to extract information on leak location and leak discharge. 

Figure 5 and figure 7 are an enlargement of the results of figure 4 and figure 6, 
respectively. The location of leak is given by: 

1

0

ft
X L

t
=                                                           (20)

 

where 1ft  is the time difference between the initial transient wave and the re-

flected wave at the leak section (time corresponding to the sudden change of head 
from 1HΔ  to 2HΔ ) and CLt 20 =  is the pipe characteristic time. Table 1 and 

Table 2 summarize values of 1ft  for the considered leak locations for 0=λ and 

08.0=λ respectively. 

By analysing the head-time transient in figure 5, the leak discharge may be ob-
tained by: 

( )100
HH

C

gA
Q Δ−Δ=

                                          
(21) 

0HΔ  and 1HΔ  are head rises provoked by the sudden closure of the valve when 

there is or there is no leak respectively. 
 
 

 

Fig. 4 Piezometric head at different leak locations ( )0λ =  
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Fig. 5 Different times leak reflection for different leak locations shown in fig.4 

 

 

Fig. 6 Piezometric head at different leak locations ( )08.0=λ  
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Fig. 7 Different times leak reflection for different leak locations shown in fig.6 

Table 1 Leak location ( )st 463.1,0 0 ==λ  

Leak location L/2 3L/5 2L/3 3L/4 4L/5 5L/6 

0ttLX f=  0.502 0.60 0.66 0.749 0.76 0.833 

Table 2 Leak location ( )st 463.1,08.0 0 ==λ  

Leak location 9L/10 5L/6 4L/5 3L/5 

0ttLX f=  0.90 0.8345 0.80 0.60 

5   Conclusion 

The current paper presented the leak detection in plastic pipes taking into account 
the viscoelastic behavior of pipe-wall. The method of characteristics, which re-
quires less computer cost, is directly used to determine the magnitude of leaks by 
developing relations between the location and amplitude of the reflected wave at 
the leak section.  

Furthermore, it is necessary to register the pressure time-history in just one sec-
tion of the pipe (for example the downstream end) and then the proposed tech-
nique can strongly reduce leak detection survey costs in safe conditions. 

Transient head obtained for a viscoelastic pipeline with leak showed a fast at-
tenuation and the retardation of the overall pressure wave in time, these significant 
results make difficult leak location and sizing.  
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Abstract. A study is presented where an autoencoder is used to learn non-linear 
principal components (PCs) which are representative of windowed samples from a 
vibration signal which are generated by a gearbox in a healthy condition. The PCs 
are optimized to represent hidden characteristics of the healthy data as expe-
rienced over different operating conditions. The auto-encoder may thus be used to 
detect signal distortions (discrepancies) in a novel signal, where the discrepancies 
are the result of machine faults. By analyzing the vibration signal piece-wise by 
means of block windows it is possible to generate a discrepancy signal. The dis-
crepancy signal indicates the time instances and associated severity of individual 
signal discrepancies. The periodicity of the discrepancy signal, as analyzed by 
means of its spectrum and cepstrum, allows for insight into which gear compo-
nents are damaged. The case study assumes that neither any additional transduc-
ers, nor any historical fault data are available.  

Keywords: condition monitoring, fluctuating operating conditions, discrepancy 
analysis, change detection, auto-encoder, spectrum, cepstrum 

1   Introduction 

The performance of many conventional machine condition monitoring strategies 
(e.g. spectral analysis) tends to be impeded if the machine is subject to fluctuating 
operating conditions (Jardine et al. 2006).  Change detection offers a practical way 
to conduct condition monitoring, since it does not depend on extensive historical 
fault representative data. Advanced change detection strategies may be imple-
mented, which are capable of operating under fluctuating operating conditions.  
Essentially a data driven model is used to represent a baseline signal which is gen-
erated by the machine while in good condition. The data driven model may be 
augmented by additional sensors (such as a tachometer) which conveys information 
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regarding the instantaneous operating conditions. Non-operating condition related 
deviations from the baseline vibration response is assumed to be due to the onset of 
damage.   

Timusk et al. (2008) investigate a number of advanced modeling methodologies 
for detecting anomalies which might indicate the onset of damage. A number of 
extracted signal features are monitored for changes, some which include  time 
and order domain statistical features such as RMS, Kurtosis and Skewness, as well 
as auto-regressive model coefficients. A number of different data driven models 
are investigated, including an Autoencoder, K-means clustering, Principal compo-
nent analysis, Nearest neighbor, Support Vector Machine, Gaussian probability 
densities, and a combination classifier. The models are augmented with informa-
tion regarding the motor current, drive voltage, and shaft speed. The methodology 
proved effective at identifying defective components even in the presence of fluc-
tuating operating conditions.  

This paper investigates a change detection methodology based on the applica-
tion of an autoencoder. A experimental study is presented where the vibration sig-
nal from a healthy gearbox which is subject to a fluctuating torque is monitored. 
Novel to our approach is that the vibration signal is evaluated in a piece-wise 
manner. This renders it possible to generate a signal transform, which is referred 
to as a discrepancy signal. The proposed methodology is implemented based on 
the assumption that only a vibration signal is available, with no additional trans-
ducers (e.g. tachometer) or fault histories. The discrepancy signal indicates the po-
sitions in time, and severity to which a vibration signal deviates from a reference 
signal. The discrepancy signal can subsequently be analyzed based on its spectrum 
and cepstrum to identify the periodicity of the signal discrepancies. The periodici-
ty information offers insight into the nature of the fault condition. The spectra and 
cepstra of the discrepancy signal proved significantly more sensitive to initial gear 
tooth damage compared to those of the raw signal.  

2   Methodology 

The implemented methodology comprises two key steps, namely computing a dis-
crepancy signal, and then analyzing its spectrum and cepstrum.  

2.1   Piecewise Signal Evaluation 

The signal is evaluated in a piecewise manner. This renders it possible to obtain a 
discrepancy signal, which indicates the severity and periodicity of fault related 
signal outliers. Short signal segments are analyzed individually. This is done by 
means of a sliding block window which extracts m successive datum points from 
the vibration waveform. One such window represents a single sample , where  
indicates the sample number. Let x represent the vibration signal of length n, so 
that  denotes the first sample of m datum points, , , … , . The 
block window is subsequently advanced by a single datum point to generate the 
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following sample , , … , . This process is repeated until  
samples  have been created.  

These samples are typically selected to be of very short duration, for instance 
approximately as long as the duration that a single tooth is in mesh. In this paper 
the sample length is selected to consist of 10 datum points, 10. It will later 
be indicated that 10 datum approximately corresponds to the time period during 
which a single tooth is in mesh.  

2.2   Autoencoder 

An autoencoder is a form of auto-associative neural network which may be used 
to detect non-linear principal components for a data set (Kramer 1991). The au-
toencoder is used to model the reference samples from the healthy machine. Dur-
ing training a signal sample  is both used as input and as the target output. The 
neural network consist of five layers (with sigmoid activation functions), to ensure 
sufficient non-linear characteristics (Bishop 2006). The middle layers contain 
fewer neurons than the input/output layers. This bottleneck is used to extract the 
non-linear principal components (Bishop 2006). The principal components 
represent hidden features of the data in a lower dimension than that of the original 
data.  
 
 

 

Fig. 1 An autoencoder is used to extract hidden non-linear principal components from data 
samples which represent the machine in good condition 

The neural network is optimized so as to select principal components which 
best represent the hidden characteristics of the set of healthy data as generated 
over the range of typical conditions under which the machine is operated. As such 
the principal components tend to be specific to the healthy data. The optimized au-
toencoder will not be able to produce accurate outputs for samples which deviates 
from the reference samples. The difference between the predictions of the autoen-
coder, and the input can thus be used to obtain a measure of discrepancy . The 
discrepancy is calculated as the root mean square of the errors, 
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                          (2) 

 
where the errors  …  are computed as the differences between the 
sample values …  and the estimated output from the autoencoder ̂ … ̂ , so that   .    

A discrepancy value is computed for every sample, so that a total of  
discrepancy values , , … ,  are obtained. A discrepancy signal is 
thus obtained which exhibits periodic impulsive behavior which corresponds to 
the presence of fault related signal distortions in the measured signal.  

3   Experimental Setup 

The proposed methodology is investigated on experimental data which were rec-
orded in the Sasol Laboratory for Structural Mechanics at the University of Preto-
ria (Stander and Heyns 2005). Dr. C.J. Stander generously made available the data 
for this study. 

 
 

 

Fig. 2 Experimental setup 

Gear damage was investigated on a single stage Flender E20A gearbox which 
had a rated load of 20 Nm, was fitted with helical gears. The monitored gearbox 
was mounted between two Flender E60A gearboxes, the first of which served to 
step the torque up and the second to step the torque down. The step down gearbox 
was driven by a 5.5 kW three phase four pole WEG squirrel cage electric motor. 
The step up gearbox was connected to a flywheel which in turn was coupled with 
a 5.5 kVA Mecc Alte Spa three phase alternator to apply the load. The gearbox 
was subjected to a fluctuating load. The load consisted of a 0.5 Hz sinusoidal 



Gear Fault Detection under Fluctuating Operating Conditions  85
 

component with an amplitude of 3.35 Nm which was superimposed on a mean tor-
que of 11.05 Nm. The gear casing acceleration response was measured in the ver-
tical direction by means of a 10 V/g PCB integrated circuit piezoelectric industrial 
accelerometer. The vibration was sampled at 50 kHz, but was later low pass fil-
tered with an  eighth-order Butterworth filter which had a cut-off frequency at 
1000 Hz. The signal was down sampled to 2500 samples per second.  

The monitored gear had 43 teeth and rotated at approximately 5.19 Hz. The 
corresponding pinion had 22 teeth and rotated at approximately 10.12 Hz. The 
gear mesh frequency was close to 223 Hz. This means that each tooth is in mesh 
approximately for the duration of 10 datum points (0.004 s). 

Three levels of damage (referred to as damage states 1, 2 and 3) were induced, 
by respectively removing 100, 200 and 300 μ  material from the tooth face. 
Damage state 0 refers to the healthy data.  

 
 

 

Fig. 3 Limited performance of vibration PSD even for advanced damage (state 3)  

The natural logarithm of the power spectral density (PSD) for the vibration  
signal as measured for the 300 μ  damage condition is presented in figure 3. 
Significant energy is observed at the gear mesh frequency of approximately 223 
Hz. Using the logarithmic scale, some energy is also observed at the gear rotation-
al frequency of approximately 5.19 Hz (fluctuates somewhat according to shaft ro-
tational speed and PSD resolution). However, as indicated in table 1 the response 
at these frequencies do not consistently increase for greater damage. Figure 3 indi-
cates the most advanced state of damage. As expected do the PSDs of the lesser 
two states of damage offer even less evidence of gear damage.  

Table 1 ln PSD values at frequencies of interest for the raw vibration signals 

Damage state 0 1 2 3 

5.31 Hz -10.49 -8.03 -9.68 -6.91 

230 Hz -6.175 -7 -5.198 -4.68 
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4   Implementation 

An autoencoder is used to model the healthy data. A window block length of 10 
datum points were used to construct individual samples. The block length is so 
chosen as to reflect the approximate duration that a single tooth is in mesh. The 
autoencoder is optimized by means of back propagation. The first, second, fourth 
and fifth layers in the neural network all contains 10 nodes. The nodes are fully 
connected to all the nodes of the adjacent layers. The middle (bottleneck layer) 
contains three nodes. Trial and error was used to find the number of nodes in the 
middle layer which offered a good compromise between performance on the train-
ing set, and compression.  

The vibration data from each of the four damage states are subsequently trans-
formed to discrepancy signals. The discrepancy signal performance is found to be 
fairly robust given different numbers of principal components. Good results were 
also obtained by using 2-7 nodes. For interest was conventional (linear) PCA also 
investigated. Linear PCA (based on the Eigen-values of the sample covariance 
matrix) significantly reduced the cost of learning the reference model, but it was 
less successful of modeling the data under the transient operating conditions.  

5   Experimental Results 

Figure 4 illustrates the PSD spectrum for the discrepancy signal from damage state 
1 (100 μ  face removal). Unlike the PSD from the raw signal where the gear 
damage could not be detected, does the discrepancy signal PSD contain a clear 
dominant term at 5.31 Hz which corresponds to the gear rotational frequency.  

 
 

 

Fig. 4 The discrepancy PSD for damage state 1 clearly indicates the damage. 

Table 2 indicates how the gear rotational frequency component increases with 
the onset of damage. Not only is the increasing trend much more evident, but the  
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gear rotational frequency dominates for the PSD of the first damage state. The 
cepstrum of the second and third states clearly indicate that the discrepancies cor-
respond to the gear.  

Table 2 ln PSD at the gear rotational frequencies of the discrepancy signal  

Damage state 0 1 2 3 

5.31 Hz -19.8 -19.16 -14.71 -12.02 

 
 
 

 

Fig. 5 The discrepancy Cepstrum for damage state 2 clearly indicates the damage. 

The discrepancy signal for the second state of damage is very impulsive (due to 
the greater degree of damage). This impulsive nature results in a PSD which is 
subject to significant harmonics. The discrepancy now becomes more suitable to 
cepstrum analysis which is capable of collecting families of uniformly spaced si-
debands and harmonics (Randall 2011). The real cepstrum is computed as the in-
verse Fourier transform of the real logarithm of the magnitude of the Fourier 
transform of the discrepancy signal. The real cepstrum of the discrepancy signal 
for the second damage state is presented in figure 5. A clear energy component is 
evident at a quefrency of 0.19 s, which corresponds to the gear rotational frequen-
cy. The cepstrum did however fail to detect the gear fault for the discrepancy sig-
nal from the 1st state of damage. The cepstrum should be used as auxiliary tool to 
the spectrum.  

6   Conclusion 

A methodology was presented were an autoencoder is used to compute a discre-
pancy signal. The discrepancy signal tends to be more sensitive to fault related 
signal distortions compared to the raw vibration signal. The cepstrum of the  
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vibration is well suited to the impulsive nature of the discrepancy signal. It is be-
lieved that the methodology is simple to implement, as it requires little under-
standing of the system, does not depend on historical fault data, and may be  
implemented without the need for additional sensors or signal resampling if the 
speed fluctuations are limited.  
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Abstract. Condition monitoring of rolling element bearings through the use of 
vibration analysis is an established technique for detecting early stages of compo-
nent degradation. This study is presented to compare the performance of bearing 
fault detection using artificial neural networks (ANNs) and genetic algorithms 
(GA). The time domain vibration signals of a rotating machine with normal and 
defective bearings are processed for feature extraction. The extracted features 
from preprocessed signals are used as inputs to ANN classifier for five-class rec-
ognition (one normal and four with different levels of fault). The system of 
features selection is based on genetic algorithms as optimization method and the 
trace criterion from the linear discriminant analysis (LDA) as evaluation function. 
. The ANNs are trained with a subset of the experimental data for known machine 
conditions, and tested using the remaining set of data. The procedure is illustrated 
with and without features selection. The results show the efficiency of the pro-
posed methodology. 

Keywords: condition monitoring, genetic algorithms, trace, vibration, neural net-
work, rotating machines. 

1   Introduction 

The monitoring of machines is gaining much importance in the industry because 
of the need to increase machine reliability and reduce the loss of potential 
production due to failures caused by different defects. The use of vibration signals 
is quite common in the field of condition monitoring of rotating machines. Many 
currently available techniques require a lot of expertise to implement them 
successfully; it requires new techniques that allow relatively unskilled operators to 
make reliable decisions without knowing the mechanism of the system and 
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analyze the data. New techniques are required to monitor a mechanical system. 
Therefore, reliability should be the most important criterion of the operation.  

Artificial neural networks (ANNs), is a powerful technique for pattern recogni-
tion and have been applied to the classification of real systems faults (Jack and 
Nandi 2000a), (Jack and Nandi 2000b), (Benahmed 2002).  

Genetic algorithms (GA) have been presented in several references (Jack and 
Nandi 2002), (Samanta et al. 2001). In the short period of their development, the AG 
showed their superior capabilities and has been successfully applied in many fields. 

2   Artificial Neural Network  

An Artificial Neural Network (ANN) is an information processing paradigm in-
spired by biological nervous systems. The human learning process may be partial-
ly automated with ANN’s, which can be configured for a specific application, 
such as pattern recognition or data classification, through a learning process. 

An artificial neuron is composed for some connections, which receive and 
transfer information, also there is a net function designed for collect all informa-
tion (weights x inputs + bias) and send it to the transfer function, which process it 
and produces an output.  

 

 

Fig. 1 Typical MLP structure 

The most popular network used for classification purposes is the multilayer 
perceptron (MLP). An MLP is a network of simple neurons called perceptrons. 
The basic concept of a single perceptron was introduced by Rosenblatt in 1958 
(Chinil et al. 2008). The perceptron computes a single output from multiple real-
valued inputs by forming a linear combination according to its input weights and 
then possibly putting the output through some nonlinear activation function. An 
example MLP work is shown in Fig 1. 

3   Genetic Algorithms (GA) 

The GA used in this experiment is a simple GA. The GA uses a population size of 
size Np, and starts with a random generation of chromosomes. Each chromosome 
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is of size Nb equal to the number of features used. Elitist model of the population 
is used, ie the best individual in the population is kept prior to the new population, 
which prevents the decrease in the performance of the AG with the growth in the 
number of generations. 

3.1   Coding of Chromosomes 

To solve our problem of feature selection, we chose to use binary encoding, where 
the number of bits in each chromosome (individual) is the number of possible fea-
tures that can be included in the original set. Thus, a binary string is composed by 
M bits. If the jth (i = 1, ..., M) bit is a unit value, then the indicator should be se-
lected and participated in the classification else if the jth bit has value 0, then the 
feature should be excluded 

3.2   Generating the Initial Population 

The initial population consists of a set of individuals (chromosomes) randomly 
generated. The number of individuals in a population or population size is an im-
portant parameter for the AG that it will be determined. The representation of the 
population P is: 

     1 2 ,
T

i N pP P P P P⎡ ⎤= ⎣ ⎦                                      (1) 

where Pi represents the ith chromosome in the population and Np is the number of 
chromosomes in the population. All chromosomes in our case were randomly  
generated. 

3.3   The Fitness Function 

In the present work we will use a genetic approach that optimizes the choice of 
parameters by minimizing a cost function. The latter is chosen according to the 
Trace criterion of the linear discriminant analysis (LDA). 

In discriminant analysis (Jieping and Ravi 2004), three scatter matrices, called 
within-class, between-class, and total class matrices, are defined to quantify the 
quality of the class. In the present work, we have chosen to minimize the trace 
criterion of the within-class given by: 

                    J= trace ( wS )                                                (2) 
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Sw is the matrix of within-class of the class iw . It is calculated using the follow-

ing equation: 
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With: 

Nc: Number of classes 
Ni : Number of vectors in each class 
xij: jth vector of the class,  
mi: centroid of the ith class. 
The global centroid m is defined by: 
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3.4   Stopping Criterion 

Stopping the algorithm is fixed according to a stopping criterion. In the present 
work, the algorithm stops when it reaches a number of 500 generations. This 
number is initially given. 

3.5    Selecting Individual for Reproduction 

To generate new offspring (children) in our case, parents are selected based on 
their evaluation function, and then mechanisms of crossover and mutation are ap-
plied. To select the best chromosomes in a population, we chose to use the trunca-
tion selection. A mortality rate of 20% is considered, that is to say that 80% of the 
strongest individuals are selected for reproduction, while 20% of the weak disap-
pear without being able to reproduce. The crossing is in place so that new chromo-
somes retain the best part of old chromosomes. However, it is still important part 
of the population survive to the next generation because it is likely that the best 
chromosomes are not replicated in the next generation. That is why the model 
elitist was also adopted  

4   Vibration Data  

The vibration data used in this paper were taken from "Bearing Data Center,"1 As 
shown in Fig. 2. The test bed consists mainly of a motor (left), a coupling (center), 
a dynamometer (right) and control circuits (not shown). 

                                                           
1: www.eecs.cwru.edu\laboratory\bearing\welcome_overview.htm 
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Fig. 2 Bearing test stand2  

Motor bearings were seeded with faults using electro-discharge machining 
(EDM). Faults ranging from 0.007 inches in diameter to 0.040 inches in diameter 
were introduced separately at the inner raceway, rolling element (i.e. ball) and 
outer raceway. Faulted bearings were reinstalled into the test motor and vibration 
data was recorded for motor loads of 0 to 3 horsepower (motor speeds of 1797 to 
1720 RPM). 

In this work we limit ourselves to the study of defects created on the inner ra-
ceway. Table 1 show fault specification: 

Table 1 Fault specification 

Bearing Fault Location Diameter Depth Bearing 
Manufacturer 

Drive end Inner Raceway 0,007 0,011 SKF 
Drive end Inner Raceway 0,014 0,011 SKF 
Drive end Inner Raceway 0,021 0,011 SKF 
Drive end Inner Raceway 0,028 0,050 NTN 

 
 

Vibration data was collected using accelerometers, which were attached to the 
housing with magnetic bases. Fig 3 shows time domain signals for normal and 
faulty bearing 

Accelerometers were placed at the 12 o’clock position at both the drive end and 
fan end of the motor housing. During some experiments, an accelerometer was 
attached to the motor supporting base plate as well. Vibration signals were col-
lected using a 16 channel DAT recorder, and were post processed in a Matlab en-
vironment. Digital data was collected at 12.000 samples per second, for drive end 
bearing faults. Speed and horsepower data were collected using the torque trans-
ducer/encoder and were recorded by hand.  
 

                                                           
2 http://csegroups.case.edu/bearingdatacenter/pages/ 
apparatus-procedures 
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Fig. 3 Time domain signals for normal and faulty bearing 

5   Features Extraction  

For each condition (normal and faulty inner raceway) we have 4 signals recorded 
for four different speeds. So we have, 20 signals sampled at 12 kHz.    Samples 
were divided into two segments of 61068 samples each.; one used for the training 
of ANN and the other for the test In the present work we chose to calculate two 
sets of features: 

5.1   Statistical Features 

After a preliminary analysis, samples were processed in four adjacent bands  
[1-1500] Hz, [1500-3000] Hz, [3000-4500] Hz and [4500-6000] Hz to extract six 
features (1–6):  root mean square, variance, skewness, kurtosis and normalized 
five and six central moments. The procedure of feature extraction was repeated for 
five bearing conditions (normal and faulty) giving a total set of 40×24 features 

5.2   Spectral Features 

Spectral features were generated by calculating the power spectral density PSD 
around the frequencies in the four bands mentioned above, giving a total set of 
40×4 features. 

Each of the features was normalised dividing each row by its absolute maxi-
mum value keeping the inputs within ±1 for better speed and success of the net-
work training. 

The global data set of 40×28 was divided into two sets of 20×28; the first is 
used to train the neural network, while the second is used for the test.  
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6   Results and Discussion  

The data set were split in training and test sets of size 20×28 using Matlab. The 
number of output node of MLPs was five with three hidden layers .  Results are 
presented to see the Performance of ANNs without and with feature selection 
based on GA. The training success for each case was 100%. 

6.1   Performance Classification of ANNs without Features 
Selection 

Table 2 shows the classification performance for statistical and spectral features 
sets and the combined set without selection by AG  

Table 2 Performance classification of ANNs without features selection 

Data set   Training  
succès (%) 

Test succès 
(%) 

misclassified (in 
test) 

Number of 
iteration  

Statistical  100 90 5 ,8 7 

spectral 100 100 - 100 

combined 100 85 5 ,8, 9 11 

 
The results show that the network is trained with a 100% performance for dif-

ferent sets of features. We got a performance test of 90% using statistical set and 
better performance of 100%, with the spectral sets, while we have a performance 
of 85% with the combined sets (statistical and spectral features). This can be ex-
plained by the redundancy of some features. 

6.2   Performance Classification of ANNs with Features Selection 
by GA 

In this step the network is trained and tested using the optimal features obtained by 
the genetic algorithm we proposed. Several tests were performed to test the con-
vergence of our algorithm. 

Table 3 shows the performance of classification after selecting the most relevant 
indicators. The results show an improvement in performance test of ANN, using 
the optimal features .for the various tests. This performance is 100%. (All com-
ments are correctly assigned to classes) with a reduced number of features. The 
separation of the five classes is, therefore, carried out with an error rate of zero.  

We can see that for the various tests, the optimal vector form is not the same. 
This is quite normal since the initial population is generated in a random manner. 
However, some indicators are repeated, (7 13 19 and 24 which correspond to the 
rms value calculated in the bands [1500-3000] [3000-4500] [4500-6000] and at the 
six central moment calculated in the band [4500-6000]. We also find that the classi-
fication is performed with a 100% performance using only two features 7 and 13. 
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Table 3 Performance classification of ANNs without features selection 

7   Conclusion  

This work has presented a novel approach to diagnose. The roles of different vibra-
tion signals and signal  processing techniques have been investigated. The results 
show the potential application of GAs with trace criterion in the selection of features, 
allowing early fault detection at incipient levels in machine condition detection. 
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Tests Selected       
features 

Training success 
(%) 

Test success (%) Number of 
iterations 

Test 1 7 13 18 19 100 100 100 

Test2 7 13 19 24 100 100 100 

Test3 7 13 19 24 100 100 100 

Test 4 7 13  100 100 87 



Chapter 2 

Modelling of Dynamics and Fault in Systems 

 
 
 
 
 
 
 
 
 

The vibration based faults detection in machinery such as misalignment, unbalance, 
local damages, … is widely developed and extensively used in practice. However, 
the quantification and the location of defects is still a research subject for many 
years ago. In the last decades, an increase of interest was observed for model based 
approaches to provide mathematical explanation of the dynamics of machinery 
especially in presence of faults and in non-stationary operations. 

Through simulations it is possible to classify vibration signatures and 
distinguish changes in dynamic response induced by different kinds of defects and 
existing in the same time at different locations of the studied machines. Also, with 
simulations it is possible to verify the experimental knowledge and understand 
complex phenomena acting on machines such as time varying loading conditions. 
Recent advances in this field will be discussed in this chapter. The main research 
development in modeling that is  presented through this chapter  covers a certain 
number of mechanical systems such as gears, rotors, wind turbines. The dynamic 
behavior in presence of defects, as well as in time varying operations is discussed 
in this chapter. 
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Abstract. An effective condition monitoring system depends on good observabili-
ty of the effects of a fault. For many damage mechanisms that affect the reliability 
of components in systems, parametric models have been developed that describe 
the rate at which damage accumulates, based either on empirical or theoretical 
models of the physics of the damage process. These models can inform the relia-
bility analyst about observability of the damage process, and the effect of time-
varying system behavior on the observable damage effects. Simulations of system 
processes with integral damage models can then be used to determine how overall 
system processes affect damage accumulation in components, particularly in time-
varying processes, how damage accumulation compromises performance of the 
overall system, and the sensitivity of features extracted from signals with respect 
to fault detection and identification. A simple framework is described for incorpo-
rating damage accumulation into lumped-parameter system models. Examples are 
given for a material handling pipeline process and for a haul truck tire, which 
highlights some specific challenges of relating overall process state variables to 
state variables of a damage process, for choosing sensors for a condition monitor-
ing system. 

Keywords: parametric modeling, damage models, observability. 

1   Introduction 

In considering the condition of a technological system comprising a set of con-
nected subsystems (such as machines) made up of components, the condition can 
be characterized on three levels: the overall system level, the machine level, and 
the component level.  

At the system level, probabilistic models of condition are generally used, be-
cause there are too many variables and too little observability to describe the con-
dition at the component level mechanistically. Probabilistic methods are effective 
for systems that have stationary random processes for inputs and disturbances [1]; 
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but a time-varying system requires conditional probabilities, because the state of 
nature can affect the sensitivity of classification methods.  

At the component level, physics-based deterministic models of damage accu-
mulation can be developed to represent a priori knowledge of how the condition of 
a component changes with time. The damage process may be based on a theoreti-
cal understanding of how the component changes with time. Such models are 
usually empirically based, relating a set of variables to a damage output measure 
through an analytical relationship that is not necessarily physics-based, for exam-
ple, the well-known kinematic models for rolling-element vibrations that are func-
tions of shaft speed [2]. More commonly, relationships between measurable condi-
tion indicators and damage severity are empirically based, employing features 
extracted statistically from signals under known conditions. Any unmodeled dy-
namics are considered stochastic disturbances to the feature extraction and classi-
fication process. Insights in the physics allow phenomena to be included in the 
model, rather than being lumped into the unknown disturbances. Inputs to a model 
of damage accumulation may be different from the system variables that charac-
terize how the component contributes to system dynamics. 

Between these levels of abstraction is the machine level, in which a machine is 
an assembly of interacting components, with some environmental inputs and dis-
turbances. Models of machine condition may be based on hybrid models that 
combine deterministic and stochastic processes. The machine-level system allows 
for subsystems related to damage accumulation to link to process-system level dy-
namics of time-varying processes. These non-stationary processes occur in many 
applications, including process plants with variable feedstock, earthmoving ma-
chinery, vehicles, and power generation and distribution systems. 

Lumped-parameter system modeling is an appropriate formulation of the dy-
namics of most machine systems. The level of abstraction can be defined in con-
stitutive relationships for each element in the system. Graphically, the system is 
represented by a network of elements connected at nodes. Node variables must 
sum at a node, and the changes in loop variables around a closed network path 
must sum to zero. The constitutive relationship for each element consists of a 
through variable (such as electrical current, volumetric flow rate, heat flux, etc.) 
and a change in an across variable (such as voltage difference, pressure drop, tem-
perature change, etc.). These complementary variables are also sometimes referred 
to as effort and flow variables. Dynamic relationships entail time derivatives of 
one or both variables. 

The governing equations of a system can be formulated in a number of ways. 
The most general approach is based on state vector x and constitutive relation-
ships, which describe the dynamics of a system (comprised of a set of connected 
elements within the system) and the vector of outputs y. In a fully observable sys-
tem, y = f(x) includes all elements of x. In dynamical systems, the lumped-
parameter physics of efforts across (or flows through) each element contribute to a 
set of differential equations, which describe how energy is distributed within the 
elements of the system, how elements are storing and releasing energy, how ener-
gy is transformed to other forms, and how energy is dissipated within the system. 
The eigenvalues of a dynamical system determine its natural frequencies, which 
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informs the condition monitoring analyst on the required bandwidth for data ac-
quisition [3]. 

Dissipative elements represent losses in a system. Dissipation elements cause 
energy to leave system, increasing entropy. For example, in a mechanical system, 
a damper dissipates energy as heat. In a mixed dynamical system model, actuator 
elements transform energy from one type to another, for example, a motor in an 
electromechanical system. If there is a dissipative load in the mechanical subsys-
tem, such as a brake, then the electrical energy is first converted to mechanical 
energy, and then some of that energy is eventually lost as heat.  

Ideally a dissipative element remains intact forever; but in reality the element 
will eventually become damaged or degrade over time. Other elements of the sys-
tem may also develop some damage, through some dissipative process that inflicts 
damage on a part of the system. System models generally neglect degradation, 
which typically accumulates over a long time interval compared to the time frame 
of interest for modeling (and simulating) the dynamics of overall system 
processes. Energy lost by the system over time may be due to non-damaging dis-
sipative processes, but energy loss may also be due to processes that contribute to 
damage. In this way, a dynamic model of a system can also incorporate models of 
damage mechanisms (or at least to determine whether there is a change in the sys-
tem that may be due to damage accumulation). This approach is fairly simple if 
the damage mechanism is a function of a system variable, and it is known what 
fraction of energy lost results in damage. 

A model is formulated based on the phenomena of interest and the observabili-
ty of the system necessary to present features that are relevant for fault detection 
and identification. A system fault model thus provides a logical approach for se-
lection of condition indicators, sensors, and signal processing methods appropriate 
for observing (and identifying) a fault of interest. 

2   Damage Modeling in a Lumped-Parameter System 

A damage process depends on a dissipation of energy; and the energy either 
comes from the process system or comes from the environment outside the system 
boundary. There may be a transformation of energy to a form that results in dam-
age accumulation D, which is a function of the “local” damage variables, which in 
turn relate to the process variables that provide the energy through some function 
of time. The damage accumulation from time To to time Tint can be written as  

dtDDD
T

T

TT ∫=−
int

0

0int
                                                    (1) 

where D  is the damage accumulation rate. A damage process can then be in-
cluded in the system model by adding a new element representing the constitutive 
relationship of the damage. Figure 1a shows a second element added to a system 
graph network with no change in the through variable q. There is a change in the 
system due to the presence of a new across variable ΔPd due to the damage 
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process. Figure 1b shows a second element added when there is no change in the 
across variable ΔP, with new complementary damage variable qd.  

  

Fig. 1 Damage Element (2) with no change in a) through variable q b) across variable ΔP 

Damage variables ΔPd (with complementary variable q) and qd (with comple-
mentary variable ΔP) yield damage energy rate D .  

If there is a change in the physical process between the system of interest and 
the damage mechanism, then a mixed-model formulation can be used. Two-port 
transducer elements allow mixed energy subsystems to be represented in a single 
model, related by coupling coefficient α which may be nonideal (allowing losses). 
A damage mechanism can be incorporated into a process as illustrated by Figure 
2. The driver subsystem is the main process, providing the energy consumed by 
the damage process, with a transducer element connecting the two systems. There 
may be a transformation of energy to a form that results in damage accumulation. 
This accumulation D is a function of the “local” damage variables, which in turn 
relate to process variables through some function. Transducer elements can be 
used to represent this transformation; and, in this way, the system process can be 
modeled with the damage process in a single model [4]. 

 

Fig. 2 Driving main process and driven damage process 

Figure 3 illustrates the inclusion of a damage element in a system model where 
there is a change in variable type. Element (1) is part of the main system. The 
damage process in element (3) is described by through variable y and across vari-
able Δd. A transducer element (2) represents how energy comes from the main 
system (based on a constitutive relationship between through variable q and across 
variable ΔPd), into the subsystem in which that energy produces damage.  This has 
the effect of increasing the number of variables of state, and so the observability 
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of the process relies on having some condition monitoring of at least one of the 
following: 1) the damage variable; 2) its complementary variable; or 3) indirect 
monitoring of some other variable that is closely related to the damage variable. 

Multiple energy transformations may occur, in which case a set of transducers 
can be employed to relate the main system to the damage process. 

 

Fig. 3 Damage elements with change in variable type 

3   Example 1: Pneumatic Tire Damage 

Consider a tire on a vehicle driving on a surface at a linear velocity v(t). Each tire 
requires torque τ to offset the road friction caused by the tire absorbing some me-
chanical energy, which is then dissipated as heat, at an elevated tire temperature 
above the ambient temperature [5]. The coupling relationship describing how the 
tire torque τ is transformed into heat flux h is described by 

h = Cτ,     (2) 

where C is an experimentally determined that depends on the tire material, the 
pressure inside the tire, and the road conditions. Damage accumulation rate is  

TaBeD Δ=       (3) 

where a and B are constants, and ΔT is the temperature of the tire above ambient 
temperature.  The system can be represented by process variables expressed in 
terms of the tire (torque and angular velocity), a transducer that transforms me-
chanical energy to thermal energy, a transducer that transforms heat flux & tem-
perature to damage & temperature, and a damage element as shown in Figure 4. 

 
Fig. 4 Multiple variable transformations in damage modeling for a tire 
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In the mechanical subsystem, the complementary variables are torque τ and angu-
lar velocity ω = v/r for a tire with radius r.  The mechanical/thermal transducer re-
lationship yields 

rC

v
T =Δ     (4) 

The thermal/damage transducer relationship is hD α= ; and the transducer rela-
tionship between across variables is ΔT=αΔT; and so α = 1. An expression that de-
scribes the damage rate in terms of the vehicle velocity v(t) is found by taking the 
expression for temperature change ∆T and substituting it in the damage equation 
to yield an expression for the damage rate as a function of v(t) 
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and the damage accumulation in the time interval t0 to tf  

0

)(

0

DdtBeD
ft

t

tv
rC

a

+= ∫
⎟
⎠
⎞

⎜
⎝
⎛
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where D0 is the initial amount of tire damage at time t0. This very simple model 
neglects any variability in the process due to changing road conditions, which may 
mean that a, B, and C may actually be variables with respect to time, in that the 
vehicle may drive over different roads with different amounts of rolling resistance 
and under different circumstances heat generation may aggravate the damage rate. 
Instead of measuring these variables as a function of time directly, it would be 
more appropriate to monitor more readily observable features that contribute to a 
particular variable. For example, rolling resistance C(t) may depend on external 
features, such as road conditions (height variability related to ruts and sharp 
stones, etc.), as well as tire pressure. Then, by monitoring when the vehicle is on 
particular road conditions, C(t) can be observed.  

This example illustrates how fault classification accuracy improves with in-
creased knowledge of the state of nature and appropriate condition monitoring.  

2   Example 2: Wear Damage in a Slurry Pipe 

In hydraulic systems, a simple dissipation element is flow resistance in a section 
of pipe. The constitutive relationship for energy dissipation rate within the process 
in terms of the pressure drop is 

( )[ ]
S

tP
E

2Δ=      (7) 

where S is assumed to be a constant and ΔP(t) is a function of time. The loss of 
energy over time is 
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This energy dissipation does not cause damage; it is merely a consequence of the 
process of transporting a fluid. A slurry pipeline, however, carries solid particles 
in a carrier fluid. Abrasive wear can occur as particles moving in the flow contact 
the wall. Not all slurry flows are homogeneous. When solids concentration, par-
ticle size, and particle density increase, then the flow rate may not be high enough 
to keep all of the particles fully suspended in the dense slurry. In that case, there is 
a concentration gradient. Flow in a dense bed slurry pipeline can be modeled as a 
two-layer system [6]. The upper layer flows at an average velocity vu and has a 
low concentration of solids in the fluid Cu. The lower bed is a dense multiphase 
fluid with a high concentration of solids Cl at a low average velocity vl. The two-
layer model for slurry flow is illustrated in Figure 5, showing the idealized  
relationship between solids concentration C and velocity profile v. The energy dis-
sipation in the bed layer (on the bottom) due to friction is usually modeled as a 
Coulomb friction process, which is not dependent on velocity. 

  

Fig. 5 Two-layer slurry transport model  

For a moving bed, the friction of the bed against the wall of the pipe Fl (per unit 
length of pipe) is described by the following expression: 

)cos)(sin)((
2

1 2 βββρρη −−−= ulfssl CCgDF     (9)     

where ηs is the coefficient of sliding friction (usually assumed to be 0.5), ρs is the 
density of solids, ρf  is the density of the fluid, Cl is the concentration of the bed, 
and Cu is the concentration of the bulk, D is the pipe diameter, g is acceleration 
due to gravity, and β is the subtended angle (in radians) that defines the (modeled) 
interface between the bed layer and the bulk fluid layer. Most of the energy dissi-
pated due to friction is lost as heat without pipe damage; however, in some condi-
tions, a fraction of this energy dissipation may result in damage, which accumu-

lates over time. The wear rate   is described by  

  ( )[ ]oVd ττα −= **              (10) 
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where τ is the shear stress due to the contact of unsuspended particles scraping 
along the wall of the pipe that results in wear (in units of force/area), τ0 is a para-
meter that represents the threshold stress for wall damage to occur, α * is an expe-
rimentally determined proportionality constant, and V* is the velocity correspond-
ing to the wear component (the particles in the bed) in units of length/time [7]. For 
this case V*= vl. When the shear stress on the pipe is lower than the threshold 
stress for damage τo, then no damage accumulation occurs. The friction Ft is re-
lated to the average shear stress on the wall in contact with the slurry by  

( )βτ 2RF avgt =                                           (11) 

where friction is a shear force acting along only the part of the pipe wall that the 
slurry bed contacts. The average damage accumulation rate in terms of the process 
parameters and variables can be expressed as 
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where Ft /βD is the average shear stress on the pipe wall. In the case of a heteroge-
neous flow, it is more important to know the rate at which wall thinning occurs at 
specific locations around the pipe circumference, in order to predict when the pipe 
has reached a minimum allowable thickness. In a pipe with a two-layer concentra-
tion of slurry, friction Ft is a function of the angle θ, because of the pressure due to 
the relative mass of particles in the slurry bed pressing on the wall, similar to hy-
drostatic pressure with an effective density ρeff, expressed as 

( )( )fsuleff CC ρρρ −−=                                        (13) 

The depth of the bed x with respect to angle α is 

( ) ( )[ ]βθ coscos −= Rx                  (14) 

The pressure on the wall due to the bed at angle θ is gxP effρθ = ; and the pressure 

multiplied by the coefficient of static friction yields the shear stress on the wall at 
angle θ: 

( ) θηθτ Ps=             (15) 

which, over a length Rdθ, gives differential friction per unit length of the pipe 

( ) θηθθτ θ RdPRd s=              (16) 

From this expression, we can write 

( ) ( )[ ] θβθρη dgRdF effst coscos2 −=            (17) 

Integrating this expression from – β to β yields the friction of the bed on the wall 
due to particle contact only. The damage rate as a function of θ is thus found to be 
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( ) ( )( ) ( ) ( )[ ]{ }0
* coscos τβθρρηαθ −−−−= gRCCvd ulfssl            (18) 

The pipe wall will thus wear the fastest at θ=0, that is, at the bottom of the pipe. 
This has been observed in some operating slurry pipelines. In an actual process, 
the time-varying variables include not only the velocity vl, but also the concentra-
tions Cl & Cu, the height of the bed (and thus β), and possibly the density of the 
solid phase ρs. For a time-varying slurry process, these variables make the wall 
loss observable without having to have ongoing thickness measurement of the 
pipe around its circumference and along its length. This is important in pipelines 
that are not easy to inspect, such as buried pipes and pipes in remote locations.  

3   Conclusions 

Structured parametric dynamic modeling can reveal the variables necessary for di-
rect measurement of equipment condition. The key challenge in any system is to 
have appropriate constitutive relationships for the energy lost in damage to system 
components, and methods to validate them in service. These relationships may be 
related to the derivatives of variables of state rather than the variable itself, and 
will often involve variable transformations. The two examples presented illustrate 
how simple process dynamic relationships and damage models can yield insights 
into what condition indicators will be observable from the system. Future work 
will consider how to combine stochastic diagnostic models with parametric dy-
namic models, as well as symbolic representations of system behaviour. 
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Abstract. This paper uses transient frequency methods to locate a leak in a pipe-
line system when a leak is modeled as a small cylindrical pipe element open to 
atmospheric pressure on one end. The impedance of the leak as a small cylindrical 
pipe is included in the transfer function equation at the closed valve in a reservoir-
pipe-valve system. The impedance diagram of this system with cylindrical leak is 
plotted and analyzed; the influence of the pipe thickness on leak locations is stu-
died. The numerical study relying on impedance method shows that the cylindrical 
leak geometry approach allows secondary peaks to be detected only for thick 
pipes. By imposing a periodic pattern on the resonant responses, the leak with cy-
lindrical geometry can be located and its location is based on an empirical rela-
tion. The computed results show satisfactory agreement with previous works when 
leak is modeled by a circular orifice. 

Keywords: Cylindrical leak, impedance diagram, Transient flow, leak depth, 
wave reflection. 

1   Introduction 

Energy producing mechanisms are generally formed by piping systems used for 
transporting fluids between their different components. Leaks in piping systems 
pose a major problem such as energy dissipation and physical process disruption 
causing a decrease of the energetic system efficiency. In previous works such as 
(Mpesha et al. 2001), (Chaudry et al. 2002), (Ferrante and Brunone 2003-a, 2003-
b), (Al-Khomairi 2005), (Covas et al. 2005), (Hadj-Taieb 2007), (Lee et al 2006, 
2007) and (Gao et al 2009) different methods are developed for leak detection and 
location in pipeline system, such as Frequency Response Diagram, Extended 
Kalman Filter, Characteristic Numerical Method, Standing Wave Difference Me-
thod, Impedance Method, Impulse response method and cross correlation method 
etc.  

Numerous works have investigated the behavior of different leak geometries 
such as (Brunone, and Ferrante 2001). Overall previous works use to treat the leak 
discharge as an orifice relation and lump all losses in the discharge coefficient. 
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In this paper the leak is considered as a small pipe element open to the atmos-
pheric pressure on one end. The basic cylindrical surface of the leak is located on 
the pipe circumferential and with small diameter.  

The leak locations are based on the harmonic analysis of the presence of addi-
tional peaks due to the leak depth.  

Two location cases are studied either leak near the reservoir or near the valve.  
The impedance method is also used to study the influence of the leak depth on 

frequency response of leaking pipeline system. 
The numerical results are compared with (Covas et al. 2005). 

2   Mathematical Flow Modeling 

2.1   Motion Equations 

The simplified one dimensional continuity and momentum equations that describe 
transient flow in horizontal cylindrical pipe, of linear elastic behavior according to 
Hooke law, are adapted from the analytical model developed by Wylie et al. 
(1993): 
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            (1) 
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where Q  is the fluid discharge, A  is the pipe cross section area, C  is the wave 

celerity, λ  is the friction coefficient, D is the diameter of the main pipe, H  is 
the pressure head, t  is the time and x  is the distance along the pipe.  

2.2   The Impedance Method 

Equations (1) and (2) can be solved in frequency domain by the impedance me-
thod, which allows explaining the harmonic analysis of the pressure wave through 
the pipe. 

The pressure head H   and the discharge Q  are composed of two parts, the av-

erage values  H  and Q  and the fluctuated oscillatory complex terms h  and q . 

Substituting H and Q  in Eqs. (1) and (2), and considering the average terms 

time independent, the linearized equations are:  
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The solution of this set of equations can be obtained by the technique of separation 
of variables (Wylie and Streeter 1993). 

Accordingly, the complex head and discharge are given by transfer equations 

( ) ( ) ( )xqZxhxh UCU γγ sinhcosh −=                      (5) 
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U γγ coshsinh +−=                       (6) 

Where ,Uh  Uq =head and discharge at the upstream end; γ = propagation con-

stant, βαγ i+= where: 
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The hydraulic impedance at the distance x  along the pipe is the ratio of the head 
fluctuation h  to the discharge fluctuation q Thus, 
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where: 

CZ  is the characteristic impedance defined by the following equation  

( )αβ
ωω

γ
i

gA

C

gAi

C
ZC −==

22

                         (10) 

and 

UZ  is the upstream impedance at 0=x  and DZ  is the downstream imped-

ance at Lx =  (fig. 1) 

 

Fig. 1 Simple pipeline 
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2.3   Boundary Conditions 

In order to apply the impedance solution to the hydraulic installation considered in 
this work and composed by constant head reservoir in the upstream pipe section 
and a valve in the downstream pipe section (fig. 2), one must represent the boun-
dary conditions as terminal impedances. 

At the upstream end, constant head reservoir 

00 ===
U

U
UU Q

H
ZthenH

                           

(11) 

At the downstream end 0=x , the hydraulic impedance is deduced by substituting 
the eq.11 in the eq.9, then: 

( )LZ
Q

H
ZZ C

D

D
outD γtanh−===                      (12) 

 

Fig. 2 Reservoir-pipe-valve systems without leak 

2.4   Hydraulic Impedance for a Simple Pipeline System Having  
a Leak with Cylindrical Geometry  

The development of the flow does not depend only on the distance but depend also 
on the Reynolds number, the diameter and discharge of the leak, the triggering of 
fully developed flow that figures in (Drust, F et al works 2005) allows to consider 
that for a leak depth less than 2 cm and a low leak discharge, the flow can be ap-
proximate to be one dimensional. The one dimensional motion equations are used 
to study the flow throw the leak.  

The main diagnostic tool in this paper is to consider that the leak has a cylin-
drical geometry. That yields to consider that the leak is a small cylindrical pipe 
which diameter is the difference between the length of the pipe without a leak and 
the sum of the pipe lengths upstream and downstream the leak (fig.3). 
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( )21 LLLD +−=                                (13) 

 
The length of the leak pipe is the thickness e  of the main pipe. Using the imped-
ance method one can insert the impedance of the cylindrical leak in the impedance 
at the end section of the leaking system 2DZ  to obtain the head pressure variation 

between the upstream and the downstream of the leak. 
 

 

Fig. 3 Reservoir-pipe-valve systems with cylindrical leak 

The leak as considered is an opened pipe to the free atmosphere, its impedance 
is written as follows: 

( )eZZ C γtanh−=                            (14) 

Where 

CZ  is the characteristic impedance of the pipe leak and γ  is the propagation 

wave coefficient in the cylindrical leak. 
To obtain the characteristic impedance of the leak modeled by a cylindrical 

pipe, one can substitute the expressions of α  and β  in eq.10 by α and β , also 

the pipe section A  must be substituted by the leak section A . The wave celerity 

is considered constant through the total pipeline system. In this case the characte-
ristic impedance of the leak is represented by the eq.15. 
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The impedance at the upstream and the downstream of the second pipe are respec-
tively written: 
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By substituting the eq.16 in the eq.17, the impedance at the valve is: 
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Substituting eq.14 in eq.18 and considering that the pipes downstream and up-
stream the leak have the same characteristic impedances and the same wave prop-
agation constants, respectively .2121 γγγ ==== andZZZ CCC  

The impedance at downstream of the pipe with leak begins (Ayed. L et al 2011)  
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D γγγγγ
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3   Cylindrical Leak Detection Using Impedance Frequency 
Spectrum Analysis 

The hydraulic system installation in fig. 3 is characterized by the wave celeri-

ty 11200 −= msC , the friction coefficient 04.0=λ , the pipe thickness me 02.0= , 

the pipe diameter’s mD 1= , the resolution of the frequency is equal to 410−=Δω  
and the pipe length is mL 6001= . 

In this part of the paper, attention is focused on the transients occurring in a 
single pipe system with a known transfer function at the upstream end.  

The problem is to determine the impedance at the downstream end of the sys-
tem without leak, or with leak modeled by a small cylindrical pipe. The leak dis-
charge is 00 10 QQ °

°= , where the flow discharge at the upstream of the main pipe 

is 13
0 1.0 −= smQ .  
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3.1   The Leak Is Near the Tank 

Figures 4(a) and 4(b) represent a comparison of the impedance at the downstream 
end of the pipe without leak to the impedances at the downstream end of the pipe 
with leak located respectively at 526 LandL , from the reservoir . 

In this case the leak is near the tank ( )21 LL ≤ . 

The impedance curves at the downstream end of the identical pipe with and 
without leak show an interesting result, which is giving rise to new (secondary) 
peaks, due to the leak depth consideration.  

Only one new peak type is born due to the leak presence in different leak loca-

tion with the same leak size represented by the leak area 226.28 mmA = . 

For different leak locations, the impedance diagram analysis shows that two 
peaks occurring successively at the normalized frequencies 1−krω   and krω  are 

separated by the same band of frequency for each leak location.  
 
 

 
    (a) 

 
    (b) 

Fig. 4 Frequency response functions for different leak location from the reservoir 

2DZ
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If we note the band frequency width between two successive peaks due to the 
leak (frequency period of the leaking pipe impedance) ( ) 1,1 −− −=Δ krkrkkr ωωω

 
and the frequency period of the impedance at the downstream of the pipe without 
leak by

pipeactr int,ωΔ , the leak locations from the reservoir, can be calculated by 

multiplying the total length of intact pipe by the ratio of the frequency period of 
the downstream impedance of intact pipe to the frequency period of the down-
stream impedance of leaking pipe. So one gets the next empirical leak location 
equation: 

LL
krkr

pipeactr

1

int,
1

−−
Δ

=
ωω

ω

 
            (20) 

where rω  is the normalized frequency and 1−krω  is the normalized frequency at 

which occurs the thk 1− peak due to the leak presence (leak depth). 

krω
 
is the normalized frequency at which occurs the thk peak due to the leak 

presence (leak depth). 
By applying the eq.20, one can calculate the location of the leak for each figure 

case. 
In fig.4 (a) for frequency width plotting of 40, one can detects three new peaks 

occurring successively at the frequency 

41;29;17 321 === rrr ωωω  

In addition the normalized frequency period of the response function at the 
downstream end of the pipe without leak is equal to 2int, =Δ actpiperω . So, and the 

values of corresponding series are: 
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By the same procedure one can get the leak locations after calculating the nor-
malized frequencies at which occurs the secondary peaks of responses when leak 
is either located at 52L  from the reservoir. 

3.2   The Leak Is Near the Valve 

In this case, the leak is near the valve ( )22 LL < . As an example for the leak lo-

cated at ( )2>nnL  from the valve there are 1−n  types of peaks. This result is 

clarified by the fig. 5 in which the leak is located at 6L
 
from the valve and we 

can observe five peak types differentiated by the monotony; the form and the am-
plitude. Compared to the case when the leak is near the reservoir there is a differ-
ence explained by the effect of the mother wave sent by the valve. This wave is 
sending back ( )1−n  times by the leak, before being absorbed by the reflected 
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negative wave coming from the reservoir. In the case presented and when leak is 
located at ( )2≥nnL , two successive peaks for the same peak type are separated 

by the same band of frequency which is the period of the response function at the 
downstream of pipeline system. This band of frequency is equal to ,rn ωΔ . To 

deduce the location of the leak having cylindrical geometry one must calculate the 
frequencies at which occurs this peaks and differentiate their different types. 

After the leak location is deduced by the same process like the case when leak 
is near the reservoir, but 1L  must be substituted by 2L and ( )1,, −Δ kkrω  must be 

substituted by ( )1,, −Δ jkjkrω , so the leak location from the valve is deduced by the 

eq.21  

( )
LL

jkjkr

actpiper

1,,

int,
2

−

Δ
=

ω
ω

                              (21) 

( )1,, −Δ jkjkrω  is the band frequency width between two successive peaks, with the 

same type ( thj  type), due to the leak depth (pipe thickness).This band frequency 

is also the frequency response function period. 

In fig.5, the leak is located at 
6

L

 
from the valve. For the frequency width-

plotting of 40, one can detect fifteen new peaks distributed on five types. As an 
example we consider one peak type that we note it as the first peak type. The sec-
ondary peaks of the first type are occurring successively at these frequencies: 

359.39;36.27;371.15;36.3 14131211 ==== rrrr ωωωω  

In addition the normalized frequency period of response function at the down-
stream end of the pipe without leak is equal to 2int, =Δ pipeactrω , so the values of 

the corresponding series are: 
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Also, the fig.5 shows respectively the second, the third, the fourth and the fifth 

types of peaks appearing for a leak located at 
6

L
 from the valve. 
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Fig. 5 Different peak types of the frequency response functions of pipe with leak located at 
6L  from the valve 

For a width frequency plotting of 40, three peaks are observed for each peak 
type. These peaks are occurring successively at these frequencies: 

174.32;155.20;152.8;7658.29;72.17;72.5 333231232221 ====== rrrrrr ωωωωωω
99.36;981.24;971.12;5669.34;564.22;527.10 535251434241 ====== rrrrrr ωωωωωω

 
 

These frequencies are substituted in the eq. 21 to get the location of the leak. 

4   Leak Depth Influence on Downstream Impedance 
of Leaking Pipe 

The proposed method: based on the leak reflections as a tool for the leak detec-
tion, relying on cylindrical leak geometry inquiries the pipe thickness effects to 
demonstrate the importance of this consideration. For this reason fig. 6 is plotted 
to explain physical signification of the pipe thickness which is assumed in this 
work to be the length of the leak as a cylindrical pipe. In previous works the leak 
impedance is defined as, the ratio of the double pressure head at the orifice by the 
leak discharge, described by linearizing the discharge law (Wylie and Streeter). In 
this paper the hydraulic leak impedance is that of a cylindrical pipe with free dis-
charge in the atmosphere, as figure 6 shows the downstream impedance of leaking 
pipes having the same conditions of the monitoring flow, but different pipe thick-
ness. This illustrates an important result and information contained in pipe thick-
ness influence on the leak reflections, so the necessity of considering the  
cylindrical leak geometry to facilitate the leak location. This figure shows for the 
same friction value and different thickness, the leak reflections are detected only 
in the case where 0>e but not detected when 0=e . 
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Fig. 6 frequency response functions of pipes with different pipe thickness 
04.0211 == λandLL   

5   Validation of the Cylindrical Geometry Approach  

The technique presented in this paper identifies periodicity in the frequency re-
sponse at the downstream of pipeline system with cylindrical leak. The underlying 
mechanism is identical to that presented in numerous previous works  such as 
(Lee, P et al 2005_2006) and (Covas et al 2005). 

To validate the mathematical approach used in this paper and to focus on the 
importance of the cylindrical geometry of the leak figure 7 is picketed with similar 
conditions as shown by (Covas et al. 2005). One can observe in this figure plotted 
with logarithmic scale, the presence of resonant peaks occurring at the same nor-
mal frequencies calculated by Covas and related directly with the leak location 

mL 2002 =
 
and the total pipe length mL 1000= . The leak with the cylindrical 

geometry provokes, in addition to secondary peaks due to the thickness of the 
main pipe as a depth of the leak modeled by a small pipe, some resonant peaks oc-
curring at the following frequencies:  

25;15;5 321 === rrr ωωω  

These normalized frequencies are needed to locate leak by applying the standing 
wave difference method for leak detection given in Covas work. 

Comparing figures 7 and 8 we can conclude that for a small thickness such as 
me 00001.0= , the results show a great concordance with that given by Covas in 

figure 8. 
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Fig. 7 Frequency responses at valve site. Undamaged pipe and leaking pipe with one leak 
512 =LL  me 00001.0=  

 
 

 

Fig. 8 Frequency responses at valve site. Undamaged pipe and leaking pipe with one leak 
512 =LL  [Covas et al. (2005)]. 

6   Conclusion 

This paper has presented the importance of cylindrical leak geometry considera-
tion to locate the leak. The impedance method indicates that it is possible to in-
clude the leak geometry in the downstream impedance by including its impedance, 
as a cylindrical pipe opened in the free atmosphere in the impedance equation at 
the downstream end of the leaking pipe (valve). This equation is needed to facili-
tate the analysis of the wave reflections due to the leak depth and to demonstrate 
that the thickness of the principal pipe influences the leak reflections. Cylindrical 
leak in the pipeline system provokes secondary peaks caused by the leak depth. 
The results of simulation show that geometrical consideration can provide better 
physical information about the leak presence. This paper shows that the simplicity 
of the leak location decreases with the leak depth dimension because of the clarity 
of the wave reflected by the leak in the impedance spectrum at the end of the leak-
ing pipe. 

rω

0ZZV
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The results of numerical simulation were validated by (COVAS work 2005), 
they have shown a great concordance for small pipe thicknesses.  

A difference appears only when the thickness increases. This difference is 
noted on the appearance of the secondary peaks related directly to the leak depth 
and allows leak location. 

An empirical formulae was derived for leak locations in thick pipes, for other 
case and when there's a lack of secondary peaks a numerous analytical formulae 
were given and demonstrated in literatures.   

Notations 

The following symbols are used in this paper: 
Q = Discharge 

H = Head 
=C Wave celerity 
=h Head fluctuation 
=q Discharge fluctuation 

=A Pipe cross sectional area 

A = Area of cylindrical leak 

=f Darcy-Weisbach friction factor 

=g Acceleration due to gravity 

=x Distance 
=L Pipeline length 
=1L Leak position from the tank 

=2L Leak location from the valve 

=UZ Upstream impedance 

=DZ Downstream impedance 

H  Average of pressure head 

Q  Average of flow 

=CZ
 
Characteristic impedance of main pipe 

=CZ  Leak characteristic impedance. 

=D  Pipe diameter 
=D Leak diameter 

=e  Pipe thickness 
=t  Time 

=1DZ  Impedance upstream the leak  

=1UZ The upstream impedance of leaking pipe. 

=2UZ  Impedance downstream the leak 

=2DZ  Impedance downstream the leaking pipe. 

kjn ;; Integer 
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Greek symbols 
=ω Frequency 
=rω  Normalized frequency 

=rω  Normalized frequency at which appears new peaks 

=pipeactr int,ω  Frequency impedance period of no leaked pipe
 

( ) =Δ −1;, JkjKLrω  Frequency period of the impedance at the downstream end 

(Leak near the valve). 

( ) =Δ −1;, kKrω  Frequency period of the impedance at the downstream end (leak 

near the reservoir) 
f4=λ  

References 

Alkhomairy, M.: Use of the steady state orifice equation in the computation of transient 
flow through pipe leaks. The Arabian Journal for Science and Engineering IB 30, 33–45 
(2005) 

Ayed, L., Hadj Taieb, L., Hadj Taieb, E.: Response function phase diagram analysis for lo-
cation of leak with cylindrical geometry in pipes. In: 4th Intrnational Congress: Design 
and Modeling of Mechanical Systems, ID 276 (2011) 

Brunone, B., Ferrante, M.: Detecting leaks in pressurized pipes by means of transients. J. 
Hydraulic Res. 39(4), 1–9 (2001) 

Covas, D., Ramos, H., Betamio de Almeida, A.: Standing wave difference for leak detec-
tion in pipeline systems. J. Hydraulic Eng., 1106–1116 (2005) 

Drust, F., Ray, S., Unsal, B.O.A.: Development lengths of laminar pipe and channel flow. J. 
Fluids Eng. 127, 1154–1160 (2005) 

Ferrante, M., Brunone, B.: Pipe system diagnosis and leak detection by unsteady-state tests 
1: Harmonic analysis. Advances in Water Resources 26, 95–105 (2003a) 

Ferrante, M., Brunone, B.: Pipe system diagnosis and leak detection by unsteady-state tests 
2: Wavelet analysis. Advances in Water Resources 26, 107–116 (2003b) 

Gao, Y., Brennan, M.J., Joseph, P.F.: On the affects of reflections on time delay estimation 
for leak detection in buried plastic water pipes. Journal of Sound and Vibration 325, 
646–663 (2009) 

Hadj-Taieb, E.: Leak detection by using water hammer and impedance method. In: Water 
Management Challenges in Global Change, pp. 445–452. Taylor and Francis Group, 
London (2007) 

Lee, P.J., Lambert, M.F., Simpson, A.R., Vitkovsky, J.P.: Experimental verification of the 
frequency response method leak detection. J. Hydraul. Res. 44(5), 693–707 (2006) 

Lee, P.J., Vitkovsky, J.P., Lambert, M.F., Simpson, A.R., Ligget, J.A.: Experimental vali-
dation of frequency response coding for the location of leaks in single pipeline systems. 
The practical application of surge analysis for design and operation. In: 9th International 
Conference on Pressure Surges, March 24-26, pp. 239–253. BHR Group, UK (2004) 

Lee, P.J., Vitkovsky, J.P., Lambert, M.F., Simpson, A.R., Ligget, J.A.: Leak locations in 
pipelines using the impulse response function. J. Hydraul. Res. 44(5), 643–652 (2006) 



 

Impedance Method for Modeling and Locating Leak with Cylindrical Geometry 123

 

Lee, P.J., Vitkovsky, J.P., Simpson, A.R., Lambert, M.F., Ligget, J.A.: Discussion to leak 
detection in pipes by frequency response method using a step excitation. J. Hydraul. 
Res. 41(2), 221–223 (2003b) 

Mpesha, W., Chaudry, M.H., Gassman, S.L.: Leak detection in pipes by frequency response 
method using a step excitation. J. Hydraul. Res. 40(1), 55–62 (2000) 

Mpesha, W., Gassman, S.L., Chaudry, M.H.: Leak detection in pipes by frequency response 
method. J. Hydraulic. Eng. 127(2), 134–147 (2001) 

Wylie, E.B., Streeter, V.L., Suo, L.: Fluid transients in systems. Prentice-Hall, Englewood 
Cliffs (1993) 
 
 



Influence of the Acyclism on the Dynamics 
of a Spur Gear System 

Noussa Bouchaala, Mohamed Taoufik Khabou, Fakher Chaari,  
Tahar Fakhfakh, and Mohamed Haddar 

Dynamics of Mechanical Systems Research Unit,  
National School of Engineers of Sfax, BP 1173 – 3038, Sfax, Tunisia  
noussa.bouchaala@hotmail.fr, mtkhabou@hotmail.com,  
fakher.chaari@gmail.com, tahar.fakhfakh@enis.rnu.tn,  
Mohamed.haddar@enis.rnu.fr 

Abstract. The aim of paper is to study the dynamic behavior of a single stage spur 
gear reducer in transient regime. The gear excitation is the result of the motor tor-
que variation in addition to the fluctuation of meshing stiffness due to the varia-
tion of input rotational speed. Then, the dynamic response is solved using implicit 
type numerical integration technique Newmark- β . A parameter study is made on 
spur gear powered by four strokes four cylinders diesel engine. Dynamic res-
ponses come to confirm a significant influence of the transient regime on the dy-
namic behavior of a gear set. 

Keywords: Spur gear reducer, transient regime, diesel engine. 

1   Introduction 

It is well-known that gear transmissions are frequently used to provide speed and 
torque conversions from a rotating power source to connected mechanical devices. 
In operation, these systems deform, vibrate and generate noise. There are internal 
and external sources of excitations for the gear set. The motor is one of the most 
important excitations which cause the noise radiated by a gear. The training sys-
tem can be achieved either by an electric motor or combustion engine (Bouchaala 
N et al, 2011, Khabou M T et al, 2011).  

The internal combustion engine by design and operation, it remains an impor-
tant source of vibrations. During operation, the pistons undergo cycles of internal 
combustion 2 or 4 stroke. The different phases between the pressure forces created 
in the cylinders combined with the effects of moments of inertia systems rods ge-
nerates a torque variation and speed transmitted to the flywheel, creating the acycl-
ism. We can say therefore that the acyclism depends on the number of cylinders, 
but also the firing order for them and the engine speed (low speed, slow motion, 
high speed) (Ligier J L, Baron E, 2002). 

Another parameter that should be taken into account is the transient behaviour 
of a gear transmission caused by the fluctuation of the rotational speed. Bouchaala 
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N et al (2011), Khabou M T et al (2011) showed that the transient regime influ-
ences significantly the dynamic behaviour of the transmission. 

Therefore the aim of this paper is to use the numerical simulation based on the 
Newmark integration method, to study the dynamic behavior of spur gear system 
in the transient regime powered by four strokes four cylinders inline diesel engine. 

2   Acyclism Notion 

The combustion engine (figure 1) is subject to two types of solicitation, those from 
the combustion gases and those related to the phenomena of inertia. 

In a cylinder gases produce a variable pressure in the cycle, which at the mo-
ment of combustion, generates an effort called "effort gases" on the piston. This 
effort is the cause of the piston displacement and traction engine. Similarly, the 
moving parts (piston, rod, ...) undergo efforts called " inertia effort ".  

Generalized efforts, which represent the resultant forces and moments when 
applied to the engine, assess the movements of the latter on his pads and the rota-
tion of the crankshaft. As the rotation of the crankshaft is not regular, it is called 
"irregularities of rotation" or more commonly "acyclism" (Ligier J L, Baron E, 
2002). 

 
 

 

Fig. 1 Combustion engine 

3   Combustion Engine Modeling  

The acyclism combustion engine is characterized by variations of the displace-
ment, velocity or angular acceleration of the crankshaft, but it can be related to 
engine torque. 

Combustion engine creates torque to spin the crankshaft. This engine torque 

mC is the sum of combustion moment vgC  and engine moment of inertia 

viC (Ligier JL, Baron E). 
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m vg viC C C= +                                   (1) 

The engine torque expression mC  is given by the following formula: 

( )max 0.46sin 2 0.24sin 4 0.03sin 6
192m vg m cyl c c c

P
C C C V α α α= + + +        (2) 

where mC  is the average friction torque of the engine, maxP is the maximum gas 

pressure inside cylinders, cylV is the engine cubic capacity and cα  is the crank-

shaft angular position. 

4   Numerical Simulation  

We are interested in this work to study the dynamic behavior of spur gear system 
powered by a four strokes four cylinders inline diesel engine. 

A single stage spur gear transmission model with eight degrees of freedom is 
proposed (Figure 2). It is divided into two main blocks.  

- Block1 includes the driving motor and the pinion connected by a shaft. 
This block is supported by a bearing. The Pinion has 1Z teeth and moment of  

inertia 11J . 

- Block 2 includes the wheel and the load connected by a shaft; it is sup-
ported by a second bearing. The wheel has 2Z teeth and moment of inertia 22J . 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Model of a single stage spur gear transmission with eight degrees of freedom 

ix and iy are the translations of block i ( 1, 2i = ). ijθ is the angular displace-

ment of the component j  in block i  ( , 1,2i j = ). 

Numerical simulation based on Newmark integration method is used to study 
the dynamic behavior of the studied gear set in the transient regime. Taking into 

22J  

12J

Driving motor 

Pinion 

Load Wheel 
Block 2 

11J  
Block1 

21J

Gear tooth 



128 N. Bouchaala et al.
 

account the Lagrange formalism, the differential equation of motion of the 
adopted system can be expressed by: 

[ ]{ } [ ]{ } [ ]{ } { }( ) ( )extM q C q K t q F t+ + =                  (3) 
  

{ }1 1 11 12 2 2 22 21, , , , , , ,
T

q x y x yθ θ θ θ=  is the vector of the degrees of freedom 

M represents the mass matrix given by: 

1

1

11

12

2

2

22

21

m

m

J

J
M

m

m

J

J

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                (4) 

where im are the masses of block i ( 1, 2i = ). 

( )K t includes the bearings stiffness xik , yik ( , 1,2i j = ) the shafts torsional stiff-

ness ikθ and the time varying gearmesh stiffness ( )ek t .  
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(5) 

( )K t can be divide into a mean stiffness matrix K⎡ ⎤⎣ ⎦ and a time varying matrix 

[ ]( )k t . 

( ) ( )K t K k t= +                                  (6) 

[ ]C is the proportional damping matrix expressed by:  

50.05 10C M K−= +                               (7) 

{ }( )extF t is the external applied torques vector. It can be written as 
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{ }( ) 0,0, ( ),0,0,0, ( ),0
T

ext m rF t C t C t= −                       (8) 

Where 

2

1

( ) ( )r m

Z
C t C t

Z
=                               (9) 

Let us suppose a spur gear system with characteristics given in Table 1 powered 
by four strokes four cylinders inline diesel engine with the specifications given in 
Table 2. 

Table 1 Parameters of the spur gear 

                                Pinion                      Wheel 
Teeth numbers 
Mass (Kg) 
Inertia moment (Kg m²) 
Base circle (m) 
Module (m) 
Bearing stiffness(N/m) 
Torsional stiffness (N rd/m) 
Pressure angle 
Teeth width (m) 
Contact ratio 

20                          40 
0.6                         2.5 
2.6 10-4                                0.0045 
0.05                       0.11 

0.003 
8

1 1 2 2 10x y x yk k k k= = = =  
5

1 2 10k kθ θ= =  

20α °=  
0.023 
12 1.6c =  

Table 2 Four strokes four cylinders inline diesel engine specifications 

Motor type Diesel engine 

Inertia of the connecting rod at its center of gravity IGx (kgm2) 

Mass of the connecting rod mb (kg) 

Mass of the piston with rings and pin included mp (kg) 

Distance between the axis of the big end of the rod bearing and the center of gravity L (m) 

Distance between the axis of the small end of the rod bearing and the center of gravity (m) 

Maximum gas pressure inside cylinders Pmax (bar) 

The average friction torque of the engine 4mC (Nm) 

Engine cubic capacity 3( )cylV cm  

Engine regime at maximum torque max ( )cN rpm  

Engine regime N(rpm):idle engine regime 

0.004 

0.9 

1.1 

0.04 

0.084 

49 

17.5 

2000 

5400 

850 

 
Acyclism can be related to engine torque and during this loading state the rota-

tional speed of engine is not constant but it has an average value. For the studied  
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gear set the pinion speed for rigid-body conditions can be expressed as Fourier se-
ries by (Sika G and Velex P, 2008): 

( )10 10 10 10( ) 1 ( )sin( )n nn
t n tρ ϕΩ = Ω + Ω Ω +∑                (10) 

where 10Ω is the nominal average angular velocity, n  is the harmonic of the rota-

tional speed, nρ is the corresponding dimensionless amplitude and nϕ is the initial 

phase.  
For the harmonic n equal to 2 and a percentage of acyclism is equal to 2.5%. 

The evolution of the rotational speed transmitted to the spur gear system with re-
spect to time computed according to Eq. (10) is shown in Figure 3. 
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Fig. 3 Input rotational speed evolution of the gear set 

When coupled to the studied gearbox, the periodic variation of the rotational 
velocity generates a periodic fluctuation of the meshing stiffness period as shown 
in Figure 4. Thus we can assume that transient regime is modeled by periodic fluc-
tuation of the meshing stiffness with a rotational period average called acyclism 
period given by (Sika G, 2008) 

10
10

2
acyT T

π= =
Ω

                               (11) 

Pinion bearing time acceleration signal and the corresponding spectrum are re-
spectively shown in Fig. 5a and b. The acceleration is periodic with acyT  as ape-

riod. An important variation of the vibration level over one cycle is observed. The 
spectrum of acceleration shown in Fig. 5b is characterized by an average mesh 
frequency gmf  ( )1gm acyf Z f= and its harmonics with sidebands surrounding gmf . 

Sidebands are the consequence of input speed fluctuations of the gear set. 
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Fig. 4 Periodic fluctuation of the gearmesh stiffness 
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Fig. 5 Pinion bearing acceleration (a)and the corresponding spectrum (b). 

5   Conclusion 

In this paper, we studied the dynamic behavior of single stage spur gear reducer in 
transient regime powered by a combustion engine. The variations of input rota-
tional speed and the phenomenon of acyclism generated by combustion engine are 
studied as well. The equation of motion is recovered and solved using the New-
mark scheme. The numerical simulation results are analysed in time and frequen-
cies fields. These results confirm the influence of the acyclism on the dynamic  
behaviour of the system. 
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Abstract. Machinery in industry using gearboxes covers many applications. The ef-
ficiency of such transmission cannot be achieved without a special attention to their 
dynamic behavior. Meshing as internal excitation, variable loads as external excita-
tion and the presence of errors are the main factors that affect the dynamic behavior. 
This paper will discuss through a model based approach the influence of all of the 
three factors with an application on a two stages spur gears transmission. The trans-
mission is modeled with a time varying loading conditions, the corresponding evolu-
tion of meshing stiffness function is derived and a local damage is introduced. The 
dynamic response is simulated. The responses show correlation between ampli-
tude/energy of signal and applied value of load. It means that traditional energy 
based diagnostic approach should be revised for non-stationary operations 

Keywords: two stages gearbox, time varying loading conditions, dynamic re-
sponse, local damage, meshing stiffness, modification under varying speed. 

1   Introduction 

Gears are the most important mechanical systems for transmitting power or rota-
tion. They are widely used in several sorts of machineries. Requirements for good 
running operations from these transmissions are low vibration and noise in addition 
to high efficiency. However, these requirements cannot be satisfied completely. In 
fact, the presence of defects will alter the normal operating conditions leading to 
higher vibration levels and a decrease in the efficiency of the transmission. On the 
other hand, the presence of variable loading conditions will accentuate the problem. 
In fact, load change induce variation in speed of the transmission and this will lead 
to other kind of modulation called frequency modulation which will complicate 
more and more the right diagnosis of the transmission health. 
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Several authors discussed the transient phenomena induced by the time varia-
bility of parameters in gear transmissions and its effect on dynamic response in 
presence of defects. Bartelmus and Zimroz [1, 2] showed that the identification of 
the varying external load is important when diagnosing a planetary gearbox. Ran-
dall [3] studied the vibration of gearbox casing vibration and observed a modula-
tion between meshing frequency and fluctuation of torque load. Model based  
explanation of this phenomenon was not largely treated in literature. Bartelmus et 
al. [4] demonstrated by a model based and experimental approaches the sensivity 
of a gear transmission in terms of vibration levels to the increase of loading condi-
tion. They showed that a defected transmission is more sensitive to load increase 
by generation of higher vibration. Chaari et al [5] proposed a model of mesh stiff-
ness variation based on the mechanical characteristic of driving motor and the 
loading conditions. Results of simulations on a one stage spur gear transmission 
lead to the presence frequency modulations of the mesh stiffness and its harmonics 
with a perfect agreement when compared to experimental results. 

This paper is an extension of the last mentioned paper to a model of a two 
stages spur gearbox submitted to time varying loading condition and in presence 
of a local damage.  

Increment of gearbox complexity is important issue here. It was highlighted by 
Bartelmus [6] that for multistage gearboxes one may find interaction between 
stages, which make dynamic response much more complicated and nonlinear. It 
was investigated for stationary load. Additional modulation (mesh frequency by 
mesh frequency) causes increased complexity of frequency structure which makes 
interpretation of signal much more difficult. We expect that these findings com-
bined with non-stationary load condition are an important problem both from sci-
entific and practical point of view. It is worth to notice that such combination 
(complexity of gearbox and varying load) can be often met in reality (wind tur-
bines, mining machines, helicopters, etc.) [1,2,7] 

The model formulation will be first presented incorporating a time varying 
mesh stiffness with relation to variable load. Numerical simulations and experi-
mental validations will be finally presented and discussed. 

2   Modeling of the Transmission 

In this section, a two stage gearbox model is presented (fig. 1). This model will in-
clude both local damage and variable load/speed conditions. The model is com-
posed of two pinions and two wheels supported by three bearings, one for the in-
put shaft, the second for the intermediate shaft and the third for the output shaft. 
The transmission is driven by a motor which transmits torque to the input shaft by 
a coupling. A load is applied at the end of output shaft.  

The system has 12 degrees of freedom (DOF) which can be detailed as follows: 

- Translations of input block (having the mass m1) composed of motor, input, 
coupling, and pinion1 along x (horizontal) and y (vertical) directions. The 
corresponding DOF are x1 and y1.  
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Fig. 1 Model of the transmission 

- Translations of intermediate block (having the mass m2) composed of 
wheel1, intermediate shaft and pinion2 along x and y directions. The corres-
ponding DOF are x2 and y2.  

- Translations of output block (having the mass m3) composed of wheel2, out-
put shaft and load, and pinion1 along x and y directions. The corresponding 
DOF are x3 and y3.  

- Rotations of motor θ1, pinion1 θ2, wheel1 θ3, pinion2 θ4, wheel 2 θ5. 
 

The following inertias are considered: J1 for the motor, J2, for the pinion1, J3 for 
wheel1, J4 for pinion2, J5 for wheel2 and J6 for load. 

Input, output and intermediate shafts elasticity is modeled by torsional stiffness 
respectively kθ1, kθ2 and kθ3. Bearings supporting input shaft are modeled by linear 
springs kx1 and ky1 acting along x and y axis. Bearings supporting intermediate 
shaft are modeled by linear springs kx2 and ky2. Bearings supporting output shaft 
are modeled by linear spring kx3 and ky3.  

An input torque Cm is applied to the motor and a resisting torque Cr is opposed 
by the load. A coupling is inserted between the motor and pinion 1 and modeled 
by a damping c1 in parallel to the torsional stiffness kθ1. Damping is introduced in 
parallel of each stiffness.  

The time varying mesh stiffness is chosen to be a step function. Two mesh 
stiffness functions ke1(t) and ke2(t) are introduced between pinion1 and wheel1 and 
between pinion2 and wheel2. 

Applying the Lagrange formulation will lead to the equation of motion given 
by [8,9]: 

[ ]{ } [ ]{ } ( ) { } ( ){ }+ + =⎡ ⎤⎣ ⎦M q C q K t q F t                    (1) 
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Where [ ]M is the mass matrix, [ ]C is damping matrix and ( )⎡ ⎤⎣ ⎦K t is the time va-

rying stiffness matrix and ( ){ }F t is the applied forces vector given by: 

{ } 0 0 0 0 0 0= T

m rF C C
    

             (2) 

{ }q is the vector of the degrees of freedom expressed by : 

{ } { }1 1 1 2 2 2 1 2 3 3 3 4= T
q x y x y x yθ θ θ θ θ θ          (3) 

The transmission is driven by an asynchronous motor. The load torque is variable, 
according to [5], this will induce a variability in the speed of the system. As con-
sequence the two mesh stiffness functions will no longer be periodic. 

3   Numerical Simulations 

The dynamic response of the two stages gearbox transmission is simulated in pres-
ence of a time varying loading conditions. The parameters of the transmission are 
given in table1. The load profile is given in fig2. The mean value of this load is 45 
Nm. Which leads to a mean mesh frequency for stage 1 : fm1 = 660 Hz and for stage 
2 : fm2 = 440 Hz. The characteristics of the driving motor are taken from [5]. 

The evolution of mesh stiffness for the healthy case and defected case are pre-
sented in fig. 3. A breakage defect is modelled by a 60% loss of mesh stiffness. 

As it was mentioned before, real machines are usually subjected to non station-
ary operating conditions. Selection of the model (shape) of load profile is impor-
tant issue and should be related to analyzed machine. In previous work the authors 
tested different types of load variation profiles commonly used in literature  
 

Table 1 Parameters of the model. 

 Motor Pinion1 Wheel1 Pinion2 Wheel2 Load 

Teeth numbers  30 45 30 45  

Mass moment of inertia (kgm2) 0.0005 0.002 0.008 0.002 0.008 0.0005 

Mass (Kg) 1.2 2.9 2.1 

Rotation speed (rpm) 1325 883 588 

Modulus (mm)                  4  

Base circle diameter (mm) 112.8 169.1 112.8 169.1 

Mean gearmesh stiffness (N/m) 8
gK 2 10= ×  

Pressure angle 20α = °  

Contact ratio c = 1.6 

Bearing stiffness  (N/m) kx1 = ky1 = kx2 = ky2= kx3 = ky3 = 108 

Torsional  stiffness  (N rd/m) k•11 = k•22 = k•33 = 105 
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Fig. 2 Variation of load for the simulation 
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Fig. 3 Evolution of mesh stiffness function for healthy and local damage cases 

(sine wave, step..., etc) but model presented in Fig 2 is the most suitable from 
validation point of view. It includes: linear increment/ decrement of load, its 
cyclicity and randomness of maximum load for each cycle. Evolution of mesh 
stiffness, and its modification for damaged tooth is commonly used for spur gears. 

3.1   Healthy Case with Time Varying Loading Conditions 

In the first simulation, of the healthy case is considered. The transmission is sub-
jected to the variable load presented in fig.2. Fig. 4 shows the accelerations regis-
tered on the first bearing (input shaft) and Fig. 5 shows its STFT. 
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Fig. 5 STSFT of the Acceleration on the first bearing for the healthy case 

It is well noticed from Fig.4 an increase of the vibration level as the load in-
creases. This result is in conformity with previous works done by Bartelmus [1,4]. 
STFT map (Fig 5) shows clearly the frequency modulation induced by the period 
variability of the two mesh functions. It is also shown the increase of the range of 
frequency variation as the harmonic number increases. As it was mentioned be-
fore, spectral structure of the signal is time varying and much more complicated 
than for single stage. Analysis of whole spectrum, i.e. investigation on variability 
of characteristic components and their correlation with load variation is difficult. It 
is better to analyze single mesh component (other behave in the same way). Figure 
6 shows the instantaneous mesh frequency (4th harmonic of fm1) along the time ob-
servation of the response.  

It is well known, that if tachometer signal is not available, the Instantaneous 
Frequency (IF) may be estimated in different ways: for example in time-frequency 
domain [10], by FM demodulation (Hilbert Transform [11]) , Time_scale [12], pa-
rametric methods [13] and other see [14,15,16] for review. In this paper we used 
Hilbert transform for demodulation of band-pass filtered signal. Cut off frequen-
cies of the band pass filter were establish by inspection of spectrogram. Fourth 

fm1 

2fm2
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harmonic of mesh frequency was selected due to good separation ability. It should 
be noted that used approach has limited application and can be used depending on 
frequency structure (multi stage gearbox makes this limitation more strict) and va-
riability of load (it influences depth of frequency modulation). These remarks con-
firm that investigation on multistage gearbox and varying load is really important. 
Obviously, the estimation of IF a method used just for confirmation of existing 
phenomena, it is not the clue of the paper. 
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Fig. 6 Evolution of the 4th instantaneous mesh frequency fm1 

Fig. 7 shows for the same time axis the evolution of both load torque and the 
input stage speed. It is clear dependency – if load is increasing, the speed is de-
creasing that is obvious when consider motor characteristics.  

It is clearly possible to correlate the evolution of the load profile with the fluc-
tuation of speed at the input stage (pinion1). As the load increases, the speed  
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Fig. 7 input sped- load profile comparison 
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decrease and vice-versa. We notice a small phasing between the load variation and 
speed. If we look for example at load peak on 0.15s, the speed of the motor will 
reach its minimum value after few milliseconds.  

3.2   Defected case with Time Varying Loading Conditions 

A breakage is now introduced on one tooth of the pinion1. Simulations of the ac-
celerations on the same bearing on the first stage are performed. Fig. 8 shows the 
acceleration on this bearing and Fig. 9 shows the corresponding STFT. 

It is well observed from Fig. 7 the presence of characteristic peaks correspond-
ing to local damage. These peaks have variable amplitudes according if the dam-
aged tooth is in mesh at high or low loading phase. The impulses do not occur at 
the same period. This fact is also explained by the speed variability.  
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Fig. 9 STSFT of the Acceleration on the first bearing for the defected case 
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4   Conclusion 

In this paper in order to study dynamic behavior of gearbox we proposed a model 
of two stage transmission, combined varying load conditions and introduced local 
damage of gear-pair. It has been shown that due to complexity of gearbox and va-
riability of external load, the frequency structure of dynamic response is very 
complicated and time varying. In diagnostics in such a context one may use two 
approaches: to cancel or exploit load influence to dynamic response. Undoubtedly, 
the first step in both approaches is to identify dependency between load and gear-
box dynamics. The easiest way it to use model based approach. The conclusions 
of the paper are: 

• Load variability affects dynamic response of gearbox 
• External Load, Instantaneous Amplitude of mesh components and In-

stantaneous Frequency are correlated, however load-frequency rela-
tion is negatively correlated. 

• Due to load variability, dynamic response of gear with local damage is 
also much more complicated. Amplitudes of impulses are load depen-
dent, too and moreover cycles between them due to speed fluctuation 
are not equal. It suggests that detection techniques developed for sta-
tionary case that exploits periodicity or spikiness of signal may not be 
effective here as proved for stationary case. 
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Abstract. This paper proposes two approaches to achieve robust speed estimation 
in induction motor sensorless control, namely: Model Reference Adaptive System 
(MRAS), its structure consists of a reference model that doesn’t involve the varia-
ble being estimated and an adjustable model that does. The error between these 
two models is proportional to the error in the estimation of the unknown variable. 
This value is used to improve the estimation of the adaptive model so that its out-
put is equal to the output of the reference model. An alternative approach to the 
MRAS observer is to use an Extended Kalman Filter, EKF. This is a well estab-
lished technique for controlling complicated processes involving noisy measured 
signals that are further disturbed by random noise. It does this by working on the 
assumption that noise in the measured signal is uncorrelated to the disturbance 
noise. The Kalman Filter’s ability to provide an optimum observation in complex 
non linear environments means that it could potentially be used for sensorless in-
duction motor control.  The validity of the proposed methods is confirmed by the 
simulative results. 

Keywords: extended kalman filter, model reference adaptive system, speed esti-
mation, induction motor. 

1   Introduction 

The sensorless induction motor drives have been widely used due to their attractive 
features such as reliability, flexibility, robustness and poor cost, especially in the 
field of general inverter where they are used successfully. However, when a very 
high accuracy is desired, the performance of speed estimation is not good particu-
larly at low speeds. The main reason of the speed estimation error is imprecise of 
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flux observer and the offset of the stator current sensor. Besides, it is very sensitive 
to the variation of motor parameters (Blaschke  1972, Hasse  1969). 

The scheme based on model reference adaptive system (MRAS) is one of the 
major approaches for rotor speed estimation. The general idea behind Model Ref-
erence Adaptive Control (MRAC, also know as an MRAS or Model Reference 
Adaptive System) is to create a closed loop controller with parameters that can be 
updated to change the response of the system (Yang and Finch 2008).  The output 
of the system is compared to a desired response from a reference model. The con-
trol parameters are update based on this error. The goal is for the parameters to 
converge to ideal values that cause the plant response to match the response of the 
reference model (Orlowska-Kowalska and Dybkowski 2007). An alternative approach 
to the MRAS observer is to use an Extended Kalman Filter, is a recursive mean 
squared estimator. It is capable of producing optimal estimates of system states 
that are not measured. The elements of the covariance matrices Q and R serve as 
design parameters for convergence of the system. The Kalman Filter approach as-
sumes that the deterministic model of the motor is disturbed by centered white 
noise viz. the state noise and measurement noise (Ouhrouche 2002, Kim et al 1994).   

2   Mathematical Model of an Induction Motor with Indirect 
Field Oriented Control 

The dynamic behavior of an induction motor in the synchronously rotating frame 
can be described by the following state equations: 
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In the field-oriented control for an induction motor, the ideal decoupling between 
the d and axes can be achieved by letting the rotor flux linkage in the d-axis, i.e. 
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The desired rotor flux linkage Ψdr , in terms ids of the third row of (1) as: 
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For the highest utility of the machine core, ids can be set constant for the desired 
rated rotor flux. In this situation if the dynamic characteristic of rotor flux in (4) is 
neglected, the torque equation (2) then becomes: 

23
. . .

4
m

em ds qs
r

Lp
i i

L
Γ =                           (5) 

where: 

σ : Leakage coefficient 
Rs , Rr      : Stator and rotor resistance [Ω] 
Γem : Electromagnetic torque [N.m] 
Ψdr, Ψqr     : dq-axis rotor flux [Wb] 
vds, vqs      : dq-axis stator voltage [V] 
ids, iqs       : dq-axis stator current [A] 
Lm, Ls, Lr   : Magnetizing, rotor and stator inductance [H] 
ωr , ωe      : Rotor and electrical angular speed [rd/s] 
J : Inertia moment [Kg.m2] 

3   Rotor Speed Estimation Using Model Reference Adaptive 
System (MRAS) 

The open-loop speed estimation is based on the residual between the speed of ro-
tor flux and the slip speed. The scheme described below uses the monitored stator 
voltages and currents to reconstruct the rotor flux, torque (Douiri et al. 2010) 
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This scheme requires several machine parameters, some of which vary with tem-
perature, skin effect and saturation. Thus, the speed can only be obtained accurate-
ly if these parameters are accurately known. The rotor speed is reconstructed using 
the model reference adaptive system (MRAS). The MRAS principle is based on 
the comparison of the outputs of two estimators. The first is independent of the 
observed variable named as model reference. The second is the adjustable one. 
The error between the two models feed an adaptive mechanism to turn out the ob-
served variable (Orlowska-Kowalska and Dybkowski 2007). In this work, the actual 
system is considered as the model reference and the observer is used as the adjust-
able one.  

The reference rotor flux components obtained from the reference model are 
given by:  
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The rotor flux components obtained from the adjustable model are given by: 
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Finally the adaptation scheme generates the value of the estimated speed to be 
used in such a way as to minimize the error between the reference and estimated 
fluxes. In the classical rotor flux MRAS scheme, this is performed by defining a 
speed tuning signal εω to be minimized by a PI controller which generates the es-
timated speed which is fed back to the adaptive model. The expressions for the 
speed tuning signal and the estimated speed can be given as: 

*ˆ ˆ ˆIm( , ) ( )r r rq rd rd rqωε = Ψ Ψ = Ψ Ψ − Ψ Ψ                (9) 

ˆ r p ik k dtω ωω ε ε= + ∫                        (10) 

4   Rotor Speed Estimation Using Extended Kalman Filter 
Algorithm (EKF) 

The essential idea of the Extended Kalman Filter (EKF) was proposed by S. F. 
Schmidt, and since then it has been called "Kalman-Schmidt" filter (Kim et al 
1994). The goal is to minimize the estimation or tracking error for the states of a 
nonlinear system along a trajectory by applying linearization techniques, i.e., to 
evaluate the Taylor series expansion about the estimated trajectory on-the-fly. 
Then, if the problem is sufficiently observable (as evidenced by the covariance of 
estimation uncertainty, P), then the deviations between the estimated trajectory 
(along which the expansion is made) and the actual trajectory will remain suffi-
ciently small that the linearization assumption is valid (Ouhrouche 2002). 

The models and implementation equations of the discrete EKF, which have 
been used throughout this paper, are summarized below: 

1 ( , )k k k kx f x u w+ = +                       (12) 

( )k k kz h x v= +                           (13) 

where x is the system state vector; f is the nonlinear state function at the current 
step t + 1 related to the previous time step t; u is the robot driven input; w and v 
are the process and measurement noise, respectively, which are assumed to be ze-
ro mean white noise with covariance matrix; z is a measurement vector; and h is 
the nonlinear measurement function of the system. 
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These noises are characterized by: 
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The process covariance matrix Qk and measurement covariance matrix Rk are 
symmetric and semi-definite. The EKF algorithm is as follows: 

Prediction: 
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The state and output equations of the reduced order model of the induction motor 
established in stationary stator reference frame d-q given by (1) can be written as 
given below: 

( , )k k k k k kf x u A x B u= +                       (23) 

( )k k kh x C x=                         (24) 
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The matrices f, h, ∂f/∂x=F, ∂h/∂x=H are obtained as follows: 
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5   Simulation Results 

Induction motor parameters: 
Pn=3Kw, Vn=230v, Rs=5.27Ω, Rr=5.07Ω, Ls=0.416H, Lr=0.423H, Lm=0.458H, 

J=0.2Kg.m², P=2. 
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The EKF algorithm and MRAS have been compared Acceleration of the drive 
is carried out in order to observe the performance of the estimator during the oper-
ation. The drive is run at various speeds by increasing it in steps to 100 rd/s, and 
300 rd/s at 0.5 s, and 1 s, respectively. The speed of the motor (ωr), estimated 

speed ( ˆrω ), reference speed ( *
rω ) and speed estimation error ( ˆr rω ω− ), are 

shown in Fig. 1.  

 

Fig. 1 Acceleration rotor speed estimation: EKF compared to MRAS 

Acceleration and speed reversal is performed. A speed command of 100 rd/s at 
0.7 s is given to the drive system which was initially at rest, and then the speed is 
reversed at 1.5 s (Fig. 2). 

 

Fig. 2 Reversal rotor speed estimation: EKF compared to MRAS 

6   Conclusions 

In this paper, the speed sensorless indirect vector control of an induction motor is 
detailed and modified to improve its performance, and a comparison between two 
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nonlinear observers, the EKF and the MRAS is presented. The two observers are 
studied and compared in the same operating conditions, in order to extract their 
advantages and drawbacks. Simulation results show that both observers have the 
property of noise rejection and they are robust against parameters and load varia-
tions. The state observation performance of the EKF is quite satisfactory and 
slightly better. But, this type of observer requires an accurate knowledge of the 
load torque and needs more computational time due to heavy matrices manipula-
tions. By contrast, the MRAS strategy doesn’t need the load torque to be known 
and it is much easier to implement.  
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Abstract. In this work a non linear dynamic model of spur gear transmissions 
previously developed by the authors is extended to include both desired (relief) 
and undesired (manufacture errors) deviations in the tooth profile. The model uses 
a hybrid method for the calculation of meshing forces, which combines FE analy-
sis and analytical formulation, so that it enables a very straightforward implemen-
tation of the tooth profile deviations. The model approach handles well  
non-linearity due to the variable meshing stiffness and the clearances involved in 
gear dynamics, also including the same phenomena linked to bearings. In order to 
assess the ability of the model to simulate the impact of the deviations on the 
transmission dynamics, an example is presented including profile deviations under 
different values of transmitted torque. Several results of this example implementa-
tion are presented, showing the model’s effectiveness. 

Keywords: Gear Dynamics, Bearings, Tip Relief, Profile Errors, Meshing  
Stiffness 

1   Introduction 

Today, gear transmissions are under great pressure to improve their performance, 
in terms of levels of power, speed, efficiency and compactness. A significant in-
crease in operating speeds is expected in the medium and long term, and conse-
quently dynamic phenomena will become more important in the future, justifying 
further interest in the development of more accurate dynamic models.  

In gear dynamics there is a particular feature that governs the vibratory beha-
vior, namely the presence of a parametric excitation as a consequence of the 
changes in the number of teeth couples contacting simultaneously. This aspect 
makes the development of dynamic models cumbersome, because a balance must 
be achieved between accuracy and computational time [1]. Moreover, the non-
linearity inherent to contact problems, as well as to clearances and deflections of 
teeth and supports, changes the shape of this parametric excitation along the  
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meshing path depending on the magnitude of the torque to be transmitted. This 
fact is more pronounced in spur gears and so it must be considered if better dy-
namic models are desired. 

Bearings have a similar behavior in the sense that they also undergo a parame-
tric excitation, in this case due not only to the changes in the number of rolling 
elements supporting the transmitted load, but also because of the non-linearity re-
lated to clearances and surface contacts. 

Therefore, gear transmissions should be considered as a whole, including the 
dynamic effects of gear and bearings, particularly if a better understanding of the 
transmission behavior is required for condition monitoring purposes. With this ob-
jective, in previous works the authors presented a numerical model which com-
bines gears and bearings, which can represent all the features described above. In 
[2] the authors describe the model for calculation of meshing and bearing forces, 
carrying out several quasi-static analyses to show the differences in gear centre 
orbits, transmission error and meshing stiffness values for several transmitted tor-
ques. Subsequently, in [3] the procedure used for gear force calculation, based on 
a hybrid approach combining numerical and analytical tools, was extended includ-
ing dissipative forces due friction and squeeze damping and assessed in dynamic 
simulations speeding up the computation time by using a pre-calculated value for 
meshing stiffness. Later, in [4] the dynamic model was linearized for several tor-
que levels obtaining the natural frequencies and mode shapes which are essential 
to understand the vibratory behaviour of the transmission. Moreover, gear defects 
such as pitting, cracks and profile errors were also included, carrying out quasi-
static analysis to assess the consequences [5]. 

In this work, profile deviations such as undesired profile errors and tip reliefs 
are added to the dynamic model with the aim of analysing the consequences on the 
dynamic behaviour under several torque loads. 

2   Description of the Model 

In this section the proposed model is briefly explained, paying greater attention to 
the formulation used to include profile deviations. More detail about the model 
can be found in references [2-5]. 

Gear forces are obtained following the proposal of Vedmar and Andersson [6] 
in which the deformation at each gear contact point is formulated as a combination 
of a global (or structural) term obtained by means of a FE model, and a local term 
described by an analytical approach which derives from Hertzian contact theory.  

The tooth profile geometry necessary to build the FE model were generated us-
ing a rack-type tool following Litvin’s vector approach [7]. The FE model as-
sumes the nodes in the inner circle to be fixed, that is, where the gears are fitted to 
the shaft. The above FE model is solved considering multiple load cases each of 
which is defined by a unit load perpendicular to the tooth profile located at differ-
ent radial positions from the root to the tip. Then the FE model built for each gear 
is solved once before the integration of dynamic equations obtaining the dis-
placement (flexibility) of the node j due to a unitary load applied in the node i of 
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the loaded active flank. These flexibilities are used to solve the contact problem 
imposing the compatibility of geometrical separations (δj) and elastic deflections 
(uTj) submitted to the complementary condition in order to avoid non realistic neg-
ative loads arriving at the following non-linear system of equations for n contact-
ing points 

{ } { } { }{ }{ } { }( ) { }( )( , , , ) ( , , ) , ,

0; 1,...,

j p p w w Tj p p w w jp p p jw w w

j

r r u r r F e r e r

submitted to F j n

δ θ θ θ θ θ θ= + +

≥ =         

(1) 

Where {F} is the unknowns vector, which contains the contact forces for each ac-
tive contacting point. Profile deviations of pinion ejp and wheel eiw for the jth point 
of contact are added to the compatibility equation. Furthermore, meshing forces 
were extended including Coulomb friction and dissipative effects due to squeeze 
film damping (see [3]). 

The elastic deflections (uTj) in (1) are obtained by addition of structural and lo-
cal terms for both gears. At the same time, geometrical separations (δj) are ob-
tained taking advantage of the analytical properties of involute profiles and round-
ing arcs introduced at the tooth tip to handle corner contacts.  

As with gears, the changing number of bearing rolling elements supporting the 
load implies a parametric excitation as a function of the shaft rotational angle. 
This time, bearing clearance interacts with the magnitude of the load to be trans-
mitted, defining the angular positions in which it changes the number of rolling 
elements supporting the load. To consider these facts, forces in bearings have been 
formulated following the model proposed by Fukata et al [8].  

Gear and bearing formulations are implemented in a dynamic model of a sin-
gle-stage transmission shown in Fig. 1 as a block diagram. Shaft torsional and 
flexural deflections are represented by spring-damper elements while non-linear 
forces of gears and bearings are represented by two-way arrows. A reference 
framework is defined with z-axis along the shaft centre line and the y-axis defined 
by the line between gear centres. Using the subscripts R and b to designate the 
gears and bearings, XiRj means the displacement along the x-axis of gear j of shaft 
i. The degrees of freedom (dof) associated with bearings and gears are grouped in 
vectors qibj= {xibj, yibj, θ ibj}

T and qiRj = {xiRj, yiRj, θ iRj}
T. Furthermore, an additional 

rotational-only inertia and coupling are included at the output and a constant value 
of rotational speed is assumed at the input. Then, the individual element matrices 
(mass, damping and stiffness) are assembled into the dynamic matrix equation ar-
riving at a system with 19 dof. This equation was subsequently arranged for nu-
merical integration in Matlab/Simulink® arriving at 
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                                     (2) 

Where M, C and K are constant coefficient matrices, while vectors fb and fR rep-
resent non-linear bearing and meshing forces. 
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Fig. 1 Block Diagram 

3   Profile Deviations 

Deviations from the theoretical profile due to the manufacturing process or wear, 
as well as tip or bottom reliefs, are assumed not to affect the overall flexibility of 
the tooth or the normal direction of contact, altering only the magnitude of the ac-
tual geometrical separations (δj). Both errors are added and included in equation 
(1) as a function of the position of each wheel. Profile Errors (PE) usually have a 
similar pattern in the same flank of successive teeth. Thus in this work, PEs are 
considered identical for all teeth. The formulation of such errors has been carried 
out using the AGMA parameters [9] ffα (Profile Form Deviation) and fHα (Profile 
Slope Deviation) adopting a sinusoidal shape with amplitude ffα and fr cycles ac-
cording to the expression (see Fig. 2). 

0 0

0 0

( ) ( )
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Where s is the roll path length (see Fig. 2), (sf) and (s0) the higher and lower invo-
lute curvature radii. Here, positive errors mean increments of the curvature radii 
with respect to the nominal one, while negative values indicate reductions.  

Contrary to the undesired PEs, there are other cases in which profile modifica-
tions are included deliberately, as is the case of tip and bottom reliefs. Neverthe-
less, particularly in spur gears, the form and magnitude of these deviations must 
be carefully chosen depending on the level of torque to be transmitted. These pro-
file modifications will be implemented in the model in a similar way to the profile 
errors. In this case, positive values of the deviation mean removal of material with 
respect to the nominal shape (smaller curvature radii), and negative values indicate  
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Fig. 2 Parameters defining the profile error 

the opposite. The formulation of this modification is defined (see Fig. 3) by the 
maximum magnitude of the relief (CRT for the tip and CRB for the bottom) the 
length of the correction (ΔLB or ΔLT) and the shape, which is generally linear or 
parabolic and expressed by 
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Where the subscript T indicates tip relief, B corresponds to bottom relief and n 
takes the value 1 if the shape of the deviation is linear and 2 if it is parabolic. 

 

Fig. 3 Description of the tip and bottom reliefs 

4   Application Example 

A numerical example will be presented here whose basic parameters are listed in 
Table 1. Gears shafts are supported by a couple of 209 single-row radial deep-
groove ball bearings [10]. More details can be found in [2]-[4]. 

Moreover, PEs have been included according to the values contained in  
Table 2 while only linear tip relief (n = 1) was considered in both gears with  
CRT = 0.015 mm and  ΔLT = 4 mm. 

In the following, some of the most noteworthy results obtained from dynamic 
simulations of the transmission example for a rotational speed of 1000 r.p.m. with 
several torque levels will be presented, in order to demonstrate the model’s capa-
bility. In Fig. 4 preliminary quasi-static analyses are presented. Particularly in  
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Table 1 Transmission data 

Parameter  Value Parameter Value 
Number of teeth (gear 1&2) 28 Rack tip rounding 0.25 m 
Module (m) 3.175 [mm] Gear tip rounding 0.05 m 
Elasticity Modulus  210 [GPa] Gear face width  6.35  [mm] 

Poisson’s ratio 0.3 Gear shaft radius  20 [mm] 
Pressure angle  20 [degree] Mass (miR1) 0.7999 [Kg] 
Rack addendum 1.25 m Gear inertia (JiR1 ) 4.0 10-4 [Kgm2]   

Rack dedendum 1 m Oil viscosity  0.004 [Pas] 
Output inertia [Kg m2] J2J2= 3.56 10-4 Shaft flex. Stiff. [N/m] Kib1R1= KiR1b2 = 6.24 108 
Shaft Tor. Stiff. [Nm/rad] KTib1R1=KTiR1b2=4 105 Coupling Stiff. [Nm/rad] KT1J1b1= KT2b2J2=4.0 105 

Shaft Tor. Damp. [Nms/rad] CTib1R1= CTiR1b2 = 0 Coupling Damp. [Nms/rad] CT1J1b1= CT2b2J2=3.5761 
Shaft Flex. Damp. [Ns/m]  Cib1R1= CiR1b2 = 31.6   

 

Table 2 Parameters for PE 

 fH [mm] ff  [mm] fr [mm] sf [mm] s0 [mm] 

Pinion 0.002 0.003 1.8 22.8793 5.1260 

Wheel 0.001 0.003 1.3 22.8793 5.1260 
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Fig. 4 a) LTE with PE (10 Nm); b) LTE with PE (100 Nm) c) Meshing Stiffness with Tip 
Relief. 

Fig. 4 a) and b) the Loaded Transmission Error (LTE) for torques of 10 and 100 
Nm with and without PE is presented. It can be appreciated that the effect of the 
profile error is more noticeable when the torque level is low, while the load in-
crements reduce the differences. Fig. 4 c) shows the plot of the resultant meshing 
stiffness obtained from a quasi-static analysis when the tip relief is considered. 
The design load is close to 30 Nm and the meshing stiffness changes notably as a 
function of the transmitted torque. Fig. 5 a) and b) show the gear orbits and LTE of 
dynamic simulations when the ideal profile is considered. Fig. 5 c) and d) show 
the results obtained when PEs are included, while Fig. 5 e) and f) correspond to 
the tip relief modifications. PE as expected provides higher LTE amplitudes while 
tip relief shows a smoother behavior near 40 Nm of torque. 
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Fig. 5 Orbits (left column) and LTE (right column) for 1000 r.p.m. and several torques 

5   Conclusions 

A non-linear model for the dynamic analysis of a gear transmission supported by 
ball bearings and including tooth profile deviations was presented. The model ap-
proach used for the calculation of meshing forces, combining FE analysis and ana-
lytical formulation, enables a very straightforward implementation of the tooth 
profile deviations. The model’s effectiveness is shown by means of an application 
example which assesses the consequences when deviations are considered, with 
particular attention to the role played by the torque level. The tip relief cases show 
a generalized enhancement in the amplitudes of LTE and gear centre orbits, with 
much less improvement for low values of torque. Regarding PE, the model is also 
capable of predicting the increase of the LTE amplitude and orbits along the line 
of action, showing a much greater effect for low torques. In addition, the model is 
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also able to show the bearing clearance and variable stiffness effect on the LTE re-
sults widening the orbits outside the line of action. 
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Abstract. It is about a wind turbine blade of five meters of length in composite 
material, Glass Fiber Reinforced Plastics (GRP), calculated using the finite 
elements method (FEM) to determine the influence of the gyroscopic coupling on 
its dynamic behavior. First, using the blade element momentum method (BEM) 
we wrote the aerodynamic forces applied on the blade, depending on the wind 
speed. Then we incorporated these expressions into the laws of structures behavior 
to reach a matrix formulation of the equations of motion of the blade taking into 
account the nonlinear deformation. The obtaining of the mechanical stiffness, 
geometric stiffness, mass and gyroscopic coupling matrices of the blade allows to 
simulate its dynamic response in transient and permanent phases under the action 
of its weight, and under a sudden variation of the wind speed. 

Keywords: wind turbine blade, aerodynamic loads, static and dynamic behavior, 
gyroscopic effect. 

1   Introduction 

The wind turbine blades in normal operation are subject to aerodynamic, 
centrifugal and gravity forces. These external forces are classified into three 
categories: temporary, constant or cyclical. Indeed, the variation of wind speed, 
the change of orientation of the turbine axis due to a change in the wind direction, 
or the action of gravity under gyroscopic effect. These efforts, often cyclical, are 
the cause of the vibration of the blade and therefore disrupt the air flow around its 
profile, which justifies the loss of a part of the aerodynamic useful energy to 
decrease its performance. A wind turbine blade must resist during an emergency 
stop, in case of a gust of wind, in violent hurricanes, and have the power 
coefficient close to the theoretically maximum, the limit of Betz: 59.26% [1]. This 
coefficient is function of the rotor angular speed, and also depends on the airfoil, 
the shape and the layout of the blades. In this work we are interested in 
determining the action of the gyroscopic forces on a blade of five meters of length, 
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The similarity between these three profiles allows a soft transition following the 
span of the blade. The clamping edge of the blade on the rotor is cylindrical, 
external diameter of 21 cm and internal diameter of 19 cm, an adhesive joint 
between the blade and the rotor is used to support the efforts of installation and 
make the structure more flexible. The design of the blade by SolidWorks needs the 
exact profiles distribution; it is presented in the following, Table 1. 

 

Table 1 Geometry of the blade. 

Station (m) 
Chord 
(mm) 

Thickness 
(mm) 

Twist  
(deg) 

Section  
S (mm2) 

Profiles: NACA-63-621=N21, 
FXS-66-196 = F196 

0.0 210 210 0.0 9966 Round 
0.4 504 183 25 8465 1.00 (LS-0421) 
0.8 600 178 16 15030 1.41 (N21) 
1.2 562 163 12.8 15307 1.38 (N21) 
1.6 524 149 10.1 14203 1.35 (N21) 
2.0 486 134 7.8 13105 1.31 (N21) 
2.4 448 120 5.8 12016 1.28 (N21) 
2.8 410 105 4.2 10936 1.22 (N21) 
3.2 371 91 2.8 9865 0.85 (N21) + 0.34(F196) 
3.6 333 76 1.8 8803 0.25 (N21) + 0.90(F196) 
4.0 295 61 0.9 7754 1.06 (F196) 
4.4 257 47 0.4 6942 0.93 (F196) 
4.8 219 32 0.2 6185 0.74 (F196) 
5.0 200 25 0.0 5194 0.64 (N21) 

 
The materials usually used in the manufacture of long blades are composite 

materials with thermosetting matrices reinforced by glass fibers or carbon fibers. 
The most common matrices in this design are the unsaturated polyester resin (UP) 
and epoxy resin (EP). The choice of GRP, Table 2, with polyester resin is bonded 
to three attributes: its lightness, its ability to resist fatigue and its availability at an 
acceptable price. The blade external surface is covered with the GelCoat to 
decrease friction, and improve its resistance to erosion. 

 

Table 2 Mechanical properties of the GRP. 

Density ρ= 1400 kg/m3 
Tensile yield strength Re= 63 MPa 
Ultimate tensile strength R= 129 MPa 
Elasticity modulus E= 6 GPa 
Compressive strength Rc= 170 MPa 
Shear modulus G= 2,5424 GPa 
Poisson ratio ν= 0,18 
Glass content c= 50 % 
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3   Applied Loads 

The objective is to determine the aerodynamic forces acting on the blade and their 
optimal parameters. The modeling of the wind action on the blade is a complex 
spot due to the rotation of the propeller that creates a three dimensional flow 
around its profile. In this work two theories are combined, the first is the axial 
momentum theory and the second is the blade element momentum theory (BEM). 
We consider an element of the blade, Fig. 3, subjected to aerodynamic forces, 
centrifugal inertia, and gravity load. 
 
 

 

Fig. 3 Aerodynamic loads and speeds 

The theory of the blade element allows us to express, according to the wind 
relative speed Vr, the aerodynamic loads at the aerodynamic center on an element 
C of the blade at width dx and in chord c located at a distance x from the rotation 
axis [3]: 

Thrust: 21

2
= ryadP C cV dxρ                                           (1) 

Trail: 21

2
= ra zdT C cV dxρ                                            (2) 

Torque: 2 21

2
= ra mdM C c V dxρ                                       (3) 

The force coefficients Cy, Cz, and the moment coefficient Cm characterize the 
capability of the profile to transform the energy of the wind in thrust, trail and 
torque forces. These coefficients depend mainly on the angle of attack φ of the 
blade as follows: 

sin( ) cos( )= −y L DC C Cφ φ                                           (4) 

 

 y

za V(1 )−

dP

dR

β

C

rV

φ

dM

i
a x(1 ')+ Ω

dT Rotation axis

Chord
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cos( ) sin( )= +z L DC C Cφ φ                                            (5) 

CL and CD are respectively the lift and drag coefficients. The experimental 
researches are carried out in order to know the evolution of these coefficients 
depending on the wind speed V, and the rotation of the blade Ω, as shown in [4], 
[5]. The coefficients of axial interference a and radial interference a’ are within 0 
and 1, characterize respectively the propeller aerodynamic efficiency and the 
airflow wake effect. These factors are expressed by, according to [2]: 

2

1

(4sin ) /( ) 1
=

+z

a
F Cφ σ

                                         (6) 

1
'

(4sin cos ) /( ) 1
=

−y

a
F Cφ φ σ

                                    (7) 

The equations (4), (5), (6) and (7) lead to find the expressions of lift and drag 
coefficients: 

24 ( ')sin  cos

(1 )(1 ')

+=
− +L

F a a
C

a a

φ φ
σ

                                           (8) 

2 24 ( sin 'cos ')sin

(1 )(1 ')

− +=
− +D

F a a aa
C

a a

φ φ φ
σ

                             (9) 

The local solidity ratio σ is defined as: 

2
= cn

x
σ

π
                                                      (10) 

The coefficient of Prandtl F is defined as: 

2

cos( )−=
f

F
ax eπ

                                                 (11) 

Where: 

( )

2 sin

−= n R x
f

x φ
                                                    (12) 

And R is the propeller radius, while φ  is the angle of attack, calculated at a 

position of the blade, by: 

(1 )
tan( )

(1 ')

−=
+ Ω

a V

a x
φ                                                 (13) 
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The centrifugal force dFc applied to the blade element in rotation, is calculated by: 

2= ΩcdF Sx dxρ                                             (14) 

The load vector due to the weight of the blade element is expressed in the 
referential (O,x,y,z), related to the blade, by: 

(sin( ) ( ) )dP x + y= Ω ΩgS t cos t dxρ                                    (15) 

4   Formulation of the Problem 

It is proposed to determine the effect of weight on a wind turbine blade of 5 
meters of length, using the finite elements method [6]. The blade-beam is divided 
into 12 elements of length l of different sections S, as shown in figure 4: 

 
 

 

Fig. 4 Dividing of the blade in 12 beam elements 

4.1   Mechanical Stiffness Matrix 

The displacement vector u of any point P of the blade with coordinates (x,y,z) is 
expressed as a function of the displacement vector U relatively to the reference 
frame associated with the blade, as follows: 

1 0 0 0

0 1 0 0 0

0 0 1 0 0

u U

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

z y

z

y

                                           (16) 

By linear interpolation, we compute the displacement vector U of a point M on the 
gravity line of the blade: 

eU Nq=                                                       (17) 

The vector elemental nodal displacements qe containing all degrees of freedom at 
consecutive nodes i and j, is: 

x

EDGE-WISE

FLAP-WISE

0.8  Root 4.2    Working region

O
l



Effects of Gyroscopic Coupling on the Dynamics of a Wind Turbine Blade   165 

( , , , , , , , , , , , )eq =            T
i i i i i i j j j j j ju v w u v wα β γ α β γ                        (18) 

The matrix of interpolation N is composed by the functions of interpolation N1 
and N2, they are linearly centered: 

1 (1 ) / 2 and 2 (1 ) / 2N s N s= − = +                                   (19) 

Where, s is a variable ranging between -1 and 1. The vector of linear deformations 
of the beam εl is expressed by: 

e
e= B qlε                                                         (20) 

The matrix of elementary deformation Be considering the transverse shear is: 

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 1 0 0 0 2

0 0 1 0 1 0 0 0 1 0 2 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

eB =

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

lN lN

lN lN

                          (21) 

We can determine the elemental stiffness matrix Ke by the following relation: 

1

12
T e e

eK B RB
−

= ∫
l

ds                                                 (22) 

With R is the stiffness matrix of the material of the blade. 

4.2   Geometrical Stiffness Matrix 

The geometric stiffness matrix of the blade depends on the nodal displacements. It 
aims to express the assumption that the length of the beam remains constant after 
deformation, the matrix of nonlinear deformation εnl is: 

1 ( ) ( )
2

Tgrad u grad u=nlε                                          (23) 

After replacing the vector u by its expression according to equations (16), (17) et 
(18), we obtain three expressions of the nonlinear deformations εxx(nl), γxy(nl) and 
γxz(nl) according the direction x as follows: 

1
( )

2 e eq Xq= T
xx nlε                                               (24) 
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With: 

2 2 2 2

2 2

1 0 0 0 2 2 0 0 0 0 2 2

0 1 0 0 0 0 0 2 0 0 0 0

0 0 1 2 0 0 0 0 2 0 0 0

0 2 0 ( ) 0 0 0 0 2 2( ) 0 0

0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 2 0 0 0 0 0 21
2 0 0 0 2 2 1 0 0 0 2 2

0 0 0 2 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 2 0 0

0 2 2 0 0 0 0 2 0 ( ) 0 0

0 0 0 0 0 0 0 0 0 2

0 0 0 0

X

− −
−

−
− + − − +

−
− −

=
− − −

− − +
−

z y z y

y

z y z y y z

z z

yz y y

z y z yl

z

y

z y z y z

yz z yz

yz 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦y

 (25) 

1
( )

2 e eq Yq= T
xy nlγ                                                (26) 

With: 

0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 1 0 0 0 0 0 21

2 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 2 0 0 0 0 2 2 0 0

0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 1 0 0 0 0 0 2

Y

⎡
⎢
⎢
⎢
⎢ − −⎢
⎢
⎢ − −

=
− − −

− −
− −

⎣

N N

N yN N yN

zN zN

yN yN

N Nl

N yN N yN

zN zN

yN yN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

             (27) 

1
( )

2 e eq Zq= T
xz nlγ                                             (28) 

With: 
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0 0 0 0 2 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 1 0 0

0 0 0 0 2 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0 0 0 1 01

2 0 0 0 2 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 2 0 0 0 2 0 2 0 0

0 0 0 0 2 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0 0 0 1 0

Z

− −⎡
⎢
⎢
⎢
⎢ − −⎢
⎢ − −
⎢

=
−

− −

− −⎣

N N

N zN N zN

zN zN

yN yN

N Nl

N zN N zN

zN zN

yN yN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

                   (29) 

The linear density of the energy of the nonlinear deformation Wd (nl) is calculated 
by: 

d

1
( ) ( ( ) ( ) ( ) )

2
= + +∫ xx xx xy xy xz xz

S

W nl nl nl nl dSε σ γ τ γ τ                        (30) 

Assuming that the constraint due to the linear deformation is dominant [7], the 
equations (24), (26) and (26) give: 

d

1
( ) ( ( ) )

2
T

e eq X Y Z q= + +∫ xx xy xz

S

W nl E G G dSε γ γ                         (31) 

Then the geometric stiffness matrix Kge is deduced using equation (31): 

1
( )

2
T

e e eq Kg q=dW nl                                               (32) 

Where: 

eKg = K1+ K2 + K3                                              (33) 

With: 

(( ) ( ) ( ))K1 = X− + − + −∫ j i j i j i

S

E u u z y dSβ β γ γ                        (34) 

(( ) ( ))K2 = Y− − −∫ j i j i

S

G v v z dSα α                                   (35) 

(( ) ( ))K3 = Z− + −∫ j i j i

S

G w w y dSα α                                  (36) 

This matrix K1, K2 and K3 are function of the degrees of freedom of the blade-
beam. 
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5   Equations of Motion 

The study of the movement of an element of the blade relatively to the Galilean 
referential, to determine the linear expression of the kinetic energy of a finite 
element, gives:  

 
2 2 2 22 21

( ( ) ( 2 ) (2 ( ( ) ) 2 (2 )))
2

= + + + + + − + Ω − − − Ω + Ω∫
xj

e

xi

T S u v w Ix Iy Iz Iyz Iy Iz Ix Iyz dxρ α β γ βγ βα αβ αγ α
. . . . .... .. .

 
(37) 

The third term of the integral corresponds to the work of the Coriolis acceleration 
and identifies the elementary matrix of gyroscopic coupling Ce as follows: 

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 /3 2 / 3 0 0 0 0 / 6 / 3

0 0 0 / 3 0 0 0 0 0 /6 0 0

0 0 0 2 /3 0 0 0 0 0 / 3 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 / 6 / 3 0 0 0 0 /3 2 / 3

0 0 0 /6 0 0 0 0 0 / 3 0 0

0 0 0 / 3 0 0 0 0

eC

− −

− −
= Ω

− −

−

I Iyz I Iyz

I I

Iyz Iyz
l

I Iyz I Iyz

I I

Iyz

ρ

0 2 /3 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦Iyz

           (38) 

Where Ix, Iy, Iz, and Iyz are the quadratic moments of section of the blade in the 
referencial (x,y,z), and: 

= + −I Ix Iy Iz                                                  (39) 

The potential energy of the total deformation Ue of a finite element is calculated 
by: 

1
( )

2
T

e e e eq K + Kg q=eU                                                 (40) 

By applying the principle of Hamilton between two date t1 and t2 for the system: 

2

1

( ) 0− + =∫
t

e e e

t

T U W dtδ δ δ                                       (41) 

With We is the work of the external loads. The elementary equations of motion are 
then: 

( )e e e e e e e e

...
M q C q K + Kg q F+ + =                                  (42) 
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In the following we realize the assembly of the stiffness matrices K, the mass 
matrix M and the gyroscopic coupling matrix C. For the numerical solution, the 
geometric stiffness matrix Kg must be built at each iteration, and the boundary 
conditions for the clamped root of the blade must be introduced. The global 
equations of motion are then: 

( )
.

M q C q K + Kg q F
..

+ + =                                           (43) 

6   Numerical Application 

6.1     Problem Data 

It aims to simulate the dynamic response of the blade under the action of its own 
weight. The practical maximum power coefficient CP of the propeller, Fig. 1, is 
41.2% achieved at a wind speed V0= 10 m/s [1]. The coefficient of axial 
interference a is equal 0.14 corresponding to the power coefficient mentioned 
previously. The value of the angular speed ω of wake of the air in the plane of 
rotation is the average of those located in front and behind it, so the coefficient of 
radial interference a’ is 0.5. At the conditions of ambient temperature and 
pressure, the density of air is 1,25 kg/m3 and the cinematic viscosity ν is 22 cSt. 
The aerodynamic coefficients CL and CD are calculated using equations (8) and 
(9), the moment coefficient Cm is almost constant throughout the range of angle of 
attack. When starting, the blade rotation speed increases gradually to a uniform 
speed of 6 rad/s. The total weight of the blade is 115.73 daN, which is 
decomposable by projection, relatively to Ox and Oy axes, into two alternating 
components, with quadratic phase shift, Fig. 5. These excitations are phased of 
2π/3 for two consecutive blades. 

 
 

 

Fig. 5 Variation of the gravity load of the blade 
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6.2     Static Study 

With the help of MATLAB, we used the Newton method [8] to solve the 
nonlinear equation of equilibrium. Figs. 6 and 7 illustrate the deformed 
configuration under the action of centrifugal and aerodynamic forces, without 
considering the action of gravity. The maximum deflection of the blade along the 
axis of rotation is of 2 cm, which verifies the non collision of the blades with the 
vertical mast of the wind turbine. 

 

 

Fig. 6 Aerodynamic effect 

 

 

Fig. 7 Centrifugal effect 
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6.3     Dynamic Study 

Using the explicit Newmark method we were able to demonstrate the effect of the 
gyroscopic coupling under the weight excitation. The structural damping factor is 
taken 2%. The result is a torsion beating induced by gyroscopic effect, it is 
transitory, Fig. 8a, then permanent, Fig. 8b. The amplitude of the torsion beating is 
weak but it persists. The continual action of the weight of the blade causes an 
angular vibration around the virtual static equilibrium position. This poses the 
problem of fatigue, in particular at its root where the equivalent constraint due to 
tension, bending and torsion, is maximal. 
 
 

 

Fig. 8a Forced regime-Transient phase 

 

 

Fig. 8b Forced regime-Permanent phase 
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The dynamic study of the blade in the case of an abrupt cessation of the wind, 
the speed remains unchanged (6 rad/s), corresponds to the free regime. We 
simulated the dynamic response of the blade for this case, by considering the 
initial conditions in displacement, those of the deformed configuration shown in 
Figs. 6 and 7. The result was a torsion beating which disappears with time, Fig. 9a 
and 9b. The spectrum obtained for the free regime, Fig. 10, using the Fast Fourier 
Transform (FFT), shows the beating is mainly the result of the interference of two 
waves with close frequencies. The spectrum of the forced regime-transitory phase 
was also obtained and superposed on the free regime spectrum, to conclude that 
for both cases the blade has the same behavior. The beating first frequencies are 
f1=9 Hz, f2=10 Hz and f3= 68 Hz, which depend on the blade speed [9]. 

 
 

 

Fig. 9a Free regime-Transitory phase 

 

Fig. 9b Free regime-Permanent phase 
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Fig. 10 FFT of torsion beating in transitory phase 

7   Conclusion 

The gyroscopic effect on the blade weight induces an alternating force applied on 
the blade to generate a flapping torsion angle of low amplitude but permanent, 
despite the absence of cyclic aerodynamic torques. We conclude that a wind 
turbine blade in rotation is subjected to a continuous vibration, which disrupts the 
airflow around the blade profile and consequently causes a loss in the 
aerodynamic useful energy transformed to acoustic energy, to induce sound 
pollution. From this point of view the structural properties of the blade do not only 
have an impact on its mechanical strength but also on the nature of the airflow 
through the propeller. In order to study precisely this phenomenon, which is 
specific to long blades, we took into account the nonlinear deformation. Even if 
the amplitude of the beating is low, its continuous nature leads to the need to 
consider closely the problem of fatigue of the blade. 
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Abstract. Ball bearing is considered as source of acoustic level increasing in ro-
tating systems.  In this paper, we propose a numerical model to simulate the dy-
namic behavior of a one stage helical gear system in presence of different sources 
of non linearity such ball bearing clearance, Hertzian contact force and action of 
balls on bearing races. The implicit Newmark algorithm coupled with Newton 
Raphson iterative method is used to solve the non linear differential equation itera-
tively, in order to analyze the influence of a pinion eccentricity defect on the dy-
namic behavior of one stage helical gear transmission system under transient and 
stationary regimes. 

Keywords: Ball bearings, nonlinear dynamic behavior, eccentricity defect, helical 
gear. 

1   Introduction 

There is no doubt about the efficiency of the gear systems to ensure transmission 
of high torques with minimum of power loss. But on the other hand gear transmis-
sions remain certainly the main source of noise and vibration of several industrial 
applications due to the conditions of contact between gear pair teeth as well as the 
variation of the mesh stiffness caused by the variation of teeth number in contact. 
Abbes et al. 2008 simulated the vibration and the noise radiation of a single-stage 
gearbox associated with the changing stiffness of the meshing teeth and the effect 
of the fluid inside the gearbox housing is considered. Numerical simulations have 
been carried out to investigate the effects of the gear mesh stiffness fluctuation on 
the dynamic response of the coupled system. They showed that the vibration res-
ponses are significantly modified by considering the cavity fluid effect.  

Walha et al. (2009) analyzed the vibrations of a two-stage gear system with 
mesh stiffness fluctuation, bearing flexibility and backlash. The study shows that 
the dynamic behavior of such structure is characterized by its complexity which 
comes mainly from the coupling between the periodic meshes stiffness fluctua-
tions with the presence of backlashes between teeth. 
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The gear transmission failure modeling was investigated by many researches 
such as Choy et al. (1996), Chaari et al. (2009) and Walha et al. (2005) that fo-
cused on the tooth stiffness reduction due to damage. The loading conditions have 
much influence on gear transmission systems. In fact they affect more defected 
transmissions than healthy ones as shown by Bartelmus et al. (2010). The transient 
regime affects significantly the dynamic behavior of gear transmission systems 
and it cannot be neglected as mentioned by Sika and Velex (2008), Sika (2008) 
and Khabou et al. (2011). 

Ball bearings are mainly used to reduce rotational friction and support axial and 
radial loads but at the same time they deeply affect the acoustic level of gear 
transmission system by their presence. Few studies were interested in the dynamic 
behavior of the helical gear taking account ball bearing influence. The gear and 
bearing interactions in the presence of faults is always neglected and the vibratory 
responses are usually computed by considering only the effect gear transmission 
error. In this context, Walha et al. (2011) have formulated a model taking into ac-
count the nonlinear dynamic behavior of an automotive clutch coupled with a hel-
ical two stage gear system. He simulated three types of nonlinearity: dry friction 
path, double stage stiffness and spline clearance. The effect of those defects on the 
nonlinear dynamic behavior of the system is investigated. In this study, bearings 
are considered rigid.  

Abbes et al. (2011) have performed a theoretical investigation for studying the 
dynamic behavior of helical gears supported by defect element bearings in steady 
state condition monitoring. A global model predicting the dynamical behavior of a 
reducer supported by angular ball bearings, based on the finite element approach 
is developed. The developed model was derived to observe the effect of the inter-
nal excitation sources such as the gear mesh stiffness fluctuation and the ball bear-
ing waviness on the vibration characteristics of the machine elements. 

Khabou et al. (2012) have proposed a theoretical model to simulate the dynam-
ic behavior of a spur gear taking into account both the time varying gearmesh 
stiffness considering nonlinear contact model and the nonlinear forces exerted by 
defected ball bearings supporting the transmission under transient regime working 
conditions. The aim of this study was to show the impact of the worn bearings on 
the dynamic response of the transmission.  

The main idea of this work is to develop a one stage helical gear model taking 
into account the presence of ball bearing, eccentricity on the helical gear non-
linear Hertz contact between teeth. . The equation of motion is written and solved 
using the Newmark method coupled with Newthon Raphson iterative method. The 
dynamic response will be analyzed in order to show the impact of eccentricity on 
the dynamic behaviour of the transmission. 

2   Single Stage Helical Gear Transmission Modeling 

The study consists on analyzing structural vibrations generated by single stage 
helical gear transmission supported by two identical ball bearings. Bearings outer 
races are fixed in the rigid support (logging) while the inner races are rigidly as-
sembled to the rotating shafts (Fig. 1). 
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Fig. 1 Schematic of the studied single stage gear transmission (Khabou et al. 2012) 

The equation of motion describing the dynamics of the system, which includes 
all system components, can be expressed in a general form as follows: 

( )[ ] ( ) ( )tFtFextFnlbqtKgKqCqM eccp +=++++
            

(1) 

where q = {x1, y1, z1, φ1, ψ1, θm, θ1, x2, y2,  z2, φ2, ψ2, θ2, θr}
T  is the vector of the 

degrees of freedom of the system, M represents the mass matrix. 

( )ryxmyx JJJJmmmJJJJmmmdiagM 222222111111=
     

(2) 

C is the proportional damping matrix given by Khabou et al. (2011): 

51005.0 −==+= baKbMaC p             
(3) 

Kp is the shafts torsional stiffness matrix given by the following matrix 
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where kθi are the shafts torsional stiffness. 
 
Fext(t) is the external applied torques vector. It can be written as: 

( ) ( ) ( ){ }T
rm tCtCtFext −= 000000000000           

(5) 

where Cr (t) is the loading torque and Cm (t) is the driving torque (time varying 
during start-up of the transmission). 
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Kg(t), Fnlb and Fecc represent respectively the gear stiffness matrix, the nonli-
near force exerted by rolling bearings and finally the force exerted by the eccen-
tricity defect on the transmission. The expressions of Kg(t), Fnlb and Fecc will be 
formulated  in the following sections. 

2.1   Determination of the Gear Mesh Stiffness Matrix 

The gear meshing process is modelled with a time-varying stiffness matrix (Abbes 
et al. (2008, 2005)): 

GtktKg ⋅= )()(                                 (6) 

where k(t) is the periodic mesh stiffness obtained through measurement or calcula-
tion. For helical gears, trapezoidal waves are often used to approximate the mesh 
stiffness alternating between n and n+1 pairs of teeth in contact. The geometric 
characteristics matrix G is derived from of the gear pair characteristics: 

XXG
t ⋅=

                               
(7) 

where: 

[ ]21 000tancossin000tancossincos bb rrX βααβααβ −−−=  (8) 

rb2 and rb1 denotes the base circle radii of gear and pinion, α is the pressure angle 
and β is the helix angle. 

2.2   Determination of the Non-linear Bearing Load 

The forces exerted by all the rolling elements on the inner races are given by:  
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where K is the Hertz contact constant, Nb is the ball number of both bearings, 

JBBNBψ is the ball angular position of the BBNB ball bearing (BBNB = 1: ball 

bearing supporting input shaft or BBNB =2: ball bearing supporting output shaft), 

and 
jBBNBΔ represents the elastic deflection of the jth rolling element:  

BBNBBBNBBBNBBBNBBBNB d
zjrjj

γΔΔΔ −−+=
0

22

              
(10) 

A negative elastic deformation means that no contact occurs between ball and the 
two races, in this case the elastic deformation is considered as null. 

0BBNBd
 
is the 

unloaded relative distance between the inner and the outer raceway groove  
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Fig. 2 Charged ball in the bearing 

curvature centers O1j and O2j. The internal clearance BBNBγ
 
defined the gap be-

tween inner or outer race with the ball. 
rjBBNBΔ

 
and 

zjBBNBΔ are the  radial and 

axial elastic deformations corresponding the BBNB ball bearing: 
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2.3   Determination of the Eccentricity Load 

In presence of the eccentricity defect, an additional load is exerted on the struc-
ture. The eccentricity load is given by (Walha et al. 2011): 

( ) ( ) ( )tFtFtF ecceccecc 21 +=                            
(12) 

where Fecc1(t) and Fecc2(t)are forces due respectively to the additional kinetic ener-
gy and the additional strain energy: 
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(13) 

where e, Ω and λ are respectively the eccentricity defect amplitude, the angular 
speed of the gear and the initial phase of the eccentricity defect. 

3   Numerical Results 

The equation of motion is solved to obtain the dynamic response of the gear-
bearing system. The Newmark method coupled with the iterative Newton Raphson  
 



180 H. Taissir et al.
 

method, which resolve the system equilibrium at each step, are used to compute 
the system time responses. The main characteristics of the gear transmission and 
ball bearings are given in table 1. 
 

Table 1 Helical gear and bearing parameters (Khabou et al (2012)) 

Gear parameters  
Teeth number (pinion, wheel) Z1 = 20, Z2 = 30 
Helix angle, Pressure angle (deg) 
Mass (pinion, wheel) (Kg), Inertia moment (pinion, 
wheel, Motor, receiver) (Kgm2) 

β = α = 20° 
m1 = 0.46, m2 = 0.588 

J1 = Jm =10-4, J2 = Jr = 3 10-4 
rb1 = 18.8, rb2 = 28.8 Base circle (pinion, wheel)  (mm) 

Ball bearing parameters  
Ball number , Hertz constant, Contact angle (deg) Nb = 8, K = 6.27 1012,  α0 =0 
Inner race,  Ball diameter (mm) Di =18.738, d = 4.762 
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Fig. 3 Periodic gear mesh stiffness evolution with time  

The displacements at x direction of the input and output shafts and their spectra 
are shown in Fig 4. We notice the presence of the meshing frequency Feng = 460 
Hz and its harmonics, this fact is induced by the time varying mesh stiffness esci-
tation at this frequency (Fig. 3). We note also the presence of rolling parts passage 
frequencies Fpb1 or Fpb2  with their harmonics which occur at 67.5 Hz for the input 
shaft and 45 Hz for the output shaft. A modulation between meshing frequency 
and ball passage frequency is noted.  

Figure 5 present the spectra of the transmission error for a defected (eccentrici-
ty e = 10-3 m) and healthy pinion. We note, in addition of the meshing frequency 
and ball passage frequencies, the presence of eccentricity defect frequency, that 
occurs at rotational frequency of the input shaft Fr1 = 25 Hz. We note also a mod-
ulation between meshing frequency and eccentricity defect frequency. 
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Fig. 4 Input and output x displacements and their spectra 
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Fig. 5 Fourier transform of the transmission error 

4   Conclusion 

In this paper a helical gear transmission is modeled including bearing and eccen-
tricity defect. For healthy pinion, dynamic responses are dominated by mesh fre-
quency and harmonics; we note also the presence of ball passage frequency and 
harmonics and a modulation between mesh frequency and ball passage frequency. 
When we introduce eccentricity defect on the pinion we note the presence of the 
rotational input shaft frequency. A modulation between meshing frequency and 
input rotational frequency is also observed. 
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Abstract. The complex structural dynamic behaviour of turbo-alternators and their
sub-assemblies must be well understood in order to insure their reliable and safe
operation. In practice, important variations in response behaviours are observed in
a population of otherwise nominally identical installations due to numerous and
significant sources of variability: construction differences, manufacturing and as-
sembly tolerances, variable thermal and nonlinear effects, and so on. These physical
variations can sometimes lead to unexpectedly high response levels in the stator and
a decision indicator is sought to signal the need for special maintenance procedures.
Ideally, measurements in operation would be performed to obtain the necessary in-
formation but, for technical reasons, this is not currently possible. Meanwhile, the
machines are generally disassembled for standard maintenance every five years. In
this article, a maintenance alarm is formulated based on modal tests performed on
the stator with the rotor removed. The objective is to usefully bound the stator re-
sponse in operation based on the identified eigensolutions obtained on the stator
alone. However, it is known that thermal and nonlinear mechanical effects of the
functioning alternator modify the associated eigenparameters. Since these effects
are not well known, an info-gap robustness analysis is performed to investigate the
impact of this lack of knowledge on the response levels of interest. A stator assembly
must be able to tolerate reasonable levels of uncertainty without exceeding a critical
response level or it will require maintenance and repair. The proposed methodology
is illustrated on a simplified numerical model of a stator.

1 Introduction

The complex structural dynamic behaviour of turbo-alternators and their
sub-assemblies (Figure 1) must be well understood in order to insure their reliable
and safe operation. In practice, important variations in response behaviours are ob-
served in a population of otherwise nominally identical installations due to numer-
ous and significant sources of variability: construction differences, manufacturing
and assembly tolerances, variable thermal and nonlinear effects, and so on. Indeed,
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the stator itself is a complex assembly of non-homogeneous prestressed parts com-
posing the magnetic circuit with residual electrical loads and non negligible thermo-
mechanical effects (see Figure 2). As a result, it proves to be extremely difficult to
construct a reliable physics-based model of a stator. Meanwhile, these physical vari-
ations sometimes lead to unexpectedly high response levels in the stator which can
cause premature aging. For this reason, a decision indicator is sought to signal the
need for special maintenance procedures. Given the low credibility of numerical
simulations, an indicator primarily based on experimental data is required. While
measurements in operation would be ideal, limited space and high electromagnetic
loads currently render this approach impracticable. Alternators are generally disas-
sembled for routine maintenance every five years and modal testing using impact
hammers is often performed at this time. The maintenance alarm proposed in this
article will be formulated on the basis of these identified eigensolutions.

Although developments in the field of structural health monitoring address cer-
tain aspects of this class of problem (see for example the literature reviews Farrar et
al [2], Sohn et al [5], and Worden et al [6]), relatively little attention has been given
to the difficulties of extrapolating diagnostics from one structural configuration to
another. While this is indeed an ambitious goal in generaI, in the present case the
relevant dynamic behaviours of the stator are assumed to be relatively stable.

The proposed maintenance alarm is based on a predicted useful bound for the dy-
namic stator response in operation. This response will synthesized from the eigen-
solutions identified on the stator of a dismantled alternator under a rotating electro-
magnetic load. The question is how to account for the thermal and nonlinear me-
chanical effects induced by the functioning alternator? Since these effects are not
well known, an info-gap robustness analysis is performed to investigate the impact
of this lack of knowledge on the response levels of interest. Indeed, it is assumed
that a stator assembly must be able to tolerate reasonable levels of uncertainty with-
out exceeding a critical response level or it will require maintenance and repair. In
the present work, the impact of lack of knowledge in the identified eigenfrequencies,
eigenvector norms, and modal damping will be investigated. The proposed method-
ology is illustrated on a simplified numerical model of a stator which is used to
simulate the experimental measurements.

Fig. 1 Alternator in power plant Fig. 2 Finite Element Model of a Simpli-
fied Stator
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2 Formulation of a Maintenance Alarm

The approach adopted here is to synthesize the response of the stator assembly based
on the eigensolutions (eigenfrequencies, eigenvectors, and modal damping factors)
identified with the rotor dismantled. A rotating dynamic load is introduced to simu-
late the interactions with the rotor in operation. The impact of lack of knowledge in
the eigenparameters is then investigated using an info-gap robustness analysis.

The info-gap methodology is useful for the analysis, planning, and design under
severe uncertainty [1] and it has been applied in very diverse domains including
engineering, economics, medicine, and business management. An info-gap model
quantifies the difference - the gap - between the information that is known, for ex-
ample the nominal value of a parameter, and the information that has to be known in
order to insure a critical level of performance. An application of info-gap analysis
to structural health monitoring can be found in [3]. The essential components of this
non-probabilistic approach to uncertainty quantification are briefly described below.

The info-gap robustness analysis requires the definition of three components:

1. System model
The system model establishes the functional relationship between the uncertain
model parameters and the response features of interest. In the present case, the
response features of interest is the displacement at the operation frequency and
the uncertain model parameter is the identified modal basis. That’s why, we use
the modal frequency response function (4) to establish the relationship between
the uncertain model parameters and the response features of interest. In prac-
tice, it is assumed that an experimental modal analysis has been performed in
order to obtain the eigenparameters required to calculate the system response
in the frequency band of interest Ω . Let (ωe

ν ,φ e
ν ,ξ e

ν ) ∈ R
m ×R

c,m ×R
m be

the identified modal basis with ωe
ν the eigenfrequencies, φ e

ν the eigenvectors,
ξ e

ν the diagonal modal damping factors, m the number of extract eigenmodes
and c the number of degree of freedom known by the sensors. Given the dis-
tributed nature of the excitation, the modal matrix must be interpolated to a
large number of degrees of freedom (DOFs). Toward this end, the SEREP (Sys-
tem Equivalent Reduction Expansion Process) expansion method [4] is used to
expand experimental modal basis to the required DOFs. A discretized model
using finite element (FE) method is used to take into account the complexity of
the structure. The equation of motion is given by:

Mÿ(t)+Cẏ(t)+Ky(t) = f (θ , t) ∈C
N (1)

with M,C and K respectively the mass, the damping and the stiffness matrices
of the structure, f (θ , t) the excitation given in (5) and N the number of DOFs
(N >> c) of the model. A numerical modal analysis is performed to have avail-
able the numerical modal basis (ωn

ν ,φn
ν ,ξ n

ν ). Let Φe = (φ e
1 , · · · ,φ e

m) ∈ R
c,m and

Φn = (φn
1 , · · · ,φn

m) ∈ R
N,m be respectively the experimental and the numerical

modal matrix. The expand modal matrix Φ is given by:
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Φ = ΦnX0

X0 = argmin
X

(||CΦnX −Φe||2) (2)

with C ∈R
c,N the observation matrix which establish the link between the DOFs

of the sensor and the DOFs of the FE model. The quality of this expansion will
strongly depend on the credibility of the underlying physics-based model. Ulti-
mately, the uncertainty associated with this process will need to be introduced
as well.

We finally obtain m−eigenparameters (ων ,φν ,ξν ). The dynamic flexibil-
ity matrix Γ (ω) can be expressed as a function of the diagonal eigenvalue
matrix Λm = diag(ω2

1 · · ·ω2
m), of the diagonal modal damping matrix Bm =

diag(2ω1ξ1 · · ·2ωmξm) and of the expand modal matrix Φ:

Γ (ω) = Φ(Λm + iωBm−ω2Im)
−1ΦT ∈ C

N,m (3)

Finally, the relationship between the uncertain model parameters (in Γ (ω)) and
the response features of interest (y(ω)) is given by:

y(ω) = Γ (ω)F (ω) ∈ C
N (4)

where the force F is the discrete Fourier transform of the following station-
ary excitation at the frequency ω0. The excitation derives from the electromag-
netic field in the stationary state where θ is the angle of rotation as shown in
Figure 4:

f (θ , t) = A.sin(ω0.t + 4θ ) (5)

2. Performance requirement
The performance requirement represents the quantity of interest upon which a
decision or set of decisions will be based. In the present case, the maximum
response level of the stator at an operating frequency ω0 should be less than or
equal to some critical value yC:

||y(ω0)|| ≤ yC (6)

3. Uncertainty model
The info-gap uncertainty model defines an ensemble of nested sets of realizable
designs as a function of the horizon of uncertainty α . Here, lack of knowledge
in the eigenparameters will be represented by a fractional error model:

U (α,c(0)) =

{
c :

∣∣∣∣∣ci − c(0)i

c(0)i

∣∣∣∣∣≤ wiα,∀i ∈ {1, · · · ,3m}
}

(7)

with:

c ∈ R
3m

α ≥ 0 the horizon of uncertainty
w ≥ 0 a vector of weighting coefficients
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The column vector c is defined by:

c = (
ω1

2π
· · · ωm

2π
, ||φ1|| · · · ||φm||,ξ1 · · ·ξm)

T (8)

and c(0) defines the nominal eigenparameters extracted from modal tests:

c(0) = (
ω(0)

1

2π
· · · ω(0)

m

2π
, ||φ (0)

1 || · · · ||φ (0)
m ||,ξ (0)

1 · · ·ξ (0)
m )T (9)

Finally, the robustness to uncertainty is defined as the greatest horizon of un-
certainty α that can be tolerated without exceeding the critical performance
requirement yC. It is obtained by solving the following optimization problem:

α̂(c(0),yC) = max

{
α : max

c∈U (α ,c(0))
||y(ω0)|| ≤ yC

}
(10)

However, for a given performance requirement, we have to solve the costly non
linear optimization (equation 10) in order to get a value of robustness. Practi-
cally speaking, this optimization problem is resolved by a set of the following
optimization problem:

yC(αi) = max
c∈U (αi,c(0))

{||y(ω0)||} (11)

where the horizon of uncertainty was discretized by a series of increasing val-
ues: α̂ =

{
0,α1,α2, · · · ,αp

}
. We finally obtain the robustness curve α̂ = f (yC).

3 Numerical Application

3.1 Case Study

The simplified stator model depicted in Figure 3 is used to simulate the results of the
experimental modal identification. Orthotropic solid elements are used to represent
the magnetic circuit (in yellow) while the support structure is modeled with shell el-
ements (in red) and six axial springs (in blue). Concerning the boundary conditions,
the free ends of the springs are grounded. The model contains a total of N = 5580
DOFs.

A numerical modal analysis is performed to obtain the eigenproperties defining
c(0). The frequency of interest is 95 Hz and the three neighboring eigensolutions
shown in Figure 5 are retained to perform the robustness analysis.

The nominal response of the stator is calculated for an excitation amplitude of
A = 1 N and an excitation frequency ω0

2π = 95 Hz. The excitation force is applied to
all 220 nodes on the inner surface of the stator. The frequency response amplitude
at the node s (see Figure 3) is plotted in Figure 6.
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Fig. 5 Eigensolutions retained for the robustness analysis (eigenfrequency, damping coeffi-
cient)

3.2 Info-Gap Robustness Analysis

The weighting vector (which define among others the uncertainty model) w ex-
presses the relative confidence between the different eigenparameters and is defined
on the basis of engineering judgement. For illustration purposes, w will be defined
as follows:

w = (1,1,1,
1
2
,

1
2
,

1
2
,

3
2
,

3
2
,

3
2
) (12)

Globally speaking, the smaller w is, the more confidence in the uncertain parameter
we have. In this example, we have relative good confidence in the eigenvector norms
(wi =

1
2 for i ∈ {4,5,6}) contrary to the diagonal damping factor (wi =

3
2 for i ∈

{7,8,9}). We have to be careful with the definition of w because the robustness to
uncertainty function depends on the weighting vector (see Figure 8 and 9).
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Moreover, additional constraints on the eigenfrequencies will be applied in or-
der to insure that the physical relationship between the different bending modes is
maintained.

The robustness function is finally shown in Figure 7 for 0 ≤ α ≤ 0.3.
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Fig. 7 Info-gap robustness function
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In this example, the robustness curve is composed of 3 zones:

• α̂ < 0.06: The horizon of uncertainty is not yet large enough for the first eigen-
frequency to shift to the excitation frequency. The performance in this zone is
seen to be very robust to uncertainty.

• α̂ ∼ 0.06: The horizon of uncertainty is large enough for the first stator eigen-
frequency to align with the excitation frequency. The performance in this zone
is clearly very vulnerable to increasing uncertainty.

• α̂ > 0.06: The performance in this zone is now relatively robust with increas-
ing response amplitudes due exclusively to the effects of eigenvector norm and
damping errors.
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Figures 10 show the evolutions of the relative variations in the eigenparameters (13)
as a function of the horizon of uncertainty.

di(α) =
ci(α)

c0
i

,∀i ∈ {1, · · · ,9} (13)

For example, the red line in Figure 10(a) indicates that the frequency of the first
eigenfrequency shifts downward until it reaches the excitation frequency at which
the maximum frequency response is obtained. It then remains at this frequency even
for increasing horizons of uncertainty.
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Fig. 10 Robustness vs relative variations for mode 1 (a) and 2 (b)

3.3 Discussion

There are at least 2 applications of the robustness:

• First, we want to know if the thermal effects lead to a critical system perfor-
mance. On one hand, for illustration purpose, we suppose the relation between
the eigenfrequencies and the temperature as linear, as indicated in Figure 11.
Thus, the thermal effects lead to a maximum variation of 0.10% for each mode.
On the other hand, the system is considered as faulty when the relative dis-
placement in operation is 21 μm at node s. For that performance requirement,
the robustness curve shows that the thermal effects do not lead to a fault in the
system performance.

• Then, that curve can be used as a decision making tool for maintenance. As in-
dicated previously, the robustness curve is composed of 3 zones and each zone
define a different state of robustness. Following the experimental modal anal-
ysis, the decision maker have to take a decision: he wants to know the risk of
failure if he decides to restart the machine. For a given performance require-
ment - maximum acceptable displacement in operation - he is able to known if
the alternator is robust to uncertainties or not. In the case of non robust state, he
should prefer additional maintenance procedure in order to preserve eigenmode
in a robust state.
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Fig. 12 Robustness function

4 Conclusion

The objective of this work is to bound the dynamic response levels of the stator com-
ponent of a turbo-alternator based on the experimentally identified eigensolutions
obtained during routine maintenance operations. In order to account for variations
in the eigenparameters in operation, a maintenance alarm is formulated via an info-
gap robustness analysis in order to investigate the impact of this lack of knowledge
on the calculated response behaviour. Low robustness to uncertainty indicates that
the stator requires specific maintenance operations. The present study was limited to
epistemic uncertainties in the eigenfrequencies, eigenvector norms, and the diago-
nal modal damping factors. The proposed methodology is illustrated on a numerical
test case using a simplified stator model.

Future work will extend the approach to include the impact of uncertainty in the
mode shapes resulting from either the expansion process or thermo-mechanical ef-
fects. Indeed, this can significantly alter the degree of coupling with the rotating
load. Moreover, partial information obtained from tests in operation will be used
to refine the info-gap uncertainty models. Finally, the maintenance alarm will be
applied to data available from stators tested in the past in order to evaluate the rele-
vance of the proposed maintenance alarm.
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Abstract. The present work focuses on multi-objective optimization of rotors de-
sign described by discrete variables. The aim is to modify the design of a rotor in 
order to avoid some resonance frequencies. The multi-objective optimization 
problem consists: on the one hand, in minimizing the total mass of the rotor, and 
on the other hand, in shifting the critical speeds to avoid the operating frequency 
of the rotor. The design variables are the diameters of the shaft sections that are 
assumed to be available only in a set of pre-specified values. To solve the discrete 
rotor design problem, a Multi-Objective Genetic Algorithm (MOGA) is used. A 
88 degrees of freedom model of a rotor is considered as a numerical example. In 
order to select optimal values of MOGA control parameters, a set of numerical 
experiments are carry out where crossover and mutation rates are varied. The re-
sults of optimal designs of the rotor are reasonable solutions each of which satis-
fies the objectives at an acceptable level without being dominated by any other  
solution. 

Keywords: optimization, discrete variable, MOGA, rotor, critical speed. 

1   Introduction 

In the design of rotors, the multiple requirements of effectiveness, reliability,  
maintainability, etc… can lead in certain cases to critical speeds close to the op-
erational speed, dangerous response due to unbalance, significant shaft deforma-
tion, high loads transmitted to the bearings. Several papers devoted to rotor design 
optimization problems discussed the various means to improve the dynamic beha-
vior of rotating machines, such as by increasing the rigidity of the shaft [1], de-
creasing the rotor mass [2], shifting  critical speeds [3,4,5] or  reducing  the  
forces  transmitted to the bearings and foundation [6]. In addition, the stability of 
the rotating machines could be improved by the anisotropy of the bearing and the 
optimization of their geometric parameters [7]. Two types of design variables 
were largely used in the preceding studies. The first type describes the geometry 
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of the rotors, such as the diameters of the shaft, the dimensions and locations of 
discs and bearings [8,9]. The second types are the support system parameters, such 
as the stiffness, the damping of the bearings and foundation [4].  

In all previous work on rotor design optimization, the problem is considered as 
a single objective optimization problem where an optimization method would re-
turn a single solution for only one objective. However, some studies devoted to 
multi-objective optimization of the rotors, by combining the individual objective 
functions into a single composite function or move all but one objective to the 
constraint set, but in many cases the objectives (or goals) are in conflict with 
another, where an improvement in one objective leads to a worse solution for at 
least one of the other objectives. Moreover, design variables were treated as conti-
nuous variables. In practical situations the rotor components are available only in 
standard dimensions, therefore continuous solutions are practically non realizable.  

In this paper, the rotor design multi-objective optimization problem is consi-
dered with discrete design variables, selected in a predefined set of values in order 
to obtain a practically realizable solution. Section 2 is devoted to the formulation 
of the rotor design multi-objective optimization problem. Next, Section 3 gives a 
brief presentation of the optimization algorithm MOGA, used in this work. Final-
ly, a rotor dynamics model is considered in Section 4 as a numerical example to il-
lustrate the effectiveness of this algorithm. 

2   Multi-objective Rotor Design Optimization Problem 

Consider an n dimensional decision variable vector 1 2{ , ,...... }nx x x=x , in the solu-

tion space, find a vector *x  that minimizes a given set of k objective functions, If 
all objective functions are for minimization, a feasible solution x is said to domi-
nate another feasible solution y  ( )x y>  if ( ) ( )i if x f y<  for i = 1.....k .  

A solution is said to be Pareto optimal if it is not dominated by any other solu-
tion in the solution space. The set of all feasible non-dominated solutions in the 
solution space is referred to as the Pareto optimal set, and for a given Pareto op-
timal set, the corresponding objective function values in the objective space are 
called the Pareto front. 
 
The multi-objective rotor design optimization problem can be written as follows:  
 
               Objective 1:     1

 
min ( ) min   ( )f Mass

∈ ∈
=

Dx D x
x x  

               Objective 2:     *
2

1

min ( ) min ( ) ( )
i

N

i
i

f ω ω
∈ ∈ =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑

x D x D
x x x         (1) 

                Subject to                ∈ Dx  
 

Where 1f  is the first objective function which present a total mass of the rotor, 2f  

is a second objective function, iω and *

i
ω are the critical speed of the thi mode and 
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the corresponding desired one, N is the number of degree of freedom of the rotor, 
x is a vector of discrete design variables, each belonging to a predefined set D . 
The design variables considered in this work are the diameters of the shaft  
sections. 

Given the discrete nature of the multi-objective optimization problem in  
Eq. (1), a Multi-Objective Genetic Algorithm (MOGA), known for their global 
optimization capability, is chosen to find an optimum design. 

This algorithm has been applied in diverse fields of engineering for solving op-
timization problems such as structural design [10], rotary regenerator [11], com-
pressor blade design [12], etc. In most applications, only continuous problems 
have been considered. In this paper, the rotor design problem is formulated in 
terms discrete variables and MOGA algorithm is chosen to solve the resulting dis-
crete multi-objective optimization problem. 

3   Optimization Algorithm 

This section is devoted to a brief description of the Multi-Objective Genetic Algo-
rithm (MOGA), used to solve the rotor design multi-objective optimization prob-
lem. Genetic algorithms are inspired by the mechanisms of natural selection which 
favors the survival of the individuals with the best performance [13]. The ability 
of MOGA to simultaneously search different regions of a solution space makes it 
possible to find a diverse set of solutions for difficult problems with non-convex, 
discontinuous, and multi-modal solutions spaces. Therefore, MOGA has been the 
most popular heuristic approach to multi-objective design and optimization prob-
lems [14]. 

To apply MOGA to the rotor design multi-objective optimization problem, a 
predefined set of 32 discrete diameters, noted D, is considered. The index of each 
diameter is coded into 5 binary digits as shown in Table1. Hence the design vari-
able vector or chromosome is represented by string binary digits of length (5 x 
numbers of design variables)  

Table 1 Example of coding a design variables vector 

Discrete diameters x1 x2 x3 .…… xi …… xn 

Index of xi in D Ind(x1) Ind(x2) Ind(x3) ….… Ind(xi) …… Ind(xn) 

Chromosome 01001 11010 01010 …… 01001 …… 00111 

4   Numerical Example 

In order to verify the efficiency of the MOGA algorithm for solving the discrete 
rotor design multi-objective optimization problem, a finite element model of a ro-
tor, shown in Figure 1, is considered. The modeled rotor system consists of a flex-
ible shaft supported by two bearings and three rigid disks rigidly fixed to the shaft.  
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The shaft has a diameter 76.2d mm= (3 inches), a length 812.8L mm=  (32 

inches), a Young’s module 11 2E 2.1 10 N/m= × , a mass density 3= 7810 kg/m  ρ and a 
Poisson’s ratio 0.3ν = . The disks (1), (2) and (3) are fixed respectively 
at 1  = 431.8 mml , 2  = 381 mml and 3 = 25.4mml , from the left side of the shaft. All 

three disks parameters are shown in Table 2. The inside diameter of each disk is 
assumed to be the outside diameter of the associated shaft element. The two bear-
ings are modeled using springs and dashpots as shown in Figure 1. All springs and 
dashpots have, respectively the same stiffness and damping coefficients: 

6
1 2 1 2 5.643 10 /  xx xx yy yyK K K K N m= = = = × and 3

1 2 1 2 10  /xx xx yy yyC C C C Ns m= = = = .  

The rotor shaft is modeled with 21 shaft finite elements using Euler-Bernoulli 
beam model in which the gyroscopic and the inertia of rotation effects are in-
cluded. Thus, the system has 22 nodes. Each node has four degrees of freedom; 
therefore, the model has 88 degrees of freedom. Length of shaft finite elements is 
25.4 or 50.8mm as shown in figure 1. The two bearings are located, respectively, 
at nodes 2 and 15, the three disks are respectively fixed at the 10th, 12th and 21th 
node. The gyroscopic effect of the disks has also been included in the model. The 
rotor is therefore a damped asymmetric system due to the gyroscopic effects and 
the damping of the bearing dashpots.  

 
 

 

Fig. 1 A 88 DOF finite element rotor model 

Table 2 Disks parameters 

 Disk 1 at node 10  Disk 2 at node 12  Disk 3 at node 21 

External diameter [mm] 558,8    279,4   254 

Thickness [mm] 50,8    50,8   50,8 

Diametral Inertia [kgm²] 1,9188    0,12287   0,08434 

Polar Inertia [kgm²] 3,7966    0,23605   0,16081 
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Figure 2 shows the Campbell diagram which represents the change in the 
damped natural frequency with respect to rotor speed. Note that the first two criti-
cal speeds are respectively located at 2152 and 5080 rpm. The rotor operating 
speed is chosen to be 2300 rpm. 

 
 

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

Rotor spin speed (rpm)

D
am

pe
d 

na
tu

ra
l 

fr
eq

ue
nc

ie
s 

(H
z)

 

Fig. 2 The Campbell diagram of the initial rotor 

The mass of the initial design of the rotor is 165,25 kg. Table 3 shows respec-
tively the first two critical speeds of the initial rotor and the corresponding two de-
sired critical speeds. 

Table 3 The first two critical speeds associated with the initial rotor. 

DOF Initial critical speeds  Desired critical speeds  

1 2152.8  rpm 1937.52 rpm 

2 5080.8  rpm 4572.72 rpm 

 
 

The desired critical speeds are chosen by decreasing their initial values by a 

factor of 10%. The decision variable vector is given by 1 2 3=   ...... jd d d d⎡ ⎤⎣ ⎦x , 

where ( )1......21jd j = are the shaft element diameters.  

In order to adjust the control parameters of the MOGA, for the discrete rotor 
design optimization problem,  the crossover and the mutation rates are chosen to 
take respectively the values Pc= 0.1, 0.4, 0.8 and 1.0 and Pm= 0.001, 0.05, 0.1 and 
0.8. for each couple of crossover and mutation rate values, the algorithm is ex-
ecuted with a population size equal to 100, a uniform selection technique, a Pareto 
fraction equal to 0.2 and a stopping criteria defined by a maximum of 100 itera-
tions. Figures (3.a), (3.b), (3.c) and (3.d) show the Pareto fronts correspondent re-
spectively to Pc = 0.1, 0.4, 0.8 and 1.0. For each value of Pc, the mutation rate is 
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varied in the set{ }0.001,0.05,0.1,0.8 . The four best rotor designs in terms of ob-

jectives satisfaction are shown in Figures (3.a), (3.b), (3.c) and (3.d), which are 
obtained respectively for the couple of crossover and mutation rates (0.1,0.05), 
(0.8,0.8), (0.4,0.1) and (1.0,0.8). The best of them correspond to that illustrated in 
Figure 3.b, which minimize simultaneously the total mass of the rotor and the sum 
of the difference between the first and second critical speeds and the correspond-
ing desired ones.  

 
 
 

 
 

Fig. (3.a) Pareto optimal set and best rotor 
design obtained with Pc = 0.1 and Pm = 
0.05 

 
Fig. (3.c) Pareto optimal set and best rotor 
design obtained with Pc = 0.4 and Pm = 0.1 

 

 
 
Fig. (3.b) Pareto optimal set and best rotor 
design obtained with Pc = 0.8 and Pm = 
0.8 

Fig. (3.d) Pareto optimal set and best rotor de-
sign obtained with Pc = 1 and Pm = 0.8 
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In typical GA implementations, the mutation rate (probability of changing the 

properties of a gene) is very small and depends on the length of the chromosome. 
Therefore, the new chromosome produced by mutation will not be very different 
from the original one. Mutation plays a critical role in MOGA. Crossover leads 
the population to converge by making the chromosomes in the population alike. 
Mutation reintroduces genetic diversity back into the population and assists the 
search escape from local optima. However, crossover holds up a well exploration 
of search space. 

The ultimate goal of a multi-objective optimization algorithm is to identify the 
best solutions in the Pareto optimal set. However, in the multi-objective optimiza-
tion of the rotor design problem, the two objectives are in conflict between them, 
where an improvement in one objective leads to a worse solution for the other ob-
jective; Figure 4 illustrate three different rotor designs in the Pareto optimal set, 
though the first best solution shown a model of rotor with a minimum mass, which 
leads to an worst solution in terms of satisfaction of critical speeds limits, Howev-
er, the third optimal design which give best solution in terms of the second  
objective.   

 

142 144 146 148 150 152 154 156 158 160
0

500

1000

1500

2000

2500

3000

3500

4000

Objective 1

O
bj

ec
tiv

e 
2

   Initial rotor model   

   Optimized rotor 

 

Fig. 4 Illustration of the rotor designs in the Pareto optimal set obtained by MOGA. 

5   Conclusion 

In order to improve the dynamic behavior of flexible rotors, a design modification 
problem is formulated as a multi-objective optimization problem where the mass 
and the shift of critical speeds of a rotor were two objective functions. The shaft 
elements diameters are considered as discrete design variables to obtain practically 
realizable solutions. To solve the discrete rotor design multi-objective optimiza-
tion problem, the Multi-Objective Genetic Algorithms (MOGA), is used. In order  
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to verify the efficiency and the capability of the MOGA in solving this type of ro-
tor optimization problem, a finite element model of a rotor, with 88 degrees of 
freedom is considered as a numerical example. The designs obtained by MOGA 
algorithm are practically realizable solutions represented by a Pareto optimal set. 
However, the results revealed the level of confliction between the two objectives, 
where an accomplishment in one objective leads to a worse solution for the other 
objective. Hence, to be able to make a decision, it is necessary to seek a compro-
mise with respect to the objectives. 
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Abstract. This paper deals with the critical speed optimization of a rail vehicle 
system moving in curved track with relatively high speed. Indeed the roll motion 
of the car body will be included in the dynamic model in order to study its effects. 
Based on the structural characteristics of the rail vehicle and its curved motion, a 
critical speed optimization as a function of the radius of curvature and the rail 
vehicle design parameters is performed using the genetic algorithms. The safety 
criterion is evaluated using the derailment angle. The outcomes of this work could 
help the designer in his choice of the adequate design parameters yielding the best 
compromise between critical speed and radius of curvature. 

Keywords: Modeling, optimization, rail vehicle, curved tracks. 

Nomenclature 

i,j,k Index of wheel set,wheel and 
bogie respectively 

kiy  Transversal displacement of the 
wheelset i of bogie k 

ˆm m+  Wheelset and bearing body mass ncγ  Lateral acceleration of the vehicle 

,M M  Mass of bogie and car body 
respectively. 

kiα  Yaw angle of the wheelset i of the 
bogie k 

eγ
 

Equivalent conicity ,kα α  Yaw angle of the bogie k and Car 
body respectively 

cR  Radius of curve ,kθ θ  Roll angle of the bogie k and Car 
body respectively 

0h  Vertical distance between  the 
primary suspension and the 
bogie centre of mass 

d  Transversal distance between the 
secondary suspension and the Car 
body centre of mass 

δ  The rail inclination kiθ  Roll angle of  the wheelsets  ki 
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d Transversal distance between the 
primary suspension and the 
bogie centre of mass 

,ky y  Transversal displacement of the 
bogie k and car body respectively 

uK  Spring stiffness of the secondary 
suspension in the direction u 

uK  Spring stiffness of the primary 
suspension in the direction u 

1   Introduction 

By traveling on short radius curves, the rail vehicle (RV) should achieve 
acceptable performance in particular with respect to safety. Elkins and Wu (1999) 
considered the ratio of the lateral force to the vertical force applied by each wheel 
on the rail, as a derailment criterion. Suda (1990) used the angle of attack and the 
lateral displacement of a wheelset, as two independent parameters, to predict the 
curving performance of the RV. In his study, the system is considered to have no 
flange rail contact.  

Other works treated the effect of the designs of a RV system on its behavior. 
He and McPhee (2005) used a multibody dynamics modeling software to 
determine the equations of motion of the RV models. Based on this model, mono-
objective optimization design was conducted using Genetic Algorithms method. 
The objective function was a weighted combination of the angle of attack and the 
ratio of the lateral force to the vertical force applied by each wheel on the rail. 
Rejeb et al. (2007) optimized the critical speed as a function of the design 
variables of the rail vehicles system in rectilinear motion using the Genetic 
Algorithm method.  

Based on the improved model, presented in a previous work (Nejlaoui et 
al.2010), the goal of this work is to develop a critical speed optimization of a RV 
moving with a relatively high speed using safety criteria. In section 2, the 
improved dynamic model of the RV system developed in (Nejlaoui et al.2010) 
will be presented. This model considers the roll motions due to the fact that the 
RV circulates with relatively height speed and the presence of the different 
suspension systems. In section 3, the optimization of the critical speed as a 
function of the radius of curvature will be developed. Various solutions will be 
presented and discussed. Some concluding remarks will be given in section 4. 

2   Model of the RV System 

2.1   The Rail Vehicle Model 

The RV model is made of a car body, two bogies and four wheelsets. The car body 
C is connected to the bogies Ck by 4 secondary suspensions. Each bogie is 
connected to 2 wheelsets Ski using 4 primary suspensions. The RV system has 21  
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degrees of freedom, supposed independent, which are identified by the lateral 
displacements, the roll and the yaw motions of the car body, two bogies and four 
wheelsets (Rejeb et al. 2007).  

Based on the RV symmetry and due to the fact that we focus on the transversal 
dynamics, it is proved that the study of the dynamic modeling of the system can be 
reduced to the modeling of its quarter as presented by (Figure 1) (Nejlaoui et 
al.2009). Therefore the rail vehicle motion is represented by the generalized 

coordinate’s vector q defined by:  1 1 1 11 11 12 12, , , , , , , , ,
T

y y y yα θ α θ α α⎡ ⎤= ⎣ ⎦q  (1) 

Vector q gives the different motions at the equilibrium after the lateral 
displacement y0 produced by the inertia of the rail vehicle system in curved tracks. 

 
 

 

Fig. 1 The rail vehicle model  

The analytical model of the rail vehicle system is obtained based on the 
Lagrange formalism and can be expressed as follows: 

( ) =A q q b                                                         (2) 

The matrix A and the vector b are given in the appendix. For more details see 
(Nejlaoui et al.2010). 

In this study, we assume that the rail curve radius and the rail inclination δ are 
constant. Moreover, due to the fact that the RV speed V is constant, we will 
neglect the damping forces, which were proved to be not significant, compared to 
the elastic ones (Majka and Hartnett 2008). 
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2.2    Safety Modeling 

In curved tracks with a low radius, we have a flange rail contact. This contact 
leads to a lateral force 1iF  (Fig. 2b) that if it exceeds a certain limit, it can cause 

the derailment of the RV system.  In what follows, we will give, in a closed form, 
the forces responsible of the derailment.  

When there is a flange – rail contact, the generalized coordinate 1iy  of vector q 

is constant and it presents a known value. By using the constraint 

equation 1 0iy = , in the dynamic model (Eq.2), the lateral forces 1iF can deduced 

from the Lagrange multiplier:  

( )

( )

1

1

2 2
11 12

1 11 1 12 0 1 1 1

1

2 2
11 12

1 1 22 1 0 1

1

( 1) ( 1)
2 2

ˆ( 1) ( 1) 2 ( )  
2 2

i
i i

i y x
ci

i
i ix

i i i nc i
ci

yd y y A
F K y y a y y h K

a a RA

K d y y a
C m m W y y

a a R

α θ α α

α α χ α γ ζ

=

=
=

=

⎛ ⎞−⎜ ⎟= − − − − − + − − + − − +
⎜ ⎟
⎝ ⎠

⎛ ⎞−+ − − + − − + ∑ + + + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
   

(3)  

Where: C22 is the Kalker’s coefficient (Datoussaid 1998). , , and i Wχ ζ∑ are 

defined in the appendix. 
 
 

Fig. 2 The Wheel – Rail contact forces. 

The analysis of the equilibrium of forces in vertical and lateral directions gives:  

1

1

1

tan

tanN
1

ij

i

ij

T
F S

T

S

θ

θ

−
=

+
                                                        

(4) 

 

T1ij S 

N 

M1ij 

X1ij 

 
a: No flange rail contact 

 

F1i 

T1ij S

N

θ

X1ij 

M1ij 

F1i 
N 

β  

b: Flange rail contact 
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The maximum of safety is obtained when this term is 1

N
iF⎛ ⎞

⎜ ⎟
⎝ ⎠

minimal (Elkins 

and Wu 1999). The maximum of ( )1 /ijT S corresponds to the friction coefficient µ. 

Therefore, at a given maxθ , to avoid the derailment, we should have:  

 max
1

max

tan
( max( ))

1  tan i

F
F F

N

θ μ
μ θ

−
< =

+                             
(5) 

This gives max

max

tan
tan      (tan )

1  tan

F

N

θ μβ β
μ θ

−< =
+                               

(6) 

β is the derailment angle. 

To determine the force F, we should have the expressions of the generalized 
coordinates of the system. To achieve this goal, we developed an algorithm based 
on the Broyden’s method (Nocedal and wright 1999). This algorithm solves the 
model for q. The values of F (F = max (F1i)) is calculated using equation (3). 

3   Optimization of the Critical Speed 

It is worth mentioning that the best optimization should be accomplished for 

various lateral accelerations  
2

nc
c

V
g

R
γ δ= −  which coupled V to Rc (Fig 3); 

However, the RV model (eq.3) shows that Rc intervened on ncγ and on the lateral 

force F.  For this reason, the optimization is accomplished for different RV 
traveling speed V with a given radius of curves Rc. 

3.1   Formulation of the Optimization Problem 

From the eq. 03, for each Radius of curvature ciR , the critical speed ciV  can be 

given by: 

( )

( )
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Where: max
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1  tan
F N

θ μ
μ θ

−
=

+
. 
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In what follows, we will optimize the design variables xi that have a significant 
effect on the dynamic behavior of the RV system. The search domain D(xi) of 
each design variables xi are listed in Table 1.  
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Fig. 3 Case of study 

Table 1 Design variables and their search domains 

Variables xi D (xi) Variables xi D (xi) 

( / )xK N m  [106, 108] ( / )zK N m [104, 106] 

( / )yK N m
 

[106, 108] eγ [0.05, 0.2] 

( / )zK N m
 

[106, 108] ( )a m [1,2] 

( / )xK N m
 

[104, 106] ( )M Kg [30000,45000] 

( / )yK N m
 

[104, 106] ( )M Kg  [3000,3500] 

Thus, the problem can be presented as follows: 

ci i

max

i i

Maximize     V (x ) 

under the constraints :  

 

                x D(x )                                    

β β

⎧
⎪
⎪
⎨ ≤⎪
⎪ ∈⎩  

For max 75 degreesθ =  (Elkins and Wu 1999) and 0,31μ =  Joly 1985), we 

obtained max 58degreesβ =  (see Eq.06)  

-20 msncγ =

-20,13 msncγ =

-20, 26 msncγ =

-20,39 msncγ =
-20,52 msncγ =
-20,65 msncγ =
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3.2   The Optimization Method 

The optimization is based on the classical genetic algorithms. The advantage of 
the type of GA is its simplicity, its robust response to changing circumstances, and 
its flexibility (Bouazizi et al.2009). We start with a randomly selected first 
generation. Every individual in this generation is evaluated and a fitness value is 
assigned. Next, a new generation is produced by applying the reproduction 
operator. Pairs of individual of the new generation are selected and a crossover is 
performed. With a certain probability, genes are mutated before all solutions and 
evaluated again. This procedure is repeated until a maximum number of 
generations is reached. While doing this, the best solution is stored and returned at 
the end of the algorithm (Bouazizi et al.2009). 

3.3   Results and Discussion 

The application of the optimization program, for different Rc, gives the results in 
fig4. One can note that when the radius of curvature Rc increases the critical speed 
Vc increases too. In fact, the increases of Rc decreases the centrifugal forces 
received by the vehicle.  
 

150 200 250 300 350 400 450 500 550
35

40

45

50

55

60

65

70

Rc(m)

V
c(

K
m

/h
)

 

Fig. 4 Optimization results 

Moreover, we can note that we have a constant ncγ for all the optimal solutions. 

This result is not related to the Vc and ncγ dependency but also to the RV design 

parameters which are optimized for every combination of Vc and Rc. Thus we can 
define a critical lateral acceleration nccγ . By varying, in the optimization program, 

maxβ  the nccγ   changed (see fig.5). 

S

S

S
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One can note, also, that when maxβ  increases ncγ increases too (fig.5); this can be 

explained by the fact that the increase of the maximal derailment angle maxβ  

allows the increase of the critical speed Vc; and consequently the increase of the 
critical lateral acceleration nccγ . 

In what follows, we will analyse the particularity of the solutions presented in 
fig.4. Therefore, for each design vectors corresponding to solutions S1, S4 and S7 
we determine in fig 6 the evolution of Vc as a function of Rc  
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Fig. 5 Optimization results at different maxβ  
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Fig. 6 Evolution of Vc as a function of Rc 
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We define the corresponding curves CS1, CS4 and CS7 to S1, S4 and S7 
respectively.  One can note that each curve represent the limit between two areas; 
the safety and the non safety zones.   

One can note that if we use the design vector of S1, at Rc= 200m, we can 
increase the speed of 10.5 m/s2 (see table 3). For the same design vector, at Rc= 
500m, we lose 9.5 m/s2 in speed.   

In the other hand, if we use the design vector of S7, at Rc= 500m we can 
increase the speed of 9.5 m/s2. But, at Rc= 200m, we lose 10.5 m/s2 in speed. This 
behavior is due to the optimized design vector and Vc as function of Rc. Thus, to 
find a best compromise between the critical speeds at 200m and 500m, the 
designer can select a middle solution from the different Rc defining a given 
trajectory of the RV.  

4   Conclusion 

This work deals with the critical speed optimization of the rail vehicle moving in 
curved tracks with relatively high speeds. Based on the improved analytical quasi 
static model that considers the roll motion generated by the centrifugal forces, an 
optimization was performed using the genetic algorithm in which the critical 
speed is maximized. The obtained solutions are analyzed for several design 
parameters. The presented analysis could help the designer in the choice of the 
most adequate design parameters of a set of rail vehicles systems yielding the 
maximum of safety.  
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Fig. A1 The contact parameters of wheel-rail. 
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Abstract. This paper presents an overall wind turbine model including a helical 
three stage gear system having twenty eight degree of freedom. First, the excita-
tion of the model is induced by the periodic variation of the mesh stiffnesses and 
the aerodynamic forces are supposed constant. Then, the calculation of the dynam-
ic response is performed by a step-by-step time integration method (Newmark me-
thod). Finally, the variation of the aerodynamic forces is introduced in the model. 
An analysis of the effects of these forces on the gear system dynamic behavior is 
then treated. 

Keywords: Helical three-stage gear, wind turbine, meshes stiffnesses. 

1   Introduction 

Generally, a modern wind turbine consists of three main parts: a rotor on a hori-
zontal axis, a nacelle and a tower. The vibrations occurred, in one of these parts, 
are transmitted to the other by the relative motions between the mechanical com-
ponents such as shafts, gears, bearings… [1]. 

In response to internal and external forces, the motion of each component, 
functions to convert wind energy into electrical energy, is dependent on the nature 
of those forces and their dynamic characteristics, which are not easy to predict. 

Most of the work [2] [3] [4] considers the wind turbine can be modeled by two 
masses connected to a single rotating shaft on a general-purpose configuration with-
out considering the internal effects like the vibrations caused by the moving work 
piece and especially the static transmission error, which is the dominant excitation 
caused by the periodic meshes stiffness fluctuations. Moreover there are other 
sources of excitation like the aerodynamic torque fluctuations and the electromag-
netic torque fluctuations. These force fluctuations in turn cause the frequency varia-
bility, because the induction machine will vary with the turning force applied to it. 

                                                           
* Corresponding author. 
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The aim of the present paper is to investigate the dynamic behavior of a three 
stage gear system in a typical wind turbine. The numeric results concerning the 
dynamic response are obtained by using numerical integration algorithm. 

2   Aerodynamics Model 

In this section, the aerodynamic torque can be determined from the coefficient of 
power noted Cp. This parameter is the ratio of power actually captured by the ro-
tor blades versus the total kinetic power in the wind passing through the swept 
area S. The maximum limit for Cp is 0.59 according to Betz’s Law, but CP-value 
is less than 0.59. This difference is due to the assumptions and simplifications that 
were made by Betz. 

Turbine manufacturers usually provide some general background information 
like Cp vs λ curve. Without giving a specific features to help researchers in the field 
to calculate the turbine efficiency and its specific design. For this reason, researchers 
have proposed numerous strategies to find analytical expressions of this curve. 

To estimate the aerodynamic power coefficient, [5] [6] are developed an analyt-
ical expressions of the power coefficient based on a linear regression model. 
Another way to calculate Cp that is developed in the work of [7], which takes into 
account the number of blades and their primary geometric or aerodynamic charac-
teristics (length, sections, etc.). 

The power coefficient can be expressed by taking into account the various 
losses in a wind turbine. There are many different types of loss including profile 

losses ( profilη ), end losses ( endη ), eddy losses ( PschmitzC ) and blade number 

losses [7]. 
The power coefficient can be written as: 

P PSchmitz profil endC C ( ) ( ,g) ( ,B)= λ η λ η λ
                  

(1) 

Schmitz' theory of losses due to the angular momentum, can be written as: 

3

1
2

PSchmitz
20

1
2 atan

sin
3

C 4 d
1

sin atan

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟τλ⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠= λτ τ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟τλ⎝ ⎠⎝ ⎠

∫
                     

(2) 

Here τ is the non-dimensional radial position of a wind turbine blade. 

r

R
τ =

                                   
(3) 

The blade tip-speed-ratio’ λ ’ and the number of slip (slide) ‘g’ are defined as  
follows [8]:  
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R
,

V

Ωλ =      profil ( ,g) 1
g

λη λ = −                       (4) 

g is the number of slip (slide), with CL is the lift coefficient and CD is the coeffi-
cient dragged. 

L

D

C
g

C
=

                                     
(5) 

The differential pressure between the upper and lower surfaces of the blade creates 
a rotating flow that increase towards the tip. This phenomenon is taken into consi-
deration by this expression: 

end
1.84

( ,B) 1
B

η λ = −
λ                                

 (6) 

B is the number of blades.  

Le couple aérodynamique aeroC qui s’exerce sur l’arbre  lent du capteur éolien : 

2
aero air QC 0.5 SR C V= ρ

                        
(7) 

The torque coefficient CQ Can Be derived from the power coefficient CP by: 

P
Q

C
C =

λ                              
 (8) 

The thrust coefficient of the wind turbine rotor CT is modeled is modeled by [9] 
that is supposed to fit for most of the modern 

T
hub

7 c
C   

V
=

                                 
(9) 

Here c is a constant equal to 1 m/s. 

In this study we ignore the wind shear, for this reason Vhub=V 

The thrust can be written as: 

2
axial air T airF 0.5 C SV 3.5 SV= ρ = ρ                   (10) 

Figure 1 shows the Time signal and the frequency spectrum of the torque input 
calculated from the above methodology. 

3   Model of the Three–Stage Gear System 

Three-stage gear system is composed of three trains of gearings. Every train links 
two blocks. So, the gear system has in totality three blocks (j=1 to 3). Every block 
(j) is supported by flexible bearing the stiffness of which kxj, kyj, kzj, kφj and kψj 

are the traction-compression and the bending stiffness. 
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Fig. 1 Time signal and frequency spectrum of the torque 

Moreover, the shafts (j) are only submitted to the torsional motion and admit 
some torsional stiffness kθj. The wheels (11) and (42) characterize respectively 
the motor side and the receiving machine side which inertias are Im and Ir. The 
other helical gears constitute the gearbox. The gear meshes are modeled by linear 
spring along the lines of action (figure 2). xj, yj and zj are supposed the linear dis-
placements of the bearing. The shaft lengths are considered of the same order of 
the teeth width. Moreover, it is supposed that the shafts mass less. 

The mesh stiffness variation ki(t) (figure 2) is modeled by trapezoidal waves 
that depend on the features of the gearings. It is proportional of the length of con-
tact line [10]. 

 

 

Fig. 2 Dynamic model of the aerodynamics turbine coupled to a helical three stage  
Multiplier 
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4   Expression of the Teeth Deflections 

The First teeth deflection 1(t)δ is written as follows:  

1 1 2 1 2 1 2 3 1 2 4 1 5 1 6 12 7 2

8 2 9 21

(t) u (x x ) u (y y ) u (z z ) u u u u

u u

δ = − + − + − + φ + ψ + θ + φ
+ ψ + θ

   (11) 

The second teeth deflection 2 (t)δ is written as follows: 

2 1 2 3 2 3 2 3 2 3 4 2 5 2 6 22 7 3

8 3 9 31

(t) v (x x ) v (y y ) v (z z ) v v v v

v v

δ = − + − + − + φ + ψ + θ + φ
+ ψ + θ

   (12) 

The third teeth deflection 3 (t)δ is written as follows:  

3 1 4 3 2 3 4 3 3 4 4 3 5 3 6 32

7 4 8 4 9 41

(t) w (x x ) w (y y ) w (z z ) w w w

w w w

δ = − + − + − + φ + ψ + θ
+ φ + ψ + θ

      (13) 

The distances 1p  and 2p are defined as follows: 

1 12 1p Rb tg= α   ; 2 21 1p Rb tg= α                         (14)  

The distances 2p′  and 3p are defined as follows: 

2 22 2p Rb tg′ = α ;  3 31 2p Rb tg= α                         (15)                              

The distances 3p′  and 4p are defined as follows: 

3 32 3p Rb tg′ = α   ; 4 41 3p Rb tg= α                        (16) 

Rbij is the basic radius of the wheel j related to block i 
The constants ui, vi and wi are calculate by Walha L. and al [11]. 

5   Equations of Motion 

Lagrange formalism leads to the set of differential equations governing for the 
model. They are expressed in the system of equations (17). 

The calculation of the dynamic response is performed by a step-by-step time in-
tegration method (Newmark method). 
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6   Results and Discussion 

First, the aerodynamic forces are supposed constant. Consequently, the excitation 
of the model is induced only by the periodic variation of the mesh stiffnesses. 

Figure 3 represents the frequency response of linear displacements resulting on 
the third bearing. It is clearly noticed the presence of several peaks in every signal. 
These peaks correspond to the three mesh frequencies fe1= 67 Hz , fe2= 182 Hz 
and fe3 = 481 Hz with their harmonics. 

 

Fig. 3 Frequency dynamic response of the third bearing 

Then, the aerodynamic forces variations are introduced in the model. Figure 4 
represents the dynamic frequency responses of the third bearing. The existing 
peaks correspond to the three mesh frequencies fe1, fe2 and fe3 with their har-
monics, and the frequencies of the wind fwi. So, we can conclude that the effects of 
wind are transmitted to the bearings through the intermediary of the gears. 

Note that vibration signal plotted as amplitude vs. frequency for each bearing 
along the direction x, y and z shown below display the same information, but the 
emphasis is changed. 

 

 

Fig. 4 Frequency dynamic response of the third bearing 
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7   Conclusion 

In this paper, the helical three-stage gear system was modeled by twenty eight de-
grees of freedom system. In the first time, the dynamic behavior of the three stage 
gear system was made. A step-by-step time integration method (Newmark algo-
rithm) was used to obtain this dynamic behavior. In the second time, the helical 
three-stage gear system behavior is affected by the aerodynamic forces variations. 
The effects of wind are transmitted to the bearings through the intermediary of the 
gears. 
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Chapter 3 
Signal Processing and Pattern Recognition 

Modern condition monitoring extensively employs signal processing and pattern 
recognition techniques. Signal processing is using for both signal enhancement 
(de-noising, separation, reconstruction, filtering… etc) and feature extraction 
(parametric models, two dimensional plane representation) 

In some cases, damage detection can be performed using simple rules i.e. “if 
feature_value bigger than threshold than damage else undamaged” however when 
consider complex mechanical systems, especially in time varying conditions, 
problem of classification of features becomes much complicated. In such a case, 
feature selection procedures are proposed and advanced data classifiers are used. 
In this chapter mentioned issues are addressed.  
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Abstract. The impulses in vibration signals and their spectral features are the key 
indicators for diagnosing localized gear damage. A new method, called time-
wavelet energy spectrum, is proposed to extract the characteristic frequency of 
faulty gears. The analysis of gearbox experimental signals show that the time-
wavelet energy spectrum can highlight impulses, and is effective in extracting the 
repeating frequency of periodic impulses. It cannot only extract the relatively 
significant fault feature of gear tooth missing, but also can extract the weaker fault 
features of gear tooth wear. 
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1   Introduction 

Gearbox fault diagnosis is a main topic in the field of machinery fault diagnosis. 
So far, many techniques have been proposed for gear fault diagnosis, such as 
cepstrum, envelope spectrum, and time domain synchronous average, etc [1-4]. 
However, in engineering applications, it is not easy to extract the fault features 
from gearbox vibration signals, due to the complicated signal components and the 
background noise interferences [5, 6]. 

A large percentage of gear faults are induced by localized gear damage, like 
pits, chips, and cracks on gear tooth surface which eventually result in tooth 
breakage. Such damage usually generate periodic impulses in the vibration signals 
during the running of damaged gears, with the period of impulse train depending 
on the number of damaged teeth and their distribution over the gear. In a word, 
periodic impulses characterize the vibration of damaged gears, and provide an 
intuitively understandable indicator of localized damage. Hence, how to extract 
impulses from vibration signals is a key issue for gear damage detection and 
location. 
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In time-frequency domain, the energy of an impulse concentrates in a narrow 
rectangular area (which tends to be a line) vertical to the time axis whereas 
parallel to the frequency axis. This characteristic is useful to identify the periodic 
impulse train induced by gear damage, and thereby to detect and locate the 
damage [5]. In most cases, the feature of an impulse train is weak even in time-
frequency domain due to background noise interferences. Thus, how to extract the 
periodicity of impulse train in time-frequency domain is a key issue. This paper 
addresses this issue by exploiting the merit of wavelet transform in detecting 
transient phenomena and that of Fourier transform in revealing the periodicity of 
signals. 

2   Time-Wavelet Energy Spectrum 

2.1   Principle 

Our idea of time-wavelet energy spectral analysis is inspired by the energy 
distribution property of impulses on time-frequency plane. The energy of an 
impulse spans over a wide frequency band and localizes at the time instant when it 
occurs, thus concentrating in a very narrow rectangular area vertical to the time 
axis whereas parallel to the frequency axis. If we integrate the time-frequency 
energy distribution of an impulse train along the frequency axis, the derived time-
evolving energy is expected to show peaks at the instants when an impulse occurs. 

In an ideal case without any interference, we can identify the repeating period 
of impulse train according to the time interval between adjacent peaks in the time-
evolving energy waveform. However, in most cases, it is difficult to do so, 
because background noise often coexists with and thus weaken the feature of 
impulses induced by gear damage. In such cases, to reveal the repeating frequency 
of an impulse train, we apply Fourier transform to the derived time-evolving 
energy, by exploiting its function in extracting the periodicity of signals. 

Wavelet transform is effective in detecting transient components in signals, so 
we use it to do time-frequency analysis, and we name the finally derived Fourier 
spectrum of time-evolving energy as time-wavelet energy spectrum. 

2.2   Wavelet Transform 

For a signal of limited energy x(t), its wavelet transform is defined as 

1
( , ) ( ) ( )d

t
W a t x

aa

∞

−∞

−= ∫
ττ ψ τ  (1)

where ψ(t) is the wavelet basis, τ the time shift, and a the scale. 
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The energy conservation property of wavelet transform states that 

2 2
2

1 1
| ( ) | d ( )d | ( , ) | d dx t t E t t W a t a t

C a

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
= =∫ ∫ ∫ ∫  (2)

where 

21
ˆ| ( ) | d

| |
C

∞

−∞
= < ∞∫ ψ ω ω

ω
 (3)

and ˆ ( )ψ ω  is the Fourier transform of the wavelet basis ψ(t). 

From Eq. (2), the instantaneous energy of the signal at any instant t can be 
derived as 

2
2

1
( ) | ( , ) | dE t W a t a

a

∞

−∞
= ∫  (4)

It equals the integral of squared modulus of wavelet transform over scale, namely 
the integral of wavelet scalogram along the frequency axis, so it is called time-
wavelet energy in this paper. 

Among various types of wavelet basis, Morlet is commonly used in many 
applications. It is defined as 

2 2
0 04

1 1 1
( ) [exp( ) exp( )]exp( )

2 2
t j t t= − − − −ψ ω ω

π
 (5)

When ω0≥5, the second exponential term in the square bracket tends to be zero, 
then Morlet can be simplified as 

2
04

1 1
( ) exp( ) exp( )

2
t j t t= − −ψ ω

π
 (6)

Eq. (6) shows that Morlet is a squared exponentially decaying function [7, 8]. Its 
waveform well matches the characteristics of a damped impulse vibration. So it is 
used to extract transient phenomena and especially the impulse characteristic of 
gear damage in this paper. 

3   Gearbox Vibration Signal Analyses 

3.1   Specification of Gearbox Experiment 

The gearbox experiments are conducted on a SpectraQuest test rig as shown in 
Fig. 1. The motor drives the gearbox through a power train which is composed of 
shaft 1, a convey belt (transmission ratio 2.5), and shaft 2. No load is applied to 
the gearbox. The parameters of the drive gear 1 and driven gear 2 are listed in 
Table 1. 
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An accelerometer is mounted on top of the gearbox casing. During the 
experiment, the motor runs at a stable speed of 1000 rpm. The vibration signals 
are collected at a sampling frequency of 6400 Hz. 

Three statuses of the gearbox are simulated. In the normal case, both gear 1 and 
gear 2 are perfect. In faulty case 1, one tooth of gear 1 is missing (see Fig. 2 (a)), 
whereas gear 2 is perfect. In faulty case 2, one tooth of gear 1 is worn (see Fig. 2 
(b)), whereas gear 2 is perfect. 

 

 

 

Fig. 1 Schematic diagram of gearbox test rig 

Table 1 Gearbox parameters 

Values list Gear 1 Gear 2 

Number of gear teeth 18 27 

Rotating frequency (Hz) 6.667 4.444 

Meshing frequency (Hz) 120 

          
                      (a)                                            (b) 

Fig. 2 Tooth damage of gear 1: (a) tooth missing, and (b) tooth worn 

 
 

One tooth 
worn 

One tooth 
missing 
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3.2   Signal Analysis 

For comparison study, we firstly analyze the normal gearbox vibration signal. Fig. 3 
shows its waveform, Fourier spectrum and time-wavelet energy spectrum. The 
maximum peak in the Fourier spectrum appear at 100 Hz equal to twice the 
electrical power frequency, and it also exists in the following faulty cases, thus we 
do not consider it in our analysis. In the time-wavelet energy spectrum, the first two 
biggest peaks at 116 Hz and 233 Hz correspond approximately to the meshing 
frequency and its second harmonic. 

Next, we analyze the vibration signal of tooth missing case to illustrate the 
effectiveness of time-wavelet energy spectrum in diagnosing gearbox fault. Fig. 4 
shows the analysis result. There are significant impulses in the vibration signal 
waveform, repeating at a frequency of 6.4 Hz corresponding approximately to the 
rotating frequency of gear 1. This indicates that gear 1 is faulty. However, the 
Fourier spectrum has a similar structure to that of the normal gearbox. Therefore, 
we cannot detect the tooth missing fault based on traditional Fourier spectral 
analysis, even though the gear fault is severe. In the time-wavelet energy 
spectrum, many significant peaks appear, and they correspond to the rotating 
frequency of gear 1 and its higher order harmonics. In particular, sidebands appear 
around 119 Hz equal approximately to the meshing frequency of with a spacing of 
6.4 Hz close to the rotating frequency of gear 1. These findings indicate that gear 
1 is faulty, and the time-wavelet energy spectrum is more effective in extracting 
gear fault symptom than the conventional Fourier spectrum. 

Finally, we analyze the signal of tooth wear case to show the performance of 
time-wavelet energy spectrum in extracting the symptom of weak gear faults.  
Fig. 5 shows the analysis result. Compared with gear tooth missing, tooth wear is 
a slight fault, so the vibration signal does not show significant difference from that 
of normal case, either in time domain or frequency domain. Therefore, we cannot 
detect the gear tooth wear by traditional waveform or Fourier spectral analysis. 
However, more harmonics of meshing frequency appear in the time-wavelet 
energy spectrum than that of the normal case. This characteristic indicates that the 
gearbox is faulty. To locate the gear fault, we zoom in the time-wavelet energy 
spectrum around the meshing frequency. Sidebands appear around the meshing 
frequency, and their spacing of 6.4 Hz equals approximately the rotating 
frequency of gear 1, indicating that gear 1 is faulty. These findings show that the 
proposed time-wavelet energy spectrum is able to detect and locate weak gear 
fault. 

 
 



228 J. Zhang et al.
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Normal: (a) waveform, (b) Fourier spectrum, and (c) time-wavelet energy spectrum 
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Fig. 4 Tooth missing: (a) waveform, (b) Fourier spectrum, and (c) time-wavelet energy spectrum 
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(d) 

Fig. 5 Tooth worn: (a) waveform, (b) Fourier spectrum, (c) time-wavelet energy spectrum, 
and (d) zoomed-in time-wavelet energy spectrum 

The above analysis results are all consistent with the experimental settings. It 
shows the effectiveness of the time-wavelet energy spectrum in detecting and 
locating gear faults, especially the good potential in extracting the symptom of 
weak gear faults. 

4   Conclusions 

In order to extract the periodicity of impulse train induced by gear damage, we 
propose a new method called time-wavelet energy spectrum. It can highlight the 
impulses induced by gear damage, and thereby we can detect and locate gear fault 
by matching the spectral peaks with the gear fault characteristic frequency. We  
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validate the proposed method using gearbox experimental vibration signals. The 
analysis results show that the method is effective not only in diagnosing severe 
gear fault, but also in extracting the symptom of weak gear fault. In the future, we 
will validate this method using industrial gearbox vibration signals. 
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Abstract. The aim of this paper is to use a numerical model to estimate the 
minimum amplitude of a localized and angularly periodic perturbation which 
should be detected through the analysis of Power Spectral Density (PSD) of 
Instantaneous Angular Speed (IAS). To that purpose, a numerical torsional model 
of a test bench is developped. Particular attention is paid to precise introduction of 
this perturbation in the numerical device. It is modelled in the angular domain as a 
half sinus without any loss of generalization. The main results is that perturbation 
with a magnitude 300 times lower than the friction bearing torque should be 
detected through the analysis of the PSD of IAS for a representative inertia. 

Keywords: Instantaneous Angular Speed, Angular Approach, Non Stationary, 
Numerical angular model. 

1   Introduction 

Experimental measurements performed on rotating systems have shown that the 
presence of certain mechanical defects, such as bearing faults, is detectable on 
measurements of Instantaneous Angular Speed (IAS). It seems reasonable to 
attribute this variation of angular velocity to a variation of external torque ΔTp 
further reffered to the disturbance. As the purely experimental approach gives 
some surprising sensitivity results but does not allow to investigate the potential of 
this disturbing torque, a numerical approach is proposed in this paper. 
Consequently, a numerical model of a test bench is proposed and used to 
determine the minimum amplitude of the disturbance Tp so that its effects are 
detectable on the Power Spectral Density (PSD) of IAS measurements. 

                                                           
* IAS: Instantaneous Angular Speed. 



232 B. Adeline, A. Hugo, and R. Didier
 

2   Models and Simulations 

The mechanical system considered is the shaft of a test bench under construction 
(Fig. 1). This bench is designed to allow finer investigations on the relationship 
between bearing faults and the consequences on the IAS measurement. It consists 
of a shaft supported by two tapered roller bearings that may present defects. This 
shaft is driven in rotation by an electrical motor providing torque TM. An optical 
encoder measuring the rotational speed is located at the other end of the shaft. A 
disc of inertia Io, not presented in Figure 1, can be introduced. A radial loading 
device is made using a knuckle and springs. An axial preload can be introduced 
through a Belleville washer. 
 

 

Fig. 1 Test bench modeled and example of bearing outer ring with fault. 

A simplified dynamic model of this device is made using 10 torsional beam 
elements. An equivalent viscous dampers Cei representative of external damping 
(bearings, knuckle, ...) are also introduced. Disturbing torque Tp can be introduced 
at one bearing node (dof #4). A schematic representation of this model is given in 
the following figure. 
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Fig. 2 Torsional model definition. 

Elementary torsional stiffness is ks = 6.3x104 Nm/rad, the elementary inertia 
Is = 5.08x10-6 Kg.m2. The structural damping cs was set at 0.0036 Nms/rad, which 
corresponds to 0.66% of critical damping. The damping coefficients of bearings 
and knuckle are estimated from the moments of friction provided by SKF [2] for 
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these types of bearings. Let CeA =CeB = 1.1x10-2 Nms / rad for taper rolling bear-
ings and CR = 7.9x10-3 N.ms / rad for the knuckle. The 3 first eigenmodes of this 
system are defined in next table: 

Table 1 First Eigenmodes of device 

Eigenvalue (rad/s) 1.102x104 3.33x104 5.66x104 

Modal damping 0.0073 0.0034 0.0041 

 
 
The disturbance considered in this document is intended to be representative of 

the presence of a localized fault on a rotating system. It is characterized by its 
angular period θo and its angle length Lθ assumed to be small. The choice was 
made to model it as a half sine of amplitude Q, but obviously other shapes can be 
imagined. However, Dirac pulses do not seem relevant because they are not 
representative of physical reality and lead to numerical instabilities. Fig. 3 shows 
the different parameters used for disturbance modeling. 

 

 

Fig. 3 Parameter definition of the disturbance modeling. 

The numerical solution is achieved using an angular approach extension of the 
methodology proposed previously to multi-DOF models. At the end of the 
numerical calculation the following quantities are obtained:  

 
-a vector {θc} of angular positions of the “sensor” dof (dof#1), 
-a time vector {Tc} corresponding to the instants of calculation.  
 

The following post-processing is applied to obtain a vector {ωm}of Instantaneous 
Angular Speed (IAS) comparable to those measured. Let R be the resolution of the 
encoder and let Fc the clock’s frequency. 
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Step 1: Definition of angular positions corresponding to sampling angles: 

{ } { }e

2
0 2. with

R

πθ θ θ θ= Δ Δ Δ =  (1)

Step 2: Estimation of elapsed time {Te} when the angular positions {θe} are 
reached. This step is done by linear interpolation of time at the angular sampling  
positions {θe} from the values of {Tc} computed at positions {θc}. 

Step 3: Calculation of time "measured" by the counting method1: 

mi ei c
c

1
T T .F .

F
=  (2).

Step 4: Calculation of time differences τ between two sampling angular positions: 

m m ei mi m ei m ei 1(i ) ( ) T ( ) T ( )τ θ τ θ τ θ θ −Δ = = = −  (3)

Step 5: Calculation of average angular speed on each angular interval [θi-1 θi] : 

mi
mi

2

R.

πω
τ

=
 

(4)

The sets of values {τm} and {ωm} are then comparable to values obtained from 
experimental measurements. These signals are then analyzed using dedicated 
processing tools comparable to those used on the experimental signals: Hanning 
windowing, angular FFT. 

3   Investigations on the Magnitude of the Disturbance 

The aim of this part is to estimate the minimum amplitude of the disturbance that 
leads the variations in rotating speed to be detected by the Power Spectral Density 
(PSD) of Instantaneous Angular Velocity. Three operating conditions are 
simulated:  
 

• A: Constant input torque : TM1= 2.04 N/m, leading to constant rotating speed ω1 
= 68 rad/s, 

• B: Constant input torque : TM2= 7.1 N/m, leading to constant rotating speed ω2 
=237.5 rad/s, 

• C: Input torque varying linearly : TM3 = To + 0.5t, leading to varying speed be-
tween ω3_1 = 68 rad/s and ω3_2 =239.5 rad/s. 

 

For all simulations, the angular period θo and angular width Lθ of the disturbance 
are set to θo= 0.86 rad and Lθ=0.127 rad. That leads to a cyclic frequency of 
7.3 even/rev (event per revolution). Simulations are made of 250 shaft revolutions 
and therefore lead to cyclic frequency resolution of 0.004 even/rev, thus ensuring 
that the harmonics of the disturbance are located on exact channels in the PSD 
calculation. 

                                                           
1 Where <x> is the function that rounds x to the higher integer. 
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3.1   Simulations with No Fault (Q=0) 

To get a reference to determine the smallest amplitude of the perturbation that can 
be detected through IAS measures, a first serie of simulations is performed for a 
device without defects (Q = 0). Resulting PSD are ploted in fig 4.  
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Fig. 4 PSD of IAS with no fault 

The previous figure shows the existence of noise even in numerical simulations. 
This noise is the superposition of the noise associated with numerical resolution 
methods and the measurement noise associated with the counting method used to 
estimate IAS. In the case of a steady speed, the measurement noise results in the 
appearance of harmonics in the PSD without mechanical meaning. Those ampli-
tudes can be very large. These harmonics are named artifacts. The position and am-
plitude of these artifacts are very sensitive to the value of speed as shown on fig. 5. 
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Fig. 5 Influence of rotating speed value on artifacts due to measurement method 

3.2   Simulations with Fault  

Figures 6, 7, 8 present the PSD of IAS computed with disturbance of magnitude 
respectively 1.0x10-6 N.m, 1.0x10-5  N.m, 1.0x10-3  N.m. 
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In the first case, consequence of the disturbance on the PSD can not be detected 
accurately as noise and artifacts are still important. For simulation B, only the 6th 
harmonic of the disturbance, located at 43.8 even/rev, emerges clearly. In this analy-
sis, it is interesting to notice that the first eigenmode (1.102x104 rad/s) for a steady ro-
tating speed of 237.45 rad/s, stands at 46.4 even/rev. Conversly, peaks at 94.54 
even/rev (case A) and 58.83 even/rev (case B) have no obvious mechanical meaning. 
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Fig. 6 PSD of IAS in case of fault with magnitude Q=1.0x10-6 N.m 

The effects of a perturbation with an amplitude of 1.0x10-5 N.m, 10 times high-
er than in the previous case, can be detected on the PSD of instantaneous veloci-
ties as shown in fig.7. However this result must be analysed with the operating 
conditions. Indeed, for a stationary low-speed, 68 rad/s (case A), amplitudes of the 
harmonics of the disturbance are low and measurement artifacts are mixed with 
them. In the other hand, PSD obtained for the highest stationary speed (case B) 
shows harmonics with the higher levels and here again amplitude of  the 6th har-
monic of the perturbance is the highest due to the vicinity of the first eigenmode.  
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Fig. 7 PSD of IAS in case of fault with magnitude Q=1.0x10-5 N.m. 
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For larger magnitude of disturbance, 1.0x10-3 N.m, effects appears clearly on 
both simulations (Fig. 8.) but number and amplitude of harmonics depend largely 
on operating conditions. 
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Fig. 8 PSD of IAS in case of fault with magnitude Q=1.0x10-3 N.m. 

3.3   Analysis 

Early studies show that the presence of a fault leading to a disturbing torque with 
amplitude greater than 1.0x10-5 Nm are detectable through the IAS measuremets. 
The amplitude of this torque is low compared with other torques present in the 
mechanism: driving torque between 2 and 10 Nm and friction bearing torque  
close to 3.0x10-3 Nm. This finding is consistent with the hypothesis, made a priori, 
that the disturbances induced by mechanical faults such as bearing spalls have low 
amplitudes. This work enlightens the needs to perform studies aiming a better un-
derstanding of the relationship between the existing defect and its influence over 
the IAS measurements. 

Moreover, these simulations confirm that the only study of the amplitude peaks 
in the PSD cannot be an indicator of the evolution of a fault. Indeed, the simula-
tions clearly show the influence of operating condition and of the first torsional 
mode on the amplitudes of the harmonics of the disturbance on the PSD of the 
IAS signal.  

4   Conclusion 

The numerical approach presented in this paper completes the experimental ones 
that have demonstrated the usefulness of the IAS measurements and of the use of 
angular approaches to monitor rotating mechanical systems. Although the torsion-
al model proposed is simplistic, it brings the theoretical confirmation to argued 
experimental findings such as the ability of IAS analysis to detect low or very low 
speed variations. Futhermore, this model can establish the link between the  
amplitude of a disturbance related to the presence of a mechanical defect and its 
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signature on the PSD of the IAS. It appears that the consequence of fault on the 
IAS is detectable even with very low magnitude of the disturbance regarding other 
mechanical characteristics like inertia. Of course, the increase in the magnitude of 
the disturbing torque results in an increase in the amplitude of the peaks of the 
PSD. Harmonic peaks emerge clearly of the measurement noise if the magnitude 
of the disturbing torque is important. But the reverse is not true as a change in am-
plitude of a harmonic of the cyclic frequency may also reflect a change in the 
modal contributions related to ranges of rotating speed variations. 

It also appears that in case of very small perturbation noise is important in the 
PSD of IAS. Large part of this noise is due to the method used for measuring ro-
tating speed. In case of constant speed, this method creates, in the PSD, artifacts 
that may have large amplitudes, but without any mechanical meaning. Such arti-
facts might not appear in experimental measurements as an actal constant speed 
does not exist, but will surely appear in numerical simulations and must be kept in 
mind for accurate analysis.  

All these results and finalization of the previously mentioned test bench opens 
the door to numerous works for, hopefully, a better understanding of the nature of 
the disturbances resulting from the presence of a mechanical defect in rotating 
machines. In this aim , it will be necessary to refine the proposed model, in partic-
ular concerning damping characteristics.  
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Abstract. The purpose of this review work is to present a summary about the ap-
plication of the time-frequency analysis techniques for roller bearings condition 
monitoring. For roller bearings, periodic impulses indicate the occurrence of faults 
in the components. However, it is difficult to detect the impulses because they are 
noisy and rather weak. Unfortunately, the FFT-based methods are not suitable in 
this case because they are not able to reveal the inherent information of non-
stationary signals. In order to suppress any undesired information and highlight 
the features of interest and because of the disadvantages of the FFT analysis, it is 
necessary to find supplementary methods for non-stationary signal analysis. Time-
frequency analysis is the most popular method for the analysis of transient signals. 
The objective of the present work is to study, compare and modify the time-
frequency representation techniques such as: Short Time Fourier Transform 
(STFT), Wigner–Ville Distribution (WVD) and Wavelets which can be used to 
analyses non-stationary phenornena.  

Keywords: Time-frequency, Wavelet, de-noising, roller bearings, Morlet wavelet. 

1   Introduction 

The initial appearance of a defect in a machine can produce transient phenomena 
in the vibration signal. Passage of a bal1 over a localized defect in a bearing, con-
tact of a damaged tooth with other teeth in the gearbox, and piston slap in the en-
gine are examples of well-known industrial problems generating transient events. 
Frequency domain vibration analysis methods, such as the power spectrum, aver-
age the transient events so that they do not appear clearly in the spectral lines. 
Time domain methods which are also used to analyse transitory signals, can loose 
the frequency information of different machine components. Thus, it appears, 
therefore, that it is necessary to employ a new technique which would combine 
frequency information with amplitude changes in time. Therefore, rather than 
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separate observation of the time from observation of the frequency characteristics 
of a signal, it is necessary to use a joint time-frequency (TF) techniques. The earli-
est time-frequency method is known as the Spectrogram or Short Time Fourier 
Transform (STFT). In recent years, various TF techniques, such as the Wigner-
Ville Distribution and Wavelet transforms, have been developed in the signal 
processing field. In this paper, the theory of the time-frequency methods is briefly 
explained and some practical examples of simulated signal and defective bearing 
are analyzed. In conclusion, the effectiveness and advantages of each method are 
demonstrated. Furthermore, as an application of wavelets, a de-noising technique 
has been developed to remove noise from signals. Because, the performance of 
traditional wavelet decomposition based de-noising methods is greatly impacted 
by relative energy levels of signal coefficients and white noise coefficients. The 
wavelet threshold de-noising techniques introduced earlier are all based on ortho-
gonal wavelet transforms and assume that the property of the noise is known, that 
is, the noise is Gaussian. These techniques do not utilize any information regard-
ing the signal to be identified. When dealing with smooth signals, satisfactory re-
sults can generally be achieved by manipulating the threshold (Neumann and 
Sachs 1995). The underlying reason is because with smooth signals, a small num-
ber of large coefficients can characterize the original signal and the transient com-
ponents that vary rapidly are treated as noise. These de-noising techniques are not 
suitable for vibration signal analysis from roller bearings because the impulses to 
be isolated are not smooth. Therefore, it is much more challenging to de-noise im-
pulse series signals where wavelet coefficients are not so concentrated.   

2   Simulation and Experimental Procedure 

The impulses generated by mechanical damaged of a roller bearing often exhibit 
the shapes shown in Fig. 1. The signal shown in Fig. 2 which is artificially cor-
rupted by Gaussian noise is used to test the effectiveness of the proposed method. 
We wish to extract weak periodical impulses from the vibration signals with heavy 
background noise. Furthermore, to investigate the effectiveness of time-frequency 
methods a series of vibration signals collected from a test rig were analyzed for 
detecting faults. Vibration signals are collected from accelerometer mounted on 
the bearing housing. Starting from the undamaged condition, artificial defects (pits 
of approximately 1 mm and 2 mm wide) were introduced to the bearings. Time 
and spectral amplitude representing the effect of the crossing of the balls over ar-
tificial spalls are presented in Fig. 3, and Fig. 4. On the grounds of these observa-
tions, it appears clear that the effectiveness of the spectral analysis for the bearing 
diagnostics proves inadequate to operate correct monitoring. 
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Fig. 1 Simulated impulses 
 

Fig. 2 Simulated impulses with heavy Gaus-
sian noise l 

 
The bearing faults cannot be diagnosed with certainty since spectra provide 

peaks, located at the fault characteristic frequencies, whose amplitudes are compa-
rable to the corresponding ones related to the bearing in sound condition. Noise 
prevails over the effect of periodic impulses.  

 

 

Fig. 3 Vibration signal with small defect on 
outer raceway 

Fig. 4 Power spectrum of the signal 

3   Short-Time Fourier Transform (STFT) 

The Short-Time Fourier Transform (STFT) is the fastest and the easiest method in 
terms of its implementation and the visual representation of the results. The STFT 
may be considered a method that breaks down the non-stationary signal into many 
small segments which can be assumed to be locally stationary, and applies the 
conventional FFT to these segments. The STFT of a signal  is achieved by 
multiplying the signal by a window function,  , centered at ‘t’, to produce a 
modified signal.  
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Fig. 5 and Fig. 6 shows, respectively, STFT with different width of win-
dow  ,of the signal composed of a train of impulses and the same signal  
artificially corrupted by Gaussian noise. Both spectrograms were calculated using 
rectangular window. The spectrograms give a relatively good description of the 
signal behaviour in both cases. However, a great difference of time-frequency lo-
calization in the STFT representation of the signal is apparent if the width of the 
window is changed. The bandwidth limitation imposed by the window function 
mean that if we want to get better resolution in time we must sacrifice resolution 
in frequency and vice versa. 
 

 

 

Fig. 5 STFT of simulated impulses 
 

Fig. 6 STFT of corrupted impulses 

 
However, in the case of multi-component signal, because of the poor time-

frequency resolution, the components of the collected signal from the test rig are 
poorly represented. To give a good representation of all components in this signal 
requires good resolution in both time and frequency, which cannot be achieved us-
ing the spectrogram.  

4   Wigner-Ville Distribution 

The Wigner-Ville distribution of signal  is defined as (Hyun et al. 2001):  
 , 2 2                        2  

 

Where  is a continuous complex signal. The Wigner Distribution possesses 
very high resolution in both time and frequency. Despite the desirable properties 
of the Wigner Distribution, it has two major draw-backs: 1. It often gives negative 
values, which makes the interpretation of the distribution difficult. 2. This distri-
bution is a bilinear function producing interferences or cross terms for multi-
component signals. The WVD of the sum of two signals  is:  

 , , , 2 , ,                    3  

Time (s)
0 0.02 0.04 0.06 0.08 0.1 0.12

0

500
1000
1500
2000

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000

1500
2000

F
re

qu
en

cy
 (

H
z)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000
1500
2000

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000
1500
2000

Time (s)
0 0.02 0.04 0.06 0.08 0.1 0.12

0

500
1000
1500
2000

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000

1500
2000

F
re

qu
en

cy
 (

H
z)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000
1500
2000

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500
1000
1500
2000



Time-Frequency Analysis Techniques Review and their Application 243
 

Figures below show the effect of ‘cross-terms’ in the WVD. Fig. 7 shows the 
WVD of of the signal composed of a train of impulses and Fig. 8 the same signal 
artificially corrupted by Gaussian noise. Others impulses has been added to the 
signal in both cases. Although there is a good representation of the behaviour of 
both signals. The one obvious advantage that the WVD has over the STFT is its 
improved time-frequency resolution. Concentration of energy at the instantaneous 
frequency and other theoretically desirable properties also make the WVD prefer-
able to the STFT in many signal processing applications. 
 

 

 

Fig. 7 WVD of simulated impulses 
 

Fig. 8 WVD of corrupted impulses  

5   Wavelet Transform 

Wavelet analysis relies upon a family of basis functions, called wavelets, for sig-
nal processing in the time-frequency domain. Wavelets are defined with respect to 
several mathematical properties such as square integrability and admissibility; 
however, they can be essentially considered as finite-duration waveforms for the 
limited purposes of this paper. The continuous wavelet transform  of a fi-
nite energy signal , with the analyzing wavelet  is the convolu-
tion of  with a scaled and conjugated wavelet as follows (Jiang et al. 2010):   , , , 1√ ,∞

∞
           4  

 

Fig. 9 CWT of impulses corrupted by GN Fig. 10 CWT of the signal with small defect  
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From Fig. 9, it is possible to notice that, in the case of Morlet wavelet, the time-
frequency signal features become more explicit in the CWT map. The wavelet 
analysis highlights the exact time location of the transient spike however it does 
not accurately measure the frequency of the spike. Besides, from Fig. 10 one can 
note that it is hard to find any periodic impulses in the original test rig signal with 
small defect. Obvious periodic impacts are hardly seen unless the damage of the 
defective component is very serious and near fatal breakdown. Therefore, the dis-
crete wavelets transform (DWT), whose main idea is the process of multi-
resolution analysis (MRA) proposed by Mallat is one of the most appropriate 
techniques to make a joint time-frequency analysis of discrete-time signals. Fig. 
11 and Fig. 12 shows respectively, the waveforms of the simulated and the tested 
bearing, with small defect, signals in which ‘db4’ wavelet is employed as the basic 
wavelet. The waveforms have clear impulses. Obvious periodic impulses in Fig. 
12 appear in the subplot of scale 4 and in the subplot of scale 3, while no impulses 
exist in other subplots. As a result, one can notice that distinct evenly spaced im-
pulse clusters can be observed from the reconstructed signal, whose duration is 
equal to the BPFO of the tested bearing, providing an effective representation of 
the fault development. 

 
 

 

Fig. 11 DWT of impulses corrupted by GN 
 

Fig. 12 CWT of the signal with small defect 

6   Sparse Code Shrinkage De-noising Using Optimal Morlet    

The impulse detection results generated by wavelet decomposition and de-noising 
are still not easy to be identified especially when the signal to noise ratio (SNR) of 
the detected signal is low. In view of this, Hyvärinen has proposed a so-called 
sparse code shrinkage method ‘SCS’ to estimate non-Gaussian data under noisy 
conditions. 
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It is based on the maximum likelihood estimation (MLE) principle and is suc-

cessfully used for image de-noising. It demands that the non-Gaussian variable 
follow a sparse distribution. To represent a sparse distribution, Hyvärinen propos-
es the following function form for a very sparse probability density function pdf  
(Hyvärinen 1999):   

 12 2 1 /2 ⁄1 /2 | / |                               5  

 

Where:  is the standard deviation of the impulses to be isolated and 

 is the parameter controlling the sparseness of the pdf with 0 . For an impulse whose pdf can be represented by Eq. 5, Hyvärinen pro-
poses the following thresholding rule:     

 g sign max 0, | | 2 12 | | 4 3         6  

Where:  1 /2,  is the standard deviation of the noise. The recon-
struction results from shrunken wavelet coefficients using the thresholding rule 
given in Eq. 6 represent an approximation of the impulses. The modified Morlet 
wavelet function used in this paper is:   

 ⁄ ⁄                       7  
 

Where   is an arbitrary centre frequency and  is the shape parameter. 0.7 is used as a result of optimization using minimal Shannon entropy.  The 
results of applying this proposed approach are presented on Fig. 13 and Fig. 14.   
 

 

Fig. 13 SCS de-noised impulses Fig. 14 SCS de-noised signal with small defect 
 

From Fig. 14 distinct evenly spaced impulse clusters can be observed from the 
reconstructed signal and no fake impulses exist. These quasi-periodic intervals are 
equivalent to the inverse of the ball-passing frequency outer-race (BPFO) which is 
0.0041 sec. The obtained results have shown that the proposed approach is very 
effective in the extraction of weak periodical impulses under heavy noise, and its 
performance is much better than the traditional methods. 
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7   Conclusion  

By comparing the results obtained from time-frequency analysis of different vibra-
tion signals, we can conclude that: Time-frequency analysis has definite advantag-
es over time-based vibration analysis or frequency-based vibration analysis and 
these advantages make it a powerful tool in machine monitoring. Therefore, the 
STFT can give a satisfactory representation of a signal in the time-frequency plane 
provided that an appropriate length of window for cutting the signal is chosen. 
However, the Wigner-Ville is not able to produce a satisfactory representation of 
multi-component signals due to the presence of cross terms. In practical applica-
tions, the Wigner-Ville Distribution requires some smoothing in order to suppress 
the cross terms. Wavelet Analysis was also introduced as an alternative to be 
compared throughout the offline data analysis. Finally, we have investigated the 
capabilities of SCS de-noising method based on an adaptive Morlet wavelet. The 
approach is based on maximum likelihood estimation of non-Gaussian random 
variables corrupted with additive, uncorrelated Gaussian noise. The SCS method 
proposed in this paper is effective at extracting the impulsive features buried in the 
noisy signals even when the SNR is very low. 
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Abstract. This study is to reconstruct the sound sources of the transmission me-
chanism for spur gear. The inverse technique used is based on the planar near field 
acoustical holography. The measurements were performed in acoustics and vibra-
tion laboratory (LVA) of the INSA of Lyon, in a semi-anechoic room, where the 
floor is concrete and the walls are covered with glass wool. Accelerometers are 
positioned on the casing, they serve as reference. The complex acoustic pressures 
are measured by a rectangular antenna composed of regularly spaced micro-
phones, which is placed above the noisy gear mechanism on a parallel plane. The 
source reconstruction is an inverse problem, it is classified as a so-called ill-posed 
problems, hence the necessity of applying regularization. Veronesi filter and Tik-
honov method coupled with the L-curve function can reconstructed the image of 
noise sources on a plane parallel and tangent to the gear mechanism considered 
open and sometimes closed. 

Keywords: acoustic holography, inverse problem, sound source, regularization, 
Veronesi, Tikhonov, L curve.  

1   Introduction 

In most work on the gear noise radiation, the researchers consider the vibration 
analysis rather than the acoustic analysis. This study considers the acoustic side 
with the aim of making the acoustic isolation and maintenance of defects.  

And among the techniques for the localization, characterization and ranking, 
with satisfaction of the vibratory and/or acoustic sources radiating in free space of 
the acoustic field mention the imaging techniques spatial-temporal. Today, they 
have proved their worth and are considered as powerful tools in some areas (au-
tomotive, aerospace, aeronautics). They can provide access to maps of various 
quantities (sound pressure, normal speed, sound intensity, power, impedance etc.) 
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providing information on relative or absolute amplitudes of the potential sources. 
Among these theoretical and experimental techniques that were developed to iden-
tify vibroacoustic sources, the near-field acoustic holography plane (PNAH) is a 
method of high performance acoustic imaging, it is implemented in different insti-
tutions and companies. The use of evanescent waves makes it a high-resolution 
method. It can also provide information in wave number by measuring just the 
sound pressure in the near field of a surface source. However, this reconstruction 
is an ill-posed inverse problem which results in numerical instabilities resulting in 
poor quality of the solution, the regularization methods are required. 

In this work, we use the imaging technique based on the acoustic PNAH, Vero-
nesi filter and Tikhonov method coupled with the L-curve allows the regulariza-
tions of the solution in order to reconstruct the sound field radiated at the source by 
the gear transmission mechanism operating considered open and sometimes closed. 

2   Process of PNAH and Regularization 

2.1   Overview of PNAH 

Theory and the basic foundations of the planar near-field acoustic holography 
(PNAH) are widely reported in the literature, and the first mentioned are those of 
Maynard (Maynard and Williams 1985), Williams et al 2003 and followed by Ve-
ronesi and Maynard in the years 1980. The PNAH is based on the fact that the 
sound pressure in a plane can be expressed by the two-dimensional convolution of 
a propagator and the pressure on another plane. This technique allows the recon-
struction of three-dimensional sound field from the measured complex pressure on 
a surface called a hologram, located in the near field of the sources. 

PNAH theory is based on the Helmholtz integral equation and the 2D spatial 
transform. The representation of the wave equation in the frequency domain, and 
introducing the wave number k is written as: 

ckwithzyxpkzyxp ωωω ==+∇ 0),,,(),,,( 22  (1)

The basic idea is to take advantage of the complexity and the richness of informa-
tion in the near field of sources in order to ensure the presence of evanescent 
waves carrying valuable information in the measured data, as shown by Williams 
(Williams 1999). This is done by performing a series of acoustic measurements in 
a plane parallel and covering the sound sources responsible for the acoustic radia-
tion in the surrounding field (Fig.1). 

The theoretical steps that arise in the treatment of PNAH are presented briefly; 
in the first place, the complex sound field measured by microphones placed on a 
regular grid (or hologram) is decomposed into a set of plane waves with two di-
mensions based on the analysis of the spatial Fourier transform. 

The space wave number is composed of the wave number k, zyx kkkk =⊥ ),( , 

orthogonal components spectra of plane waves. The spectra of pressure in this 
space, called k-space are obtained by the following expression: 
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Second, the spectra of plane waves obtained in this plan are propagated back from 
the measurement plane (or hologram) to the source plane. This requires know-
ledge of the propagation Green function, in general, the Green function is used in 
free field. 

Without any filtering operation, the acoustic pressure field is reconstructed on 
the source plane using the inverse Fourier transform. The spatial distribution of 
pressure on the source plane at the angular frequency ω is written as: 
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The diagram below summarizes the operation of PNAH without regularization 
(Paillasseur 2009). 
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With 2222
yxz kkkk −−= , the propagator G is defined as:  

)(),( HSz zzjk
HSz ezzkG −−=−  (4)

Two cases are used to specify the form of ),(1
HSz zzkG −− , the inverse propagator: 

 
 

 

 

Fig. 1 Pressure field reconstructed from the
back-propagation of the pressure field measured 
in Hz  
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222)(),,,(),,,( yx
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zzjk

HyxHSyx kkkifezkkPzzkkP HSz += −+ ≺≺ ωω  (6)

At the back-propagation, the amplitudes of propagating waves are not changed; 
against those in of the evanescent waves will grow exponentially. 

Figure 2 shows in the space of wave numbers and outside the circle of ra-
dius ckR ω==  we find the amplitude of the evanescent wave, the wave number 

transform decomposes the sound field in propagating and evanescent waves.  

2.2   Regularization for PNAH 

Regularization techniques are needed (Williams 1999) to this type of inverse prob-
lem. Two distinct stages occur in the regularization process for plane near-field 
acoustic holography (PNAH), first, a function of low pass filter is defined and 
then a stopping rule is applied to determine the optimal parameters of the filter for 
acoustic imaging. Two regularization methods are used, the Veronesi and Tikho-
nov. The method of Tikhonov regularization with the choice of the parameter op-
timization based on the L-curve is used in our case. The application of low pass 
filter to pressure field p or propagator G which has optimized the shape, slope and 
the cutoff frequency can mitigate the influence of evanescent waves responsible 
for distortions in the back-propagation. 

If we want to reconstruct the acoustic pressure signal in the plane source from 
measurements of the hologram and the propagator G, the compromise between fil-
tering too low and too high is obtained by the optimal position of β  giving the 
trough of the curve that corresponds to the maximum curvature (Paillasseur 2009, 
Scholte 2008), if we set: 

( ) ( )ββ ηρ sHs ppGp 1010 log,log =−=  (7)

Curvature )(βC  is given by: 

( )322 )()(
)(

ηρ

ηρηρβ
′+′

′′′−′′′
=C  (8)

Where the symbols "and'  represent the first and second derivatives with respect 

to the regularization parameter β , thus it is possible to determine the optimal val-
ue of regularization parameter by finding the maximum curvature )(βC  (Paillas-

seur 2009, Scholte 2008). 
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2.3   PNAH Resolution 

To optimize the spatial resolution, the evanescent waves must be included in the 
measured data (Williams 1999). Theoretically, the resolving power of holography 
is infinite (Hald 2001) but in practice, due to the inadequacy of the measurement 
chain, there is a limiting resolution which depends on the frequency of the acous-
tic signal, the dynamics of the chain acquisition and the distance between the ho-
logram and the sources plane (Paillasseur 2009, Scholte 2008) The resolution is 
defined as follows: 
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Where D is the dynamic range of the acquisition chain; Hz is the position of the 

plane of measurement or hologram and Sz , the position of the plane sources. 

3   Experimental Measurements 

3.1   Description of the Gear Transmission Mechanism 

Transmission gears simplified, consists of a spur gear including a couple of teeth 
45/65. The main characteristics of this gear are given in Table 1. The solid steel 
wheels are mounted on shafts with a diameter of 0.020 m. The input shaft is con-
nected to the engine through a flexible coupling. The shafts are guided in rotation 
by the bearings. The simple casing is of dimensions (0.40m x 0.35m x 0.16m) and 
0.025m thickness except for the wall 5, it is 0.005m. The casing is made of two 
materials, steel and Plexiglas, the Young's modulus is 2,1.1011 N/m2 and 3,3.109 
N/m2, the density is 7800kg/m3 and 1190kg/m3 and Poisson's ratio is 0.3 and 0.37 
respectively for steel and Plexiglas. The walls 3 and 5 (cover) are of Plexiglas, and 
the rest of steel. 

Table 1 Main characteristics of the gear. 

 Pinion Gear 

Number of teeth 45 65 

Module (m) 0.002 0.002 

Tooth width (m) 0.02 0.02 

Base radius (m) 0.045 0.065 

Pressure angle (dg) 20 20 
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Fig. 3 Experimental Setup in a semi-anechoic room (left) Gear transmission mechanism 
open (right) 

Figure 3 shows the semi-anechoic room, in which were carried out measure-
ments of the complex acoustic pressures, the antenna carrying the microphones is 
directed by a robot and OROS with 32 channels has been used for the acquisition 
of temporal data measured and transferred in format .mat to be treated under Mat-
lab environment. 

3.2   Experimental Exploitation 

We will be interested to calculate the acoustic radiation corresponding to the most 
energetic frequencies giving the highest sound levels depending on the case of 
closed and open mechanism. These two frequencies of study shown in Figure 4 
are 133Hz and 1856Hz for closed and open mechanism respectively. The speed 
rotation is equal to 41.2 Hz. These spectra give the level sound pressure (LSP) in 
dB (ref 2e-5) and it clear that it insufficient to interpret these results, while imag-
ing is necessary to find the sound sources of the mechanism for any frequency. 

 

 

Fig. 4 Sound pressure levels in dB and frequency in Hz Mechanism closed (black), Me-
chanism open (blue) 
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For frequencies of 133Hz and 1856Hz with a dynamic range of 60dB and a dis-

tance of 0.18m between the hologram plane and the plane source, a resolution of 
the order of less than 0.01m is achieved. The performances of holography in terms 
of resolution are very interesting. 

In Figure 5 are reported the plots of the L curves and the choice of regulariza-
tion parameters located at 0.09705 to optimize the imagery of the mechanism 
closed radiating at frequency of 133Hz, and 0.01812 for the one that optimizes the 
image of the mechanism open at a frequency of 1856Hz with back propagation 
distance d=0.15m, the package of P.C. Hansen has been used for these calcula-
tions (Hansen 1994). 

On the images of figure 6, giving the back propagation of the source field of the 
mechanism considered closed at a frequency of 133Hz, we note that they corres-
pond to the mode (1.1) of the cover which is excited, the results obtained by both 
methods of regularization are quite comparable in terms of the positions of hot 
spots in relation to components of the mechanism. This natural mode (1.1) of the 
cover was calculated by modal analysis software under LMS Pimento. 

The images in Figure 7 reconstruct the source field of the mechanism consi-
dered open at a frequency of 1856 Hz. This frequency equals the frequency of 
meshing of the mechanism (fe=45x41.2), we note that the results obtained at this 
frequency by the two methods of regularization are similar in terms of location of 
hot spots in relation to components of the mechanism with a concentration of 
sources on the gear itself. 

 

  

Fig. 5 The L-curves and optimal parameters 

  

Fig. 6 Back-propagation of level sound pressure (Pa)Veronesi (left) and Tikhonov (right) 
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Fig. 7 Back-propagation of level sound pressure (Pa) Veronesi (left) and Tikhonov (right) 

5   Conclusion 

The technique of the method provided us an evaluation of the pressure distribution 
in a plane very close to the sources. This is an acoustic imaging method based on 
the inverse solution of the wave equation, where the acoustic information plane at 
a distance from the source, known as hologram, was used as input in the process. 
In the field of wave number, one of the most influential on the final result is the 
low pass filter in two dimensions. For high resolutions of PNAH, determining the 
cutoff filter is crucial, this wave number serves as the regularization of the para-
meter in the reverse process is ill-posed. Tikhonov regularization based on the L-
curve allowed us to optimize our results. 

The PNAH allowed us by a back-propagation of the waves picked up a few 
centimeters from the source, to access through a mapping of existing noise nearly 
at the surface of the equipment or the transmission mechanism. In terms of resolu-
tion of the method PNAH, the performances of holography are therefore very in-
teresting. Totally ignoring the sources, the method of PNAH merely objectively 
reconstructed the acoustic field, making the tangent plane of reconstruction on the 
mechanism of in which is obtained easily interpretable images of sources. These 
images or visualizations of spatial acoustic fields facilitate the understanding of 
the complex phenomena of radiation.  

In this study, we have considered the acoustic analysis instead of vibration and 
that with the aim of making the acoustic isolation and maintenance of defects. Our 
results have been compared with the beamforming technique, the latter gives re-
sults qualitative rather than quantitative. The comparison of these results will be 
introduced in a future work. 
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Abstract. Bearings damage detection is one of the most important topic in condi-
tion monitoring. Main problem in industrial application of bearing vibration diag-
nostics is the masking of informative signal by interfering signals. It requires the 
usage of techniques based on advanced signal enhancement in order to extract use-
ful diagnostic components from the measured vibration signals. The paper shows 
application of Empirical Mode Decomposition (EMD) in extraction of weak im-
pulsive signal from raw vibration signals generated by complex mechanical  
systems employed in the industry (driving units of belt conveyors). Impulsive cha-
racter of the vibration signals is very often associated with a mechanical fault. The 
purpose of this processing is decomposition of the signal in order to detect impacts 
related to the damages in rolling element bearings (REB). 

Keywords: Rolling element bearings, Damage detection, Empirical Mode De-
composition (EMD), Intrinsic Mode Function (IMF), Signal extraction.  

1   Introduction 

Non-invasive diagnostics uses the signals generated during the facility operation 
as a media informing about its condition. The signals being recorder usually con-
tain many individual ones generated by the facility, and the  form of their  
“composition” may be of various form. In this case, signal recorded on the bear-
ings casing is notably disturbed by the signal generated by the gearbox, in spite of 
the distance between them.. It is difficult to analyse the recorded signal effectively 
when the signal related to the bearings damage is significantly weaker than the in-
terfering signal (generated by gearbox) [10, 11]. It is required to separate both sig-
nals [14] or in other words to extract informative part from vibration signal being 
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analysed [16]. Recent publications on EMD [6, 7, 9] show its advantages for non-
stationary signals processing and confirm its effective application in many  
diagnostics tasks . In this paper EMD-based approach for separation of determinis-
tic (generated by the gearbox mesh) and random, non-deterministic (generated by 
the damaged bearing) parts [15] was applied.  It works even if machine is under 
non-stationary operations. 

2   Empirical Mode Decomposition (EMD) – Brief Description 

Based on the EMD algorithm, an original signal x(t) can be strictly reconstructed 
by a linear superposition: 

 r(t) (t)cx(t)
n

i
i +=∑

=1

 (1)

where ci(t) is i-th empirical mode and r(t) is the final residue which can be inter-
preted as the mean trend of x(t). 

Each empirical mode ci(t), called Intrinsic Mode Function (IMF), fulfills the 
following two conditions [4]: 1) in the whole empirical mode, the number of mode 
local extremes and the number of mode zero-crossings are equal or differ at most 
by one and 2) at any point, the local average of upper and lower envelope is zero. 
The algorithm for the extraction of IMFs from original signal x(t) is called sifting 
process and it consists of the following steps: 

 
Step 1: Define the residue as r(t) = x(t). 
Step 2: Identify all the local extremes (maxima and minima) of x(t). 
Step 3: Connect all the local maxima (respectively minima) with a line known 

as the upper envelope Emax(t) (respectively the lower envelope Emin(t)). 
Step 4: Construct the mean of upper and lower envelope 

m(t) = 0.5·(Emin(t) + Emax(t)). 
Step 5: Define the detail (proto-IMF) as d(t) = x(t) – m(t) and replace x(t) by 

d(t). 
Step 6: Repeat steps 2÷5 until d(t) meets the IMF conditions and the stoppage 

criterion of the sifting process is fulfilled, then derive an IMF from d(t) 
and replace x(t) by r(t) = r(t) – d(t). 

Step 7: If the stoppage criterion of the signal's decomposition is fulfilled then 
finish the decomposition process; otherwise, go to step 2. 

The second IMF condition is too rigid to use, so it is necessary to change it to im-
plement the EMD. The local average of upper and lower envelope must be close to 
zero according to some criterion. The evaluation of how small is the amplitude of 
the local mean has to be done in comparison with the amplitude of the correspond-
ing mode. In [8] authors introduce a new criterion based on the mode amplitude  
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a(t) = 0.5·(Emax(t) – Emin(t)) and the evaluation function σ(t) = |m(t)/a(t)|. In this 
paper, d(t) meets the second IMF conditions, when max(σ(t)) < θ (the coefficient θ 
was in the range [0.025, 0.275]). 

A critical part of the EMD procedure is the stoppage criteria of the sifting 
process and decomposition process. Many different sets of IMFs can be obtained 
by changing the stoppage criteria. The stoppage criterion of the sifting process de-
termines the point when sifting is complete and a new IMF has been found (it de-
termines the number of sifting steps to produce an IMF). The stoppage criterion of 
the decomposition process determines how many components will be extracted 
from the signal. 

Three different stoppage criteria of the sifting process were considered. The 
first stoppage criterion is determined by using a Cauchy type of convergence test 
[4]. If the two details (proto-IMFs) from successive iterations are close enough to 
each other, it is assumed that the extracted detail is an IMF. The normalized 
squared difference SDk between two successive details dk–1(t) and dk(t) during k-th 
iteration is defined as: 

( ) ( )[ ]
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2
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2
1
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If this squared difference SDk is smaller than a predetermined TD value, the sifting 
process will be stopped. In this paper, the following values of TD were used: TD1 = 
1e-6 for the first half of the total number of siftings and TD2 = 1e-5 for the second 
half of the total number of siftings. The second stoppage criterion of the sifting 
process is based on the agreement of the number of zero-crossings and extremes. 
The sifting process is stopped when the numbers of zero-crossings and extremes 
are the same for S successive siftings [5]. In this paper, the following values of S 
were used: S1 = 10 for the first half of the total number of siftings and S2 = 3 for the 
second half of the total number of siftings. The third stoppage criterion of the sift-
ing process determines the maximum number of siftings. The sifting process stops 
when the replications of sifting procedure exceed the predefined maximum num-
ber. Selecting a maximum number of siftings prevents the sifting procedure from 
locking in a never-ending loop. This number should be set large enough to guaran-
tee that IMF is extracted. In this case, the maximum number of siftings was 500. 

The sifting process also stops when x(t) has less than two extremes (the signal 
must have at least two extremes, one maximum and one minimum, to successfully 
decompose the signal into IMFs). 

The decomposition process can be stopped finally by any of the following pre-
determined criteria: 1) the absolute values of the last IMF or the residue r(t) are 
smaller than tolerance level; 2) no more IMFs can be extracted from signal x(t);  
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3) the replication of decomposition procedure exceeds the predefined maximum  
number. Here the criterion of the signal's value level is described by the following 
relationship: 

( ) ( )))(min())(max(  max txtxy(t) OO −⋅< γ  (3)

where y(t) is the last IMF or the residue r(t), xO(t) is the original signal (the subject 
of decomposition) and g is a tolerance coefficient (here: γ = 0.01). 

In order to clarify the decomposition process, Fig. 1 shows the flow chart of the 
applied EMD algorithm. 

3   Denoising and Detrending Using Empirical Mode  
Decomposition 

Empirical Mode Decomposition is the iterative process of extracting empirical 
modes, called IMFs, from the signal. The successive IMFs include signal compo-
nents from different frequency bands ranging from high to low frequency. There-
fore, EMD corresponds to an adaptive (data-driven) filtering [2]. The filter  
associated to the first IMF is essentially high-pass, the IMFs of higher indices are 
characterized by a set of overlapping band-pass filters [3]. The proposed EMD-
based denoising and detrending approach is based on the assumption that the IMFs 
derived by EMD will be divided generally into three classes of IMFs: noise-only 
IMFs, signal-only IMFs and trend-only IMFs. A noise-only part of signal and a 
signal-only part of signal are generated from the sum of the noise-only and from 
the sum of the signal-only IMFs, respectively. A trend-only part of signal is gen-
erated from the sum of the trend-only IMFs and the final residue. 

The problem is to identify correctly the noise-only and trend-only IMFs. Typi-
cally, the noise is expected to be captured by IMFs of low indices and the trend is 
expected to be captured by IMFs of high indices. The specificity of various signals 
makes it impossible to distinguish all three classes of IMFs in each signal. If it is 
not possible to isolate the trend-only IMFs, the final residue is added to the signal-
only part of signal. 

Some methods of identification of noise-only and trend-only IMFs are pre-
sented in the literature [1, 2]. They are based on the empirically observed energy 
and mean of signal components. The proposed method of noise-only and trend-
only IMFs identification is based on Pearson correlation coefficient of IMF and 
original signal. The IMFs of low indices with low value of Pearson correlation 
coefficient are identified as the noise-only IMFs. The IMFs of high indices with 
low value of Pearson correlation coefficient are identified as the trend-only IMFs. 
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Fig. 1 EMD algorithm flow chart 

4   Application of Proposed EMD-Based Denoising  
and Detrending Approach in Vibration Signal Analysis 

4.1   Machine and Experiment Description 

A scheme and photographs of the machine working in the mining company during 
experiments are presented in Fig. 2. A several acquisition sessions have been per-
formed. Location of accelerometer is shown in Fig. 2d: sensor has been mounted 
using screw, in horizontal direction. Characteristic damage frequencies (calculated 
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based on shaft rotational speed and geometry of the bearings) are: 8.9 Hz, 
12.35 Hz and 16.1 Hz (rolling element, outer race, inner race fault respectively). 
For each measurement signal was acquired with following parameters: sampling 
frequency fs = 19200 Hz, duration T = 2.5 s. 

 

DRIVE

GEARBOX

COUPLING

LOAD

BEARING

BEARING

 DRIVE
PULLEY

c) d)

b)a)

 

Fig. 2 Diagnosed object: a) Scheme, b) Pulley with bearing housing mounted on shaft, 
c) View on joint of output shaft in gearbox with pulley, d) View on sensor location on pulley 

The task defined here (from diagnostics point of view) is to detect local  
disturbance signal with one of cycles corresponding to the fault frequency. Unfor-
tunately, signal of interest (impulsive, cyclic contribution related to the damaged 
bearings) is completely masked by high-energy source i.e. the gearbox located 
nearby (see Fig. 2a,c).  

In the paper the task is limited to extraction of the signal of interest by EMD. 
Further identification of fault type should be a classical one i.e. the detection using 
statistical indicators (e.g. kurtosis) or envelope analysis [14]. More information 
can be found in other papers concerning diagnostics of these machines (for exam-
ple [12, 13]). 

4.2   Analysis of Decomposition Results 

The decomposition results of rolling element bearing signal are presented in  
Fig. 3. The results of signal's part identification are presented in Fig. 4. 
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Fig. 3 Decomposition of original signal x(t) [m/s2] /16 empirical modes (IMFs) ci(t) [m/s2] 
and final residue r(t) [m/s2]/ 
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Fig. 4 Identification of signal parts 

Fig. 5 presents the waveforms of the noise-only, signal-only and trend-only 
signal's part. Amplitude spectra of this signal's parts are presented in Fig. 6. The 
noise-only signal's part is very clear to interpret. The observed impulses come 
from mechanical impacts (impulses arise when bearing elements roll over dam-
aged locations). Classical envelope analysis is given in Fig. 7. Identified frequency 
(12.72 Hz) corresponds to outer race fault frequency. 
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Fig. 5 Parts of original signal 
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Fig. 6 Amplitude spectra of signal's parts 
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Fig. 7 Analysis of noise-only signal's part: envelope (top)and amplitude spectrum of 
envelope (bottom) 

5   Conclusion 

In this paper, EMD-based denoising and detrending approach to vibration signals 
from complex mechanical systems was presented. The main goal was to extract 
weak impulsive signal from raw vibration signals, that are usually associated with 
bearing faults. It was shown that in case of signals from pulley bearings, it is possi-
ble to extract the impulsive signal, after which diagnosis of the fault becomes easy. 
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Abstract. This work seeks to study the potential effectiveness of Fourier-Bessel
(FB) series expansion for gear fault diagnostics. FB series expansion is a method
for cross-terms suppression in Wigner-Ville distribution (WVD). In particular, FB
series expansion is used as a signal decomposition technique in order to subdivide
the signal into its components before WVD evaluation. The pros and cons of this
method are highlighted by the analysis of experimental results. In particular two case
studies are taken into account: a fatigue crack at the tooth root and spalls of different
sizes. The presented results highlight the conditions in which FB decomposition
technique is effective in WVD cross-term suppression, the limitations, as well as
the advantages in terms of fault identification.

Keywords: Fourier-Bessel series expansion, Wigner-Ville distribution, diagnostics.

1 Introduction

Localised faults in rotating machines (e.g. localised defects in gears), generally
introduce non-stationary signal components [1, 2], which cannot be properly de-
scribed by ordinary spectral methods. Thus, joint time-frequency distribution is
needed in order to focus the time-local properties of the signal. Wigner-Ville dis-
tribution (WVD) is a time-frequency technique which found many successful appli-
cations in the area of rotating machine diagnostics, due to its infinite resolution both
in time and frequency domain. However, the WVD of multi-component signals ex-
hibits severe cross-terms between components in different time-frequency regions
due to its non-linear behaviour. These cross-terms are spread both in the time and
frequency domain adding noise to the distribution and leading to further misinter-
pretation and confusion. Cross-terms can be reduced by time smoothing procedures
[3], but this method leads to poor time resolution. Therefore, efforts have been made
in order to efficiently suppress cross-terms without loss of time-frequncy resolution.
In particular, the two main methods developed for cross-term suppression deal with
the adaption of the distribution kernel [4] or signal decomposition [5]. However,
such methods are either computationally expensive or have a very limited adapta-
tion range.
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In the last few years, Pachori and Sircar [6] proposed a new technique based
on Fourier-Bessel (FB) series expansion. This method combines FB expansion and
WVD in order to obtain a time-frequency representation without introducing cross-
terms. In particular, FB expansion is used as a signal decomposition technique.
Therefore, before the evaluation of the WVD, the multi-component signal is sub-
divided into its constituents by the use of FB series expansion. The advantage of
this method is twofold: (i) its numerical implementation is simple and (ii) it does
not need any prior information about the signal frequency band.

FB series expansion is the subject of this work, in particular effectiveness for
fault detection is assessed by the analysis of experimental results concerning lo-
cal faults in gears. More in depth, a brief theoretical background is provided in
Section 2, highlighting cross-term drawbacks and the signal decomposition method
using FB series expansion. Finally, Sections 3 and 4 seek to point out the effective-
ness of FB series expansion for fault detection in gears on the basis of experimental
results. Different types of gear tooth faults are taken into account: fatigue cracks and
tooth spalls of different sizes.

2 Theoretical Background

The genuine formulation of the Wigner distribution (WD) was introduced by Wigner
in 1932 in the quantum mechanics field [7]. Let x(t) be a continuous signal, the WD
of the signal x(t) is defined as the Fourier transform of the instantaneous autocorre-
lation function with respect to the time lag variable τ:

Wx(t,ω) =
∫ +∞

−∞
x
(

t +
τ
2

)
x∗
(

t − τ
2

)
e− jωτ dτ (1)

where x∗ denotes the complex conjugate of x. In 1948, Ville suggested the use of the
analytic signal in the WD assessment [8]. The Wigner distribution of the analytic
signal is termed Wigner-Ville distribution (WVD).

WVD is a powerful tool for the time-frequency analysis of vibration signals. Un-
fortunately, one of the pivotal problems concerning WVD is its nonlinear behaviour,
arising from the product of the time-shifted analytical signal with its complex conju-
gate. De facto, cross-terms arise in the WVD of a multi-component signal for every
pair of auto-components. These cross-terms mean that the distribution shows energy
which does not actually exist at these particular time-frequency co-ordinates. This is
a pivotal drawback of WVD, as vibration signals produced by mechanical systems
generally contain several components.

The theory of series representation is a well known subject in the realm of speech
and image processing. Let x(t) be a continuous time signal considered over an arbi-
trary time interval (0,a), Fourer-Bessel series expansion is given by [9]:

x(t) =
L

∑
l=1

ClJ0

(
λl

a
t

)
(2)
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where J0(·) is the zero-order Bessel function of the first kind, which arises from the
solution of Bessel’s differential equation and λl are the ascending positive roots of
equation J0(t) = 0. The FB coefficients Cl are computed via the following equation:

Cl =
2
∫ a

0 tx(t)J0(
λl
a t)dt

a2[J1(λl)]2
(3)

where J1(·) is the first-order Bessel function of the first kind and the integral in
the numerator of the right-end side of equation (3) is the well-known finite Hankel
transform. One can notice that, as in contrast to the sinusoidal basis functions in the
Fourier series, the Bessel functions decay within the signal range a.

The bandwidth of the reconstructed signal can be obtained from the Fourier trans-
form of the Bessel function. As explained by Arfken in [9], the approximate band-
width of the lth term in the right-end side of equation (2) is ωBl

∼= λl/a. Thus, if
L terms are taken into account in the reconstruction of the signal x(t), a maximum
bandwidth of ωmax

∼= λL/a can be obtained. Therefore, in order to plot FB coeffi-
cients vs frequency, the generic lth FB coefficient is associated to frequency fl given
by:

fl =
λl

2πa
(4)

When the signal is in angle domain, x(θ ), instead of time domain, in equations (2)
- (4) time and frequency are respectively replaced by angle (expressed in umber of
revolutions of a reference rotor) and order of rotation frequency. Thus, parameter
a becomes the angle range of analysis, expressed in revolutions, and equation (4)
gives the order associated to the lth FB coefficient.

For a multi-component signal, i.e. a signal x(t) that is the sum of M components
xi(t), each component can be expanded in FB series via equation (2), so the FB
series coefficients of a multi-component signal can be obtained as:

Cl =
M

∑
i=1

Cli (5)

If the components of the composite signal are well separated in the frequency do-
main, then the signal components will be associated with various distinct clusters
of non-overlapping FB coefficients. Therefore, each component of the signal can be
separately reconstructed by identifying and separating the corresponding FB coef-
ficients. However, some requisite conditions are needed, which are listed in [6]. In
particular the dc signal component has to be removed prior to the decomposition,
because of FB expansion can approximate only the oscillatory signal part.

As previously said, FB series expansion can be suitable in order to perform the
WVD of multi-component signals. The procedure consists of three stages [6]:

1. The FB series coefficients of the multi-component signal are evaluated using
equation (3). Assuming that every component is associated to non-overlapping
FB coefficients, it is possible to choice separate clusters of FB coefficients; each
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cluster is used in order to reconstruct the corresponding mono-component signal
by equation (2).

2. The WVD for each mono-component signal is evaluated.
3. The mono-component WVDs are summated in order to obtain the WVD of the

composite signal.

3 Diagnostics of Gear Tooth Cracks

Hereafter a localised gear fault is taken into account, i.e. a fatigue crack at the root of
one tooth. The experimental raw data are obtained from a previous work by Dalpiaz
et al. [2]. In that work, tests were performed on a power circulating gear testing ma-
chine composed of two identical single-stage gear units which were mounted back
to back, with locked-in torque. Each gear unit contains a carburised spur gear pair
of module 3 mm composed of a 28 tooth pinion and a 55 tooth wheel. Further data
about gears and experimental apparatus can be found in [2]. A real fatigue crack
is present in one of the wheel teeth mounted in one gear unit. The experimental
data considered in this work deal with a crack length corresponding to about 20%
of whole fracture surface after breakage, and are relative to nominal pinion torque
of 385 Nm and nominal pinion speed of 1000 rpm; thus the meshing frequency
is 466.67 Hz. The vibration signal was measured by means of a piezoelectric ac-
celerometer placed close to the wheel bearings in a radial direction. The signal was
integrated by the preamplifier to obtain velocity signal.

Firstly, the vibration velocity signal is synchronously averaged over 28 wheel
revolutions. After that, WVD is performed and plotted in Figure 1(a). Several ho-
rizontal dashed lines are present in the time-frequency distribution, some of them
are related to the fundamental and harmonics of the meshing frequency, i.e. 55th

wheel order and its multiples, the others are cross-terms that are due to the non-
linear behaviour of the transformation. Moreover, this energy distribution does not
clearly reveal the presence of the defect. Therefore, TSA vibration velocity is firstly
decomposed into its fundamental components and then the WVD of each mono-
component is evaluated and the total WVD is obtained by the summation of the
partial WVDs. Figure 1(b) depicts the FB series coefficients of this decomposition,
where a is equal to one wheel revolution and L is equal to 1000. Using this plot, one
can see that the meshing frequency and its harmonics produce eight non-overlapping
clusters of FB coefficients. Each of these clusters is rather wide, containing several
coefficients of high amplitude surrounding the coefficients corresponding to each
harmonic. The high wideness of these clusters is probably due to modulation effects
affecting the meshing harmonics.

Figure 1(c) plots the WVD obtained by the FB decomposition technique, where
the chosen Cl coefficients for the reconstruction of the TSA velocity signal are
summarised in Table 1. As one can see, this energy distribution is unaffected by
cross-terms. Moreover, the meshing frequency harmonics are clearly depicted, and
a localised increment of the WVD amplitude is visible at the 275th wheel order
(fifth meshing harmonic), at about 150 degrees. However, this transient event is not
enough for a complete fault detection. So, in order to look for local alterations,
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one can observe the signal component obtained from the FB decomposition, corre-
sponding to the 5th harmonic. This choice is confirmed by Figure 1(b), where the
5th meshing harmonic seems to be the most sensitive to the local defect. In fact,
a significant family composed by several neighbouring components arises around
the 275th wheel order. The reconstructed component is plotted in Figure 1(d). De
facto, an abrupt fall is clearly visible at about 150 degrees, which corresponds to the
cracked tooth engagement.

Table 1 Cl wheel order bands used for the reconstruction of the TSA velocity signal (gear
tooth crack)

Components (meshing harmonics) 1st 2nd 3rd 4th 5th 6th

Cl wheel order bands 49−62 105−117 157−172 209−230 250−300 305−351

(c) (d)

(a) (b)
fifth meshing harmonic

Fig. 1 Gear tooth crack: (a) Wigner-Ville distribution and (b) Fourier-Bessel coefficients of
TSA velocity signal (c) Wigner-Ville distribution reconstructed through FB decomposition
technique and (d) reconstructed component concerning the 5th meshing harmonic.
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4 Diagnostics of Gear Spalls

This section concerns the study of tooth spalls in helical gears. Artificial tooth spalls
are mechanically introduced via a milling process in helical gears of module 1.04
mm, helix angle 26◦ and 71 teeth. In order to compare the sensitivity of the presented
method, spalls of different sizes were introduced along the gear tooth face. In more
detail, two different spall lengths are taken into account in this work, which are
located at the mean point of the gear tooth face. The spall dimensions are given with
respect to the tooth face width and are listed in Table 2. Moreover, sound wheels are
tested for comparison. After the milling process, the faulty gears are mounted in the
first stage of a two-stage gear unit. The experimental apparatus consists of a base,
two induction motors controlled by inverters and a gear unit. The gear unit contains
two helical gear pairs, one having 18 and 71 teeth, the other one 12 and 55 teeth, for
a global speed reduction ratio of 18.1; further details can be found in [10, 11].

The vibration signal has been acquired by means of a piezoelectric accelerometer
mounted in radial direction near the bearing support of the first stage pinion. The
signal is acquired with a sample frequency of 104.2 kHz to an extent of 50 s. The
results presented in this work are relative to a nominal driving motor speed of 3600
rpm (60 Hz) and nominal output shaft torque of 48.8 Nm.

First of all, the acceleration signal is synchronously resampled, with 1024 points
per wheel revolution, and TSA is computed over 200 wheel revolutions. After that,
the WVD of the TSA signal is performed.

Figures 2(a) and (b) plot the WVD evaluated in the 50-400 wheel order band,
which includes the main meshing harmonics. One can see the meshing frequency
at the 71th order and no other harmonics. However, for each pair of spectrum com-
ponents a cross-term arises and a high level of background noise is present. These
troubles strongly affect the WVD concerning the case of Sp25% (Figure 2(a)), hi-
ding local distribution changes as well as modulation effects due to the engagement
of the faulted tooth. Thus it is difficult to obtain diagnostic information. Only in the
case of Sp100% the fault can be detected in Figure 2(b), where the location of the
faulted tooth is highlighted by the changes in the WVD around 340 degrees in the
50-100 wheel order band. Therefore, the Fourier-Bessel decomposition of the syn-
chronous averages is needed in order to obtain a WVD which is suitable for fault
detection.

Figures 2(c) and (d) show the results of this operation, where a is equal to one
wheel revolution and L is equal to 1000. Table 3 summarizes the chosen FB coef-
ficient bands for the reconstruction of the TSA vibration signals. The reconstructed
distribution can be more clearly interpreted: the gear meshing frequency remains
the highest (horizontal dark line at 71st order), but it is now possible to distinguish
several modulation sidebands around this component in the two faulted cases (Fig-
ures 2(c)and (d)). In particular, the presence and location of fault Sp25% might be
detectable by analysing Figure 2(c), where the meshing frequency and one of its
sidebands exhibit an amplitude change around 150 degrees. Unfortunately, this is
not enough for sure fault detection.
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However, even if amplitude modulation effects can be visible for the smallest
spall size (Figures 2(c)), the engagement of the faulted tooth is practically unde-
tectable by this technique and further investigations are needed [10].

Table 2 Dimensions of gear tooth spalls

ID Fault description
Sp25% 2 mm along the tooth profile, 0.6 mm depth, 4 mm across the tooth face (25% of

the tooth face width)
Sp100% 2 mm along the tooth profile, 0.6 mm depth, 15.5 mm across the tooth face (100%

of the tooth face width)

Table 3 Cl wheel order bands used for the reconstruction of the TSA acceleration signals
(gear spalls)

Components A B C
Cl wheel order bands for the Sp25% 45−75 138−146 211−216
Cl wheel order bands for the Sp100% 32−114 208−217 350−363

(a) (b)

(c) (d)

Fig. 2 WVD of acceleration TSA: (a) Sp25%, (b) Sp100%; WVD of acceleration TSA re-
constructed through FB decomposition technique: (c) Sp25%, (d) Sp100%.
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5 Concluding Remarks

In the realm of WVD cross-term suppression methods, this work focuses attention
on Fourier-Bessel (FB) series expansion [6]. This technique has several advantages
over the usual methods presented in the literature [4, 5], as it is of simple nume-
rical implementation and it does not need any prior information about the signal
frequency content.

In the two experimental cases of localised gear faults, FB decomposition tech-
nique is effective in the suppression of WVD cross-terms due to the frequency
interference between the meshing harmonics. This allows the identification of the
localised amplitude changes of one of the meshing harmonics and its sidebands, as
symptoms of faults producing signal modulation. It is worth noting that in the origi-
nal WVD these amplitude changes were hidden because of cross-terms and noise.

As a further result, the signal decomposition through FB series expansion makes
it possible to separate and reconstruct the waveform of the most important signal
components, reducing the effects of noise and minor inessential components. This
can be very useful for diagnostic purposes even in that cases where WVD cross-
terms cannot be suppressed, as shown by the experimental results. In the signal
concerning a gear fatigue crack, the reconstructed component relative to one of the
meshing harmonics exhibits an abrupt fall corresponding to the cracked tooth en-
gagement. This allows the detection and localisation of the fault.

As a general conclusion, FB decomposition technique produces good results for
cross-term suppression in the case of frequency interference in WVD; on the other
hand, reconstructed waveforms in proper FB coefficient bands can give useful in-
formation for diagnostic purposes.

Acknowledgement. This work has been developed within the Advanced Mechanics Lab-
oratory (MechLav) of Ferrara Technopole, realized through the contribution of Regione
Emilia-Romagna Assessorato Attivitá Produttive, Sviluppo Economico, Piano telematico
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Abstract. Fault diagnosis and condition monitoring of industrial machines have 
known significant progress in recent years, particularly with the introduction of 
pattern recognition and data-mining techniques for their development. The deci-
sion trees are among the most suitable techniques for the diagnosis and have sev-
eral algorithms for their construction. Each building algorithm has its advantages 
and drawbacks which make the optimal choice of adapted method to the desired 
application difficult. In this paper we propose the diagnosis accomplishment of an 
industrial ventilator based on the combination vibration analysis-decision trees. 
For the choice of the adapted decision tree building algorithm a method based on 
genetic algorithms was used. Its results were commented and discussed  

Keywords: rotating machines, faults diagnosis, decision tree, genetic algorithm. 

1   Introduction 

In modern industry, equipment maintenance is an important factor to ensure a 
constant production. Establishing systems for fault diagnosis and condition moni-
toring of machines is an important part of maintenance policies (Jardine et al. 
2006). For the monitoring of industrial machines several techniques have been 
used as oil analysis, pressure and acoustic emission (Tan et al. 2007). One of the 
most common methods remains the vibration analysis with the use of transducers 
like Accelerometers and signal processing techniques (wavelets and Fast Fourier 
Transforms). Vibration analysis can provide reliable indicators for the diagnosis of 
industrial machinery (Khelf and Laouar 2011). 

To improve the efficiency of conventional diagnostic methods and automate 
their use, Pattern recognition and data-mining techniques are shown as a solution. 
Among the most used techniques in industrial field there are the decision trees 
(Sugumaran et al. 2007) (Yang et al. 2009) thanks to the ease for users to under-
stand the behavior of the built models against other data-mining techniques. 
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Decision trees technique is based on the idea of making a classification of an 
object by a test suite on its indicators. To construct a decision tree, we have to 
choose the indicator that undergoes the first test. This indicator should be that 
which separates the different classes more significantly. This choice is regarding 
the type of selected tree (Chaud, Cart, Id3..). Each one has its specificities which 
makes the choice difficult to justify. One solution is to generate all trees and 
choose the best one by measuring performance on a separate and selected valida-
tion set data and conducting statistical tests. This solution is the most widely used 
although, it tests the performance on fixed and predefined training and validation 
sets, while an optimal decision tree for an application must be the most efficient 
regardless of the couple (Training, Validation sets) choice. To measure the per-
formance of decision trees without falling into combinatorial problems many algo-
rithms have been developed as well as Tabu search, Particle Swarm Optimization 
or more commonly genetic algorithms could be a solution (Worden et al. 2008). 

In this work, a procedure for faults diagnosis of an industrial machine (Industri-
al Ventilator) was performed on several stages. First, the vibration signatures have 
been recorded on the machine in various operating conditions, where several indi-
cators have been extracted from their frequency spectra. Second, a genetic method 
was used to get the best tree for this application regardless of the couple (Training, 
Validation sets) choice. Finally, the best trees were proposed to construct algo-
rithms for robust fault diagnosis.  

2   Materials and Methods 

2.1   Experimentations 

Industrial ventilators are among the most machines used in industry. The studied 
plant is shown in Figure 1 and then diagrammed in Figure 2. 

The ventilator is NAKASHIMA model connected to an electric motor 
(HELMKE) through a flexible coupling spring. The equipment runs on a constant 
speed of 1490 rpm. An accelerometer is installed on the bearing housing for re-
cording vibration signals. 

 

      
 

Fig. 1 Dedusting plant 1-Ventilator 2- Bearing 
housing 3- Coupling 4-Motor 

Fig. 2 Schematization of the plant 
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The frequency domain analysis is a reliable technique for the fault diagnosis in 

rotating machinery. In this work four of the most common faults were monitored 
those affecting inner and outer races of rolling bearings, the mass unbalance and 
fixation fault. A frequency band of 400 Hz was used to obtain frequency spectra. 
Figure 3 shows spectra of vibration signatures recorded in the different monitored 
operating conditions. 

 

 

Fig. 3 Frequency spectra of recorded signals (a) Healthy condition (b) The inner race of 
roller bearing fault (c) The outer race of roller bearings faults (d) failure of fixation (e) mass 
unbalance fault 

2.2   Indicators Extraction and Data-Set Post-treatment 

Five indicators were extracted for each spectrum in three frequency bands: [0-
200Hz], [200-400Hz] and [0-400Hz], for a total of 15 indicators by spectrum. 

The five indicators are: the root mean square level, the amplitude of the biggest 
peak, the frequency of the biggest peak, the distance between the frequencies of 
the two biggest peaks and the average amplitudes the 5 biggest peaks. 

In the next step the database composed of 150 indicator vectors was divided in 
two sets; the first, for training and the second, for validation. There are several 
sampling methods (simple, stratified, ....) And each method has its specific fea-
tures. Stratified sampling was chosen in order to take same rate of different classes 
in order to reflect the variability of the phenomena during generalization and vali-
dation of the trees and prevent their specializations. 
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2.3   Decision Tree  

Decision trees are among the most used classifier in industrial application due to 
the compressibility and ease of interpretation of their results in contrast to the 
black box classifier “neural networks”. Decision trees are built recursively, fol-
lowing a top-down approach; they are composed of a root and several nodes, 
branches and leaves, where a branch represents the paths from the root to the leaf 
(class) going through nodes (indicators). 

The indicators used as nodes are selected using the criterion depending on con-
struction algorithm. In our study, the decision trees implemented on the open source 
platform Weka have been explored (Hall et al. 2009). Twelve trees were extracted 
{BFTree, DecisionStump, FT, J48, J48graft, LADTree, LMT, NBTree, Random-
Forest, RandomTree, REPTree, SimpleCart}. Trees were indexed from 0 ... 11,  
ordered as above. 

2.4   Genetic Algorithm  

To choose the optimal decision tree independently of the couple (training valida-
tion) choice without falling into combinatorial problems, several optimization algo-
rithms exist, Among them Genetic Algorithms GA are ones of most reliable and 
popular. They are based on the natural evolution and selection, and survival of the 
fittest ideas. The genetic algorithm represents a solution to the problem as a ge-
nome (or chromosome). It then creates a population of possible solutions and ap-
plies genetic operators such as mutation and crossover to evolve the fittest solution. 

In this works a genetic algorithm was implemented in Java-code where the  
individuals (chromosome) were coded by setting in the first gene the index of de-
cision tree (extracted from Weka classes) and in the second gene the index of vali-
dation sample. Figure.4 shows the flow chart of the programmed algorithm. 

 

 

Fig. 4 Adopted Genetic Algorithm flow chart 
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The development of the GA pursues the following steps: 

2.4.1   Trees Training 

In this step is proposed a generation of a set of decision trees using different train-
ing samples. For each individual in the population, a stratified subset (composed 
of 60 vectors) is pulled out randomly, in order to generate the indexed tree of the 
first gene of this individual. 

2.4.2   The Evaluation 

This step is the heart of data mining. The performance of a model can be calcu-
lated from its classification accuracy CA on the validation set. This performance 
can be converted it into a confusion matrix from which we can derive various sta-
tistics on the performance of the model. 

The proposed evaluation phase was defined by the following fitness function: 
F(x) = Mean (CA) 

It represents the average classification accuracy of the tree with different training 
sets on the validation set found on the same chromosome. This procedure is to 
prevent the risk of falling into the cases of random performance on certain valida-
tion sets distorting the evaluation of the trees. This fitness guarantee robustness 
and reliability of selected trees tested with various training sets. 

2.4.3   The Selection 

The steady-state selection is used. The genetic algorithm then runs as follows. In 
every generation few chromosomes are selected (among the fittest ones) to create 
children. Subsequently, the worst chromosomes are removed and replaced ran-
domly with new other ones. 

2.4.4   Evaluation Operators 

Crossover: it applies on two different individuals. As a result it gives a chromo-
some formed from genes of both parents; two children are "products" for the next 
generation. A percentage of crossovers is set and a cross at a point applied. This 
procedure allows the change of the two genes on chromosome. 

Mutation: it applies to an individual by modifying one or more genes, chosen 
randomly from the parent and one new child comes. The percentage of mutation in 
our case is set to 1%. This ratio defines the probability to change an index by 
another randomly without interaction with other chromosomes. 

2.4.5   Stopping Criterion 

The algorithm stops at one of the following criteria 

• Maximum number of iterations = 100. 
• 50 % of the population of chromosomes is similar as the first gene. 
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The results will be one or more trees in a given configuration. The trees can be 
used to classify new examples. 

3 Results and Discussion 

Table 1 presents the used classification trees, ranked according to their Classifica-
tion accuracy obtained by classic validation. 

Table 1 Classic validation classification accuracy. 

Tree CA 
NBTree 96,07 
RandomForest 94,11 
LADTree 92,15 
RandomTree 90,19 
REPTree 84,31 
SimpleCart 84,31 
LMT 84,31 
BFTree 84,31 
FT 82,35 
J48 78,43 
J48graft 78,43 
DecisionStump 33,33 

 
Table 2 shows the occurrence frequency of each tree in the population during 

the last generation of GA 

Table 2 Appearance frequency of trees in the GA. 

Tree Appearances 
RandomForest 11 
LMT 10 
LADTree 9 
FT 8 
NBTree 7 
RandomTree 5 
REPTree 0 
SimpleCart 0 
BFTree 0 
J48 0 
J48graft 0 
DecisionStump 0 

 
Among the trees providing the best classification accuracy with the classic 

validation, some of them do not appear or rarely in the final population of GA as 
REPTree or SimpleCart, which proves their lack of robustness against the 
variability of examples in the data set. The use of such trees can be risky because 
their success ratio can significantly change facing of new examples to classify. 
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In the other hand, trees like Nbtree and Random forest show good classification 
accuracy but also high appearance frequency in the final population of GA. These 
trees are a priori the most adapted for the classifiers construction in fault diagnosis 
of machines. They provide good results independently of the used couple 
(Training, Validation). 

4   Conclusion 

Data mining techniques have been introduced to implement an automatic fault 
diagnosis of an industrial ventilator and several decision trees have been explored. 

For the choice of the optimal decision tree method based on genetic algorithms 
was used, where the performance of decision trees were tested on different 
couples (training, validation sets) to meet the most robust of them. 

Decision trees Nbtree and Random forest have been proposed for the 
establishment of automated fault diagnosis tools in the machine, Due to their 
robustness and good performances. 

Future work will focus on establishing more effective fitness function for 
selecting the best classifiers. 
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Abstract. Condition monitoring and faults diagnosis in rotating machinery is a 
current research field. In this direction the use of pattern recognition combined 
with non-destructive testing techniques such as' vibration analysis and signal 
processing can be very helpful. In this paper is proposed, a diagnosis method of 
rotating machinery using vibration signatures using a Radial Basis Function clas-
sifier. Recorded signals were preprocessed with a Wavelet Decomposition and  
indicators were extracted both in temporal and frequency domains. To improve di-
agnosis performance, two techniques for dimension reduction of indicators space 
were combined; Principal Component Analysis and the ReliefF filter. The method 
was tested on real signatures from a vibration test rig, operating under several 
conditions, the results showed the interest to look closely at the choice of indica-
tors in order to obtain best diagnosis performances.  

Keywords: diagnosis, rotating machinery, principal component analysis, RBF.  

1   Introduction 

Considered as a vital part in any industry, rotating machines must have the utmost 
care and increased monitoring of their operating states. Early detection of faults in 
these machines can avoid economic losses to industry. In this way the research on 
non-destructive testing receive a particular interest, and have been greatly devel-
oped. Tools such as acoustic emission, oil analysis (Tan et al. 2007) and instanta-
neous angular speed (Renaudin et al. 2010) among others were used. But the most 
explored technique remains vibration analysis, thanks to the ease of its implemen-
tation. The vibration signal can be exploited in different ways to extract useful and 
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needed information to make a diagnosis (Jardine et al. 2006). There are several 
techniques in the literature of its exploitation; with the use of temporal signals or 
their transformation in the frequency space, and more recently with the wavelet 
technique in its various forms (Bendjama et al. 2010) (Al-Badour et al. 2011). 
Choosing the right technique is a sensitive problem before a diagnosis procedure. 

For the separation and recognition of the operating states of rotating machines, 
progress in the field of artificial intelligence and data mining can be a solution. 
Among theirs tools we found Bayesian networks, support vector machines or more 
intensely artificial neural networks as classifiers (Khelf and Laouar 2011). The vi-
bration signatures can provide, according to their exploitation technique, reliable 
indicators for the classification of operating conditions.  

The indicators choice is an important factor before any classification procedure, 
in order to avoid falling on phenomena such as the correlation between indicators, 
the over-learning problems and the unnecessary and disruptive indicators. Such 
phenomena could degrade the performance of classification and diagnosis. To re-
solve this problem we find in the literature two approaches: the first aims to re-
duce the number of indicators on selecting the best such as filter and wrapper 
techniques (Khelf and Laouar 2011), the second aims to transform the indicators 
from one space to another of lower dimension such as Principal Component Anal-
ysis PCA (Bendjama et al. 2010). 

In this work, experiments were conducted on a test rig representing a rotating 
machine, where vibration signatures were extracted under different conditions, 
with various types of faults and running on different rotation speeds. On each  
signature multi-resolution wavelet decomposition was performed and a transfor-
mation in the frequency space was applied to the temporal signatures and their dif-
ferent approximations and details, to extract the maximum of information. In order 
to reduce the indicators space a hybrid technique based on PCA and the filter Re-
liefF was used. The classification of operation states was performed via an artifi-
cial neural network: the Radial Basis Function classifier, its performances before 
and after reduction were compared. 

2   Material and Methods 

2.1   Experimentation 

The experiments conducted on a test rig available in the laboratory URASM -
Annaba, are photographed in Figure 1 and shown schematically in Figure 2. The 
test rig consists mainly of three shafts, with for the movement transmission, two 
gears (one with 60 teeth and the other with 48 teeth), four bearings housings, a 
coupling and a belt. The system is driven with an induction motor of power 0.18 
kW with a rotational speed ranging from 0 to 1500 rpm controlled by a variable 
speed drive. 
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Fig. 1 Test rig 

 

Fig. 2 Schematization of the test rig 

An accelerometer was fixed in position P1 shown in figure 2, connected to a 
data acquisition system equipped with OROS software to record vibration signals 
per windows of 400 milliseconds with a sampling rate of 5120 sample/second. 

The vibration signatures have been recorded in several operating conditions: 
without the presence of faults, with the presence of a gear fault and with the pres-
ence of mass unbalance. This was done in three different rotational speeds: 1500 
rpm, 900 rpm and 300 rpm. 

2.2   Signal Processing 

The use of wavelet transform has seen a significant growth and a particular inter-
est in vibration analysis in recent years, and in particular its discrete variant requir-
ing less computing time than the continuous, the both transformations are 
represented as follows:  
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Effective use of the DWT was developed (Mallat 1989), by applying a succession 
of low-pass and high-pass filter to the signals and this on several levels, the result-
ing signals are called approximations and details. Figure 3 shows the principle of 
DWT decomposition. 
 

 
Fig. 3 DWT Decomposition 
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In the present study Daubechies wavelet Db2 with three levels of decomposi-
tion was used to extract approximations and details of original signals. 

A transformation in the frequency space using Fast Fourier Transform FFT was 
performed on each original signal as well as on each of its approximation and de-
tails as shown in figure 4 for the example of gear fault under a rotational speed of 
900 rpm. 

 

Fig. 4 Example of gear fault signature and its transformations 

2.3   Indicators Extraction 

38 original signals were recorded in 3 different operating conditions and 3 differ-
ent rotational speeds, for a number of 342 original signals. 

The DWT Decomposition has allowed us to represent each original signal in 7 
signals, based on approximations and details. From each of them, four indicators 
were extracted and three others from their frequency spectra, for a total of 49 indi-
cators by original signal. 

From temporal forms of signals were extracted the crest factor, shape factor, 
root mean square and the kurtosis. 

From frequency spectra of signals were extracted the maximum amplitude val-
ue, the frequency of the maximum amplitude value and the root mean square of 
the spectra. 

2.4   Indicators Space Dimension Reduction 

For the dimension reduction of the indicators space two methods were combined; 
Principal Component Analysis (correlation between indicators reduction) and Re-
liefF filter (indicators abilities for classification estimation). 

2.4.1   Principal Component Analysis 

The principal component analysis transforms the original indicators from one space 
to another of smaller size. The new indicators are called principal components.  
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The indicators as well created have a small correlation level, this solve, in theory, 
one of the main problems of artificial learning.  

From each vector of originals indicators, ten new uncorrelated indicators were 
created with the PCA. 

2.4.2   ReliefF Filter 

Based on the work of (Kira and Rendell 1992), ReliefF assigns a score for each 
indicator and sorts them according to this score.  

The algorithm estimates the quality of indicators depending on the distance be-
tween nearest neighbors. For this purpose, given a randomly selected example A 
from a data set S with k indicators, ReliefF search the data set to its nearest neigh-
bors: one from the same class, called nearest hit H, and others from different 
classes, called nearest miss M. It updates the quality estimation W [INI] INi for all 
indicators based on the values of difference function diff () to X, H and M. m 
times, where m is a parameter defined by the user. For example, I1, I2, the func-
tion diff (A, I1, I2) calculates the difference between the values (I1i, I2i) for the in-
dicator INi 
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P(c) I is the prior probability of the class and 1-P (class (r)) represents the sum of 
probabilities for the misses’ classes. 

2.5   Operating Condition Classification with the Radial Basis 
Function Classifier 

A Radial Basis Function Network (Khelf and Laouar 2011) is a feed forward 
neural network type with one input layer, one hidden layer "a layer RBF" and one 
output layer. Widely used for classification tasks due to its efficiency and speed of 
his training. Each layer is fully connected to the next. Each neuron in the hidden 
layer contains a Gaussian gj(x) centered on a point of the input space. For a given 
input x, the output of the neuron in the hidden layer is the amplitude of the Gaus-
sian at that point 
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The output of the network is a linear combination of the outputs of neurons in the 
hidden layer weighted by the weight of their respective connections. The answer 
depends on the function of the distance between the input vector x, the vector  
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prototype (center) γj and the size of the influence field βj that can be estimated 
from the training set by minimizing a quadratic criterion regularized.  
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The classifier was trained to separate three classes of operating condition: a class 
for operating with no faults, a class for operating with a gear fault and a third for 
operating with a mass unbalance. 

Each class includes vectors, obtained from the signals collected in the operating 
states with three different rotational speeds. 

A data set of 114×3 vector was used for training, where a cross-validation algo-
rithm was used during learning and performance-test of the classifier. 

2.6   Diagnosis Automation Algorithm 

After the extraction of the 49 original indicators from each signal, the indicators 
were transformed into N principal components {C1, C2, ..., CN}, the value of com-
ponents was then evaluated and ranked using the ReliefF filter. 

A RBF classifier was then trained using, at first the complete set of components 
as input and at each iteration, reduced the number of inputs, starting with the low-
est ranked of them with the filter ReliefF. 

The set of N components, providing the highest classification accuracy is se-
lected. The flow chart of the proposed algorithm is described in figure 5. 

 

Fig. 5 Flow chart of the proposed algorithm 

3 Results and Discussion 

The figure 6 shows the evolution of performance according to the number of com-
ponents used at the input of RBF. 
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Fig. 6 Evolution of performances 

The accuracy of classification has changed according to the number of used 
components as input and reached its best performance with the use of the 8 best 
components, with the diminution of the number of used components the perfor-
mance drop except for the case of 2 and 3 components, and even fall below 90% 
with the use of a single component. 

The table 1 shows the diagnosis performances Perf and the number of used in-
dicators Nbr as input of the classifier: the original 49 indicators ORG, the com-
plete set of components CSC and the selected set of components SSC with the 
proposed algorithm. 

Table 1 Diagnosis performances. 

 ORG CSC SSC 

Nbr 49 10 8 

Perf 90,64 93,85 95,02 

 
Using directly the 49 original indicators as input of the RBF, a performance of 

90.64% of correct diagnosis was obtained. The performance has been improved to 
93.85% of correct classification with the use of the components created by the 
PCA, the selection of components has enabled us then to achieve a better perfor-
mance with 95.02% of correct diagnosis. 

Reducing the space dimension of indicators using PCA enabled us to achieve 
better diagnosis performances, but interfere with the evaluation and understanding 
of the physical behavior of the original indicators. 

4 Conclusion 

The selection of indicators at the base of the diagnosis is very important to achieve 
the best performances. In this work an algorithm for the diagnosis of  
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rotating machines faults was built based on vibration recorded in operation, under 
various conditions and with different rotational speeds. 

The recorded vibrations were treated using signal processing techniques (DWT 
Decomposition, FFT) in order to have all the necessary information to make a di-
agnosis and a large number of indicators were extracted from the signals. The di-
mension of the indicators space was then reduced by combining two techniques 
PCA and ReliefF filter, which enabled us to improve the diagnosis performance. 

Some points remain to be improved especially on the understanding and the 
justification of the original indicators performance. 
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Abstract. The Fourier transform is suitable for analysis of stationary acoustic 
sources only. In contrast wavelet analysis provides information localized both in 
frequency and in time, which makes it highly appropriate for the study of non-
stationary signals. Near field acoustic holography (NAH) is an experimental tech-
nique that makes it possible to reconstruct an image of the spatial acoustic field at 
one frequency, or in a frequency band,  from pressure measurements returned by 
a microphone array. Several variants of NAH have been proposed to characterize 
non-stationary sources in time rather than in the domain. The idea of this paper is 
to develop a new NAH method based on orthogonal-like wavelets that can achieve 
a fractional octave band analysis without relying on the Fourier transform. An in-
verse problem is posed with relates the wavelet coefficients of the source field to 
those of the measured pressure. This is then solved with Monte-Carlo simulations. 
Numerical and experimental results finally illustrate the efficiency of the proposed 
approach.  

Keywords: acoustical holography / wavelets / orthogonal-like fractional octave 
band filters / inverse problem / Monte-Carlo simulation.  

1   Introduction 

NAH is based on Fourier transform and some processing in the frequency-wave 
number domain (Paillaseur et al. 2011). This procedure generates extremely length 
computational time and introduces aliasing problems for non stationary signal. As 
the application of this method lies particularly in transportation field, in which 
most sources are non-stationary, several methods have been developed for  
this purpose, such as the time domain holography (TDH) which requires several 
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iterations of standard NAH (Hald 2001, Hald 1995).  Another method developed  
to non-stationary signal analysis named RT-NAH which keeps the time depen-
dence throughout the signal processing (Paillaseur 2009) and permits to conti-
nuously reconstruct the pressure field on the source plane (Paillaseur et al. 2011). 
As the wavelet analysis provides a multiresolution analysis of non-stationary sig-
nals, the aim of this study is to develop a procedure of near field acoustical holo-
graphy method based on wavelet basis instead of Fourier transform analysis. We 
propose in this paper to use the orthogonal-like fractional octave band filters as a 
wavelet basis. As well-known that the inverse problem of acoustical holography is 
an ill-posed problem, we have chosen to solve this inverse problem by Monte-
Carlo simulations. A numerical validation of this proposed approach is shown then 
an experimental one based on pressure field radiated by a Renault diesel engine  
has also validated this approach.  

2   Orthogonal-Like Fractional Octave Band Filters 

Fractional-octave-band filters are of wide-spread use in acoustics and vibrations 
(Antoni  2010). Using orthogonal-like fractional-octave-band filters approach , 
the bandedge frequencies can be made arbitrarily. As an example of this approach 
is a bank of 1/n-th octave filters which made of a cascade of constant percentage 
bandwidth (CPB) bandpass filters and divide octaves into n subintervals (Antoni 
2008). The signal to be analyzed by this method is then divided into contiguous 
bands. The basis  functions used  to decompose the signal respect the orthogonal-
ity condition. 

The signal decomposition from the basis functions forms the signal coefficients. 
These coefficients are the inner product of the signal by these basis functions 
which may be expressed as (Antoni 2010): 

, ( )ij ijX x nψ=                                     (1) 

where x is the signal to be analysed. 
The next step is to compute the filtered output in the i-th band. These signals 

outputs are reconstructed from the wavelet coefficients as the sum of the conti-
nuous product of these coefficients with the basis functions: 
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During this decomposition we must respect two requirements. The first require-
ment is to compute the partial energies through each band of the filter bank as the 
overall signal energy. The second condition which is the perfect reconstruction re-
quires that the sum of all outputs to the filter-bank is equal to the original signal 
such as: 
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3   Inverse Problem Resolution 

As well-known the direct problem is explained by the fact that the pressure field 
emitted by a set of sound sources is measured by an array of microphones. In this 
study the direct problem is expressed in frequency domain (time dependence 
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where S0 the source surface, ( )mp ω  the acoustic pressure measured by the m-th 

microphone ( , , )mG r r ω is the Green function characterised by Neumann condi-

tion and ( )mυ ω   is the measurement noise.  

We assume in this study that the source distribution admits a space-time de-
composition on a selected basis functions: 
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where kc  are the coefficients of this wavelet basis, r is the space variable, t is the 

time variable, ( , )k r tφ  the spatial basis functions and K their number, ijψ  the 

basis function of the fractional-octave-band filters, i is the band index and j is the 
time index.  

After propagation on a selected microphone array, each measured pressure  has 

the wavelet decomposition ( ) ( )ij
m m ij

ij

p Pω ω= Ψ∑ . 

Taking into account the decomposition of the source distribution in both frac-
tional-octave-band filters basis and selected basis functions, then the decomposi-
tion of each measured pressure by the array of microphone, the purpose of this 
study is to estimate the source distribution coefficients back-propagation functions 
of the measured pressures coefficients. As the inverse problem of acoustical holo-
graphy is an ill-posed problem (which lead to multiple solutions with a low  
perturbations of the input data), on another hand as known that the statistical ap-
proach allows the resolution of this inverse problem, we have chosen to solve this 
estimation by Monte-Carlo simulations. This inverse problems should be tackled 
by applying deterministic optimization methods to a regularized least squares for-
mulation of the problem.  As the L-Curve and the generalized cross validation 
methods of regularisation give often a solution to a linear problem, we have ap-
plied the Bayesian approach which is an effective tool with two dimensions  
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problems. This formulation of this  inverse problem of acoustical holography con-
tains three part. The first one is the learning phase which aims to source distribu-
tion reconstruction from a prior distribution using the Monte-Carlo simulations.  

The associated transfer function of this problem is given then by: 

1

ˆ ( ) ( ) ( ) ( )
a H a a a H

ij i i ii
C S P P P

ω ω
ω ω ω ω

−
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∑ ∑              (6) 

The second part is the regularization operator and the inverse operator calculation. 
The reformulation of the second term of this transfer matrix into an eigenvalue 
problem, then the estimation of the optimal solution using the appropriate regula-
risation method are expressed as : 
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where sk are non-negative scalars and Uk  M*1 eigen-vectors, index H means the 
conjugate transpose of the eigen-vectors.  

The third part is the source reconstruction considering the measured pressure as 
explained: 

( ) ( )ij i it
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4   Results and Discussions  

In this first part we will look at digital signals of the proposed ap-
proach in acoustical holography. We begin by examining the results of a  linear 
frequency modulated signal which amplitude is modulated by a Gaussian, the 
choice of the signal was made for its highly non-stationary temper, the minimum 
frequency is fmin=20Hz, the maximum frequency is fmax=1400Hz. The signal 
length is L=2^12, it's decomposed by 1/3-th octave filters. The sampling frequency 
is 8192 Hz. The array of microphones used to measure the pressure is rectangular, 
planar, with a radius of 1m, it contents 81 microphones. It is placed parallel to the 
source surface at a distance z = 0.2m. Reconstructed source distributions from the 
inverse problem are compared with the imposed source distribution. 

A perfect agreement is found  in figure 1 between the reconstructed sig-
nal using the fractional-octave-band filters decomposition and Monte Car-
lo simulations in this inverse problem and the original signal, the error is calcu-
lated as the average of the absolute value of (Sinitial-Sreconstructed) divided by the 
average of the absolute value of Sinitial. The higher minimum and maxi-
mum frequency of non-stationary signal is framed by lower cut-off frequency and 
the half of the sampling frequency  the lower the error difference sources are.  
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Fig. 1 Reconstructed time signals (green line), the actual signal (blue line), the calculated 
error (red line)  

In a second step we present the results of Monte-Carlo simulation for recon-
structing a random signal, the source distribution is composed of three random 
source which coordinates are respectively (0.4,0.7), (0.7,0.4) and (0.45,0.45) . The 
signal length is L=2^12, It's decomposed by 1/3-th octave filters. The sampling 
frequency is 16384 Hz. The array of microphones used to measure the pressure  
is rectangular, planar, with a radius of 1m, it contents 81 microphones. It is placed 
parallel to the source surface at a distance z = 0.2m. Reconstructed source  
distributions from the inverse problem are compared with the imposed source  
distribution. 

We show in figure 2 the random signal decomposition in orthogonal 1/3 octave 
filters bank superposed with the actual signal decomposition in each band. We 
show also in this figure the calculated error in all band of the decomposition. It is 
noticed here that the calculated errors in all band doesn’t exceed 10%,  so we va-
lidate this proposed approach based on stochastic algorithm and fractional-octave-
band filters decomposition in inverse problem of acoustical holography. 

Figure 3 shows the modulus of the actual source distribution (in the left)  and 
the reconstructed distribution (in the right) in 6392 Hz 1/3 –octave band. A perfect 
agreement is seen between the actual source distributions and the reconstructed 
ones by scanning all frequency bands. An important remark is found in the simula-
tion of the proposed approach using the pressure measured by a microphone array 
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Fig. 2 Decomposition of the random source in 1/3-th octave filters and calculated error in 
each band 

 

Fig. 3 Modulus of the actual and reconstructed source distribution 

placed at z=0.18m from a diesel motor which demonstrates its advantage over 
the conventional method, with this proposed approach we obtain simultaneously 
the maps in all thirds octave band while we get  the map for one band when we  
use the Time Domain Holography (TDH) method (Lafon,2009). In addition when 
we concentrate on the noise source localization (figure 4) a  light difference  is 
noted on a linear scale between the proposed approach and TDH method, this dif-
ference is important especially in terms of spatial location which is more better 
with the proposed approach (in the left) than the other (in the right) which shows 
ghost source due to its simple principle. 
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                      (a)                                         (b) 

Fig. 4 Roots mean square velocity from wavelet coefficents (a) and TDH method (b) in the 
1000 Hz 1/3 –octave band 

5   Conclusion 

In this paper the problem of characterizing non-stationary sources using the me-
thod based on the decomposition on the fractional-octave band filters and using 
Monte-Carlo simulations has been validated numerically as well as experimentally 
prooved. The comparison of the obtained maps with the method based on plane 
waves leads to understand that the proposed approach allows substantial reduction 
in computation time. 
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Abstract. Local damage (crack, pitting, spall, breakage, etc.) in gearboxes  
produces short in time (impulsive) and wideband in frequency, disturbance in vi-
bration response. Detection of such cyclic changes is often very difficult due to 
presence of high level of noise, i.e. narrowband signal related to normal operation 
of gear-pair. Most of approaches available in literature propose two-stage method-
ology: firstly - signal enhancement related mostly to signal pre-filtering in order to 
extract so called signal of interest (SOI), and finally damage detection/recognition 
in time domain (spikes detection) or frequency domain (envelope analysis). In this 
paper we will follow this philosophy. In order to enhance local changes of signal 
statistics, an adaptive algorithm for vibration signal modelling is proposed in the 
paper. The discussed approach is based on the normalized exact least-square time-
variant lattice filter (adaptive Schur filter). It is characterized by an extremely fast 
start-up performance, an excellent convergence behaviour, and a fast parameter 
tracking capability what makes this approach interesting. The method is well-
adapted for analysis of the non-stationary time-series, so it seems to be very prom-
ising for diagnostics of gearbox working in time varying load/speed conditions.  

Keywords: adaptive stochastic modelling, adaptive Schur filter, damage detec-
tion, gearbox, vibration time series. 

1   Introduction 

Localized damage detection in gearboxes is an important problem in condition 
monitoring. In many cases damage detection is rather difficult because energy of the 
signal remains similar for healthy and damage condition. From the literature it is 
known that vibration signal associated with localized damage should be cy-
clic/periodic and impulsive [22,25]. In the case of complex machine and high energy 
produced by the other part of machine, localized damage signature is completely 
masked by other sources. So there is a need to enhance signal (extract Signal of  
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Interest called SOI or in other words improve SOI-to-Noise Ratio) by advanced sig-
nal processing techniques. Variety of filtering techniques are described in the litera-
ture, most advanced solution uses wavelets or Empirical Mode Decomposition, 
Wiener Filter, adaptive filters, cyclostationary modelling and blind source separa-
tion, etc [1-25]. Very successful recent application of the Schur filter in respect of 
bearings vibration signals [14] motivated us to use the similar approach for gearbox 
vibration. It appeared that our gearbox data are more difficult than bearings signal so 
further development of damage detection procedure using Schur modelling is pre-
sented in this paper. 

2   Schur Filter for Time Series Modelling 

2.1   Schur Filter Description 

Parametric signal processing based on AR models is commonly used [33], how-
ever it was designed for stationary time series. In case of localized damage detec-
tion, vibration signals are in general non-stationary. In fact such signal is a  
mixture of stationary and non-stationary ones, i.e. cyclic/periodic impulsive (re-
lated to damage) parts. In such case to track changes in the signal it is not possible 
to use the predictive filter with constant coefficients. However, it is possible to use 
adaptive Schur filter (ASF) that calculates for every time instant t, optimal (in 
mean-square sense), so called reflection coefficients, which are strictly related to 
innovative filter coefficients. It means that such filter is able to follow changes of 
second order statistics of time series (auto-covariance in this case). The ladder-
form realization of the adaptive Schur filter is show on Fig.1 [31].  

 

Fig. 1 The ladder-form realization of the adaptive Schur filter 

Schur Filter consists of P sections, where P means filter order. Each section is 
fully described by time dependent reflection coefficient (RC). Inputs for each sec-
tion are: forward prediction error, backward prediction error and reflection coeffi-
cient for every time instants. 

Inputs of the first section are normalized samples of signal. For each time in-
stant t, the value of reflection coefficient is updated. The results of updating pro-
cedure are based on current sample of time series or prediction error from previ-
ous sections. Updating is basically optimization procedure that minimizes error in 
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mean square sense. In fact whole algorithm (after initialization) is described by 3 
recursive equations [30, 31, 33, 14]: 
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It should be noted that before using the rules mentioned above, Schur filter re-
quired to be initialized. Due to lack of space, the initialization procedure is omit-
ted here, however it can be found for example in [14, 31]. 

2.1   Novel Diagnostic Feature for Damage Detection 

In previous application of adaptive filter (LMS, AR) for machine condition moni-
toring the prediction error was used as the output signal with diagnostic potential 
[11,13,15]. In case of the Schur filter, both prediction error and reflection coeffi-
cients for each section can be used. When for given time instant t, a significant 
change of signal will be present (i.e. impulse will appear), its short-term second 
order statistics will change, so reflection coefficients will change too and predica-
tion error will increase. It is proposed here to use RCs based features, because they 
seem to be more clear to interpret than variation of prediction errors. 

In fact, for damage detection purposes it is necessary to search for changes of 
RCs instead of their values, thus derivatives of RCs should be used.  

);,(),(),( Dtptptpd −−= ρρ     ,...};2,1{=D Dt >   (2) 

Moreover, it was noticed that for our data, the RCs (both single section and sum) 
manifest some inertia in changes of statistics of signals, so formula for derivatives 
calculation should take into account the additional parameter D. In this paper re-
sults for D=3,4 will presented. Finally, sum of derivatives of RCs for D=3,4 was 
used as a feature.  

It is not convenient to analyze the results from each section separately, it would 
be better to use single time series that based on P sub-signals obtained from P sec-
tions. Initially, simple sum of reflection coefficients is  used.  

 ∑
=
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Other important parameters used for signal processing were: adaptation (forget-
ting) constant (required for signal normalization) assumed here to be λ=0.999 and 
number of sections P = 10. 
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3   Case Study: Damage Detection in Two Stage High-Power 
Gearbox 

In this section an application of Schur filter to industrial data will be presented. 
First, the diagnosed object will be briefly presented, next current technique used 
for damage detection will be discussed and example of such analysis will be pro-
vided. Finally the results of novel, proposed here filtering procedure will be shown 
and compared to previous results. 

2.1   Object and Experiment Description 

This section provides a brief description of the diagnosed objects. Deep understand-
ing [26,28] of machine design and condition of operation are of  fundamental  
importance in condition monitoring (selection of parameters for data acquisition sys-
tem, choice of signal processing methods, reasoning rules etc). Mining machines 
seem to be a special class of machines – high-power, complex design, time-varying 
load, unique scenario of degradation (due to environmental impact), etc [26-29]. 

DRIVE

GEARBOX

COUPLING

LOAD

BEARING

BEARING

 DRIVE
PULLEY

 

Fig. 2 Scheme and photo of diagnosed object 

On Fig 2 the scheme of the driving unit for a belt conveyor is shown. It consists 
of two sets: motor, coupling and two stage gearbox connected with a pulley. The 
connection between gearbox output shaft and a pulley is through the coupling. The 
diagnostic task is to detect a local damage/fault in the gearbox. 

2.2   Data Analysis 

The classic procedure used for localized damage detection in gearboxes includes 
visual inspection of time series, calculation of kurtosis in time domain as simple 
indicator of damage (search for spikiness of the signal) and envelope analysis for 
signal, both time series and envelope spectrum, see Fig 3. 
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   a)      b)      c) 
 

 

  d)      e)      f) 

 

   g)      h)     i) 

 

    j)      k)       l) 

 

Fig. 3 Results of raw data and enhanced data a) raw vibration signal, b,c) sum of derivates 
of reflection coefficients for D=3 and D=4 d) spectrogram of raw signal, e,f) STFT of coef-
ficients for D=3 and D=4 g,h,i) signal and its envelope (low passed envelope, fcut=100Hz) 
for raw signal and coefficients time series for D=3 and D=4 j,k,l) envelope spectrum with 
identified harmonics related to damage for raw signal and coefficients time series for D=3 
and D=4 

As it can be seen, kurtosis value for raw time series is quite small and reflects 
rather Gaussian nature of the signal (Fig3a). Some spikes (marked by arrows) are 
visible but they seem to be irregular. Also STFT map (Fig 3d) confirms some in-
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teresting properties of signal (see some excitation in 800-1200 frequency range). 
AM demodulation (for wideband) is not successful, neither (Fig 3 g,j). For raw vi-
bration, ability of fault related frequency identification is rather poor. 
Below, the results of the same procedure, but after proposed filtering, is discussed. 
Two examples will be considered, for D=3 and D=4. Signal after filtering for both 
cases (D=[3,4]) is much more spiky than raw vibration so kurtosis value is higher 
(see Fig 4). Time-frequency representations of filtered signals have much clear 
structure (wideband excitation are better visible than for raw signal). Also enve-
lopes of enhanced data are easier to interpret and they are also impulsive (kurtosis 
values higher than 20) and finally spectra of envelope reveal harmonic structure of 
the envelope signals, main contribution is related to 4.1Hz, that is middle shaft  
rotational frequency (again first ten harmonics are marked by harmonic cursor). 
Finally it may be concluded that application of proposed Schur filter allow to  
enhance the impulsive contribution and makes damage detection possible.  
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Fig. 4 Comparison of detection efficiency in time domain expressed by kurtosis value for 
input signal and envelope for both raw and processed data 

5   Conclusions 

A novel technique of vibration signals analysis based on the adaptive Schur filter 
is presented in the paper. It was investigated in the context of gear local damage 
detection. It is suggested to use Schur Filter as a pre-processor i.e. adaptive filter 
for stochastic modelling of non-stationary signal. Instead of using prediction er-
rors some new features for diagnosis basing on reflection coefficients variation 
have been tested. The new parameters are: the reflection coefficients, derivative of 
RCs and sum of derivative of RCs. Based on visual inspection it was decided that 
the best results are related to sum of derivative of RCs and these are discussed in 
the paper. Further efforts will be focused on aggregation of information from P 
sections. First results show that adding some weights for each section before sum 
may improve final results. It needs to be noticed that, without signal pre-
processing, detection of impulses (that indicate local damage) is not possible at all. 
Results presented in this paper were obtained basing on real signals captured from 
machines working in mining industry. 
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Abstract. This paper investigates the supervised classification of an injection fault 
of an internal combustion Diesel engine using vibration measurement. The S-
transform is used to produce a time-frequency representation of the vibration sig-
nal. The matrix representation of the time frequency image is then reduced to a 
lower size matrix using a two-dimensional non-negative matrix factorization. Four 
algorithms are tested for feature selection from this reduced size matrix and the 
features are sorted according to their ability in fault classification. A Neural Net-
work classifier is then trained and applied to classify test data. The performances 
of the four considered selection methods are then evaluated by comparing their 
percentage of correct classification and the computer execution time. It has been 
found that the performance of the classifier is enhanced when the number of re-
tained feature is increased for the four investigated selection methods. 

Keywords: feature selection, time-frequency vibration analysis, two-dimensional 
non negative matrix factorization, fault classification, Diesel engine injection 
fault. 

1   Introduction 

Feature selection [1] is an active research area in several fields such as pattern 
recognition, statistics, data mining, supervised and unsupervised fault diagnosis 
and in applications using large datasets. The major objective of a feature selection 
algorithm is to find a feature subset that produces higher correct classification rate 
and eliminate redundant and irrelevant features. 

Automatic fault detection and diagnostic techniques commonly use classifica-
tion algorithms which rely on the features extracted from the measured signals. 
Features from vibration signals may be extracted in the time domain [2] the  
frequency domain [3] and the time-frequency domain [4]. The time frequency 
transformation is in general considered to be the most adequate signal processing 
tool for the unstationary engine vibration signal.  
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The S-transform (ST), introduced by Stockwell et al. [5], is used in this paper to 
find a time frequency representation of the vibration signal. The S-transform has 
the combined strengths of both the Short Fourier transform and the wavelet trans-
form so that a better energy concentration is achieved over the time-frequency 
domain. The ST has been recently applied to process non-stationary signals gener-
ated by internal combustion Diesel engines [6]. 

The large dimension of the matrix representation of the time frequency image 
prohibits the direct use of the matrix elements as a feature set. Significant reduc-
tion of the size of this matrix is therefore required. The 2D non negative matrix 
factorization (2DNMF) proposed by Zhang et al. [6] is a promising reduction 
technique which can be used to transform the matrix representation of the time 
frequency image into a reduced size matrix with only non negative elements. The 
elements of the reduced matrix can then be used to construct a feature set. Few re-
searchers have used the 2DNMF for mechanical signal applications [6]. A subset 
of features is then selected using a feature selection algorithm. The selected fea-
tures are generally sorted according to their classification ability.  

In this paper, the classification of an injection pressure fault of an IC diesel en-
gine is investigated. The classification is based on the selected features extracted 
from vibration signals measured at the middle of the engine block for three levels 
of the injection pressure fault at both the idle speed of 700 rpm and at a higher 
speed of 1400 rpm. Using the S-transform, all vibration signals are transformed to 
time-frequency grey images. Feature reduction is then applied using a two dimen-
sional non-negative matrix factorization of the time-frequency matrix representa-
tion. To sort the available features according to their relevance and to further  
reduce the feature set, four feature selection algorithms are tested. Subsequently, a 
neural network with backpropagation algorithm (BP-NN) is used to classify the 
test data into three fault classes and to compare the performances of the four fea-
ture selection algorithms. 

This paper is organized as follows. Section 2 describes feature extraction in 
time-frequency domain from engine vibration signals using S-transform as a time-
frequency representation and feature reduction by the 2DNMF. Four feature selec-
tion algorithms are briefly described in section 3. The measurement set up and the 
signal acquisition and processing system as well as the simulated fault are de-
scribed in section 4. The methods presented in section 2 and 3 are then used with 
an ANN classifier in section 5 to evaluate the performances of the selection algo-
rithms. The paper is concluded in section 6. 

2   Feature Set Extraction and Reduction 

Vibration signals measured on the engine block are non-stationary due to the vari-
able angular speed of the crankshaft. Time-frequency analysis is often considered 
as the adequate signal processing tool in this case. In this paper, the recently de-
veloped S-transform, proposed by Stockwell et al. [5], is used as a joint time fre-
quency representation of the vibration signal. The S-transform combines the 
strengths of both the Short Fourier Transform (SFT) and the Wavelet Transform 
(WT). The time frequency representation is usually used to construct a high  
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dimensional matrix representation of the signal similar to the representation of the 
grey level of an image. The pixel values of each image can not be used directly as 
features in classification due to the high size of the image matrix. Instead, two 
steps are carried out before classification. First, the image matrix is reduced using 
2DNMF by reducing the size of both lines and columns of the high dimensional 
image matrix to a matrix of a more reasonable size. Further details are given next 
about both the feature extraction and feature reduction steps. 

2.1   S-Transform  

The continuous S-transform ( , )S tτ  of a function ( )x t  is defined as,  

( ) 2 2( ) / 2 2( , )
2

f t i f tf
S f x t e e dtτ πτ

π
+∞ − − −

−∞
= ∫                                (1) 

where τ is the instant of time which controls the position of the Gaussian window 
on the time axis and  f  is the instantaneous frequency.  

It should be noted that the standard deviation of the Gaussian window decreas-
es with the frequency  f.  

A key feature of the S-transform is that it uniquely combines a frequency de-
pendent resolution of the time-frequency space with absolutely referenced local 
phase information [5]. 

2.2   Feature Set Reduction by Two-Dimensional Non-negative 
Matrix Factorization (2DNMF) 

In a two-dimensional non-negative matrix factorization (2DNMF) method [6], the 
2D image matrix is transformed into a low dimensional matrix following two 
steps. At first step, we align the m time-frequency images into a p×qm matrix 

1 2, ,..., m⎡ ⎤= ⎣ ⎦X A A A , where each Ak denotes the time-frequency image of the k-th 

sample measured signal. 2DNMF finds p×d non-negative matrix L and d×qm 
non-negative matrix H such that  

≈X LH                                                               (2) 

Here L and H are the bases functions and combining coefficients respectively. For 
convenience, we divide H into m d×q sub-matrices as H = [H1, H2, …, Hm], 
where Hk denotes the combining coefficients of the image Ak. Since each column 
of X corresponds to a column of the original time-frequency representation, we al-
so call L as column bases. Thus, the k-th time-frequency representation Ak can be 
written as a weighted sum of the column bases L as follows:  

1,2,...,k k , k m≈ =A LH                                                  (3) 

At the second step of 2DNMF, we compute the row bases. For this raison, at first 

we construct a new qxpm matrix ' ' ' '
1 2, ,..., m⎡ ⎤= ⎣ ⎦X A A A , with '

kA  is the transpose 
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of Ak. Secondly, using 2DNMF, we seek a qxg non-negative matrix R and gxdm 
non-negative matrix C such that  

'X ≈ RC                                                               (4) 

Here R and C are the row bases and combining coefficients respectively. We di-
vide C into m g×d sub-matrices as C = [C1, C2, …, Cm], where Ck denotes the 
coefficients of the matrix Ak. Thus, the k-th time-frequency representation '

kA  can 

be written as: 

' 1, 2,...,k k , k = m≈A RC                                                   (5) 

By now, we have obtained the p×d dimensional column bases L and the q×g di-
mensional row bases R.  

A matrix Dk of a reduced size giving a new representation of the matrix Ak can 
be obtained by projection of matrix Ak on the column bases L and the row bases 
R. Thus, 

1, 2,...,T
k k , k = m=D L A R                                                 (6) 

Dk is a dxg matrix called the encoding matrix of Ak and contains the most impor-
tant information contained in the matrix Ak.  

3   Feature Selection 

Following feature reduction, a subset of features are selected from the reduced 
size matrix and sorted in increasing order of relevance. Four algorithms are consi-
dered in this paper for this step. Further details are given next about each selection 
algorithm. Features are selected according to their ability to separate several fault 
conditions referred to as fault classes. In addition, several features may be used 
together in order to improve class separation when a number of observations are 
available.  

3.1   Feature Selection Using Analysis of Variance (FSAV) 

Stepwise variable selection method is based on univariate and multivariate one-
way Analysis of Variance methods [2]. FSAV is used to sort the variables accord-
ing to their diagnostic ability and to construct by a step-by-step procedure, known 
as stepwise selection, a set of features to be used in the classification analysis. 
Each additional feature included in the set is expected to enhance further fault 
class separation. This procedure is stopped when the addition of more variables 
does not make any significant enhancement to classification.  

3.2   Genetic Algorithms and Information Theory (GAIT) 

This algorithm was developed by Ludwig Oswaldo [7] and performs the combina-
torial optimization by using Genetic Algorithms (GA). The selection of features is 
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based on the principle of minimum-redundancy/maximum-relevance (mRMR). 
The application of the principle of mRMR corresponds to searching the set of fea-
tures indexes that satisfies the maximization of an objective function.  

3.3   Sequential Forward Floating Feature Selection (SFFS) 

The sequential floating forward selection algorithm (SFFS) [8, 9], finds an opti-
mum subset of features by insertions (i.e. by appending a new feature to the subset 
of previously selected features) and deletes ones (i.e. by discarding a feature from 
the subset of ready selected features). The criterion employed in Sequential float-
ing feature selection is the correct classification rate of the Bayes classifier assum-
ing that the features obey the multivariate Gaussian distribution.  

3.4   Fuzzy Entropy Measures with Similarity Classifier (SMFEL) 

Luukka [10] introduced a new feature selection method based on fuzzy entropy 
measures with similarity classifier. The fuzzy entropy measure is suggested by 
Luca and Termini [11]. Similarities are first calculated and then sorted in a matrix 
format from which the fuzzy entropy values are calculated for each feature. The 
feature with the largest fuzzy entropy is removed from the data set. The procedure 
can then be repeated. 

4   Measurement Set-Up and Fault Simulation 

Vibration is measured using a piezoelectric accelerometer on a four stroke, inter-
nal combustion (IC) diesel engine mounted on a testing bench. The vibration is 
measured, approximately, at the middle point of the engine in the horizontal direc-
tion. An inductive sensor has been used for the acquisition of the top dead centre 
(TDC) signal of cylinder 1 as shown in Figure 1.  
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Fig. 1 Measurement set-up for vibration data acquisition on a diesel engine 
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The simulated injection fault is a reduction of the injection pressure in cylinder 
1. A partial loss of the injection pressure is a common injection fault, which may 
be caused by a leak in the fuel line, or a fault in the injector itself. Using the tar-
ring screw, the injection pressure in cylinder 1 has been gradually reduced from its 
nominal value 260 bars (P0) to 245 bars (P1) and 230 bars (P2). The injection 
pressure of other cylinders has not been modified. Thus, three fault classes are  
simulated. 

Vibration signal is measured for the engine speed of 700 rpm and 1400 rpm and 
without external load. Each signal has a length of 300 engine cycles.  

Each cycle contains 4096 data points (respectively 2048 data points) corres-
ponding to a sampling frequency close to 24 kHz. For the engine speed of 700 
rpm, the signal of 4096 points was resampled to 2048 points.  

For each measured vibration signal, a 1024 x 2048 time-frequency matrix is 
computed based on the S-transform described in section 2. The high number of the 
pixels in each image, 1024x2048, prohibits the direct exploitation of the pixel val-
ues as features. Thus, a method of reduction of the image matrix representation to 
a reasonable number of features should be used. The construction of the feature set 
is based on two steps. First, the matrix of the image pixel values is reduced using 
the two dimensional non-negative matrix factorization (2DNMF) to a matrix of  
a more reasonable size. Then, four methods have been tested for feature set  
selection. 

The 2DNMF, described in section 2, is used to extract low-dimensional feature 
subset from the time–frequency matrix. One hundred time–frequency matrices for 
each fault class are used to calculate the column basis matrix L, row basis matrix 
R and therefore the encoding matrix Dk. After some preliminary experiments, the 
parameters of reduction d, g and the maximum number of iterations r of the 
2DNMF were set to 10, 5 and 100, respectively. For each engine rotating speed, 
the size of the reduced matrix is therefore dxg so that 50 (10x5) features are ex-
tracted for each time-frequency image. Feature samples are divided into two sets. 
One-half of the samples are used for training and the other half is used for testing. 
The 100 features obtained by the 2DNMF method are reduced further using one of 
the four selection methods described in section 3. 

The ANN classifier is constructed with three layers, the input layer containing a 
number of neurons equal to the number of features, one hidden layer containing 
five neurons, and the output layer containing three neurons for the three fault 
classes. The ANN classifier is trained by the back-propagation learning rule until 
the mean squared errors are less than 1.10-5. The sigmoid function is used as the 
activation function in the ANN classifier.  

5   Results and Discussion  

Using the FSAV and SFFS feature selected algorithms, the number of features is 
reduced from the 100 available features obtained by the 2DNMF, respectively, to 
33 and 38. For GAIL and SMFEL algorithms, the number of selected feature is 
fixed to be 33.  The features are sorted by each algorithm according to their relev-
ance. The time required by each algorithm to complete the selection step is given 
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in table 1. The algorithms present large discrepancies in selection time from less 
than one second for the SMFEL algorithm to more than two hundred seconds for 
the SFFS algorithm. 

Table 1 Average CPU time in seconds for feature selection 

Method FSAV GAIL SFFS SMFEL

nf 33 33 38 33 

ACPU 32.43 79.33 227.52 0.62 

The ANN classifier has been subsequently applied using an increasing number 
of features selected by each of the four selection algorithms. The average percent 
of correct classification (PCC) for a number of features varying between one and 
30 is presented in table 2 and figure 2 for the four algorithms. As expected, the 
percentage of correct classification generally increases with the number of  
 

Table 2 Average percentage of correct classification (PCC) for an increasing set of features 

nf 1 2 3 4 5 6 7 8 9 10 20 30 

FSAV 59.33 82.67 79.33 86.67 87.33 84.00 87.33 93.33 88.67 92.67 89.33 94.33 

GAIT 69.33 75.33 74.67 77.33 79.33 76.67 74.67 79.33 76.67 77.33 92.00 91.53 

SFFS 80.00 80.00 76.00 80.00 82.00 79.33 82.67 83.33 83.33 80.67 88.67 93.66 

SMFEL 74.00 73.33 80.00 82.00 82.00 78.00 73.33 74.67 78.67 76.00 80.67 82.66 
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Fig. 2 Average percentage of correct classification (PCC) for an increasing set of features 
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retained features. The PCC significantly increases when passing from one to two 
features. The SFFS algorithm has the best PCC for a single feature. The threshold 
of 90% is reached first by the FSAV algorithm for eight features. The FSAV algo-
rithm also reaches the highest PCC, 94.33 %, for the maximum retained 30 fea-
tures. The PCC of the FSAV algorithm exceeds the PCC of the other three  
algorithms when the number of features used in classification is more than two 
and less than 20. 

The classification results for the first two selected features by each of the four 
considered selection algorithms are shown in figure 3. The test data containing 50 
data points for each fault class are classified by the ANN algorithm into three fault 
classes. The boundaries between the classes are shown in the figure. The sub-
figure 3.a and 3.b show that fault classes may spread over more than one area in 
the feature space. In addition to the percentage of correct classification, the selec-
tion algorithms may be evaluated according to the CPU time required for training 
the classifier and for classifying the test data. Table 3 shows the average CPU time 
required for training the ANN classifier for a number of retained features varying 
between one and 30. The CPU time does not necessarily increase monotonically 
with the number of features used by the classifier. Table 3 shows that for more 
than five features, the SMFEL algorithm requires the highest training time and the 
FSAV requires the lowest training time. For less than five features, the SFFS algo-
rithm needs the least training time followed by the FSAV algorithm. 

Table 3 Average training CPU time[s] for the ANN classifier 

nf 1 2 3 4 5 6 7 8 9 10 20 30 

FSAV 11.1 13.8 22.0 12.2 41.0 37.6 29.9 16.0 17.1 21.1 10.8 17.1 

GAIT 7.2 35.5 65.1 170.0 124.0 135.7 93.8 175.0 100.9 68.4 34.5 14.1 

SFFS 5.7 5.1 5.0 7.6 16.7 105.5 119.7 102.7 171.3 41.5 15.5 12.8 

SMFEL 9.6 16.9 17.9 15.6 77.9 149.7 514.4 231.5 276.8 217.4 147.7 133.1 

 
For classification of the test data, the average CPU time is given in table 4 in 

milliseconds for an increasing number of retained features. It can be noted that the 
classification time is significantly lower than the training time. Furthermore, the 
classification time is of the same order for features selected by any of the four 
considered selection algorithms. The classification time generally slightly increas-
es with the number of retained features. The increase is not monotonous. 

Considering now the overall performances of the selection algorithms including 
classification and CPU time for training and testing. The four algorithms perform 
a better classification with at least two features. The FSAV algorithm has general-
ly a higher correct classification rate for a higher number of features and requires 
the least training time. The classification time is roughly the same for the four al-
gorithms. The evaluation criteria used in this paper seem to favor the FSAV algo-
rithm and its statistical density function modeling. 
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Fig. 3 Test data classification by the ANN algorithm for the first two features selected by 
each of the four selection algorithms: a) FSAV; b) GAIT; c) SFFS; d) SMFEL. 

Table 4 Average testing CPU time [ms] 

nf 1 2 3 4 5 6 7 8 9 10 20 30 

FSAV 71.9 76.6 63.5 69.8 71.9 66.7 77.1 79.2 83.3 75.0 90.6 98.2 

GAIT 68.8 75.5 69.3 67.2 80.2 73.4 78.6 78.6 76.0 77.1 92.2 95.3 

SFFS 62.5 62.5 62.5 62.5 78.1 78.1 78.1 78.1 78.1 78.1 93.7 109.3 

SMFEL62.5 62.5 67.2 65.6 71.9 82.8 96.9 71.9 96.9 68.8 100 71.9 

6   Conclusion 

In this paper, the classification of a diesel engine injection fault using vibration 
analysis is investigated. Features are extracted from the time-frequency domain 
using S-transform and 2DNMF and selected by four different algorithms. For each 
sample of the measured vibration signal, corresponding to a temporal signal of 
2048 points (one engine cycle), a 1024 x 2048 time-frequency matrix is computed 
based on the S-transform. Using 2DNMF to extract low-dimensional feature sub-
set from the time–frequency matrix, only 50 features are extracted for each time-
frequency image.  
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An artificial neural network (ANN) algorithm is used as a classifier. It has been 
shown that for any of the selection algorithms, the use of a larger number of fea-
tures generally leads to a higher percent of correct classification (PCC). Signifi-
cant increase in accuracy is obtained when using more than one feature in classifi-
cation. The FSAV algorithm has the highest accuracy for feature set of size lower 
than 15. For a larger feature set size, the three algorithms, FSAV, GAIT and SFFS 
have roughly the same classification accuracy. The SMFEL algorithm has a noti-
ceably lower performance for a number of features greater than 12.  
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Abstract. Rotating machinery represents a significant class of mechanical 
systems, in which gears and bearings are the important and frequently encountered 
components that find wide spread industrial applications. Currently, vibratory 
analysis becomes the most reliable tool for the conditional maintenance of rotating 
machines. The associated techniques evolved so much that one passed from a 
simple late detection to the diagnosis, even the prediction. Researches in this field 
are directed towards the possibility of anearly detection, several signal processing 
techniques, often adapted to a precise defect type, were established throughout 
these last years. From those, demodulation by wavelets multiresolution analysis 
combined with Hilbert transform (Envelope analysis), which allowing making 
filtering and the demodulation at the same time. The objective of this work is the 
application of this technique for the detection of the faults in the rotatory machines 
and more particularly the gears and bearings combined faults. 

Keywords: Vibratory analysis, gears and bearings combined faults, combined 
faults simulation, envelope analysis, wavelets multiresolution analysis. 

1   Introduction  

The vibratory analysis most known and is the most employed in conditional 
maintenance. It makes it possible to practically detect all types of faults likely to 
appear in the rotatory machines, an unbalance, gears fault, bearing fault …. These 
faults result in a variation of the internal efforts which the machine undergoes, and 
thus with a modification of its vibratory behavior for example a frequency or 
amplitude modulation in the case of gears and bearings signals. Several work was 
carried out, using the vibratory analysis for the detection and the diagnosis the 
gears faults [1-2], but not to take into account the bearings faults, which can 
caused serious problems during the operation of the rotatory machines. In the 
early studies, Fourier analysis has been the dominating signal analysis tool for 
gears and bearings faults detection, but, there are some crucial restrictions of the 
Fourier transform. The signal to be analyzed must be strictly periodic or 
stationary; other-wise, the resulting Fourier spectrum will make little physical 
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sense. Unfortunately, the gears and bearings vibration signals are often non-
stationary and represent non-linear processes, and their frequency components will 
change with time. Therefore, the Fourier transform often cannot fulfill the gear 
box fault diagnosis task pretty well. On the other hand, the time–frequency 
analysis methods can generate both time and frequency information of a signal 
simultaneously through mapping the one-dimensional signal to a two dimensional 
time frequency plane. Among all available time–frequency analysis methods, the 
wavelet transforms may be the best one and have been widely used for gears and 
bearings fault detection. The main issue for the detection and the diagnosis of the 
bearings faults for example in the gear boxes of the rotatory machines; it is that 
the vibratory signal of the bearings is masked by the meshing signal [3]. To 
resolve this type of problem we propose a technique which makes it possible to 
separate or extract the bearing signal from the gears signal (meshing signal), based 
on filtering (debruitage) and the demodulation of the signals generated by 
combined faults of gears and bearings which are shock type signals. The approach 
used for the simulation of the signals of combined faults is simple, taking the case 
where the two signals of gears and bearing are additive, which the case where the 
separation of the two signals is carried out by two passes band filtering, one 
covers the meshing frequency and the other covers the resonance frequency of 
bearing, using the Wavelet Multiresolution Analysis combined with the Hilbert 
transform for the calculation of the envelope of the two signals, at end to extract 
the characteristic frequencies of gears or bearing faults, according to the envelope 
spectrum of the two filtered signals. The wavelets are comparable to a band  
pass-filter. 

2   Envelope Analysis Theory (Demodulation) 

2.1   Principle of the Demodulation 

The principle of method HFRT (High Frequency Resonance Technique), it based 
on Hilbert transform, which can be represented into four stages: 

1. Identification of the resonance frequency (carrier frequency); 
2. Selection of the zone to demodulate (bandwidth) at end to carry out a 

passes band filtering around the selected frequency; 
3. Calculation of the envelope of the signal )(tS corresponding by Hilbert 

transform given by the following expression [4]: 
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   The envelope of the signal noted )(tN  is defined by: 22 )])([()()( tSHtStN +=  

4. Calculation of the spectrum of this envelope by the application of the 
transform of Fourier on the envelope of signal )(tN . 
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2.2   Wavelets Multiresolution Analysis Theory (WMRA) 

The Discrete Wavelet Transform (DWT), still called Wavelet Multiresolution 
Analysis (WMRA), consists to introduce a signal )(tS  in low-pass ( )L and high 
pass ( )H  filters. In this level, two vectors will be obtained, 1cA and 1cD . The 

elements of the vector 1cA are called approximation coefficients, they correspond 

to the low frequencies of the signal, while the elements of the vector 1cD  are 

called detail coefficients and they correspond to the highest of them. The 
procedure can be repeated with the elements of the vector 1cA  and successively 

with each new vector jcA obtained. The process of decomposition can be 

repeated n  times, with n  the number of levels.For this purpose, Stephan Mallat 
had the idea to consider the wavelet analysis as a decomposition of the signal by a 
cascade of filters, associating a pair of filters with each level of resolution [5]. 
Figure 1represents an example of waterfall decomposition for 3=n . During the 
decomposition, the signal )(tS and vectors jcA  undergo a down sampling, this is 

why the approximation jcA  and detail jcD  coefficients pass through two new 

reconstruction filters ( )LR and ( )HR .Two vectors result; jA called approximations 

and jD called details [5].Where i and j are integers. 

 
cD1

[ ]maxmax ;2/ FF

[ ]

L

H

L

cA1
[ ]2/;0 maxF  

H

L 

cA2
[ ]4/;0 maxF  

H 

cA3
[ ]8/;0 maxF  

cD2
[ ]4/;2/ maxmax FF  

cD3
[ ]8/;4/ maxmax FF

S 
[ ]max;0 F  

 
Fig. 1 Example of waterfall decomposition at 3 levels (n=3) 

Indicating by maxF  the maximum frequency of the measured signal, the 

frequency bandwidth of each level i  returns to ⎥⎦
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And as it was shown in [6]: 
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With n  an integer rounded with the higher value, which represents the optimal 
number of levels, cF  is the shock frequency. 

The choice of a maximum frequency of a signal is carried out in such way that 
at least one or more details will be band-width of the resonance frequency, this is 
completely possible mathematically. Knowing that the band of each detail ( )i  

is ⎥⎦
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FF . So that the resonance frequency LF  is covered by this band, it 

must satisfy: 
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Many applications of the wavelets analysis were proposed in its continuous 
version [7-8], discrete (or Multiresolution) [9-10], or with packets [11-12]. In 
present work, the discrete wavelet family, daubechies wavelets “db5” is used for 
feature extraction. 

3   Gears and Bearings Combined Faults Simulation 

The combined faults signals digital simulation, is carried out under Matlab© 
environment. We propose for the combined faults simulationas the summation of 
the two models existing in the bibliography such as the model of C. Pachaud for 
the case of the bearings [13], and the model used by C. Capdessus for the case of 
the gears [14]. The resulting signal, noted )(tSc , can be expressed mathematically 

by the expression (5): 
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In these expressions, 0,,),( FFtS Lr τ  and Q , respectively represent the signal 

simulating the fault of bearing, the relaxation time, the resonance frequency, the 
free oscillations frequency, and amplification factor. )(tSen , represents the gears 

fault model simulation given by: 
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With: eτ  is the meshing period, 1rτ  and 2rτ  those of the modulations, )(tSe  the 

value of the meshing signal on eτ  the flow time of tooth. )(1 tSr and )(2 tSr , are the 

modulations over the duration of a turn of wheel, (i.e. over durations 1rτ and 2rτ ). 

eS , 1rS  and 2rS  are sinusoidal functions [14]. Indeed, the period of meshing is by 

definition a multiple entirety of those of rotation, 
therefore err Z ττ ×= 11 and err Z ττ ×= 22 . The modulation signals )(1 tSr  and )(2 tSr  are 

of weak energy compared to the meshing signal )(tSen . Substituent the expressions 

(6) and (8) in (5), we obtain, the expression of the combined signal: 
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(9)  

If one takes into account a random noise )(tB  which can be generated by the 
operation of the machine and the measuring instruments, the expression (5) is 
written in the form: 

)()()()( tBtStStS enrc ++=                                             (10) 

Figure 2 (a) represents a simulated signal including combined faults, gears faults 
(pinion) and bearing faults (Outer racefault + Inner race fault). Figure 2 (b), 
represents the spectrum of this signal. 
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Fig. 2 (a) Combined fault simulated signal, (b) Spectrum of the simulated signal. 

In summary, the resulting signal from a gearbox with a gear tooth and bearing 
combined fault has the following characteristics: 

• Presence of modulations; 
• Modulating signal frequencies represent fault features generated by gears, 

bearings or shafts. These frequencies are focused in the low-frequency region. 
• The modulating signal may be non-stationary due to the fluctuation of 

gear/shaft, shocks generated by a bearing fault and lubrication variations. 
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The enveloping approach that a simulating/measured signal contains a low-
frequency component that acts as the modulator of a high-frequency carrier signal. 
In gear fault detection, the low-frequency modulating signal is the gear rotation 
frequency and the high-frequency carrier is the meshing frequency. Therefore, in 
the bearing fault detection, the low-frequency modulating signal is the bearing fault 
characteristic frequencies and the high-frequency carrier is the resonance 
frequency. 

4   Experiments 

4.1   Measurements Points and Used Material 

We present on figure 3 on the left, the experimentswere carried out on a test rig 
designed by laboratory of mechanics and structures (see Fig. 3 at left side). We 
present on the right side the two points of measurements where we fixed by pins 
the two transducers, on stage 2 of the driving shaft (CHA) and on stage 3 of the 
driven shaft (CHB). 
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Fig. 3 Gears and bearings test rig designed by laboratory of mechanics and structures / 
Points of measurements (CHA and CHB). 

4.2   Geometrical Characteristics of Bearing Test 

On table 1, one represents the various geometrical characteristics of the bearing 
used in the tests, such as n  the number of balls and d  the diameter of the ball, 

iD , eD  and mD  are respectively the internal diameter, external and means of the 

bearing, and β  the contact angle. 

Table 1 Geometrical characteristics of the used bearings 

Bearing type Geometrical proprieties 

Ball bearing 
SKF BC 6003 

n [bille] d [mm] iD [mm] eD [mm] mD [mm] β [degré] 

10         4.76        17          35         26          0 

 



Gears and Bearings Combined Faults Detection  325
 

4.3   Gears and Bearings Faults Characteristic Frequencies 

For better localized the faults frequencies on the spectrum, we calculated the 
characteristic frequencies of gears and bearing faults (table 2). 

Table 2 Gears and bearing faults frequencies 

Gears type Helicoids 

Gears proprieties 

Transmission ratio 
U = 53/40 = 1.325 

Rotation speeds[Hz] 
Pinion « CH A »                  Gear « CH B » 

32.50                                   24.52 
Bearings faults 

BPFO [Hz]                            132.74                                           100.15 
BPFI [Hz]                             192.26                                           145.05 

Gears faults 
Z (Dent)                                  40                                        53

eF  [Hz]                                                        1300 

One gear fault was created on the pinion of the drive shaft. Therefore, two 
types of faults were created on a 6203 ball bearings of P3; faults were artificially 
localized in aninner, outer race by a diamante tool turning with 50000 RPM. The 
faults size are (width × depth) = (1×0.3) for the outer race defect and (1.3×0.7) for 
the inner race. Table 1 and 2 shows some details concerning the experiments 
conditions. Measurements were taken by a ENDEVCO 2215E type accelerometer 
and a B&K 2035 type analyzer, the post processing is carried out on Matlab©. 
The driving shaft rotation frequency was 32 Hz. 

5 Application of the Proposed Method on a Measured 
Combined Faults Signal 

Figure 4 (A) represents the combined fault measured acceleration signal on the 
output shaft of the reducer, the faults were caused on the outer and inner race of 
the bearing of P3 and on a tooth of the pinion. The measurement of the signal is 
taken hard stage 3 of the driven shaft which turns at the frequency of 24.52 Hz 
with a sampling rate 16384 Hz. The spectrum of this last signal is presented on 
figure 4 (b), which does not make it possible to have a clear diagnosis on gears or 
bearings state. Some modulations are apparent on the spectrum, which it’s due 
probably to the bearings resonance frequencies. Figure 4 (c), represents the 
approximations and the details of the decomposition of measured signal in 4 
levels. 
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Fig. 4 (A) Combined fault measured signal, (b) its spectrum and (c) decomposition of the 
measured signal in 4 levels. 

The reconstructed signal extracting from the 2nd detail which has a kurtosis 
equalizes 37.2870, its frequency bandwidth is [1600; 3200Hz], which covers the 
resonance frequency of the bearing equalizes approximately 2400 Hz.  
Figure 5 (a), famous of the very clear impacts which are due to the faults of 
bearing. The reconstructed signal thus appears more informative than that 
measured. Its spectrum of envelope (fig. 5 (b)), was calculated with Hilbert 
transform, appears the frequencies of the outer race faults BPFO=96 Hz and the 
inner race BPFI=144 Hz, and their harmonics. Figure 5 (c), presents the 
reconstructed signal extracting from the 3rd detail, which has a kurtosis value 
equalizes to 9.4003, its frequency bandwidth is from [800 Hz; 1600 Hz], which 
covers the meshing frequency Fe=1280 Hz, its spectrum of envelope (fig. 5 (d)) 
appears the rotational frequency of the driving shaft carrying the faulty pinion, and 
several of its harmonics, characterizing the presence of the fault on the pinion. The 
increase in the amplitude of the third harmonic in the spectrum of envelope of 3th 
detail, is justified by the coincidence of the peak of bearing fault BPFO=96 Hz, 
with the third harmonic of the rotational frequency of the pinion Fr1= 32 Hz. 
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Fig. 5 (A) Reconstructed signal from the 2nd detail, (b) its spectrum of the envelope,  
(c) Reconstructed signal from 3rd detail and (d) its spectrum of the envelope. 

The variations, from 1 to 4 Hz, between the calculated characteristic 
frequencies of faults such as BPFO= 100.15 Hz, BPFI=145.05 Hz and Fr1=32.5 
Hz, and those measured such as BPFO= 96 Hz, BPFI=144 Hz and Fr1=32 Hz, 
which are mainly due to the frequency resolution step ∆f=8 Hz and to the variation 
of the stalling torque on the output shaft of the reducer.  

6 Conclusion 

We presented in this work a simulation model of gears and bearing combined 
faults,and we separate the meshing signal (gears faults signal) from bearings faults 
signals in the simple case where the two signals were additive based on the 
proposed technique. We applied the WMRA combined with the Hilbert transform 
which makes it possible to make a passes band filtering and a demodulation 
allowing the extraction of the faults from the envelope spectrum of the two 
optimal vectors having the greatest value of the kurtosis and which covers one of 
the resonance frequencies of the bearing and the meshing frequency. Wavelet 
coefficients envelope spectrum allow a clear visualization of the defect 
characteristic frequency offering the possibility of an early detection. 
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Abstract. In recent years new alternative diagnostics methodologies have 
emerged, with particular interest to machineries operating in non-stationary condi-
tions, which have shown to be a severe limit for standard consolidated approaches. 
In particular this paper focuses on the condition monitoring of ball-bearings in  
variable-speed applications. In this context the paper aims to present a simple me-
thod inspired and derived from the mechanisms of the immune system, and its ap-
plication in a real case of bearing faults recognition. The proposed algorithm is a 
simplification of the original process, adapted to a particular case of a much bigger 
class of algorithms and methods grouped under the name of Artificial Immune 
Systems, which have proven to be useful and promising in many different applica-
tion fields. The proposed algorithm is based on the Euclidean distance minimiza-
tion in the evaluation of the binding between antigens. Experimental results are  
also provided with an explanation of the algorithm functioning. 

Keywords: Condition monitoring, Artificial Immune Systems, ball-bearing, Euc-
lidean distance minimization. 

1   Introduction 

One of the main problem in the industrial production field is avoiding machines to 
be stopped by component faults. Statistical evidences prove that the majority of 
unexpected stops (about 50-60%) are due to faulted bearings. This makes bearing 
diagnostics a prime research field to improve industrial mechanical systems effi-
ciency and durability. Ideal diagnostics should also provide a real time condition 
of the components in order to monitor them until the appearance of the first sig-
nals of malfunctioning. This could ensure a longer lifetime of the parts than e.g. 
that provided by a preventive maintenance, where components are substituted at 
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given time intervals independently of their actual conditions, with a relevant eco-
nomic advantage. Up to now the problem has been solved analytically studying 
the bearing as a planetary gear in order to define the dependence of selected dam-
age parameters from the working condition of the bearings. In particular the pres-
ence of a damage introduces a specific frequency in the vibration spectrum called 
fault frequency. The proportionality between this frequency and the frequency of 
bearings rotation is proved. Although this method revealed to be the best one for 
the monitoring of bearings subjected to stationary conditions, it becomes useless 
in case of machines that operate at different speeds or even different rotation di-
rections. This problem is sensible in presence of the recent servomotors, which 
have the characteristics to be very flexible, performing complex motion laws of 
the shaft. These recent developments have shown the necessity of totally different 
kinds of approaches than the classic model-based methods. For example the so-
called supervised learning systems are awakening the interest of many researchers. 
In particular artificial neural network (ANN) produced good results in fault detec-
tion and a great number of other application. This success increased the interest of 
scientist and engineers to model and mimic the main natural cognitive systems just 
like it has been made for ANN [Worden2011, Widodo2007]. These techniques 
have been applied successfully in the diagnostics of mechanical components such 
as bearings [Cocconcelli2011, Cocconcelli2011b] and gears [Zimroz2011, Bart-
kowiak2011, Bartkowiak2012]. One of the most recent field of research among 
cognitive systems are the artificial immune systems (AIS) [Greensmith2010] 
which can be referred to as the totality of the algorithms and computational me-
thods derived by the study of human immune system. In the next section an intro-
duction to AIS is provided, while in section 3 will be introduced an original AIS 
algorithm based on Euclidean distance minimization. Finally section 4 reports the 
results of an experimental activity to prove the feasibility of the algorithm. 

2 Artificial Immune Systems 

As previously said AIS cover a multitude of different algorithms and methods and 
their description is out of the scope of this paper [DeCastro1999]. Only the main 
concepts necessary to understand one of them – the AbNet – will be provided. 
Concepts will be initially explained from human body perspective to finally be 
converted into data and algorithm functions. First of all, it is important to distin-
guish between two fundamental entities which we will refer to: 

• Antigens: external pathogen agents which are able to cause damage to hu-
man body tissue if unstopped. 

• Antibodies: proteins produced by human body which are able to neutralize 
Antigens. 

The elimination of an antigen is performed so that only the antibodies that couple 
a specific antigen will stimulate the immune response against it. This coupling 
process takes place only when the complementarity between the antigen and the  
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antibody exceeds a fixed threshold. For better explaining and evaluating this phe-
nomenon scientists have created the idea of shape space i.e. a space identified by 
L dimensions where L is the number of different features that influence the coupl-
ing process of antibody-antigen (e.g. chemical, geometrical…features). 

There are two important immune principles that must be considered: the clonal 
selection principle and the negative selection principle. Human systems always 
generate new antibodies to contrast the enormous number of antigens that strike us 
every day. But a singular antibody is not a cognitive entity and it is not able to dis-
tinguish between antigens (non self) and other antibodies (self), so the immune 
system could attack and destroy itself (the so-called autoimmune disease). Moreo-
ver antibodies generation – through a pure randomization process – could provide 
a weak and inefficient immune response. Therefore the human body uses the two 
principles previously cited to avoid these two problems: clonal selection principle 
ensures that only the most suited antibodies will be cloned, that is the antibody 
which couples with more antigens is the one more to reinforce immune response 
against that precise antigen. Negative selection principle, on the other hand, avoids 
antibodies to attack what is self, eliminating those which attack each other. These 
simple concepts have been used by De Castro to create an immune algorithm , 
AbNet , which has already been used with success in machinery diagnostics [Luci-
fredi2011]. The idea at the base of AbNet is to transform antigens and antibodies 
into data and to use the previously explained principles to operate in the field of 
pattern recognition. The algorithm of De Castro requires the data to be necessary 
in binary form so it has to be defined a new distance for evaluating antigen-
antibody binding. This type of distance is computed between two binary arrays 
calculating the number of complementary bits between them and is called Ham-
ming distance. So the higher the complementarity between the two array, the 
higher will be this distance. In this way it is possible to apply the shape-space 
formalism to a binary space identified by L dimensional binary strings. Again, the 
binding occurs when the distance (H) between them overcomes a certain threshold 
value (E). Working on these concepts AbNet is able to generate – once an arbi-
trary number of L dimensional binary arrays which represent the antigens and a 
threshold binding value E are defined – the minimum number of antibodies which 
can bind every inserted antigen. If E is set to 0 the number of antibodies generated 
will be exactly the same of the antigens, and every antibody will be the perfect 
complement of an antigen. On the other hand if E is set to a different value, e.g. 3, 
will be generated less antibodies than antigens because some antibodies will be 
able to bind more than one antigen, and the complementarity won’t be perfect an-
ymore. Applying this algorithm it is possible to create from a bearings dataset 
(which represent our antigens), passing through a binary conversion of the data, a 
set of antibodies which are able to recognize not only antigens belonging to the 
dataset, but also new unknown antigens. Following this method [Lucifredi2011] 
and [Strackeljan2008] used AbNet as an expert system obtaining very good re-
sults. Like any other supervised learning system this implementation of AbNet is  
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composed of two different phases: the training phase and the testing phase, as  
shown in Fig. 1. As previously said this kind of AbNet application was able to 
recognize well malfunctioning bearings, and could also determine what kind of 
break they were subject to. The method proved to work very well in case of mul-
tiple accelerometers used to survey vibration signals and more generally with a 
very large quantity of information in the training phase, while its detection effi-
ciency decreases unacceptably using only one accelerometer. This is a sensible 
drawback in industrial maintenance where only a limited number of accelerome-
ters are used.  

In this paper an alternative method called Euclidean distance minimization 
(EDM) is proposed, based on the shape space formalism. The EDM method is de-
rived from the AbNet concept and it allows to solve and simplify the diagnosis 
process. 

3 Euclidean Distance Minimization 

The definition of the Euclidean distance between a set of two n-dimensional vec-

tors ( )npppP ,...,, 21=  and ( )nqqqQ ,...,, 21=  is reported in Eq. 1. 

{ } ( )∑ = −= n
i qipiQ 1

2
,Pdistance

                                          
(1) 

Unlike AbNet which works on arrays of binary numbers, the proposed method 
works directly on arrays of real numbers and it is reduced to a least squares prob-
lem. The shape space is now a normal Euclidean space with L dimensions.  
Moreover the antibodies can be neglected since they are not really needed at com-
putational level. In fact the antibodies are considered as a biological mechanism 
used by the human body to compare new antigens with those previously eliminat-
ed, so it should be possible classify the new ones as non self and remove them too. 
These simplifications lead to only two types of basic entities: 

• Training antigens: antigens relative to bearings of which the health state is 
known a priori. Let’s refer to these as Ag-train. 

• Testing antigens: antigens relative to bearings of which the health state is to 
be determined. Let’s refer to these as Ag-test. 

The algorithm performs Euclidean distance between a set of Ag-train and Ag-test 
in order to classify the Ag-test according to the proximity to a certain group  
of Ag-train which represents a specific health condition of the observed  
bearing. 

Figures 1 and 2 show the flowchart of the training and test phases for the Ab-
Net and EDM immune systems respectively. In the next section the algorithm  
will be implemented to a real case of bearing diagnostics to evaluate its  
efficiency. 
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Fig. 1 Block diagram representing AbNet application in bearings diagnosis. 

 

Fig. 2 EDM block diagram 

4   Results 

The algorithm has been tested on an industrial application. In particular the expe-
rimental activity regarded the condition monitoring of a Rockwell Automation AC 
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Brushless servomotor used in a packaging machine. It must be noticed that the 
condition monitoring of servomotors is not trivial. In fact these motors don’t have 
a constant rotational speed, but they move following complex speed profile (e.g. 
polynomial), i.e. there is a continuous change in the rotational speed with also the 
motion inversion. The experiment took into account 13 bearings, 7 of them were 
healthy and 6 were damaged at different levels. The bearings were tested on dedi-
cated test-bench which simulated the packaging machine. An accelerometer rec-
orded the vibration signal for a period of 50 seconds at a sampling rate of 10 kHz. 
The bearing have been tested at different hourly capacity of the packaging ma-
chine (i.e. same motion profile but performed at different levels): 5000, 7000 and 
9000 packages per hour. A total of 35 acquisitions were taken into account. 
Among these, 29 have been used in the training phase and 6 for the testing. Note 
that all the 6 test acquisitions came from different bearings, three of them was 
faulted and three was healthy.  

From every training sample relative antigens were created with the following 
method:  

1. the signal was divided into single cycles of the machine; 
2. for every cycle of the machine three real valued features were determined: Kur-

tosis, Jerk-peak, RMS; 
3. the hourly capacity of the machine was added as fourth feature; 
4. all these features relative to the same part of the signal (namely a single cycle) 

were combined in a single array which now represents our antigen; 
5. a final operation of normalization has been applied to the antigens to make the 

shape space uniform: for each feature the maximum value has been determined 
between all the computed antigens. The maximum values for each features has 
been taken as reference. Finally each antigen has been proportionally changed 
in order to align each maximum value to the reference; 

The creation of the antigen from the acquired vibration signal is reported in Fig. 3. 

 

 

Fig. 3 Antigen extrapolation from the original bearing signal 
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Once the antigens are created, they can be used in the testing phase. The vibra-
tion signal acquired from “unknown” bearings is used to compute the antigens Ag-
test with the same features described above. In particular also the normalization is 
done in order to compare Ag-train with Ag-test.  

The Ag-train were divided in two categories: broken (B), working (W), but it’s 
possible to insert more categories (e.g. inner race fault, outer race, etc…).  

The classification of a Ag-test is done performing all Euclidean distances be-
tween the Ag-test and all the Ag-train, and then considering which antigen and 
which category (B or W) is associated with the minimum Euclidean distance. 

At the end of the process all Ag-test are classified into the B category and/or 
the W category. The largest population of one of the two categories will provide 
the final classification. 

The classification scheme is summarized in Fig. 4, while Fig. 5 reports the re-
sults of the proposed algorithm on the classification of tested data. 

 

 

Fig. 4 Classification scheme: for every Ag-test the distances with every Ag-train are per-
formed, then the quantity of minimum distances relative to the two classes are compared to 
obtain the final classification. The totality of Ag-test (1,2,3,…p) represents all the features 
extracted from the signal of the bearing to be classified. 
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Fig. 5 Classifications of the tested bearing into broken and healthy conditions. 

In the examined cases the method was able to recognize the totality of the  
6 testing acquisitions and all with the 100% of testing antigens assigned to  
the right class. Furthermore it must be noticed that some of these (in the working 
conditions) presented very high values of RMS because they were never been run 
before, but this condition seemed to give no problem in bearings classification. It’s 
a good signal to prove algorithm’s flexibility. 

5   Conclusions 

The paper aims to present a simple method inspired and derived from the mechan-
isms of the immune system, and its application in a real case of bearing faults rec-
ognition. The proposed algorithm is a simplification of the original process, 
adapted to a particular case of a much bigger class of algorithms and methods 
grouped under the name of Artificial Immune Systems, which have proven to be 
useful and promising in many different application fields. The proposed algorithm 
is based on the Euclidean distance minimization in the evaluation of the binding 
between antigens.  

Applied to bearing diagnostics the generic antigen used is created collecting to-
gether four features computed from the vibration signal: Kurtosis, Jerk-peak, RMS 
and the hourly capacity of the packaging machine the motor is mounted on. A 
normalization with respect to the maximum computed value of the features is re-
quired in order to compare the antigens developed in training phase with the anti-
gens under classification. 

Experimental activity proved the suggested methodology, obtaining maximum 
results but further test are required for a complete evaluation of its performance 
and its limits. Moreover the capability to differentiate the type of fault (e.g. inner 
or outer race) will be developed in the future steps. 
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Abstract. The purpose of this paper is to present a method to detect and diagnose 
an induction motor rotor fault, by exploiting the cyclostationary characteristics of 
electrical signals. In fact, the induction motor defects are the most complex in 
terms of detection since they interact with the 50 Hz carrier frequency within a re-
stricted band around 50 Hz. The test bench includes an industrial three-phase 
wound rotor asynchronous motor of 400V, 6.2A, 50Hz, 3kW, 1385rpm characte-
ristics. The rotor fault has been carried out by adding an extra 40mΩ resistance on 
one of the rotor phases (i.e. 10% of the rotor resistance value per phase, Rr=0,4Ω). 
From the stator voltage and current acquisition, and by application of the Time 
Synchronous Averaging (TSA), the electrical signal is conditioned in order to ob-
tain a sensitive spectral indicator allowing to diagnose the motor defects by the 
Motor Current Signature Analysis (MCSA) method. 

Keywords: Cyclostationarity, Time Synchronous Averaging (TSA), Monitoring; 
Rotor fault, Spectral analysis, Motor Current Signature Analysis (MCSA). 

1   Introduction 

The electrical drives using asynchronous machines are very common within indus-
trial applications due to their low costs, high performance and robustness. Howev-
er, there are various electrical or mechanical-type reasons, which can sometimes 
affect the well-functioning of these machines [1,2]. The appearance of a fault in 
the drive modifies its operation and affects its performance. There are mainly two 
approaches for the monitoring of the electrical-drive system: the mechanic’s, 
based on the vibration, speed and torque measures, and the electro-technician’s, 
based on the current and voltage measures.  
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A previous work [14] was devoted to develop a statistical indicator from the 
electrical signals (motor current and voltage) and that enables the monitoring of 
the machine. In this paper, an approach combining the TSA (Time Synchronous 
Averaging) and the MCSA (Motor Current Signal Analysis) methods is presented 
in order to diagnose the induction motor faults. 

Indeed, the current signal presents a non-stationary behavior related to the ma-
chine operating process and the electrical phase fluctuations [3]. Very little work 
has been done to exploit the electrical-signal cyclostationary characteristics [3], 
and it seems interesting to adapt these signal treatment tools to the electrical signal 
case. The particular case of rotor failures will be considered. Those generally lead 
to an increase of a one-phase rotor resistance value [1,4-6]. Therefore, a rotor de-
fect is created by adding a 10% value extra resistance on one phase of the rotor. 

A simple comparison between the stator current spectrum in the healthy and de-
fective modes of the no-load machine does not allow to detect the failure (the lines 
of the spectra are quasi confused). The 50 Hz electrical frequency presence set a 
mask effect on the whole spectrum. Due to the restricted band around 50 Hz of de-
fects sidebands, a simple filtering out of this frequency lead to information com-
plete loss.  

A preliminary conditioning of this spectrum will precisely make it possible to 
exploit the stator current cyclostationarity. By application of the TSA method 
[7,8], the residue related to the machine mechanics is obtained by subtraction. Af-
ter conditioning, the new spectrum will allow the easy diagnosis of the defect.  

2   Motor Current Signal Analysis (MCSA) 

The occurrence of a fault in the drive modifies its operation and affects its perfor-
mance. The purpose of searching defect kinematic signatures is to characterize the 
system operation and identify type and origin of each defect. There are sever-
al techniques that can be used to detect induction motor defects.  

The Motor Current Signal Analysis (MCSA) is one of the most popular used 
methods because of the following reasons. Firstly, it is noninvasive. The stator 
current can be detected from the terminals without breaking off the drive operat-
ing. Secondly, it can be measured online therefore makes online detection possi-
ble. Thirdly, most of the mechanical and electrical faults (such as broken rotor 
bars, short circuit and bearing damage and air gap eccentricity) can be detected by 
this method [17]. 

MCSA is based on the spectral decomposition of stator current through the Fast 
Fourier Transform FFT. In the MCSA method, the current frequency spectrum ob-
tained and specific frequency components are analyzed. These frequencies 
are related to well-known machine defects. Therefore, after the stator current 
treatment, it is possible to conclude about the machine’s condition [15-17]. 

The frequencies of the signals induced by each fault are calculated as a function 
of some of the motor’s characteristic data and operating conditions. In this work, 
the broken bars defect will be studied. The characteristic frequencies of this defect 
are given by the following relations [5]: 
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 f 1 2 · s · f  (1) f 1 2 · s · f  (2) 

Where fs is the electrical supply frequency and s is the per unit slip. 
As shown, given a motor’s characteristic data, its current’s samples and the 

value of the slip, it is possible to determine the frequencies of the signals induced 
by the fault. 

3   Signal Synchronization 

The asynchronous motor operating process and the electric supply fluctuations 
cause the non-stationary behavior of the stator current signal. Previous research 
[10-12] has applied time/frequency representation techniques with an aim of iden-
tifying the signatures of the faults not in the frequency field, but in the 
time/frequency plan. 

However, there has been very little work [3] exploiting the electrical-signal 
cyclostationary characteristics to identify the faults which occur in an asynchron-
ous-motor drive. The idea is to extend the application of these signal-processing 
tools to the case of electrical signals. 

In this work, the first-order cyclostationarity of stator current and voltage is 
largely exploited. However, a problem of cycle drift from one electric cycle to 
another, due to the electrical supply fluctuations, is noticed. Fig.1 (top figures) 
represents the superposition of 1000 electric cycles acquired in a temporal way, 
and it clearly illustrates the shift between the 1st and the 1000th current signal 
cycle in the healthy and defective cases. The sampling rate taken is 25.6 kHz 
(25.6k/50 = 512 samples per average cycle of 50Hz). 

The cyclic statistic rules cannot be directly applied to these signals to extract 
desired information, except if a way to compensate these fluctuations is proposed.  

A preliminary stage is needed: the current and voltage signals must be re-
sampled according to a reference which “follows” these fluctuations: it’s “the syn-
chronization of the current and voltage signal”. Therefore, a re-sampling algorithm 
which allows synchronizing the acquired signals (stator current and voltage) is de-
veloped. Synchronization is operated by compensation of the delay between the 
various electric cycles. 

The purpose is to synchronize all electric cycles according to the same refer-
ence, so all cycles must be superimposed after the synchronization process.  

To do this, current and voltage signals ares first cut out in slices, each one cor-
responding to one period (20 ms), and each period containing an integer number 
of samples N. In this case, the sample rate is 25.6 kHz, so N = 512 samples per pe-
riod (512 = 25.6kHz x 20ms). Then, the shift between the first period, taken as a 
reference, and the others is estimated. Then, each period is shifted to make it coin-
cide with the first one (reference). If the two periods are already synchronous, the 
shift is then null. The obtained signals are represented in Fig.1 (down figures). 

Once all cycles are synchronized, the signal is rebuilt by setting these cycles 
end to end. All cycles will be synchronous now and the “synchronous averaging” 
can be carried out. 
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Fig. 1 Stator current shapes 

4   Time Synchronous Averaging (TSA)  

A rotor fault can be detected by highlighting a stator-current amplitude or phase 
modulation. However, the modulated-signal weak frequency band makes it too 
difficult to detect modulation. An alternative to overcome this difficulty is pro-
posed by [7]: the Time Synchronous Averaging (TSA) method. It’s a way to  
reshape the signal before its processing. The TSA method allows the separation 
between the excitation sources and, consequently, fault identification.  

The stator current  can be decomposed as follows: 

 (3) 

Where  ,  and  are respectively the stator-current harmonic 
component, the mechanical-structure-related stator current and the noise.  

In fact, the asynchronous motor monitoring consists of supervising the signal 
harmonic part. So, the harmonic frequency (50Hz) which is related to electrical 
phenomena and mechanical-structure-related frequency must be separated. 

For this purpose, the TSA method will be applied to the stator current. In fact, 
the stator current is the sum of a determinist signal ( ) and a random signal 

(sum of  and b ; whose average value is zero: 

 (4) 

 is the stator-current random component.  
The synchronous averaging of N stator-current samples is done by: 

· 1 ·  (5) 
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Where: 

•  , where  is the sampling rate (25.6kHz) 

•   is the kth synchronized stator current cycle 

•  is the sample row (n=1 to 512; 512=25.6k/50; 512 is the number of 
samples per 50Hz cycle) 

For the large value of N: 

 (6) 

Note that only the harmonic part  corresponding to 50Hz frequency remains 
in the averaged signal; since the random-component average value is zero. 

Thus, the synchronous averaging allows an effective separation between elec-
trical-related and mechanical-related components. The subtraction between the 
stator current   and the synchronous averaged current    (for 

the large value of N) gives the residual current   where only me-
chanical-related frequencies remain. 

It’s a very interesting property that will allow to condition a mechanical-
structure-related indicator monitoring eventual faults (such as rotor defects.) 

The residual signal is obtained by subtraction of the TSA signal from the syn-
chronized signal. This action reduces the electrical contribution, and, consequent-
ly, makes the extraction of mechanical-related information easier.  

5   Stator Current FFT Analysis 

The signal must be conditioned in order to develop an asynchronous motor moni-
toring indicator. Two tests are carried out: no-loaded motor (Test n°1) and motor 
with a 65% nominal load (Test n°2).  

The rotor fault has been carried out by adding an extra 40mΩ resistance on one 
of the rotor phases. The current and voltage signals are acquired using a data ac-
quisition system and the velocity is measured with an optical tachometer. 

Table 1 below summarizes the values of the per unit slip for the two tests: 

Table 1 Measurements summary. 

 Healthy (Test n°1) Defective (Test n°1) Healthy (Test n°2) Defective (Test n°2) 

Per unit slip 2.06% 2.2% 5.53% 6.2% 

 
As a first step, a spectral analysis to stator current is applied. The predominance 

of the 50Hz component in the stator current spectrum does not allow detecting 
easily the failure. Especially, in the no-loaded case, the healthy-case and the faul-
ty-case spectra are quasi combined, as shown in Fig. 2. In Fig.3, the spectrum al-
lows the rotor defect visualization. There are two sidebands at frequencies f 43.75Hz and f 56.25Hz; but their amplitude are very low compared to the 
50 Hz line’s amplitude (respectively 10 and 50 times lower). 
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Fig. 2 No-loaded motor Fig. 3 Motor with a 65% nominal load 

The idea is to make the residual-stator-current spectral analysis: 

• In the no-loaded case, the faulty residual current spectrum presents clearly 
two sidebands at frequencies  f 47.75Hz and f 52.25Hz (Fig. 4), while in 
the healthy residual current spectrum, there was no particular sideband. The 
measured slip value is 2.2% (Table 1) and the electrical supply frequency val-
ue is 50Hz; so the theoretical values of fb1 and fb2 determined from the rela-
tions (1) & (2) are respectively 47.8Hz and 52.2Hz. These values correspond 
to the values f1 & f2 deduced from the spectrum. 

• Also in the case of motor with a 65% nominal load, the rotor fault is consi-
derably easier to detect in the residual current spectrum (Fig. 5). Indeed, the 
two sidebands at frequencies f 43.75Hz and f 56.25Hz are more visible 
now. The measured slip value is 6.2% (Table 1) and the electrical supply fre-
quency value is 50Hz; so the theoretical values of fb1 and fb2 are respectively 
43.8Hz and 56.2Hz, which correspond exactly to the values f1 & f2 deduced 
from the spectrum. 

 

Fig. 4 No-loaded motor Fig. 5 Motor with a 65% nominal load 
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6   Conclusion 

In this article, the proposed method of asynchronous-motor-failure monitoring has 
two major advantages:  

• First, it is a method which is based on the analysis of the “current” and “vol-
tage” signals. Therefore, it can be applied even to the inaccessible engines 
(such as the engines immersed in the motor-driven pump groups), unlike the 
methods based on the analysis of the accelerometer signal, where a direct 
access to the engine is necessary. 

• Besides, the approach is relatively simple: the monitoring of the residual cur-
rent spectrum makes it possible to clearly detect the defective case. In fact, 
with a no-load engine, where the fault is hardest to detect, the spectrum shows 
clearly the sidebands at specific frequency of the defect. 
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Abstract. Any mechanical system possesses its own vibrating characteristics from 
which functioning can be understood and foreseen. Modal parameters such as 
natural frequencies and damping ratios are the main examples. This paper presents 
homemade numerical analyzer for characterizing them. The procedure is based on 
complex Morlet wavelet transform with particular use of translated version for 
better detection of closed modes. The code has been successfully tested through 
simulated signals. Experimental validation was carried out through the modal 
analysis of a gear motor on which repeatable and reliable results were obtained. 

Keywords: natural frequency, damping ratio, complex Morlet wavelet, gear motor. 

1   Introduction 

Dynamic behaviour of engineering structures and machineries depends on their 
functioning conditions, but also largely on their mechanical characteristics. Some 
of them are the so-called modal parameters such as natural frequencies, damping 
ratios and modal shapes. Among actual identification techniques of these quanti-
ties, modal experimental method represents one of the most used, because of its ef-
fectiveness and practical convenience. It is generally based on response data, con-
sisting in analyzing signals issued from a given known excitation or impulse one. 
The central problem is how to extract the impulse response from the raw signal. 
Numerous works have been conducted in this field, using various methods, like the 
natural excitation technique, the random decrement one, etc. All of these  
approaches give quite satisfying results on simple structures and well-separated  
vibrating modes. Difficulties present when it is necessary to identify closed ones 



348 O. Riou et al.
 

which is an usual case with complex machineries. Wavelet transform has also been 
used by researchers for this purpose [1-5].  

In this paper, we present an effective continuous wavelet-based analyzer which 
is applied to characterize modal components. A brief review of wavelet theoretical 
background is first given. Then, in order to validate the method, numerical known 
signals are taken for which two different sorts of responses are treated: a single 
degree of freedom (sdof) signal and a multiple degree of freedom signal (mdof). 
Thereafter, effectiveness of the technique is proved through the identification of 
modal parameters of a skew-geared motor. 

2   Mathematical Basis 

The continuous wavelet transform (CWT) of a signal x(t) is a time-scale decompo-
sition obtained by dilating and time translating of a chosen analyzing function 

)t(ψ . In this work, we use complex Morlet wavelet which offers a good compro-

mise between time and frequency resolutions. One basic function can be defined 
in time domain by: 

)k/texp( )t f  2 jexp( )k ()t( 2
w

5.0 −ππ=ψ −
                  (1) 

where k is the bandwidth parameter and wf  the wavelet frequency. The a-dilated 

version of the Fourier transform is: 

( )2
w )ff a)(4/k(exp)f a( −−=Ψ                              (2) 

which is maximum at the central frequency a/ff wc = . The wavelet transform 

can be viewed as a linear bandpass filter whose bandwidth is proportional to 1/a or 
to the central frequency cf . For a given value of a, the spectrum of the Morlet 

wavelet has a fixed bandwidth. If the analyzed frequency is high, the dilatation pa-
rameter is small and the wavelet spectrum becomes wide. This leads to a bad spec-
tral resolution. An alternative to this problem is to set an optimal bandwidth pa-
rameter k in order to control the width of the filter. As k increases, the spectrum 
narrows, allowing a better resolution of closely spaced frequency components. 
Such translated version of basic wavelet will be called translated wavelet trans-
form. It is put to use in this paper advantageously when one has to separate modes. 
Figure 1 shows results in time and frequency domains for a same centre frequency 
( cf  located at 2Hz) but for two different values of bandwidth parameter (k equal 

to 1 and 4). Furthermore, an elegant method to find the optimal value of k has 
been first carried out in reference [6] by minimizing the entropy of the wavelet 
transform. Currently, many papers exist in literature dealing with criteria for 
automatic adjustment of the wavelet parameters [7] which are not implemented 
here. 
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Fig. 1 Complex Morlet wavelet with different bandwidth parameters 

Applied to the pulse response of a system, the continuous Morlet transform can 
be written as: 

[ ] )) b(iexp(  a ))bexp(-(A 
2

a
)x(W 011

*
0b,a Φ+ωωψξω=          (3) 

where A is a constant depending on the intensity of impulse loading, ξ is the 
damping ratio, ω0 is the undamped angular frequency, ω1 is the damped natural 

frequency such as 2
01 -1 ξω=ω . Using Morlet or modified Morlet wavelet, the 

dilatation parameter is related to damped natural frequency like 1w0 /a ωω= . For 

this parameter, the logarithm of the modulus of this complex function is: 

0 0 1

0 *
, 0 ,ln ( )    -   ln   ( )

2a b a

a
W x b A xωξ ω ψ

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
 

(4)

Thus, the decay rate 0 ωξ=δ  can be estimated from the slope of the straight line 

of the logarithm of the wavelet transform modulus. The wavelet transform phase 
is also given by: 

01b,a b )x(WArg
0

Φ+ω=
                              

(5) 

Its derivative with respect to translation parameter b gives the damped natural fre-
quency  1ω . This finally permits an evaluation of both damping ratio ξ and natu-

ral frequency 0f . 
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3   Algorithm Implementation 

Processing steps are as follows: 

• The complex wavelet transform of pulse response is first calculated with 
bandwidth parameter value 1k =  (classical wavelet) in large range both 
in time and frequency. The latter is limited by the Nyquist frequency 

2/fs  where sf  is the sampling one. Different frequency bands ∆fi are 

first identified at maxima of wavelet transform coefficients in which sup-
posed i-vibrating mode occurs; 

• For each frequency band, bandwidth parameter k is optimized in order to 
enhance resolution. Results are appreciated graphically so as to cover en-
tirely the corresponding vibrating mode; 

• Cross section drawn at maxima gives complex wavelet coefficients ac-
cording to eq. 4. Then slope of modulus natural logarithm versus time is 
finally estimated using linear regression, leading to the value of damping 
ratio; 

• To complete the procedure, inverse wavelet transform is applied in order 
to reconstruct the corresponding time signal )t(x~ . In most cases, once 

appropriate time and frequency filtering has been done, the modal nature 
of )t(x~  appears unambiguously. 

4   Applications to Theoretical Signals 

In order to evaluate the effectiveness of the algorithm, two different signals are 
used: sdof and mdof pulse responses. 

4.1   Single Modal Free Response 

A theoretical shock response which represents a sdof system is simulated with 
given natural frequency f0 [Hz] and damping ratio ξ. Once a wavelet maximum 
has been localized, cross section at this peak is calculated by the program and 
drawn on the domain translation coefficients (fig 2 left). Afterwards, curve ex-
pressing the logarithm of wavelet transform modulus versus time is plotted (fig. 2 
right). The straight line obtained after approximation using linear regression has a 
slope expressed by 00 f   2 ξπ−=ωξ−  where f0 is the previously detected fre-

quency. Lastly, the damping ratio is deduced from eq.5. 
In the case of analytical noiseless signals, time-scale representation exhibits en-

ergy maxima without any ambiguity. Cross section can be dawned automatically by 
computing utmost times of each isovalue line. Wavelet coefficients are then ex-
tracted and analyzed according to eq. 4 and 5 in order to determine natural fre-
quency and stiffness. One of the quality factors of any extractor is the time scale on 
which logarithm of modulus is linear. By comparing obtained values to  
 



Numerical Tool for Extraction of Modal Parameters  351
 

 

Fig. 2 Left: contour representation of the modulus of the complex Morlet wavelet for a sdof 
(with f0=100Hz, ξ =0.05). Right: logarithm of the wavelet transform at peak cross section 

expected ones, accuracy comes out excellent in terms of frequency (less than 0.1% 
of relative error) and acceptable in terms of damping (less than 2%). 

In the case of real signals, difficulties arise on how to appreciate the maxima of 
energy. Weak position errors lead to shortening linear behaviour and make stiff-
ness determination less accurate. 

4.2   Pulse Response of a System with Several Modes 

As wavelet transform is a linear representation of a signal [16], for M  functions 
)t(xi  and M  complex values )t(iα  with i  = 1, 2, … M : 

[ ]∑
=

⎟
⎠
⎞

⎜
⎝
⎛ πξ−ξπ−=

M

1k
k0

2
kk0k )t( f  2 1cos )t(f   2exp)t(x                (6) 

Obvious advantage of the technique emerges when modes are closed. On the ex-
ample of Figure 3, a filtering operation from 75 to 145Hz leads to foreseeing the 
existence of more than one mode (dense red zone) but with no further precision. 
Better resolution was then found by using the translated version of wavelet with a 
bandwidth parameter 4k = . Two modes loomed clearly (98 and 122Hz) in accor-
dance with what we had expected. 
 

 

Fig. 3 Wavelet transforms in classical (a) and translated version (b) enabling to reveal two 
closed SDOF 



352 O. Riou et al.
 

In the case of closed modes, using of the translated version of the complex 
Morlet wavelet can clearly ameliorate significantly the resolution. 

5   Application to Gear Motor 

5.1   Gear Motor 

Tests were conducted on an experimental bench using a helicoidal tooth and a cy-
lindrical gear motor shown in Figure 4. It has two gear trains. Six roller bearings 
(B1 to B6) support the whole set which possesses four pinions (P1 to P4). Fed by 
a 380V – 50Hz three phase electrical asynchronous motor, it turns at 1494/282 
rev/min (reduction ratio of 0.188) with a power of 1.1kW. The machine is located 
relatively to a system of orthogonal axes {x, y, z}. Alphanumeric characters refer 
to plane and measuring direction. Both kinematic and fault frequencies have been 
previously calculated. 

 

 
 

Fig. 4 Overview of the installation and localization of measuring points on the gear motor 

5.2   Instrumental Setup 

The measured vibrating signal is digitized using a 24 bits resolution by simultane-
ously employing a four-channel signal acquisition module USB 9233. The module 
includes built-in antialiasing device, with high stability, low noise laptop power 
supply filters, automatically making high-accuracy measurements from IEPE ac-
celerometer. In the case of modal analysis, two channels are taken on to digitize 
impulse response and one to digitize instrumented hammer signal. For standard 
test, sampling rate and size are fixed up to 25 kS/s with 215 samples. We operated 
standard IEPE accelerometer DJB A120 VTC with sensitivity of 100mV/g. Meas-
urement bandwidth is done within [2Hz, 10 kHz] according to 0.5 dB distortion. 
USB 9233 is piloted using Labview and allows to adapt sample rate and size for 
each channel. Mathematical treatments are thus performed from data file by put-
ting into use homemade Matlab worksheet. An important point is the possibility to 
digitalize simultaneously any shock impulse and related responses with very high 
time and sampling resolution. 
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5.3   Procedure 

We apply an instrumented hammer to produce a shock. The impact is produced at 
equal distance from two measuring points. Shock impulse and related responses 
are then recorded simultaneously. Before any routine analysis, we check the cau-
sality of responses on the excitation by analyzing coherence function. In most 
cases, coherence indicator is better and goes beyond 0.9 from 100Hz. The same 
results are obtained if we exchange the impact position by the sensor one and vice-
versa. Moreover, while disposing of two simultaneous impulse responses, we pre-
viously made use of a power spectral cross-correlation function in order to reveal 
and extract any common sdof modes. Associated to the classical Hilbert transform 
analysis, this method turns up to be very sensitive and accurate to characterize any 
separate modes. Our wavelet algorithm is then calibrated on previously identified 
single modes. Performances are finally tested on the closest modes which are gen-
erally not put into evidence by cross-correlation analysis. Operating is then ap-
plied on the horizontal, the vertical and the axial directions in order to scan 3D 
free response functions on which modal parameters can be determined. 

5.4 Identification of Modal Parameters Using Continuous  
Wavelet Transforms 

We handled the method based on complex Morlet continuous wavelet transform 
as described in section 3. With the exploration of the whole space of continuous 
wavelet transform, layers containing natural mode areas can be characterized. An 
example is given for the case of the measuring point 3RV on which shock was ap-
plied on radial-vertical direction situated on the front bearing of the gear motor. 
After calculation of CWT using a translated version of wavelet with bandwidth 
parameter 4k = , filtering [0.168-0.187s] in time and [475-725Hz] in frequency 
has been undertaken. From reconstruction of the identified mode, existence of 
natural frequency is then confirmed (Figure 5). Characteristic appearance of the 
curve reveals the properly found mode. 

 

 

Fig. 5 Left: cmor4-1.5 continuous wavelet transform using filtering [0.168-0.187s], [475-
725Hz]. Right: peak cross section and extracted mode at 625Hz 
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After measuring the response on all points and applying the method, numerous 
modes characterized as natural frequencies and damping ratios were found.  
Table 1 summarizes all results of modal analysis of the machine. 

Table 1 Modal analysis results for the gear motor 

Axial direction (x) Radial-horizontal direction (y) Radial-vertical direction (z) 

f0 ξ f0 ξ f0 ξ 
483.9 0.018 106.38 0.051 105.26 0.077
809.9 0.014 204.1 0.012 116.28 0.021 
1 102 0.014 217.4 0.069 121.95 0.020 
1 368 0.010 222.3 0.089 253.2 0.045 
 410.8 0.058 277.8 0.031 
 512.8 0.024 333.3 0.057 
 526.3 0.024 341.2 0.032 
 789.5 0.033 461.5 0.006 
 1 145 0.006 625 0.024 
 1 333 0.002 652.2 0.014 
  1 072 0.013 
  2 222 0.012 
  2 334 0.011 

 
Highest values are on the x-axis: in that direction, just a few natural frequencies 

can be spotted. On the contrary, that’s where the lowest damping ratios are. In 
fact, this machine can be modelled as a laid down cylinder: the most rigid direc-
tion is the x-axis. As the system is placed on a horizontal plane, damping ratio in 
the vertical direction globally turns lower. Moreover, it clearly springs up that on 
zones with high frequencies, damping lies low. 

6   Conclusion  

In this work, procedure is based on the transversal sections of the complex Morlet 
wavelet transform in order to identify damping ratios. These sectioning operations 
are obtained for scale parameter values which depend on analyzed frequency zone. 
The advantage of the wavelet method stems from the capacity to decoupling a sys-
tem into separated modes. We employed a specific complex Morlet analyzing 
function which has high frequency ability. That allowed to refine results especially 
in terms of mode separating. This is proved through numerical signals of different 
types, with efficiency and accuracy. When natural frequencies are closed, the us-
ing of the translated Morlet wavelet brings good resolution. Application on real 
signals measured from a complex rotating machine gave identification of modal 
parameters, compared to other common methods. 
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Abstract. Modulations present in vibration signals generated by rotating machi-
nery might carry a lot of useful information about its technical condition. The pa-
per describes a technique for detection of modulations in vibroacoustic signals, 
called modulation intensity distribution (MID), which, as proven might be consi-
dered as a generalized description of the spectral correlation density. Additionally, 
the paper includes the description of integrated MID (IMID) which allows to 
present the results of MID in a simplified form. As a conclusion, the discussion is 
held on the application of IMID to industrial condition monitoring systems. 

Keywords: modulation intensity distribution, MID, spectral correlation, cyclosta-
tionarity, modulations. 

1   Introduction 

In recent years, growing demand for application of vibrodiagnostic was raised by 
many industries. It compels researchers to develop signal processing techniques 
suitable for analysis signals generated by more complex machinery, frequently 
exposed to significant influence of noise (Barszcz et al. 2010). 

Nowadays, cyclostationarity is one of the most promising approaches for rotor 
machinery vibration analysis (Barszcz 2004). The variety of cyclostationarity-
based methods of identification (Antoni 2009) and separation (Bonnardot et al. 
2005) of signal components allows to obtain many useful information about the 
signal cyclic components. An important feature of the cyclostationary analysis is 
the ability to reveal modulations that are present in vibration signals (Antoni 
2007). Modulations of various signal components may often serve as valuable in-
dicators of fault occurrence (Makowski and Zimroz 2011). It has been proven that 
both gearboxes and rolling elements bearings faults manifest themselves as mod-
ulations (McFadden and Smith 1984).  

As mentioned, cyclostationarity tools such as cyclic spectrum or spectral corre-
lation density allow detection and analysis of modulations (Randall et al. 2001). 
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However, obtained results are frequently presented as a three dimensional plots, 
which makes the interpretation relatively complicated, especially for automated 
industrial condition monitoring systems. 

In this paper, authors present the concept of modulation intensity distribution 
(MID) as a signal processing tool that allows to detect modulations in a vibration 
signal based on its cyclostationary properties (Urbanek et al. 2012). Additionally, 
paper introduces so- called integrated MID (IMID) which might be considered as 
a two-dimensional representation of MID. Theoretical investigation included in 
the article undertakes the problem of practical application of IMID to industrial 
condition monitoring systems designed to supervise the machinery of relatively 
complex kinematics. 

The article is organized as follows. Chapter 2 introduces MID technique to-
gether with the interpretation of its results. Chapter 3 presents the IMID. Chapter 4 
contains theoretical investigation of undertaken problem. First, the model of the 
second order policyclostationary signal is presented. Next, the results of two im-
plementations of MID are compared. The results are discussed in the terms of 
practical implementation for complex machinery diagnostics.  

2   Modulation Intensity Distribution  

Modulation intensity distribution is a general technique for detection and identifi-
cation of modulations present in a signal. The method was originally designed for 
gearboxes and rolling elements bearings diagnostics purposes; therefore, it is fo-
cused on detection of amplitude modulations that manifests themselves as symme-
trically spaced spectral sidebands (Urbanek et al. 2012). 

The core of MID is the sideband filter that allows extracting potential carrier 
signal together with corresponding modulation sidebands. The idea of the side-
band filter is presented in the figure 1. 

 

Fig. 1 The concept of the sideband filter 

A time signal filtered in that way contains (in the idealized case) only the speci-
fied component with no additional signals and with highly reduced noise level. It 
can be then understood as a set of three elements: 

);( αiftxx fi −= Δ , for { }1,0,1−=i      (1) 



Integrated Modulation Intensity Distribution as a Practical Tool  359
 

where xΔf(t; f) stands for the filtered version of x(t) in a narrow frequency-band [f-
Δf/2;f+Δf/2].  

The output of the presented filter may be then used for calculating so-called 
modulation intensity factor (MIF), which can be understood as a measure of the 
strength (intensity) of the modulation of selected carrier signal by the component 
of the frequency α. 

The choice of MIF depends on the nature of analyzed signal and the desired 
output results. The simplest example of MIF might be a comparison between 
energies of symmetrically filtered signal components. However, for more demand-
ing applications spectral correlation, spectral coherence or even kurtosis of the 
envelope spectrum (Barszcz and Jablonski 2011) may serve as a MIF.  

Calculating the MID for each frequency f and α will results in three-
dimensional modulation intensity distribution map. In general, the formula that 
describes MID might be presented as follows: 

   (2) 

where  is the operator for calculating the arbitrarily chosen modulation intensi-
ty factor. 

In the particular case described above, the MID actually shows a closed link 
with the spectral correlation density defined as 

* 2
2 20

1
( ) lim ( ; ) ( ; ) j t

x f f tf
SC f x t f x t f e

f
α παα α −

Δ ΔΔ →
= + −

Δ .    (3) 

However, while the spectral correlation density returns a relationship between on-
ly two frequency components spaced by α, the proposed method operates on three 
separate frequency bands, which should make it more dedicated to the detection of 
the modulation patterns of interest. Indeed, considering the fact that the spectral 
correlation density is the correlation between two spectral components where one 
might be considered as a carrier frequency and the other one as one as its modula-
tion sidebands f+α/2, the MID can be described as follows: 

);()();()( 22
ααααα −+Δ=Δ ftSCfSCffPSCMID xxf     (4) 

It is now clear that performing the product of spectral correlations calculated at 
frequencies f+α/2  and f-α/2   results in the modulation intensity distribution for 
a fixed bandwidth Δf. In this case, the notation MID(PSC), stands for the Product 
of Spectral Correlations. 

In the paper, the effectiveness of this definition is illustrated on a simulated 
signal. Generated signal contains band-limited noise modulated by equally spaced 
exponentially descending impulses with additional white noise. The vibration 
model can be expressed as: 

)()()()( tntgthtx +=               (5) 

where h(t) is the band limited  noise, g(t) is the set of modulating impulses and 
n(t) is the additional white noise.  
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Fig. 2 Simulated exemplary signal. 

The simulated signal was designed to be similar to vibration generated by a 
rolling element bearing with an outer race local fault. Repetition rate of excited 
impulses was 80 Hz and their amplitudes were randomly modulated. The carrier 
signal is stationary Gaussian distributed around 4 kHz. In order to achieve clear 
results no impulse spacing jitter was added. 

 

Fig. 3 Resulting MID(PSC) map of the exemplary signal from fig. 2. 

Figure 3 displays the MID map for the described case. Horizontal lines spaced 
by 80 Hz represent the repetition rate of excitation impulses. Detected modulation 
components have the strongest amplitude around the 4 kHz carrier frequency. 

In some practical applications of MID to vibration signals, the spectral correla-
tion as the modulation intensity factor might not be efficient enough due to large 
differences of signal energy in various frequency bands. In such cases, the inter-
pretation of MID maps might be more efficient when the measure of modulation 
intensity varies only between 0 and 1.  For that purpose, the proposed MID(PSC) 
can be easily extended to the use of the spectral coherence as the modulation in-
tensity factor: 
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3   Integrated MID 

In the MID, a chosen modulation intensity factor is a function of the carrier fre-
quency f and the modulation frequency α . However, in some particular cases, the 
user might not be interested in finding the specific carrier frequency range, but on-
ly in evaluating the general influence of specific modulation components on the 
tested signal. Moreover, three-dimensional representations might cause some sig-
nificant difficulties for interpretation and automatic decision making process in 
industrial condition monitoring systems (D' Elia et al. 2011).   

Based on this remark, it might be more convenient to represent the MID not as 
an image, but as a function of the modulation frequency only, after integration 
over a chosen frequency band. Such representation reveals information of the total 
modulation intensity caused by individual sources and is to be called IMD, stand-
ing for Integrated MID. 

Integration over a selected carrier frequency band results in:  

∫ Δ=Δ
2

1

2

1
),();(

f

f

f
f
f dffMIDfIMD αα ,      (6) 

where MID is a chosen statistical value calculated in the carrier frequency range 
from f1 to f2.  

 

Fig. 4 The concept of integrated MID. 

As explained in chapter 2, MID is related to spectral correlation (Randall et al. 
2001). Therefore, integrated MID may be intuitively related to the envelope spec-
trum in the same manner as the spectral correlation. 

4   Simulated Signal Experiment 

In order to investigate the utility of IMID for identification multiple fault cases, a 
generated signal was used. The vibration model could be expressed as in eq.5. 
However, for the purpose of the experiment, generated signal contained two  
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unsynchronized second order cyclostationary components of different carrier fre-
quencies ranges. 

First component has the cyclic frequency equal to 50 Hz and the carrier fre-
quency between 8 and 12 kHz. Second component with the cyclic frequency of 70 
Hz is distributed from 4 to 8 kHz of the carrier frequencies range. Moreover, the 
energy of the second component was around five times lower than the energy of 
the first one. Additionally, white noise was added to the signal in order to prevent 
non-zero values of the spectrum.  
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Fig. 5 Time view of the simulated signal used for the experiment. 

As seen on the Fig.5, periodically spaced impulses of the first component are 
clearly visible, while the second component is entirely masked by the noise. 

MID(PSC) obtained from the test signal reveals the presence of the first cyclic 
component (Fig.6). However, due to significant differences in the energies of cyc-
lic components in the signal, second cyclic component is unrecognizable. For the 
same reason, recognition of the second cyclic component on the resulting IMID is 
impossible.  
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Fig. 6 MID(PSC) of the generated signal (a) with the corresponding IMID. 
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Based on the fact that non-cyclic signal components have coherence close to 
zero, MID(PSCoh) should return clearer results. Fig.7(a) presents MID(PScoh) for 
the generated signals together with the equivalent IMID.  
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Fig. 7 MID(PSCoh) of the generated signal (a) with the corresponding IMID. 

With the application of MID(PSCoh) both cyclic components are easy to recog-
nize. Such effect is possible because the spectral coherence compensates the signal 
energy differences in each frequency band due to its normalization property.  

5   Conclusions 

MID appears to be efficient way to detect fault generated modulations in the vi-
bration signal. By application of the product of the spectral coherences, it is possi-
ble to overcome the problem of different energy levels and different carrier  
frequencies of miscellaneous cyclic components in the vibration signal. Moreover, 
IMID contains similar information to envelope spectrum with the advantage of the 
immunity to the noise. It is the authors belief that with properly chosen MIF, the 
IMID may serve as the indicator of the fault development in the industrial condi-
tion monitoring systems. 
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Abstract. The paper investigates the utility of use of the modulation intensity dis-
tribution (MID) signal processing technique for detection of rolling elements bear-
ing faults indicators in high noise environment. For the purpose of the test, wind 
turbine that suffered both advanced gearbox fault and early stage of bearing fault 
was chosen. Additionally, the paper undertakes the problem of practical imple-
mentation of proposed tool in the industrial condition monitoring system. In order 
to show the behavior of cyclic components generated by studied turbine over long 
periods of time, the set of MIDs integrated over the carrier frequencies was pre-
sented as a cascade plot.  

Keywords: modulation intensity distribution, MID, cyclostationarity, multifault, 
wind turbines. 

1   Introduction 

Vibrodiagnostics of rotating machinery finds itself useful in many branches of the 
industry (Barszcz et al. 2010). Despite the rapid growth of potential fields of ap-
plications and the availability of signal processing tools dedicated to vibrodiagnos-
tics, there are still numerous limitations and obstacles that need to be overcome in 
order to significantly improve the process of condition monitoring (Barszcz 2004). 

One of the most challenging objects for vibration monitoring are wind turbines 
(Barszcz 2009). It is mostly because variable operational conditions (Urbanek et 
al. 2011, Zimroz et al. 2011, Zimroz and Bartelmus 2012) relatively uneasy access 
to the turbine, and varying weather conditions. Due to the substantial load varia-
tions caused by the altering wind, most of turbines are exposed to the risk of acce-
lerated development of mechanical faults. Additionally, since the access to the 
turbine is frequently limited by the weather conditions, execution of required re-
pairs might not be always possible.  
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Since the kinematics of the wind turbine is relatively complicated (Urbanek et 
al. 2011, Zimroz et al. 2011) and the risk of fault occurrence is significant, vibro-
diagnostics tools implemented in the industrial condition monitoring systems 
should be selective and sensitive to the early symptoms of the fault occurrence.  

In this paper, authors want to examine the utility of the method called modula-
tion intensity distribution (MID) for detection of rolling elements bearings charac-
teristic components of relatively low energy (Urbanek et al. 2012). MID uses  
cyclostationary properties of the signal (Zimroz and Bartelmus 2009, Antoni 
2007) for detection of modulations generated by rotating elements (Makowski and 
Zimroz 2011). Because the output of the MID analysis is a three dimensional map, 
it might not be a clear method to present the fault development history over long 
period of time. Therefore, authors propose to use integrated MID (IMID) cascade 
plot (D' Elia et al. 2011) to show the evolution of cyclic components generated by 
the turbine over its monitoring history.  

The paper is organized as follows. Chapter 2 introduces MID and its’ two-
dimensional representation, integrated MID. Chapter 3 gives a general specification 
of the wind turbine selected for the study. Chapter 4 includes the description of the 
technical condition of discussed object. Next, it presents the vibration signal gener-
ated by the turbine with significantly damaged gearbox. Subsequently, the paper 
presents the results of the application of the MID and discuss the utility of MID and 
integrated MID for analysis of vibration signals generated by wind turbines.    

2   Modulation Intensity Distribution  

Modulation intensity distribution is a general technique for detection and identifi-
cation of amplitude modulations present in a signal (Urbanek et al. 2012). It al-
lows to obtain relationships between spectral components of the signal in order to 
recognize the carrier signal of the frequency f and the modulation component of 
the frequency α. 

Calculating the MID for each frequency f and α results in a three-dimensional 
modulation intensity distribution map. In general, the formula that describes MID 
is presented as follows: 

   (1) 

where  is the operator for calculating the arbitrarily chosen modulation intensi-
ty factor (MIF) and xΔf(t;f) is the filtered version of the signal x(t) for filter band-
width Δf and the center frequency f. 

For the purpose of described experiment, among various modulation intensity 
factors, the product of two symmetric spectral coherences is used as the modula-
tion intensity factor. Applied MID can be described by following formula: 
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is the spectral correlation obtained for cyclic frequency α and carrier frequency f 
and the annotation PSCoh stands for “product of spectral coherences”. 

 

Fig. 1 Exemplary MID(PSCoh) map. 

Figure 1 presents exemplary MID (PSCoh) calculated for the second order cyc-
lostationary signal. Horizontal lines spaced by 80 Hz represent the characteristic 
frequency of the modulating signal. The range of frequencies of the carrier signal 
is distributed between 3.5 kHz and 4.5 KHz on the f axis. As shown in figure 1, 
proposed analysis is capable of detection of modulations in vibration signals and 
for identification of both, carrier and modulation components. 

In order to facilitate the interpretation of obtained results, it might be more 
convenient to represent the MID not as an image, but as a function of the modula-
tion frequency only, after integration over a chosen frequency band. Such  
representation reveals information of the total modulation intensity generated by 
individual sources and is to be called IMD, standing for Integrated MID. 

Integration over a selected carrier frequency band results in:   
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where MIDΔf is calculated for chosen MIF in the carrier frequency range from f1  
to f2.  

Figure 2 presents the concept of IMID. It is clearly seen that information about 
the position of observed components on carrier frequencies axis is lost. However, 
obtained results are presented on two-dimensional plot, which might be more con-
venient and simpler for analysis. Additionally, automatic data interpretation and 
decision making procedures are far more complicated for three-dimensional data 
sets which makes their practical implementation in industrial condition monitoring 
systems relatively difficult and uneconomic. 
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Fig. 2 The concept of integrated MID. 

3   Object Description 

Wind turbine chosen for the experiment was the typical commonly used turbine of 
1500 kW nominal power. Such types of turbines have usually two main opera-
tional states that depend on the speed of the wind. For weaker winds, turbine oper-
ates in so called “low” stage which corresponds to 1000 kW power generation. For 
stronger winds, it operates with its nominal power in the “high” operational stage. 

Figure 3 presents a typical layout of a wind turbine. The main rotor with three 
blades is supported by the main bearing and transmits the torque to the planetary 
gear. The planetary gear has three planets. The planets transmit the torque to the 
sun gear. The sun shaft is the output of the planetary gear which drives a two-stage 
parallel gear. The parallel gear has three shafts: the slow shaft connected to the 
sun shaft, the intermediate shaft and the high speed shaft, which drives the genera-
tor. The generator produces AC current of slightly varying frequency. This current 
is converted first into DC power and then into AC power of frequency equal to the 
grid frequency. Electric transformations are performed by the controller at the 
base of the tower. The gearbox setup changes the rotational speed from about 25 
rpm on the main rotor to about 1500 rpm at the generator. 

 

Fig. 3 Layout of a typical wind turbine 
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4   Case Study 

Due to the report provided by the company supervising the turbine, tested object 
suffered from two separate faults. First fault was a chipped tooth on the high speed 
shaft gearwheel together with an advanced pitting. Second fault was a rolling ele-
ment bearing outer race fault. The bearing was located on the intermediate shaft. 
Due to advanced fault size on the gearwheel, generated vibration signal compo-
nent related to that fault has relatively strong energy.  It was successfully masking 
other signal components including the one generated by the faulty bearing.  

Time view of the vibration signal measured on the casing of the gearbox of the 
turbine is shown of figure 4. 

 

Fig. 4 Vibration signal measured on the tested wind turbine. 

Impulses visible on figure 4 are generated by the faulty gearbox. Resulting 
envelope spectrum (fig.5) obtained from that signal contains only the components 
related to rotational speeds of the fast and intermediate shafts which are the ones 
of the faulty gearbox. 

 

Fig. 5 Envelope spectrum of the signal from figure 2. 
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As seen on figure 5, envelope spectrum contains no indicators of the faulty 
bearing. It is because components related to the gearbox fault are masking other 
contents of the signal including faulty bearing characteristic component. There-
fore, MID(PSCoh) analysis was applied in order to reveal more information “hid-
den” in the signal. Resulted MID map is shown on figure 6. 

 

Fig. 6 MID(PSCoh) map obtained from the signal from fig.2. a – complete spectral range of 
the analysis, b – zoomed results. 

Horizontal lines spaced apart by 18 Hz shown on figure 6a represents the gear-
box fault characteristic component. However, by zooming the marked area addi-
tional component of 105 Hz cyclic frequency can be seen (fig.6b). That corres-
ponds to the characteristic frequency of the bearing outer race fault. In order to 
present the results in the way more suitable for industrial condition monitoring 
systems, resulted MID has been integrated over the total range of the carrier fre-
quencies (fig.7). 

 

Fig. 7 IMID obtained from calculated MID(PSCoh). 
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Unlike the envelope spectrum, IMID results contain, except gearbox fault indi-
cators, characteristic component of the faulty bearing. The component of interest 
is not masked due to normalization property of the spectral coherence.  

In order to examine the utility of the IMID to the industrial condition monitor-
ing systems, additional tests were performed. Therefore, IMID analysis was ap-
plied to the vibration data stored in the database. Historical data covered over two 
years of wind turbine monitoring . At this point it should be stated that because of 
the availability of the stored data only the signal acquired in the “low” operational 
state was taken into the consideration. 

Figure 8a presents the cascade plot of the obtained IMIDs plotted with the re-
spect to the observation time. As seen, the component characteristic to the gearbox 
fault remains constant for whole monitoring period. However, a development of 
the component of the 105 Hz cyclic frequency (rolling element bearing outer race) 
can be noticed (fig.8b). 

 

Fig. 8 Cascade plot of the IMID calculated for the wind turbine data history (a). Zoomed 
plot that shows the development of the component of interest (b). Color scale has been 
enhanced for improved visualization.  

At this point the reader should note that it is rather uncommon situation for the 
technical object to operate with such advanced fault like described gearbox dam-
age for such long period of time. Additionally, vertical lines on the cascade plot 
(marked by the red arrows on fig.8) are the results obtained from the data recorded 
during sudden operational conditions changes. More about this phenomena and 

a

b
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the method for pre-selection of the vibration data can be found in (Jablonski and 
Barszcz 2011). 

Results shown on figure 8 can lead to the conclusion that information provided 
by IMID might serve as an indicator of the object’s technical condition. To show 
the development of detected bearing fault the IMID values for 105 Hz frequency 
were presented as a time trend (fig.9).  

 

Fig. 9 Plot of the trend obtained for bearing fault cyclic frequency. 

Results shown on figure 9 clearly exhibit the development of the bearing fault. 
Calculated modulation intensity factors reach their maximum around 27.01.09. 
After that the output of the analysis starts to slowly descend. That may be related 
to the fact that during bearing race degradation process the fault size extends from 
local to distributed wear.  

5   Conclusions 

Results presented in this paper shows that IMID may be relatively efficient tool 
for vibrodiagnostics. Additionally, traditional envelope spectra cascade plot can be 
successfully replaced with the IMID cascade plot. Obtained results clearly indicate 
the REB fault development even in the signal dominated with cyclic components 
generated by other rotating parts of the machinery. Case study shown that norma-
lization property of MID(PSCoh) allows to obtain results that are more selective 
for detection and identification of cyclic components generated by complex ma-
chinery than traditional envelope spectrum. Additionally, MID approach allows to 
examine the signal in relatively wide frequency band which results in detection of 
both characteristic and carrier frequencies of the various signal components. Be-
cause of that, there is no need for selecting the optimal band for signal  
demodulation. Such advantage might be especially useful for industrial condition 
monitoring systems, especially when dealing with the machinery of relatively 
complex kinematics. 
 

IM
ID
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Abstract. Computed order tracking is one of the effective order tracking methods 
to obtain an overview of rotating machine vibrations in terms of rotational speed 
or orders. However, this process is dependent on Fourier analysis and subject to 
the same assumptions. The order interval as well as the order resolution of the re-
sultant order spectrum obtained from computed order tracking is therefore deter-
mined by the measured data through the Fourier transformation. In this paper, zero 
padding which has been widely used to improve frequency interval in the field of 
signal processing, is discussed in terms of order domain signals. A development of 
zero padding which comprises non-zero padding for rotating machine vibrations, 
is introduced. This allows improvement of both the order interval and order reso-
lution of the resultant order spectrum for computed order tracking. The limitations 
of order spectrum inherent to Fourier analysis are therefore significantly reduced. 
The ability of the method is demonstrated through simulation studies which prove 
the usefulness of the method for enhancing the ability of computed order tracking 
in condition monitoring. 

Keywords: Computed order tracking, Non-zero padding, Order tracking, Order 
interval, Order resolution, Rotating machine, Zero padding. 

1   Introduction 

Computed order tracking (COT) is widely used and researched for the analysis of 
rotating machines. It excludes the effects of rotational speed variation in the 
measured data by re-sampling time domain signals to the angle domain, so that  
the subsequent Fourier analysis renders clear spectrum components. Various  
researchers have extensively studied the theory and some applications of this 
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technique (Potter, 1990; Fyfe and Munck, 1997; Blough, 2003; Eggers et al., 
2008). However, the assumptions and constraints inherent to the COT procedures 
imply several limitations. Examples include the common constant angular accele-
ration assumption which assumes a linear rotational speed over each revolution to 
re-sample the time signals to the angle domain; the use of polynomial interpola-
tion to find re-sampled data amplitudes which violate the sinusoidal cyclic nature 
of rotating machine vibrations (Blough,2003); the length of the observation inter-
val or the length of measured data that limits the order resolution in the final order 
spectrum; the length of sampling interval or the number of revolutions in the 
measure data determines the order interval in the resultant order spectrum, etc. All 
of these, of course, influence the accuracy of the final result and determine the di-
agnostic ability of COT. Therefore, methods that may avoid or improve the conse-
quences of the above limitations of COT are beneficial to the diagnostic ability of 
the method. 

In this paper, the zero padding method which is commonly used in discrete 
Fourier transformations (DFT) for a better approximation of Fourier transform is 
applied in the angle domain, to demonstrate the ability of the method for the im-
provement of order interval for the resultant order spectrum. Although this method 
is effective to improve the order interval of the resultant order spectrum, however 
it cannot increase the order resolution and therefore it cannot substantially  
improve the clarity of the order spectrum. Through consideration of the unique 
characteristics of rotating machine vibrations, a novel development of the zero 
padding method for rotating machine vibrations, i.e. non-zero padding method, is 
introduced through which improvement in both the order interval and the order 
resolution of the resulting order spectrum obtained from COT is possible. The 
non-zero padding method is then compared to traditional COT and zero padded 
COT methods in simulation studies in which close orders that cannot be discerned 
by using the traditional COT method, are resolved by both the zero and non-zero 
padded methods and further enhancement of the order spectrum is achieved by the 
non-zero padded COT method. The application of zero padding method in terms 
of angle domain rotating machine vibrations and the novel development of the 
non-zero padding method, enhances the ability of COT for rotating machine fault 
diagnostics. 

2   Order Interval and Resolution for Computed Order 
Tracking 

2.1   Order Interval 

For computed order tracking (COT), Fourier analysis is applied to the re-sampled 
data where frequency variations in speed have been excluded. The Shannon equa-
tion therefore applies to the re-sampled data in terms of the angle and order in-
stead of time and frequency. In particular, the order interval of the resultant order 
spectrum is determined by the number of revolutions that a machine turns through 
during the transformation period (Blough, 2003), that is  
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where oΔ
 
is the order interval or spacing of resulting order spectrum, R  is the 

total number of revolutions considered, N  is the total number of data points over 
which the transform is performed, and θΔ  is the angular spacing of the re-
sampled signal. Clearly, from Equation (1), the order interval of the resultant order 
spectrum ( oΔ ) is inversely proportional to the revolutions of the measured data 
R , or it is determined by the length of sampling interval. The finer the order in-
terval demands to the order spectrum, the more revolutions or longer length of 
sampling intervals are needed in the analyzed data. 

2.2   Order Resolution 

The DFT’s order resolution resO is however inversely proportional to the length 

of the total observation interval and can be expressed as, 
 

              RN
Ores ⋅

∝ 1
 (2) 

In fact, the order resolution of the resultant order spectrum is determined only by 
the length of the observation interval, however the order interval of the resultant 
order spectrum is determined by the length of sampling interval. When the length 
of observation interval is equal to the length of sampling interval, both of them 
will vary simultaneously, however if the length of observation interval is different 
from the length of sampling interval, the two of them will then vary differently.  

In signal processing literature, the zero padding method is well known for its 
ability to improve the frequency interval of the resultant frequency spectrum 
through DFT. It is claimed that the method can obtain a better approximation of 
the Fourier transformation for a signal. However, this method is seldom trans-
ferred to order domain signals, and certainly less so in the context of order track-
ing diagnostic abilities. An effective diagnostic decision through COT requires 
any possible signal enhancement to obtain clearer order spectra. It is therefore 
worthwhile to discuss the method in terms of angle domain signals for computed 
order tracking. In the following, zero padding method in angle domain is firstly 
discussed. 

2.3   Zero Padding Method in the Angle Domain 

Usually zero padding comprises adding a string of zeros to a signal so that the fre-
quency interval obtained for DFT of a time domain signal can be decreased, and a 
better approximation of the Fourier transform can be obtained (Neild et al., 2003). 
The zero padded signal may be thought of as an infinite signal multiplied by a  
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finite length rectangular window in the time domain and has the effect of introduc-

ing a convolution of the signal with a sinc function (where 

xxx )sin()sinc( = ) in the frequency domain. The idea of the method can be 

transferred to the angle domain. The zero padding process for a re-sampled signal 
in angle domain can be generalized as, 

),1(),...,0({)}({ −= Nxxnx
spoNN int)(

}0,...0
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where the original sequence of N samples has been increased to a sequence of 
Nα samples in which zero values are added. If the N samples correspond to 

R revolutions, then Nα corresponds to α
 
times R revolutions for the angle 

domain data. Theoretically, a uniformly spaced angle domain signal )(nx  can be 

transformed into order components )(kX  through DFT, as is shown in equation 

(4). 
 

∑

∑

−

=

−→

−

=

−

=⎯⎯ →⎯

=

1

0

)2(

1

0

)2(

)()(

)()(

N

n

N

nk
j

zero
NN

N

n

N

n
kj

enxkX

enxkX

α
α

πα

π

 

(4) 

 

 

(5) 

The angle domain signal therefore can be zero padded to the length of Nα  (i.e. 
the revolutions become Rα ). The DFT for the zero padded angle domain signals 
yields equation (5). Note that although the length of the signal is increased to 

Nα , the signals that are analyzed still remain the same )(nx  since, outside the 

interval 10 −→= Nn , the signals are all zero valued. This means that the length of 
the observation interval remains the same between the original angle domain data 
and the zero padded angle domain data. Therefore it infers that the zero padding 
process does nothing with order resolution. However, this process is equivalent to 
multiplying a rectangular window of length of N  into a signal with total length 
of Nα . By doing so however, it is clear from equations (4) and (5) that the order 

interval has been decreased from k  to 
α
k

 due to the addition of zero samples or 

the increase of the length of sampling interval. Thus, the zero padded method in 
angle domain clearly improves the order interval of the resultant order spectrum. 
Besides, it should be noticed that order domain zero padding is essentially same as 
time domain zero padding, the difference only being in terminology. 
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2.4   Non-zero Padding Method in Angle Domain 

While zero padding improves the order interval of the resultant order spectrum, it 
does not improve the order resolution. For vibration monitoring, the clearer the 
order spectrum of COT, the better the diagnostic ability of COT. This suggests 
further exploration of the possibility to improve both order interval and order reso-
lution of COT order spectrum. 

For rotating machine vibrations, a unique and fundamental characteristic of the 
re-sampled angle domain data is that the order vibrations are periodic. In other 
words, the order vibrations will repeatedly occur in each revolution. If the ob-
served data only contains limited revolutions, then it is reasonable to assume that 
the angle domain order vibration repeats itself during subsequent revolutions, so 
that the length of the observation interval is increased. As a result, it brings about 
an improvement in order resolution. Besides, with the repeated addition of the da-
ta, the length of the sampling interval is also increased which in turn leads to the 
improvement of the order interval for the resultant order spectrum. Thus, both or-
der interval and order resolution can be improved through the sequential joining of 
angle domain vibrations, which may be viewed as a non-zero padding process. It 
should be noticed that this non-zero padding process is only valid in the re-
sampled angle domain where order vibrations are periodic. This is not valid for the 
original time domain rotating machine vibrations, since the data can be non-
stationary due to the variation of rotational speed, which violates the requirement 
of Fourier analysis. Besides, the non-zero padding process is not a further mea-
surement of real rotating machine vibrations. The main focus of the method is to 
emphasize the original measured data and presents an enhanced order spectrum in 
terms of the improvement on both order interval and resolution. This is especially 
useful when only limited revolutions of the measured data are obtained for diag-
nostic purposes. Besides, the non-zero padding suggested here is equivalent to a 
wider rectangular window applied in the angle domain and therefore results in a 
narrower sinc  function in the order domain. A true improvement of the order 
resolution may therefore be brought about. 

Thus, the angle domain data can be non-zero padded to the length of Nα with 

sequential jointing α  times )(nx
 
which yields )(nxm . The non-zero padding 

process therefore can be expressed as 
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The DFT on such a non-zero padded angle domain signal is shown in equation (7)  
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Clearly, equation (7) illustrates that the order interval still decrease to 
α
k

 and the 

length of the observation interval becomes Nα  in which α  repetitions of 
)(nx  are concatenated into one series. This result is equivalent to multiplying a 

rectangular window with a length of Nα , which artificially increases the length 
of the window compared to the zero padding method discussed before, where the 
window length is N . As a result, both order interval and order resolution on 
COT order spectrum are improved through non-zero padding. This may enhance 
the diagnostic ability of COT. Besides, it should also be realized that due to the 
repeated use of )(nx  byα times, it therefore inevitably increases the average 

amplitude of resultant order spectrum, and should thus be normalized by dividing 
by α  once the order spectrum is calculated. Further, in the traditional Fourier 
analysis problem, leakage of the angle domain data is also possible. Time win-
dows, such as the Hanning window and others, may also be used to minimize the 
leakage effects before the non-zero padding process is applied to the data. 

In summary, the angle domain signal is modified in terms of zero and non-zero 
padding methods. Order interval and order resolution of resultant COT order spec-
trum are improved through these methods. An enhancement of the COT order 
spectrum is therefore achieved. In order to clarify the differences between these 
methods, traditional computed order tracking (COT) and zero and non-zero pad-
ding COTs are compared in Table 1. 

Table 1 Comparisons on COT, zero padding COT and Non-zero padding COT  

 COT Zero padding COT Non-zero padding 
COT 

oL  nx   
Nn →= 0  

nx   
Nn →= 0

mx   
Nm α→= 0  

sL  N   Nα  Nα  

oΔ  k  

α
k

 
α
k

 

oL : length of the observation interval; sL : length of sampling interval.  

oΔ : order interval of resulting order spectrum. 

3   Numerical Demonstration 

A 10s analytical signal consisting of a sum of three orders, that is the 3rd , 3.2th and 
5th, orders, is considered. A varying rotational speed is simulated through which 
the rotor complete two revolutions within 10s. The details of simulated signals are 
listed in Table 2. 
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Table 2 Signal simulation 

Initial condi-
tions 

Sampling rate Angles that rotor 
turns through 

(θ ) 

Angular  
acceleration 
(α ) 

Angular 
speed 
(ω ) 

00 =t ;

00 =ω  

100
8

0
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1024  
Samples/second 
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2
0 2

1
tt αωθ +=

 

100
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α is deter-
mined by 
substituting  

st 10

22
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into θ

tαω =

Simulated  
analytical  
signals 

)5sin()2.3sin()3sin(1 ttty ωωω ++=  

)5sin()2.3sin(3.0)3sin(2 ttty ωωω ++=  
 
 

Firstly, traditional COT is applied to the simulated signal 1y , and the time 

waveform is firstly transformed into evenly distributed angle domain waveforms. 
The waveforms are plotted in Figure 1 respectively as functions of time and angle. 

 
 

 

Fig. 1 Time domain and angle domain waveforms 

Clearly, a non-stationary time waveform (the top figure of Figure 1) is re-
sampled into the angle domain (the bottom figure of Figure 1) where frequency 
variation of the signal due to the variation of rotational speed has been excluded. 
Based upon this angle domain signal, further Fourier analyses which are followed 
by the traditional COT, zero padded COT and non-zero padded COT are  
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performed and order spectra are depicted in Figure 2(a).  For zero and non-zero 
padding COT, 39 extra revolutions are added which leads to an order interval of 

)(025.0
40
11

order
R

o ===Δ   
 
 

 
(a) Signal 1y                    (b) Signal 2y  

Fig. 2 COT, Zero and non-zero padded COT 

As can be expected, the order interval of traditional COT is 

)(5.0
2
11

order
R

o ===Δ . This is, of course, not good enough for the close orders, 

namely the 3rd and 3.2th order. It can be seen in the top figure of Figure 2(a) that 
3rd and 3.2th orders are mixed together within one wide order peak. The COT can-
not distinguish them. When zero padding is applied to the re-sampled angle do-

main signals, the new order step becomes )(025.0
40
11

order
R

o ===Δ  and the order 

spectrum is shown in the middle figure of Figure 2(a). It is encouraging to observe 
that two closely spaced rounded order peaks are emerging after the zero padding. 
However it should also be noticed that quite a few side lobes of order peaks are 
evident and may possibly lead to confusion with other order peaks or sidebands. 
This effect is actually due to the low order resolution of the resultant order spec-
trum. From angle and order domain windows point of view, compared to tradi-
tional method, zero padding is similar to applying an equivalent length of the  
rectangular window, and does not increase with the increase of data length. Thus 
the corresponding sinc function in the order domain cannot be narrowed which 
could not improve the visibility of the resultant order spectrum map, therefore the 
order peak appears rounded in shape. 

Non-zero padding is now applied to the re-sampled angle domain signals to 
overcome these drawbacks. This is shown in the bottom figure of Figure 2(a). 
Clearly, three distinct order peaks are rendered. There are no more side lobes and 
narrow order peaks are obtained. This is the result of the increase of the length of 
sampling interval or revolutions which improves the order interval of the resultant 
order spectrum and the increase of the length of observation interval which  
improves order resolution of the resultant order spectrum. Clearly, zero padding 
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cannot produce as good results as non-zero padding, although it still can pick out 
the close orders in this case, as is shown in the middle figure of Figure 2(a). 

In order to demonstrate the advantage of non-zero padding method, a further 
simulation of a one-third amplitude of 3.2th order compared to 3rd order is consi-
dered in signal 2y . The corresponding order spectra of traditional COT, zero 

padded COT and non-zero padded COT are shown in Figure 2(b). It is clear that in 
such a case, the order peaks of traditional COT for the 3rd and 3.2th orders, are 
even less successful in separating the two close orders, compared to the previous 

signal 1y . Zero padding however improves the order interval, but the side lobes 

are equivalent to the amplitude of 3.2th order, therefore no decisive conclusions 
can be made through this method. The spectrum is depicted in the middle figure of 
Figure 2(b). Again, non-zero padding features a better order spectrum which sup-
presses the influence from order side lobes and highlights the real 3.2th order in the 
order spectrum, as is shown in the bottom figure of Figure 2(b). In short, zero and 
non-zero padded COT overcomes the limitations of traditional COT in order in-
terval of the resultant order spectrum. The non-zero padded COT further improves 
the order resolution of the resultant spectrum map which enhances COT for use in 
rotating machine diagnostics. 

4   Conclusion 

In this paper, the order interval and order resolution of the resultant order spec-
trum through computed order tracking method are discussed. A non-zero padding 
method is developed to overcome both limitations of the resultant order spectrum 
for rotating machine vibrations. The results show that the zero and non-zero pad-
ded COT can both effectively improve the order interval of the resultant order 
spectrum, which is useful for distinguish close orders. The non-zero padded COT 
further features advantages over zero padded and traditional COT methods in im-
proving the order resolution which is not achievable by using each of the tech-
nique alone.  
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Abstract. A method based on a fractal theory and Wavelet Transform applied to 
fault detection in roller element bearings is introduced. The Orthogonal Wavelet 
Transform is used to decompose a vibration based signal into scale components in 
order to reveal self-similarities in the signal. For fault detection the wavelet coef-
ficient variance plots both for reference and damaged data are calculated and 
compared. The studies are based on simulated data and real life case from a wind 
turbine. 
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1   Introduction 

Damage detection is from years an area of interest of Mechanical, Aerospace and 
Civil engineers. One of the most common issues, which need to be investigated, is 
fault detection in rotating machinery such as bearing and gearbox failures. A 
number of different approaches to this problem have been proposed over last dec-
ades, however still certain limitations especially in industrial applications need to 
be considered.  

The existing signal processing methods dedicated for bearing’s fault investiga-
tion include Hilbert transform, cepstrum analysis and time-frequency analysis, 
from which the wavelet based methods have shown especially fast development in 
recent ten-twenty years. A meaningful invest in the expansion of Wavelet Theory 
had the works of Chui (1992), Daubechies (1992) and Mayer (1993). The ability 
of Wavelet Transform (WT) to localize the results both in time and frequency has 
brought a certain potential to signal processing dedicated for damage detection. 
The examples of application of the WT to vibration-based signals can be found in 
(Samuel et al. 1998) and (Staszewski and Tomlinson 1997). Moreover, further 
studies have shown that WT can be also an important tool for signal processing 
with fractals and study of self-similarities in signals (Argoul et al. 1989; Hwang 
and Mallat 1993). This approach has been successfully used by Staszewski and 
Worden (1999) for an investigation of chaotic time series. In recent publications, 
approaches relying of fractal theory are limited mostly to the investigation of 
changes in fractal dimensions; this includes the work of Hadjileontiadisa et al. 
(2005), S.Yuhai et al. (2007) and M. Yuanying et al. (2010). However, it is known 
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that vibration signals from rotating machinery have the characteristics that exhibit 
phenomena, which can be analysed using signal processing with fractals.  

The aim of this paper is to explore signal processing with fractals for fault de-
tection in roller-element bearings. For this purpose the orthogonal wavelet trans-
form and fractal theory are combined in order to detect self-similarities in a signal. 
The paper is organized as follows. Section 2 introduces basis of wavelet analysis. 
Next the theory of fractals and self-similarity is described. Section 4 formulates 
the procedure of the proposed method. The results from simulated and real life da-
ta are given in Section 5. 

2   Wavelet Analysis 

The wavelet analysis may be treated as an extension of the traditional Fourier 
transform with adjustable window location and size. During the transformation the 
time signal is decomposed into a sum of elementary functions-wavelets delivered 
from mother wavelet by the operations of scaling a and translation b. Two basic 
approaches should be distinguished: Continuous Wavelet Transform and Discrete 
Wavelet Transform. In order to transfer from the domain of continuous to discrete 
wavelets the following substitutions should be made: 

, ,                                              (1) 

where m, n are integers and a0, b0 are non-zero. Both Continuous Wavelet Trans-
form and Discrete Transform cause redundancy in the results. The solution to this 
problem is Orthogonal Wavelet Transform (Staszewski 2000). The simplest or-
thogonal wavelets basis are given by the Haar functions, however more efficient 
analysis can be obtained using Daubechies’ wavelets, (Daubecheies 1992). 

3   Fractals and Self-similarity  

There are many physical signals which show the invariance property rather to 
scale than translation such as geophysical or economic time series. One of the 
most important groups of such signals is self-similar random processes known as 
1/f processes. In practice self-similarity means that signals are embedded within 
themselves. Such behavior may be shown on the example of the Devil’s staircase, 
presented in Figure 1. Moreover, it can be shown that the self-similarity of a signal 
x(t) implies self-similarity of its Wavelet Transform in the time-scale domain 
(Wornell 1996). As a consequence for 1/f processes the variance of the orthogonal 
wavelet coefficients  of the signal x(t) is of the form: 

  2 ,  | || |                               (2) 

where  is the Fourier transform of the wavelet ψ The fractal dimension D 
and the self-similarity parameter H are related to γ as: 2H= γ -1 and D=2-H. 
Moreover, in case of rotating machinery and metallic structures the decrease of the 
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spectral parameter γ reflects energy redistribution from low to high frequencies. 
As a result this phenomenon may be used for damage detection purposes.  
(Staszewski 2000) 

 
 

 

Fig. 1 Self-similar nature of Devil’s staircase fractal 

4   Formulation of the Method 

The preliminary studies have shown the possible application of the fractal based 
signal processing to vibration-based signals. It was described in previous section 
that the variance of the orthogonal wavelet coefficient for 1/f processes show im-
portant characteristics, which can be used for damage detection purposes. The  
 

 

Fig. 2 Scheme of the procedure 
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Equation 2 implies that the logarithmic variance of  plotted against level m is a 
straight line with gradient –γ for signal with self-similar character. In order to ap-
ply described approach authors proposed the procedure, which is schematically 
presented in Figure 2. In the first step the Orthogonal Wavelet Transform is used 
for time series data. The 4th order Dubechies’ wavelets were chosen for this pur-
pose. As a result the decomposition of the discrete time signal  into m levels is 
obtained, where level m corresponds to the detail signal at scale 2m. Further, the 
statistical variance of the coefficients  for each level is calculated. In order to 
obtain the wavelet coefficient variance plot, the logarithm to base 2 of the result is 
plotted against the wavelet level. Having both results from damaged and reference 
condition the assessment of the part condition should be made basing on the visi-
ble differences in the plots.  

5   Case Studies 

5.1   Weierstrass-Mandelbrot Cosine Function – Simulated Data 

For the purpose of simulation verification of the described procedure the Weier-
strass-Mandelbrot cosine function, which is an example of self-similar time series 
was used. The function is defined as:  ∑                                                     (3) 

where Np is a total number of samples equal 4096, N=100, B=1.5, D=1.8 and 1.5 
consecutively. The results are presented in Figure 3. The approach leads to the ob-
tained values of spectral parameter γ equal to 1.50 and 1.97 respectively, which 
match the expectations and confirm the correctness of the approach. 
 
 

 

Fig. 3 (a) Signal (b) wavelet coefficient variance plot 

a) 

b) 
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5.2   Modulated Band-Pass Noise– Simulated Data 

In order to investigate the influence of modulations on the results the band-pass 
noise of the frequency 3-6 kHz modulated with sin function of the frequency 10, 
40 and 60 Hz respectively, as well as the same signal modulated with sawtooth 
function of the same assumed frequencies was used.  
 
 

 

Fig. 4 Comparison of the results for different types of band-pass noise modulation 

The sampling frequency was 25 kHz and the number of samples is 50 000. The 
results are presented in Figure 4. It was observed that depending on the type of the 
modulation the obtained plots differ in the range of levels 2-10 corresponding to 
low frequencies. What is more, in case of pure band-pass noise analysis, the plot is 
translated with respect to the y axis comparing to the remaining results, what is 
especially visible for higher levels. The reason is the fact that the modulations 
caused an increase of the results in range of carrier frequencies, which is in 
agreement with the expectations. 

5.3   Wind Turbine Bearing Fault - Real Life Case 

The main objective of this work was to determine whether the plots of the wavelet 
coefficients variance yield useful information concerning the condition of roller 
element bearings. For the purpose of analysis a real life data from a typical wind 



390 A. Ziaja, T. Barszcz, and W. Staszewski
 

turbine of a nominal power 1500 kW was used. Figure 5 provides trends of typical 
diagnostics estimates of vibration signal i.e. Peak to Peak (PP) and Root Mean 
Square (RMS) within the period of three months. The plots show a steady increase 
of RMS value with a maximum for data5 as well as a significant growth of PP for 
data described as data4 and data5. After the reparation the values of the estimates 
returned to the normal levels. The described phenomenon was caused by the in-
ner-ring fault of the generator bearing, which typically manifest itself as signal’s 
modulation with high energy impulses. Authors have decided to use time series of 
sampling frequency 25 kHz from different stages of fault: 1-reference to 5-severe 
damage for the analysis. The variance plot generated for each data set is presented 
in Figure 6. 

 
 

 

Fig. 5 Trend of Peak-Peak and RMS value 

 

 

Fig. 6 Comparison of variance plots 
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It was observed that the reference data (red plot) can be easily differentiated. 
Additionally a positive correlation was found between an increase of the damage 
and the growth of variance values, what is significantly visible analyzing the level 
14. This can be explained by the fact that the higher (structural) frequencies are 
strongly modulated by the Ball-pass Frequency Inner-race. Moreover, it is appar-
ent that the severity of the damage is also reflected on the plot, as the data from 
the most damaged case are visually separated.  

6   Conclusion 

It can be generally stated that the wavelet coefficient variance plot method, which 
application was proposed by authors is able to successfully identify bearing’s 
damage. Contrary to expectations, at this stage of the study, the investigation did 
not show fractal behavior of data from damaged structure, what could be caused 
by the complexity of wind turbine structure, however, the changes in plot were 
identified as a good indicator of fault and can be used as base for machine learning 
techniques. The results indicate that the method is sensitive even for small signal 
modulation and due to this fact it is able to react at an early stage of damage.  
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Chapter 4  

Monitoring and Diagnostic Systems 

 
 
 
 
 
 
 

Despite the fact that condition monitoring is well established as a scientific 
discipline, there is still a great need to implement results of research into the 
practice, as monitoring and diagnostic system. In this chapter, a good introduction 
is provided by Jardine describing “role of CBM for industrial equipment…”. It 
should be emphasized, that application of effective techniques described by 
scientists in well ranked journals will never be possible when only test rig will be 
made without reference to real machine operated in industry. The rig investigation 
is only the first step for success of condition monitoring method. There is still not 
enough experiences applied on machines. The investigation done on machines 
gives us what should be investigated using test rig. The test rigs investigations 
many times not meets industry needs. Scientists should give more attention to the 
industrial problems. Several good examples of problem complexity is provided in 
this chapter in the context of marine gas turbine, mining industry, wind turbine 
generator or even wind turbines farms. In such practical implementation, as  
multi-channel online systems, even signal quality assessment seems to be serious 
data-mining task. 
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Abstract. This paper gives a brief background to the optimization of condition 
based maintenance (CBM) decisions, through proportional hazards modeling. It 
then shows how risk factors for breast cancer and its competing mortalities can be 
similar to condition monitoring variables and be used as predictors in a risk model.  

Keywords: Condition based maintenance, Proportional hazard model, Breast  
cancer, Screening optimization, Competing risks. 

1   Introduction1 

Condition Monitoring (CM) has become a recognized tool for assessing the opera-
tional state of industrial equipment. Maintenance decisions can be made based on 
analysis of CM information, such as vibration monitoring and oil analysis data.  

Control charts are one of the most commonly applied techniques for interpreta-
tion of CM data. At each inspection, levels of some measurements are compared 
with the corresponding predefined “warning limits” and judgment is made based 
on the outcome. However, control charts leave several important questions un-
answered. What if there is no single variable that can provide information on true 
condition of the equipment? What are the optimal warning limits and should these 
limits change with operating age of the item? 

A conventional maintenance strategy is age-based maintenance, which recom-
mends maintenance of an item either at failure or when it reaches a certain age. 
This paper discusses a model which extends the age-based model with addition of 
analysis of CM information. Such approach to optimization of maintenance deci-
sions is referred to as the Condition-Based Maintenance (CBM) technique. 
                                                           
1 Most of this section and Section 2 are taken from Jardine et al. (2008). 
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The rest of this paper is organized as follows. Section 2 introduces the theory 
for time to failure modeling. Section 3 presents a cost-based maintenance optimi-
zation model. Section 4 describes the analogy of CBM to breast cancer screening 
optimization. Section 5 presents the risk factors associated to hazards of breast 
cancer and its competing mortalities. Concluding remarks are given in Section 6.  

2   Failure Time Model 

We consider a replacement model in which an item is replaced with another one 
“as good as new”, either at failure or at planned replacement. Item histories are as-
sumed to be independent and identically distributed random processes. A history 
includes the information on the item’s observed lifetime, censoring information 
and information on diagnostic variables collected at regular discrete times during 
the observation period. 

Diagnostic variables will be termed covariates. In practice, both the external va-
riables (operating environment conditions) and internal (diagnostic) variables can 
be used as covariates for the analysis. The external covariates can affect the time 
to failure, and the internal variables can reflect the current state of the item. Com-
plete details on the statistical theory presented in this section are found in (Jardine 
et al., 2008) and (Bangevic and Jardine, 2006). 

2.1   Statistical Model 

Let T be the time to failure of the item. The time-dependent condition-monitoring 
indicators are modeled by a non-homogeneous discrete Markov process 
{ ( ), 0}Z t t > , where 1 2( ) ( ( ), ( ),..., ( ))mZ t Z t Z t Z t= is an m-dimensional covariate 

process observed at regular inspections of the item. It is assumed that ( )Z t  is a 

right continuous process, with left-hand limits, and each covariate ( )iZ t  is a dis-

crete numerical variable with finite number of values. Let {0,1, 2,..., }n  be the fi-

nite state space of ( )Z t . The overall system can be modeled by the joint process 

( ( ), ( ))I T t Z t>  ( (*)I  is the indicator function) with transition probabilities 

( , ) ( , ( ) | , ( ) )ijL x t P T t Z t j T x Z x i= > = > =
         

For the analysis it is convenient to represent ( , )ijL x t in the following form 

( , ) ( | , ( ) ). ( ( ) | , ( ) )ijL x t P T t T x Z t j P Z t j T t Z x i= > > = = > =
      (1) 

Then for a short interval of time [ , ]x x x+ Δ , values of transition probabilities can 

be approximated as follows: 

( , ) [1 ( , ) ]. ( , )ij ijL x x x h x i x p x x x+ Δ = − Δ + Δ
                 

(2) 
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Where ( , ) ( ( ) | , ( ) )ijp x t P Z t j T t Z x i= = > = is the conditional transition proba-

bility of the covariate process ( )Z t , and ( , )h x i represents the hazard function. 

Values of ( , )ijp x x x+ Δ can be approximated from historical data using the max-

imum likelihood method (details can be found in (Banjevic et al., 2001)). For 
longer intervals transition probabilities can be derived from (2) using the Markov 
property: 

( , ) ( , ( 1) ). ( ( 1) , )ij ik kj
k

L x x m x L x x m x L x m x x m x+ Δ = + − Δ + − Δ + Δ∑
 

2.2   PHM with Time-Dependent Covariates 

We use the Proportional Hazards Model (PHM) to model the influence of CM in-
dicators on the failure time. For our analysis we consider a parametric PHM with 
baseline Weibull hazard function as a model for the hazard function, so 

1

1
( )

1 2( , ( ); , , ) 0, 0, ( , ,..., )

m

i iZ t

m

t
h t Z t e

β γββ η γ β η γ γ γ γ
η η

− ∑⎛ ⎞= > > =⎜ ⎟
⎝ ⎠  

The method of maximum likelihood can be applied for estimation of parame-
ters β , η , γ of the model. For more details please see (Banjevic et al., 2001). 

2.3   Conditional Distribution of Time to Failure 

The conditional reliability function of the item, given the current state of the cova-
riate process can be expressed using (1) as follows: 

( | , ) ( | , ( ) ) ( , )ij
j

R t x i P T t T x Z x i L x t= > > = =∑  (3) 

Once the conditional reliability function is calculated we can obtain the condition-
al density from its derivative. We can also find the conditional expectation of 
T t− , termed the remaining useful life (RUL), as 

( | , ( )) ( | , ( ))
t

E T t T t Z t R x t Z t dx
∞

− > = ∫  

In addition, the conditional probability of failure in a short period of time 
[ , ]t t t+ Δ can be found as 

(Survive during [ , ] | , ( )) ( | , ( )) ( | , ( ))P t t t t Z t R t t Z t R t t t Z t+ Δ = − + Δ  

For a maintenance engineer, predictive information based on current CM data, 
such as RUL and probability of failure in a certain period of time, can be a valua-
ble tool for assessment of risks and planning appropriate maintenance actions. 
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3   Economic Decision Model 

The objective of the economic decision model is to develop a rule for preventive 
replacement that minimizes the average replacement cost per unit time due to pre-
ventive and failure replacements over a long time horizon. Let PC C= be the pre-

ventive replacement cost, and fC C K= + be the failure replacement cost, per one 

replacement. These costs are assumed fixed for all replacements. Let 
inf{ 0 : ( , ( )) }dT t Kh t Z t d= ≥ ≥ , 0d > define a “control-limit” policy, i.e. if 

dT T< , perform the preventive replacement at time dT , and if dT T≥ , perform 

the failure replacement at time T . Let the probability of failure replacement be 
denoted by ( ) ( )dQ d P T T= ≥ , and the expected time until replacement be de-

noted by ( ) (min{ , })dW d E T T= . Then the long-run expected cost of replacements 

per unit time ( )dΦ is 

( | , ) ( | , ( ) ) ( , )ij
j

R t x i P T t T x Z x i L x t= > > = =∑
             

(4) 

The value *d  that minimizes the right-hand side of expression (4) corresponds to 

the optimal control-limit policy *

*

d
T T= . Makis and Jardine (1991) have shown 

that for a non-decreasing hazard function ( , ( ))h t Z t , rule *T is the best possible 

replacement policy. For a non-monotone hazard function, the control-limit ap-
proach can still be viewed as providing a “near to optimal” replacement policy.  

For a non-decreasing hazard function the optimal risk threshold *d that mini-
mizes ( )dΦ can be found using the fixed point iteration algorithm. In the general 

case, direct numerical search can be applied. 
For the PHM model with Weibull baseline distribution, the optimal replace-

ment rule *

* *inf{ 0 : ( , ( )) }
d

T T t Kh t Z t d= = ≥ ≥ can be interpreted as 

* *

1

min{ 0 : ( ) ( 1) ln }
m

i i
i

T t Z t tγ δ β
=

= ≥ ≥ − −∑ , where 
*

* ln( )
d

K

βηδ
β

= . The function 

*( ) ( 1) lng t tδ β= − − can be considered as a “warning level” function for the con-

dition of the item reflected by a weighted sum of current values of covariates. A  
 

 
Fig. 1 Sample Economical Decision Chart (for 1β > ) 
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plot of function ( )g t versus working age can be viewed as an economical decision 

chart which shows whether the data suggests that the item has to be replaced (Fig-
ure 1 is an example with several inspections points). Detailed case studies can be 
found in (Jardine et al., 2001) and (Sundin et al., 2007). 

4   Breast Cancer Screening Optimization Analogous to CBM  

Cancer screening is similar to the inspection of industrial machinery. Machines are 
inspected to detect incipient faults. People are screened to detect early stages of 
disease. In industry, condition monitoring identifies the factors which influence 
the risk of failure (hazard) of equipment and the indicators of the equipment’s 
health status (diagnostic covariates). The extensive research has been conducted in 
this area. For example, the model described in the previous sections estimates the 
hazard depending on the age of equipment and condition monitoring data by com-
bining the PHM and the Markov process model. There is no reason why similar 
models cannot be used in health care.  

In April 2011, an interdisciplinary team of researchers from engineering and 
health sciences departments of the University of Toronto came together to conduct 
a collaborative research project. This project aims to model breast cancer risk pre-
diction and mammography screening optimization. The next sections present the 
early results of this new research direction. 

5   Risk Factors of Breast Cancer and Competing Mortalities 

We use data from Canadian National Breast Screening Study (CNBSS). The 
CNBSS consists of two randomized controlled trials designed to evaluate the effect 
of mammography for women aged 40-49 and 50-59 years old. 98,948 women in 
these two age groups were recruited between 1980 and 1985 at 15 Canadian centers.  

We consider 39 risk factors collected at the time of enrolment or at the initial 
physical examination of the breasts, and construct hazard models for invasive 
breast cancer and competing mortalities. The factors are classified in four catego-
ries as socio-demographic, lifestyle and health behaviors, history of breast disease, 
and reproductive factors. We consider 1989 as the cut-off year and by the end of 
this year, 944 women were diagnosed with invasive breast cancer, and 927 women 
died from other causes, of which 538 died from other types of cancer and 389 
deaths were due to non-cancer causes. 87,912 women were right censored, i.e. nei-
ther were diagnosed with breast cancer nor died from other causes.  

5.1   Statistical Models 

• Cause-specific hazard 

When there are K competing causes, the cause-specific hazard, which is defined 
as the instantaneous probability of failing from cause k is  
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0

( , | , )
( | ) limk

t

P t T t t C k T t Z
h t Z

tΔ →

≤ ≤ + Δ = ≥=
Δ

 (5) 

where Z is a vector of covariates, and the overall hazard is 
1

( | ) ( | )
K

k
k

h t Z h t Z
=

=∑ .  

The cumulative incidence function of cause k  is the probability of failing 
from cause k  by time t and is defined as  

( | ) ( , ) ( | ) ( | )
t

k k

o

I t Z P T t C k h s Z R s Z ds= ≤ = = ∫  (6) 

• Hazard of subdistribution 

Fine and Gray (1999) propose a model, so-called hazard of subdistribution to 
perform regression directly on cumulative incidence function, defined as 

0

( , |  or C , )
( | ) limk

t

P t T t t C k T t k Z
h t Z

tΔ →

≤ ≤ + Δ = ≥ ≠=
Δ

 (7) 

The hazard of subdistribution can be modeled using Cox proportional hazards 

model as ,0( | ) ( )exp( )T
k k kh t Z h t Zβ= , where ,0 ( )kh t is the baseline subdistribu-

tion hazard of cause k . The cumulative incidence function of cause k is then 
given by 

0

( | )

,0

0

( | ) 1 1 exp exp( ) ( )

t

kk th s Z ds
T

k k kI t Z e Z h s dsβ
−∫ ⎛ ⎞

= − = − −⎜ ⎟
⎝ ⎠

∫  (8) 

5.2   Regression Models for Breast Cancer and Mortalities 

The statistical methods described in Section 5.1 were used for the CNBSS data, 
and Table 1 shows a summary of the results. Sign “+” indicates that the factor is 
significant in the corresponding hazards regression model. 

Table 1 Significant covariates in breast cancer and mortalities models 

 Regression Model 

Significant covariates Invasive 
breast cancer

All 
deaths

Cancer 
deaths 

Non-cancer 
deaths 

Age at entry 

Ethnic origin (Foreign) 

+ 

- 

+ 

- 

+ 

- 

+ 

+ 

Interaction of age at entry and time 

Ever noted lumps-right/left 

Ever noted discharge-right/left 

+ 

+ 

- 

- 

+ 

+ 

- 

- 

- 

- 

+ 

+ 
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Table 1 (continued) 

Interaction of lumps and time + - - - 

Abnormality in left breast + - - - 

Have/had other types of breast disease + - - - 

Families with breast cancer score + - - - 

Menstruation length (years) + + + - 

Number of live births + + + - 

Interaction of nulliparous level and time + - - - 

Length of hormone used (months) 

Had a hysterectomy 

Had a bi-lateral oophorectomy 

Breast Self examination (BSE) practice

Cigarettes smoked per day 

Age at first child birth 

Number of pregnancies 

- 

- 

- 

- 

- 

- 

- 

+ 

+ 

- 

+ 

+ 

+ 

- 

+ 

- 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- 

+ 

- 

- 

6   Conclusion 

This paper presents a cost-based maintenance optimization model by combining 
the PHM and the Markov process model. The similarities of breast cancer screen-
ing optimization to CBM are described, and the risk factors associated to invasive 
breast cancer and its competing mortalities are presented.  
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Abstract. A process control system deals with disperse information sources most-
ly related with operation and maintenance issues. For integration purposes, a data 
collection and distribution system based on the concept of cloud computing is 
proposed  to collect data or information pertaining to the assets of a process plant 
from various sources or functional areas of the plant inc1uding, for example, the 
process control functional areas, the maintenance functional areas and the process 
performance monitoring functional areas. This data and information is manipu-
lated in a coordinated manner by the cloud using XML for data exchange and is 
redistributed to other applications where is used to perform overall better or more 
optimal control, maintenance and business activities. From maintenance point of 
view, the benefit is that information or data may be collected by maintenance 
functions pertaining to the health, variability, performance or utilization of an as-
set. The end user, i.e. operators and maintainers are also considered. A user inter-
face becomes necessary in order to enable users to access and manipulate the data 
and optimize plant operation. Furthermore, applications, such as work order gen-
eration applications may automatically generate work orders, parts or supplies or-
ders, etc. based on events occurring within the plant due to this integration of data 
and creation of new knowledge as a consequence of such process 

Keywords: process control, XML, cloud computing, CMMS, EAM, condition 
monitoring, asset. 

1   Introduction 

Process control systems, like those used in oil & gas industry, pulp & paper indus-
try, or other processes, typically include one or more centralized or decentralized 
process controllers communicatively coupled to at least one host or operator 
workstation and to one or more process control and instrumentation devices, such 
as field devices. The process controller receives signals indicative of process mea-
surements or process variables made by or associated with the field devices and/or 
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other information pertaining to the field devices, uses this information to imple-
ment a control routine and then generates control signals which are sent over one 
or more of the buses to the field devices to control the operation of the process. In-
formation from the field devices and the controller is typically made available to 
one or more applications executed by an operator workstation to enable an opera-
tor to perform desired functions with respect to the process, such as viewing the 
current state of the process, modifying the operation of the process, etc. While a 
typical process control system has many process control and instrumentation de-
vices, such as valves, transmitters, sensors, etc. connected to one or more process 
controllers which execute software that controls these devices during the operation 
of the process, there are many other supporting devices which are also necessary 
for or related to process operation. This additional equipment does not necessarily 
create or use process variables and, in many instances, is not controlled or even 
coupled to a process controller for the purpose of affecting the process operation, 
this equipment is nevertheless important to and ultimately necessary for proper 
operation of the process. In the past however, process controllers were not neces-
sarily aware of these other devices or the process controllers simply assumed that 
these devices were operating properly when performing process control. 

Integration of maintenance information, management and monitoring is essen-
tial to close the loop of the process that is why CMMS systems have evolved. 
EAM (Enterprise Asset Management) are more sophisticated software than 
CMMS, (Fu et al. 2002). These solutions usually enable communication with and 
stores data pertaining to field devices to track the operating state of the field de-
vices. This information may be stored and used by a maintenance person to moni-
tor and maintain these devices. Likewise, there are other types of applications 
which are used to monitor other types of devices, such as rotating equipment and 
power generation and supply devices. These other applications are sometimes 
available to the maintenance persons and are used to monitor and maintain the  
devices within a process plant. In many cases, however, outside service organiza-
tions may perform services related to monitoring process performance and equip-
ment. In these cases, the outside service organizations acquire the data they need, 
run typically proprietary applications to analyze the data and merely provide re-
sults and recommendations to the process plant personnel. While helpful, the plant 
personnel have little or no ability to view the raw data measured or to use the 
analysis data in any other manner.  Fig 1 shows the process of outsourced condi-
tion monitoring where the only outcome is usually the report by a third party. 

Thus, in the typical plants the functions associated with the process control ac-
tivities, the device and equipment maintenance and monitoring activities, and the 
business activities such as process performance monitoring are separated, both in 
the location in which these activities take place and in the personnel who typically 
perform these activities. Furthermore, the different people involved in these dif-
ferent functions generally use different tools, such as different applications run on 
different computers to perform the different functions. In many instances,  
these different tools collect or use different types of data associated with or col-
lected from the different devices within the process and are set up differently to 
collect the data they need. However there should be cooperation among different 
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departments in an enterprise and between experts in their respective domain 
knowledge to succeed with the maintenance policy (Yu et al. 2004).  

Typically, maintenance interfaces and maintenance personnel are a real huge of 
data network, (Davies and Greenough 2000); however it is located apart from 
process control operators, as you can see in Figure 2, although this is not always 
the case. In some process plants, process control operators may perform the duties 
of maintenance persons or vice versa, or the different people responsible for these 
functions may use the same interface. 

 
 

 

Fig. 1 Typical process of outsourcing in condition monitoring 

 

 

Fig. 2 Typical architecture of maintenance information system 
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This lack of connectivity affects seriously the performance of maintenance 
function. Many applications are used to perform the different functions within a 
plant, i.e. process control operations, maintenance operations and business opera-
tions, not integrated, thus, do not share data or information. In many cases, some 
of the tasks, such as monitoring equipment, testing the operation of devices, de-
termining if the plant is running in an optimal manner, etc. are performed by out-
side consultants or service companies who measure the data needed, perform an 
analysis and then provide only the results of the analysis back to the plant person-
nel. In these cases, the data is typically collected and stored in a proprietary man-
ner and is rarely made available to the plant personnel for other reasons. 

2   Data Fusion: A Need in Maintenance of Processes 

A process control system includes a data collection and distribution system that 
collects and stores data from different data sources, each of which may use it own 
proprietary manner of acquiring or generating the data in the first place. The data 
collection and distribution system then makes the stored data available to other 
applications associated with or provided in the process control system or to appli-
cations associated with the data sources themselves for use in any desired manner. 
In this manner, applications may use data from vastly different data sources to 
provide a better view or insight into the current operational status of a plant, to 
make better or more complete diagnostic or financial decisions regarding the 
plant, etc.  

Thus, applications may be provided which combine or use data from previously 
disparate collection systems such as process control monitoring systems, condition 
monitoring systems and process performance models to determine a better overall 
view or state of a process control plant, to better diagnose problems and to take or 
recommend actions in production planning and maintenance within the plant.  

This information may then be sent to and displayed to a process operator or 
maintenance person to inform that person of a current or future problem. This 
same information may be used by the process operator to correct a current prob-
lem within a loop or to change. 

A process control expert may use these measurement, control and device in-
dexes along with process variable data to optimize operation of the process. Using 
the disclosed data collection and distribution system, process variable data and 
non-process variable data may be combined,. 

Likewise, the detection of a device problem, such as one which requires shut-
down of the process, may cause business software to automatically order replace-
ment parts or alert the business person that chosen strategic actions will not pro-
duce the desired results due to the actual state of the plant. The change of a control 
strategy performed within the process control function may cause business soft-
ware to automatically order new or different raw materials. There are, of course, 
many other types of applications to which the fusion data related to process con-
trol, equipment monitoring and performance monitoring data can be an aid by 
providing different and more complete information about the status of the assets 
within a process control plant to all areas of the process plant, (Hall and Llinas 
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1997). However, because the functions are so different and the equipment and per-
sonnel used to oversee these functions are different, there has been little or no 
meaningful data sharing between the different functional systems within the plant. 

To overcome this problem, a data collection and distribution system, hereafter 
the asset cloud is proposed to acquire data from the disparate sources of data, for-
mat this data to a common data format or structure and then provide this data, as 
needed to any of a suite of applications run at, a computer system or disbursed be-
tween workstations throughout the process control network. The  applications 
proposed is able to fuse or integrate the use of data from previously disparate and 
separate systems to provide a better measurement, viewing, control and under-
standing of the entire plant, (Dasarathy 2001) (Dasarathy 2003).  

3   XML: The Protocol for Understanding Each Other 

3.1   Common Standards for Maintenance Information Exchange 

The complexity of connectivity between applications is enormous since plenty of 
control system, maintenance management; condition monitoring and enterprise 
applications are involved in the management of complex, asset-intensive opera-
tions. Unfortunately, standards for information exchange have evolved indepen-
dently for each of these areas. OPC (OLE for Process Control) has gained consi-
derable acceptance as a standard for sharing information between control systems 
and associated manufacturing applications. MIMOSA’s  (Machinery Information 
Management Open Systems Alliance) OSA-EAI standard for sharing condition 
monitoring and asset health information with maintenance, operations, and enter-
prise systems is likewise being widely supported, (Thurston and Lebold 2001). 
The Instrumentation, Systems & Automation Society ISA-95 standard for integra-
tion between enterprise and production management systems in continuous, batch 
and discrete industries is also already being adopted by a broad range of suppliers 
and users in those industries. Each of these efforts addresses an important issue 
and has clearly made significant progress in their own right. 

OpenO&M is focused on information integration between four different areas: 
Asset status assessment, through condition monitoring, specialized sensors and 
analysis tools, have been significant over the last decade. We are clearly at the 
point where Condition- based Maintenance (CBM) and Condition-based Opera-
tions (CBO) strategies, i.e. the performing of maintenance actions based on the in-
formation collected through condition monitoring, are becoming realizable. CBM 
and CBO attempts to avoid unnecessary maintenance tasks by taking maintenance 
actions only when there is evidence of abnormal behaviours of a physical asset, 
(Jardine et al. 2006). But in many organizations this information is still only being 
used by local technicians who maintain the equipment and not accessible for the 
rest of the personnel. 
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3.2   XML: The Protocol to Destroy the Communication Barriers 

Working within the context defined by ISA-95 further ensures that this same in-
formation can be used by higher level enterprise applications like ERP or EAM. 
The emerging standard is specifically focused on providing value to end users by 
creating plug and play capabilities for faster implementation and by allowing them 
to pick and choose the best solutions from suppliers that comply. An extensible, 
open architecture based on XML and Service oriented interfaces that leverage best 
of breed technology and support practical interoperability and compliance is im-
plicit in Open O&M.  

Nowadays XML is maybe the most popular protocol for this communication 
exchange of maintenance information, (Szymanski et al. 2003). While HTML is 
focused on document format, XML is focused on information content and rela-
tionships. A class of software solutions is evolving which enables tighter coupling 
of distributed applications and hides some of the inherent complexities of distri-
buted software systems. The general term for these software solutions is middle-
ware. Fundamentally, middleware allows application programs to communicate 
with remote application programs as if the two programs were located on the same 
computer.  

XML is accepted as communications over these industrial buses as you can see 
in (Wollschlaeger and Bangermann 2003), (Hausladen, Bechheim 2004) (Catter-
son et al. 2005). The process to transfer information between disparate sources in 
XML environment is as follows: Data from each of the computers involved in as-
set data exchange must be wrapped in an XML wrapper and sent to an XML data 
server. Because XML is a descriptive language, the server can process any type of 
data. At the server, if necessary, the data is encapsulated and mapped to a new 
XML wrapper, i.e., this data is mapped from one XML schema to one or more 
other XML schemas which are created for each of the receiving applications.  

All existing data (assets, events, failures, alarms) can be modeled with XML. 
Among them, the most critical and difficult to represent is the layer that represents 
information regarding sensory inputs and outputs, whether it is a single scalar val-
ue or an array of complex data points. The standards define various data formats 
that may be implemented for representing sensory information. Sensory data, es-
pecially relevant in condition monitoring and process control, may be as simple as 
a single value or as complex as storing several synchronous sampled waveforms. 

3.3   Example of Asset Data Integration Using XML 

The web based technologies have been widely used and proven for eMaintenance 
purposes according to (Min-Hsiung et al. 2003) (Kunze 2003) (Han and Yang 
2006). One architecture for collecting and integrating data from disparate data 
sources based on XML server based on web services is proposed in Figure 3. 
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Fig. 3 Integration of disparate data sources 

The figure illustrates an architectural overview of a system which implements 
the collection of data from disparate data sources with a process control system. 
Generally, the system  may include a maintenance management system, a product 
inventory control system, a production scheduling system, as well as other sys-
tems connected by a LAN, the Internet, etc. XML is used as transaction server. 
The server sends XML wrapped data to the web services indicative of the data.  

The web services must include a series of web service listeners which listen for 
or which subscribe to certain data from other data sources and provides this data to 
the subscribing applications. The web listening services (which may be part of the 
data collection and distribution system) may listen for and redistribute alarms and 
events data, process condition monitoring data and equipment condition monitor-
ing data. Interfaces for this data are used to convert the data to a standard format 
or protocol, such as the Fieldbus or to XML as desired. 

Finally, a configuration database is used to store and organize the data from the 
process control runtime system, including any data from the remote data sources, 
such as from the external web servers. 
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4   Cloud Computing in Asset Management: The Natural Data 
Repository 

4.1   Introduction to Asset Cloud 

Cloud computing is the next stage in evolution of the Internet. The cloud in cloud 
computing provides the means through which everything from computing power to 
computing infrastructure, applications, business processes to personal collaboration 
can be delivered as a service wherever and whenever you need. The cloud itself is a 
set of hardware, networks, storage, services, and interfaces that enable the delivery 
of computing as a service, (Mell and Grance 2009) (Amrhein and Quint 2009 ) 
(Rhoton 2010). Cloud services include the delivery of software, infrastructure, and 
storage over the Internet (either as separate components or a complete platform) 
based on user demand. Cloud computing, in all of its forms, is transforming the 
computing landscape. It will change the way technology is deployed and how we 
think about the economics of computing. Cloud computing is more than a service 
sitting in some remote data centre. It’s a set of approaches that can help organiza-
tions quickly, effectively add and subtract resources in almost real time. Unlike 
other approaches, the cloud is as much about the business model as it is about tech-
nology. Companies clearly understand that technology is at the heart of how they 
operate their businesses. Business executives have long been frustrated with the 
complexities of getting their computing needs met quickly and cost effectively.  

For asset management, the cloud seems to be the solution with such amounts of 
dispersed data in different repositories. The end user (maintenance or operators) 
don’t really have to know anything about the underlying technology. The data col-
lection and distribution applications may be dispersed throughout the network and 
collection of data may be accomplished at distributed locations.  

The applications within the cloud may use the collected data and other informa-
tion generated by the process control systems and, the maintenance systems and the 
business and process modelling systems as well as information generated by data 
analysis tools executed in each of these systems. However, the cloud may use any 
other desired type of expert system including, for example, any type of data mining 
system, already proven successful in the creation of knowledge for maintenance as 
one can see in (Iserman 2006) (Wylie et al. 2002) (Yang and Létourneau 2005). It 
may also include other applications which integrate data from various functional 
systems for any other purpose, such as for user information purposes, for diagnostic 
purposes and for taking actions within the process plant, such as process control ac-
tions, equipment replacement or repair actions, altering the type or amount of prod-
uct produced based on financial factors, process performance factors, etc.  

4.2   Services Provided by the Asset Cloud 

Thus, the cloud, may, in one sense, operate as a data and information clearing-
house in the process plant to coordinate the distribution of data or information 
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from one functional area, such as the maintenance area, to other functional areas, 
such as the process control or the business functional areas. As a result, the cloud 
may use the collected data to generate new information or data which can be dis-
tributed to one or more of the computer systems associated with the different  
functions within the plant and may execute or oversee the execution of other  
applications that use the collected data to generate new types of data to be used 
within the process control plant. 

The cloud should include or execute index generation software that collects or 
creates indexes associated with devices, like process control and instrumentation 
devices, power generation devices, rotating equipment, units, areas, etc, or that are 
associated with process control entities, like loops, etc. within the plant. These in-
dexes can then be provided to the process control applications to help optimize 
process control and can be provided to the business software or business applica-
tions to provide the business persons more complete or understandable informa-
tion associated with the operation.  

The asset cloud must also provide maintenance data (such as device status in-
formation) and business data (such as data associated with scheduled orders, etc.) 
to a control expert associated with the process control system to help an operator 
perform control activities such as optimizing control. However, these control ex-
perts may additionally incorporate and use data related to the status of devices or 
other hardware within the process control plant or of performance data generated 
using process performance models in the decision making performed by these 
control experts. In particular, in the past, the software control experts generally 
only used process variable data and some limited device status data to make deci-
sions or recommendations to the process operator. 

 

 

Fig. 4 Services provided by the asset cloud 
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Figure 4 illustrates a simplified functional block diagram of data flow and 
communication associated with or used by the asset cloud described herein to ena-
ble data from disparate data sources to be used by the asset cloud. In particular, 
the diagram includes the data collection and distribution system which receives 
data from numerous sources of data.  

An equipment or process health data source (which may include traditional 
equipment monitoring applications, equipment diagnostic applications, equipment 
alarming applications, abnormal situation analysis applications, environmental 
monitoring applications, etc.) also sends data to the cloud. As a result, the source 
may send data acquired by or generated by any type of traditional equipment mon-
itoring and diagnostic applications or sources. 

A performance monitoring data source (which may include performance moni-
toring applications such optimization applications, process models used to monitor 
or model process operation, process or equipment health, etc.) also provides data 
to the system. The data source may include or provide data acquired by or gener-
ated by any type of performance monitoring equipment or applications.  

5   Conclusion 

In the past, the different functional areas, e.g., the process monitoring, the equip-
ment monitoring and the performance monitoring, were performed independently 
and each tried to "optimize" their associated functional area without regard to the 
effect that given actions might have on the other functional areas. As a result, a 
low priority equipment problem may have been causing a large problem in achiev-
ing a desired or critical process control performance, but was not being corrected 
because it was not considered very important in the context of equipment main-
tenance. With the asset cloud providing data to the end users, however, persons 
can have access to a view of the plant based on two or more of equipment moni-
toring data, process performance data, and process control monitoring data. Simi-
larly, diagnostics performed for the plant may take into account data associated 
with process operation and the equipment operation and provide a better overall 
diagnostic analysis.  

To overcome the limitation of limited or no access to data from various external 
sources, the asset cloud comes up as a feasible solution that provides to collect da-
ta, convert that data if necessary into a common format or protocol that can be ac-
cessed and used by applications. The integration of the different types of function-
al data may provide or enable improved personnel safety, higher process and 
equipment uptime, avoidance of catastrophic process and/or equipment failures, 
greater operating availability (uptime) and plant productivity, higher product 
throughput stemming from higher availability and the ability to safely and secure-
ly run faster and closer to design and manufacturing warrantee limits, higher 
throughput stemming from the ability to operate the process at the environmental 
limits, and improved quality due to the elimination or minimization of equipment 
related process and product variations.  
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1 Maia Eolis, Tour de Lille, Boulevard de Turin, Lille, 59000, France
handre@maiaeolis.fr
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Abstract. One cannot but notice that a variable speed wind turbine utilizes the
available wind resource more efficiently than a fixed speed wind turbine, especially
during light wind conditions. Most wind turbines are equipped with doubly fed in-
duction generator, thereby allowing them to keep on producing while the speed
varies over a wide range. This enhancement forces the monitoring methods to deal
with these large variations in speed and torque, since the conditions are seldom if
ever stationary. In an original and inexpensive attempt to tackle this issue through
angular sampling, this paper proposes to base the surveillance of the line shafting on
the instantaneous angular speed variations experienced by the high speed shaft. The
unsteady behaviour of these wind turbines is also a difficulty in term of long term
diagnostic, since the comparison of successive measurements is usually performed
under the same operating conditions. Parametrization of the indicators according to
well chosen variables might bring a valuable tool regarding several aspects. A long
term experimental study carried over a 2MW wind turbine will be presented as a
first application, and will be used to dress an interesting diagnosis on another wind
turbine.

1 Introduction

Several industries, including wind energy production, are demanding to observe me-
chanical or electrical rotating components behaviour at variable speeds. Concerning
traditional frequency analysis, it appears to be difficult to develop effective algo-
rithms for early fault detection, especially for variable speed operation [1]. Angular
sampling has shown to be a dedicated tool for analysis of vibrations generated in
such conditions, since the vibrations of interest are related to transmission or en-
gine angular speed. However, this solution increases the measurement instrumenta-
tion cost and does not seem to convince the wind industry yet. An alternative way
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of bearing condition monitoring based on the Instantaneous Angular Speed (IAS)
measurement has been proven able to detect localized faults in non stationary condi-
tions, using only an encoder close from the source of the defect [2]. Many different
methods have been developed for the measurement of angular speed [6], among
which some does not even need a vibration sensor [7] [8].Previous work has shown
the possibility to enhance IAS monitoring under non stationary conditions in such
a way that the use of only one encoder might be enough to cover the whole line
shafting of the 2MW wind-turbine [3].

The next step is to feed a monitoring histogram using measurements recorded un-
der always different running conditions. At some extent, this difficulty has already
been tackled in the literature. First, Bartelmus et al used the linear dependence be-
tween the vibration amplitude of the complex wheel excavator gearbox behaviour
in regards with the strong torque variation [4]. Nevertheless, this application does
not experience large speed variation and the linear approach might not be suited for
wind turbines. At the same time, Mac Bain et al proposed an interesting monitoring
methodology handling the run-up and run-down vibration measurement recorded on
a simple mechanical system [5]. This method is based on the scattering of the whole
signal in small periods where the signal can be assumed stationary. This solution can
not be directly used in wind-turbines neither, since the complex mechanical system
requires a high spectral resolution [3].

In this paper, the IAS method will be presented in a first part, along with the
dedicated tools developed to enlighten mechanical phenomena under surveillance
and the wind turbine set-up. Eventually, an original approach is proposed in support
of these tools to dress the follow-up of the complete line shafting under the unsteady
running conditions the machine experiences routinely. A two-years long experiment
has been carried out on a 2MW wind turbine to qualify the ability of this monitoring
system and will finally put to the test this original parametrization process. As it is
quite often the case in such situations, no definite major faults developed in the
period over which the machine was monitored. However, inferences can be made
between the result obtained with this first turbine and those coming from another
wind-turbine, presumably defective.

2 Material and Methods

2.1 Elapse Time Method

In this paper, IAS measurements are however carried out using the elapse time
method on the square signal delivered by a tachometer. The elapse time method has
been largely used in the measurement of torsional vibration to study gear Transmis-
sion Error measurement and shaft crack detection [9]. The data acquisition system
relies on a High Frequency Counter which can be commonly found on traditional
acquisition board (80Mhz). The rotating speed ωi is estimated for each rising edge
of the encoder signal by counting the pulses delivered by a high frequency clock,
respecting Eqn. (1)
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ωi =
2π
R

· fc

t(αi)+ ε
(1)

ωi depends on the resolution of the encoder R and on the counter frequency fc. αi

stands for the ith entire pulse cycle delivered by the tachometer which exactly cor-
relate the IAS of the shaft carrying the sensor. Uncertainty term ε globally denote
the geometrical, electrical and quantification measurement errors. It may eventually
be usefull to underline that the geometric perturbations, notably induced by the en-
coder gratings inaccuracy, is known to be mainly concentrated on the orders of the
shaft carrying the encoder [10]. Once the IAS signal is obtained, a Fourier Trans-
form is applied on it to emphasize every cyclic periodicities and eventually be the
exhaustive indicator of each elements health status. However, it must be understood
that all the traditional habits linked to classical work in the spectral domain must be
revised since the signal is not sampled in the time domain but in the angular one.
The distinctness of this method mainly relies on the two following points:

1. The monitoring tool is only based on the shaft speed observation. (and not on
the complex housing vibration)

2. The signal is sampled on an angular basis (the Fourier transform is then corre-
lated to the cyclic frequency rather than the time frequency)

2.2 Limitation of the Methodology

André et al have recently underlined the major pitfalls to be overcome to make
the IAS monitoring system operational under these peculiar measurement require-
ments [3]:

1. Spectral Resolution: although high transmission ratio spreads out cyclic fre-
quencies related to each components to be monitored, some components see
their characteristic frequencies close from each other and hard to differentiate
using only one sensor.

2. Broad band perturbation: large speed variations induce broad band effect dis-
turbing the measurement analysis, especially for low cyclic frequency
phenomena.

For the sake of conciseness, the solution proposed in the previous paper for each
issue and used in this one are just summarised. At first, the spectral resolution op-
timization might be circled without the use of more than one sensor by artificially
reducing the resolution of the sensor installed on the high speed shaft. Secondly, the
broad band effect induced by the macroscopic trend of the angular speed has been
shown to be efficiently corrected once an apodization window is correctly applied
to the IAS signal.

2.3 Wind Turbine Set-Up

Both experiments are being carried over two MM82 wind turbines. The wind tur-
bine set-up is presented in Fig. 1 for the reader to realize the easiness of the involved
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instrumentation in regards with the kinematic complexity of the turbine line shaft-
ing. The IAS signal is computed from the generator optical encoder 1 in Fig. 1. This
sensor is originally used by the converter to correctly synchronize the asynchronous
generator.

Fig. 1 Kinematic scheme of the wind turbine set-up

Although the entire line shafting presented in Fig. 1 is under surveillance, this
paper focuses the observation on the three gear mesh surrounding the sun shaft,
for a good reason. Another wind turbine has been briefly equipped because of a
presumably deficient behaviour of its sun shaft: one of its gear is suspected to be
defective, and the comparison of the results might appear valuable. The paper will
therefore focus its attention upon the following gear mesh frequencies, scaled in
events per high speed shaft revolutions:

• GMSa−Su: between the satellites and the sun shaft fGMSa−Su = 3.86 ev.rev−1

• GMSu−P: betweenthesunandthemechanicalpumpshaft. fGMSu−P = 34.5ev.rev−1

• GMSu−H : between the sun and the high speed shaft. fGMSu−H = 32 ev.rev−1

3 Proposed Approach

3.1 Indicators and Operating Parameters

In general, indicators may result from any representative computation in respect
with the corresponding fault appearance. Since this paper is not focused on the opti-
mization of these indicators, they will be limited to the most classical spectral ampli-
tude surveillance. Gears will be qualified after the amplitude of the closest discrete
channel from the corresponding characteristic cyclic frequency on the amplitude
spectrum of the instantaneous angular speed signal. This signal being beforehand
processed through the methods presented in the previous paragraph. However, it
should be noted that since the measurements are directly sampled in the angular do-
main, the theoretical characteristic frequencies of the gears are in coherence with the
empirical ones. Figure 2 shows an expample of windowed signal and its amplitude
spectrum focused around the cyclic frequency corresponding to the gear meshes
coupling the three satellites to the sun gear.
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Fig. 2 Example of IAS analysis. a) windowed signal, b) Amplitude spectrum focalised around
fSat−Sun

Every measurement has at least one indicator associated to each element under
surveillance. To deal with the fact that the operating conditions are always differ-
ent, these indicators are associated to at least one characteristic operating parameter.
In practice, the mean running speed and the mean power generated by the turbine
during the corresponding measurement are the two operating parameters that char-
acterize any measurement from the turbines. The last gives an useful image of the
torque acting on the line shaft.

3.2 Optimized Parametrization

The parametrization process is based on the following assumption: the indicator
follows a multivariate normal distribution. McBain et al used this hypothesis with
vibration indicators obtained from short stationary measurements [5] and it is here
proposed to extend it to the measurement where the operating conditions are no
longer stationary. In coherence with the characteristic operating parameters pre-
sented in the previous part, the statistic estimators of the Gaussian distribution are
assumed to depend on the mean speed and the average torque experienced by the
line shafting during the measurement.

Fig 3 (a) locate the measurements made between March and October 2010 ac-
cordingly to their operating parameters. From a first view, the relation between the
average speed and the active power is not bijective. But since the measurement which
average speed is below 1000rpm are not considered because of their scarcity, it might
be possible to characterize the faster measurements using only the average active
power. However, the possibility to use only the encoder to achieve the surveillance
urges the author to characterize the measurement which speed is between 900rpm
and 1700rpm using only the average speed. Consequently, the measurements are
sorted in this example in twelve slots, where the first eights are characterized by
their mean speed, and the last fours are characterized by their average active power.
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Fig. 3 Normalisation steps applied on any indicator. a) Sort all the measurements accord-
ingly to their respective average speed and active power. b) Estimation of the Gaussian law
corresponding to each parametric slot. c) normalization of the following measurements ac-
cordingly to the parametric gaussian law.

Fig 3 (b) estimates the empirical mean μ(ω̄) (in red) and one standard deviation
σ(ω̄) (in green) of the parametric distributions slot by slot 1. These parametric val-
ues may be used on the following measurements to standardize the indicator accord-
ingly to its characteristic operating parameter. Fig 3 (c) illustrates the standardized
measurement obtained between November 2010 and May 2011. The red curve es-
timates the moving average. This example does not enlighten any evolution in the
indicator since the moving average is staying close from the normalized standard
deviation. But a threshold can be defined with a suitable discordance test.

4 Experimental Comparison

4.1 Results

The parametric Gaussian law estimation performed on one wind turbine can be
used to give valuable information about another wind turbine, as soon as the tur-
bines present the same machinery and are monitored using a similar protocol. Fig 4
presents the Gaussian law estimated on the first turbine for each gear mesh indica-
tor. these estimations are made over one thousand measurements. In addition, six
measurements made in a row on the second wind turbine are added on the plot as
highlighted dots. As it can be seen on Fig 4 (a-b-c), the average speed of the four
fastest measurements outranges the fastest slot, justifying the use of the active power
as a characteristic operation parameter on Fig 4 (d-e-f).

The indicator characterizing the behaviour of gear mesh coupling the sun and the
pump shaft is the only one which can be believed to follow the same Gaussian dis-
tribution. Although suitable statistical tools could be used to interpret the involved
probabilities, a brief view on Fig 4 (e-f) is enough to ensure that the multivariate dis-
tributions followed by these indicators are far from equal. These differences might
be interpreted as a mechanical fault on the fingered gears, but also by a difference

1 In the exemple presented on Fig 3 (b) , 20 slots share the measurements made before
October ’10 and which mean speed is between 900 and 1700 rpm.
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in the dynamic transmission separating the gears and the optical encoder, or even a
difference in the acquisition systems used to perform the sampling.

In particular, the characteristic frequency of the gear mesh coupling the sun and
the high speed shaft is known to be perturbed by the geometric fault on the encoder,
since it is an integer multiple of the high speed shaft order [10]. The difference
obtained between these results might be caused by that perturbation. The gear mesh
coupling the sun and the mechanical pump shaft can unfortunately no benefit from
such excuses, and is therefore expected to present an anormal behaviour.

4.2 Discussion

First, the Gaussian assumption used to perform the parametrization can be ques-
tioned. The author is aware that the indicators based on the amplitude spectrum,
even in the almost stationary conditions experienced by McBain [5], can hardly fol-
low a Gaussian distribution. Alternatively, the amplitude of the spectral coefficient
could follow a chi-squared distribution since it results from a quadratic sum, would
the Fourier coefficients follow a normal distribution in the first place. This last as-
sumption might be disturbed by the fact that the measurements are long, unsteady,
and the average speed does not describe the distribution with enough precision. It
might therefore be useful to verify it through a classical hypothesis test, and if nec-
essary, give more weight to the steadier measurements. Still, the number of samples
used to estimate each slot distribution must be large enough for the hypothesis test
to be consistent.

As Mc Bain mentioned, the amount of data needed to accurately describe the
parametric distribution is increasing exponentially with the number of operation

Fig. 4 Estimation of the parametric law followed by the indicator based on the fundamental
frequency amplitude of the gears a-d) GMSu−P, b-e) GMSu−O, c-f) GMSa−Su of the healthy
machine. dots correspond to the faulty machine.
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parameters. However, the righteous will to distinguish speed from torque variation
may not be necessary for these wind turbines, since each parameter can be used on
its own to characterize most of the measurements.

If the possibility to use this parametrization to yield experience on a turbine from
an other similar turbine is very attractive, it appears that the observation dressed from
the parametrization should be associated to a mechanical model of the machine. This
model could be used to discriminate the difference induced by unexpected variabil-
ity: stiffness and damping of the dampers, the coupling or the housing, different
sensor position.

Concerning the instantaneous angular speed methodology, this surveillance tech-
nique should be associated to dedicated tools differentiating the indicators repre-
senting noise from those which represent a real vibration. In other words, the need
to handle the uncertainties that perturb these signals observed in the spectral domain
has arisen since it may induce wrong diagnostic.

5 Conclusion

Instantaneous Angular Speed (IAS) monitoring appeared as a valuable technology
to monitor a wind turbine line shafting, mainly because of its hardware simpleness.
Dedicated tools have been developed to improve its adaptability to monitore a com-
plex mechanism which is running under non stationary conditions. Nevertheless,
the environnemental conditions variety imposed to the resulting indicators also in-
terferes with the long term monitoring of such a machine. This paper proposes to
adapt the parametrization process to a basic spectral indicator assuming it to follow a
multivariate Gaussian distribution. Promising results have been brought from a long
term study on a 2MW Wind Turbine, although the line shafting were not experienc-
ing any major fault emergence. The possibility to use the long term parametrization
in the diagnostic process of an other turbine during a one-day-test has been brought,
and encourages the author to consolidate these works with a mechanical model and
a video-endoscopy checkout.
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Abstract. The application of Acoustic Emission (AE) in condition monitoring of 
rotating machines has been well documented. The majority of research works in 
this field has involved the use of conventional time domain analysis for processing 
the AE signals from the machines and there has been little attention given to ap-
plication of more advanced signal processing methods. This research presents a 
study in which some advanced signal processing techniques such as Wavelet and 
Spectral Kurtosis (SK) has been applied to offer improved diagnosis for bearing 
defect detection  

1   Introduction 

Today’s competitive market together with the revolution in consumer expectations 
and technology has made companies become more concerned about their produc-
tivity and performance (Rao, 1996). For industries to survive in such a complex 
and competitive environment it is vital to improve their product reliability whilst 
cutting down on production cost. Product reliability is an important factor for the 
manufacturer in the mining, aviation, nuclear and chemical industries where op-
erational failure can lead to a devastating disaster. According to the report issued 
by Mine Safety and Health Administration (MSHA) (2009), 20% of the total fatal 
mining casualties in the US between 2005 and 2009 were caused by machinery 
failure. On the other hand, maintenance expenses can directly contribute to the fi-
nal cost of product. Given the demand for product reliability, as well as the reduc-
tion in production cost, it is essential to employ condition monitoring (CM) tech-
niques for firstly predicting the failure prior to the event and secondly preventing 
unexpected shutdowns of machinery. The former is particularly important in the 
oil and gas sector where unexpected plant shutdown can result in a major eco-
nomic loss, while an unexpected failure can result in fatalities in civil aviation. 
There have been continuous challenges in designing robust CM systems capable 
of diagnosing damage in its early stages of development and predicting the re-
maining life of the machine. 

Gearboxes are the key part in any rotating machine. In wind turbines the price 
of the transmission system is usually between 15-20% of the total turbine value 
(Whitby, 2008). McNiff et al. (McNiff et al. 1990) reported on 20% gearbox  



426 B. Eftekharnejad et al.
 

related failure on 200 Micron 65 wind turbines over 10,000 hours of operation. 
There have also been some reports on gearbox related fatalities in aviation.  From 
1964-1974, 20% of the total helicopter accidents in the UK were due to gearbox 
malfunction (Tan, 2005 and Vinall, 1980). On 10th April 2009, the BBC News 
broadcast a report on the death of 16 people in a North Sea helicopter crash be-
cause of gearbox failure. The recent interest on condition based and predictive 
maintenance of industrial assets, together with product safety, has led to a growing 
interest in the condition monitoring of gearboxes. 

There are different technologies being used for the purpose of the condition 
monitoring of gearboxes. Vibration and wear debris monitoring are among the 
most popular methods of CM in industry (Hodges and Pearce 1995, Lebold et al. 
2000). The wear debris monitoring involves analyzing and measuring the wear 
particles and contaminates inside the used oil. This method is very time consum-
ing and requires fairly advanced and expensive laboratory equipment (Ebersbach 
et al. 2006). The vibration measurement is not capable of detecting the incipient 
damage inside the machines because the source of vibration in machines changes 
in stiffness. Hence the vibration response of the machine will not show any change 
unless the extent of the damage is high enough to influence the mechanical inte-
grity and therefore stiffness (Yesilyurt et al. 2003, Drosjack and Houser 1977). 
For the past few decades there has been an awareness for using Acoustic Emission 
(AE) technology in monitoring gearboxes (Mba and Rao 2006). Because of the 
microscopic origin of AE activity in rotating machines, AE has shown effective-
ness in detecting the incipient damage in a more advanced way than wear debris 
and vibration monitoring. 

Over the past decades, multi-resolution analysis using wavelet transform has 
gained ground as an effective signal-processing tool. The fundamental idea is to 
decompose the signal into several frequency ranges with finer resolutions, thereby 
achieving a better understanding of the time-frequency content of the signal (Jen-
sen and Andres 2001). In signal processing, two types, the continuous (CWT) and 
discrete (DWT) wavelet transforms are employed. The function of CWT is to 
break up the signals into scaled and shifted versions of a transient type of signal 
known as the mother wavelet, ψ. The scale, a, and frequency of each wavelet are 
reversely correlated with each other so that the higher scale corresponds to the low 
frequency version of same wavelet. The coefficient, C, for each segment of the 
signals is determined based on the difference in energy of scaled and shifted ver-
sions of the mother wavelet and that of a particular segment, see Equation 
1(Jensen and Andres 2001). 
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Spectral Kurtosis (SK) is gaining ground as an effective signal processing method 
in vibration analysis. To determine SK, the signal is firstly decomposed into the 
time-frequency domain after which the Kurtosis values are determined for each 
frequency band (Randall 2005). The concept of SK analysis was first developed 
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by Dwyer (1983) as a tool which was able to trace non-Gaussian features in dif-
ferent frequency bands using the fourth order moment of the real part of the Short 
Time Fourier Transform (STFT). Dwyer investigated the application of SK on sta-
tionary processes but did not account for non-stationary vibration signatures typi-
cal of rotating machines. To date the most comprehensive calculations of the SK 
have been developed by Antoni (2006) as the fourth order cumulant of the spectral 
moment (K). 
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Where Y(n) is the sampled version of the signal, Y(t), and W(n) is the window 
function having zero value outside a chosen interval. 

For the above calculations to be valid, the size of window (Nw) should be 
smaller than the length between two repetitive impulses and longer than the length 
of each impulse. In other words, the analysed signal should be locally stationary. 
Using the definition offered by Antoni (2006), Antoni and Randall (2006) devel-
oped the concept of the Kurtogram to detect non-Gaussianity in a signal. A Kurto-
gram simply maps the STFT-based SK values as functions of frequency and  
window size. Antoni (2006) and Antoni and Randall (2006) suggested the use of 
the Kurtogram for designing a band-pass filter which can be applied to increase 
the signal-to-noise ratio, thereby preserving the impulse-like nature of the signal. 
Additional authors aimed to find ways to automatically determine the optimum 
frequency band for envelope analysis. For this research the frequency and window 
size (bandwidth) at which the Kurtogram is maximum was employed to build a 
band-pass filter that was subsequently employed for analysis of measured AE and 
vibration data. In a separate investigation, Antoni (2007) proposed an algorithm 
for fast computation of the Kurtogram. In this method instead of using STFT at 
different window lengths, the signal is decomposed by the means of quasi-analytic 
low-pass and high-pass filters to generate a pyramidal filter-bank tree with 2k 
bands in each level (k). The Kurtogram is computed via calculating the kurtosis of 
all frequency bands, see Equation 5:
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k
 is the sequence of the coefficient from the ith filter at kth level. 

This research presents several experimental investigations where the advanced 
signal processing methods were applied on recorded AE signals from a bearing 
that was run to failure with the purpose of improving the signal-to-noise ratio so as 
to enhance features of bearing damage. 

2   Experimental Tests 

The test rig used in this experiment is displayed in Figure 1. The bearing test rig has 
been designed to simulate varying operating conditions and accelerate natural degrada-
tion. The chosen bearing for this study was an SKF single thrust ball bearing, model 
number SKF51210. To ensure accelerated failure of the race the standard grooved race 
was replaced with a flat race, model number SKF 81210TN. This caused a point con-
tact between the ball elements and the race resulting in faster degradation of the race 
and early initiation of sub-surface fatigue cracks. The load on the test bearing was ap-
plied by a hand operated hydraulic pump (Hi-Force No: HP110-Hand pump-Single 
speed-Working Pressure: 700 BAR). The flat race was fitted onto the loading shaft in a 
specifically designed housing. This housing was constructed to allow for placement of 
AE sensors directly onto the race. Modifications were made to the support of the flat 
bearing race so as to allow positioning of the AE sensors, see Figure 2. The motor on 
the rig operated at 1500rpm and the number of rolling elements in the test bearing was 
14 and the ball pass frequency (BPF) was 175Hz. 
 

 
 

 

Fig. 1 Test rig assembly 
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Fig. 2 Sensor arrangement on the flat race showing the circumferential distance between 
sensors 

 
The AE acquisition system employed commercially available piezoelectric sen-

sors (Physical Acoustic Corporation type ‘PICO’) with an operating range of 200–
750 kHz at temperatures ranging from 265 to 1770C. The AE sensors were  
connected to a data acquisition system through a preamplifier (40dB gain). The 
system was set to continuously acquire AE absolute energy (atto-Joules) over a 
time constant of 10 ms at a sampling rate of 100 Hz. However, AE waveforms 
were sampled at 2MHz. 

The test rig was allowed to operate until vibration levels far exceeded typical 
operating levels at which point the test was terminated. An axial load of approx-
imately 50000N was applied on the bearing throughout the test and a total of three 
tests were performed.   

Two tests are presented in this paper with quite distinct signal-to-noise ratios; 
Test 2 was significantly nosier for both vibration and AE measurements. This was 
attributed to the variation in test rig assembly, such as adjustments and sensor at-
tachments therefore it offered a good opportunity to assess methods for diagnosis. 
Such challenges with AE sensor attachment and noise interference have been dis-
cussed recently (Sikorska and Mba 2008). Figure 3 presents the defect observed 
on termination of Test-1 clearly displaying a spall on the flat race. 

The AE signals for different intervals, as set in Table 1, were chosen for further 
analysis, see Figure 4. Interestingly, for Test-1 at time period ‘F’, the AE wave-
form showed large transient bursts spaced at one of the bearing defect frequencies. 
This is a classical AE bearing defect phenomenon as noted by several investiga-
tors (Elforjani and Mba 2009, Yoshioka, 1992 and Al-Ghamd and Mba 2006). 
However, for the second test, the underlying noise level obscures any apparent 
high transient events in the waveform. 
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Fig. 3 Defect on the outer race of test-1, (naturally developed over hrs of praion) 

 

Fig. 4 The AE waveform at different time intervals [X-axis: Time (msec) / Y-axis units: 
Volts] 
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Fig. 5 Frequency spectrum of the AE signal 

 
 

 

Fig. 6 The AE envelope spectrum for the first and second tests [Y-axis units: Volts] 
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Table 1 Operational interval at which AE and vibration data was captured 

 Test 1 Test 2 

A 35 min 42 min 

B  70 min 87 min 

C  105 min 132 min 

D 140 min 174 min 

E 175 min 219 min 

F 210 min 267 min 

 
The frequency spectrum of recorded AE signals show the AE activity is con-

centrated between 50- 450 kHz, see Figure 5. In order to identify any modulating 
features, the envelope spectrum of the signals were generated using the Hilbert 
transform. The plots of envelope spectrums for both tests are presented in  
Figure 6. Results from the first test show the presence of the BPF and its harmon-
ics. Surprisingly the presence of the defect frequency 175 Hz, was noted for all the 
timing intervals (A-F) although the magnitude of the peak increased with time 
reaching a maximum at the termination of the test . For the second test, the pres-
ence of the harmonics noted in the first test were not evident though the second 
and fourth harmonics were noted at the end of the test, time interval ‘F’. The rea-
son for inadequate clarity in discriminating of the harmonics and fault frequency is 
attributed to the presence of noise and therefore a lower signal-to-noise ratio than 
Test-1.   

As with the vibration analysis, the SK analysis was undertaken for the AE 
waveforms. Table 2 shows the optimum frequency bands for time intervals ‘A’ to 
‘F’. According to the table, the optimum centre frequencies associated with unda-
maged race (A-E) were outside the sensor measurement range. This is because for 
the undamaged bearing the higher frequencies within the sensor measurement 
range are predominantly gaussian so the maximum Kurtosis value occurs at the 
lower frequency range, below 30 kHz to 40 kHz. 

Table 2 Optimum Bandwidth and Centre frequency for AE signal 

 Test 1 Test 2 

Fc (Hz) log2 (NW) Fc (Hz) log2 (NW) 

A 39062 7.5 31250 7 

B 31250 7 31250 7.5 

C 31250 7 65185 12.5 

D 31250 7.5 31250 7.5 

E 31250 7.5 15625 8 

F 714843 8.5 61523 10.5 
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The filtered waveforms are presented in Figure 7 showing a significant im-
provement in level of SNR compared with the unfiltered signals in Figure 4. The 
AE spikes seen at operational interval ‘F’ are a direct consequence of the bearing 
defect. The improvement of SNR is also manifested in Figure 8 in which an aver-
age of approximately 242% and 95% increase in Crest Factor (CF) values were 
noted for the filtered signals on Test-1 and Test-2 respectively. The Crest Factor is 
a peak-to-average ratio and offers an insight into the relative amplitude of bursts 
under varying noise levels. Furthermore, Figure 9 illustrates the envelope  
spectrum of the filtered signals based on SK analysis. The BPF and its second 
harmonic were present across the frequency spectrum for both tests while such ob-
servations were not noted for the unfiltered envelope spectrum in Figure 6. 

 

 

Fig. 7 AE waveforms associated with filtered signals [Y-axis units: Volts] 

 

Fig. 8 Crest Factor (CF) values associated with filtered and unfiltered signals 
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Fig. 9 Envelope spectrum of the SK-based filtered signals [Y-axis units: Volts] 

Having noted the improvement in signal-to-noise ratio particularly for Test-2, 
the authors compared the SK to wavelet-based filter analysis. The AE signals were 
decomposed using Debauchies wavelet of order 8 (db8). The reason for choosing 
db8 as a mother wavelet is firstly because of being orthogonal and secondly the 
shape of it is close to the mechanical impulse. The envelope spectrum at each lev-
el of decomposition (D1-9) were carefully studied and level D1 (500 kHz - 1000 
kHz) was found to be the most sensitive for identifying the presence of the defect. 
The envelope spectrums of the signals at D1 are presented in Figure 10 in which 
BPF and its harmonics are evident upon the termination of both test.  

The CF values for the original filtered (SK) and decomposed (db8) signals are 
presented in Figure 11. In comparison to the original values of CF, the SK filtered 
signals showed an increase in CF of approximately 242% and 95% for Test-1 and 
Test-2 respectively. Crest factor values noted for decomposed signals (D1) were in 
the order of 18% and 70% for Test-1 and Test-2 respectively; implying the SK of-
fered the optimum filtered characteristics for identifying impulsive effects, which 
are typically associated with defective bearings.  The waveforms together with CF 
values at interval ‘F’ for D1, the original unfiltered waveform and the filtered 
waveform (SK) are also presented in Figure 12 in which the presence of impulsive 
AE events associated with the defective bearing are most evident for the SK fil-
tered signals.  There was only one instance where the wavelet based filter had a 
better CF than the SK filtered data (Test-1, interval ‘F’). Although the defect fre-
quency and its harmonics are clearly marked in the envelope spectrum presented 
in Figure 10, the level of signal to noise ratio for SK based filtering is relatively 
high. This observation reinforced the benefits of applying the SK for defect diag-
nosis for varying signal-to-noise ratio. 

 
 



Application of Spectral Kurtosis to Acoustic Emission Signatures from Bearings 435
 

 

Fig. 10 Envelope spectrum of the AE signals at D1[Y-axis units: Volts] 

 
 
 

 

Fig. 11 CF value attributed to different diagnostic methods 
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Fig. 12 Comparison between D1 and filtered signals at interval ‘F’[Y-axis units: Volts] 

4   Conclusion 

Condition monitoring of the bearings may demand the application of the advanced 
signal processing methods to effectively correlate the damage accumulation with 
AE signals. The spectral kurtosis has demonstrated added advantages, relative to 
wavelet analysis, in improving the signal-to-noise ratio for AE signatures from de-
fective bearings. 
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Abstract. Vibration tests of marine gas turbine engines are performed as research 
of on-line and off-line types. On-line Systems generally monitored one or two vi-
bration symptoms, which asses the limited and/or the critical values of parameters 
and they, potentially, can warn and/or shutdown engines.  Off-line Systems are 
usually used for vibration analysis during non-steady state of work. The paper pre-
sents comparison of different methods of analysis of vibration symptoms meas-
ured under run-up and shut-down processes of marine gas turbine engines. Results 
of tests were recorded on gas turbine engine DR76 type of the COGAG type pro-
pulsion system. Main goal of the research was qualified on helpfulness and unam-
biguous result, from synchronous measurement, order tracking and auto tracking. 
All vibration symptoms were chosen from the methodology of the diagnosing gas 
turbine engines operated in the Polish Navy, called Base Diagnosing System. Sec-
ond purpose of the paper  was the estimation of the possibility of usage those 
analysis methods of gas turbine engines for on-line monitoring systems. 

Keywords: dynamics, gas turbines, rotor vibration, run–up process. 

1   Introduction 

Exploitation of marine propulsion systems is a complex issue due to the specific 
characteristics of the marine environment and the need to maintain a high level of 
readiness for service and reliability of ships. The use of diagnostic procedures off-
line or on-line allows you to use them according to their current condition. This is 
particularly important in the case of turbine engine, hourly plan and annual plan of 
technical services is the main usage criteria. This strategy of exploitation makes 
scheduling maintenance, logistics and security simpler and easier to implement, 
but also contributes to a significant increase in costs due to the need for replace-
ment of components (often more technically efficient). Furthermore, operating 
such a exploitation policy makes it impossible for the early detection of other pri-
mary causes of faults that occur between appointing terminals. 

Diagnostics of gas turbine engines includes a wide range of parameters, con-
trols and maintenance procedures [1]. One of them is the control of unacceptable 
balance of rotors. Identification of different unbalanced states, determining its  
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value and the accurate placements of corrective masses is commonly known. Such 
procedures are carried out on Polish ships for over 20 years. Prepared and used 
test equipment ensures the implementation of diagnostic tests on four types of tur-
bine engines in service. In the case of naval propulsion diagnostic procedures 
these are limited for several reasons. The most important of these is the need to 
maintain a constant readiness to start the engine, associated with the tactical re-
quirements. In addition, due to the fact that the engines are foreign construction, 
there is a  lack of information on the structural parameters of the engine, reducing 
warranty, no spare parts readily available, etc. The use of vibration diagnostics, 
makes the use of the engine more rational; from a technical point of view,  
especially towards vitality of service, which in effect will not withdraw, even a 
technically efficient ship, from service. Measurements and analysis of vibration 
parameters of marine gas turbine engines can be divided into: 

 
• off-line (measurements performed in free-run mode, periodically); 
• an on-line (real-time monitoring). 

Both methods have their advantages and disadvantages. Off-line Systems are 
usually offered as a very simple analyzers - data collectors. Measurement path is 
determined in the collector interface, with preset measuring settings, so that the 
measurement could be performed by an average technical staff, whose main task 
is a precise procedure. The analysis of measurement results is carried out off the 
ship, sending the results to the coast laboratory. Currently, there is not many off-
line data collectors, who would engage in that precise diagnostic evaluation. The 
main advantage of such devices is their price. It should be emphasized that the  
data collectors are useful mainly to assess the go-state of vibrations of turbine  
engines. 

On-line diagnosis of vibrations provides continuous surveillance of the technic-
al condition of gas turbine engines, including registration, analysis, forecasting 
and alarming. It allows you to recognize the basic signs of changes in the technical 
condition with the possibility of analyzing the trend of selected symptoms. On-line 
vibration systems usually work as part of a complex and symptomatic diagnosis of 
marine propulsion systems. Proper diagnosis of such structures, for example, tur-
bine engine, depends on various issues, including how the measurement and 
processing of vibration signals was taken. Important in the further analysis is the 
fact that internal combustion engines in gas turbine propulsion ships do not run at 
a constant speed with compressor and turbine rotors. 

This is the main reason for synchronizing the processing of selected displace-
ments (of the signals) i.e. the rotational frequency of one or both of the engine ro-
tors [2,3]. This method allows you to identify the most common groups of rotor 
systems, which allows you to identify their failure. Damages to operating gas tur-
bine engines can be categorized as follows: 

• damage or crushing of first-stage compressors’ blades or power turbine blades 
(rare); 

• the appearance of unbalance, originating from heating or salinity; 
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• cracks sealing systems and leakage of lubricating oil to the inside of the drum 
rotor; 

• lack of alignment between the gas-dynamic gas generator and power turbine; 
• thermal damage to the combustion chambers – torsion of power turbine rotor; 
• damage to the auxiliary engine mechanism. 

Some failures can be resolved in the recorded spectra as a change in vibration fre-
quency of rotating engine components, hence the introduction of  a synchronous 
sampling of the transient engine operation, eg in the boot process or in the run. 

The occurrence of non-stationary effects, typical for residual unbalance may be 
due to small, incremental damage whose symptoms may be poorly recognized in 
the early stages of development. The results of the identification of such pheno-
mena is exemplified in the article comparing the various methods of synchronous 
signal processing method such as PLD or Order Tracking [7]. The presented me-
thod for identification of defects can be introduced into the turbine engine moni-
toring systems as a tool for early identification of unbalance. 

2   The Aim and Test Methods  

Monitoring of vibration signals from rotating machinery is a well-known diagnos-
tic procedure, known throughout the world [2,5,7]. Most of rotating machinery 
and marine gas turbine combustion engines are designed as a supercritical ma-
chines, hence, in steady states, are diagnostically limited.  

 
 

 

Fig. 1 Longitudinal section of rotor system gas turbine engine DR76 type, where: 1 – low 
pressure compressor (LPC), 2 – auxiliary drives, 3 – high pressure compressor (HPC),  
4 – burning chambers, 5 –high pressure turbine (HPT), 6 – low pressure turbine (LPT),  
7 – power turbine (PT) 

Therefore it was decided to analyze the dynamics of rotors of gas turbine en-
gines, using a method of off-line measurements of the unknown states It was ex-
pected that the results would yield information on the following areas: unbalance 
of rotors, lack of concentricity of the rotors, changes in their vibration frequency 
and changes in the speed of rotor system critical. 
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Marine gas turbine combustion engines mounted on a DR76 type of propulsion 
system for ships COGAG class Tarantula Polish Navy were studied using this me-
thod. Longitudinal cross section of rotor system is shown in Figure 1. 

The study included analysis of the vibration parameters during start-up and run 
of rotors. Comparison of the results of modeling of dynamic loads using FEM (Fi-
nal Elements Methods) and measurements of on the  real object makes it possible 
to take correct decisions and give the proper diagnosis. 

3   Model of the Unbalanced Rotor  

Application of computer simulation to diagnose the condition of turbine engine ro-
tors should be used already during the process of calculation and design, which it 
is currently implemented. The problem begins when the manufacturer does not 
provide this kind of know-how in the technical specification for the user. Such a 
situation arises in the case of exported warships equipped with turbine engines. 
While placing the engine, rotating parts are assembled with great care,. Main ob-
jective is to reduce unbalance in rotors. But even the best procedures are not able 
to prevent factors, such as the inadequacy of heat treatment or the difference of 
thermal expansion of materials which may cause slight unbalance in rotor, men-
tioned as residual. Problems in the dynamics of Marine Gas Turbine Engines 
(MGTE) are associated with the following elements of the engine: rotors, bear-
ings, bearing brackets (bearing struts), engine block, the type of construction, the 
terms of hydro-meteorological and during sea trials and the aerodynamic parame-
ters inside the engine. Proper and stable work of MGTE engine is mainly con-
nected with these parameters. Loss of energy in rotating machinery is manifested 
in the form of loss of torque, a decrease in rotor speed, exhaust temperature in-
crease or intensity in vibrations. Vibration energy dissipation is related to: unba-
lancing of rotors, oversize tolerated shaft misalignment, abrade of blade tips with 
the inner roller, wear of axis and radial bearings, asymmetry of  elasticity and 
damping asymmetry of the rotor and the gas-dynamic processes anomaly. Emis-
sion of vibration yields a lot of information, including the ability to diagnose the 
technical condition of rotors. Vibration measurement, identification, classification, 
mathematical analysis, including the use of trend function, give information on the 
actual technical state and allow the prediction of the wear process in the future.  

In the identification an important factor is to compare the results of modeling 
with the results of the measurements. Each rigid body has six degrees of freedom, 
whereas the deformable objects have an unlimited number of degrees of freedom. 
Rotating machinery such as MGTE have a number of degrees of freedom equal to 
the sum of all degrees of free parts of the engine, minus the number of rigid nodes 
connecting these elements. Each part of the engine can be described by physical 
characteristics such as stiffness and damping, obtained from vibration measure-
ments the actual object or model or the modeling of the geometry and properties 
of materials (the use of rigidly connected structures). The use of a certain type of 
rigid object model allows the use of the motion ordinary differential equations. 
Deformable objects require the use of partial differential equations. This second 
assumption is much more complicated, but can help to achieve to the actual  
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object, especially when it's in a wide range of engine speeds. This was the reason 
for the choice of the second type of model turbine engine. Diagram of diagnosis 
using the MGTE model shown in Figure 2. 
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Fig. 2 Scheme of diagnostics model MGTE 

Residual unbalance may appear in all sections of the rotor, however, two vec-
tors of unbalance,  at both ends of the shaft, may represent the replacement mod-
el. These vectors vary in values and phase shifts. Such an FE model allows for  
dynamic response to unbalance which in effect allows you to compare modeling 
results with the reports of vibration measurement. The most sensitive point in the 
unbalance of GT rotor, with respect to vibrations,  is the measuring point on the 
front of the generator exhaust bracket bearing the vertical direction. This is the ef-
fect of the minimum thermal expansion of the rigid support used for measurement 
of radial vibrations at this point. The model is linear so it is clear that response is 
directly proportional to the value of unbalance The rotor is loaded dynamically 
and statically from various sources [4]. Identification of the sources and their cal-
culations of the loads were a major problem during the modeling and evaluation of 
the actual object's vibration. Damage in the objects such as blades, have an impact 
on changes in the moments of inertia of rotating parts. This results in a shift of the 
main axis of inertia, which is not parallel to the axis of rotation. It is the main 
source of unbalance in the form of vibrations of rotor. Implementation of the ma-
thematical model is difficult, mainly due to the problems of determining the stiff-
ness and damping of supports and bearings at different temperatures - Figure 3. 

Shape of the axis deflection is defined as discrete sets: 

• Set of static deflections – us; 
• Set of dynamic deflections – ud. 

Both sets depend on actual technical state of rotor and geometry, which can 
change through cracks and wanes of engine parts. 

)()( tt ds ωω uuu +=                                (1) 

1. This equation is a discrete set of points of axis movement of the rotor. Taking 
into account the damping and stiffness of the support bearings, we can demand 
that they are functions of temporary positions, namely: 
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Fig. 3 Axi – symmetric lumped mass inertia model of the MGTE, where: LPC – low pres-
sure compressor, HPT – high pressure compressor, T – turbines (low & high pressure), PT 
– power turbine, BC – burning chambers, k – stiffness, c – dumping. 

)()( ufcufk ikik ==                         (2) 

For the simplification it is assumed that, for a constant speed, these values are 
constant. Using FEM modeling can provide a three-dimensional discrete model. 
Rotors MGTE, in the circular symmetry, have been described by one-dimensional, 
two-beam  bar having a symmetrical six degrees of freedom. All parts of the 
model have geometric and physical properties of the elements. Discrete model of 
traffic parameters have been obtained by solving the equation: 

)(tFuMuCKu =++                            (3) 

where:   K – matrix of structure’s stiffness  
 C – matrix of structure’s damping 
 M – matrix of structure’s inertia 
 F – vector of forces 
 uuu ,,  –  displacement and their derivatives 
                     (velocity and acceleration)  

This can be solved as a linear problem, but in MGTE rotor must allow for changes 
in stiffness and damping, which are functions of motion parameters. In this case 
equation (3) should be expressed as: 

)()()( tFuMuuu,Cuuu,K =++                      (4) 
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Equation (4) indicates that the rotor motion should be described as a nonlinear dy-
namic problem, and therefore should expect more than one harmonic in both 
measured and modeled spectrum. [8]  

4   Non – Steady States Vibration Signals Analysis  

To obtain the measurements of the real object Bruel & Kjaer 3560B analyzer was 
used. Namely, it was used during the collection and processing of measurement 
data using the PULSE(v.12). Two transducers (accelerometers ICP) have been fit-
ted to the steel girders, situated on the flanges, on the front and on central pillar of 
the LPC. The fixing cantilevers are characterized by vibration resonance fre-
quency value differing from harmonic frequencies due to rotation speed of the 
given rotors. Measurements were made perpendicular to the axis of rotation of the 
rotor. Such a choice was made on the basis of theoretical analysis of unbalance 
and as a result of analysis of the results of preliminary research on the subject. 

Common assessment of the unbalance of rotors was developed through the 
concept of dimensionless coefficients of diagnosis. Using theoretical analysis of 
dynamic interactions, as well as using the results of initial diagnostic tests, the fol-
lowing symptoms were selected as the most sensitive to changes in balancing  
rotors [2]:    

• First harmonic of amplitude of the corresponding velocity of the rotor, 
• Second harmonic of amplitude of the corresponding velocity of the rotor, 
• S 1 - the ratio of the average amplitude of vibration corresponding rotor speed 

(and harmonic) and the second harmonic of the corresponding rotor, 
• S 2 ratio of the average amplitude of vibration corresponding rotor speed (and 

harmonics) corresponding and the third harmonic of the rotor. 

These symptoms can confirm the theoretical assumption of nonlinear rotor  
dynamics.  

5   Vibration Analysis of the Run-Up Process  

The first test was to analyze the process of starting the engine. The characteristic 
changes in LPC rotor speed is shown in Figure 4. Synchronous signal measured 
by a tachometer connected with the auxiliary drive gear box where the transmis-
sion ratio averaged on i=0,125, so the LPC rotor was 8 times greater (in speed) 
than that shown in Figure 4 The main objective of the analysis of synchronous os-
cillations in the boot process was to determine the dynamics of the disorder. The 
impact of "other" signals is shown in Figure 5. 

The boot process started at the point t = 7 seconds (see Figure 5), so all record-
ed vibration signals recorded from the start point contained the signals coming 
from other sources, i.e. non-rotating motor or frequency of its vibrations or a com-
bination thereof. This allows to identify the main "other" signals, such as: f1 = 305  
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Fig. 4 Rotors LPC rotational speed characteristics during run-up process 
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Fig. 5 Synchronous spectra of the velocity of vibration during run-up process with using the 
band – pass filter of 0,1Hz – 3,2 kHz range 

 
Hz, f2 = 600 Hz, f3 = 1.6 kHz, and f4 = 2 kHz. which are associated with sources 
outside the engine. The highest signal during the boot process is the rotor speed 
and harmonic vibrations, but in Figure 5 it is not clearly visible due to the lack of a 
synchronous signal tracking. 
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6   Vibration Analysis of the Shut-Down Process  

Next test was associated with the analysis of vibration parameters and related to 
the process runs the motor rotor. Figure 6 shows autospectrum of the velocity 
measured over the middle LPC bearing using the order tracking procedure. 
Changes of parameters are presented in the domain of time function, in contrast to 
the boot process ,where the dominant energy range of vibration signal was 1/2 
harmonic - seen as a 4th order. The pressure drop of the lubricating oil in the bear-
ing caused an increase in values ranging from displacement and slope between the 
HPC and LPC rotor (rotating shafts each other, while the shaft rotates within the 
LPC HPC shaft - see Figure 1) and the typical dominance of the subharmonics . 

 

 

Fig. 6  Autospectrum of velocity of vibration in the shut-down process with the use of or-
der tracking procedure, in the domain of time function 

The increase in stiffness of the bearing system confirms the existence of the 
harmonic “right-hand branches” at the point where t (time) is  equal to 4 seconds 
for  the following rows: 4, 8 and 12, which is associated with a pressure drop of 
lubricating oil in the bearings. 

Analysis of the dynamics of the turbine engine rotor in transient states of a sys-
tem PULSE should be applied in both processes, ie start-up and run. The start-up 
process helpsto recognize the "other" signals, but the definition of dynamic func-
tions is very difficult due to the significant acceleration of the rotors. Identifying 
characteristics of rotor system dynamics is much more recognizable in the process 
runs through the analysis of orders - Figure 7 and 8. 

Analysis of the first harmonic (8th order) allows to observe changes in dynamics 
as trends. Application of the rotational speed function as a field of analysis is the 
most important factor in the study of the use of the Order Tracking procedure. This 
allows you to detect changes in the natural frequency, ignoring interference from the 
signals originating from the thermodynamics processes of turbine engines. 
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Subharmonics signal analysis is very useful in the diagnosis of rotating machi-
nery. Autospectrum of 1 / 2 subharmonic's velocity range (considered in the LPC 
rotor) indicates the individual characteristics of particular rotors. The nature of 
changes in order values in the rotor speed can be thought of as an individual fin-
gerprint of each rotor. 
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Fig. 7 Autospectrum of 8 order (I harmonic) of velocity of vibration in the shut-down proc-
ess of LPC rotor stoppage.  
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Fig. 8 Autospectrum of 4 order (subharmonic) of velocity of vibration in the shut-down 
process of LPC rotor stoppage.  
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All changes to the technical condition of rotor system, such as changes in stiff-
ness and damping parameters of alignment, or unbalance  result in changes in 
characteristics of subharmonics - Figures 7 and 8.  

7   Conclusions   

All statistical analysis performed on the available population of engines clearly 
show that the selected parameters analyzed in the non-stationary processes are the 
basis for predicting changes in the technical condition of rotor system. Implemen-
tation of this research turns out to be a credible verification of the technology. 
Conclusions presented below have been incorporated into operational diagnostics 
of marine gas turbine engines: 

 
• Synchronous measurement of vibration signals during the boot and run 

processes enables us to recognize symptoms of damage, including the forma-
tion of resonance and changes in natural frequencies and unbalanced rotors 

• symptoms of S1 and S2 do not have sufficient sensitivity for use in transient 
states due to the instability of the processes and the need for averaging the  
results, 

• application of auto tracking and monitoring the turbine engine rotor systems 
can identify a wide range of typical damages, confirmed by the vibro-acoustic 
diagnostics. 

Application of the proposed methods of analysis allows for the rational manage-
ment of engine life time even in the developed processes of consumption. The 
analysis of test results obtained gives the following conclusions: 

• the approach to the assess the technical condition of gas turbine engines rotor 
system allows to quickly detect changes in the permitted unbalance and the 
maintained database enables easier identification of the studied group of 
engines 

• studies on trends in chosen parameters make it possible to reliably detect 
changes in the value of sensitive operational parameters during the operation 
of the engine and to evaluate its capabilities.  

References 

Journal Article 

Charchalis, A., Grzadziela, A.: Diagnosing of naval gas turbine rotors with the use of vi-
broacoustic parameters. In: The 2001 International Congress and Exhibition on Noise 
Control Engineering, The Hague, The Netherands, p. 268 (2001) 

Downham, E., Woods, R.: The rationale of monitoring vibration on rotating machinery. 
ASME Vibration Conference, Paper 71 - Vib - 96 (September 8 - 10, 1971) 

Grządziela, A.: Vibroacoustic method of shafting coaxiality assessment of COGAG propul-
sion system of a vessel. Polish Maritime Researches (3), 29–30 (1999) 



450 A. Grządziela
 

Grządziela, A.: Diagnosing of naval gas turbine rotors with the use of vibroacoustics para-
meters. Polish Maritime Researches (3), 14–17 (2000) 

 

Book 

Krzyworzeka, P., Adamczyk, J., Cioch, W., Jamro, E.: Monitoring of nonstationary states 
in rotation machinery. Biblioteka Problemów Eksploatacji, Wydawnictwo ITeE, Radom 
(2007) 

Pedersen, T.F., Gade, S., Harlufsen, H., Konstantin-Hansen, H.: Order tracking in Vibro-
acoustic Measurements: A Novel Approach Eliminating the Tacho Probe. Technical Re-
view (1) 15–28 (2006) 

Rządkowski, R.: Dynamics of steam and gas turbines. IFFM Publishers, Gdańsk (2009) 
 



Robust Fragmentation of Vibration Signals 
for Comparative Analysis in Signal Validation 

Adam Jablonski and Tomasz Barszcz 

AGH University of Science and Technology, 30-059 Krakow, Poland 
ajab@agh.edu.pl, tbarszcz@agh.edu.pl 

Abstract. The paper illustrates selected aspects of robust vibration signal frag-
mentation. Such fragmentation enables a comparison of vibration signal frag-
ments, which gives additional information about a signal to its frequency contents. 
In particular, the paper illustrates how signal fragmentation followed by frag-
ments’ comparison may serve as an additional tool in data preprocessing, namely 
continuous selection of most suitable vibration data and rejection data with prohi-
bited level of vibration level fluctuation. Presented techniques are especially  
applicable as a part of condition monitoring of machinery in non-stationary opera-
tional conditions.  

Keywords: automatic signal validation, vibration signal fragmentation. 

1   Introduction 

In a typical vibration-based condition monitoring system, machine vibrations and 
paralelly acquired process parameters are sources of signals. These signals via da-
ta acquisition system enter various data analysis procedures. Currently applied 
procedures cover fundamental broadband analysis [1,2] as well as advanced mod-
ern techniques, which take advantage of a priori known machine characteristic 
components [3,4]. Next, methods’ outputs give diagnostic information either in a 
scalar, vector or graphical form. On the basis of these information, possibly with 
the aid of predetermined values, e.g. norms [5,6], a maintenance decision is con-
structed. Such decisions are either executed automatically (i.e. automatic shut-
down) or manually via human reasoning [7]. 

A simplified scheme of a machine monitoring system is illustrated in fig. 1. 
Within such common scheme, the data acquisition block may be considered as a 
subsystem consisting of equipment (sensors, cables, and data acquisition units, so-
called DAQs), equipment installation quality (system connection, shielding, 
grounding, and hardware configuration), states definition, and finally configura-
tion of data storage. The latter step, namely the issue of data storage procedures, is 
a general scope of this paper. 

In last decade, the authors have extensively participated in designing and  
running systems of monitoring and diagnosis installed on various machinery,  
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Fig. 1 Scheme of typical machine vibration-based diagnostics 

including heavy duty machinery, which is generally characterized by a large size 
and strongly fluctuating operational parameters [8]. As it turned out, monitoring 
systems installed on such machinery are additionally prone to data acquisition er-
rors due to electrical and electromagnetic disturbances, relatively short equipment 
duration, and even sabotage actions. 

Therefore, implementation of standard systems of monitoring and diagnosis 
frequently failed causing large investments to become ineffective. After months of 
research, it turned out that one of major reasons for the lack of capability of fault 
detection were standard (so called fixed) data storage procedures. Basically, such 
procedures cause vibration data to be acquired in predefined, fixed time intervals, 
for instance one sample every 10 minutes. Such policy caused an extremely large 
number of stored samples to correspond to either highly fluctuating operational 
conditions or to data experiencing electrical disturbances. 

In order to overcome these obstacles, authors have redesigned the data storage 
procedure, as illustrated in fig. 2.  

 
 

 

Fig. 2 Comparison of classical and proposed data storage procedure 
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In a proposed procedure, fixed data storage is replaced by three consecutive steps, 
namely validation of process parameters, selection of vibration data, and finally va-
lidation of vibration data. Current paper presents a selected fragment of vibration da-
ta validation module, namely signal validation via its comparative analysis. 

2   Signal Correctness vs. Signal Validation 

Reference [9] presents a number of methods for automatic detection of incorrectly 
recorded vibration signals. However, it is additionally preferable to reject some 
vibration signals, which do represent a machine’s physical behavior correctly, yet 
they are unsuitable for data analysis due to unacceptable level of contents’ change. 
In addition to defining signal as “correct” upon accurate description of vibrations, 
a signal may be defined as “valid” when it carries significant diagnostic informa-
tion. In this sense, not every correct signal is valid. 

For instance, noise recorded upon machine standstill is a perfectly correct sig-
nal, yet it brings no information about machine’s technical state whatsoever. 
Likewise, sudden change of machine load consequent in one order of magnitude 
vibration level change restricts permissible data analysis techniques to ones track-
ing signal fragments, e.g. STFT (Short-Time Fourier Transform). Since these 
types of virtually image-oriented methods do not constitute mainstream analyses 
in distributed monitoring systems, signals with significant fluctuation of contents 
characteristics may be considered as unsuitable (referred to as “invalid”) for fre-
quency-domain analyses. It is important to emphasize that condition monitoring 
systems implemented on large installations are generally required to operate on 
scalar thresholds due to large number of independent data sets. 

Therefore, most of data analysis algorithms produce time series of trend values, 
which are naturally calculated mostly in the frequency domain. Consequently,  
it is desirable to provide as stable signals as possible for frequency domain  
calculations. 

3   Comparative Signal Validation Method 

Taking into account stability constrains, after application of state definitions and 
stability limits to corresponding process data, further validity assessment of vibra-
tion signals might be also realized relatively via comparison of particular signal’s 
consecutive fragments against each other and detection of prohibited level of alte-
ration. Another words, change of operational parameters is not the only source of 
significant changes in vibration levels, and it is beneficial for a monitoring system 
to apply additional algorithms for detection of fluctuation of vibration data  
contents. 

The key idea is that rotating machinery produces cyclostationary signals cha-
racterized by existence of at least one finite cycle with respect to which the ma-
chinery operation is periodic [10]. Fig. 3.a illustrates a vibration signal frequently 
encountered in heavy duty machinery, where such requirement is violated. 
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Fig. 3 Example of a non-stationary vibration signals violating fundamental assumptions of 
cyclostationarity 

Since the visible impulse response in fig. 3.a may not be described by any finite 
cycle (although it may be a perfectly correct record), the signal is not suitable for 
general condition monitoring, scalar-oriented frequency analysis, and may be con-
sidered as invalid. 

Although it is a common phenomenon to include some fragmented cycles with-
in a vibration signal (for instance the least drive train common cycle in wind tur-
bines with planetary gearboxes, which is to be measured in hours), these signals 
should be rejected if they significantly affect trend analyses, like for instance 
peak-to-peak value in case of signal illustrated in fig. 3.a. 

It is important to notice that the issue of detection of such signals is different 
from impulse response (or transient signals) detection described in numerous au-
tocorrelation-based works like [11,12] because significant signal change may be 
caused by rapid changes of operational parameters as well, as illustrated in  
fig. 3.b. 

As it was mentioned, such invalid signals may be detected using simple com-
parison methods of signal fragments, as illustrated in fig. 4. Selected intervals of 
significantly different characteristics are marked with letters a, b, c, and d.  

 
 

 

Fig. 4 Illustration of signal fragments’ comparison 

b
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In the proposed approach, the comparison has two aspects: selection of signal 
fragments’ length and selection of indicator to be compared. In case of the latter 
aspect, it is a natural choice to select a peak-to-peak1 (PP) value as the indicator, 
because threshold value may be set intuitively on the basis of historical data with 
high accuracy.  

Table 1 Selected methods of signal fragmentation 

Method’s 

Kernel 

Main Advantages Main Disadvantages 

Fixed time Easy programmable Relatively low probability of success in
drive trains with large transmission ratios 

 

Fixed No. of 
fragments 

Easy programmable Provides relatively large fragments for long
data and relatively short fragments for short
data, which may significantly influence sta-
tistical operations 
 

Cube root   
(time) 

Suitable for number of      
statistics formulas;          
unparametrized 

Typically, provides non-integer fragment
lengths, which may be indistinguishable for
signal of similar length 

 

Lowest ex-
pected cyclic 
frequency 

Handles widest scope of    
cyclic frequencies correctly 

May require additional minimum number
of signal fragments as well as additional
programming effort; function of speed 

 
Selection of fragments’ length might be chosen in various ways, namely: signal 

division according to time, number of fragments, lowest expected characteristic 
frequency, root-based, and others. Table 1. illustrates main advantages and disad-
vantages of abovementioned methods. All four proposed methods are discussed 
below in consecutive order.  

Time-based signal fragment is probably the easiest one to be realized. A given 
signal is divided according to a fixed time interval, e.g. 1 second. Next, from all 
fragments an indicator value is calculated and checked against threshold. This me-
thod is not suitable for large transmission ratios because characteristic frequencies 
are function of speed; therefore, actual time of desired, fault-generated signal 
components vary significantly and may be misinterpreted as undesired signal 
changes. Moreover, this approach may yield unexpected results when applied to 
data with relatively large difference in signals’ duration. For instance, a 2-second 
signal would be assessed according to two indicator values; whereas 100-second 
signal would be assessed according to a statistical comparison from a set of hun-
dred values. 

                                                           
1 In case of vibration acceleration signal, a zero-peak (ZP) indicator might be accepted due 

to expected symmetry of a signal around mean zero value. 
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An extension to fragmentation is provided when exploring signals with fixed 
number of fragments. In this case, the length of fragment is a linear function of 
signal’s length, therefore, it is again straightforward in implementation. Since 
fixed number of fragments delivers different fragments’ length, this approach may 
be vulnerable to time-independent random signal deteriorations, e.g. falling rocks 
on mining conveyors. Another words, a comparison may be applied to fragments 
with different lengths subjected to a detrimental phenomenon with a constant 
probability. 

Any of these two methods requires a priori parameter to be accepted, either a 
length or No. of intervals, which is sometimes inconvenient. Another approach to 
signal division is to use an unparametrized signal fragmentation, for instance a 
cube-root length of entire signal. Since this approach fits well to analysis of ran-
dom time series, it enables additional statistical description. A major drawback of 
this approach is that a cube root produces insignificant values for inputs close to 
unity. Moreover, due to necessary rounding process (indexing), the same fragment 
length may be assigned to signals with slightly different lengths, which may cause 
some confusion.  

Final, most advanced approach from methods listed in table 1. takes into ac-
count minimum expected frequency of signal contents, i.e. minimum characteristic 
frequency associated with machine’s region covered by a particular sensor. An ex-
ample of this approach is illustrated in fig. 5. This method requires significantly 
larger implementation effort (for instance adaptation to machine configuration 
change); however, it is not as error-prone as previous ones.  

One of main disadvantages of this solutions is the fact that a reference maxi-
mum cycle length is a function of machine speed, so preferably this method re-
quires recalculation of fragments’ length for every signal.  

 
 

 

Fig. 5 Conditional signal fragmentation 

For signals with equal number of samples per revolution (e.g. resampled sig-
nals), the length is to be calculated using a known ratio of the lowest characteristic 
frequency to the reference signal. For instance, if resampled signal has got 2000 
samples per revolution, and the characteristic frequency is 0.05, fragments’ length 
is to be set to 100 samples. 
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On the other hand, if a raw signal is to be analyzed, the length of each fragment 
needs to be calculated with respect to slowest machine cycle. This in turn may re-
quire recalculation of fragments’ lengths for each sensor separately because gen-
erally vibration contents strongly depends on sensors’ localization. This technique 
may be simplified for machines with clearly distinguishable machine speed levels. 
Having knowledge about nominal speed levels, these lengths may be calculated a 
priori as a function of detected machine state. 

Final remark concerning application of proposed methods of signal assessment 
concerns realization of comparison. In any applied kernel, it is important to com-
pare a fragment with a minimum indicator value vs. a fragment with a maximum 
indicator value rather than to compare consecutive fragments because significant 
signal change may be covered within a particular interval, as illustrated in fig. 4 
(fragment a). 

4   Case Study 

Following section illustrates performance of presented methods of comparative 
analysis on the example of a real vibration signals recorded from a wind turbine 
experiencing faults within condition monitoring system installation. Fig. 6 illu-
strates a selected non-stationary vibration time signal. 
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Fig. 6 Exemplary vibration time signal from a wind turbine 

From fig. 6 it might be implied that unexpected results might be obtained when 
standard condition monitoring signal processing tools (dedicated to analysis of sta-
tionary signals) are to be applied to this signal. 

However, before processing the data with comparative analysis, it is necessary 
to reject the possibility of variation of process parameters as a cause of signal non-
stationarity. 
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Another words, before testing for signal invalidity, it is advisable to eliminate 
signal incorrectness. Fig. 7 illustrates a plot of instantaneous speed of the wind 
turbine recorded with a resolution of one impulse per rotation cycle sampled at 
signal sampling rate (24 kHz).  
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Fig. 7 Instantaneous speed corresponding to signal illustrated in fig. 6 

Fig. 7 implies that during one thousand rotations of wind turbine’s generator 
shaft, the wind turbine’s speed was practically constant (apparent fluctuations are 
close to the accuracy of the measuring equipment, so they might be neglected). 
Therefore, according to the proposed method, the signal needs to be investigated 
in terms of signal’s consecutive fragments. The goal of the study is to detect pro-
hibited level of alteration. 

As suggested in section 3, a simple choice of the PP (or ZP) indicator might be 
applied. Fig. 8 illustrates a comparative analysis of a 40-s signal illustrated in fig. 6. 

The horizontal axis shows selected length for fragmentation, i.e. the signal 
fragmentation was investigated for fragments from length equal to 12 second to 20 
seconds. Vertical axis shows a ratio of maximum ZP value to the minimum ZP 
value detected within the set of fragments for a given fragment’s length.  

From fig. 8 it is concluded that signal fragmentation into 1-second segments 
gives slightly better result than for larger segments; however, this advantage is at 
the cost of method vulnerability to any characteristic frequencies lower than 1 Hz 
possibly present in a signal. On the other hand, as implied by the figure, for this 
case study, selection of intervals from 2 seconds to 9 seconds produces practically  
 

                                                           
2 Generally, rotating machinery vibration signals from industry are expected to have signif-

icant contents over 1 Hz, which includes possible cyclostationary components. Therefore, 
the authors find it impractical to fragment relatively long record into relatively short  
segments.   
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Fig. 8 Influence of selection of fragment’s length to the result of comparative analysis 

the same ratio around 25 (from author’s research it is observed that a ratio of 2 is 
already alerting). Therefore, acceptance of relatively large fragment’s length 
might combine the advantage of handling relatively low characteristic frequencies 
and detecting abnormal data. 

Finally, fig. 8 shows that for relatively large fragments (about 20 % of total sig-
nal’s length and higher), enlarging fragment’s length might produce unexpected 
results, i.e. in some cases, larger fragments might produce greater ratio than small-
er ones. This phenomenon is explained by the fact that comparative analysis may 
require signal truncation, for instance for a 40-second signal, fragmentation into 
12-second fragments leaves 4 seconds out, fragmentation into 13-second frag-
ments leaves 1 second out, while fragmentation into 14-second fragments leaves 2 
seconds out, which might significantly influence overall results. Naturally, this 
phenomenon does not apply to relatively short fragments, where decreasing ratio 
trend is generally observed. 

5   Summary 

The paper illustrated robust methods for detection of vibration signals with ab-
normal level of fluctuation of amplitude level. As it was shown, due to large am-
plitude fluctuations, a correctly recorded vibration signal may be insignificant in 
terms of solely frequency-domain signal processing analyses, which constitute a 
fundament of distributed monitoring systems. The paper described various me-
thods of signal division pointing out major pros and cons of each method. Practic-
al remarks included in the paper based on authors’ experience may serve as source 
of knowledge for researchers as well as software and diagnostic engineers. 

Acknowledgements. This work is partially supported by the Polish Ministry of Science 
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Abstract. The paper presents practical challenges in the process of implementation 
of vibration monitoring for the mining machinery. Advanced monitoring of critical 
components, especially gears and bearings, is presented. The proposed methods 
were implemented in an industrial system, called FAMAC VIBRO. The system was 
installed in two real coal mines and has the operational history of over one year. 
Interesting aspect of the proposed solution is operation in non statinary and very 
noisy environment as well as compliance with the explosive atmosphere 
requirement (ATEX).  

The collected vibration and process data are subject to signal processing taking 
into account varying operational conditions and complex structure of monitored 
kinematics. The data are integrated at the next system level and then it is 
transferred to the highest level, i.e. the diagnostic center. 

Keywords: condition monitoring system, drives of mining machines, coal mining 
machines monitoring. 

1   Introduction  

Nowadays there is a difficult challenge requested by customers from mining 
machines manufactures. It is important to provide machines that will have the 
availability at almost 100% level and ready to extract increasing amounts of coal 
in the same time. Moreover, big attention is paid to safety issues in underground 
mines. Taking into account the fact that geological conditions in polish mines are 
getting worse and price of the final product is very important when choosing 
suppliers, the manufactures are looking to the other forms of enhancing the 
availability and efficiency of machines, like using computer aided methods in the 
design process to improve the machining accuracy. But on the other hand, 
ontinuous monitoring systems are introduced to monitor the current state of 
machines (Jurdziak and Zimroz 2004),(FAMUR’s Group Website), (Chroszcz  
et al. 2010). 
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In accordance with the adopted strategy, the FAMUR’s GROUP spends a lot of 
time working on improving safety and efficiency in coal mines. In results of years 
of this effort is development and implementation of the e-mine®  system by 
FAMUR INSTITUTE – the R&D Center of FAMUR’s GROUP (FAMUR’s 
Group Website), (Chroszcz et al. 2010). Part of this system – FAMAC VIBRO – 
is designed to the real time monitoring of gearboxes, conveyor drums and shearer 
loaders. This is a three-level diagnostic system: 

- Underground visualization 
- Surface visualization 
- Service provided by FAMUR’s Diagnostic Center 

Machinery diagnostics with residual parameters such as vibration and temperature 
is becoming increasingly popular method of maintenance in coal mine industry 
(FAMUR’s Group Website), (Chroszcz et al. 2010), (Zimroz 2008). Systems like 
FAMAC VIBRO are most useful in company, where unplanned shutdowns are 
very expensive and could disturb work of a large part of factory.  

Vibration monitoring becomes more popular in coal industry due to high 
number of installed critical machines: 

- Shearer loaders  
- Belt and scrapper conveyors  
- Main drainage pumps  
- Main fans  

There is a lot of important machines which according to global trend in machine 
conditioning should be continuously monitored, to preserve the safety of people 
underground and ensure continuous coal extraction process. Important novelty in 
the mining industry is the service of FAMUR’s Diagnostics Center, which allows 
mines to benefit from the advanced vibrodiagnostics systems without hiring and 
training specialists.  

2   Monitoring Methods 

By creating the Diagnostic Center, FAMUR Group has opened a completely new 
quality of service for coal mine. In collaboration with the AGH University of 
Science and Technology and EC Systems (part of EC Group) – Polish company 
highly specialized in hardware and software for diagnostics – we implement fully 
ATEX compliant hardware for diagnostics in hazardous area (especially in coal 
mines). Nowadays we are developing methods and software for advanced 
vibration signal processing which were collected during varying operational 
conditions such as  load, rotational speed, random impact noise and varying 
geological condition during coal extraction. 

First level of FAMAC VIBRO system (underground visualization) allows crew 
underground to observe only a general vibration level (RMS, PP) and temperature. 
This information shows general problems in machines without any diagnostics. 
When RMS or PP level is too high miners underground see an alarm or warning. 
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On this level, they don’t know what could be wrong, which element must to be 
replaced. This parameter is also sensitive to random impact noise (like flowing 
carbon on conveyors). 

Due to the fact, that there are no specialists of machine conditioning and signal 
processing in the mine environment, FAMUR GROUP created Diagnostic Center. 
All the signals, which are collected by our systems underground, are continuously 
compressed, encrypted and sent through the secure internet connection to the 
Diagnostic Center where they are analyzed. All the data are stored on a dedicated 
secure database server which is protected against unauthorized access and 
hardware faults.  

In Diagnostic Center specialists try to detect any information about the failure 
in an early stage. As soon as it’s possible, right people are informed about any 
irregularities which give them time to arrange maintenance services. Once per an 
agreed period (e.g. quarterly) the Diagnostic Center sends reports describing 
current state of the machine park. In addition, all the time data are analyzed in 
terms of warning and alarm level. We set warning and alarm threshold rightly to 
current machine condition.  

For understanding why the concept of a Diagnostic Center Service is so 
important, it’s necessary to know how much signals are analyzed continuously. In 
our biggest installation (KWK Wieczorek coal mine) the sequence of 10 belt 
conveyors  is monitored with the overall length of 3828m. We collect the data 
from 20 gear transmission and 50 drums. According to the kinematic model of 
monitored machines there are about 3200 vibration signal estimates related to 
bearings and gears fault (Figure 1). 

Obviously Figure 1 shows only the scale of the problem, and there are 
numerous various analysis performed daily. Through line management and 
cooperation with EC Systems, we try to find optimal method for diagnostics of 
such a complex object. A lot of analysis are currently performed automatically, so 
we can work on further improvements of algorithms.  

In recent times, more and more attention is paid to the quality of collected 
signals. The signal validation issue is very important in diagnostic systems 
(especially in system based on vibration) (Jablonski et al. 2011). Due to fact, that 
discussed systems are designed for machines which are working with very varying 
operational conditions and it is important to compare and analyze signals collected 
in a similar condition (load, speed), the methods proposed in (Jablonski et al. 
2011) were implement in the FAMAC VIBRO system. Thanks to that, it is 
possible to write into a database only data with certain characteristics, suitable to 
further analysis.  

One of the major difficulties in system is fact, that many of monitored 
machines are not new, and it is not possible in practice to determine their technical 
state and performed repairs at the start of monitoring process. Moreover, often 
there is a problem with installation of phase marker and additional sensors (i.e. 
current, load) when monitored machines were not produced by the FAMUR’s  
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Group. Therefore, in cooperation with EC Systems, there was implemented 
algorithm of phase marker reconstruction in our system based on vibration signals. 
Thanks to this, it is possible to perform a variety of analysis which needs 
information about speeds (e.g. order analysis). Additionally, we have started work 
on an attempt to recover information about the load of monitored machines from 
vibration signals, which is the next step to eliminate additional sensors in our 
systems without losing important information.  

Recently, there were a lot of publications about vibration conditioning 
machines working under varying operation conditions (Barszcz 2008) (Bartelmus 
and Zimroz 2009), (Barszcz and Jablonski 2011). Nowadays, in existing systems, 
following  methods of signal analysis are used: 

- Broadband estimates 
- Narrowband estimates 
- Spectrum analysis 
- Envelope analysis 

According to strong emphasis on development in Diagnostic Center, which will 
lead to increase efficiency of service, we have begun working on finding optimal 
methods of diagnostics machines covered by FAMAC VIBRO system.  

 

Fig. 1 Estimates observed in system on Wieczorek coal mine 

3   Structure of the FAMAC VIBRO System 

The FAMAC VIBRO is part of the supervisory system managing the coal 
extraction process  – e-mine® (Figure 2). Main part of this system is the 
underground server – Green Diamond which is designed to coordinate processes  
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assigned to the local FAMAC LS station.  Designed architecture allows to monitor 
machines very distant from each other which is necessary especially in the 
sequence of conveyors. Other parts of the system are: 

- LS FAMAC VIBRO – underground local server which is used to collect, 
process and present the data. Local stations transfer data to Green 
Diamond and also to supervisory systems for adequate response in the 
case of a warning or alarm. 

- LB FAMAC VIBRO is used in extended systems for collecting data and 
sending it to local station.  

- RS/OPTO converter provides signal conversion to fiber optic. 
- Intrinsically safe data hub 
- Accelerometer compliant with the explosive atmosphere requirement  
- Temperature sensor 

 
 

 

Fig. 2 Architecture of FAMAC VIBRO system 

Collected signals (vibration and temperature) are transferred to the local station 
with the intrinsically safe optical fiber. This solution provides high data transfer 
rate which is very important for transferring large amounts of data, especially raw 
vibration records in system. In the proposed solution, there are collected several 
seconds time vibration signals with high sampling rate. Additionally, dedicated 
software module processes vibration signals using information about the  
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kinematics, calculates energies around main defect frequencies (i.e. BPFI, BPFO, 
MESH), and write its values to the database. Moreover basic estimates (i.e. RMS, 
P-P) are calculated more often and are displayed on the system visualization. 

In addition we have proposed the solution for data transfer from the 
underground to the surface, where they are collected on a dedicated server. Thanks 
to this solution, supervision staff can observe the actual and historical data on their 
computers without going underground. With this solution there is a possibility for 
a fast reaction of right personnel in the case when a warning or alarm is detected 
by the system. 

 
 

 

Fig. 3 Scheme of proposed architecture of underground system for belt conveyors 
monitoring 

4   Operational Experience 

Until now, the biggest installation of FAMAC VIBRO systems is implemented in 
KWK Wieczorek coal mine. There are 10 belt conveyors monitored which consist 
of 20 gearboxes and 50 drums. Each point is monitored with vibration and 
temperature, so there are over 200 sensors in the system. Because of high 
complexity of the system, it was a big challenge for the IT department to create 
transparent and user-friendly visualization. The Figure 4 presents a screen shot, 
which presents the sample screen from the system. The user can choose one of the 
belt conveyors from the sequence he is interested in and then he could observe the 
actual data. On the other hand it’s also easy to present archive data from a defined 
period of time. 

According to requirements, when the warning or alarm occurres in system, the 
point is highlighted in yellow (warning) or red (alarm). The same visualization is 
presented on underground local station (Figure 5) and on computers on the 
surface. 
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Fig. 4 Visualization of KWK Wieczorek system 

 

Fig. 5 Underground visualisation on Local Station 
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5   Conclusions 

The FAMAC VIBRO system is dedicated for vibration monitoring of heavy duty 
mining machinery and together with the Diagnostic Center it allows high 
performance signal processing and machine diagnostics. Thanks to the modular 
design of e-mine systems, it is easy to connect this system with the other 
diagnostics systems developed by the FAMUR Group.  

The Diagnostic Center service allows our customer to reduce maintenance costs 
thanks to pursue the policy of planned machines’ repairs, which increase 
availability of machines. End users can benefit from vibration diagnostics without 
employing specialists.  

FAMAC VIBRO is easy to reconfigure with the possibility of change 
diagnostics points in the system which is especially important in such a specific 
company like a coal mine. On a regular basis there are many changes, e.g. length 
of the conveyors during the progress of mining operation. 

Nowadays we could say, that a majority of problems in Polish minea are in the 
field of the maintenance of the system. There are many failures and mechanical 
damage in our system because of extremely hard environmental conditions 
underground (including the human factor). Obviously, first of all, the mines have 
to extract the coal, and in the first place they are repairing machines and 
equipment, which are directly needed in the coal extraction process and then it’s 
the time to repair non-critical systems.  

During the process of exploitation of this system in our customers, there was 
a lot of comments, that they see other uses of the FAMAC VIBRO especially in: 

- Main fans 
- Main drainage system 

which perfectly fits to the design assumption and gives us a hope for further large 
system installations. 

There is a lot of work behind us – especially in the field of hardware. Now we 
are focused on signal processing and searching for optimal methods in diagnostics 
machines with very complex structure, which work in extremely varying 
operational conditions. 
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Abstract. Diagnosis and fault detection in mechanical systems during their time-
varying non stationary operation is one of the most challenging tasks. The paper 
presents a method for the early detection of gearbox defects based on the empiri-
cal mode decomposition (EMD) algorithm and a proposed modified Hilbert trans-
form. The EMD technique decomposes the measured signal into oscillatory  
functions called Intrinsic Mode Functions (IMF). A numerical model of damaged 
gears is used for generating a modulated vibratory signal with repetitive shocks. 
The application of time descriptors “Talaf” and “Thikat” to different IMF decom-
position levels of the modified Hilbert envelope gives good results for early detec-
tion of defects in comparison with the IMF of the original time signal and its  
traditional Hilbert envelope or with the wavelet decomposition.  

Keywords: Fault diagnosis, gearbox, Empirical Mode Decomposition, Modified 
Hilbert transform, Time descriptors, Talaf, Thikat, wavelet transform. 

1   Introduction 

Machines maintenance is conditioned to an adequate monitoring of potential fail-
ures. Machinery vibration consists essentially of three signal types: Periodic  
(unbalance, misalignment, blade pass), random (friction, noise, fluctuation, turbu-
lence) and shocks (bearing faults, gear faults, etc.). The determination of each of 
these types of vibration constitutes in itself a powerful monitoring technique. One 
of the most involved mechanisms in rotating machines failures are the gearbox 
and numerical simulations of their vibratory behavior when damaged help to  
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understand the resultant signatures [Guilbault and Thomas 2008, Palaisi et al 
2009]. The monitoring methods applied to gearboxes can be achieved in a number 
of ways. Some of these methods are simple to use while others require sophisti-
cated signal processing techniques. In fact, a large number of defects generate 
shocks that can be analyzed in either time domain by scalar descriptors: RMS, 
Peak, Crest Factor (CF), Kurtosis (Ku), Impulse Factor, Shape Factor, etc, [Sassi 
et al 2008, Yadav and Wadhwani 2011] or in frequency domain: spectral analysis, 
frequency spectrum in the high frequency domain, Spike energy, enveloping, or 
time-frequency and wavelet analysis, etc. RMS and Max-Peak values are quite 
adequate when the fault is quite developed and the signal-to-noise is high. Unfor-
tunately, when the fault is small and the signal-to-noise ratio is weak, these two 
descriptors are not enough efficient alone. The increase in size defect is usually 
observed more readily by the Peak rather than by the RMS value. Because of this, 
the crest factor, which is defined by the ratio of the Peak to RMS value, is better 
adapted for monitoring the evolution of shock phenomena (Badri et al 2011). This 
relationship between these two descriptors during the evolution of a fault is inter-
esting, but it is easier to combine them in only one scalar descriptor such as the 
Crest Factor (CF) or the Kurtosis (Ku). Furthermore the fault detection and diag-
nosis in mechanical systems during their time-varying non stationary operation is 
one of the most challenging tasks and the techniques are not always efficient for 
the monitoring of machines with non stationary behavior [Vu et al 2011]. In order 
to improve the signal processing for an efficient monitoring, the empirical mode 
decomposition (EMD) technique [Pareya et al 2006, Ricci and Pennacchi 2011] has 
been proposed. The outputs of this adaptive approach are the intrinsic mode func-
tions. The EMD method decomposes the measured signals into slow components 
(approximation) and fast components (detail) in a similar manner than a wavelet 
transform [Farag and Gaouda 2011]. We propose in this study to process the EMD 
signals with a modified Hilbert envelope and statistical temporal descriptors. A 
comparison between the proposed methods is carried out.    

2   Empirical Mode Decomposition 

The EMD method decomposes the time signal into a finite set of oscillatory func-
tions called the intrinsic mode functions (IMF). An IMF is a function that checks 
the following conditions:  

(1) The number of extrema and the number of zero crossings must either equal or 
differ at most by one;  
(2) The value of the moving average envelope defined by local maxima and the 
envelope defined by local minima is zero. 
  
An intrinsic mode is the embedded time scale in the signal. It is defined as the 
time between two successive extrema. It is not necessarily an harmonic function. 
In fact, it may include non-stationary amplitudes and modulated frequencies. The 
manner to decompose the signal in IMF is as follows: 



Application of Time Descriptors to the Modified Hilbert Transform 473
 

• Firstly identify all the local extrema, and then connect all the local maxima by 
a cubic spline line as the upper envelope.  

• Repeat the procedure for the local minima to produce the lower envelope.  
• The upper and lower envelopes should cover all the data between them. The 

mean of upper and lower envelope values is defined as [Loutridis 2004]: 

2

)()(
)(1

tltu
tm

+=    (1) 

• Then, the mean )(1 tm is subtracted from the signal )(ts , obtaining the first 

component )(1 th , i.e: 
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 Ideally, if )(1 th is an IMF, then )(1 th is the first component of ).(ts  

• If )(1 th is not an IMF, )(1 th is treated as the original signal and repeat the pre-
vious steps. 
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 where )(11 tm is the mean of the upper and lower envelopes of ).(1 th   

• After repeating the procedure, i.e. up to k times, )(1 th k becomes an IMF like: 
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 then, it is designated like: 
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 the first component (IMF) of the original signal. )(1 tc represents the 

 shortest period of signal or the highest frequency band.  
• By computing the difference between )(1 tc and )(ts , we could get:  

 )()()( 11 tctstr −=     (6) 

 where )(1 tr may be considered as the original signal.  

• Let’s repeat the above process for n times, then n-IMFs of signal )(ts  could 
be got. Then :  
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• The process can be stopped when )(trn becomes a monotonic function for 

which it is not possible to extract other IMFs.  
• The signal )(ts  can then be written as: 
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 where nr is the mean trend of s(t).  

 
The IMFs { })(,),(),( 21 tctctc n…  represent different frequency bands ranging 

from the high frequencies to low frequencies. Frequency components contained in 
each IMF relate changes with the signal itself. 

3   Time Descriptors 

Many time descriptors (Peak, RMS, crest factor, Kurtosis, etc.) of signal 
processing have been proposed in the literature for the early detection of fault. In 
this paper, Talaf and Thikat are used [Sassi et al, 2008]. The Kurtosis and the 
Crest factor are two particularly well adapted indicators for detecting the appear-
ance of the default. However, after a certain stage of degradation, the use of these 
descriptors becomes not useful in monitoring of defects. The Talaf indicator is a 
combination between the traditional descriptors Kurtosis and RMS, as 
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where 0RMS is the root mean square value defined for healthy gears. If this value 

is not known or has not been recorded, the method may work by considering any 
initial value that can be obtained at the beginning of monitoring or from the ISO 
10816 for healthy machines.  
 

The parameter Thikat has been designed to incorporate data from several para-
meters (Kurtosis, RMS, Crest factor, Peak) into a single unit of information, as 
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where cf is the Crest factor.  

4   A Modified Hilbert Transform 

For each IMF )(tci in Eq. (8), we can express its Hilbert transform as: 
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With this definition, we can develop an analytic signal as follows: 
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For performing the Hilbert transform to each IMF component, the original signal 
can be expressed as the real part (RP) of the analytical signal in the following 
form: 
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We have developed a new descriptor by adding the signal to the analytical sig-
nal in the imaginary part. We have called it the modified Hilbert transform:  
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Fig. 1 Comparison of the Hilbert methods 
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The )(tA
im offers a measure of the envelope contribution from each IMF, while 

the latter offer a measure of the phase or frequencies contribution from the meas-
ured signal. Fig 1 shows that the new Hilbert transform reveals more details in the 
envelope than the traditional method. 

5   Wavelet Decomposition 

This technique decomposes a signal 
)(ts  at different levels (Fig. 2) and 

presents it as series of approximate 
)(ta j and detail )(td j expansion 

coefficients. The sets of expansion 
coefficients can be calculated as: 
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where )(0 kb and )(1 kb are the 

coefficients of the selected scaling 
and the wavelet functions, 
respectively.  

6   Results Analysis and Applications 

In order to simulate the vibratory signals of gearbox, a gear multiplicative model 
whose the meshing is modulated in amplitude has been used. To the gear model 
[El Badaoui 1999], repetitive shocks f(t) have been added to simulate the effect of 
damage (Fig 2): 
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                                Wheel 1                  Wheel 2 

where eτ , 1rτ and 2rτ represent the meshing period and the rotational periods of the 

two wheels, respectively. )(tse , )(1 tsr and )(2 tsr represent the meshing signal with 

its modulation, respectively.  Fig3 shows the gear modulated signal, the added re-
petitive shocks and the IMF developed up to the 5th level.  

 

Fig. 2 Wavelet decomposition 
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Fig. 3 Decomposition of the IMF 

For different amplitudes of shocks, varying between 0.1 to 8, added to the nu-
merical signal, the Talaf (Fig 4-a) and Thikat (Fig 4-b) descriptors have been 
computed for each IMF from the time signal, the traditional and the modified  
Hilbert envelopes. A comparison between the results is shown in Fig 4. The appli-
cation of these descriptors to the wavelet decomposition has not really shown sig-
nificant results for an early detection of damage.  

 
 

 
 
 
 
 
 
 
 
 
 
 

a) Talaf variation 
 
                            

 

 
 
 
 
 
 

b) Thikat variation 

Fig. 4 Talaf and Thikat values of the IMF signals 
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The decomposition needs to go to the 5th level of the original time signal to 
detect a fault from shock amplitude of 1, while their application becomes to be 
sensitive from the 4th level of the Hilbert transform and even from the 3rd level 
when applied to the modified Hilbert transform. Furthermore, the detection be-
comes to be sensitive from shock amplitude of 0.2. Though the Thikat and Talaf 
values give similar trends, Thikat seems a better indicator as compared to Talaf 
with more sensitive amplitude for early detection of defects. The numerical results 
showed that the Thikat analysis of the modified Hilbert envelope with IMF could 
be a good indicator for early detection, characterization and monitoring the evolu-
tion of the defects.  

7   Conclusion 

This study showed the efficiency of the empirical mode decomposition method for 
the early detection of mechanical defects. This method revealed more significant 
variations than the wavelet decomposition for the studied case. A new modified 
Hilbert transform has been developed which shows more details in the envelope 
than the traditional method. Finally, the descriptors Talaf and Thikat have been 
found more sensitive to the defect amplitude than the Kurtosis or Crest factor. The 
application has been conducted on numerical signals of gear meshing perturbed by 
repetitive shocks produced by defects. The results show for the considered appli-
cation that the Thikat descriptor can be used from the 3rd level of IMF decomposi-
tion of the modified Hilbert transform. 
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Abstract. The purpose of this work is to investigate different models of the 
asynchronous machine in the state space representation for sensorless control 
purposes. The asynchronous machine is known as a complex non-linear system in 
which time–varying parameters entail an additional difficulty. Based on the fact 
that model can be significantly simplified if one applies the d-q Park 
transformation and that high dynamic performances are achieved by a field 
orientation technique also called vector control, different structures of the model 
are investigated and discussed. Each model merits and drawbacks are pointed out. 

This work contributes to decrease of the number of sensors to be used at the 
machine without deteriorating the dynamic performance of the considered drive 
control system. With the development of parameter and state estimation 
techniques, mainly the observer technique such as Kalman filtering and 
Luenberger observer, one can, based on the available measurements, estimate the 
remaining parameters or state components. Thus allows us to increase the 
reliability and the robustness of drive systems and to decrease their cost. 

Based on this point of view state feedback control of a linear state space model 
of the asynchronous machine involving the stator current and flux as state 
variables is experimented in a simulation study. The sensorless state feedback 
control uses the estimated stator flux and the measured stator current. The 
simulation permits also to estimated the remaining state variables of the 
asynchronous machine such as rotor current and flux. 

The obtained results show that the state space technique is an efficient method 
for asynchronous machine modelling, state variables estimating and sensorless 
machine drives controlling. State space techniques are directly used by the 
observer-based as well as the Kalman filtering techniques for sensorless control 
and monitoring purposes. 

 
 



482 R. Meneceur, A.-R. Metatla, and N. Meneceur
 

1   Introduction 

The induction motor is one of most widely used  machine in industrial 
applications due to its high reliability, relatively low cost, and modest 
maintenance requirements. With the devlopment of power electronic technology, 
low cost digital processing (DSP) micro-controllers  and estimation techniques the 
induction constitutes an attractive component for the future high performance 
drives [1],[2],[3]. 

The induction motor is known as a complex nonlinear sytem in which time- 
varying developing control strategies.Based on the fact that the  model can be 
significantly simplified if one applies d-q Park transformation and field orientation 
technique also called vector, different structures of the model exist in the literature 
[3],[4]. The choice of a model structure depends on the problem at hand.Industrial 
applications involving inducton motors are subject to control and monitoring 
problems. 

Sensorless control techniques focus on reducing the number of sensors. 
Observer- based state estimation algorithms are very helpful when the full state or 
some of the state variable measurements are unaviable. The well known state 
feedback control is a typical example of application when the full state variable 
vector is not measured. 

The aim of a system monitoring is to control, through certain state variables 
that indicate the system health, its main functions and to compare the measured 
values of these state variables with their preset values[3],[4],[5]. 

Arother  objective of a system monitoring is to decrease the rate of fault 
occurence and to  increase  the MTBF (Mean Time Between Failure). 

In the case of sensorless control and system monitoring state space modeling of 
induction motors and observer – based state variabe estimation techniques are 
very helpful since induction motors are a very important part of any industrial 
electrically driven system and hence they must be controlled and  carefully 
surveyed. Based on this point of view different structures of the induction motor 
model in the state space representation are investigated and discussed in this paper 
from the theoritical point of view. 

2   State Space Modelling 

In order to establish a state space mathematical model of the induction motor, the 
following classical hypotheses are used[2],[3],[4]. 

- The higher order harmonics of the magnetic field of stator and rotor are 
neglected. 

- The ferromagnetic losses and effect of saturation are also neglected (for 
control design). 

- The perfect electrical and maghetic circuit symmetry (uniform air gap 
and sinusoidal flux density ditribution), is assumed. 
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The dynamics of the induction motor are divided into two subsystems which are: 
the electromagnetic dynamics and the eleromechanical one. 

The electromagnetic subsytem is, in its turn, divided into stator and rotor 
dynamics. The electromagnetic subsystem  is represented, in an arbitrary rotating 
reference frame, by the following state space model: 
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Where ],[],,[],,[],,[ rqrdrsqsdsrqrdrsqsds uuuuuu ==== ϕϕϕϕϕϕ  

stator flux, rotor flux linkage and stator terminal voltage and rotor voltage, 

respectively , ],[ sqsds iii = ,denotes stator current and, ],[ rqrdr iii = denote rotor 

current, sR stand for stator  resistance. And 2I is the identity matrix. 

The electromechanical subsystem is represented by the following nonlinear 
differential equation called the motion equation. 
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P  is the number of pole pairs, J  denotes the moment of inertia of motor and lT  

a load torque. The electromechanical torque and the flux linkage relations are 
respectively defined by: 
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The matrices ,,,,,,, MLLRR rsrsara ΩΩ  and 0I  are defined as follows: 
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rω denotes the rotor electrical speed, m is the mutual inductance, sl and rl denote 

self inductance of stator and rotor respectively. 
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Usual notation for parameters and variables is used. The indexes s and r refer to 
the stator and rotor components respectively. 

Analysis of the above induction motor model shows the complexity of the 
system. The nonlinearity of the model is introduced by the torque equation and the 
rotor angular velocity involved in the system evolution matrix. Based on the fact 
that the model can be significantly simplified if one  the d-q Park transformation 
and field orientation technique also called vector control, different structures of 
the model can be obtained for sensorless control and monitoring purposes. 
Investigation result is not exhaustive. The motion equation, relation (2), is 
controlled via the torque equation, relation (3), does not change with the changing 
of the model structure.  

Only relations (1),(3) and (4) are concerned with the changing of the selected 
state variable and the used reference frame. For futher model reduction one can 
add an appropriate field orintation technique taking into account the avialability of 
measurments (the number of sensors to be used). 

The following matrix inversion lemma is used to make easy the transformation 
between the different structures of the induction motor model. 
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The particular diagonal form of the involved matrices leads to: 

11
⎥
⎦

⎤
⎢
⎣

⎡
=−

r

s

rs

M
LM

ML

lL
L

σ
 

(6)

The selected state variable for a given model are a combination of the stator and 
the rotor state variable which are the flux and the current state variables. This 
leads to the following combinations. 

 
A. Stator Flux and Rotor Flux as Selected State Variables  

 

The first case takes into account the stator and the rotor flux as selected state 
variables. This leads to the elimination of the current vector from the state 
equation (1) by applying the matrix inversion lemma (5) to equation (4). The 
obtained model is then: 
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Where the matrix [ ]1−−Ω MRL  stands for the dynamic evaluation matrix of the 

system with: 
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A simple calculus shows that: 
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(11)

The obtained model is a standard flux state space model which can be directly by 
the classical closed-loop state feedback control techniques, with some assunptions, 
if the full state flux vector is measured.. 

If the stator fixed reference frame is chosen one has to substitute in equation 

(11) aΩ to 20  and arΩ to rΩ . The stator sub-model is used to estimate the rotor 

flux linkage vector, without requiring a speed signal. It is therefore a preferred 
machine model for sensorless speed control applications. The rotor sub-model is 
used to estimate the rotor flux linkage vector based on the measured stator flux 
measurements and requires a speed signal. In order to reduce significantly the 
model one can use, in addition  stator reference frame, the stator flux orientation 
technique known also as vector control. In this technique the direct component of 

the  stator flux must be aligned with the real axis, thus leads to sds ϕϕ =   and 

.0=sqϕ  Rotor field orientation can  be used. In this case the direct component of 

the rotor flux must be aligned the real axis, in consequence rddr ϕϕ =  and 

.0=rqϕ The rotor angular vectory can be estimated as: 
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and the torque (9), becomes: 
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If the rotor fixed reference frame is used one has to substitute,in relation technique 
can be to reduce significantly the model. In this case the torque becomes 
proportional to the stator flux component since the rotor flux takes its maximum 
value as in relation (13). The decoupling between the stator and the rotor 
components is then obtained and the induction motor model becomes linear if the 
rotor angular velocity is assumed to be slowly varying or constant. The stator field 
orientation technique can also be used. In this case  the rotor angular velocity can 
be estimated as: 
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and the torque relation becomes: 
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In the above both cases, the stator flux measurements are very helpful to design a 
rotor flux controlled system. The others state variables (i. e), the current state 
variable, The torque and the speed are then estimated via the relation (8) to (10) 
based on the measurements of the stator flux linkage vector. The drawback of this 
model is that the flux sensor is not accepted in industrial environment  due to 
robustness and reliability problems. On the other hand,  the flux sensor is not 
available. This problem can be solved by the use of an observer – based state 
variable estimation technique. A general observer – based state estimator is 
investigated for sensorless control and monitoring purposes I the third model. 

 
B. Stator current and rotor current as selected variables       

 
The second case consists of selecting stator  and rotor current as variables. By a 
simple derivation of the second equation, relation (2), with the help of the matrix 
inversion lemma one obtains the following current state space model of the 
induction motor system. 
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In this case of model the system evolution matrix is [ ])(1 RLL MM −Ω−  and the 

system control matrix became: 
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The objective of the current state space model is to estimate the rotor current 
based on the stator current measurements. The rotor current is generally employed 
in procedures concerned with the condition based system maintenance and 
monitoring. In this case of application the stator current measurements are very 
helpful. The stator current must be exploited for this purpose since the control 
loop of major control drives incorporates a current loop. Reduced order current 
observer – based techniques can be used for monitoring purposes via the 
measurement of the stator current. 

In the stator reference frame and with the help of stator field orientation 
technique the torque equation is reduced to:  

qsdse ipT ϕ=
 

(21)

and the model order is then reduced since there exists a linear relation between the 
stator and rotor current components. Similar relations can be obtained in the rotor 
reference frame, with  rotor field orientation technique. 

The rotor angular velocity is estimated, with respect to the stator orientation 
hypothesis, by the following relation: 
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C. Stator current and stator flux as selected state variables  
 

The third cases consist of stator current and flux as selected state. The method 
consists of eliminating the rotor current and flux state variables from equation (1) 
and (2). The induction motor is then: 
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The evolution matrix parameters are: 
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The choice of the stator fixed reference frame and the stator field orientation 
technique are, in this case, imposed by the structure of the state space model of the 
induction motor. The model is linear at low speed operating and nonlinear at high 
speed operating. The advantage of this model is that it directly estimates the stator 
current using an open – loop as well as a closed – loop technique. The closed - 
loop technique uses a stator flux observer. Thus leads to say that control with 
stator field orientation is preferred in combination with the stator model. In this 
case torque relation becomes: 
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The rotor angular velocity is estimated with the respect to the stator orientation 
hypothesis, by the following relation: 
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The resulting dynamic structure of the induction motor then significantly 
simplifies. However the rotor angular velocity depends on the stator and the rotor 
resistance which can be considered as time – varying parameters for high speed 
operating. The stator resistance or the rotor resistance can be estimated at the same 
time that the rotor angular velocity by using nonlinear estimation techniques. If 
the full stator current – flux state variable vector is not measured a reduced order 
observer can be then used for estimating the stator flux state variable based on the 
stator current measurements. Design of a stator flux controller or a stator flux – 
based induction motor monitoring is then possible by introducing some operating 
assumptions. 

 
C. Stator current and rotor flux as selected state variable 

 
The forth case consists of selecting the stator current and rotor flux as state 
variables. In this case the model becomes: 
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The evolution matrix parameters are:  
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The objective of this model is estimated by the rotor flux linkage state variable 
based on the stator current measurement using an observer – based technique. 
Once the rotor flux is estimated one can estimate the other state variables or the  
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mechanical variables mainly the rotor angular velocity and the torque. The stator 
reference frame can be used for this pupose in addition with the rotor field 
orientation technique. The signals that can be exploited for speed estimation are 
the stator voltage, the measured stator current and estimated rotor flux as: 
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The torque equation becomes: 
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Stator field orientation technique can also be used. The model order reduces in 
consequence and the induction motor system being only defined by the rotor 
model and the mecanical subsystem. 

The choice of a model structure depends on the problem at hand. The fact that 
most drive systems have a stator current control loop incorporeted  in thier control 
structure leads to select the stator current as the first state variable. 

The second state variable is then either the stator flux linkage vector, the rotor 
flux linkage vector or the rotor current. The second state variable is estimated by 
using a closed – loop observer – based technique. In each case, the not selected 
state variables are then indirectly estimated based on the measured and the directly 
estimated state variables. Observer – based state estimation techniques are very 
helpful for closed – loop sensorless control application or for system monitoring. 
Linear models are obtained by considering the assumption that te mechanical 
velocity is slowty varying or constant and the parameters of the model are not time 
– varying. The first assumption is justified by the fact that electrical dynamics  are 
in their turn very fast than the mechanical dynamics. Nonlinear models take into 
account that must be included in the model as well as the stator or the rotor 
resistance variation. The variation of the stator (the rotor) resistance can be 
modelled as a Gauss- Markov process. Other stochastic models can also be 
considered if the assumption of measurement noises is introduced. 

3   Observer – Based State Estimation   

In order to decrease the price of induction motor system and to increase its 
reliability, in consequence less maintenance requirements, ongoing research has 
concentrated on the minimization of the use of sensors without deteriorating the 
dynamic performance of the considered drive system. The devlopement of the 
estimation techniques and the availability of new low cost DSP- based (Digital 
Signal Processing) microcontrollers, have reinforced the industrial applications of 
this idea for sensorless control and monitoring purposes [2],[3]. 
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The above models can be written in the following unified state space model: 
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where )(tX  is the selected state variable vector and )(tY the measured output 

vector. BA, and C  are the evolution, control and observation matrices 

respectively. 
One of the most used technique for estimating the state variables of a system 

described in terms of state space model is observer technique. Observer – based 
state variables estimation uses an adaptive mechanical which involves as input, the 
error between the measured and estimated state variable values. The general from 
of the observer is [6],[7]: 
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(38)

where )(ˆ tX is the estimated state variable vector of the unknown state variable 

vector )(tX  and )(ˆ tY  are the estimated output of the measured output signal 

)(tY . 

G  is the observer gain matrix. It is constant if the observer system is linear 
varying if the observed system is nonlinear. Relation (37) and (38) can be written as: 
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dt
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(39)

This relation shows that the observer is a system in which the inputs are and the 
output of the system to be observed and the output is the estimsted state variable 
vector of the observer system. The dynamics the observer are determined by the 

eighen values of the evolution matrix [ ]GCA − . A practical choice of the gain 
matrix is based on the fact that the observer must be dynamically faster than the 
induction motor system. Thus not only assure stability of the observer but also to 
get an optimally filtered estimation in respect with the measurment and the 
eventual input noice. Pole placement technique is generally used in this case [7]. 
The error vector computed from the measured state variable  and the observer 

estimated stat variable )(ˆ)()(
~

tXtXtX −=  is not only used to generate the 
sensorless control law but also to monitor the operating condition of the induction 
motor drive system. The monitoring procedure is based on the analysis of the state 
variable estimation error and the covariance matrix of the error dynamics 
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computed from the difference between the dynamics of the induction motor 
system, relation (35), and the dynamics of the observer, relation(37), as: 

)(
~

][
)(

~
tXGCA

dt

tXd −=
 

(40)

The aim of a monitoring system is to control the main function of the considered 
system and to compare measured values of certain parameters or state variables 
with their preset values. 

In the order case of a complete machine model including the mechanical 
subsystem a nonlinear observer technique must be applied since the obtained 
model is nonlinear. In this case the observer gain matrix depends on the rotor 
angular velocity. 

In order to take into account the noise of the measured signals and the model 
parameter deviations nonlinear Kalman filtring technique must be used for 
estimating the selected state variables as well as the rotor angular velocity and the 
rotor (stator) resistance. Nonlinear techniques are generally avoided due to the 
high computational load required [6],[7]. 

4   Numerical Simulation 

To highlight the performances of the technique of monitoring suggested we 
consider an engine with induction having the following characteristics: 
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The digital model having for vector of state the stator current and rotor flow is 
given by: Simulation consists of the study of the dynamic properties of the 
asynchronous machine in the space of state by using software MATLAB to see the 
possibilities of detection without sensor. 

It is enough to make recordings of the variables of state estimated of the 
operational engine (on the figure the healthy state is represented in (noir continue 
and the failing recording is in noir discontinue clair and noir discontinue pas clair) 
and to make a comparison with the results estimated in the event of failure by 
using the analysis of the curves of Lissajou or the spectral analysis. In these results 
represents of them only the results obtained by the analysis of the current and 
estimated flow, it remains also the possibility of analyzing other variable as the 
electromagnetic couple. Figure 09 watch the signature of dephasing on the curve 
of lissajou, this signature which enables us to easily determine nature of defect and 
well on touts results obtained and estimated to ensure a diagnosis without sensors 
or at least of sensors. 
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Fig. 6 Courbe de lissajou en régime complet 

One little also to detect the rotor defects such as the break of the bars of the 
cage, figure 11 and 12 watch suonr a curve of lissajou the signature of this break 
(reduction in the intensity), here uses the estimated currents of them. Also, the 
defects stator can be detected by the same technique, here one has one on 
intensity. In little also to make an analysis spectral after the transform of furrier of 
each vector of state, which gives the spectrum in the healthy and failing case. 
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4   Conclusion  

Finally we conclude that the state space technique is an efficient method for 
induction motor modelling, state variables estimating and induction motor drive 
monitoring. State space technique is directly used by the advanced control 
techniques such as the observer – based as well as the Kalman filtering. 

This paper has investigated the state space modelling technique in order to 
implement a simultaneous observer – based sensorless control and monitoring  
induction motor driven systems. 
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Abstract. The paper deals with application of condition monitoring and informa-
tion system to maintain of complex, spatially distributed machinery system, 
namely belt conveyor transportation network, which consists of hundreds of drive 
units located on mine territory. There is simple question: what managers/engineers 
should do to ensure safe and efficient work of transportation machines? It has ap-
peared that number of objects, their spatial location, specific structure of mining 
company, harsh environment, diversity of machines etc make this problem really 
complicated. It is obvious that there is a need to use specialized equipment, soft-
ware but first of all set of procedures of data acquisition, validation, processing, 
storage, visualization, decision making, reporting etc, so in other words mainte-
nance management. All these stages, combined and implemented as maintenance 
management software called Diag Manager (CMMS class) is discussed here. 

Keywords: maintenance, data bases, temporal GIS, analysis, information, data 
mining. 

1   Introduction 

Diagnosis of machines using vibration signals is very popular and many papers 
may be found in the literature. However, most of them concern new detection 
techniques using simulation/test rig data, rest of them is discussing application to 
real problems (in some cases even complex mechanical system). The issue dis-
cussed here is focused on completely different problem. Let’s assume that we al-
ready have very powerful techniques for damage detection and diagnosis 
(Bartelmus2009,2006 Kruse 2006, Zimroz 2008,2010) and we want to apply them 
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to industrial problems, however, the difference is that “problems” here means not 
one machine (even complex one…) but hundreds of machines. To localize / visu-
alize problem see example of such object shown on Fig 1. One can recognize two 
layers: in grey colour – map (structure) of mine with room and pillar technology 
and in colours elements of production lines. 
 
 

 

Fig. 1 Scheme o Belt Conveyor Network (BCN) for one mine 

Drive units used in transportation network in general consist of electric motor, 
coupling, gearbox and drive pulley. However, their design (type/power), 
load/speed, control system etc may be different for given conveyor – depending 
on its function in the system (main or local transportation road, required power 
etc). In practice it means that diagnostic procedures should be ready to manage 
with different reality (design, operation conditions, environmental impact, human 
factors etc…) for given task. One should be aware that most of these machines 
work in series and stop of any conveyor in such production line will stop whole 
conveyor line (frequent start stop events). It makes extra difficulties and influ-
ences operation of machines and degradation processes. All these issues may be 
critical for final maintenance management result. Maintenance in such a case 
means integration of availability time, failure engineering, damage detection, di-
agnostics etc. The only reasonable solution is maximizing of number of automatic 
procedures and using advanced information system for machinery maintenance. 

2   Maintenance of BCN – Example of Large Scale Spatial  
Systems 

Huge work has been done to understand what should be taken into account during 
BCN maintenance [Swinderman 2002, Lodewijks 2004 Overmeyer 2007, Hardy-
gora 2009 Zimroz 2011]. We here discus part of the system associated with “ 
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gearbox” module. For other conveyor components one may study for example 
(Mazurkiewicz 2007,  Kacprzak 2011) It has been found that a lot of information 
should be included to make diagnosis (Bartelmus 2006). One should get basic  
information about: design of gearbox (a several types of gearboxes are used in 
analyzed system), other elements of drive units (electric motor, coupling, speed 
control system), operating condition (exact value of load/speed condition, its na-
ture, i.e. stationary, start up, some fluctuation, etc) and multidimensional set of di-
agnostic parameters (a few for each element of multistage gearbox). Obviously 
decision making should be automatic, without of any manual help of maintenance 
staff. Some information regarding failures analysis would be also helpful during 
decision making. 

Such formula of maintenance requires automated computer aided decision mak-
ing and database system to store, to maintain and to process data (Gorniak-Zimroz 
2009). We deal with a spatial structure (conveyor network) and due to the fact that 
conveyors are in series, one may expect some interdependencies between conveyors. 

These assumptions were a basis for information system platform selection. 
Natural solution for spatial data is Geographic Information System. Such class of 
information systems may store descriptive attributes (numbers, strings, logical 
values, etc), images, and spatial data related to location of objects. More informa-
tion about GIS system, and its application to belt conveyor maintenance one may 
find in [Gorniak-Zimroz 2009]. In this paper, we would like emphasize that to 
build a data base system is not enough (it will not bring the expected profit), there 
is a need to provide very advanced data analysis algorithm for diagnostic data 
validation, classification (Cempel 2007, Bartelmus 2009a,b, Jablonski 
2011, Bartkowiak 2011, 2012) and searching the link between obtained clusters 
and condition of gearboxes, i.e. their diagnosis, reporting tools and other data base 
maintenance procedures.  

3   Data Acquisition 

Continuous transportation systems in mining company consists of network of con-
veyors. The purpose of this section is to provide brief description of conveyor and 
its drive unit. Fig 2 shows key elements of conveyor. From this work point of 
view crucial element is drive unit that may consist of 1-4 drive sets (motor, cou-
pling, 2 or 3 stage gearbox and pulley. 
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Fig. 2 Structure of belt conveyor. 
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Load of drive unit depends on material stream transported on the belt. It is easy 
to understand that there is a need to use multi-channel data acquisition system for 
measuring vibration and load/speed indicators 

Failure Analysis Module 

To minimize cost of maintenance, especially at the initiation phase, it was sug-
gested to take advantage from failure analysis. By acquiring information about re-
placement events, their cost, time etc it is possible to select the most important, the 
most critical element that brings majority of looses. Fig 3 shows simple data base 
form that should be simply fill up when replacement event takes place. 

 
 

 

Fig. 3 User interface of module for failure analysis 

Diagnostic Data Module 

Due to number of drive units it was suggested to use portable data acquisition sys-
tem that can simple measure, process and diagnose machine in quick time based 
on 120s vibration time series and speed profile. Fig 4 shows the idea of measure-
ment (location of sensors) and main window for portable diagnostic system devel-
oped for such purpose. 
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Fig. 4 An idea of measuring diagnostic signals for fault detection and diagnosis, main win-
dow for portable diagnostic system 
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Other Sources 

It has appeared that mining company uses other systems for data/information  
acquisition, but they are used by different departments and information not inte-
grated/fused). Such situation is very frequent in many companies, however struc-
ture of mining company, Mining Law etc makes this problem really serious. 

However, it was possible to get some data from Enterprise Resource Planning 
(ERP) systems (cost of replacement) and from Supervisory Control and Data Ac-
quisition (SCADA) systems (loading, downtime) already installed in the mine. All 
these information can be included in proposed Diag Manager system 

2   Diag Manager – CMMS-Class Software for Conveyor  
Maintenance Management 

Maintenance management often is supported by information systems. For Con-
veyor Maintenance Management it is proposed here to use Geographic Informa-
tion System that contain different type of data (numeric, text, pictures, maps)  
related to aspects mentioned in previous sections. It is data based system sup-
ported by WEB environment (it is possible to explore data base via Internet 
browser). Structure of proposed information system is shown in Fig 5, In Fig 6 
Main Window of Diag Manager software is presented. 
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Fig. 5 Scheme of information system 

 

Fig 6 Main Window of Diag Manager (right: table with decisions in colours, text/numeric 
data, right: scheme of transportation system referenced to map of the mine, bottom – exam-
ples of signal proc. results and photo for decision validation  
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3   Example of Results 

Basic Analysis 
From practical point of view, due to reporting policy in the mine, the most impor-
tant are simple reports that should be prepared every month to manager of given 
department. It covers for example failure analysis, its cost, breakdown time and so 
on. The Diag Manager system allows to provide such reports thanks to the failure 
analysis module discussed above (see Fig. 7, 8). 
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Fig. 7 Failure analysis for mining machines: a)Comparison of breakdown time for different 
machines (one mine), b) Number of failures related to elements of drive unit (motor-
coupling-gearbox-pulley) c)The number of failures related to Driving Units elements with 
respect to type of type of event (motor and coupling), d) failures of gearboxes used in un-
derground coal mining 

 
Fig. 8 Breakdown time for given conveyor for analyzed period of time. 
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Advanced Analysis 
 
As it was proposed by Cempel (Cempel 2007), it is interesting to use multidimen-
sional analysis for machine in non-stationary operations. There are many important 
issues in industrial application starting from data validation/selection, dimensional-
ity reduction, classification, especially in unsupervised case (see Fig 9 ). It was said 
that transportation network consist of many types of machines. It is required to find 
thresholds (bad –good data separation value(s)) for every type of machine. Usually 
it is done during so called training process when data for good and bad condition 
are analyzed and relation between feature value and real condition of machine is 
examined (see fig 10left). Unfortunately, for some unique machines, there is no bad 
condition example, so there is a need to exploit so called one class classification 
(see Fig 10 right and Bartkowiak2011). 
 

 

Fig. 9 The idea of maintenance system with advanced data analysis module 
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Spatial Analysis 
 

Thanks to integration data from different sources (i.e. technical documentation) 
with thematic map, layers with individual elements of conveyors, it is possible to 
do complex, spatial analysis. The spatial analysis allow to study relationships and 
regularity between input data taking account of their attitude. The so called geo-
processing (processing of spatial data related with their attributes data)  
generates new information which can be very important in the diagnostic and 
maintenance procedures. On the other hand, very advanced functionality of geo-
informatics tools (i.e. tools of classification of data or presentation data, functions 
of quantities, charts or multiples attributes) allow to present output data of geo-
processing in very clear form of presentation based on layout views such as: maps, 
graphs, reports, schemas etc. This can be very useful in processes of diagnostic 
conclusion. What's more very interesting are geo-statistical analyst tools which 
provides functions of (a) explore data such as: Histogram, Normal QQPlot, Trend 
Analysis, Voronoi Map, Semivariogram/Covawiance Cloud, General QQPlot, 
Crossvsariance Cloud and (b) geostatistical wizard connected with interpolation 
methods. 

Analysis may relate both: failure analysis results, diagnostic data and other data 
such as data from measurements of temperature or humidity and so on. Following 
figures presented examples of maps generated based on discusses analysis. These  
 

 

 

Fig. 11 Results of spatial visualization: Left: Spatial location of breakdown time individual 
conveyor belt of analyzed area of study in period January-August 2009. Right: Loss of 
transported ore for analyzed period of time. 
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selected examples concern: stops of mechanical system (Fig 11 left), value of loss 
of transported ore (Fig 11 right). Following figures show spatial distribution of 
temperature (Fig 12 left) and humidity (Fig 12 right) - they are estimated based on 
data with known values from hypothetical measurement points. 

 
 
 

 

Fig. 12 Example of spatial analysis: Left Estimated values of temperature calculated based 
on interpolation method (IDW - Inverse Distance Weighted). Right Thematic map layers 
presented values of humidity in boundary of analyzed area. 

5   Conclusion 

An application of GIS information system and Data Mining techniques used for 
data stored in GIS have been discussed in the paper. We claim that for large scale 
spatial mechanical systems as conveyor network, selection of GIS data base is a 
good way. For hundreds object that should be diagnosed, in our data base we got a 
lot of data from different sources (SCADA systems, technical documentation, 
monitoring systems etc) and different structures. In order to extract diagnostic in-
formation we need advanced data analysis techniques and finally, when different 
information are fused (Data Fusion), one may got correct answer regarding diag-
nosis. Such a way may give information about machine condition, and it can be in-
terpreted/validated using information stored in data base. 
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Our system is dedicated, optimized according to users expectation. From user’ 
point of view it is very simple, however, as it was described in the paper, many 
advanced solutions have been implemented to get the final results (i.e. adaptive 
diagnostics including signal processing, feature extraction decision making, 
webGIS data base system etc.). The Diag Manager has been successfully deployed 
in the underground copper ore mine. 
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Abstract. Condition Monitoring of bearings used in Wind Turbines (WT) is an 
important issue and due to wide range of the operating conditions variations 
should be monitored online. Due to mentioned non-stationary load/speed condi-
tions, signal processing and decision making for bearings diagnostics is still chal-
lenging issue.  As a data source a professional monitoring system is used. Two 
kind of information have been acquired: RMS of vibration acceleration signal and 
generator power that is related to the operating conditions. The received data  
cover the period of several months, when the bearing has changed its condition 
significantly. Due to considerable variability of the mentioned data, an embedded 
decision making regarding the condition of bearings is difficult. The novel method 
proposed in the paper is based on statistical feature processing instead of just sim-
ple comparison of the value of the feature with threshold that is used in the sys-
tem. Statistical data processing is done in two dimensional feature-load space in 
several sub-ranges of operating conditions. It has been found that for different 
load ranges behavior of data and effectiveness of bad-good data separation ability 
is different. Decomposition of data in several load sub-ranges has provided better 
recognition efficiency than for all data taken together. 

Keywords: wind turbine, generator bearing, vibration analysis, diagnosis, non-
stationary operation, load dependent processing. 

1   Introduction 

Wind turbines become widely used for the electric power generation and they are 
also frequently considered as an interesting object from condition monitoring 
perspective [1-9]. Indeed, it can be considered as compound and complex [10] 
mechanical system working in time varying conditions that classify the problem of 
diagnostics as a difficult one. The term complex in [10] is referred to a planetary 
gearbox. The planetary gearbox may be properly reduced to treat it as an element 
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of the compound gearbox. In this considered case the drive system of the genera-
tor is a multistage transmission system: planetary gearbox plus two-stage parallel 
gearbox. The system gives a multiplication of a rotor rotation to give the rotation 
of the generator. Time varying operating conditions are related to non-stationary 
wind behavior [11] that plays an important role and may be modeled as time vary-
ing excitation of the system. So, extracted feature are load dependent, and statis-
tical data processing via time varying probability density functions analysis is not 
efficient. It has been proposed in [12-14] to use feature-load representation in or-
der to extract distribution of features vs. operating conditions that gives better ef-
ficiency in classification than simple statistical feature processing. In this paper we 
propose further extension of such approach. It has been found that for different 
load ranges behavior of data and effectiveness of bad-good data separation ability 
is different. Decomposition of data in several load sub-ranges has provided better 
recognition efficiency than for all data taken together. 

It should be clarified that, in general, one may easily find several interesting 
papers on bearings diagnostics using envelope analysis, wavelets, adaptive filters, 
exploiting cyclostationarity of vibration [15-20] etc. However, our idea was to use 
diagnostic data provided by the online monitoring system, not raw vibration signal 
so usage of such method is not possible. Using raw signals one needs to build ad-
vanced feature extracting module in online version that would be rather expensive. 
For offline processing it is not so problematic and as it was mentioned some tech-
niques for multidimensional features extraction and further processing using, for 
example, SVD can be used. Some recent works [21-24] developed for similar 
problems shows ability of multidimensional data processing using Principal Com-
ponent Analysis, data projection techniques, outliers analysis etc. However, it 
should be noted that in practical situation validation of data seems to be serious 
problem [25] so increasing of system complexity is not good idea. 

2   Wind Turbine – Design, Operation and Data Stream 
Description 

Fig.1 presents a typical layout of a wind turbine. The main rotor with three blades 
is supported by the main bearing and transmits the torque to the planetary gear. 
Second bearing supported the rotor is incorporated into the gearbox. The planetary 
gear has three planets, which are driven by the planet carrier. The planets transmit 
the torque to the sun gear, in the same time increasing the rotational speed. The 
sun shaft is the output of the planetary gear and drives the two-stage parallel gear. 
The parallel gear has three shafts: the slow shaft connected to the sun shaft, the in-
termediate shaft and the high speed shaft, which drives the generator. The genera-
tor produces AC current of a varying frequency. This current is converted first into 
DC power and then into AC current of frequency equal to the grid frequency. 
Electric transformations are performed by the controller at the base of the tower. 
The gearbox set-up changes the rotational speed from about 25 rpm on the main 
rotor to about 1500 rpm at the generator. In the considered case a diagnosed object 
is a bearing in electric power generator of a wind turbine.  
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Fig. 1 Layout of a typical wind turbine and location of sensors (right) 

Input data delivered from professional online monitoring system includes time 
series of peak to peak of vibration (P-P), RMS of vibration, instantaneous power 
of generator, wind speed, rotational velocity, kurtosis of vibration etc. In this work 
two data will be used: RMS value of vibration and power of generator. Data used 
in this paper are presented on Fig. 2 and 3 as data time series in monitoring system 
window, power variation and RMS long term trends, respectively. Data presented 
on Fig 2 and 3 have been exported from monitoring systems to Matlab workspace 
 

 

 

Fig. 2 Input data: generator power variation – a view from online monitoring system 

 

Fig. 3 Input data: long term trend of RMS of vibration data – a view from online monitor-
ing system (RMS - percentage of visible range 0-5[g] vs. date from 14/10/09 to 13/03/10) 
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a)     b)     

 

Fig. 4 a) Input data exported from online system and loaded to Matlab workspace with  
a priori pre-classification into 4 conditions (good, rapid change of condition, bad, very bad) 
b) Histograms for raw RMS data from the system: subplots are: top good condition, middle 
– bad condition, bottom – normalized histograms for two data sets on the same plot 

and further processing has been done in Matlab environment. Some a-priori as-
sumptions regarding feature-condition relationship have been used. Four periods 
of data are visible: green good condition, red bad condition, yellow – state be-
tween good and bad and finally black – very bad condition, Fig 4a. In the Fig 4b 
histograms obtained from good/bad data are presented. As it is clearly seen, there 
are some difficulties in the recognition of a bearing condition that is to separate 
data from good/bad data sets due to existing overlapping. 

3   A Method of Data Processing 

As it was mentioned the idea of data processing is to extend method proposed by 
the same team of authors, i.e. [12-13] to analyze data in feature-load space but in 
several load sub-ranges. The distribution of data vs. operating condition (power 
generator) is shown in Fig. 5a. The RMS data obtained from the system plotted as 
function of power (with colors assumed by authors) show measured value bit sus-
picious behavior for the lowest and the highest power, which at this stage we de-
cided to reject them for further analysis. Fig 5b shows histograms for pre-selected 
((features the lowest and the highest power are rejected) RMS data: subplots are: 
top good condition, middle – bad condition, bottom – normalized histograms on 
the same plot. It is easy to notice that such pre-filtering has improved efficiency of 
data clustering, but still there is an overlapping of data, see Fig 5b. 

In this paper we will try to separate data from good/bad sets, but for some a priori 
pre-defined load range separately. It is easy to find that for some load ranges (Fig 5a) 
distance between green and red data clouds is different. We will use Fisher Criterion 
(FC) to compare effectiveness of classification [26]. So, the procedure is as follow: 

• Plot features as function of operating conditions 
• Divide load into sub-ranges (Lmax-Lmin)/N, where N is arbitrary integ-

er value, Fig 6 
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• Calculate Fisher Criterion for each load sub-range 
• Plot FC as function of load and compare with FC for raw data 

 

a)     b)     

 

Fig. 5 a) RMS data from the system, but plotted as function of power (with colors from ex-
pert knowledge) b) Histograms for pre-selected ((features for the lowest and the highest 
power are rejected) RMS data: subplots are: top good condition, middle – bad condition, 
bottom – normalized histograms on the same plot 

 

Segment no i 
Segment no 1 

Segment no N 

OC1 OC i OC N… 
 

Fig. 6 The idea of novel approach 

4   Results Wind Turbine Case study 

Following the procedure defined in previous section data have been divided into 
15 load ranges (every 100kW). Fig 7. shows data distribution in 15 subplots. 

It is clear that separation ability for each subplot is different. To compare re-
sults, as an objective measure one may use Fisher Criterion [26]: 
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Fig. 7 Data distribution (RMS) in segments (power range 100kW) 
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where: 
m1,σ1

2 - denotes the mean and the variance of the first class data sample, 
m2,σ2

2 - denotes the mean and the variance of the second class data sample re-
spectively. Fig 8 shows probability density functions (PDFs) of good/bad data for 
each load sub-range separately. In a caption, for each plot, a value of FC is shown. 
Fig 9 presents comparison of FC value for each 100kW width range of power. 

Fig 10 presents main conclusions of this work: 

• FC of raw data is really not good due to mentioned overlapping of data 
• FC for pre-selected data (after rejection of data for lowest and highest 

load, that can be associated with unloaded and overloaded machine [12]) 
is much higher (15 times better than for raw data) 

• Proposed approach shows further improvement of classification effi-
ciency: min. value of FC (for 750kW) is slightly better than overall FC 
for after selection, however, max. FC (for 150kW) is 45 times better. 
Averaged FC for novel approach is 20 times better than classification re-
sults for raw data. 
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Fig. 8 Probability density functions good/bad data in segments (power range for each seg-
ment: 100kW), Fisher Criterion value in titles  

 
 

 

Fig. 9 Comparison of Fisher Criterion value for segments for RMS feature 
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Fig. 10 Left: Comparison of Fisher’ Criterion value obtained by analysis: raw data, selected 
data, selected and segmented RMS data Right: Comparison of Fisher’ Criterion’ GAIN ob-
tained by analysis: raw data, selected data, selected and segmented data for RMS data 

5   Conclusion 

Novel classification technique for data acquired from online monitoring system is 
presented in the paper. Based on simple long term trends including RMS data of 
vibration signal and power variation we have shown that analysis of data in  
feature-load space separately for several sub-ranges of load is better than basic 
classification in feature-load space and much better than classical analysis. A clear 
evidence of influence to vibration based feature has been proposed (compare with 
[11], [26]). Additionally the research results highlight the importance of feature 
classification and the strong influence of operational condition on obtained diag-
nostic features. Operational states based classification, commonly used in indus-
trial condition monitoring systems, may be inefficient or even give misleading  
results in object’s technical condition evaluation. New approach proposed in the 
paper may allow to improve automatic decision making algorithms in vibration 
based condition monitoring systems and reduce the role of diagnostic engineers in 
the initial stage of fault recognition procedures. 

Acknowledgements. This paper was financially supported by Polish State Committee for 
Scientific research 2010-2013 as research project no. N504 147838. 

References 

Hameed, Z., Hong, Y.S., Cho, Y.M., Ahn, S.H., Song, C.K.: Condition monitoring and 
fault detection of wind turbines and related algorithms: A review. Renewable and Sus-
tainable Energy Reviews 13(1), 1–39 (2009); doi:10.1016/j.rser.2007.05.008 

Amirat, Y., Benbouzid, M.E.H., Al-Ahmar, E., Bensaker, B., Turri, S.: A brief status on 
condition monitoring and fault diagnosis in wind energy conversion systems. Renewable 
and Sustainable Energy Reviews 13(9), 2629–2636 (2009) 

 



Statistical Data Processing for Wind Turbine Generator Bearing Diagnostics 517
 

Barszcz, T.: Application of diagnostic algorithms for wind turbines — Dobór algorytmów 
diagnostycznych dla turbin wiatrowych. Diagnostyka 2, 7–11 (2009) 

Kusiak, A., Li, W.: The prediction and diagnosis of wind turbine faults. Renewable Ener-
gy 36(1), 16–23 (2011); doi: 10.1016/j.renene.2010.05.014 

Barszcz, T., Urbanek, J., Uhl, T.: Comparison of advanced fault detection methods for roll-
ing bearings fault in wind turbines. In: CM 2010/MFPT 2010 7th International Confe-
rence on Condition Monitoring and Machinery Failure Prevention Technologies 2010, 
June 22-24, pp. 1–12. Coxmoor Publishing, Co., England (2010) 

Barszcz, T., Randall, R.B.: Application of spectral kurtosis for detection of a tooth crack in 
the planetary gear of a wind turbine. Mech. Syst. and Signal Proc. 23, 1352–1365 (2009) 

Jiang, Y., Tang, B., Qin, Y., Liu, W.: Feature extraction method of wind turbine based on 
adaptive Morlet wavelet and SVD. Renewable Energy 36(8), 2146–2153 (2011) 

Tang, B., Liu, W., Song, T.: Wind turbine fault diagnosis based on Morlet wavelet trans-
formation and Wigner-Ville distribution. Renewable Energy 35(12), 2862–2866 (2010) 

Barszcz, T., Bielecka, M., Bielecki, A., Wójcik, M.: Wind Turbines States Classification by 
a Fuzzy-ART Neural Network with a Stereographic Projection as a Signal Normaliza-
tion. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, 
vol. 6594, pp. 225–234. Springer, Heidelberg (2011) 

Bartelmus, W., Zimroz, R.: Vibration spectra characteristic frequencies for condition moni-
toring of mining machinery compound and complex gearboxes. Scientific Papers of the 
Institute of Mining of the Wroclaw University of Technology 133, 17–34 (2011) 

Barszcz, T., Bielecki, A., Wójcik, M.: ART-Type Artificial Neural Networks Applications 
for Classification of Operational States in Wind Turbines. In: Rutkowski, L., Scherer, 
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, 
vol. 6114, pp. 11–18. Springer, Heidelberg (2010) 

Bartelmus, W., Zimroz, R.: A new feature for monitoring the condition of gearboxes in 
non-stationary operation conditions. Mech. Syst. and Signal Proc. 23(5), 1528–1534 
(2009) 

Bartelmus, W., Chaari, F., Zimroz, R., Haddar, M.: Modelling of gearbox dynamics under 
time varying non-stationary operation for distributed fault detection and diagnosis. Eu-
ropean Journal of Mechanics - A/Solids 29(4), 637–646 (2010) 

Zimroz, R., Bartelmus, W., Barszcz, T., Urbanek, J.: Wind turbine main bearing diagnosis - 
a proposal of data processing and decision making procedure under non stationary load 
condition. Presented at SHM 2011, Cracow Poland, to be published in Key Engineering 
Materials in 2012 (2012) 

Rubini, R., Meneghetti, U.: Application of the envelope and wavelet transform analyses for 
the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal 
Processing 15(2), 287–302 (2001) 

Randall, R.B., Antoni, J., Chobsaard, S.: The relationship between spectral correlation and 
envelope analysis in the diagnostics of bearing faults and other cyclostationary machine 
signals. Mechanical Systems and Signal Processing 15(5), 945–962 (2001) 

Antoni, J.: Cyclostationarity by examples. Mechanical Systems and Signal 
Processing 23(4), 987–1036 (2009) 

Makowski, R.A., Zimroz, R.: Adaptive Bearings Vibration Modelling for Diagnosis. In: 
Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 248–259. Springer, 
Heidelberg (2011) 

Barszcz, T.: Decomposition Of Vibration Signals Into Deterministic and Nondeterministic 
Components And Its Capabilities of Fault Detection And Identification. Int. J. Appl. 
Math. Comput. Sci. 19(2), 327–335 (2009) 



518 R. Zimroz et al.
 

Zimroz, R., Bartelmus, W.: Application of adaptive filtering for weak impulsive signal re-
covery for bearings local damage detection in complex mining mechanical systems 
working under condition of varying load. Solid State Phenomena 180, 250–257 (2012); 
doi:10.4028/www.scientific.net/SSP.180.250 

Zimroz, R., Bartkowiak, A.: Investigation on spectral structure of gearbox vibration signals 
by principal component analysis for condition monitoring purposes. Journal of Physics: 
Conference Series 305(1), Article number 012075 (2011) 

Bartkowiak, A., Zimroz, R.: Outliers analysis and one class classification approach for pla-
netary gearbox diagnosis. Journal of Physics: Conference Series 305(1), Article number 
012031 (2011) 

Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems 
research: A tutorial overview. Mechanical Systems and Signal Proc. 25(1), 4–111 
(2010) 

Bartkowiak, A., Zimroz, R.: Data dimension reduction and visualization of multi-
dimensional data with application to gearbox diagnostics data: comparison of several 
methods. Solid State Phenomena 180, 177–184 (2012);  

 doi:10.4028/www.scientific.net/SSP.180.177 
Jabłonski, A., et al.: Automatic validation of vibration signals in wind farm distributed 

monitoring systems. Measurement (2011) (in Press);  
doi:10.1016/j.measurement.2011.08.017 

Gelman, L., Zimroz, R., et al.: Adaptive vibration condition monitoring technology for lo-
cal tooth damage in gearboxes. Insight: Non-Destructive Testing and Condition Moni-
toring 47(8), 461–464 (2005) 

Bartelmus, W., Zimroz, R.: Vibration condition monitoring of planetary gearbox under va-
rying external load. Mechanical Systems and Signal Proc. 23(1), 246–257 (2009) 

 
 



Chapter 5  

Noise and Vibration of Machines 

 
 
 
 
 
 
 
 
Recent decades have seen the rise of noise and vibration problems associated with 
machinery which are more and more complex. Vibrations of machines are the 
results of the dynamic forces, due to moving parts which are related to the 
machine and its mechanical properties. 

The understanding of the machine’s noise and vibration signatures and their 
time dependent behavior are one of the main criteria for efficient condition 
monitoring. 

In this section, where noise and vibration are discussed, different theoretical 
and practical methods are presented. The damping phenomenon is used for noise 
and vibration reduction. There are also given papers on more advanced techniques 
like: dynamic absorbers, floating supports, damper modeling and so on. 
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Abstract. Acoustic emission (AE) has evolved as one of the much used tech-
niques for condition monitoring and diagnosis of rotating machinery. Major re-
search has been carried out in the attempt to comprehend the prospects of AE in 
condition monitoring of bearings. However, this has been mainly applied to other 
types of bearings. This study investigates the usefulness of the AE approach in the 
seeded damage detection on self-aligning ball bearings. 

Keywords: Acoustic emission, condition monitoring, self-aligning ball bearing. 

1   Introduction 

Acoustic emission (AE) could be defined as the range of phenomena that leads to 
the generation of structure-borne and fluid-borne (liquid, gas) propagating waves 
due to the rapid release of energy from localised sources within and/or on the sur-
face of a material (ISO 22096, 2007). The use of the acoustic emission technology 
in research and industry is well-known (Mba and Rao, 2006). Few researchers 
have assessed the application of AE technology for diagnostic and prognostic pur-
poses in self-aligning ball bearings. Others (Jamuludin and Mba (2002a), Jamu-
ludin and Mba (2002b). Tandon 1994, Tandon and Choudhury, 1999, Barkov et al 
1997, Tandon and Nakra, 1992, Kim et al., 2007,) applied AE in detecting damage 
on other types of bearings. 

Elforjani and Mba presented the results of an investigation to assess the poten-
tial of the Acoustic Emission (AE) technology for detecting and locating natural 
defects in rolling element bearings. Rolling element bearings are the most com-
mon cause of rotating machinery failure. Over the past 20 years, Acoustic Emis-
sion (AE) technology has evolved as a significant opportunity to monitor and  
diagnose the mechanical integrity of rolling element bearings. The results from 
their investigation showed that the method of identifying the onset of crack propa-
gation can be employed as a quality control tool for bearing manufacturers par-
ticularly for testing bearing material homogeneity (Elforjani and Mba 2010).   

Elforjani and Mba demonstrated the use of AE measurements to detect, locate, 
and monitor natural defect initiation and propagation in a conventional rolling 
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element bearing. To facilitate the investigation they built a special purpose test rig 
to allow for accelerated natural degradation of a bearing race. They concluded that 
subsurface initiation and subsequent crack propagation can be detected with the 
AE technology. The study demonstrated that AE parameters such as RMS and en-
ergy are more reliable, robust, and sensitive to the detection of incipient cracks 
and surface spalls in slow speed bearing than vibration analysis (Elforjani and 
Mba 2008). 

This study uses AE monitoring techniques to detect incipient damage at various 
torque loads and speeds for a self-aligning ball bearing. 

2   Methodology 

Incipient damage was artificially introduced to the outer race of the self-aligning ball 
bearing. The self-aligning ball bearing data was then obtained using acoustic emission 
sensors at various torque loads and varying speeds. The speed was varied by using a 
variable speed controller and a tachometer measured the speed. The acoustic emission 
sensor was connected to a SVAN958 data acquisition system. The data was obtained at 
a sampling rate of 48 kHz. Torque load was introduced by using a voltage controller 
which introduced torque loads corresponding to the voltage increase. The data ob-
tained was then downloaded, processed and analyzed in the time domain using 
MATLAB based software. The statistical parameters of interest were peak value, Root 
Mean Square (RMS), Crest factor (CF) and Kurtosis (K). Kurtosis values above the 
value of three indicate the presence of damage whereas kurtosis values below three in-
dicate the absence of damage. 

3   Results 

The data obtained at various torque loads and speeds was processed in MATLAB 
based environment and tabulated as shown below in tables 1. Table 1 shows the 
statistical parameters of peak value, Root Mean Square, Crest factor and Kurtosis at 
various torque loads of ‘no torque load’, ‘torque load 2’, ‘torque load 3’, ‘torque 
load 3’ and ‘maximum torque load’ and speeds of ‘156 RPM’, ‘360 RPM’, ‘500 
RPM’, ‘810 RPM’ and ‘1100 RPM’.  

Table 1 Statistical parameters at various torque loads. 

Loads @156 RPM Peak RMS CF K 

No Torque Load 1.3143 0.3671 4.0090 3.1354 

Torque Load 2 1.3700 0.3677 4.1726 3.0913 

Torque Load 3 1.2497 0.3669 3.8149 3.1145 

Torque Load 4 1.3021 0.3697 3.9444 3.1352 

Maximum Torque 1.2604 0.3470 4.0683 3.0727 

Loads @ 360 RPM Peak RMS CF K 

No Torque Load 1.7302 0.4157 4.6608 3.3438 
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Table 1 (continued) 

Torque Load 2 1.7571 0.4254 4.6265 3.3428 

Torque Load 3 1.5751 0.4169 4.2318 3.2249 

Torque Load 4 1.5314 0.4211 4.0725 3.3103 

Maximum Torque 1.1911 0.3536 3.7733 3.1314 

Loads@ 500 RPM Peak RMS CF K 

No Torque Load 1.6255 0.4558 3.9934 3.2586 

Torque Load 2 1.8537 0.4773 4.3496 3.2930 

Torque Load 3 1.6961 0.4736 4.0109 3.2315 

Torque Load 4 1.8519 0.4818 4.3053 3.3089 

Maximum Torque 0.4966 0.3528 3.9543 3.0770 

Loads @ 810 RPM Peak RMS CF K 

No Torque Load 1.6794 0.4820 3.9022 3.2506 

Torque Load 2 1.8437 0.4891 4.2218 3.2014 

Torque Load 3 1.8417 0.4966 4.1535 3.2762 

Torque Load 4 1.7834 0.4949 4.0355 3.2842 

Maximum Torque 1.1997 0.3594 3.7381 3.0178 

Loads@1100 RPM Peak RMS CF K 

No Torque Load 1.9373 0.4973 4.3633 3.3228 

Torque Load 2 1.7065 0.4978 3.8397 3.2385 

Torque Load 3 1.8328 0.4973 4.1278 3.2347 

Torque Load 4 2.0306 0.5001 4.5476 3.2086 

Maximum Torque 1.3206 0.3540 4.1774 3.1656 

4   Discussion 

Damage was artificially introduced to the outer race of the self-aligning ball bear-
ing. The self aligning ball bearing data was then obtained using acoustic emission 
sensors at various torque loads and varying speeds. The speed was varied by using 
a controller and a tachometer measured the speed. Torque load was introduced by 
using a voltage controller which introduced torque loads corresponding to the 
voltage increase. The data obtained was then processed and analyzed in the time 
domain using MATLAB based software. The statistical parameters of interest 
were peak value, Root Mean Square (RMS), Crest factor (CF) and Kurtosis (K). 
Kurtosis values above the value of three indicate the presence of damage whereas 
kurtosis values below three indicate the absence of damage. 

The self-aligning ball bearing data obtained at various torque loads and speeds 
was processed in MATLAB based environment and tabulated as shown below in 
table 1. Table 1 shows the statistical parameters at various torque loads of ‘no tor-
que load’, ‘torque load 2’, ‘torque load 3’, ‘torque load 3’ and ‘maximum torque 
load’ and speeds of ‘156 RPM’, ‘360 RPM’, ‘500 RPM’, ‘810 RPM’ and ‘1100 
RPM’. 
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It can be seen from table 1 that at a speed of 156RPM and no loading we have 
kurtosis values slightly above three which indicates the presence of incipient dam-
age as we would expect. Also, at torque load 2, torque load 3, and torque load 4 
the kurtosis value is slightly above 3 still indicating the presence of incipient dam-
age. At a maximum torque load we still have a kurtosis value slightly above 3 
even though it is lower in magnitude in comparison with previous values. It is still 
slightly higher than 3 and indicates the presence of incipient damage. 

Furthermore, it can be seen from table 1 that at a speed of 360RPM and no 
loading we have kurtosis values slightly above three which indicates the presence 
of incipient damage as we would expect. Also, at torque load 2, torque load 3, and 
torque load 4 the kurtosis value is slightly above 3 still indicating the presence of 
incipient damage. At a maximum torque load we still have a kurtosis value 
slightly above 3 even though it is once again lower in magnitude in comparison to 
previous values obtained at the same speed. It is still slightly higher than 3 and in-
dicates the presence of incipient damage. 

Finally, it can be seen from table 1 that at a speeds of 500 RPM, 810 RPM and 
1100 RPM and no loading we again have kurtosis values slightly above three 
which indicates the presence of incipient damage as we would expect. Also, at 
torque load 2, torque load 3, and torque load 4 the kurtosis value is still slightly 
above 3 still indicating the presence of incipient damage. At a maximum torque 
load we still have a kurtosis value slightly above 3 even though it is lower in mag-
nitude in comparison to previous kurtosis values obtained at the same speeds re-
spectively. The kurtosis values are still slightly higher than 3 and hence indicates 
the presence of incipient damage. 
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Fig. 1 Statistical parameters at various torque loads and speeds 
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Fig. 2 Kurtosis at various torque loads and speeds 

The statistical parameters of interest ie Peak value, RMS, crest factor and kurtosis 
tabulated in table 1 were plotted in figures 1 and 2. From figure 1a it can seen that 
the Peak value is constant for increasing torque value. However at maximum torque 
value the peak value is lower in magnitude than previous ones. From figure 1b it can 
equally be seen that the RMS value is constant for increasing torque value. However 
at maximum torque value the RMS value is lower in magnitude than previous ones. 
From figure 1c it can seen that the crest factor is generally decreasing gradually for 
increasing torque values.  From figure 1d it can also be seen that the kurtosis is gen-
erally decreasing gradually for increasing torque values.  From figure 2 it is clearly 
seen that the kurtosis value at all torque loads and speeds is slightly above 3 indicat-
ing the presence of incipient damage. It can also be seen that the kurtosis value gen-
erally decreases with increasing torque load. 

5   Conclusion 

Self-aligning ball bearing data was obtained and processed in MATLAB environ-
ment. From the results it can be seen that the kurtosis value at all torque values 
and speeds was slightly above 3 indicating the presence of incipient damage. It 
can equally be seen that for increasing torque loads the kurtosis value generally 
decreases. The acoustic emission technique was found to be useful in the condi-
tion monitoring of self-aligning ball bearings.  
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Abstract. Wave propagation in coupled structure is investigated in this paper. When
waves propagate through a media, they will encounter changes in geometry or ma-
terial. At such discontinuities due to corrosion or cracks, some of waves will be
reflected and transmitted. A hybrid numerical method called ’Wave Finite Ele-
ment/Stochastic Finite Element Method’ (WFE/SFEM) is been used to take into
account the variation in propagation characteristics due to the variability in me-
chanical and geometrical properties of coupling element. The effect of uncertain
discontinuities on the reflection and transmission coefficients is evaluated and vali-
dated for 3D multimodal waveguide vs Monte Carlo simulations.

1 Introduction

The safety of structures and damage detection are important tasks in many indus-
trial applications such as civil engineering and petroleum engineering. The right
diagnosis about default is a real challenge for engineers. Many industrial concept
exist which helps to perform default detection. The non-destructive techniques like
ultrasonic testing, magnetic particle testing and Thermal Infrared Testing, are often
used to detect local defects and allows a precise information about inhomogeneities
(size, distance, ...) that might be defects.

For connected element of structures, the diffusion coefficients can offer an idea
about the dynamics of the global system. For that purpose, guided wave techniques
are among the most useful non-destructive testing one. From the analysis of reflec-
tion coefficients, the location and the dimension of singularities can be evaluated.
The presence of discontinuities (cracks, geometrical changes ...) in continuous struc-
tures causes a local flexibility and modify the dynamical behavior of the media. For
an incident wave on this inhomogeneity, a reflected and transmitted waves are gen-
erated. The evaluation of the corresponding diffusion coefficients is an important
preliminary task. It not only assesses the level of delectability of defects but also it
serves as comparison signals to real measurements.

Diffusion properties have been obtained using different methods. Mace [1] inves-
tigated analytically the wave reflection and transmission in a beam. Mei et al. [2]
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described the dynamical behavior of an axially loaded Timoshenko beam with dis-
continuities and offered an analytical expression for diffusion matrices. Wang et al.
[3] extended an analytical approach using higher order plate theories to investigate
the transmission and reflection coefficients in a damaged beam. Chondros et al. [4]
used the Hu-Washizu-Barr variational formulation to develop a differential equation
for the continuous cracked beam. Some researchers used also spectral formulations
to describe, by mean of these coefficients, the dynamical behavior of coupled struc-
tures. Mencik et al. [5] and Ichchou et al. [6] used the Wave Finite Element (WFE)
to evaluate the Diffusion Matrix Model (DMM) which predicts the diffusion matrix
in low and mid-frequency. Zhou et al. [7] used the WFE to investigate the alterations
in cylindrical pipes and extracted reflection coefficients for different cases.

This paper combine two different formulations: the wave finite element and the
stochastic finite element method. An explicit form for statistics of reflection and
transmission coefficients is proposed. Deterministic waveguides coupled by an un-
certain media are more precisely considered. This method describes the mode con-
version through local discontinuities. In the mid-frequency (MF) band, section’s
modes are strongly affected by singularities and the dynamic response of the whole
structure can be modified. The WFE/SFEM leads to identify the effect of an uncer-
tain coupling element on diffusion coefficients. In section 2, a brief introduction to
the WFE method is presented. Section 3 deals with the statistics of kinematic diffu-
sion matrix. Finally, numerical simulations are presented in section 4 and validated
through the Monte Carlo simulations.

2 Brief Introduction of the Deterministic WFE

This section describes the principal of the wave finite element method (WFE). Since
the goal is to describe the propagation in waveguide structures, the dynamic behav-
ior of a straight elastic dissipative element is dealt with. The considered structure
is composed by N identical element (Fig. 1) connected along the principal direc-
tion, say axis x. From a given cross-section along the x-axis, left and right parts
are denoted as L and R, respectively. The length of each subsystem is denoted as
d. The formulation is based on the finite element model of a typical subsystem,
as illustrated in (Fig. 1), whose displacements and forces variables, are written q
and F respectively. Mesh compatibility at coupling interfaces between subsystems

x

k
LF

k
Lq k

Rq + k 1
Lq + k 1

Rq
+1k

LF +1k
RF

Substructure 1 Substructure 2 Substructure k Substructure N

Substructure k Substructure k 1+ 

k
RF

Fig. 1 Typical substructures waveguide.
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is assumed. It’s implies that the left and right cross-sections of the given subsystem
contains the same number of degrees of freedom, say n. The dynamic equilibrium
equation of this subsystem, at frequency ω/2π , can be stated as follows [8]:(

DLL DLR

DRL DRR

)(
qL

qR

)
=

(
FL

FR

)
(1)

where (n×n) matrix Dij = Kij−ω2Mij ({i,j} ∈ {L,R}) stands for the ij com-
ponents of the dynamic stiffness operator D condensed on the left and right cross-
sections [8]. Here, K and M stand for the stiffness and mass matrices, respectively.
Dissipation can be considered through standard FEM models. According to Bloch’s
theorem, the dynamics of the global waveguide can be expanded on specific wave
solutions of the form:

qR = μqL (2)

and
FR =−μFL (3)

where μ denotes the propagation coefficient. Indeed, inserting Eqs. (2) and (3) into
Eq. (1) leads to the following spectral problem [9]:(

DRL+ μi(DLL+DRR)+ μ2
iDLR

)
(φq)i = 0 (4)

where (μi,(φq)i)i=1,...,2n stands for the wave modes of the global system. It is re-
markable that DT

RL = DLR and (DLL+DRR)
T = (DLL+DRR). Using these properties,

we can prove that (φq)Ti is the eigenvector associated to the eigenvalue μ−1
i [5].

The frequency response of the global system can be expressed by expanding the
kinematic variables of the considered subsystem on the eigenvectors basis:(

qL

−FL

)
=

[
φq
φF

]
QL and

(
qR

FR

)
=

[
φq
φF

]
QR (5)

where φq and φF stand for the matrices of eigenvector (φq)i and (φF)i, respectively,
and where QL and QR stand for the (2n× 1) generalized coordinates evaluated for
the left and right boundaries of the subsystem. These eigensolutions serve as ba-
sic description for the propagative approach used in the WFEM for calculating the
diffusion parameters.

3 Kinematic Diffusion Matrix for Random Coupled Elements

The hybrid (WFE/SFEM) method is used to establish the kinematic diffusion matrix
of stochastic coupled structures. The deterministic formulation is developed using
Lagrange multiplier [5, 6]. For this purpose, two deterministic periodic waveguide
connected through a stochastic coupling element are considered (see Fig. 2). In this
case, the Ghanem and Spanos’ [10] SFEM based on polynomial chaos expansion,
is used.
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Fig. 2 Two coupled waveguides through a stochastic coupling element

The stochastic diffusion matrix is evaluated using one layer of element for each
waveguide as well as for the uncertain coupled structure.

As described in the previous section, the dynamical behavior of coupled element
is written as:

K̃coup

(
q̃c
Γ1

q̃c
Γ2

)
=

(
F̃c
Γ1

F̃c
Γ2

)
(6)

where K̃coup is the stochastic dynamical stiffness matrix condensed on the left and
the right sides of each sections Γ1 and Γ2 and q̃c

Γ1
and q̃c

Γ2
(resp. F̃c

Γ1
and F̃c

Γ2
) rep-

resent the stochastic displacement (resp. force) evaluated for the same sections. The
continuity conditions can be expressed in matrix form as:

(
q̃c
Γ1

q̃c
Γ2

)
=

(
q̃(1)
Γ1

q̃(2)
Γ2

)
,

(
F̃(1)
Γ1

F̃(2)
Γ2

)
=−

(
F̃c
Γ1

F̃c
Γ2

)
(7)

where q̃(1)
Γ1

and q̃(2)
Γ2

(resp. F̃(1)
Γ1

and F̃(2)
Γ2

) represent the stochastic displacements
(resp. forces) evaluated in Γ1 and Γ2 for each waveguide. The variability of cou-
pled mechanical characteristics affects directly the displacements and the forces in
the whole system. The equations (6) and (7) lead to express the relation between
stochastic kinematic variables on the left and on the right of substructure 1 and 2
using the stiffness matrix of coupled element as:

−K̃coup

(
q̃(1)
Γ1

q̃(2)
Γ2

)
=

(
F̃(1)
Γ1

F̃(2)
Γ2

)
(8)

From the eigensolutions of the equation (4), the stochastic kinematic variables for
each waveguide i can be expanded on the wave base as:

q̃(i)
Γi

=
(

φinc(i)
q φref(i)

q

)(Q̃inc(i)

Q̃ref(i)

)
and F̃(i)

Γi
=
(

φinc(i)
F φref(i)

F

)(Q̃inc(i)

Q̃ref(i)

)
i= 1,2

(9)
where Q̃(i) are the stochastic mode amplitudes and φ (i) are the deterministic wave

shapes. The subscripts q and F refer respectively to the displacement and the force.
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The stochastic equilibrium equation (8) can be expressed using equation (9) and it
becomes the following diffusion matrix:

(
K̃coupψinc

q +ψinc
F
)︸ ︷︷ ︸

Ã

(
Q̃inc(1)

Q̃inc(2)

)
=−(K̃coupψref

q +ψref
F
)︸ ︷︷ ︸

B̃

(
Q̃ref(1)

Q̃ref(2)

)
(10)

In a condensed form: (
Q̃ref(1)

Q̃ref(2)

)
= C̃

(
Q̃inc(1)

Q̃inc(2)

)
(11)

where ψinc
q , ψref

q , ψinc
F and ψref

F are expressed as follows:

ψinc
q =

(
φinc(1)

q 0

0 φinc(2)
q

)
, ψref

q =

(
φref(1)

q 0

0 φref(2)
q

)

ψinc
F =

(
φinc(1)

F 0

0 φinc(2)
F

)
, ψref

F =

(
φref(1)

F 0

0 φref(2)
F

)
(12)

The projection of the stochastic diffusion relation (10) leads to write the zero order
term as: (

Q̄ref(1)

Q̄ref(2)

)
= C̄

(
Q̄inc(1)

Q̄inc(2)

)
(13)

where
C̄ =−[K̄ψref

q +ψref
F
]+ [

K̄ψinc
q +ψinc

F
]
= B̄+× Ā (14)

where + is the pseudo-inverse.
C̄ represents the deterministic diffusion matrix which provides the mean of reflec-
tion and transmission coefficients. Both propagative and evanescent wave modes
are considered in this formulation. In addition, the first-order projection of equation
(10) is written as:

Ā
(

σQinc(1)

σQinc(2)

)
+σA

(
Q̄inc(1)

Q̄inc(2)

)
=−B̄

(
σQref(1)

σQref(2)

)
−σB

(
Q̄ref(1)

Q̄ref(2)

)
(15)

The combination of equation (14) and (15) leads to express the standard deviation
of the reflected and transmitted waves amplitudes as:(

σQref(1)

σQref(2)

)
= C̄

(
σQinc(1)

σQinc(2)

)
+
(−B̄−1 [σA +σBC̄

])(Q̄inc(1)

Q̄inc(2)

)
(16)

where σA and σB represent the standard deviation of defined matrices in equation
(10) and explicitly expressed as:

σA = σKψinc
q

σB = σKψref
q (17)
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where σK is the standard deviation of the dynamic equilibrium matrix for coupling
element. Finally, with respect to the first-order expansion of equation (11), the stan-
dard deviation of kinematic diffusion matrix is expressed as:

σC =−B̄−1 [σA +σBC̄
]

(18)

This last equation provides the variability of the wave conversion on local inhomo-
geneities.

4 Numerical Validation

Using high frequency vibration causes many differences between experimental and
numerical results. To deal with inspection of structures, the wavelength must be
smaller then the size of the imperfection, so the high frequency excitation is re-
quired to detect all discontinuities in expected structure. In this validation case, the
presented formulation is tested for a real case based problem.

Let’s define an infinite pipeline containing a crack. This structure is modeled as
two waveguides connected through a coupling element (small part of the pipeline
containing the crack) (see Fig. 3). The two semi-infinite waveguides are modeled
using only one layer directly related to the coupling element which is supposed to
be an uncertain structure with 2% of variabilities in Young’s modulus. The table 1
resumes the mechanical characteristics of the studied structure.

Table 1 Characteristics of studied structures

E (Pa) ρ (kg/m3) d (m) η(%) InnerRadius(m) Outerradius(m)

Waveguides 2 ·1011 7800 1 ·10−3 1 0.073 0.084
coupling element 2 ·1011 7800 1 ·10−2 1 0.073 0.084

Crack

One subsystem of the wave guide Stochastic coupling element

Fig. 3 Model of studied layer and coupling element
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Fig. 4 Standard deviation of reflection and transmission coefficients for different waves: (-
red): reflection, (- black): transmission , (∗): reflection Monte Carlo, (o):transmission Monte
Carlo

Fig. 4 represents the standard deviation of diffusion coefficients respectively:
(a)= Longitudinal, (b)= Torsion, (c)= Flexion 1, (d)= Flexion 2. The presented
results shows the effects of variability of Young’s modulus in the coupling element.
This dispersion can be very useful in defect detection as it gives a clearer idea of the
crack’s dimension. The presented results are validated vs the Monte Carlo simula-
tions with 2000 samples which proves its efficiency.

5 Conclusion

An explicit formulation to predict the dispersion of diffusion coefficients regarding
uncertainties in the coupling element were presented in this paper. This presented
formulation is based on the hybridization of a spectral formulation (WFE) and a
stochastic representation (SWFE). In order to validate it, an example based on a
real case was treated and compared to Monte Carlo simulations.In high-frequency,
the energetic formulations are more accurate to describe the dynamical behavior of
systems. In addition, the effect of uncertainties will be more and more significant. As
a future work, the effects of the uncertainties on the energetic diffusion coefficients
can be treated, as well as the investigation of the coupling loss factor sensitivity.
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Abstract. In this work, we focus on monitoring and reconfiguration of an Adap-
tive Model Reference (MRA) Fault-Tolerant Control (FTC) for large-scale  
system. This particular class presents an interconnected and networked control 
system (INCS). Moreover, the system can be decomposed into N-interconnected 
subsystems communicating with network. Then the global output of INCS and one 
or more outputs of N-interconnected and networked control subsystems are at-
tacked by sensor faults. Therefore, an active Fault-Tolerant (FT) approach, say the 
model reference adaptive control of linear systems, is used in order to guarantee 
not only the stability of an overall INCS globally, but also all local stabilities of  
N-networked control subsystems with strong interactions, delay and additive 
faults. Moreover, two architectures: centralized and decentralized adaptive con-
trollers are designed to compensate the sensor faults for different internal struc-
tures of systems which are subject of this paper. The law adaptations which make 
the different faulty systems stable are given. A simulation example of an overall 
INCS consisting of three interconnected and networked control subsystems and 
involving stabilization of unstable steady-states is used to demonstrate the effi-
ciency of the proposed approach. 

Keywords: Adaptive control, Centralized control, Decentralized control, Fault-
tolerant control (FTC), Interconnected system, Networked control system (NCS), 
Reference model (RM), Sensor failure. 

1   Introduction 

The notion of Fault-Tolerant adaptive control has been an active area of research 
(Blanke et al 2003, Bodson and al1997, Patton 1997, Patton et al 1997, Patton et al 
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2007). The theory of large-scale systems is devoted to the problems that arise from 
some difficulties: dimensionality, information structure constraints, uncertainty 
and delays (Ioannou et al 1985, Mahmoud et al 1997, Huang and Nguang2010, 
Lina and Chen 2006, Patton et al 2010). 

A system is considered large-scale if it is necessary to partition the given analy-
sis or synthesis into manageable sub-problems. As a result, the overall system is 
no longer controlled by a centralized controller but by several independent con-
trollers which all together represent a decentralized controller. This is the funda-
mental difference between feedback control of small and large systems. On one 
hand, the development in this direction  has  reached  a  level  of  important  
applications  where  adaptive  controllers  are used  to  enhance  stability  
and  improve  operating conditions  of  defective systems (Bodson and Grosz-
kiewicz1997, Ioannou and Kokotovic1985, Mahmoud1997, Tsai et al2009).  On 
the other hand, her theory is developed to make a general practical use of adaptive 
controllers in both large-scale and networked control systems (Ioannou and Koko-
tovic1985, Mahmoud1997, Patton et al). In  interconnected and networked con-
trol systems, there  will  be more  adaptive  controllers located  at  different,  
possibly  distant  units,  and  in control  centers.  Besides,  the  dynamic of 
each  local  subsystem  is not  known  exactly  and  the  local  outputs  are 
corrupted with noise disturbances and faults via network control.  In this paper, 
centralized and decentralized adaptive FTC based on reference model is included 
in presence of all interactions and over medium of communication between each 
subsystem. Two structures of adaptive controllers for interconnected and net-
worked system is proposed (Bakule 2008, Challouf et al, Hansheng2003, Hova-
kimyan and Ramachandra2006, Sundarapandian2005). Each adaptive controller is 
designed to compensate the additive faulty sensor.  The stability of the overall 
adaptive control scheme is established.  

The paper is organized as follows: Section 2 recalls the interconnected and 
networked control system modernization. Also, it represents the controller synthe-
sis for LTI and continuous time systems. A simulation example of three intercon-
nected and networked control subsystems subject to sensor faults is used in  
Section 3 to illustrate the effectiveness and performance of the two architectures 
(centralized and decentralized) active fault tolerant control system. Finally, a con-

clusion is included.  

2   Problem Statement 

2.1   Interconnected System 

This class of the large-scale system can be composed of N-interconnected subsys-
tems (Ioannou and Kokotovic1985, Mahmoud1997). 
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Consider an overall interconnected system which is given by the following state 
spaces: 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )
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(1) 

The index p designs the processus parameters. 

Ap, Bp, Cp, D and V are the parameters system with appropriate dimensions. 

On the other hand, ( ) ( ) ( ), ,
n m q

X t U t Y tp p p∈ ∈ ∈  and 

( ) ( )p p
W t andV tp p∈ ∈  are the state vector, the control vector, the output 

vector and the external disturbance vectors respectively. 
As black as this class of the large-scale system contains N-interconnected sub-

systems and based on equation (1), the partitioned matrix Xp, Up and Yp are: 

So, we can write: 
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Where: ,i i in m q
pi pi piX U andY∈ ∈ ∈ are respectively the local states, the 

control and the output of the subsystems (Si).  

,i i i i i in n n m q n
pi pi piA B and C× × ×∈ ∈ ∈ are respectively the parametric ma-

trix of the local states, the control and the output of the ith processus coupled with 
jth subsystems (Sj). 

2.2   NCS Model 

The stage of modeling is rather significant at the time of the study of a process. 
The systems considered in this work belong to a particular class. They are the sys-
tems ordered by a medium of communication, they are known still by the systems  
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ordered in network (NCS) [Huang and Nguang 2010, Lina and Chen 2006, Patton 
et al 2007]. This class of the system presents the phenomenon of delay in their dy-
namic of which its structure is illustrated by the fig.1. Contrary to the ordinary 
systems whose temporal evolutions can be given starting from the value of state. 
Those of the systems ordered in network depend primarily on of the last values of 
the state Xp(t). Moreover, the latter present the phenomena of delay and the losses 
or duplications of the messages during the transmission of the data con-
trol/actuator: τcA and sensor/control: τsc. 

 
 

 

Fig. 1 Internal Structure of NCS 

Generally, three working frameworks are used to represent a late system:  
models on ring, infinite models of dimension on operators and models in the form 
of differential equations. In this present work, concerning the stability on the one 
hand and the modeling of communication TCP on the other hand, we are interest-
ed in the effects of the delay in dynamics of the NCS. Plus precisely, we thus con-
sider systems (eq.1) rewritten in the form: 
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S Y t C X tp p p p
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τ τ
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= −

=

⎧
⎪
⎨
⎪
⎩

           (4) 

At the time of the phase of modeling, as well as the matrices defining a model, it 
is essential to determine the type of delay which affects the system (see fig 1). The 
delay can be between control/actuator and/or sensor/control that as (see fig.1): 
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 0 .maxmin;sc cA τ τ ττ τ τ ≤ ≤ ≤= +                       (5)                              

τmin and τmax represent respectively the minimum and maximum values of delay. 
All MIMO transfer matrix representations have appropriate dimensions and are 
proper real-rational matrices, stabilisables and detectable. A state space rational 
proper transfer function is denoted by: 

 
             (6) 

 

2.3   Model Reference Adaptive FTC Design 

Consider a LTI system defined by eq.12. To accommodate the last system, we 
were implementing adaptive FTC. His principal is explained by fig.2 offering the 
structure of co-operative INCSs and FTC. The last method is based on reference 
model.  

 
 

 

Fig. 2 Structure of co-operative Interconnected NCSs and FTC 

This last figure proves the aptitude to reach the characteristics specified of con-
trol by the networked to communicate between N-interconnected subsystems in 
presence of faults (Bakule 2008, challouf et al 2009, Hansheng 2003, Sundarapan-
dian 2005).  
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In the time domain, the overall reference model is described by the equation: 

= +( ) ( ) ( ).Y t A Y t B r tm m m m                     
(7) 

The index m designs the known reference model parameters. 
In this part, we apply the direct method of the fault tolerant adaptive control. 

The control input is given by equation (8) as follow: 

= +( ) ( ( ) ( )) ( ( ) ( )).0 0U t C t r t G t Y tpP                     
(8) 

With C0(t) and G0(t) are the parameters of the adjustable controller. 
The derivation of time response plant is given by: 

= + +( ) ( ) ( ) ( ).
0 0
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When C0(t) = C0
* and G0(t) = C0
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The motivation being that there exist nominal parameter values of the adaptive 

controller: 
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The update laws are given by: 
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Thus, the expression of the adaptive law control becomes: 

( ) ( )( ) ( )( ) ( )( ) ( )( )φ φ= − + −
* *

.0 0U t t C r t t C Y tr pY       
(12) 

Since, the error dynamic equation between the plant time responses Ypf(t) and ref-
erence model Ym(t) with the adjustable parameters of the regulator is given by:

 0
e  

3   Three Interconnected and Networked Control Subsystems 
Example 

In this simulation party, we interest at a numerical example where N=3 illustrated 
by fig. 3 in order to demonstrate the efficiency of the proposed control.  
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Consider the overall system (eq.1) consisting of three interconnected and net-
worked control sub-systems (Sys1), (Sys2) and (Sys3) with unit reference input 
(r(t)=1). On one hand based on fig.2, the transfer function of overall intercon-
nected networked control reference model (eq.17) is giving as follows: 

( )
( )

3 23 11.26 13.14 4.7030.348
4 3 25.5 11.06 9.688 3.125

Y t s s ssmSys em
U t s s s sm

+ + +−= =
+ + + +

 But, the transfer function of overall interconnected networked control system 
without external disturbance is giving as follows: 

3 23 11.26 13.14 4.7030.348
4 3 25.5 11.06 9.688 3.125

s s ssSys ep
s s s s

+ + +−=
+ + + −

 

So reference to the last transfer function, the overall interconnected and net-
worked control system Sysp is unstable. 

On the other hand, the interconnection vector functions are respectively: G12=-
0.5, G21=0.5, g12=-0.579 and the total delay is: τ= 0.348 where the delays into sen-
sor/control and control/actuator are giving respectively: τsc  = τcA = 0.174. The 
global Interconnected NCS (Sysp) is unstable. Then as the fault fs(t) is additive it 
can attack  the total output Yp(t)or one or more outputs Yp(t)  of the total system 
Sysp. It is clearly, at the moment t = 20sec, we generate the offset fault with  
amplitude 1. 

The time response Ypf(t) of the plant becomes: 

( ) ( ) ( ) , 1,..., .pf p sY t Y t f t i N= + =
                  

(13) 

We use the control law (18) for various types of faults. The figures 4 and 5 illu-
strate the trajectories of the overall INCS time responses Ypf(t), the reference mod-
el Ym(t) and  the error e0(t). 

The fig.5 illustrates the dynamic global controls trajectories: Up(t) were imple-
mented on different interconnected and networked control Subsystems Sysp to ac-
commodate the defective overall interconnected and Networked control system. 

4   Main Results and Interpretations 

Here, to study the influence and the differences between centralized and decentra-
lized architecturally adaptive controllers based on reference model, the fig.4 and 
fig.5 illustrate the various response trajectories. It is clearly that the accommoda-
tion of Interconnected NCSf is realized by the proposed control laws such that are 
find simulation results. In addition, it is clearly that the adaptive FTC is imple-
mented to three subsystems. They are LTI, continuous times, interconnected and 
networked control subsystems Sysi,i=1,2,3. All constitute an overall intercon-
nected NCS system Sysp which his parameters depend essentially on all subsys-
tems. Besides, the responses of defective plant Ypf(t) are controlled by centralized 
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control: U(t) and decentralized controls: u1(t) and u2(t) in the presence of faulty 
sensor (see respectively fig.4 and 5). The global and distributed outputs respec-
tively Ypfg(t) and Ypf(t) are reconfigured where a change then it recovers the desired 
output Ym(t) of reference model. 

 

 

Fig. 3 Functional diagram of Interconnected NCS in presence of sensor faulty 

 

Fig. 4 Dynamic global output responses via MR Adaptive FTC. 

Time (Sec) 
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Fig. 5 Dynamic distributed output responses via MR Adaptive FTC 

In fig.6, the errors between the outputs defective processus and his reference 
model towards zeros for centralized and decentralized adaptive controllers. In the 
presence of additive defects, the accommodation of the N-interconnected and net-
worked control subsystems is assured by the fault tolerant adaptive control based  
 

 

Fig. 6 State errors 

Time (Sec) 

Time (Sec) 
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on reference model. We can note that the decentralized architecture of adaptive 
FTC implanted of an overall interconnected networked control system permits to 
build high performances and marvelous accommodation. The actual class of sys-
tem may be robust to change all delay parameters. If the totals delay τ overstep-
ping the limited values, the processus cannot be stable. 

The adaptive fault tolerant controllers are based on updated controller parame-
terizations C0

* and G0
*. They are updated by some adaptive laws and they are de-

signed to minimize the deviation of output caused by the fault fs(t). 
So, many strong points of the present fault tolerant adaptive control schemes in 

comparison with the existing techniques for two representations (centra-
lized/decentralized) of INCSs are the following: 

(i) they are two structures of large-scale system which differ from one another in 
the model used to represent the coupling between N-subsystems on which the 
controls are based; 

(ii) sensor faulty dynamics are included in the adaptation loop and hence any on-
line estimation  parameters of overall system and N-interconnected subsys-
tems will not cause significant of presence of sensor faults; 

(iii) the present approach can be regarded as a generic one leading to different 
specific schemes that result from the choice of controller models of different 
degrees of complexity. There exists a tradeoff between models complexities 
and system performances for some tracking tasks. This can be used for the 
choice of appropriate fault tolerant adaptive control structures for desirable 
tasks; 

(iv) the appropriate selection of decentralized techniques to be employed on N-
interconnected subsystems distributed; 

(v) a major point in the present development from the two architectures (centra-
lized/decentralized) of controls that are high performances and marvelously re-
configurations of the distributed fault tolerant adaptive controls. 

5   Conclusion 

The paper addresses the adaptive stabilization problem of particular class of com-
plex system: Interconnected and NCSs with time-invarying network-induced delay 
and without packet dropout. Various architectures: centralized and decentralized 
structures of adaptive MR control of objective systems in the presence of sensors 
failures were proposed. Simulation results are given to illustrate the efficacy of 
our design approach using two different structures of adaptive controllers. It is ve-
rified that, a major point in the present development from the two architectures 
(centralized/decentralized) of controls that are high performances and marvelously 
reconfigurations of the distributed adaptive FTC. 
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Abstract. In high speed machining, the interaction between the variable drive fre-
quencies and the excitation frequencies due to bearing defects of the spindle is 
studied in this paper. The interference between both phenomena causes an ampli-
fication of vibration, harmful for the machining stability and chatter, the surface 
quality, as well as the dynamic behavior of the spindle. Even if the implications of 
such interference highly affect the reliability of the machining process and the 
production by creating new critical speeds, this phenomenon has not been yet 
identified as the cause of the problem. The excited frequencies resulting from this 
interference imply new critical rotational speeds that should simply be prohibited 
while establishing cutting parameters. The observation of this phenomena help to 
diagnose bearing defects. Transient experimental results -conducted up to 30000 
rpm- showed the interference phenomenon and pinpointed the critical speeds that 
can be avoided, after bearing maintenance. 

Keywords: High speed machining, bearing spindle vibrations, variable drive fre-
quencies, chatter. 

1   Introduction 

Surface quality (Fig 1) in high speed machining may be affected by many parame-
ters. Specific combination of rotation speed and cutting depth can lead to the am-
plification of vibration (regenerative chatter) [Altintas, Y. and Budak, E., 1995; 
Gagnol, V. et al, 2007].  

In fact, regenerative self-excited vibrations can occur under specific operating 
conditions [Gagnol, V. et al, 2007], causing waviness on the surface, basically re-
lated to the modulation of the cutting force, the chip thickness and the tool vibra-
tion (Fig.1). 

In order to insure a good surface quality during the machining process, to pre-
vent damaging the spindle, machining supervisors use stability lobes diagram [Al-
tintas, Y. and Budak, E., 1995].  
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Fig. 1 Chatter during machining near the stability limit 

 

Fig. 2 Stability lobes and natural frequencies by impact 

Stability diagrams are a graphical representation indicating stable cutting depth 
(underneath the curve) as a function of rotational speed and are dependent of the 
natural frequencies of the spindle-tool-workpiece system, measured by impact 
testing (fig 2).  

2   High Speed Machining 

Previous works [Badri et al, 2009] already proven that these direct stability lobes 
are not efficient, since they are calculated with natural frequencies measured in 
static, neglecting the drift of natural frequencies under the gyroscopic effect, oc-
curring in high rotational speed [Swanson et al, 2005; Lacroix, 1988; Lalanne and 
Ferraris, 1996]. This phenomena will modify the system dynamic parameters ac-
cording to the rotation speed, thus, the equation of motion becomes [Lalanne and 
Ferraris, 1990]:  
 

       (1) 
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The Campbell diagram is obtained by plotting, for each rotating speed, the eigen-
values of the following matrix:  

 0 00 0 1 00. 1· ·                          

(2) 

 
The Campbell diagram (fig 3) indicate the drift of the static natural frequencies 
(750Hz, 2010Hz and 4820 Hz when rpm=0), and the appearance of two new 
components corresponding to the Forward and the Backward mode in each 
frequency. 

 
 

 

Fig. 3 Campbell Diagram 

Using the modified natural frequencies (considering the gyroscopic effect), will 
lead to new stability lobes diagram indicating the maximum cutting rotational 
speed –for faster machining – and the maximum cutting depth allowed, all under 
stable machining [Badri et al, 2010]. 

This section already point out some prohibited rotational speeds for the cutting 
process. The following will investigate the appearance of new critical speeds due 
to the dynamic interaction of electrical phenomena induced by the Variable Fre-
quency drive. 

3   Spindle Model 

In order to simulate the spindle dynamic behavior, a numerical simulation, based 
on a three-dimensional mechanical model with 20 degrees of freedom (Fig. 5), al-
lows for generating the vibratory responses, affected by bearing defects, under va-
riable rotating speed and including the gyroscopic effect. The spindle model is 
based on a simplified 3 d.o.f. bearing model [Sassi et al, 2007]. In order to inte-
grate the directional XY coupling induced by the gyroscopic effect, the model has 

*104 
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to be bi-directional, and 2 bearing housings have been considered to support the 
shaft. The shaft was modeled using a discrete finite element model in order to 
consider its flexible modes. Equation of motion is built according the eq. (1), and 
all dynamic parameters of the model are calculated and detailed in [Badri et al, 
2009]. 

 
 

 

Fig. 4 Stability lobes diagram: Static Natural Frequencies (--) Including Gyroscopic Ef-
fect(-) 

4   Variable Frequency Drive 

In machining centers, when the rotational speed exceeds 16000 RPM, the most 
common spindle type is the built-in motorized spindles. The motor is literally built 
into the spindle. The speed variation is controlled by a VFD (fig. 6a).     

To perform the speed variation, a pulse width modulation is performed on the 
input voltage sine wave (Fig. 6b), according the desired speed. The carrier 
frequency is the main pulse frequency –usually at high frequency: 5KHz and up-, 
and side bands modulation frequencies will appear with ∆F proportional to the 
rotating speed.  

The technical specifications provided by the controller manufacturer -Siemens- 
indicate a carrier frequency located at 11 KHz, This value is confirmed by expe-
rimental vibration measurement on the spindle (fig 7).  
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Fig. 5 20 d.o.f. Spindle Model 

 
 
 
 
 
 
 
 

 

Fig. 6a VFD Principle; b: pulse width modulation 

 

Controller 

Input Speed 
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Fig. 7 Acceleration spectrum at different speeds 

The wideband acceleration spectrums (20Khz) indicate the rotational speed F0, 
an harmonic of the BPFO component due to a bearing defect –more perceptible in 
higher speed-, as well as the VDF carrier frequency at 11Khz and the 
corresponding side bands frequencies (varying  with the rotational speed). The 
energy contribution of the variable drive frequency in the measured vibration 
levels is compiled in table 1. Between 18000 rpm and 24000 rpm, this 
contribution reaches 88% of the overall vibration energy, due to the interference 
with an harmonic of the bearing frequency BPFO. This harmonic was due to a 
spindle bearing defect on the outer race. 

Table 1 VFD Energy Contribution in measured vibration levels 

Speed(RPM) RMS Overall (g) VFD RMS (g) % 

6000 0,29 0,06 22,6 % 

12000 0,32 0,17 54,3 % 

18000 0,49 0,41 84,5 % 

24000 0,65 0,57 88,8 % 

27000 0,68 0,46 68,0 % 

30000 1,19 0,55 46,6 % 
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In order to locate the critical rotational speed, the vibration signal (fig 8) is then 
recorded during linear run up, from 0 to 30 000 RPM (3 to 7 sec), followed by 
permanent regime (7 to 22.5 Sec), and then a shutdown (from 22.5 to 27 Sec). The 
signal has been filtered in the frequency domain to remove noise. Fig 8 shows the 
time-frequency representation. When the fourth harmonic of BPFO crosses the 
VFD lower side band, large vibration amplifications are noticed, that can be seen 
from both the time and time-frequency signals. This new critical frequency, very 
harmful for the spindle dynamic behavior as well as the surface quality, is located 
around 23 000rpm. For better results, it is recommended to operate at higher 
rotational speeds. 
 
 

 

Fig. 8 STFT Spectrogram during run up and shut down measurements 

5   Conclusion 

Machining operators are already aware of prohibited rotating speed frequencies, as 
detected from the stability lobes diagram. Previous work already allowed 
adjusting the stability lobes according to the natural frequencies drift caused by 
the gyroscopic effect. This paper studied the effect of the variable drive 
frequencies (VDF) on the dynamic behavior of spindles in high speed machining. 
At specific rotational speeds, the energy contribution of the VDF can reach 88% 
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of the overall acceleration level, due to the interaction with a bearing defect 
frequency. The new critical frequency allows for detecting the bearing defect (here 
a BPFO from a defective bearing) and must be avoided if correction to the bearing 
is not immediately made.   
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Abstract. This paper presents an experimental study of energy dissipation in gra-
nular particles based on the shear frictional forces between layers of particles. This 
approach is known in the literature as a Non-obstructive particles damping tech-
nique (NOPD).The effects of the system parameters (sizes, materials and packing 
density of particles) on the evolution of specific damping capacity are determined 
in this work research. 

Keywords: damping, friction, energy dissipation. 

1   Introduction 

Granular particles present significant advantages compared to traditional damping 
materials. The introduction of a granular material in a structure [1,2] is a passive 
damping technique, a relatively simple and low cost approach [3] to reduce 
vibration. Because of its extreme simplicity, some applications include granular 
materials such as shuttle space [4], turbine blades [5] and industrial machine [6]. 
In this paper, an experimental study of the dynamic behavior of granular passive 
damping is performed.  The phenomena of damping due to frictional shear forces 
between layers of particles are used to reduce the vibration amplitude of a free-
free beam. The influence of some system parameters such as particles size, 
material and packing density on the evolution of the specific damping capacity 
was experimentally examined. 

2   Experimental Set Up 

This section describes the experimental setup used for an elastic beam treated  
with particle damping for passive vibration reduction. The studied structure is a 
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free–free elastic beam with drilled damper holes filled with granular particles. The 
steel beam is specified with a mass density ρ = 7840 kg/m3, Young’s modulus E = 
2.04.1011Pa and Poisson ratio υ =0.33. The beam dimensions are length L = 500 
mm, width h = 50 mm and thickness b = 15mm. The mass of the beam is 2.58 kg. 
The structure is excited perpendicular to the beam center line (z direction). It is 
suspended with elastic soft springs in order to realize free-free conditions (Fig.1). 
The external force is applied thanks to a voice-coil contactless exciter. A broad-
band random excitation is applied to the beam with a maximum frequency of 10 
kHz in order to reveal its dynamic behavior. The signals to be processed are the 
outputs from the two accelerometers mounted on the vibrating structure. The mea-
surement points are chosen for two reasons: in order to detect all the bending 
modes of the beam and that the position of the accelerometer does not coincide 
with a vibration node. A schematic of the experimental set up is shown in figure 1.  
 

              

 

Fig. 1 (a) A schematic of experiment setup; (b) the voice-coil exciter; (c) Distribution of 
measurement points (1, 2) and excitation point (1) 

The experimental procedure is as follow: In the first step, the modal characteristics 
of the solid beam with and without the damper holes are determined. 

∗ The second step consists in introducing the granular particles in the holes. The 
frequency responses of the beam under a broadband random excitation are 
measured and analyzed. 

∗ In the third step, the influence of some system parameters (particle size, material 
and packing density) on the evolution of the specific damping capacity is studied. 
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3   Modal Characteristics of the Beam 

Fig. 2 shows the experimental frequency response function of the beam under 
random excitation. The presence of eight peaks corresponds to the eight first 
natural frequencies of the beam with and without the damper holes.  

The modal frequencies were then identified by using Modan© software [7]. A 
finite element model of the beam was also built. The comparison between the 
experimental and numerical natural frequencies of the beam without the damper 
holes is summarized in Table 1.  
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Fig. 2 Frequency response function of the beam with and without the damper holes under 
random excitation 

Table 1 Modal eigenfrequencies of the beam without the damper holes 

Method       Mode 

 1st     2nd      3rd     4th      5th     6th      7th         

Experimental (Hz) 
Numerical (Hz) 
Error (%) 

315.4   865.5   1732.9  2786.6   4107.4   5654.5   7402.3       

314.58  863.57  1682.8  2759.8   4081.9   5634.5   7400.9 

0.25    0.22    2.8     0.96     0.62     0.35     0.018 

Table 1 shows a good correlation between the experimental and the numerical 
results. 

Table 2 shows the effect of the damper holes on the experimental modal 
frequencies. For the first three modes the modal frequencies increase of about  
30-40 Hz for the beam with holes. For the higher modes, the differences are much 
higher and reach more the 200 Hz. 
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Table 2 Modal eigenfrequencies of the beam with and without the damper holes 

       Mode 

 1st    2nd      3rd     4th     5th     6th      7th        

Without holes (Hz) 

With holes (Hz) 

315.4  865.5  1732.9  2786.6  4107.4   5654.5   7402.3       

331.8  907.3  1786.7  2913.1  4273.7   5854.8   7630.7      

4   Modal Characteristics of the Beam with Particles 

Let us now introduce steel particles in the beam damper holes. Figure 3 shows a 
comparison of the beam response with and without the granular particles. In this 
test, filling holes requires a mass of 187.4 grams of particles of diameter 0.5 mm.  
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Fig. 3 Frequency response function of the beam with and without the steel particles under 
random excitation 

From Table 3 and figure 3 we can estimate the performance of the granular 
particles for reducing the dynamic response of the beam. The effect of the 
particles is extremely high on the sixth, seventh and eighth modes. On the other 
hand, the level of damping is not very significant for the first three modes (low 
frequency modes). The explanation of this result is effected through an original 
experimental procedure to characterize the frictional damping rate in the second 
step of this project.  

Table 3 Experimental modal damping of the beam with and without the particles (steel) 

       Mode 

 1st         2nd        3rd           4th            5th     6th        7th           8th 

Without particles (%) 

With particles (%) 

0.36      0.15       0.47        0.11          0.077         0.24       0.79        0.22 

0.36      0.36       0.7          0.86          1.3              2.4        3.7           2.9 
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5   The Effects of Design Parameters 

The influence of some design parameters (particles size, material and packing 
density) on the performance of  NOPD procedure is now examined. 
 
a. Damping effects for different particle sizes 
 
To illustrate the effects of the particles size on the evolution of the specific 
damping capacity, some measurements were performed for the beam with two 
diameters of Zirblast particles:  
 

∗ Size 1: diameter of the particles from 0.425 to 0.6 mm. The mass of particles 
to fill the three holes of the structure is 100.7 g. 

∗ Size 2: diameter of the particles of 1 mm. The mass of particles necessary to 
fill the three holes of the structure is 91.1 g. 
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Fig. 4 Frequency response function of the beam  

Fig. 4 shows the frequency response function of the system for two particle 
sizes with the same packing density. The figure indicates that the particle size 
have a direct influence on the frequency response function at resonance. For the 
larger diameter of the granular particles, the damping effect is less effective.  

The Table 4 shows a comparison of the identified modal characteristics for the 
two sizes of particles. For example, for the fourth mode, the modal damping 
increases from 0.36 % to 1.3% while decreasing the particles size. By the way, the 
reduction in the response amplitude is approximately 3.5 dB. 

It seems then that when the particle size is smaller, the number of contacts 
between particles and the wall of the damper hole increase. This would cause 
more friction energy dissipation. 
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Table 4 Experimental modal damping of the beam with different particles sizes 

       Mode 

 1st  2nd  3rd   4th    5th    6th  

Without  particles(%)

Particles 1mm (%)       

Particles 0.4 mm (%)    

0.36 0.15 0.47  0.11 0.077             0.24 
0.38 0.19  0.45                      0.36                0.45              0.8 
0.37               0.28                   0.95                      1.3                 1.6                 1.9 

 
 
b. Effects of the mass density of the particles  
 
Other parameters of studding the characteristic of particle damping is illustrate in 
this section. We tested two type of particle: lead and zirblast (ceramic: ZrO2-SiO2) 
particles of 2 mm in size. We can consider:  

∗ Lead particles: the mass of particles is 256.8 g; the density is 11320 Kg/m3 
and the static friction coefficient 0.36. 

∗ Zirblast particle (ceramic): the mass of particles is 88.7 g; the density is 3850 
Kg/m3 and the static friction coefficient 0.15. 
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Fig. 5 Frequency responses function of the beam with lead and zirblast particles 

Figure 5 shows the frequency responses function of the beam with two different 
types of particles: lead and ceramic. It is reported that a better damping 
performance is obtained with a particle material of a higher friction surface i.e. 
lead particles. The peak response amplitude for sixth, seventh and eighth 
resonance mode decrease of 1 dB by replacing ceramic particles with lead. 

The comparison of the identified modal characteristics of lead and Zirblast 
particles is indicated in table 5.  
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Table 5 The modal damping of the beam with lead and zirblast particles 

       Mode 

 1st            2nd            3rd          4th          5th            6th            7th           8th  

Without particles (%)

Zirblast particles (%) 

Lead particles (%) 

0.36          0.15           0.47   0.11        0.077         0.24         0.79        0.22 

0.41          0.26           0.48   0.69        1.2             1.3           1              1.4 

0.38          0.24           0.93   0.89        1.7             2.4           2.7           2.9 
 

 
c. Effects of the packing density of the particles  
 
In order to highlight the effect of the compaction of granular materials on the 
evolution of specific damping capacity. We examined two different manners for 
the introduction of particles in the damper hole: 

∗ Type 1: filling is done manually and the beam is in position angle about 45 
degrees from horizontal. In this way, the distribution of the volume of the 
particles in the holes will may be uniform. Then, the mass of particles is  
187.4 g 

∗ Type 2: Also the filling is done manually, but we must use the hammer to 
realize a qualitative compaction of the granular particles. The mass of particles 
is 196.7 g. 

We note that in both experiments we use steel particles of 0.5 mm in size. 
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Fig. 6 Frequency responses function of the beam with two levels of compaction  

As shown in Fig 6 the damping vibration is very sensitive to the effect of the 
compaction of granular materials. The difference in response amplitude is 
approximately 1.5 dB for the fifth and sixth mode. With the same modes, it is 
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observed (Table 6) that the modal damping increases from 2.4 % to 4.5% for sixth 
mode and from 1.5 % to 2.7% for fifth mode with growth of the mass of particles.  

This result may be explicated by the increasing of the pressure Pv [2] between 
the layers of the particles. Then, the shear dissipation of energy becomes more 
important with the increasing of the volume fraction Φ  [8]. 

Table 6 Experimental modal damping of the beam with and without packing density (steel 
particles) 

       Mode 

 1st              2nd               3rd               4th            5th              6th  

Without  particles (%)  

Without packing (%) 

With packing density (%) 

0.36           0.15             0.47          0.11       0.077             0.24 

0.47           0.37             1.1          0.87          1.5                  2.4 

0.37   0.28      1.1       1.1        2.7                  4.5 
 

6   Conclusion 

The focus of this investigation is on a Non-obstructive particle Damping (NOPD) 
technique recently introduced us a passive approach to absorb vibration energy in 
engineering applications. An elastic beam with damper holes embedded with 
metal particles is treated. The modal characteristics of the beam are determined 
and the modal damping is identified for original beam without damper holes and 
with damper holes. The NOPD is a means of passive damping vibrations, it is 
particularly efficient in an intermediate band frequency. In this experimental 
study, this band of frequency is between 2500 and 6500 Hz, which contains three 
bending modes. Based on shear friction energy, a numerical prediction model to 
confirm the experimental results is actually in progress.  
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Abstract.   The paper presents a method for analyzing and understanding the dy-
namics of prototype designs of hydraulic damper under non-stationary load condi-
tions. In the method proposed in this paper, a high-frequency first-principle model of 
a damper is linearized around a series of operating points which are obtained from a 
preceding numerical simulation of the model. As a result of multiple repetitions of 
an elementary linearization, a series of linearized models and their respective eigen-
values are collected over a certain period of operation time, corresponding to the du-
ration of a non-stationary excitation signal. 

1   Introduction 

Noise is the audible effect of structural and forced vibration, and its reduction is 
carried out at damper manufacturers as a product design and optimization activity. 
Noise and vibration evaluation is performed on the entire vehicle under road and 
laboratory conditions. However, it is quite frequently performed on isolated sys-
tems of gradually-increasing complexity in laboratory conditions, i.e. suspension 
or damper level. This approach allows the elimination of interactions with the  
vehicle body and then, in turn, enables more precise control test conditions. La-
boratory experiments are more repeatable than on-road driving sessions. It is also 
easier to simulate typical road maneuvers and measure certain signals, such as tire 
forces, or use special measurement equipment (Vanhees, Maes 2000). On the other 
hand, laboratory-based tests allow costs to be reduced and tests to be performed 
faster. 

The aim of this work is to develop a method for rapid model-based evaluation 
of natural frequency variations in excitation amplitude or operation time. An engi-
neering approach requires a linearized model to obtain an understanding of eigen-
frequencies and their dependency on the other system parameters, e.g. variable  
volumes above and below a damper piston. The eigenfrequencies are determined 
by means of instantaneous linearization at each sample instant around the current 
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operating point, determined from the simulation of a nonlinear damper model or 
its components for specific test signals (excitations), e.g. sinusoidal, step, and 
noise. In the results of multiple linearizations, a series of linearized models is col-
lected for a longer operation time, e.g. typically within a few seconds. The method 
is presented in Fig. 1.  
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Fig. 1 Flowchart for calculation of the modal analysis technique (Eigenvalues plot) 

A set of eigenvalues extracted from a linear first-principle damper model 
coupled with the servo-hydraulic tester model (Czop, Sławik 2011) allows natural 
frequency variations to be tracked under transient conditions, e.g. valve open-
ing/closing sequence. This approach allows the influence of the model characteris-
tics' nonlinearity on the eigenvalues variation to be investigated. The model 
enables the preparation of an amplification diagram, which presents the model re-
sponse in the time-frequency domain where the height-coordinate is the damping 
ratio indicating the stability of the hydraulic damper. The amplification diagram 
indicates risk of amplification of vibrations for the specific excitation signal used 
to load the hydraulic damper. Fig. 2 shows an example of a such amplification  
diagram where a variable frequency component corresponding to a hydraulic stiff-
ness of the damper (200-600Hz) and three other frequency components corres-
ponding to structural vibrations of the test-rig system (25Hz: servovalve; 
100Hz:hydraulic actuator; 1100Hz: fixation mount) are present. 
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Fig. 2 Example of an amplification diagram 

 It is an essential problem in NVH (Noise, Vibration and Harshness) analysis 
(Czop, Sławik 2011), i.e. adjustment of the damper excitation range to the excitation 
range of interacting suspension components or internal components of a damper. 
The algorithm was developed, debugged and tuned within a Matlab/Simulink de-
velopment environment. The linearization is performed with use of the linmodv5 
function (MATLAB 1998). The proposed method can be supported by a frequency 
analysis, i.e. PSD (Power Spectrum Density), and time-frequency analysis, i.e. the 
spectrogram, for simulation and experimental data (obtained from measurements). 
The combined use of these techniques will allow an increase in the effectiveness 
of the development process and the robustness of prototype units.  

2   Models of a Damper and Its Components 

Damper models are widely presented in the literature. A first-principle dynamic 
model of a hydraulic damper was discussed by Lang in his early monograph (Lang 
1977). This model was further simplified assuming massless valve systems (Ken-
neth, Morman 1984). The experimental results confirmed the correctness of the as-
sumptions by providing accurate model response below 20Hz. A similar model 
has been created for a monotube damper, including a physical valve system model 
consisting of a disc stack giving a specific stiffness (Tallbot, Starkey 2002). Another 
monotube model is focused on the understanding of the hydraulic behavior of a 
piston valve. A model of the piston valve was developed using an advanced com-
bined simulation/measurement approach (Beyer et al. 2002). A measurement setup 
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was equipped with a laser sensor and pressure sensors to evaluate the pressure 
drop across the valve assembly. A finite element method was used to simulate a 
valve stiffness characteristic (Beyer et al. 2002). A simplified static model was de-
veloped for the purpose of understanding the influence of a damper on the shake 
performance of body-on-frame vehicles (Subrabanian et al. 2003). A diagnostic 
model based on the first principle was created to understand and reduce the effect 
of self-exited vibration of a damper piston (Yamauchi et al.2003). The model was 
correlated to available measurement data including an experiment with the mod-
ified piston assembly. A model intended to optimize the structural dynamics of a 
damper was developed by Kruse (Kruse 2003). The grey-box models were devel-
oped by Duym (Duym et al. 1997) and Reybrouck (Reybrouck 1994). Those models 
were created to be valid for one configuration of a particular damper. They used a 
system identification approach to tune the set of parameters using a semi-physical 
valve system model based on the force-displacement characteristic.  

The authors developed a damper model and servo-hydraulic tester which was 
described in (Czop, Sławik 2011). The FPDD model has free and fixed parameters, 
which can be adjusted to operational nonstationary data. The free parameters are 
adjusted based on an initial guess value in order to minimize the error function be-
tween the model response and operational data, while the fixed parameters are 
physical and geometrical properties.  The procedure for adjusting a model consists 
of two in-a-loop phases: 

 
- simulation of a model by solving differential equations numerically, 
- numerical minimization in the parameter space with respect to an error-related 

criterion function.  
 
The function describing the error has to be a positive and decreasing function of 
the differences between reference and modeled outputs which is the acceelration 
signal of the piston-rod assembly measured at the top-mount.  A model to be ad-
justed to operational data is represented as a set of nonlinear first-prinicple state-
space equations formulated in the continuous-time domain as follows: 
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where vector f(.) is a nonlinear, time-varying function of the state vector x(t) and 
the control vector u(t), while vector h(.) is a nonlinear measurement function; w(t) 
and v(t) are sequences of independent random variables and θ denotes a vector of 
unknown parameters. The details of the first-prinicple damper model and servo-
hydraulic tester are given in (Czop, Sławik 2011). The sum of squared errors was 
used as the error criterion to evaluate the fit of the model to operational data in the 
frequency domain based on the rod damper acceleration. The power spectrum of 
the acceleration signals was obtained using the common logarithm function with 
base 10 applied to acceleration signal sampled at the rate of 2kHz and processed 
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with an FFT algorithm where the Hamming widow length is 512 samples and the 
overlap parameter is set to 50%. The objective function is defined as follows: 

[ ] [ ]);(log)(log),( 1010 θωωθωε gy −=  (2) 

Three methods of minimizing the error function are feasible as following: (i) di-
rect search, (ii) first-order, and (iii) second-order methods. 

In addition, the hydraulic damper model requires a few physical parameters 
which are related to fluid (oil) properties affected by ambient conditions, e.g. oil 
density. Other physical parameters are provided in the form of parameters and 
characteristics, such as top mount stiffness or piston friction respectively. The 
fixed geometrical parameters are measured directly or taken from the customer 
specifications regarding the hydraulic actuator. The last category consists of the 
phenomenological parameters to which hydraulic leakages, gas/oil mass ratio, dis-
charge and piston friction coefficients belong. These parameters are known only 
by their approximate values obtained at specific conditions, e.g. fixed ambient 
temperature.  
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Fig. 3 Adjusted damper model in the time domain 

The hydraulic leakages over the piston are difficult to obtain without precise 
measurements due to unknown tube-piston tolerances. The leakages over the pis-
ton-rod assembly in hydraulic dampers are tunable and controlled using valve 
discs with calibrated orifices. The gas-oil mass ratio was roughly calculated using 
Henry’s equation (Dixon 2007) while the critical discharge coefficient of the servo-
valve is the free parameter . A top-mount is the external component attached to the 
hydraulic damper which transfers the rod force to the suspension. Its stiffness is 
obtained on a static load frame machine as a force-displacement characteristic. In 
this model, the characteristic was linearized since the random signal used in NVH 
evaluation does not contain larger amplitudes, i.e. greater than 10mm. The damp-
ing of the top-mount is, however, difficult to obtain without specialized measure-
ments, therefore this parameter is a free one. The servo-hydraulic tester model 
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uses a simplified model of a servo-valve reduced to the second-order transfer 
function representing the dynamics of the spool. The transfer function has two  
parameters, which are the natural frequency and damping ratio. The natural fre-
quency is known, because the amplitude-phase-frequency characteristic of the ser-
vo-valve is available from the manufacturer, while the damping depends on usage 
of the valve and other factors (hydraulic forces), therefore it is a free parameter. 
The advantage of the first-principle approach is the possibility to apply physical 
boundaries to parameters to avoid local minimum regions during optimization. 
The PID settings are known as they are the test rig configuration parameters. 
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Fig. 4 Adjusted damper model in the frequecny domain 

3   Results of the Analysis and Configuration Parameters 

Eigenvectors were plotted in 2D-contour plots, where the height coordinate is re-
lated to the damping intensity, see Fig. 5. A frequency scale is plotted versus a 
time scale. Damping amplitudes are scaled in absolute values, relative decibel 
scale or rescaled to the dimensionless damping coefficients in the range (-1;1). 
The eigenvalues graphs are presented in the function of operational time. The im-
aginary part provides an insight into the frequency pattern. The real part provides 
an insight into the damping pattern related to model stability.  

4   Discussion and Conclusions 

The demonstrated case study supports the understanding of the model behavior 
over the considered frequency band, i.e. 0-1kHz. The analysis presented in this 
section identified top mount of a shock absorber as the major contributor to fre-
quency response. During changes in top-mount stiffness, the eigenfrequencies and 
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spectrum density are changed in the wide range of frequencies. Additionally, one 
can notice that if the spring stiffness decreases and the amplitude of the excitation 
signal increases, the stability of the system deteriorates (Fig. 5). 

 
 

 

Fig. 5 Example of eigenvectors plotted in 2D-contour plot 

The proposed method, i.e. diagram of the eigenvalues vs. time, can be an effec-
tive tool which enables natural frequency/damping variations of a system under 
development to be tracked. Nevertheless, one should realize that the accuracy of 
this method depends considerably on the model accuracy. Thus, the accurate cha-
racteristics of the damper are of paramount importance for a sufficiently-precise 
model of the damper for design purposes. High accuracy is provided by a damper 
model adjustment procedure. The proposed technique permits complex nonlinear 
systems, for which analytic solutions cannot be found, to be analyzed. The Eigen-
values plot represents a design chart enabling the selection of the optimum work-
ing range of the damper component. On the other hand, an experimental test can 
be conducted allowing the models to be compared/adjusted using operational mea-
surements. However, the time-frequency analysis (i.e. spectrograms) has a com-
promised and limited time-frequency resolution. Other methods, such as wavelet 
representation, can be proposed. Nevertheless, operational signals do not provide 
such good resolution as the model-based analysis by means of instantaneous  
linearization. 
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Abstract. Work related to the tuning of the first-principle model of a feedwater 
heater operating in a coal-fired power unit is presented. The objectives of this 
work is to find the most efficient and accurate process to tune the model parame-
ters i.e. heat transfer coefficients under bi-stationary load conditions.  The model 
variables (e.g. variability of the power rate of energy exchange) and estimated pa-
rameter values were used to formulate key performance indicators intended for a 
model-driven diagnostics approach. The computational process was organized in 
an iterative process of updating model parameters and indicators. The validation 
was successfully performed using operational data from a 225MW coal-fired 
power unit.  

Keywords: power plant, feedwater heater, analytical modeling, system identification. 

1   Introduction 

According to the degree to which the a priori knowledge is available, then either a 
first-principle or a data-driven model, or a combination of both, can be applied 
(Fig. 1) (Bohlin 2006). First-principle (FP) models use understanding of the sys-
tem underlying physics to derive its mathematical representation. FP models are 
expensive in development since expertise in the area of knowledge at the ad-
vanced level is required to derive equations from physical laws, while data-driven 
(DD) models use system test data to derive its mathematical representation. The 
advantage of the former approach is the depth of the insight into the behavior of 
the system and thus ability to predict the performance, while the advantage of the 
latter is the speed in which an accurate model can be constructed and confidence 
gained thanks to the use of the data obtained from the actual system. The difficulty 
of the former approach lies in the determination of the phenomenological parame-
ters like the damping or the heat transfer coefficient. FP models are frequently ad-
justed by trial-and-error, which can lead to non-optimal results. On the other hand, 
the disadvantage of DD models is the need to handle multiple data sets in order to 
cover the range of system operation. 
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Fig. 1 Taxonomy of models representing a content of a priori and a posteriori knowledge 

The goal is therefore to find a compromise and propose a combined first-
principle data-driven (FPDD) model. FPDD models require a formal approach 
which allows the model parameters to be updated according to the operational data.  

First-principle models are frequently adjusted by a trial-and-error approach ma-
nipulating the values of parameters as a result of performed sensitivity analysis 
with the model, i.e. a series of model responses corresponding to a combination of 
values of selected model parameters. Nevertheless, such an approach can lead to 
non-optimal and non-repeatable results due to a lack of any systematic approach in 
making changes to the parameter values. In order to avoid the deficiencies of the 
trial-and-error approach, a formalized mathematical method using optimization 
techniques to minimize the error criterion, and find optimal values of tunable 
model parameters of a heater model, was developed and is described in the second 
part of this work.  

The approach proposed herein assumes that the number of tunable parameters 
is small compared to the number of known parameters. This, however, affects the 
correctness of the first-principle approach since, for example, the heat transfer 
process is treated using a combined coefficient which covers conduction, convec-
tion, and radiation phenomena. It is believed that the smaller the number of para-
meters, the more accurate the model and the faster the convergence of the  
algorithm used for model adjustment. In turn, the application scope of an FPDD 
model is wide-ranging, including the optimization and diagnostics of technical 
systems where a method of fast model update is essential. 

2   Bi-stationary Load Conditions 

Adjustment of FPDD models is the most general case of estimation theory where 
many assumptions regarding stochastic properties of the model variables and pa-
rameters cannot be stated.  It implies that the quality criterion is the impli-cit 
function of the model parameters. 
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First-principle data-driven models have complicated structures based on sets of 
nonlinear and highly coupled equations (Barszcz and Czop 2007; Barszcz and 
Czop 2011a). The state variables and parameters are coupled within the structural 
interactions. For example, the inlet flow rate to the feedwater heater depends on 
the internal pressure, which is determined by the steam properties such as the 
steam saturation temperature (hard nonlinearity). The input data frequently has a 
bi- or multi-modal distribution depending on the current operating point to which 
the technical system is subjected. For example, a power unit operating point is af-
fected by daily load demands as presented in Fig. 2 (Barszcz and Czop 2011b). As 
a consequence, there are two major operating points, representing output power 
around 155MW and 215MW. The operational measurements therefore have a bi-
modal distribution as a mixture of Gaussian distributions corresponding to those 
operating points. Fig. 2 shows condensate temperature variation corresponding to 
500 hours of feedwater heater operation. 

 

 
Fig. 2 Multi-modal distribution of an output signal of a heater model (temperature of a con-
densate leaving the heater) 

3   Bi-stationary Load Conditions 

The process of heater model calibration consists of (i) selection of representa-tive 
data sets, including a sufficiently broad operating range that the model proved 
could work correctly using a data fit measure and (ii) adjustment of model para-
meters to fit a model response to data (Barszcz and Czop 2011c). The model is 
represented as a set of non-linear state-space equations formulated in the conti-
nuous-time domain. The objective of the estimation is to minimize the error func-
tion between the measured signals and model responses by means of an iterative 
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numerical technique. The function describing the error has to be a positive and  
decreasing function. The procedure for updating model parameters consists of two 
in-a-loop phases: (i) simulation of a model by solving differential equations nu-
merically in Simulink, and (ii) numerical minimization in the parameter space 
with respect to an error-related criterion function using the Matlab Optimization 
Toolbox (Matlab 1998). After each simulation of the model for fixed-length input 
signals, the simulated output data are sampled and the criterion function is re-
evaluated to calculate a new set of model parameters.  

Geometrical and physical parameters of the heater model were extracted from 
the operational documentation and were assumed to be known. A high-pressure 
heater was used as a reference system characterized by the operational and con-
structional data presented in (Barszcz and Czop 2011c). The heater is part of a 
feedwater regeneration flow path in which feed pumps pass the condensed steam 
(feedwater) from a condenser through heater banks, heated by the steam extracted 
from the high, intermediate and low-pressure sections of a steam turbine. The 
condensate is pumped to the deaerator, through the bank of low-pressure heaters, 
and further, from the deaerator to the steam generator (boiler) through the bank of 
high-pressure heaters. The draining system of the feedwater heater consists of a 
drain removal path from each heater. The normal drain flow path is cascaded to 
the next lower stage heater and the alternate path is diverted to the condenser. 

Real-time assessment applications intended to be installed at power plant re-
quire an automated procedure of adjustment First-Principle Data-Driven models to 
operational data and updating model parameters. The automated procedure should 
be capable to evaluate the model quality and automatically reject the false models. 
The paper proposes such an automated procedure, which consists of a few in-loop 
stages as shown in Fig. 3.  

The procedure of a model updating parameters process begins with a prepro-
cessing stage, which allows to segment inputs and outputs signals. The signals are 
sequentially windowed to maintain a balance between a length of an n-th input-
output sequence and time required to perform model adjustment process. In case 
of a feedwater heater considering herein, the sequence has a length of 180 samples 
corresponding to 180 minutes of operation time. Fig. 4 shows in the upper bar 
chart an average computation time corresponding to n-th data sequence versus 
available time marked with the dotted line. As expected, the model adjustment 
process consumes more time when the operating point of the feedwater heater 
changing (e.g. from 160 to 225MW) as presented in the bottom-diagram of the 
turboset power rate versus operational time. 

Before every new n-th input-output data sequence, the model is initialized with 
the initial guess conditions (values of model state variables) obtained at the end of 
n-1 data sequence. Such numerical treatment allows to reduce the time of a com-
plete tuning process of the model. In turn, the minimization algorithm has a better 
starting point and so a smaller number of iterations is required in each sequence. 
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Fig. 3 Procedure of updating model parameters 

The FPDD model is adjusted for every n-th data sequence independently. The 
tuning process for each sequence is stopped if the assumed number of iterations is 
exceeded kmax or the value of the objective function decreases below the specific 
value εacc. The quality of the model fit to operational data can deteriorate when a 
heater operate in exactly same operating point without any significant changes in 
an input-output data sequence. Such conditions do not allow to capture dynamics 
of a feedwater heater and should be rejected from the evaluation process as not  
relevant. 

Execution of the procedure for numerical adjustment of FPDD heater model 
ensures the heater model that best fits the data is found. Parameters of the feedwa-
ter heater model were updated according to the flowchart presented in Fig. 3. 
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Fig. 4 Actual time vs. available real time (upper-plot) and the corresponding variation of 
the turboset operating point (bottom-plot) in the process of model parameters updating 

The objective function arguments are the free (adjustable) model parameters. 
The function is evaluated by the chosen optimization algorithm to approach the 
global minimum of the function in a finite number of iterations (Matlab, 1998; 
Ljung, 1999). The value of the objective function error and the number of itera-
tions are used as stopping criteria for the parameter updating process. Upon com-
pletion of a model parameters updating loop, the model parameters are passed to a 
post-process function which calculates the model fit to operational data based on 
the Pearson correlation coefficient. If the model quality is not satisfactory (r<racc) 
the model parameters corresponding to n-th input-output model sequence are re-
jected and the next sequence of the updating process is started for a new set of op-
erational data. The calculations are not repeated for other algorithms or initial 
conditions since the number of parameters is enough high to plot the assessment 
trends and characteristics. It is less than 25% of sequences are rejected for the as-
sumed racc=0.6. 

A model quality fit is evaluated by analyzing the value of Pearson’s product-
moment correlation coefficient between the measured and simulated values of the 
N-sample-long output signals. For each output signal, the correlation coefficient is 
computed separately; in the particular case of the model discussed in this paper, 
the output signals were the temperature of the condensate and the temperature of 
the feedwater. 

It can be observed that the fit indicator of the model response to data varies 
over input-output data sequences from very low values, which indicate a lack of 
correlation, to values that indicate acceptable to very good correlation. Long-term 
fluctuations in accuracy of the model are analyzed based on the plot of the model 
fit-quality indicator. Fig. 5 shows in the upper-diagram the collected values of the 
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fit-quality indicator for each elementary data sequence as a function of operational 
time. The values were also compared to the turboset power rate in the bottom-
diagram in Fig 5. The model fit-quality indicator drops when operating conditions 
maintain stable for a longer time. Acceptable fit-quality values (above 0.65) are 
achievable when significant changes occur in input-output data sequence. In cases 
of low signal variation, low values of the fitting measure indicate that the model is 
not properly excited. 

 

 

Fig. 5 Actual model fit indicator (upper-plot) and the corresponding variation of the turbo-
set operating point (bottom-plot) in the process of model parameters updating 

4   Discussion and Conclusions 

This paper focuses on the tuning and validation process of the first-principle 
feedwater heater model intended for model-based diagnostics as part of the entire 
model of a power unit. The scope of the proposed methodology is limited to pow-
er plant systems with modern data acquisition systems. Such systems should be 
capable of gathering required input-output data with a sampling frequency to cap-
ture relevant heat transfer and fluid flow dynamics. This paper presents a repre-
sentative case study where data are gathered with a sampling frequency of 60 
seconds. This resolution is sufficient when compared to the normal operation of a 
power plant.  

The objective of this study was to develop a tuning method for the moderately 
complex first-principle model developed in (Barszcz and Czop, 2007). Such a me-
thod is advocated for industrial conditions when the values of physical and geome-
trical parameters are known, while the values of phenomenological ones have  
to be adjusted as only their rough pre-calculated initial values are available.  
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Measurement data from a 225MW coal-fired unit were used to validate the mod-
el's accuracy. The validation process presented in the paper indicates that the per-
formance in transient conditions is good, achieving a correlation between the  
simulations and measurements at a level of 0.7-0.9. This proves that the model can 
be used in further studies and the development of techniques related to model-
driven evaluation and diagnostics. 

Acknowledgements. The author gratefully acknowledges the financial support of the re-
search project N N504 493239 funded by the Polish Ministry of Science (MNiI). 
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Abstract. Among the wear-prone components in industrial facilities, multi-
supported tubes with clearances are particularly critical, as flow excitation may lead
to vibro-impact wear between the tubes and their supports. Following our previous
studies on remote impact identification using wave-propagation and modal tech-
niques, the approach introduced in this paper consists on an iterative constrained-
inversion procedure, using a modal representation of the system, to deal with si-
multaneous multiple identifications of impact forces, from a limited number of
response measurement transducers. Preliminary identification results, based on nu-
merical simulations, assert the satisfactory behaviour of the method to isolate the
impact forces in multi-supported systems for realistic noise levels.

Keywords: Vibration, impact identification, constrained inversion, regularization.

1 Introduction

Identification techniques that enable the diagnostic of real-life industrial compo-
nents, based on remote vibratory measurements, are quite valuable for validating
predictive computations as well as for the control monitoring under real operat-
ing conditions. Among the wear-prone components in industrial facilities, gap-
supported tubes are particularly critical as flow excitation may lead to vibro-impact
wear between the tubes and their supports.Considerable efforts have been invested
to enable the identification of impact forces at gap-supports using information from
motion transducers located far from the impact locations. Pioneer works theoretical
and experimental studies by Whiston [1], Jordan and Whiston [2], and Doyle [3].
They presented identifications for simple isolated impacts, achieved in the frequency
domain, by using a wave-propagation approach. In a serie of papers [4, 5, 6], the
present authors further extended such approach to deal with more complex vibro-
impact motions, to move a step closer to realistic conditions. In particular, they
achieved, using a pair of vibratory transducers, high quality force identifications for
multi-supported tubes, as attested by the validation through laboratory experiments
on a beam with three gap-supports.
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Following our previous studies on remote impact identification using
wave-propagation techniques, we recently applied modal methods to address similar
problems [7, 8, 9] which provided quite satisfying identifications on both simulated
and experimental data.

The approach introduced here is inspired by identification techniques previously
developed by the authors. It consists on an iterative constrained-inversion proce-
dure, based on a modal approach, in order to deal with simultaneous multiple-
identifications of impact forces, from a limited number of response transducers. The
identifications presented here are performed on numerical simulations of a multi-
supported beam with clearances excited by a pulse force. The technique is tested
numerically by comparing the identified dynamical impact forces with the actual
values stemming from the original nonlinear computations. Preliminary identifica-
tion results assert the satisfactory behaviour of the method to isolate the impact
forces in multi-supported systems for realistic noise levels.

2 The Identification Problem and Procedure

The system addressed consists of a multi-supported beam with clearance supports
which displays vibro-impact forces when subjected to a force field. As is typical
in real field conditions, we assume a limited set of vibratory transducers to recover
the details of the impact forces - less than the number of forces - which makes the
problem ill-defined. However, using additional physically-based constraints, we will
show that successfull identifications of impact forces can be achieved.

2.1 Modal Approach for the Force Identification

Based on a linear formulation in the frequency domain, the vibratory response Ym(ω)
of a beam measured at location xm subjected to an excitation Fs(ω) located at xs can
be expressed simply as:

Ym(ω) = H(xm, xs, ω) Fs(ω) (1)

where H(xm, xs, ω) is referred to as a transfer function. Adopting a modal represen-
tation of the beam and dealing with displacement signals, the force-to displacement
function transfer can be built by modal superposition:

H(d)(xm, xs, ω) = H(d)
ms (ω) =

N∑

n=1

ϕn(xm)ϕn(xs)
mn(ω2

n − ω2 + 2iωωnζn)
(2)

where mn, ωn, ζn and ϕn are the modal parameters, i.e. the modal mass, eigenfre-
quencies, damping values and mode shapes of the unconstrained beam. The veloc-
ity and acceleration responses can be computed similarly to the displacement, using
Eq.(1), by replacing H(d)

ms (ω) by the force-to-velocity transfer function and the force-
to-acceleration transfer function given respectively by:
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H(v)
ms(ω) = iωH(d)

ms (ω) (3)

H(a)
ms (ω) = −ω2H(d)

ms (ω) (4)

In the case of a multi-supported beam, several impacts are usually generated at the
various support locations. Consequently, the vibratory response measured at loca-
tion xm encapsulates the contributions of all the supports. Considering a beam sup-
ported at S clearance supports and a set of M vibratory transducers, Eq.(1) now
reads in a matrix form as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y1(ω)
Y2(ω)
...

YM(ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11(ω) H12(ω) . . . H1S (ω)
H21(ω) H22(ω) . . . H2S (ω)
...

...
. . .

...
HM1(ω) HM2(ω) . . . HMS (ω)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F1(ω)
F2(ω)
...

FS (ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5)

While Eq.(5) refers to the direct dynamical problem formulated in the frequency
domain, one notices that the inverse problem of finding the excitations {Fs(ω)} from
a set of vibratory measurements {Ym(ω)} is essentially a problem of response in-
version. The process of computing the inverse solution appears quite straightfor-
ward, except from the fact that, when M<S, a straight inversion is obviously not
possible. For the case M=S, the identification procedure starts by computing the
frequency-domain vibratory responses by fast Fourier transforming all the measured
time-domain signals. Then, one obtains the force estimates - in the frequency do-
main - from the product of the vibratory responses with the inverse of the transfer
operator. Finally, the time-domain identified forces are obtained by inverse Fourier
transform. Furthermore, in practice, an important issue is the proper inversion of the
transfer operator which describes the phenomena. The ill-conditionning - physical
or numerical - of the operator makes inverse problems extremely unstable in that
small perturbations can lead to erroneous results and regularization methods are fre-
quently essential to produce usable solutions [10]. Provided the inverse problem is
determinate, the previously described basic procedure can be applied to more than
one excitation and more than one response measurements using Eq.(5). However,
because the number of forces to identifiy is usually higher than the number of re-
sponse measurements (M<S), the inverse problem is ill-formulated and therefore
should be solved differently.

2.2 The Proposed Iterative Multiple-Force Identification
Procedure

To deal with the multiple identification inverse problem when M<S and overcome
its ill-condition nature, an iterative constrained procedure is now proposed. It oper-
ates in an alternate fashion between the time and frequency domains, and enforces
some additional physical knowledge for the solution. To be specific, the identifi-
cation procedure is applied in the frequency domain while physical constraints are
imposed to the force estimates in the time domain, at each iteration.
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2.2.1 Iterative Procedure

Eq.(5) is used as a starting point. Using the information provided by a given vibra-
tory transducer Ym(ω), the inverse problem may be formulated in the form:

F1(ω) =
1

Hm1(ω)
Ym(ω) −

S∑

s�1

Hms(ω)
Hm1(ω)

Fs(ω)

F2(ω) =
1

Hm2(ω)
Ym(ω) −

S∑

s�2

Hms(ω)
Hm2(ω)

Fs(ω)

...
...

FS (ω) =
1

HmS (ω)
Ym(ω) −

S∑

s�S

Hms(ω)
HmS (ω)

Fs(ω)

(6)

which is valid for any measurement m and seems well-suited to generate a sequence
of improving approximate solutions. One can compute successive approximations
of the forces (in the left hand side) from the values obtained in the previous iteration
(in the right hand side). By rewritting Eq.(6) in a matrix form and noting the forces
to identify {Fm(ω)} = {F1(ω), . . . , FS (ω)}T , the iterative procedure is governed by:

{Fm(ω)}i+1 = {C(ω)}Ym(ω) − [Dm(ω)]{Fm(ω)}i , ∀m = 1, . . . ,M (7)

where

{C(ω)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Hm1(ω)

1
Hm2(ω)
...
1

HmS (ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, and [Dm(ω)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
Hm2(ω)
Hm1(ω)

. . .
HmS (ω)
Hm1(ω)

Hm1(ω)
Hm2(ω)

0 . . .
HmS (ω)
Hm2(ω)

...
...

. . .
...

Hm1(ω)
HmS (ω)

Hm2(ω)
HmS (ω)

. . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

If two or more response measurements are available, several estimates of the forces
can be computed and then compared to isolate the impacts. Actually, when the num-
ber of vibratory sensors is equal or greater than the number of forces to identify, suc-
cessful identifications can be achieved. However, as already mentioned, the problem
is not so immediate when M<S.

2.2.2 Identification from the Comparison of Several Measurements

The basic ideas used here, and already discussed in [5] using a different representa-
tion formulation for the system dynamics, rely on the following observations: (a) the
availability of several estimates of the impact forces; (b) the dispersive nature of the
flexural waves. Considering a pair of vibration transducers and a support at a spe-
cific location, two estimates of the impact force - stemming from the two measure-
ments - will obviously differ more or less due to the dispersion effect. Since the two
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inversions are performed with respect to the same support, these estimates should
correlate well when impacts arise there and very badly when they were generated
elsewhere. It thus suggests that comparing estimates from various measurements is
a convenient criterion to isolate impacts generated at distinct clearance supports.

In practice, a narrow moving-window is applied to the two estimates of the force
f (1)
s (t) and f (2)

s (t) and then the cross-correlation γ(t) is computed. A better estimate
f �s (t) of the corresponding impact force is then given by:

f �s (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (1)
s (t) + f (2)

s (t)
2

if γ(t) ≥ γc

0 if γ(t) < γc

∀s = 1, . . . , S (9)

where γc is a parameter which acts as a lower boundary beyond which the constraint
given by Eq.(9) is imposed. Obviously, the choice o the moving-window size and γc

is open to discussion. Here, a value of 5 ms for the window size - which corresponds
to the time scale of individual force spikes - works well in practice. As illustrated in
[5, 6], the choice of γc can be completely automated, but here a fixed value of 0.7
proved to be well suited. Based on the preceeding arguments, the following iterative
identification method is then proposed:

1. Initial identification
a) Convert the M available response measurements Ym(t) to the frequency do-

main by Fourier transform,
b) For each support s, compute initial estimates of the impact forces from the

M vibratory measurements, each force at a time while ignoring the others,
as:

{Fsm (ω)} = {C(ω)}Ym(ω)

and convert them to the time domain by inverse Fourier transform,
2. Identification loop

a) Improve the estimates of the impact forces { fsm (t)} by applying the separa-
tion constraints according to Eq.(9),

b) Compute new estimates of the force using Eq.(7) and convert them to the
time domain by inverse Fourier transform,

c) Loop iteratively between tasks 2-a and 2-b,
d) Assert the convergence of successive iterations by comparing each iteration

result with the preceeding identification time domain signals.

The preceeding algorithm seems logical, but an important question concerns the
algorithm possible convergence (or not) to a solution. Indeed, problems of noise
amplification can lead to instability of the process. However, adequate filtering - as
namely SVD filtering or Tikhonov regularization - can overcome such difficulties
and stabilize the solutions. Here, a Tikhonov-type regularization is applied to the
transfer functions with a regularization parameter of 0.3.
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3 Preliminary Identification Results

To provide a feel for the actual performance of the proposed approach, preliminary
identification results are now presented. They are performed on numerical simula-
tions of gap-supported tubes subjected to a pulse force.

Time-domain simulations of gap-supported tubes excited by a pulse were per-
formed using the computational approach described in [8, 11] which has already
proved to be adequate to obtain realistic vibro-impact regimes in an effective man-
ner. The modeled beam has length L=6 m, with pinned boundary conditions at both
extremities. Two point-supports with symmetrical gap of ±0.5 mm are considered
at x1=1.56 m and x2=2.64 m. The excitation pulse, originated at t=0.3s, is treated as
a third unknown impact force generated at x3=2 m. The time-domain computations
were performed using a modal basis of 9 flexural modes. Their lowest and highest
frequencies are 10 and 810 Hz respectively. A constant modal damping of 0.5% was
used for all modes. Here, because this paper focus on presenting the technique, the
identifications are based on the true modal parameters, the study of the algorithm ro-
bustness being postponed to a future paper. The important topic of dealing with the
imperfect knowledge of the modal parameters used to build the transfer functions
was addressed in [12] where we showed that satisfactory estimates of the modal
paramaters can be effectively obtained by optimization techniques.

Figure 1 shows the initial and final identified forces at the three locations, super-
imposed with the true results. One notices that the initial identifications, obtained
after imposing the constraints, are already not so far from the true results even
if additional uncorrect features are present. The final identications are, however,
undoubtedly cleaner, illustrating the improvement of the identifications by the en-
forced constraints at each iteration. As can be seen, results compare very well with
the computed signals and assert the satisfactory behaviour of the iterative process.

Fig. 1 Simulated (green) and identified (red) impact forces at the three supports obtained by
the iterative technique. Left: initial estimates. Right: final identifications.
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Fig. 2 Time-domain and spectra of the beam acceleration from the two response transducers
with noise contamination of 20%. Left: at x =1.07 m. Right: at x =5.04 m.

Fig. 3 Initial estimates of the impact
forces at the three supports from measure-
ments at x = 1.07 m (blue) and x = 5.04
m (red).

Fig. 4 Simulated (green) and identified (red)
impact forces obtained after convergence,
with noise contaminated measurement of
20%.

Figures 2, 3 and 4 pertain to identifications obtained from noisy measurements.
Figure 2 shows the numerical simulated beam reponses, used as inputs for the iden-
tification procedure, “measured” at locations 1.07 m and 5.04 m, with noise con-
tamination of about 20% of the RMS magnitude of the corresponding acceleration
signals. Figure 3 presents the initial estimates at the three supports computed from
each vibratory measurement, before imposing the constraints. For each support, one
can notice the influence of the various impacts generated at other supports. From
Figure 4, which displays the results after convergence, it is clear that comparing the
identifications obtained from the various measurements enables a good discrimina-
tion of the impacts originated at different locations. Finally, in Figure 4, even if the
true and identified forces are overall similar, significant details - including impacts
- are missing in the identifications as the result of noise. Moreover, some residuals,
which have not been effectively eliminated by the constraints procedure, are still
present. There is therefore room for improvement of the proposed technique.
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4 Conclusions

In this paper, we proposed an iterative-constrained inversion technique from a lim-
ited number of response transducers, based on a modal approach, to address the
problem of simultaneous multiple impacts in a multi-supported beam. Illustrative
identifications show that impact force can be attempted with success for a beam
excited by a pulse force for realistic noise levels. Future work will address more
difficult problems of practical interest, such as a multi-supported beam subjected to
turbulence flow excitation as is typical of heat-exchangers.

References

1. Whiston, G.S.: Remote impact analysis by use of propagated acceleration signals: I -
Theoretical methods. J. Sound Vib. 97, 35–51 (1984)

2. Jordan, R.W., Whiston, G.S.: Remote impact analysis by use of propagated acceleration
signals: II - Comparison between theory and experiments. J. Sound Vib. 97, 53–63 (1984)

3. Doyle, J.: Wave propagation in structures: an FFT-based spectral analysis methodology.
Springer, New York (1989)

4. De Aurajo, M., Antunes, J., Piteau, P.: Remote identification of impact forces on loosely
supported tubes: Part 1 - basic theory and experiments. J. Sound Vib. 215, 1015–1041
(1998)

5. Antunes, J., Paulino, M., Piteau, P.: Remote identification of impact forces on loosely
supported tubes: Part 2 - complex vibro-impact motions. J. Sound Vib. 215, 1043–1064
(1998)

6. Paulino, M., Antunes, J., Izquierdo, P.: Remote identification of impact forces on loosely
supported tubes: analysis of multi-supported systems. J. Pressure Vessel Technol. 121,
61–69 (1999)

7. Debut, V., Delaune, X., Antunes, J.: Identification of the nonlinear excitation force act-
ing on a bowed string using the dynamical responses at remote locations. International
Journal of Mechanical Sciences 52, 1419–1436 (2010)

8. Delaune, X., Antunes, J., Debut, V., Piteau, P., Borsoi, L.: Modal techniques for remote
identification of nonlinear reactions at gap-supported tubes under turbulent excitation. J.
Pressure Vessel Technol. 132 (2011)

9. Delaune, X., Piteau, P., Debut, V., Antunes, J.: Experimental validation of inverse modal
techniques for remote identification of impact forces in gap-supported systems subjected
to local and flow turbulence excitations. J. Pressure Vessel Technol. 5 (2011)

10. Aster, R., Borchers, B., Thurber, C.: Parameter estimation and inverse problems. Elsevier
Academic Press (2005)

11. Axisa, F., Antunes, J., Villard, B.: Overview on numerical methods for predicted flow-
induced vibrations. J. Pressure Vessel Technol. 110, 7–14 (1998)

12. Debut, V., Delaune, X., Antunes, J.: Identification of nonlinear interaction forces act-
ing on continuous systems using remote measurments of the vibratory responses. In:
Proceedings of the 7th Euromech. Solids Mechanics Conference (ESMC 2009), Lisbon
(2009)



Robust Optimization of Gear Tooth 
Modifications Using a Genetic Algorithm 

Ghribi Dhafer1,3, Bruyère Jérôme1, Velex Philippe1, Octrue Michel2,  
and Mohamed Haddar 3 

1 Université de Lyon, INSA Lyon, LaMCoS, UMR CNRS 5259, France 
Philippe.Velex@insa-lyon.fr 

2 CETIM, Pôle d'Activités Mécatronique, Transmissions de Puissance et Capteurs (MEC)  
Senlis, France 

3 Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, U2MP, Tunisie 

Abstract. Most studies in gear design analysis and optimization do not account 
for the presence of uncertainties inherent to the manufacturing and assembly 
precisions. In this paper, the issue of robustness of gear modifications with regard 
to transmission error fluctuations is addressed. An approach based on numerical 
integration (Gauss Quadrature) is adopted and a statistical optimization based on a 
genetic algorithm is used to determine the robust areas for tooth modifications. 
Finally, the influences of the gear quality grade and the probability law are 
analysed.  

Keywords: gear, transmission error, tooth modifications, robustness. 

1 Introduction 

Over the last forty years, a large number of contributions on the behaviour of spur 
and helical gears have been presented and many authors have investigated the 
influence of tooth modifications on transmission errors [1-5]. It has been shown 
that suitably designed modifications or optimum modifications can significantly 
improve noise and vibrations. Most of the results stem from deterministic gear 
models which do not incorporate the influence of geometric variations and the 
possible scatter in terms of tooth modifications on the resulting stresses, transmis-
sion errors, etc. However, some stochastic approaches have been proposed leading 
to probabilistic results for static transmission error (TEs) and other design parame-
ters such as root, contact stress, etc. [5, 6].  

The main purpose of this study is to define “robust” tooth modifications such 
that the system can maintain the expected optimal behaviour even when submitted 
to variances. 
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2   Deterministic Optimization of Tooth Modifications 

2.1   Definitions 

It is widely accepted that gear tooth shapes can strongly influence gear system be-
haviour (noise, vibration, static and dynamic stress,..) [1-6] and that some suitable 
tooth profile and/or lead modifications can reduce vibration and noise characteris-
tics significantly. Tooth modifications consist in introducing voluntary tooth shape 
deviations to produce quieter gears with smoother meshing conditions and more 
uniform load distributions. Profile relief correspond to correction patterns along 
the tooth profile mostly aimed at ensuring a quasi uniform motion transfer and 
avoiding corner contact at engagement [3]. Figure 1.a defines a symmetric linear 
tip relief (similar on the pinion and the gear) which is frequently used in spur and 
helical gear design. It is defined by a depth of modification at tooth tip E and an 
extent of modification measured on the base plane as ΓεαPba which characterise 
the amount of material removed from the perfect involute profile. In what follows, 
E will be normalised with respect to δm, the average static mesh deflection for per-
fect gear and denoted E*. 

Moreover, in order to compensate for mounting errors, misalignments and avoid 
overloads near the tooth edges (in the face width direction), lead modifications are 
frequently employed. As described in Figure1.b, such modifications can be intro-
duced across the face width as lead crowns which, typically, are tangent to the in-
volute surface in the gear mid-plane. In a number of cases, crowning is symmetric 
and can therefore be quantified by its amplitude Ap only. 

 
 

               
        Fig. 1 a Profile modification                       Fig. 1b Lead crown modification 

Fig. 1 Tooth modifications 

2.2   Objective Function 

The classic approach to designing quiet gears relies on the reduction of the sources 
of vibration and noise which, as far as mesh excitations are concerned, are related 
to the fluctuations of the quasi-static transmission error under load TEs [3]. This pa-
rameter is defined as a measure of departure from perfect motion transfer at low  
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speeds [1] and, since the early works of Gregory et al. [2], it has been extensively 
used as a tool for assessing and improving gear noise quality. Tooth modifications 
also modify other functional parameters such as contact pressures, root stresses, 
power losses, etc. and designing optimum profile and lead relief often relies on a 
compromise between somewhat diverging constraints and conditions. In this paper, 
however, the objective function in the optimisation process will be the RMS of TEs 
only since the other relevant parameters vary monotonically with no optimum as 
opposed to what is observed for transmission error (Maatar and Velex [3]). 

2.3   Optimization Methods 

2.3.1   Overview 

In the literature, many optimization techniques, either deterministic or stochastic, 
have been developed and used for design optimization in engineering problems 
[8]. Deterministic methods are effective when the evolutions of the objective func-
tion can be anticipated whereas stochastic methods involve the optimization of 
systems for which a relationship between the design variables and the objective 
function is not a priori known. Among the many stochastic optimization 
procedures, evolutionnary algorithms and especially genetic algorithms (GA) are 
amongst the most convenient and intuitive methods [8]. GA are less likely than 
conventional optimization techniques to get trapped in local optimal areas of the 
search space, and the GA's population structure makes it useful in exploring many 
candidate designs in parallel. Moreover, these techniques are hardly sensitive to 
the number of design variables. 

2.3.2   Validation 

Before extensive studies are performed, the accuracy of the approach is examined 
in the particular case of the helical gear described in Table 1 whose profiles are 
modified by symmetric linear relief (amplitude E* and dimensionless extent Γ) on 
the pinion and the gear. Figure 2 shows the contour plot of the RMS of TEs versus 
the dimensionless depth E* and extents Γ. Several series of results are compared 
which all indicate that there is a combination of depths and extents of modifica-
tions leading to minimal TEs fluctuations. The contour lines have been found 
based on the numerical solutions obtained by sweeping over a range of depths and 
length of relief [3] (analogous to what Houser at al. [1] coined a ‘run-all-the-cases’ 
methodology). The analytical results presented by Velex et al. [4] have been su-
perimposed and they are materialised by the dotted curve which, actually, inter-
sects the area of minimum RMS of TEs. Finally, the asterisks (*) in the graph rep-
resent the optimal individuals as found by the Genetic Algorithm which correlate 
very well with the other sets of results thus demonstrating the GA capability to 
find optimal profile modifications.  
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Table 1 Gear data for the study of the influence of profile modifications. 

--- Pinion/ Gear --- Pinion/ Gear 

Tooth Number 28/56 Normal pressure angle (deg) 20 
Face width (mm) 40/40 Profile contact ratio 1.48 
Addendum coef. 1/1 Overlap contact ratio 1.34 
Dedendum coef. 1.4/1.4 Helix angle (deg) 25 
Module (mm) 40 Center distance (m) No backlash 
Pinion torque (Nm) 850  δm, average static mesh deflection  20µm 

 

Fig. 2 RMS of TEs: Validation of the Genetic Algorithm (GA)  

3   Design Optimization for Robustness 

3.1   Concept of Robustness 

The deterministic optimization presented in the previous section does not take into 
account the uncertainties in the design variables which, in general, cannot be  
completely eliminated thus leading to some geometry scatter which should be ac-
counted for in the optimization process of tooth design. In this context, the  
concept of “robust” design is introduced which is defined as the combination of 
design parameters rendering the measures of design performance hardly sensitive 
to variances. Figure 3 illustrates this concept by introducing the range of variation 
of the design variable (X) and showing that, compared to the traditional optimisa-
tion (optimum solution), the robust optimization (robust solution) lead to a stable 
performance (Y) over a range of design variables [9,10].  
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Fig. 3 Concept of robustness 

The basic objective of robust design approaches is to optimize the mean and 
minimize the performance variance in a way that satisfies constraints such that any 
robust design problem can be considered as a bi-objective design optimization. 
With this objective in mind, Sundaresan et al. [5], Yu et al. [6] introduced a 
unique scalar objective function combining these two criteria under the form: 

  

rob Y Y(X) . ;Y ( )F RMS TEsμ β σ= + =          (1) 
 

where μY is the mean of performance Y (Y=RMS(TEs) here) and  σY represents 
the standard deviation. The quality coefficient β in (1) can be interpreted as the 
contribution of the robustness in the optimized design since robustness becomes 
higher with larger values of β. Following Yu et al. [6], a quality coefficient of 2 
has been retained in this paper. 

3.2   Methods for Estimating Statistical Characteristics 

Optimum robust design relies therefore on the mean value µY and the standard de-
viation σY of the objective function Y (multivariate yield) which are generally de-
termined through statistical analyses based on Monte Carlo Simulations (MCS). 
Despite its simplicity, MCS method has the capability of handling practically 
every possible case regardless of its complexity; it requires, though, extensive 
computational effort. Motivated by the need for a more efficient methodology, and 
based on the concept of numerical integration, Taguchi [9], D'Errico and Zaino 
[11] proposed a “full factorial” discrete-point approximation procedure, later ex-
tended by Duffy et al [12] to non-normal distributions. Assuming that the design 
variables are independent, an approach based on the Cartesian product of univari-
ate Gaussian Quadrature has been proposed. Because the distributions are sampled 
over the entire range of probable values, the number of samples required to ade-
quately represent a distribution with a discrete-point approximation is less than for 
MCS, thus leading to a substantial reduction in the computational time for evaluat-
ing the multivariate yield. For various points dispersed within the research space 
(as defined in Table 2), it is shown in Figure 4 that the multivariate Gaussian 
Quadrature (GQ) with a few replications (the total number of points is N=H2, 
H=3; 4 ..) can estimate the statistical variables as well as the more time-consuming 
MCS method (at least 300 iterations (SP=300) are needed to estimate the standard 
deviation of the response Y (Y=Rms of TEs) with a relative error <5%). 
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Table 2 Points of validation of Gauss Quadrature Method 

Point (Pti) Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 

(E*,Γ) (0.25,0.1) (0.25,0.4) (1.2,0.1) (1.2,0.4) (3,0.1) (3 ,0.4) 

pt1 pt2 pt3 pt4 pt5 pt6
0,00E+000

2,00E-007

4,00E-007

6,00E-007

8,00E-007

1,00E-006

1,20E-006

1,40E-006

1,60E-006

        pt1 pt2 pt3 pt4 pt5 pt6
0,00E+000

5,00E-008

1,00E-007

1,50E-007

2,00E-007

2,50E-007

3,00E-007

3,50E-007

 

MCS (SP=300)
GQ (H=4)  

   Fig. 4a µY : Mean of RMS(TEs)       Fig. 4b σY: Standard deviation of RMS(TEs) 

Fig. 4 Comparison between MCS and GQ Method 

3.3   Robust Optimization for Gear Tooth Modifications 

3.3.1   Quality Grade 

In this section, the influence of the quality grade on transmission error is investi-
gated. A parabolic crowning of normalized amplitude Ap* (with respect to δm) is 
superimposed on the symmetric profile relief characterized by E* and Γ for the 
helical gear defined in Table 1.  The design variable vector comprises therefore 
E*, Γ and Ap* which are supposed to be independent and all attributed a nominal 
value along with a tolerance range IT-X.  For a given quality class Q, the ranges 
IT-E* and IT-Ap* have been defined based on the NF-ISO 1328 standard [13] as 
opposed to IT-Γ (tolerance on the length of profile relief) not defined in [13] and 
expressed here as a percentage of the active profile (Table 3). A Genetic Algo-
rithm combined with a Gaussian quadrature method is employed to evaluate the 
objective function (1) using only four discrete points to describe the probability 
distribution of each design variable (H=4). The corresponding limits of the robust 
areas for which the objective function is less than a given threshold Vs are plotted 
in Figure 5 for the 3 quality grades defined in Table 3 (in two different projection 
planes for clarity). 
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Table 3 Standard Gear Quality Grades [13]. 

Quality class (ISO) IT-E* IT-Γ IT-Ap* 

Q6 0.5 1.25 % 0.425
Q7 0.75 2.5 % 0.6
Q8 1.05 5 % 0.85

 

Examining these figures, it can be noticed that the location of the robust areas 
is almost the same for all the tested quality grades and that their surface area in-
crease with the gear quality. As expected, the smallest robust area is associated 
with the ISO quality grade Q8.  It can be observed that, regardless of the quality 
grade, robustness is essentially dependent on lead crowning Ap* and that a value 
of approximately 1.2 appears as optimal. Concerning profile relief, the amplitude 
at tooth tips E* has very little influence for the better quality grades since it can 
vary in the range 0.8<E*<2.2. On the other hand, the extent of modification seems 
far more influential and, generally speaking, robust solutions correspond to short 
relief with Γ<0.2. 

   

     
         Fig. 5a    Plane (E*, Γ)                           Fig. 5b Plane (E*, Ap*) 

Fig. 5 Projections of robustness areas (Frob<Vs; Vs=0.125µm) 

3.3.2   Influence of Probability Law 

The uncertainties or variability for tooth shapes are expressed in terms of probabil-
istic distributions which define the rule for describing the probability measures as-
sociated with the values of random (uncertain) variables. In this paper, two classic 
probability laws have been compared: the normal and uniform distributions.  

The corresponding results described in figure 6 are the projections of the robust 
areas obtained for a quality grade 7 (Q7) which is considered as representative of 
usual industrial applications [13]. It can be observed that the magnitude of the ob-
jective function varies with the chosen probability distribution but, for 
both distributions, the robust areas in the design space are rather similar. Based on 
this finding, it is possible to conclude that the exact distribution has a secondary 
influence on the definition of robust tooth modifications. 

    Q6 
   Q7 

       Q8 

   Q6 
    Q7 
    Q8 
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           Fig. 6a Plane (E*,Γ)                              Fig. 6b Plane (E*,Ap*) 

Fig. 6 Projections of robustness areas (Frob<Vs)  

4   Conclusion 

The main objective of this paper was to present a method for the robust design of 
profile and lead modifications in helical gears based on a probabilistic optimiza-
tion methodology. In order to estimate the relevant statistical parameters,  the 
classic time-consuming Monte Carlo simulations have been replaced by a Gauss 
Quadrature method and combined with an optimization process using a genetic al-
gorithm. The results reveal the presence of specific tooth modifications that are 
less sensitive to geometrical variances. For the example of helical gear treated, 
lead crowing appears as the most influent parameter and it is shown that, regard-
less of the quality grade, robust solutions correspond to short tip relief. Finally, it 
seems that the probability distribution is of secondary importance for the defini-
tion of robust tooth modification.  
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Abstract. The concept of energy pumping is an innovative dynamic phenomenon. 
This phenomenon gives rise to a new generation of dynamic absorbers. Theoreti-
cal studies and feasibility tests are necessary for a better understanding of their 
dynamic behaviour and for them to be applied on real structures or machines. 

In this paper, numerical evidence is firstly given for the passive and broadband 
targeted energy transfer in the case of a linear system (Machine for example) un-
der shock excitation with Multiple Dynamic Absorbers (MDA). Secondly, it is 
shown that many MDA absorb shock energy in a one way irreversible fashion and 
dissipate this energy locally, without “spreading” it back to the linear system. Fi-
nally, numerical results in the case of MDA linked to a linear beam are compared 
to Tuned Mass Dampers (TMD absorbers) linked to the same linear beam. 

Keywords: Energy pumping, Dynamic absorber, Cubic non-linearity, Nonlinear 
targeted energy transfer, Multiple Dynamic Absorbers. 

1   Introduction 

The phenomenon of energy pumping is the irreversible transfer of energy from a 
main structure, whose vibration levels are considered as critical in the frequency 
domain, to a secondary structure (Multiple Dynamic Absorbers (MDA)), just 
linked to the main structure. A strong nonlinearity in the design of the secondary 
structure is introduced. The problem is whether this phenomenon of energy  
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pumping can allow a passive attenuation of vibration in other words energy ab-
sorptions. This pumping concept is a dynamic innovation that has recently been 
introduced by the scientific community. The phenomenon of energy pumping 
leads to a significant and a rapid decrease in the amplitude of vibration of the main 
structure in a linear fashion compared to the classic case that decreases exponen-
tially. Unlike their counterparts in linear case, the nonlinear absorbers have inter-
esting features: they can automatically set the system frequency and they work in 
multiple requests (periodic or transient). In previous works ([F. Georgiades and 
al., 2007), it has been shown that essentially nonlinear oscillators attached to li-
near discrete structures can act as broadband passive absorbers of vibration ener-
gy. In particular, it has been shown that transient resonance captures of the tran-
sient dynamics may initiate one way, irreversible targeted energy transfer from a 
linear (main) subsystem to a local essentially nonlinear attachment, which acts, in 
essence, as nonlinear energy sink (NES) [F. Georgiades and A.F. Vakakis, 2007 , 
F. S. Samani, F. Pellicano, K. Khelfi and al., 2011].  

In this work, the NES concept is demonstrated and extended to flexible sys-
tems. Specifically it is shown that an appropriately designed and placed essentially 
nonlinear local attachment may absorb a significant portion of shock induced vi-
bration energy of a beam.  

2   Dynamic Equations of Motion of Mdof Supported Beam 

The structure chosen for the study consists of an impulsively forced simply sup-
ported damped linear beam, with multiple essentially nonlinear damped oscillators 
(Figure 1). This structure has been chosen because it has been addressed in 
[F.Georgiades 2007] with one NES but also because it was likely to be close to an 
experimental structure. 
 

 
Fig. 1 Beam bi-supported with Multiple Dynamic Absorbers 
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• System with Multiple Dynamic Absorbers (MDA)  

The beam model is based on the Euler-Bernoulli theory; the nonlinear equations of 
motion for the transverse displacement y of the beam and the vertical motion 

iv of each oscillator ( )1 i n≤ ≤  are given by: 
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(1) 

E  is the Young’s modulus of the beam, I  the moment of inertia, ρ  the densi-

ty, S the section and λ  the damping. , ,i i im k λ  are respectively the mass, 

stiffness and damping for each oscillator. The portion of energy respectively dissi-

pated by the MDA or the TMD noted η  at time t  are given by (equation 2): 

 
 

 (2) 
 

 

Where T is the period of the mode and F  the impulse force. This force is pre-

sented in the figure 2, respectively in the time and frequency domains, the five 

first modes of the beam are excited. 
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Fig. 2 Time and Frequency representation of the impulse force 
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3   Numerical Simulations 

This section presents numerical simulations obtained for a bi-supported beam with 
one or more absorbers.  The efficiency of the MDA is investigated through a pa-
rametric study. 

3.1   Bi - supported Beam Coupled with Two NES 

3.1.1   Reponses of the Beam and the Two NES in Time Domain 

The same bi-supported linear beam is studied with MDA (two NES) and with  
the same parameters: k  = 1322 N/m3, λ  = 0.05 N.s.m-1, m  = 0.1 kg. The same 

impulse force ( )F t is applied to excite the beam at a distance a  = 0.3 m  

(Figure 3). The positions of the two NES are respectively  1d  = 0.25 m and 

2d  = 0.8 m. Only the results for 2d  = 0.8 m are presented in figures 3-a and 3-b. 

The transient responses are observed in the case before energy pumping. 
 

 

                     (a)                   (b) 

Fig. 3 Responses of the beam with MDA (two NES) in the time domain - Phenomenon of 
pumping 

3.1.2   Parametric Study of the Two Dynamic Absorbers 

a- Effect of Nonlinear Stiffness 

In this section, the influence of the nonlinear stiffness coefficient k , with the 
position of the two dynamic absorbers is studied. The figure 4-a shows that for a 
given position of the two dynamic absorbers, the highest amount of dissipated  
energy that can be achieved isη  = 92.4% .The figures 4-b and 4-c illustrate the 

efficiency of  two NES depending on their stiffness and on their position on the 
beam.  
 



Parametric Study on Energy Pumping of Mdof System Using MDA 603
 

 
(a) 

(b) 

 
(c) 

Fig. 4 Absorbed and dissipated energy by MDA based on the variation of the nonlinear 
stiffness and the position of the MDA: (b) 3D plot and (c) 2D projection plane (k, d) 

b- Effect of the Linear Viscous Damping of Two Dynamic Absorbers 

The influence of the damping of the two NES and their position on the linear 
beam is studied. Figure 5 shows that the quantity of dissipated energy is highest 
for λ  ≥ 0.15 (η ~ 90%) for any position of the two NES that shows the 

robustness of the system. This robustness is influenced for λ  ≤ 0.05 N.s.m-1. 
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Fig. 5 Absorbed and dissipated energy by MDA  based on the damper and the position of 
the two MDA: (b) 3D plot and (c) 2D projection plane 

3.2   Bi - supported Beam Coupled with Two TMD 

The response of the beam coupled to two TMD is computed in the time domain 
with the same parameters as the ones used in case of two NES. The efficiency and 
the quantity of dissipated energy are also studied. Two TMD are attached to the 

linear beam. They are placed at distance 2d  = 0.8 m. For this simulation, 

parametric studies for two TMD are performed with the same parameters as in 
section 3.3.2 and the same impulse force ( )F t to excite the beam at a distance 

a  = 0.3 m. The influence of the linear stiffness coefficient k  and with the 
position of the two TMD is studied. Figures 6-a and 6-b illustrate the amount of 
energy dissipated by the two TMD ( k ∈ [1000 1500]). The highest value is 65% 

at a position d  ∈ [0.2 0.4]) for the two TMD.  

 

 

(a) (b) 

Fig. 6 Absorbed and dissipated energy by the two TMD based on the variation of the linear 
stiffness and the position of the two TMD: (a) 3D plot and (b) 2D projection plane of (k, d) 
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4   Conclusion 

This paper studies the portion of energy transferred from a linear beam excited by 
an impulse force to a secondary system. Dynamic absorbers such as MDA (two 
NES) or two TMD are linked to the same beam. A parametric study is carried out 
for all cases in order to evaluate the ability of the NES and the TMD to dissipate a 
portion of the injected energy under impulse force. The robustness of all configu-
rations with variations of the design parameters is also studied.  

Generally, the nonlinear attachment holds promise as an efficient, robust, 
lightweight and passive absorbing device for eliminating undesired shock-induced 
broadband disturbances in small or large scale flexible structures. Viewed in that 
context, the NES may be regarded as a passive, broadband boundary controller, 
and as such can find application in diverse problems in engineering. 

In the part of the parametric study with two NES, it appears that the maximum 
value of dissipated energy is η = 92.4%. The comparative study of the different 
configurations (single NES, two NES) shows that the robustness is improved with 
two NES. The main advantages of the proposed nonlinear design with one or two 
NES is its relative simplicity, its lightweightness, and its ability to be adaptive, its 
ability to resonantly interact with a set of structural modes of arbitrary frequency, 
extracting energy from all modes. 
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Abstract. Tool damage due to chatter poses harmful economic impact in modern 
machining production therefore it is important to avoid or suppress chatter during 
the production process. In order to establish automated chatter-free cutting condi-
tions, the methods for online recognition of chatter and chatter-free cutting should 
be developed. It this paper a band sawing cut-off process is considered where a 
combination of selected workpiece properties and cutting parameters result in 
chatter. A method for online chatter detection based on processing of acoustic 
signals is proposed. The method consists of pre-processing sound signals with 
Short-Time Fourier Transform (STFT), extracting frequency invariant features, 
and finally applying Quadratic Discriminant Analysis (QDA) for classification. 
The proposed method, tested with two-fold cross validation on experimental data, 
yields high recognition rate (over 96%). 

Keywords: band sawing, chatter detection, short-time Fourier transform, feature 
extraction, discriminant analysis, cross-validation. 

1 Introduction 

Economy of machining depends on energy, time and material consumption as well 
as tool wear. Savings in material can be considerable if surface finish is adequate 
before the next production stage. Chatter significantly deteriorates surface quality 
and reduces tool life therefore considerable effort has been directed toward detect-
ing and removing chatter phenomenon in different areas of machining. 

In 1965 and 1967 Mote [1] reported on theoretical models for lateral and tor-
sional moving band vibrations respectively which set milestones for theoretical 
chatter studies in band sawing. Work by Yang [2] and Le-Ngoc [3] was supported 
with theoretical models in 1981 and 1990 respectively. Okai [4] observed wash-
boarding as a consequence of self-induced vibration with respect to workpiece 
thickness and its position in wood cutting in 2009. Several papers have been dedi-
cated to chatter control in band sawing; Damaren [5] employed a force actuator to 
achieve robust active control of vibrations. 
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Chatter has been researched considerably more in other machining processes 
such as grinding, milling, turning and drilling. Methods for chatter detection in 
grinding were further employed by Inasaki [6], Govekar [7] and Altintas [8] in 
2001, 2002 and 2004 respectively. In turning several methods were proposed for 
chatter detection. Stability lobe diagrams were presented in 1998 by Gradisek et 
al. [9], acoustic emission measurements were employed for chatter detection in 
2000 [10]. 

Multisensory approach was reported in 2008 by Kuljanic [11] and concluded 
that sound signals alone provide sufficient information for chatter detection. For a 
complete review of chatter in machining processes reader should investigate paper 
by Quintana [12]. 

Chatter in band sawing causes low quality surface finish, increases tool wear 
and is a source of noise pollution, therefore it is crucial to detect and suppress this 
phenomena in band sawing as well. Objective of our research is to explore various 
signals such as sound, forces and vibrations in order to detect chatter produced by 
band sawing cut-off process. An industrial band sawing machine was equipped 
with multiple sensors for the purpose of chatter detection and based on recorded 
data several chatter detection methods were tested and compared. 

2   Experimental Setup 

Experiments were conducted on a true double column PE-TRA Toolmaster 
300DC band saw of 300 mm maximum cutting width capacity. The blade Håkans-
son, type PCVII Commander, length 4150 mm and pitch 4-6 [teeth/inch] was used 
and tensioned at approximately 2.0 kN.  

The band saw was equipped with a multi-sensory data acquisition system for a 
complete characterization of the band sawing process. Forces were measured by a 
Kistler 9257 dynamometer. Vibrations were recorded by a PCB piezo accelerome-
ter (type 356A16) mounted on the left blade supporting arm. Sound was recorded 
by a Brüel & Kjaer microphone (type 4190). The microphone and preamplifier 
were mounted on a magnetic stand above the workpiece at distance approximately 
32 cm away from the workpiece pointing directly towards the workpiece. Work-
piece profiles covered in this research are presented in Figure 1. Workpieces were 
cut in 3-5 mm length from a 300-400 mm long tube. Material of the tested work-
pieces was mild easy-to-machine construction steel. Different geometries were 
selected to show generality of the methods for chatter detection. Cutting speed 
ranged from 56-77 m/min and down-feed ranged from 94.8-104.0 mm/min. Fre-
quency of teeth entering the workpiece depends on blade pitch and cutting speed. 
In case of 4-6 teeth per inch (tpi) and above-mentioned cutting speeds two main 
frequencies can be determined. First results from the 4 tpi set and is in the range 
147-202 Hz, the other results from 6 tpi and ranges from 220 to 303 Hz. 
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Fig. 1 Profiles of cut workpieces. Material of the tested profiles is easy-to-cut mild con-
struction steel. 

3   Measured Signals 

Signals for chatter detection were provided by the multisensory experimental 
setup described in previous section. Figure 2 represents sound, cutting force  
and vibration signals and their average power spectra of chatter and chatter-free 
regions. 

Comparison of the signals and corresponding power spectra reveals good  
discrimination of chatter and chatter-free regions by sound spectrum. Force and vi-
bration signals are not informative for the recognition of chatter phenomena. Conse-
quently, our subsequent analysis for chatter detection is based on sound signals. This 
is in accordance with multisensory chatter detection results in milling [11] confirm-
ing that sound signals alone provide sufficient information for chatter detection. 

 

Fig. 2 Comparison of sound, force and vibration signals with the corresponding power 
spectra of regular and chatter band-sawing. Blue lines denote regular band sawing intervals, 
and magenta colour denotes chatter phenomena. 
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4   Solution Approach 

As shown in previous section, the most informative signal for chatter detection 
was measured sound, acquired with sampling frequency fs = 20 kHz. Preliminary 
power spectrum results shown in Figure 2 motivated application of spectral meth-
ods. In order to provide suitable temporal resolution for online chatter recognition, 
the Short-Time Fourier Transform (STFT) version was applied as a signal pre-
processing method.  

In our analysis, the reference for chatter and chatter-free signals was provided 
by expert operators who detected and recognized chatter based on their acoustic 
perception during the band-sawing process. Based on this reference, the acquired 
signals were segmented into chatter and chatter-free regions. 

Based on STFT spectra, various features were extracted in order to provide fre-
quency invariant information, and the following methods were tested with the 
objective of reliable chatter detection: 

1. single feature with optimized decision threshold,  
2. multiple feature combinations and quadratic discriminant analysis (QDA), 
3. multiple feature combinations and feed-forward artificial neural network 

(FNN). 

Chatter detection methods were tested based on 2-fold Cross-Validation principle 
(CV) where a complete set of signals was divided into training and testing sets as 
follows: 

1. as first, training set was used to train the chatter detection method (setting 
decision threshold, etc.), then the method was tested on a test set, 

2. in the next step, the training and test sets were swapped and the train-
ing/testing procedure repeated, 

3. the result of the method was obtained as an average of both testing cross-
validation results. 

The objective for the chatter detection methods was defined by a percentage rate 
(R) of correctly classified samples. Two types of errors occur in chatter recogni-
tion: 1) chatter that occurred but is not detected and 2) normal signal is reported as 
chatter. In order to encompass both errors an objective function was defined by 
Eq. (1). Since the chatter-free regions are much more frequent compared to chatter 
regions, the equal probability of both regions was assumed and encoded into the 
objective function as follows: 

regch RRR
2

1

2

1 +=         (1) 

The overall classification rate R is composed from equal contributions of chatter 
classification rate Rch and chatter-free classification rate Rreg. Ignoring the pro-
posed objective function the employed method would yield over 90% recognition 
rates already without detecting any chatter because the probability of chatter-free 
signal is significantly larger compared to chatter. The same objective function was 
also used by Kuljanic [11].  
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5   Feature Extraction Based on Frequency Domain 

For real-time online chatter detection a fast routine should be employed for chatter 
characterization. Acquired signals of sound were analyzed in frequency domain 
where chatter is clearly separable from normal cutting therefore the Short-Time 
Fourier Transform (STFT) was applied as an initial signal pre-processing method. 
The method is also numerically very fast and thus appropriate for real-time appli-
cation. The following parameters were applied in order to obtain suitable 
time/frequency resolution: window length = 1024, window type = Hamming, fre-
quency resolution  df = 20 Hz, time resolution dt = 25.6 ms, logarithmic scale. 
Such a combination of parameters provides a suitable basis also for online applica-
tion of the method for real-time chatter detection on the band-sawing machine. 
Fig. 3 presents an example of a sound spectrogram based on STFT. Chatter inter-
val shows clear characteristic stripes of amplified frequencies. 

 
Fig. 3 Microphone STFT of regular and chatter band-sawing. The chatter interval is clearly 
marked between 1.8 s and 2.8 s. 

Based on spectrogram observations (Fig. 3) a set of features was calculated 
from the STFT signal. At arbitrary workpieces and machine parameters presented 
in this paper, the chatter signal retains its characteristic shape however the peak 
locations vary depending on the geometry of the workpiece and machine parame-
ters. The motivation of this paper was extraction of features that are independent 
of workpiece and machine parameters. Consequently, we propose the extraction of 
various frequency independent features (z1, z2, …, z9) from STFT signals: 

a) Simple features 
z1 max1:  amplitude of the 1st frequency peak in [0, 2] kHz range, 
z2 max2:  amplitude of the 2nd harmonic peak, 
z3 max3:  amplitude of the 3rd harmonic peak, 
z4 min12:  amplitude of the area between 1st and 2nd frequency peak, 
z5 min23:  amplitude of the area between 2nd and 3rd frequency peak,  

b) Combined features (combination of simple features) 
z6 max1+max2 

z7 max1+max2+max3, 
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z8 max1+max2–2min12 

z9 max1+max2+max3–min12–min23 

The proposed features were extracted from logarithmic STFT that were also nor-
malized with respect to average sound level at this time segment. With this step 
we provide invariance to the sound levels recorded and therefore a broader gener-
ality of the method. In the next section, the extracted features are tested as inputs 
to chatter detection methods. 

6   Results of Chatter Detection 

The proposed extracted features are tested as single chatter indicators, or as a 
combined input to discriminant analysis or neural network based chatter detection. 

Single feature detection was accomplished by cross-validation method where 
the decision threshold was defined on the training set, and the feature tested on the 
test set. The chatter recognition testing results (classification rate R) are presented 
in Table 1. 

Table 1 Chatter detection results by single extracted features. The best result is denoted in 
bold. 

Feature: z1 z2 z3 z4 z5 z6 z7 z8 z9 

R [%] 89.31 89.79 86.26 49.89 49.94 91.95 93.03 94.73 95.95 

 
The best single feature result is obtained by feature z9, which is composed from 

amplitudes of first three harmonic peaks with subtracted components of regions 
between harmonics. The result for feature z9 based on cross-validation and optimal 
threshold yields R = 95.95% recognition efficiency. 

Multi-feature combinations were examined by a quadratic discriminant analysis 
method (QAD). All possible combinations of features (z1, z2, …, z9) were tested 
and the best subset was determined based on cross-validation result. The winning 
overall combination of arbitrary features classified by quadratic discriminant 
analysis yields classification rate R = 97.64%. The winning combination of fea-
tures is  

z = [z1, z5, z7, z9]. 
 

The result means that adding several additional features can slightly improve the 
classification rate but the improvement is below 2%. For comparison, the best 
combination of two features was determined and the result is R = 96.86% obtained 
by a combined input z = [z5, z9]. Cross-validation result for the best combination of 
two features is shown in Figure 4. Chatter and chatter-free samples are marked 
and discriminant analysis based on features z5 and z9 and quadratic polynomial is 
plotted. For both cross-validation runs, training and testing results are shown and 
the classification rate R is obtained as an average of testing results. 
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Fig. 4 Best discriminant analysis result R = 96.86% based on quadratic method and the 
most informative two dimensional feature subspace (z5, z9). 

Extracted features were applied as inputs also to the feed-forward artificial neu-
ral network with sigmoid transfer functions. The same cross-validation procedure 
was applied and the number of hidden neurons was explored from 2 to 20. Results 
of neural network testing could not improve the discriminant analysis results 
therefore we conclude that the best obtained QDA result is close to optimal classi-
fication rate that is obtainable with the proposed set of features. Classification rate 
is also limited by the prior selection of chatter / chatter-free regions based on ex-
pert knowledge. The transitions between chatter and regular cutting are sometimes 
difficult to determine therefore the obtained results can be considered as very good 
and similar to results reported by [11]. 

7 Conclusion 

Force, vibrations, sound and energy consumption signals were acquired on indus-
trial band saw machine. The signals were analysed and compared in order to find 
the most informative signals for machine chatter recognition. In accordance with 
previous research, sound is confirmed as the most informative signal in chatter 
detection. Frequency invariant features were extracted from sound signals, pre-
processed by Short-Time Fourier Transform (STFT), and Quadratic discriminant 
analysis (QDA) was performed for feature classification. Good recognition rate 
was obtained already for a single extracted feature z9 (r = 95.95%), and the best 
recognition was obtained by a combination of features z1, z5, z7, z9 (r = 97.64%). 
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The proposed method is very fast in execution therefore it is suitable also for fast 
online operation.  

Further work will be dedicated to online integration of the proposed method in 
an industrial band saw machine and classification of chatter under time-varying 
conditions. Chatter depends on machining parameters, tribological properties,  
geometry and material of workpiece and tool properties. These time-dependent 
variables affect chatter occurrence hence detection methods for online chatter rec-
ognition have to be time-invariant. This paper addresses momentary loading of 
blade and workpiece under a range of arbitrary machine parameters and condi-
tions. The extracted features are frequency invariant hence the method for detec-
tion could as well prove to be successful in all stages of tool life and for a wide 
arbitrary set of machining parameters, workpieces and conditions.  

Unlike turning where controlled chatter experiments can be relatively easily 
carried out by varying depth of cut along the workpiece length, in band sawing 
chatter phenomenon is not that straightforward to achieve. We are expecting that 
chatter mostly occurs in workpiece due to its clamping system and rigidity how-
ever further experiments have to be carried out in order to systematically charac-
terize chatter in band sawing. 
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Abstract. In this study we were interested in bolted assemblies and their behav-
iour in response to harmonic excitations, their dynamic responses and their model-
ling in mass-spring model and finally validation with the finite element method. 
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1 Introduction 

Bolted structures are commonly used in complex industries and the most exposed 
to large loads, for this reason we re-fined this type of structure in the areas of 
transport namely aerospace, automotive, rail and ship. This type of fixing bolted 
and also riveted is classified up to now the most powerful and most resistible to 
large stresses due to fatigue and vibration (monotonous and sharp). 

In the field of transport (cars, planes, ships), passenger comfort is becoming 
more and more a primary criteria in conception. 

Therefore, the behaviour of structures at the design has become essential. 
In general, the vibration quality of the structures depends primarily on three 

factors: the excitement, the modal characteristics and the damping of the structure. 
The last fundamental parameter is poorly controlled until now. In fact, the calcula-
tions of the dynamic response are often made by introducing arbitrary dumping 
values estimated from tests. Therefore, it is urgent to develop a methodology to 
understand and quantify the damping phenomena at the stage of conception. 

This issue concerns mainly the automotive and aeronautics. Indeed, many parts 
are formed exclusively by the assembly of sub-structures made from thin stamped 
sheets assembled using electrical welding point. There are also other processes of 
the assembly of sub-structure (bolting and riveting). 
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The damping observed in the assembled structures is much higher than that in-
trinsic to the material. It is mainly due to energy loss caused by micro-slip be-
tween the surfaces in contact. 

These phenomena are extremely complex because these energy losses depend 
on the contact pressure and the amplitude of vibration, leading to a nonlinear be-
haviour of structures. This work will form part of behaviour of dissipative struc-
tures meetings focused on the characterization and quantification of damping. 

Then, the main motivation for studying the nonlinear behaviour of the junctions 
is strongly linked to their ability to absorb the energy so it is indeed a means of 
passive control of vibrations. Indeed, the energy dissipation leads to a decrease in 
the amplitude of vibration. The phenomena involved in a joint are extremely com-
plex and several mechanisms of energy dissipation may be affected. I will begin 
by studying the damping of the friction. 

Quick Bibliography; in 1985 [1] RM .EL ZAHRY have created procedure of 
resolution with simple mathematic model. In 1994 [2] S.Mourad A.Ghobarah and 
R.M.Korol concluded that the fasteners behave predictably. In 2002 [3] N.G.Pai 
and D.P.Hess presented and analyze vibrations generated by shear forces. In 2004 
[4] S.S.Law, Z.M.Wu and S.L.Chan published a paper in which they invoke the 
analysis of the energy dissipated in bolted connection. In 2005 [5] R.A.IBRAHIM 
and C.L.PETTIT, took the same configuration (two plates and a bolt), but with the 
addition of piezoelectric discs to change the normal contact force between the two 
plates in question, they varied the contact force plates assembly to determine the 
eigenvalues of the random damping in the joints. In 2007 [6] H.JALALI, 
H.AHMADIAN, and J.E.MOTTERSHEAD simplified the complex phenomenon 
of energy dissipation bindings by using simple analytical model.  

2   Choice of Model 

2.1   Flowchart 

In this flow chart we find the approach taken and considered in the choice of 
bolted model and digitization of CAD software and the mass-spring modelling. 

This is a general flow chart because we find at the end the validation study  
between analytical and finite element simulation. 

The choice of the CAO model is between two models sheet metal and ma-
chined. This choice is made by evaluating two criteria: (endurance to the excite-
ment and strength compared with the type of use). 
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  CAO MODEL 

Use Validation No 

Or 

Choice of model to use 

Using of the sinusoidal force 

CAO Digitization 

Model with sheet metal Machined model 

Simulation via Ca-
tia/Abaqus 

Mass-spring Modeling 

1st configuration/2nd configuration/3rd configuration 

Use of the most effective configuration 

Analysis of dynamic responses 

Validation with simulation No 

Or 

End of the dynamic analysis 
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machined bracket in reality (after optimization) 

2.2   Stratification and Modelling 

When all mesh nodes belonging to the representative surface of contact will be 
connected to a master node. The boundary conditions and loads appropriate will 
be imposed manually. 

The modelling of contact prints is through the construction of a representative 
area of contact (see figure below). This surface is then sewn to the fixed bracket. 

 
 

         

 

Fig. 1 Complete model 
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Fig. 2 Imprint of contact 

3   Equations and Figures 

Lagrange Equation: 
 

1 1 1 2 1 1 22 2 ( ) ( ) 0pm X c X k k X k X X′′ ′+ + + + − =
                           

 

2 2 1 0. ( ) c o s ( )M X k X X F tβ′′ + − =     
 

X2

X1

 

Fig. 3 Stratified model 

 

(1) 
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This gives the following dimensionless equation: 
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     Damping matrix. 
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    Stiffness matrix  

k=50000N/m; k1=50000N/m; k2=50000N/m; c=2N.s/m; F0=500 N; 
 
Boundary conditions are:      

Initial displacement X1= 0,005 m and X2= 0,025 m Initial velocity V1=0 m/s V2= 15 m/s 
 

         
                     

 

Fig. 4 Displacement curve 

(5) 
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Fig. 5 Velocity curve  

 

Fig. 6 Phase Curve  

Figure 4 shows the evolution of the movement of two masses M and mp as a 
function of time with an initial condition of the second movement of the mass 
equal to 0,025 m. There is a very rapid reduction which explains the phenomenon 
of vibration damping. 

Figure 5 shows the evolution of the velocities of two masses m1 and m2 over 
time. The velocity response of the system diminishes rapidly away from the origin 
of time. There is a phenomenon of damping in the bolted fixation. 
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Figure 6 shows the evolution of the velocity and displacement in phase space, it 
shows two fixed attractors that model the damping of the system to excitation 
forces. 

 
 

 

Fig. 7 SFX bolted in dynamic 

   

Fig. 8 Result of “Von Mises” in Abaqus 

5   Conclusion 

In this study, two types of assembly brackets for rods are considered, but only one 
was chosen for industrial reasons that there is "machined brackets". 
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The analysis of the behaviour of the bracket in question highlighted the follow-
ing conclusions: 
 
- According to the response curves of displacement and velocity, there is always 

the absorption of vibrations in the dynamic state of the system and this explains 
the phenomenon of damping in the fasteners. 

- By viewing the phase curve, there are indeed two attractors and therefore our 
system about to dampen the motion and converge to the steady state and repeti-
tive. (This focuses on two very different concepts [First our system cannot well 
be chaotic and it trends to stabilize and dampen vibrations linearly] [second  
system and chaotic dynamics and we should study all aspects stochastic and  
random]. 

 - Based on the finite element analysis, we find that our vibration absorption phe-
nomenon is concentrated at the bolted fasteners in the case of bolted assembly 
with support and these both in static and dynamic study. This interpretation leads 
us directly important to refine our study and go further up the study of threads. 

 
In the end, it remains the party validation between analytical calculations and fi-
nite element for the validation of our model and then generalizing this type of 
modelling for bolted joints correctly identified analytically. 
 
Acknowledgements. My special thanks go to Nasri Rachid and Chakhari Jamel, without 
their helps and support the continuity of work in my thesis would be more painful.  
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Abstract. This paper presents a multi-body model for the study of the non station-
ary dynamic behaviour of an off-shore wind turbine power train. The problem 
studied is an off-shore implementation with seafloor depths around a thousand 
metres, making it necessary to use a floating platform. Special attention is paid to 
combining the characteristics of the buoy’s off-shore support with a detailed 
model of the power train in order to assess the consequences of buoy movement in 
the forces that appear in gears and bearings. A multi-body analysis code was used 
to develop the model and a conventional wind turbine set up was implemented as 
an example. Gearbox dynamic behaviour is simulated for common manoeuvres of 
start-up and emergency stop and the results obtained are presented. 

 
Keywords: Wind Turbine, Off-Shore, Gear Dynamics, Meshing Stiffness. 

1   Introduction 

The development of wind energy development has been of great importance in the 
last decade. This means that there are now many wind farms located at sea, but all 
of them near the coast where the low water depth allows the anchoring of wind 
turbines on the seabed. The alternative in deep sea areas is to use floating 
structures that support the wind turbine which usually consist of a float that gives 
vertical stability to the wind turbine and chains that limit the horizontal 
displacements. These conditions represent a new engineering challenge not only 
from the point of view of the structural elements but also the gearbox design as the 
dynamic loads are more complex than those corresponding to conventional ground 
facilities. 

The gearbox is one of the most critical components on the operation of wind 
turbines, being responsible for most of the downtime and as a consequence of the 
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increment in operational costs [1]. This fact has received the attention of several 
researchers and increasingly accurate and advanced models have been developed 
in recent years to understand the dynamic loads involved [2], [3]. Furthermore, 
offshore applications increase the complexity of dynamic loads and therefore the 
uncertainty related to the design process. 

Although various studies have addressed the dynamic modeling of floating off-
shore wind turbines [4], none has focused on the consequences on the operation of 
the gearbox. This work presents a study of the behavior of the power train of a 
wind turbine on a floating structure that has free movements in all displacements 
and rotations with the structural constraints due to the floating structure. With this 
aim, a model has been developed by mean of a Multibody System (MBS) code 
because this approach enables the whole system to be handled. Moreover, the 
MBS approach provides more flexibility to include additional phenomena such as 
the excitations coming from aerodynamic blade loads or the flexibility of different 
components (shafts, tower, etc.) although in this work the attention is focused on 
the dynamics of the gear train. 

The model developed includes a planetary stage and two ordinary stages with 
variable meshing compliance as well as bearing flexibility. Special attention is 
given to the run up and emergency stop as dynamic forces are critical in these ma-
neuvers. Information about the behavior of loads induced by the dynamic interac-
tions is analyzed. 

2   MBS Model 

The whole MBS model developed in MSC-ADAMS, is presented in Fig. 1 with 
details of the gearbox and kinematics scheme. The blades with the hub are consid-
ered as a rigid body with lumped mass and inertia. Wind loads are included as ex-
ternal forces on the rotor hub neglecting aerodynamic loads due to the structural 
behaviour of blades and the aero-elastic coupling. Buoy restoring forces are in-
cluded at the base of the tower using specific Single Forces defined in the MBS 
code environment. 

Regarding gearbox, shafts and gears are lumped and assumed to be rigid bodies 
while gear meshing forces are modelled by a variable stiffness spring following 
the approach described later. The rotor hub is connected thorough the main shaft 
to the carrier of the planetary stage (see Fig 1). The carrier moves planets and 
transmits the power by the fixed ring and the sun to the low-speed shaft. Then, 
two ordinary stages are used to increase the rotational speed, up to the desired 
value at the generator side which is included by means a representative mass.  

In order to simplify, all shafts have been considered as rigid and the main shaft 
is the only one supported by flexible bearings, while rotational joints are used for 
the others. Flexible bearings are included in the MBS model as bushing joints de-
fining the corresponding stiffness and damping values neglecting cross terms. 
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Fig. 1 MBS model and details of the drive train 

The torque load due to the generator (TG) has been approached by a simple in-
duction generator model according to the expression 

( )G T ST R ω ω= −                                                          (1) 

Where ω is the actual generator speed, ωS is the synchronous generator speed cor-
responding to zero torque and RT is a constant defined in order to balance the 
nominal wind torque at the desired operation speed ωG. This model is connected 
when the generator rotational speed reaches a certain value defined by the user. In 
this way the coupling can be done even with the generator working as a motor 
when the generator speed is lower than the synchronous one. 

Meshing forces have been included as user functions (GFORCE) defined fol-
lowing the approach in previous work by the same authors for a low-speed ordi-
nary transmission [5]. Tooth contacting forces are assumed to be contained in the 
transmission plane, perpendicular to the tooth surface. Thus, tooth deflection can 
be obtained from the relative displacements of each gear center xi,yi,zi,θxi,θyi,θzi, 
using the following expression (see Figure 2): 
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( cos sin cos sin ) sin ( )
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+ − ⋅ ⋅ − ⋅ ⋅ − − ⋅ ⋅ − ⋅ ⋅ ⋅ +

 (2) 

Where eij(t) represents the periodic static transmission error due to profile errors, 
βij is the helix angle on the pitch cylinder and ϕij the normal pressure angle.  
 
 

 

Fig. 2 Tooth meshing deflections 

Once tooth deflections are known, meshing force is obtained by multiplying the 
resulting deflection by the gear pair stiffness. There are several works about the 
stiffness variation along the contact point, also taking into account the number of 
couples in contact for each position. In this case, due to the high contact ratio, 
there is a large overlap of tooth couples and therefore the stiffness is described by 
a simple expression defined by a mean value and a harmonic term [5]. Thus, 
forces on gear centres are defined from deflection by the force projection vector. 

The floating support platform is a spar-buoy concept which achieves static sta-
bility locating the center of gravity below the center of buoyancy by means of bal-
last. Three catenary mooring lines in a delta connection are used to attach the buoy 
to the sea floor restricting horizontal movement of the turbine to keep it within a 
certain area. The placement of the chains around the floating platform defines the 
yaw stiffness which is one of the most critical features in the design of this kind of 
supports. A preliminary analysis of the hydrostatic buoyancy behaviour provides 
rotational stiffness as well as the translational one in the vertical direction. These 
features are defined in the MBS model by a GFORCE element where the damping 
associated with each translational and rotational degree of freedom is included. 
Mooring lines are also analysed in a previous stage and then included in the model 
as three non linear springs arranged in the xz plane (see Fig 2) every 120 degrees. 
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3   Example 

The MBS model described previously has been applied to a known 750 kW wind 
turbine drive train, the NREL 750 GRC [6]. No details are presented in this work  
about the parameters and data related to the example except those not appearing in 
the cited reference. In Table 1 the data corresponding to the meshing stiffness of 
each gear pair are presented. These data have been obtained following the 
approach proposed in [5]. Bearings for the main shaft are modelled as BUSHING 
joints and only present supported by the main shaft bearing closest to the carrier 
and the planets themselves. The axial stiffness for this bearing adopts the same 
value used for the radial direction of 109 N/m. 

 
 

 
 

 
 
 
 
 
 
 
 
 

x

y

z Rotational Stiffness  & 
Damping (GFORCE) 

Chain stiffness 

 

Fig. 3 MBS model of the buoy’s restoring forces 

Table 1 Transmission gear data 

 Transversal Contact 
ratio 

Axial Contact ra-
tio 

Average Stiffness 
(N/m) 

Variable Stiffness 
(N/m) 

Planet / Ring  1.5847 1.2456 5.7605 109 6.287 108 
Planet / Sun 1.5456 1.2456 6.0827 109 7.276 108 
IMS Gear Pair 1.5208 1.8668 2.9956 109 3.468 108 

HS Gear Pair 1.4538 2.1562 1.7947 109 1.809 108 

 
Regarding the model of the floating structure, the vertical translation stiffness 

due to gravitational forces and flotation at the equilibrium point is 96.74 kN/m. 
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The horizontal stiffness due to the tension of the mooring lines is non-linear ac-
cording the values shown in Table 1. To simplify the model, the same value has 
been used for roll, pitch and yaw rotational stiffness. Moreover, linear viscous 
damping has been considered for all the buoy’s degrees of freedom (see Table 2). 

Table 2 Parameters of the wind turbine 

 
Stiffness 

(15 m) 

Stiffness 

(20 m) 

Stiffness 

(25 m) 
Damping 

Horizontal translation 
(for 15m, 20m, 25m) 16.34 kN/m 23.52 kN/m 39.2 kN/m 40 kN/m/s 

Vertical translation 96.74 GN/m   40 kN/m/s 

Roll / Pitch / Yaw 1.14 GNm/rd   1 MNm/rd/s 

 
The results that will be presented correspond to the previously described model 

under several transitory loads. Initially, with the generator disengaged, the model 
was subjected to wind loads on the blades which are represented as a torque and a 
thrust in the hub rotor. These loads increment their magnitude progressively from 
zero to the maximum value over a time period from 0.1 to 5 seconds. As a conse-
quence the drive train starts up and simultaneously the floating support begins its 
horizontal movement as well as pitch oscillation due to the wind thrust load. Later, 
when the rotational speed of the high-speed shaft has exceeded 157 rad/s, the ge-
nerator is connected progressively achieving the maximum power when the speed 
exceeds 160 rad/s. Then, after a short period of time the turbine reaches its statio-
nary working conditions of torque load and rotational speed. Afterwards, the next 
step was to simulate an emergency stop maneuver due to an electrical failure. The 
objective sought was to study the phenomenon of unexpected shutdown of the 
machine and evaluate the contact stresses in the gears, bearings, as well as the dy-
namic behavior of the entire machine. This event was carried out by disconnecting 
the generator (at 20 seconds) with a sudden drop in the resistant torque. As a con-
sequence the drive train lost the pretension in the meshing contacts, increasing 
their speed. After 0.1 seconds (at 20.1 seconds), the control system reacts activat-
ing the aerodynamic brake by pitching the blades. Then, until 25 seconds the tor-
que and thrust due to the wind are progressively reduced and simultaneously a ro-
tational damper representing the aerodynamic brake torque is connected at the 
hub. Furthermore, at the same time (20.1), the mechanical brake is activated on 
the generator side increasing its value up to the maximum in 0.5 seconds (20.6 
seconds). Finally the torque of the mechanical brake is progressively reduced de-
pending on the generator speed from 10 rad/s to 1 rad/s when it is deactivated. 

Next some results are presented, which are considered representative of the  
behavior of the transmission analysed on a floating support in the conditions  
described above. 
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Fig. 4 Simulation results: a) Wind loads (Thurst and Torque); b) Generator torque and rota-
tional speed; c) Tower movement (displacement and pitch angle); d) Main Shaft Bearing 
forces; e) Ring/Planet contact deflection; f) Sun/Planet contact deflection; g) Waterfall 
spectra of High-Speed gear stage deflection derivative 

a) b) 

c) d) 

e) f) 

g) 
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4   Conclusions 

This work presents the dynamic behaviour of an offshore wind turbine power 
train. The system has been anlysed considering two common non-stationary ma-
neouvers, start-up and emergency stop. The results show the influence of variable 
meshing stiffness in a rotational model of a power train. These aspects have a 
strong influence on the performance of the transmission resulting in oscillations 
related to the load and velocity-related operating conditions. 

The influence of the buoy displacements on the operation of the offshore wind 
turbine power train has been also considered. Although these effects are difficult 
to assess, they are important in the main bearing and planetary components as a 
consequence of gyroscopic effects. 

Reversing contact appears in the planetary stage at rest (time 0 sec) as a conse-
quence of the main shaft support deflection. Moreover, during run up unloaded  
period (generator disengaged) and particularly during the emergency stop reversal, 
contacts are also observed in all the gear pairs. Maximun meshing deflections ap-
pear during the braking period due to the excitation of geartrain resonances. 
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