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Abstract. Data structure repair corrects erroneous executions in deployed pro-
grams while they execute, eliminating costly downtime. Recent techniques show
how to leverage specifications and a SAT solver to enforce specification confor-
mance at runtime. While this powerful methodology increases the reliability of
deployed programs, scalability remains a key technical challenge—satisfying a
specification often results in the exploration of a huge state space. We present
a novel technique, called history-aware contract-based repair for more efficient
data structure repair using SAT. Our insight is two-fold: (1) the dynamic pro-
gram trace of field writes and reads provides useful guidance to repair incorrect
state mutations by a faulty program; and (2) we show how to execute SAT using
unsatisfiable cores it generates, in an efficient iterative approach on successive
problems with increasing state spaces, in order to utilize the history of previous
runs as captured in the unsatisfiable core. We implement this approach in a new
tool, called Cobbler, that repairs Java programs. Experimental results on two large
applications and a library implementation of a linked list show that Cobbler sig-
nificantly outperforms previous techniques for specification-based repair using
SAT, and finds and repairs a previously undetected bug.

1 Introduction

Software systems are pervasive and integrated into almost every aspect of life. Software
reliability is essential for life-critical, science, and business applications. Much research
addresses producing reliable software in various phases of the software development
life cycle before deployment, from analyzing requirements to design, implementation,
and testing. However, improving the reliability of an already deployed (possibly faulty)
system using error recovery is a less explored area.

In practice, systems are deployed with unknown and known unfixed bugs. When
bugs cause failures, the usual tactic is to restart the program because fixing bugs and
redeploying software may take months. Although the latter approach may resolve the
fundamental source of the problem, system downtime is undesirable and not always fea-
sible. Many mission critical applications such as operating systems, may prefer to trade
slight deviations in intended functionality for system uptime. Better still, if developers
annotate programs with specifications, then the runtime may restore the system state to
provide its intended functionality. Continuing program execution by fixing the effect of
bugs on-the-fly is called repair. Existing techniques for repair have not so far lived up
to their full potential, because they are either not general purpose or too inefficient.
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Some critical systems include code that repairs erroneous executions on-the-fly using
dedicated application specific repair routines [6,/7,13./14]. Recent work introduced gen-
eral purpose approaches including constraint-based repair [4}18,/10] and contract-based
repair [[18L125]], some of which utilize SAT solvers [[1825]]. Constraint-based repair em-
phasizes data structure integrity rules and repairs the data structures when a bug leads to
an invariant violation. Contract-based repair adds pre- and post-condition specifications
of a method which aid in generating an accurate repair, i.e., a structure that is the same
or very close to the one that a correct method would generate. General purpose repair,
however, has a huge state space of possible post-states and exploring them to find a
solution is currently too expensive to use in practice.

This paper seeks to make repair substantially more efficient by utilizing the history
of code execution as well as SAT solving. Our insights are two-fold: (1) the dynamic
program trace of field writes and reads provides useful guidance to identify incorrect
state mutations made by a faulty program; and (2) the unsatisfiable core generated by
a SAT run captures core elements of the solver’s reasoning, which not only facilitates
locating faults but can even be leveraged directly to optimize a successive SAT run. We
utilize program traces and unsatisfiable cores in tandem to define an efficient iterative
methodology where SAT is run on successive problems with increasing state spaces and
each run utilizes the history of the previous run. To our knowledge, our work is the first
to use the history of program execution or constraint solving in data structure repair.

History-aware repair utilizes a faulty program execution by focusing repair on fields
recently modified or read by the program, thereby reducing the search space for SAT.
We record program writes and reads to the key data structure with barriers. A barrier is
a code sequence that performs an action just prior to a write or read. Barriers are widely
available in commercial and research implementations of managed languages, e.g., the
HotSpot and Jikes RVM Java Virtual Machines, and the .NET C# system. Our approach
inserts barrier instrumentation on writes and reads or piggybacks on existing barriers.

While using the history of program execution aids in improving repair performance,
its heuristic nature implies that there exist cases in which we have to perform a broader
search and consider fields not included in the execution trace. In such cases, we take
advantage of UNSAT cores, which are minimal unsatisfiable sub-formulas provided by
failed SAT invocations. When SAT invocations fail, we utilize their UNSAT cores to
identify faulty fields. A final SAT invocation with the list of faulty fields extracted from
the UNSAT core results in a repaired data structure.

We implement repair for Java in a tool called Cobbler. Cobbler uses class invariants
and method post-conditions expressed in the Alloy specification language [9]. Cobbler
inserts write and read instrumentation for the specified data structures to log dynamic
program behavior. When Cobbler detects a violation, it uses a SAT solver to mutate the
data structure until it satisfies the specification.

We explore the efficiency and accuracy of Cobbler on microbenchmarks and two
open source programs: Kodkod solver [22] and ANTLR [2/16]. We compare our history-
aware contract-based repair tool, Cobbler, to contract-based repair alone using PBnJ [[18§]]
and Tarmeem [25]], two repair tools which leverage user guides and heuristics along with
a SAT solver. Cobbler is substantially more efficient and scalable than PBnJ
and Tarmeem. We also compare Cobbler with Juzi, which uses data structure
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specifications for repair, but does not use method post-conditions [5]. Juzi’s dedicated
constraint solver is more efficient than Cobbler, but Juzi’s repair is applicable to far
fewer cases and Cobbler is much more accurate. Our experiments show that for small
to moderate instantiations of data structures, Cobbler provides repaired data structures
which are 100% to 90% similar to the correct structure in more than 90% of the cases.
Cobbler also finds and repairs a previously unknown error in ANTLR.

We make the following contributions: History-aware contract-based repair com-
bines the program’s dynamic behavior with specifications and the current erroneous
state of a program to perform repair. Read and write barriers for repair are an un-
conventional use of barriers to obtain program execution history for repair. Minimal
unsatisfiable cores provided by SAT solvers help to reduce the search space when a
field outside the execution trace should be modified. Cobbler is an automated portable
framework for repairing Java programs that enhances real applications with repair func-
tionality. Evaluation shows that Cobbler efficiently and accurately repairs text-book
examples and real world programs. Cobbler’s more efficient and accurate repair facili-
tates the use of repair in real world applications and enhances software reliability.

2 Background

This section describes data structure repair and the Alloy tool-set, which Cobbler uses.

Repair: Data structure repair corrects erroneous executions on-the-fly by enforcing
data integrity constraints (also known as repOK) and method pre- and post-conditions
(contracts). Figure[Tl(a) shows the faulty output of a method, which violates the acyclic-
ity constraint as a binary search tree. A repair tool detects the violation and fixes it by
removing the dotted edge. Further fixes may be needed to enforce method contracts too.

Alloy tool-set: Alloy is a relational first order logic language [9]. An Alloy model
consists of relations and constraints on them. The Alloy Analyzer performs bounded
exhaustive analysis of Alloy models. A bound is a function which maps each relation to
a set of tuples (bound: R — 27), where each tuple consists of atoms. For each relation
R, two sets are defined: a lower bound LB(R), which includes all tuples that R must
have in its instance (inst(R)), and an upper bound U B(R), which includes all tuples
that R may have in its instance. Therefore, LB(R) C inst(R) C UB(R). Figure[Il (b)
shows the relational representation of the Java object graph shown in Figure[Tl (a).

We use Kodkod [22], the back-end of Alloy Analyzer, which is a SAT-based con-
straint solver for first order logic that supports relations, transitive closure, and partial

(a) a Java object graph (b) relational representation (c) relaxing the dotted edge
TO.btSize =2 inst(root) = {(TO, NO)} LB(right) = {(NO, NI)}
inst(btSize) = {(T0, 2)} UB(right) = {(NO, N1), (N2, NO),
inst(right) = {(NO, N1), (N2, NO)} (N2, N1), (N2,N2)}
inst(left) = {(N1, N2)}

inst(element) = {(NO, 3), (N1, 5), (N2, 4)}

TO.root >

Fig. 1. Relational representation of data structures in Alloy models
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models. Kodkod provides a finite model for satisfiable specifications and an UNSAT
core for unsatisfiable ones. To perform repair, Kodkod suggests mutations to the data
structure such that it meets the Alloy specification. Specifically, given a satisfiable rela-
tional formula and the bounds, Kodkod uses a backtracking search to find a satisfying
instance. The search space is typically exponential in the number of atoms.

Kodkod allows explicit specification of upper and lower bounds for analysis, which
provides partial solutions and restricts the search space. We use this functionality to
specify which fields of the state can be mutated by the SAT solver to perform repair.
Thus, to relax a field in Kodkod means to let the SAT solver suggest different values
other than the one present in the faulty post-state, in order to find a satisfiable answer.
Relaxing a field, which is a mutation of a field of a specific object, is done through
binding a relation to suitable lower and upper bounds. For example, in Figure [ (a)
the dotted edge can be relaxed by setting the lower and upper bounds as shown in
Figure [Tl (c). Setting both lower and upper bounds to the same set makes it the only
answer for that relation, i.e., the set becomes a partial solution for the Kodkod model.

Minimal Unsatisfiable Cores: If Kodkod cannot satisfy the constraints in a model,
it produces a minimal unsatisfiable core, which is a subset of the constraints of the
model. Given an unsatisfiable CNF formula X, a minimal unsatisfiable sub-formula is
a subset of X’s clauses that is both unsatisfiable and minimal, which means any subset
of it is satisfiable. There could be many independent reasons for a formula’s unsatisfia-
bility and hence more than one minimal core. The Recycling Core Extractor algorithm,
implemented as the RCE Strategy in Kodkod, returns an unsatisfiable core of specifi-
cations written in the Alloy language that is guaranteed to be sound (constraints not
included in the core are irrelevant to the unsatisfiability proof) and irreducible (removal
of any constraint from the set would make the remaining formula satisfiable).

3 Cobbler Framework

This section describes our history-aware contract-based repair framework.

3.1 Overview

We use class invariants and method post-conditions to detect erroneous executions.
Once an error is detected, we utilize two major sources of information about the in-
tended behavior: the specification and the dynamic trace of execution which we obtain
through write and read logs. Although the post-condition specifies the expected behav-
ior of the method, there is often a wide range of correct possibilities for a given input
since there may be many ways to implement the same specification. Additionally, for a
SAT-based repair framework, relaxing all fields of the data structure explodes the search
space and is infeasible for real world applications.

We use the program execution to help guide our repair process. In deployed soft-
ware, the program is expected to contain most of the intended logic. Furthermore, given
sufficient pre-deployment testing, there should not be many bugs in the code. By ob-
serving the dynamic behavior of a faulty execution, we can substantially reduce the
size of the search space and make the repair process more efficient and effective. The
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core idea is to focus on fields modified and/or read during the execution. To obtain the
execution history, we record write and read actions performed by the program. Our im-
plementation instruments the program, but alternatively the Java Virtual Machine could
efficiently provide them [[1]]. We start by restricting the SAT solver to correcting written
fields and values, followed by read fields during the execution, and if the SAT solver
has still not found a correction, it utilizes the UNSAT core provided by the previous
SAT invocations to identify and mutate faulty fields of the data structure. Hence, our
technique handles both errors of commission when the programmer writes an incorrect
assignment and errors of omission when she forgets to update the required fields.

While repair has various applications, it does not suit all types of software systems.
For systems that cannot tolerate even slight divergences in the state of the program from
the original behavior (e.g, financial systems), it is not advisable to use automatic repair
routines unless complete contracts with all the required details are available.

When repair is applicable, this approach has two benefits: (1) it improves the repair
performance by reducing the size of the search space, and (2) it reduces the amount of
data structure perturbation introduced by the repair process by focusing on fields that a
correct method conceivably would modify.

Listing[L.Tshows the repair algorithm in pseudo-code. If an assertion is violated, the
repair framework initially only mutates (relaxes) fields in the write log, holding all other
data structure fields constant (through providing a partial solution for the SAT solver).
It then calls the SAT solver to compute correct values for the relaxed fields. If this step
does not yield a structure satisfying the contracts, the next step relaxes the fields in the
read and write logs. If it still is unsuccessful, it relaxes fields appearing in the UNSAT
core. If the SAT solver finds no solution, there is an inconsistency in the contract itself
which the repair framework reports.

if (tassertContracts ()){
relaxSAT (writeBarrierLog);
if (lassertContracts ()){
relaxSAT (writeBarrierLog, readBarrierLog);
if (assertContracts ()){
relaxSAT (unsatCoreFields ) ;
if (assertContracts ()){
reportModellnconsistency ();}}}}

© N U AW —

Listing 1.1. History-aware contract-based repair using read and write logs and unsatisfiable cores

3.2 Example

Consider a binary search tree example written in Java in Listing [.2] and its remove
method. In Cobbler, developers must write a specification in the Alloy relational first
order logic language. Listing [L3]shows the acyclicity and size constraints that describe
a correct binary search tree in Alloy. Additional constraints include search relations on
the nodes and that the elements are unique. The repOK method describes all method-
independent constraints. The developer may also express method post-conditions, as
shown in the remove postcondition method. This post-condition specifies a correct
remove with respect to the data structure and the return value from the remove method.
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class BinarySearchTree {
Node root; int btSize;
boolean remove(int x) {

if (root == null) return false;
else {
boolean result;
if (root.element == x) {
Node auxRoot = new Node() ;
auxRoot.left = root;
result = root.remove(x, auxRoot);
root = auxRoot.left;
} else result = root.remove(x, null);

if (result) btSize ——;
return result;}}}
class Node {
Node left, right; int element;
boolean remove(int x, Node parent) {
if (x < element) {
if (left != null) return left.remove(x, this);
else return false;
} else if (x > element) {

if (right != null) return right.remove(x, this);
else return false;
} else {

if (left != null & right != null) {
element = right.minNode () .element;
right.remove(element, this);

} else if (parent.left == this) {
if (left != null) parent.left = left;
else parent.left = right;

} else if (parent.right == this) {
if (left != null) parent.right = left;

else parent.right = right;}
return true;}}
Node minNode () {...}}

Listing 1.2. A binary search tree implementation in Java

abstract sig BinarySearchTree {
root, root’: lone Node,
btSize , btSize’ : one Int}

abstract sig Node{
left , left’, right, right’: lone Node,
element, element’: lone Int}

pred repOK(t: BinarySearchTree){ //class invariant
// directed acyclicity
all n: t.root’.*x(left’+right’)|n !in n."(left’+right’)
// size OK
# t.root’.x(left’+right’) = int t.btSize’
//unique elements

//search property
pred remove postcondition(This: BinarySearchTree, x: Int, removeResult:
False)){
repOK[ This ]
// correct remove

(True+

This.root.x(right+left).element — x = This.root’.x*(right’+left’).element’

// correct remove result
x in This.root.x(right+left).element <=> removeResult in True}

Listing 1.3. A binary search tree specification in Alloy
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(a) input
constraint-based repair

e btSize = 3

null

root

null

null
null

(c) faulty output of remove (5)

(b) expected output of remove (5)
history-aware contract-based repair

e btSize =2

null

root

null

null

(d) contract-based repair

root

e btSize =2

null

@ btSize =2
root — >
¥
null

\
null

null null

null

(e) write barrier log (dotted lines in part (c)):

{[4].right, btSize}, [x] represents the node with value x before execution.
(f) read barrier log (dashed lines in part (c)):

{root, [3].element, [3].right, [5].element, [5].left, [5].right, [3].left}

Fig. 2. cycle manifested as a faulty output and the repair result

Alloy represents Java classes with signatures (e.g., sig BinarySearchTree in
Listing [[.3) and field relations with a relational view. The keywords lone and one
for a unary relation denote that the relation may or must not be empty, respectively.
Binary relations can be defined as total or partial functions among other options (e.g.,
right is a partial function). We use the syntactic sugar of adding back-tick (‘*’) to dis-
tinguish post-state Alloy relations from pre-state relations. The Alloy repOK predicate
(pred) expresses data structural integrity rules. For instance, the directed acyclicity
constraint specifies that for any node reachable from root by applying zero or more
left or right pointers, the node cannot reach itself by following one or more left
or right pointers, so it cannot traverse a cycle. » and ~ represent “zero or more” and
“one or more” applications of a relation. Alloy supports membership, cardinality, and
complement, in, #, and - respectively as in the acyclicity, size, and correct remove
constraints.

To illustrate our repair process, consider inserting the following bug. Bug cycle: in
Listing[T.2]line 32, replace the correct statement: parent .right = left with the in-
correct: left.right = parent. For this incorrect implementation, after the method
returns, checking the conjunction of repOK and the method post-condition indicates
that there is an error, triggering the repair process.
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To repair the erroneous output of the cycle faulty implementation, constraint-based
repair methods [4,[8L[10] observe the cycle and remove it from Figure 2(c) to produce
Figure 2{(a), but fail to remove node 5. Contract-based repair techniques without his-
tory [1825] may generate Figure 2ld), which although a correct output, is different
from what the program would have been generated in the absence of any bugs.

History-aware contract-based repair first invokes the SAT solver and tries to find a
solution by only changing the values of the fields which the program writes into during
the execution (Figure[2 (e)). These fields are distinguished by dotted lines in the faulty
output. In this invocation, it does not find a solution because the program failed to up-
date a field that needs to be modified. Our repair framework next considers changing
fields read by the program (Figure 2] (f)) and shown as dashed lines. It invokes SAT to
find suitable replacements for the fields written or read by the program. This invoca-
tion produces a repaired structure as shown in Figure 2] (b), which is identical to the
expected output. Utilizing the barrier logs keeps us from generating Figure 2] (d) since
the 1eft field of node 4 is not relaxed and is held constant to be null. However, there
remains a chance that a field that was not touched at all during the execution needs to be
changed. Our repair framework obtains an UNSAT core from the previous SAT invoca-
tions. The UNSAT core is the conjunction of contradicting repOK and post-condition
specifications, which were not satisfiable at the same time. In this example, if we were
to proceed to the third SAT call, the UNSAT core would not include, for example,
the correct remove result post-condition. Therefore, the final invocation of SAT
would not relax the removeResult field.

3.3 Implementation in Cobbler

Cobbler works as follows. (1) The user provides the Java data structure class and its
methods. Cobbler instruments this code with setters and getters to obtain logs of the
writes and reads. Cobbler also instruments the program for our experiments to measure
the repair time, edit distance and other metrics. (2) Cobbler generates a stub for the
repOK and method post-conditions for the Java class. Cobbler extracts class-specific
relations, types, and properties into the stubs, and the user enhances them with the
application specific logic. (3) Cobbler then instruments the program to check the post-
conditions and call the repair method when needed. (4) The user executes the Java
program inside the Cobbler framework.
Figure 3] shows how the repair framework

sits on top of the Java Virtual Machine and

Java Program
executes the Java program. The layers use
shared memory to communicate. This design Repair Framework

enhances the portability of our framework
and makes it independent of JVM and the
program. Alternative implementations could
implement the framework inside the JVM,
which would lower the overhead when pro-
grams are correct. When programs need to be repaired, the SAT solving time is orders
of magnitude bigger than time saved by merging the repair framework into JVM.

Java Virtual Machine

Fig.3. The relationship between Cobbler,
the Java Virtual Machine, and the program
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4 Evaluation

The objectives of our evaluation are to empirically validate the hypothesis that using
execution history and UNSAT cores improves the efficiency, accuracy, and scalabil-
ity of contract-based repair with SAT solvers. To this end, we simulated various er-
rors in microbenchmarks and examined two real world applications: Kodkod [22]] and
ANTLR [2,[16]]. Cobbler discovered a previously unreported bug in the addchild
method of ANTLR version 3.3 that resulted in a cycle in the output Tree. Our repair
algorithm fixes this error accurately for a Tree with 300 nodes within 30 seconds.

Throughout the evaluation, we ran each experiment five times and reported the av-
erages. All the experiments used a 2.50GHz Core 2 Duo processor with 4.00GB RAM
running Windows 7 and Sun’s Java SDK 1.6.0 JVM. All the repair frameworks used
their default SAT solvers: Cobbler used MiniSat and MiniSatProver, Tarmeem used
DefaultSAT4J, and PBnJ used MiniSat.

4.1 Evaluation Metrics

To evaluate the efficiency of repair, we measured: (1) logging time: the overhead due to
logging read and write actions; (2) check time: the time to detect a contract violation;
and (3) repair time: the time to search and find a repaired data structure.

To evaluable the accuracy of repair, we measure the edit distance between the object
graphs of the repaired data structure r, and the expected data structure e that a correct
implementation would produce. Note that, r satisfies the method contract but might be
different from the expected output. We define edit distance as the minimum number of
edge additions/deletions to change a graph to another [19,[25]. We create the correct
graphs by a separate correct implementation and then measure the edit distance in set
difference operations between two graphs using the relational representation discussed
in Section[2l Here inst;(R) is the instance of relation R in data structure i.

Definition 1. dist(e,r) = Y p(|inst.(R) — inst,(R)| + |inst,(R) — inst.(R)]).

The lower this distance, the closer the repaired data structure is to the expected post-
state data structure. We define the similarity percentage between the repaired output r
and the expected output e as follows.

oge . _ dist(e,r)
Definition 2. sim(e,r) = (1 — s, inst. (ry|) > 100.

4.2 Subject Programs

We applied Cobbler to (1) the remove method of Singly Linked List, (2) the insert
method of the Kodkod.util.ints.IntTree class of the Kodkod solver implemen-
tation, and (3) the deleteChild and addchild methods of BaseTree of ANTLR.
Singly-linked list: Linked list is widely used and is a part of libraries such as
java.util.Collection. The post-condition of the remove (int value) method,
checks if the method has (1) deleted all nodes with elements equal to the input value,
(2) maintained acyclicity, (3) inserted no new nodes, and (4) deleted no other nodes.
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Red-black tree of Kodkod: Kodkod [22] is a SAT-based constraint solver for first
order logic. It consists of 33,985 lines of Java code in 169 classes. The IntTree class
with 570 lines of code and 21 methods sits at the core of the Kodkod solver, and is a
generic implementation of the red-black tree data structure. Red-black tree comprises
complex data structure invariants which include binary search tree invariants: every
node has at most two children, key values of the left subtree are smaller and those of
the right subtree are greater than the node value, and the tree is acyclic. In addition,
constraints are imposed on the color of each node to keep the tree balanced: every node
is either red or black, every leaf node is black, no red node has a red parent and all
paths from the root to a descendant leaf contain the same number of black nodes. The
insert method of this class comprises 58 lines of code with 67 branch statements.
The post-condition of the insert (int newKey) method checks if an element with
the new key value has been added without adding or deleting any other elements.

BaseTree of ANTLR: We use ANTLR (ANother Tool for Language Recognition)
from the DaCapo 2009 benchmark suite, version 9.12 [2,[16]]. ANTLR builds language
parsers, interpreters, compilers, and translators from grammars. It comprises 29,710
lines of Java code, and has a download rate of about 5,000 per month. Rich tree data
structures represent language grammars and are the backbone of this application. The
abstract class BaseTree is a generic tree implementation. Each tree instance maintains
a list of successor children. The childIndex represents its position in the list. Each
child node is a tree and points back to its parent. Every node may contain a token field
that represents the payload of the node. Based on the documentation and the program
logic, we derived invariants for the BaseTree data structure such as acyclicity through
children references, accurate parent-child relationships, and correct values for child in-
dices. The addchild(Tree node) and deleteChild(int childIndex) methods
are the main functions used to build and manipulate all tree structures in ANTLR. The
respective post-conditions check that nodes are added or deleted without any unwar-
ranted perturbations to the other nodes.

4.3 Errors

Table[Tl enumerates all the inserted faults and, for ANTLR, a detected error. It explains
the errors and displays the violated constraints. The accuracy and performance of the
repair algorithm depends on which and how many fields are relaxed in each step, and
the number of calls to the solver. The data structure size, size of the log, and size of vio-
lated constraint formula influence repair accuracy and efficiency. We explore these pa-
rameters with a range of errors that violate different constraints and appear in different
program statements, such as incorrect field assignments, incorrect branch conditions,
and errors of omission. The last column in the table indicates if the field(s) that needs
to be corrected appear in the write barrier log (WB), read barrier log (RB), or neither
(ALL fields).

The program logic and thus which fields Cobbler logs depends on the input struc-
tures. Faults five and six of the red-black tree insert method execute the same faulty
code versions as that of three and four, but with a different data structure. The program
writes and reads different fields on the first and second inputs and Cobbler repairs the
outputs by relaxing read and written fields respectively.
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Table 1. The injected faults and ANTLR addChild() fault

Method Fault description Violates Errorin
Err 1 Sets the header to null Correct remove, Size  WB
o Err2 Fails to update the size Size ALL fields
3 Err 3 Deletes a node with a non-matching element Correct remove, Size  WB
g Err 4 Introduces a cycle after performing correct remove Acyclicity WB
: Err 5 Breaks the list to retain only the first two nodes Correct remove, Size  WB
- Err 6 Deletes the matching element but adds it again Correct remove WB
Err 7 Fails to remove the element and updates the size incorrectly Correct remove, Size  WB
Err 1 Creates a cycle of length one Acyclicity WB
g Err 2 Sets the color of a node to black instead of red Color constraints WB
o Err 3 Adds the new element as right child instead of left Key constraints RB
= Err4 Violates key constraints due to a branch condition error Key constraints RB
E Err 5 Same as Err 3 with a different input Key constraints WB
& Err 6 Same as Err 4 with a different input Key constraints WB
Err 7 Skips balancing of the tree after insertion Color constraints ALL fields
B Emrl Skips deletion of the appropriate child Correct Remove RB
|—_' 6 Err 2 Skips updating children indices after deletion Child Index constraints ALL fields
Z © Err3 Sets a wrong child index due to an incorrect branch condition in a loop Child Index constraints RB
< % Err 4 Sets a node as its own parent Acyclicity WB
AI?I'LR addChild Adds a node to itself as a child Acyclicity, Child Index WB

4.4 Subject Tools

We compare Cobbler to Juzi repair framework, which only uses structural constraints,
and to Tarmeem and PBnJ, two repair frameworks that consider post-conditions too.

Juzi’s assertion-based repair automatically corrects data structure violations in Java
programs [S]]. Upon detecting a constraint violation, Juzi searches for a repair solu-
tion based on the data structure traversal encoded in repOX [3]]. Juzi further boosts its
performance with symbolic execution. Since Juzi does not use a SAT solver, it is gen-
erally faster than SAT-based approaches. Juzi however does not consider method post-
conditions, which causes it to miss errors that result in well-formed output. Even if
repOK is violated, without the post-condition, Juzi cannot accurately correct the struc-
ture with respect to the contracts as discussed in Section 3.2l To compare Juzi and
Cobbler, we manually implemented a check for the post-condition in Juzi by recording
the method pre-state and the desired data structure specific post-state.

Our previous work, Tarmeem, uses Alloy contracts and a SAT solver [25]. Tarmeem
repairs faulty post-states using automated and user-guided techniques, such as iterative
relaxation of relations and error localization in predicates to improve the efficiency of
repair. We experimented with all four of Tarmeem’s heuristics and picked the best.

Samimi et al. implement a similar technique in PBnJ that executes method specifica-
tions when methods fail to produce a correct data structure [[18]]. They express invariants
and specifications in a declarative first order relational logic. Translating them into Java
methods and then invoking the methods implements program logic declaratively. This
program synthesis approach leverages constraint solving technology.

4.5 Results

Figure ] compares the performance and accuracy of repair of Cobbler, Tarmeem, Juzi,
and PBnJ on the singly-linked list microbenchmark. Logging, check, and repair times
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Fig. 4. Performance and accuracy: repairing singly-linked lists with Cobbler (C), Tarmeem (T),
an enhanced version of Juzi (J), and PBnJ (P)

are accumulated into a single bar on a logarithmic scale. Logging time is only applica-
ble to Cobbler and is negligible. Tarmeem and Cobbler have the same check time since
they both use Kodkod evaluation (not SAT solving) to perform checks after methods ex-
ecute. Juzi executes repOK and PBnJ translates specifications to Java assertions, which
more efficiently check the data structure. Cobbler’s overhead on an error-free execution
includes both logging and check times. Using the approach of PBnJ to translate speci-
fications to assertions could reduce the check time and the total overhead. We timeout
after 60 seconds and report zero for accuracy upon a timeout.

Cobbler is substantially faster than all the other tools on five of the seven errors,
despite the fact that Tarmeem and PBnJ receive specific user annotations to guide the
repair process and Juzi performs symbolic execution. Error two skips a required update
to size. Since the size field is not read or written, Cobbler does not correct it until the
third call to the SAT solver, which causes its time to exceed the other repair schemes.
Error four introduces a cycle. Juzi is tailored for such errors: it satisfies the constraint
by breaking cycles quickly and performs better than Cobbler in this case.

Cobbler, except for one case, always produces the most accurate data structure among
the four. When Cobbler does not time out, it achieves exactly the same output as ex-
pected. The edit distance between the result of a correct implementation and the re-
paired data structure is zero. This comparison is solely for evaluation, since in the wild,
the system would not know the correct implementation.

Because Juzi solely relies on the repOK method instead of checking method post-
conditions, it does not find error six at all. Moreover, Juzi cannot access out of scope
nodes that are not reachable from the header. Since Juzi does not consider the execution
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Fig. 5. Cobbler performance and accuracy: repairing Kodkod red-black trees

history, it first explores all the correct data structures nearby, but there is no guarantee
that the expected output is close to the faulty one. We could enhance Juzi to work
with post-conditions, as we did for evaluation of accuracy, but the original Juzi did not
perform any repairs with respect to the post-conditions.

Tarmeem is not very accurate because when it invokes the SAT solver, it relaxes
all tuples of a relation together, causing unnecessary changes. Cobbler significantly
improves efficiency and accuracy over Tarmeem, especially for errors which involve
incorrectly updated fields.

PBnJ’s performance is similar to Tarmeem at best. The reason is that it always ig-
nores the current faulty state and utilizes SAT to regenerate an acceptable output from
scratch. It is however more accurate than Tarmeem in some cases.

Figure [3] shows the performance and accuracy of Cobbler on a faulty Kodkod red-
black tree insert method. Figure |6 depicts the results of experimenting with ANTLR.
We do not include the other frameworks here for brevity. Juzi always fails to repair
correctly when a contract requires the addition of a node and the node is not present,
because Juzi only uses those nodes currently accessible from the faulty data structure.
When it does not timeout, Cobbler is very accurate on these real world applications.

The results show that the read and write field logs improve the scalability and effi-
ciency of repair. Cobbler repairs linked lists with up to 200 nodes within 20 seconds.
It performs well even on more complex data structures. For the red-black tree remove
method, it repairs up to 50 nodes within 40 seconds and for the deleteChild method
of ANTLR BaseTree, it repairs 40 nodes within 30 seconds. The size of the logs is
proportional to the number of reads and writes to the data structure and was usually a
few hundred bytes with a maximum of 900 bytes for error four of ANTLR.

For errors that cannot be fixed by relaxing only written and read fields, such as er-
ror two of linked list, error seven of red-black tree insert, and error two of ANTLR
deleteChild (see Table [T)), Cobbler uses the UNSAT core to identify which fields
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Fig. 6. Cobbler performance and accuracy: repairing ANTLR trees

to modify, and performs better than the other SAT-based tools. These cases however
are challenging for Cobbler, because despite barrier logs that indicate fields of specific
objects, UNSAT cores identify all fields with the same name as potentially faulty.

4.6 ANTLR BaseTree addChild

The public method addchild adds child node trees to an ANTLR BaseTree object.
When the input tree does not have a payload (isNil), the method adds the children
of the input tree to the children list of the current tree, otherwise, it adds the input tree
itself to the children list. In the addchild method (v3.3), when the input tree does
not have any payload, a check ensures that the current tree is not being added to itself.
However, such a check is not performed for input trees with payloads. Hence, when
the current tree has a payload, it may be added as a child of itself. Similarly, any tree
with a payload which is already an existing child of the current tree may be added as a
child again. We generated inputs that caused invariant (such as acyclicity and ascending
child indices) violations. Cobbler repairs the Tree structure and restores it back to its
pre-state, which is correct. This state would be the output of addchild if it had been
implemented correctly. Cobbler repairs a tree with 300 nodes within 30 seconds.

5 Related Work

Dynamic repair aims to counteract faults at runtime and prolong system uptime. File
system utilities such as fsck [6] and chkdsk [[13], database check-pointing and roll-
back techniques are application-specific repair routines that monitor and correct system
state at runtime. DIRA [20] extends database repair with post-conditions to detect buffer
overflow attacks and fix damaged data structures. Clearview [17]] and Exterminator [15]]
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also aid in repairing memory errors at runtime, but none of these techniques are suit-
able for repairing general purpose complex data structures. On the other hand, some
commercially developed systems, such as the IBM MVS operating system [14] and the
Lucent 5ESS telephone switch [[7]], have dedicated routines for monitoring and main-
taining properties of their key data structures. These systems are tailor-made for their
system structures and cannot be generalized as data structure repair tools.

Demsky and Rinard [4] pioneered constraint-based repair of data structures.
Developers provide declarative constraints. The system translates the constraints into
disjunctive normal form and repair solves them using an ad hoc search. The Juzi re-
pair technique (described in Sectiond.4)) detects errors using user-defined repox meth-
ods [5]. As we discussed and showed in Section the accuracy and efficiency of
Juzi suffer for errors that omit nodes and because the repair does not consider method
semantics at the entry and exit. Recent improvements include Dynamic Symbolic Data
Structure (DSDS) repair which builds a symbolic representation of fields and objects
along the repOK executed path [8]. Whenever a predicate fails, DSDS solves the con-
junction of its negation with the other path conditions. This direct generation of a satis-
fying result loses accuracy because it is irrespective of the exact location of corrupted
object references or fields. A post-condition Java method predicate could be asserted
along with the repOK to solve this problem. But as the size and complexity of proper-
ties and size of the data structure increase such techniques will not scale well.

Tarmeem [23] and PBnJ [18] (both explained in Section[4.4) overcome this limitation
by using individual method pre- and post-conditions. As Section 4.5|showed, Tarmeem
improves accuracy by tailoring repair to semantics, but is inefficient. PBnJ is not very
efficient either, because it ignores both the faulty post-state and implementation. To im-
prove the efficiency of PBnlJ, programmers may bound the number of objects and limit
changed fields, but for repairing unpredictable code errors, it does not seem feasible.
Our approach instead automatically utilizes the faulty data structure and the code that
produced it to prune the state space and guide repair to yield a satisfying instance as
close as possible to the intended method output.

Our technique is related to, but differs substantially from, automated debugging and
repair for use during testing, which focus on how to change the code rather than dy-
namically changing the heap [[12,21.23/24]]. However, as Malik et al. propose, dynamic
repair actions could translate into program statements [[11]].

6 Conclusions

This paper introduced the idea of using program execution history for efficient and ac-
curate contract-based data structure repair. We utilize program traces, specifically reads
and writes of key fields, to direct repair of erroneous program states. Moreover, we use
unsatisfiable cores provided by SAT solvers when we cannot repair the data structure by
changing only read and written fields. We implemented this approach in Cobbler. Com-
pared with previous repair techniques, our experimental results show Cobbler provides
significant speedups and better accuracy, and finds and repairs a previously undetected
bug in the widely used open-source ANTLR program. A promising future research av-
enue is to abstract concrete successful repair actions and use them to prioritize future
repair actions, thus to avoid a costly search and make repair even more practical.
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