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Abstract. This paper addresses the problem of conditional termination, which
is that of defining the set of initial configurations from which a given program
terminates. First we define the dual set, of initial configurations, from which a
non-terminating execution exists, as the greatest fixpoint of the pre-image of the
transition relation. This definition enables the representation of this set, whenever
the closed form of the relation of the loop is definable in a logic that has quanti-
fier elimination. This entails the decidability of the termination problem for such
loops. Second, we present effective ways to compute the weakest precondition
for non-termination for difference bounds and octagonal (non-deterministic) re-
lations, by avoiding complex quantifier eliminations. We also investigate the ex-
istence of linear ranking functions for such loops. Finally, we study the class of
linear affine relations and give a method of under-approximating the termination
precondition for a non-trivial subclass of affine relations. We have performed pre-
liminary experiments on transition systems modeling real-life systems, and have
obtained encouraging results.

1 Introduction

The termination problem asks whether every computation of a given program ends in
a halting state. The universal termination asks whether a given program stops for ev-
ery possible input configuration. Both problems are among the first ever to be shown
undecidable, by A. Turing [24]. In many cases however, programs will terminate when
started in certain configurations, and mayl] run forever, when started in other configu-
rations. The problem of determining the set of configurations from which a program
terminates on all paths is called conditional termination.

In program analysis, the presence of non-terminating runs has been traditionally con-
sidered faulty. However, more recently, with the advent of reactive systems, accidental
termination can be an equally serious error. For instance, when designing a web server,
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a developer would like to make sure that the main program loop will not exit unless
a stopping request has been issued. These facts lead us to considering the conditional
non-termination problem, which is determining the set of initial configurations which
guarantee that the program will not exit.

In this paper we focus on programs that handle integer variables, performing linear
arithmetic tests and (possibly non-deterministic) updates. A first observation is that the
set of configurations guaranteeing non-termination is the greatest fixpoint of the pre-
image of the program’s transition relation] R. This set, called the weakest recurrent set,
and denoted wrs(R) in our paper, can be defined in first-order arithmetic, provided that
the closed form of the infinite sequence of relations { R?};>, obtained by composing
the transition relation with itself 0, 1,2, ... times, can also be defined using first-order
arithmetic. Moreover, if the fragment of arithmetic we use has quantifier elimination,
the weakest recurrent set can be expressed in a quantifier-free decidable fragment of

arithmetic. This also means that the problem wrs(R) Z (s decidable, yielding univer-
sal termination decidability proofs for free.

Contributions of this Paper. The main novelty in this paper is of rather theoretical na-
ture: we show that the non-termination preconditions for integer transition relations de-
fined as either octagons or linear affine loops with finite monoid property are definable
in quantifier-free Presburger arithmetic. Thus, the universal termination problem for
such program loops is decidable. However, since quantifier elimination in Presburger
arithmetic is a complex procedure, we have developed alternative ways of deriving the
preconditions for non-termination, and in particular:

— for difference bounds, we reduce the problem of finding the weakest recurrent set
to finding the maximal solution of a system of inequalities in the complete lattice
of integers extended with +-0o0, where the right-hand sides use addition and min
operators. Efficient algorithms for finding such maximal solutions are based on
policy iteration [14]]. This encoding gives us a worst-case time complexity of O(n?-
2™) in the number of variables n, for the computation of the weakest recurrent set
for difference bounds relations.

— for octagonal relations, we use a result from [5]], namely that the sequence {Ri}izo
is, in some sense, periodic. We give here a simple quantifier elimination method,
targeted for the class of formulae defining weakest recursive sets. Moreover, we
investigate the existence of linear ranking functions, and prove that, for each well-
founded octagonal relations, there exists an effectively computable witness relation
i.e., a well-founded relation that has a linear ranking function.

— for linear affine relations, weakest recurrent sets can be defined in Presburger arith-
metic if we consider several restrictions concerning the transformation matrix. If
the matrix A defining R has eigenvalues which are either zeros or roots of unity,
all non-zero eigenvalues being of multiplicity one (these conditions are equivalent
to the finite monoid property of [2/12]), then wrs(R) is Presburger definable. Oth-
erwise, if all non-zero eigenvalues of A are roots of unity, of multiplicities greater

2 This definition is the dual of the reachability set, needed for checking safety properties: the
reachability set is the least fixpoint of the post-image of the transition relation.
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or equal to one, wrs(R) can be expressed using polynomial terms. In this case, we
can systematically issue termination preconditions, which are of significant practi-
cal importance, as noted in [[11].

For space reasons, all proofs are deferred to [[7]].

Practical Applications. Unfortunately, in practice, the cases in which the closed form
of the sequence { R}, is definable in a logic that has quantifier elimination, are fairly
rare. All relations considered so far are conjunctive, meaning that they can represent
only simple program loops of the formwhile (condition) {body}, where the loop
body contains no further conditional constructs. In order to deal with more complicated
program loops, one can use the results from this paper in several ways:

— use the decision procedures as a back-end of a termination analyzer, in order to de-
tect spurious non-termination counterexamples consisting of a finite prefix (stem)
and a conjunctive loop body (lasso). The spurious counterexamples can be dis-
carded by intersecting the program model with the complement of the weak deter-
ministic Biichi automaton representing the counterexample, as in [17]].

— abstract a disjunctive loop body R; V ...V R, by a non-deterministic difference
bounds or octagonaﬁ relation R# D Ry, , and compute the weakest recurrent set
of the latter. The complement of this set is a set of configurations from which the
original loop terminates.

— attempt to compute a fransition invariant i.e., an overapproximations of the transi-
tive closure of the disjunctive loop body (R1 V ...V R,)" (using e.g., the semi-
algorithmic unfolding technique described in [6]) and overapproximate it by a dis-
junction Rf£ V...V R of difference bounds or octagonal relations. Then compute
the weakest recurrent set of each relation in the latter disjunction. If wrs(Rf) =

. = wrs(R#) = (), the original loop terminates on any input, following the
principle of transition invariants [20].

1.1 Related Work

The literature on program termination is vast. Most work focuses however on universal
termination, such as the techniques for synthesizing linear ranking functions of Sohn
and Van Gelder [22]] or Podelski and Rybalchenko [19]], and the more sophisticated
method of Bradley, Manna and Sipma [9], which synthesizes lexicographic polynomial
ranking functions, suitable when dealing with disjunctive loops. However, not every
terminating program (loop) has a linear (polynomial) ranking function. In this paper
we show that, for an entire class of non-deterministic linear relations, defined using
octagons, termination is always witnessed by a computable octagonal relation that has
a linear ranking function.

Another line of work considers the decidability of termination for simple (conjunc-
tive) linear loops. Initially Tiwari [23]] shows decidability of termination for affine lin-
ear loops interpreted over reals, while Braverman [10] refines this result by showing

3 The linear affine relations considered in this paper are deterministic, which makes them un-
suitable for abstraction.
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decidability over rationals and over integers, for homogeneous relations of the form
Cix >0 A Cyx >0 A x' = Ax. The non-homogeneous integer case seems to be
much more difficult as it is closely related to the open Skolem’s Problem [16]]: given a
linear recurrence {u; };>0, determine whether u; = 0 for some 7 > 0.

To our knowledge, the first work on proving non-termination of simple loops is re-
ported in [[15]. The notion of recurrent sets occurs in this work, however without the
connection with fixpoint theory, which is introduced in the present work. Finding re-
current sets in [[15] is complete with respect to a predefined set of templates, typically
linear systems of rational inequalities.

The work which is closest to ours is probably that of Cook et al. [L1]. In this paper,
the authors develop an algorithm for deriving termination preconditions, by first guess-
ing a ranking function candidate (typically the linear term from the loop condition) and
then inferring a supporting assertion, which guarantees that the candidate function de-
creases with each iteration. The step of finding a supporting assertion requires a fixpoint
iteration, in order to find an invariant condition. Unlike our work, the authors of [[11]
do not address issues related to completeness: the method is not guaranteed to find the
weakest precondition for termination, even in cases when this set can be computed. On
the other hand, it is applicable to a large range of programs, extracted from real-life soft-
ware. To compare our method with theirs, we tried all examples available in [11]. Since
most of them are linear affine relations, we used our under-approximation method and
have computed termination preconditions, which turn out to be slightly more general
than the ones reported in [[1L1]].

2 Preconditions for Non-termination

In the rest of this paper we denote by x = {x1,...,2,} the set of working variables,
ranging over a domain of values denoted as D. A state is a valuation s : x — D, or
equivalently, an n-tuple of values from D. An execution step is arelation R C D" x D"
defined by an arithmetic formula R(x,x’), where the set x’ = {«/,..., 2/, } denotes
the values of the variables after executing R once. If s and s’ are valuations of the sets
x and x’, we denote by R (s, s') the fact that (s,s’) € R. A relation R is said to be
consistent if there exist states s, s’ such that R(s, s).

Relational composition is defined as Ry o Ry = {(s,s’') € D" x D" | 3s" €
D" . Ri(s,5") A Ra(s”,s')}. For any relation R € D" x D", we consider R to be
the identity relation, and we define R*t! = R’ o R, for all i > 0. The pre-image of a
set S C D" via R is the set preg(S) = {s € D" |35’ € §. R(s,s)}. Itis easy to
check that pre’,(S) = preg: (S), for any S C D" and for all ¢ > 0. For any i > 0, we
write R* for the formula defining the relation R* and R~*(T) for the formula defining
the set preg: (D™).

Definition 1. A relation R is said to be x-consistent if and only if, for any k > 0, there
exists a sequence of states s1, . . ., S, such that R(s;, siy1), foralli=1,...;k—1L. R
is said to be well-founded if and only if there is no infinite sequence of states {s;}i>o,
such that R(s;, si+1), for all i > 0.
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Notice that if a relation is not x-consistent, then it is also well-founded. However the
dual is not true. For instance, the relation R = {(n,n — 1) | n > 0} is both *-consistent
and well-founded.

Definition 2. A set S C D" is said to be a non-termination precondition for R if,
for each state s € S there exists an infinite sequence of states Sy, s1, S2, . . . such that
s = so and R(s;, Si+1), forall i > 0.

If Sy, S1, ... are all non-termination preconditions for R, then the (possibly infinite)
union {J;_ ; i is a non-termination precondition for 2 as well. The set wnt(R) =
U{S € D" | S is a non-termination precondition for R} is called the weakest non-
termination precondition for R. A relation R is well-founded if and only if wnt(R) =
(. A set S such that S N wnt(R) = () is called a fermination precondition.

Definition 3. A set S C D" is said to be recurrent for a relation R € D™ x D" if and
only if S C preg(S).

Proposition 1. Let Sy, S1,... € D" be a (possibly infinite) sequence of sets, all of
which are recurrent for a relation R € D" x D™. Then their union Ui:[),l,m S; is
recurrent for R as well.

The set wrs(R) = |J{S € D" | S is arecurrent set for R} is called the weakest recur-
rent set for R. By Proposition[I] wrs(R) is recurrent for R. Next we define the weakest
recurrent set as the greatest fixpoint of the transition relation’s pre-image.

Lemma 1. Given a relation R € D" x D", the weakest recurrent set for R is the
greatest fixpoint of the function X — prep(X).

As a consequence, we obtain wrs(R) = ;. pre's(D™), by the Kleene Fixpoint The-
orem. Since pre, = preg:, we have wrs(R) = [;5opreg:(D™). In other words,
from any state in the weakest recurrent set for a relation, an iteration of any finite length
of the given relation is possible. The following lemma shows that in fact, this is exactly
the set of states from which an infinite iteration is also possible.

Lemma 2. Given a relation R € D™ x D", the weakest recurrent set for R equals its
weakest non-termination precondition.

The characterization of weakest recurrent sets as greatest fixpoints of the pre-image
function suggests a method for computing such sets. In this section we show that, for
certain classes of relations, these sets are definable in Presburger arithmetic, which gives
a decision procedure for the well-foundedness problem for certain classes of relations,
and consequently, for the termination problem for several classes of program loops.

Definition 4. Given a relation R € D" x D™ defined by an arithmetic formula R(x,x’),
the closed form of R is a formula R™%) (x,x"), with free variables x U x' U {k}, such
that for every integer valuation i > 0 of k, R\ (x,x’) defines the relation R’.

Since, by Lemma [, we have wrs(R) = gfp(prer) = ();oprer: (D™), using the

closed form of R, one can now define:

>0

wrs(R) =Yk > 03x" . R (x,x") (1)
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Because Presburger arithmetic has quantifier elimination, wrs(R) can be defined in
Presburger arithmetiﬂ whenever R®*) can. In [3] we show three classes of relations
for which R() is Presburger definable: difference bounds, octagonal and finite-monoid
affine relations (the formal definitions of these classes are given in the next section).
For each of these classes of loops termination is decidable, by the above argument.

3 Difference Bounds Relations

In this and the following sections, we assume that the variables x = {z1, ...,z } range
over integers i.e., that D = Z.

Definition 5. A formula ¢(x) is a difference bounds constraint if if is equivalent to a
finite conjunction of atomic propositions of the form x; — x; < a4, for 1 < 1,5 <
n,1 # j, where a;; € Z.

Given a difference bounds constraint ¢, a difference bounds matrix (DBM) representing
¢ is a matrix mg € ZZX™ such that (mg),. = ai;, if ; — 2; < a,; is an atomic
proposition in ¢, and oo, otherwise.

If ¢ is inconsistent (logically equivalent to false) we also say that m is inconsistent.
The next definition gives a canonical form for consistent DBMs.

ij

Definition 6. A consistent DBM m € 72" is said to be closed if and only if m;; = 0
and mg; < my + My, forall1 <5,k < n.

Given a consistent DBM m, we denote by m* the (unique) closed DBM equivalent with
it. It is well-known that, if m is consistent, then m™ is unique, and can be computed
from m in time O(n?), by the classical Floyd-Warshall algorithm. The closure of DBM
provides an efficient means to compare difference bounds constraints.

Proposition 2 ([18]). Given two consistent difference bounds constraints p(x) and
¥ (x), the following conditions are equivalent:

= VX p(x) = P(x)

= (my)ij < (myy)i, forall1 <i,j <n
In the following, let R be a relation defined by a difference bounds constraint. It is easy
to show that, for any ¢ > 0, the relation R is a difference bounds relation as well — in
other words, difference bounds relations are closed under composition. Moreover, if S
is a set defined by a difference bounds constraint, then the set preg: (S) is defined by
a difference bounds constraint as well. But since wrs(R) = (5 preg: (Z"), it turns
out that wrs(R) can be defined by a difference bounds constraint, since the class of
difference bounds constraints is closed under (possibly infinite) intersections.

We are now ready to describe the procedure computing the weakest recurrent set for

a difference bounds relation R. Since wrs(R) is a (possibly inconsistent) difference
bounds constraint, we use the template p(x, p) = Algi;éjgn z; — x; < p;j, where p;;
are parameters ranging over Z 4 ., (we clearly do not need to track the constraints of the

* Or, for that matter, in any theory that has quantifier elimination.
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form z; — x; < py;). Moreover, we assume that the template is closed (Definition [6),
which can be encoded as a system of inequalities of the form:

pij < min{pi, +pij |k # ik # 5} (2)

Next, we compute the (symbolic) difference bounds constraint corresponding to the set
prer(p) = Ix’ . R(x,x’) A u(x’, p). This step requires computing the closure of the
DBM corresponding to R A i, and elimination of the x’ variables. The result is a closed
symbolic DBM 7, whose entries are min-terms consisting of sums of p;; and integer
constants. Further, we encode the recurrence condition i C preg(u), again as a system
of inequalities (Proposition2)) of the form:

Dij < Tij i F# 3)

By conjoining the inequalities (2)) and (3)), we obtain a system of inequalities with vari-
ables p;;, whose right-hand sides are linear combinations of p;; with addition and min.
We are interested in the maximal solution of this system, which can be obtained using
an efficient policy iteration algorithm [[14] in the complete lattice of Z . o, with addition,
min and max operators. This solution defines the weakest recurrent set for R, and con-
sequently, the weakest precondition for non-termination of the R loop. Since wrs(R)
is a difference bounds constraint, for any relation R definable by a difference bounds
constraint, the maximal solution of the system is unique. It is to be noted that, if for
some 1 <4 # j < n we obtain p;; = —o0, then the weakest recurrent set is empty i.e.,
the relation R is well-founded.

Lemma 3. Computing the weakest recurrent set of a difference bounds relation can be
done in time O(n? - 2"), where n is the number of variables.

4 Octagonal Relations

Octagonal relations are a generalization of difference bounds relations.

Definition 7. A formula ¢(x) is an octagonal constraint if it is equivalent to a finite
conjunction of terms of the form x; £ x; < a5, where a;; € Zand1 < ¢,j < n.

We represent octagons as difference bounds constraints over the dual set of variables
v = {y1,¥2, ..., Ya2n}, with the convention that yo;_; stands for x; and yo; for —z;,
respectively. For example, the octagonal constraint x1 + x5 = 3 is represented as y; —
ys < 3 ANy —ys < —3. To handle the dual variables in the following, we define
1=1—1,if ¢ is even, and 7 = ¢ + 1 if ¢ is odd. We say that a DBM m € Zggx2n is
coherent iff m;; = m3; forall 1 <4, j < 2n. The coherence property is needed because
any atomic proposition z; — z; < a, in ¢ can be represented as both 42,1 —y2;-1 < a
and yo; — y2; < a, 1 < 4,7 < n. We denote by ¢ the difference bounds formula
Oly1/x1,92/ — X1y, Yon—1/Tn, Y2n/ — x,) With free variables y. The following
equivalence relates ¢ and ¢ :

n

(%) & (3y2, Y4, - Y20 - A /\ Yoi—1 +y2i = 0)[z1/y1, .., Tn/Yon—1]  (4)

i=1
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Given a coherent DBM m representing ¢, we say that m is octagonal-consistent if and
only if ¢ is consistent. The following definition gives the canonical form of a DBM
representing an octagonal-consistent constraint.

Definition 8. An octagonal-consistent coherent DBM m € Z2"*?" is said to be tightly
closed if and only if the following hold:

2. myz is even, V1 < i < 2n 4.mg; < ["5T] + ngjj, V1<i,j<2n

Given an octagonal-consistent DBM m, we denote by m! the equivalent tightly closed
DBM. The tight closure of an octagonal-consistent DBM m is unique and can be com-

*

puted in time O(n?) as m} ; = min {m;j7 LmQJ + {méJJ } [1]]. This generalizes to

unbounded finite compositions of octagonal relations [4]]:
(m? )i (m* )7,
Uk 0. mi) —mm{m;m,j{ whi | |

Notice that the above relates the entries of the tightly closed DBM representation of R*

with the entries of the closed DBM representation of the relation defined by Rk.

We are now ready to introduce a result [3] that defines the “shape” of the closed form
R®*) for an octagonal relation R. Intuitively, for each 7 > 0, R is an octagon, whose
bounds evolve in a periodic way. The following definition gives the precise meaning of
periodicity for relations that have a matrix representation.

Definition 9. An infinite sequence of matrices {My}7° | € Z2*™ is said to be ulti-
mately periodic if and only if:

db > 0de > 0340, A1,...,Ac_1 € Zgéxm . Mb+(k+1)c+i =A; + My keti

forallk > 0andi = 0,1,...,c — 1. The smallest b, c for which the above holds are
called prefix and period of the { M}, }7° | sequence, respectively.

A result reported in []] is that the sequence {mﬁgi}izo @) of tightly closed matrices
representing the sequence { R'};>o of powers of a *-consistent octagonal relation R is
ultimately periodic, in the sense of the above definition. The constants b and ¢ from Def-
inition@lwill also be called the prefix and period of the octagonal relation R, throughout
this section.

For a set v of variables, let U(v) = {£wv1 £ va | v1,v2 € v} denote the set of
octagonal terms over v. As a first remark, by the periodicity of the sequence {mﬁzi ti>o0,
the closed form of the subsequence { R*+‘},~ (of { R"};>0) can be defined as:

Rl(f(): = /\ u < aynl+d, (6)
ueU (xUx")
where a, = (Ao)ij, du = (mﬁzb)ij for all octagonal terms u = y; — y;. This is

indeed the case, since the matrix sequence {m'k,..,}¢>o is ultimately periodic i.e.,
mg%b-%—cl’, = m%b + £ Ay, forall £ > 0.
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Lemma 4. Let R be a *-consistent octagonal relation with prefix b, period c and let
R[(fi be the closed form of {RY*“‘}>q as defined in (). Then, R is well-founded iff
there exists u € U (x) s.t. a,, <0. Moreover; if R is not well-founded, wrs(R)=R~°(T).

The above lemma can be used to compute wrs(R) for an octagonal relation R. First
we need to check the *-consistency of R, using the method reported in [6]. Second,
we compute the closed form (@) and check for the existence of a term v € U(x) such
that a,, < 0, in which case R is well-founded. Finally, if this is not the case, then we
compute wrs(R) = R%(T).

4.1 On the Existence of Linear Ranking Functions

A ranking function for a given relation R constitutes a proof of the fact that R is
well-founded. We distinguish here two cases. If R is not %-consistent, then the well-
foundedness of R is witnessed simply by an integer constant i > 0 such that R* = ().
Otherwise, if R is *-consistent, we need a better argument for well-foundedness. In
this section we show that, for any x-consistent well-founded octagonal relation R with
prefix b, the (strenghtened) relation defined by R~*(T) A R is well-founded and has a
linear ranking function, even when R alone does not have one. For space reasons, we
do not give here all the details of the construction of such a function. However, the ex-
istence proof suffices, as one can use complete ranking function extraction tools (such
as e.g. RankFinder [19]) in order to find them.

Definition 10. Given a relation R C Z™ x Z", a linear ranking function for R is a term
f(x) = 3", aiz; such that, for all states s, s’ : x — Z:

1. fisdecreasing: R(s,s’) — f(s) > f(s')
2. fisbounded: R(s,s’) — (f(s) > h A f(s") > h), for some h € Z.

The main result of this section is the following:

Theorem 1. Let R C Z™ x Z™ be a x-consistent and well-founded octagonal relation,
with prefix b > 0. Then, the relation defined by R"(T) A R is well founded and has a
linear ranking function.

The first part of the theorem is proved by the following lemma:

Lemma 5. Let R C Z™ x " be a relation, and m > 0 be an integer. Then wrs(R) = {)
if and only if wrs(Ry,) = 0, where Ry, is the relation defined by R~™(T) A'R.

It remains to prove that the witness relation defined by R ~?(T) A R has a linear rank-
ing function, provided that it is well-founded. The proof is organized as follows. First
we show that well-foundedness of an octagonal relation R is equivalent to the well-
foundedness of its difference bounds representation R (Lemma [@)). Second, we use a
result from [§]], that the constraints in the sequence of iterated difference bounds re-

lations {Rl}izo can be represented by a finite-state weighted automaton, called the
zigzag automaton in the sequel. If the relation defined by R is well-founded, then this
weighted automaton must have a cycle of negative weight. The structure of this cycle,
representing several of the constraints in R, is used to show the existence of the linear
ranking function for the witness relation R ~°(T) A R.
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Fig. 1. (a) Unfolding of the constraint graph of the difference bounds relation R = z2—2) <
—1Az3—25 <O0Ax1—25 < OAz)—24 < 0Az5—24 < 0. (b) A run of the zigzag automaton
AR over a path in the unfolded constraint graph of R.

Lemma 6. Let R C Z" XZ™ be an octagonal relation and R gy, be the difference bounds
relation defined by R. Then R is well-founded if and only if Ry, is well-founded.

The above lemma reduces the problem of showing existence of a ranking function for
an octagonal relation R(x, x’) to showing existence of a ranking function for its differ-
ence bounds encoding R(y,y’). Assume that f(y) is a ranking function for R. Then
flxi/y2i—1, —xi/y2:] is a linear ranking function for R. Hence, in the rest of this
section, we consider without loss of generality that R is a difference bounds relation.

Zigzag Automata. For the later developments, we need to introduce the zigzag au-
tomaton corresponding to a difference bounds relation R. Intuitivelly, for any ¢ > 0, the
relation R’ can be represented by a constraint graph which is the i-times repetition of
the constraint graph of R. The constraints induced by R’ can be represented as shortest
paths in this graph, and can be recognized (in the classical automata-theoretic sense) by
a weighted automaton Ag, (see Fig. [l for an example). The structure of this automaton
is needed to show the existence of a linear ranking function.

The following lemma proves the existence of a negative weight cycle in the zigzag
automata corresponding to well-founded difference bounds relation. The intuition be-
hind this fact is that the rates of the DBM sequence {mgi }i~o are weights of optimal
ratio (weight per length) cycles in the zigzag automaton. According to the previous sec-
tion, if R is well-founded, there exists a negative rate for {mr: };~0, which implies the
existence of a negative cycle in the zigzag automaton.

Lemma 7. If R is a x-consistent well-founded difference bounds relation of prefix b >
0, and Ag is its corresponding zigzag automaton, then there exists a cycle 7 from a
state q to itself, such that w(w) < 0 and there exists paths 7; from an initial state to q,
and my from q to a final state, such that |m;| + |7¢| = b.

Next we prove the existence of a linear decreasing function, based on the existence
of a negative weight cycle in the zigzag automaton.

Lemma 8. If R is a x-consistent well-founded difference bounds relation of prefix b >
0, then there exists a linear function f(x) such that, for all states s, s’ : x — Z we have
R(T)(s) AR(s,8") = f(s) > f(s).

Last, we prove that the function f of Lemma [§] is bounded, concluding that it is
indeed a ranking function. Since each run in the zigzag automaton recognizes a path
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from some x; to some x;, a run that repeats a cycle can be decomposed into a prefix,
the cycle itself and a suffix. The recognized path may traverse the cycle several times,
however each exit point from the cycle must match a subsequent entry point. These
paths from the exit to the corresponding entries give us the necessary lower bound. In
fact, these paths appear already on constraint graphs that represent unfoldings of R,
for any i > b. Hence the need for a strenghtened witness R ~%(T) A R, as R alone is
not enough for proving boundedness of f.

Lemma 9. If R is a *x-consistent well-founded difference bounds relation of prefix b,
and f(x) is the linear decreasing function from Lemmal8 there exists an integer h such
that, for all states s,s' : x — Z, (R*(T)(s) A R(s,s")) — (f(s) > h A f(s') > h).

As an experiment, we have tried the RANKFINDER [[19] tool (complete for linear rank-
ing functions), which failed to discover a ranking function on the relation R from Fig.
[Il This comes with no surprise, since no linear decreasing function that is bounded af-
ter the first iteration exists. However, RANKFINDER finds a ranking function for the
witness relation R~°(T) A R instead.

5 Linear Affine Relations

Letx = (21,...,2,) ' be a column vector of variables ranging over integers. A linear
affine relation is a relation of the form R(x,x’) = Cx > d A x' = Ax + b, where
A e ™™, C € ZP*™ are matrices, and b € Z", d € ZP are column vectors of integer
constants. Notice that we consider linear affine relations to be deterministic, unlike the
octagonal relations considered in the previous. In the following, it is convenient to work
with the equivalent homogeneous form:

R(x7x')£C’hxh >0 A X', = Apxy,
(7)
Ab
Ap = <o 1) Ch=(C—d) x = <x"+1)

The closed form of a linear affine relation is defined by the following formula:
R*) (x,x") = w1, 2], X = AFxp AV0 < £ < k.C’Aflx >0AZpi1=1 ()

Intuitively, the first conjunct defines the (unique) outcome of iterating the relation x’ =
Ax + b for k steps, while the second (universally quantified) conjunct ensures that the
condition (Cx > d) has been always satisfied all along the way. The definition of the
weakest recursive set of a linear affine relation is (after the elimination of the trailing
existential quantifier):

wrs(R)(x) = 3r, 1 VE > 0. CLANX >0 A 2y =1 9

The main difficulty with the form (9) comes from the fact that the powers of a matrix
A cannot usually be defined in a known decidable theory of arithmetic. In the follow-
ing, we discuss the case of A having the finite monoid property [2I25]], which leads to
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wrs(R) being Presburger definable. Further, we relax the finite monoid condition and
describe a method for generating sufficient termination conditions, i.e. sets S € Z"
such that S Nwrs(R) = 0.

Some basic notions of linear algebra are needed in the following. If A € Z"*" is a
square matrix, and v € Z™ is a column vector of integer constants, then any complex
number A € C such that Av = v, for some complex vector v € C", is called an
eigenvalue of A. The vector v in this case is called an eigenvector of A. It is known that
the eigenvalues of A are the roots of the characteristic polynomial det(A — \I,,) = 0,
which is an effectively computable univariate polynomial in A\. A complex number 7 is
said to be a root of the unity if r® = 1 for some integer d > 0.

In the previous work of Weber and Seidl [25], Boigelot [2], and Finkel and Leroux
[[12]], a restriction of linear affine relations has been introduced, with the goal of defining
the closed form of relations in Presburger arithmetic. A matrix A € Z"*" is said to have
the finite monoid property if and only if its set of powers { A | i > 0} is finite. A linear
affine relation has the finite monoid property if and only if the matrix A defining the
update has the finite monoid property.

Lemma 10 ([1212]). A matrix A € Z™*"™ has the finite monoid property iff:

1. all eigenvalues of A are either zero or roots of the unity, and
2. all non-zero eigenvalues are of multiplicity one.

Both conditions are decidable.

In the following, we drop the second requirement of Lemma[IQ, and consider only
linear relations, such that all non-zero eigenvalues of A are roots of the unity. In this
case, R() cannot be defined in Presburger arithmetic any longer, thus we renounce
defining wrs(R) precisely, and content ourselves with the discovery of sufficient con-
ditions for termination. Basically given a linear affine relation R, we aim at finding
a disjunction ¢(x) of linear constraints on x, such that ¢ A wrs(R) is inconsistent,
without explicitly computing wrs(R).

Lemma 11. Given a square matrix A € Z"*", whose non-zero eigenvalues are all
roots of the unity. Then (A™); ; € Q[m], forall1 < i,j < n, are effectively computable
polynomials with rational coefficients.

We turn now back to the problem of defining wrs(R) for linear affine relations R of the
form (9). First notice that, if all non-zero eigenvalues of A are roots of the unity, then
the same holds for A;, (7). By Lemma Il one can find rational polynomials p; ;(k)
defining (AZ)Z 4. forall 1 <4, 7 < n. The condition (9) resumes to a conjunction of the
form:

wrs(R)(x) = /\ Vk>0.P(k,x)>0 (10)

i=1
where each P; = a; 4(x) - k% + ... + a;1(x) - k + a; 0(x) is a polynomial in k& whose
coefficients are the linear combinations a; 4 € Q[x]. We are looking after a sufficient

condition for termination, which is, in this case, any set of valuations of x that would
invalidate (IQ). The following proposition gives sufficient invalidating clauses for each
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conjunct above. By taking the disjunction of all these clauses we obtain a sufficient
termination condition for R.

Lemma 12. Given a polynomial P(k,x) = aq(x)-k%+...+a1(x) -k +ag(x), there
exists n. > 0 such that P(n,x) < 0 if, for some i = 0,1,...,d, we have aq_;(x) < 0
and ag(x) = ag-1(X) = ... = ag—i+1(x) = 0.

Example Consider the following program [[I1]], and its linear transformation matrix A.

while (x > 0) 110 1 j Fk=1)
¥=x+y A=1011 A= | o1 13;
yY=y+z 001 00 1

The characteristic polynomial of A is det(A — Al3) = (1 — \)3, hence the only
eigenvalue is 1, with multiplicity 3. Then we compute A* (see above), and 2’ =
x+k-y+ k(k; D, gives the value of x after k iterations of the loop. Hence the (precise)
non-termination conditionis: Vk > 0. 5 -k?+ (y— 3)-k+x > 0. A sufficient condition
for termination is: (z <0) V(2 =0Ay <0)V(z=0Ay=0A2z <0) o
We can generalize this method further to the case where all eigenvalues of A are of
the form ¢ - r, with ¢ € R and r € C being a root of the unity. The main reason for
not using this condition from the beginning is that we are, to this point, unaware of
its decidability status. With this condition instead, it is sufficient to consider only the
eigenvalues with the maximal absolute value, and the polynomials obtained as sums
of the polynomial coefficients of these eigenvalues. The result of Lemma [T and the
sufficient condition of Lemmal[I2] carry over when using these polynomials instead.

6 Experimental Evaluation

We have validated the methods described in this paper by automatically verifying ter-
mination of all the octagonal running examples, and of several integer programs syn-
thesized from (i) programs with lists [3] and (ii)) VHDL models [21]]. We have first
computed automatically their strongest summary relation 7, by adapting the method
for reachability analysis for integer programs, described in [6], and implemented in the
FLATA tool [13]. Then we automatically proved that 7 is contained in a disjunction of
octagonal relations, which are found to be well-founded by the procedure described in
Section

We have first verified the termination of the LISTCOUNTER and LISTREVERSAL
programs, which were obtained using the translation scheme from [3]], which generates
an integer program from a program manipulating dynamically allocated single-selector
linked lists. Using the same technique, we also verified the COUNTER and SYNLIFO
programs, obtained by translating VHDL designs of hardware counter and synchronous
LIFO [21]. These models have infinite runs for any input values, which is to be ex-
pected, as they encode the behavior of synchronous reactive circuits.

Second, we have compared (Table [T)) our method for termination of linear affine
loops with the examples given in [11], and found the same termination preconditions
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Table 1. Termination preconditions for several program fragments from [[11]

PROGRAM COOK ET. AL [L1] LINEAR AFFINE LOOPS
if (lvar > 0)
while (Ivar < 259) lvar > 0V lvar < 0V lvar > 2%° —(lvar=0)Vvivar>230
Ivar = lvar << 1;
while (x < N)
if (%) { x=2%x+y;
y=y+1: } >NVax+y>0 z>NVz+y>0
else X ++;
while (x > N) 10
x= 2%x + 10; z>5Vr4+y>0 T # , < true

//@ requires n > 200
x=0;
while (1) y>0 y>0
if (x < n) { x=x+y;
if (x > 200) break; }

as they do, with one exception, in which we can prove universal termination in integer
input values (row 3 of Table[). The last example from [[11] is the Euclidean Greatest
Common Divisor algorithm, for which we infer automatically the correct termination
preconditions using a disjunctively well-founded octagonal abstraction of the transition
1nvariant.

7 Conclusions

We have presented several methods for deciding conditional termination of several
classes of program loops manipulating integer variables. The universal termination
problem has been found to be decidable for octagonal relations and linear affine loops
with the finite monoid property. In other cases of linear affine loops, we give sufficient
termination conditions. We have implemented our method in the FLATA tool [13] and
performed a number of preliminary experiments.
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