

Lecture Notes in Computer Science 7214
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Cormac Flanagan Barbara König (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

18th International Conference, TACAS 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March 24 – April 1, 2012
Proceedings

13

Volume Editors

Cormac Flanagan
University of California at Santa Cruz
Jack Baskin School of Engineering
Computer Science Department
1156 High Street, Santa Cruz, CA 95064, USA
E-mail: cormac@ucsc.edu

Barbara König
Universität Duisburg-Essen
Fakultät für Ingenieurwissenschaften
Abteilung für Informatik und Angewandte Kognitionswissenschaft
Lotharstraße 65, 47057 Duisburg, Germany
E-mail: barbara_koenig@uni-due.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28755-8 e-ISBN 978-3-642-28756-5
DOI 10.1007/978-3-642-28756-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932744

CR Subject Classification (1998): F.3, D.2, C.2, D.3, D.2.4, C.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.

VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),

Foreword VII

Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair

Preface

This volume contains the proceedings of the 18th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2012).
TACAS 2012 took place in Tallinn, Estonia, March 27–30, 2012, as part of the 15th
European Joint Conferences on Theory and Practice of Software (ETAPS 2012),
whose aims, organization, and history are presented in the foreword of this volume
by the ETAPS Steering Committee Chair, Vladimiro Sassone.

TACAS is a forum for researchers, developers, and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The research areas covered by TACAS include, but are not limited to, formal
methods, software and hardware verification, static analysis, programming lan-
guages, software engineering, real-time systems, communications protocols, and
biological systems. The TACAS forum provides a venue for such communities at
which common problems, heuristics, algorithms, data structures, and method-
ologies can be discussed and explored.

This year TACAS solicited four kinds of papers. Research papers are full-
length papers that contain novel research on topics within the scope of the
TACAS conference and relevant to tool construction. Case study papers report
on case studies, describing goals of the study and the research methodologies
and approach used. Regular tool papers present a new tool, a new tool compo-
nent, or novel extensions to an existing tool, and focus primarily on engineering
aspects. Tool demonstration papers are shorter papers that give an overview of
a particular tool and its applications or evaluation.

This edition of the conference attracted a total of 147 submissions (108 re-
search papers, 7 case study papers, 11 regular tool papers, and 21 tool demon-
stration papers). Each submission was evaluated by at least three reviewers, who
wrote detailed evaluations and gave insightful comments. After a six-week re-
viewing process, we had a three-week electronic Program Committee meeting,
during which we accepted 36 papers (25 research papers, 2 case study papers,
3 regular tool papers, and 6 tool demonstration papers) for presentation at the
conference. In addition, the TACAS conference program was greatly enriched
by the invited talk by Holger Hermanns and by the ETAPS unifying speakers
Bruno Blanchet and Georg Gottlob.

One novel aspect of TACAS this year was the inclusion of a Competition on
Software Verification. This volume includes an overview of the competition or-
ganization and results, presented by the TACAS Competition Chair Dirk Beyer,
as well as short papers describing individual tools in the competition.

We would like to thank the authors of all submitted papers, the Program
Committee members, and the external referees for their invaluable contribu-
tions. We also thank Alessandro Cimatti for serving as the TACAS Tool Chair
and Dirk Beyer for organizing the Competition on Software Verification. The

X Preface

EasyChair system greatly facilitated the TACAS conference submission and pro-
gram selection process. Finally, we would like to express our appreciation to the
ETAPS Steering Committee and especially its Chair, Vladimiro Sassone, as well
as the Organizing Committee, for their efforts in making ETAPS 2012 such a
successful event.

January 2012 Cormac Flanagan
Barbara König

Organization

Steering Committee

Rance Cleaveland University of Maryland and Fraunhofer USA, USA
Joost-Pieter Katoen RWTH Aachen, Germany
Kim G. Larsen Aalborg University, Denmark
Bernhard Steffen TU Dortmund, Germany
Lenore Zuck University of Illinois at Chicago, USA

Program Committee

Rajeev Alur University of Pennsylvania, USA
Armin Biere Johannes Kepler University, Austria
Alessandro Cimatti FBK-irst, Italy (Tool Chair)
Rance Cleaveland University of Maryland and Fraunhofer USA, USA
Giorgio Delzanno University of Genova, Italy
Javier Esparza TU Munich, Germany
Cormac Flanagan University of California at Santa Cruz, USA

(Co-chair)
Patrice Godefroid Microsoft Research, Redmond, USA
Susanne Graf Université Joseph Fourier/CNRS/Verimag, France
Orna Grumberg Technion – Israel Institute of Technology, Israel
Aarti Gupta NEC Labs America, USA
Michael Huth Imperial College London, UK
Ranjit Jhala University of California at San Diego, USA
Vineet Kahlon University of Texas at Austin, USA
Daniel Kroening University of Oxford, UK
Marta Kwiatkowska University of Oxford, UK
Barbara König University of Duisburg-Essen, Germany (Co-chair)
Kim G. Larsen Aalborg University, Denmark
Rustan Leino Microsoft Research, Redmond, USA
Matteo Maffei Saarland University, Germany
Ken McMillan Cadence Berkeley Labs, USA
Doron Peled Bar Ilan University, Israel
Anna Philippou University of Cyprus, Cyprus
Nir Piterman University of Leicester, UK
Arend Rensink University of Twente, The Netherlands

XII Organization

Andrey Rybalchenko TU Munich, Germany
Stefan Schwoon ENS Cachan, France
Scott Smolka SUNY at Stony Brook, USA
Bernhard Steffen TU Dortmund, Germany
Serdar Tasiran Koc University, Turkey
Lenore Zuck University of Illinois at Chicago, USA

Program Committee of the Competition on Software
Verification

Dirk Beyer University of Passau, Germany (Chair)
Bernd Fischer University of Southampton, UK
Vadim Mutilin Russian Academy of Sciences, Russia
Andrey Rybalchenko TU Munich, Germany
Carsten Sinz Karlsruhe Institute of Technology, Germany
Michael Tautschnig University of Oxford, UK
Helmut Veith Vienna University of Technology, Austria
Tomas Vojnar Brno University of Technology, Czech Republic
Georg Weissenbacher Princeton University, USA
Philipp Wendler University of Passau, Germany
Daniel Wonisch University of Paderborn, Germany

Additional Reviewers

Acciai, Lucia
Aldini, Alessandro
Alglave, Jade
Ancona, Davide
Bagherzadeh, Mehdi
Ball, Thomas
Bartocci, Ezio
Bekar, Can
Belinfante, Axel
Blanchette, Jasmin Christian
Bouajjani, Ahmed
Bulychev, Peter
Burckhardt, Sebastian
Chen, Taolue
Cheng, Chih-Hong
Chilton, Chris
Clemente, Lorenzo
D’Silva, Vijay
Dalsgaard, Andreas
Dannenberg, Frits

David, Alexandre
De Mol, Maarten
Delahaye, Benoit
Deshmukh, Jyotirmoy
Deshpande, Tushar
Diciolla, Marco
Donaldson, Alastair
Draeger, Klaus
Duggirala, Parasara Sridhar
Duret-Lutz, Alexandre
Edelkamp, Stefan
Elmas, Tayfun
Falke, Stephan
Feng, Lu
Feo, Sergio
Fernandez, Jean-Claude
Ferrara, Pietro
Filiot, Emmanuel
Flur, Shaked
Forejt, Vojtech

Organization XIII

Gaiser, Andreas
Ganty, Pierre
Garg, Pranav
Gastin, Paul
Ghamarian, Amir Hossein
Giro, Sergio
Guerrini, Giovanna
Guttman, Joshua
Haar, Stefan
Habermehl, Peter
Haddad, Serge
Haller, Leopold
Han, Tingting
He, Nannan
Heule, Marijn
Hinrichs, Timothy
Howar, Falk
Isberner, Malte
Ivancic, Franjo
Järvisalo, Matti
Kant, Gijs
Khasidashvili, Zurab
Kinder, Johannes
Komuravelli, Anvesh
Kretinsky, Jan
Kulahcioglu, Burcu
Kuru, Ismail
La Torre, Salvatore
Lal, Akash
Lamprecht, Anna-Lena
Lazic, Ranko
Leroux, Jerome
Lewis, Matt
Mandrykin, Mikhail
Matar, Hassan Salehe
Mauborgne, Laurent
Meller, Yael
Mereacre, Alexandru
Merten, Maik
Merz, Stephan
Methrayil Varghese, Praveen Thomas
Mikučionis, Marius
Moskal, Michal
Mounier, Laurent
Møller, Mikael H.

Nadel, Alexander
Naujokat, Stefan
Neubauer, Johannes
Nghiem, Truong
Nimal, Vincent
Norman, Gethin
Nyman, Ulrik
Ober, Iulian
Olesen, Mads Chr.
Palikareva, Hristina
Parker, David
Passerone, Roberto
Phan, Linh
Popeea, Corneliu
Quinton, Sophie
Rajan, Ajitha
Ramachandran, Jaideep
Raymond, Pascal
Reuss, Andreas
Ruething, Oliver
Ryvchin, Vadim
Rüthing, Oliver
Sa’Ar, Yaniv
Sangnier, Arnaud
Schewe, Sven
Seghir, Mohamed Nassim
Seidl, Martina
Sezgin, Ali
Sheinvald, Sarai
Shin, Insik
Shoham, Sharon
Simaitis, Aistis
Soliman, Sylvain
Srba, Jiri
Stoelinga, Mariëlle
Strichman, Ofer
Subasi, Omer
Tautschnig, Michael
Timmer, Mark
Tiwari, Ashish
Traonouez, Louis-Marie
Trivedi, Ashutosh
Ummels, Michael
Vaandrager, Frits
Veanes, Margus

XIV Organization

Viswanathan, Mahesh
Vizel, Yakir
Wang, Bow-Yaw
Weissenbacher, Georg
Windmüller, Stephan

Wolf, Verena
Yrke Jørgensen, Kenneth
Zambon, Eduardo
Zhang, Lijun
Zuliani, Paolo

Table of Contents

Invited Contribution

Quantitative Models for a Not So Dumb Grid . 1
Holger Hermanns

SAT and SMT Based Methods

History-Aware Data Structure Repair Using SAT . 2
Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and
Kathryn S. McKinley

The Guardol Language and Verification System . 18
David Hardin, Konrad Slind, Michael Whalen, and Tuan-Hung Pham

A Bit Too Precise? Bounded Verification of Quantized Digital Filters . . . 33
Arlen Cox, Sriram Sankaranarayanan, and Bor-Yuh Evan Chang

Numeric Bounds Analysis with Conflict-Driven Learning 48
Vijay D’Silva, Leopold Haller, Daniel Kroening, and
Michael Tautschnig

Automata

Ramsey-Based Analysis of Parity Automata . 64
Oliver Friedmann and Martin Lange

VATA: A Library for Efficient Manipulation of Non-deterministic Tree
Automata . 79

Ondřej Lengál, Jǐŕı Šimáček, and Tomáš Vojnar

LTL to Büchi Automata Translation: Fast and More Deterministic 95
Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Model Checking

Pushdown Model Checking for Malware Detection 110
Fu Song and Tayssir Touili

Aspect-Oriented Runtime Monitor Certification . 126
Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar

XVI Table of Contents

Partial Model Checking Using Networks of Labelled Transition Systems
and Boolean Equation Systems . 141

Frédéric Lang and Radu Mateescu

From Under-Approximations to Over-Approximations and Back 157
Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik

Case Studies

Automated Analysis of AODV Using UPPAAL . 173
Ansgar Fehnker, Rob van Glabbeek, Peter Höfner,
Annabelle McIver, Marius Portmann, and Wee Lum Tan

Modeling and Verification of a Dual Chamber Implantable
Pacemaker . 188

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and
Rahul Mangharam

Memory Models and Termination

Counter-Example Guided Fence Insertion under TSO 204
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen,
Carl Leonardsson, and Ahmed Rezine

Java Memory Model-Aware Model Checking . 220
Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A. Sanders

Compositional Termination Proofs for Multi-threaded Programs 237
Corneliu Popeea and Andrey Rybalchenko

Deciding Conditional Termination . 252
Marius Bozga, Radu Iosif, and Filip Konečný

Internet Protocol Verification

The AVANTSSAR Platform for the Automated Validation of Trust
and Security of Service-Oriented Architectures . 267

Alessandro Armando, Wihem Arsac, Tigran Avanesov,
Michele Barletta, Alberto Calvi, Alessandro Cappai,
Roberto Carbone, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, Gabriel Erzse, Simone Frau, Marius Minea,
Sebastian Mödersheim, David von Oheimb, Giancarlo Pellegrino,
Serena Elisa Ponta, Marco Rocchetto, Michael Rusinowitch,
Mohammad Torabi Dashti, Mathieu Turuani, and Luca Viganò

Reduction-Based Formal Analysis of BGP Instances 283
Anduo Wang, Carolyn Talcott, Alexander J.T. Gurney,
Boon Thau Loo, and Andre Scedrov

Table of Contents XVII

Stochastic Model Checking

Minimal Critical Subsystems for Discrete-Time Markov Models 299
Ralf Wimmer, Nils Jansen, Erika Ábrahám, Bernd Becker, and
Joost-Pieter Katoen

Automatic Verification of Competitive Stochastic Systems 315
Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,
David Parker, and Aistis Simaitis

Coupling and Importance Sampling for Statistical Model Checking 331
Benôıt Barbot, Serge Haddad, and Claudine Picaronny

Verifying pCTL Model Checking . 347
Johannes Hölzl and Tobias Nipkow

Synthesis

Parameterized Synthesis . 362
Swen Jacobs and Roderick Bloem

QuteRTL: Towards an Open Source Framework for RTL Design
Synthesis and Verification . 377

Hu-Hsi Yeh, Cheng-Yin Wu, and Chung-Yang (Ric) Huang

Template-Based Controller Synthesis for Timed Systems 392
Bernd Finkbeiner and Hans-Jörg Peter

Provers and Analysis Techniques

Zeno: An Automated Prover for Properties of Recursive Data
Structures . 407

William Sonnex, Sophia Drossopoulou, and Susan Eisenbach

A Proof Assistant for Alloy Specifications . 422
Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and
Mana Taghdiri

Reachability under Contextual Locking . 437
Rohit Chadha, P. Madhusudan, and Mahesh Viswanathan

Bounded Phase Analysis of Message-Passing Programs 451
Ahmed Bouajjani and Michael Emmi

Tool Demonstrations

Demonstrating Learning of Register Automata . 466
Maik Merten, Falk Howar, Bernhard Steffen, Sofia Cassel, and
Bengt Jonsson

XVIII Table of Contents

Symbolic Automata: The Toolkit . 472
Margus Veanes and Nikolaj Bjørner

McScM: A General Framework for the Verification of Communicating
Machines . 478

Alexander Heußner, Tristan Le Gall, and Grégoire Sutre

SLMC: A Tool for Model Checking Concurrent Systems against
Dynamical Spatial Logic Specifications . 485

Lúıs Caires and Hugo Torres Vieira

TAPAAL 2.0: Integrated Development Environment for Timed-Arc
Petri Nets . 492

Alexandre David, Lasse Jacobsen, Morten Jacobsen,
Kenneth Yrke Jørgensen, Mikael H. Møller, and Jǐŕı Srba

A Platform for High Performance Statistical Model
Checking – PLASMA . 498

Cyrille Jegourel, Axel Legay, and Sean Sedwards

Competition on Software Verification

Competition on Software Verification (SV-COMP) 504
Dirk Beyer

Predicate Analysis with BLAST 2.7 (Competition Contribution) 525
Pavel Shved, Mikhail Mandrykin, and Vadim Mutilin

CPAchecker with Adjustable Predicate Analysis
(Competition Contribution) . 528

Stefan Löwe and Philipp Wendler

Block Abstraction Memoization for CPAchecker
(Competition Contribution) . 531

Daniel Wonisch

Context-Bounded Model Checking with ESBMC 1.17
(Competition Contribution) . 534

Lucas Cordeiro, Jeremy Morse, Denis Nicole, and Bernd Fischer

Proving Reachability Using FShell (Competition Contribution) 538
Andreas Holzer, Daniel Kroening, Christian Schallhart,
Michael Tautschnig, and Helmut Veith

LLBMC: A Bounded Model Checker for LLVM’s Intermediate
Representation (Competition Contribution) . 542

Carsten Sinz, Florian Merz, and Stephan Falke

Table of Contents XIX

Predator: A Verification Tool for Programs with Dynamic Linked Data
Structures (Competition Contribution) . 545

Kamil Dudka, Petr Müller, Petr Peringer, and Tomáš Vojnar

HSF(C): A Software Verifier Based on Horn Clauses
(Competition Contribution) . 549

Sergey Grebenshchikov, Ashutosh Gupta, Nuno P. Lopes,
Corneliu Popeea, and Andrey Rybalchenko

SatAbs: A Bit-Precise Verifier for C Programs
(Competition Contribution) . 552

Gérard Basler, Alastair Donaldson, Alexander Kaiser,
Daniel Kroening, Michael Tautschnig, and Thomas Wahl

Wolverine: Battling Bugs with Interpolants
(Competition Contribution) . 556

Georg Weissenbacher, Daniel Kroening, and Sharad Malik

Author Index . 559

Quantitative Models for a Not So Dumb Grid

Holger Hermanns

Dependable Systems and Software, Saarland University, Saarbrücken, Germany
http://d.cs.uni-saarland.de/hermanns/

How to dimension buffer sizes in a network on chip? What availability can be
expected for the Gallileo satellite navigation system? Is it a good idea to ride
a bike with a wireless brake? Can photovoltaic overproduction blow out the
European electric power grid? Maybe. Maybe not. Probably? The era of power-
aware, wireless and distributed systems of systems asks for strong quantitative
answers to such questions.

Stochastic model checking techniques have been developed to attack these
challenges [2]. They merge two well-established strands of informatics research
and practice: verification of concurrent systems and performance evaluation. We
review the main achievements of this research strand by painting the landscape of
behavioural models for probability, time, and cost, discussing important aspects
of compositional modelling and model checking techniques. Different real-life
cases show how these techniques are applied in practice.

A rich spectrum of quantitative analysis challenges is posed by the ’smart
grid’ vision [1,4]. That vision promises a more stable, secure, and resilient power
grid operation, despite increasing volatility of electric power production. It is
expected to come with more decentralized and autonomous structures, and with
a lot of IT put in place to manage the grid. However, that vision is in its infancy,
while the reality of power production is already changing considerably in some
regions of Europe. We focus on a regulation put in place by the German Federal
Network Agency to increase grid stability in case of photovoltaic overproduc-
tion. We show that this regulation may in fact decrease grid stability [3]. We
also propose improved and fully decentralized stabilization strategies that take
inspiration from probabilistic MAC protocols. Quantitative properties of these
strategies are calculated by state-of-the-art stochastic model checking tools.

References

1. Amin, M.: Smart grid: Overview, issues and opportunities: Advances and challenges
in sensing, modeling, simulation, optimization and control. In: IEEE Conference on
Decision and Control and European Control Conference (2011)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Performance evaluation and
model checking join forces. Communications of the ACM 53(9), 74–83 (2010)

3. Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependabil-
ity results for power grids with decentralized stabilization strategies. Reports of
SFB/TR 14 AVACS - ATR 83 (2012), http://www.avacs.org

4. Hermanns, H., Wiechmann, H.: Future design challenges for electric energy supply.
In: IEEE International Conference on Emerging Technologies & Factory Automation
(2009)

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://d.cs.uni-saarland.de/hermanns/
http://www.avacs.org

History-Aware Data Structure Repair Using SAT

Razieh Nokhbeh Zaeem1, Divya Gopinath1, Sarfraz Khurshid1,
and Kathryn S. McKinley2

1 The University of Texas at Austin
{nokhbeh,divyagopinath}@utexas.edu,khurshid@ece.utexas.edu

2 The University of Texas at Austin and Microsoft Research
mckinley@cs.utexas.edu

Abstract. Data structure repair corrects erroneous executions in deployed pro-
grams while they execute, eliminating costly downtime. Recent techniques show
how to leverage specifications and a SAT solver to enforce specification confor-
mance at runtime. While this powerful methodology increases the reliability of
deployed programs, scalability remains a key technical challenge—satisfying a
specification often results in the exploration of a huge state space. We present
a novel technique, called history-aware contract-based repair for more efficient
data structure repair using SAT. Our insight is two-fold: (1) the dynamic pro-
gram trace of field writes and reads provides useful guidance to repair incorrect
state mutations by a faulty program; and (2) we show how to execute SAT using
unsatisfiable cores it generates, in an efficient iterative approach on successive
problems with increasing state spaces, in order to utilize the history of previous
runs as captured in the unsatisfiable core. We implement this approach in a new
tool, called Cobbler, that repairs Java programs. Experimental results on two large
applications and a library implementation of a linked list show that Cobbler sig-
nificantly outperforms previous techniques for specification-based repair using
SAT, and finds and repairs a previously undetected bug.

1 Introduction

Software systems are pervasive and integrated into almost every aspect of life. Software
reliability is essential for life-critical, science, and business applications. Much research
addresses producing reliable software in various phases of the software development
life cycle before deployment, from analyzing requirements to design, implementation,
and testing. However, improving the reliability of an already deployed (possibly faulty)
system using error recovery is a less explored area.

In practice, systems are deployed with unknown and known unfixed bugs. When
bugs cause failures, the usual tactic is to restart the program because fixing bugs and
redeploying software may take months. Although the latter approach may resolve the
fundamental source of the problem, system downtime is undesirable and not always fea-
sible. Many mission critical applications such as operating systems, may prefer to trade
slight deviations in intended functionality for system uptime. Better still, if developers
annotate programs with specifications, then the runtime may restore the system state to
provide its intended functionality. Continuing program execution by fixing the effect of
bugs on-the-fly is called repair. Existing techniques for repair have not so far lived up
to their full potential, because they are either not general purpose or too inefficient.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 2–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

History-Aware Data Structure Repair Using SAT 3

Some critical systems include code that repairs erroneous executions on-the-fly using
dedicated application specific repair routines [6,7,13,14]. Recent work introduced gen-
eral purpose approaches including constraint-based repair [4, 8, 10] and contract-based
repair [18,25], some of which utilize SAT solvers [18,25]. Constraint-based repair em-
phasizes data structure integrity rules and repairs the data structures when a bug leads to
an invariant violation. Contract-based repair adds pre- and post-condition specifications
of a method which aid in generating an accurate repair, i.e., a structure that is the same
or very close to the one that a correct method would generate. General purpose repair,
however, has a huge state space of possible post-states and exploring them to find a
solution is currently too expensive to use in practice.

This paper seeks to make repair substantially more efficient by utilizing the history
of code execution as well as SAT solving. Our insights are two-fold: (1) the dynamic
program trace of field writes and reads provides useful guidance to identify incorrect
state mutations made by a faulty program; and (2) the unsatisfiable core generated by
a SAT run captures core elements of the solver’s reasoning, which not only facilitates
locating faults but can even be leveraged directly to optimize a successive SAT run. We
utilize program traces and unsatisfiable cores in tandem to define an efficient iterative
methodology where SAT is run on successive problems with increasing state spaces and
each run utilizes the history of the previous run. To our knowledge, our work is the first
to use the history of program execution or constraint solving in data structure repair.

History-aware repair utilizes a faulty program execution by focusing repair on fields
recently modified or read by the program, thereby reducing the search space for SAT.
We record program writes and reads to the key data structure with barriers. A barrier is
a code sequence that performs an action just prior to a write or read. Barriers are widely
available in commercial and research implementations of managed languages, e.g., the
HotSpot and Jikes RVM Java Virtual Machines, and the .NET C# system. Our approach
inserts barrier instrumentation on writes and reads or piggybacks on existing barriers.

While using the history of program execution aids in improving repair performance,
its heuristic nature implies that there exist cases in which we have to perform a broader
search and consider fields not included in the execution trace. In such cases, we take
advantage of UNSAT cores, which are minimal unsatisfiable sub-formulas provided by
failed SAT invocations. When SAT invocations fail, we utilize their UNSAT cores to
identify faulty fields. A final SAT invocation with the list of faulty fields extracted from
the UNSAT core results in a repaired data structure.

We implement repair for Java in a tool called Cobbler. Cobbler uses class invariants
and method post-conditions expressed in the Alloy specification language [9]. Cobbler
inserts write and read instrumentation for the specified data structures to log dynamic
program behavior. When Cobbler detects a violation, it uses a SAT solver to mutate the
data structure until it satisfies the specification.

We explore the efficiency and accuracy of Cobbler on microbenchmarks and two
open source programs: Kodkod solver [22] and ANTLR [2,16]. We compare our history-
aware contract-based repair tool, Cobbler, to contract-based repair alone using PBnJ [18]
and Tarmeem [25], two repair tools which leverage user guides and heuristics along with
a SAT solver. Cobbler is substantially more efficient and scalable than PBnJ
and Tarmeem. We also compare Cobbler with Juzi, which uses data structure

4 R. Nokhbeh Zaeem et al.

specifications for repair, but does not use method post-conditions [5]. Juzi’s dedicated
constraint solver is more efficient than Cobbler, but Juzi’s repair is applicable to far
fewer cases and Cobbler is much more accurate. Our experiments show that for small
to moderate instantiations of data structures, Cobbler provides repaired data structures
which are 100% to 90% similar to the correct structure in more than 90% of the cases.
Cobbler also finds and repairs a previously unknown error in ANTLR.

We make the following contributions: History-aware contract-based repair com-
bines the program’s dynamic behavior with specifications and the current erroneous
state of a program to perform repair. Read and write barriers for repair are an un-
conventional use of barriers to obtain program execution history for repair. Minimal
unsatisfiable cores provided by SAT solvers help to reduce the search space when a
field outside the execution trace should be modified. Cobbler is an automated portable
framework for repairing Java programs that enhances real applications with repair func-
tionality. Evaluation shows that Cobbler efficiently and accurately repairs text-book
examples and real world programs. Cobbler’s more efficient and accurate repair facili-
tates the use of repair in real world applications and enhances software reliability.

2 Background

This section describes data structure repair and the Alloy tool-set, which Cobbler uses.
Repair: Data structure repair corrects erroneous executions on-the-fly by enforcing

data integrity constraints (also known as repOK) and method pre- and post-conditions
(contracts). Figure 1 (a) shows the faulty output of a method, which violates the acyclic-
ity constraint as a binary search tree. A repair tool detects the violation and fixes it by
removing the dotted edge. Further fixes may be needed to enforce method contracts too.

Alloy tool-set: Alloy is a relational first order logic language [9]. An Alloy model
consists of relations and constraints on them. The Alloy Analyzer performs bounded
exhaustive analysis of Alloy models. A bound is a function which maps each relation to
a set of tuples (bound: R → 2T), where each tuple consists of atoms. For each relation
R, two sets are defined: a lower bound LB(R), which includes all tuples that R must
have in its instance (inst(R)), and an upper bound UB(R), which includes all tuples
that R may have in its instance. Therefore, LB(R) ⊆ inst(R) ⊆ UB(R). Figure 1 (b)
shows the relational representation of the Java object graph shown in Figure 1 (a).

We use Kodkod [22], the back-end of Alloy Analyzer, which is a SAT-based con-
straint solver for first order logic that supports relations, transitive closure, and partial

(a) a Java object graph

T0.root �� �������	N0 : 3
T0.btSize = 2

r
���

��
�

�������	N1 : 5

l
����
��

�������	N2 : 4

r
��

(b) relational representation (c) relaxing the dotted edge

inst(root) = {(T0, N0)} LB(right) = {(N0, N1)}
inst(btSize) = {(T0, 2)} UB(right) = {(N0, N1), (N2, N0),

inst(right) = {(N0, N1), (N2, N0)} (N2, N1), (N2, N2)}
inst(left) = {(N1, N2)}
inst(element) = {(N0, 3), (N1, 5), (N2, 4)}

Fig. 1. Relational representation of data structures in Alloy models

History-Aware Data Structure Repair Using SAT 5

models. Kodkod provides a finite model for satisfiable specifications and an UNSAT
core for unsatisfiable ones. To perform repair, Kodkod suggests mutations to the data
structure such that it meets the Alloy specification. Specifically, given a satisfiable rela-
tional formula and the bounds, Kodkod uses a backtracking search to find a satisfying
instance. The search space is typically exponential in the number of atoms.

Kodkod allows explicit specification of upper and lower bounds for analysis, which
provides partial solutions and restricts the search space. We use this functionality to
specify which fields of the state can be mutated by the SAT solver to perform repair.
Thus, to relax a field in Kodkod means to let the SAT solver suggest different values
other than the one present in the faulty post-state, in order to find a satisfiable answer.
Relaxing a field, which is a mutation of a field of a specific object, is done through
binding a relation to suitable lower and upper bounds. For example, in Figure 1 (a)
the dotted edge can be relaxed by setting the lower and upper bounds as shown in
Figure 1 (c). Setting both lower and upper bounds to the same set makes it the only
answer for that relation, i.e., the set becomes a partial solution for the Kodkod model.

Minimal Unsatisfiable Cores: If Kodkod cannot satisfy the constraints in a model,
it produces a minimal unsatisfiable core, which is a subset of the constraints of the
model. Given an unsatisfiable CNF formula X, a minimal unsatisfiable sub-formula is
a subset of X’s clauses that is both unsatisfiable and minimal, which means any subset
of it is satisfiable. There could be many independent reasons for a formula’s unsatisfia-
bility and hence more than one minimal core. The Recycling Core Extractor algorithm,
implemented as the RCE Strategy in Kodkod, returns an unsatisfiable core of specifi-
cations written in the Alloy language that is guaranteed to be sound (constraints not
included in the core are irrelevant to the unsatisfiability proof) and irreducible (removal
of any constraint from the set would make the remaining formula satisfiable).

3 Cobbler Framework

This section describes our history-aware contract-based repair framework.

3.1 Overview

We use class invariants and method post-conditions to detect erroneous executions.
Once an error is detected, we utilize two major sources of information about the in-
tended behavior: the specification and the dynamic trace of execution which we obtain
through write and read logs. Although the post-condition specifies the expected behav-
ior of the method, there is often a wide range of correct possibilities for a given input
since there may be many ways to implement the same specification. Additionally, for a
SAT-based repair framework, relaxing all fields of the data structure explodes the search
space and is infeasible for real world applications.

We use the program execution to help guide our repair process. In deployed soft-
ware, the program is expected to contain most of the intended logic. Furthermore, given
sufficient pre-deployment testing, there should not be many bugs in the code. By ob-
serving the dynamic behavior of a faulty execution, we can substantially reduce the
size of the search space and make the repair process more efficient and effective. The

6 R. Nokhbeh Zaeem et al.

core idea is to focus on fields modified and/or read during the execution. To obtain the
execution history, we record write and read actions performed by the program. Our im-
plementation instruments the program, but alternatively the Java Virtual Machine could
efficiently provide them [1]. We start by restricting the SAT solver to correcting written
fields and values, followed by read fields during the execution, and if the SAT solver
has still not found a correction, it utilizes the UNSAT core provided by the previous
SAT invocations to identify and mutate faulty fields of the data structure. Hence, our
technique handles both errors of commission when the programmer writes an incorrect
assignment and errors of omission when she forgets to update the required fields.

While repair has various applications, it does not suit all types of software systems.
For systems that cannot tolerate even slight divergences in the state of the program from
the original behavior (e.g, financial systems), it is not advisable to use automatic repair
routines unless complete contracts with all the required details are available.

When repair is applicable, this approach has two benefits: (1) it improves the repair
performance by reducing the size of the search space, and (2) it reduces the amount of
data structure perturbation introduced by the repair process by focusing on fields that a
correct method conceivably would modify.

Listing 1.1 shows the repair algorithm in pseudo-code. If an assertion is violated, the
repair framework initially only mutates (relaxes) fields in the write log, holding all other
data structure fields constant (through providing a partial solution for the SAT solver).
It then calls the SAT solver to compute correct values for the relaxed fields. If this step
does not yield a structure satisfying the contracts, the next step relaxes the fields in the
read and write logs. If it still is unsuccessful, it relaxes fields appearing in the UNSAT
core. If the SAT solver finds no solution, there is an inconsistency in the contract itself
which the repair framework reports.

1 i f (! a s s e r t C o n t r a c t s ()){
2 re laxSAT (w r i t e B a r r i e r L o g) ;
3 i f (! a s s e r t C o n t r a c t s ()){
4 re laxSAT (w r i t e B a r r i e r L o g , r e a d B a r r i e r L o g) ;
5 i f (! a s s e r t C o n t r a c t s ()){
6 re laxSAT (u n s a t C o r e F i e l d s) ;
7 i f (! a s s e r t C o n t r a c t s ()){
8 r e p o r t M o d e l I n c o n s i s t e n c y () ;}}}}

Listing 1.1. History-aware contract-based repair using read and write logs and unsatisfiable cores

3.2 Example

Consider a binary search tree example written in Java in Listing 1.2 and its remove
method. In Cobbler, developers must write a specification in the Alloy relational first
order logic language. Listing 1.3 shows the acyclicity and size constraints that describe
a correct binary search tree in Alloy. Additional constraints include search relations on
the nodes and that the elements are unique. The repOK method describes all method-
independent constraints. The developer may also express method post-conditions, as
shown in the remove postcondition method. This post-condition specifies a correct
removewith respect to the data structure and the return value from the removemethod.

History-Aware Data Structure Repair Using SAT 7

1 c l a s s B i n a r y S e a r c h T r e e {
2 Node r o o t ; i n t b t S i z e ;
3 b o o l e a n remove (i n t x) {
4 i f (r o o t == n u l l) r e t u r n f a l s e ;
5 e l s e {
6 b o o l e a n r e s u l t ;
7 i f (r o o t . e l e m e n t == x) {
8 Node auxRoot = new Node () ;
9 auxRoot . l e f t = r o o t ;

10 r e s u l t = r o o t . remove (x , auxRoot) ;
11 r o o t = auxRoot . l e f t ;
12 } e l s e r e s u l t = r o o t . remove (x , n u l l) ;
13 i f (r e s u l t) b t S i z e −−; / / u s i n g u n i q u e n e s s o f e l e m e n t s
14 r e t u r n r e s u l t ;}}}
15 c l a s s Node {
16 Node l e f t , r i g h t ; i n t e l e m e n t ;
17 b o o l e a n remove (i n t x , Node p a r e n t) {
18 i f (x < e l e m e n t) {
19 i f (l e f t != n u l l) r e t u r n l e f t . remove (x , t h i s) ;
20 e l s e r e t u r n f a l s e ;
21 } e l s e i f (x > e l e m e n t) {
22 i f (r i g h t != n u l l) r e t u r n r i g h t . remove (x , t h i s) ;
23 e l s e r e t u r n f a l s e ;
24 } e l s e {
25 i f (l e f t != n u l l && r i g h t != n u l l) {
26 e l e m e n t = r i g h t . minNode () . e l e m e n t ;
27 r i g h t . remove (e lemen t , t h i s) ;
28 } e l s e i f (p a r e n t . l e f t == t h i s) {
29 i f (l e f t != n u l l) p a r e n t . l e f t = l e f t ;
30 e l s e p a r e n t . l e f t = r i g h t ;
31 } e l s e i f (p a r e n t . r i g h t == t h i s) {
32 i f (l e f t != n u l l) p a r e n t . r i g h t = l e f t ;
33 / / t o i n t r o d u c e bug c y c l e r e p l a c e wi th l e f t . r i g h t = p a r e n t
34 e l s e p a r e n t . r i g h t = r i g h t ;}
35 r e t u r n t r u e ;}}
36 Node minNode () { . . .}}

Listing 1.2. A binary search tree implementation in Java

1 a b s t r a c t s i g B i n a r y S e a r c h T r e e {
2 r o o t , r o o t ’ : l o n e Node ,
3 b t S i z e , b t S i z e ’ : one I n t}
4 a b s t r a c t s i g Node{
5 l e f t , l e f t ’ , r i g h t , r i g h t ’ : l o n e Node ,
6 e l emen t , e l e m e n t ’ : l o n e I n t }
7 p red repOK (t : B i n a r y S e a r c h T r e e){ / / c l a s s i n v a r i a n t
8 / / d i r e c t e d a c y c l i c i t y
9 a l l n : t . r o o t ’ .∗ (l e f t ’+ r i g h t ’) | n ! i n n . ˆ (l e f t ’+ r i g h t ’)

10 / / s i z e OK
11 # t . r o o t ’ .∗ (l e f t ’+ r i g h t ’) = i n t t . b t S i z e ’
12 / / un ique e l e m e n t s
13 . . .
14 / / s e a r c h p r o p e r t y
15 . . . }
16 p red r e m o v e p o s t c o n d i t i o n (T h i s : B i n a r y S e a r c h T r ee , x : I n t , r e m o v e R e s u l t : (True+

F a l s e)){
17 repOK [T his]
18 / / c o r r e c t remove
19 T h i s . r o o t .∗ (r i g h t + l e f t) . e l e m e n t − x = T his . r o o t ’ .∗ (r i g h t ’+ l e f t ’) . e l e m e n t ’
20 / / c o r r e c t remove r e s u l t
21 x i n T h i s . r o o t .∗ (r i g h t + l e f t) . e l e m e n t <=> removeRes u l t i n True}

Listing 1.3. A binary search tree specification in Alloy

8 R. Nokhbeh Zaeem et al.

(a) input (b) expected output of remove(5)
constraint-based repair history-aware contract-based repair

root ��
������3
btSize = 3

����
�� ���

��
�

null
������5

����
��

���
��

�

������4

		���
�

���
��
� null

null null

root ��
������3
btSize = 2

		��
�� ���

��
�

null
������4

		���
�

���
��
�

null null

(c) faulty output of remove(5) (d) contract-based repair

root ��		 ��������3

		�
�

btSize = 2

null ��������5

���
�

��

������4

����
��

��

null

null

root ��
������4
btSize = 2

����
��

���
��

�

������3

��
��

���
��
� null

null null

(e) write barrier log (dotted lines in part (c)):
{[4].right, btSize}, [x] represents the node with value x before execution.
(f) read barrier log (dashed lines in part (c)):
{root, [3].element, [3].right, [5].element, [5].left, [5].right, [3].left}

Fig. 2. cycle manifested as a faulty output and the repair result

Alloy represents Java classes with signatures (e.g., sig BinarySearchTree in
Listing 1.3) and field relations with a relational view. The keywords lone and one

for a unary relation denote that the relation may or must not be empty, respectively.
Binary relations can be defined as total or partial functions among other options (e.g.,
right is a partial function). We use the syntactic sugar of adding back-tick (‘‘’) to dis-
tinguish post-state Alloy relations from pre-state relations. The Alloy repOK predicate
(pred) expresses data structural integrity rules. For instance, the directed acyclicity
constraint specifies that for any node reachable from root by applying zero or more
left or right pointers, the node cannot reach itself by following one or more left
or right pointers, so it cannot traverse a cycle. * and ˆ represent “zero or more” and
“one or more” applications of a relation. Alloy supports membership, cardinality, and
complement, in, #, and - respectively as in the acyclicity, size, and correct remove
constraints.

To illustrate our repair process, consider inserting the following bug. Bug cycle: in
Listing 1.2 line 32, replace the correct statement: parent.right = left with the in-
correct: left.right = parent. For this incorrect implementation, after the method
returns, checking the conjunction of repOK and the method post-condition indicates
that there is an error, triggering the repair process.

History-Aware Data Structure Repair Using SAT 9

To repair the erroneous output of the cycle faulty implementation, constraint-based
repair methods [4, 8, 10] observe the cycle and remove it from Figure 2(c) to produce
Figure 2(a), but fail to remove node 5. Contract-based repair techniques without his-
tory [18, 25] may generate Figure 2(d), which although a correct output, is different
from what the program would have been generated in the absence of any bugs.

History-aware contract-based repair first invokes the SAT solver and tries to find a
solution by only changing the values of the fields which the program writes into during
the execution (Figure 2 (e)). These fields are distinguished by dotted lines in the faulty
output. In this invocation, it does not find a solution because the program failed to up-
date a field that needs to be modified. Our repair framework next considers changing
fields read by the program (Figure 2 (f)) and shown as dashed lines. It invokes SAT to
find suitable replacements for the fields written or read by the program. This invoca-
tion produces a repaired structure as shown in Figure 2 (b), which is identical to the
expected output. Utilizing the barrier logs keeps us from generating Figure 2 (d) since
the left field of node 4 is not relaxed and is held constant to be null. However, there
remains a chance that a field that was not touched at all during the execution needs to be
changed. Our repair framework obtains an UNSAT core from the previous SAT invoca-
tions. The UNSAT core is the conjunction of contradicting repOK and post-condition
specifications, which were not satisfiable at the same time. In this example, if we were
to proceed to the third SAT call, the UNSAT core would not include, for example,
the correct remove result post-condition. Therefore, the final invocation of SAT
would not relax the removeResult field.

3.3 Implementation in Cobbler

Cobbler works as follows. (1) The user provides the Java data structure class and its
methods. Cobbler instruments this code with setters and getters to obtain logs of the
writes and reads. Cobbler also instruments the program for our experiments to measure
the repair time, edit distance and other metrics. (2) Cobbler generates a stub for the
repOK and method post-conditions for the Java class. Cobbler extracts class-specific
relations, types, and properties into the stubs, and the user enhances them with the
application specific logic. (3) Cobbler then instruments the program to check the post-
conditions and call the repair method when needed. (4) The user executes the Java
program inside the Cobbler framework.

Java Virtual Machine

Repair Framework

Java Program

Fig. 3. The relationship between Cobbler,
the Java Virtual Machine, and the program

Figure 3 shows how the repair framework
sits on top of the Java Virtual Machine and
executes the Java program. The layers use
shared memory to communicate. This design
enhances the portability of our framework
and makes it independent of JVM and the
program. Alternative implementations could
implement the framework inside the JVM,
which would lower the overhead when pro-
grams are correct. When programs need to be repaired, the SAT solving time is orders
of magnitude bigger than time saved by merging the repair framework into JVM.

10 R. Nokhbeh Zaeem et al.

4 Evaluation

The objectives of our evaluation are to empirically validate the hypothesis that using
execution history and UNSAT cores improves the efficiency, accuracy, and scalabil-
ity of contract-based repair with SAT solvers. To this end, we simulated various er-
rors in microbenchmarks and examined two real world applications: Kodkod [22] and
ANTLR [2, 16]. Cobbler discovered a previously unreported bug in the addChild

method of ANTLR version 3.3 that resulted in a cycle in the output Tree. Our repair
algorithm fixes this error accurately for a Tree with 300 nodes within 30 seconds.

Throughout the evaluation, we ran each experiment five times and reported the av-
erages. All the experiments used a 2.50GHz Core 2 Duo processor with 4.00GB RAM
running Windows 7 and Sun’s Java SDK 1.6.0 JVM. All the repair frameworks used
their default SAT solvers: Cobbler used MiniSat and MiniSatProver, Tarmeem used
DefaultSAT4J, and PBnJ used MiniSat.

4.1 Evaluation Metrics

To evaluate the efficiency of repair, we measured: (1) logging time: the overhead due to
logging read and write actions; (2) check time: the time to detect a contract violation;
and (3) repair time: the time to search and find a repaired data structure.

To evaluable the accuracy of repair, we measure the edit distance between the object
graphs of the repaired data structure r, and the expected data structure e that a correct
implementation would produce. Note that, r satisfies the method contract but might be
different from the expected output. We define edit distance as the minimum number of
edge additions/deletions to change a graph to another [19, 25]. We create the correct
graphs by a separate correct implementation and then measure the edit distance in set
difference operations between two graphs using the relational representation discussed
in Section 2. Here insti(R) is the instance of relation R in data structure i.

Definition 1. dist(e, r) =
∑

R(|inste(R)− instr(R)|+ |instr(R)− inste(R)|).

The lower this distance, the closer the repaired data structure is to the expected post-
state data structure. We define the similarity percentage between the repaired output r
and the expected output e as follows.

Definition 2. sim(e, r) = (1− dist(e,r)∑
R |inste(R)|)× 100.

4.2 Subject Programs

We applied Cobbler to (1) the remove method of Singly Linked List, (2) the insert
method of the Kodkod.util.ints.IntTree class of the Kodkod solver implemen-
tation, and (3) the deleteChild and addChild methods of BaseTree of ANTLR.

Singly-linked list: Linked list is widely used and is a part of libraries such as
java.util.Collection. The post-condition of the remove(int value) method,
checks if the method has (1) deleted all nodes with elements equal to the input value,
(2) maintained acyclicity, (3) inserted no new nodes, and (4) deleted no other nodes.

History-Aware Data Structure Repair Using SAT 11

Red-black tree of Kodkod: Kodkod [22] is a SAT-based constraint solver for first
order logic. It consists of 33,985 lines of Java code in 169 classes. The IntTree class
with 570 lines of code and 21 methods sits at the core of the Kodkod solver, and is a
generic implementation of the red-black tree data structure. Red-black tree comprises
complex data structure invariants which include binary search tree invariants: every
node has at most two children, key values of the left subtree are smaller and those of
the right subtree are greater than the node value, and the tree is acyclic. In addition,
constraints are imposed on the color of each node to keep the tree balanced: every node
is either red or black, every leaf node is black, no red node has a red parent and all
paths from the root to a descendant leaf contain the same number of black nodes. The
insert method of this class comprises 58 lines of code with 67 branch statements.
The post-condition of the insert(int newKey) method checks if an element with
the new key value has been added without adding or deleting any other elements.

BaseTree of ANTLR: We use ANTLR (ANother Tool for Language Recognition)
from the DaCapo 2009 benchmark suite, version 9.12 [2, 16]. ANTLR builds language
parsers, interpreters, compilers, and translators from grammars. It comprises 29,710
lines of Java code, and has a download rate of about 5,000 per month. Rich tree data
structures represent language grammars and are the backbone of this application. The
abstract class BaseTree is a generic tree implementation. Each tree instance maintains
a list of successor children. The childIndex represents its position in the list. Each
child node is a tree and points back to its parent. Every node may contain a token field
that represents the payload of the node. Based on the documentation and the program
logic, we derived invariants for the BaseTree data structure such as acyclicity through
children references, accurate parent-child relationships, and correct values for child in-
dices. The addChild(Tree node) and deleteChild(int childIndex) methods
are the main functions used to build and manipulate all tree structures in ANTLR. The
respective post-conditions check that nodes are added or deleted without any unwar-
ranted perturbations to the other nodes.

4.3 Errors

Table 1 enumerates all the inserted faults and, for ANTLR, a detected error. It explains
the errors and displays the violated constraints. The accuracy and performance of the
repair algorithm depends on which and how many fields are relaxed in each step, and
the number of calls to the solver. The data structure size, size of the log, and size of vio-
lated constraint formula influence repair accuracy and efficiency. We explore these pa-
rameters with a range of errors that violate different constraints and appear in different
program statements, such as incorrect field assignments, incorrect branch conditions,
and errors of omission. The last column in the table indicates if the field(s) that needs
to be corrected appear in the write barrier log (WB), read barrier log (RB), or neither
(ALL fields).

The program logic and thus which fields Cobbler logs depends on the input struc-
tures. Faults five and six of the red-black tree insert method execute the same faulty
code versions as that of three and four, but with a different data structure. The program
writes and reads different fields on the first and second inputs and Cobbler repairs the
outputs by relaxing read and written fields respectively.

12 R. Nokhbeh Zaeem et al.

Table 1. The injected faults and ANTLR addChild() fault

Method Fault description Violates Error in

S
L

L
re

m
o

ve

Err 1 Sets the header to null Correct remove, Size WB
Err 2 Fails to update the size Size ALL fields
Err 3 Deletes a node with a non-matching element Correct remove, Size WB
Err 4 Introduces a cycle after performing correct remove Acyclicity WB
Err 5 Breaks the list to retain only the first two nodes Correct remove, Size WB
Err 6 Deletes the matching element but adds it again Correct remove WB
Err 7 Fails to remove the element and updates the size incorrectly Correct remove, Size WB

R
B

T
in

se
rt

Err 1 Creates a cycle of length one Acyclicity WB
Err 2 Sets the color of a node to black instead of red Color constraints WB
Err 3 Adds the new element as right child instead of left Key constraints RB
Err 4 Violates key constraints due to a branch condition error Key constraints RB
Err 5 Same as Err 3 with a different input Key constraints WB
Err 6 Same as Err 4 with a different input Key constraints WB
Err 7 Skips balancing of the tree after insertion Color constraints ALL fields

A
N

T
L

R
d

el
et

eC
h

ild Err 1 Skips deletion of the appropriate child Correct Remove RB
Err 2 Skips updating children indices after deletion Child Index constraints ALL fields
Err 3 Sets a wrong child index due to an incorrect branch condition in a loop Child Index constraints RB
Err 4 Sets a node as its own parent Acyclicity WB

ANTLR addChild Adds a node to itself as a child Acyclicity, Child Index WB

4.4 Subject Tools

We compare Cobbler to Juzi repair framework, which only uses structural constraints,
and to Tarmeem and PBnJ, two repair frameworks that consider post-conditions too.

Juzi’s assertion-based repair automatically corrects data structure violations in Java
programs [5]. Upon detecting a constraint violation, Juzi searches for a repair solu-
tion based on the data structure traversal encoded in repOK [3]. Juzi further boosts its
performance with symbolic execution. Since Juzi does not use a SAT solver, it is gen-
erally faster than SAT-based approaches. Juzi however does not consider method post-
conditions, which causes it to miss errors that result in well-formed output. Even if
repOK is violated, without the post-condition, Juzi cannot accurately correct the struc-
ture with respect to the contracts as discussed in Section 3.2. To compare Juzi and
Cobbler, we manually implemented a check for the post-condition in Juzi by recording
the method pre-state and the desired data structure specific post-state.

Our previous work, Tarmeem, uses Alloy contracts and a SAT solver [25]. Tarmeem
repairs faulty post-states using automated and user-guided techniques, such as iterative
relaxation of relations and error localization in predicates to improve the efficiency of
repair. We experimented with all four of Tarmeem’s heuristics and picked the best.

Samimi et al. implement a similar technique in PBnJ that executes method specifica-
tions when methods fail to produce a correct data structure [18]. They express invariants
and specifications in a declarative first order relational logic. Translating them into Java
methods and then invoking the methods implements program logic declaratively. This
program synthesis approach leverages constraint solving technology.

4.5 Results

Figure 4 compares the performance and accuracy of repair of Cobbler, Tarmeem, Juzi,
and PBnJ on the singly-linked list microbenchmark. Logging, check, and repair times

History-Aware Data Structure Repair Using SAT 13

Fig. 4. Performance and accuracy: repairing singly-linked lists with Cobbler (C), Tarmeem (T),
an enhanced version of Juzi (J), and PBnJ (P)

are accumulated into a single bar on a logarithmic scale. Logging time is only applica-
ble to Cobbler and is negligible. Tarmeem and Cobbler have the same check time since
they both use Kodkod evaluation (not SAT solving) to perform checks after methods ex-
ecute. Juzi executes repOK and PBnJ translates specifications to Java assertions, which
more efficiently check the data structure. Cobbler’s overhead on an error-free execution
includes both logging and check times. Using the approach of PBnJ to translate speci-
fications to assertions could reduce the check time and the total overhead. We timeout
after 60 seconds and report zero for accuracy upon a timeout.

Cobbler is substantially faster than all the other tools on five of the seven errors,
despite the fact that Tarmeem and PBnJ receive specific user annotations to guide the
repair process and Juzi performs symbolic execution. Error two skips a required update
to size. Since the size field is not read or written, Cobbler does not correct it until the
third call to the SAT solver, which causes its time to exceed the other repair schemes.
Error four introduces a cycle. Juzi is tailored for such errors: it satisfies the constraint
by breaking cycles quickly and performs better than Cobbler in this case.

Cobbler, except for one case, always produces the most accurate data structure among
the four. When Cobbler does not time out, it achieves exactly the same output as ex-
pected. The edit distance between the result of a correct implementation and the re-
paired data structure is zero. This comparison is solely for evaluation, since in the wild,
the system would not know the correct implementation.

Because Juzi solely relies on the repOK method instead of checking method post-
conditions, it does not find error six at all. Moreover, Juzi cannot access out of scope
nodes that are not reachable from the header. Since Juzi does not consider the execution

14 R. Nokhbeh Zaeem et al.

Fig. 5. Cobbler performance and accuracy: repairing Kodkod red-black trees

history, it first explores all the correct data structures nearby, but there is no guarantee
that the expected output is close to the faulty one. We could enhance Juzi to work
with post-conditions, as we did for evaluation of accuracy, but the original Juzi did not
perform any repairs with respect to the post-conditions.

Tarmeem is not very accurate because when it invokes the SAT solver, it relaxes
all tuples of a relation together, causing unnecessary changes. Cobbler significantly
improves efficiency and accuracy over Tarmeem, especially for errors which involve
incorrectly updated fields.

PBnJ’s performance is similar to Tarmeem at best. The reason is that it always ig-
nores the current faulty state and utilizes SAT to regenerate an acceptable output from
scratch. It is however more accurate than Tarmeem in some cases.

Figure 5 shows the performance and accuracy of Cobbler on a faulty Kodkod red-
black tree insert method. Figure 6 depicts the results of experimenting with ANTLR.
We do not include the other frameworks here for brevity. Juzi always fails to repair
correctly when a contract requires the addition of a node and the node is not present,
because Juzi only uses those nodes currently accessible from the faulty data structure.
When it does not timeout, Cobbler is very accurate on these real world applications.

The results show that the read and write field logs improve the scalability and effi-
ciency of repair. Cobbler repairs linked lists with up to 200 nodes within 20 seconds.
It performs well even on more complex data structures. For the red-black tree remove
method, it repairs up to 50 nodes within 40 seconds and for the deleteChild method
of ANTLR BaseTree, it repairs 40 nodes within 30 seconds. The size of the logs is
proportional to the number of reads and writes to the data structure and was usually a
few hundred bytes with a maximum of 900 bytes for error four of ANTLR.

For errors that cannot be fixed by relaxing only written and read fields, such as er-
ror two of linked list, error seven of red-black tree insert, and error two of ANTLR
deleteChild (see Table 1), Cobbler uses the UNSAT core to identify which fields

History-Aware Data Structure Repair Using SAT 15

Fig. 6. Cobbler performance and accuracy: repairing ANTLR trees

to modify, and performs better than the other SAT-based tools. These cases however
are challenging for Cobbler, because despite barrier logs that indicate fields of specific
objects, UNSAT cores identify all fields with the same name as potentially faulty.

4.6 ANTLR BaseTree addChild

The public method addChild adds child node trees to an ANTLR BaseTree object.
When the input tree does not have a payload (isNil), the method adds the children
of the input tree to the children list of the current tree, otherwise, it adds the input tree
itself to the children list. In the addChild method (v3.3), when the input tree does
not have any payload, a check ensures that the current tree is not being added to itself.
However, such a check is not performed for input trees with payloads. Hence, when
the current tree has a payload, it may be added as a child of itself. Similarly, any tree
with a payload which is already an existing child of the current tree may be added as a
child again. We generated inputs that caused invariant (such as acyclicity and ascending
child indices) violations. Cobbler repairs the Tree structure and restores it back to its
pre-state, which is correct. This state would be the output of addChild if it had been
implemented correctly. Cobbler repairs a tree with 300 nodes within 30 seconds.

5 Related Work

Dynamic repair aims to counteract faults at runtime and prolong system uptime. File
system utilities such as fsck [6] and chkdsk [13], database check-pointing and roll-
back techniques are application-specific repair routines that monitor and correct system
state at runtime. DIRA [20] extends database repair with post-conditions to detect buffer
overflow attacks and fix damaged data structures. Clearview [17] and Exterminator [15]

16 R. Nokhbeh Zaeem et al.

also aid in repairing memory errors at runtime, but none of these techniques are suit-
able for repairing general purpose complex data structures. On the other hand, some
commercially developed systems, such as the IBM MVS operating system [14] and the
Lucent 5ESS telephone switch [7], have dedicated routines for monitoring and main-
taining properties of their key data structures. These systems are tailor-made for their
system structures and cannot be generalized as data structure repair tools.

Demsky and Rinard [4] pioneered constraint-based repair of data structures.
Developers provide declarative constraints. The system translates the constraints into
disjunctive normal form and repair solves them using an ad hoc search. The Juzi re-
pair technique (described in Section 4.4) detects errors using user-defined repOK meth-
ods [5]. As we discussed and showed in Section 4.5, the accuracy and efficiency of
Juzi suffer for errors that omit nodes and because the repair does not consider method
semantics at the entry and exit. Recent improvements include Dynamic Symbolic Data
Structure (DSDS) repair which builds a symbolic representation of fields and objects
along the repOK executed path [8]. Whenever a predicate fails, DSDS solves the con-
junction of its negation with the other path conditions. This direct generation of a satis-
fying result loses accuracy because it is irrespective of the exact location of corrupted
object references or fields. A post-condition Java method predicate could be asserted
along with the repOK to solve this problem. But as the size and complexity of proper-
ties and size of the data structure increase such techniques will not scale well.

Tarmeem [25] and PBnJ [18] (both explained in Section 4.4) overcome this limitation
by using individual method pre- and post-conditions. As Section 4.5 showed, Tarmeem
improves accuracy by tailoring repair to semantics, but is inefficient. PBnJ is not very
efficient either, because it ignores both the faulty post-state and implementation. To im-
prove the efficiency of PBnJ, programmers may bound the number of objects and limit
changed fields, but for repairing unpredictable code errors, it does not seem feasible.
Our approach instead automatically utilizes the faulty data structure and the code that
produced it to prune the state space and guide repair to yield a satisfying instance as
close as possible to the intended method output.

Our technique is related to, but differs substantially from, automated debugging and
repair for use during testing, which focus on how to change the code rather than dy-
namically changing the heap [12,21,23,24]. However, as Malik et al. propose, dynamic
repair actions could translate into program statements [11].

6 Conclusions

This paper introduced the idea of using program execution history for efficient and ac-
curate contract-based data structure repair. We utilize program traces, specifically reads
and writes of key fields, to direct repair of erroneous program states. Moreover, we use
unsatisfiable cores provided by SAT solvers when we cannot repair the data structure by
changing only read and written fields. We implemented this approach in Cobbler. Com-
pared with previous repair techniques, our experimental results show Cobbler provides
significant speedups and better accuracy, and finds and repairs a previously undetected
bug in the widely used open-source ANTLR program. A promising future research av-
enue is to abstract concrete successful repair actions and use them to prioritize future
repair actions, thus to avoid a costly search and make repair even more practical.

History-Aware Data Structure Repair Using SAT 17

Acknowledgments. We thank the anonymous reviewers for their comments. This work
was funded in part by the NSF under Grant Nos. CCF-0845628, IIS-0438967, CCF-
1018271, CCF-0811524, and SHF-0910818, and AFOSR grant FA9550-09-1-0351.

References

1. Blackburn, S.M., Hosking, A.: Barriers: Friend or foe? In: ISMM (2004)
2. Blackburn, S.M., et al.: The DaCapo Benchmarks: Java Benchmarking Development and

Analysis. In: OOPSLA (2006)
3. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java predicates.

In: ISSTA (2002)
4. Demsky, B., Rinard, M.: Automatic detection and repair of errors in data structures. In: OOP-

SLA (2003)
5. Elkarablieh, B., Garcia, I., Suen, Y.L., Khurshid, S.: Assertion-based repair of complex data

structures. In: ASE (2007)
6. Ext2 fsck. manual page, http://e2fsprogs.sourceforge.net
7. Haugk, G., Lax, F., Royer, R., Williams, J.: The 5ESS(TM) switching system: Maintenance

capabilities. AT&T Technical Journal 64(6 part 2), 1385–1416 (1985)
8. Hussain, I., Csallner, C.: Dynamic symbolic data structure repair. In: ICSE (2010)
9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2006)

10. Khurshid, S., Garcı́a, I., Suen, Y.L.: Repairing Structurally Complex Data. In: Godefroid, P.
(ed.) SPIN 2005. LNCS, vol. 3639, pp. 123–138. Springer, Heidelberg (2005)

11. Malik, M.Z., Ghori, K., Elkarablieh, B., Khurshid, S.: A case for automated debugging using
data structure repair. In: ASE (2009)

12. Mayer, W., Stumptner, M.: Evaluating models for Model-Based debugging. In: ASE (2008)
13. Microsoft. chkdsk manual page, http://support.microsoft.com/kb/315265
14. Mourad, S., Andrews, D.: On the reliability of the IBM MVS/XA operating system. IEEE

Transactions on Software Engineering 13(10), 1135–1139 (1987)
15. Novark, G., Berger, E.D., Zorn, B.G.: Exterminator: automatically correcting memory errors

with high probability. In: PLDI (2007)
16. Parr, T., Bovet, J.: Antlr parser generator home page, http://www.antlr.org
17. Perkins, J., et al.: Automatically patching errors in deployed software. In: SOSP (2009)
18. Samimi, H., Aung, E.D., Millstein, T.: Falling Back on Executable Specifications. In:

D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer, Heidelberg (2010)
19. Sanfeliu, A., Fu, K.-S.: Distance measure between attributed relational graphs for pattern

recognition. IEEE Trans. Systems, Man and Cybernetics 13(3), 353–362 (1983)
20. Smirnov, A., Chiueh, T.-c.: DIRA: Automatic detection, identification, and repair of control-

hijacking attacks. In: NDSS (2005)
21. Staber, S., Jobstmann, B., Bloem, R.: Finding and Fixing Faults. In: Borrione, D., Paul, W.

(eds.) CHARME 2005. LNCS, vol. 3725, pp. 35–49. Springer, Heidelberg (2005)
22. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O., Huth, M.

(eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)
23. Wei, Y., et al.: Automated fixing of programs with contracts. In: ISSTA (2010)
24. Weimer, W.: Patches as better bug reports. In: GPCE (2006)
25. Zaeem, R. Nokhbeh, Khurshid, S.: Contract-Based Data Structure Repair Using Alloy. In:

D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer, Heidelberg (2010)

http://e2fsprogs.sourceforge.net
http://support.microsoft.com/kb/315265
http://www.antlr.org

The Guardol Language and Verification System

David Hardin1, Konrad Slind1, Michael Whalen2, and Tuan-Hung Pham2

1 Rockwell Collins Advanced Technology Center
2 University of Minnesota

Abstract. Guardol is a domain-specific language designed to facili-
tate the construction of correct network guards operating over tree-
shaped data. The Guardol system generates Ada code from Guardol
programs and also provides specification and automated verification sup-
port. Guard programs and specifications are translated to higher order
logic, then deductively transformed to a form suitable for a SMT-style
decision procedure for recursive functions over tree-structured data. The
result is that difficult properties of Guardol programs can be proved fully
automatically.

1 Introduction

A guard is a device that mediates information sharing over a network between
security domains according to a specified policy. Typical guard operations in-
clude reading field values in a packet, changing fields in a packet, transforming
a packet by adding new fields, dropping fields from a packet, constructing audit
messages, and removing a packet from a stream.

Guards are becoming prevalent, for example, in coalition forces networks,
where selective sharing of data among coalition partners in real time is essential.
One such guard, the Rockwell Collins Turnstile high-assurance, cross-domain
guard [7], provides directional, bi-directional, and all-way guarding for up to
three Ethernet connected networks. The proliferation of guards in critical appli-
cations, each with its own specialized language for specifying guarding functions,
has led to the need for a portable, high-assurance guard language.

High Security Network
Internet /

Low Security Network
Guard

Application

Infiltration

Exfiltration

Fig. 1. Typical guard configuration

Guardol is a new, domain-specific programming language aimed at improving
the creation, verification, and deployment of network guards. Guardol supports
the ability to target a wide variety of guard platforms, the ability to glue together
existing or mandated functionality, the generation of both implementations and
formal analysis artifacts, and sound, highly automated formal analysis. Mes-
sages to be guarded, such as XML, may have recursive structure; thus a major
aspect of Guardol is datatype declaration facilities similar to those available in

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 18–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Guardol Language and Verification System 19

functional languages such as SML [14] or Haskell [16]. Recursive programs over
such datatypes are supported by ML-style pattern-matching. However, Guardol
is not simply an adaptation of a functional language to guards. In fact, much
of the syntax and semantics of Guardol is similar to that of Ada: Guardol is a
sequential imperative language with non-side-effecting expressions, assignment,
sequencing, conditional commands, and procedures with in/out variables. To
a first approximation Guardol = Ada + ML. This hybrid language supports
writing complex programs over complex data structures, while also providing
standard programming constructs from Ada.

Fig. 2. Guardol system components

The Guardol system integrates several distinct components, as illustrated in
Figure 2. A Guardol program in file x.gdl is parsed and typechecked by the
Gryphon verification framework [13] developed by Rockwell Collins. Gryphon
provides a collection of passes over Guardol ASTs that help simplify the pro-
gram. From Gryphon, guard implementations can be generated—at present only
in Ada—from Guardol descriptions. For the most part, this is conceptually sim-
ple since much of Guardol is a subset of Ada. However datatypes and pattern
matching need special treatment: the former requires automatic memory man-
agement, which we have implemented via a reference-counting style garbage
collection scheme, while the latter requires a phase of pattern-match compila-
tion [18]. Since our intent in this paper is mainly to discuss the verification path,
we will omit further details.

2 An Example Guard

In the following we will examine a simple guard written in Guardol. The guard
applies a platform-supplied dirty-word operation DWO over a binary tree of
messages (here identified with strings). When applied to a message, DWO can
leave it unchanged, change it, or reject it with an audit string via MsgAudit.

type Msg = string;
type MsgResult = {MsgOK : Msg | MsgAudit : string};
imported function DWO(Text : in Msg,Output : out MsgResult);

A MsgTree is a binary tree of messages. A MsgTree element can be a Leaf or a
Node; the latter option is represented by a record with three fields. When the
guard processes a MsgTree it either returns a new, possibly modified, tree, or it
returns an audit message.

type MsgTree = {Leaf | Node : [Value : Msg; Left : MsgTree;Right : MsgTree]};
type TreeResult = {TreeOK : MsgTree | TreeAudit : string};

20 D. Hardin et al.

The guard procedure takes its input tree in variable Input and the return value,
which has type TreeResult, is placed in Output. The body uses local variables for
holding the results of recursing into the left and right subtrees, as well as for
holding the result of calling DWO. The guard code is written as follows:

function Guard (Input : in MsgTree,Output : out TreeResult) =
begin

var ValueResult : MsgResult;
LeftResult,RightResult : TreeResult;

in
match Input with
MsgTree′Leaf ⇒ Output := TreeResult′TreeOK(MsgTree′Leaf);
MsgTree′Node node ⇒ begin

DWO(node.Value,ValueResult);
match ValueResult with
MsgResult′MsgAudit A ⇒ Output := TreeResult′TreeAudit(A);
MsgResult′MsgOK ValueMsg ⇒ begin

Guard(node.Left, LeftResult);

match LeftResult with
TreeResult′TreeAudit A ⇒ Output := LeftResult;
TreeResult′TreeOK LeftTree ⇒ begin

Guard(node.Right,RightResult);

match RightResult with
TreeResult′TreeAudit A ⇒ Output := RightResult;
TreeResult′TreeOK RightTree ⇒

Output := TreeResult′TreeOK(MsgTree′Node
[Value : ValueMsg, Left : LeftTree, Right : RightTree]);

end

end

end

end

The guard processes a tree by a pattern-matching style case analysis on the
Input variable. There are several cases to consider. If Input is a leaf node, process-
ing succeeds. This is accomplished by tagging the leaf with TreeOK and assigning
to Output. Otherwise, if Input is an internal node (MsgTree′Node node), the guard
applies DWO to the message held at the node and recurses through the subtrees
(recursive calls are marked with boxes). The only complication arises from the
fact that an audit may arise from a subcomputation and must be immediately
propagated. The code essentially lifts the error monad of the external operation
to the error monad of the guard.

Specifying Guard Properties. Many verification systems allow programs to be
annotated with assertions. Under such an approach, a program may become
cluttered with assertions and assertions may involve logic constructs. Since we
wanted to avoid clutter and wanted to shield programmers, as much as possible,
from learning the syntax of a logic language, we decided to express specifications
using Guardol programs. The key language construct facilitating verification is
the specification declaration: it presents some code to be executed, sprinkled
with assertions (which are just boolean program expressions).

Following is the specification for the guard. The code runs the guard on the
tree t, putting the result in r, which is either a TreeOK element or an audit
(TreeAudit). If the former, then the returned tree is named u and Guard Stable,
described below, must hold on it. On the other hand, if r is an audit, the property
is vacuously true.

The Guardol Language and Verification System 21

spec Guard Correct = begin
var t : MsgTree; r : TreeResult;
in if (∀(M : Msg). DWO Idempotent(M)) then begin

Guard(t, r);
match r with

TreeResult′TreeOK u ⇒ check Guard Stable(u);
TreeResult′TreeAudit A ⇒ skip;

end
else skip;

end

The guard code is essentially parameterized by an arbitrary policy (DWO) on
how messages are treated. The correctness property simply requires that the
result obeys the policy. In other words, suppose the guard is run on tree t,
returning tree u. If DWO is run on every message in u, we expect to get u back
unchanged, since all dirty words should have been scrubbed out in the passage
from t to u. This property is a kind of idempotence, coded up in the function
Guard Stable; note that it has the shape of a catamorphism, which is a simple
form of recursion exploited by our automatic proof component.

function Guard Stable (MT : in MsgTree) returns Output : bool = begin
var R : MsgResult;
in
match MT with

MsgTree′Leaf ⇒ Output := true;
MsgTree′Node node ⇒ begin

DWO(node.Value,R);
match R with

MsgResult′MsgOK M ⇒ Output := (node.Value = M);
MsgResult′MsgAudit A ⇒ Output := false;

Output := Output and Guard Stable(node.Left) and Guard Stable(node.Right);
end

end

The success of the proof depends on the assumption that the external dirty-word
operation is idempotent on messages, expressed by the following program.

function DWO Idempotent(M : in Msg) returns Output : bool = begin
var R1,R2 : MsgResult;
in
DWO(M,R1);
match R1 with

MsgResult′MsgOK M2 ⇒ begin
DWO(M2,R2);
match R2 with

MsgResult′MsgOK M3 ⇒ Output := (M2 = M3);
MsgResult′MsgAudit A ⇒ Output := false;

end

MsgResult′MsgAudit A ⇒ Output := true;
end

DWO Idempotent calls DWO twice, and checks that the result of the second
call is the same as the result of the first call, taking into account audits. If
the first call returns an audit, then there is no second call, so the idempotence
property is vacuously true. On the other hand, if the first call succeeds, but the
second is an audit, that means that the first call somehow altered the message
into one provoking an audit, so idempotence is definitely false.

22 D. Hardin et al.

3 Generating Verification Conditions by Deduction

Verification of guards is performed using HOL4 [19] and OpenSMT [2]. First, a
program is mapped into a formal AST in HOL4, where the operational semantics
of Guardol are encoded. One can reason directly in HOL4 about programs using
the operational semantics; unfortunately, such an approach has limited appli-
cability, requiring expertise in the use of a higher order logic theorem prover.
Instead, we would like to make use of the high automation offered by SMT sys-
tems. An obstacle: current SMT systems do not understand operational seman-
tics.1 We surmount the problem in two steps. First, decompilation into logic [15]
is used to deductively map properties of a program in an operational semantics
to analogous properties over a mathematical function equivalent to the original
program. This places us in the realm of proving properties of recursive functions
operating over recursive datatypes, an undecidable setting in general. The sec-
ond step is to implement a decision procedure for functional programming [20].
This procedure necessarily has syntactic limitations, but it is able to handle a
wide variety of interesting programs and their properties fully automatically.

Translating Programs to Footprint Functions. First, any datatypes in the
program are defined in HOL (every Guardol type can be defined as a HOL type).
Thus, in our example, the types MsgTree, MsgResult, and TreeResult are trans-
lated directly to HOL datatypes. Recognizers and selectors, e.g., isMsgTree Leaf
and destMsgTree Node, for these types are automatically defined and used to
translate pattern-matching statements in programs to equivalent if-then-else rep-
resentations. Programs are then translated into HOL footprint2 function defini-
tions. If a program is recursive, then a recursive function is defined. (Defining
recursive functions in higher order logic requires a termination proof; for our
example termination is automatically proved.) Note that the HOL function for
the guard (following page) is second order due to the external operator DWO:
all externals are held in a record ext which is passed as a function argument.

3.1 Guardol Operational Semantics

The operational semantics of Guardol (see Fig. 3) describes program evaluation
by an inductively defined judgement saying how statements alter the program
state. The formula STEPS Γ code s1 s2 says “evaluation of statement code
beginning in state s1 terminates and results in state s2”. (Thus we are giving
a so-called big-step semantics.) Note that Γ is an environment binding proce-
dure names to procedure bodies. The semantics follows an approach taken by
Norbert Schirmer [17], wherein he constructed a generic semantics for a large
class of sequential imperative programs, and then showed how to specialize the

1 Reasons for this state of affairs: there is not one operational semantics because each
programming language has a different semantics; moreover, the decision problem for
such theories is undecidable.

2 Terminology lifted from the separation logic literature.

The Guardol Language and Verification System 23

Guard ext Input =
if isMsgTree Leaf Input then

TreeResult TreeOK MsgTree Leaf
else

let ValueResult = ext.DWO ((destMsgTree Node Input).Value,ARB)
in if isMsgResult MsgAudit ValueResult then

TreeResult TreeAudit (destMsgResult MsgAudit ValueResult)
else

let LeftResult = Guard ext ((destMsgTree Node Input).Left,ARB)

in if isTreeResult TreeAudit LeftResult then
LeftResult

else

let RightResult = Guard ext ((destMsgTree Node Input).Right,ARB)

in if isTreeResult TreeAudit RightResult then
RightResult

else
TreeResult TreeOK(MsgTree Node {Value := destMsgResult MsgOK ValueResult;

Left := destMsgResult MsgOK LeftResult;
Right := destMsgResult MsgOK RightResult})

[Skip]
STEPS Γ Skip (Normal s) (Normal s)

[Basic]
STEPS Γ (Basic f) (Normal s) (Normal (f s))

[Seq]
STEPS Γ c1 (Normal s1) s2 STEPS Γ c2 s2 s3

STEPS Γ (Seq c1 c2) (Normal s1) s3

[withState]

STEPS Γ (f s1) Normal s1) s2

STEPS Γ (withState f) (Normal s1) s2

[Cond-True]

P (s1) STEPS Γ c1 (Normal s1) s2

STEPS Γ (Cond P c1 c2) (Normal s1) s2

[Cond-False]

¬P (s1) STEPS Γ c2 (Normal s1) s2

STEPS Γ (Cond P c1 c2) (Normal s1) s2

[Call]
M .p ∈ Dom(Γ) Γ (M .p) = c STEPS Γ c (Normal s1) s2

STEPS Γ (Call M.p) (Normal s1) s2

[Call-NotFound]
M .p /∈ Dom(Γ)

STEPS Γ (Call M.p) (Normal s) Stuck

[Fault-Sink]

STEPS Γ c (Fault f) (Fault f)

[Stuck-Sink]

STEPS Γ c Stuck Stuck

[Abrupt-Sink]

STEPS Γ c (Abrupt s) (Abrupt s)

[While-True]
P (s1) STEPS Γ c (Normal s1) s2 STEPS Γ (While P c) s2 s3

STEPS Γ (While P c) (Normal s1) s3

[While-False]
¬P (s)

STEPS Γ (While P c) (Normal s) (Normal s)

Fig. 3. Evaluation rules

generic semantics to a particular programming language (a subset of C, for him).
Similarly, Guardol is another instantiation of the generic semantics.

Evaluation is phrased in terms of a mode of evaluation, which describes a
computation state. A computation state is either in Normal mode, or in one of a
set of abnormal modes, including Abrupt, Fault, and Stuck. Usually computation

24 D. Hardin et al.

is in Normal mode. However, if a Throw is evaluated, then computation proceeds
in Abrupt mode. If a Guard command returns false, the computation transitions
into a Fault mode. Finally, if the Stuck mode is entered, something is wrong,
e.g., a procedure is called but there is no binding for it in Γ .

3.2 Decompilation

The work of Myreen [15] shows how to decompile assembly programs to higher
order logic functions; we do the same here for Guardol, a high-level language. A
decompilation theorem

� ∀s1 s2. ∀x1 . . . xk.
s1.proc.v1 = x1 ∧ · · · ∧ s1.proc.vk = xk ∧
STEPS Γ code (Normal s1) (Normal s2)
⇒
let (o1, ..., on) = f (x1, . . . , xk)

in s2 = s1 with{proc.w1 := o1, . . . , proc.wn := on}

essentially states that evaluation of code implements footprint function f . The
antecedent s1.proc.v1 = x1 ∧ · · · ∧ s1.proc.vk = xk equates x1 . . . xk to the values
of program variables v1 . . . vk in state s1. These values form the input for the
function f , which delivers the output values which are used to update s1 to s2.

3

Presently, the decompilation theorem only deals with code that starts evaluation
in a Normal state and finishes in a Normal state.

The Decompilation Algorithm. Now we consider how to prove decompila-
tion theorems for Guardol programs. It is important to emphasize that decompi-
lation is an algorithm. It always succeeds, provided that all footprint functions
coming from the Guardol program have been successfully proved to terminate.

Before specifications can be translated to goals, the decompilation theorem

� ∀s1 s2. . . . STEPS Γ Call(qid) (Normal s1) (Normal s2)⇒ · · ·

is formally proved for each procedure qid in the program, relating execution of
the code for procedure qid with the footprint function for qid .

Decompilation proofs are automated by forward symbolic execution of code,
using an environment of decompilation theorems to act as summaries for proce-
dure calls. Table 1 presents rules used in the decompilation algorithm. For the
most part, the rules are straightforward.We draw attention to the Seq, withState,
and Call rules. The Seq (sequential composition) rule conjoins the results of sim-
pler commands and introduces an existential formula (∃t. . . .). However, this is
essentially universal since it occurs on the left of the top-level implication in the

3 In our modelling, a program state is represented by a record containing all variables
in the program. The notation s.proc.v denotes the value of program variable v in
procedure proc in state s. The with-notation represents record update.

The Guardol Language and Verification System 25

Table 1. Rewrite rules in the decompilation algorithm

Condition Rewrite rule

code = Skip � STEPS Γ Skip s1 s2 = (s1 = s2)
code = Basic(f) � STEPS Γ Basic (f) (Normal s1) (Normal s2) = (s2 = f s1)
code = Seq(c1, c2) � STEPS Γ

(
Seq(c1, c2)

)
(Normal s1) (Normal s2) =

∃t.STEPS Γ c1 (Normal s1) (Normal t) ∧ STEPS Γ c2 (Normal t) (Normal s2)
code = Cond(P, c1, c2) � STEPS Γ

(
Cond(P, c1, c2)

)
(Normal s1) (Normal s2) =

if P s1 then STEPS Γ c1 (Normal s1) (Normal s2)
else STEPS Γ c2 (Normal s1) (Normal s2)

code = withState f � STEPS Γ (withState f) (Normal s1) s2 = STEPS Γ (f s1) (Normal s1) s2
code = Call qid depend on whether the function is recursive or not

goal; thus it can be eliminated easily and occurrences of t can thenceforth be
treated as Skolem constants. Both blocks and procedure calls in the Guardol
program are encoded using withState. An application of withState stays in the
current state, but replaces the current code by new code computed from the
current state. Finally, there are two cases with the Call (procedure call) rule:

– The call is not recursive. In this case, the decompilation theorem for qid
is fetched from the decompilation environment and instantiated, so we can
derive

let (o1, ..., on) = f (x1, . . . , xk)
in s2 = s1 with {qid .w1 := o1, . . . , qid .wn := on}

where f is the footprint function for procedure qid . We can now propagate
the value of the function to derive state s2.

– The call is recursive. In this case, an inductive hypothesis in the goal—
which is a decompilation theorem for a recursive call, by virtue of our having
inducted at the outset of the proof—matches the call, and is instantiated.
We can again prove the antecedent of the selected inductive hypothesis, and
propagate the value of the resulting functional characterization, as in the
non-recursive case.

The decompilation algorithm starts by either inducting, when the procedure for
which the decompilation theorem is being proved is recursive, or not (otherwise).
After applying the rewrite rules, at the end of each program path, we are left
with an equality between states. The proof of this equality proceeds essentially
by applying rewrite rules for normalizing states (recall that states are represented
by records).

Translating Specifications into Goals. A Guardol specification is intended
to set up a computational context—a state—and then assert that a property
holds in that state. In its simplest form, a specification looks like

spec name = begin

var decls
in

code ;
check property ;

end

26 D. Hardin et al.

where property is a boolean expression. A specification declaration is processed
as follows. First, suppose that execution of code starts normally in s1 and ends
normally in s2, i.e., assume STEPS Γ code (Normal s1) (Normal s2). We want
to show that property holds in state s2. This could be achieved by reasoning
with the induction principle for STEPS, i.e., by using the operational semantics;
however, experience has shown that this approach is labor-intensive. We instead
opt to formally leverage the decompilation theorem for code, which asserts that
reasoning about the STEPS-behavior of code could just as well be accomplished
by reasoning about function f . Thus, formally, we need to show

(let (o1, ..., on) = f (x1, . . . , xk)
in s2 = s1 with {name .w1 := o1, . . . ,name.wn := on})
⇒ property s2

Now we have a situation where the proof is essentially about how facts about f ,
principally its recursion equations and induction theorem, imply the property.
The original goal has been freed—by sound deductive steps—from the program
state and operational semantics. The import of this, as alluded to earlier, is that
a wide variety of proof tools become applicable. Interactive systems exemplified
by ACL2, PVS, HOL4, and Isabelle/HOL have extensive lemma libraries and
reasoning packages tailored for reasoning about recursively defined mathemat-
ical functions. SMT systems are also able to reason about such functions, via
universal quantification, or by decision procedures, as we discuss in Section 4.

Setting Up Complex Contexts. The form of specification above is not pow-
erful enough to state many properties. Quite often, a collection of constraints
needs to be placed on the input variables, or on external functions. To support
this, specification statements allow checks sprinkled at arbitrary points in code:

spec name = begin locals in code [check P1, . . . , check Pn] end

We support this with a program transformation, wherein occurrences of check
are changed into assignments to a boolean variable. Let V be a boolean program
variable not in locals . The above specification is transformed into

spec name = begin

locals ; V : bool;
in

V := true; code [V := V ∧ P1, . . . , V := V ∧ Pn]; check(V);
end

Thus V is used to accumulate the results of the checks that occur throughout the
code. Every property Pi is checked in the state holding just before the occurrence
of check(Pi), and all the checks must hold. This gives a flexible and concise way
to express properties of programs, without embedding assertions in the source
code of the program.

The Guardol Language and Verification System 27

Recall the Guard Correct specification. Roughly, it says If running the guard
succeeds, then running Guard Stable on the result returns true. Applying the
decompiler to the code of the specification and using the resulting theorem to
map from the operational semantics to the functional interpretation, we obtain
the goal (

(∀m. DWO Idempotent ext m) ∧
Guard ext t = TreeResult TreeOK t′

)
⇒ Guard Stable ext t′

which has the form required by our SMT prover, namely that the catamorphism
Guard Stable is applied to the result of calling Guard. However, an SMT prover
may still not prove this goal, since the following steps need to be made: (1)
inducting on the recursion structure of Guard, (2) expanding (once) the definition
of Guard, (3) making higher order functions into first order, and (4) elimination
of universal quantification. 4

To address the first two problems, we induct with the induction theorem for
Guard, which is automatically proved by HOL4, and expand the definition of
Guard one step in the resulting inductive case. Thus we stop short of using the
inductive hypotheses! The SMT solver will do that. The elimination of higher
order functions is simple in the case of Guardol since the function arguments
(ext in this case) are essentially fixed constants whose behavior is constrained by
hypotheses. This leaves the elimination of the universals; only the quantification
on m in ∀m. DWO Idempotent ext m is problematic. We find all arguments of
applications of ext.DWO in the body of Guard, and instantiate m to all of them
(there’s only one in this case), adding all instantiations as hypotheses to the
goal.

4 Verification Condition Solving Using SMT

The formulas generated as verification conditions from the previous section pose
a fundamental research challenge: reasoning over the structure and contents of
inductive datatypes We have addressed this challenge through the use of a novel,
recently-developed, decision procedure called the Suter–Dotta–Kuncak (SDK)
procedure [20]. This decision procedure can be integrated into an SMT solver
to solve a variety of properties over recursive datatypes. It uses catamorphisms
to create abstractions of the contents of tree-structured data that can then be
solved using standard SMT techniques. The benefit of this decision procedure
over other techniques involving quantifiers is that it is complete for a large class
of reasoning problems involving datatypes, as described below.

Catamorphisms. In many reasoning problems involving recursive datatypes,
we are interested in abstracting the contents of the datatype. To do this, we

4 Some of these steps are incorporated in various SMT systems, e.g., many, but not
all, SMT systems heuristically instantiate quantifiers. For a discussion of SMT-style
induction see [10].

28 D. Hardin et al.

could define a function that maps the structure of the tree into a value. This
kind of function is called a catamorphism [12] or fold function, which ‘folds up’
information about the data structure into a single value. The simplest abstraction
that we can perform of a data structure is to map it into a Boolean result
that describes whether it is ‘valid’ in some way. This approach is used in the
function Guard Stable in Section 2. We could of course create different functions
to summarize the tree elements. For example, a tree can be abstracted as a
number that represents the sum of all nodes, or as a tuple that describes the
minimum and maximum elements within the tree. As long as the catamorphism
is sufficiently surjective [20] and maps into a decidable theory, the procedure
is theoretically complete. Moreover, we have found it to be fast in our initial
experiments.

Overview of the Decision Procedure. The input of the decision procedure
is a formula φ of literals over elements of tree terms and tree abstractions (LC)
produced by the catamorphisms. The logic is parametric in the sense that we
assume a datatype to be reasoned over and catamorphism used to abstract the
datatype, and the existence of a decidable theory C that is the result type of the
catamorphism function. The syntax of the parametric logic is depicted in Fig. 4.

The syntax of the logic ranges over datatype terms (T and S), terms of a
decidable collection theory C. Tree and collection theory formulas FT and FC

describe equalities and inequalities over terms. The collection theory describes
the result of catamorphism applications. E defines terms in the element types
contained within the branches of the datatypes. φ defines conjunctions of (re-
stricted) formulas in the tree and collection theories. The φ terms are the ones
solved by the SDK procedure; these can be generalized to arbitrary proposi-
tional formulas (ψ) through the use of a DPLL solver [4] which manages the
other operators within the formula.

S ::= T | E Constructors’ arguments
T ::= t | Cj(S1, . . . , Snj

) | Sj,kτ (T) Tree terms

C ::= c | α(T) | TC C-terms
FT ::= T = T | T �= T Tree (dis)equations
FC ::= C = C | FC Formula of LC
E ::= variables of type Ek | Sj,kE (T) Expression
φ ::=

∧
FT ∧

∧
FC Conjunctions

ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ | Formulas
φ ⇒ φ | φ ⇔ φ

Fig. 4. Syntax of the parametric logic

In the procedure, we have a single datatype τ with m constructors. The j-th
constructor (1 ≤ j ≤ m), Cj , has nj arguments (nj ≥ 0), whose types are either
τ or E , an element type. For each constructor Cj , we have a list of selectors
Sj,k (1 ≤ k ≤ nj), which extracts the k-th argument of Cj . For type safety, we
may put the type of the argument to be extracted as a subscript of its selector.
That is, each selector may be presented as either Sj,kτ or Sj,kE . The decision

The Guardol Language and Verification System 29

procedure is parameterized by E , a collection type C, and a catamorphism func-
tion α : τ → C. For example, the datatype MsgTree has two constructors Leaf
and Node. The former has no argument while the latter has three arguments
corresponding to its Value, Left, and Right. As a result, we have three selectors
for Node, including Value: MsgTree → Msg, Left : MsgTree → MsgTree, and
Right : MsgTree → MsgTree. In addition, a tree can be abstracted by the cata-
morphism Guard Stable : MsgTree→ bool to a boolean value. In the example, E ,
C, and α are Msg, bool, and Guard Stable, respectively.

Implementing Suter-Dotta-Kuncak in OpenSMT. We have created an
implementation of the SDK decision procedure. As described earlier, the de-
cision procedure operates over conjunctions of theory literals and generates a
problem in a base theory (denoted C) that must be solved by another exist-
ing decision procedure. Thus, the decision procedure is not useful by itself; it
must be integrated into an SMT solver that supports reasoning over complex
Boolean logic formulas (rather than only conjunctions) and contains the theories
necessary to solve the terms in C.

In DPLL [4], theory terms are partitioned by solver: each solver “owns” the
terms in its theory. The SMT solver partitions the terms for each theory in a purifi-
cation step. However, the SDK decision procedure as presented in [20] requires an
unusual level of supervisory control over other other decision procedures within an
SMT solver. That is, terms from the element theories, the collections theory, and
the tree theory have to be provided to the SDK procedure where they are manip-
ulated (possibly adding disjunctions) and eventually passed back to a SMT solver
to be further processed. Thus, to implement SDK, we have re-architected a stan-
dard DPLL solver by forwarding all theory terms to the SDK procedure, letting
it perform purification and formula manipulation, and passing the resulting prob-
lem instance (which no longer contains datatype terms) into an inner instance of
the SMT solver to solve the (local) subproblem and return the result to the outer
instance. This architecture is shown in Figure 5.

Fig. 5. Architecture for SMT solver containing SDK

Wehave chosen to implement SDKonOpenSMTas it supports a sufficiently rich
set of theories and is freely available for extension and commercial use. In addition,
OpenSMT is fast and has a simple interface between decision procedures and the
underlying solver.We have alsomade a handful of extensions to the tool to support
reasoning over mutually recursive datatypes. A drawback of the current release of

30 D. Hardin et al.

OpenSMT is that it does not support quantifiers; on the other hand, quantifiers
add a source of incompleteness to the solving process that we are trying to avoid.

4.1 Experimental Results

To test our approach, we have developed a handful of small benchmark guard ex-
amples. For timings, we focus on the SMT solver which performs the interesting
part of the proof search. The results are shown in Table 2, where the last guard is
the running example from the paper. In our early experience, the SDK procedure
allows awide variety of interesting properties to be expressed and our initial timing
experiments have been very encouraging, despite the relatively näive implementa-
tion of SDK, which we will optimize in the near future. For a point of comparison,
we provide a translation of the problems to Microsoft’s Z3 in which we use uni-
versal quantifiers to describe the catamorphism behavior. This approach is incom-
plete, so properties that are falsifiable (i.e., return SAT) often do not terminate
(we mark this as ‘unknown’). A better comparison would be to run our implemen-
tation against the Leon tool suite developed at EFPL [21]. Unfortunately, it is not
currently possible to do so as the Leon tool suite operates directly over the Scala
language rather than at the SMT level. All benchmarks were run on Windows 7
using an Intel Core I3 running at 2.13 GHz.

Table 2. Experimental results on guard examples

Test # OpenSMT-SDK Z3

Guard 1 5 sat (0.83s) / 1 unsat (0.1s) 5 unknown / 1 unsat (0.06 s)
Guard 2 3 unsat (0.28s) 1 unknown / 2 unsat (0.11 s)
Guard 3 3 sat (0.33s) / 4 unsat (0.46s) 1 unknown / 2 sat (0.17s) / 4 unsat (0.42 s)

DWO 1 unsat (0.34s) 1 unsat (0.11s)

5 Discussion

As a programming language with built-in verification support, Guardol seems
amenable to being embedded in an IVL (Intermediate Verification Language)
such as Boogie [11] or Why [3]. However, our basic aims would not be met in
such a setting. The operational semantics in Section 3.1 defines Guardol program
execution, which is the basis for verification. We want a strong formal connection
between a program plus specifications, both expressed using that semantics, and
the resulting SMT goals, which do not mention that semantics. The decompi-
lation algorithm achieves this connection via machine-checked proof in higher
order logic. This approach is simpler in some ways than an IVL, where there are
two translations: one from source language to IVL and one from IVL to SMT
goals. To our knowledge, IVL translations are not machine-checked, which is
problematic for our applications. Our emphasis on formal models and deductive
transformations should help Guardol programs pass the stringent certification
requirements imposed on high-assurance guards.

Higher order logic plays a central role in our design. HOL4 implements a
foundational semantic setting in which the following are formalized: program

The Guardol Language and Verification System 31

ASTs, operational semantics, footprint functions (along with their termination
proofs and induction theorems), and decompilation theorems. Decompilation
extensively uses higher order features when composing footprint functions cor-
responding to sub-programs. Moreover, the backend verification theories of the
SMT system already exist in HOL4. This offers the possibility of doing SMT
proof reconstruction [1] in order to obtain higher levels of assurance. Another
consequence is that, should a proof fail or take too long in the SMT system, it
could be performed interactively.

As future work we plan to investigate both language and verification aspects.
For example, the current Guardol language could be made more user-friendly. It
is essentially a monomorphic version of ML with second order functions, owing
to Guardol’s external function declarations. It might be worthwhile to support
polymorphic types so that the repeated declarations of instances of polymorphic
types, e.g., option types and list types, can be curtailed. Additionally, programs
could be considerably more terse if exceptions were in the language, since explic-
itly threading the error monad wouldn’t be needed to describe guard failures.

An interesting issue concerns specifications: guard specifications can be about
intensional aspects of a computation, e.g., its structure or sequencing, as well
as its result. For example, one may want to check that data fuzzing operations
always occur before encryption. However, our current framework, which trans-
lates programs to extensional functions, will not be able to use SMT reasoning
on intensional properties. Information flow properties [5] are also intensional,
since in that setting one is not only concerned with the value of a variable,
but also whether particular inputs and code structures were used to produce it.
Techniques similar to those in [22] could be used to annotate programs in order
to allow SMT backends to reason about intensional guard properties.

Planned verification improvements include integration of string solvers and ter-
mination deferral. In the translation to SMT, strings are currently treated as an
uninterpreted type and string operations as uninterpreted functions. Therefore,
the system cannot reason in a complete way about guards where string manipu-
lation is integral to correctness. We plan to integrate a string reasoner (e.g., [8])
into our system to handle this problem. Finally, a weak point in the end-to-end au-
tomation of Guardol verification is termination proofs. If the footprint function for
a program happens to be recursive, its termination proof may well fail, thus stop-
ping processing. There are known techniques for defining partial functions [6,9],
obtaining recursion equations and induction theorems constrained by termination
requirements. These techniques remove this flaw, allowing the deferral of termina-
tion arguments while the partial correctness proof is addressed.

Acknowledgements. The TACAS reviewers did a well-informed and thorough
job, kindly pointing out many mistakes and infelicities in the orginal submission.

References

1. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s Bit-Vector
Proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011.
LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011)

32 D. Hardin et al.

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

3. Filliâtre, J.-C.: Deductive Program Verification. Thèse d’habilitation, Université
Paris (December 11, 2011)

4. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

5. Goguen, J., Meseguer, J.: Security policies and security models. In: Proc. of IEEE
SymposiumonSecurity andPrivacy, pp. 11–20. IEEEComputer Society Press (1982)

6. Greve, D.: Assuming termination. In: Proceedings of ACL2 Workshop, ACL2 2009,
pp. 114–122. ACM (2009)

7. Rockwell Collins Inc. Turnstile High Assurance Guard Homepage,
http://www.rockwellcollins.com/sitecore/content/Data/Products/

Information Assurance/Cross Domain Solutions/

Turnstile High Assurance Guard.aspx
8. Kiezun, A., Ganesh, V., Guo, P., Hooimeijer, P., Ernst, M.: HAMPI: A solver for
string constraints. In: Proceedings of ISSTA (2009)

9. Krauss, A.: Automating recursive definitions and termination proofs in higher order
logic. PhD thesis, TU Munich (2009)

10. Leino, K.R.M.: Automating Induction with an SMT Solver. In: Kuncak, V., Ry-
balchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Hei-
delberg (2012)

11. Leino, K.R.M., Rümmer, P.: A Polymorphic Intermediate Verification Language:
Design and Logical Encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

12. Meijer, E., Fokkinga, M., Paterson, R.: Functional Programming with Bananas,
Lenses, Envelopes, and Barbed Wire. In: Hughes, J. (ed.) FPCA 1991. LNCS,
vol. 523, pp. 124–144. Springer, Heidelberg (1991)

13. Miller, S., Whalen, M., Cofer, D.: Software model checking takes off. CACM 53,
58–64 (2010)

14. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
(Revised). The MIT Press (1997)

15. Myreen, M.: Formal verification of machine-code programs. PhD thesis, University
of Cambridge (2009)

16. Peyton Jones, S., et al.: The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming 13(1), 0–255 (2003)

17. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. PhD
thesis, TU Munich (2006)

18. Sestoft, P.: ML Pattern Match Compilation and Partial Evaluation. In: Danvy,
O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp.
446–464. Springer, Heidelberg (1996)

19. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

20. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: Proceedings of POPL, pp. 199–210. ACM (2010)

21. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability Modulo Recursive Programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

22. Whalen, M., Greve, D., Wagner, L.: Model checking information flow. In: Hardin,
D. (ed.) Design and Verification of Microprocessor Systems for High-Assurance
Applications. Springer (2010)

http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/Turnstile_High_Assurance_Guard.aspx
http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/Turnstile_High_Assurance_Guard.aspx
http://www.rockwellcollins.com/sitecore/content/Data/Products/Information_Assurance/Cross_Domain_Solutions/Turnstile_High_Assurance_Guard.aspx

A Bit Too Precise? Bounded Verification of Quantized
Digital Filters�

Arlen Cox, Sriram Sankaranarayanan, and Bor-Yuh Evan Chang

University of Colorado Boulder
{arlen.cox,sriram.sankaranarayanan,evan.chang}@colorado.edu

Abstract. Digital filters are simple yet ubiquitous components of a wide vari-
ety of digital processing and control systems. Errors in the filters can be catas-
trophic. Traditionally digital filters have been verified using methods from control
theory and extensive testing. We study two alternative verification techniques: bit-
precise analysis and real-valued error approximations. In this paper, we empiri-
cally evaluate several variants of these two fundamental approaches for verifying
fixed-point implementations of digital filters. We design our comparison to re-
veal the best possible approach towards verifying real-world designs of infinite
impulse response (IIR) digital filters. Our study reveals broader insights into cases
where bit-reasoning is absolutely necessary and suggests efficient approaches us-
ing modern satisfiability-modulo-theories (SMT) solvers.

1 Introduction

In this paper, we present an evaluation of techniques for verification of fixed-point im-
plementations of digital filters. Digital filters are ubiquitous in a wide variety of sys-
tems, such as control systems, analog mixed-signal (AMS) systems, and digital signal
processing systems. Their applications range from automotive electronic components
and medical devices to record players and musical instruments. To get them right, the
design of digital filters is guided by a rich theory that includes a deep understanding of
their behavior in terms of the frequency and time domain properties. Filter designers
rely on a floating-point-based design and validation tools such as Matlab.

But there is a serious disconnect between filter designs and filter implementations.
Implementations often use fixed-point arithmetics so that they can be implemented us-
ing special purpose digital signal processors (DSPs) or field programmable gate arrays
(FPGAs) that do not support floating-point arithmetics. Meanwhile, the design tools are
using floating-point arithmetics for validation. Does this disconnect between floating-
point designs and fixed-point implementations matter?

The transition from floating-point to fixed-point arithmetic can lead to undesirable
effects such as overflows and instabilities (e.g., limit cycles—see Section 2). They arise
due to (a) the quantization of the filter coefficients, (b) input quantization, and (c) round-
off errors for multiplications and additions. Thus, the fixed-point representations need

� This material is based upon work supported by the National Science Foundation (NSF) under
Grant No. 0953941. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of NSF.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

to be sufficiently accurate—have adequate bits to represent the integer and fraction so
that undesirable effects are not observed in implementation. Naturally, an implementer
faces the question whether a given design is sufficient to guarantee correctness.

Extensive testing using a large number of input signals is a minimum requirement.
However, it is well-known from other types of hardware designs that testing can fall
short of a full verification or an exhaustive depth-bounded search over the input space,
even for relatively small depths. Therefore, the question arises whether extensive test-
ing is good enough for filter validation or more exhaustive techniques are necessary. If
we choose to perform bounded verification of fixed-point filter implementations, there
are roughly two different sets of approaches. The bit-precise approach encodes the op-
eration of the fixed-point filter to precisely capture the effect of quantization, round-
offs and overflows as they happen on real hardware implementations. We then perform
a bounded-depth model checking (BMC) [5] using bit-vector and integer arithmetic
solvers to detect the presence of overflows and limit cycles (Section 3). An alterna-
tive approach consists of encoding the filter state using reals by over-approximating
the errors conservatively. We perform an error analysis to show that such an over-
approximation can be addressed using affine arithmetic simulations [6] or BMC using
linear real arithmetic constraints (Section 4).

Our primary contribution is a set of experimental evaluations designed to elucidate
the trade-offs between the testing and verification techniques outlined above. Specifi-
cally, we implemented the four verification approaches outlined above, as well as ran-
dom testing simulators using uniform random simulation over the input signals or sim-
ulation by selecting the maximal or minimal input at each time step. We empirically
compare these approaches on a set of filter implementations designed using Matlab’s
filter design toolbox. Overall, our experimental comparison seeks to answer four basic
questions (Section 5):

1. Is simulation sufficient to find bugs in filters? We observe that simulation is efficient
overall but seldom successful in finding subtle bugs in digital filters.

2. Is bit-precise reasoning more precise in practice than conservative real-arithmetic
reasoning? In highly optimized filters, conservatively tracking errors produces
many spurious alarms. Bit-precise reasoning seems to yield more useful results.

3. Are bit-precise analyses usefully scalable? We find that while less scalable than
some abstract analyses, bit-precise analyses find witnesses faster than other ap-
proaches and are capable of exploring complex filters.

4. Do bit-precise analyses allow us to address types of bugs that we could not oth-
erwise find? Bit-precise methods seem to be effective for discovering limit cycles
(Cf. Section 2), which are hard to discover otherwise.

Motivating Digital Filter Verification. In essence, a digital filter is a function from
an input signal to an output signal. A signal is a sequence of real values viewed as
arriving over time. For our purposes, a digital filter is causal, that is, a value in the
output signal at time t is a function of the input values at time t or before (and the
previously computed output values). The construction of digital filters is typically based
on a number of design templates (using specifications in the frequency domain) [16].
To design a filter, engineers select a template (e.g., “direct form” filters) and then use

Bounded Verification of Quantized Digital Filters 35

tools such as Matlab to compute coefficients that are used to instantiate these templates.
Many templates yield linear filters (i.e., an output value is a linear combination of the
preceding input values and previously computed output values). Because linear filters
are so pervasive, they are an ideal target for verification tools, which have good support
for linear arithmetic reasoning. Section 2 gives some basics on digital filters, but its
contents are not needed to follow this example.

0 5 10 15 20

−60

−40

−20

0

Magnitude Response

Frequency (kHz)
G

ai
n

(d
B

)

Floating Point
Fixed Point

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

Time (us)

V
al

ue

Impulse Response

Floating Point
Fixed Point

We used Matlab’s filter design toolbox to
construct a direct form I implementation of a
Butterworth IIR filter with a corner frequency
of 9600 Hz for a sampling frequency of 48000
Hz.1 To the right, we compare a floating-point-
based design and a fixed-point-based implemen-
tation of this filter by examining its magnitude
response as a function of input frequency (top)
and its impulse response (bottom). The fixed-
point implementation is the result of quantizing
the filter coefficients (as discussed below).2

Magnitude response and impulse response
are standard characterizations of filters [16].
Using these responses computed during design
time the designer deduces some nice properties
such as stability. Furthermore, the responses of
the fixed-point implementation are often com-
pared with the floating-point implementation. In
the plots, the fixed-point implementation’s re-
sponse is seen to be quite “close” to the origi-
nal floating-point design (certainly, where there
is little attenuation—say > −20 dB). Further-
more, we see from the impulse response that the filter is stable—the output asymptoti-
cally approaches zero. Furthermore, if the inputs are bounded in the range [−1.6, 1.6],
the outputs will remain in the estimated range [−2, 2] (Cf. Section 2). It is based
on this information that the designer may choose a fixed-point representation for the
implementation that uses 2 integer bits and 5 fractional bits allowing all numbers
in the range [−2, 1.96875] be represented with an approximation error in the range
(−0.03125, 0.03125); this representation leads to the quantization of the filter coeffi-
cients mentioned above.

But there are a number of problems that this popular filter design toolbox is not
telling the designer, as we mention below.

Is simulation sufficient to find bugs in this filter? We estimated a range of [−2, 2]
for the output and our design allows for a range of [−2, 1.96875]. Yet, the theory used
to calculate this range does not account for the presence of errors due to rounding.

1 Specifically, Matlab yields coefficients b0 = 0.2066, b1 = 0.4131, b2 = 0.2066 and a1 =
−0.3695, a2 = 0.1958 based on floating-point calculations.

2 Specifically, the coefficients are quantized to b0 = 0.21875, b1 = 0.40625, b2 = 0.21875 and
a1 = −0.375, a2 = 0.1875.

36 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

Therefore, we carried out extensive testing using a combination of uniformly random
inputs vectors or randomly choosing either the maximum or minimum input value.
Roughly 107 inputs were tested in 15 minutes. Yet, no overflows were detected.

Is bit-precise reasoning more useful in practice than conservative real-arithmetic
reasoning? The conservative real-arithmetic model that tracks the range of overflow
errors (Cf. Section 4) finds a spurious overflow at depth 1, yet no such overflow exists.
On the other hand, bit-precise reasoning discovers an input sequence of length 5 causing
an actual overflow. The solver required less than a second for each unrolling.

0 50 100 150 200
−2

0

2

Time (useconds)

V
al

ue

Input Output Expected Output

The difficulty of discovering this sequence
through simulation or a conservative model is
highlighted by the fact that small variations on
this input sequence do not yield an overflow.
The inset figure shows a failing input, the result-
ing output (fixed point) and the expected output
(floating point) from the filter. We notice that
there seems to be very little relation between the
floating-point and the fixed-point simulations beyond t = 100μs.

Do bit-precise analyses allow us to address types of bugs that we could not otherwise
find? The quantized filter’s impulse response seems to rule out the possibility of limit
cycles. But then again, the impulse response did not take into account the effect of
round-offs and overflows. The presence of limit cycles can potentially lead to large
amplitude oscillations in the output that need further filtering. The search process for
limit cycles is non-trivial and is heavily dependent on the quantization of the filter.

2 Preliminaries: Digital Filter Basics

In this section, we present some of the relevant background on filter theory. Further
details on the mathematical theory of filters are discussed in standard texts [16, 19].

A discrete-time signal x(t) is a function Z �→ R. By convention, the signal values
x(t) for times t < 0 are set to a constant default value given by x<0.

Definition 1 (Single-Stage Digital Filter). A single-stage digital filter is a recursive
function that maps a discrete-time input signal x(t) to an output discrete-time signal
y(t) for t ∈ Z. The filter is specified in one of two direct forms. A direct form I filter is
described by the tuple 〈a, b, I, y<0〉, such that

y(t) =

⎧⎪⎨⎪⎩
N∑
i=0

bi x(t− i)−
M∑
j=1

aj y(t− j) if t ≥ 0

y<0 if t < 0

The vectors a : (a1, . . . , aM) ∈ RM and b : (b0, . . . , bN) ∈ RN+1 are the coeffi-
cients of the filter and describe the input-output relationship of the filter. The range
I : [l, u] ⊆ R is a closed and bounded interval and is the range of the input sequence x.
The constant y<0 ∈ R represents the initial state of the filter. Likewise, a direct form II
filter is described by the tuple 〈a, b, I, s<0〉, such that

Bounded Verification of Quantized Digital Filters 37

y(t) =
N∑
i=0

bi s(t− i) s(t) =

⎧⎪⎨⎪⎩x(t)−
M∑
j=1

aj s(t− j) if t ≥ 0

s<0 if t < 0

The role of the coefficientsa, b, the input range I , and the initial state s<0 are analogous
to the corresponding components in a direct form I filter.

A filter is said to have finite impulse response (FIR) whenever a = 0 and infinite im-
pulse response (IIR), otherwise. Filters can be implemented in a single stage or multiple
stages by composing individual filter stages as shown below:

Input
Stage

Stage # 1
(Intermediate)

Stage # K
(Output)

x(t) y1(t) y(t)

Note that in a multi-stage filter implementation, the range constraint I is elided for the
intermediate and final stages, but is retained just for the first input stage of the filter.

The unit impulse is defined by the function δ(t) = 1 if t = 0, or δ(t) = 0 if t �= 0.
The impulse response hF (t) of a digital filter F is the output produced by the unit
impulse δ [16]. FIR filters have an impulse response hF (t) = 0 for all t > N , whereas
IIR filters may have an impulse response that is non-zero infinitely often.

Definition 2 (Stability). A digital filter is bounded-input bounded-output (BIBO) sta-
ble if whenever the input is bounded by some interval, the output is also bounded.

It can be easily shown that a filter F is BIBO stable if and only if the L1 norm of the
impulse response

∑∞
0 |hF (t)| converges.

Let H =
∑∞

0 |hF (t)| be the L1 norm of the impulse response of a stable filter F . The
impulse response can be used to bound the output of a filter given its input range I .

Lemma 1. If the inputs lie in the range I : [−�, �] then the outputs lie in the interval
[−H�,H�].

Instability often manifests itself as a zero-input limit cycle. Given an input, the sequence
of outputs forms a limit cycle if and only if there exists a number N > 0 and a period
δ > 0 wherein

∀ t ≥ N, y(t+ δ) = y(t) and y(t) �= 0 infinitely often and x(t) = 0 for all time t

In general, zero-input limit cycles are considered undesirable and manifest themselves
as noise in the output. Further filtering may be needed to eliminate this noise.

Fixed-Point Filter Implementations. In theory, filters have real-valued coefficients
and have behaviors defined over real-valued discrete-time input and output signals. In
practice, implementations of these filters have to approximate the input and output sig-
nals by means of fixed- or floating-point numbers. Whereas floating-point numbers are

38 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

commonly available in general-purpose processors, most special-purpose DSP proces-
sors and/or realizations of the filters using FPGAs use fixed-point arithmetic implemen-
tations of filters.

A 〈k, l〉 fixed-point representation of a rational number consists of an integer part
represented by k binary bits and a fractional part represented by l binary bits. Given an
m-bit word b : bm−1 · · · b0, we can define for b its value V (b) and its two’s complement
value V (2)(b) as follows:

V (b) =

m−1∑
i=1

2i bi V (2)(b) =

{
V (bm−2 · · · b0) if bm−1 = 0
V (bm−2 · · · b0)− 2m−1 if bm−1 = 1

Let (b, f) be the integer and fractional words for a 〈k, l〉 fixed-point representation. The
rational represented is given by R(b, f) = V (2)(b) + V (f)

2l
. The maximum value repre-

sentable is given by 2k− 1
2l and the minimum value representable is−2k. The arithmetic

operations of addition, subtraction, multiplication and division can be carried out over
fixed-point representations, and the result approximated as long as it is guaranteed to be
within the representable range. When this constraint is violated, an overflow happens.
Overflows are handled by saturating wherein out-of-range values are represented by the
maximum or minimum value, or by wrapping around, going from either the maximum
value to the minimum, or from the minimum to the maximum upon an overflow.

A fixed-point digital filter is a digital filter where all values are represented by fixed
bit-width integer and fractional parts. In general, the implementation of a fixed-point
digital filter uses standard registers to store input and output values along with adders,
multipliers and delays. It is possible that a fixed-point implementation is unstable even
if the original filter it seeks to implement is stable.

3 Bit-Precise Encoding

In theory, bit-precise reasoning can be implemented by translating all operations at the
bit level into a propositional logic formula and solving that formula using a SAT solver.
Practically, however, there are many simplifications that can be made at the word level.
Therefore, we consider encodings of the fixed-point operations involved in a digital
filter in the theory of bit-vectors as well as linear integer arithmetic. We assume a 〈k, l〉
bit representation with k integral bits and l fractional bits. In particular, the bit-vector
representation uses the upper k-bits of a bit-vector for the integer part and the lower l-
bits for the fractional part. For the integer representation, since there is no a priori limit
to its size, an integer n is interpreted as n

2l ; then, we separately check for overflow.

Encoding Multiplication. Fixed-point multiplication potentially doubles the number
of bits in the intermediate representation. The multiplication of two numbers with 〈k, l〉
bits produces a result of 〈2k, 2l〉 bits. To use this result as 〈k, l〉-bit value, we must
truncate or round the number. We must remove most significant k bits of the integer
part and the l least significant bits of the fractional part.

In the theory of bit-vectors, this truncation is a bit extraction. We extract the bits in
the bit range [k + 2l − 1 : l] from the intermediate result (i.e., extract the lth to the
k+2l− 1st bits). In the theory of integers, we remove the lower l bits by performing an

Bounded Verification of Quantized Digital Filters 39

integer division by 2l. Because there is no size limit, we do not need to drop the upper
k bits, but we perform an overflow check that simply asserts that the result fits within
the permissible range at the end of each operation. That is, we check if the intermediate
〈2k, 2l〉-bit value lies in the permissible range of the 〈k, l〉-bit representation.

Encoding Addition. The treatment of addition is similar. Adding two fixed-point
numbers with 〈k, l〉 bits produces a result of 〈k + 1, l〉 bits. To use this result in as a
〈k, l〉-bit value operation, the top bit needs to be dropped.

For bit-vectors, we extract the bits in the range [k+ l−1 : 0]. For linear integer arith-
metic, we allow the overflow to happen and check using an assertion. Detecting over-
flow for additions involves checking whether the intermediate value using 〈k + 1, l〉
bits lies inside the range of values permissible in a 〈k, l〉-bit representation.

Overflow and Wrap Around. A subtlety lies in using wrap-around versus satura-
tion semantics for overflow. For saturation, it is an error if any operation results in an
overflow (and thus our encoding must check for it after each operation). But for wrap
around, intermediate results of additions may overflow and still arrive at the correct
final result, which may be in bounds. Thus, checking for overflow after each addition
is incorrect in implementations that use wrap-around semantics for overflows. In terms
of our encoding, if the final result of successive additions fits in the 〈k, l〉 bit range,
overflows while computing intermediate results do not matter. We handle this behavior
in the bit-vector encoding by allowing extra bits to represent the integer part of inter-
mediate results (as many as k + n where n is the number of additions) and checking
whether the result after the last addition fits inside the range representable by a 〈k, l〉-bit
representation. For the integer arithmetic representation, we simply avoid asserting the
overflow condition for intermediate addition results.

Unrolling Filter Execution. The unrolling of the filter execution takes in an argument
n for the number of time steps and encodes the step-by-step execution of the filter (i.e.,
compute y(0) up to y(n − 1)). At each step, we assert the disjunction of the overflow
conditions from the additions, multiplications, and the final output value.

Finding Limit Cycles. To find a limit cycle of n steps, we compare a window of the
output with another window of the output n steps later. The lengths of the windows are
defined to be the maximum length of the coefficient vectors (i.e., the order of the filter).
If these windows are equal and non-zero (for all zero inputs), then there is a limit cycle.
To implement limit cycle search, we try a bounded number of values for n.

4 Real-Arithmetic Encoding

The real-valued encoding for a filter models each state variable of a fixed-point filter by
a real number, while approximating the effects of quantization and round-off errors con-
servatively. As a result, the model includes a conservative treatment of the two sources
of errors: (a) quantization errors due to the approximation of the filter coefficients to
fit in the fixed bit-width representations and (b) round-off errors that happen for each
multiplication and addition operation carried out for each time step.

Abstractly, a filter can be viewed as a MIMO system (multiple-input, multiple-output)
with an internal state vectorw, a control input scalar x and an output (scalar) y, wherein
at each iterative step, the state is transformed as follows:

40 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

w(t+ 1) = Aw(t) + x(t)d and y(t+ 1) = c ·w(t+ 1) . (1)

Note that the state vector w(t) for a direct form I filter implementation includes the
current and previous output values y(t), . . . , y(t −M), as well as the previous input
values x(t − 1), . . . , x(t − N). The matrix A includes the computation of the output
and the shifting of previous output and input values to model the delay elements. The
dot-product with vector c simply selects the appropriate component in w(t + 1) that
represents the output at the current time.

Quantized Filter. First, we note that the quantization error in the filter coefficients is
known a priori. Let Ã, d̃, c̃ be the quantized filter coefficients. We can write the resulting
filter as

w̃(t+ 1) = Ã⊗ w̃(t)⊕ x̃(t)⊗ d̃ and ỹ(t+ 1) = c̃⊗ w̃(t+ 1) . (2)

Here ⊗ and ⊕ denote the multiplication and addition with possible round-off errors.
Note that since the matrix A represents the arithmetic operations with the filter coeffi-

cients as well as the action of shifting the history of inputs and outputs, the quantization
error affects the non-zero and non-unit entries in the matrix A, leaving all the other en-
tries unaltered. Likewise, the additive and multiplicative round-off errors apply only to
multiplications and additions that involve constants other than 0 and 1. Comparing the
original filter (1) to the quantized filter in (2), we write w̃ = w + Δw to be the error
accumulated in w. This leads to a non-deterministic iteration that jointly determines
possible values of w(t+ 1) and Δw(t+ 1) at each time step as follows:

w(t+ 1) = Aw(t) + x(t)d
Δw(t+ 1) ∈ ΔA(w(t) +Δw(t)) + x(t)Δd + [−1, 1](q|(d+Δd)|+ r)

y(t+ 1) = c ·w(t+ 1)
Δy(t+ 1) ∈ Δc ·w(t+ 1) + (c+Δc) ·Δw(t+ 1) + [−1, 1]r′

(3)

wherein q is the maximal input quantization error, and r and r′ refer to the estimated
maximal round off errors accumulated due to the addition and multiplication operations
carried out at time step t+1 for each of the entries in w(t+1) and y(t+1), respectively.
Note that |d + Δd| refers to the vector obtained by taking the absolute value of each
element in d+Δd. The round-off error for multiplication/addition of two 〈k, l〉 bit fixed
point numbers is estimated to be 2−l. We bound the maximum magnitude of round off
errors for K arithmetic operations is K2−l.

Our goal is to check if for a given depth boundN and bounds [�, u] for overflow, there
exist values for the input sequence x(0), x(1), . . . , x(N) such the state w̃(t) �∈ [�, u]
for some time t. Note that the values of ΔA,Δd, q, r, r′ are available to us once the
quantized coefficients and the bit-widths of the state registers, the multipliers and adders
are known. As a result, the search for an input that may potentially cause an overflow
is encoded by a linear programming problem.

Lemma 2. Given filter coefficients (A,d, c), quantization errors (ΔA,Δd, Δc), an
over-estimation of the round-off r, r′ and input quantization errors q, there exists a
set of linear constraints ϕ such that if ϕ is unsatisfiable then no input may cause an
overflow at depth N .

Bounded Verification of Quantized Digital Filters 41

Proof. Proof consists of unrolling the iteration in Equation (3). The variables in the LP
consist of inputs x(1), . . . , x(N), the state values w(1), . . . ,w(N) and finally the out-
puts y(1), . . . , y(N) along with error terms Δw(t) and Δy(t) for t ∈ [1, N]. Note
that for each step, we have a linear constraint for the state variables w(t + 1) =
Aw(t) + x(t)d. Likewise, we obtain linear inequality constraints that bound the values
of Δw(t + 1) using Equation (3). We conjoin the bounds on the input values and the
overflow bounds on the outputs for each time step.

Limit Cycles. The real-arithmetic model cannot be used directly to conclude the pres-
ence or absence of limit cycles. Limit cycles in the fixed-point implementation often
exist due to the presence of round-off errors and overflows that wrap around from the
largest representable value to the smallest. In practice, these effects cannot be modeled
using the real-arithmetic filter implementations in a straightforward manner, without
introducing complex conditional expression and possibly non-linear terms.

5 Experimental Evaluation

We generated twelve filter designs in Matlab using a number of design patterns, in-
cluding low-pass, band-pass and band-stop filters using Chebyshev, Butterworth, and
elliptic designs. We used both multi- and single-stage designs. The designs are shown
in Table 1. The nominal bit-widths of the filters were chosen such that they were the
smallest that could contain the coefficients and inputs in the range [−1, 1], except for
lp2, whose design rationale is presented in Section 1. Our experiments also consider
the effect of variations in the bit-widths.

Our experiments compare four approaches to filter verification: (a) bit-vector encod-
ing (BV) described in Section 3, (b) the integer linear arithmetic encoding (LI) described
in Section 3, (c) a real-arithmetic encoding (RA) into linear arithmetic described in
Section 4, and (d) affine arithmetic [6] (AA) to track possible ranges of state and out-
put variables conservatively. The tests were run on an Intel Core i5 750 processor with
8 GB of RAM running Ubuntu Linux. Processes were memory-limited to 1 GB and
time-limited to 60 seconds for the unrolling test and 300 seconds for other tests. No
processes ran out of memory.

Table 1. Benchmarks used in the experiments are designed using the Matlab Filter Design and
Analysis Tool. The Type column is a choice of a function amongst Low Pass, Band Stop, and
Band Pass and a design pattern amongst Butterworth, Elliptic, Max Flat, and Chebyshev. The
Order column is the order the filter, # Stages denotes the number of stages, and the Freq. column
gives the cut-off or band frequencies in kHz.

Name Type Order # Stages Freq.

lp2 (LP, B) 2 1 9.6
lp4 (LP, B) 4 1 9.6
lp4e (LP, E) 4 1 9.6
lp6 (LP, E) 6 1 9.6
lp6c (LP,E) 2 3 9.6
lp10c (LP, B) 2 5 9.6

Name Type Order # Stages Freq.

lp10cm (LP, MF) 2 5 0.1
lp10m (LP, MF) 10 1 0.1
bs10 (BS,C) 10 1 9.6-12
bs10c (BS,C) 2 5 9.6-12
bp8 (BP,E) 8 1 0.2-0.5
bp8c (BP,E) 2 4 0.2-0.5

42 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

S
ea

rc
h

D
ep

th

0

4

8

12

16

A

D

T

A

BBT

T AT

T

A BBTB A

BT

A

BB

T

T

A

BT

A BBTB

D

T

T

D

A

T

T

A

A

T

TA

BBTB

bp8 bp8c bs10 bs10c lp10c lp10cm lp10m lp2 lp4 lp4e lp6 lp6c

Termination

D Depth−Out

A False Alarm

T Time−Out

B True Bug

Analysis

AA

BV

LI

RA

Fig. 1. Plot showing outcome for various methods on benchmarks. Timeout was set to 300 sec-
onds and a maximum depth of 16 is shown by the dashed line.

We use the SMT solver Z3 version 3.2 [7], as it is currently the fastest known solver
for both the bit-vector theory and the linear integer arithmetic theory. The framework is
implemented in OCaml.

Is Simulation Sufficient to Find Bugs in Filters? We tested all of the filters using
traditional simulation based methods. To do this, we explored three possible input gen-
eration methods: (a) uniform random selection of values from the filter’s input range;
(b) selecting the maximum value until the output stabilized followed by the minimum
value; and (c) selecting the minimum value until the output stabilized followed by the
maximum value. Choices (b,c) attempt to maximize the overshoot in the filters in order
to cause a potential overflow.

The filters are simulated on a fixed-point arithmetic simulator using the three input
generation methods described above. The simulation was set to abort if an overflow
were to be found. Each simulation was run for the standard timeout of 300 seconds.
During this time filters were able to run between two and five million inputs.

There were zero overflows found by the simulations.

Is Bit-Precise Reasoning More Precise in Practice Than Conservative Real-
Arithmetic Reasoning? Figure 1 compares the outcomes of all the four techniques
on our benchmarks in finding overflows. The conservative techniques, AA and RA, can
yield false alarms, whereas any overflow warning raised by the bit-precise techniques,
BV and LI, must be true bugs. A time-out or depth-out means no bugs were found in the
allotted time or depth but of course says nothing about whether there are bugs further
on. An alarm raised by the conservative techniques can be classified as being false (i.e.,
spurious) when a bit-precise technique is able to exceed that search depth without rais-
ing an alarm. In six out of the twelve tests (i.e., bp8, bs10, lp10c, lp10m, lp4e,
lp6), both conservative approaches raised false alarms. At least one bit-precise tech-
nique was able to search deep enough to label the alarms from the conservative analyses
as true (i.e., bug) or false (i.e., spurious).

Are Bit-Precise Analyses Usefully Scalable? Figure 2 shows the performance of
different methods of analysis on all twelve test filters across unrollings of 5, 8, 10 and
15. In the plot of BV vs. LI (right), we see that BV is, in general, faster than LI (above the

Bounded Verification of Quantized Digital Filters 43

BV vs. RA BV vs. LI

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

R
A

 R
un

 T
im

e
(s

)

BV Run Time (s)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

LI
 R

un
 T

im
e

(s
)

BV Run Time (s)

Fig. 2. Performance comparison of different analysis methods using unrollings of 5, 8, 10 and 15

line). However, the advantage is not overwhelming, suggesting that neither approach is
inherently better than the other.

For both BV and LI, the unrolling depth did not have a pronounced effect on the
time taken to solve benchmark instances for small unrollings. Instances wherein BV
was faster at unrolling depth 5 also tended to favor BV at unrolling depth 8. Therefore,
we conclude that the nature of the coefficients in the filter and its overall architecture
may have a larger effect on the performance of BV and LI than the unrolling depth.

We see in the BV vs. RA plot (left), the bit-precise method BV is competitive with
the conservative method RA. Whereas bit-vector theories are NP-complete, linear pro-
grams are well known to have efficient polynomial time algorithms in practice. We
hypothesize that the use of an SMT solver to reason with large fractions using arbitrary
precision arithmetic has a significant performance overhead. This may be a good area of
application for techniques that use floating-point solvers to help obtain speedups while
guaranteeing precise results [15].

The AA approximate method is very fast in comparison to all the other methods
presented here. It is elided because this speed comes at a high cost in precision [18].
Furthermore, the affine arithmetic technique does not, as such, yield concrete witnesses.
Therefore, it is not readily comparable to precise methods.

Effect of Unrolling Length on the Analysis. We now look deeper into the perfor-
mance of encodings. We first consider how unrolling affects performance by varying
the amount of unrolling from 1 to 50 on select filters.

According to Figure 3, BV, RA and LI are heavily affected by the unrolling depth.
RA, even for short unrollings, times out if it does not find an error. Due to some details
of implementations, the RA encoding incrementally searches for the shortest possible
error unlike the BV and LI encodings. Because of this, if an error is found early, RA
appears to scale well, as seen in lp6. AA scales well with unrolling depth, as expected.
Note that the unrolling is stopped once overflow is found.

The bit-precise methods BV and LI both exhibit more unpredictable behavior. This
is due to the nature of the encoding (one single monolithic encoding that searches for
all paths up to a given depth limit) and the SMT solvers used. As the unrolling becomes
longer, the solver is not bound to search for the shortest path first. The results from lp2

44 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

lp6 lp2 lp10c

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

R
un

 T
im

e
(s

)

Unrolling Depth

BV LI AA RA

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50
R

un
 T

im
e

(s
)

Unrolling Depth

BV LI AA RA

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

R
un

 T
im

e
(s

)

Unrolling Depth

BV LI AA RA

Fig. 3. Performance analysis of analysis methods as a function of unrolling depth

and lp10c show that longer unrollings may be faster than shorter unrollings, but there
is a general trend of increasing time with unrolling depth.

Performance Impact of Bit-Widths. We also need to consider the effect that changing
the precision of filters has on the analysis performance. Figure 4 shows performance for
both BV and LI on two different tests across a range of bit-widths. The first test, lp2,
is “pre-quantized” so that adding more fractional bits causes the coefficients to gain
more zeros in their least significant bits. The second test, lp6, has large fractions in the
coefficient, so meaningful bits are added when the fraction size is increased.

The first conclusion is that the total number of bits does not directly affect the time
taken. Both BV and LI are faster with more integer bits. As more integer bits are added,
it is possible that the abstractions used internally within the SMT solver can be coarser
allowing it to come up with answers faster. As more fractional bits are added, the BV
and LI approaches diverge. BV becomes much slower, and LI is not heavily affected.
Once again, this behavior seems to depend critically on the coefficients in the filter.

As bit-widths are varied, the outcome typically varies from an overflow found at a
low depth to unsatisfiable answers at all depths. In this case, the performance of LI is
poor whenever the bit-width selected is marginal or nearly insufficient. If the system
you are trying to analyze is marginal, but small, use BV and if it is relatively safe, but
large, use LI.

Unroll Pass Fail Timeout Mean (s) Median (s) Std Dev (s)

2 2 10 0 1.22 0.35 4.88
5 0 7 5 22.6 10.3 89.8
8 0 6 6 55.8 21.7 133.8

Do Bit-Precise Analyses Al-
low Us to Find Bugs We
Could Not Otherwise Find?
Bit-precise analyses allow us
to easily find limit cycles in
fixed-point IIR filters. Limit cycles are prevalent in fixed-point IIR filters as the inset
table below shows. From our twelve test cases, the table shows the number of exam-
ples where we did not find a limit cycle (column Pass), the number where we found
one (column Fail), and the remaining that timed out. The remaining columns show the
mean, median, and standard deviation of the running time for limit cycle detection. Due

Bounded Verification of Quantized Digital Filters 45

BV LI

lp2

 2
 3

 4
 5

 6 5
 6

 7
 8

 9
 10

 0
 1
 2
 3
 4
 5
 6
 7
 8

Integer Bits
Fraction Bits

 0
 1
 2
 3
 4
 5
 6
 7
 8

R
un

 T
im

e
(s

)

 2
 3

 4
 5

 6 5
 6

 7
 8

 9
 10

 0
 50

 100
 150
 200
 250
 300

Integer Bits
Fraction Bits

 0
 50
 100
 150
 200
 250
 300

R
un

 T
im

e
(s

)

lp6

 4 5 6 7 8 9 10 4
 5

 6
 7

 8
 9

 10
 0

 50
 100
 150
 200
 250
 300

Integer Bits
Fraction Bits

 0
 50
 100
 150
 200
 250
 300

R
un

 T
im

e
(s

)

 4 5 6 7 8 9 10 4
 5

 6
 7

 8
 9

 10
 0

 50
 100
 150
 200
 250
 300

Integer Bits
Fraction Bits

 0
 50
 100
 150
 200
 250
 300

R
un

 T
im

e
(s

)

Fig. 4. Performance of bit-precise analysis methods as a function of the number of bits

to their prevalence, most limit cycles are quite easy for the SMT solver to find (using
the bit-vector theory). Most limit cycles are found with short unrollings, quickly.

Because limit cycles can be detected efficiently, the designer can make informed
decisions about those situations. Often designers will add extra circuitry to eliminate
limit cycles, but if the designer knew the kinds of limit cycles that exist, the designer
may elect to simplify the design and not add that circuitry. We have discovered limit
cycles varying from small, 1-2 least significant bits, to large, oscillating from near the
maximum value to near the minimum value. In the latter case, the designer may elect to
design a different circuit.

6 Related Work

Verification of fixed-point digital filters has focused mostly on the problem of discover-
ing safe bit-widths for the implementation. While verification for a specific bit-width is
one method for solving this problem, other works have considered interval arithmetic,
affine arithmetic [8, 13], spectral techniques [17], and combinations thereof [18].

Approaches based on SMT solvers, on the other hand, offer the promise of enhanced
accuracy and exhaustive reasoning. Kinsman and Nicolici use a SMT solver to search
for a precise range for each variable in fixed-point implementations of more general
MIMO systems [12]. Their analysis uses the non-linear constraint solver HySAT [10]
using a real-arithmetic model without modeling the errors precisely. Furthermore, since
HySAT converges on an interval for each input variable, their analysis potentially lacks
the ability to reason about specific values of inputs.

46 A. Cox, S. Sankaranarayanan, and B.-Y.E. Chang

We have focused on comparing against some simple techniques for test input gener-
ation in this paper. Others have considered more advanced heuristics for tackling this
problem [20], which may be worthy of further study.

Several researchers have tackled the difficult problem of verifying floating-point dig-
ital filters as part of larger and more complex systems [9, 14]. The static analysis ap-
proach to proving numerical properties of control systems implemented using floating
point has had some notable successes [3, 11]. In particular, the analysis of digital filters
has inspired specialized domains such as the ellipsoidal domain [2, 9]. While floating-
point arithmetic is by no means easy to reason with, the issues faced therein are com-
pletely different from the ones considered here for fixed-point arithmetics. Whereas we
focus on analyzing overflows and limit cycles, these are not significant problems for
floating-point implementations. The use of bit-precise reasoning for floating-point C
programs has recently been explored by Kroening et al. [4].

Yet another distinction is that of proving safety versus trying to find bugs. The ap-
proaches considered in this paper clearly focus on bug finding using bounded-depth
verification. While a similar study for techniques to prove properties may be of interest,
the conservative nature of the real-arithmetic model suggests that its utility in proving
highly optimized implementations may also be limited.

One approach to verifying digital filters is to perform a manual proof using a theorem
prover [1]. Such approaches tend to be quite general and extensible. However, they are
mostly manual and often unsuitable for use by DSP designers, who may be unfamiliar
with these tools.

7 Conclusion

Our results show that fixed-point digital filters designed using industry standard tools
may sometimes suffer from overflow problems. Commonly used frequency-domain de-
sign techniques and extensive simulations are insufficient for finding overflows. In this
work, we have compared different formal verification techniques based on bounded-
model checking using SMT solvers.

We have shown that error approximation using real-arithmetic can alert designers
to otherwise unknown issues in filters. These alarms are often spurious and may lead
the designer to draw false conclusions about their designs. Secondly, in spite of funda-
mental complexity considerations, the real-arithmetic solvers can often be slower than
bit-precise approaches, possibly due to the need for arbitrary precision arithmetic. The
use of floating-point simplex in conjunction with arbitrary precision numbers may be a
promising remedy [15].

Finally, we demonstrated that bit-precise verification is possible and efficient using
modern SMT solvers. Also, bit-precise verification is able to find situations where error
approximations would have otherwise prevented a designer from shrinking a filter by
one more bit. We also saw that both integer and bit-vector based methods are required
to achieve maximum performance.

Bounded Verification of Quantized Digital Filters 47

References

[1] Akbarpour, B., Tahar, S.: Error analysis of digital filters using HOL theorem proving. Jour-
nal of Applied Logic 5(4), 651–666 (2007)

[2] Alegre, F., Feron, E., Pande, S.: Using ellipsoidal domains to analyze control systems soft-
ware. CoRR, abs/0909.1977 (2009)

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: Design and Implementation of a Special-Purpose Static Program Analyzer for
Safety-Critical Real-Time Embedded Software (Invited Chapter). In: Mogensen, T.Æ.,
Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566,
pp. 85–108. Springer, Heidelberg (2002)

[4] Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In:
Formal Methods in Computer Aided Design (FMCAD), pp. 69–76 (2009)

[5] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods in System Design 19(1), 7–34 (2001)

[6] de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications. In:
Brazilian Mathematics Colloquium Monograph, IMPA, Rio de Janeiro (1997)

[7] de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

[8] Fang, C., Rutenbar, R., Chen, T.: Fast, accurate static analysis for fixed-point finite-precision
effects in DSP designs. In: International Conference on Computer-Aided Design (ICCAD),
pp. 275–282 (2003)

[9] Feret, J.: Static Analysis of Digital Filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

[10] Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex Boolean structure. JSAT 1(3-4), 209–236
(2007)

[11] Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)

[12] Kinsman, A.B., Nicolici, N.: Finite precision bit-width allocation using SAT-modulo theory.
In: Design, Automation and Test in Europe (DATE), pp. 1106–1111 (2009)

[13] Lee, D., Gaffar, A., Cheung, R., Mencer, O., Luk, W., Constantinides, G.: Accuracy-
guaranteed bit-width optimization. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems 25(10), 1990–2000 (2006)

[14] Monniaux, D.: Compositional Analysis of Floating-Point Linear Numerical Filters. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 199–212. Springer, Hei-
delberg (2005)

[15] Monniaux, D.: On Using Floating-Point Computations to Help an Exact Linear Arithmetic
Decision Procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
570–583. Springer, Heidelberg (2009)

[16] Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals & Systems, 2nd edn. Prentice Hall
(1997)

[17] Pang, Y., Radecka, K., Zilic, Z.: Optimization of imprecise circuits represented by taylor
series and real-valued polynomials. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems 29(8), 1177–1190 (2010)

[18] Pang, Y., Radecka, K., Zilic, Z.: An efficient hybrid engine to perform range analysis and
allocate integer bit-widths for arithmetic circuits. In: Asia South Pacific Design Automation
Conference (ASP-DAC), pp. 455–460 (2011)

[19] Smith, J.: Introduction to Digital Filters: With Audio Applications. W3K Publishing (2007)
[20] Sung,W.,Kum,K.:Simulation-basedword-lengthoptimizationmethodforfixed-pointdigital

signalprocessingsystems. IEEETransactionsonSignalProcessing43(12),3087–3090(1995)

Numeric Bounds Analysis with Conflict-Driven

Learning�

Vijay D’Silva��, Leopold Haller, Daniel Kroening, and Michael Tautschnig

Computer Science Department, University of Oxford
firstname.surname@cs.ox.ac.uk

Abstract. This paper presents a sound and complete analysis for deter-
mining the range of floating-point variables in control software. Existing
approaches to bounds analysis either use convex abstract domains and
are efficient but imprecise, or use floating-point decision procedures, and
are precise but do not scale. We present a new analysis that elevates
the architecture of a modern SAT solver to operate over floating-point
intervals. In experiments, our analyser is consistently more precise than
a state-of-the-art static analyser and significantly outperforms floating-
point decision procedures.

1 Introduction

Automotive and avionic control software has a special structure. Few program-
ming language constructs are used, pointers are avoided and loop iterations are
often bounded by constants. Nonetheless, such software performs complex tasks,
computing vehicle trajectories and approximating non-linear functions. Control
software verification involves proving that IEEE 754 floating-point operations
in programs are free of overflows and approximation errors. We present a new,
sound and complete analysis for this problem, and demonstrate empirically that
the analysis is more efficient and precise than the state of the art.

Bounds checking is the problem of determining if the value of a numeric vari-
able lies in a given range. Interval analysis, a classic approach to bounds checking,
propagates intervals through a program. Intervals analysis is extremely fast but
woefully imprecise, producing proofs on only 17 of 33 of our safe benchmarks
(see § 5). Another shortcoming of interval analysis is that imprecision cannot
be distinguished from errors. An alternative approach to bounds checking is
bounded model checking (bmc) with an IEEE 754 decision procedure. bmc is
precise but does not scale: of 57 benchmarks, only 23 can be solved by bmc

within a minute, whereas interval analysis usually requires less than a second.
Another problem is that unbounded loops cannot be handled directly.

We present Conflict Driven Fixed Point Learning (cdfl), a new program anal-
ysis that embeds an abstract domain inside the Conflict Driven Clause Learning

� Supported by the Toyota Motor Corporation, EPSRC project EP/H017585/1 and
ERC project 280053.

�� Supported by a Microsoft Research European PhD Scholarship.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 48–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Numeric Bounds Analysis with Conflict-Driven Learning 49

(cdcl) algorithm of modern sat solvers. A sat solver uses constraint propa-
gation, decisions, backtracking, a conflict graph, and clause learning to decide
satisfiability. We develop abstract domain analogues of these ideas: Constraint
propagation uses fixed point iteration, decisions restrict the range of intervals,
the conflict graph is labelled with intervals, and learning generates program
analysis constraints in place of propositional clauses.

cdfl is both a static analyser and a decision procedure. From a static analysis
perspective, cdfl is an abstract interpreter that uses decisions and learning to
increase transformer precision. From a decision procedure perspective, cdfl is
a sat solver for program analysis constraints. cdfl is a strict generalisation of
propositional cdcl in that, on acyclic programs with only Boolean variables, our
analyser is a clause-learning sat solver. Elucidating this connection is beyond
the scope of this paper.

Contribution and Contents. Our new interval analysis builds on the follow-
ing contributions to combine the strength of static analysis and bmc.

– A novel account of program safety as satisfiability of a set-constraint for-
mula. Unlike the standard formulation of static analysis, which focuses on
invariants, our formulation is based on error traces.

– A new interval analysis that exploits the efficiency of the interval domain
while being path-sensitive and bit-level accurate.

– A tool that can prove correctness of non-linear, IEEE 754 floating-point
computations using only the interval abstraction. Our experiments reveal
that existing techniques are either imprecise or slow on such programs.

The rest of this section illustrates our approach and discusses related work. The
new formulation of safety as satisfiability is in § 3 and our procedure for deciding
satisfiability is in § 4. Implementation and benchmarks are discussed in § 5.

1.1 Overview

A program, as in Figure 1(a), is an acyclic control flow graph (acfg) Edges can
be labelled with loops, so this representation is not limiting. The variables x and
y are mathematical integers, [y = 0] is a test, and ∗ denotes non-deterministic
choice. We wish to determine if the error location � is reachable.

The analysis associates an interval with each location and variable. The in-
tervals for x and y at n1 are [−∞,∞]. The condition [y �= 0] cannot be modelled
by an interval, so the interval for y at n2 is [−∞,∞]. The intervals for x at n4

and n5 are [−∞,∞], so the analysis cannot prove safety.
The analysis is refined using (for now, arbitrary) constraints on intervals.

First, x is constrained to be in [0,∞] at n4. Interval analysis concludes that
x is in [0,∞] at n5 but cannot prove safety. A second decision constrains y to
[−∞,−124] at n1. Interval analysis shows x to be in [−∞,−124] at n5, so P is
safe assuming x is in [0,∞] at n4 and y is in [−∞,−124] at n1. A proof by cases
would repeat the analysis, once with x in [−∞,−1] at n4 and once with y in
[−123,∞] at n1. We do not do a proof by cases.

50 V. D’Silva et al.

n1

n2 n3

n4

n5 �

[y �= 0] [y = 0]

x := y x := y + 5

while(∗) {x := x + x}

[x = 0]

(a) A cfg P

n4 : x ≥ 0 n5 : x ≥ 0 � : x ≥ 0

n1 : y < −123 (y < 0) n3 : ⊥

n2 : y < −123 (y < 0) n4 : x < −123 (x < 0)

n5 : x < −123 (x < 0)

� : ⊥conflict

(b) Abstract conflict graph

Fig. 1. A control flow graph and conflict graph

Learning is used to avoid enumerating cases. Deductions made during fixed
point iteration are represented by the abstract conflict graph in Figure 1(b). For
instance, the fact x ≥ 0 at n4 implies that the same holds at n5 and �. The
decisions are (n4 : x ≥ 0) and (n1 : y < −123), but only the latter is connected
to (� : ⊥), and suffices to prove safety. Conflict analysis in sat solvers is similar.
The next step is new and does not exist in sat solvers. Constraints in the graph
are generalised to the labels in parentheses. In Figure 1(b), (n1 : y < −123)
generalises to (n1 : y < 0); we learn that all error traces must satisfy y ≥ 0 at
n1. Our analysis backtracks, discarding all assumptions. Interval analysis is run
with the learnt constraint and can prove safety.

We emphasise that learning and case-based reasoning are different. A case-
based method does a proof under each assumption. Learning, however, generates
constraints that preserve error reachability. These constraints are not assump-
tions. The procedure is simply rerun after learning.

1.2 Related Work

cdfl can be understood from the perspective of both static analysis and sat

solving. As a static analysis, cdfl is an automated refinement technique. Pos-
sibly the best-known refinement technique is cegar [5], which uses spurious
counterexamples to refine an abstract domain and synthesise transformers. cdfl
restricts transformers to eliminate sources of imprecision. The expensive opera-
tions of domain refinement and transformer synthesis are avoided.

Other work that refines an analysis without modifying the domain eliminates
joins [11], constrains widening operators [23,22] or transformers [10]. In [10],
a counterexample DAG is analysed and interpolants are used to constrain the
analysis. Our work is similar, but a conflict graph is analysed and decisions and
clauses are used to constrain the analysis. All these techniques can be viewed as
instances of trace partitioning [19]. In technical terms, cdfl discovers program-
and property-specific trace partitions. Other methods to discover trace partitions
use cfg rewriting [20], and regular languages [2,12,20].

Numeric Bounds Analysis with Conflict-Driven Learning 51

Let us discuss decision procedures. The DPLL(T) architecture leverages the
efficiency of sat solvers to reason about richer theories but separates proposi-
tional and theory reasoning. An alternative is to lift cdcl directly to a first-
order theory as in generalised dpll [17], conflict resolution [15], natural-domain
smt [7], and the cutting-planes extension [14]. Our work has similar motivations
to these. First order formulae are replaced by abstract domain elements, trans-
formers do theory propagation and set constraints are learnt instead of lemmas.
We believe the abstract conflict graph and the related generalisation are new.
Moreover, set-constraints allow us to handle loops.

Finally, cdfl is one of many efforts to combine static analysis and decision
procedures. Shallow integration methods facilitate communication between en-
gines treated as black boxes. Satisfiability Modulo Path Programs (smpp) [13]
lifts DPLL(T) to programs, using a sat solver to guide an abstract interpreter.
Deep integration techniques embed program analysis in satisfiability architec-
tures. Examples are yogi [3] and lazy annotation [16], both of which require
quantifier-free first order theories. We use abstract domains and transformers.

2 Program Model and Domain

This section introduces the program model and identifies properties of the in-
terval domain that enable conflict driven learning.

Programs. Consider sets of expressions Exp and Boolean expressions BExp
over variables Var . We focus on numeric, machine data types, so variables take
values in a finite, totally ordered set Val with minimum min and maximum max .
IEEE 754 values are ordered by setting NaN greater than numeric values and
using the arithmetic order. A statement, as below, is an assignment, conditional,
sequential concatenation, non-deterministic choice or a loop.

s ::= x := exp | [b] | s1; s2 | choose{s1, s2} | loop{s}

An acyclic control flow graph (acfg) is an acyclic graph (Loc, E, stmt), with
locations Loc, edges E and a function stmt labelling edges with statements. Loc
contains unique initial and error locations init and �. A loop-free acfg has no
loop statements.

Concrete Semantics. Statement semantics is defined over environments Env =
Var → Val . A statement s defines a function posts : ℘(Env) → ℘(Env), called
a transformer. Assignments and tests have their expected semantics; concate-
nation is composition, choice is union and the semantics of a loop is a fixed
point.

posts1;s2 = posts2 ◦ posts1 postchoose{s1,s2} = λX.posts1(X) ∪ posts2(X)

postloop{s} = λX.lfpY.X ∪ posts(Y)

52 V. D’Silva et al.

We abbreviate poststmt(n,m) to post (ni,ni+1). A state is a location with an envi-
ronment. A trace is a sequence of states (n0, ε0), . . . , (nk, εk) such that for all
0 ≤ i < k, (ni, ni+1) is an acfg edge and εi+1 ∈ post (ni,ni+1)({εi}). A program
is safe if there is no trace as above with n0 = init and nk = �. The concrete
domain is the lattice of environments ℘(Var → Val) with a transformer posts
for statements. Abstract interpretation with intervals is illustrated next.

Example 1. We use abstract interpretation to show that, if x is in the range
[−3, 3] and the statement s = z := x; y := x ∗ z is executed, y is non-negative.
Let a = 〈x �→ [−3, 3]〉 denote that x has the range shown and other variables are
unconstrained. Abstract transformers, denoted by ˆpost , produce the facts below.

ˆpostz:=x(a) = b = 〈x �→ [−3, 3], z �→ [−3, 3]〉
ˆposty:=x∗z(b) = 〈x �→ [−3, 3], y �→ [−9, 9], z �→ [−3, 3]〉

Intervals lose the information that x and z are equal. Let m be 〈x �→ [0,max]〉
and ∼m be 〈x �→ [min,−1]〉. The two intervals cover all values of x. Precision is
regained by rerunning the analysis with the restrictions below.

ˆposts(a �m) � ˆposts(a � ∼m) = 〈x �→ [−3, 3], y �→ [0, 9], z �→ [−3, 3]〉

The transformer restriction increases precision without losing soundness. �

Interval Abstraction. The set Itv of intervals over Val contains pairs [l, u]
with l ≤ u. The partial order on Itv is: a � b if b contains a. The interval
environments domain is the lattice IEnv = ((Var → Itv) ∪ {⊥},�,�,�) with
abstract transformers ˆposts. The least element is ⊥ and the greatest element
� maps all variables to [min ,max]. The interval environment that maps x1 to
[l1, u1], x2 to [l2, u2] and all other variables to [min,max] is denoted 〈x1 �→
[l1, u1], x2 �→ [l2, u2]〉. Further, 〈x �→ [min , c]〉 is written 〈x ≤ c〉. The well

known Galois connection ℘(Env) −−−→←−−−
α

γ
IEnv between environments and interval

environments is recalled below.

α(∅) = ⊥ α(X) =

{
x �→ [inf

ε∈X
{ε(x)} , sup

ε∈X
{ε(x)}] | x ∈ Var

}
γ(⊥) = ∅ γ(a) = {ε | ε(x) is in a(x) for all x}

Atoms and Meet Irreducibles. The properties of elements used for decisions
and clause learning are identified next. Fix a lattice (A,�,�,�) with elements
⊥ and �. An atom x of A is a least element strictly above ⊥: ⊥ � x and no
y satisfies ⊥ � y � x. The set of atoms is Atoms(A). An atom of ℘(Env) is a
singleton. An atom of IEnv maps variables to singleton intervals. An abstract
transformer is precise on atoms if the equality posts ◦ γ = γ ◦ ˆposts holds. We
assume abstract transformers for loop-free statements have this property.

An element a is meet irreducible if, for all X ⊆ A,
�

X = a implies a is
in X . The meet irreducibles of A are Irred�(A). Meet irreducibles of ℘(Env)

Numeric Bounds Analysis with Conflict-Driven Learning 53

are complements of singletons, and those of IEnv have the form 〈x ≤ c〉 or
〈x ≥ c〉. A meet decomposition function decomp : A → ℘(Irred�(A)) satisfies
that

�
decomp(a) = a for all a.

Example 2. The element m = 〈x ≥ 0〉 in Example 1 is meet irreducible. The
complement of m in the concrete, Env \ γ(m), has a precise representation in
the abstract as ∼m = 〈x < 0〉. Interval environments lack complements but can
be decomposed into meet-irreducibles that have complements.

decomp(〈x �→ [0,max], y �→ [1, 4]〉) = {〈x ≥ 0〉, 〈y ≥ 1〉, 〈y < 3〉}
Complementable meet irreducibles are required for cdcl. �

An interval environment a is precisely complementable if there is an abstract
element ∼a satisfying γ(a) = ℘(Env) \ γ(∼a). Precise complementation differs
from the standard notion of a complement in a lattice. Interval environments
have the property that all meet irreducibles are precisely complementable.

3 Static Analysis as Second-Order Constraint Solving

A standard approach to analyse programs is to solve a set of equations gener-
ated by a control-flow graph. Program analysis with set-constraints makes the
language explicit [8,1]. A constraint language and its satisfiability problem are
defined next. Fix an acfg P = (Loc, E, stmt), a set CVar = {Xn|n ∈ Loc} of
constraint variables indexed by locations and a concrete domain ℘(Env).

Second-Order Constraints. Terms and constraints are of the form below,
with d ranging over concrete domain elements, and m and n over locations.

terms t ::= d | Xn | post (m,n)(t) | t ∪ t | t ∩ t

constraints c ::= Xn ⊆ t | Xn ⊇ t | Xn ∩ t ⊃ ∅
Let a be an interval environment. We abuse notation and write Xl ∩ a for Xl ∩
γ(a). A clause is a disjunction of constraints and a formula is a conjunction
of clauses. Following standard convention, a clause is represented as a set of
constraints and a formula as a set of clauses.

A valuation v : Loc → ℘(Env) maps constraint variables to sets of environ-
ments. Valuations form a lattice (CVals ,�,�,�). The order, join and meet are
lifted pointwise from ℘(Env). That is, v1 � v2 if v1(l) � v2(l) for all locations l,
and v1 ⊕ v2 = λl. v1(l)⊕ v2(l) for ⊕ in {�,�}. An atomic valuation maps every
location to at most one environment. The semantics �t�v of a term t under a
valuation v is inductively defined below.

�d�v = d �Xn�v = v(n) �t1 ∪ t2�v = �t1�v ∪ �t2�v
�post (m,n)(t)�v = post (m,n)(�t�v) �t1 ∩ t2�v = �t1�v ∩ �t2�v

A valuation v satisfies a constraint t1 �� t2 if �t1�v �� �t2�v holds for �� in {⊆,⊂}.
A valuation satisfies a clause if it satisfies at least one constraint in the clause
and satisfies a formula if every clause in the formula is satisfied. A valuation
satisfying a formula is a solution. A formula is satisfiable if it has a solution.

54 V. D’Silva et al.

3.1 Safety as Satisfiability

The standard approach to checking program safety is to compute an invariant.
Formally, an invariant is a solution to the formula Inv(P) below.

Inv(P) = Xinit ⊇ Env ∧
∧

n∈Loc

⎧⎨⎩Xn ⊇
⋃

(m,n)∈E

post (m,n)(Xm)

⎫⎬⎭
The error is unreachable if an invariant also satisfies the formula X� ⊆ ∅. Stan-
dard static analysis for safety can be viewed as a sound but incomplete sat

procedure for the formula Safe(P) = Inv(P) ∧ X� ⊆ ∅. An alternative we pro-
pose is to search for an error – a solution to the formula below.

Exec(P) = Xinit ⊆ Env ∧
∧

n ∈ Loc

⎧⎨⎩ ∨
(m,n)∈E

Xn ⊆ post (m,n)(Xm)

⎫⎬⎭
A program contains an error if a solution to Exec(P) also satisfies X� ⊃ ∅. bmc
can be viewed as a sat procedure for the formula Err(P) = Exec(P) ∧X� ⊃ ∅.
Solutions to Safe(P) and Err(P) are quite different as demonstrated next.

Example 3. Revisit the acfg P in Figure 1. An environment ε is written as
(ε(x), ε(y)). The valuation v1 that maps all locations to Env is an invariant
and satisfies Inv(P), as does v2 = {n1 �→ Env , n2 �→ {(i, j)|j �= 0} , n3 �→
{(i, j)|j = 0} , n4 �→ {(i, j)|i �= 0} , n5 �→ {(i, j)|i �= 0} ,� �→ ∅}. Only v2 satis-
fies Safe(P) and is strong enough to prove safety.

The condition X� ⊃ ∅ prevents v2 from satisfying Err(P). The constraint
X� ⊆ post [x=0](X4) is not satisfied by v1 so neither is Err (P). In fact, Err(P)
is unsatisfiable. Let P ′ be the acfg with the test [y = 0] modified to [y ≤ 0].
The valuation v3 = {n1 �→ {(1,−5), (3,−7)} , n2 �→ ∅, n3 �→ {(1,−5)} , n4 �→
{(0,−5)} , n5 �→ {(0,−5)} ,� �→ {(0,−5)}} contains states on an error trace.
This valuation does not satisfy Inv(P ′) or Safe(P ′) but satisfies Err(P ′). �

To prove safety of P , we can either find an invariant satisfying Safe(P) or
show that Err (P) is unsatisfiable.

Lemma 1. The following conditions are equivalent for an acfg P . (1) P is
safe. (2) Safe(P) is satisfiable. (3) Err(P) is unsatisfiable.

In propositional sat solvers, a partial assignment represents a set of potential
solutions to a formula. Decisions and constraint propagation refine this set. Over
programs, we represent potential sets of errors and use transformer restriction
and fixed point iteration to refine the set.

Abstract Valuations. An abstract valuation is figuratively an envelope con-
taining potential solutions to Err (P). An abstract valuation maps constraint
variables to interval environments. An abstract valuation is atomic if it maps

Numeric Bounds Analysis with Conflict-Driven Learning 55

each constraint variable to an atom or to ⊥. The abstract semantics ‖t‖v of
a term t with respect to an abstract valuation v is defined as expected, with
abstract transformers, join and meet replacing concrete ones. An abstract valu-
ation v̂ abstractly satisfies a formula if there is a concrete solution v for which
the inequality v(X) ⊆ γ ◦ v̂(X) holds for all constraint variables. If the formula
Err(P) cannot be abstractly satisfied, the program is safe.

Example 4. Consider the acfg init
[x<0]−→ n

[x=4]−→ � generating the formula below.

Err(P) = Xinit ⊆ Env ∧Xn ⊆ post [x<0](Xinit) ∧X� ⊆ post [x=4](Xn)

Standard static analysis can be viewed as refining an abstract valuation as below.

v̂0 = {Xinit �→ �, Xn �→ �, X� �→ �}
v̂1 = {Xinit �→ �, Xn �→ 〈x < 0〉, X� �→ �}
v̂2 = {Xinit �→ �, Xn �→ 〈x < 0〉, X� �→ ⊥}

As X� maps to ⊥, Err (P) is not abstractly satisfied, so � is unreachable. �

4 Conflict Driven Fixed Point Learning

We now present cdfl, a procedure that lifts propositional cdcl to abstract
domains and program analysis constraints. Example 4 showed that standard
static analysis can be viewed as a process that applies transformers to refine
an abstract valuation. cdfl extends standard static analysis by using decisions,
deduction, learning and backtracking to search the space of abstract valuations.
Decisions restrict abstract domain elements, deduction uses transformers and
set-constraint clauses and learning infers set-constraint clauses. For simplicity,
heuristics for learning, decision making, and backtracking are abstracted away
as non-deterministic choices. Common heuristics described in the sat literature
such as first-UIP learning, non-chronological backtracking, restarts and activity-
based decision heuristics can be used to resolve this non-determinism.

4.1 Overview of CDFL

The technique is shown in Procedure CDFL. It begins with a formula Err(P)
and the abstract valuation v = λX.�. The call deduce() refines this valuation
to the result of standard fixed point iteration in an abstract domain. If static
analysis shows that the program is safe, our procedure terminates. Otherwise,
static analysis was not precise enough and the solver enters the main loop. Thus,
cdfl never does extra work if standard static analysis is sufficiently precise.

The current valuation is refined using an interval meet irreducible in the
call to decide(). Consequences of this decision are inferred by a call to deduce().
Decisions and deduction alternate until one of two scenarios. If atomic(v) returns
true, the valuation v cannot be refined and is returned. Either v contains an error

56 V. D’Silva et al.

1 (v, F)← (λl.�,Err(P))
2 deduce()
3 if v(�) = ⊥ then return safe
4 while true do
5 if atomic(v) then return (v, fail)
6 decide()
7 deduce()
8 while (v, F) in conflict do
9 learn()

10 if backtrack() = fail then return safe
11 deduce(v,F)

Procedure CDFL: Conflict Driven Fixed Point Learning

trace or the current abstraction is insufficient to prove safety. The second scenario
is a conflict; the valuation v does not abstractly satisfy the formula. Learning is
used to generate a reason for the conflict. Technically, learning adds a clause C
to the current formula, so that F ∧ C is equi-satisfiable to F . The backtracking
step backtrack() then returns the solver to an earlier state that does not conflict
with C. If this is not possible, Err (P) is unsatisfiable and P is safe.

4.2 Data Structure and Phases of CDFL

Internally, sat solvers use a stack to track the sequence of variable assignments
of the form (x, v) where x is a propositional variable, and v is either true or
false. In our procedure, the stack contains elements of the form (l, a), where l is
a location and a is a meet-irreducible or is ⊥.

A labelled restriction (l, a, z) consists of a location l, a meet-irreducible a and
the label z = d if (l, a) is a decision, or z = i if (l, a) was inferred by deduction.
The set of labelled restrictions is L = Loc×(Irred�(IEnv)∪{⊥})×{d, i}. A stack
is a sequence of labelled restrictions, where the empty stack is ε, and UV denotes
concatenation. A stack S defines an abstract valuation #S$ where #ε$ = � and
#S(l, a, z)$ = #S$ � 〈l �→ a〉. An interval meet-irreducible a at location l refines
the stack, denoted refines(S, (l, a)), if the condition #S$(Xl)�a � #S$(Xl) holds.

A solver state (S, F) consists of a stack of labelled restrictions S and a formula
F and the current valuation is #S$. The solver is in conflict if some clause in F
is not abstractly satisfied by #S$. We present the components of cdfl as state
transitions made by the solver, inspired by the presentation of cdcl in [18].

Deduction. Deduction uses two rules to transform the solver state. The rule
tprop applies transformers to abstract valuations, and is comparable to theory
propagation in smt solvers. The rule uprop generalises the unit rule in proposi-
tional solvers to set-constraint clauses. If deduction refines the current valuation,
the new information is added to the stack. These rules are illustrated below.

Numeric Bounds Analysis with Conflict-Driven Learning 57

Example 5. Consider the formula Err(P) for the acfg in Figure 1. The ini-
tial valuation is v0 = λX.�. This valuation is refined using the clause {X3 ⊆
post [y=0](X1)}, and the transformer ˆpost [y=0] to v1 that maps X3 to 〈y = 0〉.
Next, consider the clause {X4 ⊆ post [x:=y+5](X3), X4 ⊆ post [x:=y](X2)}. The
right side of the first constraint evaluates to a1 = 〈y �→ [0, 0], x �→ [5, 5]〉, and
the second to a2 = �. One of these constraints must hold, so the weaker condi-
tion X4 ⊆ γ(a1) ∪ γ(a2) must as well. But a1 � a2 = �, which does not refine
the current valuation of X4, so the stack is not modified.

To illustrate the unit rule, continue with the valuation obtained above and
assume that there is a clause {X1 ∩ 〈y < 0〉 ⊃ ∅, X4 ∩ 〈x > 10〉 ⊃ ∅}. The val-
uation v1 does not satisfy the first constraint, so every solution must satisfy
the second constraint. Every solution satisfying this constraint must also satisfy
X4 ⊆ 〈x > 10〉, so the valuation v1 is refined, mapping X4 to 〈x > 10〉. �

The deduction rules are defined below.

tprop : (S, F)→ (S(l, a, i), F) if refines(S, (l, a)), {Xl ⊆ t1, . . . , Xl ⊆ tk} ∈ F

where a ∈ decomp(
⊔

1≤i≤k

‖ti‖�S� � #S$(Xl))

uprop : (S, F)→ (S(l, a, i), F) if refines(S, (l, a)) and ({Xl ∩ t ⊃ ∅} ∪ C) ∈ F

where C is not abstractly satisfied by #S$ and
where a ∈ decomp(‖t‖�S�)

Both of these rules are sound in the sense that if #S$ contains a solution to F ,
#S(l, a, i)$ will also contain a solution. The function deduce applies these rules
exhaustively until the valuation becomes atomic or until the solver is in conflict.

Decisions. A decision picks a location l and program variable x and constrains
it with a meet irreducible. Additionally, decisions must be chosen such that they
do not put the solver in conflict.

decide : (S, F) −→ (S(l, a, d), F) if refines(S, (l, a)) and

(S(l, a, d), F) is not in conflict

Example 6. A valid decision for the cfg P in Figure 1, for the valuation v that
maps X� to 〈x �→ [0, 0]〉 and all other locations to � is (X1, 〈y > 0〉, d). The
restriction (�, 〈x > 0〉, d) is not a valid decision because v(X�) � 〈x > 0〉 is
bottom, causing a conflict. �

Learning and Backtracking. Learning identifies sufficient reasons for con-
flicts and adds a clause that expresses the negation of that reason. For an ab-
stract valuation v, we define the clause complement clcomp(v) as the clause
{Xl ∩ ∼a ⊃ ∅ | a ∈ decomp(v(l))}. This formula is a complement in the sense
that a concrete valuation is a solution of clcomp(v) exactly if it is not contained
in the concretisation of v.

58 V. D’Silva et al.

Example 7. Let Loc = {1, 2} and let v be an abstract valuation with v(1) =
〈x < 0〉 and v(2) = 〈y �→ [0, 10]〉. Then clcomp(v) contains the three constraints
X1 ∩ 〈x ≥ 0〉 ⊃ ∅, X2 ∩ 〈y < 0〉 ⊃ ∅ and X2 ∩ 〈y > 10〉 ⊃ ∅}. �

Backtracking is used to remove a suffix of the stack to restore the solver to
a consistent state after a conflict has been encountered. Backtracking may only
jump back to decision elements on the stack. Abstract rules for learning and
backtracking can be stated as follows.

learn : (S, F)→ (S, F ∧ clcomp(R)) if clcomp(R) �∈ F and γV (R)

contains no solutions of F

backtrack : (S1(l, a, d)S2, F)→ (S1, F) if (S1, F) is not in conflict

Soundness and Completeness. We denote the cdfl procedure over the in-
terval domain as cdfl(IEnv). The cdfl(IEnv) procedure is sound, and, under
certain conditions, also complete.

Theorem 1. If P is a loop-free program and the set of values Val is finite, then
cdfl(IEnv) is a sound and complete decision procedure to check safety of P .

4.3 Abstract Conflict Graphs

In order to instantiate the learning step, heuristics for finding conflict reasons
are needed. Like propositional solvers, we record deductions in a data structure
called conflict graph, which is incrementally built by recording decisions and
deductions. The nodes of the conflict graph are labelled restrictions. An example
is provided in Figure 1. The two nodes without predecessors are decision nodes,
all other nodes are implication nodes. The predecessors of each node n in the
graph are sufficient to deduce n. Once a conflict is reached, the graph is analysed
to determine a sufficient reason for unsatisfiability. A cut of a conflict graph
(R, I) is a set L ⊆ R such that any path from a decision node to the conflict
node goes through L. Every cut of a conflict graph provides a conflict reason that
can be used in learning. In contrast to propositional sat, we can obtain stronger
learnt clauses by generalising the nodes of the implication graph itself before
obtaining a cut. Generalisation is performed by computing maximal sufficient
pre-conditions in the domain of intervals, which we handle in our implementation
using binary search on bounds.

Example 8. Consider the conflict graph in Figure 1. The following two sets are
different cuts of the graph, and hence sufficient reasons for a conflict, R1 = {n5 :
x < −123}, R2 = {n2 : y < −123, n3 : ⊥}. In learning, these cuts produce the
following clauses, C1 = {X5 ∩ 〈x ≥ −123〉 ⊃ ∅}, C2 = {X2 ∩ 〈y ≥ −123〉 ⊃
∅, X3 ⊃ ∅}. Stronger clauses can be obtained by applying generalisation first.
Consider the node n5 : x < −123 in the conflict graph of Figure 1. This node is
used to deduce � : ⊥ using the conditional statement s = [x = 0]. The weakest
pre-condition of � : ⊥ w.r.t. s is x < 0 ∨ x > 0, but this is not expressible as

Numeric Bounds Analysis with Conflict-Driven Learning 59

an interval element. Instead, we choose the maximal generalisation of x < −123
that is sufficient to prove � : ⊥, and obtain x < 0. Cutting now yields the
stronger clause {X5 ∩ 〈x ≥ 0〉 ⊃ ∅}. �

5 Implementation and Experiments

We have implemented cdfl for ANSI-C programs. The domains used are inter-
vals over IEEE 754 floating-point numbers and machine integers. This section
will show that our approach is able to efficiently prove correctness of several
programs where a standard interval analysis yields a false alarm. In case our
procedure fails to prove correctness it returns a concrete environment at the
initial control flow node to constants. This assignment either leads to an error,
or helps localise the imprecision of the abstract analysis by providing a maximal
restriction that cannot be proved correct using intervals. We apply our analysis
to verify properties on floating-point programs from various sources, and show
that, in many cases, our analysis is as efficient as static analysis, but provides
the precision of a floating-point decision procedure.

We compare our tool to the static analyser Astrée [4], which uses interval
analysis, and to the bounded model checker CBMC [6], which uses a bit-precise
floating-point decision procedure based on propositional encoding. Our bench-
marks show highly non-linear behaviour. Astrée is not optimised for the kinds
of programs we consider and introduces a high degree of imprecision. (Astrée of-
fers simple trace partitioning heuristics for Booleans and machine integers, but
not floating-point programs.) CBMC translates the floating-point arithmetic to
large propositional circuits which are hard for sat solvers. As benchmarks we
use ANSI-C code originating from (a) controller code auto-generated from a
Simulink model with varying loop bounds; (b) examples from the Functional
Equivalence Verification Suite [21]; (c) benchmarks presented at the 2010 Work-
shop on Numerical Software Verification; (d) code presented by Goubault and
Putot [9]; (e) hand-crafted instances that implement Taylor expansions of sine
and square functions, as well as Newton-Raphson approximation. In order to
allow comparison to bounded model checking, only benchmark programs with
bounded loops were chosen, which were completely unrolled prior to analysis.
All our 57 benchmarks, more detailed benchmark results, together with the pro-
totype tool, are available online1.

We discuss the following results: (1) our analysis is as precise as a full floating-
point decision procedure while still being orders of magnitudes faster; (2) learning
and the choice of decision heuristic yield a speed-up of more than an order of
magnitude; (3) dynamic precision adjustment is observed frequently.

Efficient and Precise Analysis. In Figure 2, we show execution times for
Astrée, CBMC, and our analysis (cdfl). To highlight wrong verification results
or out-of-memory errors, the time for such failures was set to the timeout of

1 http://www.cprover.org/cdfpl/

http://www.cprover.org/cdfpl/

60 V. D’Silva et al.

benchmark

ti
m
e
(s
)

0 5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

1000 Astrée

CBMC

CDFL

Fig. 2. Execution times of Astrée, CBMC, and cdfl; wrong results set to 3600s

Learning disabled

W
it
h
le
a
rn
in
g

0.1 1 10 100 1000

0.1

1

10

100

1000

Range decisions

R
a
n
d
o
m
d
ec
is
io
n
s

0.1 1 10 100 1000

0.1

1

10

100

1000

Fig. 3. Effects of learning and decision heuristics

3600 seconds. We make several observations: on average, our analysis is at least
264 times faster than cbmc. The figure 264 is a lower bound, since some runs
of cbmc were aborted due to timeouts or errors. The maximum speed-up is a
factor of 1595. Although Astrée is often faster than our prototype, its precision is
insufficient in many cases – we obtained 16 false alerts for the 33 safe benchmarks.

Decision Heuristics and Learning. Figure 3 visualises the effects of learning
and decision heuristics. Learning has a significant influence on runtime, as does
the choice of a decision heuristic. We compare a random heuristic, which picks
a restriction over a random variable, with a range-based one, which always aims
to restrict the least restricted variable. Random decision making outperforms
range-based. Activity-based heuristics common in sat may work as well in our
case.

Dynamic Precision Adjustment. One unique feature of our procedure is
property-dependent refinement. The precision of the analysis dynamically adapts
to match the precision required by the property. This is illustrated in Figure 4
where we check bounds on the result of computing a sine approximation under
the input range [−π

2 ,
π
2]. The input value is shown on the x-axis, the result of

Numeric Bounds Analysis with Conflict-Driven Learning 61

−π
2

π
2≤ 1.2

≥ -1.2

≤ 1.01

≥ -1.01

−π
2

π
2

Fig. 4. Partitions explored during bounds check

the computation on the y-axis. The bound we check against is depicted as two
dashed horizontal lines, boundaries of explored partitions are shown as black
vertical lines. The actual maximum of the function lies at about 1.00921. As the
checked bound (Figure 4 shows bounds 1.2 and 1.01) approaches this value, our
procedure dynamically increases the precision of the analysis by exploring more
partitions.

Limitations of CDFL(IEnv). Our procedure is instantiated over the domain
of intervals. There are simple programs that are not amenable to interval anal-
ysis, even when additional partition-based refinement is used. Consider for ex-
ample the one-line program x := y together with the relational property x = y.
Intervals are non-relational, hence cdfl(IEnv) would enumerate all singleton
intervals over y. Similar enumeration behaviour can be found in propositional
sat solvers, which may perform badly when applied to certain, highly relational
problems. This can be fixed by instantiating cdcl(A) using a richer base do-
main. Further, our implementation is a prototype and restricts learning to the
initial control flow node, which limits performance on deep programs.

6 Conclusion

We presented a novel approach for bounds analysis that instantiates a cdcl

architecture over abstract domains. In the absence of loops and for finite value
domains we obtain a sound and complete analysis. Our prototype implementa-
tion witnesses the potential of this approach: our analysis is substantially more
precise than a state-of-the-art static analyser and outperforms a sat based IEEE

754 floating-point decision procedure by several orders of magnitude on small,
non-linear programs.

Much research in program analysis attempts to leverage the efficiency of sat
solvers. The efficiency is the result of an intensive, community effort to discover
efficient engineering techniques, and decision and learning heuristics in modern
solvers. This paper has demonstrated how to lift the architecture of a modern
rsat solver to program analyzers. Similarly, our approach could benefit greatly
by studying heuristics and efficient engineering techniques.

62 V. D’Silva et al.

The formal framework in this paper is by no means limited to bounds analysis
with intervals. A number of domains, numeric or otherwise, have the comple-
mentation properties necessary for instantiations of cdfl. Examples are given by
numeric domains such as octagons and polyhedra, or by equality domains. Non-
numeric examples include some pointer analyses, or trace-based abstractions, for
example those based on control-flow unwindings, where decisions would corre-
spond to refinements of control structure imprecision. The instantiation of cdfl
with other domains is the focus of our current work. We believe that extending
our technique to new domains can yield a new class of general purpose verifica-
tion tools that dynamically combine the efficiency provided by abstraction with
the precision of a sat solver.

Acknowledgments. We thank Antoine Miné for providing experimental results
using Astrée. One anonymous reviewer summarised our paper better than we
did and another pointed out technical loose ends.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Science of Com-
puter Programming 35, 79–111 (1999)

2. Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Refining the con-
trol structure of loops using static analysis. In: Proc. of the Intl. Conf. on Embedded
Software, pp. 49–58. ACM Press (2009)

3. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
Proc. of Software Testing and Analysis, pp. 3–14. ACM Press (2008)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., Rival, X.: Design and Implementation of a Special-Purpose Static Pro-
gram Analyzer for Safety-Critical Real-Time Embedded Software. In: Mogensen,
T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS,
vol. 2566, pp. 85–108. Springer, Heidelberg (2002)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

7. Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

8. Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based pro-
gram analysis by abstract interpretation. In: Proc. of Functional Programming
Languages and Computer Architecture, pp. 170–181. ACM Press (June 1995)

9. Goubault, É., Putot, S.: Static Analysis of Numerical Algorithms. In: Yi, K. (ed.)
SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)

10. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-
fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

Numeric Bounds Analysis with Conflict-Driven Learning 63

11. Gulavani, B.S., Rajamani, S.K.: Counterexample Driven Refinement for Abstract
Interpretation. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 474–488.
Springer, Heidelberg (2006)

12. Gulwani, B.S., Jain, S., Koskinen, E.: Control-flow refinement and progress invari-
ants for bound analysis. In: Proc. of Programming Language Design and Imple-
mentation, pp. 375–385. ACM Press (June 2009)

13. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via
satisfiability modulo path programs. In: Proc. of Principles of Programming Lan-
guages, pp. 71–82. ACM Press (2010)

14. Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arith-
metic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 338–353. Springer, Heidelberg (2011)

15. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

16. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

17. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Log-
ics. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476.
Springer, Heidelberg (2009)

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

19. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Transac-
tions on Programming Languages and Systems 29(5), 26 (2007)

20. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static Analysis in
Disjunctive Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006)

21. Siegel, S.F., Zirkel, T.K.: A functional equivalence verification suite for high-
performance scientific computing. Technical Report UDEL-CIS-2011/02, Depart-
ment of Computer and Information Sciences, University of Delaware (2011)

22. Simon, A., King, A.: Widening polyhedra with landmarks. In: Proc. of the Asian
Symposium on Programming Languages and Systems, pp. 166–182 (2006)

23. Wang, C., Yang, Z., Gupta, A., Ivančić, F.: Using Counterexamples for Improving
the Precision of Reachability Computation with Polyhedra. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg
(2007)

Ramsey-Based Analysis of Parity Automata

Oliver Friedmann1 and Martin Lange2

1 Dept. of Computer Science, Ludwig-Maximilians-University of Munich, Germany
2 School of Electr. Eng. and Computer Science, University of Kassel, Germany

Abstract. Parity automata are a generalisation of Büchi automata that
have some interesting advantages over the latter, e.g. determinisability,
succinctness and the ability to express certain acceptance conditions like
the intersection of a Büchi and a co-Büchi condition directly as a par-
ity condition. Decision problems like universality and inclusion for such
automata are PSPACE-complete and have originally been tackled via
explicit complementation only. Ramsey-based methods are a later devel-
opment that avoids explicit complementation but relies on an applica-
tion of Ramsey’s Theorem for its correctness. In this paper we develop
new and explicit Ramsey-based algorithms for the universality and inclu-
sion problem for nondeterministic parity automata. We compare them
to Ramsey-based algorithms which are obtained from translating par-
ity automata into Büchi automata first and then applying the known
Ramsey-based analysis procedures to the resulting automata. We show
that the speed-up in the asymptotic worst-case gained through the new
and direct methods is exponential in the number of priorities in the par-
ity automata. We also show that the new algorithms are much more
efficient in practice.

1 Introduction

Nondeterministic Büchi automata (NBA) are the most well-known type of fi-
nite automata that work on infinite words. Much of their popularity is owed
to two facts. (1) Their acceptance condition is conceptually very simple: a run
is accepting iff it visits a certain subset of states infinitely often. (2) Despite
this simplicity they form an expressively complete specification formalism with
respect to Monadic Second-Order Logic [4], i.e. they accept exactly the regular
languages of infinite words.

A lot of attention has been paid to the algorithmic treatment of fundamental
decision and computation problems for regular languages represented by NBA.
The complementation problem is combinatorially much more difficult than that
for NFA. The fundamental difference is the fact that determinisation for NBA
is provably impossible, and particularly a simple procedure like the powerset
construction for NFA fails for finite automata on infinite words equipped with
any reasonable acceptance condition, not just the Büchi condition. This has
brought out numerous work on the complementation (and also determinisation)
problem for NBA [4,13,8,14,9].

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 64–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ramsey-Based Analysis of Parity Automata 65

Clearly, other problems that generalise complementation in some way – e.g.
universality, inclusion, equivalence – are also combinatorially challenging. For in-
stance, in order to check whether L(A) ⊆ L(B) holds for two NBA A und B, one
would complement B to some B, build an automaton that accepts its language
intersected with L(A) – which is relatively simple using a small enhancement of
the usual product construction for NFA – and check the result for emptiness. In
the most complex steps of this procedure, one can choose among several com-
plementation procedures. This choice was often made on the basis of worst-case
analysis or modern aspects like symbolic implementability. For instance, Klar-
lund’s procedure [8] runs in optimal time of 2O(n log n) while Kupferman and
Vardi’s [9] can be made to work with BDDs at the expense of running in time

2O(n2). Büchi’s procedure [4] was not seen as practical which may also be caused
by the fact that the literature falsely accused it of having doubly exponential
running time whereas a careful analysis shows that it can be made to run in
time 2O(n2) as well.

Büchi’s proof of correctness for his complementation procedure uses Ramsey’s
Theorem [12]. For a long time this has been regarded as a tool to handle the
combinatorial difficulty in the correctness proof without much algorithmic value
for the complementation problem, hence the focus on other procedures for prac-
tical applications. It was Ben-Amram, Jones and Lee [10] who first suggested
to use this principle for a practical application in termination analysis called
size-change termination which could have also been solved using Büchi comple-
mentation. They state that “for practical usage [. . .] the simple algorithm seems
more promising than [. . .] the solution based on ω-automata”. The term “simple
algorithm” refers to a procedure that builds a set of finite graphs through a com-
position operation and searches for an idempotent graph with certain properties
in it. This is basically a direct usage of the computational content of Ramsey’s
Theorem for this particular decision problem. Henceforth, such simple algorithms
will be said to be Ramsey-based.

Next, Dax et al. [5] introduced this Ramsey-based method to the domain
of temporal logic: they gave an algorithm checking validity for a formula of
the linear-time μ-calculus (μ-TL) [3], a temporal fixpoint logic extending the
standard LTL [11]. These problems had – until then – solely been approached
using automata-theoretic machinery, i.e. explicitly using the complementation
problem for NBA [16]. Dax et al. showed that the Ramsey-based method can
outperform those using automata explictly. Since μ-TL is also expressively com-
plete for regular languages, and there is a linear translation from NBA to μ-TL
– mapping universality to validity – this also defines a Ramsey-based method
for the universality problem for NBA. After that, Fogarty and Vardi have made
this connection explicit and also investigated its practical use for the NBA uni-
versality problem in general [6,7]. The apparent use has then inspired work on
further optimisations of this Ramsey-based approach to NBA universality and
NBA inclusion [1].

Büchi automata are the simplest but not the only type of automaton on infi-
nite words. Notably, the literature also considers the syntactically more general

66 O. Friedmann and M. Lange

Muller, Rabin, Streett and parity automata, all of them expressively complete
w.r.t. ω-regular languages. Here we consider nondeterministic parity automata
(NPA) which are computationally most elegant among those models. There are
several reasons for considering NPA as a generalisation of NBA.

1. Succinctness. Many properties can be expressed more succinctly with NPA
than with NBA. Consider, for instance the language L0 of all words over the
alphabet {a, b, c} that also contains infinitely many b’s when they contain
infinitely many a’s. This can be accepted by an NPA with three states in
which they signal the last letter that has been seen. A b is then signaled with
priority 2, an a with priority 1 and a c with priority 0. A similarly straight-
forward construction of an NBA for this language results in 5 states, and it
does not look like a 3-state NBA for this language exists.

2. Determinisability. L0 can be accepted by a deterministic parity automaton
(DPA) but not by a deterministic Büchi automaton. In general, DPA are
expressively complete whilst deterministic DBA are not.

3. Expressiveness. Certain acceptance conditions can be formulated as a parity
condition but not as a Büchi condition, i.e. certain automata can be regarded
as an NPA but not as an NBA.1 For instance, the intersection of a Büchi
condition with a co-Büchi condition stating that certain states should be seen
infinitely often while others should only be seen finitely often, can easily be
encoded by a parity condition with priorities {1, 2, 3}, compare this to L0

above.

In this paper we develop Ramsey-based algorithms for NPA. These extend corre-
sponding methods for NBA. The benefit of this extension is empirically shown:
it is known that NPA can be translated to NBA at a moderate blow-up. We
compare the new methods for NPA with the old methods for NBA obtained un-
der this translation showing that the new methods are not only asymptotically
faster but also behave better in practice. Furthermore, there is a reduction from
the inclusion problem to universality that can be made to work for various types
of automata including NBA and NPA. We show that this does not alleviate the
use of a direct method for NPA inclusion: performing the reduction to universal-
ity and then applying the universality method for NPA is again asymptotically
and practically worse. In essence, the Ramsey-based methods developed in this
paper are justified by their superiority over reductions to existing methods both
in theory and in practice.

2 Preliminaries

As usual, for a finite alphabet Σ we write Σ∗ / Σ+ / Σω to denote the set of
all finite / finite non-empty / infinite words over Σ. An infinite word w ∈ Σω is
regular if there are u ∈ Σ∗ and v ∈ Σ+ s.t. w = uvω. If w is a finite word then
|w| denotes its length.
1 Note that their language is still NBA-recognisable, but this may require a different
underlying automaton.

Ramsey-Based Analysis of Parity Automata 67

A nondeterministic parity automaton (NPA) is a A = (Q,Σ, q0, δ, Ω) where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is a designated starting
state, δ ⊆ Q × Σ × Q is the transition relation, and Ω : Q → N is the priority
function.

A run of A on a word w = a0a1a2 . . . ∈ Σω is a sequence ρ = q0, q1, . . . s.t.
q0 is the designated starting state and for all i ∈ N we have: (qi, ai, qi+1) ∈ δ. It
is accepting if max{Ω(q) | ∀i ∈ N.∃j ≥ 1.qj = q} is even. The language of A is
L(A) = {w | there is an accepting run of A on w}.

We introduce two important complexity measures for an NPA. The size of A
is |A| = |Q|. The index of A is idx (A) = |{Ω(q) | q ∈ Q}|, i.e. the number of
distinct priorities used in A. Clearly we always have idx (A) ≤ |A|.

NPA are a natural generalisation of the well-known nondeterministic Büchi
automata which are traditionally defined using the concept of acceptance state
rather than a priority function. An accepting run is one that visists the accep-
tance set infinitely often. The definition used in the following is easily seen to
be equivalent to that. A nondeterministic Büchi automaton (NBA) is a special
kind of an NPA of index 2, s.t. Ω(q) ∈ {1, 2} for all q ∈ Q.

An ω-regular language or just regular language for short is a language that can
be accepted by an NBA. It is known that NPA, despite being a generalisation,
do not accept more than the regular languages.

Proposition 1. For every NPA A of size n and index k there is an NBA B of
size ≤ n · c s.t. L(A) = L(B) where c = k

2 + 1 if k is even and c = &k2 ' if k is
odd.

We quickly sketch the idea behind this construction because it is used in the
comparison of the direct Ramsey-based methods for NPA with those for NBA.
It is based on the fact that a run ρ = q0, q1, . . . of an NPA on a word is accepting
iff there is an i ∈ N and an even priority p s.t. for all j ≥ i we have Ω(qj) ≤ p,
and Ω(qj) = p for infinitely many j. Thus, the required NBA can be constructed
as follows. It contains a copy of A with the starting state and no final states. It
also has, for every even priority p, a copy of A in which only states with priorities
at most p are preserved, and those with priority p are final. The transitions in
each copy are as they are in A. Also, there are transitions from every state in
the original copy to its successors in the additional copies if they exist. This way,
the NBA can mimick an accepting run of the NPA by staying in the original
non-final copy until no greater priorities than the one causing acceptance are
seen, and then it changes into the respective copy verifying that this priority is
being seen infinitely often, and no greater one is being seen anymore.

We are particularly interested in the following decision problems for NPA.

– Univ
P: Given an NPA A, decide whether or not L(A) = Σω.

– Incl
P: Given NPA A and B, decide whether or not L(A) ⊆ L(B).

The complexity of these problems for NBA is well known; they are PSPACE-
complete [14]. Together with Prop. 1 and the fact that every NBA is an NPA
we immediately obtain the following.

Proposition 2. Univ
P and Incl

P are PSPACE-complete.

68 O. Friedmann and M. Lange

3 The Ramsey-Based Method for Parity Automata

In this section we describe how to decide universality and inclusion for NPA
directly using a Ramsey-based method. We compare the results with the obvious
method of translating NPA into NBA first and then using the Ramsey-based
methods for NBA. We focus on universality first; inclusion proves to be just a
small extension of this. The completeness proofs rely on the following theorem.
For any linear order (A,<) let A2

< := {(a, b) | a, b ∈ A, a < b}.
Theorem 1 (Ramsey, 1928). Let F be a finite set and c : N2

< → F . Then
there is an M ⊆ N and an f ∈ F such that |M | = ∞ and c(i, j) = f for all
i, j ∈M with i < j.

3.1 Universality for NPA

For the remainder of this section fix an NPA A = (Q,Σ, q0, δ, Ω) as well as
n := |A| and k := idx (A). Let P = {Ω(q) | q ∈ Q} be the set of all A-priorities.

Words as Partial Functions from State Pairs to Priorities. We will use
two total orders on the extension of N by one element †. The first one is denoted
≤ and is the ordinary total order of type ω + 1. Thus, we have 0 < 1 < . . . < †.
The reward ordering (is defined by † . . . 3 ≺ 1 ≺ 0 ≺ 2 ≺ 4 ≺ . . . This reward
ordering reflects the intuition of how valuable a priority of an NPA’s state is for
acceptance: even priorities are generally better than odd ones, and the bigger
an even one the better, while small odd priorities are better than bigger ones
because it is easier to subsume them in a run with an even priority elsewhere.
Note that † is maximal for ≤ but minimal for (.
Definition 1. A box 2 is a partial function of type Q×Q ��� P . We will some-
times write f(q, q′) = † to denote that the value of the box f on the argument
pair (q, q′) is undefined.

Let f, g be two boxes. Its composition f ◦ g is the box defined by

(f ◦ g)(q, q′) := max
�
{max

≤
{f(q, q′′), g(q′′, q′)} | q′′ ∈ Q}

Note that the maxima are taken with respect to the two different total orders.

We will associate with every finite word w ∈ Σ∗ a box [w] : Q × Q ��� P by
induction on the length of w. The base cases for words of length 0 and 1 are the
following.

[ε](q, q′) =

{
Ω(q) , if q = q′

† , otherwise

[a](q, q′) =

{
max
≤
{Ω(q), Ω(q′)} , if q′ ∈ δ(q, a)

† , otherwise

2 See their graphical representation in Fig. 1 for an idea about the choice of this name.

Ramsey-Based Analysis of Parity Automata 69

q1

q2

q31

2

3

a, b

a

a

b

ab

q3

q2

q1

q3

q2

q1
1

3
2

3

a

q3

q2

q1

q3

q2

q1
1

2

3

b

q3

q2

q1

q3

q2

q1
1

2

3

ab

Fig. 1. An NPA with three of its boxes: [a], [b], and [ab]

We then use box composition in order to lift this to arbitrary words: [av] :=
[a] ◦ [v].

Associativity of the composition operation is not hard to establish.

Lemma 1. For all boxes f, g, h we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

With BA we denote the set of all boxes defined by any word w.r.t. the NPA
A: BA = {[w] | w ∈ Σ∗}. It will be used as a search space in order to decide
universality of A.

Example 1. Boxes and the concept of composition can be visualised greatly.
One regards the states in Q as in- and out-ports of a connector. There can be
connections between in-ports and out-ports, and these connections are labeled
with a priority.

Fig. 1 shows an NPA with three states having the priorities 1, 2, 3. It also
shows the boxes [a] and [b] w.r.t. to this NPA as well as their composition [ab]
which, intuitively, is obtained by merging the out-ports of [a] with the in-ports
of [b]. The priority of a merged connection is the maximum w.r.t. ≤ of the two
connections that are being merged. Note that this may result in more than one
connection, for instance between q1 and q2 which can go via q2 or q3. In the
composition, only the one with the maximum w.r.t. (survives, i.e. the one with
priority 2 rather than 3.

Definition 2. A box [w] is idempotent if [w] ◦ [w] = [w], where this equality is
to be understood as equality of partial functions.

Let [w] be a box and q ∈ Q. We write q[w] for the set of all q′ that are
connected to q in this box, i.e. q[w] = {q′ | [w](q, q′) �= †}. Furthermore for some
Q′ ⊆ Q let Q′[w] :=

⋃
q′∈Q′ q′[w].

A box [w] is called bad w.r.t. some Q′ ⊆ Q if for all q ∈ Q′[w] we have:
[w](q, q) is either undefined or odd. A good box is a box that is not bad. In other
words, in a bad box w.r.t. some Q′ one considers first all connections from any
input q′ to any output q, and then all the connections from such a q to itself.
We will consider bad boxes only in the context of idempotent boxes. Hence, this
considers all connections in an infinite iteration of [w] that are reachable from
some q′ ∈ Q′.

70 O. Friedmann and M. Lange

Example 2. It is easy to verify that [ab] in Fig. 1 is idempotent. Note that any
run in the NPA of Fig. 1 under the word abab is also possible under ab already,
which is essentially what idempotency of [ab] means.

Furthermore, [ab] is bad for any subset of {q1, q2, q3}, since following connec-
tions from any of them in [ab] can only lead to a subset of {q1, q2}, and both
connections from such a state to itself are labeled with an odd priority. Note
that the word (ab)ω cannot be accepted from any state in the NPA in Fig. 1
which is essentially what badness and idempotency of [ab] means.

In order to prove correctness of the universality check to be presented, we need
to relate boxes to runs. We write q

w−−→ p q
′ if state q′ is reachable from q in the

transition graph of A on a path whose labels compose to w s.t. the highest (w.r.t.
≤) priority seen on this path is p. A proof of the following lemma is given in the
appendix.

Lemma 2. Let w ∈ Σ∗, q, q′ ∈ Q, and p ∈ P . If [w](q, q′) = p then q w−−→ p q
′.

The converse direction is not true. Suppose that q
w−−→ p q

′ holds. Then we need
not necessarily have [w](q, q′) = p. simply because there may be different paths
from q to q′ in A under w, and p may only be the maximal priority on one
of them. However, [w] only stores one maximal priority over all such paths,
namely the greatest one w.r.t. (. Thus, we have a statement that is weaker than
the converse of Lemma 2 but still sufficient to prove correctness of the search
procedures in the next section. Its proof is also given in the appendix.

Lemma 3. Let w ∈ Σ∗, q, q′ ∈ Q, and p ∈ P . If q w−−→ p q
′ then there is a p′ s.t.

p (p′ and [w](q, q′) = p′.

Non-Universality Via Relation Testing. The following characterises (non)-
universality of an NPA A in terms of the elements of BA.

Theorem 2. L(A) �= Σω iff there are boxes [u] and [v] s.t. [v] is idempotent
and bad w.r.t. q0[u].

Proof. “⇐” Suppose that [v] is idempotent and bad w.r.t. q0[u]. We claim that
uvω �∈ L(A). For the sake of contradiction assume that uvω ∈ L(A). Let q0, q1, . . .
be an accepting run of A on uvω. Let l = |u| and k = |v|. Clearly, we have
q0

u−→ p ql for some p ∈ P . According to Lemma 3 we also have [u](q0, ql) = p′

for some p′ ∈ P with p (p′.
Since there are only finitely many states, there must be some state q that

appears infinitely often in the sequence ql, ql+k, ql+2k, Let i0, i1, . . . denote
the infinite ascending sequence of indices s.t. ql+ijk = q for all j. Let pj =
max
≤
{Ω(ql+ijk), . . . , Ω(ql+ij+1k)}. By assumption the run is accepting, hence,

infinitely many pj must be even.

Let now j be arbitrary s.t. pj is even. It follows that q
vij+1−ij−−−−−−→ pj q, and, by

Lemma 3, that [vij+1−ij](q, q) = p for some p + pj . Since pj is even, p must be

Ramsey-Based Analysis of Parity Automata 71

even, too. Hence, [vij+1−ij] is good for q. But since [v] is idempotent, it follows
that [vij+1−ij] = [v], and this contradicts the assumption that [v] is bad w.r.t.
q0[u].

“⇒” Suppose that L(A) �= Σω, i.e. there is a word w = a0a1 . . . �∈ L(A).
Consider the following colouring c : N2 → BA where N2 := {(i, j) | i ∈ N, j ∈
N, i < j}, defined by c(i, j) = [ai . . . aj−1]. Since |BA| < ∞, Thm. 1 yields an
infinite sequence i0, i1, . . . of indices and an f ∈ BA s.t. c(ij, ih) = f for all j, h
with j < h.

First define u := a0 . . . ai0−1. According to Lemma 2, for every q ∈ q0[u] we
have q0

u−→ p q for some p. Next, note that f is idempotent because

f ◦ f = c(i0, i1) ◦ c(i1, i2) = [ai0 . . . ai1−1] ◦ [ai1 . . . ai2−1] = [ai0 . . . ai2−1]

= c(i0, i2) = f

according to Lemma 1. Then define vj := aij . . . aij+1−1 for every j ∈ N. Note
that w = uv0v1v2 . . ., and that f = [vj] for every j ∈ N.

It remains to be seen that f is bad w.r.t. q0[u]. Suppose that this was not the
case, i.e. it was good. Then there would be a q ∈ q′[v] for some q′ ∈ q0[u] s.t.
p = [v](q, q) is even. According to Lemma 2 we would have q0

u−→ p′ q′ for some
p′, q′

v−→ q p
′′ for some p′′ and q

v−→ p q. This can be iterated to form an infinite
run q0, . . . , q

′, . . . , q, . . . , q, . . . on uv0v1 . . . s.t. p is the greatest priority (w.r.t. ≥)
that is seen infinitely often on this run, because it is the greatest (w.r.t. ≥) that
occurs on the parts from q to itself. Since p is even, this run would be accepting,
contradicting the assumption that w �∈ L(A). ��
Thm. 2 can then be used to decide (non-)universality as follows, see Algorithm 1.
We keep generating boxes [u], [v] to see whether some [v] is idempotent and bad
w.r.t. to q0[u]. If this is the case then uvω cannot be accepted by the NPA.
Finiteness of the space of all boxes guarantees termination. Algorithm UP uses
a set V in order to store such boxes [v] whereas boxes [u] need not be stored
explicitly. It suffices to store all states which can be reached from the initial state
under some u ∈ Σ∗. A set R is maintained in order to track all states that are
reachable from the initial state with corresponding witnessing words, since in a
non-universality check they all need to be tested for non-extendability with a
loop.

Note that using sets of boxes is not necessarily the most clever way of imple-
menting this algorithm. One can use priority lists etc. in order to avoid testing
the same pair of boxes multiple times in line 7. Also, the step in line 14 is
meant to remove pairs (u,Q′) from R only for as long as there is still another
(v,Q′′) ∈ R.

At last, we analyse the asymptotic complexity of testing NPA universality
this way.

Theorem 3. For an NPA A with |A| = n and idx (A) = k, algorithm UP tests

universality in time O(22((n2 log k)+n)).

Proof. First observe that the set of boxes V can only increase (or stay the same)

in an iteration of the algorithm, hence there can be at most (k + 1)n
2

many

72 O. Friedmann and M. Lange

Algorithm 1. UP for Univ
P

1: R ← {(ε, {q0})}
2: V ← {[a] | a ∈ Σ}
3: R′ ← ∅
4: V ′ ← ∅
5: while R = R′ or V = V ′ do
6: for [v] ∈ V that are idempotent do
7: if ∃(u,Q′) ∈ R s.t. [v] bad w.r.t. Q′ then
8: return “L(A) is not universal: uvω ∈ L(A)”
9: end if
10: end for
11: R′ ← R
12: V ′ ← V
13: R ← R ∪ {(uv,Q′[v]) | (u,Q′) ∈ R, [v] ∈ V }
14: reduce R s.t. it contains at most one (u,Q′) for every Q′ ⊆ Q
15: V ← V ∪ V ◦ V
16: end while
17: return “L(A) is universal”

different sets V in a run. Second, observe that the set of reachable state sets
R can only increase modulo inclusion in an iteration of the algorithm, hence,
there cannot be more than 2n many different sets R in a run. It follows that the
number of iterations is bounded by (k + 1)n

2

+ 2n = O(2n2 log k).
The number of iterations of the inner loop is bounded by |V | · |R|, which is

(k + 1)n
2 · 2n = O(2(n2 log k)+n) in the worst case. The other operations in the

outer loop can be easily bounded by the same term. ��
Remember that an NBA is just an NPA with priorities 1, 2. Hence, algorithm

UP can be restricted to NBA as input as well. In order to refer to it later, we call
this restrictionUB. It cannot be distinguished from UP in terms of pseudo code.
The difference is that the search space is only of size 2n

2 log 3. We also remark
that UB coincides with the previously known Ramsey-based universality test for
NBA [7].

3.2 Inclusion for NPA

There is a conceptually simple but evidently not well-known reduction from the
inclusion problem to the universality problem for finite automata which can also
be made to work for NPA. A proof sketch is given in the appendix.

Proposition 3. Let A1 and A2 be two NPA over some alphabet Σ, s.t. Ai has
size ni states, ei transitions and index ki for i ∈ {1, 2}. There is an NPA A
with 4+n1+ k1 +n2 states and index max{2, k1, k2} over some alphabet Δ with
|Δ| = e1 s.t. L(A) = Σω iff L(A1) ⊆ L(A2).

This construction, when applied to two NBA, does not necessarily yield an NBA.
With a minor modification though it can also be used to reduce InclB to Univ

B.
The resulting automaton would have 3n2 + n1 + 1 states.

Ramsey-Based Analysis of Parity Automata 73

This, together with Thm. 3 clearly yields a Ramsey-based algorithm for the
inclusion problem for NPA. However, there is also a direct method which is
asymptotically better. For the remainder of this section fix two NPA A =
(QA, Σ, qA0 , δA, ΩA) and B = (QB, Σ, qB0 , δ

B, ΩB). We are interested to know
whether or not L(A) ⊆ L(B) holds. Let PA := {ΩA(q) | q ∈ QA} be the set of
all priorities occurring in A and PB be defined likewise.

Remember that in the previous section we associated to every word w ∈ Σ∗

a unique box [w]. This is not possible anymore; a word can be associated with
several objects of type

QA × PA ×QA ×
(
QB ×QB → PB) .

Thus, such an object is obtained by extending a box for B—as defined in the
previous section—with two states and a priority of A. We call these objects
typed boxes because the two states of QA act as input and output types for the
composition on them. A typed box of the form (q, p, q′, [w]) is written q[w]q

′
p .

A typed box for the empty word ε is q[ε]qΩ(q) for any q ∈ QA, a typed box

for words a of length 1 is q[a]q
′

max{Ω(q),Ω(q′)} for any (q, a, q′) ∈ δA and the

composition of two typed boxes extends the composition of boxes in the following
way:

q[u]q
′

p ◦ q′ [v]q
′′

p′ := q[uv]q
′′

m

where m := max
≤
{p, p′}. Note that this composition is only defined if the output

type of the left component equals the input type of the right component. We
write BA,B for the space of all typed boxes for the pair A,B of NPA. A proof
of the following lemma is given in the appendix.

Lemma 4. Let w ∈ Σ∗, q, q′ ∈ QA, p ∈ PA, s, s′ ∈ QB, and p′ ∈ PB. If
q[w]q

′
p (s, s

′) = p′ then q w−−→ p q
′ and s w−−→ p′ s′.

An idempotent typed box is, as usual, a q[w]q
′

p s.t. q[w]q
′

p ◦ q[w]q
′

p = q[w]q
′

p . Note

that this necessarily requires q = q′. A bad typed box w.r.t. some Q′ ⊆ QB is a
q[w]q

′
p s.t. p is even and the underlying untyped box [w] is bad w.r.t. Q′ in the

sense of the previous section, i.e. there is a q ∈ QB s.t. [w](q, q) is undefined or
odd.

Theorem 4. We have L(A) �⊆ L(B) iff there are u ∈ Σ∗, v ∈ Σ+ and typed

boxes qA0 [u]qp and q[v]qp′ s.t. q[v]qp′ is idempotent and bad w.r.t. qB0 [u].

Proof. “⇐” Suppose there are qA0 [u]qp and q[v]qp′ s.t. q[v]qp′ is idempotent and bad

w.r.t. qB0 [u]. Using Lemma 4 we get a run qA0 , . . . , q, . . . , q, . . . of A on uvω, s.t.
the maximal priority occurring infinitely often in this run is p′. This p′ must
be even for otherwise q[v]qp′ would not be bad. Hence, we have uvω ∈ L(A). It
remains to be seen that uvω �∈ L(B).

Suppose q0, q1, . . . was an accepting run of B on uvω. Note that if q[v]qp′ is
idempotent and bad w.r.t. some set Q′, then so is its underlying untyped box
[v]. Thus, uvω �∈ L(B) can be proved as in the “⇐”-part of the proof of Thm. 2.

74 O. Friedmann and M. Lange

“⇒” Suppose there is a w = a0a1 . . . ∈ L(A) ∩ L(B). Take an accepting run
q0, q1, . . . of A on w. Here we consider the colouring c : N2 → BA,B defined by
c(i, j) = qi [ai . . . aj]

qj+1
p where p is the maximal (w.r.t. ≤) priority occuring in

the sequence ΩA(qi), . . . , Ω
A(j + 1). Since BA,B is finite, Thm. 1 yields words

u ∈ Σ∗, v ∈ Σ+ s.t. q|u| [v]
q|u|
p′ is idempotent. In a way analogous to the “⇒”-part

of the proof of Thm. 2 one can show that q|u| [v]
q|u|
p′ is bad w.r.t. q0[u]. ��

Inclusion can then be tested again by searching for an idempotent bad box
w.r.t. to some set of reachable states. Here we maintain a set R of triples (u, q,Q′)
s.t. q is reachable in A from qA0 under u, and all q′ ∈ Q′ are reachable from qB0
under u in B.

Algorithm 2. IP for InclP

1: R ← {(ε, qA0 , {qB0 })}
2: V ← {q[a]q′p | (q, a, q′) ∈ δA, p = Ω(q)}
3: R′ ← ∅
4: V ′ ← ∅
5: while R = R′ or V = V ′ do
6: for q[v]qp ∈ V that are idempotent do
7: if ∃(u, q,Q′) ∈ R s.t. q[v]qp bad w.r.t. Q

′ then
8: return “L(A) ⊆ L(B): uvω ∈ L(A) ∩ L(B)”
9: end if
10: end for
11: R′ ← R
12: V ′ ← V
13: R ← R ∪ {(uv, q′, Q′[v]) | q [v]q

′
p ∈ V, (u, q,Q′) ∈ R}

14: reduce R s.t. it contains at most one (u, q,Q′) for every pair q,Q′

15: V ← V ∪ V ◦ V
16: end while
17: return “L(A) ⊆ L(B)”

Theorem 5. Algorithm 2 tests inclusion in time O(22((n2 log k)+logm+log k′)) for
NPA A and B with m resp. n states and index k′ resp. k.

Proof. As in Thm. 3, it is not hard to see that the number of outer iter-
ations is bounded by the maximal number of typed boxes and reachability
sets. Since the number of typed boxes is an upper bound on the number of
reachability sets, we observe that the number of iterations can be bounded by
O(2(n2 log k)+logm+log k′

). The runtime of the inner loop as well as the other op-

erations can also be bounded by O(2(n2 log k)+logm+log k′
). ��

We call IB the restriction of IP to NBA only. Its search space is decreased to
m · 2(n2 log 3)+log 3.

Ramsey-Based Analysis of Parity Automata 75

3.3 Comparing Direct and Indirect Methods

Regarding the universality problem for NPAwe consider two different approaches:
(1) using algorithmUP directly, and (2) translating anNPA into anNBAand then
using UB, the restriction of UP to NBA. The asymptotic worst-case runtimes for
these two approaches compare as follows. As usual, n denotes the number of states
of the input NPA, k denotes its index.

reductions algorithm runtime

(1) UP 2O(n2 log k)

(2) Univ
P �→ Univ

B
UB 2O(n2k2)

This shows that the direct method devised here is asymptotically much bet-
ter than the one that can be obtained from previously known reductions and
methods for NBA: (1) is polynomial in the number of occurring priorities, (2)
is exponential in the square of this number. Thus, one should expect the di-
rect method to perform much better on NPA with more than just a very small
number of priorities.

Now consider the inclusion problem between an NPA with m states and index
k′ and an NPA with n states and index k. There are even more Ramsey-based
approaches available:

1. the direct method using algorithm IP;
2. translating both NPA into NBA (Prop. 1), then using IB;
3. the reduction from inclusion to universality on the NPA side (Prop. 3), then

using algorithm UP;
4. reducing the inclusion problem for NPA to the universality problem (Prop. 3),

then translating the resulting single NPA into an NBA (Prop. 1), and testing
it for universality with algorithm UB;

5. first translating the NPA into NBA (Prop. 1), then performing the reduction
from inclusion to universality on the NBA side (Prop. 3), and finally using
algorithm UB as well.

The asymptotic worst-case runtimes are as follows.

reductions alg. runtime

(1) IP 2O(n2 log k+log(mk′))

(2) Incl
P �→ Incl

B
IB 2O((nk)2+log(mk′))

(3) Incl
P �→ Univ

P
UP 2O((n+k+m)2+log k′)

(4) Incl
P �→ Univ

P �→ Univ
B

UB 2O((n+k+m)2·(max{k,k′})2)

(5) Incl
P �→ Incl

B �→ Univ
B

UB 2O((nk+mk′)2)

One can vaguely say that the more reductions one uses, the worse the asymp-
totic runtime gets. Again, only the direct method devised here is polynomial in
the number of involved priorities whereas using any of the four other methods
involving a reduction of some kind results in a runtime that is exponential in at
least the number of different priorities in one of the involved automata.

76 O. Friedmann and M. Lange

4 Experimental Evaluation

The previous section argues that the direct Ramsey-based methods for parity
automata devised in this paper are asymptotically, i.e. in theory, better than the
methods one can obtain through reductions to Ramsey-based methods for Büchi
automata. In this section, we show that this is also the case in practice. Due to
space restrictions we restrict ourselves to the universality problem. Preliminary
tests with the inclusion problem also show that the direct methods outperform
those obtained by reductions.

4.1 A Random Model of Parity Automata

We extend the Tabakov-Vardi random model for NBA [15] to one for NPA. It
is parameterized by two natural numbers n > 0 and p > 0 that result in the
following automata scheme for an NPA (Q,Σ, 1, δ, Ω) where Q = {1, . . . , n},
Σ = {a, b}, and δ and Ω are chosen arbitrarly at random by the following
distribution:

– q′ ∈ δ(q, s) with probability 2
n for every 1 ≤ q, q′ ≤ n and every s = a, b, and

– Ω(q) =

{
2p′ + 1 with probability 1

2p and 0 ≤ p′ < p

2p′ + 2 with probability 1
2p and 0 ≤ p′ < p

In other words, an NPA of this model has n states, an alphabet of size two,
an expected transition density of two outgoing edges per state and symbol and
a priority assignment that maps every state to a priority based on a uniform
distribution of 1, . . . , 2p. Experimentally it can be seen that this results in an
NPA accepting the universal language with probability of approx. 50%.

4.2 Comparison in Practice

All tests have been carried out on a 64-bitmachinewith four quad-coreOpteronTM

CPUs. The implementation does not support parallel computations, hence, each
test is run on one core only. The following tables feature the average time to de-
cide universality over 1000 automata of a certain parameterization of the random
model. They also show the average rounded number of boxes that have been cre-
ated during these tests.

The first benchmark measures the effect of the number of states on the run-
time. Thus, it fixes p = 2, i.e. the only priorities occurring are 1, . . . , 4. The
results are presented in the first table in Fig. 2. The average runtimes distin-
guish the two cases of NPA accepting the universal language and a non-universal
language because non-universality is much easier to establish than universality.
Note that the latter requires the creation of all boxes while the former only
needs to find a counterexample. This benchmark shows very clearly that the
direct Ramsey-based method UP for NPA is much faster in practice than the
method UB on NBA that have been obtained by translating NPA into NBA.

Ramsey-Based Analysis of Parity Automata 77

Benchmark 1

universal non-universal

UP UB UP UB
states time boxes time boxes time boxes time boxes

5 0.00s 21 0.01s 23 0.00s 5 0.00s 6

10 0.08s 190 0.95s 583 0.01s 53 0.04s 64

15 1.23s 817 70.39s 6, 388 0.07s 145 0.57s 272
20 3.90s 1, 497 1, 555.04s 40, 776 0.46s 401 2.98s 811

25 19.70s 3, 877 1, 867.92s 43, 728 0.90s 648 2.46s 846
30 72.62s 6, 486 — — 2.70s 1, 106 49.18s 4, 780

35 154.67s 8, 868 — — 5.11s 1, 489 59.44s 5, 901

40 221.01s 11, 318 — — 10.93s 2, 112 70.26s 6, 601

Benchmark 2

universal non-universal

UP UB UP UB

priorities time boxes time boxes time boxes time boxes

2 0.97s 745 1.14s 677 0.05s 114 0.08s 111

4 2.74s 1, 370 29.57s 5, 294 0.15s 200 0.92s 238

6 2.89s 1, 479 797.65s 13, 049 0.17s 255 1.79s 332
8 5.28s 2, 297 1, 158.08s 28, 261 0.22s 327 2.02s 511

10 3.56s 2, 226 — — 0.34s 400 6.39s 939

12 4.03s 2, 120 — — 0.33s 477 8.37s 1, 498
14 4.13s 1, 766 — — 0.23s 374 10.69s 1, 450

16 4.36s 2, 755 — — 0.31s 450 31.11s 1, 402

Fig. 2. Average runtimes and number of created boxes in the benchmarks

The second benchmark measures the effect that the number of different pri-
orites has on the runtime. It fixes n = 16, i.e. every automaton has exactly 16
states. See the second table in Fig. 2 for the results. Again, the direct method
of algorithm UP outperforms the indirect method of algorithm UB by far.

5 Conclusion and Further Work

We have presented direct Ramsey-based methods that solve the universality and
inclusion problem for nondeterministic parity automata. These direct methods
turn out to be more efficient than indirect methods obtained from translating
parity into Büchi automata and then performing the corresponding Ramsey-
based analysis on these. Also, the reduction from inclusion to universality is
equally non-viable in this context.

The work presented here can be continued into several directions. It remains
to be seen whether optimisations for Ramsey-based methods as they can be
done for NBA [1,2] can be lifted to yield similar speed-ups in the Ramsey-based
methods for NPA.

78 O. Friedmann and M. Lange

References

1. Abdulla, P.A., Chen, Y.-F., Clemente, L., Hoĺık, L., Hong, C.-D., Mayr, R., Vojnar,
T.: Simulation Subsumption in Ramsey-Based Büchi Automata Universality and
Inclusion Testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 132–147. Springer, Heidelberg (2010)

2. Abdulla, P.A., Chen, Y.-F., Clemente, L., Hoĺık, L., Hong, C.-D., Mayr, R., Voj-
nar, T.: Advanced Ramsey-Based Büchi Automata Inclusion Testing. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer,
Heidelberg (2011)

3. Banieqbal, B., Barringer, H.: Temporal Logic with Fixed Points. In: Banieqbal, B.,
Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398,
pp. 62–73. Springer, Heidelberg (1989)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford Univer-
sity Press, Stanford (1962)

5. Dax, C., Hofmann, M.O., Lange, M.: A Proof System for the Linear Time μ-
Calculus. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 273–284. Springer, Heidelberg (2006)

6. Fogarty, S., Vardi, M.Y.: Büchi Complementation and Size-Change Termination.
In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30.
Springer, Heidelberg (2009)

7. Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Hei-
delberg (2010)

8. Klarlund, N.: Progress measures for complementation of ω-automata with applica-
tions to temporal logic. In: Proc. 32nd Annual Symp. on Foundations of Computer
Science, FOCS 1991, pp. 358–367. IEEE (1991)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

10. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. ACM SIGPLAN Notices 36(3), 81–92 (2001)

11. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Symp. on Foundations
of Computer Science, FOCS 1977, pp. 46–57. IEEE, Providence (1977)

12. Ramsey, F.P.: On a problem of formal logic. Proc. London Mathematical Society,
Series 2 30(4), 338–384 (1928)

13. Safra, S.: On the complexity of ω-automata. In: Proc. 29th Symp. on Foundations
of Computer Science, FOCS 1988, pp. 319–327. IEEE (1988)

14. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. TCS 49(2-3), 217–237 (1987)

15. Tabakov, D., Vardi, M.Y.: Experimental Evaluation of Classical Automata Con-
structions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 396–411. Springer, Heidelberg (2005)

16. Vardi, M.Y.: A temporal fixpoint calculus. In: ACM (ed.) Proc. Conf. on Principles
of Programming Languages, POPL 1988, pp. 250–259. ACM, NY (1988)

VATA: A Library for Efficient Manipulation
of Non-deterministic Tree Automata�

Ondřej Lengál1, Jiřı́ Šimáček1,2, and Tomáš Vojnar1

1 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic
2 VERIMAG, UJF/CNRS/INPG, Gières, France

Abstract. In this paper, we present VATA, a versatile and efficient open-source
tree automata library applicable, e.g., in formal verification. The library sup-
ports both explicit and semi-symbolic encoding of non-deterministic finite tree
automata and provides efficient implementation of standard operations on both.
The semi-symbolic encoding is intended for tree automata with large alphabets.
For storing their transition functions, a newly implemented MTBDD library is
used. In order to enable the widest possible range of applications of the library
even for the semi-symbolic encoding, we provide both bottom-up and top-down
semi-symbolic representations. The library implements several highly optimised
reduction algorithms based on downward and upward simulations as well as algo-
rithms for testing automata inclusion based on upward and downward antichains
and simulations. We compare the performance of the algorithms on a set of test
cases and we also compare the performance of VATA with our previous imple-
mentations of tree automata.

1 Introduction

Several current formal verification techniques are based on finite tree automata (TA).
Some of these techniques are: (abstract) regular tree model checking [3,5] applied, e.g.,
for verification of programs with complex dynamic data structures [6,11], implemen-
tation of decision procedures of several logics, such as MSO or WSkS [17], or verifi-
cation of programs manipulating heap structures with data [18]. The success of these
techniques often depends on the performance of the underlying implementation of TA.

Currently, there exist several available tree automata libraries, they are, however,
mostly written in OCaml (e.g., Timbuk/Taml [10]) or Java (e.g., LETHAL [9]) and they
do not always use the most advanced algorithms known to date. Therefore, they are not
suitable for tasks which require the available processing power be utilised as efficiently
as possible. An exception from these libraries is MONA [17] implementing decision
procedures over WS1S/WS2S, which contains a highly optimised TA package written
in C, but, alas, it supports only binary deterministic tree automata. At the same time, it
turns out that determinisation is often a very significant bottleneck of using TA, and a lot

� This work was supported by the Czech Science Foundation within projects No. P103/10/0306
and 102/09/H042, the Czech Ministry of Education within projects COST OC10009
and MSM 0021630528, and the EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 79–94, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 O. Lengál, J. Šimáček, and T. Vojnar

of effort has therefore been invested into developing efficient algorithms for handling
non-deterministic tree automata without a need to ever determinise them.

In order to allow researchers focus on developing verification techniques rather than
reimplementing and optimising a TA package, we provide VATA1, an easy-to-use open-
source library for efficient manipulation of non-deterministic TA. VATA supports many
of the operations commonly used in automata-based formal verification techniques over
two complementary encodings: explicit and semi-symbolic. The explicit encoding is
suitable for most applications that do not need to use alphabets with a large number
of symbols. However, some formal verification approaches make use of such alphabets,
e.g., the approach for verification of programs with complex dynamic data structures [5]
or decision procedures of the MSO or WSkS logics [17]. Therefore, in order to address
this issue, we also provide the semi-symbolic encoding of TA, which uses multi-terminal
binary decision diagrams [8] (MTBDDs), an extension of reduced ordered binary de-
cision diagrams [7] (BDDs), to store the transition function of a TA. In order to enable
the widest possible range of applications of the library even for the semi-symbolic en-
coding, we provide both bottom-up and top-down semi-symbolic representations.

At the present time, the main application of the structures and algorithms imple-
mented in VATA for handling explicitly encoded TA is the Forester tool for verification
of programs with complex dynamic data structures [11]. The semi-symbolic encoding
of TA has so far been used mainly for experiments with various newly proposed algo-
rithms for handling TA.

In this paper, we do not present all exact details of the algorithms implemented in the
library as they can be found in the referenced literature. Rather, we give an overview
of the algorithms available, while mentioning various interesting optimisations that we
used when implementing them. Based on experimental evidence, we argue that these
optimisations are crucial for the performance of the library.

2 Preliminaries

A ranked alphabet Σ is a finite set of symbols together with a ranking function # : Σ→
N. For a∈ Σ, the value #a is called the rank of a. For any n≥ 0, we denote by Σn the set
of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over a ranked
alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following conditions: (1) the
domain of t, dom(t), is a finite prefix-closed subset of N∗ and (2) for each v∈ dom(t), if
#t(v) = n≥ 0, then {i | vi ∈ dom(t)}= {1, . . . ,n}. Each sequence v ∈ dom(t) is called a
node of t. For a node v, we define the ith child of v to be the node vi, and the ith subtree
of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈N with vi ∈ dom(t). We denote by TΣ the
set of all trees over the alphabet Σ.

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in the
following) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules. Each
transition rule is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q,a ∈ Σ,

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 81

and #a = n. We use equivalently (q1, . . . ,qn)
a−→ q and q

a−→ (q1, . . . ,qn) to denote
that ((q1, . . . ,qn),a,q) ∈ Δ. The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. Note that we can afford to work
interchangeably with both of them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in their bottom-up and top-down
representations. In the special case when n = 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as

a−→ q or q
a−→.

Let A = (Q,Σ,Δ,F) be a TA. A run of A over a tree t ∈ TΣ is a mapping π : dom(t)→
Q such that, for each node v ∈ dom(t) of rank #t(v) = n where q = π(v), if qi = π(vi)

for 1 ≤ i≤ n, then Δ has a rule (q1, . . . ,qn)
t(v)−→ q. We write t

π
=⇒ q to denote that π is

a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t
π

=⇒ q for some run
π. The language accepted by a state q is defined by LA(q) = {t | t =⇒ q}, while the
language of a set of states S ⊆ Q is defined as LA (S) =

⋃
q∈S LA (q). When it is clear

which TA A we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = LA(F).

A downward simulation on TA A = (Q,Σ,Δ,F) is a preorder relation (D⊆ Q×Q
such that if q (D p and (q1, . . . ,qn)

a−→ q, then there are states p1, . . . , pn such that
(p1, . . . , pn)

a−→ p and qi (D pi for each 1 ≤ i ≤ n. Given a TA A = (Q,Σ,Δ,F) and
a downward simulation (D, an upward simulation (U⊆ Q×Q induced by (D is a re-
lation such that if q (U p and (q1, . . . ,qn)

a−→ q′ with qi = q for some 1 ≤ i ≤ n, then
there are states p1, . . . , pn, p′ such that (p1, . . . , pn)

a−→ p′ where pi = p, q′ (U p′, and
q j (D p j for each j such that 1≤ j �= i≤ n.

3 Design of the Library

The library is designed in a modular way (see Fig. 1). The user can choose a module
encapsulating her preferred automata encoding and its corresponding operations. Vari-
ous encodings share the same general interface so it is easy to swap one encoding for
another, unless encoding-specific functions or operations are taken advantage of.

Thanks to the modular design of the library, it is easy to provide an own encoding of
tree (or word) automata and effectively exploit the remaining parts of the infrastructure,
such as parsers and serializers from/to different formats, the unit testing framework,
performance tests, etc.

The VATA library is implemented in C++ using the Boost C++ libraries. In order to
avoid expensive look-ups of entry points of virtual methods in the virtual-method table
of an object and to fully exploit compiler’s capabilities of code inlining and optimisation
of code according to static analysis, the library heavily exploits polymorphism using
C++ function templates instead of using virtual methods for core functions. We are
convinced that this is the main reason why the performance of the optimised code (the
-O3 flag of gcc) is up to 10 times better than the performance of the non-optimised code
(the -O0 flag of gcc).

82 O. Lengál, J. Šimáček, and T. Vojnar

Encoding

Core Operations

Explicit

Core Operations

MTBDD Bottom-Up

Core Operations

MTBDD Top-Down

Core Operations

<other>

Core Operations

Automata encodings

Parser1

Parser2

... Parsers

Serializer1

Serializer2

... Serializers

Program

Fig. 1. The architecture of the VATA library

3.1 Explicit Encoding

In the explicit representation of TA used in VATA, top-down transitions having the form
q

a−→ (q1, . . . ,qn) are stored in a hierarchical data structure similar to a hash table.
More precisely, the top-level lookup table maps states to transition clusters. Each such
cluster is itself a lookup table that maps alphabet symbols to a set of pointers to tuples
of states. The set of pointers to tuples of states is represented using a red-black tree.
The tuples of states are stored in a designated hash table to further reduce the required
amount of space (by not storing the same tuples of states multiple times). An example
of the encoding is depicted in Fig. 2.

Hence, in order to insert the transition q
a−→ (q1, . . . ,qn) into the transition table, one

proceeds using the following algorithm:

1. Find a transition cluster which corresponds to the state q in the top-level lookup
table. If such a cluster does not exist, create one.

2. In the given cluster, find a set of pointers to tuples of states reachable from q over
a. If the set does not exist, create one.

3. Obtain the pointer to the tuple (q1, . . . ,qn) from the tuple lookup table and insert it
into the set of pointers.

If one ignores the worst-case time complexity of the underlying data structures (which,
according to our experience, has usually a negligible real impact only), then inserting
a single transition into the transition table requires a constant number of steps only.
Yet the representation provides a more efficient encoding than a plain list of transitions
because some transitions share the space required to store the parent states (e.g., state
q in the transition q

a−→ (q1, . . . ,qn)). Moreover, some transitions also share the alpha-
bet symbol and each tuple of states appearing in the set of transitions is stored only

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 83

AutomataA B C

Top-level
Lookup Tables

q1 q2 q3 q1 q2

Transition Clusters
a b c e b c e

Sets of
Pointers to Tuples

Tuples of States(q1,q1) (q1,q2) (q2,q2) (q3,q2)()

Fig. 2. An example of the VATA’s explicit encoding of transition functions of three automata A,
B, C. In particular, one can see that A contains a transition q1

c−→ (q1,q2): it suffices to follow
the corresponding arrows. Moreover, B also contains the same transition (and the corresponding
part of the transition table is shared with A). Finally, C has the same transitions as B.

once. Additionally, the encoding allows us to easily perform certain critical operations,
such as finding a set of transitions q

a−→ (q1, . . . ,qn) for a given state q. This is useful,
e.g., during the elimination of (top-down) unreachable states or during the top-down
inclusion checking.

In some situations, one needs to manipulate many tree automata at the same time. As
an example, we can mention the method for verifying programs with dynamic linked
data structures introduced in [11] where (in theory) one needs to store one automaton
representing a content of the heap for each reachable state of the program. To improve
the performance of our library in such scenarios, we adapt the copy-on-write principle.
Every time one needs to create a copy of an automaton A to be subsequently modified, it
is enough to create a new automaton A′ which obtains a pointer to the transition table of
A (which requires constant time). Subsequently, as more transitions are inserted into A′

(or A), only the part of the shared transition table which gets modified is copied (Fig. 2
provides an illustration of this feature).

3.2 Semi-symbolic Encoding

The semi-symbolic encoding uses multi-terminal binary decision diagrams (MTBDDs)
to encode transition functions of tree automata. MTBDDs are an extension of binary
decision diagrams (BDDs), a popular data structure for compact encoding and manipu-
lation with Boolean formulae. In contrast to BDDs that are used to represent a function
b : Bn → B for some n ∈ N and B = {0,1}, MTBDDs extend the co-domain to an
arbitrary set S, i.e., they represent a function m : Bn → S.

84 O. Lengál, J. Šimáček, and T. Vojnar

q

{(r,s),(r, t)}
{(s),(t),(u)}

/0
{(u,u,u)}

a)
top-down

(q1, . . . ,qn)

{r,s} {s, t,u} /0 {u}

b) bottom-up

Fig. 3. The (a) top-down and (b) bottom-up semi-symbolic encodings of transition functions.
Paths in the MTBDD correspond to symbols.

We support two representations of semi-symbolic automata: top-down and bottom-
up. The top-down representation (see Fig. 3a) maintains for each state q of a tree
automaton an MTBDD that maps the binary representation of each symbol f con-
catenated with the binary representation of its arity n onto a set of tuples of states

T = {(q1, . . . ,qn), . . .} such that for all (q1, . . . ,qn) ∈ T there exist the transition q
f−→

(q1, . . . ,qn) in the automaton. The arity is encoded in the MTBDD as a part of the sym-
bol in order to be able to distinguish between several instances of the same symbol with
different arity. The library thus supports a slight extension of tree automata in which
a symbol does not have a fixed arity.

The bottom-up representation (see Fig. 3b), on the other hand, maintains for each
tuple (q1, . . . ,qn) ∈Q∗ an MTBDD that maps the binary representation of each symbol
f onto a set of states S = {q, . . .} such that, for all q ∈ S, it holds that the transition

(q1, . . . ,qn)
f−→ q is in the automaton. Note that the bottom-up representation does not

need to encode the arity of the symbol f into the MTBDD as it is given by the arity of
the tuple for which the MTBDD is maintained. It is easy to see that the two presented
encodings are mutually convertible (see [13] for the algorithm).

MTBDD Package. Our previous implementation of semi-symbolically represented
tree automata used a customisation of the CUDD [20] library for manipulating
MTBDDs. The experiments in [12] and profiling of the code showed that the over-
head of the customised library is too large. Moreover, the customisation of CUDD did
not provide an easy and transparent way of manipulating MTBDDs. These two facts
showed that VATA would greatly benefit from a major redesign of the MTBDD back-
end. Therefore, we created our own generic implementation of MTBDDs with a clean
and simple-to-use interface.

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 85

The new MTBDD package uses shared MTBDDs for each domain, which means
that all MTBDDs for the given domain are connected in a single directed acyclic graph
(DAG), and an MTBDD corresponds to a pointer to a node in the DAG. In order to
prevent memory leaks, each node of the MTBDD contains a reference counter of other
nodes or variables pointing to it. In case the counter reaches zero, the node is deleted
from the memory. Because of these implementation choices, copying an MTBDD can
be easily done by simply copying the pointer to the root node of the copied MTBDD
and incrementing its reference counter.

There are two types of nodes of the MTBDD: internal nodes and leaf nodes. A leaf
node contains a value from the domain of the MTBDD, while an internal node contains
a variable name and pointers to the low and high children of the node. In addition,
nodes of both types also contain the aforementioned reference counter. The nodes are
manipulated using pointers to them only, and the distinction between a leaf node and an
internal node is done according to the least significant bit of the pointer (the compiler
aligns these data structures to addresses which are multiples of 4, this bit can therefore
be neglected and when accessing the value of a node pointer simply masked out).

For our use, we implemented unary, binary, and ternary Apply operations, which
are operations that, given a unary, binary, or ternary function and one, two, or three
MTBDDs, respectively, generate a new MTBDD the leaves of which correspond to the
values of the given function applied to the provided MTBDDs. Note that the provided
function does not need to be a pure function but my also have a side-effect. Further, we
also provide VoidApply operations which are Apply operations that do not build a new
MTBDD but that have a side-effect only. For operations that do not need to build new
MTBDDs but rather, e.g., only collect data from the leaf nodes, using VoidApply saves
a considerable and unnecessary overhead. During the execution of an Apply operation,
both internal and leaf nodes are cached using hash tables.

The newly implemented MTBDD package does not support MTBDD reordering so
far, yet the library performs better when compared to our original implementation of
a semi-symbolic encoding that used customised CUDD.

4 Supported Operations

As we described in the previous section, the VATA library allows a user to choose one
of three available encodings: the explicit top-down, the semi-symbolic top-down, and
the semi-symbolic bottom-up. Depending on the choice, certain TA operations may or
may not be available. The following operations are supported by at least one of the
representations: union, intersection, elimination of (bottom-up, top-down) unreachable
states, inclusion checking (bottom-up, top-down), computation of (maximum) simula-
tion relations (downward, upward), and language preserving size reduction based on
simulation equivalence. In some cases, multiple implementations of an operation are
available, which is especially the case for language inclusion. This is because the differ-
ent implementations are based on different heuristics that may work better for different
applications as witnessed also by our experiments described in Section 5.

86 O. Lengál, J. Šimáček, and T. Vojnar

Below, we do not discuss the relatively straightforward implementation of the most
basic operations on TA and we comment on the more advanced operations only.

4.1 Removing Unreachable States

As the performance of many operations on automata depends on the size of the au-
tomaton (in the sense of the size of the state set and the size of the transition table), it
is often desirable to remove both bottom-up and top-down unreachable states. Indeed,
such states are useless: bottom-up unreachable states cannot be used to generate a finite
tree and although top-down unreachable states can generate a finite tree, this tree cannot
be a subtree of any tree accepted by the automaton.

Removing both bottom-up unreachable states for the bottom-up representation and
top-down unreachable states for the top-down representation can be easily done by
a single traversal through the automaton. Nevertheless, sometimes, e.g., when checking
language inclusion of the automata, it is useful to also remove states unreachable in the
opposite direction.

The procedure for removing top-down unreachable states from a tree automaton rep-
resented in a bottom-up semi-symbolic way generates a directed graph (Q,E) where Q
is the state set of the input automaton and (q,r) ∈ E if ∃a ∈ Σ : q

a−→ (q1, . . . ,qn),∃1≤
i≤ n : r = qi. When the graph is created, the states that are backward unreachable from
the final states are removed from the automaton in a simple traversal.

Removing bottom-up unreachable states for the top-down semi-symbolic represen-
tation is more complex. First, the automaton is traversed in the top-down manner while
creating an And-Or graph (N∀,N∃,E) where N∀ = Q, Q is the state set of the input
automaton and represents the And nodes of the graph, and N∃ ⊆ Q∗ represents the Or
nodes. The set of edges E contains the edge (q,(q1, . . . ,qn)) if there exists the transi-
tion q

a−→ (q1, . . . ,qn) for some a ∈ Σ in the automaton, and the edge ((q1, . . . ,qn),q)
if ∃1≤ i≤ n : qi = q. The algorithm starts by marking the node labelled by () (which is
an Or node) and proceeds by marking the nodes of the graph using the following rules:
an Or node o is marked if there exists a marked node a such that (o,a) ∈ E , and an And
node a is marked if all nodes o such that (a,o) ∈ E are marked. When no new nodes
can be marked, the states of the automaton are reduced to only those that correspond to
marked And nodes in the graph.

4.2 Downward and Upward Simulation

Downward simulation relations can be computed over two tree automata representa-
tions in VATA: the explicit top-down and the semi-symbolic top-down encoding. The
explicit variant first translates a tree automaton into a labelled transition system (LTS)
as described in [1]. Then the simulation relation for this system is computed using an
implementation of the state-of-the-art algorithms for computing simulations on LTSs
[19,14] with some further optimisations mentioned in Section 4.6. Finally, the result is
projected back to the set of states of the original automaton.

The semi-symbolic variant uses a simpler simulation algorithm based on a generali-
sation of [16] to trees.

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 87

Upward simulation can currently be computed over the explicit representation only.
The computation is again performed via a translation to an LTS (the details are in [1]),
and the relation is computed using the engine for computing simulation relations on
LTSs as above.

4.3 Simulation-Based Size Reduction

In a typical setting, one often wants to use a representation of tree automata that is as
small as possible in order to reduce the memory consumption and/or speed up opera-
tions on the automata (especially the potentially costly ones, such as inclusion testing).
To achieve that, the classical approach is to use determinisation and minimisation. How-
ever, the minimal deterministic tree automata can still be much bigger than the original
non-deterministic ones. Therefore, VATA offers a possibility to reduce the size of tree
automata without determinisation by their quotienting w.r.t. an equivalence relation—
currently, only the downward simulation equivalence is supported.

The procedure works as follows: first, the downward simulation relation (D is com-
puted for the automaton. Then, the symmetric fragment of(D (which is an equivalence)
is extracted, and each state appearing within the transition function is replaced by a rep-
resentative of the corresponding equivalence class. A further reduction is then based
on the following observation: if an automaton contains a transition q

a−→ (q1, . . . ,qn),
any additional transition q

a−→ (r1, . . . ,rn) where ri (D qi can be omitted since it does
not contribute to the language of the result (recall that, for the downward simulation
preorder(D, it holds that q(D r =⇒ L(q)⊆ L(r)).

4.4 Bottom-Up Inclusion

Bottom-up inclusion testing is implemented for the explicit top-down and the
semi-symbolic bottom-up representation in VATA. As its name suggests, the algorithm
naturally proceeds in the bottom-up way, therefore the top-down encoding is not very
suitable here. In the case of the explicit representation, however, one can afford to build
a temporary bottom-up encoding since the overhead of such a translation is negligible
compared to the complexity of following operations.

Both the explicit and semi-symbolic version of the bottom-up inclusion algorithm
are based on the approach introduced in [4]. Here, the main principle used for checking
whether L(A)⊆L(B) is to search for a tree which is accepted by A and not by B (thus
being a witness for L(A) �⊆ L(B)). This is done by simultaneously traversing both
A and B from their leaf rules while generating pairs (pA ,PB) ∈ QA × 2QB where pA
represents a state into which A can get on some input tree and PB is the set of all states
into which B can get over the same tree. The inclusion then does clearly not hold iff it
is possible to generate a pair consisting of an accepting state of A and of exclusively
non-accepting states of B .

The algorithm collects the so far generated pairs (pA ,PB) in a set called Visited.
Another set called Next is used to store the generated pairs whose successors are still
to be explored. One can then observe that whenever one can reach a counterexample to
inclusion from (pA ,PB), one can also reach a counterexample from any (pA ,P′B ⊆ PB)

88 O. Lengál, J. Šimáček, and T. Vojnar

as P′B allows less runs than PB . Using this observation, both mentioned sets can be rep-
resented using antichains. In particular, one does not need to store and further explore
any two elements comparable w.r.t. (=,⊆), i.e., by equality on the first component and
inclusion on the other component.

Clearly, the running time of the above algorithm strongly depends on the total num-
ber of pairs (pA ,PB) taken from Next for further processing. Indeed, this is one of the
reasons why the antichain-based optimisations helps. According to our experience, the
number of pairs which needs to be processed can further be reduced when processing
the pairs stored in Next in a suitable order. Our experimental results have shown that
we can achieve a very good improvement by preferring those pairs (pA ,PB) which have
smaller (w.r.t. the size of the set) second component.

Yet another way that we found useful when improving the above algorithm is to op-
timise the way the algorithm computes the successors of a pair from Next. The original
algorithm picks a pair (pA ,PB) from Next and puts it into Visited. Then, it finds all
transitions of the form (pA ,1, . . . , pA ,n)

a−→ p in A such that (pA ,i,PB,i) ∈ Visited for
all 1 ≤ i ≤ n and (pA , j,PB, j) = (pA ,PB) for some 1 ≤ j ≤ n. For each such transition,

it finds all transitions of the form (q1, . . . ,qn)
a−→ q in B such that qi ∈ PB,i for all

1 ≤ i ≤ n. Here, the process of finding the needed B transitions is especially costly. In
order to speed it up, we cache for each alphabet symbol a, each position i, and each set
PB,i, the set of transitions {(q1, . . . ,qn)

a−→ q ∈ ΔB : qi ∈ PB,i} at the first time it is used
in the computation of successors. Then, whenever we need to find all transitions of the
form (q1, . . . ,qn)

a−→ q in B such that qi ∈ PB,i for all 1 ≤ i ≤ n, we find them simply
by intersecting the sets of transitions cached for each (PB,i, i,a).

Next, we propose another modification of the algorithm which aims to improve the
performance especially in those cases where finding a counterexample to inclusion re-
quires us to build representatives of trees with higher depths or in the cases where the
inclusion holds. Unlike the original approach which moves only one pair (pA ,PB) from
Next to Visited at the beginning of each iteration of the main loop, we add the newly
created pairs (pA ,PB) into Next and Visited at the same time (immediately after they
are generated). This, according to our experiments, allows Visited to converge faster
towards the fixpoint.

Finally, another optimisation of the algorithm presented in [4] appeared in [2]. This
optimisation maintains the sets Visited and Next as antichains w.r.t. ((U ,+∃∀U)2. Hence,
more pairs can be discarded from these sets. Moreover, for pairs that cannot be dis-
carded, one can at least reduce the sets on their right-hand side by removing states that
are simulated by some other state in these sets (this is based on the observation that any
tree accepted from an upward-simulation-smaller state is accepted from an upward-
simulation-bigger state too). Finally, one can also use upward simulations between
states of the two automata being compared. Then, one can discard any pair (pA ,PB)
such that there is some pB ∈ PB that upward-simulates pA because it is then clear that
no tree can be accepted from pA that could not be accepted from pB . All these opti-

2 One says that P(∃∀U Q holds iff ∀p∈ P ∃q∈Q : p(U q. Note also that the upward simulation
must be parameterised by the identity in this case [2].

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 89

misations are also available in VATA and can optionally be used—they are not used by
default since the computation of the upward simulation can be quite costly.

4.5 Top-Down Inclusion

Top-down inclusion checking is supported by the explicit top-down and semi-symbolic
top-down representations in VATA. Note that when one tries to solve inclusion of TA
languages top-down in a naı̈ve way, using a plain subset-construction-like approach,
one immediately hits a problem due to the top-down successors of particular states are
tuples of states. Hence, after one step of the construction, one needs to check inclusion
on tuples of states, then tuples of tuples of states, etc. However, there is a way how to
get out of this trap as shown in [15,12]. Very roughly said, the main idea of the approach
resembles a conversion from the disjunctive normal form (DNF) to the conjunctive nor-
mal form (CNF) taking into account that top-down transitions of tree automata form a
kind of and-or graphs (the disjunctions are between top-down transitions and conjunc-
tions among the successors within particular transitions).

VATA contains an implementation of the top-down inclusion checking algorithm
of [12]. This algorithm uses several optimisations, e.g., caching of results of auxiliary
language inclusion queries between states of the automata whose languages are being
compared. More precisely, when checking whether L(A)⊆L(B) holds for two tree au-
tomata A and B , the algorithm stores a set of pairs (pA ,PB) ∈ QA × 2QB for which the
language inclusion L(pA)⊆ L(PB) has been shown not to hold. As a further optimisa-
tion, the set is stored as an antichain based on comparing the states w.r.t. the downward
simulation preorder. The use of the downward simulation is one of the main advantages
of this approach compared with the bottom-up inclusion checking since this preorder is
cheaper to compute and usually richer than the upward simulation. Indeed, [12] shows
that top-down inclusion checking is often—though not always—superior to bottom-up
inclusion checking.

Moreover, VATA has recently been extended by a new version of the top-down in-
clusion checking algorithm that extends the original version by caching even the pairs
(pA ,PB)∈QA×2QB for which the language inclusion L(pA)⊆L(PB) has been shown
to hold. This extension is far from trivial since the caching must be done very carefully
in order to avoid a sort of circular reasoning when answering the various auxiliary
language inclusion queries. A precise description of this rather involved algorithm is
beyond the scope of this article, and so we refer an interested reader to [13]. As our
experiments show, the new kind of caching comes with some overhead, which does not
allow it to always win over the previous algorithm, but there are still many cases in
which it performs significantly better.

4.6 Computing Simulation over LTS

The explicit part of VATA uses a highly optimised LTS simulation algorithm proposed
in [19] and greatly improved in [14]. The main idea of the algorithm is to start with
an overapproximation of the simulation preorder (a possible initial approximation is
the relation Q×Q) which is then iteratively pruned whenever it is discovered that the
simulation relation cannot hold for certain pairs of states. For a better efficiency, the

90 O. Lengál, J. Šimáček, and T. Vojnar

algorithm represents the current approximation R of the simulation being computed
using a so-called partition-relation pair. The partition splits the set of states into subsets
(called blocks) whose elements are equivalent w.r.t. R, and a relation obtained by lifting
R to blocks.

In order to be able to deal with the partition-relation pair efficiently, the algorithm
needs to record for each block a matrix of counters of size |Q||Σ| where, for the given
LTS, Q is the set of states and Σ is the set of labels. The counters are used to count
how many transitions going from the given state via a given symbol a lead to states in
the given block (or blocks currently considered to be bigger w.r.t. the simulation). This
information is then used to optimise re-computation of the partition-relation pair when
pruning the current approximation of the simulation relation being computed (for details
see, e.g., [19]). Since the number of blocks can (and often does) reach the number of
states, the naı̈ve solution requires |Q|2|Σ| counters in the worst case. It turns out that
this is one of the main barriers which prevents the algorithm from scaling to systems
with large alphabets and/or large sets of states.

Working towards a remedy for the above problem, one can observe that the men-
tioned algorithm actually works in several phases. At the beginning, it creates an ini-
tial estimation of the partition-relation pair which typically contains large equivalence
classes. Then it initialises the counters for each element of the partition. Finally, it
starts the iterative partition splitting. During this last phase, the counters are only decre-
mented or copied to the newly created blocks. Moreover, the splitting of some block is
itself triggered by decrementing some set of counters to 0. In practice, late phases of
the iteration typically witness a lot of small equivalence classes having very sparsely
populated counters with 0 being the most abundant value.

This suggests that one could use sparse matrices containing only the non-zero ele-
ments. Unfortunately, according to our experience, this turns out to be the worst possi-
ble solution which strongly degrades the performance. The reason is that the algorithm
accesses the counters very frequently (it either increments them by one or decrements
them by one), hence any data structure with non-constant time access causes the com-
putation to stall. A somewhat better solution is to record the non-zero counters using
a hash table, but the memory requirements of such representation are not yet reasonable.

Instead, we are currently experimenting with storing the counters in blocks, using
a copy-on-write approach and a zeroed-block deallocation. In short, we divide the ma-
trix of counters into a list of blocks of some fixed size. Each block contains an additional
counter (a block-level counter) which sums up all the elements within the block. As
soon as a block contains a single non-zero counter only, it can safely be deallocated—
the content of the non-zero counter is then recorded in the block-level counter.

Our initial experiments show that, using the above approach, one can easily reduce
the memory consumption by the factor of 5 for very large instances of the problem
compared to the array-based representation used in [14]. The best value to be used as
the size of blocks of counters is still to be studied—after some initial experiments, we
are currently using blocks of size

√
|Q|.

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 91

5 Experimental Evaluation of VATA

In order to illustrate the level of optimisation that has been achieved in VATA and that
can be exploited in its applications (like the Forester tool [11]), we compared its perfor-
mance against Timbuk and the prototype library considered in [12], which—despite its
prototype status—already contained a quite efficient TA implementation.

The comparison of performance of VATA (using the explicit encoding) and Timbuk
was done for union and intersection of more than 3,000 pairs of TA. On average, VATA
was over 20,000 times faster on union and over 100,000 times faster on intersection.

When comparing VATA with the prototype library of [12], we concentrated on lan-
guage inclusion testing which is one of the most costly operations on non-deterministic
TA. In particular, we conducted a set of experiments evaluating the performance of the
VATA’s optimised TA language inclusion algorithms on pairs of TA obtained from ab-
stract regular tree model checking of the algorithm for rebalancing red-black trees after
insertion or deletion of a leaf node (which is the same test set that was used in [12]).

5.1 Experiments with the Explicit Encoding

For the explicit encoding, we measured for each inclusion method the fraction of cases
in which the method was the fastest among the evaluated methods on the set of al-
most 2000 tree automata pairs. The results of this experiment are given in Table 1.
The columns are labelled as follows: column expldown is for pure downward inclusion
checking, column expldown+s is for downward inclusion using downward simulation,
expldown-opt is a column for pure downward inclusion checking with the optimi-
sation proposed in Section 4.5, and column expldown-opt+s is downward inclusion
checking with simulation using the same optimisation. Columns explup and explup+s
give the results for pure upward inclusion checking and upward inclusion checking with
simulation respectively. The timeout was set to 30 s.

Table 1. Experiments with inclusion for the explicit encoding

expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 36.35 % 4.15 % 32.20 % 3.15 % 24.14 % 0.00 %
Timeouts 32.51 % 18.27 % 32.51 % 18.27 % 0.00 % 0.00 %

Table 2. Experiments with the explicit encoding for cases when inclusion does not hold

expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 39.85 % 0.00 % 35.30 % 0.00 % 24.84 % 0.00 %
Timeouts 26.01 % 20.31 % 26.01 % 20.31 % 0.00 % 0.00 %

Table 3. Experiments with the explicit encoding for cases when inclusion holds

expldown expldown+s expldown-opt expldown-opt+s explup explup+s

Winner 0.00 % 47.28 % 0.00 % 35.87 % 16.85 % 0.00 %
Timeouts 90.80 % 0.00 % 90.80 % 0.00 % 0.00 % 0.00 %

92 O. Lengál, J. Šimáček, and T. Vojnar

We also checked the performance of the algorithms for cases when inclusion either
does or does not hold in order to explore the ability of the algorithms to either find
a counterexample in the case when inclusion does not hold, or prove the inclusion in
case it does. These results are given in Table 2 and Table 3.

When compared to our previous implementation, VATA performed almost always
better. The average speed-up was even as high as 200 times for pure downward inclu-
sion checking. The old implementation was faster in about 2.5 % of the cases, and the
difference was not significant.

5.2 Experiments with the Semi-symbolic Encoding

We performed a set of similar experiments for the semi-symbolic encoding, the results
of which are given in Table 4. The columns are labelled as follows: column symdown is
for pure downward inclusion checking, column symdown+s is for downward inclusion
using downward simulation, symdown-opt is a column for pure downward inclusion
checking with the optimisation proposed in Section 4.5 and column symdown-opt+s
is downward inclusion checking with simulation using the same optimisation. Column
symup gives the results for pure upward inclusion checking. The timeout was again set
to 30 s.

As in the experiments for the explicit encoding, we also checked the performance of
the algorithms for cases when inclusion either does or does not hold. These results are
given in Table 5 and Table 6.

When compared to our previous implementation, VATA again performs significantly
better, with the pure upward inclusion being on average over 300 times faster and the
pure downward inclusion being even over 3000 times faster.

Table 4. Experiments with inclusion for the semi-symbolic encoding

symdown symdown+s symdown-opt symdown-opt+s symup

Winner 44.02 % 0.00 % 31.73 % 0.00 % 24.25 %
Timeouts 5.87 % 77.93 % 5.87 % 78.00 % 22.26 %

Table 5. Experiments with the semi-symbolic encoding for cases when inclusion does not hold

symdown symdown+s symdown-opt symdown-opt+s symup

Winner 45.03 % 0.00 % 33.06 % 0.00 % 21.91 %
Timeouts 2.48 % 80.03 % 2.48 % 80.09 % 23.39 %

Table 6. Experiments with the semi-symbolic encoding for cases when inclusion holds

symdown symdown+s symdown-opt symdown-opt+s symup

Winner 19.74 % 0.00 % 0.00 % 0.00 % 80.26 %
Timeouts 72.37 % 36.84 % 72.37 % 36.84 % 0.00 %

VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata 93

6 Conclusion

This paper introduced and described a new efficient and open-source non-deterministic
tree automata library that supports both explicit and semi-symbolic encoding of the
tree automata transition function. The semi-symbolic encoding makes use of our own
MTBDD package instead of the previously used customisation of the CUDD library.

We wish to continue in this work by attempting to implement a simulation-aware
symbolic encoding of antichains using BDDs. Further, we wish to implement other op-
erations, such as determinisation (which, however, is generally desired to be avoided),
or complementation (which we so far do not know how to compute without first deter-
minising the automaton).

Finally, we hope that a public release of our library will attract more people to use it
and even better contribute to the code base. Indeed, we believe that the library is written
in a clean and understandable way that should make such contributions possible.

References

1. Abdulla, P.A., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Composed Bisimulation for
Tree Automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp.
212–222. Springer, Heidelberg (2008)

2. Abdulla, P.A., Chen, Y.-F., Holı́k, L., Mayr, R., Vojnar, T.: When Simulation Meets An-
tichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer,
Heidelberg (2010)

3. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular Tree Model Checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Hei-
delberg (2002)

4. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-Based Universality
and Inclusion Testing over Nondeterministic Finite Tree Automata. In: Ibarra, O.H., Raviku-
mar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. In: ENTCS, vol. 149. Elsevier (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

7. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans.
Computers (1986)

8. Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. In: FMSD, vol. 10. Springer
(1997)

9. Claves, P., Jansen, D., Holtrup, S.J., Mohr, M., Reis, A., Schatz, M., Thesing, I.: The
LETHAL Library (2009), http://lethal.sourceforge.net/

10. Genet, T.: Timbuk/Taml: A Tree Automata Library (2003),
http://www.irisa.fr/lande/genet/timbuk

11. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Veri-
fication of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

12. Holı́k, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 243–258. Springer, Heidelberg (2011)

http://lethal.sourceforge.net/
http://www.irisa.fr/lande/genet/timbuk

94 O. Lengál, J. Šimáček, and T. Vojnar

13. Holı́k, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. Tech. rep. FIT-TR-2011-04, FIT BUT, Czech Rep. (2011)

14. Holı́k, L., Šimáček, J.: Optimizing an LTS-Simulation Algorithm. In: Proc. of MEMICS
2009, Znojmo, CZ, FI MU, pp. 93–101 (2009) ISBN 978-80-87342-04-6

15. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. ACM Trans.
Program. Lang. Syst. 27 (2005)

16. Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Karhumäki, J., Maurer, H., Păun, G.,
Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 112–124. Springer, Heidelberg
(2004)

17. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA Implementation Secrets. International
Journal of Foundations of Computer Science 13(4) (2002)

18. Madhusudan, P., Parlato, G., Qiu, X.: Decidable Logics Combining Heap Structures and
Data. SIGPLAN Not. 46 (2011)

19. Ranzato, F., Tapparo, F.: A New Efficient Simulation Equivalence Algorithm. In: Proc. of
LICS 2007. IEEE CS (2007)

20. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.2 (May 2011)

LTL to Büchi Automata Translation:

Fast and More Deterministic�

Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Řehák, and Jan Strejček

Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic

{xbabiak, kretinsky, rehak, strejcek}@fi.muni.cz

Abstract. We introduce improvements in the algorithm by Gastin and
Oddoux translating LTL formulae into Büchi automata via very weak
alternating co-Büchi automata and generalized Büchi automata. Sev-
eral improvements are based on specific properties of any formula where
each branch of its syntax tree contains at least one eventually opera-
tor and at least one always operator. These changes usually result in
faster translations and smaller automata. Other improvements reduce
non-determinism in the produced automata. In fact, we modified all
the steps of the original algorithm and its implementation known as
LTL2BA. Experimental results show that our modifications are real im-
provements. Their implementations within an LTL2BA translation made
LTL2BA very competitive with the current version of SPOT, sometimes
outperforming it substantially.

1 Introduction

A translation of LTL formulae into equivalent Büchi automata plays an impor-
tant role in many algorithms for LTL model checking, LTL satisfiability checking
etc. For a long time, researchers aimed to find fast translations producing Büchi
automata with a small number of states. This goal has led to the developments
of several translation algorithms and many heuristics and optimizations includ-
ing input formula reductions and optimizations of produced Büchi automata,
see e.g. [3,4,9,18,11,12,10,7].

As the time goes, the translation objectives and their importance are changing.
In particular, [17] demonstrates that for higher performance of the subsequent
steps of the model checking process, it is more important to minimize the number
of states with nondeterministic choice than the number of all states in resulting
automata. Note that there are LTL formulae, e.g. FGa, for which no equivalent
deterministic Büchi automaton exists. Further, model checking practice shows
that one LTL formula is usually used in many different model checking tasks.
Hence, it pays to invest enough computation time to get high quality (more

� The authors are supported by The Czech Science Foundation, grants
102/09/H042 (Babiak), 201/09/1389 (Křet́ınský), P202/10/1469 (Řehák, Strejček),
P202/12/G061 (Křet́ınský, Řehák, Strejček), and P202/12/P612 (Řehák).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 95–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

96 T. Babiak et al.

deterministic and/or minimal) automata as it may reduce computation time of
many model checking tasks.

The new objectives lead to the developments of algorithms focusing on quality
of produced automata. For example, [5] presents an effective algorithm translat-
ing LTL formulae of the fragment called obligation (see [14]) into weak deter-
ministic Büchi automata (WDBA). Moreover, WDBA can be minimized by the
algorithm of [13]. There is also a SAT-based algorithm searching for minimal
(nondeterministic) Büchi automata [8]. The main disadvantage of all the men-
tioned determinization and minimization algorithms is their long running time
which limits their use.

Our research returns to the roots: we focus on a fast translation producing
a relatively good output. This approach is justified by the following facts:

– The mentioned algorithms producing high quality automata often need, for
a given LTL formula, some equivalent automaton as an input.

– The mentioned algorithms are usually feasible for short formulae only or for
formulae with a simple structure.

– Given a fresh LTL formula, it can be useful to run vacuity checks, namely
satisfiability of the formula and its negation, to detect bugs in the formula. In
these checks, time of the LTL to automata translation can be more significant
than time needed for subsequent computations (see [16]). Hence, we need a
fast translator to support an early detection of bugs in formulae.

Considering the speed of an LTL to Büchi automata translation, LTL2BA [11]
and SPOT [7] are two leading tools. Based on extensive experiments on LTL
satisfiability checking, [16] even states:

The difference in performance between SPOT and LTL2BA, on one
hand, and the rest of explicit tools is quite dramatic.

Each of the two tools is based on different algorithms.
In LTL2BA, the translation proceeds in three basic steps:

1. A given LTL formula is translated into a very weak alternating automaton
(VWAA) with a co-Büchi accepting condition.

2. The alternating automaton is then translated into a transition-based gener-
alized Büchi automaton (TGBA), i.e. a generalized Büchi automaton with
sets of accepting transitions instead of accepting states.

3. The generalized automaton is transformed (degeneralized) into a Büchi au-
tomaton (BA).

Each of the three automata is simplified during the translation.
SPOT translates a given LTL formula to a TGBA using a tableau method

presented in [3]. The TGBA is then translated to a BA. Note that the model
checking algorithm natively implemented in SPOT works directly with TGBAs.
Prior to a translation, both LTL2BA and SPOT try to decrease the number of
temporal operators in a given input formula by applications of reduction rules.

LTL to Büchi Automata Translation: Fast and More Deterministic 97

While the LTL to automata translation in SPOT is under the gradual devel-
opment following the current trends (see [6] for improvements made in the last
four years), LTL2BA underwent only one minor update in 2007 since its creation
in 2001. In particular, SPOT reflects the changes in objectives. Therefore, SPOT
usually produces more deterministic and smaller automata than LTL2BA, while
LTL2BA is often a bit faster.

Our Contribution. We introduce several modifications of LTL2BA on both
algorithmic and implementation levels. We suggest changes in all the steps of
the translation algorithm. Our experimental results indicate that each modified
step has a mostly positive effect on the translation. The new translator, called
LTL3BA, is usually faster than the original LTL2BA and it produces smaller
and more deterministic automata. Moreover, comparison of LTL3BA and the
current version of SPOT (run without WDBA minimization that is very slow)
shows that the produced automata are of similar quality and LTL3BA is usually
faster.

Some modifications employ an observation that each LTL formula contain-
ing at least one always operator and at least one eventually operator on each
branch of its syntax tree (with possible exceptions of branches going to the left
subformula of any until or release operator) is prefix invariant. We call them al-
ternating formulae. Indeed, validity of each alternating formula on a given word
u depends purely on a suffix of u. In other words, it is not affected by any finite
prefix of u. We apply this observation to construct new rules for formula reduc-
tions. Further, the observation justifies some changes in constructions of VWAA
and TGBA. Intuitively, a state of a VWAA corresponds to a subformula that
has to be satisfied by the rest of an accepted word. If the corresponding subfor-
mula is an alternating formula, then the state can be temporarily suspended for
finitely many steps of the automaton.

Other changes in a VWAA construction are designed to lower nondetermin-
ism. This is also a motivation for new simplification rules applied on intermediate
automata. These rules remove some transitions of the automaton and hence re-
duce the number of nondeterministic choices in produced automata. The original
simplification rules can be seen as special cases of the new rules. An effective
implementation of this simplification required to change representation of tran-
sitions. Further, we add one ad-hoc modification speeding up the translation of
selected (sub)formulae. Finally, we modify a simplification rule merging some
states of resulting BA.

The rest of the paper is organized as follows. The next section recalls the def-
initions of LTL, VWAA, and TGBA, as presented in [11]. Section 3 focuses on
alternating formulae and its properties. Sections 4, 5, 6, and 7 present new rules
for formula reductions, modified translation of LTL to VWAA (including gener-
alized simplification of VWAA), modified translation of VWAA to TGBA, and
modified rule for simplification of BA, respectively. Finally, Section 8 is devoted
to experimental results. The last section summarizes the achieved improvements.

98 T. Babiak et al.

2 Preliminaries

Linear Temporal Logic (LTL). The syntax of LTL [15] is defined as follows

ϕ ::= tt | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where tt stands for true, a ranges over a countable set AP of atomic propositions,
X and U are temporal operators called next and until, respectively. The logic is
interpreted over infinite words over the alphabet Σ = 2AP ′

, where AP ′ ⊆ AP is
a finite subset. Given a word u = u(0)u(1)u(2) . . . ∈ Σω, by ui we denote the ith

suffix of u, i.e. ui = u(i)u(i+ 1)
The semantics of LTL formulae is defined inductively as follows:

u |= tt
u |= a iff a ∈ u(0)
u |= ¬ϕ iff u �|= ϕ
u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1 |= ϕ
u |= ϕ1 Uϕ2 iff ∃i ≥ 0 . (ui |= ϕ2 and ∀ 0 ≤ j < i . uj |= ϕ1)

We say that a word u satisfies ϕ whenever u |= ϕ. Two formulae ϕ, ψ are
equivalent, written ϕ ≡ ψ, if for each alphabet Σ and each u ∈ Σω it holds
u |= ϕ ⇐⇒ u |= ψ. Given an alphabet Σ, a formula ϕ defines the language

LΣ(ϕ) = {u ∈ Σω | u |= ϕ}. We often write L(ϕ) instead of L2AP(ϕ)

(ϕ), where
AP(ϕ) denotes the set of atomic propositions occurring in the formula ϕ.

We extend the LTL with derived temporal operators:

– Fϕ called eventually and equivalent to ttUϕ,
– Gϕ called always and equivalent to ¬F¬ϕ, and
– ϕRψ called release and equivalent to ¬(¬ϕ U¬ψ).

In the following, temporal formula is a formula where the topmost operator is
neither conjunction, nor disjunction. A formula without any temporal operator
is called state formula. Note that a and tt are both temporal and state formulae.
An LTL formula is in positive normal form if no operator occurs in the scope of
any negation. Each LTL formula can be easily transformed to positive normal
form using De Morgan’s laws for operators ∨ and ∧, equivalences for derived
operators, and the following equivalences:

¬(ϕ1 Uϕ2) ≡ ¬ϕ1 R¬ϕ2 ¬(ϕ1 Rϕ2) ≡ ¬ϕ1 U¬ϕ2 ¬Xϕ ≡ X¬ϕ

Very Weak Alternating co-Büchi Automata (VWAA). A VWAA is a
tuple A = (Q,Σ, δ, I, F), where

– Q is a finite set of states, and we let Q′ = 2Q,
– Σ is a finite alphabet, and we let Σ′ = 2Σ,
– δ : Q→ 2Σ

′×Q′
is a transition function,

LTL to Büchi Automata Translation: Fast and More Deterministic 99

– I ⊆ Q′ is a set of initial states,
– F ⊆ Q is a set of accepting states, and
– there exists a partial order on Q such that, for each state q ∈ Q, all the

states occurring in δ(q) are lower or equal to q.

Note that the transition function δ uses Σ′ instead of Σ. This enables to merge
transitions that differ only by action labels. We sometimes use a propositional
formula α over AP to describe the element {a ∈ Σ | a satisfies α} of Σ′.

A run σ of VWAA A over a word w = w(0)w(1)w(2) . . . ∈ Σω is a labelled
directed acyclic graph (V,E, λ) such that:

– V is partitioned into
∞⋃
i=0

Vi with E ⊆
∞⋃
i=0

Vi × Vi+1,

– λ : V → Q is a labelling function,
– {λ(x) | x ∈ V0} ∈ I, and
– for each x ∈ Vi, there exist α ∈ Σ′, q ∈ Q and O ∈ Q′ such that w(i) ∈ α,

q = λ(x), O = {λ(y) | (x, y) ∈ E}, and (α,O) ∈ δ(q).

A run σ is accepting if each branch in σ contains only finitely many nodes labelled
by accepting states (co-Büchi acceptance condition). A word w is accepted if
there is an accepting run over w.

Transition Based Generalized Büchi Automata (TGBA). A TGBA is a
tuple G = (Q,Σ, δ, I,F), where

– Q is a finite set of states,
– Σ is a finite alphabet, and we let Σ′ = 2Σ

– δ : Q→ 2Σ
′×Q is a total transition function,

– I ⊆ Q is a set of initial states, and
– T = {T1, T2, . . . , Tm} where Tj ⊆ Q×Σ′×Q are sets of accepting transitions.

A run ρ of TGBA G over a word w = w(0)w(1)w(2) . . . ∈ Σω is a sequence of
states ρ = q0q1q2 . . . , where q0 ∈ I is an initial state and, for each i ≥ 0, there
exists α ∈ Σ′ such that w(i) ∈ α and (α, qi+1) ∈ δ(qi). A run ρ is accepting if for
each 1 ≤ j ≤ m it uses infinitely many transitions from Tj . A word w is accepted
if there is an accepting run over w.

3 Alternating Formulae

We define the class of alternating formulae together with the classes of pure
eventuality and pure universality formulae introduced in [9]. Let ϕ ranges over
general LTL formulae. The classes of pure eventuality formulae μ, pure univer-
sality formulae ν, and alternating formulae ξ are defined as:

μ ::= Fϕ | μ ∨ μ | μ ∧ μ | Xμ | ϕUμ | μRμ | Gμ

ν ::= Gϕ | ν ∨ ν | ν ∧ ν | Xν | ν U ν | ϕR ν | Fν

ξ ::= Gμ | Fν | ξ ∨ ξ | ξ ∧ ξ | Xξ | ϕU ξ | ϕR ξ | Fξ | Gξ

100 T. Babiak et al.

Note that there are alternating formulae, e.g.
(
aU (GFb)

)
∧
(
cR (GFd)

)
, that are

neither pure eventuality formulae, nor pure universality formulae. Properties of
the respective classes of formulae are summarized in the following lemmata.

Lemma 1. [9] Let μ be a pure eventuality formula and ν be a pure universality
formula. For all u ∈ Σ∗, w ∈ Σω it holds:

uw |= μ ⇐= w |= μ

uw |= ν =⇒ w |= ν

Lemma 2. Let ξ be an alternating formula. For all u ∈ Σ∗, w ∈ Σω it holds:

uw |= ξ ⇐⇒ w |= ξ

In other words, pure eventuality formulae define left-append closed languages,
pure universality formulae define suffix closed languages, and alternating formu-
lae define prefix-invariant languages. The proof of Lemma 2 can be found in the
full version of this paper [1].

Corollary 1. Every alternating formula ξ satisfies ξ ≡ Xξ.

Hence, in order to check whether w satisfies ξ it is possible to skip an arbitrary
long finite prefix of the word w.

We use this property in new rule for formula reduction. Further, it has brought
us to the notion of alternating formulae suspension during the translation of
LTL to Büchi automata. We employ suspension on two different levels of the
translation: the construction of a VWAA from an input LTL formula and the
transformation of a VWAA into a TGBA.

4 Improvements in Reduction of LTL Formulae

Many rules reducing the number of temporal operators in an LTL formula have
been presented in [18] and [9]. In this section we present some new reduction
rules. For the rest of this section, ϕ, ψ range over LTL formulae and γ ranges
over alternating ones.

XϕRXψ ≡ X(ϕRψ) ϕU γ ≡ γ Fγ ≡ γ Xγ ≡ γ
Xϕ ∨ Xψ ≡ X(ϕ ∨ ψ) ϕR γ ≡ γ Gγ ≡ γ

The following equivalences are valid only on assumption that ϕ implies ψ.

ψU (ϕU γ) ≡ ψU γ ϕ ∧ (ψ ∧ γ) ≡ (ϕ ∧ γ)
(ψ R γ)Rϕ ≡ γ Rϕ ψ ∨ (ϕ ∨ γ) ≡ (ψ ∨ γ)

ϕU (γ R (ψ U ρ)) ≡ γ R (ψU ρ)

Further, we have extended the set of rules deriving implications of the form
ϕ⇒ ψ. The upper formula is a precondition, the lower one is a conclusion.

Gϕ⇒ ψ

Gϕ⇒ Xψ

ϕ⇒ Fψ

Xϕ⇒ Fψ

ϕ⇒ ψ

Xϕ⇒ Xψ

LTL to Büchi Automata Translation: Fast and More Deterministic 101

5 Improvements in LTL to VWAA Translation

First, we recall the original translation of LTL to VWAA according to [11]. The
translation utilizes two auxiliary operators:

– Let Σ′ = 2Σ , and let Q′ = 2Q. Given J1, J2 ∈ 2Σ
′×Q′

, we define

J1 ⊗ J2 = {(α1 ∩ α2, O1 ∪O2) | (α1, O1) ∈ J1 and (α2, O2) ∈ J2}.

– Let ψ be an LTL formula in positive normal form. We define ψ by:
• ψ = {{ψ}} if ψ is a temporal formula,
• ψ1 ∧ ψ2 = {O1 ∪O2 | O1 ∈ ψ1 and O2 ∈ ψ2},
• ψ1 ∨ ψ2 = ψ1 ∪ ψ2.

Let ϕ be an LTL formula in positive normal form. An equivalent VWAA with
a co-Büchi acceptance condition is constructed as Aϕ = (Q,Σ, δ, I, F), where Q
is the set of temporal subformulae of ϕ, Σ = 2AP(ϕ), I = ϕ, F is the set of all
U-subformulae of ϕ, i.e formulae of the type ψ1 Uψ2, and δ is defined as follows:

δ(tt) = {(Σ, ∅)}
δ(p) = {(Σp, ∅)} where Σp = {a ∈ Σ | p ∈ a}

δ(¬p) = {(Σ¬p, ∅)} where Σ¬p = Σ �Σp

δ(Xψ) = {(Σ,O) | O ∈ ψ}
δ(ψ1 Uψ2) = Δ(ψ2) ∪

(
Δ(ψ1)⊗ {(Σ, {ψ1Uψ2})}

)
δ(ψ1 Rψ2) = Δ(ψ2)⊗

(
Δ(ψ1) ∪ {(Σ, {ψ1 Rψ2})}

)
Δ(ψ) = δ(ψ) if ψ is a temporal formula

Δ(ψ1 ∨ ψ2) = Δ(ψ1) ∪Δ(ψ2)
Δ(ψ1 ∧ ψ2) = Δ(ψ1)⊗Δ(ψ2)

Using the partial order “is a subformula of” on states of Aϕ, one can easily prove
that Aϕ is very weak.

Improved Translation. In order to implement the suspension of alternating
formulae, we modify the way the transition function δ handles the binary op-
erators U, R, ∨, and ∧. The original transition function δ reflects the following
identities:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2)) ϕ1 Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨ X(ϕ1 Rϕ2))

However, if ϕ1 is an alternating formula we apply the relation ϕ1 ≡ Xϕ1 to
obtain the following identities:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (Xϕ1 ∧ X(ϕ1 Uϕ2)) ϕ1 Rϕ2 ≡ ϕ2 ∧ (Xϕ1 ∨ X(ϕ1 Rϕ2))

Using these identities, the formula ϕ1 is effectively suspended and checked one
step later. Similarly, in the case of disjunction or conjunction, each disjunct or
conjunct corresponding to an alternating formula is suspended for one step as
well. Correctness of these changes clearly follows from properties of alternating

102 T. Babiak et al.

formulae. Note that δ is defined over formulae in positive normal form only. The
translation treats each formula Fψ as ttUψ and each formula Gψ as (¬tt)Rψ.

We introduce further changes to the transition function δ in order to generate
automata which exhibits more determinism. In particular, we build a VWAA
with only one initial state. Similarly, each state corresponding to a formula of
a type Xϕ generates only one successor corresponding to ϕ. These changes can
add an extra initial state and an extra state for each X-subformula comparing
to the original construction. However, this drawback is often suppressed due to
the consecutive optimizations during the construction of a TGBA.

Now we present a modified construction of VWAA. Given an input LTL for-
mula ϕ in positive normal form, an equivalent VWAA with a co-Büchi acceptance
condition is constructed as Aϕ = (Q,Σ, δ, I, F), where Q is the set of all subfor-
mulae of ϕ, Σ and F are defined as in the original construction, I = {ϕ}, and δ
is defined as follows:

δ(tt) = {(Σ, ∅)}
δ(p) = {(Σp, ∅)} where Σp = {a ∈ Σ | p ∈ a}

δ(¬p) = {(Σ¬p, ∅)} where Σ¬p = Σ\Σp

δ(Xψ) = {(Σ, {ψ})}
δ(ψ1 ∨ ψ2) = Δ(ψ1) ∪Δ(ψ2)
δ(ψ1 ∧ ψ2) = Δ(ψ1)⊗Δ(ψ2)

δ(ψ1 Uψ2) =

{
Δ(ψ2) ∪ ({(Σ, {ψ1})} ⊗ {(Σ, {ψ1Uψ2})}) if ψ1 is alternating,
Δ(ψ2) ∪ (Δ(ψ1)⊗ {(Σ, {ψ1Uψ2})}) otherwise.

δ(ψ1 Rψ2) =

{
Δ(ψ2)⊗ ({(Σ, {ψ1}), (Σ, {ψ1 Rψ2})}) if ψ1 is alternating,
Δ(ψ2)⊗ (Δ(ψ1) ∪ {(Σ, {ψ1 Rψ2})}) otherwise.

Δ(ψ) =

{
{(Σ, {ψ})} if ψ is a temporal alternating formula,

δ(ψ) if ψ is a temporal formula that is not alternating.

Δ(ψ1 ∨ ψ2) = Δ(ψ1) ∪Δ(ψ2)
Δ(ψ1 ∧ ψ2) = Δ(ψ1)⊗Δ(ψ2)

Motivation for our changes in the translation can be found in Figures 1 and 2.
Each figure contains (a) the VWAA constructed by the original translation and
(b) the VWAA constructed by our translation with suspension. Figure 1 shows
the effect of suspension of alternating subformula GFa in computation of transi-
tions leading from the initial state. It can be easily proved that whenever one start
with a formula reduced according to Section 4, then each suspension of an alter-
nating temporal subformula leads just to reduction of transitions in the resulting
VWAA, i.e., no state is added. On the other hand, if an alternating non-temporal
subformula ψ is suspended or the new definition of δ(Xψ) is used, then the result-
ing VWAA can contain one more reachable state corresponding to the formula ψ.
However, other states may become unreachable and, in particular, the automaton
can also have more deterministic states as illustrated by Figure 2.

Optimization of VWAA. In the original algorithm, the VWAA is optimized
before it is translated to a TGBA. In particular, if there are two transitions

LTL to Büchi Automata Translation: Fast and More Deterministic 103

(a)

���� ���� !"# $%&' ()1 : (GFa)U b

��

��
tt

��

��
a

��

b ��

�� ���� !2 : GFa

a

��
tt

��

��

�� ���� !"# $%&' ()3 : Fa

tt

�� a
��

(b)

���� ���� !"# $%&' ()1 : (GFa)U b��
tt

��

b ��

�� ���� !2 : GFa

a

��
tt

��

��

�� ���� !"# $%&' ()3 : Fa

tt

�� a
��

(c)

���� ���� !"# $%&' ()1 : (GFa)U b��
¬b

��

b ��

�� ���� !2 : GFa

a

��
¬a

��

��

�� ���� !"# $%&' ()3 : Fa

¬a

�� a
��

Fig. 1. VWAA for (GFa)U b generated by (a) the translation of [11], (b) our translation
with suspension, and (c) our translation with suspension and further determinization

(a)
���� ���� !1 : X(a ∨ b)

tt

��
��
��

tt

��

�� ���� !2 : a

a

��

�� ���� !3 : b

b

��

(b)
���� ���� !1 : X(a ∨ b)

tt

���� ���� !2 : a ∨ b

a

����
��
��
�

b

���
��

��
��

(c)
���� ���� !1 : X(a ∨ b)

tt

���� ���� !2 : a ∨ b

a∨b

��

Fig. 2. VWAA for X(a∨ b) generated by (a) the translation of [11], (b) our translation
with suspension, and (c) the translation with suspension and further determinization

t1 = (q, α1, O1) and t2 = (q, α2, O2) satisfying α2 ⊆ α1 and O1 ⊆ O2, then t2 is
removed as it is implied by t1.

We suggest a generalization of this principle: if O1 � O2 then replace the
label α2 in t2 by α2∧¬α1. If O1 = O2, replace both transitions by the transition
(q, α1 ∨ α2, O1). Note that if α2 ⇒ α1, i.e. α2 ⊆ α1, then α2 ∧ ¬α1 ≡ ¬tt
and transition t2 can be removed as before. Our generalized optimization rule
increase determinism of the produced VWAA as illustrated by automata (c) of
Figures 1 and 2.

6 Improvements in VWAA to TGBA Translation

First, we recall the translation of VWAA to TGBA introduced in [11]. Let Aϕ =
(Q,Σ, δ, I, F) be a VWAA with a co-Büchi acceptance condition. We define
GA = (Q′, Σ, δ′, I, T) to be a TGBA where:

104 T. Babiak et al.

– Q′ = 2Q, i.e. a state is a set of states of Aϕ and represents their conjunction,

– δ′′({q1, q2, . . . , qn}) =
n⊗

i=1

δ(qi) is the non-optimized transition function,

– δ′ is the optimized transition function defined as the set of �-minimal tran-
sitions of δ′′ where the relation � is defined by t1 � t2 iff t1 = (O,α1, O1),
t2 = (O,α2, O2), α2 ⊆ α1, O1 ⊆ O2, and ∀Tf ∈ T , t2 ∈ Tf ⇒ t1 ∈ Tf , and

– T = {Tf | f ∈ F} where
Tf = {(O,α,O′) | f �∈ O′ or ∃(β,O′′) ∈ δ(f), α ⊆ β and f �∈ O′′ ⊆ O′}.

Improved Translation. Our algorithm for a VWAA to TGBA translation
differs from the original one only in definition of δ, where we also integrate the
idea of suspension of alternating formulae. Recall that each state qi of a VWAA
is a subformula of an input LTL formula and each state of a TGBA is identified
with a conjunction of states of a VWAA. Let O = {q1, . . . , qn} be a state of a
TGBA. Then transitions leading from O in a TGBA correspond to combinations
of transitions leading from q1, . . . , qn in a VWAA. If qi is an alternating formula
and thus it satisfies qi ≡ Xqi, we can effectively decrease the number of transition
combinations that need to be considered during computation of δ′(O) provided
we suspend a full processing of qi to the succeeding states of the TGBA. More
precisely, for the purpose of computation of δ′(O), we set δ(qi) = {(Σ, {qi})}. To
construct a TGBA equivalent to the VWAA, we have to ensure that qi will not
be suspended forever during any accepting run of the TGBA. Hence, we enable
suspension only in the states that are not on any accepting cycle in a TGBA.

Let M be the minimal set containing all VWAA states of the form ψ R ρ and
all subformulae of their right operands ρ. One can easily observe each TGBA
state lying on some accepting cycle is a subset of M . The VWAA states out-
side M , called progress formulae, push TGBA computations towards accepting
cycles. Suspension is enabled in a TGBA state only if it contains a progress for-
mula. However, if all progress formulae in a TGBA state are alternating, their
suspension is not allowed (as suspended progress formulae would not enforce any
progress).

Formally, for each TGBA state O = {q1, . . . , qn} we define δ′′(O) as follows:

δ′′(O) =

n⊗
i=1

δO(qi), where

δO(qi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(Σ, {qi})} if O contains a progress non-alternating formula
and qi is an alternating formula,
or O contains a progress formula
and qi is an alternating non-progress formula,

δ(qi) otherwise.

We have obtained better results when we restrict the definition of progress for-
mulae to temporal progress formulae.

Note that the original translation of VWAA to TGBA uses a correct but
nonstandard definition of accepting sets Tf . In fact, our modification is correct

LTL to Büchi Automata Translation: Fast and More Deterministic 105

�� ���� !1 : GFa

a

��
��

tt

��
�� ���� !"# $%&' ()3 : Fa

tt

��
a

����
����

���� ���� !"# $%&' ()2 : Fb

tt

�� b

����
��

Fig. 3. A VWAA Aψ corresponding to
GFa ∧ Fb

���� ���� !{1, 2}

tt:∅

��
b:{2,3} ���� ���� !{1}

a:{2,3}

��

tt:{2}

��

Fig. 4. A TGBA Gψ corresponding to
the VWAA of Figure 3

(a) ���� ���� !{1, 2}

a:{3}

��

tt:∅
��

b:{2}

����
���

���
��
a∧b:{2,3} ���� ���� !{1}

�� ���� !{1, 2, 3} �� ���� !{1, 3}

(b) ���� ���� !{1, 2}

tt:∅

��
b:{2,3} ���� ���� !{1}

Fig. 5. Transitions leading from state {1, 2} in the TGBA constructed from the VWAA
of Figure 3 by (a) the translation of [11] and by (b) our translation with suspension

only if we change the definition of these sets to the natural one (see [1] for a
explanation). Intuitively, for each accepting state f of the VWAA with a co-
Büchi acceptance, we compute a set Tf of all TGBA transitions that do not
contain any VWAA transition looping in f . Formally, T = {Tf | f ∈ F} where

Tf = {(O,α,O′) | f �∈ O or (∃(β,O′′) ∈ δ(f), ∃(γ,O′′′) ∈
⊗

f ′∈O�{f} δ(f
′)

such that f �∈ O′′, α=β ∧ γ, and O′ = O′′ ∪O′′′)}.

To demonstrate the effect of suspension during the construction of a TGBA,
consider the VWAA Aψ for the formula ψ = GFa ∧ Fb depicted in Figure 3.
The construction of an equivalent TGBA Gψ starts in the initial state {1, 2}
that corresponds to a conjunction of states 1 and 2 of Aψ . Figure 5 depicts
the transitions of Gψ leading from the initial state when constructed by (a) the
original translation of [11] and by (b) our translation with suspension. Note
that the state 1 corresponding to the alternating formula GFa is suspended in
the TGBA state {1, 2} as the state 2 corresponds to a non-alternating progress
formula Fb. In both cases, the TGBA has two sets of accepting transitions, T2

and T3. Each transition in the TGBA is labelled by a propositional formula over
AP and by a subset of {2, 3} indicating to which sets of T2, T3 the transition
belongs.

Comparing to the original VWAA to TGBA translation without any opti-
mizations, the application of suspension leads to automata with fewer states.

106 T. Babiak et al.

However, if we enable the optimizations suggested in [11], the original transla-
tion often constructs automata with the same number of states as our translation
with suspension. For example, in the TGBA constructed from the VWAA of Fig-
ure 3, the optimizations merge states {1, 2, 3} and {1, 3} with {1, 2} and {1},
respectively. In this particular case, both approaches lead to the same automaton
Gψ as shown in Figure 4. However, this is not the case in general. Using suspen-
sion, automata with either more or less states can be constructed. However, the
translation with suspension is usually slightly faster.

In addition, we detect that both the original and the improved algorithms
spend a lot of time when computing transitions of TGBA states equivalent to a
formula of the form ρ = Gα0 ∧

∧
1≤i≤n GFαi where n ≥ 0 and α0, α1, . . . , αn are

formulae without any temporal operator. As such TGBA states are very frequent
in practice, we use an optimization that detects these TGBA states and directly
constructs the optimal transitions.

7 Optimization of BA

We slightly modify one optimization rule suggested in [11]. It is applied on
a resulting BA. The rule says that states q1 and q2 of a BA can be merged if
δ(q1) = δ(q2) and q1 ∈ F ⇐⇒ q2 ∈ F . This rule typically fails to merge the states
with a self loop. We suggest to add a new rule where the condition δ(q1) = δ(q2)
is replaced by δ(q1)[q1/r] = δ(q2)[q2/r], where r is a fresh artificial state and
δ(q)[q/r] is a δ(q) with all occurrences of q as a target node replaced by r.

8 Implementation and Experimental Result

We have implemented all the modifications suggested in the previous sections
(and formula reduction rules suggested in [9]) in order to evaluate their effect.
The implementation is based on LTL2BA and therefore called LTL3BA. Be-
sides the changed algorithms, we also made some other, implementation related
changes. In particular, we represent transition labels by BDDs and transitions
are represented by C++ STL containers.

In this section, we compare LTL3BA with LTL2BA (v1.1) and SPOT (v0.7.1).
For the comparison of results, we use lbtt testbench tool [19] to measure, for
each translator, the number of states and transitions1 of resulting automata,
and the time of the computation. Further, we extend lbtt to count the number
of produced deterministic automata. To be able to compare the results, we set
SPOT (option -N) to output automata in the form of never claim for SPIN as
that is the output of LTL2BA as well. All experiments were done on a server
with 8 processors Intel� Xeon� X7560, 448 GiB RAM and a 64-bit version of
GNU/Linux.

1 To solve the problem with different representation of transitions in automata pro-
duced by different tools, we count all transitions leading from a state q to a state r
as one.

LTL to Büchi Automata Translation: Fast and More Deterministic 107

Table 1. Comparison of translators on two sets of random formulae. Time is in seconds,
’det. BA’ is the number of deterministic automata produced by the translator. Note
that, using WDBA minimization, SPOT failed to translate 6 formulae of Benchmark2
within the one hour limit. In order to see the effect of WDBA minimization to other
formulae, we state in braces the original results increased by the values obtained when
these 6 formulae were translated withut WDBA minimization.

Translator Benchmark1 Benchmark2

States Trans. Time det. BA States Trans. Time det. BA

SPOT 1561 5 729 7.47 55 14 697 95 645 68.46 221

SPOT+WDBA 1587 5 880 10.81 88 13 097 77 346 5 916.45 373
(14 408) (94 248) (5 919.43) (373)

LTL2BA 2 118 9 000 0.81 25 24 648 232 400 18.57 84

LTL3BA(1) 1 621 5 865 1.26 27 17 107 129 774 22.25 92

LTL3BA(1,2) 1 631 6 094 1.41 54 15 936 115 624 9.04 237

LTL3BA(1,2,3) 1 565 5 615 1.41 54 14 113 91 159 8.53 240

LTL3BA(1,2,3,4) 1 507 5 348 1.38 54 13 244 85 511 8.30 240

First we compare the translators on two sets, Benchmark1 and Benchmark2,
of random formulae generated by lbtt. Benchmark1 contains 100 formulae of
the length 15–20 and their negations. Benchmark2 contains 500 formulae of the
length 15–30 and their negations. The exact lbtt parameters used to generate
the formulae are in [1]. Table 1 presents the cumulative results of translations
of all formulae in the two sets. The table also illustrates the gradual effect of
modifications of each step of the translation (1,2,3,4 refers to modifications intro-
duced in Sections 4, 5, 6, and 7 in the respective order; e.g. LTL3BA(1) uses the
original algorithm with our formula reduction while LTL3BA(1,2,3,4) refers to
the translation with all the suggested modifications). Finally, the table contains
the results for SPOT with WDBA minimization, which has the longest running
time but provides the best results. The automata produced by LTL3BA are in
sum slightly better than the automata produced by SPOT. Further, LTL3BA
seems to be much faster.

Further, we compare the execution time of translators running on paramet-
ric formulae from [11] and [16]. We use SPOT with the recommended option
-r4, i.e. with the input formula reduction as the only optimization. To get a
comparable settings of LTL3BA, we switched off the generalized optimization of
VWAA. We gradually increase the parameter of the formulae until a translator
fails to finish the translation in one hour limit. The results are partly depicted
in Figure 6 (the rest is in [1]).

The graphs show that, in general, LTL3BA is slightly slower than LTL2BA
and faster than SPOT on small formulae. With increasing parameter, LTL3BA
outperforms LTL2BA (with exception of S(n) where LTL2BA fails before its
running time reaches the limit), while SPOT sometimes remains slower, but
sometimes eventually outperform LTL3BA.

For more experimental results (including the benchmark of [2]) see [1].

108 T. Babiak et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

Spot 0.7.1
LTL2BA
LTL3BA

θn = ¬((GFp1 ∧ . . . ∧ GFpn)→ G(q → Fr))

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

Spot 0.7.1
LTL2BA
LTL3BA

R(n) =
∧n

i=1(GFpi ∨ FGpi+1)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

Spot 0.7.1
LTL2BA
LTL3BA

U2(n) = p1 U (p2U (. . . pn−1 U pn) . . .)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

Spot 0.7.1
LTL2BA
LTL3BA

S(n) =
∧n

i=1 Gpi

Fig. 6. Time consumption for parametric formulae constructed within an hour (the
vertical axes are logarithmic and represent time in seconds, while the horizontal axes
are linear or logarithmic and represent the parameter n)

9 Conclusion

We have focused on LTL to BA translations with the stress on their speed-
up while maintaining outputs of a good quality. We have introduced several
modifications of LTL2BA on both algorithmic and implementation levels. Among
others, we have identified an LTL subclass of “alternating” formulae, validity of
which does not depends on any finite prefix of the word.

Our experimental results indicate that our modifications have a mostly pos-
itive effect on each step of the translation. The new translator called LTL3BA
is usually faster than the original LTL2BA and it produces smaller and more
deterministic automata. Moreover, comparison of LTL3BA and the current ver-
sion of SPOT (run without WDBA minimization that is very slow) shows that
the produced automata are of similar quality and LTL3BA is usually faster.

LTL3BA has served as an experimental tool to demonstrate that our modifi-
cations are improvements and their applicability to other LTL to BA translations
is a subject of further research.

Acknowledgments. The authors would like to thank three anonymous refrees
and Alexandre Duret-Lutz for valuable comments.

LTL to Büchi Automata Translation: Fast and More Deterministic 109

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi Automata Trans-
lation: Fast and More Deterministic. CoRR, abs/1201.0682 (2012)

2. Cichoń, J., Czubak, A., Jasiński, A.: Minimal Büchi automata for certain classes
of LTL formulas. In: DEPCOS-RELCOMEX 2009, pp. 17–24. IEEE (2009)

3. Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg
(1999)

4. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved Automata Generation for
Linear Temporal Logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 249–260. Springer, Heidelberg (1999)

5. Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the Powerset Construction for
Restricted Classes of ω-Automata. In: Namjoshi, K.S., Yoneda, T., Higashino, T.,
Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 223–236. Springer, Heidel-
berg (2007)

6. Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011, eWiC.
British Computer Society (2011) (to appear)

7. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83.
IEEE (2004)

8. Ehlers, R., Finkbeiner, B.: On the Virtue of Patience: Minimizing Büchi Automata.
In: van de Pol, J., Weber, M. (eds.) Model Checking Software. LNCS, vol. 6349,
pp. 129–145. Springer, Heidelberg (2010)

9. Etessami, K., Holzmann, G.J.: Optimizing Büchi Automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)

10. Fritz, C.: Constructing Büchi Automata from Linear Temporal Logic Using Simu-
lation Relations for Alternating Büchi Automata. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

11. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

12. Giannakopoulou, D., Lerda, F.: From States to Transitions: Improving Translation
of LTL Formulae to Büchi Automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

13. Löding, C.: Efficient minimization of deterministic weak omega-automata. Infor-
mation Processing Letters 79(3), 105–109 (2001)

14. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC 1990, pp.
377–410. ACM Press (1990)

15. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)
16. Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp,

S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)
17. Sebastiani, R., Tonetta, S.: “More Deterministic” vs. “Smaller” Büchi Automata

for Efficient LTL Model Checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003.
LNCS, vol. 2860, pp. 126–140. Springer, Heidelberg (2003)

18. Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

19. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi au-
tomata. STTT 4(1), 57–70 (2002)

Pushdown Model Checking for Malware Detection�

Fu Song and Tayssir Touili

LIAFA, CNRS and Univ. Paris Diderot, France
{song,touili}@liafa.jussieu.fr

Abstract. The number of malware is growing extraordinarily fast. Therefore, it
is important to have efficient malware detectors. Malware writers try to obfus-
cate their code by different techniques. Many of these well-known obfuscation
techniques rely on operations on the stack such as inserting dead code by adding
useless push and pop instructions, or hiding calls to the operating system, etc.
Thus, it is important for malware detectors to be able to deal with the program’s
stack. In this paper we propose a new model-checking approach for malware de-
tection that takes into account the behavior of the stack. Our approach consists
in : (1) Modeling the program using a Pushdown System (PDS). (2) Introducing
a new logic, called SCTPL, to represent the malicious behavior. SCTPL can be
seen as an extension of the branching-time temporal logic CTL with variables,
quantifiers, and predicates over the stack. (3) Reducing the malware detection
problem to the model-checking problem of PDSs against SCTPL formulas. We
show how our new logic can be used to precisely express malicious behaviors that
could not be specified by existing specification formalisms. We then consider the
model-checking problem of PDSs against SCTPL specifications. We reduce this
problem to emptiness checking in Symbolic Alternating Büchi Pushdown Sys-
tems, and we provide an algorithm to solve this problem. We implemented our
techniques in a tool, and we applied it to detect several viruses. Our results are
encouraging.

1 Introduction

To identify viruses, existing antivirus systems use either code emulation or signature
(pattern) detection. These techniques have some limitations. Indeed, emulation based
techniques can only check the program’s behavior in a limited time interval, whereas
signature based systems are easy to get around. To sidestep these limitations, instead of
executing the program or making a syntactic check over it, virus detectors need to use
analysis techniques that check the behavior (not the syntax) of the program in a static
way, i.e. without executing it. Towards this aim, we propose in this paper to use model-
checking for virus detection. Model-checking has already been used for virus detection
in [6,20,9,11,16,15,17]. However, these works model the program as a finite state graph
(automaton). Thus, they are not able to model the stack of the programs, and cannot
track the effects of the push, pop and call instructions. However, as decribed in [19],
many obfuscation techniques rely on operations over the stack. Indeed, many antivirus
systems determine whether a program is malicious by checking the calls it makes to

� Work partially funded by ANR grant ANR-08-SEGI-006.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 110–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pushdown Model Checking for Malware Detection 111

the operating system. Hence, several virus writers try to hide these calls by replacing
them by push and return instructions [19]. Therefore, it is important to have analysis
techniques that can deal with the program stack.

We propose in this paper a novel model-checking technique for malware detection
that takes into account the behavior of the stack. Our approach consists in modeling the
program using a pushdown system (PDS), and defining a new logic, called SCTPL, to
express the malicious behavior.

Using pushdown systems as program model allows to consider the program stack. In
our modeling, the PDS control locations correspond to the program’s control points, and
the PDS stack mimics the program’s execution stack. This allows the PDS to mimic the
behavior of the program. This is different from standard program translations to PDSs
where the control points of the program are stored in the stack [13,5]. These standard
translations assume that the program follows a standard compilation model, where the
return addresses are never modified. We do not make such assumptions since behaviors
where the return addresses are modified can occur in malicious code. We only make
the assumption that pushes and pops can be done only using push, pop, call, and return
operations, not by manipulating the stack pointer.

The logic SCTPL that we introduce is an extension of the CTPL logic that allows
to use predicates over the stack. CTPL was introduced in [16,15,17]. It can be seen
as an extension of CTL with variables and quantifiers. In CTPL, propositions can be
predicates of the form p(x1, . . . , xn), where the xi’s are free variables or constants. Free
variables can get their values from a finite domain. Variables can be universally or
existentially quantified. CTPL is as expressive as CTL, but it allows a more succinct
specification of the malicious behavior. For example, consider the statement “The value
data is assigned to some register, and later, the content of this register is pushed onto
the stack.” This statement can be expressed in CTL as a large formula enumerating all
the possible registers:

EF
(
mov(eax, data) ∧ AF push(eax)

)∨
EF
(
mov(ebx, data)∧ AF push(ebx)

)∨
EF
(
mov(ecx, data) ∧ AF push(ecx)

) ∨ ...
where every instruction is regarded as a predicate, i.e., mov(eax, data) is a predicate.
However, the CTL formula is large for such a simple statement. Using CTPL, this can
be expressed by the CTPL formula ∃r EF

(
mov(r, data)∧AF push(r)

)
which expresses

in a succinct way that there exists a register r such that the above holds. [16,15,17]
show how this logic is adequate to specify some malicious behaviors. However, CTPL
does not allow to specify properties about the stack (which is important for malicious
code detection as explained above).

For example, consider Figure 1(a). It corresponds to a critical fragment of the Email-
worm Avron [14] that shows the typical behavior of an email worm: it calls an API
function GetModuleHandleA with 0 as its parameter. This allows to get the entry ad-
dress of its own executable so that later, it can infect other files by copying this exe-
cutable into them. (Parameters to a function in assembly are passed by pushing them
onto the stack before a call to the function is made. The code in the called function later

112 F. Song and T. Touili

l1: mov eax,0
l2: push eax
l3: call ds:GetModuleHandleA

(a) (b)

l′1: mov eax,0
l′2: push eax
l′3: push ebx
l′4: pop ebx
l′5: call ds:GetModuleHandleA

Fig. 1. (a) Worm fragment; (b) Obfuscated fragment

retrieves these parameters from the stack.) Using CTPL, we can specify this malicious
behavior by the following formula:

∃ r1 EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2) U
(
push(r1)∧

EX E[¬∃ r3 (push(r3) ∨ pop(r3)) U call(GetModuleHandleA)]
)])
. (1)

This formula states that there exists a register r1 assigned by 0 such that the value of
r1 is not modified until it is pushed onto the stack. Later the stack is not changed until
function GetModuleHandleA is called. This specification can detect the fragment in
Figure 1(a). However, a worm writer can easily use some obfuscation techniques in
order to escape this specification. For example, let us introduce one push followed by
one pop after push eax at line l2 as done in Figure 1(b). By doing so, this fragment
keeps the same malicious behavior than the fragment in Figure 1(a). However, it cannot
be detected by the above CTPL formula. Since the number of pushes and pops that can
be added by the worm writer can be arbitrarily large, it is always possible for worm
developers to change their code in order to escape a given CTPL formula.

To overcome this problem, we introduce the SCTPL logic which extends CTPL by
predicates over the stack. Such predicates are given by regular expressions over the
stack alphabet and some free variables (which can also be existantially and universally
quantified). Using our new logic SCTPL, the malicious behavior of Figures 1(a) and (b)
can be specified as follows:

ψ = ∃r1 EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2)U
(
push(r1) ∧ EX E[¬

(
push(r1)

∨(∃r3(pop(r3) ∧ r1Γ
∗)
))

U (call(GetModuleHandleA)∧ r1Γ
∗)]
)]
)

(2)

where r1Γ
∗ is a regular predicate expressing that the topmost symbol of the stack is r1.

The SCTPL formula ψ states that there exists a register r1 assigned by 0 such that the
value of r1 is not changed until it is pushed onto the stack. Then, r1 is never pushed
onto the stack again nor popped from it until the function GetModuleHandleA is called.
When this call is made, the topmost symbol of the stack has to be r1. This ensures
that GetModuleHandleA is called with 0 as parameter. This specification can detect
both fragments in Figure 1, because it allows to specify the content of the stack when
GetModuleHandleA is called. Note that it is important to use pushdown systems as
model in order to have specifications with predicates over the stack.

The main contributions of this paper are:

1. We present a new technique to translate a binary program into a pushdown system
that mimics the program’s behavior (a malicious program is usually an executable,

Pushdown Model Checking for Malware Detection 113

i.e., a binary program). Our translation is different from standard program transla-
tions to PDSs that need to assume that the program follows a standard compilation
model, where the return addresses are never modified. Our translation does not need
to make this assumption since malicious code may have a non standard form.

2. We introduce the SCTPL logic and show how it can be used to efficiently and
precisely characterize malicious behaviors.

3. We propose an algorithm for model checking pushdown systems against SCTPL
specifications. We reduce this problem to checking emptiness in Symbolic Alter-
nating Büchi Pushdown Systems (SABPDS) and we propose an algorithm to solve
this emptiness problem.

4. We implemented our techniques in a tool that we successfully applied to detect
several viruses.

Related Work. Model-checking and static analysis techniques have been applied to
detect malicious behaviors e.g. in [6,20,9,11,16,15,17]. However, all these works are
based on modeling the program as a finite-state system, and thus, they miss the behavior
of the stack. As we have seen, being able to track the stack is important for many
malicious behaviors. [7] use tree automata to represent a set of malicious behaviors.
However, [7] cannot specify predicates over the stack content.

[19] keeps track of the stack by computing an abstract stack graph which finitely rep-
resents the infinite set of all the possible stacks for every control point of the program.
Their technique can detect only obfuscated calls and obfuscated returns. Using SCTPL,
we are able to detect more malicious behaviors.

[18] performs context-sensitive analysis of call and ret obfuscated binaries. They use
abstract interpretation to compute an abstraction of the stack. We believe that our tech-
niques are more precise since we do not abstract the stack. Moreover, the techniques of
[18] were only tried on toy examples, they have not been applied for malware detection.

[5] uses pushdown systems for binary code analysis. However, [5] has not been ap-
plied for malware detection. Moreover, the translation from programs to PDSs in [5]
assumes that the program follows a standard compilation model where calls and returns
match. Several malicious behaviors do not follow this model. Our translation from a
control flow graph to a PDS does not make this assumption.

[10] defines a language for specifying malicious behavior in terms of dependences
between system calls. Compared to SCTPL, the specification language of [10] does not
take the stack into account and is only able to express safety properties (no CTL like
properties), whereas SCTPL does. On the other hand, [10] is able to automatically de-
rive the malicious specifications by comparing the execution behavior of a known mal-
ware against the execution behaviors of a set of benign programs. It would be interesting
to see if their techniques can be extended to automatically derive SCTPL specifications
of malicious behaviors.

LTL or CTL model-checking with regular predicates over the stack was considered
in [12,21]. These works do not consider variables and quantifiers.

Outline. We give our formal model in Section 2. In Section 3, we introduce our SCTPL
logic. Our SCTPL model checking algorithm for pushdown systems is given in Section
4. The experiments we made for malware detection are reported in Section 5.

114 F. Song and T. Touili

2 Formal Model: Pushdown Systems

We model a binary code by a pushdown system (PDS). In our modeling, the PDS control
locations correspond to the program’s control points, and the PDS stack mimics the
program’s execution stack. This is different from standard program translations to PDSs
where the control points of the program are stored in the stack [13,5]. These standard
translations assume that the program follows a standard compilation model, where the
return addresses are never modified. We do not make such assumptions since behaviors
where the return addresses are modified can occur in malicious code. We only make
the assumption that pushes and pops can be done only using push, pop, call, and return
operations, not by manipulating the stack pointer.

Formally, a Pushdown System (PDS) is a tuple P = (P, Γ, Δ, �), where P is a finite set
of control locations, Γ is the stack alphabet, Δ ⊆ (P × Γ) × (P × Γ∗) is a finite set of
transition rules, and � ∈ Γ is the bottom stack symbol. A configuration of P is 〈p, ω〉,
where p ∈ P and ω ∈ Γ∗. If ((p, γ), (q, ω)) ∈ Δ, we write 〈p, γ〉 ↪→ 〈q, ω〉. For technical
reasons, we assume that the bottom stack symbol � is never popped from the stack, i.e.,
there is no transition rule of the form 〈p, �〉 ↪→ 〈q, ω〉 ∈ Δ.

The successor relation�P⊆ (P × Γ∗) × (P × Γ∗) is defined as follows: if 〈p, γ〉 ↪→
〈q, ω〉, then 〈p, γω′〉 �P 〈q, ωω′〉 for every ω′ ∈ Γ∗. For every configuration c, c′ ∈
P × Γ∗, c is a successor of c′ iff c �P c′. A path is a sequence of configurations
c0, c1, ... s.t. ci �P ci+1 for every i ≥ 0.

3 Malicious Behavior Specification

In this section, we introduce the Stack Computation Tree Predicate Logic (SCTPL), the
formalism we use to specify malicious behavior.

3.1 Environments, Predicates and Regular Expressions

From now on, we fix the following notations. Let X = {x1, x2, ...} be a finite set of
variables ranging over a finite domain D. Let B : X ∪ D −→ D be an environment
function that assigns a value c ∈ D to each variable x ∈ X, and such that B(c) = c for
every c ∈ D. B[x ← c] denotes the environment function such that B[x ← c](x) = c
and B[x ← c](y) = B(y) for every y � x. Absx(B) is the set of all the environments B′

s.t. for every y � x, B′(y) = B(y). Let B be the set of all the environment functions.
Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of

atomic predicates of the form b(α1, ..., αm) such that b ∈ AP, αi ∈ X ∪ D for every i,
1 ≤ i ≤ m, and APD be a finite set of atomic predicates of the form b(α1, ..., αm) such
that b ∈ AP and αi ∈ D for every i, 1 ≤ i ≤ m.

Let P = (P, Γ, Δ, �) be a PDS s.t. Γ ⊆ D. Let R be a finite set of regular variable
expressions e over X ∪ Γ defined by:

e ::= ∅ | ε | a ∈ X ∪ Γ | e + e | e · e | e∗

The language L(e) of a regular variable expression e is a subset of P × Γ∗ × B defined
inductively as follows: L(∅) = ∅; L(ε) = {(〈p, ε〉,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X

Pushdown Model Checking for Malware Detection 115

is the set {(〈p, γ〉,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(〈p, γ〉,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e1); L(e1 · e2) = {(〈p, ω1ω2〉,B) |
(〈p, ω1〉,B) ∈ L(e1); (〈p, ω2〉,B) ∈ L(e2)}; and L(e∗) = {(〈p, ω∗〉,B) | (〈p, ω〉,B) ∈
L(e)}. E.g., (〈p, γ1γ1γ2〉,B) is an element of L(x∗γ2) when B(x) = γ1.

3.2 Stack Computation Tree Predicate Logic

We are now ready to define our new logic SCTPL. Intuitively, a SCTPL formula is
a CTL formula where predicates and regular variable expressions are used as atomic
propositions. Using regular variable expressions allows to express predicates on the
stack content of the PDS. Moreover, since predicates and regular variable expressions
contain variables, we allow quantifiers over variables. For technical reasons, we suppose
w.l.o.g. that formulas are given in positive normal form, i.e., negations are applied only
to atomic propositions. Indeed, each CTL formula can be written in positive normal
form by pushing the negations inside. Moreover, we use the operator Ũ as a dual of
the until operator for which the stop condition is not required to occur. Then, standard
CTL operators can be expressed as follows: EFψ = E[trueUψ], AFψ = A[trueUψ],
EGψ = E[f alseŨψ] and AGψ = A[f alseŨψ].

More precisely, the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xn) ∈
APX and e ∈ R):

ϕ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ
| ∃x ϕ | AXϕ | EXϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕŨϕ] | E[ϕŨϕ]

Let ϕ be a SCTPL formula. The closure cl(ϕ) denotes the set of all the subfor-
mulas of ϕ including ϕ. The size |ϕ| of ϕ is the number of elements of cl(ϕ). Let
AP+(ϕ) = {a(x1, ..., xn) ∈ APX | a(x1, ..., xn) ∈ cl(ϕ)}, AP−(ϕ) = {a(x1, ..., xn) ∈ APX |
¬a(x1, ..., xn) ∈ cl(ϕ)}, Reg+(ϕ) = {e ∈ R | e ∈ cl(ϕ)}, Reg−(ϕ) = {e ∈ R | ¬e ∈ cl(ϕ)},
and clŨ(ϕ) be the set of formulas of cl(ϕ) in the form of E[ϕ1Ũϕ2] or A[ϕ1Ũϕ2].

Given a PDS P = (P, Γ, Δ, �) s.t. Γ ⊆ D, let λ : APD → 2P be a labeling function that
assigns a set of control locations to a predicate. Let c = 〈p,w〉 be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xn) iff p ∈ λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ ¬a(x1, ..., xn) iff p � λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ¬e iff (c,B) � L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ψ1 ∨ ψ2 iff c |=B

λ ψ1 or c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ∃x ψ iff ∃v ∈ D s.t. c |=B[x←v]
λ ψ.

– c |=B
λ AX ψ iff c′ |=B

λ ψ for every successor c′ of c.
– c |=B

λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B
λ ψ.

– c |=B
λ A[ψ1Uψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∃i ≥ 0 s.t.

ci |=B
λ ψ2 and ∀0 ≤ j < i : c j |=B

λ ψ1.

116 F. Song and T. Touili

– c |=B
λ E[ψ1Uψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∃i ≥

0, ci |=B
λ ψ2 and ∀0 ≤ j < i, c j |=B

λ ψ1.
– c |=B

λ A[ψ1Ũψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∀i ≥ 0 s.t.
ci �|=B

λ ψ2, ∃0 ≤ j < i s.t. c j |=B
λ ψ1.

– c |=B
λ E[ψ1Ũψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∀i ≥ 0 s.t.

ci �|=B
λ ψ2, ∃0 ≤ j < i s.t. c j |=B

λ ψ1.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies the formula ψ under the envi-

ronment B. Note that a path π satisfies ψ1Ũψ2 iff either ψ2 holds everywhere in π, or
the first occurrence in the path where ψ2 does not hold must be preceeded by a position
where ψ1 holds.

3.3 Modeling Malicious Behaviors Using SCTPL

SCTPL can be used to precisely specify several malicious behaviors. We needed stack
predicates to express most of the specifications. Thus, SCTPL is necessary to specify
these behaviors, CTPL is not sufficient. We describe here how e.g., email worms can be
specified using SCTPL. The typical behavior of an email worm can be summarized as
follows: the worm will first call the API GetModuleFileNameA in order to get the name
of its executable. For this, the worm needs to call this function with 0 and m as parame-
ters (m corresponds to the address of a memory location), i.e., with 0m on the top of the
stack since parameters to a function in assembly are passed through the stack. GetMod-
uleFileNameA will then write the name of the worm executable on the address m. Then,
the worm will copy its file (whose name is at the address m) to other locations using the
function CopyFileA. It needs to call CopyFileA with m as parameter, i.e., with m on the
top of the stack. Figure 2(a) shows a disassembled fragment of a code corresponding to
this typical behavior. This behavior can be expressed by the SCTPL formula of Figure
2(b). In this formula, Line 2 expresses that there exists a register r0 such that the address
of the memory location m is assigned to r0, and such that the value of r0 does not change
until it is pushed onto the stack (subformula ¬∃v(mov(r0, v) ∨ lea(r0, v)) Upush(r0)).
Line 3 guarantees that r0 is not pushed nor popped from the stack until GetModuleFile-
NameA is called, and 0r0 is on the top of the stack (the predicate 0r0Γ

∗ ensures this).
This guarantees that when GetModuleFileNameA is called, r0 still contains the address
of m. Thus, the name of the worm file returned by GetModuleFileNameA will be put at
the address m. Line 4 is similar to Line 2. It expresses that there exists a register r1 such
that the address of the memory location m is assigned to r1, and such that the value of r1

does not change until it is pushed onto the stack. This guarantees that when r1 is pushed
to the stack, it contains the address of m. Line 5 expresses that r1 is not pushed nor
popped from the stack until CopyFileA is called, and r1 is on the top of the stack (the
predicate r1Γ

∗ ensures this). This guarantees that when CopyFileA is called, the value
of r1 is still m. Thus, CopyFileA will copy the file whose name is at the address m. Note
that we need predicates over the stack to express in a precise manner this specification.

4 SCTPL Model-Checking for Pushdown Systems

In this section, we give an efficient SCTPL model checking algorithm for Pushdown
systems. Our procedure works as follows: we reduce this model checking problem to the

Pushdown Model Checking for Malware Detection 117

...
lea eax, [ebp+ ExistingF ileName]
push eax
push 0
call ds : GetModuleF ileNameA
...
lea eax, [ebp+ ExistingF ileName]
push eax
call ds : CopyF ileA
...

(a)

1. ψew = ∃m
(
∃r0
(

2. EF
(
lea(r0,m) ∧EX E

[
¬∃v(mov(r0, v) ∨ lea(r0, v))U

(
push(r0)

3. ∧EX E[¬(push(r0) ∨ ∃v(pop(v) ∧ r0Γ
∗))U(call(GetModuleF ileNameA) ∧ 0 r0Γ

∗

4. ∧ ∃r1
(
EF(lea(r1,m) ∧EX E[¬∃v(mov(r1, v) ∨ lea(r1, v))U(push(r1)

5. ∧EX E[¬(push(r1) ∨ ∃v(pop(v) ∧ r1Γ
∗))Ucall(CopyF ileA) ∧ r1Γ

∗])])
)
)]
)])))

(b)

Fig. 2. (a) Email worm (b) Specification of Email worm

emptiness problem in Symbolic Alternating Büchi Pushdown Systems (SABPDS), and
we give an algorithm to solve this emptiness problem. To achieve this reduction, we use
variable automata to represent regular variable expressions. This section is structured
as follows. First, we introduce variable automata. Then, we define Symbolic Alternating
Büchi Pushdown Systems. Next, we show how SCTPL model checking for PDSs can
be reduced to emptiness checking of SABPDSs.

In the remainder of this section, we let X be a finite set of variables ranging over a
finite domainD, and B be the set of all the environment functions B : X ∪D −→ D.

4.1 Variable Automata

Given a PDS P = (P, Γ, Δ, �) s.t. Γ ⊆ D, a Variable Automaton (VA) is a tuple M =
(Q, Γ, δ, q0, A), where Q is a finite set of states; Γ is the input alphabet; q0 ⊆ Q is an
initial state; A ⊆ Q is a finite set of accepting states; and δ is a finite set of transition

rules of the form: p
α−→ {q1, ..., qn} where α can be x, ¬x, or γ, for any x ∈ X and γ ∈ Γ.

Let B ∈ B. A run of VA on a word γ1, ..., γm under B is a tree of height m whose root
is labelled by the initial state q0, and each node at depth k labelled by a state q has h

children labelled by p1, ..., ph, respectively, such that: either q
γk−→ {p1, ..., ph} ∈ δ and

γk ∈ Γ; or q
x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) = γk; or q

¬x−→ {p1, ..., ph} ∈ δ, x ∈ X
and B(x) � γk. A branch of the tree is accepting iff the leaf of the branch is an accepting
state. A run is accepting iff all its branches are accepting. A word ω ∈ Γ∗ is accepted
by a VA under an environment B ∈ B iff the VA has an accepting run on the word ω

118 F. Song and T. Touili

under the environment B. The language of a VA M, denoted by L(M), is a subset of
(P×Γ∗)×B. (〈p, ω〉,B) ∈ L(M) iff M accepts the word ω under the environment B. We
can show that:

Theorem 1. VAs are effectively closed under boolean operations.

Theorem 2. For every regular expression e ∈ R, one can effectively compute in poly-
nomial time a VA M such that L(M) = L(e).

4.2 Symbolic Alternating Büchi Pushdown Systems

Definition 1. A Symbolic Alternating Büchi Pushdown System (SABPDS) is a tuple
BP = (P, Γ, Δ, F), where P is a finite set of control locations; Γ ⊆ D is the stack
alphabet; F ⊆ P × 2B is a set of accepting states; Δ is a finite set of transitions of the

form 〈p, γ〉 �↪→ [〈p1, ω1〉, ..., 〈pn, ωn〉] where p ∈ P, γ ∈ Γ, for every i, 1 ≤ i ≤ n: pi ∈ P,
ωi ∈ Γ∗, and� : (B)n −→ 2B is a function that maps a tuple of environments to a set
of environments.

A configuration of a SABPDS is a tuple 〈[p,B], ω〉, where p ∈ P is a control
location, B ∈ B is an environment and ω ∈ Γ∗ is the stack content. [p,B] ∈
P × B is an accepting state iff ∃[p, β] ∈ F s.t. B ∈ β. Let t = 〈p, γ〉 �

↪→
[〈p1, ω1〉, ..., 〈pn, ωn〉] ∈ Δ be a transition, n is the width of the transition t. For
every ω ∈ Γ∗, B,B1, ...,Bn ∈ B, if B ∈ �(B1, ...,Bn), then the configuration
〈[p,B], γω〉 (resp. {〈[p1,B1], ω1ω〉, ..., 〈[pn,Bn], ωnω〉}) is an immediate predecessor
(resp. immediate successor) of {〈[p1,B1], ω1ω〉, ..., 〈[pn,Bn], ωnω〉} (resp. 〈[p,B], γω〉).
A run ρ of BP from an initial configuration 〈[p0,B0], ω0〉 is a tree in which the
root is labeled by 〈[p0,B0], ω0〉, and the other nodes are labeled by elements of
(P × B) × Γ∗. If a node of ρ labeled by 〈[p,B], ω〉 has n children labeled by
〈[p1B1], ω1〉, ..., 〈[pn,Bn], ωn〉, respectively, then, necessarily, 〈[p,B], ω〉 is an immedi-
ate predecessor of {〈[p1,B1], ω1〉, ..., 〈[pn,Bn], ωn〉} in BP.

A path c0c1... of a run ρ is an infinite sequence of configurations where c0 is the
root of ρ and for every i ≥ 0, ci+1 is one of the children of the node ci in ρ. The path
is accepting iff it visits infinitely often configurations with accepting states. A run ρ
is accepting iff all its paths are accepting. Note that an accepting run has only infinite
paths. A configuration c is accepted (or recognized) by BP iff BP has an accepting run
starting from c. The language of BP, denoted by L(BP), is the set of configurations
accepted by BP.

The predecessor functions PreBP, Pre∗BP and Pre+BP : 2(P×B)×Γ∗ −→
2(P×B)×Γ∗ are defined as follows: PreBP(C) = {c ∈ (P × B) × Γ∗ |
some immediate successor of c is a subset of C}, Pre∗BP is the reflexive and transitive
closure of PreBP, PreBP ◦ Pre∗BP is denoted by Pre+BP.

SABPDS vs. ABPDS. An Alternating Büchi Pushdown System (ABPDS for short) [21]
can be seen as a SABPDS:

Lemma 1. Given a SABPDSBP = (P, Γ, Δ, F), one can compute an equivalent ABPDS
BP′ that simulates BP in O(|Δ| · |B|k+1) time, where k is the maximum of the widths of
the transition rules in Δ and |B| = |D||X|.

Pushdown Model Checking for Malware Detection 119

Symbolic Alternating Multi-Automata. To finitely represent infinite sets of configu-
rations of SABPDSs, we use Symbolic Alternating Multi-Automata.

Let BP = (P, Γ, Δ, F) be a SABPDS, a Symbolic Alternating Multi-Automaton
(SAMA) is a tuple A = (Q, Γ, δ, I,Q f), where Q is a finite set of states, Γ is the in-
put alphabet, δ ⊆ (Q×Γ)× 2Q is a finite set of transition rules, I ⊆ P× 2B is a finite set
of initial states, Q f ⊆ Q is a finite set of final states. An Alternating Multi-Automaton
(AMA) is a SAMA such that I ⊆ P × {∅}.

We define the reflexive and transitive transition relation −→δ⊆ (Q × Γ∗) × 2Q as

follows: (1) q
ε−→δ {q} for every q ∈ Q, where ε is the empty word, (2) if q

γ−→
{q1, ..., qn} ∈ δ and qi

ω−→δ Qi for every 1 ≤ i ≤ n, then q
γω−→δ
⋃n

i=1 Qi. The automaton
A recognizes a configuration 〈[p,B], ω〉 iff there exist Q′ ⊆ Q f and β ⊆ B s.t. B ∈ β,

[p, β] ∈ I and [p, β]
ω−→δ Q′. The language of A, denoted by L(A), is the set of

configurations recognized byA. A set of configurations is regular if it can be recognized
by a SAMA. Similarly, AMAs can also be used to recognize (infinite) regular sets of
configurations for ABPDSs.

Proposition 1. Let A = (Q, Γ, δ, I,Q f) be a SAMA. Then, deciding whether a config-
uration 〈[p,B], ω〉 is accepted by A can be done in O(|Q| · |δ| · |ω| + τ) time, where τ
denotes the time used to check whether B ∈ β for some B ∈ B, β ⊆ B.

Remark 1. The time τ used to check whether B ∈ β depends on the representation
of B and β. In particular, if we use BDDs to represent sets of environment functions,
checking whether B ∈ β can be done in τ = O(�log|D|� · |X|) [8].

Computing the Language of an SABPDS. We can extend the algorithm of [21] that
computes an AMA that recognizes the language of an ABPDS to obtain an algorithm
that computes the language of an SABPDS. More precisely:

Theorem 3. Let BP = (P, Γ, Δ, F) be a SABPDS, then we can compute a SAMAA that
recognizes L(BP) in O

(
|P|2 · 22|B| · |Γ| · |Δ| · 25|P|·2|B|) time.

Remark 2. Note that another way to computeL(BP) is to apply Lemma 1 and produce
an equivalent ABPDS BP′ that simulates BP, and then apply the algorithm of [21]
to compute an AMA that recognizes L(BP′). In practice, in the symbolic case (for
SABPDS), the sets of environments β’s can be compactly represented using BDDs for
example, whereas in the explicit case (for ABPDS), all the environments B’s have to be
considered. Thus, the algorithm behind Theorem 3 will behave better in practice. This
is confirmed by the experiments we run where, in the majority of cases, this algorithm
terminates in few seconds, whereas if we compute an equivalent ABPDS and apply the
algorithm of [21], we run out of memory.

Examples of Functions�. We give some examples of functions� that will be used.

– equal(B1, ...,Bn) =

{ {B1} if Bi = B j for every 1 ≤ i, j ≤ n, or n = 1
∅ otherwise.

120 F. Song and T. Touili

This function checks that all the Bi’s are equal and returns {B1} (which is equal to
{Bi} for any i) if this is the case and the emptyset otherwise.

– meetx
{c1,...,cn}(B1, ..., Bn) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Absx(B1) if Bi(x) = ci and Bi(y) = B j(y) for y � x,
for every 1 ≤ i, j ≤ n,

∅ otherwise.
This function checks whether Bi(x) = ci for every i, 1 ≤ i ≤ n, and for every y � x
and every i, j, 1 ≤ i, j ≤ n Bi(y) = B j(y). It returns Absx(B1) (which is equal to
Absx(Bi) for any i) if this is the case and the emptyset otherwise.

– joinx
c(B1, ...,Bn) =

{ {B1} if Bi = Bj and Bi(x) = c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) = c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

– join¬x
c (B1, ...,Bn) =

{ {B1} if Bi = Bj and Bi(x) � c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) � c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

4.3 From SCTPL Model Checking for PDSs to Emptiness of SABPDS

Let P = (P, Γ, Δ, �), λ : APD → 2P be a labeling function, and ϕ be a SCTPL for-
mula. For every configuration 〈p, ω〉, our goal is to determine whether 〈p, ω〉 |=λ ϕ, i.e.,
whether there exists an environment B ∈ B s.t. 〈p, ω〉 |=B

λ ϕ. We proceed as follows:
we compute a symbolic alternating Büchi pushdown system BP s.t. 〈p, ω〉 |=B

λ ϕ iff
〈[�p, ϕ�,B], ω〉 ∈ L(BP). Then, 〈p, ω〉 |=λ ϕ iff there exists B ∈ B such that 〈p, ω〉 |=B

λ ϕ.
Let Reg+(ϕ) = {e1, ..., ek} and Reg−(ϕ) = {ek+1, ..., em} be the two sets of regular

variable expressions1 that occur in ϕ. As shown in Theorems 2 and 1, for every i, 1 ≤
i ≤ k we can construct VAs Mei = (Qei , Γ, δei , sei , Aei) such that L(Mei) = L(ei); and
for every j, k < j ≤ m we can construct VAs M¬e j = (Q¬e j , Γ, δ¬e j , s¬e j , A¬e j) such that
L(M¬e j) = (P×Γ∗)×B\L(e j). We suppose w.l.o.g. that the states of these automata are
distinct. LetM be the union of all these automata, F be the union of all the final states
of these automata Aei’s and A¬e j’s and S be the union of all the states of these automata
Qei ’s and Q¬e j ’s.

Let BPϕ = (P′, Γ, Δ′, F) be the SABPDS defined as follows: P′ = P × cl(ϕ) ∪ S;
F = F1∪F2∪F3∪F4, where F1 = {[�p, a(x1, ..., xn)�, β] | a(x1, ..., xn) ∈ AP+(ϕ) and β =
{B ∈ B | p ∈ λ

(
a
(
B(x1), ..., B(xn)

))}}; F2 = {[�p,¬a(x1, ..., xn)�, β] | ¬a(x1, ..., xn) ∈
AP−(ϕ) and β = {B ∈ B | p � λ

(
a
(
B(x1), ..., B(xn)

))}}; F3 = P × clŨ(ϕ) × {B}; and
F4 = F × {B}.
Δ′ is the smallest set of transition rules that satisfy the following. For every control
location p ∈ P, every subformula ψ ∈ cl(ϕ), and every γ ∈ Γ:

1. if ψ = a(x1, ..., xn) or ψ = ¬a(x1, ..., xn); 〈�p, ψ�, γ〉 equal
↪→ 〈�p, ψ�, γ〉 ∈ Δ′;

2. if ψ = ψ1 ∧ ψ2; 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ1�, γ〉, 〈�p, ψ2�, γ〉] ∈ Δ′;

1 AP+(ϕ), AP−(ϕ), Reg+(ϕ) and Reg−(ϕ) are as defined in Section 3.2.

Pushdown Model Checking for Malware Detection 121

3. if ψ = ψ1 ∨ ψ2; 〈�p, ψ�, γ〉 equal
↪→ 〈�p, ψ1�, γ〉 ∈ Δ′ and 〈�p, ψ�, γ〉 equal

↪→ 〈�p, ψ2�, γ〉 ∈ Δ′;
4. if ψ = ∃x ψ1; 〈�p, ψ�, γ〉

meetx
{c}

↪−−−→ 〈�p, ψ1�, γ〉 ∈ Δ′, for every c ∈ D;

5. if ψ = ∀x ψ1; 〈�p, ψ�, γ〉
meetx

D
↪−−−→ [〈�p, ψ1�, γ〉, · · · , 〈�p, ψ1�, γ〉] ∈ Δ′, where 〈�p, ψ1�, γ〉 is

repeated m times in [〈�p, ψ1�, γ〉, · · · , 〈�p, ψ1�, γ〉], where m is the number of elements inD;

6. if ψ = EXψ1; 〈�p, ψ�, γ〉 equal
↪→ 〈�p′, ψ1�, ω〉 ∈ Δ′ for every 〈p, γ〉 ↪→ 〈p′, ω〉 ∈ Δ;

7. if ψ = AXψ1; 〈�p, ψ)�, γ〉 equal
↪−−→ [〈�p1, ψ1�, ω1〉, . . . , �pl, ψ1�, ωl〉] ∈ Δ′ such that for every i,

1 ≤ i ≤ l, 〈p, γ〉 ↪→ 〈pi, ωi〉 ∈ Δ and these transitions are all the transitions of Δ that have
〈p, γ〉 as left hand side;

8. if ψ = E[ψ1Uψ2]; 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ1�, γ〉, 〈�p′, ψ�, ω〉] ∈ Δ′ for every rule 〈p, γ〉 ↪→

〈p′, ω〉 ∈ Δ, and 〈�p, ψ�, γ〉 equal
↪→ 〈�p, ψ2�, γ〉 ∈ Δ′;

9. if ψ = A[ψ1Uψ2]; 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ1�, γ〉, 〈�p1, ψ�, ω1〉, ..., 〈�pl, ψ�, ωl〉] ∈ Δ′ such that

for every i, 1 ≤ i ≤ l, 〈p, γ〉 ↪→ 〈pi, ωi〉 ∈ Δ and these transitions are all the transitions of Δ

that have 〈p, γ〉 as left hand side, and 〈�p, ψ�, γ〉 equal
↪→ 〈�p, ψ2�, γ〉 ∈ Δ′;

10. if ψ = E[ψ1Ũψ2]; 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ2�, γ〉, 〈�p′, ψ�, ω〉] ∈ Δ′ for every 〈p, γ〉 ↪→

〈p′, ω〉 ∈ Δ, and 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ2�, γ〉, 〈�p, ψ1�, γ〉] ∈ Δ′;

11. if ψ = A[ψ1Ũψ2]; 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ2�, γ〉, 〈�p1, ψ�, ω1〉, ..., 〈�pl, ψ�, ωl〉] ∈ Δ′ such that

for every i, 1 ≤ i ≤ l, 〈p, γ〉 ↪→ 〈pi, ωi〉 ∈ Δ and these transitions are all the transitions of Δ

that have 〈p, γ〉 as left hand side, and 〈�p, ψ�, γ〉 equal
↪−−→ [〈�p, ψ1�, γ〉, 〈�p, ψ2�, γ〉] ∈ Δ′;

12. if ψ = e: 〈�p, ψ�, γ〉 equal
↪→ 〈se, γ〉 ∈ Δ′, where se is the initial state of Me,

13. if ψ = ¬e: 〈�p, ψ�, γ〉 equal
↪→ 〈s¬e, γ〉 ∈ Δ′, where s¬e is the initial state of M¬e,

14. for every transition q
α−→ {q1, ..., qn} inM; 〈q, γ〉 �↪→ {〈q1, ε〉, ..., 〈qn, ε〉} ∈ Δ′, where

(a) � = equal if α = γ,
(b) � = joinx

γ if α = x ∈ X,
(c) � = join¬x

γ if α = ¬x and x ∈ X,

15. for every q ∈ F ; 〈q, �〉 equal
↪→ 〈q, �〉 ∈ Δ′.

Roughly speaking,BPϕ could be seen as the product ofP and ϕ.BPϕ recognizes all the
configurations 〈[�p, ψ�,B], ω〉 s.t. 〈p, ω〉 satisfies ψ under B. ThusBPϕ has an accepting
run from 〈[�p, ψ�,B], ω〉 if and only if the configuration 〈p, ω〉 satisfies ψ under B. Due
to lack of space, we only explain the case ψ = e. In this case, the SABPDS BPϕ accepts
〈[�p, ψ�,B], ω〉 iff (〈p, ω〉,B) ∈ L(Me). To check this, BPϕ first goes to state [se,B] by
Item 12, where se is the initial state of Me, then it continues to check whether ω is
accepted by Me under the environment B. This is ensured by Items 14. Item 14 allows
BPϕ to mimic a run of Me on ω under the environment B: if BPϕ is in state [q,B] and
the topmost symbol of its stack is γ, then:

– Item 14(a) deals with the case where q
γ−→ {q1, ..., q2} is a transition in δe. In this

case, BPϕ moves to the next states [q1,B], ..., [qn,B] while popping γ from the
stack. Popping γ allows BPϕ to check the rest of the word. The function equal
guarantees that all the environments are the same.

122 F. Song and T. Touili

– Item 14(b) deals with the case where q
x−→ {q1, ..., q2}, x ∈ X is a transition in

δe. In this case, BPϕ can continue to mimic a run of Me under the environment B
only if B(x) = γ. If this holds, BPϕ moves to the next states [q1,B], ..., [qn,B] and
pops γ from the stack, which allows BPϕ to check the rest content of the stack. The
function joinx

γ ensures that all the environments are the same and the value of B(x)
is γ.

– Similarly, Item 14(c) deals with the case where q
¬x−→ {q1, ..., q2} is in δe.

Thus, (〈p, ω〉,B) ∈ L(Me) iff Me reaches final states f1, ..., fn of Me after reading the
word ω, i.e., iff BPϕ reaches a set of states [f1,B], ..., [fn,B] with an empty stack (a
stack containing only the bottom stack symbol �). This is why F4 is a set of accepting
states. Moreover, since all the accepting paths are infinite, Item 15 adds a loop on every
configuration 〈[f ,B], �〉 where f is a final state of M and � is the stack symbol (this
makes the paths of BPϕ that reach a state 〈[f ,B], �〉 accepting). Formally, we can show:

Theorem 4. Given a PDS P = (P, Γ, Δ, �), a function λ : APD −→ 2P, a SCTPL
formula ϕ, and a configuration 〈p, ω〉 of P, we have: for every B ∈ B, 〈p, ω〉 |=B

λ ϕ iff
BPϕ has an accepting run from the configuration 〈[�p, ϕ�,B], ω〉.

4.4 SCTPL Model-Checking for PDSs

Given a PDS P = (P, Γ, Δ, �), a labeling function λ, and a SCTPL formula ϕ, thanks to
Theorems 4 and 3, and due to the fact that BPϕ has O(|P| · |ϕ| + k) states and O((|P| ·
|Γ|+ |Δ|) · |ϕ|+ d) transitions, where k and d are the number of states and the number of
transitions of the unionM of the Variable Automata involved in ϕ; we get the following:

Corollary 1. Given a PDS P = (P, Γ, Δ, �), a SCTPL formula ϕ and a labeling function
λ, we can effectively compute a SAMA A in time O

(
(|P||ϕ| + k)2 · 22|B| · |Γ| · ((|P||Γ| +

|Δ|)|ϕ| + d
) · 25(|P||ϕ|+k)·2|B|), where k is the number of states ofM and d is the number of

transition rules ofM such that for every configuration 〈p, ω〉 of P:

1. 〈p, ω〉 |=λ ϕ iff there exists a B ∈ B s.t.A recognizes 〈[�p, ϕ�,B], ω〉.
2. for every B ∈ B: 〈p, ω〉 |=B

λ ϕ iffA recognizes 〈[�p, ϕ�,B], ω〉.
Thus, thanks to this corollary and to Proposition 1, it follows that it is possible to

determine whether a PDS configuration satisfies a SCTPL formula:

Corollary 2. It is possible to decide whether a PDS configuration satisfies a SCTPL
formula.

Remark 3. We can transform every SCTPL formula ψ to an equivalent CTL with regu-
lar valuations formula ψ′. Then, applying [21], we can construct an AMA recognizing
all the configurations which satisfy ψ′. However, in practice, thanks to the compact rep-
resentation of the sets of environments β’s using BDDs, model-checking SCTPL using
our symbolic techniques behaves much better than reducing SCTPL to CTL with regu-
lar valuations and then applying [21]. Indeed, the experiments we run show that in most
of the cases, our symbolic algorithm for SCTPL model-checking terminates in few sec-
onds, whereas translating the SCTPL formula to CTL with regular valuations and then
applying [21] would run out of memory.

Pushdown Model Checking for Malware Detection 123

Table 1. Detection of real malwares

Examples |P| Our techniques SABPDS→ABPDS SCTPL→CTLr
Result

Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb)
Klez.a 42 1.62 10.8 - MemOut - MemOut Y
Klez.b 45 1.55 10.8 - MemOut - MemOut Y
Klez.c 41 1.27 8.9 - MemOut - MemOut Y
Klez.d 51 1.47 10.3 - MemOut - MemOut Y
Klez.e 52 0.77 7.0 - MemOut - MemOut Y
Klez.f 50 0.76 7.0 - MemOut - MemOut Y
Klez.g 47 0.75 7.0 - MemOut - MemOut Y
Klez.i 49 0.74 7.0 - MemOut - MemOut Y
Klez.j 55 0.74 7.0 - MemOut - MemOut Y

Mydoom.c 210 145.20 322.8 - MemOut - MemOut Y
Mydoom.e 288 123.22 267.5 - MemOut - MemOut Y
Mydoom.g 256 117.50 256.7 - MemOut - MemOut Y

Predec.j 25 0.23 0.81 - MemOut 56.14 36.16 Y
Netsky.a 69 2.73 14.5 - MemOut - MemOut Y

Akez 42 0.22 0.3 - MemOut 0.44 2.49 Y
Netsky.b 80 2.73 14.5 - MemOut - MemOut Y
Netsky.c 78 2.73 14.5 - MemOut - MemOut Y
Netsky.d 72 2.73 14.5 - MemOut - MemOut Y
Alcaul.h 48 0.83 0.9 - MemOut 1.14 6.88 Y
Uedit32 180 92.58 100.94 - MemOut - MemOut N
Alcaul.l 2 0.30 0.7 - MemOut 0.86 3.96 Y

Cygwin32 212 23.72 123.31 - MemOut - MemOut N
cmd.exe 202 1.44 25.52 - MemOut - MemOut N
Alcaul.o 68 0.20 0.6 - MemOut 0.83 3.37 Y

Mydoor.ar 256 113.2 227.4 - MemOut - MemOut Y
Adson.1559 52 0.22 2.1 - MemOut - MemOut Y
Adson.1651 54 0.23 2.1 - MemOut - MemOut Y
Adson.1703 55 0.25 2.1 - MemOut - MemOut Y
Adson.1734 54 0.31 2.6 - MemOut - MemOut Y

Alcaul.d 62 0.20 0.8 - MemOut 47.70 51 Y
Alcaul.i 88 4.38 0.28 - MemOut 159.88 169.64 Y
Alcaul.j 79 0.30 2.1 - MemOut 218.25 198.71 Y

Oroch.3982 89 3.70 7.72 - MemOut - MemOut Y
KME 145 999.31 20.04 - MemOut - MemOut Y
Anar.a 41 1.16 1.60 885.33 343.24 54.92 34.12 Y
Anar.b 47 1.49 1.60 891.42 348.54 56.14 36.16 Y
Atak.b 126 762.34 18.15 - MemOut - MemOut Y

Alcaul.c 33 0.12 0.3 - MemOut 0.41 2.19 Y
Bagle.d 88 652.23 16.96 - MemOut - MemOut Y
Alcaul.f 52 0.09 0.3 - MemOut 0.53 2.23 Y
Alcaul.b 50 0.06 0.2 - MemOut 0.28 1.18 Y
Alcaul.e 49 0.49 0.9 - MemOut 1.03 5.28 Y
Alcaul.g 53 0.31 0.7 - MemOut 0.97 4.45 Y
Evol.a 102 9.58 3.22 - MemOut - MemOut Y

Alcaul.k 52 0.26 0.6 - MemOut 0.76 3.65 Y
Alcaul.m 53 0.20 0.6 - MemOut 0.88 3.37 Y
Alcaul.n 34 0.12 0.3 - MemOut 0.44 2.28 Y
Klinge 78 237.50 4.49 - MemOut 0.83 3.37 Y
Atak.f 220 23.4 139.1 - MemOut - MemOut Y

Mydoor.ay 328 124.2 232.5 - MemOut - MemOut Y

124 F. Song and T. Touili

5 Experiments

We implemented our techniques in a tool for malware detection. We use IDAPro [3] as
disassembler. We use BDDs to represent sets of environments. We carried out different
experiments. We obtained interesting results. In particular, our tool was able to detect
several viruses taken from [14]. Our results are reported in Table 1. Column |P| gives
the number of control locations of the PDS model. Every program is checked against
several malicious behaviors. A program is declared as a potential virus if it satisfies one
of the specifications. Column time(s) and mem(Mb) give the time (in seconds) and the
memory (in Mb). The last Column result is Y is the program contains the malicious
behaviors given in Column Formula, and N if not. We also compared our techniques
against translating SABPDS to ABPDS (Columns “SABPDS→ABPDS”), or trans-
lating SCTPL to CTL with regular valuations (Columns “SCTPL→CTLr”). We were
able to detect all the viruses that we considered, whereas applying the translation from
SABPDS to ABPDS or from SCTPL to CTL with regular valuations would run out
of memory in most of the cases, and thus cannot detect the viruses. Our tool was also
able to deduce that some benign programs are not viruses. E.g. we tried the following
benign programs: Uedit32, a fragment of Ultra Edit Text Editor software by IDM Com-
puter Solutions; Cygwin32 a fragment of the Setup software of Cygwin, a Linux-like
environment for Windows. cmd.exe is the Microsoft-supplied command-line interpreter.

Table 2. Detection of obfuscated Viruses

Obfuscation
Our techniques Avira antivirus Qihoo 360 antivirus Avast antivirus
detection rate detection rate detection rate detection rate

nop-insertion 100% 65% 55% 60%
code-reordering 100% 40% 35% 45%

register-renaming 100% 25% 25% 30%
stack-operation 100% 20% 25% 20%
procedure-split 100% 5% 5% 5%

Moreover, we run several experiments to check how robust are our techniques in
virus detection in case the virus writers use obfuscation techniques. To this aim, we
considered some of the viruses of Table 1, and we added several obfuscations man-
ually such as: instruction reordering (reordering the instructions inside the code and
using jump instructions so that the control flow is not changed), dead code insertion,
register renaming, splitting the code into several procedures, adding useless stack oper-
ations, etc. We tested 5 variants for each type of obfuscation of the viruses Mydoom.g,
Netsky.a, Bagle.d, Adson.1734 and Akez. The results are reported in Table 2. Our tech-
niques were able to detect all these variations, whereas the three well known and widely
used free antiviruses Avira [2], Qihoo 360 [4] and Avast [1] were not able to detect sev-
eral of these virus variations.

Pushdown Model Checking for Malware Detection 125

References

1. Avast antivirus, free version, http://www.avast.com
2. Avira antivirus, free version, http://www.avira.com
3. IDA Pro, http://www.hex-rays.com/idapro/
4. Qihoo 360 antivirus, http://www.360.cn
5. Balakrishnan, G., Reps, T., Kidd, N., Lal, A., Lim, J., Melski, D., Gruian, R., Yong, S., Chen,

C.-H., Teitelbaum, T.: Model Checking x86 Executables with CodeSurfer/x86 and WPDS++.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 158–163. Springer,
Heidelberg (2005)

6. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M., Lavoie, Y., Tawbi, N.: Static detection
of malicious code in executable programs. In: SREIS (2001)

7. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Architecture of a Morphological Malware De-
tector. Journal in Computer Virology 5, 263–270 (2009)

8. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3) (1992)

9. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
12th USENIX Security Symposium (2003)

10. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behavior. In:
ISEC (2008)

11. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy (2005)

12. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for push-
down systems. Inf. Comput. 186(2) (2003)

13. Esparza, J., Schwoon, S.: A BDD-Based Model Checker for Recursive Programs. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336. Springer, Hei-
delberg (2001)

14. Heavens, V.: http://vx.netlux.org
15. Holzer, A., Kinder, J., Veith, H.: Using Verification Technology to Specify and Detect Mal-

ware. In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007.
LNCS, vol. 4739, pp. 497–504. Springer, Heidelberg (2007)

16. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting Malicious Code by Model
Checking. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

17. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Proactive detection of computer
worms using model checking. IEEE Transactions on Dependable and Secure Computing 7(4)
(2010)

18. Lakhotia, A., Boccardo, D.R., Singh, A., Manacero, A.: Context-sensitive analysis of obfus-
cated x86 executables. In: PEPM (2010)

19. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls in mali-
cious binaries. IEEE Trans. Software Eng. 31(11) (2005)

20. Singh, P.K., Lakhotia, A.: Static verification of worm and virus behavior in binary executa-
bles using model checking. In: IAW (2003)

21. Song, F., Touili, T.: Efficient CTL Model-Checking for Pushdown Systems. In: Katoen, J.-
P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434–449. Springer, Heidelberg
(2011)

http://www.avast.com
http://www.avira.com
http://www.hex-rays.com/idapro/
http://www.360.cn
http://vx.netlux.org

Aspect-Oriented Runtime Monitor Certification�

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar

University of Texas at Dallas
{hamlen,micah.jones1,meera.sridhar}@utdallas.edu

Abstract. In-lining runtime monitors into untrusted binary programs
via aspect-weaving is an increasingly popular technique for efficiently
and flexibly securing untrusted mobile code. However, the complexity of
the monitor implementation and in-lining process in these frameworks
can lead to vulnerabilities and low assurance for code-consumers. This
paper presents a machine-verification technique for aspect-oriented in-
lined reference monitors based on abstract interpretation and model-
checking. Rather than relying upon trusted advice, the system verifies
semantic properties expressed in a purely declarative policy specifica-
tion language. Experiments on a variety of real-world policies and Java
applications demonstrate that the approach is practical and effective.

Keywords: Abstract interpretation, in-lined reference monitors, model-
checking, security.

1 Introduction

Software security systems that employ purely static analyses to detect and reject
malicious code are limited to enforcing decidable security properties. Unfortu-
nately, most useful program properties, such as safety and liveness properties,
are not generally decidable and can therefore only be approximated by purely
static analyses. For example, signature-based antivirus products accept or re-
ject programs based on their syntax rather than their runtime behavior, and
therefore suffer from dangerous false negatives, inconvenient false positives, or
both (cf., [16]). This has shifted software security research increasingly toward
more powerful dynamic analyses, but these dynamic systems are often far more
difficult to formally verify than provably sound static analyses.

An increasingly important family of such dynamic analyses are those that
modify untrusted binary code prior to its execution. In-lined reference monitors
(IRMs) instrument untrusted code with new operations that perform runtime
security checks before potentially dangerous operations [27]. The approach is mo-
tivated by improved efficiency (since IRMs require fewer context switches than
external monitors), deployment flexibility (since in-lining avoids modifying the
VM or OS), and precision (since IRMs can monitor internal program operations

� Supported by AFOSR award FA9550-08-1-0044 and NSF award NSF-1065216. Any
views expressed do not necessarily reflect those of the NSF or AFOSR.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 126–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aspect-Oriented Runtime Monitor Certification 127

not readily visible to an external monitor). Most modern IRM systems are imple-
mented using some form of aspect-oriented programming (AOP) [32,28,7,8,14].
Such IRMs are implemented as pointcut -advice pairs: pointcuts identify security-
relevant program operations and advice prescribes local code transformations
sufficient to guard such operations. This suffices to enforce safety policies [27,18]
and some liveness policies [26].

To provide exceptionally high assurance guarantees, recent work has sought
to reduce the (potentially large) trusted computing bases (TCBs) of IRM
frameworks by separately machine-verifying the self-monitoring code they pro-
duce [17,1,30,31]. For example, the S3MS project uses a contract-based verifier [1]
to avoid trusting the the much larger in-liner (over 900K lines of Java code if
one includes the underlying AspectJ system [22]) that generates the IRMs.

However, TCB-minimization of large IRM systems has been frustrated by the
inevitable inclusion of significant, trusted code within the AOP-style policy spec-
ifications themselves. Verifiers for these systems can prove that the IRM system
has correctly in-lined the policy-prescribed advice code but not that this advice
actually enforces the desired policy. Past case studies have demonstrated that
such advice is extremely difficult to write correctly, especially when the policy is
intended to apply to large classes of untrusted programs rather than individual
applications [21]. Moreover, in many domains, such as web ad security, policy
specifications change rapidly as new attacks and vulnerabilities are discovered
(cf., [23,29,30]). Thus, the considerable effort that might be devoted to formally
verifying one particular aspect implementation quickly becomes obsolete when
the aspect is revised in response to a new threat.

To address this open challenge, we present Cheko : the first IRM-certification
framework that verifies full, AOP-style IRMs against purely declarative policy
specifications without trusting the code that implements the IRM. Cheko uses
light-weight model-checking and abstract interpretation to verify untrusted (but
verifiably type-safe) Java bytecode binaries against trusted policy specifications
that lack advice. Policies declaratively specify how security-relevant program op-
erations affect an abstract system security state. Unlike contracts, which denote
code transformations, policies in our system therefore denote pure code prop-
erties. Such properties can be enforced by untrusted aspects that dynamically
detect impending policy violations and take corrective action. The woven aspects
are verified (along with the rest of the self-monitoring code) against the trusted
policy specification prior to its execution.

Cheko was inspired by our prior work on model-checking IRMs [30,29,9],
but includes numerous substantial theoretic and pragmatic leaps beyond those
earlier works. These include:

– support for a full-scale Java IRM framework (the SPoX IRM system [14,20])
that includes stateful (history-based) policies, event detection by pointcut-
matching, and IRM implementations that combine (untrusted) before- and
after-advice insertions;

– a novel approach to dynamic pointcut verification using Constraint Logic
Programming (CLP) [19]; and

128 K.W. Hamlen, M.M. Jones, and M. Sridhar

– proofs of correctness based on Cousot’s abstract interpretation framework [5]
that link the denotational semantics of SPoX policies to the operational
semantics of the abstract interpreter.

Section 2 begins with related work, followed by an overview of the SPoX policy
language and the rewriter in §3. Section 4 presents a high-level description of
the verification algorithm. (A more detailed treatment with proofs is available
in the companion technical report [15].) Section 5 presents in-depth case-studies
of several security policy classes that we enforced on numerous real-world ap-
plications, and discusses challenges faced in implementing and verifying these
policies. Finally, §6 concludes with recommendations for future work.

2 Related Work

IRMs were first formalized in the PoET/PSLang/SASI systems [11,27,10], which
implement IRMs for Java bytecode and Gnu assembly code. IRM systems have
subsequently been developed for many architectures (cf., [24,4]). Most of these
express security policies in an AOP or AOP-like language with pointcut ex-
pressions for identifying security-relevant binary program operations, and code
fragments (advice) that specify actions for detecting and prohibiting impending
policy violations. A hallmark of these systems is their ability to enforce history-
based, stateful policies that permit or prohibit each event based on the history
of past events exhibited by the program. This is typically achieved by express-
ing the security policy as an automaton [27,25] whose state is reified into the
untrusted program as a protected global variable. The IRM tracks the current
security state at runtime by consulting and updating the variable as events occur.

Machine-certification of IRMs was first proposed as type-checking [33]—an
idea that was later extended and implemented in the Mobile system [17]. Mo-
bile transforms Microsoft .NET bytecode binaries into safe binaries with typing
annotations in an effect-based type system. The annotations constitute a proof
of safety that a type-checker can separately verify to prove that the transformed
code is safe. Type-based IRM certification is efficient and elegant but does not
currently support dynamic pointcut matching. It has therefore not been applied
to AOP-style IRMs to our knowledge.

ConSpec [2,1] adopts a security-by-contract approach to AOP IRM certifica-
tion. Its certifier performs a static analysis that verifies that contract-specified
guard code appears at each security-relevant code point. While certification-via-
contract facilitates natural expression of policies as AOP programs, it has the
disadvantage of including the potentially complex advice code in the TCB.

Our prior work [30] is the first to adopt a model-checking approach to verify
such IRMs without trusted guard code. The prototype IRM certifier in [30]
supports reified security state, but it does not support dynamic pointcuts and
its support for advice is limited to a very constrained form of before-advice.
It therefore does not support real-world IRM systems or their policies, which
regularly employ dynamic pointcuts and after-advice.

Aspect-Oriented Runtime Monitor Certification 129

In contrast, the verifier presented in this work targets SPoX [14,20], a fully
featured, purely declarative AOP IRM system for Java bytecode. SPoX policies
are advice-free; any advice that implements the IRM remains untrusted and
must therefore undergo verification. Policy specifications consist of pointcuts
and declarative specifications of how pointcut-matching events affect the secu-
rity state. The abstract security state-changes specified by SPoX policies are
significantly higher-level and simpler than the arbitrary advice code admitted
by non-declarative AOP languages. Thus, SPoX policies are a significant TCB
reduction over AOP contracts that implement them.

3 Policy Language and Rewriter

As an example of how software security policies are specified in SPoX, Fig. 1
specifies a policy that permits applications to send at most 10 email messages
per run. The policy says that Mail.send API calls increment security state s up
to 10, but an 11th call triggers a policy violation. Such a policy could be useful
for preventing spam.

1 (state name="s")
2 (forall "i" from 0 to 9
3 (edge name="count"
4 (call "Mail.send")
5 (nodes "s" i, i+ 1)))
6 (edge name="10emails"
7 (call "Mail.send")
8 (nodes "s" 10,#))

Fig. 1. A policy permitting at most 10 email-send events

More formally, SPoX policies denote security automata [3]—finite- or infinite-
state machines that accept languages of permissible event sequences. Sets of edges
in the security automaton are described by edge structures, each of which con-
sists of a pointcut expression (Lines 4 and 7) and at least one nodes declaration
(Lines 5 and 8). The pointcut expression defines a common label for the edges
in the set, while each nodes declaration imposes a transition pre-condition and
post-condition for a particular state variable. The pre-condition constrains the
set of source states to which the edge applies, and the post-condition describes
how the state changes when an event satisfying the pointcut expression and all
pre-conditions is exhibited. Events that satisfy none of the outgoing edge labels
of the current security state leave the security state unchanged. Policy-violations
are explicitly identified with the reserved post-condition “#”.

SPoX derives its pointcut language from AspectJ, allowing policy writers to
develop policies that regard static and dynamic method calls and their argu-
ments, object pointers, and lexical contexts, among other properties. In order to
remain fully declarative, SPoX omits explicit, imperative advice. Instead, poli-
cies declaratively specify how security-relevant events change the current security

130 K.W. Hamlen, M.M. Jones, and M. Sridhar

automaton state. Rewriters then synthesize their own advice in order to enforce
the prescribed policy. The use of declarative state-transitions instead of imper-
ative advice facilitates formal, automated reasoning about policies without the
need to reason about arbitrary code [21].

The SPoX rewriter takes as input a Java binary archive (JAR) and a SPoX
policy, and outputs a new application in-lined with an IRM that enforces the
policy. The high-level in-lining approach is essentially the same as the other IRM
systems discussed in §2. Each method body is scanned for potentially security-
relevant instructions, and sequences of guard instructions are in-lined around
those to detect and preclude policy-violations at runtime.

In-lined guard code must track event histories if the policy is stateful. To do
so, the rewriter reifies abstract security state variables into the untrusted code
as static, private class fields. The guard code then tracks the abstract security
state by consulting and updating the corresponding fields. The runtime guards
must also evaluate any statically undecidable portions of pointcut expressions
to decide whether impending events are actually security-relevant. For example,
to evaluate pointcut (argval 1 (intgt 2)), it might dynamically test whether
x > 2, where x is the impending operation’s first argument.

(A=S ∧ A=T) 0.1
1 if (Policy.s >= 0 && Policy.s <= 9)

(A=S ∧A=T ∧ S≥0 ∧ S≤9) 1.1
2 Policy.temp s := Policy.s+1;

(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1) 2.1
(A=S ∧ A=T ∧ (S<0 ∨ S>9)) 2.2

3 if (Policy.s == 10)
(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1 ∧ S=10) 3.1

(A=S ∧A=T ∧ (S<0 ∨ S>9) ∧ S=10) 3.2
4 call System.exit(1);

(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1 ∧ S �=10) 4.1
(A=S ∧A=T ∧ (S<0 ∨ S>9) ∧ S �=10) 4.2

5 Policy.s := Policy.temp s;
(A=S′ ∧ A=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T) 5.1

(A=S′ ∧ A=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T) 5.2
6 call Mail.send();
(A′=S′ ∧A′=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T ∧A′=I ∧ I≥0 ∧ I≤9 ∧A=I+1) 6.1

(A′=S′ ∧ A′=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T ∧ A′=10 ∧A=#) 6.2
(A′=S′ ∧A′=T ′ ∧S′≥0∧S′≤9∧T=S′+1∧S′ �=10∧S=T ∧ (A′<0∨A′>9)∧A′ �=10∧A=A′) 6.3

(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ A′=I ∧ I≥0 ∧ I≤9 ∧ A=I+1) 6.4
(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ A′=10 ∧A=#) 6.5

(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ (A′<0 ∨ A′>9) ∧A′ �=10 ∧ A=A′) 6.6

Fig. 2. An abstract interpretation of instrumented pseudocode

The left column of Fig. 2 gives pseudocode for an IRM that enforces the
policy in Fig. 1. For each call to method Mail.send, the IRM tests two possible
preconditions: (1) 0 ≤ s ≤ 9 and (2) s = 10. In the first case, it increments s;
in the second, it aborts the process. Observe that in this example security state
s has been reified as two separate fields of class Policy (s and temp s) in order
to prevent join point conflicts. This reflects a reality that any given policy has a
variety of IRM implementations, many of which contain unexpected quirks that
address non-obvious, low-level enforcement details.

Aspect-Oriented Runtime Monitor Certification 131

4 Verifier

Our verifier takes as input (1) a SPoX security policy, (2) an instrumented,
type-safe Java bytecode program, and (3) some optional, untrusted hints from
the rewriter (detailed shortly). It either accepts the program as provably policy-
satisfying or rejects it as potentially policy-violating. Type-safety is checked by
the JVM, allowing our verifier to safely assume that all bytecode operations obey
standard Java memory-safety and well-formedness. This keeps tractable the task
of reliably identifying security relevant operations and field accesses.

The main verifier engine uses abstract interpretation to non-deterministically
explore all control-flow paths of the untrusted code, inferring an abstract pro-
gram state at each code point. A model-checker then proves that each abstract
state is policy-adherent, thereby verifying that no execution of the code enters a
policy-violating program state. Policy-violations are modeled as stuck states in
the operational semantics of the verifier—that is, abstract interpretation cannot
continue when the current abstract state fails the model-checking step. This re-
sults in conservative rejection of the untrusted code. The verifier is expressed as
a bisimulation of the program and the security automaton. Abstract states in
the analysis conservatively approximate not only the possible contents of mem-
ory (e.g., stack and heap contents) but also the possible security states of the
system at each code point.

The heart of the verification algorithm involves inferring and verifying rela-
tionships between the abstract program state and the abstract security state.
When policies are stateful, this involves verifying relationships between the
abstract security state and the corresponding reified security state(s). These
relationships are complicated by the fact that although the reified state often
precisely encodes the actual security state, there are also extended periods during
which the reified and abstract security states are not synchronized at runtime.
For example, guard code may preemptively update the reified state to reflect a
future security state that will only be reached after subsequent security-relevant
events, or it may retroactively update the reified state only after numerous oper-
ations that change the security state have occurred. These two scenarios corre-
spond to the insertion of before- and after-advice in AOP IRM implementations.
The verification algorithm must be powerful enough to automatically track these
relationships and verify that guard code implemented by the IRM suffices to pre-
vent policy violations.

To aid the verifier in this task, we modified the SPoX rewriter to export two
forms of untrusted hints along with the rewritten code: (1) a relation ∼ that
associates policy-specified security state variables s with their reifications r, and
(2) marks that identify code regions where related abstract and reified states
might not be synchronized according to the following definition:

Definition 1 (Synchronization Point). A synchronization point (SYNC) is
an abstract program state with constraints ζ such that proposition ζ∧

(∨
r∼s(r �=

s)
)
is unsatisfiable.

132 K.W. Hamlen, M.M. Jones, and M. Sridhar

Cheko uses these hints (without trusting them) to guide the verification pro-
cess and to avoid state-space explosions that might lead to conservative re-
jection of safe code. In particular, it verifies that all non-marked instructions
are SYNC -preserving, and each outgoing control-flow from a marked region is
SYNC -restoring. This modularizes the verification task by allowing separate
verification of marked regions, and controls state-space explosions by reducing
the abstract state to SYNC throughout the majority of binary code which is
not security-relevant. Providing incorrect hints causes Cheko to reject (e.g.,
when it discovers that an unmarked code point is potentially security-relevant)
or converge more slowly (e.g., when security-irrelevant regions are marked and
therefore undergo unnecessary extra analysis), but it never leads to unsound
certification of unsafe code.

A Verification Example. Figure 2 demonstrates a verification example step-by-
step. The pseudocode constitutes a marked region in the target program, and the
verifier requires that the abstract interpreter is in the SYNC state immediately
before and after. At each code point, the verifier infers an abstract program state
that includes one or more conjunctions of constraints on the abstract and reified
security state variables. These constraints track the relationships between the
reified and abstract security state. Here, variable A represents the abstract state
variable s from the policy in Fig. 1. Reifications Policy.s and Policy.temp s

are written as S and T , respectively, with S ∼ A and T ∼ A. Thus, state SYNC
is given by constraint expression (A = S ∧ A = T) in this example.

The analysis begins in the SYNC state, as shown in constraint list 0.1. Line 1 is
a conditional, and thus spawns two new constraint lists, one for each branch. The
positive branch (1.1) incorporates the conditional expression (S ≥ 0 ∧ S ≤ 9) in
Line 2, whereas the negative branch (2.2) incorporates the negation of the same
conditional. The assignment in Line 2 is modeled by alpha-converting T to T ′

and conjoining constraint S = T + 1; this yields constraint list 2.1.1

Unsatisfiable constraint lists are opportunistically pruned to reduce the state
space. For example, list 3.1 shows the result of applying the conditional of Line 3
to 2.1. Conditionals 1 and 3 are mutually exclusive, resulting in contradictory
expressions S ≤ 9 and S = 10; therefore, 3.1 is dropped. Similarly, 3.2 is dropped
because no control-flows exit Line 4.

To interpret a security-relevant event such as the one in Line 6, the verifier
simulates the traversal of all edges in the security automaton. In typical policies,
any given instruction fails to match a majority of the pointcut labels in the
policy, so most are immediately dropped. The remaining edges are simulated by
conjoining each edge’s pre-conditions to the current constraint list and modeling
the edge’s post-condition as a direct assignment to A. For example, edge count
in Fig. 1 imposes pre-condition (0 ≤ I ≤ 9) ∧ (A = I), and its post-condition
can be modeled as assignment A := I + 1. Applying these to list 5.1 yields list
6.1. Likewise, 6.2 is the result of applying edge 10emails to 5.1, and 6.4 and 6.5
are the results of applying the two edges (respectively) to 5.2.

1 The + operation here denotes modular addition to model arithmetic overflows.

Aspect-Oriented Runtime Monitor Certification 133

Constraints 6.3 and 6.6 model the possibility that no explicit edge matches,
and therefore the security state remains unchanged. They are obtained by con-
joining the negations of all of the edge pre-conditions to states 5.1 and 5.2,
respectively. Thus, security-relevant events have a multiplicative effect on the
state space, expanding n abstract states into at worst n(m+1) states, where m
is the number of potential pointcut matches.

If any constraint list is satisfiable and contains the expression A = #, the
verifier cannot disprove the possibility of a policy violation and therefore conser-
vatively rejects. Constraints 6.2 and 6.5 both contain this expression, but they
are unsatisfiable, proving that a violation cannot occur. Observe that the IRM
guard at Line 3 is critical for proving the safety of this code because it introduces
constraint S′ �= 10 that makes these two lists unsatisfiable. If Lines 3–4 were not
included, the verifier would reject at this point because constraints 6.2 and 6.5
are satisfiable with A = # without clause S′ �= 10.

At all control-flows from marked to unmarked regions, the verifier requires
a constraint list that implies SYNC . In this example, constraints 6.1 and 6.6
are the only remaining lists that are satisfiable, and conjoining them with the
negation of SYNC expression (A = S) ∧ (A = T) yields an unsatisfiable list.
Thus, this code is accepted as policy-adherent.

Dynamically Decided Pointcuts. Verification of events corresponding to stati-
cally undecidable pointcuts (such as argval) requires analysis of dynamic checks
inserted by the rewriter, which consider the contents of the stack and local vari-
ables at runtime. Numeric comparisons are translated directly into constraint
expressions; for example, the instruction if(x>2) introduces clause X > 2 for
the positive branch and X ≤ 2 for the negative branch. Non-numeric dynamic
pointcuts (e.g., streq pointcut expressions) are modeled by reducing them to
equivalent integer encodings. For example, to support dynamic string regexp-
matching, Cheko introduces a boolean-valued variable Xre for each string-
typed program variable x and policy regexp re. Program operations that test x
against re introduce constraintXre = 1 in their positive branches and Xre = 0 in
their negative branches. An in-depth verification example involving dynamically
decidable pointcuts is provided in the companion technical report [15].

Limitations. Our verifier supports most forms of Java reflection, but in order
to safely track write-accesses to reified security state fields, the verifier requires
such fields to be static, private class members, and it conservatively rejects pro-
grams that contain reflective field-write operations within classes that contain
reified state. Thus, in order to pass verification, rewriters must implement reified
state fields within classes that do not perform write-reflection. This is standard
practice for most IRM systems including SPoX, so did not limit any of our tests.
Instrumented programs may detect and respond to the presence of the IRM
through read-reflection, but not in a way that violates the policy.

Our system supports IRMs that maintain a global invariant whose preserva-
tion across the majority of the rewritten code suffices to prove safety for small
sections of security-relevant code, followed by restoration of the invariant. Our

134 K.W. Hamlen, M.M. Jones, and M. Sridhar

experience with existing IRM systems indicates that most IRMs do maintain
such an invariant (SYNC) as a way to avoid reasoning about large portions
of security-irrelevant code in the original binary. However, IRMs that maintain
no such invariant, or that maintain an invariant inexpressible in our constraint
language, cannot be verified by our system. For example, an IRM that stores
object security states in a hash table cannot be certified because our constraint
language is not sufficiently powerful to express collision properties of hash func-
tions and prove that a correct mapping from security-relevant objects to their
security states is maintained by the IRM.

To keep the rewriter’s annotation burden small, our certifier also uses this
same invariant as a loop-invariant for all cycles in the control-flow graph. This
includes recursive cycles in the call graph as well as control-flow cycles within
method bodies. Most IRM frameworks do not introduce such loops to non-
synchronized regions. However, this limitation could become problematic for
frameworks wishing to implement code-motion optimizations that separate sec-
urity-relevant operations from their guards by an intervening loop boundary.
Allowing the rewriter to suggest different invariants for different loops would lift
the limitation, but taking advantage of this capability would require the devel-
opment of rewriters that infer and express suitable loop invariants for the IRMs
they produce. To our knowledge, no existing IRM systems yet do this.

While our certifier is provably convergent (since it arrives at a fixpoint for
every loop through enforcing SYNC on loop back-edges), it can experience state-
space explosions that are exponential in the size of each contiguous, unsynchro-
nized code region. Typical IRMs limit such regions to relatively small, separate
code blocks scattered throughout the rewritten code; therefore, we have not ob-
served this to be a significant limitation in practice. However, such state-space
explosions could be controlled without conservative rejection by applying the
same solution above. That is, rewriters could suggest state abstractions for arbi-
trary code points, allowing the certifier to forget information that is unnecessary
for proving safety and that leads to a state-space explosion. Again, the challenge
here is developing rewriters that can actually generate such abstractions.

Our current implementation and theoretical analysis are for purely serial pro-
grams; concurrency support is reserved for future work. Analysis, enforcement,
and certification of multithreaded IRMs is an ongoing subject of current research
with several interesting open problems (cf., [6]).

Soundness. Our certifier forms the centerpiece of the TCB of the system, allow-
ing the monitor and monitor-producing tools to remain untrusted. An unsound
certifier (i.e., one that fails to reject some policy-violating programs) can lead
to system compromise and potential damage. It is therefore important to estab-
lish exceptionally high assurance for the certification algorithm. We proved the
soundness of our approach using Cousot’s abstract interpretation framework [5].

The proof models the verification algorithm as the small-step operational
semantics of an abstract machine. A corresponding concrete operational seman-
tics models the Java VM’s interpretation of bytecode instructions. For brevity,
the concrete and abstract operational semantics concern a small, relevant core

Aspect-Oriented Runtime Monitor Certification 135

subset of Java bytecode instructions rather than the full bytecode language. The
core language is semantically connected to full Java bytecode through Classic-
Java [13,14]. Bisimulation of the abstract and concrete machines provably satis-
fies a soundness property that relates abstract states to the concrete states they
abstract. This is proved via the following progress and preservation lemmas.

Lemma 1 (Progress). If abstract machine state χ̂ is a sound abstraction of
concrete machine state χ, and χ̂ takes a step (i.e., the verifier does not reject),
then χ takes a step (i.e., the concrete machine does not exhibit a policy violation).

Lemma 2 (Preservation). If abstract machine state χ̂ soundly abstracts con-
crete machine state χ, and χ steps to χ′, then χ̂ steps to some state χ̂′ that is a
sound abstraction of χ′.

The preservation lemma proves that a bisimulation of the abstract and concrete
machines preserves the soundness relation, while the progress lemma proves that
as long as the soundness relation is preserved, the abstract machine anticipates
all policy violations of the concrete machine. Both proofs are standard (but
lengthy) structural inductions over the respective operational semantic deriva-
tions. Together, these two lemmas dovetail to form an induction over arbitrary
length execution sequences, proving that programs accepted by the verifier will
not violate the policy. Detailed operational semantics and proofs can be found
in the companion technical report [15].

5 Case Studies

Our prototype verifier implementation consists of 5200 lines of Prolog and 9100
lines of Java. The Prolog code runs under 32-bit SWI-Prolog 5.10.4, which com-
municates with Java via the JPL interface. The Java side parses SPoX policies
and Java bytecode, and compares bytecode instructions to the policy to recog-
nize security-relevant events. The Prolog code forms the core of the verifier, and
handles control-flow analysis, model-checking, and linear constraint analysis us-
ing CLP. Model-checking is only applied to code that the rewriter has marked as
security-relevant. Unmarked code is subjected to a linear scan that ensures that
it lacks security-relevant instructions and reified security state modifications.

We have used our prototype implementation to rewrite and then successfully
verify several Java applications, discussed throughout the remainder of the sec-
tion. Statistics are summarized in Table 1. All tests were performed on a Dell
Studio XPS notebook computer running Windows 7 64-bit with an Intel i7-
Q720M quad core processor, a Samsung PM800 solid state drive, and 4 GB of
memory. A more detailed description of each application can be found in [15].

In Table 1, file sizes are expressed in three parts: the original size of the main
program before rewriting, the size after rewriting, and the size of system libraries
that needed to be verified (but not rewritten). Verification of system library code
is required to verify the safety of control-flows that pass through them. Likewise,
each cell in the classes column has two parts: the number of classes in the main
program and the number of classes in the libraries.

136 K.W. Hamlen, M.M. Jones, and M. Sridhar

Table 1. Experimental Results

Total Model
File Sizes (KB) # Classes Rewrite # Verif. Check

Program Policy old / new/ libs old / libs Time (s) Evts. Time (s) Time (s)

EJE NoExecSaves 439/ 439/ 0 147/ 0 6.1 1 202.8 16.3
RText 1264/1266/ 835 448/ 680 52.1 7 2797.5 54.5
JSesh 1923/1924/ 20878 863/ 1849 57.8 1 5488.1 196.0
vrenamer NoExecRename 924/ 927/ 0 583/ 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 35/ 36/ 0 33/ 0 0.6 2 115.7 15.1
jWeather NoSndsAftrRds 288/ 294/ 0 186/ 0 12.3 46 308.2 156.7
YTDownload 279/ 281/ 0 148/ 0 17.8 20 219.0 53.6
jfilecrypt NoGui 303/ 303/ 0 164/ 0 9.7 1 642.2 2.8
jknight OnlySSH 166/ 166/ 4753 146/ 2675 4.5 1 650.1 3.0
Multivalent EncrpytPDF 1115/1116/ 0 559/ 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 646/ 646/ 0 416/ 0 85.4 2 2598.2 23.6
jrdesktop SafePort 343/ 343/ 0 163/ 0 8.3 5 483.0 17.8
JVMail TenMails 24/ 25/ 0 21/ 0 1.6 2 35.1 8.0
JackMail 165/ 166/ 369 30/ 269 2.5 1 626.7 8.9
Jeti CapLgnAttmpts 484/ 484/ 0 422/ 0 15.3 1 524.3 8.8
ChangeDB CapMembers 82/ 83/ 404 63/ 286 4.3 2 995.3 12.0
projtimer CapFileCreat 34/ 34/ 0 25/ 0 15.3 1 56.2 6.1
xnap NoFreeRide 1250/1251/ 0 878/ 0 24.8 4 1496.2 56.4
Phex 4586/4586/ 3799 1353/ 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 429/ 431/ 6338 159/ 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 1781/1783/ 24279 932/17185 78.7 6 2897.0 37.3
SQuirreL SafeSQL 1788/1789/ 1003 1328/ 626 140.2 1 3352.1 37.3
JVMail LogEncrypt 25/ 26/ 0 22/ 0 1.8 6 71.3 43.2
jvs-vfs CheckDeletion 277/ 277/ 0 127/ 0 4.4 2 193.9 6.3
sshwebproxy EncryptPayload 36/ 37/ 389 19/ 16 1.1 5 66.7 7.0

Six of the rewritten applications listed in Table 1 (vrenamer, jWeather,
jrdesktop, Phex, Webgoat, and SQuirreL) were initially rejected by our verifier
due to a subtle security flaw that our verifier uncovered in the SPoX rewriter.
For each of those cases, a bytecode analysis revealed that the original code con-
tained a form of generic exception handler that can potentially hijack control-
flows within IRM guard code. This could cause the abstract and reified security
state to become desynchronized, breaking soundness. We corrected this by man-
ually editing the rewritten bytecode to exclude guard code from the scope of the
outer exception handler. This resulted in successful verification. Our fix could be
automated by in-lining inner exception handlers for guard code to protect them
from interception by an outer handler.

The following discussion groups the case-studies into four policy classes. SPoX
policies are provided in a generalized form representative of the various instan-
tiations of the policy that we used for specific applications. The real policies
substitute the simple pointcut expressions in each sample with more complex,
application-specific pointcuts that are here omitted for space reasons.

Filename Guards. Our NoExecSaves policy (generalized below) prevents file-
creation operations from specifying a file name with an executable extension.
Such a policy could be used to prevent malware propagation.

Aspect-Oriented Runtime Monitor Certification 137

1 (edge name="saveToExe"
2 (nodes "s" 0,#)
3 (and (call "java.io.FileWriter.new")
4 (argval 1 (streq ".*\.(exe|bat|...)"))
5 (withincode "FileSystem.saveFile")))

The regular expression in Line 4 matches any string that ends in an exe-
cutable file extension. There are many file extensions that are considered to be
executable on Windows; we included all listed at [12]. This policy was enforced
on three applications: EJE, a Java code editor; RText, a text editor; and JSesh,
a heiroglyphics editor for use by archaeologists. After rewriting, each program
halted when we tried to save a file with a prohibited extension.

Another policy that prevents deletion of policy-specified file directories (not
shown) was enforced on jconsole. The policy monitors directory-removal sys-
tem API calls for arguments that match a regular expression specifying names
of protected directories. For vrenamer, a mass file-renaming application, we pro-
hibited files being renamed to include executable extensions.

Event ordering. A canonical information flow policy in the IRM literature pro-
hibits all network-send operations after a secret file has been read. The follow-
ing NoSndsAftrRds policy prevents calls to Socket.getOutputStream after any
call to java.io.File where the first argument refers to the Windows directory.

1 (edge name="FileRead"
2 (nodes "s" 0,1)
3 (and (call "java.io.File.*")
4 (argval 1 (streq "[A-Za-z]*:\\Windows\\.*"))))
5 (edge name="NetworkSend"
6 (nodes "s" 1,#)
7 (call "java.net.Socket.getOutputStream"))

We enforced this policy on jWeather, a weather widget application, and
YouTube Downloader (YTDownload in the table), which downloads videos from
YouTube. Neither program violated the policy, so no change in behavior occurred.
However, both programs access many files and sockets, so SPoX instrumented
both programs with a large number of security checks.

For multivalent, a document browsing utility, we enforced a policy that
disallows saving a PDF document until a call has first been made to its built-in
encryption method. The two-state policy is similar to the one shown above.

Malicious SQL and XSS protection. SPoX’s use of string regular expressions
facilitates natural specifications of policies that protect against SQL injection
and cross-site scripting attacks. One such policy is NoSqlXss, a policy that
uses whitelisting to exclude potentially dangerous input characters. We enforced
NoSqlXss on Webgoat.

One edge definition in the policy contained a large number of dynamic argval
pointcuts (twelve); nevertheless, verification time remained roughly linear in the
size of the rewritten code because the verifier was able to significantly prune

138 K.W. Hamlen, M.M. Jones, and M. Sridhar

the search space by combining redundant constraints and control-flows during
model-checking and abstract interpretation.

A similar policy was used to prevent SQL injection attacks on a search func-
tion in OpenMRS. The library portion of this application is extremely large but
contains no security-relevant events; thus, our non-stateful verification approach
for unmarked code regions was crucial for avoiding state-space explosions.

We also enforced a blacklisting policy (not shown) on the database access
client SQuirreL, preventing SQL commands which drop, alter, or rename tables
or databases. The policy used a regular expression guard to disallow all SQL
commands that implement these operations.

Ensuring advice execution. Most aspectual policy languages (e.g., [4,2,10,26])
allow policies to include explicit advice code that implements IRM guards and
interventions. Such systems can be applied to create custom implementations
of SPoX policies, such as those that perform custom actions when impending
violations are detected. Cheko can then take the SPoX policy as input and
verify that the implementation correctly enforces the policy.

To simulate this, we manually added encryption and logging calls immedi-
ately prior to email-send events in JVMail. Each email is therefore encrypted,
then logged, then sent. The SPoX policy LogEncrypt requires these events occur
in that order. After inserting the advice, we used the verifier to prove that the
rewritten JVMail application satisfies the policy. A similar policy was applied
to the Java Virtual File System (jvs-vfs), only allowing file deletion after ex-
ecution of advice code that consults the user. Finally, we enforced a policy on
sshwebproxy that requires the proxy to encrypt messages before sending.

6 Conclusion and Future Work

IRMs provide a more powerful alternative to purely static analysis, allowing
precise enforcement of a much larger and sophisticated class of security policies.
Combining this power with a purely static analysis that independently checks the
instrumented, self-monitoring code results in an effective, provably sound, and
flexible hybrid enforcement framework. Additionally, an independent certifier
allows for the removal of the larger and less general rewriter from the TCB.

We developed Cheko —the first automated, model-checking-based certifier
for an aspect-oriented, real-world IRM system [14]. Cheko uses a flexible and
semantic static code analysis, and supports difficult features such as reified se-
curity state, event detection by pointcut-matching, combinations of untrusted
before- and after-advice, and pointcuts that are not statically decidable. Strong
formal guarantees are provided through proofs of soundness and convergence
based on Cousot’s abstract interpretation framework. Since Cheko performs
independent certification of instrumented binaries, it is flexible enough to ac-
commodate a variety of IRM instrumentation systems, as long as they provide
(untrusted) hints about reified state variables and locations of security-relevant
events. Such hints are easy for typical rewriter implementations to provide, since
they typically correspond to in-lined state variables and guard code, respectively.

Aspect-Oriented Runtime Monitor Certification 139

Our focus was on presenting main design features of the verification algo-
rithm, and an extensive practical study using a prototype implementation of the
tool. Experiments revealed at least one security vulnerability in the SPoX IRM
system, indicating that automated verification is important and necessary for
high assurance in these frameworks.

In future work we intend to turn our development toward improving effi-
ciency and memory management of the tool. Much of the overhead we observed
in experiments was traceable to engineering details, such as expensive context-
switches between the separate parser, abstract interpreter, and model-checking
modules. These tended to eclipse more interesting overheads related to the ab-
stract interpretation and model-checking algorithms. We also intend to examine
more powerful rewriter-supplied hints that express richer invariants. Such ad-
vances will provide greater flexibility for alternative IRM implementations of
stateful policies.

References

1. Aktug, I., Dam, M., Gurov, D.: Provably Correct Runtime Monitoring. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 262–277. Springer, Heidelberg
(2008)

2. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. Science
of Comput. Prog. 74, 2–12 (2008)

3. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-
ing 2, 117–126 (1986)

4. Chen, F., Roşu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. Sym.
on Principles of Prog. Lang., pp. 234–252 (1977)

6. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security Monitor Inlining for
Multithreaded Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 546–569. Springer, Heidelberg (2009)

7. Dantas, D.S., Walker, D.: Harmless advice. In: Proc. ACM Sym. on Principles of
Prog. Lang. (POPL), pp. 383–396 (2006)

8. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: AspectML: A polymorphic
aspect-oriented functional programming language. ACM Trans. Prog. Lang. and
Systems 30(3) (2008)

9. DeVries, B.W., Gupta, G., Hamlen, K.W., Moore, S., Sridhar, M.: ActionScript
bytecode verification with co-logic programming. In: Proc. ACM Workshop on
Prog. Lang. and Analysis for Security (PLAS), pp. 9–15 (2009)

10. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. Ph.D. thesis, Cornell University, Ithaca, New York (2004)

11. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: A retrospec-
tive. In: Proc. New Security Paradigms Workshop (NSPW), pp. 87–95 (1999)

12. FileInfo.com: Executable file types (2011),
http://www.fileinfo.com/filetypes/executable

http://www.fileinfo.com/filetypes/executable

140 K.W. Hamlen, M.M. Jones, and M. Sridhar

13. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Proc. ACM
Sym. on Principles of Prog. Lang. (POPL), pp. 171–183 (1998)

14. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: Proc.
ACMWorkshop on Prog. Lang. and Analysis for Security (PLAS), pp. 11–20 (2008)

15. Hamlen, K.W., Jones, M.M., Sridhar, M.: Chekov: Aspect-oriented runtime moni-
tor certification via model-checking (extended version). Tech. rep., Dept. of Com-
put. Science, U. Texas at Dallas (May 2011)

16. Hamlen, K.W., Mohan, V., Masud, M.M., Khan, L., Thuraisingham, B.: Exploiting
an antivirus interface. Comput. Standards & Interfaces J. 31(6), 1182–1189 (2009)

17. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitor-
ing on. NET. In: Proc. ACM Workshop on Prog. Lang. and Analysis for Security
(PLAS), pp. 7–16 (2006)

18. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Prog. Lang. and Systems 28(1), 175–205 (2006)

19. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program.,
503–581 (1994)

20. Jones, M., Hamlen, K.W.: Enforcing IRM security policies: Two case studies. In:
Proc. IEEE Intelligence and Security Informatics (ISI) Conf., pp. 214–216 (2009)

21. Jones, M., Hamlen, K.W.: Disambiguating aspect-oriented policies. In: Proc. Int.
Conf. on Aspect-Oriented Software Development (AOSD), pp. 193–204 (2010)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Li, Z., Wang, X.: FIRM: Capability-based inline mediation of Flash behaviors. In:
Proc. Annual Comput. Security Applications Conf. (ACSAC), pp. 181–190 (2010)

24. Ligatti, J.A.: Policy Enforcement via Program Monitoring. Ph.D. thesis, Princeton
University, Princeton, New Jersey (2006)

25. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. Int. J. Information Security 4(1-2), 2–16 (2005)

26. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Information and Systems Security 12(3) (2009)

27. Schneider, F.B.: Enforceable security policies. ACM Trans. Information and Sys-
tems Security 3(1), 30–50 (2000)

28. Shah, V., Hill, F.: An aspect-oriented security framework. In: Proc. DARPA Infor-
mation Survivability Conf. and Exposition, vol. 2 (2003)

29. Sridhar, M., Hamlen, K.W.: ActionScript In-Lined Reference Monitoring in Prolog.
In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 149–151. Springer,
Heidelberg (2010)

30. Sridhar, M., Hamlen, K.W.: Model-Checking In-Lined Reference Monitors. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 312–327.
Springer, Heidelberg (2010)

31. Sridhar, M., Hamlen, K.W.: Flexible in-lined reference monitor certification: Chal-
lenges and future directions. In: Proc. ACM Workshop on Prog. Lang. meets Pro-
gram Verification (PLPV), pp. 55–60 (2011)

32. Viega, J., Bloch, J.T., Chandra, P.: Applying aspect-oriented programming to se-
curity. Cutter IT J. 14(2) (2001)

33. Walker, D.: A type system for expressive security policies. In: Proc. of ACM Sym.
on Principles of Prog. Lang. (POPL) (2000)

Partial Model Checking Using Networks

of Labelled Transition Systems and Boolean
Equation Systems

Frédéric Lang and Radu Mateescu

Vasy Project Team, Inria Grenoble Rhône-Alpes/Lig, Montbonnot, France
{Frederic.Lang,Radu.Mateescu}@inria.fr

Abstract. Partial model checking was proposed by Andersen in 1995
to verify a temporal logic formula compositionally on a composition of
processes. It consists in incrementally incorporating into the formula the
behavioural information taken from one process — an operation called
quotienting — to obtain a new formula that can be verified on a smaller
composition from which the incorporated process has been removed. Sim-
plifications of the formula must be applied at each step, so as to main-
tain the formula at a tractable size. In this paper, we revisit partial
model checking. First, we extend quotienting to the network of labelled
transition systems model, which subsumes most parallel composition op-
erators, including m among n synchronisation and parallel composition
using synchronisation interfaces, available in the E-Lotos standard. Sec-
ond, we reformulate quotienting in terms of a simple synchronous product
between a graph representation of the formula (called formula graph) and
a process, thus enabling quotienting to be implemented efficiently and
easily, by reusing existing tools dedicated to graph compositions. Third,
we propose simplifications of the formula as a combination of bisimula-
tions and reductions using Boolean equation systems applied directly to
the formula graph, thus enabling formula simplifications also to be imple-
mented easily and efficiently. Finally, we describe an implementation in
the Cadp (Construction and Analysis of Distributed Processes) toolbox
and present some experimental results in which partial model checking
uses hundreds of times less memory than on-the-fly model checking.

1 Introduction

Concurrent safety critical systems can be verified using model checking [14], i.e.,
automatic evaluation of a temporal property against a model of the system. Al-
though successful in many applications, model checking may face state explosion,
particularly when the number of concurrent processes grows.

State explosion can be tackled by divide-and-conquer approaches regrouped
under the vocable compositional verification, which take advantage of the com-
positional structure of the concurrent system. One such approach, which we call
compositional model generation in this paper, consists in building the model of
the system — usually an Lts (Labelled Transition System) — in a stepwise man-
ner, by successive compositions and minimisations modulo equivalence relations,

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 141–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

142 F. Lang and R. Mateescu

possibly using interface constraints [23,27] to avoid explosion of intermediate
compositions. Tools using this approach [19,28,29,16] are available in the Cadp

(Construction and Analysis of Distributed Processes) [20] toolbox.
In this paper, we explore a dual approach named partial model checking, pro-

posed by Andersen [2,4] for concurrent processes running asynchronously and
composed using Ccs parallel composition and restriction operators. For a modal
μ-calculus [26] formula ϕ and a process composition P1|| . . . ||Pn, Andersen uses
an operation ϕ//P1 called quotienting of the formula ϕ w.r.t. the process P1, so
that P1|| . . . ||Pn satisfies ϕ if and only if the smaller composition P2|| . . . ||Pn

satisfies ϕ//P1. In addition, simplifications can (must) be applied to ϕ//P1 to re-
duce its size. Partial model checking is the incremental application of quotienting
and simplifications, so that state explosion is avoided if the size of intermediate
formulas can be kept sufficiently small.

Partial model checking has been adapted and used successfully in various con-
texts, such as state-based models [5,6], synchronous state/event systems [10], and
timed systems [9,12,31,32,33]. It has also been specialised for security proper-
ties [34]. More recently, it has been generalised to the full Ccs process algebra,
with an application to the verification of parameterised systems [8].

In this paper, we focus on partial model checking of the modal μ-calculus
applied to (untimed) concurrent asynchronous processes. By considering only
binary associative composition operators, previous works [2,4,8] are not directly
applicable to more general operators, such as m among n synchronisation and
parallel composition by synchronisation interfaces [21], present in the E-Lotos

standard and variants [13,25]. Our first contribution in this paper is thus a
generalisation of partial model checking to networks of Ltss [28], a general model
that subsumes parallel composition, hiding, cutting, and renaming operators of
standard process languages (Ccs, Csp, μCrl, Lotos, E-Lotos, etc.).

In realistic cases, partial model checking handles huge formulas and processes,
thus requiring efficient implementations. Our second contribution is a reformu-
lation of quotienting as a simple synchronous product, which can itself be repre-
sented in the network model, between a graph representing the formula (called a
formula graph) and the behaviour graph of a process, thus enabling efficient im-
plementation using existing tools dedicated to graph manipulations. Our third
contribution is the reformulation of formula simplifications as a combination
of graph reductions and partial evaluation of the formula graph using a Bes

(Boolean Equation System) [1]. Verifying modal μ-calculus formulas of arbitrary
alternation depth is generally exponential in the size of the process graph, while
verifying the alternation-free fragment remains of linear complexity. Our fourth
contribution is a specialisation of the technique to alternation-free μ-calculus
formulas. Finally, we present an implementation in Cadp and a case-study that
illustrates the complementarity between partial and on-the-fly model checking.

Paper Overview. The modal μ-calculus is presented in Sect. 2, networks of Ltss
in Sect. 3, the generalisation of quotienting to networks and its reformulation as
a synchronous product in Sect. 4, simplification rules in Sect. 5, rules specific to

Partial Model Checking Using Networks and Bess 143

alternation-free μ-calculus formulas in Sect. 6, our implementation in Sect. 7, a
case study in Sect. 8, and concluding remarks in Sect. 9.

2 The Modal μ-Calculus

An Lts (Labelled Transition System) is a tuple (Σ,A,−→, s0), with Σ a set of
states, A a set of labels, −→ ⊆ Σ × A × Σ the (labelled) transition relation,
and s0 ∈ Σ the initial state. Properties of Ltss can be expressed in the modal
μ-calculus [26], whose syntax and semantics are defined in the table below.

ϕ ::= ff
| ¬ϕ0

| ϕ1 ∨ ϕ2

| 〈a〉ϕ0

| X
| μX.ϕ0

[[ff]] ρ = ∅
[[¬ϕ0]] ρ = Σ \ [[ϕ0]] ρ

[[ϕ1 ∨ ϕ2]] ρ = [[ϕ1]] ρ ∪ [[ϕ2]] ρ

[[〈a〉ϕ0]] ρ = {s ∈ Σ | s a−→ s′ ∧ s′ ∈ [[ϕ0]] ρ}
[[X]] ρ = ρ(X)

[[μX.ϕ0]] ρ =
⋂
{U ⊆ Σ | [[ϕ0]] (ρ� [U/X]) ⊆ U}

Formulas (ϕ) are built from Boolean connectors, the possibility modality (〈 〉),
and the minimal fix-point operator (μ) over propositional variables X . We write
fv (ϕ) (resp. bv (ϕ)) for the set of variables free (resp. bound) in ϕ and call a closed
formula any formula ϕ s.t. fv (ϕ) = ∅. We assume that all bound variables have
distinct names, and for X ∈ bv (ϕ), we write ϕ[X] for the (unique) sub-formula
of ϕ of the form μX.ϕ0. Given ϕ1 and ϕ2, we write ϕ1[ϕ2/X] for substituting
all free occurrences of X in ϕ1 by ϕ2. Derived operators are defined as usual:
tt = ¬ff , ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), [a]ϕ0 = ¬ 〈a〉 ¬ϕ0 (necessity modality), and
νX.ϕ0 = ¬μX.¬ϕ0[¬X/X] (maximal fix-point operator).

A propositional context ρ is a partial function mapping propositional variables
to sets of states and ρ/ [U/X] stands for a propositional context identical to ρ
except that X is mapped to U . The interpretation [[ϕ]] ρ (also written [[ϕ]] if ρ is
empty) of a state formula on an Lts in a propositional context ρ (which maps
each variable free in ϕ to a set of states) denotes the subset of states satisfying ϕ
in that context. The Boolean connectors are interpreted as usual in terms of set
operations. The possibility modality 〈a〉ϕ0 (resp. the necessity modality [a]ϕ0)
denotes the states for which some (resp. all) of their outgoing transitions labelled
by a lead to states satisfying ϕ0. The minimal fix-point operator μX.ϕ0 (resp.
the maximal fix-point operator νX.ϕ0) denotes the least (resp. greatest) solution
of the equation X = ϕ0 interpreted over the complete lattice

〈
2Σ , ∅, Σ,∩,∪,⊆

〉
.

A state s satisfies a closed formula ϕ if and only if s ∈ [[ϕ]].
To ensure a proper definition of fix-point operators, it suffices that formulas

ϕ are syntactically monotonic [26], i.e., have an even number of negations on
every path between a variable occurrence X and the μ or ν operator that binds
X . Negations can then be eliminated from formulas using the identities defining
the derived operators. We write ϕ̂ the formula obtained after eliminating all
negations in ϕ. A formula ϕ is alternation-free if there is no sub-formula of ϕ̂ of

144 F. Lang and R. Mateescu

the form μX.ϕ1 (resp. νX.ϕ1) containing a sub-formula of the form νY.ϕ2 (resp.
μY.ϕ2) such that X ∈ fv (ϕ2). The fix-point sign of a variable X in ϕ is μ (resp.
ν) if ϕ̂[X] has the form μX.ϕ (resp. νX.ϕ).

In this paper, we consider block-labelled formulas ϕ in which each propositional
variable X is labelled by a unique natural number k, called its block number.
Initially, we require that in every sub-formula of ϕ̂ of the form μXk.ϕ0 (resp.
νXk.ϕ0), every sub-formula μY k′

.ϕ1 (resp. νY k′
.ϕ1) satisfies k′ ≥ k, and ev-

ery sub-formula νY k′
.ϕ1 (resp. μY k′

.ϕ1) satisfies k′ > k. In addition, variables
bound in disjoint sub-formulas may have the same block number only if they
have the same fix-point sign, and by convention, block number 0 must be a
μ-block (so that k > 0 in any formula νXk.ϕ). We write blocks(ϕ) the set of
block numbers occurring in ϕ. A block-labelled formula ϕ is alternation-free if
k′ ≥ k for all Xk ∈ bv(ϕ) and all Y k′ ∈ fv(ϕ[Xk]). Any unlabelled formula is
alternation-free if and only if it can be block-labelled to satisfy that constraint.

In the remainder of this paper, we will consider block-labelled formulas ϕ in
disjunctive form, i.e., built only using the operators shown in the table above.

3 Networks of LTSs

Networks of LTSs (or networks for short) are inspired from the Mec [7] and
Fc2 [11] synchronisation vectors and were introduced in [28] as an intermediate
model to represent compositions of Ltss using various operators.

Background. We write n..m for the set of integers ranging from n to m, or the
empty set if n > m. A vector v of size n is a total function on 1..n. For i ∈ 1..n,
we write v[i] for v applied to i, denoting the element of v stored at index i. We
write (e1, . . . , en) for the vector v of size n such that (∀i ∈ 1..n) v[i] = ei. In
particular, () is a vector of size 0. Given n ≥ 1 and i ∈ 1..n, v\i denotes the
projection of v on to the set of indices 1..n \ {i}, defined as the vector of size
n− 1 such that (∀j ∈ 1..i− 1) v\i[j] = v[j] and (∀j ∈ i..n− 1) v\i[j] = v[j +1].

A network of LTSs N of size n is a pair (S, V), where S is a vector of Ltss
(called individual LTSs) of size n, and V is a set of synchronisation rules, each
rule having the form (t, a) with a a label and t a vector of size n, called the
synchronisation vector, of labels and occurrences of a special symbol • distinct
from any label. We write Σi, Ai, −→i, and s0i for the sets of states and labels, the
transition relation, and the initial state of S[i]. N can be associated to a (global)
Lts lts (N) which is the parallel composition of individual Ltss. Each (t, a) ∈ V
defines transitions labelled by a, obtained either by synchronisation (if more
than one index i is such that t[i] �= •) or by interleaving (otherwise) of individual
Lts transitions. Formally, lts (N) = (Σ,A,−→, s0), where Σ = Σ1 × . . . × Σn,
A = {a | (t, a) ∈ V }, s0 = (s01, . . . , s

0
n), and−→ is the smallest relation satisfying:

(t, a) ∈ V ∧ (∀i ∈ 1..n)

(
(t[i] = • ∧ s′[i] = s[i]) ∨
(t[i] �= • ∧ s[i]

t[i]−→i s
′[i])

)
⇒ s

a−→ s′

A(t) denotes the set of active Lts (indices), defined by {i | i ∈ 1..n ∧ t[i] �= •}.

Partial Model Checking Using Networks and Bess 145

c

c

a b

0

21

3

a a

b

b

c

c

c

c

0

1

2

3

4

5

a a

b

0

1

2

3

4

5

b d

d

P1 P2 P3

0 1 3 6 8

2 4 119

7 10 12 13 14

a τ b τ

τ b τ a τ

ττ
a

5

d d

d d

a

0

2 4 6 8

10

9

1 3 5 7

11

αa
τ αb τ

αa

a
αa

a τ αb τ

τ

lts (N) lts (N\3)

Fig. 1. Labelled Transition Systems for N defined in Ex. 1

Example 1. Let a, b, c, and d be labels, and P1, P2, and P3 be the processes
defined in Fig. 1 (top), where 0’s denote initial states. Let N = ((P1, P2, P3), V)
with V = {((a, a, •), a), ((a, •, a), a), ((b, b, b), b), ((c, c, •), τ), ((•, •, d), d)}, whose
global Lts is in Fig. 1 (bottom left). The first two rules express a nondeter-
ministic synchronisation on a between either P1, P2 or P1, P3. The third rule
expresses a multiway synchronisation on b. The fourth rule yields an internal (τ)
transition. The fifth rule expresses full interleaving of transitions labelled by d.

The network of Ltss model subsumes most hiding, renaming, cutting, and
parallel composition operators present in process algebras (Ccs, Csp, Lotos,
μCrl, etc.), but also more expressive operators, such as m among n syn-
chronisation and parallel composition using synchronisation interfaces [21]
present in E-Lotos [25] and Lotos NT [13]. For instance, the rules
{((a, a, •), a), ((a, •, a), a), ((•, a, a), a)} realize 2 among 3 synchronisation on a.

Sub-network extraction. Computing the interactions of a process Pi with its en-
vironment in a composition of processes ||j∈1..nPj is easy when || is a binary and
associative parallel composition operator, since ||j∈1..nPj = Pi || (||j∈1..n\{i}Pj).
However, as argued in [21], binary and associative parallel composition oper-
ators are of limited use when considering, e.g., m among n synchronisation. A
more involved operation named sub-network extraction is necessary for networks.
N = (S, V) being a network of size n, we assume a function α (t, a) that assigns
an unused label to each (t, a) ∈ V . Given i ∈ 1..n, we define N\i = (S\i, V\i) the
sub-network of N modeling the environment of S[i] in N , where V\i = {(t\i, a) |
(t, a) ∈ V ∧ i /∈ A(t)} ∪ {(t\i, α (t, a)) | (t, a) ∈ V ∧ {i} ⊂ A(t)}. N is semanti-
cally equivalent to the network ((S[i], lts (N\i)), V

′) with V ′ the following set of
rules, which define the interactions between S[i] and N\i:

{ ((•, a), a) | (t, a) ∈ V ∧ i /∈ A(t) } ∪
{ ((t[i], α (t, a)), a) | (t, a) ∈ V ∧ {i} ⊂ A(t) } ∪
{ ((a, •), a) | (t, a) ∈ V ∧ {i} = A(t) }

146 F. Lang and R. Mateescu

Each α(t, a) is a unique interaction label between S[i] and N\i, which aims at
avoiding erroneous interactions in case of nondeterministic synchronisation.

Example 2. N being defined in Ex. 1, N\3 has vector of Ltss (P1, P2) and rules
{((a, a), a), ((a, •), αa), ((b, b), αb), ((c, c), τ)} with αa = α ((a, •, a), a) and αb =
α ((b, b, b), b); lts(N\3) is depicted in Fig. 1 (bottom right); Composing it with
P3 using {((•, a), a), ((a, αa), a), ((b, αb), b), ((•, τ), τ), ((d, •), d)} yields lts(N).

Note that if a had been used instead of αa in the above synchronisation rules,
then the composition of N\3 with P3 would have enabled, in addition to the
(correct) binary synchronisations on a between P1 and P2 and between P1 and
P3, the (incorrect) multiway synchronisation on a between the three of P1, P2,
and P3. Indeed, the label a resulting from the synchronisation between P1 and
P2 in N\3 — rule ((a, a), a) in N\3 — could synchronise with the label a in P3

— rule ((a, a), a) in the composition between N\3 and P3. Note however that t[i]
can be used instead of α(t, a) when the network does not have nondeterministic
synchronisation on t[i], as is the case for b and αb in this example. In this paper
we use α(t, a) uniformly to avoid complications.

4 Quotienting for Networks Using Networks

To check a closed formula ϕ on a network N = (S, V), one can choose an Lts

S[i], compute the quotient of the formula ϕ with respect to S[i], and check
the resulting quotient formula on the smaller (at least in number of individual
Ltss, but also hopefully in global Lts size) network N\i. The quotient formula

is written ϕ//∅i si0 and defined as follows for formulas in disjunctive form:

ff //Bi s = ff Xk //Bi s = ϕ[Xk] //Bi s
(¬ϕ0) //

B
i s = ¬(ϕ0 //

B
i s) (ϕ1 ∨ ϕ2) //

B
i s = (ϕ1 //

B
i s) ∨ (ϕ2 //

B
i s)

(μXk.ϕ0) //
B
i s =

{
Xk

s if Xk
s ∈ B

μXk
s .(ϕ0 //

B∪{Xk
s }

i s) otherwise

(〈a〉ϕ0) //
B
i s =

∨
(t,a)∈V

⎛⎜⎝ (i /∈ A(t) ∧ 〈a〉 (ϕ0 //
B
i s)) ∨

({i} ⊂ A(t) ∧
∨

s
t[i]−→is′

〈α (t, a)〉 (ϕ0 //
B
i s′)) ∨

({i} = A(t) ∧
∨

s
t[i]−→is′

(ϕ0 //
B
i s′))

⎞⎟⎠
This definition generalises Andersen’s [2], specialised for Ccs, to networks. The
major difference is the definition of (〈a〉ϕ0) //

B
i s, Ccs composition corresponding

to vectors ((a, •), a), ((•, a), a), or ((a, a), τ), a and a being an action and its co-
action, making the use of special labels α(t, a) not necessary. A slightly minor
difference is that we use μ-calculus terms instead of equations. Any sub-formula
produced by quotienting has the same block number as the original sub-formula,
reflecting the order of equation blocks in Andersen’s work. The set B keeps track
of new variables already introduced in the quotient formula. Quotienting is well-
defined, because formulas are finite, every ϕ[Xk] has the form μXk.ϕ0, and the
size of the set B is bounded by | bv (ϕ)| × |Σi|.

Partial Model Checking Using Networks and Bess 147

4 2 5 6

0 1 3

¬〈b〉

〈a〉∨∨
∨μ0

9 143

1

∨

5 8
¬¬ 〈a〉 〈αa〉

6

0
∨

2
〈αb〉

4
∨

7 10

∨

∨
11

12
〈a〉

13
¬

μ0 μ0 〈αb〉 〈a〉 ¬
0 1 2 3

〈αa〉

〈a〉

Fig. 2. Examples of formula graphs

Example 3. The μ-calculus formula μX0.〈a〉tt∨〈b〉X0 (existence of a path of zero
or more b leading to an a) can be rewritten to disjunctive form as μX0.〈a〉¬ff ∨
〈b〉X0. Quotienting of this formula with respect to P3 in the network N intro-
duced in Ex. 1 yields the formula μX0

0 .〈a〉¬ff ∨ 〈αa〉¬ff ∨ 〈αb〉μX0
2 .〈a〉¬ff ∨ ff .

We now show that quotienting can be implemented as a network that realises
a product between an Lts encoding the formula (called a formula graph) and
an individual Lts of the network under verification. The formula graph corre-
sponding to a formula ϕ in disjunctive form is an Lts whose states are identified
with sub-formulas of ϕ and whose transitions are labelled by ∨, ¬, μk (k being
a block number), and 〈a〉 (a being any action of the network under verification).
The initial state of the formula graph is ϕ, ff is a deadlock state, and each
sub-formula has transitions as follows:

Xk ∨−→ ϕ[Xk] ¬ϕ0
¬−→ ϕ0 〈a〉ϕ0

〈a〉−→ ϕ0

ϕ1 ∨ ϕ2
∨−→ ϕ1 ϕ1 ∨ ϕ2

∨−→ ϕ2 μXk.ϕ0
μk

−→ ϕ0

Formula graphs are finite, connected, and every circular path (i.e., from one state
to itself) contains at least one transition that is labelled by μk. We write enc (ϕ)
the formula graph of ϕ. Conversely, every formula graph P = (S,A,→, s0) can
be decoded into the closed formula dec (P, s0, ∅) as follows, where E is a mapping
of the form {s �→ k | s ∈ Σ ∧ k ∈ N}:

dec (P, s, E) =

{
Xk
s if s �→ k ∈ E∨
s

σ−→s′ δ
s
σ(P, s

′, E) otherwise
where

δs∨(P, s
′, E) = dec (P, s′, E) δs¬(P, s

′, E) = ¬ dec (P, s′, E)
δs〈a〉(P, s

′, E) = 〈a〉 dec (P, s′, E) δsμk(P, s
′, E) = μXk

s . dec (P, s
′, E ∪ {s �→ k})

This definition implies that a deadlock state decodes as ff (empty disjunction).
dec is well-defined, the mapping E ensuring termination. Although the states of
a formula graph are identified by formulas, only the transition labels are required
for decoding. In figures, states will be be simply identified by numbers.

Example 4. The formula graph corresponding to the formula μX0.(〈a〉tt)∨〈b〉X0

introduced in Ex. 3 is depicted in Fig. 2 (left), where 0 denotes the initial state.

Proposition 1. If ϕ is a closed formula, then dec (enc (ϕ), ϕ, ∅) = ϕ, modulo
commutativity (φ1 ∨ φ2 = φ2 ∨ φ1), idempotence (φ ∨ φ = φ), and renaming of
each propositional variable Xk ∈ bv (ϕ) into Xk

ϕ[Xk].

148 F. Lang and R. Mateescu

Proof. This is a corollary of the more general property stating that for every
sub-formula φ of ϕ, if {ϕ[Y k] �→ k | Y k ∈ fv (φ)} ⊆ E and E ∩ {ϕ[Y k] �→ k |
Y k ∈ bv (φ)} = ∅, then dec (enc (ϕ), φ, E) = φ (structural induction on φ).

Using this encoding, the quotienting of a formula ϕ with respect to the ith Lts

of a network N = (S, V) can be realised as a synchronous product, using the
network ((enc (ϕ),S[i]), V//i), where V//i denotes the following set of rules:

{ ((σ, •), σ) | σ ∈ {¬,∨} ∪ {μk | k ∈ blocks(ϕ)} } ∪
{ ((〈a〉, •), 〈a〉) | (t, a) ∈ V ∧ i /∈ A(t) } ∪
{ ((〈a〉, t[i]), 〈α (t, a)〉) | (t, a) ∈ V ∧ {i} ⊂ A(t) } ∪
{ ((〈a〉, t[i]), ∨) | (t, a) ∈ V ∧ {i} = A(t) }

Proposition 2. If P = lts ((enc (ϕ),S[i]), V//i) then dec (P, (ϕ, si0), ∅)=ϕ//∅i si0,
modulo commutativity, idempotence, and renaming of each propositional variable
Y k
t ∈ bv (ϕ//Bi si0) into Xk

(ϕ[Y k],t)

Proof. A state of P has the form (φ, s), where φ is a sub-formula of ϕ and s is a
state of S[i]. The proof uses a slighty more general lemma: if E = {(ϕ[Y k], t) �→
k | Y k

t ∈ B} then dec (P, (φ, s), E) = φ//Bi s (structural induction on φ//Bi s).

Example 5. Consider the network N of Ex. 1 and the formula of Ex. 4. Quoti-
enting of the formula with respect to P3 involves the following set of rules:
{((¬, •),¬), ((∨, •),∨), ((μ0 , •), μ0), ((〈a〉, •), 〈a〉), ((〈a〉, a), 〈αa〉), ((〈b〉, b), 〈αb〉)}
It yields the formula graph depicted in Fig. 2 (middle). This graph encodes as
expected the quotient formula of Ex. 3, which can be evaluated on N\3.

Working with formulas in disjunctive form is crucial: branches in the formula
graph denote disjunctions between sub-formulas (or-nodes). During composition
between the formula graph and an individual Lts, the impossibility to synchro-
nise on a modality 〈a〉 (no transition labelled by t[i] in the current state of the
individual Lts) denotes invalidation of the corresponding sub-formula, which
merely disappears, in conformance with the equality ff ∨ ϕ0 = ϕ0.

5 Formula Graph Simplifications

The size (number of states) of a formula graph of size n quotiented with respect
to an Lts of size m is bounded by n×m. Hence, as observed by Andersen [2],
simplifications are needed to keep intermediate quotiented formulas at a rea-
sonable size. We present in Fig. 3 several simplifications applying to formula
graphs, as conditional rules of the form “l � r (cond)” where l and r are sub-
sets of transition relations, such that every variable representing a state (written
s, s1, s2, . . .) or a label (written σ, σ1, σ2, . . .) in r or in the condition cond must
occur in l. It means that all transitions matching the left-hand side so that cond
is satisfied can be replaced by the transitions of the right-hand side.
Elimination of ∨-transitions (1). This rule is essential to eliminate the transi-
tions labelled by ∨ introduced by synchronisation rules of the form ((〈a〉, t[i]),∨)

Partial Model Checking Using Networks and Bess 149

(1) s1
∨ �� s2

σ �� s3 � s1

σ

 s2
σ �� s3

(2) s1
¬ �� s2

¬ �� s3 � s1

∨

 s2
¬ �� s3 (s2 has a single

outgoing transition)

(3) s1
μk

�� s2 � s1
∨ �� s2 (decoding of s2 does

not contain Xk
s1)

(4) s1
¬ �� s2 � s1 s2 (s2 evaluates to tt)

(5) s1σ2

����
� σn

���
��

s2 . . . sn

� s1
¬ �� ff

s2 . . . sn

(s1 evaluates to tt)

(6) s1
σ �� s2 � s1 s2 (σ = ¬ and s2

evaluates to ff)

(7) s1σ2

����
� σn

���
��

s2 . . . sn

� s1

s2 . . . sn

(s1 evaluates to ff)

Fig. 3. Simplification rules applying to formula graphs

during quotienting. It can be achieved efficiently by applying reduction modulo
τ∗.a equivalence [17], ∨-transitions being interpreted as internal (τ) transitions.
Elimination of double-negations (2). This rule can be used after the previous one
to simplify formulas of the form ¬¬ϕ, which may appear, e.g., in the quotienting
of ¬〈a〉¬ϕ′ with an Lts that offers an action synchronising with a.
Elimination of μ-transitions (3). The transition from s1 to s2 denotes a proposi-
tional variable Xk

s1 , which does not occur free in the formula if at least one of the
following sufficient (and checkable in linear time) conditions holds: (i) s1 and s2
are not in the same strongly connected component; (ii) s1 satisfies the recursive
condition “s1 has a single predecessor p, distinct from the initial state, and either
p has a single μ-transition to s1 or p satisfies this condition, recursively”. This
condition is well-founded as long as it is applied to reachable states.
Evaluation of constant sub-formulas (4–7). To decide whether a state denotes a
sub-formula that evaluates to a constant in any context, we consider the following
Bes, consisting in blocks T k and F k (k ∈ 0..n) of respective signs μ and ν, n
being the greatest block number in the formula graph. Blocks are ordered so
that k < k′ implies T k (resp. F k) is before T k′

(resp. F k′
):

T k :
{
T k
s =μ

∨
s

∨−→s′ T
k
s′ ∨

∨
s

¬−→s′ F
k
s′ ∨

∨
s
μk′
−→s′

T k′
s′
}
s∈Σ

F k :
{
F k
s =ν

∧
s

∨−→s′
F k
s′ ∧

∧
s

〈β〉−→s′
F k
s′ ∧

∧
s

¬−→s′ T
k
s′ ∧

∧
s
μk′
−→s′

F k′
s′
}
s∈Σ

We consider only the variables reachable from T 0
s0 or F 0

s0 , s0 being the initial
state of the formula graph. A state s denotes tt (resp. ff) if the Boolean variables
T k
s (resp. F k

s) evaluate to tt in all (reachable) blocks k. Due to the presence of
modalities, there may be states s and blocks k such that T k

s and F k
s are both

150 F. Lang and R. Mateescu

false, indicating that the corresponding sub-formula is not constant. Intuitively,
T k
s expresses that s evaluates to tt in block k if one of its successors following a

transition labelled by ∨ or μk′
evaluates to tt, or one of its successors following

a transition labelled by ¬ evaluates to ff . Variable F k
s expresses that state s

evaluates to ff in block k if all its successors following transitions labelled by ∨,
μk′

, or modalities (by applying the identity 〈a〉ff = ff) evaluate to ff and all its
successors following transitions labelled by ¬ evaluate to tt. Regarding fix-point
signs, observe that F k

μXk.Xk =ν F k
μXk.Xk and T k

μXk.Xk =μ T k
μXk.Xk respectively

evaluate to tt and ff , reflecting that μXk.Xk evaluates to ff as expected.
Repeated applications of quotienting progressively eliminate modalities, until

none of them remains in the formula graph, which then necessarily evaluates to
a constant equal to the result of evaluating the formula on the whole network.
Sharing of equivalent sub-formulas. In addition to the above rules, reducing a
formula graph modulo strong bisimulation does not change its decoding, modulo
idempotence, renaming of propositional variables, and unification of equivalent
variables defined in the same block. Strong bisimulation reduction can thus de-
crease the size of intermediate formula graphs. The reader may note that the
heuristic to determine that two variables denote equivalent sub-formulas given
in Andersen’s work [2] is similar to the definition of strong bisimulation on Ltss.

A careful comparison between the simplifications proposed by Andersen [2]
and ours would be useful and is left for further work.

Example 6. After applying the above simplifications to the formula graph of
Ex. 5, we obtain the (smaller) formula graph depicted in Fig. 2 (right), which
corresponds to the formula (〈a〉tt) ∨ (〈αa〉tt) ∨ (〈αb〉〈a〉tt).

Example 7. The graph corresponding to μX0.(〈a〉μY 0.〈b〉X0) ∨ 〈c〉X0 reduces
as expected to a deadlock state representing the constant ff (left as an exercise).

6 Simplification of Alternation-Free Formula Graphs

Simplifications apply to μ-calculus formulas of arbitrary alternation depth. We
focus here on the alternation-free μ-calculus fragment, which has a linear-time
model checking complexity [15] and is therefore more suitable for scaling up to
large Ltss. We propose a variant of constant sub-formula evaluation specialised
for alternation-free formulas, using alternation-free Bess [1].

Even in the case of alternation-free formulas, the above Bes is not alternation-
free due to the cyclic dependency between T k and F k, e.g., when evaluating
sequences of ¬-transitions. In Fig. 4, we propose a refinement of this Bes, which
splits each variable T k

s of sign μ into two variables T+k
s of sign μ and F−k

s of sign
ν, which evaluate to true iff the sub-formula corresponding to state s is preceded
by an even (for T+k

s) or odd (for F−k
s) number of negations and evaluates to true.

Variable F k
s is split similarly. This Bes is a generalisation, for formula graphs

containing negations and modalities, of the Bes characterising the solution of
alternation-free Boolean graphs outlined in [35].

Partial Model Checking Using Networks and Bess 151

T k :

⎧⎨
⎩

T+k
s =μ

∨
s

∨−→s′ T
+k
s′ ∨

∨
s

¬−→s′ T
−k
s′ ∨

∨
s
μk′
−→s′

T+k′
s′

T−k
s =μ

∧
s

∨−→s′ T
−k
s′ ∧

∧
s
〈β〉−→s′

T−k
s′ ∧

∧
s

¬−→s′ T
+k
s′ ∧

∧
s
μk′
−→s′

F+k′
s′

⎫⎬
⎭

s∈Σ

F k :

⎧⎨
⎩

F+k
s =ν

∧
s

∨−→s′ F
+k
s′ ∧

∧
s
〈β〉−→s′

F+k
s′ ∧

∧
s

¬−→s′ F
−k
s′ ∧

∧
s
μk′
−→s′

F+k′
s′

F−k
s =ν

∨
s

∨−→s′ F
−k
s′ ∨

∨
s

¬−→s′ F
+k
s′ ∨

∨
s
μk′
−→s′

T+k′
s′

⎫⎬
⎭

s∈Σ

Fig. 4. Bes for the evaluation of constant alternation-free formulas

For general formulas, this Bes is not alternation-free due to the cyclic depen-
dencies between T k and F k′

, of different fix-point signs. Yet, for alternation-free
block-labelled formulas, it is alternation-free, since each dependency from T k

to F k′
(or from F k to T k′

) always traverses a μ-transition preceded by an odd
number of negations, which switches to a different block number k′ > k.

7 Implementation

We have implemented partial model checking of alternation-free μ-calculus for-
mulas using Cadp, which provided much of what was needed:

– Individual processes can be described in the language Lotos [24], or in the
Lotos NT variant of E-Lotos [25], among others, for which Cadp contains
tools to generate Ltss automatically.

– Process compositions can be described in the Exp.Open 2.0 language [28],
which provides various parallel composition operators, such as synchronisa-
tion vectors [7], process algebra operators (Lotos, Ccs, Csp, μCrl), and
the generalised parallel composition operator of E-Lotos [21]. It also pro-
vides generalised operators for hiding, renaming, and cutting labels based on
a representation of label sets using regular expressions. The Exp.Open 2.0
tool compiles its input into a network of Ltss. It then generates C code
for representing the transition relation [18], so that the Lts can be either
generated or traversed on-the-fly using various libraries. For partial model
checking, the Exp.Open 2.0 tool has been slightly extended both to imple-
ment sub-network extraction and to generate the network representing the
parallel composition between the formula graph and a chosen individual Lts.

– Alternation-free μ-calculus formulas can be handled by the Evaluator 3.5
on-the-fly model checker [38], in which an option has been added for com-
piling a formula into a formula graph.

– Reductions modulo τ∗.a equivalence and strong bisimulation are achieved
using respectively the Reductor and Bcg Min tools of Cadp.

Elimination of double-negations, of μ-transitions, and evaluation of constant
formulas have been implemented in a new prototype tool (1, 000 lines of C code),
which relies on the Caesar Solve library [37] for solving alternation-free Bes.
Finally, selection of the Lts w.r.t. which the formula is quotiented at each step
is done using the principles described in [16] for networks of Ltss.

152 F. Lang and R. Mateescu

8 Experimentation

We have used partial model checking in a case-study in avionics, namely the
verification of a communication protocol between a plane and the ground, based
on Tftp (Trivial File Transfer Protocol)/Udp (User Datagram Protocol) [22].

The system consists in two instances of the Tftp connected by Udp using
a Fifo buffer. We considered five scenarios, named A to E, depending whether
each instance may write and/or read a file. We also checked the (alternation-free)
μ-calculus (branching-time) properties named A01 to A28, studied in [22], both
using the well-established on-the-fly model checker Evaluator 3.5 [38] of Cadp

and using the partial model checking approach described in this paper. These
experiments were done on a 64-bit computer with 148 gigabytes of memory.

The results summarized in Tab. 1 give, for each scenario, the Lts size in kilo-
states (ks), and for each property, the peak of memory in megabytes (MB) used
by on-the-fly model checking (column fly) and partial model checking (column
pmc). Some properties being irrelevant to some scenarios (e.g., they concern a
read or write operation absent in the corresponding scenario), they have not
been checked, explaining the shaded cells. The symbol “�” corresponds to unfin-
ished verifications that used too much memory. For lack of space, times are not

Table 1. Experimental results for the Tftp/Udp case study

Scenario A Scenario B Scenario C Scenario D Scenario E
1, 963 ks 867 ks 35, 024 ks 40, 856 ks 19, 436 ks

Prop fly pmc fly pmc fly pmc fly pmc fly pmc

A01 199 6 89 6 2, 947 24 3, 351 27 1, 530 23
A02 207 6 93 6 3, 156 25 3, 631 28 1, 612 10
A03 182 6 80 6 2, 737 6 3, 162 6 1, 386 6
A04 199 6 89 6 2, 947 6 3, 351 29 1, 530 7
A05 10 6 7 6 7 6 7 6 10 10
A06 187 6 85 6 2, 808 6 3, 249 7 1, 428 6
A07 187 6 85 6 2, 808 6 3, 249 6 1, 428 6
A08 186 6 80 6 2, 745 6 3, 170 6 1, 390 6
A09a 3, 290 28 1, 488 6
A09b 2, 955 6
A10 3, 354 6 1, 674 6
A11 3, 206 6 4, 444 7 1, 711 6
A12 620 � 133 � 101 �
A13 4, 499 � 2, 094 �
A14 267 6 3, 988 23 2, 107 15
A15 118 15 521 � 156 � 1, 524 59
A16 186 8
A17 667 � 569 2, 702
A18 85 6 476 11 255 6 1, 391 6
A19 207 6 6, 352 90 8, 753 13 3, 104 55
A20 31 9 837 21 261 25
A21 374 6 4, 958 25 2, 817 25
A22 35 7 427 1, 271 191 650
A23 170 6 6, 909 9 3, 039 40
A24 41 9 427 1, 786
A25 391 6 5, 480 40
A26 195 6 2, 857 15 1, 477 10
A27 228 6 3, 534 6 1, 871 6
A28 102 6 3, 654 22 4, 032 6 1, 821 6

Partial Model Checking Using Networks and Bess 153

reported but each partial model checking experiment that used less than 100 MB
of memory took from a few seconds to less than a minute. Note that the major
part of time and memory are used by formula simplifications, as compared to
the low complexity of the synchronous product operation used for quotienting.

These results confirm that partial model checking may be much more efficient
(up to 600 times less memory in this example) than on-the-fly model checking.
For several properties, we observe that partial model checking sometimes allows
complete evaluation of formulas before they have been quotiented with respect
to all individual Ltss, because the truth value of the formula is independent
of some individual Lts. However, in a few cases, partial model checking leads
to combinatorial explosion (properties A12, A13, A15, and A17) while on-the-
fly model checking is efficient. This is inherent to the structure of the system,
intermediate quotients needing to capture a large part of the behaviour before
the truth value of the formula can be computed. This shows that both approaches
are complementary and worthy of being used concurrently.

9 Conclusion

The original contributions of this paper are the following: (1) Partial model
checking has been generalised to the network model, which subsumes many par-
allel composition operators. (2) An efficient implementation of quotienting with
respect to an individual Lts has been proposed, using a simple synchronous
product between this Lts and a graph representation of the formula. A key is
the representation of the formula in a disjunctive form (using negations), which
turns every node of the formula graph into an or-node. (3) An efficient imple-
mentation of formula simplifications has also been proposed, using a combina-
tion of existing algorithms (such as reductions modulo equivalence relations),
simple transformations, and traversals of the formula graph using a Bes. Us-
ing a graph equivalence relation to simplify the formula was already proposed
in [8], where the formula was translated into an and-or-graph and then reduced
modulo strong bisimulation. We use a weaker relation (τ∗.a equivalence) that
enables more reduction of the formula graph, and we apply it directly on simple
Ltss, thus allowing efficient Lts reduction tools to be used without any modifi-
cation. Our simplifications integrate smoothly in the approach, both quotienting
and simplifications applying to the same graph representation, without encod-
ing and decoding formulas back and forth. (4) A specialisation to the case of
alternation-free formulas (using alternation-free Bes) has also been presented,
showing that partial model checking may result in much better performance than
complementary approaches, such as on-the-fly model checking. Only small soft-
ware developments were required, thanks to the wealth of functionalities avail-
able in Cadp. The approach would be also applicable to formulas of arbitrary
alternation depth using a solver for Bes of arbitrary alternation depth.

The implementation of quotienting as a synchronous product opens the
way for combining partial model checking with techniques originating from
compositional model generation, such as (compositional) τ -confluence reduc-
tion [30,36,40], or restriction using interface constraints following the approach

154 F. Lang and R. Mateescu

developed in [23] and refined in [19,27,29]. Note also that partial model checking
and compositional model generation are complementary. Although it is difficult
in general to know which of them will be most efficient, a reasonable method-
ology is to try compositional model generation first (because one then obtains
a single model on which all formulas of interest can be evaluated). In case of
failure, partial model checking can then be used for each formula.

As future work, we also plan to study partial model checking of certain μ-
calculus formulas of alternation depth 2 describing the existence of complex
cycles (e.g., νX.μY.(〈b〉X ∨〈a〉Y), expressing the infinite repetition of sequences
belonging to the regular language a∗.b), which can still be checked in linear-
time using specialised Bes resolution algorithms [39] generalising the detection
of accepting cycles in Büchi automata.

References

1. Andersen, H.R.: Model checking and Boolean graphs. Theoretical Computer Sci-
ence 126(1), 3–30 (1994)

2. Andersen, H.R.: Partial Model Checking. In: Proc. of Logic in Computer Science
LICS. IEEE Computer Society Press (1995)

3. Andersen, H.R., Lind-Nielsen, J.: MuDiv: A Tool for Partial Model Checking. In:
Proc. of CONCUR (1996)

4. Andersen, H.R., Lind-Nielsen, J.: Partial Model Checking of Modal Equations: A
Survey. STTT 2, 242–259 (1999)

5. Andersen, H.R., Staunstrup, J., Maretti, N.: Partial Model Checking with ROB-
DDs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 35–49. Springer,
Heidelberg (1997)

6. Andersen, H.R., Staunstrup, J., Maretti, N.: A Comparison of Modular Verifica-
tion. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT
1997. LNCS, vol. 1214, Springer, Heidelberg (1997)

7. Arnold, A.: MEC: A System for Constructing and Analysing Transition Systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 117–132. Springer, Heidelberg
(1990)

8. Basu, S., Ramakrishnan, C.R.: Compositional Analysis for Verification of Parame-
terized Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 315–330. Springer, Heidelberg (2003)

9. Berard, B., Laroussinie, F.: Verification compositionnelle des p-automates. Tech.
Report Lot 4.1, RNTL, projet AVERROES (2003)

10. Bodentien, N., Vestergaard, J., Friis, J., Kristoffersen, K., Larsen, K.: Verification
of State/Event Systems by Quotienting. Tech. Report RS-99-41, BRICS (1999)

11. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The Fc2Tools Set: a Toolset for
the Verification of Concurrent Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 441–445. Springer, Heidelberg (1996)

12. Cassez, F., Laroussinie, F.: Model-Checking for Hybrid Systems by Quotienting
and Constraints Solving. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 373–388. Springer, Heidelberg (2000)

13. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C.,
Powazny, V., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT to
LOTOS Translator (Version 5.4). INRIA/VASY (2011)

Partial Model Checking Using Networks and Bess 155

14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)

15. Cleaveland, R., Steffen, B.: A Linear-Time Model-Checking Algorithm for the
Alternation-Free Modal Mu-Calculus. FMSD 2(2), 121–147 (1993)

16. Crouzen, P., Lang, F.: Smart Reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011)

17. Fernandez, J.-C., Mounier, L.: “On the Fly” Verification of Behavioural Equiva-
lences and Preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575,
pp. 181–191. Springer, Heidelberg (1992)

18. Garavel, H.: OPEN/CAESAR: An Open Software Architecture for Verification,
Simulation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp.
68–84. Springer, Heidelberg (1998)

19. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Proc. of FORTE. IFIP. Kluwer Academic Publishers (2001)

20. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

21. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. In: Proc. of FORTE/PSTV. IFIP. Kluwer (1999)

22. Garavel, H., Thivolle, D.: Verification of GALS Systems by Combining Synchronous
Languages and Process Calculi. In: Păsăreanu, C.S. (ed.) Model Checking Software.
LNCS, vol. 5578, pp. 241–260. Springer, Heidelberg (2009)

23. Graf, S., Steffen, B.: Compositional Minimization of Finite State Systems. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer,
Heidelberg (1991)

24. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. ISO International Standard 8807 (1989)

25. ISO/IEC. Enhancements to LOTOS (E-LOTOS). ISO International Standard
15437 (2001)

26. Kozen, D.: Results on the Propositional μ-calculus. TCS 27, 333–354 (1983)

27. Krimm, J.-P., Mounier, L.: Compositional State Space Generation from LOTOS
Programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997)

28. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

29. Lang, F.: Refined Interfaces for Compositional Verification. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 159–
174. Springer, Heidelberg (2006)

30. Lang, F., Mateescu, R.: Partial Order Reductions Using Compositional Confluence
Detection. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
157–172. Springer, Heidelberg (2009)

31. Laroussinie, F., Larsen, K.: Compositional Model Checking of Real Time Systems.
In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 27–41. Springer,
Heidelberg (1995)

32. Laroussinie, F., Larsen, K.: CMC: A Tool for Compositional Model Checking of
Real-Time Systems. In: Proc. of FORTE (1998)

33. Larsen, K., Pettersson, P., Yi, W.: Compositional and Symbolic Model Checking
of Real-Time Systems. In: Proc. of the IEEE Real-Time Symposium (1995)

156 F. Lang and R. Mateescu

34. Martinelli, F.: Symbolic Partial Model Checking for Security Analysis. In: Gorodet-
sky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS, vol. 2776,
pp. 122–134. Springer, Heidelberg (2003)

35. Mateescu, R.: Efficient Diagnostic Generation for Boolean Equation Systems. In:
Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 251–265. Springer, Heidelberg
(2000)

36. Mateescu, R.: On-the-fly State Space Reductions for Weak Equivalences. In: Proc.
of FMICS. ERCIM. ACM Computer Society Press (2005)

37. Mateescu, R.: CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of
Alternation-Free Boolean Equation Systems. STTT 8(1), 37–56 (2006)

38. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. SCP 46(3), 255–281 (2003)

39. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-
Passing Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
148–164. Springer, Heidelberg (2008)

40. Pace, G.J., Lang, F., Mateescu, R.: Calculating τ -Confluence Compositionally. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 446–459.
Springer, Heidelberg (2003)

From Under-Approximations

to Over-Approximations and Back

Aws Albarghouthi1, Arie Gurfinkel2, and Marsha Chechik1

1 Department of Computer Science, University of Toronto, Canada
2 Software Engineering Institute, Carnegie Mellon University, USA

Abstract. Current approaches to software model checking can be di-
vided into over-approximation-driven (OD) and under-approximation-
driven (UD). OD approaches maintain an abstraction of the transition
relation of a program and use abstract reachability to build an induc-
tive invariant (or find a counterexample). At the other extreme, UD ap-
proaches attempt to construct inductive invariants by generalizing from
finite paths through the control-flow graph of the program.
In this paper, we present Ufo, an algorithm that unifies OD and UD

approaches in order to leverage both of their advantages. Ufo is param-
eterized by the degree to which over- and under-approximations drive
the analysis. At one extreme, Ufo is a novel interpolation-based (UD)
algorithm that generates interpolants to label (refine) multiple program
paths using a single SMT solver query. At the other extreme, Ufo uses
an abstract domain to drive the analysis, while using interpolants to
strengthen the abstraction.
We have implemented Ufo in LLVM and applied it to programs

from the Competition on Software Verification. Our experimental results
demonstrate the utility of our algorithm and the benefits of combining
UD and OD approaches.

1 Introduction

In recent years, we have witnessed a divergence in software model checking tech-
niques. Traditionally, as promoted by the SLAM project [3], software model
checkers implemented a variant of the counterexample-guided abstraction refine-
ment (CEGAR) [11] loop, where over-approximating abstractions of programs
are computed. In cases where spurious counterexamples are introduced by over-
approximation, refinement is used to eliminate them. We henceforth categorize
such techniques as over-approximation-driven (OD). OD techniques mainly rely
on predicate abstraction [16] for computing an abstract post operator. In the
refinement stage, new predicates (facts) are added to build more precise abstrac-
tions. OD techniques can supply us with efficient safety proofs, when relatively
coarse abstractions are sufficient to prove correctness. Unfortunately, it is often
the case that a large number of predicates is required to reach a deep error
or to compute an inductive invariant, causing the abstraction step to be very
expensive.

On the other hand, under-approximation-driven (UD) software model checking
techniques are becoming more popular. Such techniques attempt to construct a

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 157–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

158 A. Albarghouthi, A. Gurfinkel, and M. Chechik

program invariant by generalizing from finite programpaths. For example, in [24],
McMillan uses Craig Interpolants, derived from proofs of unsatisfiability of paths
to an error location, to compute program invariants. In our previous work [2], we
used predicate abstraction to generalize symbolic program executions. Note that
Synergy [17] and Dash [4] are considered under-approximation-driven accord-
ing to our categorization, as they use weakest-precondition computations along
infeasible symbolic paths to refine a partition of the state space with the goal of
computing an invariant. Testing in these techniques only acts as a way of choosing
which symbolic paths to examine. UD techniques avoid the expensive step of com-
puting an abstract post operator, giving them an advantage over OD techniques.
Unfortunately, due to the fact that they are not driven by an abstract domain, they
may have to examine a large number of programpaths to compute an inductive in-
variant or find an erroneous execution.

In this paper, our goal is to resolve the disconnect between OD and UD
approaches to software model checking. Specifically, we present Ufo, a software
model checking algorithm for sequential programs that is parameterized by the
degree to which over- and under-approximations drive the analysis. Ufo makes
two contributions: (1) it combines UD and OD approaches, and (2) at the UD
extreme, it is a novel interpolation-based algorithm that generates interpolants
to label (refine) multiple program paths using a single SMT solver query. This
allows Ufo to exploit an SMT solver’s ability to enumerate program executions,
giving it an advantage over other interpolation-based algorithms, e.g., [24,23],
that explicitly enumerate program paths.

We have implemented Ufo in the LLVM compiler infrastructure [22] and
experimented with various instantiations of it on benchmarks from the Compe-
tition on Software Verification [5]. Our experimental results show the utility of
our interpolation-based algorithm. Moreover, they show that augmenting Ufo

with an abstract domain (e.g., predicate abstraction) often outperforms both
the OD and UD extremes.

The rest of the paper is organized as follows: In Sec. 2, we illustrate the
operation of Ufo on an example. In Sec. 3, we provide the definitions and
notation used in the paper. In Sec. 4, we present the Ufo algorithm. In Sec. 5, we
present the refinement procedure. In Sec. 6, we describe ourUfo implementation
and present our experimental evaluation. In Sec. 7, we place Ufo in the context
of related work. Finally, in Sec. 8, we conclude the paper and outline directions
for future work.

2 Overview

The core of Ufo is a UD algorithm parameterized by an abstract Post operator
and a novel interpolation-based refinement procedure. In this section, we illus-
trate the novel parts of Ufo by instantiating Post to always return true, the
weakest admissible Post. In practice, we also instantiate Post with Boolean
and Cartesian predicate abstractions.

Consider function foo shown in Fig. 1(a), which takes n as a parameter. We
want to prove that location 8 with label ERROR is unreachable for any value of n.

From Under-Approximations to Over-Approximations and Back 159

v1

v2

v3

v4 v5

v7

v8

v6

v3'

v9

{true}

{true}

{true}

{true}{true}

{true}

{true}

{true}

{true}

{true}

v1

v2

v3

v4 v5

v7

v8

v6

v3'

v9

{true}

{true} {false}

{x ≥ 0}

{x ≥ 0}

{x ≥ 0}

{true}
{x ≥ 0}

(a)

(b) (c)

{x ≥ 0}
{x ≥ 0

∧ i ≥ 0}

v2' v2'
{x ≥ 0}{true}

Fig. 1. (a) Safe function foo. ARGs for foo (b) 1st iteration; (c) after refinement

Constructing the ARG. Ufo starts by constructing an Abstract Reachability
Graph (ARG) for the program. The ARG for foo is shown in Fig. 1(b). Each
node in the ARG relates to a location in foo. For example, nodes v2 and v′2
represent location 2. Ufo associates a label {ϕi} for each node vi, where ϕi is
an over-approximation of the set of reachable states at vi.

Ufo expands the ARG using the recursive iteration strategy [8]. That is, the
innermost loop is unrolled first. In our example, Ufo starts by creating nodes
v1 and v2. Following the recursive iteration strategy, it enters the loop, creating
nodes v3, v4, v5, v6, and v′2. All nodes are initially labelled with true, the weakest
possible over-approximation.

Upon reaching node v′2, Ufo adds v′3 and v7 as children of v′2. At this point,
the label of v′2 is subsumed by the one of v2. We say that v′2 is covered by v2
and show it as the bold back-edge in Fig. 1(b). Therefore, Ufo exits the loop
and goes on to process node v7, adding v8 (ERROR node) and v9.

Refining the ARG. Once the ARG has been completely expanded,Ufo checks
if the label on the ERROR node v8 is UNSAT. The label is true, which means that
there is a potential execution to location 8 that either does not enter the loop at
v2 or takes one iteration before exiting through v′2. To check if such an execution
exists, Ufo constructs a formula representing all executions in the ARG: for
each node vi that can reach v8, it creates the following formula μi:

μ1 : cv1 ⇒ (i0 = 0 ∧ x0 = 0 ∧ cv2) μ5 : cv5 ⇒ (x2 = i0 ∧ x3 = x2 ∧ cv6)
μ2 : cv2 ⇒ ((i0 < n ∧ cv3) ∨ (i0 ≥ n ∧ x4 = x0 ∧ cv7)) μ6 : cv6 ⇒ (i1 = i0 + 1 ∧ cv′

2
)

μ3 : cv3 ⇒ ((i0 ≤ 2 ∧ cv4) ∨ (i0 > 2 ∧ cv5)) μ′
2 : cv′

2
⇒ (i1 ≥ n ∧ x4 = x3 ∧ cv7)

μ4 : cv4 ⇒ (x1 = 0 ∧ x3 = x1 ∧ cv6) μ7 : cv7 ⇒ (x4 ≥ 0 ∧ cv8)

For example, μ2 specifies that if control reaches node v2 (represented by the
Boolean control variable cv2), then either i0 < n and control goes to v3, or

160 A. Albarghouthi, A. Gurfinkel, and M. Chechik

i0 ≥ n and control goes to v7. To avoid naming conflicts, each time a variable
appears on the left hand side of an assignment, it is given a fresh subscript (e.g.,
x becomes x1 in μ4).

The formula cv1 ∧μ1∧· · ·∧μ7 is UNSAT. Hence, there is no feasible execution
in the ARG that can reach v8. At this point, Craig interpolants [13] are used
to relabel the ARG. Given a pair of formulas (A,B) s.t. A ∧ B is UNSAT,
an interpolant for (A,B) is a formula I s.t. A ⇒ I, I ⇒ ¬B, and I is over
the variables shared between A and B. To derive a new label for v7, Ufo sets
A = cv1 ∧ μ1 ∧ · · · ∧ μ′

2 and B = μ7. A possible interpolant I for (A,B) is
cv7 ∧ x4 ≥ 0. To remove the instrumentation variable cv7 , Ufo sets it to true. It
also removes the subscript from x4 to arrive at a formula x ≥ 0 over program
variables. The new labels generated by interpolants are shown in Fig. 1(c). In
Sec. 5, we formalize the process of deriving labels from interpolants and prove
that for any edge (vi, vj) in the ARG, the resulting labels for vi and vj form a
Hoare triple with respect to the program statement on the edge.

Note that in Fig. 1(c), v8 is labelled with {false} and v′2 is still covered, since its
label x ≥ 0 is subsumed by the label on v2. Therefore, Ufo terminates execution
declaring foo safe. When applied to this example, the algorithm in [24] requires
at least two refinements, as the control-flow graph (CFG) is unrolled into a
tree, thus creating two paths to ERROR through each branch of the conditional
statement (location 3). Ufo, on the other hand, unrolls the CFG into a DAG
and exploits the power of SMT solvers for enumerating paths.

3 Abstract Reachability Graphs

Here, we present the notation and definitions used in the rest of the paper.

Programs. A program P is a tuple (L, Δ, en, err,Var), where L is a finite set of
control locations, Δ is a finite set of actions, en ∈ L is the entry location of P ,
err ∈ L is the error location, and Var is the set of variables of program P . An
action (�1, T, �2) ∈ Δ represents an edge in the control flow graph of P , where
�1, �2 ∈ L and T is a program statement. We assume that there does not exist
an action (�1, T, �2) ∈ Δ s.t. �1 = err.

A program statement is either an assume statement assume(Q), where Q
is a Boolean expression over Var, or an assignment statement x = E, where
x is a variable in Var and E is an expression over the variables in Var. We
use the notation �T � to denote the standard semantics of a program statement
T . For example, for an assignment statement x = x + 1, �x = x + 1� is x′ =
x+ 1 ∧ ∀y ∈ Var · y �= x⇒ y′ = y. For a formula φ, we use φ′ to denote φ with
all variables replaced by their primed versions.

We say that a program P is safe iff there does not exist a feasible execution
that starts in en and reaches err through the actions in Δ.

Weak Topological Ordering. A Weak Topological Ordering (WTO) [8] of a
directed graph G = (V,E) is a well-parenthesized total-order, denoted ≺, of V
without two consecutive “(” s.t. for every edge (u, v) ∈ E:

(u ≺ v ∧ v �∈ ω(u)) ∨ (v (u ∧ v ∈ ω(u)),

From Under-Approximations to Over-Approximations and Back 161

where elements between two matching parentheses are called a component, the
first element of a component is called a head, and ω(v) is the set of heads of all
components containing v.

Let v ∈ V , and U be the innermost component that contains v in the WTO.
We write WtoNext(v) for an element u ∈ U that immediately follows v, if it
exists, and for the head of U otherwise.

Let Us be a component with head v. Suppose that Us is a subcomponent of
some component U . If there exists a u ∈ U s.t. u �∈ Us and u is the first element in
the total-order s.t. v ≺ u, then WtoExit(v) = u. Otherwise,WtoExit(v) = w,
where w is the head of U . Now suppose that Us is not a subcomponent of any
other component, then WtoExit(v) = u, where u is the first element in the
total-order s.t. u �∈ Us and v ≺ u. Intuitively, if the WTO represented program
locations, then WtoExit(v) is the first control location visited after exiting
the loop headed by v. For example, for function foo in Fig. 1(d), a WTO of
the control locations is 1 (2 3 4 5 6) 7 8 9, where 2 is the head of the com-
ponent comprising the while loop. WtoNext(2) = 3,WtoNext(6) = 2, and
WtoExit(2) = 7. Note that WtoNext and WtoExit are partial functions
and we only use them where they have been defined.

Abstract Reachability Graphs (ARGs). Let P = (L, Δ, en, err,Var) be a
program. A Reachability Graph (RG) of P is a tuple (V,E, ven, ν, τ), where
(V,E, ven) represents a directed acyclic graph (DAG) rooted at the entry node
ven ∈ V , ν : V → L is a map from nodes to control locations of P , where
ν(ven) = en, and τ : E → Δ is a map from edges to actions of P s.t. for every
edge (u, v) ∈ E, there exists an action (ν(u), τ(u, v), ν(v)) ∈ Δ.

An Abstract Reachability Graph (ARG) A of P is a tuple (U,ψ,�,�t), where
U = (V,E, ven, ν, τ) is an RG of P , ψ is a map from nodes V to formulas over
Var, � is the ancestor relation over the nodes of U , and �t is a fixed linearization
of the topological ordering of the nodes of U . A node v s.t. ν(v) = err is called
an error node.

A node v ∈ V is covered iff there exists a node u ∈ V that dominates v and
there exists a set of nodes X ⊂ V , where ψ(u)⇒

∨
x∈X ψ(x) and ∀x ∈ X · x �

u ∧ ν(x) = ν(u). A node u dominates v iff all paths from ven to v pass through
u. Every node v dominates itself.

Definition 1 (Well-labeledness of ARGs). An ARG A = (U,ψ,�,�t),
where U = (V,E, ven, ν, τ), for a program P = (L, Δ, en, err,Var) is well-labelled
iff (1) ψ(ven) ≡ true; and (2) ∀(u, v) ∈ E,ψ(u) ∧ �τ(u, v)�⇒ ψ(v)′.

An ARG is safe iff for all v ∈ V s.t. ν(v) = err, ψ(v) ≡ false. An ARG is complete
iff for all uncovered nodes u, for all (ν(u), T, �), there exists an edge (u, v) s.t.
ν(v) = � and τ(u, v) = T .

Theorem 1 (Program Safety). If there exists a safe, complete, and well-
labelled ARG for a program P , then P is safe.

The proof of this theorem follows from Theorem 1 in [24].

162 A. Albarghouthi, A. Gurfinkel, and M. Chechik

UFO

 post

ExpandArgRefine

Complete, well-labelled,
and safe ARG A

Safe ARG A

ARG A

UD ODProgram P

Unsafe

Unsafe ARG A

Complete ARG A

Fig. 2. High level description of Ufo

1: func UfoMain (Program P) :
2: create node ven
3: ψ(ven)← true, ν(ven)← en
4: marked(ven)← true
5: labels ← ∅
6: while true do
7: ExpandArg()
8: if ψ(verr) is UNSAT then
9: return SAFE
10: labels ← Refine()
11: if labels = ∅ then
12: return UNSAFE
13: clear AH and FN

14: func GetFutureNode (� ∈ L) :
15: if FN(�) exists then
16: return FN(�)

17: create node v
18: ψ(v)← true; ν(v)← �
19: FN(l)← v
20: return v

21: func ExpandNode (v ∈ V) :
22: if v has children then
23: for all (v, w) ∈ E do
24: FN(ν(w))← w

25: else
26: for all (ν(v), T, �) ∈ Δ do
27: w ← GetFutureNode(�)
28: E ← E ∪ {(v, w)}; τ (v,w)← T

29: func ExpandArg () :
30: v ← ven
31: while true do
32: ExpandNode(v)
33: if marked(v) then
34: marked(v)← false
35: ψ(v)←

∨
(u,v)∈E Post(u, v)

36: for all (v, w) ∈ E do marked(w)← true

37: else if labels(v) bound then
38: ψ(v)← labels(v)
39: for all {(v, w) ∈ E | labels(w) unbound} do
40: marked(w)← true

41: if v = verr then break

42: if ν(v) is head of a component then
43: if ψ(v)⇒

∨
u∈AH(ν(v)) ψ(u) then

44: erase AH(ν(v)) and FN(ν(v))
45: l ← WtoExit(ν(v))
46: v ← FN(l); erase FN(l)
47: for all {(v, w)∈E | ∃u =v ·(u,w)∈E} do
48: erase FN(ν(w))

49: continue
50: add v to AH(ν(v))

51: l ← WtoNext(ν(v))
52: v ← FN(l); erase FN(l)

Fig. 3. The Ufo Algorithm. Implementation of Refine is presented in Sec. 5

4 The UFO Algorithm

In this section, we describe our verification algorithm Ufo that takes a program
P with a designated error location verr and determines whether verr is reachable.
The output of the algorithm is either an execution of P that ends in verr, or
a complete, well-labeled, and safe ARG of P . The novelty of Ufo lies in its

From Under-Approximations to Over-Approximations and Back 163

combination of UD and OD techniques. Fig. 2 illustrates the two main states
of ufo: (1) exploring (OD), and (2) generalizing (UD). Exploring an ARG is
done by unwinding the CFG while computing node labels using an abstract post
operator Post. Generalizing is done by guessing (typically using interpolants) a
safe labelling of the current ARG from a proof of infeasibility of unsafe executions
in A.

The pseudo-code for the algorithm is given in Fig. 3. Function ExpandArg

(line 29) is responsible for the exploration, and Refine (line 10) is used for
generalization. Note that ufo is parameterized by Post (line 35) – more precise
Post makes it more OD-like and less precise Post – more UD-like. We present
the main parts of the algorithm in this section, and an implementation of Refine

in Sec. 5.

Main Loop. UfoMain is the main function of Ufo. It receives a program
P = (L, Δ, en, err,Var) as input and attempts to prove that P is safe (or unsafe)
by constructing a complete, well-labelled, and safe ARG for P (or by finding an
execution to err). The function ExpandArg is used to construct an ARG A =
(U,ψ,�,�T) for P . By definition, it always constructs a complete, well-labelled
ARG. Line 8 of UfoMain checks if the result of ExpandArg is a safe ARG
by checking whether the label on the node verr is satisfiable (by construction,
verr is the only node in A s.t. ν(verr) = err). If ψ(verr) is UNSAT, then A is
safe, and Ufo terminates by declaring the program safe (following Theorem 1).
Otherwise, Refine is used to compute new labels. In Definition 2, we provide
a specification of Refine that maintains the soundness of Ufo. In Sec. 5, we
present a refinement algorithm satisfying Definition 2.

Definition 2 (Specification of Refine). If there exists a feasible execution
to verr in A, then Refine returns an empty map (labels = ∅). Otherwise, it
returns a map from nodes to labels s.t. labels(verr) ≡ false, labels(ven) ≡ true,
and ∀(u, v) ∈ E′ · labels(u) ∧ �τ(u, v)� ⇒ labels(v)′, where E′ is E restricted to
edges along paths to verr. That is, the labeling precludes erroneous executions and
maintains well-labelledness of A (per Definition 1).

Constructing the ARG. ExpandArg adopts a standard recursive iteration
strategy [8] for unrolling a CFG into an ARG. To do so, it makes use of a
weak topological ordering (WTO) [8] of program locations. A recursive iteration
strategy starts by unrolling the innermost loops until “stabilization”, i.e., until
a loop head is covered, before exiting to the outermost loops. We assume that
the first location in the WTO is en and the last one is err.

ExpandArg maintains two global maps: AH (active heads) and FN (future
nodes). For a loop head l, AH(l) is the set of nodes V� ⊆ V for location l that
are heads of the component being unrolled. When a loop head is covered (line
43), all active heads belonging to its location are removed from AH (line 44).
FN maps a location to a single node and is used as a worklist, i.e., it maintains
the next node to be explored for a given location. Example 1 demonstrates the
operation of ExpandArg.

164 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Example 1. Consider the process of constructing the ARG in Fig. 1(b) for func-
tion foo in Fig. 1(a). When ExpandArg processes node v′2 (i.e., when v = v′2
at line 31), AH(2) = {v2}, since the component (2 3 4 5 6) representing the loop
is being unrolled and v2 is the only node for location 2 that has been processed.
When Ufo covers v′2 (line 43), it sets AH(2) = ∅ (line 44) since the component
has stabilized and Ufo has to exit it. Here, WtoExit(2) = 7, so Ufo continues
processing from node v7 = FN(7) (the node for the first location after the loop).

Suppose Refine returned a new label for node v. When ExpandArg updates
ψ(v) (line 38), it marks all of its children that do not have labels in labels. This is
used to strengthen the labels of v’s children w.r.t the refined over-approximation
of reachable states at v, using the operator Post (line 35). ExpandArg only
attempts to cover nodes that are loop heads. It does so by checking if the label
on a node v is subsumed by the labels on AH(ν(v)) (line 43). If v is covered,
Ufo exits the loop (line 45); otherwise, it adds v to AH(ν(v)).

Post Operator. Ufo is parameterized by the abstract operator Post. For
sound implementations of Ufo, Post should take an edge (u, v) as input and
return a formula φ s.t. ψ(u)∧ �τ(u, v)�⇒ φ′, thus maintaining well-labelledness
of the ARG. In the UD case, Post always returns true, the weakest possible ab-
straction. In the combined UD+OD case, Post is driven by an abstract domain,
e.g., based on predicate abstraction.

Theorem 2 (Soundness). Given a program P , if Ufo run on P terminates
with SAFE, the resulting ARG A is safe, complete, and well-labelled. If Ufo

terminates with UNSAFE, then there exists an execution that reaches err in P .

5 Refinement

In this section, we present our refinement procedure Refine. It begins by com-
puting a formula ϕ, called an ARG condition, representing all executions in a
given ARG. If ϕ is unsatisfiable, Refine invokes an interpolation-based algo-
rithm is to compute new labels for the ARG.

ARG Condition. Given an ARG A with an entry and an error nodes ven, verr,
respectively, we define ArgCond as follows:

ArgCond(verr) � cu1 ∧ μ1 ∧ · · · ∧ μn, (1)

where μi = (cui ⇒
∨

(ui,w)∈E

(cw ∧ encode(ui, w))), (2)

u1 = ven, and u1, . . . , un is the sequence of all nodes, excluding verr, that can reach
verr in A, ordered by �t, and cui is a fresh Boolean control variable representing
the node ui.

If encode(·, ·) is true, then ArgCond(verr) is satisfiable iff there exists a path
from ven to verr in A. encode(u, v) is a formula describing the semantics of an
edge (u, v) that is used to restrict satisfying assignments of ArgCond(verr) to

From Under-Approximations to Over-Approximations and Back 165

feasible executions. For example, for function foo in Fig. 1(a), we encode the
statement on edge (v4, v6) as follows: encode(v4, v6) = (x1 = 0∧x3 = x1). where
x1 is a fresh name for variable x, and x3 = x1 is used to equate the name of x
at node v6 (which is x3) with the value of x after executing this edge.

For the purpose of presentation, we provide a simplified definition of encode.
In practice, we use the SSA-based encoding defined in [18]. Let SVar = {xv | x ∈
Var ∧ v ∈ V } be the set of variables that can appear in encode(·, ·). That is, for
each variable x ∈ Var and node v ∈ V , we create a symbolic variable xv ∈ SVar.
The map SMap : SVar→ Var associates each xv with its program variable x. The
predicate inScope : SVar × V is defined so that inScope(xu, v) holds iff u = v.
If inScope(xu, v) holds, we say that xu is in-scope at node v; otherwise, it is
out-of-scope at v.

Definition 3 (encode). For an edge (u, v) ∈ E: If τ(u, v) is an assignment
statement x = E, then encode(u, v) = (xv = E[x ← xu]) ∧ ∀y ∈ Var · y �=
x⇒ yv = yu. If τ(u, v) is an assume statement assume(Q), then encode(u, v) =
Q[x← xu | x ∈ var(Q)]∧∀y ∈ Var · yv = yu, where var(Q) is the set of variables
appearing in Q.

For example, for an edge (u, v) ∈ E s.t. τ(u, v) is x = x + 1, encode(u, v) =
xv = xu + 1 ∧ yv = yu, assuming Var = {x, y}.

Lemma 1. Given an ARG A, there exists a total onto map from satisfying
assignments of ArgCond(verr) to feasible program executions from ven to verr.

Labels from Interpolants. Given an ARG A with error node verr, when
ArgCond(verr) is unsatisfiable, Refine must return a set of labels for the nodes
of the ARG that satisfy well-labelledness conditions and the specification of Re-

fine (Definitions 1 and 2). We now show how to extract such labels from an
interpolant sequence of ArgCond(verr). For a sequence of formulas A1, . . . , An

s.t.
∧

i∈[1,n] Ai is UNSAT, an interpolant sequence [24,10] I1, . . . , In+1 is defined

as follows: (1) I1 ≡ true, (2) ∀i ∈ [1, n] ·Ii∧Ai ⇒ Ii+1, (3) Ii is over the variables
shared between A1, . . . , Ai−1 and Ai, . . . , An, and (4) In+1 ≡ false.

Let I1, . . . , In+1 be an interpolant sequence for the sequence of formulas (cu1∧
μ1) ∧ μ2 ∧ · · · ∧ μn constituting ArgCond(verr). By definition, an interpolant
Ii is an over-approximation of the set of states at nodes in ui, . . . , un that are
directly reachable from states at nodes in u1, . . . , ui−1. For node ui, this includes
all states reachable at ui since all incoming edges to ui are from nodes that are
topologically before it, i.e., u1, . . . , ui−1.

Example 2. Consider node v′2 in Figure 1(c). An interpolant for v′2 is I ′2 = (cv′
2
∧

x3 ≥ 0) ∨ (cv7 ∧ x4 ≥ 0). Informally, I ′2 specifies that either execution reaches
v′2 with x4 ≥ 0, or it reaches v7 with with x4 ≥ 0. v7 states appear in the
formula because v7 is directly reachable from node v2 which comes before v′2 in
the topological order. ��

For each node ui, our goal is to extract the set of reachable states at ui from
the interpolant Ii. For instance, for node v′2 from Example 2, we want to extract

166 A. Albarghouthi, A. Gurfinkel, and M. Chechik

x3 ≥ 0, the set of reachable states at v′2, from the interpolant I ′2. To do so, we
use the following transformation:

Clean(Ii) �
∀{x | x ∈ var(Ii) ∧ ¬inScope(x, ui)} · ∀{cuj | uj ∈ V } · I[cui ← �], (3)

where var(Ii) is the set of variables appearing in Ii.

Example 3. Continuing Example 2, Clean(I ′2) = ∀x4, cv7 · I[cv′
2
← �] = x3 ≥ 0.

x4 is quantified out since it is out-of-scope at v′2. By replacing each variable y in
the resulting formula with SMap(y), we get the label {x ≥ 0} for v′2, as shown
in Figure 1(c).

By definition,Clean(Ii) is a formula over the variables in-scope at ui. Theorem 3
states that the labels produced by Clean result in a safe ARG and satisfy well-
labelledness properties. That is, for any two nodes ui, uj, where there is an edge
(ui, uj), the labels produced for ui and uj form a Hoare triple w.r.t the statement
τ(ui, uj) encoded as encode(ui, uj).

Theorem 3. Let I ′k = Clean(Ik). (a) If k = 1, then I ′k ≡ true, and if k =
n, then I ′k ≡ false. (b) For any two nodes ui, uj ∈ V s.t. (ui, uj) ∈ E, I ′i ∧
encode(ui, uj)⇒ I ′j, where I ′j = Clean(Ij).

Proof. Part (a) follows from the definition of an interpolant sequence.
Part (b):

Ii ∧ μi ∧ · · · ∧ μj−1 ⇒ Ij
(set cui to � and logic)

⇒ Ii[cui ← �] ∧ cuj ∧ encode(ui, uj) ∧ μi+1 ∧ · · · ∧ μj−1 ⇒ Ij
(let Π = {cui+1 , . . . , cuj−1})

⇒ Ii[cui ← �,Π ← ⊥] ∧ cuj ∧ encode(ui, uj)⇒ Ij
(set cuj to �)

⇒ Ii[Π ← ⊥, cui ← �, cuj ← �] ∧ encode(ui, uj)⇒ Ij [cuj ← �]
(use (∀x.f)⇒ f)

⇒ I ′i ∧ encode(ui, uj)⇒ Ij [cuj ← �]
(out-of-scope variables of uj are not in the antecedent)

⇒ I ′i ∧ encode(ui, uj)⇒ I ′j ��
Finally, Refine returns the labeling map {ui �→ Clean(Ii)

′ | i ∈ [1, n + 1]},
where un+1 = verr and Clean(Ii)

′ = Clean(Ii)[x← SMap(x) | x ∈ SVar].
In summary, our refinement technique uses a single SMT query ϕ to decide

feasibility of all unsafe executions of an ARG A. When ϕ is unsatisfiable, it
extracts a new labeling for A that rules out all infeasible unsafe executions from
an interpolant sequence of ϕ .

6 Implementation and Evaluation

Implementation. We have implemented Ufo in the LLVM compiler infras-
tructure [22] and used it to verify properties of C programs from the 2012

From Under-Approximations to Over-Approximations and Back 167

Competition on Software Verification [5]. We used MathSat4 [9] for SMT-
checking and interpolation, and Z3 [25] for quantifier elimination. Our im-
plementation, benchmarks, and complete experimental results are available at
http://www.cs.toronto.edu/~aws/ufo.

We used LLVM to heavily optimize all input programs prior to analysis. Be-
cause the benchmarks are meant for verification tools, these optimizations might
be unsound with respect to the intended verification semantics. However, in all
but one case (pipeline), our verification results are as expected: we find a bug
in buggy programs, and prove safety of safe ones. Furthermore, we have im-
plemented a proof and a counterexample checker that verify that the results
produced by UFO are sound with respect to our semantics of C. All results
discussed here have been validated by an appropriate checker.

Evaluation. For the evaluation, we used the ntdrivers-simplified,
ssh-simplified, and systemc benchmarks from [5], and the pacemaker bench-
marks from [1]. Overall, we had 105 C programs: 48 safe and 57 buggy. All ex-
periments were conducted on an Intel Xeon 2.66GHz processor running a 64-bit
Linux, with a 300 second time and 4GB memory limits per program, respectively.

We have evaluated 5 configurations of Ufo: (1) a pure UD, called uUfo,
where Post always returns true; (2) with Cartesian predicate abstraction, called
cpUfo; (3) with Boolean predicate abstraction, called bpUfo; (4) a pure OD
with Cartesian predicate abstraction, called Cp, and a pure OD with Boolean
predicate abstraction, called Bp. Note that Boolean predicate abstraction is
more precise, but is exponentially more expensive than Cartesian abstraction.

The results are summarized in Table 1. For each configuration, we show the
number of instances solved (#Solved), number of safe (#Safe) and unsafe
(#Unsafe) instances solved, number of unsound results (#Unsound), where
a result is unsound if it does not agree with the benchmark categorization in [5],
and the total time.

On these benchmarks, cpUfo performs significantly better than all other
configurations, both in total time and number of instances solved. The uUfo

configuration is a close second. We have also compared our results against the
UD tool Wolverine [21] that implements a version of Impact [24] algorithm.
All configurations of Ufo perform significantly better than Wolverine.

Furthermore, we compared our tool against the results of the extensive study
reported in [7] for the state-of-the-art OD toolsCpaChecker [7], Blast [6], and
SatAbs [12]. Both uUfo and cpUfo configurations are able to solve all buggy
transmitter examples. However, according to [7], CpaChecker, Blast, and
SatAbs are unable to solve most of these examples, even though they are run
on a faster processor with a 900s time limit and 16GB of memory. Additionally,
on the ntdrivers-simplified, uUfo, cpUfo and bpUfo perform significantly
better than all of the aforementioned tools.

Table 2 presents a detailed comparison between different configurations of
Ufo on 32 (out of 105) programs. In the table, we show time, number of itera-
tions (#Iter), and time spent in interpolation (#iTime) and post (#pTime),
respectively. Times taken by other parts of the algorithm (such as Clean) were

http://www.cs.toronto.edu/~aws/ufo

168 A. Albarghouthi, A. Gurfinkel, and M. Chechik

Table 1. Summary of results on 105 C programs

Algorithm #Solved #Safe #Unsafe #Unsound Total Time (s)

uUfo 78 22 56 0 8,289

cpUfo 79 22 57 1 7,838

bpUfo 69 17 52 1 11,260

Cp 49 10 39 0 15,363

Bp 71 19 52 1 10,018

Wolverine 38 18 20 5 19,753

insignificant and are omitted. Cp configuration was not able to solve all but one
of these examples, and is omitted as well.

In this sample, cpUfo is best overall, however, it is often not the fastest
approach on any given example. This is representative of its performance over
the whole benchmark. As expected, both uUfo and cpUfo spend most of their
time in computing interpolants, while bpUfo and Bp spend most of their time
in predicate abstraction.

The results show that there is clearly a synergy between UD and OD-driven
parts of the analysis. For example, in toy1 BUG and s3 srvr 1a, predicate ab-
straction decreases the number of required iterations. Several of the buggy ex-
amples from the token ring family cannot be solved by a UD-only uUfo con-
figuration alone. However, there are also some interactions. For many of the safe
cases that require a few iterations, uUfo performs better than other combina-
tions. For many unsafe cases that bpUfo can solve, it performs much better
alone than in a combination.

In summary, our results show that the novel UD-driven algorithm that under-
lies Ufo (uUfo configuration) is very effective compared to the state-of-the-art
approaches. Furthermore, there is a clear synergy in combining UD and OD ap-
proaches, with cpUfo performing the best overall. However, there are also some
interactions where the combination does not result in the best of the individual
approaches. Managing these interactions effectively is the subject of future work.

7 Related Work

In this section, we place Ufo in the context of related work. Specifically, we
compare it with the most related UD and OD verification techniques.

Ufo is based on a novel interpolation-driven verification algorithm. It extends
Impact [24], by unrolling the program into a DAG instead of a tree and by using
a single SMT query to both discharge all infeasible unsafe executions and to com-
pute new labels. In effect,Ufo uses the SMT solver to enumerate acyclic program
paths, whereas Impact enumerates those paths explicitly. Furthermore, Ufo ex-
tends Impact by using an abstract post operator during exploration. As we show
in our experiments, this can lead to fewer iterations and faster verification.

We have recently developed an inter-procedural extension of Impact, called
Whale [1]. Whale works on loop-free recursive programs and uses interpolants

From Under-Approximations to Over-Approximations and Back 169

Table 2. Results of running Ufo on 33 programs from the benchmarks. All times are
in seconds.

uUfo cpUfo bpUfo Bp

Program Time Iter iTime Time #Iter iTime pTime Time Iter iTime pTime Time Iter iTime pTime

Unsafe Programs

kundu1 - - - 24.22 4 20.3 1.84 122.88 4 56.9 54.66 33.39 3 20.23 10.95

kundu2 1.24 2 1.16 2.74 2 2.08 0.6 8.15 2 1.2 5.66 8.6 2 3.49 4.3

s3 srvr 11 1.91 4 1.67 2.78 4 1.58 0.89 118.41 4 1.72 112.76 4.25 3 2.6 1.37

s3 srvr 12 4.17 4 3.85 5.07 3 3.44 1.36 5.36 3 3.58 1.44 8.19 3 5.85 1.91

token ring.08 12.34 4 11.84 13.5 4 11.07 1.91 19.64 3 3.7 14.62 14.15 3 1.85 11.12

token ring.09 12.54 4 11.98 22.66 4 19.72 2.35 - - - - 167.49 3 3.85 157.58

token ring.10 15.6 4 15.05 14.02 3 11.99 1.69 - - - - - - - -

token ring.11 29.69 4 29.08 22.47 4 18.52 3.19 156.76 3 4.57 145.99 66.59 3 4.21 58.68

token ring.12 26.94 4 26.31 13.98 3 11.45 2.15 - - - - - - - -

token ring.13 36.56 4 35.76 34.17 4 29.38 4.02 - - - - - - - -

token ring.14 10.3 3 9.99 33.49 4 29.17 3.59 - - - - - - - -

token ring.15 51.79 4 51.11 34.19 4 29.18 4.17 - - - - - - - -

toy1 96.49 10 89.08 79 9 68.04 6.98 13.54 3 4.77 7.96 - - - -

toy2 12.83 5 12.24 60.73 8 50.71 6.14 - - - - - - - -

ddd3 0.66 4 0.5 0.19 2 0.04 0.11 0.18 2 0.03 0.11 0.27 2 0.05 0.2

Safe Programs

pc sfifo 1 - - - - - - - 3.51 3 2.24 0.79 - - - -

s3 clnt 1 11.03 10 8.18 15.68 10 8.2 4.5 - - - - 14.52 5 1.92 8.21

s3 clnt 2 16 10 11.35 20.02 10 10.86 4.67 - - - - - - - -

s3 clnt 3org 28.87 11 17.35 37.08 11 17.6 8.17 - - - - - - - -

s3 clnt 3 13.02 10 9.14 17.42 10 9.01 4.45 - - - - - - - -

s3 clnt 4 13.4 10 9.62 17.45 10 9.16 4.58 - - - - - - - -

s3 srvr 1a 5.2 10 2.95 5.16 8 2.32 1.07 0.76 4 0.17 0.39 0.43 3 0.07 0.26

s3 srvr 1b 1.37 7 1 2.9 7 1.71 0.69 0.89 5 0.47 0.28 - - - -

s3 srvr 2 171.15 17 116.82 184.01 17 112.65 18.65 - - - - - - - -

s3 srvr 3 133.07 17 99.96 147.55 17 98.69 16.02 - - - - 33.71 5 1.07 21.18

s3 srvr 4 - - - - - - - - - - - 8 4 0.74 5.36

s3 srvr 8 101.4 14 76.6 115.08 14 73.9 17.62 - - - - - - - -

token ring.01 98.18 18 81.58 23.64 10 17.72 1.78 0.69 4 0.27 0.23 0.69 4 0.19 0.31

token ring.02 - - - - - - - 2.15 4 0.71 0.7 2.63 4 1.06 0.59

token ring.03 - - - - - - - 76.18 4 4.74 37.66 - - - -

token ring.04 - - - - - - - - - - - 152.62 4 10.82 2.45

token ring.05 - - - - - - - - - - - 149.35 4 8.25 97.48

derived from DAG encodings of a procedure to compute procedure summaries.
The intra-procedural technique presented here is orthogonal to that of Whale,
and the interpolation-based refinement presented here is new. It would be inter-
esting to see if the combination of UD and OD in Ufo can be adapted to the
inter-procedural setting of Whale.

Dash [4] uses weakest-precondition (WP) over infeasible program paths to
partition (i.e., refine) a program’s state space. In contrast, Ufo refines multiple
program paths at the same time. Moreover,Ufo uses interpolants for refinement,
an approach that has been shown to provide more relevant predicates than WP-
based refinement [20]. We believe that our multi-path refinement strategy can
be easily implemented in Dash to generate test-cases for multiple frontiers or
split different regions at the same time.

At a high level, Ufo is similar to the abstract algorithm Smash [15], in
the sense that it combines over- and under-approximations. In [15], the only
instantiation of Smash that is experimented with is an under-approximation-
driven algorithm based on Dash [4], where no abstract domain is used. In this
paper, we have experimented with multiple instances of Ufo, ranging from UD

170 A. Albarghouthi, A. Gurfinkel, and M. Chechik

to OD. Other differences between Smash and Ufo include the fact that Ufo

refines multiple paths at the same time, whereas Smash considers a single path
at a time.

Lazy abstraction [19] is the closest OD algorithm to Ufo. Ufo can be seen as
extending lazy abstraction in two directions. First, Ufo unrolls a program into
a DAG (and not a tree). Second, it uses all the labels produced by interpolation,
and only applies predicate abstraction to the “frontier” nodes that are not known
to reach an error location.

We are not the first to apply interpolation to multiple program paths. In [14],
Esparza et al. use interpolants to find predicates that eliminate multiple spuri-
ous counterexamples simultaneously. Their algorithm uses an eager abstraction-
refinement loop, and a BDD-based interpolation procedure. In contrast, the re-
finement in Ufo uses an SMT-solvers-based interpolation procedure. It is not
clear whether BDD-based techniques of [14] can be efficiently adapted to the
SMT-based setting.

8 Conclusion

Software model checkers can be divided into over-approximation-driven (OD)
(e.g., Slam [3]) and under-approximation-driven (UD) (e.g., Impact [24]). An
OD software model-checker maintains an abstraction of the transition relation
of a program and uses abstract reachability to build an inductive invariant or
find a counterexample. A UD model checker avoids the (potentially expensive)
abstraction step, and instead attempts to guess an inductive invariant by gen-
eralizing from finite paths through the control-flow graph of the program. Until
now, combinations of these techniques have not been explored.

In this paper, we presented Ufo – a model checking algorithm that tightly
couples UD and OD approaches. At the core of Ufo is a UD algorithm that is
parameterized by an abstract Post operator, and a novel interpolation-based
refinement procedure. The refinement procedure uses a single SMT query to
decide feasibility of all unsafe executions in an unrolling of a program’s CFG.

We have implemented Ufo within LLVM [22], and experimented with two
variants of Post based on Boolean and Cartesian predicate abstractions. We
have evaluated our implementation on benchmarks from the Competition on
Software Verification [5]. Our results show that Ufo is very competitive com-
pared to the state-of-the-art. There is a clear synergy in combining UD and OD
approaches. However, there are also undesirable interactions. We believe that
this work opens new avenues for exploring combinations of UD- and OD-based
approaches to verification, a direction we hope to explore in the future.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-Based Al-
gorithm for Inter-procedural Verification. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 39–55. Springer, Heidelberg (2012)

From Under-Approximations to Over-Approximations and Back 171

2. Albarghouthi, A., Gurfinkel, A., Wei, O., Chechik, M.: Abstract Analysis of Sym-
bolic Executions. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 495–510. Springer, Heidelberg (2010)

3. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

4. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: “Proofs from Tests”.
In: Proc. of ISSTA 2008, pp. 3–14 (2008)

5. Beyer, D.: Competition On Software Verification (2012),
http://sv-comp.sosy-lab.org/

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. STTT 9(5-6), 505–525 (2007)

7. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

8. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

9. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 299–303. Springer, Heidelberg (2008)

10. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Generation of Craig Interpolants
in Satisfiability Modulo Theories. ACM Trans. Comput. Log. 12(1), 7 (2010)

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

12. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

13. Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-
ory and Proof Theory. J. of Symbolic Logic 22(3), 269–285 (1957)

14. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction Refinement with Craig Interpo-
lation and Symbolic Pushdown Systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

15. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional May-Must
Program Analysis: Unleashing the Power of Alternation. In: Proc. of POPL 2010,
pp. 43–56 (2010)

16. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: a
New Algorithm for Property Checking. In: FSE 2006, pp. 117–127 (2006)

18. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient Predicate Abstraction of Program
Summaries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

19. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. of
POPL 2002, pp. 58–70 (2002)

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: Proc. of POPL 2004, pp. 232–244 (2004)

21. Kroening, D., Weissenbacher, G.: Interpolation-Based Software Verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 573–578. Springer, Heidelberg (2011)

http://sv-comp.sosy-lab.org/

172 A. Albarghouthi, A. Gurfinkel, and M. Chechik

22. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO 2004 (2004)

23. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

24. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

25. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

Automated Analysis of AODV Using UPPAAL�

Ansgar Fehnker1,4, Rob van Glabbeek1,4, Peter Höfner1,4, Annabelle McIver1,2,
Marius Portmann1,3, and Wee Lum Tan1,3

1 NICTA
2 Department of Computing, Macquarie University
3 School of ITEE, The University of Queensland

4 Computer Science and Engineering, University of New South Wales

Abstract. This paper describes an automated, formal and rigorous ana-
lysis of the Ad hoc On-Demand Distance Vector (AODV) routing pro-
tocol, a popular protocol used in wireless mesh networks.
We give a brief overview of a model of AODV implemented in the

UPPAAL model checker. It is derived from a process-algebraic model
which reflects precisely the intention of AODV and accurately captures
the protocol specification. Furthermore, we describe experiments carried
out to explore AODV’s behaviour in all network topologies up to 5 nodes.
We were able to automatically locate problematic and undesirable be-
haviours. This is in particular useful to discover protocol limitations and
to develop improved variants. This use of model checking as a diagnostic
tool complements other formal-methods-based protocol modelling and
verification techniques, such as process algebra.

1 Introduction

Route finding and maintenance are critical for the performance of networked sys-
tems, particularly when mobility can lead to highly dynamic and unpredictable
environments; such operating contexts are typical in wireless mesh networks
(WMNs). Hence correctness and good performance are strong requirements of
routing algorithms. The Ad hoc On-Demand Distance Vector (AODV) routing
protocol [12] is a widely used routing protocol designed for WMNs and mobile
ad hoc networks (MANETs). It is one of the four protocols defined in an RFC
(Request for Comments) document by the IETF MANET working group. AODV
also forms the basis of new WMN routing protocols, like the upcoming IEEE
802.11s wireless mesh network standard [8].

Usually, routing protocols are optimised to achieve key objectives such as
providing self-organising capability, overall reliability and performance in typical
network scenarios. Additionally, it is important to guarantee protocol properties
such as loop freedom for all scenarios, including non-typical, unanticipated ones.
This is particularly relevant for highly dynamic MANETs and WMNs.

The traditional approaches for the analysis of MANET and WMN routing
protocols are simulation and test-bed experiments. While these are important

� First steps towards this analysis appeared in [6].

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 173–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 A. Fehnker et al.

and valid methods for protocol evaluation, there are limitations: they are re-
source intensive and time-consuming. The challenges of extensive experimental
evaluation are illustrated by recent discoveries of limitations of protocols that
have been under intense scrutiny over many years. An example is [10].

We believe that formal methods in general and model checking in particular
can help in this regard. Model checking is a powerful method that can be used to
validate key correctness properties in finite representations of a formal system
model. In the case that a property is found not to hold, the model checker
produces evidence for the fault in the form of a “counter-example” summarising
the circumstances leading to it. Such diagnostic information provides important
insights into the cause and correction of these failures.

In [5], we specified the AODV routing protocol in the process algebra AWN.
The specification follows well-known programming constructs and lends itself
well for comparison with the original specification of the protocol in English.
Based on such a comparison we believe that the AWN model provides a com-
plete and accurate formal specification of the core functionality of AODV. In
developing the formal specification, we discovered a number of ambiguities in
the IETF RFC [12]. Our process algebraic formalisation captures these by sev-
eral interpretations, each with slightly different AWN code.

In this paper we follow an interpretation of the RFC, which we believe to be
the closest to the spirit of the AODV routing protocol. We show how to obtain
executable versions of this AWN specification, in the language of the UPPAAL
model checker [1,9]. By deriving the UPPAAL model from the AWN model, the
accuracy of the AWN model is transferred to the UPPAAL model.

The executable UPPAAL model is used to confirm and discover the presence
of undesirable behaviour. We check important properties against all topologies
of up to 5 nodes, which also includes dynamic topologies with one link going up
or down. This exhaustive search confirmed known and revealed new problems of
AODV, and let us quantify in how many topologies a particular error can occur.
Subsequently, the same experiments for modifications of AODV showed the pro-
posed modifications can all but eliminate certain problems for static topologies,
and significantly reduce them for dynamic topologies. The automated analysis
of routing protocols presented in this paper combined with formal reasoning in
AWN provides a powerful tool for the development and rigorous evaluation of
new protocols and variations, and improvements of existing ones.

2 Ad Hoc On-Demand Distance Vector Routing Protocol

2.1 The Basic Routine

AODV [12] is a widely used routing protocol designed for WMNs and MANETs.
It is a reactive routing protocol, where the route between a source and a desti-
nation node is established on an on-demand basis. A route discovery process is
initiated when a source node s has data to send to a destination node d, but has
no valid corresponding routing table entry. In this case, node s broadcasts a route
request (RREQ) message in the network. The RREQ message is re-broadcast

Automated Analysis of AODV Using UPPAAL 175

(a)

d

b

s

a

(b)

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

(c)

d

b

s

a
R
R
E
PR

R
E
P

Fig. 1. Example network topology

and forwarded by other intermediate nodes in the network, until it reaches the
destination node d (or an intermediate node that has a valid route to node d).
Every node that receives the RREQ message will create a routing table entry to
establish a reverse route back to node s. In response to the RREQ message, the
destination node d (or an intermediate node that has a valid route to node d)
unicasts a route reply (RREP) message back along the previously established
reverse route. At the end of this route discovery process, an end-to-end route
between the source node s and destination node d is established. Usually, all
nodes on this route have a routing table entry to both the source node s and
destination node d. An example topology, indicating which nodes are in trans-
mission range of each other, as well as the flow of RREQ and RREP messages,
is given in Figure 1. In the event of link and route breaks, AODV uses route
error (RERR) messages to inform affected nodes. Sequence numbers are another
important aspect of AODV, and are used to indicate the freshness of routing
table entries for the purpose of preventing routing loops.

2.2 Process Algebraic Model of AODV

The process algebra AWN [4,5] has been developed specifically for modelling
WMN routing protocols. It is designed in a way to be easily readable and treats
three necessary features of WMNs protocols: data structures, local broadcast, and
conditional unicast. Data structures are used to model routing tables etc.; local
broadcast models message sending to all directly connected nodes; and condi-
tional unicast models the message sending to one particular node and chooses a
continuation process dependent on whether the message is successfully delivered.

In AWN, delivery of broadcast messages is “guaranteed”, i.e., they are received
by any neighbour that is directly connected. The abstraction to a guaranteed
broadcast enables us to interpret a failure of message delivery (under assump-
tions on the network topology) as an imperfection in the protocol, rather than as
a consequence of unreliable communication. Section 4.3, for example, describes
a simple network topology and a scenario for which AODV fails to discover a
route, even if broadcast is guaranteed. The failure is a shortcoming of the pro-
tocol itself, and cannot be excused by unreliable communication.

Conditional unicast models an abstraction of an acknowledgment-of-receipt
mechanism that is typical for unicast communication but absent in broadcast
communication, as implemented by the link layer of relevant wireless standards

176 A. Fehnker et al.

such as IEEE 802.11. The AWN model captures the bifurcation depending on
the success of the unicast, while abstracting from all implementation details.

In [5], we used AWN to model AODV according to the IETF RFC [12]. The
model captures all core functionalities as well as the interface to higher protocol
layers via the injection and delivery of application layer data, and the forward-
ing of data packets at intermediate nodes. Although the latter is not part of the
AODV protocol specification, it is necessary for a practical model of any reac-
tive routing protocol where protocol activity is triggered via the sending and
forwarding of data packets. In addition, our model contains neither ambiguities
nor contradictions, both of which are often present in specifications written in
natural languages, such as in the RFC3561 (see e.g. [5]).

The AWN model of AODV contains a main process, called AODV, for every
node of the network, which handles messages received and calls the appropriate
process to handle them. The process also handles the forwarding of any queued
data packet if a valid route to its destination is known. Four other processes
handle one particular message type each, like RREQ. The network as a whole is
modelled as a parallel composition of these processes. Special primitives allow us
to express whether two nodes are connected. Full details of the process algebra
description on which our UPPAAL model is based can be found in [5].

3 Modelling AODV in UPPAAL

UPPAAL [1,9] is an established model checker for networks of timed automata,
used in particular for protocol verification. We use UPPAAL for the following
reasons: (1) UPPAAL provides two synchronisation mechanisms—binary and
broadcast synchronisation, which translate to uni- and broadcast communica-
tion; (2) it provides common data structures, such as arrays and structs, and
a C-like programming language to define updates on these data structures; (3)
in the future, AWN (and therefore also our models) will be extended with time
and probability—UPPAAL provides mechanisms and tools for both.

Our process-algebraic model of AODV has been used to prove essential prop-
erties, such as loop freedom for popular interpretations of [12]—independent of a
particular topology. The UPPAAL model is derived from the AWN specification
that comes closest to the spirit of the AODV routing protocol.

Section 3.2 explains the translation and the simplifying assumptions in detail.

3.1 UPPAAL Automata

Since our models do not yet use time (or probabilities) they are simply networks
of automata with guards. The state of the system is determined, in part, by the
values of data variables that can be either shared between automata, or local. We
assume a data structure with several types, variables ranging over these types,
operators and predicates. Common Boolean and arithmetic expressions are used
to denote data values and statements about them.

Automated Analysis of AODV Using UPPAAL 177

Each automaton is a graph, with locations, and edges between locations. Every
edge has a guard, optionally a synchronisation label, and an update. Synchroni-
sation occurs via so-called channels; for each channel a there is one label a! to
denote the sender, and a? to denote the receiver. Transitions without labels are
internal; all other transitions use one of two types of synchronisation.

In binary handshake synchronisation, one automaton having an edge with a
label that has the suffix ! synchronises with another automaton with an edge hav-
ing the same label that has a ?-suffix. These two transitions synchronise when
both guards are true in the current state, and only then. When the transition is
taken both locations change, and the updates will be applied to the state vari-
ables; first the updates on the !-edge, then the updates on the ?-edge. If there is
more than one possible pair, then the transition is selected non-deterministically.

In broadcast synchronisation, one automaton with a !-labelled edge synchro-
nises with a set of other automata that all have an edge with a matching ?-label.
The initiating automaton can change its location, and apply its update, if the
guard on its edge evaluates to true. It does not require a second synchronising
automaton. Automata with a matching ?-labelled edge have to synchronise if
their guard is currently true. They change their location and update the state.
The automaton with the !-edge will update the state first, followed by the other
automata in some lexicographic order. If more than one automaton can initiate
a transition on an !-edge, the choice will be made non-deterministically.

3.2 From AWN to UPPAAL

Every node in the network is modelled as a single automaton, each having its own
data structures such as a routing table and message buffer. The implementation
of the data structure defined in AWN is straightforward, since both AWN and
UPPAAL allow C-style data structures. A routing table rt for example is an
array of entries, one entry for every node. An entry is given by the data type

typedef struct

{ SQN dsn; //destination sequence number

bool flag; //validity of a routing table entry

int hops; //distance (hop count) to the destination

IP nhop; //next hop (is 0 if no route)

} rtentry;

where SQN denotes a data type for sequence numbers and IP denotes one for all
IP address. In our model, these types are mapped to integers.

The local message buffer is modelled as an array msglocal. UPPAAL will
warn if during model checking an out-of-bounds error occurs, i.e., if the array
was too small. Each message is a struct with fields msgtype which can take
values PKT, RREQ, RREP, or RERR, integer hops for the distance from the orig-
inator of the message, sequence number rreqid to identify a route request, a
destination IP dip, a destination sequence number dsn, an originator IP oip,
an originator sequence number osn, and a sender IP sip. The model contains
functions addmsg, deletemsg and nextmsg, to add a message, delete a message,
or to return the type of the next message in the buffer.

178 A. Fehnker et al.

Table 1. Excerpt of AWN spec for AODV. A few cases for RREQ handling.

AODV(ip,sn,rt,rreqs,store)
def
=

1. /*depending on the message on top of the message queue, the node calls different processes*/
2. . . .
3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ (oip, rreqid) ∈ rreqs]
4. /*silently ignore RREQ, i.e. do nothing, except update the entry for the sender*/
5. [[rt := update(rt, (sip, 0, val, 1, sip))]] . /*update the route to sip*/
6. AODV(ip,sn,rt,rreqs,store)
7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ (oip, rreqid) �∈ rreqs) ∧ dip = ip]
8. /*answer the RREQ with a RREP*/
9. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update the routing table*/

10. [[rreqs := rreqs ∪ {(oip, rreqid)}]] /*update the array of already seen RREQ*/
11. [[sn := max(sn, dsn)]] /*update the sqn of ip*/
12. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to sip*/
13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .
14. AODV(ip,sn,rt,rreqs,store)
15. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)∧(oip, rreqid) �∈ rreqs)∧ dip �= ip∧

(dip �∈ vD(rt) ∨ sqn(rt,dip) < dsn ∨ sqnf(rt,dip) = unk)]
16. /*forward RREQ*/
17. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update routing table*/
18. [[rreqs := rreqs ∪ {(oip, rreqid)}]] /*update the array of already seen RREQ*/
19. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to the sender*/
20. broadcast(rreq(hops+ 1,rreqid,dip,max(sqn(rt, dip), dsn),oip,osn,ip)) .
21. AODV(ip,sn,rt,rreqs,store)
22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ . . .]
23. . . .

Connections between nodes are determined by a connectivity graph, which is
specified by a Boolean-valued function isconnected. This graph presents one
particular topology and is not derived from our AWN specification, since the
specification is valid for all topologies. Communication is modelled as an atomic
synchronised transition between a sender, on an !-edge, with a receiver, on a
matching ?-edge. The guard of the sender depends on local data, e.g. buffer
and routing table, while the guard of the receiver is isconnected. This means
that in broadcast communication the sender will take the transition regardless of
isconnected, while disconnected nodes will not synchronise. In unicast commu-
nication the transition is blocked if the intended recipient is not connected, but
there is a matching broadcast transition that sends an error message in this case.
When the transition is taken, the sender copies its message to a global variable
msgglobal, and the receiver copies it subsequently to its local buffer msglocal.

AODV uses unicast for RREP and PKT messages, and broadcast for RERR
and RREQ messages. To model unicast, the UPPAAL model has one binary
handshake channel for every pair of nodes. For example, rrep[i][j] is used for
transitions modelling the sending of a route reply from node i to j. To model
broadcast, we use one broadcast channel for every node. For example, rreq[i]
is used for the route requests of node i. To model new packets from i to j,
generated by the user layer, the model contains a channel newpkt[i][j].

The AWN model of Table 1 is an excerpt of the AODV specification presented
in [5]—the full specification and a detailed explanation can be found there. The
excerpt presented here differs slightly from the original model:1 (1) we abstract

1 It can be shown that the model presented here behaves identical to the AWN model
in [4]; in other words, they are behavioural equivalent.

Automated Analysis of AODV Using UPPAAL 179

Table 2. Excerpt of UPPAAL model. A few cases for RREQ handling.
1. . . .
2. aodv -> aodv {
3. guard nextmsg()==RREQ && rreqs[msglocal[0].oip][msglocal[0].rreqid];
4. sync tau[ip]?;
5. assign sipupdate(), deletemsg(); },
6. aodv -> aodv {
7. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip==ip;
8. sync rrep[ip][oipnhop()]!;
9. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),

10. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
11. sn=max(sn,msglocal[0].dsn),
12. sipupdate(),
13. msgglobal=createrep(0,msglocal[0].dip,sn,msglocal[0].oip,ip), deletemsg(); },
14. aodv -> aodv {
15. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip!=ip

&& (!rt[msglocal[0].dip].flag || msglocal[0].dsn>rt[msglocal[0].dip].dsn
|| rt[msglocal[0].dip].dsn==0);

16. sync rreq[ip]!;
17. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),
18. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
19. sipupdate(),
20. msgglobal=createreq(msglocal[0].hops+1,msglocal[0].rreqid,msglocal[0].dip,

max(msglocal[0].dsn, rt[msglocal[0].dip].dsn),msglocal[0].oip,msglocal[0].osn,ip),
21. deletemsg(); },
22. . . .

from precursors, an additional data structure that is maintained by AODV (2)
the model in [5] uses 6 different processes; here processes are inlined into the body
of the main AODV process. This reduces the number of processes to one and
yields an automaton with one control location; (3) the model in [5] uses nesting of
conditions and updates, while this model has been flattened to correspond more
closely with the limitations of the UPPAAL syntax—in UPPAAL the guards are
evaluated before any update, AWN has no such restriction.

Table 1 depicts three of the cases in the AWN model for handling route re-
quests. In each, a condition is checked, the routing tables and local data are up-
dated, and it returns to the main AODV process AODV(ip, sn, rt, rreqs, store).
Table 2 shows the corresponding edges from the UPPAAL model, one edge for
every case. Like the AWN model, which goes from the process AODV to AODV, the
UPPAAL model will go from control location aodv to itself (Lines 2, 6 and 14).

Each edge evaluates a guard in Lines 3, 7 and 15 in Table 2. These line num-
bers, and the line numbers mentioned in the remainder of this section correspond
to the same line number in Table 1. Whenever the AWN specification uses set
membership ((oip, rreqid)∈ rreqs), the UPPAAL model uses a 2-dimensional
Boolean array rreqs to encode membership; whenever the AWN model uses a
flag to denote a known sequence number (sqnf(rt,dip)= unk), the UPPAAL
model compares with a distinguished value (rt[msglocal[0].dip].dsn==0).

Depending on whether a case requires no transmission, unicast, or broadcast,
the UPPAAL model synchronises on a tau, a binary, or a broadcast channel
(Lines 4, 8 and 16). The tau channel for internal transitions allows for optimi-
sations; it could have been left empty. We discuss this later in this section.

After synchronisation the state is updated. For all route request messages we
update the routing table for the sender sip (Lines 5, 12 and 19). The fact that

180 A. Fehnker et al.

the message was received means that sender sip is one hop away. Except for
the first case (Lines 4) the routing table is updated (Lines 9 and 17), and the
route request is added to the set of processed route requests (Lines 10 and 18).
In case that a node receives a request, and it is the destination, it increments its
sequence number, if necessary (Line 11), before it sends a route reply.

The last two steps in the UPPAAL model that complete a transmission first
create a new message and copy it to the global variable msgglobal (Lines 13 and
20), and then delete the first element of the local message buffer. In the AWN
model, these steps are part of the communication primitives.

The full UPPAAL models a node by an automaton with one control location
and 26 edges: 19 cases for processing the different routing messages, four cases
for receiving routing messages—one case for each type—two cases for sending
data packets, and one case for handling new data packets. The case distinction
is complete, i.e at least one transition is enabled and process messages if the
buffers and queues are not empty.

Both the UPPAAL and the AWN model maintain a FIFO buffer for incoming
messages. Any newly generated message only depends on the content of messages
previously received. This implies that the timing of internal transitions that
discard incoming messages is not relevant for route discovery. The UPPAAL
model exploits this fact and assigns a higher priority to internal transitions.
To implement priorities we labelled those transitions tau. This is is an effective
measure to reduce the state space, at the expense that UPPAAL is now unable to
check liveness properties; for this paper this is not a limitation, as all properties
can be expressed as safety properties.

4 Experiments

Our automated analysis of AODV considers 3 properties that relate to “route
discovery” for all topologies up to 5 nodes, with up to one topology change, and
scenarios with two new data packets.

4.1 Scenarios and Topologies

The experiments consider scenarios with two initial data packets in networks
with up to 5 nodes. Initially all routing tables and buffers are empty. The origi-
nator and the destination of the data packets are identified as nodes A, B, or C.
The new data packets may arrive as depicted in Figure 2. In the first scenario
a packet from A to B is followed by a packet from A to C; in the second a
packet from B to A by a packet from C to A; in the third a packet from A
to B by a packet from B to C; and in the final scenario a packet from B to
C by a packet from A to B. The originator of the first new packet initiates a
route discovery process first, the originator of the second non-deterministically
after the first. The different scenarios are implemented by a simple automaton,
tester. Since the different topologies cover all possible permutations, these four

Automated Analysis of AODV Using UPPAAL 181

A B C

newpkt[A][B]

newpkt[A][C]

A B C

newpkt[B][A]

newpkt[C][A]

A B C

newpkt[A][B]

newpkt[B][C]

A B C

newpkt[B][C]

newpkt[A][B]

Fig. 2. Sequence charts illustrating four scenarios for initiating two route requests

scenarios cover all scenarios for injecting two new packets with either different
originators or different destinations.

Additional to A, B and C, we add up to two nodes that may relay messages,
but do not create data packets themselves. We consider only topologies in which
nodes A, B and C are connected, either directly, or indirectly. This ensures that
the route discovery is at least theoretically possible. If it fails, then it won’t be
because the nodes are not connected, but due to failure of the protocol.

We consider three classes of topologies. The first class are static topologies.
Given the constraints that node A, B and C are connected, and that there are at
most 5 nodes, this gives 444 topologies, after topologies that are identical up to
symmetries are removed. The second class considers pairs of topologies from the
first class, in which the second topology can be obtained by adding a new link.
This models a dynamic topology in which a link is added. There are 1978 such
pairs. The third class considers the same pairs, but now moves from the second
topology to the first. This models a link break. Note that after deletion, nodes
A, B and C are still connected. In our UPPAAL model a change of topology
is modelled by another automaton. It may add or remove a link exactly once,
non-deterministically, after the first route request arrives at the destination.

4.2 Properties

This paper considers three desirable properties of any routing protocol such as
AODV. The first property is that once all routing messages have been processed
a route from the originator to the destination has been found. In UPPAAL
syntax this safety property can be expressed as:

A[]((tester.final && emptybuffers()) imply

(node(OIP).rt[DIP].nhop!=0))
(1)

The CTL formula A[]φ is satisfied if φ holds on all states along all paths. The
variable node(OIP).rtmodels the routing table of the originator node OIP, and
the field node(OIP).rt[DIP].nhop represents the next hop for destination DIP.
All initiated requests will have been made, iff automaton tester is in location
final, the message buffers are empty iff function emptybuffers returns true,
and the originator OIP has a route to node DIP iff node(OIP).rt[DIP].nhop!=0.

The second property is related, namely that once all messages are processed,
then no sub-optimal route has been found. Here, sub-optimal means that the

182 A. Fehnker et al.

number of hops is greater than the shortest path. In case that the topology
changes, we take the greater distance. In UPPAAL this can be expressed as

A[]((tester.final && emptybuffers()) imply

(node(OIP).rt[DIP].hops<=distance[OIP][DIP]))
(2)

Here, the array distance encodes the distance matrix. Note, that this fails if the
route at the end is sub-optimal. It does not fail if at the end, either an optimal,
or no route has been found. If the first two properties are satisfied, it means that
it is guaranteed that an optimal route will be found when all messages have been
processed. Note that it is known that AODV does not guarantee that optimal
routes will be found. Nevertheless, an implementation or modification of AODV
can be said to perform better if this property fails for fewer topologies.

The third property is even stronger than the second, namely that no sub-
optimal routes will be found at all. It does not hold if a better optimal route
replaces a sub-optimal route that was found first.

A[](node(OIP).rt[DIP].hops<=distance[OIP][DIP]) (3)

If the third property holds, then the second must hold as well. In the experiments
we will check all three properties for both originator-destination pairs at once.

4.3 Modifications

The basic UPPAAL model is based on the process algebraic AWN model, which
reflects a common interpretation of the RFC with all ambiguities resolved. It
is known that AODV does not guarantee that optimal routes will be found, or
even any routes at all [6,10].2 Our experiments quantify how many topologies
are affected by these problems, and also what impact slight modifications of the
protocol have. We will refer to the basic model as model 1, and discuss three
proposed variants of AODV.

Forwarding All Route Replies. It is a known problem that nodes drop route
reply messages under certain conditions.3 During our experiments we found this
problem even in the smallest topology, a static linear topology with only three
nodes, and only two links: node A is connected to node B and B to node C.
Both node B and C initiate a route request to A. For this topology and scenario,
UPPAAL finds a counterexample for Property (1), i.e., it is possible that no route
will been found when all messages have been processed.

Fig. 3 depicts a message sequence chart of the relevant part of the counterex-
ample. Initially, both B and C initiate a route request for A. We refer to the first
request as BA-request, and to the second as CA-request. First, node B sends
the BA-request to A and C (Step 1 in Fig. 3), then node C its CA-request to

2 AODV proposes to repeat the route discovery process if the first discovery process
fails. However, this solution does not solve the problems entirely (see [5]).

3 This problem has already been raised on the MANET mailing list in Oct 2004
(http://www.ietf.org/mail-archive/web/manet/current/msg05702.html).

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

Automated Analysis of AODV Using UPPAAL 183

A B C

1

2

3

4

5

6

7

8

9

10

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv aodv

rreq[B]
BA

rreq[B]
BA

rreq[C]
CA

rreq[B] rreq[B]
CA CA

rreq[C]
BA

rrep[A][B]
BA

rrep[A][B]
CA

Fig. 3. Message sequence chart illustrating failed route discovery. Wide vertical lines
mean that local states do not change in this transition. The superscripts indicate the
corresponding originator and destination of the route discovery process.

B (Step 2). Node B forwards the CA-request (Step 3), node C the BA-request
(Step 4). Node C will correctly ignore the CA-request that it received from
B, since it is the originator (Step 5). Similarly, B will ignore the BA-request
(Step 6). Node A will then reply to the BA-request (Step 7), and node B will
update its routing table (Step 8) to include a route to A. Node A will also reply
to the CA-request (Step 9), but B will ignore this message (Step 10), since it
does not contain new information for B. Node A’s reply to the CA-request will
not arrive at C.

The discarding of the RREP message happens according to the RFC spec-
ification of AODV [12]. It states that an intermediate node only forwards the
RREP message if it is not the originator node and it uses the RREP to update
its route entry to the destination. In this case, node B is not the originator, but
it also did not use the route reply to update its route. It already had an optimal
route, as a result of the BA-request. This type of problem can arise whenever
one node has to relay multiple route requests for the same destination.

A possible solution would be to forward every reply received by a node. Our
model 2 implements this change. Obviously, this increases the number of control
messages generated during route discovery. However, this is compensated by the
reduced need to repeat sending the route request in case no route has been found,
the solution proposed by AODV.4 In the experiment section we will see that this
modification effectively addresses the problem.

4 Moreover, a repeated route request need not be any more successful than the first.

184 A. Fehnker et al.

Replying to Improving Requests. Counterexamples found by UPPAAL
show that a source for sub-optimal routes is the property of AODV to only
reply to the first route request. All subsequent requests with the same request
ID (rreqid) will be ignored (Line 3 of Tables 1 and 2), even if the subsequent
requests arrived via a shorter route. Model 3 modifies the rule for the handling of
route requests. It will not only reply to the first request, but also to a subsequent
request (with the same request ID) with an improved hop count.

Recovering from Failed Replies. Analysis of UPPAAL’s counterexamples
show that a main reason for failed route discovery is that a node marks a request
as having been replied to, even if the node detected the reply failed due to the
link being broken in the time between the received request and the sent reply.
The node will ignore other requests with the same request ID that may arrive
later. Model 4 introduces two changes: it does not mark a request as seen if the
reply fails, and it replies to other requests in the same route discovery process.

This change should be considered with care, since it changes the rules with re-
spect to sequence numbers. These numbers are an essential part of AODV being
loop free, and there is currently no guarantee that this change will not violate
some essential invariants of the proof [5]. We included the results nevertheless,
as they show that there is still significant potential to improve AODV.

4.4 Experimental Results

The experimental results tell for how many topologies UPPAAL could show
the absence of counterexamples, and thus allow quantification of the impact of
improvements. However, the analysis uses a non-deterministic model, rather than
a probabilistic model. For each topology it is reported whether a counterexample
exists, but not how likely it is to occur. Neither can we assume that the topologies
themselves are randomly distributed. Depending on the application only certain
types of topologies might occur in practice. Nevertheless, it is fair to assume that
a modification that leads to fewer topologies with counterexamples constitutes
an improvement w.r.t. the considered property.

Table 3 presents the results of the experiments. Most relevant for all classes of
topologies are Property (1), a route is found, Property (2), no sub-optimal route
is found in the end, and the combination of these, i.e., an optimal route is found.

The results demonstrate that the problem of ignoring route replies as de-
scribed in Figure 3 occurs even for about 50% of all static topologies. Model 1
satisfies Property (2) only for half of all static topologies. The proposed modifi-
cation solves this problem entirely for static topologies. The other modifications
further improve the quality of the routes; in 99.1% of static topologies Prop-
erty (2) holds, i.e., the route was in the end always optimal. The slight drop in
Property (3) is explained by the fact that in a few cases, where no route was
found at all for model 1, a sub-optimal route was found in the other models.

The results for static topologies are roughly repeated if we consider topologies
in which a link is added. There were a few surprising instances though, in which
adding a link was instrumental in finding a sub-optimal route.

Automated Analysis of AODV Using UPPAAL 185

Table 3. Model checking result for the four models and three classes of topologies. It
gives the percentage of topologies for which there exists no counterexample.

Property (1) Property (2) Property (3) Property (1) & (2) all properties

st
a
ti
c

model 1 52.7% 93.2% 50.7% 50.0% 13.5%
model 2 100.0% 93.2% 47.5% 93.2% 47.5%
model 3 100.0% 99.1% 47.5% 99.1% 47.5%
model 4 100.0% 99.1% 47.5% 99.1% 47.5%

Property (1) Property (2) Property (3) Property (1) & (2) all properties

a
d
d

li
n
k model 1 57.5% 90.8% 49.1% 53.3% 18.1%

model 2 100.0% 90.6% 46.2% 90.6% 46.2%
model 3 100.0% 97.8% 46.2% 97.8% 46.2%
model 4 100.0% 96.3% 46.2% 96.3% 46.2%

Property (1) Property (2) Property (3) Property (1) & (2) all properties

re
m
o
v
e

li
n
k

model 1 26.7% 90.5% 59.7% 26.2% 6.0%
model 2 53.0% 89.4% 57.1% 51.2% 28.9%
model 3 53.0% 93.1% 57.1% 52.8% 28.9%
model 4 75.4% 94.0% 54.0% 73.8% 41.0%

The results are, as expected, not quite as positive if a link gets removed. For
the baseline model it is only guaranteed for one quarter of all topologies that a
route will be found. Relaying all route replies, and not marking requests if the
reply fails, improves this result. For three quarters of all topologies in which a
link was removed it was shown that an optimal route will be found.

The main reason of the failures that remain is that a route reply might get
lost because of some intermediate link break on the path back to the destination.
A possible solution to this problem could be to maintain a set of back-up routes,
or to implement different error responses. However, this requires a significant
change and fundamentally changes the characteristics of AODV.

For the experiments we used an Intel Core2 CPU 2.13GHz processor with
2GB internal memory, running Ubuntu 11.04. We used UPPAAL 4.0.13. Of each
of the models described in this section, we checked 17600 instances, altogether
70400 instances. As indication of the state space and runtimes, we checked an
invariant on all instances of model 4 for a topology in which a link is removed.
These instances have larger state spaces than others, since these scenario have
also to trigger the transitions for error handling. The models have an average
of 9400 states, the largest model has 475000 states, and the median is 2700.
Exploring these state spaces took on average 1.73 seconds user time, at most 81
seconds, and the median was 0.57. These run times show that an automated,
systematic and rigorous analysis of reasonable rich routing protocols is feasible.

5 Related Work

Other researchers have used formal specification and analysis techniques to inves-
tigate the correctness and performance of AODV; we survey the sample related
to model checking.

Bhargavan et al. [2] were amongst the first to use model checking on a draft of
AODV, demonstrating the feasibility and value of automated verification of rout-

186 A. Fehnker et al.

ing protocols. Their investigations using the SPIN model checker revealed that in
some circumstances routes containing loops can be created. The proposed vari-
ation which guarantees loop freedom were not included in the current standard.

Musuvathi et al. [11] introduced the CMC model checker primarily to search
for coding errors in implementations of protocols written in C. They use AODV
as an example and, as well as discovering a number of errors, they also found a
problem with the specification itself which has since been corrected.

Chiyangwa and Kwiatkowska [3] use the timing features of UPPAAL to study
the relationship between the timing parameters and the performance of route
discovery. They established a dependence between the lifetime of a route and
the size of the network, although their study only considered the initiation of a
single route discovery process, and a static linear topology. In [6], we confirmed
some of the problems they discovered, and show their independence of time.

Other researchers have used model checking to analyse other routing proto-
cols. Wibling et al. [14] for example used SPIN and UPPAAL to verify aspects of
the LUNAR protocol, which is also used in ad hoc routing for wireless networks.
In particular the timing feature of UPPAAL was used to check upper and lower
bounds on route finding and packet delivery times. The scenarios considered
included a limited number of topology changes where problems were suspected.

De Renesse and Aghvami [13] used SPIN to study the WARP protocol. To
reduce the overhead on model checking, various simplifications were imposed on
a five-node network, including a single source and destination and limitations on
the degree that the network can change.

Fehnker et al. have used the model checker UPPAAL to analyse a TDMA
time synchronisation protocol [7]. Similarly to our approach they considered all
topologies in a certain class, but did not cover dynamic topologies.

Our approach is in line with these related works. However, it is unique in the
sense that our UPPAAL model complements our process-algebraic specification
of AODV. As mentioned before, these two approaches to formal protocol mod-
elling, specification and evaluation, if used together, can provide a powerful tool
for the development and rigorous evaluation of new protocols and variations,
and improvements of existing ones. Currently, our UPPAAL model is derived by
hand directly from the AWN specification, but an automatic translation from
AWN in the style of Musuvathi et al. [11] is possible, and remains as future work.

6 Conclusions and Outlook

The aim of this ongoing work is to complement by model checking a process alge-
braic description of WMN routing protocols in general, and AODV in particular.
The used description of AODV described in [5] is amongst the first detailed for-
mal models. Having the ability of automatically deriving an UPPAAL model
from an AWN specification and thus model checking formal specifications allows
the confirmation and detailed diagnostics of suspected errors. The availability
of an executable model becomes especially useful in the evaluation of proposed
improvements to AODV, as we have shown.

Automated Analysis of AODV Using UPPAAL 187

We have sketched possible modifications of AODV, which have been evaluated
by formal and rigorous analysis by means of model checking. An analysis of these
modifications by means of process algebra is part of future work. We have set
up an environment where we can test a whole bunch of different topologies in a
systematic manner. This will allow us to do a fast comparison between standard
AODV and proposed variations in contexts known to be problematic.

References

1. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

2. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

3. Chiyangwa, S., Kwiatkowska, M.: A Timing Analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer, Hei-
delberg (2005)

4. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) European Sym-
posium on Programming (ESOP 2012). Springer, Heidelberg (in press, 2012)

5. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. Tech. Rep. 5513, NICTA (2012),
http://www.nicta.com.au/pub?id=5513

6. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: Modelling and analysis of AODV in UPPAAL. In: 1st International Work-
shop on Rigorous Protocol Engineering (2011)

7. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and Verification of the LMAC
Protocol for Wireless Sensor Networks. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 253–272. Springer, Heidelberg (2007)

8. Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L.,
Walke, B.: IEEE 802.11s: the WLAN mesh standard. IEEE Wireless Communica-
tions 17(1), 104–111 (2010)

9. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
of Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

10. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks: De-
sign, analysis and experiments. In: IEEE INFOCOM, pp. 2793–2801 (2010),
http://dx.doi.org/10.1109/INFCOM.2010.5462111

11. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: a prag-
matic approach to model checking real code. In: Operating Systems Design and
Implementation, OSDI 2002 (2002)

12. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing. RFC 3561 (2003), http://www.ietf.org/rfc/rfc3561.txt

13. de Renesse, R., Aghvami, A.H.: Formal verification of ad hoc routing protocols
using SPIN model checker. In: Proceedings of IEEE MELECON 2004, pp. 1177–
1182. IEEE (2004)

14. Wibling, O., Parrow, J., Pears, A.N.: Automatized Verification of Ad Hoc Rout-
ing Protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS,
vol. 3235, pp. 343–358. Springer, Heidelberg (2004)

http://www.nicta.com.au/pub?id=5513
http://dx.doi.org/10.1109/INFCOM.2010.5462111
http://www.ietf.org/rfc/rfc3561.txt

Modeling and Verification of a Dual Chamber

Implantable Pacemaker�

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur,
and Rahul Mangharam

University of Pennsylvania, Philadelphia PA, USA

Abstract. The design and implementation of software for medical de-
vices is challenging due to their rapidly increasing functionality and the
tight coupling of computation, control, and communication. The safety-
critical nature and the lack of existing industry standards for verification,
make this an ideal domain for exploring applications of formal modeling
and analysis. In this study, we use a dual chamber implantable pace-
maker as a case study for modeling and verification of control algorithms
for medical devices in UPPAAL. We begin with detailed models of the
pacemaker, based on the specifications and algorithm descriptions from
Boston Scientific. We then define the state space of the closed-loop sys-
tem based on its heart rate and developed a heart model which can non-
deterministically cover the whole state space. For verification, we first
specify unsafe regions within the state space and verify the closed-loop
system against corresponding safety requirements. As stronger assertions
are attempted, the closed-loop unsafe state may result from healthy open-
loop heart conditions. Such unsafe transitions are investigated with two
clinical cases of Pacemaker Mediated Tachycardia and their correspond-
ing correction algorithms in the pacemaker. Along with emerging tools
for code generation from UPPAAL models, this effort enables model-
driven design and certification of software for medical devices.

Keywords: Medical Devices, Implantable Pacemaker, Software Verifi-
cation, Cyber-Physical Systems.

1 Introduction

Over the past four decades, cardiac rhythm management devices such as pace-
makers have expanded their role from “keeping the patient alive” to “making the
patient’s life comfortable”. The addition of more safety and efficacy features has
resulted in increased complexity, inevitably leading to more safety violations.
From 1996-2006, the percentage of software-related causes in medical device re-
calls have grown from 10% to 21% [1]. During the first half of 2010, the US
Food and Drug Administration (FDA) issued 23 recalls of defective devices, all

� This research was partially supported by NSF research grants MRI 0923518, CNS
0931239, CNS 1035715 and CCF 0915777.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 188–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling and Verification of a Dual Chamber Implantable Pacemaker 189

of which are categorized as Class I, meaning there is a “reasonable probabil-
ity that use of these products will cause serious adverse health consequences or
death.” At least six of the recalls were caused by software defects [2]. Unlike other
industries such as aviation and automotive, the safety concern in the medical
device domain is focused on the physical plant, the patient in this case, rather
than the controller. As a result, although in aviation and automotive industries,
standards are enforced during software development, manufacturing, and post-
market change [3,4], there are no well-established standards for development of
software for medical devices. There is a pressing need for standards and tools
to certify and verify the safety of software in medical devices. For device man-
ufacturers, this has prompted recent interest in applying formal modeling and
verification techniques in medical devices software development [5,6].

In this effort, we propose a Timed Automata representation of the heart and
a dual chamber pacemaker. Our models and specifications are designed based
on descriptions available from Boston Scientific [7,8], a leading manufacturer of
pacemakers, and extensive medical literature on this topic. We then demonstrate
how a model checker, like UPPAAL [9], can be used to find safety violations and
prove the correctness of medical device algorithms. We define the state space
of the closed-loop system based on its heart rate. Unsafe regions can then be
specified and the closed-loop system is verified against corresponding safety re-
quirements. We also define unsafe transitions as the controller drives the open-
loop plant from a safe state into an unsafe closed-loop state. We focus on two
cases of unsafe transitions which are referred to as “Pacemaker Mediated Tachy-
cardia (PMT)”. Modern pacemakers are equipped with correction algorithms to
terminate these behaviors. We demonstrate how to identify known unsafe tran-
sitions and prove the correctness of corresponding correction algorithms using
model checker. The UPPAAL model developed in this paper is freely available
online [10]. These models can be used as a starting point for many purposes
(e.g. to build models with costs and probabilities for quantitative analysis of the
efficacy of pacemaker algorithms; development of patient-specific algorithms). In
particular, the verified pacemaker model can be automatically translated into
Stateflow charts in Simulink for test generation and code generation [11].

The paper is organized as follows: In Section 2, we introduce the physiological
and timing basics of the heart and pacemaker. Section 3 presents UPPAAL
models of the basic DDD pacemaker and the heart. In Section 4, we define
unsafe regions and verify the basic pacemaker model against corresponding safety
requirements. In Section 5, we proposed a procedure for identifying and verifying
unsafe transitions and demonstrated using two cases of PMT.

2 Heart and Pacemaker Basics

The coordinated contraction of the heart is governed by its Electrical Conduction
System (see Fig. 1). The Sinoatrial (SA) node, which is a collection of specialized
tissue at the top of the right atrium, periodically spontaneously generates elec-
trical pulses that can cause muscle contraction. The SA node is controlled by the

190 Z. Jiang et al.

nervous system and acts as the natural pacemaker of the heart. The electrical
pulses first cause both atria to contract, forcing the blood into the ventricles. The
electrical conduction is then delayed at the Atrioventricular (AV) node, allowing
the ventricles to fill fully. Finally the fast-conducting His-Pukinje system spreads
the electrical activation within both ventricles, causing simultaneous contraction
of the ventricular muscles, and pumps the blood out of the heart.

Fig. 1. Cardiac electrical system

Due to aging and/or diseases, the conduc-
tion properties of heart tissue may change.
These changes may cause timing anomalies
in heart rhythm, thus decrease the blood
pumping efficiency of the heart. These tim-
ing anomalies are referred to as arrhythmias,
and are categorized into Tachycardia and
Bradycardia. Tachycardia features undesir-
able fast heart rate which impairs hemody-
namics. Bradycardia features slow heart rate
which results in insufficient blood supply.
Bradycardia maybe due to failure of impulse
generation with anomalies in the SA node,
or failure of impulse propagation where the
conduction from atria to the ventricles is delayed or blocked.

Since the heart tissue can be activated by external electrical pulses, Brady-
cardia can be treated by providing electrical pulses when the heart rate is low.
Implantable Pacemakers have been developed to deliver timely electrical pulses
to the heart to maintain an appropriate heart rate and Atrial-Ventricular syn-
chrony. Implantable pacemakers normally have two leads fixed on the wall of
the right atrium and the right ventricle respectively. Activation of local tissue
is sensed by the leads, triggering Atrial Sense (AS) and Ventricular Sense (VS)
events. Atrial Pacing (AP) and Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines.

In order to deal with different heart conditions, modern pacemakers are able
to operate in different modes. The modes are labeled using a three character
system. The first character describes the pacing locations, the second charac-
ter describes the sensing locations, and the third character describes how the
pacemaker software responds to sensing. In this work we describe the most com-
monly used mode of pacemaker, the dual-chamber DDD mode that paces both
the atrium and the ventricle, senses both chambers, and sensing can both activate
or inhibit further pacing. Similarly, the VDI mode paces only in the ventricle,
senses both chambers, and inhibits pacing if event is sensed. [12]

3 System Modeling

3.1 Timed Automata and UPPAAL

Timed automaton [13] is an extension of a finite automaton with a finite set of
real-valued clocks. It has been used for modeling and verifying systems which are

Modeling and Verification of a Dual Chamber Implantable Pacemaker 191

triggered by events and have timing constraints between events. From the Boston
Scientific pacemaker specification [7], the pacemaker can be modeled using this
Extended Timed Automata notation, which is a subset of formal semantics in
UPPAAL. UPPAAL ([9,14]) is a standard tool for modeling and verification of
real-time systems, based on networks of timed automata. The graphical and text-
based interface makes modeling more intuitive. Requirements can be specified
using Computational Tree Logic (CTL) [15] and violations can be visualized in
the simulation environment.

3.2 System Overview

The function of a pacemaker is to manage the timing relationship between the
atrial and ventricular events. Thus Timed Automata is suitable for modeling
both the deterministic behavior of a pacemaker and the non-deterministic behav-
ior of the heart. The overview of the closed-loop system is showed in Fig. 2(a).
The heart and the pacemaker communicate with each other using broadcast
channels. The heart generates Aget! and Vget! actions, representing atrial and
ventricular events that the pacemaker take as inputs. The pacemaker processes
the signals and generates pacing actions AP! and VP! to the corresponding
components in the heart.

3.3 Basic DDD Pacemaker Modeling

The DDD pacemaker has 5 basic timing cycles triggered by events, as shown
in Fig. 2(b). We decomposed our pacemaker model into 5 components which
correspond to the 5 counters. These components communicate with each other
using broadcast channels and shared variables (as shown in Fig. 3).

Lower Rate Interval (LRI): This component keeps the heart rate above a
minimum value. In DDD mode, the LRI component models the basic timing cycle
which defines the longest interval between two ventricular events. The clock is
reset when a ventricular event (VS, VP) is received. If no atrial event has been
sensed (AS), the component will deliver atrial pacing (AP) after TLRI-TAVI.
The UPPAAL design of LRI component is shown in Fig. 3(a).

Heart Pacemaker

Aget !

Vget !

VP !

AP !

Fig. 2. (a) System Overview, (b) Basic 5 timing cycles of DDD pacemaker

192 Z. Jiang et al.

PVARP

Aget?
VS?
VP?

AS!

AR!

LRI

AS?

VS?

VP?

AP!
AVI

AS?

VS?

VP?

VP! VS?
URI

VS?

VP?

VRP
Vget?

VS!
VP?VP?

(a) LRI component (b) AVI component (c) URI component

(d) PVARP component (e) VRP component

Fig. 3. Components of the pacemaker model in UPPAAL

Atrio-Ventricular Interval (AVI) and Upper Rate Interval (URI): The
function of the AVI component is to maintain the appropriate delay between the
atrial activation and the ventricular activation. It defines the longest interval
between an atrial event and a ventricular event. If no ventricular event has been
sensed (VS) within TAVI after an atrial event (AS, AP), the component will
deliver ventricular pacing (VP). In order to prevent the pacemaker from pacing
the ventricle too fast, a URI component uses a global clock clk to track the time
after a ventricular event (VS, VP). The URI limits the ventricular pacing rate
by enforcing a lower bound on the times between consecutive ventricle events.
If the global clock value is less than TURI when the AVI component is about to
deliver VP, AVI will hold VP and deliver it after the global clock reaches TURI.
The UPPAAL design of AVI and URI component is shown in Fig. 3(b) and (c).

Post Ventricular Atrial Refractory Period (PVARP) and Post Ventric-
ular Atrial Blanking (PVAB): Not all atrial events (Aget!) are recognized
as Atrial Sense (AS!). After each ventricular event, there is a blanking period
(PVAB) followed by a refractory period (PVARP) for the atrial events in order
to filter noise. Atrial events during PVAB are ignored and atrial events dur-
ing PVARP trigger AR! event which can be used in some advanced diagnostic
algorithms. The UPPAAL design of PVARP component is shown in Fig. 3(d).

Modeling and Verification of a Dual Chamber Implantable Pacemaker 193

Ventricular Refractory Period (VRP): Correspondingly, the VRP follows
each ventricular event (VP, VS) to filter noise and early events in the ventricular
channel which could otherwise cause undesired pacemaker behavior. Fig. 3(e)
shows the UPPAAL design of VRP component.

Parameter Selection: Each timing parameter of the pacemaker has a feasible
range. However, after those parameters are programmed, they are fixed during
pacemaker operation. Consider all possible combinations of feasible parameter
values is infeasible. In this work, we only verify one instance of a DDD pacemaker
with nominal values in clinical settings [8]. The values we choose are TAVI=150,
TLRI=1000, TPVARP=100, TVRP=150, TURI=400, TPVAB=50.

3.4 Random Heart Model (RHM)

RHM-AR
AP? Aget!Aget!

Fig. 4. RHM for the Atrial Channel

In order to verify pacemaker algorithm,
we need to first define the state space for
the closed-loop system. The state space
definition should not only cover all pos-
sible pacemaker operations, but also be
physiologically intuitive for safety requirement specification. To this end, we
define the state space of the closed-loop system by the atrial interval (interval
between atrial events ∈ {AS,AP}) and ventricular interval (interval between
ventricular events ∈ {V S, V P}). This heart rate representation enables us to
define unsafe regions for bradycardia and tachycardia.

The Random Heart Model (RHM) is designed to cover open-loop heart be-
haviors. It non-deterministically generates an intrinsic heart event Xget! within
[Xminwait, Xmaxwait] after each intrinsic heart event Xget or pacing XP. Here
we use two RHMs for the atrial and ventricular channel where X can be atrial
(A) or ventricular (V). RHM covers all possible input to the pacemaker if the
interval [Xminwait, Xmaxwait] is set to [0,∞]. It can also cover subset of pos-
sible heart conditions by assigning appropriate values to those two parameters.
The UPPAAL model of the atrial RHM is shown in Fig. 4.

4 Verification Regarding Unsafe Regions

In this section, we define unsafe regions regarding bradycardia and tachycardia
and specify two basic safety properties. These two basic safety properties are
strict so that they must be satisfied by any pacemaker under all heart conditions.
We then discuss refinement of the safe regions and make stronger assertions.

4.1 Lower Rate Limit

The most essential function for the pacemaker is to treat bradycardia by main-
taining the ventricular rate above a certain threshold. We define the region where
the ventricular rate is slow, as unsafe. The monitor Pvv is designed to measure
interval between ventricular events and is shown in Fig. 5(a). The property A[]
(Pvv.two a imply Pvv.t≤TLRI) is satisfied by the basic DDD pacemaker.

194 Z. Jiang et al.

(a)

intervalwait_vpwait_v

VS?
t=0

t=0

VP?

VS?t=0

VP?

t=0

(b)

Fig. 5. (a) Monitor for LRL: Interval between two ventricular events should be less than
TLRI, (b) Monitor for URL: Interval between a ventricular event and a VP should be
longer than TURI

4.2 Upper Rate Limit

The pacemaker is not designed to treat tachycardia so it can only pace the heart
to increase its rate and cannot slow it down. However, it is still important to
guarantee it does not pace the ventricles beyond a maximum rate to ensure safe
operation. To this effect, an upper rate limit is specified such that the pacemaker
can increase the ventricular rate up to this limit.

We require that a ventricle pace (VP) can only occur at least TURI after a
ventricle event (VS, VP). The monitor for the property is shown in Fig. 5(b)
and the property A[] (PURI test.interval imply PURI test.t≥TURI) is satisfied
by the basic DDD pacemaker model.

5 Verification Regarding Unsafe Transitions

The two unsafe regions, introduced above, are intuitive but provide for loose
safety properties. One may wonder if we can further reduce the safe region.
When the closed-loop system is in some unsafe state, there are two possible
scenarios. One is when, the open-loop plant without the controller, is also in
unsafe state. In our case, if the heart is in tachycardia, the pacemaker is not
supposed to react so that this case is of little value to us. The other scenario is
that the open-loop plant is in a safe state and the controller is driving the closed-
loop system into some unsafe states. We call this scenario Unsafe Transition. In
our case, the pacemaker may increase the heart rate inappropriately, which is
referred to as Pacemaker Mediate Tachycardia (PMT).

We now introduce two cases of PMT and their corresponding correction
algorithms. Since one closed-loop state may correspond to multiple execution
traces, these PMT scenarios will not be returned by the model checker as counter-
examples of safety requirements. However, we can still identify known PMT by
adding constraints to the heart model or developing more complex requirements.

5.1 Verification Procedure

The pacemaker manufacturers have developed anti-PMT algorithms to termi-
nate different PMT scenarios. In this section, we propose a general procedure
to identify PMT scenarios and verify the safety and correctness of anti-PMT
algorithms. The general steps for the procedure include:

Modeling and Verification of a Dual Chamber Implantable Pacemaker 195

0 1000 2000 3000 4000

AS AS AS AS AS AS AS AS AS

VS VS VS VS VS

AS

ms

SVT Bradycardia

(a)

0 1000 2000 3000 4000

AS
[AR]

AS AS AS AP AP

VP VP VP VP VS VS

[AR] [AR]

ms

PMT Appropriate

(b)

Fig. 6. (a) SVT with ODO pacemaker (b) SVT with DDD pacemaker

1. Show existence of PMT behaviors in the closed-loop system
2. Introduce anti-PMT algorithms and check whether the two basic safety re-

quirements still hold
3. Prove correctness of anti-PMT algorithms by showing the non-existence of

PMT scenarios

Here we use two well-identified PMT cases to demonstrate the methodology.

5.2 Verification of the Mode-Switch Algorithm

Supraventricular Tachycardia (SVT): SVT is an arrhythmia which fea-
tures an abnormally fast atrial rate. Typically the AV node, which has a long
refractory period, can filter most of the fast atrial activations during SVT thus
the ventricular rate remains relatively normal. Fig. 6(a) demonstrates a pace-
maker event trace during SVT, with a ODO mode pacemaker which just sensing
in both channels. In this particular case, every 3 atrial events (AS) correspond
to 1 ventricular event (VS) during SVT.

As an arrhythmia, SVT is still considered as a safe heart condition since the
ventricles operate under normal rate can still maintain adequate cardiac output.
However, the AVI component of a dual chamber pacemaker is equivalent to a
virtual pathway in addition to the intrinsic conduction pathway between the atria
and the ventricles. The pacemaker tries to maintain 1:1 A-V conduction and thus
increases the ventricular rate inappropriately. Fig. 6(b) shows the pacemaker
trace of the same SVT case with DDD pacemaker. Although half of the fast atrial
events are filtered by the PVARP period ([AR]s), the DDD pacemaker still drives
the closed-loop system into 2:1 A-V conduction with faster ventricular rate,
which is inappropriate. This problem can be resolved by switching pacemaker
into single chamber mode to maintain appropriate ventricular rate.

Fig. 7. Monitor for SVT: Check exis-
tence of an endless sequence where the
ventricular event interval ≤TURI

Existence of PMT during SVT:
Since PMT during SVT is an unsafe tran-
sition, we need to first adjust the heart
model so that the open-loop behaviors
covers SVT and are in the safe region. To
this end, the interval for the ventricular
RHM is set to [500,800]. This rate is slow
enough not to be considered as tachycar-
dia, but faster than the Lower Rate Limit

196 Z. Jiang et al.

of the pacemaker so that pacemaker should not intervene. The monitor Pv v is
designed to show existence of PMT during SVT. It goes to the error state if the
ventricular rate drops below the Upper Rate Limit (Fig. 7).

The existence property E[](notPv v.err) is specified, which verifies if there
exists an execution in which the ventricular interval is always less or equal to
TURI. The property is first verified on pacemaker without the mode-switch
algorithm. The property is satisfied during verification.

Mode-Switch Algorithm: Intuitively, the mode-switch algorithm first detects
SVT. After confirmed detection, it switches the pacemaker from a dual-chamber
mode to a single-chamber mode. During the single-chamber mode, the A-V syn-
chrony function of the pacemaker is deactivated thus the ventricular rate is
decoupled from the fast atrial rate. After the algorithm determines the end of
SVT, it will switch the pacemaker back to the dual chamber mode.

The mode-switch algorithm specification we use is the same as the one used
in Boston Scientific pacemakers [8]. The algorithm first measures the interval
between atrial events outside the blanking period (AS, AR). The interval is
considered as fast if it is above a threshold (Trigger Rate) and slow otherwise
(see Fig. 8 (1)). A counter increments for fast events and decrement for slow
events (see Fig. 8 (2)). After the counter value reaches the Entry Count, the
algorithm will start a Duration which is a time interval used to confirm the
detection of SVT (see Fig. 8 (3)). In the Duration, the counter keeps counting. If
the counter value is still positive after the Duration, the pacemaker will switch
to the VDI mode (Fallback mode). In the VDI mode, the pacemaker only senses
and paces the ventricle. At any time if the counter reaches zero, the Duration
will terminate and the pacemaker is switched back to DDD mode.

In our UPPAAL model of the mode-switch algorithm, we use nominal param-
eter values from the clinical setting. We define trigger rate at 170bpm (350ms),
entry count at 8, duration for 8 ventricular events and fallback mode as VDI.

In order to model both DDD and VDI modes and the switching between them,
we made modifications to the AVI and LRI components. In each component

Counter

Fast?

CC
Slow?

du_end?

DDD!

VDI!

du_beg!

Duration

VS?

DDVP?
du_beg?

du_end!
Interval

AS?

AR?

AP?

Fast!

Slow! 1

2

3

Fig. 8. Mode-Switch algorithm

Modeling and Verification of a Dual Chamber Implantable Pacemaker 197

two copies for both modes are modeled, and switch between each other when
switching events (DDD, VDI) are received. During VDI mode, VP is delivered by
the LRI component instead of the AVI component. The clock values are shared
between both copies in order to preserve essential intervals even after switching.
The modified AVI and LRI components are shown in Fig. 9.

LRI-
MS

AS?
VS?

VP? AP!

DDD?

VDI?

AVI-
MS

AS?

VS?

AP? VP!

DDD?

VDI?

Fig. 9. New LRI & AVI components

Verification Against Basic Safety Requirements: We verify the same
basic safety requirements on the pacemaker model with mode-switch algorithm.
The Upper Rate Limit property still holds but the Lower Rate Limit property is
violated. When the pacemaker is switching from VDI mode to DDD mode, the
responsibility to deliver VP switched from LRI component to AVI component.
Since the clock reference is different (Ventricular events in LRI and Atrial events
in AVI), the clock value for delivering the next VP is not preserved. As a result,
if an atrial event which triggered the mode-switch from VDI to DDD happens
within [TLRI-TAVI, TLRI) after the last ventricular event, the next ventricular
pacing will be delayed by at most TAVI time, which violates the Lower Rate
Limit property (Fig. 11(a)).

Verification of the Algorithm: We now present the verification of the cor-
rectness of the mode-switch algorithm by checking the same existence property
E[] (not Pv v.err) on pacemaker with mode-switch algorithm. We expect the vi-
olation of this property, since during VDI mode the ventricular rate of the heart
model is less than the Upper Rate Limit and will not trigger ventricular pacing.
The counter example of the violation should show that mode-switch algorithm
successfully switches the mode of the pacemaker to VDI mode. However, this
property is still satisfied, indicating the mode-switch algorithm failed to elim-
inate the PMT scenario. Then we further restrict the atrial interval of RHM
to [100, 200]. Since the atrial rate for the new heart model is always above the
trigger rate, mode switch to VDI mode should always eventually happen. The
monitor PMS for the new property is shown in Fig. 10.

The property A<> (PMS.err) is not satisfied. The counter-example shows
that some of the atrial events fall into the Post Ventricular Atrial Blanking period

198 Z. Jiang et al.

Fig. 10. Monitor for Mode-Switch: Check if mode-switch to VDI mode will always
eventually happen

(PVAB) and got ignored. As a result, two fast intervals may be considered as
one slow interval (see Fig. 11(b)). If this happens more than one out of the Entry
Count, mode-switch from DDD to VDI may never happen.

Discussion: We demonstrated that model checking techniques can be used to
identify unknown violations which cannot be identified during open-loop testing,
showing the necessity and usefulness of formal verification in medical device
software development and certification. We also showed that adding new features
to the verified system is a potential source for safety violations.

5.3 Verification of Endless Loop Tachycardia (ELT) algorithm

ELT overview: The AVI component of a dual-chamber pacemaker introduces
a virtual A-V pathway which forms a loop with the intrinsic A-V conduction
pathway (see Fig. 12(a)). In this scenario, a ventricular event (VS) triggers a
V-A conduction through the intrinsic pathway (Marker 1 in Fig. 12(b)). The
pacemaker registers this signal as an Atrial Sense (AS) (Marker 2 in Fig. 12(b)).
This event triggers VP after TAVI, as if the signal conducts through the virtual
A-V pathway (Marker 3 in Fig. 12(b)). The VP will trigger another V-A con-
duction and this VP-AS-VP-AS looping behavior will continue (see Fig. 12(b)).
The interval between atrial events is TAVI plus the V-A conduction delay, which
will drive the ventricular rate as high as the Upper Rate Limit.

From the pacemaker’s point of view, the pacemaker paces the ventricles as
specified for every AS. That is why open-loop testing is unable to detect this
closed-loop behavior. Modern pacemakers are equipped with anti-ELT algo-
rithms to identify and terminate potential ELT. One common algorithm identi-
fies ELT by the ELT pattern and terminates ELT by increasing TPVARP time
once to block the AS caused by the V-A conduction.

Existence of ELT: As another case of unsafe transition, we again constrain
the open-loop heart model into healthy heart. We set both the atrial interval

AS AS

VS (VP) VP

MS

TLRI

VDI DDD

TAVI

(a)

PVAB

VS

AS Aget AS

Fast Fast

Slow

(b)
Fig. 11. (a) Safety Violation: VP is delayed due to the reset of timer during mode-
switch, (b) Correctness Violation: The blocking period may block some atrial events,
turning two Fast events to one Slow event

Modeling and Verification of a Dual Chamber Implantable Pacemaker 199

Intrinsic pathway

Fast “pathway”: pacemaker
A-V synchrony

(a) Virtual circuit formed by the
pacemaker and the heart

0 1000 2000 3000 4000

AS AS AS AS AS

VS VP VP VP VP VP
ms

AS

1

2

3

(b) Pacemaker trace for ELT initialized by a
early ventricular signal

Fig. 12. Endless Loop Tachycardia case study demonstrating the situation when the
pacemaker drives the heart into an unsafe state [16]

and the ventricular interval above TURI so that ELT behavior is not covered
by the heart model. Two monitors were designed to show the existence of ELT.
One monitor, PELT det, shows the persistence of the VP-AS pattern and the
other monitor, Pvv, shows that the ventricular rate is always no slower than the
upper rate limit (Fig. 13). The existence property E[] ((not PELT det.err) &&
(not Pvv.err)) fails on pacemaker without an anti-ELT algorithm.

The reason for the failure is that in our closed-loop system, AS can only be
triggered by Aget signal from the atrial heart model, where in ELT case the
AS is triggered by backward V-A conduction, which is not covered by our heart
model. In order to solve this problem, we model the A-V conduction of the
heart in addition to the orignal RHM. The adjusted RHM and the conduction
component is shown in Fig. 14. For each atrial event Aget, the conduction com-
ponent generates V act after certain delay and vice versa. The conduction is
non-deterministic so that the old RHM is a special case for the new RHM. The
PVARP and VRP components are also modified to accommodate new events
A act and V act.

PELT_det Pv_v
Fig. 13. Monitor for ELT: VP-AS pattern detection and Upper Rate detection

After introducing the conduction component, the existence property holds,
indicating the closed-loop system with new heart model covers ELT.

The ELT-termination Algorithm: The ELT detection algorithm by Boston
Scientific [7] utilizes these three features:

200 Z. Jiang et al.

RHM-AR
AP? Aget!Aget!

RHM-VR
VP? Vget!Vget!

Cond

RHM V

A_act!

V_act!

(a) Adjusted RHM (b) New heart model (c) Conduction component

Fig. 14. Modified heart model and the conduction component

– Ventricular rate at Upper Rate Limit
– VP-AS pattern
– Fixed V-A conduction delay

The pacemaker first monitors VP-AS pattern with ventricular rate at upper
rate limit. Then it compares the VP-AS interval with previous intervals. ELT
is confirmed if the difference between the current VP-AS interval and the first
VP-AS interval are within ±32ms for 16 consecutive times. Then the pacemaker
increases the PVARP period to 500ms once so that the next AS will be blocked
and will not trigger a VP. ELT will then be terminated.

As the V-A conduction delays are patient-specific, the algorithm compares
VP-AS interval to a previously sensed value instead of an absolute value. Since
we can not store past clock values in UPPAAL, we can not explicitly model
this ELT detection algorithm. However, since the conduction delay in our heart
model is within a known range, we can compare the VP-AS interval with this
range. The VP-AS pattern detection module for our anti-ELT algorithm is shown
in Fig. 15 (1). It detects the VP-AS pattern with ventricular rate at upper rate
limit and sends out VP AS event if the interval qualifies.

A counter counts the number of qualified VP-AS patterns. It increases the
PVARP period to 500ms if eight consecutive VP-AS patterns are detected.
(Fig. 15 (2)) The PVARP component is also modified so that the PVARP period
can only be changed once by the anti-ELT algorithm. (Fig. 15 (3))

Verification Against Bottom-Line Safety Requirements: The two
bottom-line safety requirements still hold when the anti-ELT algorithm is in-
troduced.

Verificationof theAlgorithm: The existence propertyE[]((notPELT det.err)
&& (not Pvv.err)) is not satisfied after the anti-ELT algorithm is introduced, in-
dicating the algorithm successfully terminates ELT. We successfully reproduced
the case when the algorithm works in the simulation environment of UPPAAL.

Discussion: In this case study, we showed that we may require the heart model
to provide more physiological details when verifying more complex properties.
We also observed some limitations of Timed Automata when modeling more
complex algorithms.

Modeling and Verification of a Dual Chamber Implantable Pacemaker 201

2

1

3

Fig. 15. Counter for VP-AS pattern

6 Related Work

Jee et. al present a safety assured development approach of real-time software
using pacemaker as their case study in [17]. They formally model and verify a
single chamber VVI pacemaker using UPPAAL and then implement it and check
the preservation of properties transferred from model to implementation code.
Tuan et. al propose an RTS formal model for pacemaker and its environment
and verified it against number of safety properties and timed constraints using
PAT model checker [18]. They have modeled the pacemaker for all 18 operating
modes as described in Boston scientific, but their work lacks specification and
analysis os complex behaviors of the pacemaker, such as mode-switch.

Wiggelinkhuizen uses mCRL2 and UPPAAL to formally model the pacemaker
from the firmware design of Vitatron’s DA+ pacemaker [19]. Two main ap-
proaches have been used to investigate the feasibility of applying formal model
checking to the design of device firmware. The main approach consists of verify-
ing the firmware model in context of a formal heart model and a formal model
of a hardware module which fails for high heart rates because of the state explo-
sion. Another approach is to verify a part of firmware design which was feasible
and was able to detect a known deadlock rather soon.

Macedo et. al have developed a concurrent and distributed real-time model
for a cardiac pacemaker through a pragmatic incremental approach. The models
are expressed using the VDM and are validated primarily by scenario-based
test, where test scenarios are defined to model interesting situations such as the
absence of input pulses [20]. The models cover 8 modes of pacemaker operation.

Gomes et. al present a formal specification of pacemaker system using the Z
notation in [21]. They have also tried to validate that the formal specification
satisfies the informal requirements of Boston Scientific by using a theorem prover,
ProofPower-Z. They have partially checked the consistency of their specification
through reasoning. No validation experiment regarding safety conditions were
performed yet. [21]

202 Z. Jiang et al.

Mery et. al in [22], formally model all operational modes of a single electrode
pacemaker system using event-B and prove them. They use an incremental proof-
based approach to refine the basic abstract model of the system and add more
functional and timing properties. They use the ProB tool to validate their models
in different situations such as absence of input pulses.

7 Conclusion and Future Work

In this paper, we modeled a dual-chamber pacemaker with advanced features us-
ing Timed Automata. Timed automaton captures key features of the closed-loop
system and enables the use of tools like UPPAAL in verification. We then ver-
ified one instance of a dual chamber pacemaker model with nominal parameter
values since it is impossible to consider all possible combinations. We defined a
heart rate representation of closed-loop state space and identified unsafe regions
and unsafe transitions. We demonstrated that model checking techniques can
be used to reveal safety violations which cannot be identified during open-loop
testing. We also showed that adding features to previously verified system may
result in safety violations. Furthermore, we showed that more complex heart
model is need to provide more physiological insights during property specifica-
tion. The UPPAAL model developed in this paper is freely available online [10].
We hope that these models can be used as a starting point for many purposes
(e.g. to build models with costs and probabilities for quantitative analysis).

In this paper, we only verified the safety and correctness of pacemaker algo-
rithms. However, the ultimate goal for a pacemaker is to maintain the efficiency
of the heart. As future work, we would like to evaluate the efficiency of those al-
gorithms by assigning costs for different heart conditions. The evaluation can be
used to develop better treatment for general and specific patients. More complex
heart models are therefore needed to provide physiological insights. However, rig-
orous heart model refinement should be considered to ensure model consistency.
While Timed Automata is a good fit for the problem studied here, it also has
some drawbacks as it can not capture certain behaviors of some advanced algo-
rithms like memorizing difference of clocks, and is also not scalable enough. Our
future work will also focus on improving the efficiency of verification toolchain
for medical device certification.

References

[1] List of Device Recalls, U.S. Food and Drug Admin. (last visited July 19, 2010)
[2] Sandler, K., Ohrstrom, L., Moy, L., McVay, R.: Killed by Code: Software Trans-

parency in Implantable Medical Devices. Software Freedom Law Center (2010)
[3] AUTOSAR website: http://www.autosar.org/
[4] AVSI website: http://www.avsi.aero
[5] Alur, R., Arney, D., Gunter, E.L., Lee, I., Lee, J., Nam, W., Pearce, F., Van

Albert, S., Zhou, J.: Formal Specifications and Analysis of the Computer-Assisted
Resuscitation Algorithm (CARA) Infusion Pump Control System. Intl. Journal
on Software Tools for Technology Transfer (STTT) 5, 308–319 (2004)

http://www.autosar.org/
http://www.avsi.aero

Modeling and Verification of a Dual Chamber Implantable Pacemaker 203

[6] ten Teije, A., et al.: Improving medical protocols by formal methods. Artificial
Intelligence in Medicine 36(3), 193–209 (2006)

[7] PACEMAKER System Specification. Boston Scientific (2007)
[8] The Compass - Technical Guide to Boston Scientific Cardiac RhythmManagement

Products (2007)
[9] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. International Journal

on Software Tools for Technology Transfer (STTT), 134–152 (1997)
[10] Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Pacemaker UPPAAL

model download: http://www.seas.upenn.edu/~zhihaoj/VHM/PM_verify.zip
[11] Pajic, M., Jiang, Z., Sokolsky, O., Lee, I., Mangharam, R.: From Verification to

Implementation: A Model Translation Tool and a Pacemaker Case Study. In: 18th
IEEE Real-Time and Embedded Technology and Applications Symposium, IEEE
RTAS (2012)

[12] Barold, S., Stroobandt, R., Sinnaeve, A.: Cardiac Pacemakers Step by Step. Black-
well Futura (2004)

[13] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

[14] Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

[15] Clarke, E.M., Allen Emerson, E.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, Workshop, pp. 52–71
(1982)

[16] Jiang, Z., Pajic, M., Mangharam, R.: Model-based Closed-loop Testing of Im-
plantable Pacemakers. In: ICCPS 2011: ACM/IEEE 2nd Intl. Conf. on Cyber-
Physical Systems (2011)

[17] Jee, E., Wang, S., Kim, J.K., Lee, J., Sokolsky, O., Lee, I.: A Safety-Assured
Development Approach for Real-Time Software. In: The Proceedings of 16th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications, pp. 133–142 (2010)

[18] Tuan, L.A., Zheng, M.C., Tho, Q.T.: Modeling and Verification of Safety Critical
Systems: A Case Study on Pacemaker. In: Fourth International Conference on
Secure Software Integration and Reliability Improvement, pp. 23–32 (2010)

[19] Wiggelinkhuizen, J.E.: Feasibility of Formal Model Checking in the Vitatron En-
vironment. Master thesis, Eindhoven University of Technology (2007)

[20] Macedo, H.D., Larsen, P.G., Fitzgerald, J.S.: Incremental Development of a Dis-
tributed Real-Time Model of a Cardiac Pacing System Using VDM. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer, Heidelberg
(2008)

[21] Gomes, A.O., Oliveira, M.V.M.: Formal Specification of a Cardiac Pacing System.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707.
Springer, Heidelberg (2009)

[22] Mery, D., Singh, N.K.: Pacemaker’s Functional Behaviors in Event-B. Research
report, INRIA (2009)

http://www.seas.upenn.edu/~zhihaoj/VHM/PM_verify.zip

Counter-Example Guided Fence Insertion under TSO

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2,
Carl Leonardsson1, and Ahmed Rezine3

1 Uppsala University, Sweden
2 Academia Sinica, Taiwan

3 Linköping University, Sweden

Abstract. We give a sound and complete fence insertion procedure for concur-
rent finite-state programs running under the classical TSO memory model. This
model allows “write to read” relaxation corresponding to the addition of an un-
bounded store buffer between each processor and the main memory. We introduce
a novel machine model, called the Single-Buffer (SB) semantics, and show that
the reachability problem for a program under TSO can be reduced to the reacha-
bility problem under SB. We present a simple and effective backward reachability
analysis algorithm for the latter, and propose a counter-example guided fence in-
sertion procedure. The procedure is augmented by a placement constraint that
allows the user to choose places inside the program where fences may be in-
serted. For a given placement constraint, we automatically infer all minimal sets
of fences that ensure correctness. We have implemented a prototype and run it
successfully on all standard benchmarks together with several challenging exam-
ples that are beyond the applicability of existing methods.

1 Introduction

Modern concurrent process architectures allow weak (relaxed) memory models, in
which certain memory operations may overtake each other. The use of weak memory
models makes reasoning about the behaviors of concurrent programs much more dif-
ficult and error-prone compared to the classical Sequentially Consistent (SC) memory
model. In fact, several algorithms that are designed for the synchronization of concur-
rent processes, such as mutual exclusion and producer-consumer protocols, are not cor-
rect when run on weak memories [2]. One way to eliminate the non-desired behaviors
resulting from the use of weak memory models is to insert memory fence instructions
in the program code. In this work, a fence instruction forbids reordering between in-
structions issued by the same process. It does not allow any operation issued after the
fence instruction to overtake an operation issued before it. Hence, a naive approach to
correct a program running under a weak memory model is to insert a fence instruction
after every operation. Adopting this approach results in significant performance degra-
dation [13]. Therefore, it is important to optimize fence placement. A natural criterion
is to provide minimal sets of fences whose insertion is sufficient for ensuring program
correctness under the considered weak memory model (provided correctness under SC).

One of the most common relaxations corresponds to TSO (Total Store Ordering)
that is adopted by Sun’s SPARC multiprocessors. TSO is the kernel of many common

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 204–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Counter-Example Guided Fence Insertion under TSO 205

weak memory models [28,31], and is the latest formalization of the x86 memory model.
In TSO, read operations are allowed to overtake write operations of the same process
if they concern different variables. In this paper, we use the usual formal model of
TSO, developed in e.g. [28,30], and assume it gives a faithful description of the actual
hardware on which we run our programs. This model adds an unbounded FIFO buffer
between each process and the main memory.

Our Approach. We present a sound and complete method for checking safety proper-
ties and for inserting fences in finite-state programs running on the TSO model. The
procedure is parameterized by a fence placement constraint that allows to restrict the
places inside the program where fences may be inserted. To cope with the unbounded
store buffers in the case of TSO, we present a new semantics, called the Single-Buffer
(SB) semantics, in which all the processes share one (unbounded) buffer. We show that
the SB semantics is equivalent to the operational model of TSO (as defined in [30]).
A crucial feature of the SB semantics is that it permits a natural ordering on the (infi-
nite) set of configurations, and that the induced transition relation is monotonic wrt. this
ordering. This allows to use general frameworks for well quasi-ordered systems [1] in
order to derive verification algorithms for programs running on the SB model. In case
the program fails to satisfy the specification with the current set of fences, our algorithm
provides counter-examples (traces) that can be used to increase the set of fences in a
systematic manner. Thus, we get a counter-example guided procedure for refining the
sets of fences. We prove termination of the obtained procedure. Since each refinement
step is performed based on an exact reachability analysis algorithm, the procedure will
eventually return all minimal sets of fences (wrt. the given placement constraint) that
ensure correctness of the program. Although we instantiate our framework to the case
of TSO, the method can be extended to other memory models such as the PSO model.

Contribution. We present the first sound and complete procedure for fence insertion
for programs under TSO. The main ingredients of the framework are the following:
(i) A new semantical model, the so called SB model, that allows efficient infinite state
model checking. (ii) A simple and effective backward analysis algorithm for solving
the reachability problem under the SB semantics. (iii) The algorithm uses finite-state
automata as a symbolic representation for infinite sets of configurations, and returns a
symbolic counter-example in case the program violates its specification. (iv) A counter-
example guided procedure that automatically infers all minimal sets of fences sufficient
for correctness under a given fence placement policy. (v) Based on the algorithm, we
have implemented a prototype, and run it successfully on several challenging concurrent
programs, including some that cannot be handled by existing methods.

Proofs, implementation details and experimental results are in the appendix.

Related Work. To our knowledge, our approach is the first sound and complete au-
tomatic fence insertion method that discovers all minimal sets of fences for finite-
state concurrent programs running under TSO. Since we are dealing with infinite-state
verification, it is hard to provide methods that are both automatic and that return ex-
act solutions. Existing approaches avoid solving the general problem by considering
under-approximations, over-approximations, restricted classes of programs, forbidding

206 P.A. Abdulla et al.

sequential inconsistent behavior, or by proposing exact algorithms for which termina-
tion is not guaranteed. Under-approximations of the program behavior can be achieved
through testing [9], bounded model checking [7,6], or by restricting the behavior of the
program, e.g., through bounding the sizes of the buffers [18] or the number of switches
[5]. Such techniques are useful in practice for finding errors. However, they are not
able to check all possible traces and can therefore not tell whether the generated set
of fences is sufficient for correctness. Recent techniques based on over-approximations
[19] are valuable for showing correctness; however they are not complete and might
not be able to prove correctness although the program satisfies its specification. Hence,
the computed set of fences need not be minimal. Examples of restricted classes of pro-
grams include those that are free from different types of data races [27]. Considering
only data-race free programs can be unrealistic since data races are very common in
efficient implementations of concurrent algorithms. Another approach is to use moni-
tors [3,8,10], compiler techniques [12], and explicit state model checking [16] to insert
fences in order to remove all non-sequential consistent behaviors even if these will not
violate the desired correctness properties. As a result, this approach cannot guarantee to
generate minimal sets of fences to make programs correct because they also remove be-
nign sequentially inconsistent behaviors. The method of [23] performs an exact search
of the state space, combined with fixpoint acceleration techniques, to deal with the
potentially infinite state space. However, in general, the approach does not guarantee
termination. State reachability for TSO is shown to be non primitive recursive in [4] by
reductions to/from lossy channel systems. The reductions involve nondeterministically
guessing buffer contents, which introduces a serious state space explosion problem. The
approach does not discuss fence insertion and cannot even verify the simplest examples.
An important contribution of our work is the introduction of a single buffer semantics
for avoiding the immediate state space explosion. In contrast to the above approaches,
our method is efficient and performs exact analysis of the program on the given memory
model. We show termination of the analysis. As a consequence, we are able to compute
all minimal sets of fences required for correctness of the program.

2 Preliminaries

In this section we first introduce notations that we use throughout the paper, and then
define a model for concurrent systems.

Notation. We use N to denote the set of natural numbers. For sets A and B, we use
[A �→ B] to denote the set of all total functions from A to B and f : A �→ B to denote that
f is a total function that maps A to B. For a ∈ A and b ∈ B, we use f [a←↩ b] to denote
the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f (a′) for all a′ �= a.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp.
non-empty words) over Σ, and by ε the empty word. The length of a word w ∈ Σ∗ is
denoted by |w|; we assume that |ε|= 0. For every i : 1≤ i≤ |w|, let w(i) be the symbol
at position i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some
i : 1 ≤ i ≤ |w|. For words w1,w2, we use w1 ·w2 to denote the concatenation of w1 and
w2. For a word w �= ε and i : 0≤ i≤ |w|, we define w0 i to be the suffix of w we get by
deleting the prefix of length i, i.e., the unique w2 such that w = w1 ·w2 and |w1|= i.

Counter-Example Guided Fence Insertion under TSO 207

A transition system T is a triple (C,Init,−→) where C is a (potentially infinite) set
of configurations, Init ⊆ C is the set of initial configurations, and −→ ⊆ C× C is the
transition relation. We write c−→c′ to denote that (c,c′) ∈ −→, and ∗−→ to denote the
reflexive transitive closure of −→. A configuration c is said to be reachable if c0

∗−→c
for some c0 ∈ Init; and a set C of configurations is said to be reachable if some c ∈C
is reachable. A run π of T is of the form c0−→c1−→·· ·−→cn, where ci−→ci+1 for all
i : 0≤ i < n. Then, we write c0

π−→cn. We use target (π) to denote the configuration cn.
Notice that, for configurations c,c′, we have that c ∗−→c′ iff c π−→c′ for some run π. The
run π is said to be a computation if c0 ∈ Init. Two runs π1 = c0−→c1−→·· ·−→cm and
π2 = cm+1−→cm+2−→·· ·−→cn are said to be compatible if cm = cm+1. Then, we write
π1 •π2 to denote the run π = c0−→c1−→·· ·−→cm−→cm+2−→·· ·−→cn. Given an ordering
� on C, we say that−→ is monotonic wrt.� if whenever c1−→c′1 and c1� c2, there exists
a c′2 s.t. c2

∗−→c′2 and c′1 � c′2. We say that −→ is effectively monotonic wrt. � if, given
configurations c1,c′1,c2 as above, we can compute c′2 and a run π s.t. c2

π−→c′2.

Concurrent Programs. We define concurrent programs, a model for representing
shared-memory concurrent processes. A concurrent program P has a finite number of
finite-state processes (threads), each with its own program code. Communication be-
tween processes is performed through a shared-memory that consists of a fixed number
of shared variables (finite domains) to which all threads can read and write.

We assume a finite set X of variables ranging over a finite data domain V . A concur-
rent program is a pair P=(P,A) where P is a finite set of processes and A= {Ap| p ∈ P}
is a set of extended finite-state automata (one automaton Ap for each process p ∈ P).
The automaton Ap is a triple

(
Qp,qinit

p ,Δp
)

where Qp is a finite set of local states,
qinit

p ∈ Qp is the initial local state, and Δp is a finite set of transitions. Each transi-
tion is a triple (q,op,q′) where q,q′ ∈ Qp and op is an operation. An operation is of
one of the following five forms: (1) “no operation” nop, (2) read operation r(x,v), (3)
write operation w(x,v), (4) fence operation fence, and (5) atomic read-write operation
arw(x,v,v′), where x∈ X , and v,v′ ∈V . For a transition t = (q,op,q′), we use source(t),
operation(t), and target (t) to denote q, op, and q′ respectively. We define Q :=∪p∈PQp

and Δ := ∪p∈PΔp. A local state definition q is a mapping P �→ Q such that q(p) ∈ Qp

for each p ∈ P.

3 TSO Semantics

We describe the TSO model formalized in [28,30]. Conceptually, the model adds a
FIFO buffer between each process and the main memory. The buffer is used to store
the write operations performed by the process. Thus, a process executing a write in-
struction inserts it into its store buffer and immediately continues executing subsequent
instructions. Memory updates are then performed by non-deterministically choosing a
process and by executing the first write operation in its buffer (the left-most element in
the buffer). A read operation by a process p on a variable x can overtake some write
operations stored in its own buffer if all these operations concern variables that are dif-
ferent from x. Thus, if the buffer contains some write operations to x, then the read value
must correspond to the value of the most recent write operation to x. Otherwise, the

208 P.A. Abdulla et al.

value is fetched from the memory. A fence means that the buffer of the process must be
flushed before the program can continue beyond the fence. Notice that the store buffers
of the processes are unbounded since there is a priori no limit on the number of write
operations that can be issued by a process before a memory update occurs. Below we
define the transition system induced by a program running under the TSO semantics. To
do that, we define the set of configurations and transition relation. We fix a concurrent
program P = (P,A).

Formal Semantics. A TSO-configuration c is a triple
(
q,b,mem

)
where q is a local

state definition, b : P �→ (X×V)∗, and mem : X �→ V . Intuitively, q(p) gives the local
state of process p. The value of b(p) is the content of the buffer belonging to p. This
buffer contains a sequence of write operations, where each write operation is defined by
a pair, namely a variable x and a value v that is assigned to x. In our model, messages
will be appended to the buffer from the right, and fetched from the left. Finally, mem
defines the value of each variable in the memory. We use CTSO to denote the set of
TSO-configurations. We define the transition relation −→TSO on CTSO. The relation is
induced by (1) members of Δ; and (2) a set Δ′ :=

{
updatep| p ∈ P

}
where updatep is

an operation that updates the memory using the first message in the buffer of process
p. For configurations c =

(
q,b,mem

)
, c′ =

(
q′,b′,mem′

)
, a process p ∈ P, and t ∈

Δp∪
{
updatep

}
, we write c t−→TSO c′ to denote that one of the following conditions is

satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and mem′ = mem. The pro-
cess changes its local state while buffer and memory contents remain unchanged.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ =
b [p←↩ b(p) · (x,v)], and mem′ = mem. The write operation is appended to
the tail of the buffer.

– Update: t = updatep, q′ = q, b = b′
[
p←↩ (x,v) ·b′(p)

]
, and mem′ = mem [x←↩ v].

The write in the head of the buffer is removed and memory is updated accordingly.
– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, mem′ = mem, and one

of the following two conditions is satisfied:
• Read own write: There is an i : 1 ≤ i ≤ |b(p)| such that b(p)(i) = (x,v), and
(x,v′) �∈ (b(p)0 i) for all v′ ∈V . If there is a write operation on x in the buffer
of p then we consider the most recent of such a write operation (the right-most
one in the buffer). This operation should assign v to x.

• Read memory: (x,v′) �∈ b(p) for all v′ ∈V and mem(x) = v. If there is no write
operation on x in the buffer of p then the value v of x is fetched from memory.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′ = b, and mem′ =
mem. A fence operation may be performed by a process only if its buffer is empty.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], b(p) = ε, b′= b, mem(x) =
v, and mem′=mem [x←↩ v′]. The ARW operation corresponds to an atomic compare
and swap (or test and set). It can be performed by a process only if its buffer is
empty. The operation checks whether the value of x is v. In such a case, it changes
its value to v′.

We use c−→TSO c′ to denote that c t−→TSO c′ for some t ∈Δ∪Δ′. The set InitTSO of initial
TSO-configurations contains all configurations of the form

(
qinit,binit,meminit

)
where,

Counter-Example Guided Fence Insertion under TSO 209

for all p ∈ P, we have that qinit(p) = qinit
p and binit(p) = ε. In other words, each process

is in its initial local state and all the buffers are empty. On the other hand, the memory
may have any initial value. The transition system induced by a concurrent system under
the TSO semantics is then given by (CTSO,InitTSO,−→TSO).

The TSO Reachability Problem. Given a set Target of local state definitions, we use
Reachable(TSO)(P)(Target) to be a predicate that indicates the reachability of the set{(

q,b,mem
)
| q ∈ Target

}
, i.e., whether a configuration c, where the local state defini-

tion of c belongs to Target, is reachable. The reachability problem for TSO is to check,
for a given Target, whether Reachable(TSO)(P) (Target) holds or not. Using stan-
dard techniques we can reduce checking safety properties to the reachability problem.
More precisely, Target denotes “bad configurations” that we do not want to occur dur-
ing the execution of the system. For instance, for mutual exclusion protocols, the bad
configurations are those where the local states of two processes are both in the critical
sections. We say that the “program is correct” to indicate that Target is not reachable.

4 Single-Buffer Semantics

The formal model of TSO [28,30] is quite powerful since it uses unbounded perfect
buffers. However, the reachability problem remains decidable [4]. Our goal is to exploit
this to design a practically efficient verification algorithm. To do that, we introduce a
new semantics model, called the Single-Buffer (SB) model that weaves the buffers of all
processes into one unified buffer. The SB model satisfies two important properties (1)
it is equivalent to the TSO semantics wrt. reachability, i.e., Target is reachable in the
TSO semantics iff it is reachable in the SB semantics; (2) the induced transition system
is “monotonic” wrt. some pre-order (on configurations) so that the classical infinite state
model checking framework of [1] can be applied. Fix a concurrent system P = (P,A).

Formal Semantics. A SB-configuration c is a triple
(
q,b,z

)
where q is (as in the case

of TSO-semantics) a local state definition, b ∈ ([X �→V]×P×X)+, and z : P �→N. In-
tuitively, the (only) buffer contains triples of the form (mem, p,x) where mem defines
variable values (encoding a memory snapshot), x is the latest variable that has been
written into, and p is the process that performed the write operation. Furthermore, z
represents a set of pointers (one per process) where, from the point of view of p, the
word b0 z(p) is the sequence of write operations that have not yet been used for mem-
ory updates and the first element of the triple b(z(p)) represents the memory content. As
we shall see below, the buffer will never be empty, since it is not empty in an initial con-
figuration, and since no messages are ever removed from it during a run of the system
(in the SB semantics, the update operation moves a pointer to the right instead of re-
moving a message from the buffer). This implies (among other things) that the invariant
z(p)> 0 is always maintained. We use CSB to denote the set of SB-configurations.

Let c =
(
q,b,z

)
be an SB-configuration. For every p ∈ P and x ∈ X , we use

LastWrite(c, p,x) to denote the index of the most recent buffer message where p
writes to x or the current memory of p if the aforementioned type of message does
not exist in the buffer from the point of view of p. Formally, LastWrite(c, p,x) is the
largest index i such that i = z(p) or b(i) = (mem, p,x) for some mem.

210 P.A. Abdulla et al.

We define the transition relation −→SB on the set of SB-configurations as follows. In
a similar manner to the case of TSO, the relation is induced by members of Δ∪Δ′. For
configurations c =

(
q,b,z

)
, c′ =

(
q′,b′,z′

)
, and t ∈ Δp∪

{
updatep

}
, we write c t−→SB c′

to denote that one of the following conditions is satisfied:

– Nop: t = (q,nop,q′), q(p) = q, q′ = q [p←↩ q′], b′ = b and z′ = z. The operation
changes only the local state of p.

– Write to store: t = (q,w(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b(|b|) is of the form
(mem1, p1,x1), b′ = b · (mem1 [x←↩ v] , p,x), and z′ = z. A new element is appended
to the tail of the buffer. Values of variables in the new element are identical to
those in the previous last element except that the value of x has been updated to v.
Furthermore, we include the updating process p and the updated variable x.

– Update: t = updatep, q′ = q, b′= b, z(p)< |b| and z′= z [p←↩ z(p)+ 1]. An update
operation (as seen by p) is simulated by moving the pointer of p one step to the
right. This means that we remove the oldest write operation that is yet to be used for
a memory update. The removed element will now represent the memory contents
from the point of view of p.

– Read: t = (q, r(x,v),q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and
b(LastWrite(c, p,x)) = (mem1, p1,x1) for some mem1, p1,x1 with mem1(x) = v.

– Fence: t = (q, fence,q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b′ = b, and z′ = z.
The buffer should be empty from the point of view of p when the transition is
performed. This is encoded by the equality z(p) = |b|.

– ARW: t = (q,arw(x,v,v′),q′), q(p) = q, q′ = q [p←↩ q′], z(p) = |b|, b(|b|) is of
the form (mem1, p1,x1), mem1(x) = v, b′ = b · (mem1 [x←↩ v′] , p,x), and z′ =
z [p←↩ z(p)+ 1]. The fact that the buffer is empty from the point of view of p is
encoded by the equality z(p) = |b|. The content of the memory can then be fetched
from the right-most element b(|b|) in the buffer. To encode that the buffer is still
empty after the operation (from the point of view of p) the pointer of p is moved
one step to the right.

We use c−→SB c′ to denote that c t−→SB c′ for some t ∈ Δ∪Δ′. The set InitSB of ini-
tial SB-configurations contains all configurations of the form

(
qinit,binit,zinit

)
where

|binit| = 1, and for all p ∈ P, we have that qinit(p) = qinit
p , and zinit(p) = 1. In other

words, each process is in its initial local state. The buffer contains a single message, say
of the form (meminit, pinit,xinit), where meminit represents the initial value of the mem-
ory. The memory may have any initial value. Also, the values of pinit and xinit are not
relevant since they will not be used in the computations of the system. The pointers of
all the processes point to the first position in the buffer. According to our encoding, this
indicates that their buffers are all empty. The transition system induced by a concurrent
system under the SB semantics is then given by (CSB,InitSB,−→SB).

The SB Reachability Problem. We define the predicate Reachable(SB)(P) (Target),
and the reachability problem for the SB semantics, in a similar manner to TSO. The
following theorem states equivalence of the reachability problems under TSO and SB
semantics. Due to its technicality and lack of space, we leave the proof for the appendix.

Theorem 1. For a concurrent program P and a local state definition Target, the
reachability problems are equivalent under the TSO and SB semantics.

Counter-Example Guided Fence Insertion under TSO 211

5 The SB Reachability Algorithm

In this section, we present an algorithm for checking reachability of an (infinite) set
of configurations characterized by a (finite) set Target of local state definitions. In
addition to answering the reachability question, the algorithm also provides an “error
trace” in case Target is reachable. First, we define an ordering � on the set of SB-
configurations, and show that it satisfies two important properties, namely (i) it is a well
quasi-ordering (wqo), i.e., for every infinite sequence c0,c1, . . . of SB-configurations,
there are i < j with ci � c j; and (ii) the SB-transition relation −→SB is monotonic wrt.
�. The algorithm performs backward reachability analysis from the set of configura-
tions with local state definitions that belong to Target. During each step of the search
procedure, the algorithm takes the upward closure (wrt. �) of the generated set of con-
figurations. By monotonicity of � it follows that taking the upward closure preserves
exactness of the analysis [1]. From the fact that we always work with upward closed
sets and that � is a wqo it follows that the algorithm is guaranteed to terminate [1]. In
the algorithm, we use a variant of finite-state automata, called SB-automata, to encode
(potentially infinite) sets of SB-configurations.

Ordering. For an SB-configuration c =
(
q,b,z

)
we define ActiveIndex(c) :=

min{z(p)| p ∈ P}. In other words, the part of b to the right of (and including)
ActiveIndex(c) is “active”, while the part to the left is “dead” in the sense that all
its content has already been used for memory updates. The left part is therefore not
relevant for computations starting from c.

Let c =
(
q,b,z

)
and c′ =

(
q′,b′,z′

)
be two SB-configurations. Define j :=

ActiveIndex(c) and j′ := ActiveIndex(c′). We write c� c′ to denote that (i) q = q′

and that (ii) there is an injection g : { j, j+ 1, . . . , |b|} �→ { j′, j′+ 1, . . . , |b′|} such that
the following conditions are satisfied. For every i, i1, i2 ∈ { j, . . . , |b|}, (1) i1 < i2 implies
g(i1)< g(i2), (2) b(i) = b′(g(i)), (3) LastWrite(c′, p,x) = g(LastWrite(c, p,x)) for
all p ∈ P and x ∈ X , and (4) z′(p) = g(z(p)) for all p ∈ P. The first condition means
that g is strictly monotonic. The second condition corresponds to that the active part of
b is a sub-word of the active part of b′. The third condition ensures the last write indices
wrt. all processes and variables are consistent. The last condition ensures each process
points to identical elements in b and b′.

We get the following lemma from the fact that (i) the sub-word relation is a well-
quasi ordering on finite words [15], and that (ii) the number of states and messages
(associated with last write operations and pointers) that should be equal, is finite.

Lemma 1. The relation � is a well-quasi ordering on SB-configurations.

The following lemma shows effective monotonicity (cf. Section 2) of the SB-transition
relation wrt. �. As we shall see below, this allows the reachability algorithm to only
work with upward closed sets. Monotonicity is used in the termination of the reacha-
bility algorithm. The effectiveness aspect is used in the fence insertion algorithm (cf.
Section 6).

Lemma 2. −→SB is effectively monotonic wrt. �.

The upward closure of a set C is defined as C↑:= {c′ |∃c ∈C, c� c′}. A set C is upward
closed if C =C↑.

212 P.A. Abdulla et al.

SB-Automata. First we introduce an alphabet Σ := ([X �→V]×P×X)× 2P. Each
element ((mem, p,x) ,P′) ∈ Σ represents a single position in the buffer of an SB-
configuration. More precisely, the triple (mem, p,x) represents the message stored at
that position and the set P′ ⊆ P gives the (possibly empty) set of processes whose point-
ers point to the given position. Consider a word w = a1a2 · · ·an ∈ Σ∗, where ai is of the
form ((memi, pi,xi) ,Pi). We say that w is proper if, for each process p ∈ P, there is ex-
actly one i : 1≤ i≤ n with p∈ Pi. In other words, the pointer of each process is uniquely
mapped to one position in w. A proper word w of the above form can be “decoded” into
a (unique) pair decoding(w) := (b,z), defined by (i) |b| = n, (ii) b(i) = (memi, pi,xi)
for all i : 1≤ i≤ n, and (iii) z(p) is the unique integer i : 1≤ i≤ n such that p ∈ Pi (the
value of i is well-defined since w is proper). We extend the function to sets of words
where decoding(W) := {decoding(w)| w ∈W}.

An SB-automaton A is a tuple
(
S,Δ,Sfinal,h

)
where S is a finite set of states,

Δ ⊆ S× Σ× S is a finite set of transitions, Sfinal ⊆ S is the set of final states, and
h : (P �→ Q) �→ S. The total function h defines a labeling of the states of A by the local
state definitions of the concurrent program P, such that each q is mapped to a state h(q)
in A. For a state s∈ S, we define L(A,s) to be the set of words of the form w= a1a2 · · ·an

such that there are states s0,s1, . . . ,sn ∈ S satisfying the following conditions: (i) s0 = s,
(ii) (si,ai+1,si+1) ∈ Δ for all i : 0≤ i < n, (iii) sn ∈ Sfinal, and (iv) w is proper. We define
the language of A by L(A) :=

{(
q,b,z

)
| (b,z) ∈ decoding

(
L
(
A,h(q)

))}
. Thus, the lan-

guage L(A) characterizes a set of SB-configurations. More precisely, the configuration(
q,b,z

)
belongs to L(A) if (b,z) is the decoding of a word that is accepted by A when

A is started from the state h(q) (the state labeled by q). A set C of SB-configurations is
said to be regular if C = L(A) for some SB-automaton A.

Operations on SB-Automata. We show that we can compute the operations (union,
intersection, test emptiness, compute predecessor, etc.) needed for the reachability al-
gorithm. First, observe that regular sets of SB-configurations are closed under union and
intersection. For SB-automata A1,A2, we use A1 ∩A2 to denote an automaton A such
that L(A) = L(A1)∩L(A2). We define A1∪A2 in a similar manner. We use A /0 to denote
an (arbitrary) automaton whose language is empty. We can construct SB-automata for
the set of initial SB-configurations, and for sets of SB-configurations characterized by
local state definitions.

Lemma 3. We can compute an SB-automaton Ainit such that L
(
Ainit
)
= InitSB. For a

set Target of local state definitions, we can compute an SB-automaton Afinal (Target)
such that L

(
Afinal (Target)

)
:=
{(

q,b,z
)
| q ∈ Target

}
.

The following lemma tells us that regularity of a set is preserved by taking upward
closure, and that we in fact can compute an automaton describing its upward closure.

Lemma 4. For an SB-automaton A we can compute an SB-automaton A↑ such that
L(A↑) = L(A)↑.

We define the predecessor function as follows. Let t ∈ Δ∪Δ′ and let C be a set of SB-
configurations. We define Pret (C) := {c |∃c′ ∈C,c t−→SB c′} to denote the set of imme-
diate predecessor configurations of C w.r.t. the transition t. In other words, Pret (C) is

Counter-Example Guided Fence Insertion under TSO 213

the set of configurations that can reach a configuration in C through a single execution
of t. The following lemma shows that Pre preserves regularity, and that in fact we can
compute the automaton of the predecessor set.

Lemma 5. For a transition t and an SB-automaton A, we can compute an SB-
automaton Pret (A) such that L(Pret (A)) = Pret (L(A)).

Algorithm 1: Reachability
input : A concurrent program P and a finite

set Target of local state definitions.
output: “unreachable” if

¬Reachable(SB)(P)(Target) holds.
A trace to Target otherwise.

W ←
{

Afinal (Target)
}

;1

AV ← A /0;2

while W �= /0 do3

Pick and remove a trace δ from W ;4

A← head (δ);5

if L
(
A∩Ainit

)
�= /0 then return δ;6

if L (A)⊆ L
(

AV
)

then discard A;7

else8

W ←
{

δ′ ∈W | L (head (δ′)) �⊆ L (A)
}
∪9

{(Pret (A))↑ ·t ·δ| t ∈ Δ∪Δ′};
AV ← AV ∪A10

return “unreachable”;11

Reachability Algorithm. The algo-
rithm performs a symbolic backward
reachability analysis [1], where we
use SB-automata for representing
infinite sets of SB-configurations.
In fact, the algorithm also provides
traces that we will use to find places
inside the code where to insert
fences (see Section 6). For a set
Target of local state definitions,
a trace δ to Target is a se-
quence of the form A0t1A1t2 · · · tnAn

where A0,A1, . . . ,An are SB-
automata, t1, . . . , tn are transitions,
and (i) L(A0) ∩ InitSB �= /0; (ii)
Ai =

(
Preti+1 (Ai+1)

)
↑ for all

i : 0 ≤ i < n (even if L(Ai+1) is
upward-closed, it is still possi-
ble that L

(
Preti+1 (Ai+1)

)
is not

upward-closed; however due to
monotonicity taking upward closure does not affect exactness of the analysis);
and (iii) An = Afinal (Target). In the following, we use head (δ) to denote the SB-
automaton A0. The algorithm inputs a finite set Target, and checks the predicate
Reachable(SB)(P) (Target). If the predicate does not hold then Algorithm 1 simply
answers unreachable; otherwise, it returns a trace. It maintains a working set W that
contains a set of traces. Intuitively, in a trace A0t1A1t2 · · · tnAn ∈ W , the automaton
A0 has been “detected” but not yet “analyzed”, while the rest of the trace represents
a sequence of transitions and SB-automata that has led to the generation of A0. The
algorithm also maintains an automaton AV that encodes configurations that have
already been analyzed.

Initially, AV is an automaton recognizing the empty language, and W is the singleton{
Afinal (Target)

}
. In other words, we start with a single trace containing the automaton

representing configurations induced by Target (can be constructed by Lemma 3). At
the beginning of each iteration, the algorithm picks and removes a trace δ (with head
A) from the set W . First it checks whether A intersects with Ainit (can be constructed
by Lemma 3). If yes, it returns the trace δ. If not, it checks whether A is covered by

AV (i.e., L(A) ⊆ L
(

AV
)

). If yes then A does not carry any new information and it

(together with its trace) can be safely discarded. Otherwise, the algorithm performs the
following operations: (i) it discards all elements of W that are covered by A; (ii) it adds

214 P.A. Abdulla et al.

A to AV ; and (iii) for each transition t it adds a trace A1 · t ·δ to W , where we compute
A1 by taking the predecessor Pret (A) of A wrt. t, and then taking the upward closure
(Lemmata 4 and 5). Notice that since we take the upward closure of the generated
automata, and since Afinal (Target) accepts an upward closed set, then AV and all the
automata added to W accept upward closed sets. The algorithm terminates when W
becomes empty.

Theorem 2. The reachability algorithm always terminates with the correct answer.

6 Fence Insertion

Our fence insertion algorithm is parameterized by a predefined placement constraint
G where G ⊆ Q. The algorithm will place fences only after local states that belong to
G. This gives the user the freedom to choose between the efficiency of the verifica-
tion algorithm and the number of fences that are needed to ensure correctness of the
program. The weakest placement constraint is defined by taking G to be the set of all
local states of the processes, which means that a fence might be placed anywhere inside
the program. On the other hand, one might want to place fences only after write op-
erations, place them only before read operations, or avoid putting them within certain
loops (e.g., loops that are known to be executed often during the runs of the program).
For any given G, the algorithm finds the minimal sets of fences (if any) that are suffi-
cient for correctness. First, we show how to use a trace δ to derive a counter-example:
an SB-computation that reaches Target. From the counter example, we explain how
to derive a set of fences in G such that the insertion of at least one element of the set
is necessary in order to eliminate the counter-example. Finally, we introduce the fence
insertion algorithm.

Fences. We identify fences with local states. For a concurrent program P = (P,A) and
a fence f ∈ Q, we use P⊕ f to denote the concurrent program we get by inserting a
fence operation just after the local state f in P. Formally, if f ∈ Qp, for some p ∈ P,

then P⊕ f :=
(

P,
{

A′p′ | p′ ∈ P
})

where A′p′ = Ap′ if p �= p′. Furthermore, if Ap =(
Qp,qinit

p ,Δp
)
, then we define A′p =

(
Qp∪{q′} ,qinit

p ,Δ′p
)

with q′ �∈ Qp, and Δ′p = Δp∪
{(f , fence,q′)}∪{(q′,op,q′′)| (f ,op,q′′) ∈ Δp}\{(f ,op,q′′)| (f ,op,q′′) ∈ Δp}. We say
F is minimal wrt. a set Target of local state definitions and a placement constraint
G if F ⊆ G and Reachable(SB)(P⊕F \ { f}) (Target) holds for all f ∈ F but not
Reachable(SB)(P⊕F)(Target). We use FG

min (P) (Target) to denote the set of mini-
mal sets of fences in P wrt. Target that respect the placement constraint G.

Counter-Example Generation. Consider a trace δ = A0t1A1t2 · · · tnAn. We show
how to derive a counter-example from δ. Formally, a counter-example is a run
c0

t1−→SB c1
t2−→SB · · · tm−−→SB cm of the transition system induced from P under the SB

semantics, where c0 ∈ InitSB and cm ∈
{(

q,b,z
)
| q ∈ Target

}
. We assume a func-

tion choose that, for each automaton A, chooses a member of L(A) (if L(A) �= /0),
i.e., choose(A) = w for some arbitrary but fixed w ∈ L(A). We will define π using
a sequence of configurations c0, . . . ,cn where ci ∈ L(Ai) for i : 0 ≤ i ≤ n. Define

Counter-Example Guided Fence Insertion under TSO 215

c0 := choose
(
A0∩Ainit

)
. The first configuration c0 in π is a member of the intersec-

tion of A0 and Ainit (this intersection is not empty by the definition of a trace). Sup-
pose that we have computed ci for some i : 0 ≤ i < n. Since Ai = Preti+1 (Ai+1)↑
and ci ∈ L(Ai), there exist c′i ∈ Preti+1 (Ai+1) ⊆ L(Ai) and di+1 ∈ L(Ai+1) such that

c′i � ci and c′i
ti+1−−−→SB di+1. Since there are only finitely many configurations that are

smaller than ci wrt. �, we can indeed compute both c′i and di+1. By Lemma 2, we
know we can compute a configuration ci+1 and a run πi+1 such that di+1 � ci+1 and
ci

πi+1−−−→SB ci+1. Since L(Ai+1↑) is upward closed, we know that ci+1 ∈ L(Ai+1↑). We
define π := c0 •π1 • c1 •π2 • · · · •πn • cn. We use CounterEx(δ) to denote such a π.

Fence Inference. We will identify points along a counter-example π =

c0
t1−→SB c1

t2−→SB · · · tn−1−−−→SB cn−1
tn−→SB cn at which read operations overtake

write operations and derive a set of fences such that any one of them forbids such

an overtaking. We do this in several steps. Let ci be of the form
(

q
i
,bi,zi

)
. Define

ni := |bi|. First, we define a sequence of functions α0, . . . ,αn where αi associates to
each message in the buffer bi the position in π of the write transition that gave rise to
the message. Below we explain how to generate those α functions. The first message
bi(1) in each buffer represents the initial state of memory. It has not been generated
by any write transition, and therefore αi(1) is undefined. Since b0 contains exactly
one message, α0(j) is undefined for all j. If ti+1 is not a write transition then define
αi+1 := αi (no new message is appended to the buffer, so all transitions associated to
all messages have been defined). Otherwise, we define αi+1(j) := αi(j) if 2 ≤ j ≤ ni

and define αi+1(ni+1) := i+1. In other words, a new message will be appended to the
end of the buffer (placed at position ni+1 = ni + 1); and to this message we associate
i+ 1 (the position in π of the write transition that generated the message).

Next, we identify the write transitions that have been overtaken by read oper-
ations. Concretely, we define a function Overtaken such that, for each i : 1 ≤
i ≤ n, if ti is a read transition then the value Overtaken(π)(i) gives the positions
of the write transitions in π that have been overtaken by the read operation. For-
mally, if ti is not a read transition define Overtaken(π)(i) := /0. Otherwise, as-
sume that ti = (q, r(x,v),q′) ∈ Δp for some p ∈ P. We have Overtaken(π)(i) :={

αi(j)| LastWrite(ci, p,x)< j ≤ ni∧ tαi(j) ∈ Δp
}

. In other words, we consider the
process p that has performed the transition ti and the variable x whose value is read
by p in ti. We search for pending write operations issued by p on variables different
from x. These are given by transitions that (i) belong to p and (ii) are associated with
messages inside the buffer that belong to p and that are yet to be used for updating the
memory (they are in the postfix of the buffer to the right of LastWrite(ci, p,x)).

Finally, we notice that, for each i : 1≤ i≤ n and each j ∈ Overtaken(π)(i), the pair
(j, i) represents the position j of a write operation and the position i of a read operation
that overtakes the write operation. Therefore, it is necessary to insert a fence at least
in one position between such a pair in order to ensure that we eliminate at least one of
the overtakings that occur along π. Furthermore, we are only interested in local states
that belong to the placement constraint G. To reflect this, we define Barrier(G)(π) :={

q
k
(p)| ∃i : 1≤ i≤ n. ∃ j ∈ Overtaken(π)(i). j ≤ k < i

}
∩G.

216 P.A. Abdulla et al.

Algorithm 2: Fence Inference
input : concurrent program P, placement

constraint G, local state definitions
Target.

output: FG
min (P) (Target).

W ←{ /0};1

C ← /0;2

while W �= /0 do3

Pick and remove a set F from W ;4

if Reachable(SB)(P⊕F)(Target) = δ then5

FB ← Barrier(G)(CounterEx (δ));6

if FB = /0 then7

return /08

else foreach f ∈ FB do9

F ′ ← F ∪{ f };10

if ∃F ′′ ∈ C ∪W . F ′′ ⊆ F ′ then11

discard F ′12

else W ←W ∪{F ′}13

else14

C ← C ∪{F}15

return C ;16

Algorithm. Our fence insertion al-
gorithm (Algorithm 2) inputs a con-
current program P, a placement con-
straint G, and a finite set Target

of local state definitions, and re-
turns all minimal sets of fences
(FG

min (P) (Target)). If this set is
empty then we conclude that the
program cannot be made correct by
placing fences in G. In this case, and
if G = Q (or indeed, if G includes
sources of all read operations or des-
tinations of all write operations), the
program is not correct even under
SC-semantics (hence no set of fences
can make it correct).

Theorem 3. For a concurrent pro-
gram P, a placement constraint
G, and a finite set Target, Al-
gorithm 2 terminates and returns
FG

min (P) (Target).

Remark 1. If only a smallest minimal set is of interest, then it is sufficient to implement
W as a queue and to return the first added element to C .

7 Experimental Results

We have evaluated our approach on several benchmark examples including some diffi-
cult problem sets that cannot be handled by any previous approaches. We have imple-
mented Algorithm 2 in OCaml and run the experiments using a laptop computer with an
Intel Core i3 2.26 GHz CPU and 4GB of memory. Table 1 summarizes our results. The
placement constraint only allows fences immediately after write operations. The exper-
iments were run in two modes: one until the first minimal set of fences is found, and
one where all minimal sets of fences are found. For each concurrent program we give
the program size (number of processes, number of states, variables and transitions), the
total required time in seconds, the number of inserted fences in the smallest minimal
fence set and the number of minimal fence sets.

Our implementation is able to verify all above examples. This is beyond the capa-
bilities of previous approaches. In particular, none of our examples is data-race free.
Furthermore, some of our examples may generate an arbitrary number of messages in-
side the buffers and they may have sequential inconsistent behaviors. To the best of our
knowledge, only the approaches in [19] and in [22] are potentially able to handle such
general classes of problems. However, the approach of [22] does not guarantee termina-
tion. The work in [19] abstracts away the order between buffer messages, and hence it
cannot handle examples where the order of messages sent to the buffer is crucial (such
as the “Increasing Sequence” example in the table). See the appendix for further details.

Counter-Example Guided Fence Insertion under TSO 217

Table 1. Analyzed concurrent programs

Size Total time Total time Fences Number of
Proc./States/Var./Trans seconds seconds necessary minimal

(one fence set) (all fence sets) (smallest set) fence sets
1. Simple Dekker [31] 2/8/2/10 0.02 0.02 1 per process 1
2. Full Dekker [11] 2/14/3/18 0.28 0.28 1 per process 1
3. Peterson [29] 2/10/3/14 0.24 0.6 1 per process 1
4. Lamport Bakery [20] 2/22/4/32 52 5538 2 per process 4
5. Lamport Fast [21] 2/26/4/38 6.5 6.5 2 per process 1
6. CLH Queue Lock[25] 2/48/4/60 26 26 0 1
7. Sense Reversing Barrier [26] 2/16/2/24 1.1 1.1 0 1
8. Burns [24] 2/9/2/11 0.07 0.07 1 per process 1
9. Dijkstra [24] 2/14/3/24 9.5 10 1 per process 1
10. Tournament Barriers [14] 2/8/2/8 1.2 1.2 0 1
11. A Task Scheduling Algorithm 3/7/2/9 60 60 0 1
12. Increasing Sequence 2/26/1/44 25 27 0 1
13. Alternating Bit 2/8/2/12 0.2 0.2 0 1
14. Producer Consumer, v1, N=2 18/3/22 0.2 0.2 Erroneous 0
15. Producer Consumer, v1, N=3 22/4/28 4.5 4.5 Erroneous 0
16. Producer Consumer, v2, N=2 14/3/18 5.7 5.7 0 1
17. Producer Consumer, v2, N=3 16/4/22 580 583 0 1

8 Conclusion

We have presented a sound and complete method for automatic fence insertion in finite-
state programs running under the TSO memory model, based on a new (so called)
SB-semantics. We have automatically verified several challenging examples, includ-
ing some that cannot be handled by existing approaches. The design of the new SB
semantics is not a trivial task. For instance, ”obvious” variants such as simply mak-
ing the buffer in TSO ”lossy”, or removing the pointers or storing less information
inside the messages of the SB-buffer would fail, since they yield either over- or under-
approximations (even wrt. reachability properties). Also the ordering we define on SB
configurations cannot be ”translated back” to an ordering on TSO configuration (this
would make it possible to apply our method directly on TSO rather than on the SB
semantics). The reason is that standard proofs that show reductions between differ-
ent semantics (models), where each configuration in one model is shown to be in (bi-
)simulation with a configuration in the other model cannot be used here. Given an SB-
configuration, it is not obvious how to define an ”equivalent” TSO configuration, and
vice versa. However (crucially, as shown in the proof of Theorem 1) we show that each
computation in one semantics violating/satisfying a given safety property is simulated
by a (whole) computation that violates/satisfies the same safety property in the other.
Our method can be carried over to other memory models such as PSO in a straightfor-
ward manner. In the future, we plan to apply our techniques to more memory models
and to combine with predicate abstraction for handling programs with unbounded data.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for
infinite-state systems. In: LICS (1996)

2. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer 29(12)
(1996)

218 P.A. Abdulla et al.

3. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)

4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL (2010)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO Analysis. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115. Springer,
Heidelberg (2011)

6. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of concurrent data
types on relaxed memory models. In: PLDI (2007)

7. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded Model Checking of Concurrent Data
Types on Relaxed Memory Models: A Case Study. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

8. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory Models.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120. Springer, Heidel-
berg (2008)

9. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory models.
Technical Report UCB/EECS-2010-32, UCB (2010)

10. Burnim, J., Sen, K., Stergiou, C.: Sound and Complete Monitoring of Sequential Consistency
for Relaxed Memory Models. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

11. Dijkstra, E.W.: Cooperating sequential processes. Springer-Verlag New York, Inc., New York
(2002)

12. Fang, X., Lee, J., Midkiff, S.P.: Automatic fence insertion for shared memory multiprocess-
ing. In: ICS. ACM (2003)

13. Fraser, K.: Practical lock-freedom. Technical Report UCAM-CL-TR-579, University of
Cambridge, Computer Laboratory (2004)

14. Hensgen, D., Finkel, R., Manber, U.: Two algorithms for barrier synchronization. IJPP 17
(February 1988)

15. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2(7)
(1952)

16. Huynh, T.Q., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In: Misra,
J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–491. Springer,
Heidelberg (2006)

17. I. Inc. IntelTM64 and IA-32 Architectures Software Developer’s Manuals
18. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD

(2011)
19. Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed memory

models. In: PLDI (2011)
20. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. CACM 17 (Au-

gust 1974)
21. Lamport, L.: A fast mutual exclusion algorithm (1986)
22. Linden, A., Wolper, P.: An Automata-Based Symbolic Approach for Verifying Programs on

Relaxed Memory Models. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349,
pp. 212–226. Springer, Heidelberg (2010)

23. Linden, A., Wolper, P.: A Verification-Based Approach to Memory Fence Insertion in Re-
laxed Memory Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823,
pp. 144–160. Springer, Heidelberg (2011)

24. Lynch, N., Patt-Shamir, B.: Distributed Algorithms, Lecture Notes for 6.852 FALL 1992.
Technical report, MIT, Cambridge, MA, USA (1993)

25. Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multiprocessors.
In: IPPS. IEEE Computer Society (1994)

Counter-Example Guided Fence Insertion under TSO 219

26. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9 (February 1991)

27. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer, Heidelberg
(2010)

28. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

29. Peterson, G.L.: Myths About the Mutual Exclusion Problem. IPL 12(3) (1981)
30. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-tso: A rigorous and

usable programmer’s model for x86 multiprocessors. CACM 53 (2010)
31. Weaver, D., Germond, T. (eds.): The SPARC Architecture Manual Version 9. PTR Prentice

Hall (1994)

Java Memory Model-Aware Model Checking

Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A. Sanders

University of Florida

Abstract. The Java memory model guarantees sequentially consistent
behavior only for programs that are data race free. Legal executions of
programs with data races may be sequentially inconsistent but are sub-
ject to constraints that ensure weak safety properties. Occasionally, one
allows programs to contain data races for performance reasons and these
constraints make it possible, in principle, to reason about their correct-
ness. Because most model checking tools, including Java Pathfinder, only
generate sequentially consistent executions, they are not sound for pro-
grams with data races. We give an alternative semantics for the JMM
that characterizes the legal executions as a least fixed point and show
that this is an overapproximation of the JMM. We have extended Java
Pathfinder to generate these executions, yielding a tool that can be
soundly used to reason about programs with data races.

Keywords: model checking, relaxed memory model, benign data races.

1 Introduction

The memory model of a programming language defines which values a thread
can see when reading a variable from shared memory. If the memory model
is sequential consistency (SC), then the program behaves as if all of its reads
and writes occur in some order consistent with the program order on individual
threads, and each read of a variable sees the most recent write to that variable
in the order.

Memory systems in most modern multi-core processors are not sequentially
consistent and in addition, a variety of compiler optimizations that would be
correct in a sequential program may introduce sequentially inconsistent behavior
into a multi-threaded one. For example, consider the program in Fig. 1. In any
sequentially consistent execution, depending on how the threads interleave, the
x field of the single object involved would change from 0 to 3 at some point
and then remain 3 thereafter. A common compiler optimization which causes
no problems in a single threaded program might, however, replace the last read
r1.x in Thread 1 with an assignment, r5 = r2. This admits executions where it
appears that the value of r1.x changes from 0 to 3 and then back to 0. Such an
execution is not sequentially consistent.

Sequential consistency is desirable because it corresponds with programmers’
intuition. Also, it allows formal reasoning techniques and tools, most of which

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 220–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Java Memory Model-Aware Model Checking 221

Initially p == q, p.x == 0

Thread 1 Thread 2
r1 = p; r6 = p;
r2 = r1.x; r6.x = 3;
r3 = q;
r4 = r3.x;
r5 = r1.x;

Fig. 1. Execution trace with
conflicting accesses to the same
memory location. Variable
names that begin with r are
local variables of a thread.
This example is from
[11, §17.3].

assume sequential consistency, to be used.
Most model checkers, for example, implic-
itly assume sequential consistency. If we used
a model checker such as Java Pathfinder to
check the scenario in Fig. 1, the legal, but the
sequentially inconsistent execution described
earlier would not be generated or checked.

Typical programming language memory
models guarantee sequential consistency only
for programs that are data race free. A data
race is a pair of conflicting operations (i.e. the
operations are performed by different threads,
both access the same memory location and at
least one is a write) that are not ordered by
sufficient synchronization. Exactly what con-
stitutes “sufficient synchronization” is defined
by, and specific to, the memory model. The
Java Memory Model (JMM), guarantees se-
quentially consistency only for programs that are data race free, but also con-
strains programs with data races in order to provide some weak security guar-
antees. If all of the legal executions, including the sequentially inconsistent ones,
of a data racy program still satisfy the program’s specification, then we can con-
sider a data race to be benign. Occasionally, one may want to take advantage
of this to improve performance. For example, intentional, benign data races can
be found in the java.lang.String and java. util .ConcurrentHashMap classes.

The JMM is complicated and reasoning about programs with data races is
difficult, thus tool support is desirable. We describe a JMM aware model checker,
Java PathRelaxer (JPR) that is an extension of Java Pathfinder [22,15] and gen-
erates all of the legal executions of finite Java programs with data races so that
their properties can be verified. The way the JMM defines legal executions in
programs with data races does not lend itself to precise implementation with
a model checker and has been shown [23] to be stricter than the designers in-
tended. We use an alternate approach. Instead of defining a legal execution by
the existence of a sequence of justifying executions as the JMM does, we com-
pute a set of paths that is the least fixed point of a monotone function. We show
that the set of paths generated by JPR is an overapproximation of the set of
legal executions. Although the details of the formalization and implementation
of JPR are specific for Java, the main ideas are applicable to other languages
with a memory model based on the happens-before relation.

The main contributions of this paper are

– A new, fixed-point based, approach to the characterization of legal executions
for relaxed memory models.

– A tool, JPR that generates all of the legal executions according to the fixed-
point characterization.

222 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

– A proof that the fixed-point based approach is an overapproximation of the
JMM, and thus JPR is sound for Java programs with data races.

– Insights into how the JMM maps (or does not map) into program constructs.

2 Background

Below, we give a brief overview of the formal definition of the Java Memory
Model, including formal, JMM specific definitions of some concepts introduced
previously. Our treatment follows that of [1], which is in turn based on the
specification of the JMM given in [19,11].1

An action a is a memory-related operation with an arbitrary unique ID, aid
that is performed by a thread tid, interacts with variable v or (monitor) lock m,
and has a kind. The kind is one of the following: volatile read from v, volatile
write to v, (non-volatile) read from v, (non-volatile) write to v, locking of lock
m, unlocking of lock m, starting a thread, detecting termination of thread, and
instantiating an object with a set of volatile fields volatiles and a set of non-
volatile fields fields set to their default values. All of the action kinds, with the
exception of read and write are synchronization actions.

Definition 1 (Execution). An execution E is described by a tuple
〈A,P,≤po,≤so,W, V 〉 where

– A is a finite set of actions

– P is a program

– ≤po, the program order, is a partial order on A obtained by taking the union
of total orders representing each thread’s sequential semantics

– ≤so, the synchronization order, is a total order over all of the synchronization
actions in A

– V , the value written function, assigns a value to each write

– W , the write-seen function, assigns a write action to each read action so
that the value obtained by a read action r is V (W (r)).

A sequentially consistent (SC) execution is one where there exists a total order,
≤sc, on the actions consistent with ≤po and ≤so and where a read r of variable
v sees the results of the most recent preceding write w, i.e.

– W (r) ≤sc r

– For all reads r of variable v: if W (r) ≤sc w ≤sc r and w writes to v then
W (r) = w.

1 The most important differences between [19] and [1] are that the latter requires
that the total order for SC executions be consistent with both the synchronization
order and program order (as opposed to just the program order, correcting an appar-
ent oversight in the JMM formulation), formulates the semantics in terms of finite
executions, and ignores external actions.

Java Memory Model-Aware Model Checking 223

The JMM relaxes SC because it is not required that W return the “most recent”
write to the variable in question or that it is consistent for actions on different
threads.

The synchronizes-with relation, ≤sw, relates certain pairs of actions. For ex-
ample, the action unlocking a monitor synchronizes-with any subsequent (ac-
cording to ≤so) unlock of the same monitor. Other pairs include writing a volatile
variable and a subsequent read, the action of starting a thread and the first ac-
tion of the newly started thread, etc. See [11, §17.4.4] for a complete list. We
categorize the first action of a ≤sw pair as a release action, and the second as an
acquire action. The happens-before order, ≤hb, is a partial order on the actions
in an execution obtained by taking the transitive closure of the union of ≤sw

and ≤po. A well-formed execution satisfies type safety and some unsurprising
consistency requirements on the various partial and total orders. The two most
important rules for our purposes are intra-thread consistency and happens-before
consistency.

Definition 2 (Well-formed execution). See [1, Definition 6] for the complete
definition.

7. Program order is intra-thread consistent: for each thread t, the sequence of
action kinds and values of actions performed by t in the program order ≤po

is sequentially valid2 with respect to P and t.

9. ≤hb is consistent with W : for all reads r of variable v, r �≤hb W (r) and there
is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes to v
then W (r) = w.

Two operations from different threads conflict if neither is a synchronization
action, they access the same memory location and at least one is a write. A data
race is defined to be a pair of conflicting operations not ordered by ≤hb.

3

A Java program is correctly synchronized if all of its SC executions are data
race free. An important property of most programming language memory mod-
els, including the JMM [11,19] [1, Theorem 1], is that all legal executions of a
well-formed correctly synchronized program behave as if they are sequentially
consistent. This data race free guarantee (DRF) is important for programmers.
Because “correctly synchronized” depends only on the sequentially consistent
executions, detecting data races can be done with model checkers or other tools
that assume sequential consistency. Java RaceFinder (JRF) [16,17], for exam-
ple, extends Java Pathfinder to precisely detect data races in Java programs
according to the memory model.

2 Sequential validity essentially means that given the values obtained when a variable
is read, each thread obeys the Java language semantics.

3 Because reads and writes of volatile variables are synchronization actions, a volatile
variable in Java can never be involved in a data race. Volatile variables can still be
involved in non-deterministic behavior that is sometimes called a race condition. In
this paper, we use the term race only in the context of data race as defined in the
JMM.

224 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

While most Java programs should be data race free, the JMM attempts to
define the semantics of programs with data races. The main goal was to provide a
modicum of security guarantees even for incorrect programs with data races while
still allowing as many optimizations as possible. Desirable properties include type
safety and no out-of-thin-air values.

While the notion of out-of-thin-air value has not been precisely defined, the
example in Fig. 2 [19] illustrates the idea and shows why well-formedness (Def.
2) and in particular happens-before consistency, does not suffice. In a sequen-
tially consistent execution of the example in Fig. 2, the only values allowed are
r1==r2==0. However, letting W (A1) = B2, W (B1) = A2, and V (A2) =val,
and V (B2) =val, for any value val of the correct type, we have a well-formed
execution where r1 == r2 == val, and in this situation, val is said to come
out-of-thin-air.

Initially, x == y == 0

Thread 1 Thread 2
A1: r1 = x B1: r2 = y
A2: y = r1 B2: x = r2

Fig. 2. The rules for a well-
formed execution admit
traces with r1 == r2 ==
val, for any arbitrary out-of-
thin-air value val of the correct
type

To rule out such cases, the JMM requires
legal executions to satisfy additional causal-
ity conditions intended to rule out so-called
causal loops that could lead to self-justifying
speculative executions. The idea is that a well-
formed execution E is legal if there is (roughly
speaking) a sequence of well-formed execu-
tions Ei with action sets Ai and a subset of
actions Ci called the commit set where each
committed read either sees a committed write
or a write that happens-before it. It is required
that Ci−1 ⊆ Ci and that the sequence even-
tually produces E with all of its actions com-
mitted.

Definition 3 (Legal Execution). [1, Definition 7] A well-formed execution
E = 〈A,P,≤po,≤so,W, V 〉 with happens-before order ≤hb is legal if there is a
finite sequence of sets of actions Ci and well-formed executions Ei = 〈Ai, P,≤poi

,≤soi ,Wi, Vi〉 with happens-before order ≤hbi such that C0 = φ, Ci−1 ⊆ Ci for
all i > 0,

⋃
Ci = A, and for each i > 0, the following are satisfied:

1. Ci ⊆ Ai

2. ≤hbi |Ci =≤hb |Ci

3. ≤soi |Ci =≤so |Ci

4. Vi|Ci = V |Ci

5. Wi|Ci−1 = W |Ci−1

6. For all reads r ∈ Ai − Ci,Wi(r) ≤hbi r
7. For all reads r ∈ Ci − Ci−1,Wi(r) ∈ Ci−1 and W (r) ∈ Ci−1

For example, in Fig. 2, suppose that we want to commit the write action
A2:y=r1;. Then V (A2) is the value read in action A1:r1=x. The value of x must
be obtained from a write that either happened-before A1 (the initialization ac-
tion is the only option) or is already committed. In the former case, the value
read is 0, in the latter case, it is the value written by B2. Similarly, the value

Java Memory Model-Aware Model Checking 225

written in B2 must be the value read in B1, which must be either committed
or happen-before it. However, A2 was not committed, so the initialization ac-
tion is the only option. Thus the only possible outcome is r1==r2==0. Clearly,
understanding and using this definition is difficult for all but the most trivial
programs.

3 Java PathRelaxer (JPR)

In order to check properties of a program with data races, we want to generate all
the possible legal executions of the program under the JMM. To do this, we start
with a set of legal executions, namely the sequentially consistent ones. Then, from
those executions, we find which alternative writes could have been seen by a read,
i.e. what are other possibilities for W (r) that do not violate well-formedness,
and use these to generate additional executions. The process is repeated until
it converges. Completely out-of-thin-air values are avoided because each value
seen by a read must have been written in some execution already generated.
In the rest of this section, we describe how this process was implemented using
model checking in JPR4. In Sect. 4, we formulate the process more formally as
the computation of the least fixed-point of a monotone function and show that
the set of executions generated is an overapproximation of the JMM.

JPR extends Java Pathfinder (JPF) [22,15]. JPF is an explicit-state model
checker that analyzes Java bytecode. Its custom JVM provides an efficient repre-
sentation of the explored state space and can potentially provide paths (or traces)
corresponding to all possible interleaving of the threads. Assertions are checked at
appropriate points during generation of paths. Generic properties such as deadlock
freedom may also be checked. JPF has an extensible architecture via its Listener
interface. While standard JPF explores paths corresponding only to sequentially
consistent executions, JPR explores all paths allowed by the JMM.

The basic idea behind JPR is to maintain a map, WriteSet , that maps mem-
ory locations to sets of (write action, value written) pairs. For a read action
of variable x, instead of the standard JPF behavior where the read sees the
value of the most recent write to x on the current path (which also corresponds
to sequentially consistent behavior), a value from an element of WriteSet(x) is
chosen. By exploring all of the possible WriteSet entries at each point and dis-
carding paths that do not correspond to a well-formed execution, an iteration
of the JPR algorithm generates all of the well-formed paths consistent with a
given WriteSet . It also returns a possibly expanded WriteSet containing all of
the writes that occurred during its execution. By repeating the process until the
WriteSet no longer changes, JPR generates a superset of the legal executions of
the program.

The JMMAwareJPF algorithm given in Fig. 3 represents the overall struc-
ture of JPR. A JPR specific listener, JMMListener is registered with JPF,
then JPF is invoked iteratively. JMMListener takes the GlobalWriteSet from

4 A discussion of JPR focusing on more technical implementation issues related to
extending JPF can be found in [13].

226 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

JMMAwareJPF(Program)
2 GlobalWriteSetold ← GlobalWriteSetnew ← ∅

converged ← false
4 while ¬converged do

Call JPF(JMMListener(GlobalWriteSetold))
6 GlobalWriteSetnew ← JMMListener.GlobalWriteSetnew

if GlobalWriteSetnew == GlobalWriteSetold then
8 converged ← true

else //not converged
10 GlobalWriteSetold ← GlobalWriteSetnew

endwhile

Fig. 3. JMMAwareJPF, the top level algorithm in JPR

the previous iteration and returns a new, possibly extended GlobalWriteSet , ter-
minating when GlobalWriteSet no longer changes. Initially, the GlobalWriteSet
is empty.

JMMListener is described in Figs. 4 and 5. As various search related events
in JPF occur (i.e. start search, advance state, backtrack, execute an instruction,
as represented by the variable searchEvent in Fig. 4) occur, the corresponding
code is executed. Σ is a representation of the current state and is pushed onto a
stack when a search starts and when the state advances, and popped when the
search backtracks. When the end of a path is reached, the path is tested to see
if it is well-formed. If so, the WriteSet of the current path is unioned with the
GlobalWriteSetnew , otherwise the current WriteSet and path are discarded.5

1 JMMListener(GlobalWriteSetold)
GlobalWriteSetnew ← ∅ //New global WriteSet

3 Σ : 〈WriteSet,ActionSet,HBSet, ImposeSet,Read,Write,ThreadLast〉
//Current state metadata

5 switch(searchEvent)
case SEARCH STARTS:

7 WriteSet ← GlobalWriteSetold
ActionSet ← HBSet ← ImposeSet ← ∅

9 ∀loc : Read(loc) ← undef ,Write(loc) ← undef
∀tid : ThreadLast(tid) ← undef

11 Stack .push(Σ)
case STATE ADVANCES:

13 Stack .push(Σ)
case STATE BACKTRACKS:

15 Σ ← Stack .pop()
if END OF PATH then

17 if path is well-formed then
GlobalWriteSetnew ← GlobalWriteSetnew ∪ WriteSet

19 else ignore write set and discard path
case INSTRUCTION EXECUTES:

21 See Fig. 5

Fig. 4. JMMListener algorithm

In JPR, JPF’s state representation is extended with the additional informa-
tion given below, where Aid is the domain of action IDs, V al is the domain of
values, Loc is the domain of memory locations, etc. Action was defined in Sect. 2.

5 Although not shown in the algorithm, because paths may be discarded, assertion
violations are not reported until the end of the path is reached. This is a departure
from standard JPF behavior, which reports assertion violations when they occur.

Java Memory Model-Aware Model Checking 227

22 case EXECUTING ACTION where action = (aid, tid, kind, loc):
ActionSet ← ActionSet ∪ {action} // add current action to action set

24 HBSet ← HBSet ∪ {(ThreadLast(tid), aid)} //update ≤hb due to ≤po

ThreadLast(tid) ← aid
26 if isRELEASE(kind) then

if kind == VOLATILE WRITE writing val then
28 Write(aid) ← val

else if isAQCUIRE(kind) then
30 // for each release action rel that syncs with action do

for each rel = (raid, rtid, rkind, rloc) s.t. isRELEASE(rel)
32 ∧ (raid, aid) ∈ HBSet do

HBSet ← HBSet ∪ {(raid, aid)} //update ≤hb due to ≤so

34 if kind == VOLATILE READ then
//let latest denote the most recent volatile write that syncs with action

36 let latest = (lid, ltid, lkind, lloc) s.t. lkind == VOLATILE WRITE ∧
(lid, aid) ∈ HBSet ∧ (� ∃ak : ak ∈ Aid ∧ (ak , aid) ∈ HBSet ∧ Path(ak) > Path(lid))

38 //Save the write action and value in Read. This is always a past write.
Read(aid) ← (lid, false,Write(lid))

40 else if kind == WRITE of value val then
// if this write action is in the impose set, check for well-formedness

42 if for some val′, (aid, val′) ∈ ImposeSet then
if val′ �= val then

44 backtrack // value written is not the imposed value, abandon the path
else //check for ≤hb consistency

46 if ∃r ∈ ActionSet : Read(r .aid) == (aid, true, ∗) ∧ r .aid ≤hb aid then
backtrack //not ≤hb consistent, abandon path

48 //else path is still well-formed, save values and continue
Write(aid) ← val

50 WriteSet(loc) ← WriteSet(loc) ∪ {(aid, val)}
else if kind == READ then

52 non−deterministically choose (w , val) ∈ WriteSet(loc) do
if w ∈ ActionSet|aid then // this is a past read

54 //check for ≤hb consistency
if (� ∃wa : wa ∈ ActionSet ∧ wa.kind == WRITE ∧ wa.loc == loc

56 ∧ w ≤hb wa.aid ∧ wa.aid ≤hb aid) //≤hb consistent past read
then

58 Read(aid) ← (w , false,Write(w))
else //≤hb inconsistent past read

60 continue with next write set entry
else // potential candidate for a future read

62 if (� ∃val′ : val′ ∈ Val ∧ (w , val′) ∈ ImposeSet ∧ val′ �= val) then
ImposeSet ← ImposeSet ∪ {(w , val)}

64 Read(aid) ← (w , true, val) //true indicates future write
else //illegal future read, was in impose set with inconsistent value

66 continue with next write set entry

Fig. 5. Continued from Fig. 4. The algorithm for enforcing JMM’s semantics by keeping
track of write sets and happens-before relation among the actions executed on this path.

– Path : Sequence of action ids that represent the current path of execution.
For a given action id aid , Path(aid) represents the index of that action id,
where Path(aid) is 1 for the id of the first executed action in Path .

– WriteSet : Loc → 2Aid×Val maps a memory location to a set of action ID,
value pairs, where each action is a WRITE .

– ActionSet : 2Action contains the actions that have been executed on the
current path so far.

– HBSet : 2Aid×Aid is a set of pairs of action IDs where
〈aid1 , aid2 〉 ∈ HBSet* if and only if both are in ActionSet and
aid1 ≤hb aid2 and where HBSet* is the transitive closure of the relation
represented by HBSet .

228 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

– ImposeSet : 2Aid×Val is a set of action ID, value pairs, where each action
is a WRITE. In a well-formed path, if a read action r obtains a value val
from write action w which may be executed in the future, w must occur at
some point in any well-formed path containing r , and it must actually write
val . Thus the ImposeSet maps write actions to values imposed on them by
past reads.

– Read : Aid → Aid × boolean ×Val maps READ and VOLATILE READ
action IDs to a triple containing the write action it sees, i.e. W (rid) and the
value it returns, W (V (rid)) for action id rid . The boolean value indicates
whether the W (rid) occured in the future on the current path.

– Write: Aid → Val maps WRITE and VOLATILE WRITE . action IDs to
the value written by the corresponding action, i.e. V (wid).

– ThreadLast : Tid → Aid maps a thread id to the latest action performed
by the thread and is used to maintain the program order, ≤po.

4 Properties of the JPR Algorithm

In this section, we discuss the properties of JPR and its basic algorithms. Most
of the proofs and some lemmas are omitted for brevity but can be found in
the companion technical report [12]. Executions are the abstraction used in the
JMM and defined in Def. 1 while paths are the totally ordered sequences of
actions generated by JPR. We say that path p corresponds to execution E =
〈A,P,≤po,≤so,W, V 〉 where A is the set of actions that occur in p, P is prog,
≤po is the union over all threads of ≤path restricted to each thread, and ≤so is
≤path restricted to the synchronization actions in p. If a non-volatile read r uses
WriteSet entry (w, val), then W (r) = w and V (w) = val. V (w) is well-defined
since all reads of the same write action in a path must get the same value.

For a fixed program, prog , usually considered to be understood, and let-
ting WS be the type of WriteSet , let JPRprog : WS →WS ∗ Paths be a func-
tion that takes a ws ∈WS and returns a new WS and a set of paths paths .
JPRprog is a function represents an invocation of JPF seen in Fig. 3, where
Paths is the set of paths searched by JPF. For ws ∈WS and path p, we

say that ws
JPR→ p if p ∈ JPRprog(ws).paths. We say that ws

JPR∗→ p if

∃i ≥ 0 : p ∈ (JPRi
prog(ws)).paths6. For convenience, we overload

JPR→ and
JPR∗→

and also say ws
JPR→ ws′ or ws

JPR∗→ ws′ with the obvious meanings.

Lemma 1 (HBSet). JPR accurately records ≤hb for any generated path p or
prefix of a path. It is invariant that for ∀ai, aj ∈ p : ai �= aj : ai ≤hb aj ≡
(ai, aj) ∈ HBSet ∨ (∃ak : (ai, ak) ∈ HBSet ∧ (ak, aj) ∈ HBSet).

Proposition 1 (Safety). Let wssc be the set of (w, v) pairs seen in the se-

quentially consistent executions of prog. If wssc
JPR∗→ p, then p corresponds to a

well-formed execution of prog.

6 If i = 0, p must be empty.

Java Memory Model-Aware Model Checking 229

Proposition 2 (Completeness). JPRprog(ws) generates a path correspond-
ing to every well-formed execution of prog satisfying (∀reads r ∈ A :
(W (r), V (W (r))) ∈ ws).

Lemma 2 (Monotonicity of JPRprog). JPRprog is monotonic, i.e.

– ws ⊆ ws′ and JPRprog(ws) = (ws1, paths) and JPRprog(ws′) =
(ws′1, paths

′) then ws1 ⊆ ws′1, and paths ⊆ paths′.
– ws ⊆ ws1.

Theorem 1 (Convergence). For finite state, terminating program prog, Sup-
pose that JPRprog is applied iteratively starting with ws0. The process will reach
a fixed point ws∗ in a finite number of steps and the resulting ws∗ will be the
least fixed point of JPRprog at least ws0.

Proof. Noting that the (finite) set of (ws, paths) pairs with subset inclusion form
a complete lattice, the result from the Knaster-Tarski fixed point theorem and
lemma 2. 	

Theorem 2 (Overapproximation). Let wssc be the smallest WriteSet con-
taining all of the values seen in the set of sequentially consistent executions
of finite state, terminating program prog and wssc∗ be the least fixed point of
JPRprog at least wssc. Let JPRprog(wssc∗).paths be the set of paths generated
by wssc. Let JmmLegalprog be the set of legal paths. Then JmmLegalprog ⊆
JPRprog(wssc∗).paths.

The above results show that the set of paths generated by JPRprog is an overap-
proximation of the JMM. As a practical matter, this means that JPR is sound:
if we show that a data race is benign by tesing with JPR then we can conclude
that a precise tool (if one existed) would also find it benign. On the other hand,
the overapproximation allows false alarms. Below, we discuss the source of the
imprecision in JPR.

Initially, x = y = z = 0

Thread 1 Thread 2 Thread 3 Thread 4
A1: r1 = x B1: r2 = y C1: z = 1 D1: r3 = z
A2: y = r1 B2: x = r2 D2: x = r3

Fig. 6

In the example shown in
Fig. 6, JPR generates a path
with result r1 == r2 == 1,
and r3 ==0. There is a
valid path where action D2
writes 1, A1 reads D2, A2
writes 1, B1 reads A2, B2
writes 1. Then, on the next
iteration, A1 reads B2 (and
imposes 1), B1 reads A2, and then B2 successfully writes 1 as imposed by A1,
while D1 reads the initialization action. However, this is not legal according to
the JMM. In order for r1 == r2 == 1 to appear in a JMM-legal execution,
D2 would need to be a committed action with V (D2) == 1. But then r3 must
already be 1, so the execution is not legal. The value 1 is considered to come out-
of-thin-air in any execution where r3 == 0. Note that this is the same program

230 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;
y = r1; if(r2 < 2)

x = 3;
x = 2;

(a) r1 == r2 == 2 is allowed
by approach scope but forbid-
den by approach occurrence.

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;
y = r1; if(r2 == 2)

x = 1;
else

x = 1;

(b) r1 == r2 == 1 is allowed by ap-
proach occurrence but forbidden by
scope.

Fig. 7. ActionID examples

as Fig. 2 with the addition of Threads 3 and 4. In Fig. 2, JPR does not gener-
ate paths with out-of-thin-air values. Thus JPR may generate illegal paths with
out-of-thin-air values only when the out-of-thin-air values actually do appear in
some generated path. It does not generate completely arbitrary out-of-thin air
values. JPR could be made more precise by tracking impose requirements across
iterations and dependent actions at the cost of significantly increased time and
space overhead.

5 Experience

One of the difficulties encountered when implementing JPR was the lack of
a well-defined connection between the notion of executions used to define the
JMM and actual Java programs. This manifested itself in the representation of
the actionID. Within a single execution, the basic requirement of the actionIDs
is uniqueness. However, both the JMM definition of legal executions (Def. 3) and
JPR require that the identity of actions be compared across different executions
and paths, i.e. we must be able to determine if, say, a read of x in one execution
or path is the same action as a read of x in another by comparing their IDs.
This becomes problematic for programs with branches.

We considered four approaches to identify actions. Let t be the thread, k be
the kind, v be the variable, and val be the value read or written.

Occurrence. (k, t, v, n). n counts occurrences of k-actions by thread t on v.

Scope. (t, S, n). S refers to the lexical scope, repeated invocations of the same
instruction, such as in a loop are differentiated by a sequence number n.

Value. (k, t, v, val). Actions with the same k,v, and t are distinguished by the
value. This is the approach used in [7] is not adequate because actions are
no longer uniquely identified if a thread writes the same value to a variable
more than once.

Occurence-Val. (k, t, v, val, n). Adds an occurence countn to valuewith the
consequence that for a write w, V (w) always maps to the same value, making
legality rules 4 and 7 in Def. 3 redundant and inoperative, respectively.

Java Memory Model-Aware Model Checking 231

#thr
scope occurrence occurrence-val JPF

iter T states M iter T states M iter T states M T state M

tc1 2 3 1.4 164 15 3 1.4 164 15 3 1.5 173 15 0.8 44 15

tc3 3 3 4.1 2315 25 3 4.1 2315 24 3 4.7 2582 25 0.9 349 15

tc5* 4 3 11.2 6326 26 3 12.3 6326 26 3 14.8 6877 26 1.2 1169 15

tc7 2 4 2.2 496 25 4 2.2 496 25 4 2.3 557 26 0.8 64 15

tc9 3 3 3.0 1737 15 3 3.0 1737 15 3 3.3 1929 15 1.0 279 15

tc9a 4 3 2.2 880 15 3 2.2 880 15 3 2.7 914 15 0.9 261 15

tc11 2 4 3.1 1147 26 4 3.2 1147 26 4 4.0 1452 25 0.9 95 15

tc13 2 3 1.2 32 15 3 1.2 32 15 3 1.2 32 15 0.8 24 15

tc17 2 3 1.9 565 15 3 1.9 565 15 3 1.9 641 15 0.8 72 15

tc19 3 3 5.2 2205 25 3 5.6 2205 25 3 5.5 2502 25 0.9 381 15

hash 2 3 1.5 237 15 3 1.5 237 15 3 1.5 237 15 0.7 60 15

hash 4 3 38.3 12442 33 3 38.2 12442 34 3 38.6 12442 34 1.7 3720 15

hash2 2 3 1.3 23 15 3 1.3 23 15 3 1.3 23 15 0.8 98 15

isprime 2 3 2.0 308 15 3 2.1 308 15 3 2.2 308 23 0.9 118 15

dcl 2 3 1.1 22 15 3 1.2 22 15 3 1.2 22 15 0.9 243 15

peterson 2 3 1.5 83 15 3 1.5 83 15 3 1.5 83 15 1.0 194 15

dekker 2 3 1.3 24 15 3 1.2 24 15 3 1.2 24 15 0.9 203 15

Fig. 8. Experimental results comparing the performance of JPR using ActionID ap-
proaches scope, occurrence, and occurrence-val, respectively. Column T represents
the total time in seconds; column M represents the maximum memory consumption in
megabytes. * means that JPR generates paths not allowed by JMM.

The different approaches yield different sets of legal executions. Consider Figs.
7b and 7a. Approach occurrence allows the outcome in Figs. 7b because both
assignments to x are considered to be the same action; if committed, the as-
signments could be included in the justifying executions. However, it forbids the
outcome in Fig. 7a since the assignment x = 2 in two different executions may
have different actionIDs depending on whether or not the branch was taken.
Approach scope allows the indicated outcome in Fig. 7a because regardless of
the execution order, x = 2 is within the same lexical scope and can be com-
mitted and verified. It does not allow the outcome in Fig. 7b because the two
x = 1 actions are within different scopes and if one is committed, it is impossi-
ble for the action to be included in subsequent verification executions. We have
implemented scope, occurrence, and occurrence-val in JPR and compared
these approaches for several examples. A thorough analysis of which ActionID
approach would be more appropriate for JMM, however, is outside the scope of
this paper; we limit our contribution to calling the issue to the research commu-
nity’s attention and implementing the three approaches in JPR.

We ran JPR on three groups of test programs. Representative results are listed
in Fig. 8. The columns contain the number of threads, and for each action ID
approach described above, the number of iterations of JPF required to converge,
the total time, the number of states visited in the final iteration, and the max-
imum memory consumed, respectively. The final columns indicate the resource

232 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

public final class String{
2 private final char value []; //final fields set in constructor

private final int offset , count;
4 private int hash; //not final, default value is 0

...
6 public int hashCode(){

int h = hash;
8 int len = count;

if (h == 0&&len > 0){
10 int off = offset ;

char val [] = value;
12 for(int i = 0; i < len; i++){h = 31∗h + val[off++];}

hash = h;
14 }

h = hash; //redundant read
16 return h;

}
18 }

Fig. 9. The data races are benign line 15 is removed from the program. Otherwise, the
races are not benign

usage for standard JPF for comparison purposes. All testing was performed on a
2.27 GHz Intel(R) Core(TM) i5 CPU, 4 GB main memory, with 64-bit Windows
7 operating system, JDK 1.6, and JPF version 6.

The first group, labeled tc1 through tc20 are the test cases derived from the
JMM Causality Test Cases [14], which were designed to illustrate the properties
of the JMM (even numbered test cases are omitted for brevity, correctly synchro-
nized test cases are not interesting). For these, we output the paths generated by
JPR and compared them with the legal executions according to JMM. All legal
executions were generated with tc5 and tc10 generating forbidden executions.
tc5 is the example in Fig. 6 and discussed in section 4. tc10 is similar.

The second group contains more realistic examples. In hash , the hashCode
method (Fig. 9 with line 15 deleted) contains a racy lazy initialization of its hash
field; the read of hash (Line 7) and the write of hash (Line 13) may form a data
race. This race is benign because in all legal executions, even the sequentially
inconsistent ones, a call to the hashCode method will always return the correct
hash code value. The assertions applied in both the 2-thread version and 4-thread
version of hash confirm this finding.

hash2 on the other hand, calls a slightly different version of hashCode (Fig.
9) where the returned value is reread from hash (Line 15). This is correct under
sequential consistency, but under the JMM, the race is not benign; a thread
calling hashCode could get the initial value 0 instead of the correct hash code.
The assertions failed in this case.

In isprime [20, §2.6], data races occur when multiple threads read and write
elements of a shared array without synchronization. Because accesses to array
elements in Java do not have volatile semantics, these accesses are racy and reads
may see stale values. In this program, reading a stale value affects performance
but not overall correctness; it always correctly identifies the prime numbers. The
assertion succeeded in this test case.

Java Memory Model-Aware Model Checking 233

class Foo{
2 private Helper helper = null;

public Helper getHelper() {
4 if (helper == null){

//read helper without synchronization, if not null, return value imme-
diately.

6 synchronized(this){ //if helper was null, acquire monitor and read it again
if (helper == null){ //if it is still null

8 helper = new Helper(); //instantiate a Helper object
}

10 } //release the monitor lock by leaving synchronized block
}

12 return helper;
}

14 }

Fig. 10. Double checked locking

The third group contains the well-known synchronization problems. dcl is
the infamous double-checked locking (DCL) idiom [2] which attempts to reduce
locking overhead by lazy initialization of an object, but fails to safely publish
the object, allowing other threads to see a partially constructed object. In the
test case, two threads call the getHelper() method of Foo shown in Fig. 10.

peterson and dekker are implementations of the classic mutual exclusion algo-
rithms without using volatiles. They guarantee mutual exclusion under sequen-
tial consistency, but fail in relaxed memory models such as JMM. Assertions
inserted to check non-interference in the critical sections in peterson and dekker
failed as expected. The paths in which dcl , peterson , and dekker had assertion
violations are legal according to JMM and therefore were detected by JPR but
are not exhibited by sequentially consistent programs. Standard JPF cannot
detect these problems.

6 Related Work

Ferrara [9] used a fixed point formulation to interpret the happens-before mem-
ory model. This work was done in the context of abstract interpretation, but was
not implemented into a real tool. Botincan, et. al. [3] showed that the causality
requirements of the JMM are undecidable.

Work has been done using various techniques to verify programs under re-
laxed hardware and programming language memory models. JUMBLE [10] is
a dynamic analysis system that implements an adversarial memory by keeping
track of a history of writes to racy variables. When a racy variable is read, the
adversarial memory returns some past value that JMM allows and is likely to
crash the program. Unlike JPR, this tool does not consider nonracy variables and
cannot simulate reading from a future write, hence can only provide an under-
approximation of JMM. RELAXER [6], a two-phase analysis tool, employs dy-
namic analysis in its first phase to detect races on SC executions and predicts
potential happen-before cycles if run under one of TSO, PSO, or PSLO. In the
second phase, it runs the tested program under the relaxed memory model with
a controlled scheduler that realizes the one with happen-before cycle to check

234 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

for program violations. JPR can be extended with a similar heuristic to prefer
exploring paths that may end up with a happen-before cycles. We also mention
that we have extended JPF to implement the TSO and PSO memory models.
While not of significant practical interest, these could be implemented without
requiring iteration, thus giving an illustration of the significant complexity of
the JMM.

Burckhardt, Alur and Martin [4] applied a SAT-based bounded verification
method to check concurrent data types under relaxed memory ordering models
employed by multiprocessors while Burckhardt and Musuvathi [5] described a
monitor algorithm that could be implemented by model checkers to verify re-
laxed memory models due to store buffers. The MemSAT system [21] system
accepts a test program containing assertions and an axiomatic specification of
a memory model and then uses a SAT solver to find a trace that satisfies the
assertions and axioms, if there is one. Both the original JMM specification [11],
and the modified version proposed by [1] were found to have surprising results
when applied to the JMM Causality test cases. MemSAT is intended to be used
with small “litmus test” programs to debug memory model specifications. In
contrast, JPR is intended to reason about programs. It explores all possible
paths according to the JMM and reports any assertion (program constrain vi-
olation) violations, which can help to decide whether the races are benign or
not. JPR can be used with programs containing object instantiation, loops and
other features that are not well supported in MemSAT. The authors of Java
memory model developed a simple simulator for the JMM [18] which appears to
be geared more towards understanding the memory model than serving as a tool
for program analysis. De et al. [8] developed OpMM which uses a model checker
similar to Java PathFinder for state exploration. In contrast to JPR, OpMM is
an underapproximation of the JMM where read actions can see past writes that
occur before it in a sequentially consistent execution. As an underapproximation,
OpMM could be used for bug detection of racy programs, but not verification.

7 Conclusion

We have described JPR, an extension of JPF that generates an overapproxima-
tion of the JMM. With this extension, JPF can also be applied to the verification
of Java programs with data races. Our approach runs the model checking algo-
rithm in an iterative way to compute a least fixed point of a monotone function
that can generate sequentially inconsistent executions.

Although, like any tool based on model checking, state-space explosion is a
potential problem, we were able to successfully use the tool to show that data
races in some examples are benign. We also demonstrated assertion violations
in some programs, which are not detectable without awareness of the JMM.

Finally, we have shown that an operational semantics of JMM requires more
precise definition of the action ID concept. We have proposed, implemented,
and empirically compared three approaches. Although, drawing a conclusion on
which of these approaches would be the most appropriate one is outside the
scope of this paper, we hope to start a fruitful discussion on the topic.

Java Memory Model-Aware Model Checking 235

References

1. Aspinall, D., Ševč́ık, J.: Formalising Java’s Data Race Free Guarantee. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22–37. Springer,
Heidelberg (2007)

2. Bacon, D., Bloch, J., Bogda, J., Click, C., Haahr, P., Lea, D., May, T., Maessen, J.,
Manson, J., Mitchell, J.D., Nilsen, K., Pugh, B., Sirer, E.G.: The “double-checked
locking is broken” declaration,
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

3. Botinčan, M., Glavan, P., Runje, D.: Verification of Causality Requirements in Java
Memory Model Is Undecidable. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6068, pp. 62–67. Springer, Heidel-
berg (2010)

4. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded Model Checking of Concurrent
Data Types on Relaxed Memory Models: A Case Study. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

5. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory
Models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

6. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA (2011)

7. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java Memory Model: Operationally,
Denotationally, Axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 331–346. Springer, Heidelberg (2007)

8. De, A., Roychoudhury, A., D’Souza, D.: Java Memory Model aware software vali-
dation. In: PASTE (2008)

9. Ferrara, P.: Static analysis via abstract interpretation of the happens-before mem-
ory model. In: Proceedings of the 2nd International Conference on Tests and Proofs
(2008)

10. Flanagan, C., Freund, S.N.: Adversarial memory for detecting destructive races.
In: PLDI, pp. 244–254 (2010)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, 3rd edn.
Addison-Wesley (2005)

12. Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java memory model-aware model check-
ing. Tech. Rep. REP-2011-516, Department of Computer and Information Science,
University of Florida (2011), http://www.cise.ufl.edu/tr/REP-2011-516/

13. Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java Path Relaxer: Extending JPF for
JMM-aware model checking. In: JPF Workshop 2011 (2011)

14. JMM causality test cases,
http://www.cs.umd.edu/ pugh/java/memoryModel/

unifiedProposal/testcases.html

15. Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf

16. Java Racefinder,
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-racefinder

17. Kim, K., Yavuz-Kahveci, T., Sanders, B.A.: JRF-E: Using model checking to give
advice on eliminating memory model-related bugs. In: ASE (2010)

18. Manson, J., Pugh, W.: The Java Memory Model simulator. In: Workshop on Formal
Techniques for Java-like Programs (2002)

19. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005 (2005)

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cise.ufl.edu/tr/REP-2011-516/
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-racefinder

236 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

20. Oracle thread analyzer’s user guide,
http://download.oracle.com/docs/cd/E18659_01/html/821-2124/gecqt.html

21. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: PLDI (2010)

22. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2) (April 2003)

23. Ševč́ık, J., Aspinall, D.: On Validity of Program Transformations in the Java Mem-
ory Model. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27–51. Springer,
Heidelberg (2008)

http://download.oracle.com/docs/cd/E18659_01/html/821-2124/gecqt.html

Compositional Termination Proofs

for Multi-threaded Programs

Corneliu Popeea and Andrey Rybalchenko

Technische Universität München

Abstract. Automated verification of multi-threaded programs is diffi-
cult. Direct treatment of all possible thread interleavings by reasoning
about the program globally is a prohibitively expensive task, even for
small programs. Rely-guarantee reasoning is a promising technique to
address this challenge by reducing the verification problem to reasoning
about each thread individually with the help of assertions about other
threads. In this paper, we propose a proof rule that uses rely-guarantee
reasoning for compositional verification of termination properties. The
crux of our proof rule lies in its compositionality wrt. the thread structure
of the program and wrt. the applied termination arguments – transition
invariants. We present a method for automating the proof rule using an
abstraction refinement procedure that is based on solving recursion-free
Horn clauses. To deal with termination, we extend an existing Horn-
clause solver with the capability to handle well-foundedness constraints.
Finally, we present an experimental evaluation of our algorithm on a set
of micro-benchmarks.

1 Introduction

Proving termination of various components of systems software is critical for
ensuring the responsiveness of the entire system. Modern systems often con-
tain multiple execution threads, yet most of the recent advances in automated
termination proving for systems software focused on sequential programs, see
e.g. [6,14,20]. Of course, in principle an existing termination prover for sequential
programs can be applied to deal with non-cooperating threads by explicitly con-
sidering all possible thread interleavings, but such an approach is prohibitively
expensive even for smallest programs.

Existing compositional methods for proving safety properties exploit thread
structure to facilitate scalable reasoning and can deal with intricate thread in-
teraction, see e.g. [2, 11, 12]. Unfortunately, these methods are not directly ap-
plicable for proving termination, since they rely on a finite-state abstraction for
approximating the set of reachable program states [19].

Rely-guarantee reasoning [13] is a promising basis for the development of
termination provers for multi-threaded programs. The method proposed in [7]
relies on environment transitions that keep track of the interaction of a thread
with its environment to prove termination properties of individual threads in
a multi-threaded program. To ensure scalability, the underlying proof rule is

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 237–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 C. Popeea and A. Rybalchenko

thread-modular and hence incomplete, i.e., it considers a restricted class of envi-
ronment transitions that refer only to global variables. One practical consequence
of such an incompleteness is that termination proofs of programs that use syn-
chronization primitives like mutexes are out of scope. This limitation can be
eliminated by gradually exposing additional local state when necessary [3]. Pro-
viding ranking functions for each thread that are preserved under environment
transitions yields a complete method for proving termination that is composi-
tional wrt. thread structure.

In this paper, we explore a combination of two dimensions of compositionality
for proving termination of multi-threaded programs.We present a complete proof
rule that is compositional wrt. the thread structure of the program and wrt. the
termination argument that is used for each of the threads. Following the rely-
guarantee reasoning approach, we use environment transitions to keep track of
the effect of the threads from the environment of a given thread. As termination
argument we rely on transition invariants and disjunctive well-foundedness [19],
whose discovery can be efficiently automated in compositional fashion using ab-
stract interpretation. The completeness of our proof rule is achieved by allowing
the environment transitions to refer to both global and local variables of all
threads. We also provide a specialized version of the proof rule for checking
thread termination, i.e., termination of individual threads [7].

We demonstrate the potential for automation of our proof rule by transforming
the recursive equations that represent the proof rule into a function whose least
fixpoint characterizes the strongest proof of termination. We propose a transition
predicate abstraction and refinement-based algorithm to obtain a sufficiently
precise over-approximation of the least fixpoint and thus prove termination as
follows. Since the fixpoint computation keeps track of both transition invariants
and environment transitions, we obtain counterexamples that have a Horn-clause
structure similar to a recent approach [11], yet generalizing from reachability to
binary reachability. By analyzing the least solution to the counterexample we
determine a well-founded over-approximation of discovered lasso-shaped thread
interleavings. Given this over-approximation, we perform the actual transition
predicate abstraction refinement by computing interpolating solutions to the
Horn clauses. Technically, we extend the Horn clause solver presented in [11]
with the treatment of well-foundedness constraints.

In summary, our paper makes the following contributions: i) a compositional
proof rule that is complete for checking termination and thread termination of
multi-threaded programs, ii) a method for automating the proof rule by using
a corresponding predicate abstraction and refinement scheme, and iii) the im-
plementation of our algorithm together with the evaluation of its feasibility on
micro-benchmarks.

2 Preliminaries

Programs A multi-threaded program P consists of N ≥ 1 threads. Let 1..N be
the set {1, . . . , N} . We assume that the program variables V = (VG, V1, . . . , VN)

Compositional Termination Proofs for Multi-threaded Programs 239

are partitioned into global variables VG, which are shared by all threads, and
local variables V1, . . . , VN , which are only accessible by the respective threads.

The set of global states G consists of the valuations of global variables, and the
sets of local states L1, . . . , LN consist of the valuations of the local variables of
respective threads. A program state is a valuation of the global variables and the
local variables of all threads. We represent sets of program states using assertions
over program variables. Binary relations between sets of program states are
represented using assertions over unprimed and primed variables. Let ρ=i stand
for Vi = V ′

i . Let |= denote the satisfaction relation between (pairs) of states and
assertions over program variables (and their primed versions). We use → as the
logical implication operator as well as the logical consequence relation, and rely
on the context for disambiguation.

The set of initial program states is denoted by ϕinit . For each thread i ∈ 1..N
we have a finite set of transitions Ri . Each transition is a binary relation between
sets of program states. Furthermore, each ρ ∈ Ri can only change the values of
the global variables and the local variables of the thread i (local variables of
other threads do not change), i.e., we have ρ→ ρ=i . We write ρi for the union of
the transitions of the thread i , i.e., ρi =

∨
Ri . The transition relation of the

program is ρP = ρ1 ∨ · · · ∨ ρN .

Computations. A computation of P is a sequence of program states s1, s2, . . .
such that s1 is an initial state, i.e., s1 |= ϕinit , and each pair of consecutive
states si and si+1 in the sequence is connected by a transition ρ of some program
thread, i.e., (si, si+1) |= ρ . A path is a sequence of transitions.

A program state is reachable if it appears in some computation. Let ϕreach

denote the set of all reachable states. The program is terminating if it does not
have any infinite computations. A thread i is terminating, as defined in [7], if
there is no program computation that contains infinitely many transitions of i .

Auxiliary definitions. A binary relation ϕ is well-founded if it does not admit
any infinite sequences. Let ϕ+ denote the transitive closure of ϕ . A transition
invariant T [19] is binary relation over program states that contains the transi-
tive closure of the program transition relation restricted to reachable states, i.e.,
ϕreach ∧ ρ+P → T . Let ϕ[z/w] denote a substitution that replaces w by z in ϕ .
We assume that a sequence of substitutions is evaluated from left to right. Let ◦
be the relational composition function: ϕ ◦ ψ = ∃V ′′ : ϕ[V ′′/V ′]∧ ψ[V ′′/V] . A
path relation is a relational composition of transition relations along the path,
i.e., for π = ρ1 · · · ρn we have ρπ = ρ1 ◦ . . . ◦ ρn . A path π is feasible if its path
relation is not empty, i.e., ∃V ∃V ′ : ρπ . Given a binary relation ϕ, we define an
image function Img(ϕ) = ∃V ′′ : ϕ[V ′′/V][V/V ′] .

A Horn clause b1(w1)∧· · ·∧bn(wn)→ b(w) consists of relation symbols b1,. . . ,
bn, b, and vectors of variables w1,. . . , wn, w. We say that a relation symbol b
depends on the relation symbols {b1, . . . , bn} . We distinguish interpreted theory
symbols that we use to write assertions denoting sets (of pairs) of program states,
e.g., the equality = or the inequality ≤. A set of Horn clauses is recursion-free if it
induces a well-founded dependency relation on non-interpreted relation symbols.

240 C. Popeea and A. Rybalchenko

For assertions T1, . . . , TN , E1, . . . , EN over V and V ′ ,
and well-founded relations WF1, . . . ,WFm

C1: ϕinit ∧ (ρi ∨ Ei ∧ ρ=i) → Ti for i ∈ 1..N
C2: Img(Ti) ∧ (ρi ∨Ei ∧ ρ=i) → Ti for i ∈ 1..N
C3: Ti ◦ (ρi ∨Ei ∧ ρ=i) → Ti for i ∈ 1..N
C4: (

∨
i∈1..N\{j} ϕinit ∧ ρi) → Ej for j ∈ 1..N

C5: (
∨

i∈1..N\{j} Img(Ti) ∧ ρi) → Ej for j ∈ 1..N
C6: T1 ∧ · · · ∧ TN → WF 1 ∨ · · · ∨WFm

multi-threaded program P terminates

Fig. 1. Proof rule ProgTerm for compositional proving of program termination

3 Proof Rules

In this section we present compositional rules for proving termination of multi-
threaded programs and their threads.

3.1 Compositional Termination of Multi-threaded Programs

In order to reason about termination properties of multi-threaded programs,
we propose a proof rule with two auxiliary assertions per thread denoted as
Ti and Ei. T1, . . . , TN stand for transition invariants for respective threads.
E1, . . . , EN represent environment transitions considered during the compu-
tation of transition invariants.

See Figure 1 for the proof rule ProgTerm. The first five premises ensure that
Ti is a transition invariant of a program P as follows. The premises C1 and C2 re-
quire that Ti over-approximates the transition relation of the thread i restricted
to initial states and to arbitrary reachable states. The same two premises require
that Ti also over-approximates environment transitions Ei ∧ ρ=i . The conjunc-
tion with ρ=i ensures that local variables of thread i do not change when an
environment transition is applied. In the premise C3, extending a relation from
Ti with either a local or an environment transition results in a relation that is
also present in Ti. Two premises are used to record environment transitions for
thread j that are induced by transitions executed by thread i either when start-
ing from initial states (premise C4) or from arbitrary reachable states (premise
C5). While the first five premises ensure the soundness of the transition invari-
ants, the last premise C6 requires the existence of a disjunctive well-founded
relation, e.g., WF 1 ∨ · · · ∨WFm , as a witness for program termination.

Example 1. See Figure 2 for Choice, a multi-threaded version of the exam-
ple with the same name from [19]. We use a parallel assignment instruction
(x,y)=... to simultaneously update both variables x and y . Our verification
method represents the program using assertions. The tuple V = (x, y, pc1, pc2)

Compositional Termination Proofs for Multi-threaded Programs 241

int x,y;

// Thread T1

a0: while (x>0 && y>0) {

a1: (x,y) = (x-1,x);

a2: }

// Thread T2

b0: while (x>0 && y>0) {

b1: (x,y) = (y-2,x+1);

b2: }

ϕinit = (pc1 = a0 ∧ pc2 = b0)

ρ1 = (x > 0 ∧ y > 0 ∧ x′ = x− 1 ∧ y′ = x ∧ pc1 = a0 ∧ pc1
′ = a0 ∧ ρ=2)

ρ2 = (x > 0 ∧ y > 0 ∧ x′ = y− 2 ∧ y′ = x+ 1 ∧ pc2 = b0 ∧ pc2
′ = b0 ∧ ρ=1)

Fig. 2. Example program T1 || T2 for which the value of either of the following expres-
sions decreases: x, y or x+ y. We use ρ=1 = (pc1 = pc1

′) and ρ=2 = (pc2 = pc2
′)

includes pc1 and pc2 , the program counter variables of the two threads. ϕinit de-
scribes the initial states of the program, while ρ1 and ρ2 represent the transition
relations of the two threads (simplified for clarity of illustration).

We show that Choice terminates by applying ProgTerm and considering
the following auxiliary assertions.

T1 = T2 = (x > 0 ∧ y > 0 ∧ x′ ≤ x− 1 ∧ y′ ≤ x+ 1) ∨
(x > 0 ∧ y > 0 ∧ x′ ≤ y− 2 ∧ y′ ≤ y− 1)

E1 = (x > 0 ∧ y > 0 ∧ x′ ≤ y− 2 ∧ y′ ≤ x+ 1)

E2 = (x > 0 ∧ y > 0 ∧ x′ ≤ x− 1 ∧ y′ ≤ x)

The assertion E1 approximates the effect of applying the transition from the
second thread, while E2 approximates the effect of applying the transition from
the first thread. There exists a disjunctively well-founded relation, (x > x′ ∧ x ≥
0 ∨ y > y′ ∧ y ≥ 0) , that approximates the transition invariants T1 and T2 .

This example also illustrates a limitation of the proof rule from [7], which
requires that the environment transitions must be transitive. Our non-transitive
environment transitions can be weakened to their transitive closure, but then
the transitive closure E+

1 is too weak to prove termination since the constraints
x′ ≤ y− 2 and y′ ≤ x+ 1 will be missing.

3.2 Compositional Thread Termination

For the cases where the program termination is a property too strong to hold
(e.g., dispatch routines of event-based systems continuously accept incoming
events), it is still the case that termination of critical threads is important [7].
See Figure 3 for a proof rule that relaxes the conditions from ProgTerm but still
ensures the thread-termination property for some thread from a given program.

The rule ThreadTerm relies on assertions Tk and Ek that satisfy the first
five premises from the rule ProgTerm. For a thread k , an additional assertion
t̂k is used to keep track of a subset of the transition invariant relation Tk . Unlike

242 C. Popeea and A. Rybalchenko

For assertions T1, . . . , TN , E1, . . . , EN , t̂k over V and V ′

that satisfy C1, C2, C3, C4, C5 and well-founded relations WF 1, . . . ,WFm

C1’: ϕinit ∧ ρk → t̂k

C2’: Img(Tk) ∧ ρk → t̂k

C3’: t̂k ◦ (ρk ∨Ek ∧ ρ=k) → t̂k

C6’: t̂k → WF1 ∨ · · · ∨WFm

thread k terminates

Fig. 3. Proof rule ThreadTerm for compositional proving of thread termination

the program-termination premises C1 and C2, the thread-termination premises
C1’ and C2’ require that transitions captured by t̂k always start with a local
transition from thread k . With this restriction in place, the premise C3’ is
similar to C3: it extends t̂k with either a local transition ρk or an environment
transition. The assertion t̂k keeps track of thread interleavings that may lead to
computations of arbitrary length, and its disjunctive well-foundedness is required
for thread-termination of thread k .

4 Proof Rule Automation

Next, we demonstrate the potential for automation of the proof rule ProgTerm.
(Automation of the proof rule ThreadTerm is similar.) We formulate an al-
gorithm for proving program termination that consists of three steps. The first
step uses abstraction functions to compute transition invariants for each thread.
If this process discovers abstract transitions – components of transition invari-
ants – whose intersection is not disjunctively well-founded, then the second step
generates Horn clauses such that their satisfiability implies a disjunctively well-
founded refined counterpart exists. The last step of the algorithm invokes a
solving procedure for the Horn clauses and uses the obtained solution to refine
the abstraction functions.

The entry point of our algorithm initializes the transition abstraction func-
tions using empty sets of predicates. Then, it repeats a loop that invokes tran-
sition invariant computation that is followed by an abstraction refinement step.

Procedure AbstTransEnv. Figure 4 shows the reachability procedure that
computes abstract transitions Ti and abstract environment transitions Ei fol-
lowing the conditions from the ProgTerm proof rule, where Ti and Ei corre-
spond to auxiliary assertions Ti and Ei, respectively. These sets are initialized
corresponding with the rules C1 and C4 in lines 1–4. The auxiliary procedure
AddIfNew implements a fixpoint check. It takes as input a newly computed
binary relation τ and a container set C . It checks if the binary relation con-
tains pairs of states that have not been reached and recorded in the container.
If this check succeeds, the new binary relation is added to the container and the

Compositional Termination Proofs for Multi-threaded Programs 243

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21

global variables
P - program with N threads
P̈i, α̈i, P̈i	j , α̈i	j - transition predicates and transition abstraction functions
Ti, Ei - abstract (environment) transitions of thread i
Parent ,ParentTId - parent relations

procedure AbstTransEnv

begin
for each i ∈ 1..N and ρ ∈ Ri do

AddIfNew(α̈i(ϕinit ∧ ρ),Ti, (ϕinit , ρ), i) (∗ C1 ∗)
for each j ∈ 1..N \ {i} do

AddIfNew(α̈i	j(ϕinit ∧ ρ),Ej , (ϕinit , ρ), i) (∗ C4 ∗)
repeat

finished := true
for each i ∈ 1..N and τ ∈ Ti do

for each ρ ∈ Ri ∪ Ei do
ϕ := if ρ ∈ Ri then true else ρ=i
AddIfNew(α̈i(Img(τ) ∧ ρ ∧ ϕ), Ti, (Img(τ), ρ), i) (∗ C2 ∗)
AddIfNew(α̈i(τ ◦ (ρ ∧ ϕ)), Ti, (τ, ρ), i) (∗ C3 ∗)

for each ρ ∈ Ri and j ∈ 1..N \ {i} do
τ ′ := α̈i	j(Img(τ) ∧ ρ)
AddIfNew(τ ′, Ej , (Img(τ), ρ), i) (∗ C5 ∗)
AddIfNew(α̈j(ϕinit ∧ τ ′ ∧ ρ=j), Tj , (ϕinit , τ

′), j) (∗ C1 ∗)
until finished

end

procedure AddIfNew

input
τ - binary relation
C - container set, either Ti or Ei for some i ∈ 1..N
P - parent pair
j - thread identifier from 1..N

begin
if ¬(∃ρ ∈ C : τ → ρ) then

C := {τ} ∪ C
Parent(τ) := P
ParentTId(τ) := j
finished := false

end

Fig. 4. Procedure AbstTransEnv computes abstract transitions Ti and Ei. It uses a
local auxiliary procedure AddIfNew

Parent function is updated to keep track of the child-parent relation between
transitions.

The second part of the procedure (see lines 5–16) ensures that the other
conditions from the proof rule are satisfied. It computes an abstract reachable
state using the Img(τ) operator and then applies the abstract transition ρ from
this abstract state. The result is extended with a transition local to thread i
or from its environment in line 10. Next, one-step environment transitions are
generated and added both to Ej in line 14 and Tj in line 15. Whenever an

244 C. Popeea and A. Rybalchenko

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

procedure TermRefine

input
τ1, . . . , τN - abstract error tuple

begin
HC :=MkHC(τ1) ∪ · · · ∪MkHC(τN)
UnkRels := {“ρ”(V, V ′) | i ∈ 1..N ∧ ρ ∈ Ti ∪ Ei})
UnkRelsWF := {“τ1”(V, V ′), . . . , “τN”(V, V ′)}
Sol := SolveHC

WF (HC,UnkRelsWF,UnkRels))
for each i ∈ 1..N and ρ ∈ Ti do

P̈i := PredsOf (Sol(“ρ”(V, V ′))) ∪ P̈i

for each j ∈ 1..N and ρ ∈ Ej do
i := ParentTId(ρ)
P̈i	j := PredsOf (Sol(“ρ”(V, V ′))) ∪ P̈i	j

end

procedure SolveHC
WF

input
HC - recursion-free Horn clauses
UnkRelsWF = {“τ1”(V, V ′), . . . , “τN”(V, V ′)} ,
UnkRels - unknown relations

output
Sol - solution for HC such that UnkRelsWF are well-founded relations

begin
Sol

μ := SolveHC
μ(HC,UnkRelsWF)

ρ := Sol
μ(“τ1”(V, V

′)) ∧ · · · ∧ Sol
μ(“τN”(V, V

′))
if ∃WF : well -founded(WF) ∧ (ρ → WF) then

HCWF := {“τ1”(V, V ′) ∧ · · · ∧ “τN”(V, V ′)→ WF} ∪ HC
Sol := SolveHC(HCWF ,UnkRels)

else
throw Unsatisfiable

end

Fig. 5. Procedure TermRefine takes as argument an abstract error tuple. The quo-
tation function “ · ” creates a relation symbol from a given abstract (environment)
transition. The function PredsOf extracts atomic predicates from the solutions to the
set of Horn clauses HC , while MkHC generates Horn clauses

iteration of the repeat loop finishes with the finished flag set to true, the proof
rules are saturated and the procedure returns a fixpoint for Ti and Ei .

Procedure TermRefine. See Figure 5 for the procedure that takes as input a
tuple of abstract transitions and computes, if possible, predicates that witness
the well-foundedness of these transitions. The procedure generates in line 1 a
set of Horn clauses corresponding to the abstract transitions. It collects in the
set UnkRels unknown relations corresponding to each abstract (environment)
transition. The set UnkRelsWF is a subset of UnkRels that contains unknown
relations with an additional requirement: the conjunction of their solutions must
be a well-founded relation.

Compositional Termination Proofs for Multi-threaded Programs 245

After invoking the solving procedure at line 4, the solution Sol is used to
update the transition abstraction functions as follows. Atomic predicates from
Sol(“ρ”(V, V ′)) are added to the set of predicates P̈i corresponding to the parent
thread of ρ . Similarly, Sol(“ρ”(V, V ′)) is used to update P̈i�j if ρ is an environ-
ment transition that was constructed in thread i and applied in thread j . These
new predicates guarantee that the same counterexample will not be encountered
during the next iterations of reachability analysis.

Procedure SolveHC
WF . Figure 5 shows a procedure for solving recursion-free

Horn clauses such that the solution for some unknown relations is well-founded.
Due to the recursion-free nature of the Horn clauses, computing the least

(most precise) solution for the clauses is trivial. Note that the set of Horn clauses
HC is guaranteed to have at least the solution mapping every unknown to a true
predicate. At line 10, the least solution Sol

μ that is returned is defined for the
unknown relations from UnkRelsWF . If the solution Sol

μ does not have an
upper-bound that is well-founded (see line 12), then the abstraction refinement
fails with an Unsatisfiable exception. The test at line 12 can be implemented
using a rank synthesis tool, e.g. [18].

If a well-founded relation WF is detected, then an additional Horn clause
ensures that the solution for the abstract transitions over-approximates it:
{“τ1”(V, V ′)∧· · ·∧“τN”(V, V ′)→WF} . Given the set of Horn clauses HCWF ,
our algorithm invokes a solving procedure in line 9, e.g., SolveHC from [11].

To ensure the completeness of the refinement procedure (relative to the do-
main of linear inequalities), solutions to unknown relations “ρ”(V, V ′) are ex-
pressed in terms of all program variables V and their primed version V ′. How-
ever, to facilitate thread-modular reasoning, it is desirable to return solutions
for transitions in Ti that are expressed over VG, Vi and solutions for environ-
ment transitions in Ei over global program variables VG . The Horn clause solv-
ing procedure SolveHC ensures that, whenever it exists, a modular solution
is returned. Both reasoning about safety [11] and reasoning about termination
properties benefit from such modular solutions.

Example 2. The LockDecrement example was used to illustrate the thread-
modular verification method from [7]. Our algorithm is able to verify a termina-
tion property for this example even if we drop two of the assumptions required
by the verification method from [7].

The code for this example is shown in Figure 6 and consists of two threads T1
and T2. The thread T1 acquires a lock on line a0 and decrements the value of the
variable x if it is positive. The thread T2 assigns a non-deterministically chosen
value to x after it acquires the lock lck on line b1 . The program assumes that
initially the lock is not taken, i.e., lck = 0 . The locking statement lock(lck)
waits until the lock is released and then assigns the value 1 to lck , thus taking
the lock. We are interested in proving thread-termination of the first thread T1,
i.e., no computation of the program contains infinitely many steps from T1. Note
that the non-termination of the thread T2 (and of the entire program T1 || T2)
does not affect the thread-termination property of T1.

246 C. Popeea and A. Rybalchenko

// Thread T1

a0: lock(lck);

a1: while (x>0) {

a2: t = x-1;

a3: x = t;

a4: }

a5: unlock(lck);

a6:

ϕinit = (lck = 0 ∧ pc1 = a0 ∧ pc2 = b0)

ρ11 = (lck = 0 ∧ lck′ = 1 ∧ skip(x, t) ∧move1(a0, a1) ∧ ρ=2)

ρ12 = (x > 0 ∧ skip(x, lck, t) ∧move1(a1, a2) ∧ ρ=2)

ρ13 = (t
′ = x− 1 ∧ skip(x, lck) ∧move1(a2, a3) ∧ ρ=2)

ρ14 = (x
′ = t ∧ skip(lck, t) ∧move1(a3, a1) ∧ ρ=2)

ρ15 = (x ≤ 0 ∧ skip(x, lck, t) ∧move1(a1, a5) ∧ ρ=2)

ρ16 = (lck
′ = 0 ∧ skip(x, t) ∧move1(a5, a6) ∧ ρ=2)

ρ=2 = (pc2
′ = pc2)

// Thread T2

b0: while (nondet()) {

b1: lock(lck);

b2: x = nondet();

b3: unlock(lck);

b4: }

ρ21 = (lck = 0 ∧ lck′ = 1 ∧ skip(x) ∧move2(b0, b2) ∧ ρ=1)

ρ22 = (skip(lck) ∧move2(b2, b3) ∧ ρ=1)

ρ23 = (lck
′ = 0 ∧ skip(x) ∧move2(b3, b0) ∧ ρ=1)

ρ24 = (skip(x, lck) ∧move2(b0, b5) ∧ ρ=1)

ρ=1 = (t
′ = t ∧ pc1

′ = pc1)

Fig. 6. Example with global variables x, t, lck , with lck initially set to 0 (unlocked)

See Figure 6 for the program representation, where ρ11, . . . , ρ16 give the transi-
tion relation of T1, while ρ21, . . . , ρ24 represent the transition relation of T2. The
notation skip(x, t) is a shorthand for a constraint indicating that the values of x
and t are not changed, i.e., (x = x′ ∧ t = t′) , while move1(a0, a1) denotes that
the location of thread T1 is changed from a0 to a1, i.e., (pc1 = a0∧ pc1′ = a1) .

Next, we illustrate how a termination proof for the LockDecrement program
can be constructed automatically using a sequence of abstract reachability and
abstraction refinement steps.

First abstract computation. The abstract computation approximates the tran-
sition relation of the program using two abstraction functions α̈1 and α̈2 that
correspond to threads T1 and respectively T2. For this example, we assume that
the abstraction functions initially track the value of the program counters of the
two threads using the following sets of predicates: P̈1 = {pc1 = a0, . . . , pc1

′ =
a0, . . . } and P̈2 = {pc2 = b0, . . . , pc2

′ = b0, . . . } . The abstraction of a tran-
sition relation is computed as α̈i(T) =

∧
{p̈ ∈ P̈i | T → p̈} . Our algorithm

starts by computing one-step relations from initial states (see premise C1). We
obtain two abstract transitions: m1 = α̈1(ϕinit ∧ ρ11) = (pc1 = a0 ∧ pc1

′ = a1)
and n1 = α̈2(ϕinit ∧ ρ21) = (pc2 = b0 ∧ pc2

′ = b2) . The abstract transition
m1 groups sequences of concrete transitions that start with pc1 = a0 and finish
with pc1 = a1, e.g., the sequence of four transitions ρ11ρ12ρ13ρ14 .

Next, our algorithm computes successors for the abstract transitions that
were already discovered (see premise C2). For m1 , we compute the image of
the relation using the operator Img(m1) = (pc1 = a1) . Then, we compute a
successor with regards to a transition ρ12 as follows: m2 = α̈1(Img(m1)∧ρ12) =
(pc1 = a1 ∧ pc1

′ = a2) . A second method to derive successors for an abstract
transition is to extend it with another transition from the thread transition

Compositional Termination Proofs for Multi-threaded Programs 247

relation (see premise C3). For m2 , we compute its extension using the relational
composition operator, m2 ◦ ρ13 = (pc1 = a1 ∧ pc1

′ = a2) ◦ (x′ = x ∧ lck′ =
lck ∧ t′ = x − 1 ∧ pc1 = a2 ∧ pc1

′ = a3 ∧ ρ=2) = (pc1 = a1 ∧ pc1
′ = a3) . From

m2, two new abstract transitions are generated: m3 = α̈1(m2 ◦ ρ13) = (pc1 =
a1 ∧ pc1

′ = a3) and m4 = α̈1(m3 ◦ ρ14) = (pc1 = a1 ∧ pc1
′ = a1) .

The abstract computation continues until no new abstract transitions are
found or there is an indication of non terminating executions. For our example,
the abstract transition m4 is not well-founded, i.e., an infinite sequence of such
transitions appears to be feasible.

First abstraction refinement. Since m4 was obtained using abstraction, we need
to check whether the evidence for non-termination is spurious. This is realized
by computing a constraint that is satisfiable if and only if the abstraction can
be refined to remove the spurious transition. This constraint portrays the way
the abstract transition m4 was computed using unknown predicates to denote
abstract transitions. Since m1 was computed as an abstraction from the initial
state, ϕinit ∧ ρ11 → m1(V, V

′) , the constraint maintains this requirement by
replacing the abstract transition with an unknown predicate that denotes the
abstract transition to be refined: ϕinit ∧ ρ11 → “m1”(V, V

′) . The constraint is
represented by a set of such implications, each one in the form of a Horn clause
(with implicit universal quantifiers). We obtain HC1 as follows.

HC1 = {ϕinit ∧ ρ11 → “m1”(V, V
′),

“m1”(V
′′, V) ∧ ρ12 → “m2”(V, V

′),

“m2”(V
′′, V) ∧ ρ13 → “m3”(V

′′, V ′),

“m3”(V
′′, V) ∧ ρ14 → “m4”(V

′′, V ′) }

The constraint HC1 may have multiple solutions for the unknown predicates.
Our algorithm uses two types of solutions for HC1 . First, we need to ensure
that there exists a well-founded transition that over-approximates “m4”(V, V

′) .
This is done by computing the least (most precise) solution for “m4”(V, V

′) over
some domain of solutions. For our example, we obtain Sol

μ .

Sol
μ(“m1”(V, V

′)) = (x′ = x ∧ lck = 0 ∧ lck′ = 1 ∧ t′ = t)

Sol
μ(“m2”(V, V

′)) = (x > 0 ∧ x′ = x ∧ lck = lck′ = 1 ∧ t′ = t)

Sol
μ(“m3”(V, V

′)) = (x > 0 ∧ x′ = x ∧ lck = lck′ = 1 ∧ t′ = x− 1)

Sol
μ(“m4”(V, V

′)) = (x > 0 ∧ x′ = x− 1 ∧ lck = lck′ = 1 ∧ t′ = x− 1)

The solution Sol
μ(“m4”(V, V

′)) is well-founded. While refining the abstraction
functions using the solution Sol

μ would remove the spurious transition that
is not well-founded, such a solution hinders the convergence of the abstrac-
tion refinement procedure. For the current example, collecting all predicates
that appear in the least solutions of “m1”(V, V

′), “m2”(V, V
′), “m3”(V, V

′) and
“m4”(V, V

′) would compromise the benefit of abstraction. Instead, our algorithm
uses the method from [18] to generate a well-founded relation that approximates

248 C. Popeea and A. Rybalchenko

the transitive closure of Solμ(“m4”(V, V
′)) : WF 1(V, V

′) = (x′ ≥ 0 ∧ x′ < x) .
The next step is to add a well-foundedness condition to the set of Horn clauses
HCWF

1 = HC1∪{“m4”(V, V
′)→WF 1} , and look for a solution of the extended

set of clauses. We obtain the solution Sol by invoking the solving algorithm
from [11] with input HCWF

1 .

Sol(“m1”(V, V
′)) = (true) Sol(“m2”(V, V

′)) = (x′ ≥ 1)

Sol(“m3”(V, V
′)) = (t′ ≥ 0 ∧ t′ < x) Sol(“m4”(V, V

′)) = (x′ ≥ 0 ∧ x′ < x)

We collect the predicates that appear in the solutions of the abstract transitions
from the first thread and add them to the set of predicates P̈1 as follows: P̈1 =
P̈1 ∪ {x′ ≥ 1, t′ ≥ 0, t′ < x, x′ ≥ 0, x′ < x} .

Termination property of thread T2. We now illustrate the capability of our al-
gorithm to identify termination bugs. The abstract computation of the second
thread proceeds as follows: n1 = α̈2(ϕinit ∧ ρ21) = (pc2 = b0 ∧ pc2

′ = b2) ,
n2 = α̈2(n1 ◦ ρ22) = (pc2 = b0 ∧ pc2

′ = b3) and n3 = α̈2(n2 ∧ ρ23) = (pc2 =
b0 ∧ pc2

′ = b0) . The abstract transition n3 is not well-founded. Our algorithm
generates the following set of three Horn clauses:

HC4 = {ϕinit ∧ ρ21 → “n1”(V, V
′), “n1”(V, V

′) ∧ ρ22(V
′, V ′′)→ “n2”(V, V

′′),

“n2”(V, V
′) ∧ ρ23(V

′, V ′′)→ “n3”(V, V
′′) } .

The least solution Sol
μ(“n3”(V, V

′)) = (lck = 0∧ lck′ = 0∧ pc1 = a0∧ pc1′ =
a0 ∧ pc2 = b0 ∧ pc2

′ = b0) is not well-founded. The algorithm returns a coun-
terexample to termination of thread T2, the sequence of transitions ρ21ρ22ρ23 .

Termination property of thread T1. After a few more iterations, our algorithm
proves the termination of the first thread. It constructs all abstract transitions
applying exhaustively the steps above and it finds that all of them represent well-
founded abstract transitions. The counterexample π is not encountered during
the proof of thread-termination of T1, since it contains only transitions from the
second thread. We conclude the presentation of this example by showing the final
environment transitions that are part of the proof for termination of the first
thread. They ensure two conditions: 1) environment transitions constructed from
ρ22 are guarded by the relation pc2 = b2 , 2) environment transitions generated
from other transitions of the second thread satisfy the constraint x′ ≤ x .

P̈2�1 = {x′ ≤ x, lck = 0, lck′ = 1, pc2 = b2, pc2
′ �= b2}

E1 = (pc2 = b2 ∧ pc2
′ �= b2) ∨ (pc2

′ �= b2 ∧ x′ ≤ x) ∨
(lck = 0 ∧ lck′ = 1 ∧ x′ ≤ x)

The termination property of T1 cannot be established using the method
proposed in [7], which is restricted to thread-modular proofs. The program
LockDecrement lifts two restrictions from the original example [7]: the decre-
ment of the value of x (not an atomic operation) is split in two statements at
labels a2 and a3 ; secondly, instead of an integer, the value of the lock variable
is represented using a single bit, as our method supports mutexes.

Compositional Termination Proofs for Multi-threaded Programs 249

Table 1. Experimental evaluation

Benchmark programs Proving Termination

Name LOC Thread 1 Thread 1+2 Comments

Figure 2 [7] 19 �-Modular 0.1s × T2 is non-term.

Figure 6 21 �-NonModular 0.4s × T2 is non-term.

Figure 2 9 �-Modular 5.9s �-Modular 9.4s T1+T2 proven term.
Figure 2-fixed [15] 38 �-Modular 0.3s × T2 is non-term.

Figure 4-fixed [15] 168 �-Modular 13.2s × T2 is non-term.

5 Experiments

We implemented the algorithms for proving termination properties in a tool
for verification of multi-threaded C programs. Our tool uses a frontend based
on CIL [16] to translate C programs to multi-threaded transition systems as
formalized in Section 2. As explained before, our implementation makes use of a
procedure for finding ranking functions [18] and a Horn clause solving algorithm
over the linear inequality domain [11]. As an optimization, we use the frontend
capability of generating a cutpoint for every iterating construct in the input
program. The implementation only checks for well-foundedness of transitions
with start and end locations compatible with a cutpoint.

We evaluated our implementation using a set of benchmark programs listed
in Table 1. The first example was presented as Figure 2 in [7]. Relying on an
atomicity assumption encoded in the program, our tool is able to find a modular
proof for the thread-termination of Thread 1. The second thread contains a
non-terminating loop and our tool returns a counterexample to its termination.

The second program (see Figure 6) removes the atomicity assumption from
the previous program and represents the lock variable using a single bit (i.e., a
mutex). Under these assumptions, the termination of thread 1 has a non-modular
proof that our tool is able to discover automatically.

For the example shown in Figure 2, our tool is able to derive a modular proof
for the termination of both threads. This is facilitated by the abstraction refine-
ment queries formulated in terms of Horn clauses with preference for modular
solutions. More elaborate non-modular proofs of termination also exists for this
program and our tool is able to avoid them.

We include two more examples that illustrate fixes from the Mozilla CVS
repository for two vulnerabilities initially presented in a study of concurrency
bugs [15]. The termination of the second thread from Figure 2-fixed depends on
a fairness assumption and our tool reports a counterexample that represents an
unfair path. In practice, fair termination is a desirable property, since it allows
one to exclude from consideration pathological, unfair schedulers. Our approach
can be extended to deal with fair termination via program transformation [17].
Fairness assumptions can be explicated in the program using additional counters
and hence termination proving methods apply out of the box.

250 C. Popeea and A. Rybalchenko

6 Related Work

Our paper builds on two lines of research. The first one established abstrac-
tion refinement [1] as a successful method for proving termination of sequential
programs [5, 6]. Our second inspiration is the rely-guarantee method that was
proposed in [13] for reasoning about multi-threaded programs. This reasoning
method was automated and implemented for the first time in the Calvin model
checker [8] for Java programs. Calvin’s implementation makes use of environ-
ment assumptions specified by the programmer for each thread. More recently,
discovery of environment assumptions for proving safety properties was auto-
mated using abstraction refinement [11]. Their abstraction refinement is based
on a Horn-clause solving procedure, which we use in this paper for a different
class of refinement queries (related to termination properties).

For proving termination of multi-threaded programs, Cook et al. proposed
an automated method based on rely-guarantee reasoning [7]. This verification
method was the first to compute environment assumptions for termination, but
is restricted to properties with modular proofs and does not support synchroniza-
tion primitives like mutexes. Cohen andNamjoshi present an algorithm that grad-
ually exposes additional local state that is needed in non thread-modular safety
proofs [2] and termination proofs [3]. Although their proof rules and general algo-
rithms apply to non-finite analysis domains, they have so far been implemented
and tested only for finite-state systems. Unlike our proposal that does not directly
support fairness assumptions, a recent extension of the SPLIT model checker [4]
incorporates fairness in a compositional algorithm without relying on the trivial
solution that turns all local variables from the specification in global variables.

Recent work on compositional transition invariants deals with verification of
sequential programs [14]. In this work, compositionality refers to the transitiv-
ity property of transition invariants and allows one to check the validity of a
transition invariant candidate without going through the transitive closure com-
putation. This notion of compositionality was successfully used to speed up the
verification of sequential programs but is not applicable for structuring the verifi-
cation of multi-threaded programs. In contrast, in our work and in the literature
on the verification of multi-threaded programs it is common to use composition-
ality to describe verification methods that consider only one thread at a time
(instead of taking the entire program, which is prohibitively expensive even for
very small programs).

Thread-modular shape analysis [9] has been proposed for verification of heap-
manipulating multi-threaded programs. The original formulation handled safety
properties, while a follow-up work [10] proposed an automatic method for proving
liveness properties of concurrent data-structure implementations. While this line
of work handles only properties that have thread-modular proofs, we believe that
the proof rule that we propose in this paper is a step towards automatic proving
of properties that require non-modular reasoning about heap.

Acknowledgement. We thank Ruslán Ledesma-Garza and Kedar Namjoshi
for comments and suggestions.

Compositional Termination Proofs for Multi-threaded Programs 251

References

1. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

2. Cohen, A., Namjoshi, K.S.: Local Proofs for Global Safety Properties. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidel-
berg (2007)

3. Cohen, A., Namjoshi, K.S.: Local Proofs for Linear-Time Properties of Concurrent
Programs. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 149–161.
Springer, Heidelberg (2008)

4. Cohen, A., Namjoshi, K.S., Sa’ar, Y.: A Dash of Fairness for Compositional Rea-
soning. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
543–557. Springer, Heidelberg (2010)

5. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

6. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI (2006)

7. Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI
(2007)

8. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-Modular Verification for Shared-
Memory Programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002)

9. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In:
PLDI (2007)

10. Gotsman, A., Cook, B., Parkinson, M.J., Vafeiadis, V.: Proving that non-blocking
algorithms don’t block. In: POPL (2009)

11. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL (2011)

12. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI (2004)

13. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

14. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination Anal-
ysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

15. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS (2008)

16. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

17. Olderog, E.-R., Apt, K.R.: Fairness in parallel programs: The transformational
approach. ACM Trans. Program. Lang. Syst. 10(3), 420–455 (1988)

18. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

19. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS (2004)
20. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for Java bytecode based

on path-length. ACM Trans. Program. Lang. Syst. (2010)

Deciding Conditional Termination�

Marius Bozga1, Radu Iosif1, and Filip Konečný1,2

1 VERIMAG, CNRS, 2 av. de Vignate, 38610 Gières, France
{bozga,iosif}@imag.fr

2 FIT BUT, IT4Innovations Centre of Excellence, Czech Republic
ikonecny@fit.vutbr.cz

Abstract. This paper addresses the problem of conditional termination, which
is that of defining the set of initial configurations from which a given program
terminates. First we define the dual set, of initial configurations, from which a
non-terminating execution exists, as the greatest fixpoint of the pre-image of the
transition relation. This definition enables the representation of this set, whenever
the closed form of the relation of the loop is definable in a logic that has quanti-
fier elimination. This entails the decidability of the termination problem for such
loops. Second, we present effective ways to compute the weakest precondition
for non-termination for difference bounds and octagonal (non-deterministic) re-
lations, by avoiding complex quantifier eliminations. We also investigate the ex-
istence of linear ranking functions for such loops. Finally, we study the class of
linear affine relations and give a method of under-approximating the termination
precondition for a non-trivial subclass of affine relations. We have performed pre-
liminary experiments on transition systems modeling real-life systems, and have
obtained encouraging results.

1 Introduction

The termination problem asks whether every computation of a given program ends in
a halting state. The universal termination asks whether a given program stops for ev-
ery possible input configuration. Both problems are among the first ever to be shown
undecidable, by A. Turing [24]. In many cases however, programs will terminate when
started in certain configurations, and may1 run forever, when started in other configu-
rations. The problem of determining the set of configurations from which a program
terminates on all paths is called conditional termination.

In program analysis, the presence of non-terminating runs has been traditionally con-
sidered faulty. However, more recently, with the advent of reactive systems, accidental
termination can be an equally serious error. For instance, when designing a web server,

� This work was supported by the French National Project ANR-09-SEGI-016 VERIDYC,
by the Czech Science Foundation (projects P103/10/0306 and 102/09/H042), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), the Bar-
rande project MEB021023, and the EU/Czech IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

1 If the program is non-deterministic, the existence of a single infinite run, among other finite
runs, suffices to consider an initial configuration non-terminating.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 252–266, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Deciding Conditional Termination 253

a developer would like to make sure that the main program loop will not exit unless
a stopping request has been issued. These facts lead us to considering the conditional
non-termination problem, which is determining the set of initial configurations which
guarantee that the program will not exit.

In this paper we focus on programs that handle integer variables, performing linear
arithmetic tests and (possibly non-deterministic) updates. A first observation is that the
set of configurations guaranteeing non-termination is the greatest fixpoint of the pre-
image of the program’s transition relation2 R. This set, called the weakest recurrent set,
and denoted wrs(R) in our paper, can be defined in first-order arithmetic, provided that
the closed form of the infinite sequence of relations {Ri}i≥0, obtained by composing
the transition relation with itself 0, 1, 2, . . . times, can also be defined using first-order
arithmetic. Moreover, if the fragment of arithmetic we use has quantifier elimination,
the weakest recurrent set can be expressed in a quantifier-free decidable fragment of

arithmetic. This also means that the problem wrs(R)
?
= ∅ is decidable, yielding univer-

sal termination decidability proofs for free.

Contributions of this Paper. The main novelty in this paper is of rather theoretical na-
ture: we show that the non-termination preconditions for integer transition relations de-
fined as either octagons or linear affine loops with finite monoid property are definable
in quantifier-free Presburger arithmetic. Thus, the universal termination problem for
such program loops is decidable. However, since quantifier elimination in Presburger
arithmetic is a complex procedure, we have developed alternative ways of deriving the
preconditions for non-termination, and in particular:

– for difference bounds, we reduce the problem of finding the weakest recurrent set
to finding the maximal solution of a system of inequalities in the complete lattice
of integers extended with ±∞, where the right-hand sides use addition and min
operators. Efficient algorithms for finding such maximal solutions are based on
policy iteration [14]. This encoding gives us a worst-case time complexity ofO(n2 ·
2n) in the number of variables n, for the computation of the weakest recurrent set
for difference bounds relations.

– for octagonal relations, we use a result from [5], namely that the sequence {Ri}i≥0

is, in some sense, periodic. We give here a simple quantifier elimination method,
targeted for the class of formulae defining weakest recursive sets. Moreover, we
investigate the existence of linear ranking functions, and prove that, for each well-
founded octagonal relations, there exists an effectively computable witness relation
i.e., a well-founded relation that has a linear ranking function.

– for linear affine relations, weakest recurrent sets can be defined in Presburger arith-
metic if we consider several restrictions concerning the transformation matrix. If
the matrix A defining R has eigenvalues which are either zeros or roots of unity,
all non-zero eigenvalues being of multiplicity one (these conditions are equivalent
to the finite monoid property of [2,12]), then wrs(R) is Presburger definable. Oth-
erwise, if all non-zero eigenvalues of A are roots of unity, of multiplicities greater

2 This definition is the dual of the reachability set, needed for checking safety properties: the
reachability set is the least fixpoint of the post-image of the transition relation.

254 M. Bozga, R. Iosif, and F. Konečný

or equal to one, wrs(R) can be expressed using polynomial terms. In this case, we
can systematically issue termination preconditions, which are of significant practi-
cal importance, as noted in [11].

For space reasons, all proofs are deferred to [7].

Practical Applications. Unfortunately, in practice, the cases in which the closed form
of the sequence {Ri}i≥0 is definable in a logic that has quantifier elimination, are fairly
rare. All relations considered so far are conjunctive, meaning that they can represent
only simple program loops of the form while(condition){body}, where the loop
body contains no further conditional constructs. In order to deal with more complicated
program loops, one can use the results from this paper in several ways:

– use the decision procedures as a back-end of a termination analyzer, in order to de-
tect spurious non-termination counterexamples consisting of a finite prefix (stem)
and a conjunctive loop body (lasso). The spurious counterexamples can be dis-
carded by intersecting the program model with the complement of the weak deter-
ministic Büchi automaton representing the counterexample, as in [17].

– abstract a disjunctive loop body R1 ∨ . . . ∨ Rn by a non-deterministic difference
bounds or octagonal3 relation R# ⊇ R1,...,n and compute the weakest recurrent set
of the latter. The complement of this set is a set of configurations from which the
original loop terminates.

– attempt to compute a transition invariant i.e., an overapproximations of the transi-
tive closure of the disjunctive loop body (R1 ∨ . . . ∨ Rn)

+ (using e.g., the semi-
algorithmic unfolding technique described in [6]) and overapproximate it by a dis-
junction R#

1 ∨ . . .∨R#
m of difference bounds or octagonal relations. Then compute

the weakest recurrent set of each relation in the latter disjunction. If wrs(R#
1) =

. . . = wrs(R#
m) = ∅, the original loop terminates on any input, following the

principle of transition invariants [20].

1.1 Related Work

The literature on program termination is vast. Most work focuses however on universal
termination, such as the techniques for synthesizing linear ranking functions of Sohn
and Van Gelder [22] or Podelski and Rybalchenko [19], and the more sophisticated
method of Bradley, Manna and Sipma [9], which synthesizes lexicographic polynomial
ranking functions, suitable when dealing with disjunctive loops. However, not every
terminating program (loop) has a linear (polynomial) ranking function. In this paper
we show that, for an entire class of non-deterministic linear relations, defined using
octagons, termination is always witnessed by a computable octagonal relation that has
a linear ranking function.

Another line of work considers the decidability of termination for simple (conjunc-
tive) linear loops. Initially Tiwari [23] shows decidability of termination for affine lin-
ear loops interpreted over reals, while Braverman [10] refines this result by showing

3 The linear affine relations considered in this paper are deterministic, which makes them un-
suitable for abstraction.

Deciding Conditional Termination 255

decidability over rationals and over integers, for homogeneous relations of the form
C1x > 0 ∧ C2x ≥ 0 ∧ x′ = Ax. The non-homogeneous integer case seems to be
much more difficult as it is closely related to the open Skolem’s Problem [16]: given a
linear recurrence {ui}i≥0, determine whether ui = 0 for some i ≥ 0.

To our knowledge, the first work on proving non-termination of simple loops is re-
ported in [15]. The notion of recurrent sets occurs in this work, however without the
connection with fixpoint theory, which is introduced in the present work. Finding re-
current sets in [15] is complete with respect to a predefined set of templates, typically
linear systems of rational inequalities.

The work which is closest to ours is probably that of Cook et al. [11]. In this paper,
the authors develop an algorithm for deriving termination preconditions, by first guess-
ing a ranking function candidate (typically the linear term from the loop condition) and
then inferring a supporting assertion, which guarantees that the candidate function de-
creases with each iteration. The step of finding a supporting assertion requires a fixpoint
iteration, in order to find an invariant condition. Unlike our work, the authors of [11]
do not address issues related to completeness: the method is not guaranteed to find the
weakest precondition for termination, even in cases when this set can be computed. On
the other hand, it is applicable to a large range of programs, extracted from real-life soft-
ware. To compare our method with theirs, we tried all examples available in [11]. Since
most of them are linear affine relations, we used our under-approximation method and
have computed termination preconditions, which turn out to be slightly more general
than the ones reported in [11].

2 Preconditions for Non-termination

In the rest of this paper we denote by x = {x1, . . . , xn} the set of working variables,
ranging over a domain of values denoted as D. A state is a valuation s : x → D, or
equivalently, an n-tuple of values fromD. An execution step is a relation R ⊆ Dn×Dn

defined by an arithmetic formula R(x,x′), where the set x′ = {x′
1, . . . , x

′
n} denotes

the values of the variables after executing R once. If s and s′ are valuations of the sets
x and x′, we denote by R(s, s′) the fact that (s, s′) ∈ R. A relation R is said to be
consistent if there exist states s, s′ such thatR(s, s′).

Relational composition is defined as R1 ◦ R2 = {(s, s′) ∈ Dn × Dn | ∃s′′ ∈
Dn . R1(s, s

′′) ∧ R2(s
′′, s′)}. For any relation R ∈ Dn × Dn, we consider R0 to be

the identity relation, and we define Ri+1 = Ri ◦ R, for all i ≥ 0. The pre-image of a
set S ⊆ Dn via R is the set preR(S) = {s ∈ Dn | ∃s′ ∈ S . R(s, s′)}. It is easy to
check that preiR(S) = preRi(S), for any S ⊆ Dn and for all i ≥ 0. For any i ≥ 0, we
write Ri for the formula defining the relation Ri andR−i(�) for the formula defining
the set preRi(Dn).

Definition 1. A relation R is said to be ∗-consistent if and only if, for any k > 0, there
exists a sequence of states s1, . . . , sk, such thatR(si, si+1), for all i = 1, . . . , k− 1. R
is said to be well-founded if and only if there is no infinite sequence of states {si}i>0,
such thatR(si, si+1), for all i > 0.

256 M. Bozga, R. Iosif, and F. Konečný

Notice that if a relation is not ∗-consistent, then it is also well-founded. However the
dual is not true. For instance, the relation R = {(n, n− 1) | n > 0} is both ∗-consistent
and well-founded.

Definition 2. A set S ⊆ Dn is said to be a non-termination precondition for R if,
for each state s ∈ S there exists an infinite sequence of states s0, s1, s2, . . . such that
s = s0 andR(si, si+1), for all i ≥ 0.

If S0, S1, . . . are all non-termination preconditions for R, then the (possibly infinite)
union

⋃
i=0,1,... Si is a non-termination precondition for R as well. The set wnt(R) =⋃

{S ∈ Dn | S is a non-termination precondition for R} is called the weakest non-
termination precondition for R. A relation R is well-founded if and only if wnt(R) =
∅. A set S such that S ∩ wnt(R) = ∅ is called a termination precondition.

Definition 3. A set S ⊆ Dn is said to be recurrent for a relation R ∈ Dn × Dn if and
only if S ⊆ preR(S).

Proposition 1. Let S0, S1, . . . ∈ Dn be a (possibly infinite) sequence of sets, all of
which are recurrent for a relation R ∈ Dn × Dn. Then their union

⋃
i=0,1,... Si is

recurrent for R as well.

The set wrs(R) =
⋃
{S ∈ Dn | S is a recurrent set for R} is called the weakest recur-

rent set for R. By Proposition 1, wrs(R) is recurrent for R. Next we define the weakest
recurrent set as the greatest fixpoint of the transition relation’s pre-image.

Lemma 1. Given a relation R ∈ Dn × Dn, the weakest recurrent set for R is the
greatest fixpoint of the function X �→ preR(X).

As a consequence, we obtain wrs(R) =
⋂

i>0 pre
i
R(Dn), by the Kleene Fixpoint The-

orem. Since preiR = preRi , we have wrs(R) =
⋂

i>0 preRi(Dn). In other words,
from any state in the weakest recurrent set for a relation, an iteration of any finite length
of the given relation is possible. The following lemma shows that in fact, this is exactly
the set of states from which an infinite iteration is also possible.

Lemma 2. Given a relation R ∈ Dn × Dn, the weakest recurrent set for R equals its
weakest non-termination precondition.

The characterization of weakest recurrent sets as greatest fixpoints of the pre-image
function suggests a method for computing such sets. In this section we show that, for
certain classes of relations, these sets are definable in Presburger arithmetic, which gives
a decision procedure for the well-foundedness problem for certain classes of relations,
and consequently, for the termination problem for several classes of program loops.

Definition 4. Given a relation R ∈ Dn×Dn defined by an arithmetic formulaR(x,x′),
the closed form of R is a formula R(k)(x,x′), with free variables x ∪ x′ ∪ {k}, such
that for every integer valuation i > 0 of k,R(i)(x,x′) defines the relation Ri.

Since, by Lemma 1, we have wrs(R) = gfp(preR) =
⋂

i>0 preRi(Dn), using the
closed form of R, one can now define:

wrs(R) ≡ ∀k > 0 ∃x′ .R(k)(x,x′) (1)

Deciding Conditional Termination 257

Because Presburger arithmetic has quantifier elimination, wrs(R) can be defined in
Presburger arithmetic4 whenever R(k) can. In [5] we show three classes of relations
for whichR(k) is Presburger definable: difference bounds, octagonal and finite-monoid
affine relations (the formal definitions of these classes are given in the next section).
For each of these classes of loops termination is decidable, by the above argument.

3 Difference Bounds Relations

In this and the following sections, we assume that the variables x = {x1, . . . , xn} range
over integers i.e., that D = Z.

Definition 5. A formula φ(x) is a difference bounds constraint if it is equivalent to a
finite conjunction of atomic propositions of the form xi − xj ≤ aij , for 1 ≤ i, j ≤
n, i �= j, where aij ∈ Z.

Given a difference bounds constraint φ, a difference bounds matrix (DBM) representing
φ is a matrix mφ ∈ Zn×n

∞ such that (mφ)ij = aij , if xi − xj ≤ aij is an atomic
proposition in φ, and∞, otherwise.

If φ is inconsistent (logically equivalent to false) we also say that mφ is inconsistent.
The next definition gives a canonical form for consistent DBMs.

Definition 6. A consistent DBM m ∈ Zn×n
∞ is said to be closed if and only if mii = 0

and mij ≤ mik +mkj , for all 1 ≤ i, j, k ≤ n.

Given a consistent DBM m, we denote by m∗ the (unique) closed DBM equivalent with
it. It is well-known that, if m is consistent, then m∗ is unique, and can be computed
from m in timeO(n3), by the classical Floyd-Warshall algorithm. The closure of DBM
provides an efficient means to compare difference bounds constraints.

Proposition 2 ([18]). Given two consistent difference bounds constraints ϕ(x) and
ψ(x), the following conditions are equivalent:

– ∀x . ϕ(x)→ ψ(x)
– (m∗

ϕ)ij ≤ (m∗
ψ)ij , for all 1 ≤ i, j ≤ n

In the following, let R be a relation defined by a difference bounds constraint. It is easy
to show that, for any i ≥ 0, the relation Ri is a difference bounds relation as well – in
other words, difference bounds relations are closed under composition. Moreover, if S
is a set defined by a difference bounds constraint, then the set preRi(S) is defined by
a difference bounds constraint as well. But since wrs(R) =

⋂
i>0 preRi(Zn), it turns

out that wrs(R) can be defined by a difference bounds constraint, since the class of
difference bounds constraints is closed under (possibly infinite) intersections.

We are now ready to describe the procedure computing the weakest recurrent set for
a difference bounds relation R. Since wrs(R) is a (possibly inconsistent) difference
bounds constraint, we use the template μ(x,p) ≡

∧
1≤i�=j≤n xi − xj ≤ pij , where pij

are parameters ranging over Z±∞ (we clearly do not need to track the constraints of the

4 Or, for that matter, in any theory that has quantifier elimination.

258 M. Bozga, R. Iosif, and F. Konečný

form xi − xi ≤ pii). Moreover, we assume that the template is closed (Definition 6),
which can be encoded as a system of inequalities of the form:

pij ≤ min
{
pik + pkj | k �= i, k �= j

}
(2)

Next, we compute the (symbolic) difference bounds constraint corresponding to the set
preR(μ) ≡ ∃x′ . R(x,x′) ∧ μ(x′,p). This step requires computing the closure of the
DBM corresponding toR∧μ, and elimination of the x′ variables. The result is a closed
symbolic DBM π, whose entries are min-terms consisting of sums of pij and integer
constants. Further, we encode the recurrence condition μ ⊆ preR(μ), again as a system
of inequalities (Proposition 2) of the form:

pij ≤ πij , i �= j (3)

By conjoining the inequalities (2) and (3), we obtain a system of inequalities with vari-
ables pij , whose right-hand sides are linear combinations of pij with addition and min.
We are interested in the maximal solution of this system, which can be obtained using
an efficient policy iteration algorithm [14] in the complete lattice of Z±∞ with addition,
min and max operators. This solution defines the weakest recurrent set for R, and con-
sequently, the weakest precondition for non-termination of the R loop. Since wrs(R)
is a difference bounds constraint, for any relation R definable by a difference bounds
constraint, the maximal solution of the system is unique. It is to be noted that, if for
some 1 ≤ i �= j ≤ n we obtain pij = −∞, then the weakest recurrent set is empty i.e.,
the relation R is well-founded.

Lemma 3. Computing the weakest recurrent set of a difference bounds relation can be
done in time O(n2 · 2n), where n is the number of variables.

4 Octagonal Relations

Octagonal relations are a generalization of difference bounds relations.

Definition 7. A formula φ(x) is an octagonal constraint if it is equivalent to a finite
conjunction of terms of the form ±xi ± xj ≤ aij , where aij ∈ Z and 1 ≤ i, j ≤ n.

We represent octagons as difference bounds constraints over the dual set of variables
y = {y1, y2, . . . , y2n}, with the convention that y2i−1 stands for xi and y2i for −xi,
respectively. For example, the octagonal constraint x1 + x2 = 3 is represented as y1 −
y4 ≤ 3 ∧ y2 − y3 ≤ −3. To handle the dual variables in the following, we define
ı̄ = i − 1, if i is even, and ı̄ = i + 1 if i is odd. We say that a DBM m ∈ Z2n×2n

∞ is
coherent iff mij = mj̄ı̄ for all 1 ≤ i, j ≤ 2n. The coherence property is needed because
any atomic proposition xi−xj ≤ a, in φ can be represented as both y2i−1− y2j−1 ≤ a
and y2j − y2i ≤ a, 1 ≤ i, j ≤ n. We denote by φ the difference bounds formula
φ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn] with free variables y. The following
equivalence relates φ and φ :

φ(x)⇔ (∃y2, y4, . . . , y2n . φ ∧
n∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2n−1] (4)

Deciding Conditional Termination 259

Given a coherent DBM m representing φ, we say that m is octagonal-consistent if and
only if φ is consistent. The following definition gives the canonical form of a DBM
representing an octagonal-consistent constraint.

Definition 8. An octagonal-consistent coherent DBM m ∈ Z2n×2n is said to be tightly
closed if and only if the following hold:

1. mii = 0, ∀1 ≤ i ≤ 2n 3. mij ≤ mik +mkj , ∀1 ≤ i, j, k ≤ 2n
2. miı̄ is even, ∀1 ≤ i ≤ 2n 4. mij ≤ #miı̄

2 $+ #
mj̄j

2 $, ∀1 ≤ i, j ≤ 2n

Given an octagonal-consistent DBM m, we denote by mt the equivalent tightly closed
DBM. The tight closure of an octagonal-consistent DBM m is unique and can be com-

puted in time O(n3) as mt
i,j = min

{
m∗

i,j ,
⌊
m∗

i,̄i

2

⌋
+
⌊
m∗̄

j,j

2

⌋}
[1]. This generalizes to

unbounded finite compositions of octagonal relations [4]:

∀k ≥ 0 . (mt
Rk)i,j = min

{
(m∗

R
k)i,j ,

⌊
(m∗

R
k)i,̄i

2

⌋
+

⌊
(m∗

R
k)j̄,j

2

⌋}
(5)

Notice that the above relates the entries of the tightly closed DBM representation of Rk

with the entries of the closed DBM representation of the relation defined byRk
.

We are now ready to introduce a result [5] that defines the “shape” of the closed form
R(k) for an octagonal relation R. Intuitively, for each i ≥ 0, Ri is an octagon, whose
bounds evolve in a periodic way. The following definition gives the precise meaning of
periodicity for relations that have a matrix representation.

Definition 9. An infinite sequence of matrices {Mk}∞k=1 ∈ Zm×m
∞ is said to be ulti-

mately periodic if and only if:

∃b > 0 ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ Zm×m
∞ . Mb+(k+1)c+i = Λi +Mb+kc+i

for all k ≥ 0 and i = 0, 1, . . . , c − 1. The smallest b, c for which the above holds are
called prefix and period of the {Mk}∞k=1 sequence, respectively.

A result reported in [5] is that the sequence {mt
Ri}i≥0 (5) of tightly closed matrices

representing the sequence {Ri}i≥0 of powers of a ∗-consistent octagonal relation R is
ultimately periodic, in the sense of the above definition. The constants b and c from Def-
inition 9 will also be called the prefix and period of the octagonal relation R, throughout
this section.

For a set v of variables, let U(v) = {±v1 ± v2 | v1, v2 ∈ v} denote the set of
octagonal terms over v. As a first remark, by the periodicity of the sequence {mt

Ri}i≥0,
the closed form of the subsequence {Rb+c�}�≥0 (of {Ri}i≥0) can be defined as:

R(�)
b,c ≡

∧
u∈U(x∪x′)

u ≤ au�+ du (6)

where au = (Λ0)ij , du = (mt
Rb)ij for all octagonal terms u = yi − yj . This is

indeed the case, since the matrix sequence {mt
Rb+c�}�≥0 is ultimately periodic i.e.,

mt
Rb+c� = mt

Rb + �Λ0, for all � ≥ 0.

260 M. Bozga, R. Iosif, and F. Konečný

Lemma 4. Let R be a ∗-consistent octagonal relation with prefix b, period c and let
R(�)

b,c be the closed form of {Rb+c�}�≥0 as defined in (6). Then, R is well-founded iff

there exists u∈U(x) s.t. au<0. Moreover, if R is not well-founded,wrs(R)≡R−b(�).

The above lemma can be used to compute wrs(R) for an octagonal relation R. First
we need to check the ∗-consistency of R, using the method reported in [6]. Second,
we compute the closed form (6) and check for the existence of a term u ∈ U(x) such
that au < 0, in which case R is well-founded. Finally, if this is not the case, then we
compute wrs(R) = R−b(�).

4.1 On the Existence of Linear Ranking Functions

A ranking function for a given relation R constitutes a proof of the fact that R is
well-founded. We distinguish here two cases. If R is not ∗-consistent, then the well-
foundedness of R is witnessed simply by an integer constant i > 0 such that Ri = ∅.
Otherwise, if R is ∗-consistent, we need a better argument for well-foundedness. In
this section we show that, for any ∗-consistent well-founded octagonal relation R with
prefix b, the (strenghtened) relation defined byR−b(�) ∧R is well-founded and has a
linear ranking function, even when R alone does not have one. For space reasons, we
do not give here all the details of the construction of such a function. However, the ex-
istence proof suffices, as one can use complete ranking function extraction tools (such
as e.g. RankFinder [19]) in order to find them.

Definition 10. Given a relation R ⊆ Zn×Zn, a linear ranking function for R is a term
f(x) =

∑n
i=1 aixi such that, for all states s, s′ : x→ Z:

1. f is decreasing:R(s, s′)→ f(s) > f(s′)
2. f is bounded:R(s, s′)→ (f(s) > h ∧ f(s′) > h), for some h ∈ Z.

The main result of this section is the following:

Theorem 1. Let R ⊆ Zn × Zn be a ∗-consistent and well-founded octagonal relation,
with prefix b ≥ 0. Then, the relation defined byR−b(�) ∧R is well founded and has a
linear ranking function.

The first part of the theorem is proved by the following lemma:

Lemma 5. Let R ⊆ Zn×Zn be a relation, and m > 0 be an integer. Then wrs(R) = ∅
if and only if wrs(Rm) = ∅, where Rm is the relation defined byR−m(�) ∧R.

It remains to prove that the witness relation defined by R−b(�) ∧ R has a linear rank-
ing function, provided that it is well-founded. The proof is organized as follows. First
we show that well-foundedness of an octagonal relation R is equivalent to the well-
foundedness of its difference bounds representation R (Lemma 6). Second, we use a
result from [8], that the constraints in the sequence of iterated difference bounds re-

lations {Ri}i≥0 can be represented by a finite-state weighted automaton, called the
zigzag automaton in the sequel. If the relation defined by R is well-founded, then this
weighted automaton must have a cycle of negative weight. The structure of this cycle,
representing several of the constraints in R, is used to show the existence of the linear
ranking function for the witness relationR−b(�) ∧R.

Deciding Conditional Termination 261

x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

−1

0
0

0

0

(a)

π

. . .

x1

x2

x3

x4

π

qI q1 q2 q3 q1 q1 q2 q3 q1 qF

G3 G1 G2 G3 G1 G2 G3 G4

⊥
r

⊥
l

r

⊥
⊥
l

⊥
⊥
r

l

⊥
r

⊥
l

r

⊥
⊥
l

r

⊥
⊥
l

⊥
⊥
r

l

⊥
r

⊥
l

r

⊥
⊥
l

⊥
⊥
rl

⊥

(b)

Fig. 1. (a) Unfolding of the constraint graph of the difference bounds relation R ≡ x2−x′
1 ≤

−1∧x3−x′
2 ≤ 0∧x1−x′

3 ≤ 0∧x′
4−x4 ≤ 0∧x′

3−x4 ≤ 0. (b) A run of the zigzag automaton
AR over a path in the unfolded constraint graph of R.

Lemma 6. Let R ⊆ Zn×Zn be an octagonal relation and Rdb be the difference bounds
relation defined byR. Then R is well-founded if and only if Rdb is well-founded.

The above lemma reduces the problem of showing existence of a ranking function for
an octagonal relationR(x,x′) to showing existence of a ranking function for its differ-
ence bounds encoding R(y,y′). Assume that f(y) is a ranking function for R. Then
f [xi/y2i−1,−xi/y2i]

n
i=1 is a linear ranking function for R. Hence, in the rest of this

section, we consider without loss of generality that R is a difference bounds relation.

Zigzag Automata. For the later developments, we need to introduce the zigzag au-
tomaton corresponding to a difference bounds relation R. Intuitivelly, for any i > 0, the
relation Ri can be represented by a constraint graph which is the i-times repetition of
the constraint graph of R. The constraints induced by Ri can be represented as shortest
paths in this graph, and can be recognized (in the classical automata-theoretic sense) by
a weighted automatonAR (see Fig. 1 for an example). The structure of this automaton
is needed to show the existence of a linear ranking function.

The following lemma proves the existence of a negative weight cycle in the zigzag
automata corresponding to well-founded difference bounds relation. The intuition be-
hind this fact is that the rates of the DBM sequence {mRi}i>0 are weights of optimal
ratio (weight per length) cycles in the zigzag automaton. According to the previous sec-
tion, if R is well-founded, there exists a negative rate for {mRi}i>0, which implies the
existence of a negative cycle in the zigzag automaton.

Lemma 7. If R is a ∗-consistent well-founded difference bounds relation of prefix b ≥
0, and AR is its corresponding zigzag automaton, then there exists a cycle π from a
state q to itself, such that w(π) < 0 and there exists paths πi from an initial state to q,
and πf from q to a final state, such that |πi|+ |πf | = b.

Next we prove the existence of a linear decreasing function, based on the existence
of a negative weight cycle in the zigzag automaton.

Lemma 8. If R is a ∗-consistent well-founded difference bounds relation of prefix b ≥
0, then there exists a linear function f(x) such that, for all states s, s′ : x→ Z we have
R−b(�)(s) ∧R(s, s′)→ f(s) > f(s′).

Last, we prove that the function f of Lemma 8 is bounded, concluding that it is
indeed a ranking function. Since each run in the zigzag automaton recognizes a path

262 M. Bozga, R. Iosif, and F. Konečný

from some xi to some xj , a run that repeats a cycle can be decomposed into a prefix,
the cycle itself and a suffix. The recognized path may traverse the cycle several times,
however each exit point from the cycle must match a subsequent entry point. These
paths from the exit to the corresponding entries give us the necessary lower bound. In
fact, these paths appear already on constraint graphs that represent unfoldings of Ri,
for any i ≥ b. Hence the need for a strenghtened witness R−b(�) ∧ R, as R alone is
not enough for proving boundedness of f .

Lemma 9. If R is a ∗-consistent well-founded difference bounds relation of prefix b,
and f(x) is the linear decreasing function from Lemma 8, there exists an integer h such
that, for all states s, s′ : x→ Z, (Rb(�)(s) ∧ R(s, s′))→ (f(s) ≥ h ∧ f(s′) ≥ h).

As an experiment, we have tried the RANKFINDER [19] tool (complete for linear rank-
ing functions), which failed to discover a ranking function on the relation R from Fig.
1. This comes with no surprise, since no linear decreasing function that is bounded af-
ter the first iteration exists. However, RANKFINDER finds a ranking function for the
witness relationR−b(�) ∧R instead.

5 Linear Affine Relations

Let x = 〈x1, . . . , xn〉� be a column vector of variables ranging over integers. A linear
affine relation is a relation of the form R(x,x′) ≡ Cx ≥ d ∧ x′ = Ax + b, where
A ∈ Zn×n, C ∈ Zp×n are matrices, and b ∈ Zn, d ∈ Zp are column vectors of integer
constants. Notice that we consider linear affine relations to be deterministic, unlike the
octagonal relations considered in the previous. In the following, it is convenient to work
with the equivalent homogeneous form:

R(x,x′) ≡ Chxh ≥ 0 ∧ x′
h = Ahxh

Ah =

(
A b
0 1

)
Ch =

(
C −d

)
xh =

(
x

xn+1

) (7)

The closed form of a linear affine relation is defined by the following formula:

R(k)(x,x′) ≡ ∃xn+1, x
′
n+1.x

′
h = Ak

hxh∧∀0 ≤ � < k.CA�
hx ≥ 0 ∧ xn+1 = 1 (8)

Intuitively, the first conjunct defines the (unique) outcome of iterating the relation x′ =
Ax+ b for k steps, while the second (universally quantified) conjunct ensures that the
condition (Cx ≥ d) has been always satisfied all along the way. The definition of the
weakest recursive set of a linear affine relation is (after the elimination of the trailing
existential quantifier):

wrs(R)(x) ≡ ∃xn+1∀k > 0 . ChA
k
hx ≥ 0 ∧ xn+1 = 1 (9)

The main difficulty with the form (9) comes from the fact that the powers of a matrix
A cannot usually be defined in a known decidable theory of arithmetic. In the follow-
ing, we discuss the case of A having the finite monoid property [2,25], which leads to

Deciding Conditional Termination 263

wrs(R) being Presburger definable. Further, we relax the finite monoid condition and
describe a method for generating sufficient termination conditions, i.e. sets S ∈ Zn

such that S ∩ wrs(R) = ∅.
Some basic notions of linear algebra are needed in the following. If A ∈ Zn×n is a

square matrix, and v ∈ Zn is a column vector of integer constants, then any complex
number λ ∈ C such that Av = λv, for some complex vector v ∈ Cn, is called an
eigenvalue of A. The vector v in this case is called an eigenvector of A. It is known that
the eigenvalues of A are the roots of the characteristic polynomial det(A − λIn) = 0,
which is an effectively computable univariate polynomial in λ. A complex number r is
said to be a root of the unity if rd = 1 for some integer d > 0.

In the previous work of Weber and Seidl [25], Boigelot [2], and Finkel and Leroux
[12], a restriction of linear affine relations has been introduced, with the goal of defining
the closed form of relations in Presburger arithmetic. A matrix A ∈ Zn×n is said to have
the finite monoid property if and only if its set of powers {Ai | i ≥ 0} is finite. A linear
affine relation has the finite monoid property if and only if the matrix A defining the
update has the finite monoid property.

Lemma 10 ([12,2]). A matrix A ∈ Zn×n has the finite monoid property iff:

1. all eigenvalues of A are either zero or roots of the unity, and
2. all non-zero eigenvalues are of multiplicity one.

Both conditions are decidable.

In the following, we drop the second requirement of Lemma 10, and consider only
linear relations, such that all non-zero eigenvalues of A are roots of the unity. In this
case, R(k) cannot be defined in Presburger arithmetic any longer, thus we renounce
defining wrs(R) precisely, and content ourselves with the discovery of sufficient con-
ditions for termination. Basically given a linear affine relation R, we aim at finding
a disjunction φ(x) of linear constraints on x, such that φ ∧ wrs(R) is inconsistent,
without explicitly computing wrs(R).

Lemma 11. Given a square matrix A ∈ Zn×n, whose non-zero eigenvalues are all
roots of the unity. Then (Am)i,j ∈ Q[m], for all 1 ≤ i, j ≤ n, are effectively computable
polynomials with rational coefficients.

We turn now back to the problem of defining wrs(R) for linear affine relations R of the
form (9). First notice that, if all non-zero eigenvalues of A are roots of the unity, then
the same holds for Ah (7). By Lemma 11, one can find rational polynomials pi,j(k)
defining (Ak

h)i,j , for all 1 ≤ i, j ≤ n. The condition (9) resumes to a conjunction of the
form:

wrs(R)(x) ≡
n∧

i=1

∀k > 0 . Pi(k,x) ≥ 0 (10)

where each Pi = ai,d(x) · kd + . . .+ ai,1(x) · k + ai,0(x) is a polynomial in k whose
coefficients are the linear combinations ai,d ∈ Q[x]. We are looking after a sufficient
condition for termination, which is, in this case, any set of valuations of x that would
invalidate (10). The following proposition gives sufficient invalidating clauses for each

264 M. Bozga, R. Iosif, and F. Konečný

conjunct above. By taking the disjunction of all these clauses we obtain a sufficient
termination condition for R.

Lemma 12. Given a polynomial P (k,x) = ad(x) · kd + . . .+ a1(x) · k+ a0(x), there
exists n > 0 such that P (n,x) < 0 if, for some i = 0, 1, . . . , d, we have ad−i(x) < 0
and ad(x) = ad−1(x) = . . . = ad−i+1(x) = 0.

Example Consider the following program [11], and its linear transformation matrix A.

while (x ≥ 0)
x′ = x+ y
y′ = y + z

A =

⎛⎝1 1 0
0 1 1
0 0 1

⎞⎠
Ak =

⎛⎝1 k k(k−1)
2

0 1 k
0 0 1

⎞⎠
The characteristic polynomial of A is det(A − λI3) = (1 − λ)3, hence the only
eigenvalue is 1, with multiplicity 3. Then we compute Ak (see above), and x′ =

x+k ·y+ k(k−1)
2 z gives the value of x after k iterations of the loop. Hence the (precise)

non-termination condition is: ∀k > 0 . z
2 ·k2+(y− z

2)·k+x ≥ 0. A sufficient condition
for termination is: (z < 0) ∨ (z = 0 ∧ y < 0) ∨ (z = 0 ∧ y = 0 ∧ x < 0) ��

We can generalize this method further to the case where all eigenvalues of A are of
the form q · r, with q ∈ R and r ∈ C being a root of the unity. The main reason for
not using this condition from the beginning is that we are, to this point, unaware of
its decidability status. With this condition instead, it is sufficient to consider only the
eigenvalues with the maximal absolute value, and the polynomials obtained as sums
of the polynomial coefficients of these eigenvalues. The result of Lemma 11 and the
sufficient condition of Lemma 12 carry over when using these polynomials instead.

6 Experimental Evaluation

We have validated the methods described in this paper by automatically verifying ter-
mination of all the octagonal running examples, and of several integer programs syn-
thesized from (i) programs with lists [3] and (ii) VHDL models [21]. We have first
computed automatically their strongest summary relation T , by adapting the method
for reachability analysis for integer programs, described in [6], and implemented in the
FLATA tool [13]. Then we automatically proved that T is contained in a disjunction of
octagonal relations, which are found to be well-founded by the procedure described in
Section 4.

We have first verified the termination of the LISTCOUNTER and LISTREVERSAL

programs, which were obtained using the translation scheme from [3], which generates
an integer program from a program manipulating dynamically allocated single-selector
linked lists. Using the same technique, we also verified the COUNTER and SYNLIFO

programs, obtained by translating VHDL designs of hardware counter and synchronous
LIFO [21]. These models have infinite runs for any input values, which is to be ex-
pected, as they encode the behavior of synchronous reactive circuits.

Second, we have compared (Table 1) our method for termination of linear affine
loops with the examples given in [11], and found the same termination preconditions

Deciding Conditional Termination 265

Table 1. Termination preconditions for several program fragments from [11]

PROGRAM COOK ET. AL [11] LINEAR AFFINE LOOPS

if (lvar ≥ 0)
while (lvar < 230)

lvar = lvar << 1;
lvar > 0 ∨ lvar < 0 ∨ lvar ≥ 230 ¬(lvar=0)∨lvar≥230

while (x ≤ N)
if (*) { x=2*x+y;

y=y+1; }
else x ++;

x > N ∨ x + y ≥ 0 x>N∨x+y≥0

while (x ≥ N)
x = -2*x + 10; x > 5 ∨ x + y ≥ 0 x = 10

3
⇐⇒ true

//@ requires n > 200
x = 0;
while (1)

if (x < n) { x=x+y;
if (x ≥ 200) break; }

y > 0 y>0

as they do, with one exception, in which we can prove universal termination in integer
input values (row 3 of Table 1). The last example from [11] is the Euclidean Greatest
Common Divisor algorithm, for which we infer automatically the correct termination
preconditions using a disjunctively well-founded octagonal abstraction of the transition
invariant.

7 Conclusions

We have presented several methods for deciding conditional termination of several
classes of program loops manipulating integer variables. The universal termination
problem has been found to be decidable for octagonal relations and linear affine loops
with the finite monoid property. In other cases of linear affine loops, we give sufficient
termination conditions. We have implemented our method in the FLATA tool [13] and
performed a number of preliminary experiments.

Acknowledgements. The authors would like to thank Eugene Asarin, Alexandre Donze,
Hang Zhou, Mihai Moraru and Barbara Jobstmann for the insightful discussions on the
matters of this paper, as well as the anonymous reviewers, for their interesting sugges-
tions that led to improvements of our work.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: An Improved Tight Closure Algorithm for Integer
Octagonal Constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 8–21. Springer, Heidelberg (2008)

2. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces, PhD Thesis, vol. 189.
Collection des Publications de l’Université de Liège (1999)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
Are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
517–531. Springer, Heidelberg (2006)

4. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating Octagons. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

266 M. Bozga, R. Iosif, and F. Konečný

5. Bozga, M., Iosif, R., Konečný, F.: Fast Acceleration of Ultimately Periodic Relations. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer,
Heidelberg (2010)

6. Bozga, M., Iosif, R., Konečný, F.: Relational Analysis of Integer Programs. Technical Report
TR-2011-14, Verimag, Grenoble, France (2011)

7. Bozga, M., Iosif, R., Konečný, F.: Deciding Conditional Termination. Technical Report TR-
2012-1, Verimag, Grenoble, France (2012)

8. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta Informat-
icae 91, 275–303 (2009)

9. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg
(2005)

10. Braverman, M.: Termination of Integer Linear Programs. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)

11. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Conditional Ter-
mination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer,
Heidelberg (2008)

12. Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications to Broadcast
Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156.
Springer, Heidelberg (2002)

13. http://www-verimag.imag.fr/FLATA.html
14. Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De

Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)
15. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving non-

termination. SIGPLAN Not. 43, 147–158 (2008)
16. Halava, V., Harju, T., Hirvensalo, M., Karhumaki, J.: Skolem’s problem – on the border

between decidability and undecidability (2005)
17. Iosif, R., Rogalewicz, A.: Automata-Based Termination Proofs. In: Maneth, S. (ed.) CIAA

2009. LNCS, vol. 5642, pp. 165–177. Springer, Heidelberg (2009)
18. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1),

31–100 (2006)
19. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking

Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251.
Springer, Heidelberg (2004)

20. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004, pp. 32–41 (2004)
21. Smrcka, A., Vojnar, T.: Verifying Parametrised Hardware Designs Via Counter Automata.

In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 51–68. Springer, Heidelberg (2008)
22. Sohn, K., van Gelder, A.: Termination detection in logic programs using argument sizes. In:

PODS 1991 (1991)
23. Tiwari, A.: Termination of Linear Programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004.

LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)
24. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society 42, 230–265 (1936)
25. Weber, A., Seidl, H.: On finitely generated monoids of matrices with entries in n. In: ITA

1991, 19–38 (1991)

http://www-verimag.imag.fr/FLATA.html

The AVANTSSAR Platform for the Automated

Validation of Trust and Security
of Service-Oriented Architectures

Alessandro Armando1, Wihem Arsac2, Tigran Avanesov3, Michele Barletta4,
Alberto Calvi4, Alessandro Cappai1, Roberto Carbone1, Yannick Chevalier5,

Luca Compagna2, Jorge Cuéllar6, Gabriel Erzse7, Simone Frau8,
Marius Minea7, Sebastian Mödersheim9, David von Oheimb6,

Giancarlo Pellegrino2, Serena Elisa Ponta1,2, Marco Rocchetto4,
Michael Rusinowitch3, Mohammad Torabi Dashti8,

Mathieu Turuani3, and Luca Viganò4

1 AI-Lab, DIST, Università di Genova, Italy
2 SAP Research, Mougins, France

3 LORIA & INRIA Nancy Grand Est, France
4 Department of Computer Science, University of Verona, Italy

5 IRIT, Université Paul Sabatier, France
6 Siemens AG, Corporate Technology, Munich, Germany

7 Institute e-Austria and Politehnica University, Timişoara, Romania
8 Institute of Information Security, ETH Zurich, Switzerland

9 IBM Zurich Research Laboratory, Switzerland and DTU, Lyngby, Denmark
www.avantssar.eu

Abstract. The AVANTSSAR Platform is an integrated toolset for the
formal specification and automated validation of trust and security of
service-oriented architectures and other applications in the Internet of
Services. The platform supports application-level specification languages
(such as BPMN and our custom languages) and features three valida-
tion backends (CL-AtSe, OFMC, and SATMC), which provide a range
of complementary automated reasoning techniques (including service or-
chestration, compositional reasoning, model checking, and abstract in-
terpretation). We have applied the platform to a large number of indus-
trial case studies, collected into the AVANTSSAR Library of validated
problem cases. In doing so, we unveiled a number of problems and vul-
nerabilities in deployed services. These include, most notably, a serious
flaw in the SAML-based Single Sign-On for Google Apps (now corrected
by Google as a result of our findings). We also report on the migration
of the platform to industry.

1 Introduction

Driven by rapidly changing requirements and business needs, IT systems and
applications are undergoing a paradigm shift: components are replaced by ser-
vices distributed over the network, and composed and reconfigured dynamically
in a demand-driven way into Service-Oriented Architectures (SOAs).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 267–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.avantssar.eu

268 A. Armando et al.

Deploying services in future network infrastructures such as SOAs or, even
more generally, the Internet of Services (IoS), obviously entails a wide range of
trust and security issues. Modeling and reasoning about these trust and secu-
rity issues is complex due to three main characteristics of service orientation.
First, SOAs are heterogeneous : their components are built using different tech-
nology and run in different environments, yet interact and may interfere with
each other. Second, SOAs are also distributed systems, with functionality and re-
sources distributed over several machines or processes. The resulting exponential
state-space complexity makes their design and efficient validation difficult, even
more so in hostile situations perhaps unforeseen at design time. Third, SOAs
and their security requirements are continuously evolving: services may be com-
posed at runtime, agents may join or leave, and client credentials are affected by
dynamic changes in security policies (e.g., for incidents or emergencies). Hence,
security policies must be regarded as part of the service specification and as first-
class objects exchanged and processed by services. The trust and security prop-
erties that SOAs should provide to the users are, moreover, very diverse in type
and scope, ranging from basic properties like confidentiality and authentication
to complex dynamic and domain-specific requirements (e.g., non-repudiation or
separation and binding of duty).

In this paper, we present the AVANTSSAR Platform, an integrated toolset
for the formal specification and automated validation of trust and security of
SOAs and, in general, of applications in the IoS. It has been developed in the
context of the FP7 project “AVANTSSAR: Automated Validation of Trust and
Security in Service-Oriented Architectures”.

To handle the complexity of trust and security in service orientation, the
platform integrates different technologies into a single tool, so they can inter-
act and benefit from each other. More specifically, the platform comprises three
back-ends (CL-AtSe [6,36], OFMC [15,22,33], and SATMC [3,5]), which oper-
ate on the same input specification (written in the AVANTSSAR Specification
Language ASLan) and provide complementary automated reasoning techniques
(including service orchestration and compositional reasoning, model checking,
and abstraction-based validation). A connectors layer provides an interface to
application-level specification languages (such as the standard BPMN, and our
custom languages ASLan++, AnB and HLPSL++), which can be translated
into the core ASLan language and vice versa.

We have applied the platform to a large number of exemplary industrial case
studies, which we have collected into the AVANTSSAR Library of validated
problem cases. In doing so, we have been able to uncover a number of problems
and vulnerabilities in deployed services including, most notably, the detection
of a serious flaw in the SAML-based SSO solution for Google Apps. Finally, we
also report on our successful activities in migrating the platform to industry. As
we describe in more detail in the following, to the best of our knowledge, no
other tool exhibits the same scope and expressiveness while achieving the same
performance and scalability.

The AVANTSSAR Platform 269

We have implemented the AVANTSSAR Platform as a SOA itself, where
each component service is offered as a web service. The platform also has a
web-based graphical interface that allows the user to choose between three in-
teraction modes of increasing level of sophistication and to execute, monitor and
inspect the results of the platform in a user-friendly way. The web services and
the associated documentation (a tutorial, guidelines, the Library and other ex-
amples, scientific papers and deliverables, and a users mailing list) are available
at www.avantssar.eu, where one can also download the binaries and/or source
code of the validation back-ends and play online with the platform through a
prototype, web-based graphical user interface.

The platform is a successor to the AVISPA Tool [2], a push-button tool for
the formal analysis of security protocols. The AVANTSSAR Platform signifi-
cantly extends its predecessor’s scope, effectiveness, and performance by scaling
up to the trust and security of SOAs and the IoS. We thus expect that the
AVANTSSAR Platform will inherit and considerably widen the user basis of
AVISPA, which already comprises not only the members of the AVANTSSAR
consortium but also several dozens of other academic and industrial practition-
ers, who have published a large number of works in which AVISPA is used. Our
first, and positive, experience with the integration of the AVANTSSAR Platform
within industrial practice indicates a strong potential for its wide take up.

It is important to note that this is the first comprehensive description of the
platform, including the results of the experiments that we carried out. Descrip-
tions of some of the different platform components have already been given and
we will often refer to the corresponding documents for additional information.

2 The AVANTSSAR Platform

2.1 Description and Architecture

Fig. 1 shows the main components of the AVANTSSAR Platform, where the
arrows represent the most general information flow, from input specification to
validated output. In this flow, the platform takes as input specifications of the
available services (including their security-relevant behavior and possibly the
local policies they satisfy) together with a policy stating the functional and se-
curity requirements of the target service. In the orchestration phase, the platform
applies automated reasoning techniques to build a validated orchestration of the
available services that meets the security requirements. More specifically, the Or-
chestrator (short for Trust and Security Orchestrator) looks for a composition of
the available services in a way that is expected but not yet guaranteed to satisfy
the input policy (it may additionally receive as input a counterexample found
by the Validator, if any) and outputs a specification of the target service that is
guaranteed to satisfy the functional goals. Then, the Validator (short for Trust
and Security Validator), which comprises the three back-ends CL-AtSe, OFMC
and SATMC, checks whether the orchestration satisfies the security goals. If so,
the orchestrated service is returned as output, otherwise, a counterexample is re-
turned to the Orchestrator to provide a different orchestration, until it succeeds,

www.avantssar.eu

270 A. Armando et al.

Vulnerability

: Policy
: Tool input/output

P

: Trust and SecurityTS
: Composed ServiceCS
: Composed PolicyCP
: ServiceS

insecure

P

Policy

Composed service/policy

CP

CS

Secured service/policy

TS Wrapper

CS

CP

secure

Services

feedback

BPMN + Annotations
CONN

CONN
HLPSL++

CONN
AnB

CONNECTOR
ASLan++

orchestration/
composition

validation
problem

TS VALIDATORTS ORCHESTRATOR

Specification of the available services (new) Service specified

ASLan ASLan

TS Wrapper

The AVANTSSAR Validation Platform

Fig. 1. The AVANTSSAR Validation Platform

or no suitable orchestration can be found. Instead of using the Orchestrator, a
user may manually generate the target service and simply invoke the Validator,
providing as input the service and its security goals. In this case, the platform
outputs either validation success or the counterexample found.

To ease its usage and pave the way for its adoption by industry, the connectors
layer of the platform provides a set of software modules that carry out both

(C1) the translation from application-level (e.g., our own ASLan++, AnB and
HLPSL++) and industrially-suited specification languages (e.g., BPMN)
into the low-level AVANTSSAR Specification Language (ASLan) [9], the
common input language of formal analysis by the validator back-ends, and

(C2) the reverse translation from the common output format of the validator
back-ends into a higher-level MSC-like output format to ease the interpre-
tation of the results for the user.

Moreover, the connectors layer is open to the integration of other translations.
In the following subsections, we describe the different platform components in

more detail, starting with the specification languages and the connectors layer,
and then considering the Orchestrator and the Validator.

The AVANTSSAR Platform 271

2.2 The Specification Languages ASLan and ASLan++

As observed in the introduction, modeling and reasoning about trust and security
of SOAs is complex due to the fact that SOAs are heterogeneous, distributed
and continuously evolving, and should guarantee security properties that are,
typically, very diverse. Besides the classical data security requirements including
confidentiality and authentication/integrity, more elaborate goals are authoriza-
tion (with respect to a policy), separation or binding of duty, and accountability
or non-repudiation. Some applications may also have domain-specific goals (e.g.,
correct processing of orders). Finally, one may consider liveness properties under
certain fairness conditions) e.g., one may require that a web service for online
shopping eventually processes every order if the intruder cannot block the com-
munication indefinitely. This diversity of goals cannot be formulated with a fixed
repertoire of generic properties (like authentication); instead, it suggests the need
for specification of properties in an expressive logic.

Various languages have been proposed to model trust and security of SOAs,
e.g., BPEL [34], π calculus [28], F# [17], to name a few. Each of them, however,
focuses only on some aspects of SOAs, and cannot cover all previously described
features, except perhaps in an artificial way. One needs a language fully dedi-
cated to specifying trust and security aspects of services, their composition, the
properties that they should satisfy and the policies they manipulate and abide
by. Moreover, the language must go beyond static service structure: a key chal-
lenge is to integrate policies that are dynamic (e.g., changing with the workflow
context) with services that can be added and composed dynamically themselves.

We have designed ASLan so as to satisfy all these desiderata. At its core,
ASLan describes a transition system, where states are sets of typed ground terms
(facts), and transitions are specified as rewriting rules over sets of terms. A fact
iknows , true of any message (term) known to the intruder, is used to model com-
munication as we consider a general Dolev-Yao intruder [26] that is in complete
control of the network and can compose, send, and intercept messages at will,
yet cannot break cryptography (following the perfect cryptography assumption).
A key feature of ASLan is the integration of this transition system that expresses
the dynamics of the model with Horn clauses, which are used to describe policies
in a clear, logical way. The execution model alternates transition steps with a
transitive closure of Horn clause applications. This allows us to model the ef-
fects of policies in different states: for instance, agents can become members of
a group or leave it, with immediate consequences for their access rights.

Moreover, to carry out the formal analysis of services, we need to model the
security goals. While this can be done by using different languages, in ASLan
we have chosen to employ a variant of linear temporal logic (LTL, e.g. [27]),
with backwards operators and ASLan facts as propositions. This logic gives us
the desired flexibility for the specification of complex goals, as illustrated by the
problem cases that are part of the AVANTSSAR Library.

ASLan is a low-level formal language and is thus easily usable only by experts,
so we have developed the higher-level language ASLan++ to achieve three main
design goals:

272 A. Armando et al.

– the language should be expressive enough to model a wide range of SOAs
while allowing for succinct specifications;

– it should facilitate the specification of services at a high level of abstraction
in order to reduce model complexity as much as possible; and

– it should be close to specification languages for security protocols and web
services, but also to procedural and object-oriented programming languages,
so that it can be employed by users who are not formal specification experts.

For reasons of space, we refer to [13,37] for details on ASLan and ASLan++
including a tutorial with many modeling examples.

2.3 The Connectors Layer

As remarked above, writing formal specifications of complex systems at the low
conceptual level of ASLan is not practically feasible and reasonable. The same
applies to the activity of interpreting and understanding the raw output format
returned by the validator back-ends. Industry, in particular, is used to higher-
level modeling languages typically targeting very specific domain areas. That is
why we have devised an open connectors layer, which currently comprises four
connectors carrying out automatic translations.

The ASLan++ connector provides translations from ASLan++ specifications
to ASLan and in the reverse direction for attack traces. Security protocol/service
practitioners who are used to the more accessible but less expressive Alice-and-
Bob notation or message sequence charts (MSCs) may prefer to use the AnB
connector, which is based on an extended Alice-and-Bob notation [30,32,33],
or the HLPSL++ connector, which is based on an extension of the High-Level
Protocol Specification Language HLPSL [23], developed in the context of the
AVISPA project [2,14].

Business process (BP) practitioners are used to standard languages such as
the Business Process Modeling Notation (BPMN), the Business Process Exe-
cution Language (BPEL), etc. For them, even the usage of ASLan++ (or AnB
or HLPSL++) may not be so easy, or they might already have specifications
written in their favorite BP language that they do not wish to put aside to then
repeat the modeling activity with another language. We have thus developed two
connectors for BPMN (see [12]): a public connector that can be used in open-
source environments such as Oryx to evaluate control flow properties of a BP
modeled in BPMN, and a proprietary SAP NetWeaver BPM connector that is a
plug-in of the SAP NetWeaver Development Studio that allows BP analysts to
take advantage of the AVANTSSAR Platform via a security validation service.
The business analyst provides the security requirements that are critical for the
compliance of the BP (e.g., need-to-know in executing a task, data confiden-
tiality with respect to certain users or roles) through easy-to-access UIs of the
security validator that returns answers in a nice graphical BPMN-like format.

Connectors for other BP languages may be developed similarly. In fact, thanks
to the openness of the connectors layer, new connectors for other application
level and/or industrially-suited specification languages can be added by creating

The AVANTSSAR Platform 273

proper software modules implementing (C1) and (C2). To alleviate this task,
we have devised, for both the common input language ASLan and the common
output format of the validator back-ends, XML representations and software
modules generating these XML representations [10].

2.4 The Orchestrator

Composability, one of the basic principles and design objectives of SOAs, ex-
presses the need for providing simple scenarios where already available services
can be reused to derive new added-value services. In their SOAP incarnation,
based on XML messaging and relying on a rich stack of related standards, SOAs
provide a flexible yet highly inter-operable solution to describe and implement
a variety of e-business scenarios possibly bound to complex security policies.

It can be very complex to discover or even to adequately describe composi-
tion scenarios respecting overall security constraints. This motivates introducing
automated solutions to scalable services composition. Two key approaches for
composing web services have been considered, which differ by their architecture:
orchestration is centralized and all traffic is routed through a mediator, whereas
choreography is distributed and all web services can communicate directly.

Several “orchestration” notions have been advocated (see, e.g., [29]). However,
in inter-organizational BPs it is crucial to protect sensitive data of each orga-
nization; and our main motivation is to take into account the security policies
while computing an orchestration. The AVANTSSAR Platform implements an
idea presented in [24] to automatically generate a mediator. We specify a web
service profile from its XML Schema and WS-SecurityPolicy using first-order
terms (including cryptographic functions). The mediator can use cryptography
to produce new messages, and is constructed with respect to security goals using
the techniques we developed for the verification of security protocols.

We highlight here the most important distinguishing features of our approach.
First, several tools have addressed the WS orchestration problem but, to our
knowledge, previous works abstract away the security policies attached to the
services, while we consider them as an additional constraint. Second, most auto-
matic orchestration approaches work by computing products of (communicating)
finite-state automata, where messages are restricted to a finite alphabet. How-
ever, by specifying web services in ASLan, we can express a richer set of messages
using first-order terms (including symbols for cryptographic functions). Third,
we have applied the AVANTSSAR Orchestrator to several industrial case stud-
ies (cf. Table 1) that cannot be handled by other tools because the messages
exchanged by services are too complex (e.g., they are non-atomic and built with
cryptographic primitives) and require some automatic adaptation. For example,
the Orchestrator has automatically generated a Security Server in the Digital
Contract Signing case study (which originated from a commercial product), while
in the Car Registration Process case study, the Orchestrator has been able to
cope with additional constraints imposed by the authorization policies of the
available services, specified as a set of Horn clauses.

274 A. Armando et al.

Finally, and most importantly, the orchestration output can be automatically
checked for security by the Validator as described below. If the specification
meets the validation goals, i.e., no attack is found, the orchestration solution is
considered as the final, validated, result of orchestration. Otherwise the Validator
returns a goal violation report including an attack trace, which may be fed back
to the Orchestrator, requesting it to backtrack and try an alternative solution.

2.5 The Validator

A specification in ASLan may be the result of an orchestration or of the trans-
lation of a specification given in some higher-level language such as ASLan++.
The Validator takes any ASLan model of a system and its security goals and
automatically checks whether the system meets its goals under the assumption
that the network is controlled by a Dolev-Yao intruder.

Currently, the functionality of the Validator is supported by the three different
back-ends CL-AtSe, OFMC and SATMC, but, again, the platform is open to the
integration of additional validation back-ends.

The user can select which back-end is used for the validation process. By de-
fault, all three are invoked in parallel on the same input specification, so that
the user can compare the results of the validation carried out by the comple-
mentary automated reasoning techniques that the back-ends provide (including
compositional reasoning, model checking, and abstract interpretation).

CL-AtSe. The Constraint-Logic-based Attack Searcher for security protocols
and services takes as input a service specified as a set of rewriting rules, and
applies rewriting and constraint solving techniques to model all states that are
reachable by the participants and decides if an attack exists with respect to the
Dolev-Yao intruder. The main idea in CL-AtSe consists in running the services
in all possible ways by representing families of traces with positive or negative
constraints on the intruder knowledge, variable values or sets, etc. Each service
step execution adds new constraints on the current intruder and environment
state. Constraints are kept reduced to a normal form for which satisfiability is
easily checked. This allows one to decide whether some security property has
been violated up to this point. CL-AtSe requires a bound on the number of
service calls in case the specification allows for loops in system execution. It
implements several preprocessing modules to simplify and optimize input spec-
ifications before starting a verification. If a security property is violated then
CL-AtSe outputs a trace that gives a detailed account of the attack scenario.

OFMC. The Open-source Fixedpoint Model Checker (which extends the On-
the-fly model checker, the previous OFMC) consists of two modules. The classi-
cal module performs verification for a bounded number of transitions of honest
agents using a constraint-based representation of the intruder behavior. The
fixedpoint module allows verification without restricting the number of steps by
working on an over-approximation of the search space that is specified by a set of

The AVANTSSAR Platform 275

Horn clauses using abstract interpretation techniques and counterexample-based
refinement of abstractions. Running both modules in parallel, OFMC stops as
soon as the classic module has found an attack or the fixedpoint module has
verified the specification, so as soon as there is a definitive result. Otherwise,
OFMC can just report the bounded verification results and the potential at-
tacks that the fixedpoint module has found. In case of a positive result, we can
use the computed fixedpoint to automatically generate a proof certificate for the
Isabelle interactive theorem prover. The idea behind the automatic proof gener-
ator OFMC/Isabelle [22] is to gain a high reliability, since after this step the cor-
rectness of the verification result no longer depends on the correctness of OFMC
and the correct use of abstractions. Rather, it only relies on: (i) the correctness of
the small Isabelle core that checks the proof generated by OFMC/Isabelle, and
(ii) that the original ASLan specification (without over-approximations) indeed
faithfully models the system and properties that are to be verified.

SATMC. The SAT-based Model Checker is an open, flexible platform for SAT-
based bounded model checking of security services. Under the standard assump-
tion of strong typing, SATMC performs a bounded analysis of the problem by
considering scenarios with a finite number of sessions. At the core of SATMC
lies a procedure that, given a security problem, automatically generates a propo-
sitional formula whose satisfying assignments (if any) correspond to counterex-
amples on the security problem of length bounded by some integer k. Intuitively,
the formula represents all the possible evolutions, up to depth k, of the tran-
sition system described by the security problem. Finding attacks (of length k)
on the service therefore reduces to solving propositional satisfiability problems.
For this task, SATMC relies on state-of-the-art SAT solvers, which can handle
propositional satisfiability problems with hundreds of thousands of variables and
clauses or more. SATMC can also be instructed to perform an iterative deep-
ening on the number k of steps. As soon as a satisfiable formula is found, the
corresponding model is translated back into a partial-order plan (i.e., a partially
ordered set of rules whose applications lead the system from the initial state to
a state witnessing the violation of the expected security property).

As we remarked above, to the best of our knowledge, no other tool exhibits
the same scope and expressiveness while achieving the same performance and
scalability of the AVANTSSAR Platform. We have already discussed the ex-
pressiveness of the AVANTSSAR languages and the possibility of carrying out
automated orchestration under security constraints, so now we briefly describe
related work on automated analysis (and then discuss industrial case studies and
industry migration in the following sections).

Service analysis methods based on abstract interpretation have become in-
creasingly popular, e.g., [16,18,19,20,25,38]. For instance, TulaFale [16], a tool
by Microsoft Research based on ProVerif [18], exploits abstract interpretation for
verification of web services that use SOAP messaging, using logical predicates
to relate the concrete SOAP messages to a less technical representation that
is easier to reason about. ProVerif implements a form of static analysis based

276 A. Armando et al.

on abstract interpretation that supports unbounded verification but does not
support the modeling of many aspects that occur in problems of real-world com-
plexity such as revocation of keys at a key-server. In contrast, the AVANTSSAR
Platform supports the formal modeling and automatic analysis of a large class
of systems and properties, albeit for a bounded number of sessions. Two recent
tools, namely the AIF framework [31] and StatVerif [1], have overcome some of
the limitations of ProVerif, but they do not (yet) cover the full scope of what is
specifiable and analyzable with the AVANTSSAR Platform.

2.6 The AVANTSSAR Platform: Web Services and Web Interface

We have implemented the AVANTSSAR Platform as a SOA itself, where each
component service is offered as a web service (the URLs where each service, and
its WSDL interface, can be accessed are given at www.avantssar.eu; binaries
of each platform component are also available there, together with the source
codes of OFMC and SATMC). The platform service is implemented in PHP5,
by using the WSO2 Web Services Framework for PHP (WSO2 WSF/PHP) [39],
an open source, enterprise grade, PHP extension for providing and consuming
Web Services in PHP. The framework provides base communication functional-
ity in SOAP, XML, and other message formats carried over various transports
including HTTP, SMTP, XMPP and TCP. SOAP and HTTP are the standards
used for the current Web Services implementation.

The platform also comes with a web-based graphical user interface that al-
lows the user to execute, monitor and inspect the results of the platform in a
user-friendly way. Scalable vector graphics and AJAX are suitably coupled to
provide the user with an enhanced user experience. Fig. 2 shows a screenshot
of the interface. Since the number of functionalities offered by the platform can
discourage newcomers, the web interface supports three interaction modes with
increasing level of sophistication: demo mode, basic mode, and expert mode.

3 AVANTSSAR Library and Experimental Results

As proof of concept, we have applied the AVANTSSAR Platform to the case
studies that are now part of the so-called AVANTSSAR Library. In this way,
we have been able to detect a considerable number of goal violations in the
considered services and provide the required corrections. Moreover, the formal
modeling of case studies has allowed us to consolidate our specification languages
and has driven the evolution of the platform, both in terms of support for the
new language and modeling features, as well as in efficiency improvements needed
for the validation of the significantly more complex models. We expect that the
library will provide a useful test suite for similar validation technologies.

As terminology, we say that an application scenario is composed of one or
more scenes that focus on different use cases of the considered system, service,
protocol, or the like. Each scene contains at least one goal formalizing a desired
security property or security aspect, which we call a problem case.

www.avantssar.eu

The AVANTSSAR Platform 277

Fig. 2. The web interface of the AVANTSSAR Platform

The AVANTSSAR Library contains the formalization of 10 application sce-
narios of SOAs from the e-Business, e-Government and e-Health application
areas. For these application scenarios we have written 26 specifications (in one
of the application-level languages ASLan++, HLPSL++, annotated BPMN, or
in the more low level specification language ASLan). Each of these specifications
may address different security aspects, for a total of 94 problem cases. Among
the 26 specifications, 4 involve orchestration, resulting in 13 problem cases that
have to be orchestrated prior to validation.

Table 1 provides an overview of the problem cases formalized and validated by
the AVANTSSAR Platform. It contains, for each application scenario, informa-
tion about the connector used to translate high-level specifications into ASLan
(for NW BPM see Section 4) and, if applicable, about the orchestration carried
out (column “Orch.”). For what concerns the families of problem cases, “f” indi-
cates that a formalization of the problem case is present in the specification but
was not validated, whereas “v” indicates its validation. Table 2 describes CPU
times spent by each back-end on each application scenario. S/NS/TOUT are
abbreviations for Supported/Not Supported/Timeout ; times are totals (in sec-
onds) for successful runs. Moreover, for each scenario, the total number of Horn
Clauses (HC) and transitions (i.e., ASLan steps) contained in the specifications
are shown.

Since we lack space to describe all the application scenarios, problem cases
and corresponding trust and security requirements in detail, we point the reader
to [11] and here focus only on the SAML Single Sign-On scenario. It is repre-
sentative for the effectiveness of the AVANTSSAR methods and tools, since we
have succeeded in detecting vulnerabilities both in deployed SAML-based SSO
solutions and in the use case described in the SAML Technical Overview [35].
Though well specified and thoroughly documented, the OASIS SAML security
standard is written in natural language that is often subject to interpretation.

278 A. Armando et al.

Table 1. The AVANTSSAR Library: formalization and validation status

Areas Scenarios Scene Specification Connector Orch. Problem Cases

F
ed
er
a
ti
o
n

A
u
th
o
ri
za
ti
o
n
P
o
li
ci
es

A
cc
o
u
n
ta
b
il
it
y

T
ru
st
M
a
n
a
g
em
en
t

W
o
rk
fl
ow

S
ec
u
ri
ty

P
ri
va
cy

A
p
p
li
ca
ti
o
n
D
a
ta
P
ro
te
ct
io
n

C
o
m
m
u
n
ic
a
ti
o
n
S
ec
u
ri
ty

E-Business

Banking
Services

Loan Origination 1 lop-scene1.aslan No No v
2 lop-scene2.aslan NW BPM No v v v

Electronic
Commerce

Anonymous Shopping 1 IDMXScene1 Safe.aslan++ ASLan++ No v v
2 IDMXScene2 Safe.aslan++ ASLan++ No v v
3 IDMXScene3 Safe.aslan++ ASLan++ No f f

E-Government

Citizen and
Service Portals

Visa Application 1 PTD VisaBank.aslan++ ASLan++ No v v v v v v v
Car Registration 1 CRP.dyn.aslan++ ASLan++ Yes v v v v v v v

Document
Exchange
Procedures

Public Bidding 1 pb scene1.aslan++ ASLan++ No f f f f
2 pb scene2.aslan++ ASLan++ No v v v v
3 pb-elig.aslan++ ASLan++ No v
4 PB alt.aslan No Yes v v v v

Digital Contract Signing 1 dcs-scene1.aslan++ ASLan++ No f f f f f
2 dcs-scene2.aslan++ ASLan++ No v v v v v
3 dcs-scene3.aslan++ ASLan++ No v v v v v
4 DCS.ORCH.aslan No Yes f
5 DCS-GoalStyleInput.ORCH.aslan No Yes f

E-Health

Personal Health
Information

Electronic Health Records 1 ECR.aslan++ ASLan++ No v v v v v v
Process Task Delegation 1 PTD.aslan++ ASLan++ No v v v v v v

2 PTD PC.aslan++ ASLan++ No v v v v v v v
Access Control Management 1 eHRMS.txt No No f f f
SAML Single Sign-On 1 SP init-FC-one channel.hlpsl++ HLPSL++ No v v v

2 SP init-BC-two channels.hlpsl++ HLPSL++ No v v v
3 IdP init-FC.hlpsl++ HLPSL++ No v v v
4 IdP init-BC.hlpsl++ HLPSL++ No v v v
5 SAML-based SSO for GoogleApp.hlpsl++ HLPSL++ No v v v
6 SAML-based SSO for GoogleApp.aslan++ ASLan++ No v v v

Table 2. CPU analysis times for each back-end on the application scenarios

Dimensions SATMC OFMC CL-AtSe

Application Scenario HC Steps Time S/NS/TOUT Time S/NS/TOUT Time S/NS/TOUT

Anonymous Shopping 180 94 0 0/6/0 57.83 2/0/4 5.91 4/0/2

Car Registration 349 258 60.54 7/1/4 1001.31 2/1/9 69.35 10/0/2

Digital Contract Signing 238 52 10504.87 9/5/1 0 0/13/2 906.77 9/0/6

Electronic Health Records 89 48 19.33 1/1/0 5.08 1/0/1 125.37 1/1/0

Loan Origination 303 418 767.80 9/0/0 0 0/9/0 7175.26 6/0/3

Process Task Delegation 90 39 1.68 0/0/2 0 0/2/0 1092.43 2/0/0

Public Bidding 117 631 6747.37 12/0/3 9781.38 8/2/5 9298.7 14/1/0

SAML Single Sign-On 21 215 1989.49 15/0/1 22.77 1/15/0 1.85 1/15/0

Visa Application 38 19 44.83 1/0/0 3.12 1/0/0 9.86 1/0/0

Total 1425 1774 20135.84 52/15/16 10871.49 11/42/30 18685.50 51/17/15

Since the many configuration options, profiles, protocols, bindings, exceptions,
and recommendations are laid out in different, interconnected documents, it is
not always easy to establish which message fields are mandatory in a given profile
and which are not. Moreover, SAML-based solution providers may have internal
requirements that may result in small deviations from the standard. For instance,
internal requirements (or DoS considerations) may lead the service provider to
avoid checking the match between the ID field in the AuthResp and in the pre-
viously sent AuthReq. The consequences of such a choice must be examined in
detail.

The AVANTSSAR Platform 279

The SAML-based SSO for Google Apps in operation until June 2008 deviated
from the standard in a few, seemingly minor ways. By using the AVANTSSAR
Platform, we discovered a serious authentication flaw in the service, which a dis-
honest service provider could use to impersonate the victim user on Google Apps,
granting unauthorized access to private data and services (email, docs, etc.) [5].
The vulnerability was detected by SATMC and the attack was reproduced in an
actual deployment of SAML-based SSO for Google Apps. We readily informed
Google and the US Computer Emergency Readiness Team (US-CERT) of the
problem. Google developed a new version of the authentication service and asked
their customers to update their applications accordingly. The vulnerability re-
port released by US-CERT is available at http://www.kb.cert.org/vuls/id/
612636. The severity of the vulnerability has been rated High by the National
Institute of Standard and Technology (http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2008-3891).

By using the AVANTSSAR Platform we also discovered an authentication flaw
in the prototypical SAML SSO use case (as described in the SAML Technical
Overview) [4]. This flaw allows a malicious service provider to hijack a client au-
thentication attempt and force the latter to access a resource without its consent.
It also allows an attacker to launch Cross-Site Scripting (XSS) and Cross-Site
Request Forgery (XSRF) attacks. This last type of attack is even more pernicious
than classic XSRF, because XSRF requires the client to have an active session
with the service provider, whereas in this case the session is created automati-
cally, hijacking the client’s authentication attempt. This may have serious con-
sequences, as witnessed by the new XSS attack that we identified in the SAML-
based SSO for Google Apps and that could have allowed a malicious web server
to impersonate a user on any Google application. The problem has been reported
to OASIS, and a proposal for an errata to the SAML standard is currently be-
ing discussed within OASIS (http://tools.oasis-open.org/issues/browse/
SECURITY-12).

4 Technology Migration

Formal validation of trust and security will become a reality in SOAs and the IoS
only if and when the available technologies will have migrated to industry and
to standardization bodies (which are mostly driven by industry and influence
the future of industrial development). Such a migration has to face the gap
between advanced formal methods and their real exploitation within industry
and standardization bodies.

To ease the adoption of formal methods, several obstacles have to be overcome,
in particular: (i) the lack of automated technology supporting formal methods,
(ii) the gap between the problem case that needs to be solved in industry and
the abstract specification provided by formal methods, and (iii) the differences
between formal languages and models and the languages used in industrial design
and development environments (e.g., BPMN, Java, ABAP).

AVANTSSAR has addressed these issues by devising industrially-suited spec-
ification languages (model-driven languages), equipped with easy-to-use GUIs

http://www.kb.cert.org/vuls/id/612636
http://www.kb.cert.org/vuls/id/612636
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3891
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3891
http://tools.oasis-open.org/issues/browse/SECURITY-12
http://tools.oasis-open.org/issues/browse/SECURITY-12

280 A. Armando et al.

and translators to and from the core formal models, and migrating them to the
selected development environments. This enables designers and developers from
industry and standardization bodies to check more rapidly the correctness of the
proposed solutions without having a strong mathematical background.

A concrete example is the industry migration of the AVANTSSAR Platform
to the SAP environment. Two valuable migration activities have been carried
out by building contacts with core business units. First, in the trail of the suc-
cessful analysis of Google’s SAML-based SSO, the AVANTSSAR Platform has
been exploited to formally validate relevant scenarios where the SAP NetWeaver
SAML Next Generation Single Sign On services (NW NG SSO) are employed.
More than 50 formal specifications capturing these scenarios, the variety of con-
figuration options, and SAP internal design and implementation choices have
been formalized. Unsafe service compositions and configurations have been de-
tected, and safe compositions and configurations have been put forward for use
by SAP in setting up the NW NG SSO services on customer production systems.

The AVANTSSAR technology has been also integrated via a plug-in into the
SAP NetWeaver BPM (NW BPM) product [7,8] to formally validate if a busi-
ness process together with its access control policy complies with security-critical
requirements, e.g., separation and binding of duty, need-to-know principle, etc.
The plug-in provides a push-button technology with accessible user interfaces,
bridging the gap between business process modeling languages and formal spec-
ifications. Thus, a BP modeler can easily specify the security goals to validate
against the business process and access control policy; any violation of the se-
curity properties is depicted in a graphical way, enabling the modeler to take
countermeasures.

5 Concluding Remarks

As exemplified by the case studies and success stories mentioned above, formal
validation technologies can have a decisive impact for the trust and security
of SOAs and the IoS. The research innovation put forth by the AVANTSSAR
Platform aims at ensuring global security of dynamically composed services and
their integration into complex SOAs by developing an integrated platform of
automated reasoning techniques and tools. Similar technologies are being devel-
oped by other research teams (although none has yet the scale and depth of our
platform, which is the reason why we could not compare scope and efficiency).
Brought together, these research efforts will result in a new generation of tools for
automated security validation at design time, which is a stepping stone for the
development of similar tools for validation at service provision and consump-
tion time. For instance, part of the AVANTSSAR consortium is developing a
security testing toolset in the context of the FP7 project “SPaCIoS: Secure Pro-
vision and Consumption in the Internet of Services” (www.spacios.eu). These
advances will significantly improve the all-round security of SOAs and the IoS,
and thus boost their trustworthy development and public acceptance.

www.spacios.eu

The AVANTSSAR Platform 281

References

1. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: Verification of Stateful Processes.
In: Proc. CSF 2011, pp. 33–47. IEEE CS Press (2011)

2. Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar,
J., Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vi-
gneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

3. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. Journal of Applied Non-Classical Logics 19(4), 403–429 (2009)

4. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Pellegrino, G., Sorniotti, A.:
From Multiple Credentials to Browser-Based Single Sign-On: Are We More Secure?
In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C.
(eds.) SEC 2011. IFIP Advances in Information and Communication Technology,
vol. 354, pp. 68–79. Springer, Heidelberg (2011)

5. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra Abad, L.: Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In: Proc. FMSE 2008. ACM Press (2008)

6. Arora, C., Turuani, M.: Validating Integrity for the Ephemerizer’s Protocol with
CL-Atse. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to
Practical Security. LNCS, vol. 5458, pp. 21–32. Springer, Heidelberg (2009)

7. Arsac, W., Compagna, L., Kaluvuri, S., Ponta, S.E.: Security Validation Tool for
Business Processes. In: Proc. SACMAT 2011, pp. 143–144. ACM (2011)

8. Arsac, W., Compagna, L., Pellegrino, G., Ponta, S.E.: Security Validation of Busi-
ness Processes via Model-Checking. In: Erlingsson, Ú., Wieringa, R., Zannone, N.
(eds.) ESSoS 2011. LNCS, vol. 6542, pp. 29–42. Springer, Heidelberg (2011)

9. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1 (2008)
10. AVANTSSAR. Deliverable 4.2: AVANTSSAR Validation Platform v.2 (2010)
11. AVANTSSAR. Deliverable 5.4: Assessment of the AVANTSSAR Validation Plat-

form (2010)
12. AVANTSSAR. Deliverable 6.2.3: Migration to industrial development environ-

ments: lessons learned and best practices (2010)
13. AVANTSSAR. Deliverable 2.3: ASLan++ specification and tutorial (2011)
14. AVISPA: Automated Validation of Internet Security Protocols and Applications,

http://www.avispa-project.org

15. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for se-
curity protocols. IJIS 4(3), 181–208 (2005)

16. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A Security Tool
for Web Services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

17. Bhargavan, K., Fournet, C., Gordon, A.: Verified Reference Implementations of
WS-Security Protocols. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 88–106. Springer, Heidelberg (2006)

18. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. CSFW 2001, pp. 82–96. IEEE CS Press (2001)

19. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Automatic
validation of protocol narration. In: Proc. CSFW 2003, pp. 126–140. IEEE CS
Press (2003)

http://www.avispa-project.org

282 A. Armando et al.

20. Boichut, Y., Heam, P.-C., Kouchnarenko, O.: TA4SP: Tree Automata based on
Automatic Approximations for the Analysis of Security Protocols (2004)

21. Boichut, Y., Heam, P.-C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet
and Klay Technique to Automatically Verify Security Protocols. In: Proc. AVIS
2004. ENTCS (2004)

22. Brucker, A., Mödersheim, S.: Integrating Automated and Interactive Protocol Ver-
ification. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp.
248–262. Springer, Heidelberg (2010)

23. Chevalier, Y., Compagna, L., Cuéllar, J., Hankes Drielsma, P., Mantovani, J.,
Mödersheim, S., Vigneron, L.: A High Level Protocol Specification Language for
Industrial Security-Sensitive Protocols. In: Proc. SAPS 2004, pp. 193–205 (2004)

24. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Automatic Composition of Services
with Security Policies. In: Proc. WSCA, pp. 529–537. IEEE CS Press (2008)

25. Comon-Lundh, H., Cortier, V.: New Decidability Results for Fragments of First-
order Logic and Application to Cryptographic protocols. TR LSV-03-3, Laboratoire
Specification and Verification, ENS de Cachan, France (2003)

26. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory 2(29) (1983)

27. Hodkinson, I., Reynolds, M.: Temporal Logic. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, pp. 655–720. Elsevier (2006)

28. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Log.
Algebr. Program. 70(1), 96–118 (2007)

29. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

30. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: Proc. Ares
2009, pp. 433–440. IEEE CS Press (2009)

31. Mödersheim, S.: Abstraction by Set-Membership: Verifying Security Protocols and
Web Services with Databases. In: Proc. CCS 17, pp. 351–360. ACM Press (2010)

32. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

33. Mödersheim, S., Viganò, L.: The Open-source Fixed-point Model Checker for Sym-
bolic Analysis of Security Protocols. In: Aldini, A., Barth, G., Gorrieri, R. (eds.)
FOSAD 2007. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009)

34. OASIS. Web Services Business Process Execution Language Version 2.0. (April 11,
2007), http://docs.asis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

35. OASIS. SAML v2.0 – Technical Overview (March 2007),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

36. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

37. von Oheimb, D., Mödersheim, S.: ASLan++ — A Formal Security Specification
Language for Distributed Systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue,
M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 1–22. Springer, Heidelberg (2011)

38. Weidenbach, C.: Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp.
314–328. Springer, Heidelberg (1999)

39. WSO2. Web Services Framework for PHP (2006),
http://wso2.org/projects/wsf/php

http://docs.asis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://wso2.org/projects/wsf/php

Reduction-Based Formal Analysis of BGP Instances

Anduo Wang1, Carolyn Talcott2, Alexander J.T. Gurney1,
Boon Thau Loo1, and Andre Scedrov1

University of Pennsylvania, SRI International
{anduo,boonloo}@cis.upenn.edu, clt@csl.sri.com,
agurney@seas.upenn.edu, scedrov@math.upenn.edu

Abstract. Today’s Internet interdomain routing protocol, the Border Gateway
Protocol (BGP), is increasingly complicated and fragile due to policy misconfig-
urations by individual autonomous systems (ASes). These misconfigurations are
often difficult to manually diagnose beyond a small number of nodes due to the
state explosion problem. To aid the diagnosis of potential anomalies, researchers
have developed various formal models and analysis tools. However, these tech-
niques do not scale well or do not cover the full set of anomalies. Current tech-
niques use oversimplified BGP models that capture either anomalies within or
across ASes, but not the interactions between the two. To address these limita-
tions, we propose a novel approach that reduces network size prior to analysis,
while preserving crucial BGP correctness properties. Using Maude, we have de-
veloped a toolkit that takes as input a network instance consisting of ASes and
their policy configurations, and then performs formal analysis on the reduced
instance for safety (protocol convergence). Our results show that our reduction-
based analysis allows us to analyze significantly larger network instances at low
reduction overhead.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP for short. BGP enables Internet Service Providers (ISPs) worldwide to
exchange reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export policies
on route advertisements exchanged with its neighbors.

Over the past few years, there has been a growing consensus on the complexity and
fragility of BGP routing. Even when the basic routing protocol converges, conflicting
policy decisions among different ISPs have led to route oscillation and slow conver-
gence. Several empirical studies (e.g. [12]) have shown that there are prolonged periods
in which the Internet cannot reliably route data packets to specific destinations, due to
routing errors induced by BGP.

Since protocol oscillations cause serious performance disruptions and router over-
head, researchers devote significant attention to BGP stability (or “safety”). A BGP
system converges and is said to be safe, if it produces stable routing tables, given any

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 283–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 A. Wang et al.

sequence of routing message exchanges. We broadly refer to any route misconfigura-
tions that result in instability as BGP anomalies in this paper. To study potential config-
uration issues with BGP, the network community has studied small network instances.
Sometimes, these come from a single network (the “internal BGP” or “iBGP” case), or
they may relate to interaction between different networks (“external BGP” or “eBGP”).
These small topology configurations (or “gadgets”) serve as examples of safe systems,
or counterexamples showing a safety problem such as lack of convergence.

Today, analyzing these gadgets is a manual and tedious process, let alone analyzing
actual network instances that are orders of magnitude larger. Researchers check these
gadgets by manually constructing “activation sequences” where the nodes make suc-
cessive routing decisions that form an oscillation. To automate the process, in our prior
work [18], we have developed an analysis toolkit using Maude [1] that automates the
process of analyzing BGP instances using a rewriting logic [13] approach. While auto-
mated, this approach can only work for small network instances, since the approach is
susceptible to the state explosion problem as the number of nodes increases. To address
these challenges, this paper makes the following contributions.

First, we identify the key contributing attributes in BGP routing that lead to eBGP
and iBGP anomalies resulting in route oscillations.

Second, we propose an efficient algorithm for reducing BGP instances, so that the
network size can be reduced by merging nodes in such a way that the overall con-
vergence properties remain the same. Our reduction uses the well-known Stable Paths
Problem (SPP) [9] formalism for safety analysis of BGP configurations, where the en-
tire instance is modeled in terms of the router-level topology and each router’s policy-
induced route preferences. We show how the reduction works for both inter-AS and
intra-AS policy configurations using well-known gadgets as examples, and provide for-
mal proofs that the reduction correctly preserves convergence properties in general for
any arbitrary BGP instances. The reduction process not only reduces the state size for
subsequent analysis, but also provides us the capability to reduce an existing BGP net-
work instance into a known anomaly (i.e. misbehaving gadget), or determine equiva-
lence between two configuration instances.

Finally, using Maude, we develop a tool that (1) takes as input router configurations,
(2) extracts the SPP representation of a protocol by generating and comparing all pos-
sible routes against each AS policy, (3) applies the reduction step, and (4) performs an
exhaustive state exploration on the reduced BGP instance to check for possible config-
uration anomalies that result in divergence.

Our results show that the reduction-based analysis is much more effective than the
prior approach of doing exhaustive search on unreduced instances [18]. The data demon-
strate that we have not only gained speed, but also the ability to analyze network in-
stances that were previously infeasible to study.

For example, an instance which would naively take 221193ms to analyze, can now
be reduced in 22ms to one which takes only 8ms to analyze, which makes the new
method over 7000 times faster (See our technical report [17] for more details). There
are also many instances whose analysis was infeasible with the previous approach, but
which can now be tackled by reduction. The naive technique was limited to networks

Reduction-Based Formal Analysis of BGP Instances 285

of no more than about 20 nodes (at a push, 25) whereas we now have no difficulty in
scaling to instances with over a hundred nodes, and with a greater arc density, which
are more characteristic of real networks.

2 Analyzing BGP Anomalies

BGP assumes a network model in which routers are grouped into various Autonomous
Systems (ASes), each assumed to be under separate administrative control. An indi-
vidual AS exchanges route advertisements with neighboring ASes using a path-vector
protocol. Upon receiving a route advertisement, a BGP router may choose to accept or
ignore the advertisement based on its import policy. If the route is accepted, the node
stores the route as a possible candidate. Each node selects among all candidate routes
the best route to each destination, based on its local route preference policy. Once a
best route is selected, the node advertises it to its neighbors. A BGP node may choose
to export only selected routes to its neighboring ASes based on its export policy. The
determination of these three kinds of policy is up to the network operator: BGP allows
considerable flexibility. Conflicting policies, within or between ASes, are the cause of
protocol oscillation, as the protocol struggles and fails to satisfy all policies at once.

Router-to-router BGP sessions come in two flavors: external BGP (eBGP), which
establishes routes between ASes; and internal BGP (iBGP), which distributes routes
within an AS. All routers maintain internal state, including their roster of known paths
for all destinations, and the list of other routers to whom they are connected. They
communicate with one another by exchanging route advertisements. Not all routers
communicate directly with routers outside their own AS. If they do, they are border
routers; if they do not, they are internal routers. Additionally, some routers may have a
special role as route reflectors, collating and distributing route advertisements on behalf
of their clients, to avoid having to establish pairwise connections between all routers in
an AS.

Table 1. Key attributes in BGP route selection

Stage BGP route selection step

eBGP
1. Highest LOC PREF
2. Lowest AS path length
3. Lowest origin type

iBGP
4. Lowest MED (with same NEXT-HOP AS)
5. Closest exit point (lowest IGP cost)
6. Lowest router ID (break tie)

Every BGP route is endowed with attributes that describe it. These are summarized
in Table 1. We also characterize these by whether they are primarily associated with
eBGP- or iBGP-level routing decisions. Whenever an AS receives a new route, it will
compare the attributes of its current available routes (for a given destination) with the
new route, and then decide whether the new route is selected as best route. The attributes
are listed in the order in which they are compared during route selection: if the routes
are tied at any stage, then BGP proceeds to consider the next attribute on the list.

286 A. Wang et al.

The most important attribute in eBGP route selection is local preference (LOC PREF).
This is a value set by each router on routes it receives, according to (arbitrary) rules
established by the network operator. If two routes have the same local preference, then
the next tiebreaking attribute is the AS path length—the number of ASes through which
this route passes—followed by the ‘origin’ code. The next step is to use the multi-
exit discriminator (MED) attribute, the most important attribute in iBGP route selection,
which says which individual link is preferred, out of the many links between this AS
and its neighbor. If that was not enough to determine a single best route, BGP breaks
ties by examining the shortest-path distance to the relevant border router. Finally, if all
else fails, it uses the value of each router’s unique identifier. This final step is meant to
ensure that all possible routes can be placed in a total order, with no two routes being
equivalent in preference.

Oscillation anomalies in BGP can be localized to the definition and use of particular
attributes. This paper looks at three families of problems.

• In eBGP anomalies, routing policy conflicts occur at an inter-AS level. The typical
causing attribute is LOC PREF, because it is set arbitrarily at each AS, independently
of any other.

• iBGP anomalies are limited to a single AS, and associated with MED. Due to a quirk
in the decision procedure, it is possible for there to be three routes p, q, and r such
that p is preferred to q, q to r, and r to p. The router will be unable to settle on a
single choice, if there is feedback where its actions cause the visibility of those three
routes to change.

• iBGP-IGP anomalies result from inconsistency between the semantics of route re-
flectors, and particular IGP distance values.

We will revisit these anomalies and give formal definitions in Section 4. We will also
examine the correctness of network reduction with respect to these anomalies.

3 Network Reduction

Existing network analysis techniques do not scale well: Static analysis [6,5,8,2,7,14]
by checking combinatorial structure that reflects routing oscillations is normally NP-
complete; and dynamic analysis [3,11] by systematic exploration of the protocol state
space will likewise suffer an exponential blow-up as problem size increases. As a result,
analysis techniques normally assume an over-simplified BGP model that only covers a
portion of the routing anomalies in Section 2.

To address these limitations, we propose network reduction that preservers correct-
ness properties - a process that simplifies network instances. Network reduction can be
viewed either as a pre-step prior to formal analysis in order to reduce analysis space; or
a model construction step that extracts a simplified model from the real BGP instance.

In network reduction, the basic idea is to incrementally merge two network nodes
into one while preserving network properties. To formally define reduction, we need to
first represent a BGP instance in an abstract form that also captures each node’s routing
policy. We choose the extended stable paths problem (SPP) as the formal representation
to include both eBGP and iBGP instances.

Reduction-Based Formal Analysis of BGP Instances 287

SPP is a well-established combinatorial model of BGP configurations that captures
the outcomes of routing policy—which paths are preferred over which other paths,
at each router—while avoiding the need for detailed modeling of the BGP decision
process in all its complexity.

We extend SPP to define path preference in a more general way. The extended SPP
is then used as the representation to implement reduction. In addition, we provide au-
tomatic generation of extended SPP for a BGP instance given its network topology and
high-level routing policy (e.g. how the path attributes are configured/transformed). We
will revisit this in Section 5.

3.1 Hierarchical Reduction

The SPP formalism captures the route preferences that exist for all routers, over their
routes to a single fixed destination. 1 An SPP instance consists of a graph, together with
each router’s preferences over paths in the graph. We define this in a more general way
than in previous work.

Definition 1. An extended SPP instance is given by G = (V,E, d, P,≺), where V is
the set of nodes, E is the set of directed arcs, d ∈ V is the destination node, P is the
set of all permitted paths to d, and the binary relation ≺ over P indicates when one
route is preferred over another. Every path in P must be a simple path (that is, no node
appears more than once).

For a given extended SPP instance G as above, and a node i in V , write P i for the subset
of P consisting of paths from i to d. The SPP definition requires that ≺ be a transitive
total order on each P i, but our definition does not enforce that, and supports more
routing policies. Routes from different source nodes are incomparable. Conventionally,
‘p ≺ q’ means that path p is preferred to path q, where both p and q are paths to d from
the same source.

In this paper, we will use the symbol ‘◦’ for concatenation of arcs and paths. If (i, j)
is an arc in E, and p is a path from j to d, then their concatenation (i, j) ◦ p is a path
from i to d. Similarly, if p is a path from i to j, and q is a path from k to l, and (j, k) is
an arc in E, then the concatenation is p ◦ (j, k) ◦ q or just p ◦ q.

This combinatorial definition washes away the some important features about how
BGP operates and how paths are chosen: in particular, the distinction between external
and internal BGP. The eBGP/iBGP distinction is critical for our reduction technique,
because it is based on the observation that certain kinds of anomaly can be ‘localized’ to
one or the other mode. Our reductions will operate on the iBGP level first, for each AS.
After iBGP simplification, we simplify eBGP by reducing the extended SPP instance
for the remaining network. This ordering also allows certain kinds of inconsistency, that
can only occur in iBGP, to be detected and handled; we do not need to contaminate our
other reductions with knowledge of these special cases. Since our reduction method
includes steps that are specific to one or the other mode of operation— we assume
that, in reduction, all we are faced with are extended SPP instances, derived from BGP
configurations.

1 Route preferences are configurable separately for each destination, so this assumption focuses
the analysis rather than limits it.

288 A. Wang et al.

3.2 Network Reduction

This subsection proposes sufficient conditions for two BGP nodes to be ‘unifiable’,
meaning that they can be merged into one node. The reduction proceeds by repeatedly
(1) locating two unifiable nodes, and rewriting their local configuration, and (2) rewrit-
ing the remainder of the BGP instance to reflect that local change. In the following,
assume we are working with a given extended SPP instance G = (V,E, d, P,≺).

Locate unifiable nodes
We identify two special cases of unifiable nodes, which we call duplicate and supple-
mentary. We first define an auxiliary notion: “node rewrite”, based on which unifiable
node conditions are defined.

Definition 2. For two nodes i, k in V , rewrite i to k by rewriting P i and≺ as follows:
1. Check for any path p in P on which i and k both occur, if they occur only in an

adjacent position, then proceed to the next step, otherwise abort the rewrite.
2. For every path p in P i, if i or ik occurs, replace it by k.
3. For every two distinct paths p and q in P i, that rewrite to p′ and q′ respectively,

check whether p′ and q′ are equal. If they are, then abort the rewrite; otherwise,
proceed to the next step.

4. Every preference p ≺ q, where p and q are in P i and rewrite to p′ and q′ respec-
tively, becomes p′ ≺ q′.

Step 1 ensures that if there is any permitted path on which i and k both occur, with
some intervening nodes between them, then they are not considered for rewriting (uni-
fication). Therefore, after the first step of rewriting, the paths in P i will still be simple
(k will not occur twice). Step 3 ensures that after rewriting, no two paths in P i can
collapse into one. Based on this rewriting notion, the two unifiable node conditions are
as follows.

Definition 3. Two nodes i, j in V are unifiable if i is supplementary for j, or i and j
are duplicate, where:

1. A node i is supplementary for j if:
1. i can be rewritten to j as defined in Definition 2.
2. For every path p in P i, there is some path q in P j such that p and q are equal

after rewriting.
3. Whenever p1 ≺ p2 in P i, there are paths q1 and q2 in P j such that q1 ≺ q2;

p1 and q1 are equal after rewriting; and p2 and q2 are equal after rewriting.
4. Two nodes i and j in V are duplicate if each is supplementary for the other.

Reduce BGP Instance
After locating two unifiable nodes i and j, we rewrite the entire extended SPP to reflect
this unification. This completes one network reduction step.

First define a function θij from V to V \ {i} by θij(i) = θij(j) = j, and θij(x) = x
for all x not equal to either i or j. This function induces corresponding maps on E and
P , as follows.

Reduction-Based Formal Analysis of BGP Instances 289

Definition 4. If i and j are unifiable nodes in V , then G may be reduced to G′ =
(V ′, E′, d, P ′,≺′), where

• V ′ = V \ {i}
• E′ = {(θij(u), θij(v)) | (u, v) ∈ E \ {(i, j), (j, i)}}
• P ′ consists of all paths in P after rewriting each node according to θij , and eliding
any (j, j) arc.
• p′ ≺′ q′ if and only if p′ �= q′ and there exist paths p and q in P such that p rewrites
to p′, q rewrites to q′, and p ≺ q.

3.3 Examples: Reducing eBGP and iBGP Instances

We now illustrate the intuition of network reduction by applying reduction to various
eBGP and iBGP instances.

Example 1. Reducing eBGP instances Two eBGP instances called Bad gadget and
Good gadget are shown on the left of Figure 1. The topology of each eBGP instance
is given by the network graph, whereas the routing policies are shown by the path
preferences indicated alongside each network node. In each list, the more preferred
paths are at the top, and paths that do not appear are not permitted. For example, in the
good gadget, the policy for node 1 says it has two permitted paths, 1 3 0 and 1 0,
where 1 3 0 is preferred to 1 0.

In both gadgets, nodes 3,4 are unifiable nodes according to Definition 3. After re-
duction, these nodes are merged into one, shown on the right hand side of Figure 1.

Fig. 1. Reducing bad/good gadget makes it easier to detect divergence/prove safety

The reason why the bad gadget is called ‘bad’ is that it suffers from permanent route
oscillation: the preferences are incompatible, there is no stable solution, and the iterative
attempt to find one does not terminate. The ‘dispute wheel’ pattern alluded to above is

290 A. Wang et al.

what causes the badness, and after reduction this pattern becomes clearer. In the reduced
bad gadget instance, we can see that each of the three outer nodes prefers an indirect
path (around the cycle and then in) over a direct one (straight to the destination). This
is an order-three dispute wheel. The pattern was present in the original instance, but
obscured by the presence of node 4. On the other hand, the ‘good’ gadget has a unique
stable solution, which is found by iteration. We can identify the solution on the reduced
instance (shown here in green), and the original instance also converges.

In addition to good and bad gadget, our technical report [17] shows an eBGP in-
stance that is not reducible, and the reduction of an iBGP instance.

4 Correctness of Network Reduction

We have identified three types of routing anomalies in Section 2, and associated each of
them with particular BGP attributes. In this section, we examine sufficient conditions
by which each of these three can be avoided. These are safety, the standard property
for convergence of a path-vector routing system; acyclic preference, for ensuring that
iBGP configurations express a consistent choice function; and IGP-iBGP consistency,
for avoiding intra-AS oscillation. We then show that our reduction is sound with respect
to preservation of the first two properties, but it does not always preserve the third.
Therefore, the third condition needs to be checked separately.

4.1 eBGP Correctness

The eBGP correctness property we consider is safety [15,10]. The progress of the
BGP algorithm towards a solution depends on the timing of messages and other non-
deterministic factors: we want to ensure that every execution schedule will result in
a routing solution being found, regardless of the asynchronous nature of the protocol.
The final state is characterized by stability, meaning that no future messages will affect
which best paths are selected by each router.

Definition 5. A BGP instance is safe, if under all possible executions, it converges to
a stable state, where the best routes selected by all the routers form a policy-compliant
routing tree.

We show that our reduction preserves safety, using a structure called the path digraph
[15]. This is derived from an SPP instance (V,E, d, P,≺). Compared with the extended
SPP which is used to define reduction, SPP requires an additional constraint: ≺ totally
orders each P i where i is a node in V . This holds for instances which are restricted to
the ‘eBGP’ attributes, plus the router identifier, in Table 1.

Definition 6. Let G = (V,E, d, P,≺) be an SPP instance. The path digraph is a graph
whose nodes are the elements of P , and where there is an arc (p, q) from p to q if either
of these two cases holds:

1. If q = r ◦ p for some path r, there is a ‘transmission arc’.
2. If p and q are two paths in P i and p ≺ q, there is a ‘preference arc’.

Reduction-Based Formal Analysis of BGP Instances 291

If the digraph is acyclic then the SPP has a unique stable solution, which can be found
by iteration from any starting state. We will call an SPP instance cyclic (or acyclic) if
its path digraph is cyclic (or acyclic).

The following proposition 1, proved by Sobrinho [15], relates cyclicity of the digraph
to safety of the SPP, and therefore of the BGP configuration it represents.

Proposition 1. If a SPP instance is acyclic, then it is safe. If an SPP instance is cyclic,
then we can construct an execution trace that exhibits route oscillation.

Our main result (Lemma 1) is that our reduction technique transforms cyclic SPPs into
cyclic SPPs, and acyclic SPPs into acyclic SPPs. This means that we never have false
positives or false negatives, with respect to this safety property, after applying the re-
duction.

Lemma 1. Let G = (V,E, d, P,≺) be an SPP instance, containing unifiable nodes
u and v, and let G′ = (V ′, E′, d, P ′,≺′) be the result of applying the procedure of
Definition 4 to unify those two nodes. Then G is cyclic if and only if G′ is cyclic.

Proof. See technical report [17] for more details. ��

Finally, the following theorem proves that network reduction is sound: to analyze G for
safety, it is sufficient to analyze its reduction G′.

Theorem 1. If G′ is acyclic then G is safe; If G′ is cyclic then in running G, there
exists at least one execution trace that exhibits route oscillation.

Proof. Obvious from Lemma 1 and Proposition 1. ��

4.2 iBGP correctness: Cyclic iBGP Route Preference

As previously noted, use of the MED attribute means that routes might not be totally
ordered, and therefore Proposition 1 is inapplicable. We handle this case by employing
a more general notion of route selection in our analysis, and can show that our reduction
does preserve these kinds of preference cycle. The details are in technical report [17].

4.3 iBGP Correctness: IGP-iBGP Consistency Property

While BGP can choose the correct egress point in an AS, for each destination, establish-
ment of the intra-AS path to that border router is the responsibility of another protocol
(an interior gateway protocol or IGP). Problems can occur if the iBGP configuration
does not match the distance values used in the IGP. Our network reduction is designed
for analysis BGP routing policies, and is unaware of IGP-iBGP inconsistency (see tech-
nical report [17]). Therefore, to ensure the soundness of analysis, one should check
IGP-iBGP consistency before applying network reduction, using pre-existing methods
from the literature [16,4].

292 A. Wang et al.

5 Network Reduction in Maude

To validate our reduction method, we have extended our library for analysis of BGP
configurations [18] to support automatic abstraction from dynamic (BGP) configu-
rations to static (extended SPP) configurations, reduction based on SPP configurations,
and integration with dynamic exhaustive search analysis. Using the original library BGP
instances up to 25 nodes have been successfully analyzed in minutes. Using our reduc-
tion technique, we are able to reduce and analyze various 100 nodes BGP instances
within seconds. Our extended library consists of the following three components:

• Dynamic Network Representation. For a BGP instance, we require users to input
routing policies, i.e., the values of the BGP attributes that cause anomalies. We also
require users to input the network topology. Based on the routing policy and topol-
ogy, we automatically generate the dynamic representation of the BGP instance. The
dynamic representation includes configurations (snapshots of an executing instance)
and rewrite rules describing a router’s actions during execution of the BGP protocol.
The dynamic representation can be used to compute the complete set of permitted
paths, and route selection information.

• Static Network Representation. While the dynamic representation is good for sim-
ulating the dynamic behavior of a BGP system, it is not the right representation for
network reduction. Thus we introduce a static representation of BGP instances corre-
sponding to the extended SPP instance (Definition 1). For each router, its static rep-
resentation consists of its complete set of permitted paths, and route selection result
given any sub-set of the permitted paths. Our library provides functions to compute
the static representation from the dynamic initial network state.

• Network Reduction on Static Representation. Our library implements the network
reduction process described in Definition 4 that applies to the static (extended SPP)
representation.

Our library is implemented in Maude [1], a language and tool based on rewriting logic.
Rewriting logic [13] is a logical formalism that is based on two simple ideas: states of
a system can be represented as elements of an algebraic data type, and the behavior of
a system can be given by transitions between states described by local rewrite rules. A
rewrite rule has the form ‘t =⇒ t′ if c’ where t and t′ are patterns (terms possibly con-
taining variables) and c is a condition (a boolean term). Such a rule applies to a system
state s if t can be matched to a part of s by supplying the right values for the variables,
and if the condition c holds when supplied with those values. In this case the rule can be
applied by replacing the part of s matching t by t′ using the matching values for vari-
ables in t′. Maude provides a high performance rewriting engine featuring matching
modulo associativity, commutativity, and identity axioms. Given a specification S of a
concurrent system, Maude can execute this specification, allowing one to observe some
possible behaviors of the system. One can also use the search functionality of Maude to
check if a state meeting a given condition can be reached during any system execution.

The dynamic representation is a small extension of [18] to account for the MED
attribute. In this paper we only discuss generation of the static representation and the
implementation of the reduction process.

Reduction-Based Formal Analysis of BGP Instances 293

5.1 Computing the Static BGP Representation

We recall that the dynamic representation of a BGP router has the form [rid : asid

|Nb: nbrs,LR: routes ,BR: best] where rid : asid is called the NodeInfo
with rid the router ID, and asid the AS ID. The remaining three arguments represent
the routers state: nbrs is a list of neighbor router IDs, routes is a list of routes, and
best is the best route.

Recall that in Definition 4, we apply the network reduction to the static representa-
tion of a BGP system G = (V,E, d, P,≺). In this representation we need the following
information: (1) the complete set of permitted paths P that the routers could ever gen-
erate in protocol execution; and (2) the ≺ relation that determines how each router
selects the best route, given an arbitrary subset of permitted paths. To capture P and
≺, we introduce the static representation of a BGP system using the Maude constructor
declaration:
op [_|Nb:_,perPath:_,pref:_] : NodeInfo List{NodeInfo} List{route} List{sel-fun}

-> absNode .

Similar to the dynamic representation, the first two arguments (indicated by under-
scores) specify the router’s ID, AS and neighbor information. What is different is the
second two attributes: rather than keeping the dynamic routing table and best route
attributes, we have the static permitted paths attribute perPath:, and the route prefer-
ence attribute pref:. The value of perPath: is the list of paths that can be computed
during BGP execution, and the value of pref: represents the preference function as a
list of pairs, each consisting of a route set and the selected route.

A BGP system’s static representation is computed from the specification of the dy-
namic representation in two steps. First, the complete set of permitted paths is computed
by simulating route exchanges and computation on the dynamic representation using the
the rewrite rule compute-spp:
rl [compute-spp]:
[from (S1 : AS1) to S2 : (S3 : AS3),lf2,[asp1],med1,S4]
[S2 : AS2 |Nb: nodes2, LR: lr2, BR: nilRoute]
=>
if ((occurs(import((S1 : AS1),(S2 : AS2),((S3 : AS3),lf2,[asp1],med1,S4)),lr2)) or

import(...) == nilRoute)
then [S2 : AS2 |Nb: nodes2, LR: lr2, BR: nilRoute]
else
[S2:AS2|Nb: nodes2,

LR: update(import(...),lr2),
BR: nilRoute]

generateMsg((S2:AS2),nodes2,export(import(...)))
fi .

Here, the left-hand matches a router S2 and a route message sent from its neighbor S1.
The right-hand side says that S2 computes a new route import(...), and if either
of the two conditions occurs(import(...), lr2) or import(...)==nilRoute
holds, that is, if either the new route import(...) is already in routing table lr2,
or if the new route is filtered out according to S2’s routing policy, S2 is unchanged,
and the routing message on the left-hand is consumed. Otherwise, the new route is in-
serted into the routing table (update(import(...),lr2)), and S2 applies its export
policy export(import(...)) and then (if allowed by export policy and export does
not result in nilRoute) S2 re-advertises this new route to all of its neighbors nodes2.
Compared with the normal BGP protocol execution, this rule is simpler in the sense

294 A. Wang et al.

that it does not perform best route selection: Note that BR: is kept blank. Normal BGP
execution is non-deterministic—depending on the result of route selection, one of three
different types of actions are taken [18], and the system may converge to different final
states or not terminate (route oscillation may happen due to conflicting best route selec-
tion). However, the process defined by rule compute-spp always terminates with the
same final state, when the complete sets of permitted paths of all nodes are generated.

Second, based on the permitted paths, the route selection function pref: is com-
puted as follows:
eq compSPP ([S1 : AS1 |Nb: nodes1,LR: lr1, BR: nilRoute] Network) =

[S1 : AS1 |Nb: nodes1, perPath: lr1, pref: compSPPNode(lr1)] compSPP(Network).

compSPP converts each dynamic router representation [S1:AS1|Nb: ,LR: , BR:]

in the network to its static form [S1:AS1 |Nb: , perPath: , pref:]. The crit-
ical part is to compute route selection compSPPNode(lr1), given the complete set
of subsets of the permitted paths lr1, by applying the best route selection function
select to each subset. The function select is defined in terms of path attributes.
As example, we show here the encoding of the two eBGP attributes LOCAL PREF and
AS PATH as follows:
op select : List{route} -> List{route} .
eq select(lr1) =

select-as(select-lf(lr1, best-lf(lr1)),
best-as(select-lf(lr1, best-lf(lr1)))) .

Here select first invokes best-lf to compute the lowest (best) LOCAL PREF value
in the permitted paths lr1, then select-lf selects from lr1 the set of routes with
this lowest LOCAL PREF value. Next, from these remaining routes, select invokes
best-as to compute the best AS value and select-as to select the set of routes with
such best AS value.

5.2 Reduction by Merging All Pairs of Unifiable Nodes

To reduce a BGP instance, we take its static representation - a set of routers of the form [

S1:AS1 |Nb: , perPath: , pref:] as input, and repeatedly merge pairs of unifi-
able nodes. For each router S1 in the Network, we look for its unifiable nodes, if such
nodes exist, we unify S1 with the first unifiable node S2, and transform the rest of the
network according to Definition 4 (e.g. the neighbors of S1,S2 now become neighbors
of S1). This reduction process is implemented by the function mergeDupEach.2

First, mergeDupEach implements the process of unifying node S1 and its first-found
unifiable node as follows:
eq mergeDupEach([(S1:AS1) |Nb:nodes1, perPath:lr1, pref:lsel-fun1],

([(S2:AS2)|Nb:nodes2, perPath:lr2, pref:lsel-fun2] C))
=
if (size(([(S1 : AS1) |Nb: nodes1, perPath: lr1, pref: lsel-fun1] unify

[(S2 : AS2) |Nb: nodes2, perPath: lr2, pref: lsel-fun2])) == 1)
then

(([(S1:...] unify [(S2:...]) C)
else

([(S2:...] mergeDupEach([(S1:...], C))
fi .

2 Obviously, reduction always terminates. However, how the order of merging nodes affects the
reduction process—whether reduction always converges to the same reduced network—is the
subject of ongoing work, but does not affect correctness.

Reduction-Based Formal Analysis of BGP Instances 295

Here, the if condition tests if S1,S2 are unifiable, and mergeDupEach tests nodes in
the network C until a unifiable node is found. Then mergeDupEachEachRW is invoked.

eq mergeDupEachRW(abn, C) =
replaceNode(mergeDupEach(abn,C), get-NodeInfo(abn), findNodeInfo(abn, C))

Here, network C is transformed by replacing information relating to abn by that of
abn’s first unifiable node findNodeInfo(abn, C). The specific transformation is as
follows:
eq replaceNode ([S0:AS)|...] C, (S1:AS1) , (S2:AS2)) =

[(S0 : AS) |Nb: removeRepeatedNB (...,(S1:AS1),(S2:AS2)),
perPath: (replacePerPath(...,(S1:AS1),(S2:AS2))),
pref: replacePref(...,(S1:AS1), (S2:AS2))]

replaceNode (C, (S1:AS1), (S2:AS2)) .

Here, each node S0 in the network is transformed by rewriting its neighboring table
(NB:), permitted path (perPath:), and route selection function (pref:).

Finally, putting it all together, mergeDup specifies the reduction process on the entire
network C as follows:
eq mergeDup(S1 Oidl, C) =

mergeDupEachRW(get-Node(S1, mergeDup(Oidl, C)),
mergeDup(Oidl, C) - get-Node(S1, mergeDup(Oidl, C))) .

Here mergeDup takes two inputs. The first argument S Oidl is the list of router IDs,
and the second argument is the list of routers [S1:AS1 |Nb: , perPath: , pref:].
mergeDup(Oidl,C) denotes the set of remaining routers after reducing all nodes other
than S1; if S1 is in these remaining routers, then get-Node(S1,mergeDup(Oidl,C))
denotes S1 itself, otherwise (that is, if S1 is removed in the reduction) the value is set
to nil. In either case, mergeDup(Oidl, C) - get-Node(S1, mergeDup(Oidl, C))

denotes the remaining routers other than S1 after reducing all routers except S1. Based
on these notions, the recursive definition of mergeDup says that, to merge all unifiable
nodes, we only need to merge nodeS1 into the routers that (1) are already reduced among
themselves; and (2) do not contain S1 itself.

Fig. 2. Reduction example

As an example, to perform network reduction to the network on the left of Figure 2,
we execute in Maude as follows:
red mergeDup(N1 N2 N3 N4, Network)

Where Nodes = N1 N2 N3 N4 and Network = [N0:0 |Nb: ,LR: ,BR:] [N1 :

1 |...] ... [N5 : 5 |...]. The result is as follows:

296 A. Wang et al.

[N0 : 0 |Nb: (N1 : 1) (N2 : 2),perPath: nil,pref: nil]
[N1 : 1 |Nb: N2 : 2,

perPath:(N0 : 0,200,[2 0],[1,2],N2)
(N0 : 0,100,[0],[1,0],N0),

pref: ...]
[N2 : 2 |Nb: N1 : 1, ...]

As expected, nodes N3,N4 are merged into N2.

6 Evaluation

In this section, we provide an empirical study to quantify the benefits of network reduc-
tion, by comparing the computation time required in safety analysis with and without
network reduction.

Our safety analysis was performed via an exhaustive search strategy using Maude, as
described in [18]. Oscillation is detected if the same best route is selected multiple times
during protocol execution. To detect such recurring best routes, we use Maude to run the
actual path vector protocol used in BGP, and simulate all possible sequences in which
ASes receive routes. At each node, we use a monitor object to track the best routes that
have been previously selected. We also attempt to apply our reduction technique and
perform such analysis on the reduced version.

For the BGP instance shown in Figure 2, we note that in the reduced network (right),
our analysis tool detects the same route oscillation pattern found in the original network
(left), while requiring significantly less state space (reduction from 956 to 35) and anal-
ysis time (320ms to 8ms). In addition, we evaluate three common scenarios [10]: Bad
gadget that exhibits permanent oscillation, Disagree transient oscillation, and Good

gadget that is safe and no oscillation. The data table in this section shows the anal-
ysis results for Bad gadget scenario, indicating the performance requirements for the
ordinary exhaustive search and for the reduction alternative, as well as the final safety
outcome. For more details on the other scenarios, please see our technical report [17].

Table 2. Network Instances that Reduces to Bad Gadget

Bad (reduced) Bad-10 Bad-20 Bad-53 Bad-83 Bad-102

Search (Time) 30510ms Unknown Unknown Unknown Unknown Unknown
SPP generation (Time) 0ms 3ms 44ms 134ms 246ms 273ms
Reduction (Time) 0ms 8ms 49ms 146ms 541ms 595ms

Search(State) 11118 Unknown Unknown Unknown Unknown Unknown

Oscillation? Yes Yes Yes Yes Yes Yes

Our analysis was carried out on a Intel 2.40GHz dual-core machine with 1.9GB
memory, running Maude v2.4 on the Debian 5.0.6. operating system. Table 2 shows the
analysis results for eBGP instances where the network size ranges from 10 (Bad-10)
to 102 (Bad-102). For each network size, we embed in a bad gadget. After apply-
ing the reduction process, all BGP instances are reduced to a single bad gadget Bad
(reduced). For each entry, Unknown means that the analysis cannot be completed
within reasonable time (after running Maude for several hours).

Reduction-Based Formal Analysis of BGP Instances 297

We make the following observations from our results. First, reduction requires min-
imal time. Even for a large network of 102 nodes, reduction can be completed within
one second. As input to the reduction process, the SPP formalism for a BGP instance is
extracted as described in Section 5 where a static representation (corresponding to the
SPP) is computed by simulating on the instance’s dynamic representation (correspond-
ing to the snapshot state). This is also an efficient process, requiring less than 300ms
for the largest network. Overall, network reduction results in significant savings in both
state and execution time during safety analysis. For example, while it was previously
infeasible to complete the analysis of any network beyond 10 nodes due to the state
explosion problem (depicted by Unknown), the reduced BGP instance can be analyzed
in around 300 seconds (and 11118 states).

In our technique report [17], we present a similar comparison of analysis overhead
for network instances that have the disagree and good gadget embedded. We similarly
observe significant state and execution time savings via the use of reduction.

7 Conclusion

In this paper, we present a technique to reduce BGP instances, such that safety anal-
ysis can be performed efficiently on large networks. We prove correct our reduction
technique, develop a reduction and BGP analysis tool using Maude, and demonstrate
its effectiveness at reducing the state space and execution time required for analyz-
ing BGP instances. As future work, we are (1) exploring the use of our tool on larger
case studies drawn from real network configurations, (2) making the tool available with
documentation, (3) optimizing the formal representation for more efficient analysis,
and (4) possibly extending the library to detect iBGP cyclic preference, and IGP-iBGP
inconsistency.

Acknowledgment. This research is funded in part by NSF grants (CCF-0820208, CNS-
0830949, CNS-0845552, CNS-1040672, TC-0905607 and CPS-0932397), AFOSR
grant FA9550-08-1-0352, and ONR grant N00014-11-1-0555.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Hei-
delberg (2007)

2. Feamster, N., Johari, R., Balakrishnan, H.: Implications of autonomy for the expressiveness
of policy routing. In: ACM SIGCOMM (2005)

3. Feldmann, A., Maennel, O., Mao, Z.M., Berger, A., Maggs, B.: Locating Internet routing
instabilities. In: ACM SIGCOMM (2004)

4. Flavel, A., Roughan, M., Bean, N., Shaikh, A.: Where’s Waldo? Practical Searches for Sta-
bility in iBGP. In: Proc. International Conference on Network Protocols, ICNP (October
2008)

5. Gao, L., Griffin, T.G., Rexford, J.: Inherently safe backup routing with BGP. In: IEEE IN-
FOCOM (2001)

298 A. Wang et al.

6. Gao, L., Rexford, J.: Stable Internet routing without global coordination. In: ACM SIGMET-
RICS (2000)

7. Griffin, T.G.: The stratified shortest-paths problem. In: COMSNETS (2010)
8. Griffin, T.G., Jaggard, A., Ramachandran, V.: Design principles of policy languages for path

vector protocols. In: ACM SIGCOMM (2003)
9. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdomain routing.

IEEE Trans. on Networking 10, 232–243 (2002)
10. Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: SIGCOMM

(1999)
11. Haeberlen, A., Avramopoulos, I., Rexford, J., Druschel, P.: NetReview: Detecting when in-

terdomain routing goes wrong. In: NSDI (2009)
12. Labovitz, C., Malan, G.R., Jahanian, F.: Internet Routing Instability. TON (1998)
13. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical

Computer Science 96(1), 73–155 (1992)
14. Schapira, M., Zhu, Y., Rexford, J.: Putting BGP on the right path: A case for next-hop routing.

In: ACM SIGCOMM HotNets (October 2010)
15. Sobrinho, J.: Network routing with path vector protocols: theory and applications. In: SIG-

COMM (2003)
16. Vutukuru, M., Valiant, P., Kopparty, S., Balakrishnan, H.: How to Construct a Correct and

Scalable iBGP Configuration. In: IEEE INFOCOM, Barcelona, Spain (April 2006)
17. Wang, A., Talcott, C., Gurney, A.J.T., Loo, B.T., Scedrov, A.: Reduction-based formal anal-

ysis of BGP instances. University of Pennsylvania Department of Computer and Information
Science Technical Report (2012),
http://netdb.cis.upenn.edu/papers/tacas12-TR.pdf

18. Wang, A., Talcott, C., Jia, L., Loo, B.T., Scedrov, A.: Analyzing BGP Instances in Maude.
In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp.
334–348. Springer, Heidelberg (2011)

http://netdb.cis.upenn.edu/papers/tacas12-TR.pdf

Minimal Critical Subsystems

for Discrete-Time Markov Models�

Ralf Wimmer1, Nils Jansen2, Erika Ábrahám2,
Bernd Becker1, and Joost-Pieter Katoen2

1 Albert-Ludwigs-University Freiburg, Germany
{wimmer,becker}@informatik.uni-freiburg.de

2 RWTH Aachen University, Germany
{nils.jansen,abraham,katoen}@informatik.rwth-aachen.de

Abstract. We propose a new approach to compute counterexamples for
violated ω-regular properties of discrete-time Markov chains and Markov
decision processes. Whereas most approaches compute a set of system
paths as a counterexample, we determine a critical subsystem that al-
ready violates the given property. In earlier work we introduced meth-
ods to compute such subsystems based on a search for shortest paths. In
this paper we use SMT solvers and mixed integer linear programming to
determine minimal critical subsystems.

1 Introduction

Systems with uncertainties often act in safety-critical environments. In order
to use the advantages of formal verification, formal models are needed. Popular
modeling formalisms for such systems are discrete-time Markov chains (DTMCs)
and—in the presence of non-determinism—Markov decision processes (MDPs).

State-of-the-art model checking algorithms verify probabilistic safety proper-
ties like “The probability to reach a safety-critical state is at most 10−3” or,
more generally, ω-regular properties [1], efficiently by solving linear equation
systems [2]. Thereby, if the property is violated, they do not provide any infor-
mation about the reasons why this is the case. However, this is not only strongly
needed for debugging purposes, but it is also exploited for abstraction refinement
in CEGAR frameworks [3,4]. Therefore, in recent years much research effort has
been made to develop algorithms for counterexample generation for DTMCs and
MDPs (see, e. g., [5,6,7,8,9,10,11,12,13]). Most of these algorithms [6,7,8,9] yield
path-based counterexamples, i. e., counterexamples in the form of a set of finite
paths that all lead from the initial state to a safety-critical state and whose joint
probability mass exceeds the allowed limit.

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS) and the DFG project “CE-
Bug – Counterexample Generation for Stochastic Systems using Bounded Model
Checking”.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 299–314, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

300 R. Wimmer et al.

Unfortunately, the number of paths needed for a counterexample is often very
large or even infinite, in particular if the gap between the allowed probability
and its actual value is small. The size of the counterexample may be several
orders of magnitude larger than the number of system states, rendering the
counterexample practically unusable for debugging purposes. Different proposals
have been made to alleviate this problem: [6] represents the path set as a regular
expression, [7] detects loops on paths, and [8] shrinks paths through strongly
connected components into single transitions.

As an alternative to path-based counterexamples, the usage of small criti-
cal subsystems has been proposed in [5,10]. A critical subsystem is a part of
the Markov chain such that the probability to reach a safety-critical state (or,
more generally, to satisfy an ω-regular property) inside this part exceeds the
bound. This induces a path-based counterexample by considering all paths lead-
ing through this subsystem. Contrary to the path-based representation, the size
of a critical subsystem is bounded by the size of the model under considera-
tion. Different heuristic methods have been proposed for the computation of
small critical subsystems: The authors of [5] apply best first search to identify
a critical subsystem, while in [10] a novel technique is presented that is based
on a hierarchical abstraction of DTMCs in combination with heuristics for the
selection of the states to be contained in the subsystem.

Both approaches use heuristic methods to select the states of a critical sub-
system. However, we are not aware of any algorithm that is suited to compute a
minimal critical subsystem, neither in terms of the number of states nor of the
number of transitions. In this paper we fill this gap. We provide formulations as
a SAT-modulo theories (SMT) problem and as a mixed integer linear program
(MILP) which yield state-minimal critical subsystems of DTMCs and MDPs, re-
spectively. We will present a number of optimizations which significantly speed
up the computation times in many cases. Experimental results on some case stud-
ies are provided, which show the effectiveness of our approach. We show that
our MILP approach yields significantly more compact counterexamples than the
heuristic methods even if the MILPs cannot be solved to optimality due to time
restrictions. We present our algorithms for probabilistic safety properties, but
they can be extended to the more general case of arbitrary ω-regular properties.1

Structure of the Paper. In Section 2 we introduce the foundations of DTMCs,
MDPs, and critical subsystems. In Sections 3 and 4 we present different ap-
proaches for the computation of state-minimal subsystems for DTMCs and
MDPs. We discuss experimental results in Section 5 and finally draw a con-
clusion in Section 6.

2 Foundations

We first introduce discrete-time Markov chains and discrete-time Markov deci-
sion processes as well as critical subsystems for both models.

1 They can be reduced to reachability after a product construction of a DTMC or
MDP, resp., with a deterministic Rabin automaton, followed by a graph analysis [2].
For more details see [14].

Minimal Critical Subsystems for Discrete-Time Markov Models 301

Discrete-Time Markov Chains.

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = (S, sI , P)
with S being a finite set of states, sI ∈ S the initial state and P : S × S → [0, 1]
the matrix of transition probabilities such that

∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S.2

Let in the following M = (S, sI , P) be a DTMC, T ⊆ S a set of target states, and
λ ∈ [0, 1] an upper bound on the allowed probability to reach a target state3 in T
from the initial state sI . This property can be formulated by the PCTL formula
P≤λ(♦T). We assume this property to be violated, i. e., the actual probability
of reaching T exceeds λ.

The probability to eventually reach a target state from a state s is the unique
solution of a linear equation system [2, p. 760] containing an equation for each
state s ∈ S: ps = 1 if s ∈ T , ps = 0 if there is no path from s to any state in T ,
and ps =

∑
s′∈S P (s, s′) · ps′ in all other cases.

Definition 2. A subsystem of M is a DTMC M ′ = (S′, s′I , P
′) such that S′ ⊆

S, s′I ∈ S′, and P ′(s, s′) > 0 implies P ′(s, s′) = P (s, s′) for all s, s′ ∈ S′.
We call a subsystem M ′ = (S′, s′I , P

′) of M critical if s′I = sI , S
′ ∩ T �= ∅,

and the probability to reach a state in S′ ∩ T from s′I in M ′ is larger than λ.

We want to identify a minimal critical subsystem (MCS) of M , which induces
a counterexample for P≤λ(♦T). Minimality can thereby be defined in terms
of the number of states or the number of transitions. In this paper we restrict
ourselves to state-minimal subsystems. However, our approaches can easily be
adapted to transition minimality. In [4] it is shown that computing MCSs for
arbitrarily nested PCTL formulae is NP-complete. It is unclear if this also holds
for reachability properties.

We denote the set of transitions of M by EM =
{
(s, s′) ∈ S×S

∣∣P (s, s′) > 0
}
,

the set of successors of state s ∈ S by succM (s) =
{
s′ ∈ S

∣∣ (s, s′) ∈ EM

}
, and

its predecessors by predM (s) =
{
s′ ∈ S

∣∣ (s′, s) ∈ EM

}
. A finite path π in M is

a finite sequence π = s0s1 . . . sn such that (si, si+1) ∈ EM for all 0 ≤ i < n.

Definition 3. Let M = (S, sI , P) be a DTMC with target states T ⊆ S. A
state s ∈ S is called relevant if there is a path π = s0s1s2 . . . sn with s0 = sI ,
si �∈ T for 0 ≤ i < n, sn ∈ T and s = sj for some j ∈ {0, . . . , n}. A transition
(s, s′) ∈ EM is relevant if both s and s′ are relevant and s �∈ T .

We denote the set of relevant states of M by Srel
M and the set of relevant tran-

sitions by Erel
M . States and transitions that are not relevant can be removed

from all critical subsystems without changing the probability to reach a target

2 Please note that we allow sub-stochastic distributions. Usually, the sum of prob-
abilities is required to be exactly 1. This can be obtained by defining M ′ =
(S ∪ {s⊥}, sI , P ′) with s⊥ a fresh sink state, P ′(s, s′) = P (s, s′) for all s, s′ ∈ S,
P ′(s⊥, s⊥) = 1, and finally P (s, s⊥) = 1− P (s, S) and P ′(s⊥, s) = 0 for all s ∈ S.

3 Model checking PCTL properties can be lead back to the problem of computing
reachability probabilities.

302 R. Wimmer et al.

state. Since we are interested in MCSs, we only have to take relevant states and
transitions into account.

Let E−
M =

{
(s, s′) ∈ S×S

∣∣ (s′, s) ∈ EM

}
be the set of reversed transitions of

M . We consider the directed graphs G = (S,EM) and G− = (S,E−
M).

Lemma 1. A state s ∈ S is relevant iff s is reachable from the initial state sI
in G and s is reachable from a target state in G−. A transition (s, s′) ∈ EM is
relevant iff s is reachable from the initial state sI in G and s′ is reachable from
a target state in G−, and s �∈ T .

This lemma shows that the set Srel
M of relevant states and the set Erel

M of relevant
transitions can be determined in linear time in the size of the DTMC by two
simple graph analyses.

Markov Decision Processes. Extending DTMCs with non-determinism
yields the class of Markov decision processes:

Definition 4. A discrete-time Markov decision process (MDP) M is a tuple
M = (S, sI , A, P) such that S is a finite set of states, sI ∈ S the initial state,
A a finite set of actions, and P : S × A × S → [0, 1] a function such that∑

s′∈S P (s, a, s′) ≤ 1 for all a ∈ A and all s ∈ S.

If s ∈ S is the current state of an MDP M , its successor state is determined
as follows: First a non-deterministic choice between the actions in A is made;
say a ∈ A is chosen. Then the successor state of s is determined probabilistically
according to the distribution P (s, a, ·).

We set succM (s, a) =
{
s′ ∈ S

∣∣P (s, a, s′) > 0
}
, predM (s, a) =

{
s′ ∈ S

∣∣
P (s′, a, s) > 0

}
, and EM =

{
(s, s′) ∈ S × S

∣∣ ∃a ∈ A : P (s, a, s′) > 0
}
. Relevant

states Srel
M and transitions Erel

M are defined in the same way as for DTMCs.
Before probability measures can be defined for MDPs, the non-determinism

has to be resolved. This is done by an entity called scheduler. For our purposes
we do not need schedulers in their full generality, which are allowed to return
a probability distribution over the actions A, depending on the path that led
from the initial state to the current state. Instead, for reachability properties the
following subclass suffices [2, Lemma 10.102]:

Definition 5. Let M = (S, sI , A, P) be an MDP. A (deterministic memoryless)
scheduler for M is a function σ : S → A.

Such a scheduler σ induces a DTMC Mσ = (S, sI , P
σ) with P σ(s, s′) =

P (s, σ(s), s′). The probability of reaching a target state is now computed in this
induced DTMC. The property P≤λ(♦T) is satisfied in an MDP M = (S, sI , A, P)
if it is satisfied in Mσ for all schedulers σ. Since all schedulers guarantee a
reachability probability of at most λ, this implies that the maximal reachability
probability is at most λ. If the property is violated, there is a non-empty set of
schedulers for which the probability exceeds λ. We call them critical schedulers.

We want to compute a critical scheduler and a critical subsystem in the corre-
sponding induced DTMC that is state- (transition-) minimal among all critical
subsystems for all critical schedulers. Computing state-minimal critical subsys-
tems for reachability properties of MDPs is NP-complete [4].

Minimal Critical Subsystems for Discrete-Time Markov Models 303

SAT-Modulo-Theories. SAT-modulo-theories (SMT) [15] refers to a gener-
alization of the classical propositional satisfiability problem (SAT). Compared
to SAT problems, in an SMT formula atomic propositions may be replaced by
atoms of a given theory. For the computation of MCSs this theory is linear real
arithmetic.

SMT problems are solved by the combination of a DPLL-procedure (as used
for deciding SAT problems) with a theory solver that is able to decide the satis-
fiability of conjunctions of theory atoms. For a description of such a combined
algorithm see [16].

Mixed Integer Linear Programming. In contrast to SMT, mixed integer
linear programs consist only of a conjunction of linear inequalities. A subset
of the variables occurring in the inequalities are restricted to take only integer
values, which makes solving MILPs NP-hard.

Definition 6. Let A ∈ Qn×m, B ∈ Qk×m, b ∈ Qm, c ∈ Qn, and d ∈ Qk. A
mixed integer linear program (MILP) consists in computing min cTx+dTy such
that Ax+By ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm
with the generation of so-called cutting planes. These algorithms heavily rely on
the fact, that relaxations of MILPs which result from removing the integrality
constraints, can be solved efficiently. MILPs are widely used in operations re-
search, hardware-software codesign and numerous other applications. Efficient
open source as well as commercial implementations are available like Scip or
Cplex. We refer the reader to, e. g., [17] for more information on solving MILPs.

3 Computing Minimal Critical Subsystems for DTMCs

The problem to find state-minimal critical subsystems for DTMCs can be spec-
ified as an SMT problem over linear real arithmetic, which we present in this
section. As the experimental results were not satisfactory, we additionally elab-
orated MILP formulations of this problem. We also report on further optimiza-
tions that lead to a noticeable speed-up in many cases.

3.1 Formulation as an SMT Problem

We first specify an SMT formula over linear real arithmetic whose satisfying vari-
able assignments correspond to the critical subsystems of M . The SMT formula
is shown in Fig. 1. We use ⊕ for the binary XOR operator.

We introduce a variable xs ∈ [0, 1] ⊆ R for each relevant state s ∈ Srel
M . We

require in the formula that xs = 1 or xs = 0 holds. A state s ∈ Srel
M is contained

in the subsystem iff xs = 1 for the computed optimal satisfying assignment.
In order to obtain a state-minimal critical subsystem, we have to minimize the
number of xs-variables to which the value 1 is assigned, or equivalently, the sum
over all xs-variables (line 1a). Besides the xs variables we need one real-valued

304 R. Wimmer et al.

minimize
∑

s∈Srel
M

xs (1a)

such that psI > λ (1b)

∀s ∈ Srel
M ∩ T :

(
(xs = 0 ∧ ps = 0) ⊕ (xs = 1 ∧ ps = 1)

)
(1c)

∀s ∈ Srel
M \ T :

(
(xs = 0 ∧ ps = 0)⊕

(
xs = 1 ∧ ps =

∑
s′∈succM (s)∩Srel

M

P (s, s′) · ps′
))

. (1d)

Fig. 1. SMT formulation for state-minimal critical subsystems of DTMCs

variable ps ∈ [0, 1] ⊆ R for each state s ∈ Srel
M to which the probability of

reaching a target state from s inside the subsystem is assigned.
If xs is zero, the corresponding state s does not belong to the subsystem.

Then its probability contribution is also zero. Target states that are contained
in the subsystem have probability one (line 1c). Note that the MCS does not
need to contain all target states. The probability of all non-target states in the
subsystem is the weighted sum over the probabilities of the relevant successor
states (line 1d). In order to obtain a critical subsystem we additionally have to
require that psI > λ (line 1b).

The size of this formula is linear in the size of M . Since most of the state-of-
the-art SMT solvers for linear real arithmetic cannot cope with the minimization
of objective functions, we apply binary search in the range

{
1, . . . , |Srel

M |
}
for the

optimal value of the objective function. Starting with kl = 1 and ku = |Srel
M |,

we iteratively search for critical subsystems whose number of states is between
kl and km := kl + (ku − kl)/2. If we find such a subsystem with k states, then
we set ku to k − 1. Otherwise we set kl to km + 1. We repeat the search until
ku < kl.

3.2 Formulation as a Mixed Integer Linear Program

The formulation as an SMT problem gives a good intuition how an MCS can
be computed using solver technologies. However, as the experiments will show,
the solution process is very time-consuming. This might be due to the fact that
SMT solvers distinguish many cases while searching for a solution because of the
involved disjunctions. We therefore reformulate the problem as an MILP that
does not contain any disjunctions. The MILP is shown in Fig. 2.

In order to avoid the disjunctions of the SMT formulation, we need to explic-
itly require the variables xs to be integer in contrast to the SMT formulation
with xs ∈ [0, 1] ⊆ R. Hence, the MILP contains the variables xs ∈ [0, 1] ⊆ Z and
ps ∈ [0, 1] ⊆ R for all states s ∈ Srel

M .
The constraints can be translated as follows: For target states s ∈ Srel

M ∩ T ,
the condition (1c) of the SMT formulation corresponds to ps = xs (line 2c). For
the remaining states s ∈ Srel

M \ T , we ensure by ps ≤ xs that the probability
contribution of not selected states is zero (line 2d). For all non-target states s,

Minimal Critical Subsystems for Discrete-Time Markov Models 305

minimize
(
−1
2
psI +

∑
s∈Srel

M

xs

)
(2a)

such that psI > λ (2b)

∀s ∈ Srel
M ∩ T : ps = xs (2c)

∀s ∈ Srel
M \ T : ps ≤ xs (2d)

ps ≤
∑

s′∈succM (s)∩Srel
M

P (s, s′) · ps′ . (2e)

Fig. 2. MILP formulation for state-minimal critical subsystems of DTMCs

an upper bound on the probability contribution ps is given by the sum of the
probabilities ps′ of the relevant successor states s′, weighted by the according
transition probabilities P (s, s′) (line 2e). Together with the requirement that the
probability of the initial state has to be larger than λ (line 2b) this describes the
critical subsystems of the DTMC under consideration.

Using this formulation and the same objective function as in the SMT for-
mula, the exact probability of reaching target states in the resulting MCS is
not computed as a by-product. We would only compute a lower bound, because
line (2e) is an inequality. However, we can achieve this by forcing the solver to
maximize psI . We change the objective function to min

(
− 1

2psI +
∑

s∈Srel
M

xs

)
.

Then the solver computes not only an arbitrary MCS, but among all MCSs one
with maximal probability, and assigns to the variable psI its actual reachability
probability. A factor 0 < c < 1 is needed because if we only subtract the prob-
ability of the initial state, the solver may add an additional state if this results
in psI = 1. We chose c = 1

2 .

3.3 Optimizations

In the following we describe optimizations both of the SMT and the MILP
formulation. They add redundant constraints to the problem. These constraints
may help the solver to detect unsatisfiable branches in the search space earlier.

Successor and Predecessor Constraints. In order to guide the solver to
choose states that form complete paths leading from the initial state to the set
of target states, we firstly add the following optional constraints to the MILP
formulation in Fig. 2:

∀s ∈ Srel
M \ T : − xs +

∑
s′∈(succM (s)∩Srel

M)\{s}

xs′ ≥ 0 (3a)

∀s ∈ Srel
M \ {sI} : − xs +

∑
s′∈(predM (s)∩Srel

M)\{s}

xs′ ≥ 0 . (3b)

The first set of constraints (3a), which we call forward cuts, states that each
non-target state in the MCS must have a proper successor state which is also

306 R. Wimmer et al.

contained in the MCS. Proper in this case means that self-loops are ignored. The
second set of constraints (3b), called backward cuts, requires that each non-initial
state in the MCS has a proper predecessor in the MCS.

For MILP, forward and backward cuts do not modify the feasible solutions
but add cutting planes which tighten the LP-relaxation of the MILP and may
lead to better lower bounds on the optimal value.

For the SMT formulation similar constraints can be constructed. We omit
their description here because in our experimental results they did not improve
the performance. A reason for this phenomenon could be that these constraints
come with an additional effort in propagation and theory solving that is not
compensated by their positive effect of restricting the solution set.

SCC Constraints. The forward respectively backward cuts do not encode that
all states of the MCS are forwards respectively backwards reachable: A satisfying
assignment could define a loop to belong to the subsystem even if in the solution
the states of the loop are connected neither to the initial nor to any target state.

To strengthen the effect of forward and backward cuts, we make use of strongly
connected components. Formally, a strongly-connected component (SCC) of a
DTMC M = (S, sI , P) is a maximal subset C ⊆ S such that each state s ∈ C
is reachable from each state s′ ∈ C visiting only states from C. The input states
In(C) of an SCC C are those states which have an in-coming transition from out-
side the SCC, i. e., In(C) = {s ∈ C | ∃s′ ∈ S \C : P (s′, s) > 0}. The output states
ofC, denoted Out(C), are those states outside C which can be reached from C via
a single transition. Hence, Out(C) = {s ∈ S \ C | ∃s′ ∈ C : P (s′, s) > 0}.

A state of an SCC can be reached from the initial state only through one
of the SCC’s input states. Therefore we define an SCC input cut for each SCC
assuring that, if none of its input states is included in the MCS, then the MCS
does not contain any states of the SCC. Line 4a shows the SMT variant of this
constraint, whereas line 4b gives the corresponding MILP formulation:∧

s∈In(C)

xs = 0 ⇒
∧

s∈C\In(C)

xs = 0 (4a)

∑
s∈C\In(C)

xs ≤
∣∣C \ In(C)

∣∣ · ∑
s∈In(C)

xs . (4b)

Analogously, starting from a state inside an SCC, all paths to a target state lead
through one of the SCC’s output states. Therefore, if no output state of an SCC
C is selected, we do not want to select any state of the SCC. Line 5a contains
the SMT and line 5b the MILP formulation of this SCC output cut :∧

s∈Out(C)

xs = 0 ⇒
∧
s∈C

xs = 0 (5a)

∑
s∈C

xs ≤
∣∣C∣∣ · ∑

s∈Out(C)

xs . (5b)

Minimal Critical Subsystems for Discrete-Time Markov Models 307

Complete Reachability Encoding. Although the SCC cuts further restrict
the selection of unreachable states, they still do not encode reachability exactly:
We could, for example, select a path from an input to an output state of an SCC
and additionally select an unreachable loop inside the SCC.

For a complete encoding of forward reachability, we introduce a variable
r→s ∈ [0, 1] ⊆ R for each state s ∈ Srel

M . The values of these variables define
a partial order on the states. We make use of this partial order to express for-
ward reachability in critical subsystems: We encode that for each selected state
s there is a path s0 . . . sn from the initial state s0 = sI to sn = s such that
r→i < r→i+1 for all 0 ≤ i < n and all states on the path are selected, i. e., xsi = 1
for all 0 ≤ i ≤ n. Note that we can assign a proper value to r→s for each reach-
able state s, for example the value ns/|Srel

M | with ns being the size of the longest
loop-free path leading from the initial state to s.

An SMT encoding of forward reachability can be defined as follows:

∀s ∈ Srel
M \ {sI} :

(
¬xs ∨

∨
s′∈predM (s)∩Srel

M

(xs′ ∧ r→s′ < r→s)
)
. (6a)

The SMT encoding of backward reachability is analogous, using a variable r←s ∈
[0, 1] ⊆ R for each state s ∈ Srel

M :

∀s ∈ Srel
M \ T :

(
¬xs ∨

∨
s′∈succM (s)∩Srel

M

(xs′ ∧ r←s < r←s′)
)

. (7a)

For the MILP encoding of forward reachability, for each transition from a state
s to s′ we additionally use an integer variable t→s,s′ ∈ [0, 1] ⊆ Z. These variables
correspond to the choice of the predecessor states in the disjunctions of the SMT
encoding. Again, we encode that for each selected state s there is a path in the
selected subsystem leading from the initial state to s. The variable t→s′,s encodes
if the transition from s′ to s appears in that path.

∀s∈Srel
M ∀s′ ∈ (succM (s)∩Srel

M) : 2t→s,s′ ≤ xs + xs′ (8a)

r→s < r→s′ + (1 − t→s,s′) (8b)

∀s ∈ Srel
M \ {sI} : (1− xs) +

∑
s′∈predM (s)∩Srel

M

t→s′,s ≥ 1 . (8c)

Lines 8a and 8b encode that each transition from s to s′ with t→s,s′ = 1 connects
selected states with r→s < r→s′ . Under this assumption, the constraints defined
in line 8c imply by induction that for each selected state there is a reachable
selected predecessor state.

Backward reachability is analogous using a variable t←s,s′ ∈ [0, 1] ⊆ Z for each
transition:

∀s∈Srel
M ∀s′ ∈ (succM (s)∩Srel

M) : 2t←s,s′ ≤ xs + xs′ (9a)

r←s < r←s′ + (1− t←s,s′) (9b)

∀s ∈ Srel
M \ T : (1 − xs) +

∑
s′∈succM (s)∩Srel

M

t←s,s′ ≥ 1 . (9c)

308 R. Wimmer et al.

minimize
∑

s∈Srel
M

xs (10a)

such that psI > λ (10b)

∀s ∈ Srel
M ∩ T :

(
(xs = 0 ∧ ps = 0)⊕ (xs = 1 ∧ ps = 1)

)
(10c)

∀s ∈ Srel
M \ T :

((
xs = 0 ∧ ps = 0

)
⊕

(
xs = 1 ∧

∨
a∈A

(
as = a ∧ ps =

∑
s′∈succM (s,a)∩Srel

M

P (s, a, s′) · ps′
)))

. (10d)

Fig. 3. SMT formulation for state-minimal critical subsystems of MDPs

These encodings come at the cost of new variables, but they cut all subsystems
with unreachable states, especially unreachable loops which were not covered by
the previous two encodings.

4 Computing Minimal Critical Subsystems for MDPs

In this section we describe how to extend our SMT- and MILP-based formula-
tions to Markov decision processes. Using these formulations, we not only provide
a state-minimal critical subsystem but also the corresponding critical scheduler.

4.1 SMT Formulation

The SMT formulation for MCSs for MDPs straightly follows the ideas for
DTMCs. We additionally introduce a variable as ∈

[
0, |A| − 1

]
⊆ R for all

states s ∈ Srel
M \T which stores the action selected by a critical scheduler. If each

action is assigned a unique number in the range 0, . . . , |A| − 1, this again results
in an SMT problem over linear real arithmetic, which is shown in Fig. 3.

4.2 MILP Formulation

The corresponding MILP for computing state-minimal critical subsystems for
MDPs is shown in Fig. 4. We again have the decision variables xs ∈ [0, 1] ⊆ Z

for s ∈ Srel
M and the probability variables ps ∈ [0, 1] ⊆ R for s ∈ Srel

M . In
contrast to the SMT formulation, for the MILP constraints we need a variable
as ∈ [0, 1] ⊆ Z for each state s ∈ Srel

M and each action a ∈ A. The variable as
will carry the value 1 if the critical scheduler selects action a in state s, and 0
otherwise.

The main difference to the MILP of DTMCs is line (11f). If the current action
is not selected, i. e., as = 0, the constraint is not a restriction for ps. Otherwise,
if as = 1, the constraint is equivalent to ps ≤

∑
s′∈succ(s,a)∩Srel

M
P (s, a, s′) · ps′ ,

which is the analogous constraint to the formulation for DTMCs.

Minimal Critical Subsystems for Discrete-Time Markov Models 309

minimize
(
−1
2
psI +

∑
s∈Srel

M

xs

)
(11a)

such that psI > λ (11b)

∀s ∈ Srel
M ∩ T : xs = ps (11c)

∀s ∈ Srel
M \ T : ps ≤ xs (11d)

xs =
∑
a∈A

as (11e)

∀s ∈ Srel
M \ T ∀a ∈ A : ps ≤

(∑
s′∈succM (s,a)∩Srel

M

P (s, a, s′) · ps′
)
+ (1− as) . (11f)

Fig. 4. MILP formulation for state-minimal critical subsystems of MDPs

The redundant constraints that we have added to the SMT and MILP for-
mulations for DTMCs in order to make the solution process more efficient can
easily be transferred to MDPs. We omit them here due to space restrictions.

5 Experimental Evaluation

In order to evaluate the performance of our SMT and MILP formulations for
state-minimal critical subsystems of DTMCs, we implemented a tool called Sub-

Sys in C++ and applied it to two series of test cases. For all benchmarks, we used
Prism [18] models, which are available at http://prismmodelchecker.org.

(1) The crowds protocol [19] provides a mechanism for anonymous web brows-
ing by routing messages through a network of N nodes. If a node wants to send
a message, it has a probabilistic choice whether to deliver the message directly
to its destination or to forward it to a randomly selected successor node. This
procedure preserves anonymous sending of messages, as the original sender of a
message cannot be determined. One instance consists of R rounds of message de-
liveries. In the following tables we denote the different instances by crowdsN -R.
The set T of target states contains all those states where a bad group member
could identify the sender of a message.

(2) The synchronous leader election protocol [20] models the selection of a
distinguished leader node in a ring of N identical network nodes. In each round,
every node randomly selects an integer number in the range {0 . . .K}. The node
with the highest number becomes the leader, if this number is unique. Otherwise
a new round starts. In the tables below, we denote the instances for different
values of N and K by leaderN -K.

All experiments were performed on a computer with four 2.3 GHz AMD
Opteron Quad-Core CPUs and 64 GB memory, running Ubuntu 10.04 Linux
in 64-bit mode. We aborted any experiment which did not finish within 7200 s
or needed more than 4 GB of memory. A table entry “– TL –” means that
the time limit was exceeded; the exceeding of the memory limit is denoted by
“– ML –”.

http://prismmodelchecker.org

310 R. Wimmer et al.

Table 1. Sizes of the benchmark models and comparison with the heuristic local search
method of [10]

Model |S| |EM | |T | λ |SMCS| |EMCS| |Sheur| |Eheur|
crowds2-3 183 243 26 0.09 22 27 23 27
crowds2-4 356 476 85 0.09 22 27 23 27
crowds2-5 612 822 196 0.09 22 27 23 27
crowds3-3 396 576 37 0.09 37 51 40 56
crowds3-4 901 1321 153 0.09 37 51 40 56
crowds3-5 1772 2612 425 0.09 37 51 40 56
crowds5-4 3515 6035 346 0.09 72 123 94 156
crowds5-6 18817 32677 3710 0.09 72 123 145 253
crowds5-8 68740 120220 19488 0.09 72 123 198 356
leader3-2 22 29 1 0.5 15 18 17 20
leader3-3 61 87 1 0.5 33 45 40 54
leader3-4 135 198 1 0.5 70 101 76 108
leader4-2 55 70 1 0.5 34 41 44 54
leader4-3 256 336 1 0.5 132 171 170 220
leader4-4 782 1037 1 0.5 395 522 459 605
leader4-5 1889 2513 1 0.5 946 1257 1050 1393
leader4-6 3902 5197 1 0.5 1953 2600 2103 2797

For solving the SMT formulae and the MILPs we used a number of state-of-
the-art solvers, from which we selected, after a series of preliminary experiments,
the most efficient ones, namely Z3 3.1 [21] (http://research.microsoft.com/
en-us/um/redmond/projects/z3) as an SMT solver for linear real arithmetic,
Scip 2.0.2 (http://scip.zib.de) as a publicly available MILP solver, and
Cplex 12.3 (http://www-01.ibm.com/software/integration/optimization
/cplex-optimizer) as a commercial MILP solver.

Table 1 contains statistics on our benchmarks. The columns contain (from left
to right) the model name, the number of states, the number of transitions with
non-zero probability, the number of target states, the probability bound, the
number of states in the MCS, and finally the number of transitions in the MCS.
The last two columns contain the sizes of heuristically computed critical subsys-
tems. We used the local search approach of [10] to determine these subsystems.
For all instances the heuristic tool terminated within 6 min.

We give the running times of Z3, Scip, andCplex in Table 2.Cplex supports
a parallel mode, in which we started 16 threads in parallel. Therefore we give
for Cplex the accumulated times of all threads and, in parentheses, the actual
time from start to termination of the tool. All times are given in seconds.

The block of columns entitled “w/o redundant constraints” contains the run-
ning times of the solvers without any optimizations. The block “optimal conf.”
lists the optimal times, i. e., the times achieved by adding the combination of
optional constraints that leads to the smallest computation time. These running
times can be obtained in general by using a portfolio approach which runs the
different combinations of redundant constraints in parallel. Using Z3 did not

http://research.microsoft.com/en-us/um/redmond/projects/z3
http://research.microsoft.com/en-us/um/redmond/projects/z3
http://scip.zib.de
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

Minimal Critical Subsystems for Discrete-Time Markov Models 311

Table 2. Running times of Z3, Scip, and Cplex for computing MCSs

w/o redundant constraints optimal conf.

Model Z3 Scip Cplex Z3 Scip Cplex

crowds2-3 6.80 0.16 1.33 (0.28) 4.82 0.12 0.06 (0.11)
crowds2-4 123.34 0.47 0.30 (0.24) 23.72 0.30 0.30 (0.24)
crowds2-5 293.94 0.90 0.56 (0.45) 152.28 0.60 0.56 (0.24)
crowds3-3 5616.39 0.64 0.49 (0.33) 640.61 0.35 0.38 (0.30)
crowds3-4 – TL – 4.29 5.53 (2.07) – TL – 1.45 0.89 (0.58)
crowds3-5 – TL – 23.49 6.66 (2.77) – TL – 5.58 1.51 (0.87)
crowds5-4 – TL – 743.84 14.23 (5.07) – TL – 13.28 12.51 (4.89)
crowds5-6 – TL – – TL – 302.03 (38.39) – TL – 1947.46 100.26 (23.52)
crowds5-8 – TL – – TL – – TL – – TL – – TL – 1000.79 (145.84)
leader3-2 0.07 0.07 0.62 (0.22) 0.05 0.01 0.21 (0.13)
leader3-3 – TL – 91.89 0.43 (0.22) – TL – 0.06 0.02 (0.06)
leader3-4 – TL – 2346.59 0.70 (0.36) – TL – 0.40 0.07 (0.09)
leader4-2 3.57 0.23 0.45 (0.21) 1.38 0.07 0.24 (0.17)
leader4-3 – TL – 1390.79 22.33 (3.38) – TL – 0.21 0.49 (0.37)
leader4-4 – TL – – TL – – TL – – TL – 1.49 1.88 (1.21)
leader4-5 – TL – – TL – – TL – – TL – 1.15 4.06 (2.80)
leader4-6 – TL – – TL – – ML – – TL – – TL – 8.70 (5.92)

lead to satisfying results although the optimizations, especially the reachability
cuts, decreased the running times clearly. A significant speed-up is recognizable
using the MILP solvers. The optimal running times were in some cases smaller
by orders of magnitude considering in particular the large benchmarks for which
the standard formulation could not be solved within the time limit.

To gain more insight into the effects of the different kinds of redundant con-
straints, we list more detailed results for crowds5-6 and leader4-5 in Table 3. The
left block of columns contains the running times without SCC cuts. The column
“–” contains the values without forward and backward cuts, the column “→” the
values with forward cuts, “←” the values with backward cuts and “↔” with
both forward and backward cuts. The values for the four different combinations
of reachability cuts (none, only forward, only backward, and both) are listed in
the according rows of the table.

Comparing the values for the reachability cuts, we can observe that they have
a negative effect on the running times for crowds5-6 with MILP solvers. However,
they speed up the solution of leader4-5 by a factor of more than 103, decreasing
the solution times from more than 7200 s to less than 5 s. The same tendency
can be observed for all crowds and leader instances, respectively.

The addition of backward cuts to crowds5-6 reduces the running time to about
one third, and they typically decrease the times for most of the instances. Since
the SCC cuts are even less effective, we only give the minimal value of the three
cases (with SCC input, SCC output, and with both kinds of SCC cuts).

312 R. Wimmer et al.

Table 3. Runtimes for crowds5-6 and leader4-5 with and without redundant constraints
using Cplex as MILP solver

no SCC cuts with SCC cuts

Reach – → ← ↔ – → ← ↔

cr
ow
d
s5
-6

none
302.03 367.49 103.20 149.73 301.87 342.07 100.26 138.36
(38.39) (44.70) (23.52) (26.07) (38.64) (42.76) (23.52) (25.20)

fwd
656.13 1292.59 651.47 966.57 634.40 833.37 646.64 925.95

(120.04) (148.82) (112.47) (127.94) (118.22) (108.13) (111.18) (125.52)

bwd
4043.93 3613.96 770.90 1070.50 3911.81 3603.49 756.28 1074.36
(384.74) (358.49) (121.02) (130.45) (375.48) (358.25) (119.90) (130.72)

both
2107.84 1403.44 5972.98 2191.83 1986.37 1379.78 5925.31 2210.68
(251.41) (185.34) (546.83) (281.07) (238.58) (183.38) (542.18) (284.51)

le
a
d
er
4
-5

none – TL – – TL – – TL – – TL – – TL – – TL – – TL – – TL –

fwd
284.04 254.56 286.83 261.53 294.71 259.98 285.33 251.69
(40.02) (35.97) (40.85) (36.46) (41.15) (36.21) (40.57) (35.80)

bwd
6.30 6.29 6.27 6.10 5.89 5.73 5.78 5.95

(3.73) (3.69) (3.72) (3.71) (3.65) (3.66) (3.67) (3.69)

both
4.46 4.06 4.34 4.56 4.17 4.41 4.10 4.39

(2.77) (2.80) (2.83) (2.91) (2.77) (2.83) (2.84) (2.90)

Fig. 5 shows the size of the MCS of crowds5-6 for different values of λ (red solid
lines), comparing it with the size of heuristically computed critical subsystems
using the local search of [10] (blue dotted lines). For λ ≥ 0.23, we could only
compute an upper bound (within 8% from the optimal value) on the size of the
MCS using our MILP formulation due to the timeout of 2 hours. Also the local
search tool ran into a timeout for λ ≥ 0.35, however, without yielding a critical
subsystem.

6 Conclusion

0

1000

2000

3000

4000

5000

6000

7000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

λ

states (min)
transitions (min)
states (heur)
transitions (heur)

Fig. 5. Size of the MCS and heuristically deter-
mined critical subsystems for crowds5-6 and dif-
ferent values of λ

In this paper we have shown
how to compute state-minimal
critical subsystems for DTMCs
and MDPs using SMT- and
MILP-based formulations. By
adding redundant constraints,
which trigger implications for
SMT and tighten the LP-
relaxation of the MILP, the so-
lution process can be speeded
up clearly. Thereby the MILP
formulation is more efficient to
solve by orders of magnitude
compared to the SMT formulation. A topic for future research is to analyze the
theoretical complexity of computing MCSs for DTMCs. We conjecture that this

Minimal Critical Subsystems for Discrete-Time Markov Models 313

problem is NP-complete. Furthermore we plan to integrate the MILP approach
into the hierarchical counterexample generation tool described in [10].

Acknowledgments. The authors thank the reviewers for pointing out the
relevance of [4].

References

1. Bustan, D., Rubin, S., Vardi, M.Y.: Verifying ω-Regular Properties of Markov
Chains. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 189–201.
Springer, Heidelberg (2004)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)

3. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

4. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM TOCL 12(1), 1–45 (2010)

5. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. on Software Engi-
neering 36(1), 37–60 (2010)

6. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

7. Wimmer, R., Braitling, B., Becker, B.: Counterexample Generation for Discrete-
Time Markov Chains Using Bounded Model Checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)

8. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant Diagnostic Counterexam-
ples in Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)

9. Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool Caspa. In: Proc. of
DYADEM-FTS, pp. 13–18. ACM Press (2010)

10. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.:
Hierarchical Counterexamples for Discrete-Time Markov Chains. In: Bultan, T.,
Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidel-
berg (2011)

11. Kattenbelt, M., Huth, M.: Verification and refutation of probabilistic specifications
via games. In: Proc. of FSTTCS. LIPIcs, vol. 4, pp. 251–262. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2009)

12. Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in Probabilistic LTL Model
Checking for Markov Chains. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.
LNCS, vol. 5710, pp. 587–602. Springer, Heidelberg (2009)

13. Fecher, H., Huth, M., Piterman, N., Wagner, D.: PCTL model checking of Markov
chains: Truth and falsity as winning strategies in games. Performance Evalua-
tion 67(9), 858–872 (2010)

14. Wimmer, R., Becker, B., Jansen, N., Ábrahám, E., Katoen, J.-P.: Minimal critical
subsystems as counterexamples for ω-regular DTMC properties. In: Brandt, J.,
Schneider, K. (eds.) Proc. of MBMV. Kovač-Verlag (2012)

15. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and ap-
plications. Communication of the ACM 54(9), 69–77 (2011)

314 R. Wimmer et al.

16. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Hei-
delberg (2006)

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
18. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-

bilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

19. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1), 66–92 (1998)

20. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1), 60–87 (1990)

21. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

Automatic Verification

of Competitive Stochastic Systems

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,
David Parker, and Aistis Simaitis

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. We present automatic verification techniques for the mod-
elling and analysis of probabilistic systems that incorporate competitive
behaviour. These systems are modelled as turn-based stochastic multi-
player games, in which the players can either collaborate or compete
in order to achieve a particular goal. We define a temporal logic called
rPATL for expressing quantitative properties of stochastic multi-player
games. This logic allows us to reason about the collective ability of a set
of players to achieve a goal relating to the probability of an event’s oc-
currence or the expected amount of cost/reward accumulated. We give a
model checking algorithm for verifying properties expressed in this logic
and implement the techniques in a probabilistic model checker, based
on the PRISM tool. We demonstrate the applicability and efficiency of
our methods by deploying them to analyse and detect potential weak-
nesses in a variety of large case studies, including algorithms for energy
management and collective decision making for autonomous systems.

1 Introduction

Automatic verification techniques for probabilistic systems have been success-
fully applied in a variety of fields, from wireless communication protocols to dy-
namic power management schemes to quantum cryptography. These systems are
inherently stochastic, e.g. due to unreliable communication media, faulty com-
ponents or the use of randomisation. Automatic techniques such as probabilistic
model checking provide a means to model and analyse these systems against a
range of quantitative properties. In particular, when systems also exhibit non-
deterministic behaviour, e.g. due to concurrency, underspecification or control,
the subtle interplay between the probabilistic and nondeterministic aspects of
the system often makes a manual analysis difficult and error-prone.

When modelling open systems, the designer also has to account for the be-
haviour of components it does not control, and which could have differing or
opposing goals, giving rise to competitive behaviour. This occurs in many cases,
such as security protocols and algorithms for distributed consensus, energy man-
agement or sensor network co-ordination. In such situations, it is natural to adopt
a game-theoretic view, modelling a system as a game between different players.
Automatic verification has been successfully deployed in this context, e.g. in the
analysis of security [21] or communication protocols [20].

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 315–330, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

316 T. Chen et al.

In this paper, we present an extensive framework for modelling and automatic
verification of systems with both probabilistic and competitive behaviour, using
stochastic multi-player games (SMGs). We introduce a temporal logic rPATL
for expressing quantitative properties of this model and develop model checking
algorithms for it. We then build a probabilistic model checker, based on the
PRISM tool [22], which provides a high-level language for modelling SMGs and
implements rPATL model checking for their analysis. Finally, to illustrate the
applicability of our framework, we develop several large case studies in which we
identify potential weaknesses and unexpected behaviour that would have been
difficult to find with existing probabilistic verification techniques.

We model competitive stochastic systems as turn-based SMGs, where, in each
state of the model, one player chooses between several actions, the outcome of
which can be probabilistic. Turn-based games are a natural way to model many
real-life applications. One example is when modelling several components execut-
ing concurrently under the control of a particular (e.g. round-robin, randomised)
scheduler; in this case, nondeterminism in the model arises due to the choices
made by each individual component. Another example is when we choose to
explicitly model the (possibly unknown) scheduling of components as one player
and the choices of components as other players.

In order to specify properties of the systems modelled, we formulate a tem-
poral logic, rPATL. This is an extension of the logic PATL [14], which is itself
a probabilistic extension of ATL [5] – a widely used logic for reasoning about
multi-player games and multi-agent systems. rPATL allows us to state that a
coalition of players has a strategy which can ensure that either the probability
of an event’s occurrence or an expected reward measure meets some threshold,
e.g. “can processes 1 and 2 collaborate so that the probability of the protocol
terminating within 45 seconds is at least 0.95, whatever processes 3 and 4 do?”

We place particular emphasis on reward (or, equivalently, cost) related mea-
sures. This allows us to reason quantitatively about a system’s use of resources,
such as time spent or energy consumed; or, we can use rewards as an algorithm
design mechanism to validate, benchmark or synthesise strategies for compo-
nents by rewarding or penalising them for certain behaviour. rPATL can state,
for example, “can sensor 1 ensure that the expected energy used, if the algorithm
terminates, is less than 75mJ , for any actions of sensors 2, 3, and 4?”. To the
best of our knowledge, this is the first logic able to express such properties.

We include in rPATL three different cumulative expected reward operators.
Cumulative properties naturally capture many useful system properties, as has
been demonstrated for verification of other types of probabilistic models [17],
and as proves to be true for the systems we investigate. Indicative examples
from our case studies are “the maximum expected execution cost of a task in a
Microgrid” and “the minimum expected number of messages required to reach a
consensus”. Several other reward-based objectives exist that we do not consider,
including discounted rewards (useful e.g. in economics, but less so for the kind
of systems we target) and long-run average reward (also useful, but practical
implementations become complex in stochastic games [16]).

Automatic Verification of Competitive Stochastic Systems 317

We also devise model checking algorithms for rPATL. A practical advantage
of the logic is that, like for ATL, model checking reduces to analysing zero-
sum two-player games. rPATL properties referring to the probability of an event
are checked by solving simple stochastic two-player games, for which efficient
techniques exist [15,16]. For reward-based properties, we present new algorithms.

Lastly, we develop and analyse several large case studies. We study algorithms
for smart energy management [19] and distributed consensus in a sensor network
[26]. In the first case, we use our techniques to reveal a weakness in the algo-
rithm: we show that users may have a high incentive to deviate from the original
algorithm, and propose modifications to solve the problem. For the consensus
algorithm, we identify unexpected trade-offs in the performance of the algorithm
when using our techniques to evaluate possible strategies for sensors.

Contributions. In summary, the contributions of this paper are:

– A comprehensive framework for analysis of competitive stochastic systems;
– A logic rPATL for specifying quantitative properties of stochastic multi-
player games including, in particular, novel operators for costs and rewards,
and their model checking algorithms ;

– Implementation of a tool for modelling and rPATL model checking of SMGs;
– Development and analysis of several large new case studies.

An extended version of this paper, with proofs, is available as [12].

Related Work. There exist theoretical results on probabilistic temporal logics
for a game-theoretic setting but, to our knowledge, this is the first work to con-
sider a practical implementation, modelling and automated verification of case
studies. [14] introduces the logic PATL, showing its model checking complex-
ity via probabilistic parity games. [28] studies simulation relations preserved by
PATL and [1] uses it in a theoretical framework for security protocol analysis.
[6] presents (un)decidability results for another richer logic, with emphasis on
the subtleties of nested properties. We note that all of the above, except [6], use
concurrent, rather than turn-based, games and none consider reward properties.

Probabilistic model checking for a multi-agent system (a negotiation proto-
col) is considered in [8], but this is done by fixing a particular probabilistic
strategy and analysing a Markov chain rather than a stochastic game. [13] de-
scribes analysis of a team formation protocol, which involves simple properties
on stochastic two-player games. There has been much research on algorithms
to solve stochastic games, e.g. [16,11,27], but these do not consider a modelling
framework, implementation or case studies. Moreover, the reward-based proper-
ties that we introduce in this paper have not been studied in depth. In [25], a
quantitative generalisation of the μ-calculus is proposed, and shown to be able
to encode stochastic parity games. We also mention the tools MCMAS [23] and
MOCHA [4], powerful model checkers for non-probabilistic multi-agent systems.

Finally, stochastic games are useful for synthesis, as in e.g. [9], which synthe-
sises concurrent programs for randomised schedulers. Also, the tool Gist [10] is
a stochastic game solver, but is targeted at synthesis problems, not modelling
and verification of competitive systems, and only supports qualitative properties.

318 T. Chen et al.

2 Preliminaries

We begin with some background on stochastic multi-player games. For a finite
set X , we denote by D(X) the set of discrete probability distributions over X .

Definition 1 (SMG). A (turn-based) stochastic multi-player game (SMG) is
a tuple G = 〈Π,S,A, (Si)i∈Π , Δ,AP, χ〉, where: Π is a finite set of players; S is
a finite, non-empty set of states; A is a finite, non-empty set of actions; (Si)i∈Π

is a partition of S; Δ : S × A → D(S) is a (partial) transition function; AP is
a finite set of atomic propositions; and χ : S → 2AP is a labelling function.

In each state s ∈ S of the SMG G, the set of available actions is denoted by

A(s)
def
= {a ∈ A | Δ(s, a)�=⊥}. We assume that A(s) �= ∅ for all s. The choice of

action to take in s is under the control of exactly one player, namely the player
i ∈ Π for which s ∈ Si. Once action a ∈ A(s) is selected, the successor state is
chosen according to the probability distribution Δ(s, a). A path of G is a possibly
infinite sequence λ = s0a0s1a1 . . . such that aj ∈ A(sj) and Δ(sj , aj)(sj+1) > 0
for all j. We use stλ to denote s0s1 . . ., and stλ(j) for sj . The set of all infinite
paths is ΩG and the set of infinite paths starting in state s is ΩG,s.

A strategy for player i ∈ Π in G is a function σi : (SA)∗Si → D(A) which,
for each path λ·s where s ∈ Si, assigns a probability distribution σi(λ·s) over
A(s). The set of all strategies for player i is denoted Σi. A strategy σi is called
memoryless if ∀λ, λ′ : σi(λ·s) = σi(λ

′·s), and deterministic if ∀λ : σi(λ·s) is a
Dirac distribution. A strategy profile σ = σ1, . . . , σ|Π| comprises a strategy for
all players in the game. Under a strategy profile σ, the behaviour of G is fully
probabilistic and we define a probability measure PrσG,s over the set of all paths
ΩG,s in standard fashion (see, e.g. [11]). Given a random variable X : ΩG,s → R,

we define the expected value of X to be Eσ
G,s[X]

def
=
∫
ΩG,s

X dPrσG,s.

We also augment games with reward structures r : S → Q≥0, mapping each
state to a non-negative rational reward. To simplify presentation, we only use
state rewards, but note that transition/action rewards can easily be encoded by
adding an auxiliary state per transition/action to the model.

3 Property Specification: The Logic rPATL

We now present a temporal logic called rPATL (Probabilistic Alternating-time
Temporal Logic with Rewards) for expressing quantitative properties of SMGs.
Throughout the section, we assume a fixed SMG G = 〈Π,S,A, (Si)i∈Π , Δ,AP, χ〉.

Definition 2 (rPATL). The syntax of rPATL is given by the grammar:

φ ::= � | a | ¬φ | φ ∧ φ | 〈〈C〉〉P��q [ψ] | 〈〈C〉〉Rr
��x[F

�φ]

ψ ::= Xφ | φU≤k φ | φUφ

where a ∈ AP , C ⊆ Π, ��∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], x ∈ Q≥0, � ∈ {0,∞, c},
r is a reward structure and k ∈ N.

Automatic Verification of Competitive Stochastic Systems 319

rPATL is a CTL-style branching-time temporal logic, where we distinguish state
formulae (φ) and path formulae (ψ). We adopt the coalition operator 〈〈C〉〉 of
ATL [5], combining it with the probabilistic operator P��q[·] from PCTL [18] and
a generalised variant of the reward operator Rr

��x[·] from [17].
An example of typical usage of the coalition operator is 〈〈{1, 2}〉〉P≥0.5[ψ],

which means “players 1 and 2 have a strategy to ensure that the probability
of path formula ψ being satisfied is at least 0.5, regardless of the strategies of
other players”. As path formulae, we allow the standard temporal operators X
(“next”), bounded U≤k (“bounded until”) and U (“until”).

Rewards. Before presenting the semantics of rPATL, we discuss the reward
operators in the logic. We focus on expected cumulative reward, i.e. the expected
sum of rewards cumulated along a path until a state from a specified target set
T ⊆ S is reached. To cope with the variety of different properties encountered
in practice, we introduce three variants, which differ in the way they handle the
case where T is not reached. The three types are denoted by the parameter �,
one of 0, ∞ or c. These indicate that, when T is not reached, the reward is zero,
infinite or equal to the cumulated reward along the whole path, respectively.

Each reward type is applicable in different situations. If our goal is, for exam-
ple, to minimise the expected time for algorithm completion, then it is natural to
assume a value of infinity upon non-completion (�=∞). Consider, on the other
hand, the case where we try to optimise a distributed algorithm by designing a
reward structure that incentivises certain kinds of behaviour and then maximis-
ing it over the lifetime of the algorithm’s execution. In this case, we might opt for
type �=0 to avoid favouring situations where the algorithm does not terminate.
In other cases, e.g. when modelling algorithm’s resource consumption, we might
prefer to use type �= c, to compute resources used regardless of termination.

We formalise these notions of rewards by defining reward functions that map
each possible path in the game G to a cumulative reward value.

Definition 3 (Reward Function). For an SMG G, a reward structure r, type
� ∈ {0,∞, c} and a set T ⊆ S of target states, the reward function rew(r, �, T) :
ΩG → R is a random variable defined as follows.

rew(r, �, T)(λ)
def
=

{
g(�) if ∀j ∈ N : stλ(j) /∈ T,∑k−1

j=0 r(stλ(j)) otherwise, where k = min{j | stλ(j) ∈ T },

and where g(�) = � if � ∈ {0,∞} and g(�) =
∑

j∈N
r(stλ(j)) if � = c. The

expected reward from a state s ∈ S of G under a strategy profile σ is the expected
value of the reward function, Eσ

G,s[rew(r, �, T)].

Semantics. Now, we define the semantics of rPATL. Formulae are interpreted
over states of a game G; we write s |= φ to indicate that the state s of G satisfies

the formula φ and define Sat(φ)
def
= {s ∈ S | s |= φ} as the states satisfying φ.

The meaning of atomic propositions and logical connectives is standard. For the
〈〈C〉〉P��q and 〈〈C〉〉Rr

��x operators, we give the semantics via a reduction to a
two-player game called a coalition game.

320 T. Chen et al.

Definition 4 (Coalition Game). For a coalition of players C ⊆ Π of SMG G,
we define the coalition game of G induced by C as the stochastic two-player game
GC = 〈{1, 2}, S, A, (S′

1, S
′
2), Δ,AP, χ〉 where S′

1 = ∪i∈CSi and S′
2 = ∪i∈Π\CSi.

Definition 5 (rPATL Semantics). The satisfaction relation |= for rPATL is
defined inductively for every state s of G. The semantics of �, atomic proposi-
tions and formulae of the form ¬φ and φ1 ∧ φ2 is defined in the usual way. For
the temporal operators, we define:

s |= 〈〈C〉〉P��q [ψ] ⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Prσ1,σ2

GC ,s (ψ) �� q

s |= 〈〈C〉〉Rr
��x[F

�φ]⇔ In coalition game GC , ∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

E
σ1,σ2

GC ,s [rew(r, �,Sat(φ))] �� x

where Prσ1,σ2

GC ,s (ψ)
def
= Prσ1,σ2

GC ,s ({λ ∈ ΩGC ,s | λ |= ψ}) and for any path λ in G:

λ |= Xφ ⇔ stλ(1) |= φ
λ |= φ1 U

≤k φ2 ⇔ stλ(i) |= φ2 for some i ≤ k and stλ(j) |= φ1 for 0 ≤ j < i
λ |= φ1 Uφ2 ⇔ λ |= φ1 U

≤k φ2 for some k ∈ N.

Equivalences and Extensions. We can handle “negated path formulae” in a
〈〈C〉〉P��q operator by inverting the probability threshold, e.g.:

〈〈C〉〉P≥q [¬ψ] ≡ 〈〈C〉〉P≤1−q[ψ].

This allows us to derive, for example, the G (“globally”) and R (“release”)
operators. Also, from the determinacy result of [24] for zero-sum stochastic two-
player games with Borel measurable payoffs, it follows that, e.g.:

〈〈C〉〉P≥q [ψ] ≡ ¬〈〈Π \ C〉〉P<q [ψ]. (1)

Finally, it is useful to consider “quantitative” versions of the 〈〈C〉〉P and 〈〈C〉〉R
operators, in the style of PRISM [22], which return numerical values:

〈〈C〉〉Pmax=?[ψ]
def
= Prmax,min

GC ,s (ψ)
def
= sup

σ1∈Σ1

inf
σ2∈Σ2

Prσ1,σ2

GC ,s (ψ)

〈〈C〉〉Rr
max=?[F

�φ]
def
= E

max,min
GC ,s [rew(r, �,Sat(φ))]

def
= sup

σ1∈Σ1

inf
σ2∈Σ2

E
σ1,σ2

GC ,s [rew(r, �,Sat(φ))].

(2)

1:s0 2:s1 3:s2 1:s3

{t}a 0.7
0.3

b 0.5 0.5

a

b

a

b

a

Fig. 1. Example SMG

Example 1. Consider the SMG in Fig. 1.
with Π={1, 2, 3}. The player i controlling
a state s is shown as i:s in the figure, e.g.
S1={s0, s3}. We have actions A={a, b}
and e.g. Δ(s0, a)(s1)=0.7. State s3 is la-
belled with atomic proposition t. Consider
the rPATL formulae 〈〈{1, 3}〉〉P≥0.5[F t]
and 〈〈{1, 2}〉〉P≥0.5[F t]. The first is satisfied in states {s0, s2, s3}, the latter in
s3 only. Let r be a reward structure that assigns i to state si. rPATL formula
〈〈{1, 3}〉〉Rr

≤2[F
∞t] is true in states {s2, s3}. Formula 〈〈{1}〉〉Rr

≥q[F
0t] is false in all

states for any q > 0 but 〈〈{3}〉〉Rr
≥q[F

ct] is true in {s0, s1, s2} for any q > 0.

Automatic Verification of Competitive Stochastic Systems 321

4 Model Checking for rPATL

We now discuss model checking for rPATL, the key part of which is computa-
tion of probabilities and expected rewards for stochastic two-player games. The
complexity of the rPATL model checking problem can be stated as follows.

Theorem 1. (a) Model checking an rPATL formula with no 〈〈C〉〉Rr
��x[F

0φ] op-
erator and where k for U≤k is given in unary is in NP ∩ coNP.
(b) Model checking an unrestricted rPATL formula is in NEXP ∩ coNEXP.

Nevertheless, we present efficient and practically usable algorithms for model
checking rPATL, in which computation of numerical values is done by evaluating
fixpoints (up to a desired level of convergence1).

The basic algorithm for model checking an rPATL formula φ on an SMG
G proceeds as for other branching-time logics, determining the set Sat(φ) re-
cursively. Furthermore, as can be seen from the semantics, computing this set
for atomic propositions or logical connectives is trivial. Thus, we only consider
the 〈〈C〉〉P��q and 〈〈C〉〉Rr

��x operators. Like for the logic PCTL, model checking
of these reduces to computation of optimal probabilities or expected rewards,
respectively, on the coalition game GC . For example, if � ∈ {≥, >}, then:

s |= 〈〈C〉〉P�q [ψ] ⇔ Prmax,min
GC ,s (ψ) � q

s |= 〈〈C〉〉Rr
�x[F

�φ] ⇔ E
max,min
GC ,s [rew(r, �, Sat(φ))] � x.

Analogously, for operators ≤ and <, we simply swap min and max in the above.
The following sections describe how to compute these values.

4.1 Computing Probabilities

Below, we show how to compute the probabilities Prmax,min
GC ,s (ψ) where ψ is each

of the temporal operators X, U≤k and U. We omit the dual case since, thanks
to determinacy (see equation (1)), we have that Prmin,max

GC ,s (ψ) = Prmax,min
GΠ\C ,s (ψ).

The following results follow in near identical fashion to the corresponding results
for Markov decision processes [7]. We let opts denote max if s ∈ S1 and min if
s ∈ S2. For the X operator and state s ∈ S:

Prmax,min
GC ,s (Xφ) = optsa∈A(s)

∑
s′∈Sat(φ)

Δ(s, a)(s′).

Probabilities for the U≤k operator can be computed recursively. We have that
Prmax,min

GC ,s (φ1 U
≤k φ2) is equal to: 1 if s ∈ Sat(φ2); 0 if s �∈ (Sat(φ1) ∪ Sat(φ2));

0 if k=0 and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC ,s (φ1 U

≤k φ2) = optsa∈A(s)

∑
s′∈S

Δ(s, a)(s′) · Prmax,min
GC ,s′ (φ1 U

≤k−1 φ2).

The unbounded case can be computed via value iteration [15], i.e. using:

Prmax,min
GC ,s (φ1 Uφ2) = limk→∞ Prmax,min

GC ,s (φ1 U
≤k φ2).

1 This is the usual approach taken in probabilistic verification tools.

322 T. Chen et al.

In practice, this computation is terminated with a suitable convergence check
(see, e.g. [17]). In addition, we mention that for the case Fφ ≡ �Uφ, the com-
putation can also be reduced to quadratic programming [16].

4.2 Computing Rewards

Now, we show how to compute the optimal values Emax,min
GC ,s [rew (r, �,Sat(φ))] for

different types of �. As above, we omit the dual case where max and min are
swapped. In this section, we fix a coalition game GC , a reward structure r, and
a target set T = Sat(φ). We first make the following modifications to GC :

– labels are added to target and positive reward states: AP := AP ∪{t, arew},
∀s ∈ T : χ(s) := χ(s) ∪ {t} and ∀s ∈ S . r(s) > 0 : χ(s) := χ(s) ∪ {arew};

– target states are made absorbing: ∀s ∈ T : A(s) := {a}, Δ(s, a)(s)=1, r(s)=0.

Our algorithms, like the ones for similar properties on simpler models [7], rely
on computing fixpoints of certain sets of equations. As in the previous section,
we assume that this is done by value iteration with an appropriate convergence
criterion. We again let opts denote max if s ∈ S1 and min if s ∈ S2.

An important observation here is that optimal expected rewards for � ∈
{∞, c} can be achieved by memoryless, deterministic strategies. For � = 0, how-
ever, finite-memory strategies are needed. See [12] for details.

The case � = c. First, we use the results of [3] to identify the states from which
the expected reward is infinite:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf (arew)) > 0}

where inf (arew) is the set of all paths that visit a state satisfying arew infinitely
often. We remove the states of I from GC . For the other states, we compute the
least fixpoint of the following equations:

f(s) =

{
0 if s ∈ T

r(s) + optsa∈A(s)

∑
s′∈S Δ(s, a)(s′) · f(s′) otherwise

(3)

The case � = ∞. Again, we start by identifying and removing states with
infinite expected reward; in this case: I := {s ∈ S | s |= 〈〈{1}〉〉P<1[F t]}. Then,
for all other states s, we compute the greatest fixpoint, over R, of equations (3).
The need for the greatest fixpoint arises because, in the presence of zero-reward
cycles, multiple fixpoints may exist. The computation is over R since, e.g. the
function mapping all non-target states to ∞ may also be a fixpoint. To find the
greatest fixpoint over R, we first compute an over-approximation by changing
all zero rewards to any ε > 0 and then evaluating the least fixpoint of (3) for
the modified reward. Starting from the new initial values, value iteration now
converges from above to the correct fixpoint [12]. For the simpler case of MDPs,
an alternative approach based on removal of zero-reward end-components is
possible [2], but this cannot be adapted efficiently to stochastic games.

Automatic Verification of Competitive Stochastic Systems 323

The case � = 0. As mentioned above, it does not suffice to consider memoryless
strategies in this case. The optimal strategy may depend on the reward accumu-

lated so far, r(λ)
def
=
∑

s∈stλ
r(s) for history λ. However, this is only needed until

a certain reward bound B is reached, after which the optimal strategy picks
actions that maximise the probability of reaching T (if multiple such actions
exist, it picks the one with the highest expected reward). The bound B can be

computed efficiently using algorithms for � = c and Prmax,min
GC ,s (ψ) and, in the

worst case, can be exponential in the size of G (see [12]).
For clarity, we assume that rewards are integers. Let R(s,k) be the maximum

expectation of rew(r, 0, T) in state s after history λ with r(λ) = k:

R(s,k)
def
= max

σ1∈Σ1

min
σ2∈Σ2

k · Prσ1,σ2

GC ,s (F t) + E
σ1,σ2

GC ,s [rew(r, 0, T)],

and rmax = maxs∈S r(s). The algorithm works as follows:

1. Using the results of [3], identify the states that have infinite reward:

I := {s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC ,s (inf
t(arew)) > 0}}

where inf t(arew) is the set of all paths that visit a state satisfying P>0[F t])∧
arew infinitely often. Remove all states of I from the game.

2. For B ≤ k ≤ B + rmax − 1 and for each state s:

(a) Assign new reward r′(s) = r(s) · Prmax,min
GC ,s (F t);

(b) Remove from A(s) actions a that are sub-optimal for Prmax,min
GC ,s (F t), i.e.:∑

s′∈S Δ(s, a)(s′) · Prmax,min
GC ,s′ (F t) < Prmax,min

GC ,s (F t)

(c) Compute R(s,k) using the algorithm for rew(r′, c, T):

R(s,k) = k · Prmax,min
GC ,s (F t) + E

max,min
GC ,s [rew(r′, c, T)].

3. Find, for all 0 ≤ k < B and states s, the least fixpoint of the equations:

R(s,k) =

{
k if s ∈ T

optsa∈A(s)

∑
s′∈S Δ(s, a)(s′) · R(s′,k+r(s)) otherwise.

4. The required values are then E
max,min
GC ,s [rew(r, 0, T)] = R(s,0).

5 Implementation and Case Studies

Based on the techniques in this paper, we have built a probabilistic model checker
for stochastic multi-player games as an extension of the PRISM tool [22]. For
modelling of SMGs, we have extended the PRISM modelling language. This
allows multiple parallel components (called modules) which can either operate
asynchronously or by synchronising over common action labels. Now, a model

324 T. Chen et al.

Table 1. Performance statistics for a representative set of models

Case study SMG statistics Model checking
[parameters] Players States Transitions Prop. type Constr. (s) Model ch. (s)

mdsm
[N]

5 5 743,904 2,145,120
〈〈C〉〉Rr

max=?[F
0φ]

14.5 61.9
6 6 2,384,369 7,260,756 55.0 221.7
7 7 6,241,312 19,678,246 210.7 1,054.8

cdmsn
[N]

3 3 1,240 1,240
〈〈C〉〉P	
q[F

≤k φ]
0.2 0.2

4 4 11,645 83,252 0.8 0.8
5 5 100,032 843,775 3.2 6.4

investor
[vmax]

10 2 10,868 34,264
〈〈C〉〉Rr

min=?[F
cφ]

1.4 0.7
100 2 750,893 2,474,254 9.8 121.8
200 2 2,931,643 9,688,354 45.9 820.8

team-form
[N]

3 3 17,041 20,904
〈〈C〉〉Pmax=?[Fφ]

0.3 0.5
4 4 184,753 226,736 4.2 2.1
5 5 2,366,305 2,893,536 36.9 12.9

also includes a set of players, each of which controls transitions for a disjoint
subset of the modules and/or action labels. Essentially, we retain the existing
PRISM language semantics (for Markov decision processes), but, in every state,
each nondeterministic choice belongs to one player. For the current work, we
detect and disallow the possibility of concurrent decisions between players.

Our tool constructs an SMG from a model description and then executes the
algorithms from Sec. 4 to check rPATL formulae. Currently, we have developed
an explicit-state model checking implementation, which we show to be efficient
and scalable for various large models. It would also be relatively straightforward
to adapt PRISM’s symbolic model checking engines for our purpose, if required.

5.1 Experimental Results

We have applied our tool to the analysis of several large case studies: two de-
veloped solely for this work, and two others adapted from existing models. Ex-
perimental results from the new case studies are described in detail in the next
sections. First, we show some statistics regarding the performance of our tool on
a representative sample of models from the four case studies: Microgrid Demand-
Side Management (mdsm) and Collective Decision Making for Sensor Networks
(cdmsn), which will be discussed shortly; the Futures Market Investor (investor)
example of [25]; and the team formation protocol (team-form) of [13]. Tab. 1
shows model statistics (number of players, states and transitions) and the time
for model construction and checking a sample property on a 2.80GHz PC with
32GB RAM. All models and properties used are available online [29].

5.2 MDSM: Microgrid Demand-Side Management

Microgrid is an increasingly popular model for the future energy markets where
neighbourhoods use electricity generation from local sources (e.g. wind/solar
power) to satisfy local demand. The success of microgrids is highly dependent
on demand-side management : active management of demand by users to avoid
peaks. Thus, the infrastructure has to incentivise co-operation and discourage

Automatic Verification of Competitive Stochastic Systems 325

abuse. In this case study, we use rPATL model checking to analyse the MDSM
infrastructure of [19] and identify an important incentive-related weakness.

The Algorithm. The system in [19] consists of N households (HHs) connected
to a single distribution manager (DM). At every time-step, the DM randomly
contacts a HH for submission of a load for execution. The probability of the HH
generating a load is determined by a daily demand curve from [19]. The duration
of a load is random between 1 and D time-steps. The cost of executing a load
for a single step is the number of tasks currently running. Hence, the total cost
increases quadratically with HHs executing more loads in a single step.

Each household follows a very simple algorithm, the essence of which is that,
when it generates a load, if the cost is below an agreed limit clim, it executes
it, otherwise it only does so with a pre-agreed probability Pstart. In [19], the
value for each household in a time-step is measured by V= loads executing

cost of execution and
it is shown (through simulations) that, provided every household sticks to this
algorithm, the peak demand and the total cost of energy are reduced significantly
while still providing a good (expected) value V for each household.

Modelling and Analysis. We modelled the system as an SMG with N players,
one per household. We vary N ∈ {2, . . . , 7} and fix D=4 and clim=1.5. We
analyse a period of 3 days, each of 16 time-steps (using a piecewise approximation
of the daily demand curve). First, as a benchmark, we assume that all households
follow the algorithm of [19]. We define a reward structure ri for the value V for
household i at each step, and let rC =

∑
i∈C ri be the total reward for coalition

C. To compute the expected value per household, we use the rPATL query:

1
|C|〈〈C〉〉R

rC
max=?[F

0 time=max time]

fixing, for now, C to be the set Π of all N players (households). We use this to
determine the optimal value of Pstart achievable by a memoryless strategy for
each player, which we will then fix. These results are shown by the bold lines
in Fig. 2. We also plot (as a dotted line) the values obtained if no demand-side
management is applied.

Next, we consider the situation where the set of households C is allowed
to deviate from the pre-agreed strategy, by choosing to ignore the limit clim
if they wish. We check the same rPATL query as above, but now varying C
to be coalitions of different sizes, C ∈ {{1}, . . . , Π}. The resulting values are
also plotted in Fig. 2a, shown as horizontal dashes of width proportional to |C|:
the shortest dash represents individual deviation, the longest is a collaboration
of all HHs. The former shows the maximum value that can be achieved by
following the optimal collaborative strategy, and in itself presents a benchmark
for the performance of the original algorithm. The key result is that deviations
by individuals or small coalitions guarantee a better expected value for the HHs
than any larger collaboration: a highly undesired weakness for an MDSM system.

Fixing the Algorithm. We propose a simple punishment mechanism that
addresses the problem: we allow the DM to cancel one job per step if the cost
exceeds clim. The intuition is that, if a HH is constantly abusing the system,

326 T. Chen et al.

(a) Original version. (b) Version with punishment.

Fig. 2. Expected value per household for MDSM. The bold line shows all households
following the algorithm of [19]; the dotted line shows the case without DSM. Horizontal
dashes show deviations by collaborations of increasing size (shortest dash: individual
deviation; longest dash: deviation of all households).

its job could be cancelled. This modification inverts the incentives (see Fig. 2b).
The best option now is full collaboration and small coalitions who deviate cannot
guarantee better expected values any more.

5.3 CDMSN: Collective Decision Making for Sensor Networks

Sensor networks comprise a set of low-power, autonomous devices which must
act collaboratively in order to achieve a particular goal. In this case study, we
illustrate the use of rPATL model checking to aid the analysis and design of such
systems by studying a distributed consensus algorithm for sensor networks [26].

The Algorithm. There are N sensors and a set of targets K = {k1, k2, . . . },
each with quality Qk ∈ [0, 1]. The goal is for the sensors to agree on a target
with maximum Qk. Each sensor i stores a preferred target pi ∈ K, its quality
Qpi and an integer li ∈ {1, . . . , L} to represent confidence in the preference. The
algorithm has parameters η and λ, measuring the influence of target quality for
the decision, and a parameter γ measuring the influence of the confidence level.

A sensor has three actions: sleep, explore and communicate. As proposed
by [26], each sensor repeatedly sleeps for a random time t and then either explores
(with probability Pexp) or communicates. For the explore action, sensor i picks
a target k ∈ K uniformly at random and with probability Pk = Qη

k/(Q
η
k +Qη

p1
)

switches its preference (pi) to k and resets confidence to 1. To communicate,
it compares its preference with that of a random sensor j. If they agree, both
confidences are increased. If not, with probability Ps = Qλ

pj
lγj /(Q

λ
pj
lγj +Qλ

pi
lγi),

sensor i switches preference to pj, resets confidence to 1 and increases sensor j’s
confidence; with probability 1−Ps, the roles of sensors i and j are swapped.

Automatic Verification of Competitive Stochastic Systems 327

(a) N = 3 (b) N = 4 (c) N = 5

Fig. 3. Expected running time until the selection of the best quality target for different
models and increasing sizes of coalition C. Dotted lines show optimal performance that
can be achieved using the original algorithm from [26].

Modelling and Analysis. We have modelled the system as an SMG with
N players, one per sensor. We consider models with N=3, 4, 5, three targets
K={k1, k2, k3} with qualities Qk1=1, Qk2=0.5, Qk3=0.25 and two confidence
levels li ∈ {1, 2}. As in [26], we assume a random scheduling and fix parameters
η=1 and λ=1. In [26], two key properties of the algorithm are studied: speed
of convergence and robustness. We consider the same two issues and evaluate
alternative strategies for sensors (i.e. allowing sensors to execute any action
when active). We also assume that only a subset C of the sensors are under our
control, e.g., because the others are faulty. We use rPATL (with coalition C) to
optimise performance, under the worst-case assumption about the other sensors.

First, we study the speed of convergence and the influence of parameter γ
upon it. Fig. 3 shows the expected running time to reach the best decision (i.e.
select k1) for various values of γ and sizes of the coalition C. We use the reward
structure: r(s) = 1 for all s ∈ S and rPATL query:

〈〈C〉〉Rr
min=?[F

∞ ∧|Π|
i=1 pi = k1] .

Fig. 3 also shows the performance of the original algorithm [26] (line ‘det’). We
make several important observations. First, if we lose control of a few sensors,
we can still guarantee convergence time comparable to the original algorithm,
indicating the fault tolerance potential of the system. On the other hand, the
original version performs almost as well as the optimal case for large coalitions.

Secondly, we consider robustness : the ability to recover from a ‘bad decision’

(i.e.,
∧|Π|

i=1 pi = k3) to a ‘good state’ in n steps. We provide two interpretations
of a ‘good state’ and show that the results for them are quite different.

(1) A ‘good state’: there exists a strategy for coalition C to make all sensors,
with probability > 0.9, select k1 within 10 steps. So robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉P>0.9[F

≤10
∧|Π|

i=1 pi = k1]] .

(2) A ‘good state’: there exists a strategy for coalition C to make all sensors
select k1 while using less than 0.5mJ of energy. We use a reward structure

328 T. Chen et al.

(a) Probability to select k1 within 10
steps is greater than 0.9.

(b) Expected energy usage for coalition
to select k1 is less than 0.5mJ .

Fig. 4. Minimum probability to recover from a state where all sensors prefer the lowest
quality target, k3, within n steps for different coalition sizes. Graphs (a) and (b) show
results for two types of recovery state (see captions). γ = 2.

rC representing energy usage by sensors in C: power consumption is 10mW
for each communication and 1mW for each exploration, and each activity
takes 0.1s. Then, robustness in rPATL is:

〈〈C〉〉Pmax=?[F
≤n 〈〈C〉〉RrC

<50[F
c
∧|Π|

i=1 pi = k1]] .

Fig. 4 shows, for each definition and for a range of values of n, the worst-case
(minimum) value for the rPATL query from all possible ‘bad states’. For (1),
the results are intuitive: the larger the coalition, the faster it recovers. For (2),
however, the one-sensor coalition outperforms all others. Also, we see that, in the
early stages of recovery, 2-sensor coalitions outperform larger ones. This shows
that small coalitions can be more resource efficient in achieving certain goals.

6 Conclusions

We have designed and implemented a framework for automatic verification of
systems with both probabilistic and competitive behaviour, based on stochastic
multi-player games. We proposed a new temporal logic rPATL, designed model
checking algorithms, implemented them in a tool and then used our techniques
to identify unexpected behaviour in several large case studies.

There are many interesting directions for future work, such as investigating
extensions of our techniques to incorporate partial-information strategies or more
complex solution concepts such as Nash, subgame-perfect or secure equilibria.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, the Institute for the Future of Computing at the Oxford Martin

Automatic Verification of Competitive Stochastic Systems 329

School and EPSRC grant EP/F001096/1. Vojtěch Forejt is supported by a Royal
Society Newton Fellowship. We also gratefully acknowledge the anonymous ref-
erees for their helpful comments.

References

1. Aizatulin, M., Schnoor, H., Wilke, T.: Computationally Sound Analysis of a Prob-
abilistic Contract Signing Protocol. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 571–586. Springer, Heidelberg (2009)

2. de Alfaro, L.: Computing Minimum and Maximum Reachability Times in Prob-
abilistic Systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, p. 66. Springer, Heidelberg (1999)

3. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: LICS (2000)
4. Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.:
MOCHA: Modularity in Model Checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 521–525. Springer, Heidelberg (1998)

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

6. Baier, C., Brázdil, T., Größer, M., Kucera, A.: Stochastic game logic. In: Proc.
QEST 2007, pp. 227–236. IEEE (2007)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

8. Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain Agent Verification through
Probabilistic Model-Checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears,
D., Scerri, P., Massacci, F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–
174. Springer, Heidelberg (2009)

9. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantita-
tive Synthesis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

10. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A Solver
for Probabilistic Games. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010)

11. Chatterjee, K.: Stochastic ω-Regular Games. Ph.D. thesis (2007)

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifica-
tion of competitive stochastic systems. Tech. Rep. RR-11-11, University of Oxford
(2011)

13. Chen, T., Kwiatkowska, M., Parker, D., Simaitis, A.: Verifying Team Formation
Protocols with Probabilistic Model Checking. In: Leite, J., Torroni, P., Ågotnes,
T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp.
190–207. Springer, Heidelberg (2011)

14. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking
algorithm. In: Proc. FSKD 2007, pp. 35–39. IEEE (2007)

15. Condon, A.: On algorithms for simple stochastic games. In: Advances in Compu-
tational Complexity Theory. DIMACS, vol. 13, pp. 51–73 (1993)

16. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

17. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification
Techniques for Probabilistic Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

330 T. Chen et al.

18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

19. Hildmann, H., Saffre, F.: Influence of variable supply and load flexibility on
demand-side management. In: Proc. EEM 2011, pp. 63–68 (2011)

20. van der Hoek, W., Wooldridge, M.: Model checking cooperation, knowledge, and
time - A case study. Research In Economics 57(3), 235–265 (2003)

21. Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security 11(3), 399–430 (2003)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

23. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification
of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

24. Martin, D.: The determinacy of Blackwell games. J. Symb. Log. 63(4) (1998)
25. McIver, A., Morgan, C.: Results on the quantitative mu-calculus qMu. ACM Trans-

actions on Computational Logic 8(1) (2007)
26. Saffre, F., Simaitis, A.: Host selection through collective decision. ACM Transac-

tions on Autonomous and Adaptive Systems, TAAS (to appear, 2012)
27. Ummels, M.: Stochastic Multiplayer Games: Theory and Algorithms. Ph.D. thesis,

RWTH Aachen University (2010)
28. Zhang, C., Pang, J.: On Probabilistic Alternating Simulations. In: Calude, C.S.,

Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 71–85. Springer, Heidelberg
(2010)

29. http://www.prismmodelchecker.org/files/tacas12smg/

http://www.prismmodelchecker.org/files/tacas12smg/

Coupling and Importance Sampling

for Statistical Model Checking

Benôıt Barbot, Serge Haddad, and Claudine Picaronny

LSV, ENS Cachan & CNRS & INRIA, Cachan, France
{barbot,haddad,picaronny}@lsv.ens-cachan.fr

Abstract. Statistical model-checking is an alternative verification tech-
nique applied on stochastic systems whose size is beyond numerical anal-
ysis ability. Given a model (most often a Markov chain) and a formula, it
provides a confidence interval for the probability that the model satisfies
the formula. One of the main limitations of the statistical approach is
the computation time explosion triggered by the evaluation of very small
probabilities. In order to solve this problem we develop a new approach
based on importance sampling and coupling. The corresponding algo-
rithms have been implemented in our tool COSMOS. We present exper-
imentation on several relevant systems, with estimated time reductions
reaching a factor of 10−120.

Keywords: statistical model checking, rare events, importance sam-
pling, coupling.

1 Introduction

Quantitative Model Checking. Model checking [13] is an efficient verification
method to check that the behaviour of a system fulfills properties expressed by
some temporal logic. It has been successfully implemented in a variety of tools,
thanks to it algorithmic simplicity. Although a method initially dedicated to
discrete event systems, it has been adapted to performance evaluation in order
to check quantitative properties and in particular to estimate probabilities [18].

Statistical Model-Checking. Analysis of stochastic systems requires numer-
ical or statistical techniques. Numerical methods give exact results (up to nu-
merical approximations) but significantly restrict the class of analysable systems
(manageable size, Markov properties, etc.). Otherwise, statistical method may
be used. By simulating a big sample of trajectories of the system and computing
the ratio of these trajectories that satisfy a given property, it produces a prob-
abilistic framing of the expected value. To generate the sample we only need to
have an operational stochastic semantic of the system. This usually requires a
very small state space compared to the numerical method and allows to deal
with huge models [20].

Rare Events. The main drawback of the statistical model-checking is its in-
efficiency in dealing with very small probabilities. The size of the sample of

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 331–346, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

332 B. Barbot, S. Haddad, and C. Picaronny

simulations required to estimate these small probabilities exceeds achievable ca-
pacities. This difficulty is known as the rare event problem. Several methods
have been developed to cope with this problem whose main one is importance
sampling. Importance sampling consists in modifying the model and in substi-
tuting to the indicator random variable related to the satisfaction of the formula,
another variable with same mean and, in the favorable cases, reduced variance.
Most of the techniques related to importance sampling are based on heuristics
and cannot provide any confidence interval for the estimated probability.

Our Contribution. Here we propose a method based on importance sampling
to estimate in a reliable way a very small probability1.

We set up a theoretical framework using coupling theory [21], yielding an ef-
ficient importance sampling that guarantees a variance reduction and provides
a confidence interval. This is done by performing numerical model checking on
a small suitable reduction of the Markov chain associated with the system. The
results are then used as parameters required for the importance sampling tech-
nique. Such a method deals with huge (possibly infinite) systems which are out
of reach of numerical model checking and standard statistical model checking.
It can be applied to a large variety of models compared to existing importance
sampling methods which are usually put up in an ad-hoc way for particular
families of models. Furthermore to the best of our knowledge, this is the first
importance sampling method that provides a true (and not an approximate)
confidence interval.

We implemented our method in the statistical model-checker COSMOS [4] using
the tool PRISM for the numerical computation on the reduced model. We tested
our tool on several models getting impressive time reductions.

Organisation. In section 2, we motivate this work and we give a state of the art
related to rare event handling. Then we develop our method in section 3. After-
wards we present and discuss experimentation in section 4. Finally in section 5,
we conclude and give some perspectives to this work. Due to lack of place, the
proofs can be found in [6].

2 Motivation and State of the Art

The temporal logics for probabilistic systems include both the qualitative and
quantitative aspects of the systems. For instance, such logics can express (1)
boolean assertions like “the probability of failure of a fixed component is below
some threshold” and (2) numerical indices like “the mean delivery time of a
packet assuming three collisions”. The semantics of such formula is based on the
probability that a random path fulfills some property (in CSL [2]) or (in a more
general setting) on the conditional expectation of a path random variable whose
condition is the satisfaction of some property by the random path (in HASL [4]).

1 We have presented in a previous paper [5] a preliminary approach of this method
with stronger assumptions and without using the coupling theory.

Coupling and Importance Sampling for Statistical Model Checking 333

Model checking of these logics can be performed in a numerical or in a
statistical way. The former approach builds the underlying stochastic process
of the model and then computes probabilities or expectations using direct or
iterative methods. Such methods have been implemented efficiently in tools
like PRISM [17], LiQuor [9] or MRMC [16].

However these methods have two drawbacks. On the one hand, they rely on
strong assumptions about the stochastic process that must be a Markov chain
(see for instance [2]) or at least a regenerative process (see for instance [1]). On
the other hand they suffer from the combinatorial explosion of the size of the
stochastic process w.r.t. the size of the model.

Models with huge stochastic process are handled by statistical model checking.
The corresponding methods randomly generate a (large) set of execution paths
and check whether the paths fulfill the formula. The result is a probabilistic esti-
mation of the satisfaction given by a confidence interval [3]. In principle, it only
requires to maintain a current state (and some numerical values in case of a non
Markovian process). Furthermore no regenerative assumption is required and it
is easier to parallelize the methods. Several tools include statistical model check-
ing: COSMOS [4], GreatSPN [8], PRISM [17], UPPAAL [7], VESTA [23], Ymer [25].

Model checking of probabilistic systems is particularly important for events
which have disastrous consequences (loss of human life, financial ruin, etc.),
but occur with very small probability. Unfortunately statistical model check-
ing of rare events triggers a computation time explosion, forbidding its use.
To illustrate this point, suppose one wants to estimate an unknown probability
p = 10−13 and one chooses to generate 1010 paths (which is already a large
number) for such an estimation. With probability larger than 0.999 the result is
0, giving no information on the value of p. With probability smaller than 0.001
the result will be greater or equal than 10−10 which is a very crude estimation.

Thus acceleration techniques [22] have been introduced to cope with this prob-
lem. The two main families of methods are splitting and importance sampling.

Splitting methods [19] duplicate or eliminate paths during their generation
depending on their intermediate behaviour. When generation is ended, the bias
introduced by these operations is taken into account for the estimation of the
probability. Splitting methods are by nature heuristics, model dependent and
very few theoretical results are known.

Importance sampling methods [14] generate paths of a system whose probabil-
ity distribution of transitions have been changed to increase the probability of the
event to occur. A weight is then affected to each path to correct the introduced
bias. The goal is to substitute to the Bernoulli random variable corresponding to
the occurrence of the rare event, another one with same mean value (the prob-
ability of event occurrence) but smaller variance. In Markov chains, an optimal
change of distribution exists leading to a zero variance but it requires more in-
formation than the searched value! However this optimal importance sampling
allows to design efficient heuristics for some classes of models.

The modification of the distribution can be performed at the model
level (called static) or at the Markov chain level (called dynamic). The static

334 B. Barbot, S. Haddad, and C. Picaronny

importance sampling requires no additional memory but in general provides a
smaller reduction of variance than the dynamic importance sampling. More pre-
cisely, it is proved in [11] that asymptotic optimality (a weaker requirement
than optimality) cannot be obtained even for very simple classes of models by
static importance sampling. In full generality, the dynamic importance sam-
pling [24] requires to maintain a memory whose size is proportional to the size
of the Markov chain which is exactly what one wants to avoid. To deal with
this problem, in [12] the authors develop the following method: (1) the possible
distributions belong to the convex hull of a finite number of distributions, (2) the
state space is partitioned and (3) a distribution is selected for each subset of this
partition. They prove that for a simple class of models their method is asymp-
totically optimal. Other empirical approaches turn out to be efficient [15,10].

Summarizing, theoretical results (reduction of variance, asymptotical optimal-
ity, etc.) have been obtained for importance sampling. However none of these
methods can produce a reliable confidence interval2 for the mean value since the
distribution of the modified random variable is unknown.

3 General Approach

3.1 Preliminaries

Definition 1. A discrete time Markov chain (DTMC) C is defined as a set of
states S, an initial state s0, and a transition probability matrix P of size S × S.
The state of the chain at time n is a random variable Xn defined inductively by
Pr(X0 = s0) = 1 and Pr(Xn+1 = s′ | Xn = s,Xn−1 = sn−1, . . . , X0 = s0) =
Pr(Xn+1 = s′ | Xn = s) = P(s, s′).

Example 1. The figure 1(a) represents a Markov chain of a tandem queue
system. This system contains two queues, the number of clients in the first queue
is represented on the horizontal axis and the number of clients in the second one
is represented on the vertical axis. In the initial state s0, the two queues are
empty. Given some state, a new client comes in the first queue with probability
λ, a client leaves the first queue for the second one with probability ρ1 and a
client leaves the second queue and exits with probability ρ2 (λ+ρ1+ρ2 = 1). An
impossible event (due to the emptiness of some queue) corresponds to an event
leaving unchanged the state. These loops are not represented in the figure.

Usually the modeller does not specify its system with a Markov chain. He rather
defines a higher level modelM (a queueing network, a stochastic Petri net, etc.),
whose operational semantic is a Markov chain C.

In the context of model checking, the states of chain C are labelled with atomic
propositions. The problem we address here is the computation of the probability
that a random path starting from state s0 satisfies a formula aUb where U is the
Until operator and a, b are atomic propositions. Observe that in continuous time

2 In contrast to the empirical confidence interval based on approximations by the
normal distribution.

Coupling and Importance Sampling for Statistical Model Checking 335

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ1
ρ2

λ

ρ2

ρ2

ρ2

s0
(a) DTMC for the tandem queues

s−

s+

s0 λ λ λ

λ

λ λ λ

λλ λ

λ

λ λ

λ

ρ1 ρ1 ρ1 ρ1

ρ1 ρ1 ρ1

ρ1 ρ1

ρ1

ρ2 ρ2 ρ2 ρ2

ρ2 ρ2 ρ2

ρ2 ρ2

ρ2

(b) DTMC with absorbing states

Fig. 1. DTMC for tandem queues

Markov chains, this probability only depends on its embedded DTMC. Thus our
results are also applicable in a continuous time setting. We (implicitly) transform
C by lumping together all the states that satisfy b into an absorbing state s+
(i.e. P(s+, s+) = 1) and states that satisfy ¬a ∧ ¬b into an absorbing state s−.
We assume that there is no terminal strongly connected component of C whose
every state satisfies a∧¬b3. Hence in the modified chain, the probability to reach
s+ or s− is equal to 1 and probability of satisfying the formula is the probability
to reach s+.

Example 1. The figure 1(b) shows the transformation of the tandem queues
were the states have been lumped together w.r.t. the propositions a: There is

at least one client in some queue and b: the sum of clients in both

queues is equal to 5. The initial state s0 is now the state with one client in
the first queue (to avoid s0 = s−). We are looking for the probability to have
simultaneously at least five clients between two idle periods.

The statistical approach consists in generating K paths of the Markov chain
which ends in an absorbing state. LetK+ be the number of paths ending in the s+
state. The random variable K+ follows a binomial distribution with parameters

p and K. Thus the random variable K+

K has a mean value p and a variance p−p2

K .
When K goes to infinity the variance goes to 0. In order to be more precise on
the estimation, we introduce the notion of confidence interval.

Definition 2. Let X1, . . . , Xn be independent random variables following a com-
mon distribution including a parameter θ. Let 0 < γ < 1 be a confidence level.
Then a confidence interval for θ with level at least γ is given by two random
variables l(X1, . . . , Xn) and u(X1, . . . , Xn) such that for all θ:

Pr (l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) ≥ γ

3 There is currently no satisfactory solution for the statistical model checking of the
unbounded until for chains that do not fulfill this assumption.

336 B. Barbot, S. Haddad, and C. Picaronny

For standard parametrized distributions like the normal or the Bernoulli ones,
it is possible to compute confidence intervals [3]. Thus, given a number of paths
K and a confidence level 1 − ε, the method produces a confidence interval. As
discussed before when p4 1, the number of paths required for a small confidence
interval is too large to be simulated.

The importance sampling method uses a modified transition matrix P′ during
the generation of paths. P′ must satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s′ = s− (1)

which means that this modification cannot remove transitions that have not s−
as target, but can add new transitions. The method maintains a correction factor
called L initialized to 1; this factor represents the likelihood of the path. When

a path crosses a transition s→ s′ with s′ �= s−, L is updated by L← L P(s,s′)
P′(s,s′) .

When a path reaches s−, L is set to zero. If P′ = P (i.e. no modification of the
chain), the value of L when the path reaches s+ (resp. s−) is 1 (resp. 0).

Let Vs (resp. Ws) be the random variable associated with the final value of
L for a path starting in s in the original model (resp. in the modified one). By
definition, E(Vs0) = p. The following proposition establishes the correctness of
the method.

Proposition 1. E(Ws0) = p.

A good choice of P′ should reduce the variance of Ws0 w.r.t. to variance of Vs0 .
The following proposition shows that there exists a matrix P′ which leads to a
null variance. We denote the probability to reach s+ starting from s by μ(s).

Proposition 2. Let P′ be defined by

– ∀s such that μ(s) �= 0, P′(s, s′) = μ(s′)
μ(s) P(s, s′)

– ∀s such that μ(s) = 0, P′(s, s′) = P(s, s′)

Then for all s, we have V(Ws) = 0.

This result has a priori no practical application since it requires the knowledge
of μ for all states, whereas we only want to estimate μ(s0)!

The coupling method [21] is a classical method for comparing two stochas-
tic processes, applied in different contexts (establishing ergodicity of a chain,
stochastic ordering, bounds, etc.). In the sequel we will develop a new applica-
tion for coupling. A coupling between two Markov chains is a chain whose space
is a subset of the product of the two spaces which satisfies: (1) the projection
of the product chain on any of its components behaves like the original corre-
sponding chain, (2) an additional constraint which depends on the property to
be proved (here related to the absorbing states).

Definition 3. Let C = (S,P) and C′ = (S′,P′) be two Markov chains with s+
and s− two absorbing states of C and s′+ and s′− two absorbing states of C′. A
coupling between C and C′ is a DTMC C⊗ = (S⊗,P⊗) such that :

Coupling and Importance Sampling for Statistical Model Checking 337

– S⊗ ⊆ S × S′

– ∀s = s1 ∈ S , ∀(s, s′) ∈ S⊗, P (s , s1) =
∑

s′1∈S′ P
⊗((s, s′), (s1, s′1)) and

∀s′ = s′1 ∈ S′, ∀(s, s′) ∈ S⊗, P′(s′, s′1) =
∑

s1∈S P⊗((s, s′), (s1, s′1))
– ∀(s, s′) ∈ S⊗ s′ = s′+ ⇒ s = s+

The set S⊗ defines a coupling relation between the two chains.

The following proposition allows to compare probabilities without any numerical
computation. As before, μ(s) (resp. μ′(s′)) denotes the probability to reach the
state s+ (resp. s′+) in C (resp. in C′) starting from s (resp. from s′).

Proposition 3. Let C⊗ be a coupling between C and C′. Then, for all (s, s′) ∈
S⊗, we have:

μ(s) ≥ μ′(s′)

λ

ρ1

λ

ρ1

λ

ρ1

λ

ρ1

λ

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

λ

ρ1

ρ2

ρ2 ρ2 ρ2

λ

λ
λ

s•−

s•+

s•0

Fig. 2. Reduced DTMC

Example 1. Let us illustrate coupling for the
Markov chain represented in figure 2 and called C•.
This chain is obtained from the tandem queues by
lumping together states which have the same num-
ber of clients and at least R clients in the second
queue (in the figure R = 2). Its set of state is S• =
[0..N]× [0..R]. Here there is a coupling of this chain
with itself defined by S⊗ = {((n1, n2), (n

′
1, n

′
2)) |

n1 + n2 ≥ n′
1 + n′

2 ∧ n1 ≥ n′
1}.

Lemma 1. S⊗ is a coupling relation.

Thus: ∀((n1, n2), (n
′
1, n

′
2)) ∈ S⊗, μ•(n1, n2) ≥ μ•(n′

1, n
′
2)

3.2 An Importance Sampling Method with Variance Reduction and
Confidence Interval

The proposed method combines statistical model checking on the original chain
preceded by numerical model checking on a reduced chain whose formal definition
is given below.

Definition 4. Let C be a DTMC, a DTMC C• is called a reduction of C by a
function f that maps S to S•, the state space of C•, if, denoting s•− = f(s−) and
s•+ = f(s+), the following assertions are satisfied:

– f−1(s•−) = {s−} and f−1(s•+) = {s+}.
– s•− and s•+ are absorbing states reached with probability 1.
– Let s• ∈ S• and denote by μ•(s•), the probability to reach s•+ starting from

s•. Then for all s ∈ S, we have μ•(f(s)) = 0⇒ μ(s) = 0.

The two first assertions entail that the reduced chain has two absorbing states
reached with probability 1 which are images of the absorbing states of the original
chain. The last assertion requires that when from the image of some state s, one
cannot reach s•+, then one cannot reach s+ from s. These (weak) assumptions

338 B. Barbot, S. Haddad, and C. Picaronny

ensure that the mapping f preserves the basic features of the original chain.
Two states s and s′ are equivalent if f(s) = f(s′), in other words f−1 define
equivalence classes for this reduction.

Example 1. In the example of tandem queues, the reduced chain C• is obtained
from the original chain by applying the following function to the state space.

f(n1, n2) =

{
(n1, n2) if n2 ≤ R
(n1 + n2 −R,R) otherwise

The intuition behind this reduction is to block clients in the first queue when
there are R clients in the second one, thus increasing the probability of a global
overflow. Given some reduced chain C•, our goal is to replace the random vari-
able (r.v.) Vs0 which takes value in {0, 1} by a r.v. Ws0 which takes value in
{0, μ•(f(s0))}. This requires that μ(s0) ≤ μ•(f(s0)). By applying an homogene-
ity principle, we get the stronger requirement ∀s∈S, μ(s)≤μ•(f(s)). In fact, the
appropriate requirement which implies the previous one (see later proposition 4)
is expressed by the next definition.

Definition 5. Let C be a DTMC and C• a reduction of C by f . C• is a reduction
with guaranteed variance if for all s ∈ S such that μ•(f(s)) > 0 we have :∑

s′∈S

μ•(f(s′)) ·P(s, s′) ≤ μ•(f(s)) (2)

Given s ∈ S, let h(s) be defined by h(s) =
∑

s′∈S
μ•(f(s′))
μ•(f(s)) P(s, s′). We can

now construct an efficient important sampling based on a reduced chain with
guaranteed variance.

Definition 6. Let C be a DTMC and C• be a reduction of C by f with guaranteed
variance. Then P′ is transition matrix on S defined by:
Let s be a state of S,

– if μ•(f(s)) = 0 then for all s′ ∈ S, P′(s, s′) = P(s, s′)
– if μ•(f(s)) > 0 then for all s′ ∈ S \ {s−},

P′(s, s′) = μ•(f(s′))
μ•(f(s)) P(s, s′) and P′(s, s−) = 1− h(s).

The following proposition justifies the definition of P′.

Proposition 4. Let C be a DTMC and C• be a reduction with guaranteed vari-
ance. The importance sampling based on matrix P′ of definition 6 has the fol-
lowing properties:

– For all s such that μ(s) > 0,
Ws is a random variable which has value in {0, μ•(f(s))}.

– μ(s) ≤ μ•(f(s)) and V(Ws) = μ(s)μ•(f(s))− μ2(s).
– One can compute a confidence interval for this importance sampling.

Coupling and Importance Sampling for Statistical Model Checking 339

Since μ(s0) 4 1, V(Vs0) ≈ μ(s0). If μ(s0) 4 μ•(f(s0)), we obtain V(Ws0) ≈
μ(s0)μ

•(f(s0)), so the variance is reduced by a factor μ•(f(s0)). In the case
where μ(s0) and μ•(f(s0)) have same magnitude order, the reduction of variance
is even bigger.

Unfortunately, Equation (2) requires to compute the function μ• in order to
check that C• is a reduction with guaranteed variance. We are looking for a
structural requirement that does not involve the computation of μ•.

Proposition 5. Let C be a DTMC, C• be a reduction of C by f . Assume there
exists a family of functions (gs)s∈S , gs : {t | P(s, t) > 0} → S• such that:

1. ∀s ∈ S, ∀t• ∈ S•, P•(f(s), t•) =
∑

s′|g(s′)=t• P(s, s′)
2. ∀s, t ∈ S such that P(s, t) > 0, μ•(f(t)) ≤ μ•(gs(t))

Then C• is a reduction of C with guaranteed variance.

The family of functions (gs) assigns to each transition of C starting from s
a transition of C• starting from f(s). The first condition can be checked by
straightforward examination of the probability transition matrices. The second
condition still involves the mapping μ• but here there are only comparisons
between its values. Thanks to proposition 3, it can be proved by exhibiting a
coupling of C with itself.

We are now in position to describe the whole method for a model M with
associated DTMC C.
1. Specify a model M• with associated DTMC C•, a function f and a family

of functions (gs)s∈S . The specification of this family is done at the level of
models M and M• as shown in the next example and in section 4.

2. Prove using a coupling on C• that proposition 5 holds. Again the proof is
performed at the level of models.

3. Compute function μ• with a numerical model checker applied on M•.
4. Compute μ(s0) with a statistical model checker applied on M using the

importance sampling of definition 6.

The last two steps are done by tools. The second step is currently done by hand
(see [6]) but could be handled by theorem provers. The only manual step is the
specification of M• which requires to study M and the formula to be checked
(see section 4).

Example 1. To apply the method on the example it remains to specify the
family of functions (gs)s∈S.

g(n1,n2)(n1, n2) = f(n1, n2)
g(n1,n2)(n1 + 1, n2) = f(n1 + 1, n2)
g(n1,n2)(n1 − 1, n2 + 1) = f(n1 − 1, n2 + 1)

g(n1,n2)(n1, n2 − 1) =

{
(n1, n2 − 1) if n2 ≤ R
(n1 + n2 −R,R− 1) otherwise

The condition 2 always trivially holds except for the last case with n2 > R.
We have to check that μ•(n1 + n2 − 1 − R,R) ≤ μ•(n1 + n2 − R,R − 1). As
(n1 + n2 − R,R − 1), (n1 + n2 − 1 − R,R)) belongs to the coupling relation the
inequality holds.

340 B. Barbot, S. Haddad, and C. Picaronny

3.3 Generalisation

We generalize the method but with no guarantee about the variance reduction.

Definition 7. Let C be a DTMC and C• a reduction C of by f . We define a
transition matrix P′ on S by the following rules. Let s ∈ S:

– if μ•(f(s)) = 0 then for all s′ ∈ S, P′(s, s′) = P(s, s′)

– if μ•(f(s)) > 0 and h(s) ≤ 1 then for all s′ ∈ S \ {s−},
P′(s, s′) = μ•(f(s′))

μ•(f(s)) P(s, s′) and P′(s, s−) = 1− h(s)

– if h(s) > 1, then for all s′ ∈ S, P′(s, s′) = μ•(f(s′))
h(s)μ•(f(s))P(s, s′)

When Equation 2 does not hold for state s, we have to “normalize” the matrix
rowP′(s,−). The next proposition characterises the range of the random variable
Ws for this importance sampling. Thus the precision of the estimator highly
depends on the shape of the (unknown) distribution of Ws beyond μ•(f(s)).

Proposition 6. Let C be a DTMC and C• his reduction. The importance sam-
pling of the definition 7 has the following property: for all s such that μ(s) > 0,
Ws is a random variable which takes its values in {0} ∪ [μ•(f(s)),∞[.

4 Experimentation

4.1 Implementation

Tools. Our experiments 4 have been performed on a modified version of COSMOS

(downloadable at http://www.lsv.ens-cachan.fr/Software/Cosmos).
COSMOS is a statistical model checker whose input model is a stochastic Petri net
with general distributions and formulas are expressed by the Hybrid Automata
Stochastic Logic [4]. The numerical model checking of the reduced model have
been performed by PRISM whereas we have also used the statistical model checker
PRISM 4.0 for comparisons with our method.

Adaptation of COSMOS. Since COSMOS takes as input a stochastic Petri net
with a continuous time semantic, we have adapted our method to work with con-
tinuous time Markov chains. As discussed before, for formulas that we consider,
this does not present serious difficulty.

The importance sampling increases the computation time of simulation. First
we have to compute and store in an hash table the probability vector μ• of the
reduced model in polynomial time w.r.t. the reduced Markov chain C•. Then
after a transition of the path we must compute P′(s,−) where s is the current
state whose computation time is linear w.r.t. the number of events of M.

4 All the experiments have been performed on a computer with a 2.6Ghz processor
and 48Go of memory without parallelism.

http://www.lsv.ens-cachan.fr/Software/Cosmos

Coupling and Importance Sampling for Statistical Model Checking 341

4.2 Example 1: Global Overflow in Tandem Queues

This example is a classical benchmark for importance sampling. We compare
our results with those of [12] which provides an efficient solution (see section 2).
We take the same parameters with λ = 0.1, ρ1 = ρ2 = 0.45, N = 50 and we also
simulate 20000 paths. We set the parameter R to 4. The probability (computed
by a numerical model checker) is 3.8 10−31. The width of confidence interval
produced by [12] is 6.4 10−32 whereas ours is six times smaller (9.63 10−33).

We also compare our method to both numerical and standard statistical model
checking done by PRISM. We change the parameter of the model to λ = 0.32,
ρ1 = ρ2 = 0.34 in order to evaluate the methods for large values of N . Results
are depicted in table 1. We set the value of R to the minimal value such that

μ(s0)
μ•(f(s0))

< 1.5. We found that R and N satisfy R ≈ 36.3 log(N) − 126. The

narrowness of the obtained confidence interval confirms the validity of this choice.
The reduced model has Θ(n log(n)) states whereas the initial one has Θ(n2)
states.

The standard statistical model checker fails to find a relevant confidence inter-
val (i.e. the width of interval is half the value of the estimation) when N ≥ 100
while the numerical model checker does not end when N ≥ 5000. Our method
can handle greater values of this parameter. We can approximate the number of
paths required by standard statistical model checking and deduce the estimated
corresponding computation time which is 10120 greater than ours!

Table 1. Experimental results for example 1

N Size of Prism num Prism stat Cosmos
C T (s) μ(s0) T (s) μ(s0) Conf. Int. width R T C• (s) T (s) μ(s0) Conf. Int. width

50 2601 0.3 0.0929 1.45 0.091 0.016 4 0.03 7 0.090 0.017
100 10 201 1.6 0.01177 2.7 0.015 0.007 30 1 36 0.01156 8.6E-4
500 251 001 126 2.06E-12 2.3 0 # 87 23 145 2.075E-12 1.72E-13
1000 1E6 860 2.87E-25 No path reaches the rare event 111 113 263 2.906E-25 2.52E-26
5000 25E6 >12h # # 150 3061 1099 7.10E-130 1.21E-130

4.3 Example 2 : Parallel Random Walk

The Petri net depicted in figure 3 models a parallel random walk of N walkers.
A walk is done between position 1 and position L starting in position L/2 and
ends up in the extremal positions. At every round, some random walker can
randomly go in either direction. However when walkers i and i + 1 are in the
same position, walker i can only go toward 1. We represent on this figure the
walker i and his interactions with walker i + 1. Transition Ai,j (resp. Ri,j−1)
corresponds to a step toward L (resp. 1).

This model is a paradigm of failure tolerant systems in which each walker
represents a process which finishes its job when it reaches position 1. Failures
can occur and move the process away of its goal. When position L is reached the
job is aborted. We want to evaluate the probability that a majority of players
have reached position L.

342 B. Barbot, S. Haddad, and C. Picaronny

This model has LN states. In order to get a reduced model, we remove all
synchronisation between walkers. Behaviours of all walkers are now independent
and thus a state of the reduced system is now defined by the number of walkers
in each position. The size of the reduced system is

(
N+L−1
L−1

)
.

Proposition 5 holds for this reduced model. Intuitively, removing synchroni-
sation between walkers increases the probability to reach position L.

Ri,1

Ai,2

Ri,2

...

Ai,j−1

Ri,j−1

Pi,j

P i,j

Pi,j+1

P i,j+1

Ai,j

Ri,j

Ai,j+1

Ri,j+1

...

Ai,L−2

Ri,L−2

Ai,L−1

Pi+1,j

P i+1,j

Pi+1,j+1

P i+1,j+1

Fig. 3. The Petri net for example 2

Table 2 shows the experimental result with the following parameters p = 0.3
, q = 0.7, L = 15. We stop the simulation when the confidence interval width
reaches one tenth of the estimated value. Our method handles huge models (with
size up to 8 1012) with very small probabilities (8 10−18) whereas the standard
statistical model checking and numerical model checkings fail due to either the
low probability or the size of the system.

Table 2. Experimental results for example 2

N size of Prism num Prism stat Cosmos
C T (s) μ(s0) T (s) μ(s0) Conf. Int. Nb Traj. T C• (s) T (s) μ(s0) Conf. Int.

1 15 ≈ 0 0.00113 12 1.15E-3 1E-4 1 ≈0 ≈0 0.00113 0
5 7.5E5 6 1.88E-9 21 0 # 18000 0.5 13 1.94E-9 1.89E-10
6 1.1E7 127 1.14E-12 No path reaches the rare event 53000 1 57 1.17E-12 1.17E-13
7 1.7E8 2248 2.93E-12 # 50000 2.8 186 2.92E-12 2.89E-13
8 2.0E9 Out of memory # 145000 7.9 1719 1.86E-15 1.86E-16
9 3.8E10 # # 128000 24 3800 4.7E-15 4.75E-16
10 5.7E11 # # 371000 71 26000 3.12E-18 3.11E-19
11 8.0E12 # # 321000 228 67000 7.90E-18 7.89E-19

4.4 Example 3: Local Overflow in Tandem Queues

We consider the tandem queues system with a different property to check: The
second queue contains N clients (n2 = N) before the second queue

is empty(n2 = 0). The state space is S = N × [0..N] with initial state (0, 1).
Contrary to the first example C is now infinite but C• must be finite in order to
apply the numerical model checker.

Coupling and Importance Sampling for Statistical Model Checking 343

The reduced model behaves as the original one until the first queue contains
R clients. Then the model behaves as if there is an infinite number of clients in
the first queue. The corresponding Petri net is depicted in figure 4(a). The corre-
sponding reduction function f (whose effect on the original chain is represented
in figure 4(b)) is defined by:

f(n1, n2) =

{
(n1, n2) if n1 ≤ R
(R, n2) otherwise

F1

R

AF1

F2λ

ρ′1R

ρ1

ρ2

(a) Reduced model

s−

s+

s0

(b) Reduction chain

Fig. 4. Petri net for example 3(R = 3, N = 5)

Table 3. Experimental results for example 3

N R T (s) Size of μ•(f(s0)) Cosmos Prism stat
C• C• μ(s0) Conf. Int. T (s) Nb Traj. T (s) μ(s0) Conf. Int.

25 12 ≈ 0 338 1.16E-5 1.48E-6 2.83E-7 2 5000 33 1.1E-6 1.6E-6
50 29 ≈ 0 1530 2.98E-10 3.81E-11 7.19E-12 13 5000 No path reaches the rare event
100 66 1.44 6767 1.87E-19 4.22E-20 7.34E-21 17 3000 #
500 370 1770 185871 1.03E-90 6.63E-91 8.05E-32 37 2000 #
1000 740 24670 741741 3.24E-177 3.95E-179 4.00E-179 180 3000 #

We found by running experiments on small values of N and R that for
R ≥ 0.74 × N we have μ(s0) ≥ μ•(f(s0))/10. This example shows that we
can apply our method on an infinite model subject to the specification of a fi-
nite reduced model. Observe that computation time reductions w.r.t. standard
statistical model checking are still impressive.

4.5 Example 4: Bottleneck in Tandem Queues

We consider the tandem queues system with a different property to check: The
second queue is full (n2 = N) before the first one (n1 = N). The
reduced model is obtained by considering that the second queue is full when it
contains N − R clients or in an equivalent way that the second queue always
contains at least R clients. The corresponding Petri net is depicted in figure 5(a).

344 B. Barbot, S. Haddad, and C. Picaronny

The reduction function (whose effect on the original chain is represented in
figure 5(b)) is defined by:

f(n1, n2) =

{
(n1, R) if n2 ≤ R
(n1, n2) otherwise

F1

R

F2λ ρ1

R + 1

R ρ2

(a) Reduced model

s−

s+

s0

(b) Reduction function

Fig. 5. Petri net for the tandem queues (R = 2, N = 5)

However, the experimental results are not satisfactory since μ(s0) 4 μ•(f(s0))
when R is small compared to N . This shows that designing a reduced model
with relevant computation time reduction is sometimes tricky (and remains to
be done for this example).

5 Conclusion

We proposed a method of statistical model checking which computes a reduced
confidence interval for the probability of a rare event. Our method is based on
importance sampling techniques. Other methods usually rely on heuristics and
fail to provide a confidence interval. We have developed a theoretical framework
ensuring the reduction of the variance and providing a confidence interval. This
framework requires a structural analysis of the model but no numerical compu-
tation thanks to coupling theory. Our method is implemented in the statistical
model checker COSMOS and we have done experiments with impressive results.

We plan to go further in four directions. First we want to deal with more
complex infinite systems. Secondly we want to handle “bounded until” formu-
las requiring to deal with non Markovian systems. We also would mechanize
the proofs of coupling since they consist to check parametrized inequalities. Fi-
nally we are looking for a class of models which structurally fulfill the required
assumptions.

References

1. Amparore, E.G., Donatelli, S.: Model checking CSLTA with deterministic and
stochastic Petri nets. In: DSN, pp. 605–614 (2010)

Coupling and Importance Sampling for Statistical Model Checking 345

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–
541 (2003)

3. Bain, L.J., Engelhardt, M.: Introduction to Probability and Mathematical Statis-
tics, 2nd edn. Duxbury Classic Series (1991)

4. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An expressive
language for statistical verification of stochastic models. In: VALUETOOLS 2011,
Cachan, France (May 2011) (to appear)

5. Barbot, B., Haddad, S., Picaronny, C.: Échantillonnage préférentiel pour le model
checking statistique. In: MSR 2011. Journal Européen des Systèmes Automatisés,
vol. 45, pp. 237–252 (2011)

6. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. Research Report LSV-12-01, Laboratoire Spécification
et Vérification. ENS Cachan, France (January 2012)

7. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a
tool suite for automatic verification of real-time systems. In: Hybrid Systems, pp.
232–243 (1995)

8. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical
editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24(1-2),
47–68 (1995)

9. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST 2006, pp. 131–132 (2006)

10. Clarke, E.M., Zuliani, P.: Statistical Model Checking for Cyber-Physical Systems.
In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12.
Springer, Heidelberg (2011)

11. de Boer, P.-T.: Analysis of state-independent importance-sampling measures for
the two-node tandem queue. ACM Trans. Model. Comput. Simul. 16(3), 225–250
(2006)

12. Dupuis, P., Sezer, A.D., Wang, H.: Dynamic importance sampling for queueing
networks. Annals of Applied Probability 17, 1306–1346 (2007)

13. Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel
Programs Using Fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

14. Glynn, P.W., Iglehart, D.L.: Importance sampling for stochastic simulations. Man-
agement Science (1989)

15. Heegaard, P.E., Sandmann, W.: Ant-based approach for determining the change of
measure in importance sampling. In: Winter Simulation Conference, pp. 412–420
(2007)

16. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. In: International Conference
on Quantitative Evaluation of Systems, pp. 167–176 (2009)

17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 113–140. Springer, Heidelberg (2002)

18. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

19. L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. In: Winter
Simulation Conference, pp. 137–148 (2006)

346 B. Barbot, S. Haddad, and C. Picaronny

20. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.,
Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–
135. Springer, Heidelberg (2010)

21. Lindvall, T.: Lectures on the coupling method. Dover (2002)
22. Rubino, G., Tuffin, B.: Rare Event Simulation using Monte Carlo Methods. Wiley

(2009)
23. Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and

analyzer for probabilistic systems. In: QEST, pp. 251–252 (2005)
24. Srinivasan, R.: Importance sampling – Applications in communications and detec-

tion. Springer, Berlin (2002)
25. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,

S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

Verifying pCTL Model Checking

Johannes Hölzl� and Tobias Nipkow

Institut für Informatik, Technische Universität München
www.in.tum.de/˜hoelzl, www.in.tum.de/˜nipkow

Abstract. Probabilistic model checkers like PRISM check the satisfia-
bility of probabilistic CTL (pCTL) formulas against discrete-time Markov
chains. We prove soundness and completeness of their underlying algo-
rithm in Isabelle/HOL. We define Markov chains given by a transition
matrix and formalize the corresponding probability measure on sets of
paths. The formalization of pCTL formulas includes unbounded cumu-
lated rewards.

1 Introduction

Modeling systems as discrete-time Markov chains is a popular technique to an-
alyze probabilistic behavior of network protocols, algorithms, communication
systems or biological systems. Probabilistic model checkers, like PRISM [13] or
MRMC [10], interpret Markov chains and analyze quantitative properties, spec-
ified as probabilistic CTL (pCTL) formulas [6]. In this paper we formalize the
background theory and the algorithm used by these probabilistic model checkers
in the proof assistant Isabelle/HOL [20].

Our (almost) executable model checker is certainly not a rival to any of the
existing model checkers. Instead, our work should be seen as a foundational
contribution that paves the way towards a fruitful combination of automatic
and interactive verification methods. Possible application scenarios include the
following: interactive verification of parameterized systems, or a verified checker
that checks individual runs of a hand coded model checker that produces a
certificate. We discuss these in more detail in the conclusion. Quite apart from
applications, we see our work as another building block in the larger undertaking
of formalizing key areas of computer science (as is currently happening with
compilers [15] and operating system kernels [11]).

This is the first time probabilistic model checking has been formalized in
a proof assistant. So far, the necessary mathematical background theories were
simply not available. We start from our recent formalization of measure theory in
Isabelle/HOL, including the Lebesgue integral and Caratheodory’s theorem [8].
Based on this, Section 3 formalizes the following material:

– infinite products of probability spaces,
– Markov chains defined by a transition matrix and the existence of their

probability measure on paths,
� Supported by the DFG Graduiertenkolleg 1480 (PUMA).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 347–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.in.tum.de/~hoelzl
http://www.in.tum.de/~nipkow

348 J. Hölzl and T. Nipkow

– properties of paths reaching a set of states almost everywhere.

Now we have the necessary theory to define, in Section 4, syntax, semantics and a
model checking algorithm for pCTL, and verify the algorithm wrt the semantics,
following the standard literature [12].

2 Related Work

There are a number of formalizations and proofs of aspects of model checking:
verification of a model checker for the modal μ-calculus [23], of partial order
reduction [3], of two innermost loops of a model checker for real time CTL [21],
of a CTL model checker [20], of a model checker for dynamic pushdown net-
works [14], and of the translation from LTL to Büchi automata [22]. But none
involve probabilities.

The formalization of probability theory in HOL starts with Hurd’s thesis [7].
He introduces measure theory, proves Caratheodory’s theorem about the exis-
tence of measure spaces and uses it to introduce a probability space on infinite
boolean sequences. He provides methods to generate discrete random variables
with Bernoulli or uniform distribution. Based on this work Liu et al. [17] formal-
ize the concept of Markov chains. Their theory does not provide everything we
need: it lacks a probability measure on paths, and their measure space needs to
be the type universe whereas we relax it to sets. Coble [4] and Mhamdi et al. [18]
introduce generalized measure spaces on sets, the extended real numbers R and
the Lebesgue integral. However, there is no theorem to show the existence of a
measure space.

3 Foundations

3.1 Isabelle/HOL

The formalizations presented in this paper are done in the Isabelle/HOL theorem
prover. In this section we give an overview of our syntactic conventions.

The term syntax follows the λ-calculus, i.e. function application is juxtaposi-
tion as in f t. The notation t :: τ means that t has type τ . Types are built from
the base types B (booleans), N (natural numbers), R (reals), R = R∪{∞,−∞},
and type variables (α, β etc) via the function type constructor⇒. In particular,
(infinite) sequences have type N⇒ α and are usually denoted by ω.

Prepending an element x to a sequence ω is written as x·ω, i.e. (x·ω) 0 = x and
(x·ω) (n+1) = ω n. The while-combinator while :: (α⇒ B)⇒ (α⇒ α)⇒ α⇒ α
satisfies the standard recursion equation:

while P f x = if P x then while P f (f x) else x

We write×i∈I
A i := {f | ∀i ∈ I. f i ∈ A i}1 for the dependent function space

(which is a set, not a type in HOL); if A is constant we write I → A.

1 We use× for products of sets, and
∏

for products of numbers.

Verifying pCTL Model Checking 349

To represent non-total functions in HOL we use the option data type

α option = Some α | None

whose values are Some x for x :: α and None. We introduce the option-monad to
combine non-total functions to new non-total functions. The infix bind-operator
>>= is defined by the equations ((Some x) >>= f) = f x and (None >>= f) =
None. Notation return is equal to Some. Similar to Haskell’s monad-syntax we
use the do-syntax to represent chains of bind-operators, for example:

do x← f r >>= (λx.
y ← g x =⇒ g x >>= (λy.
let z = h x y Some (x + y + h x y)))
return (x + y + z)

We use the option-monad not only to represent non-total functions, but also to
write the algorithm in a more imperative style. The only non-total function in
the pCTL model checking algorithm is Gauss-Jordan elimination.

3.2 Probability Space

Probabilistic CTL formulas are defined in terms of probabilities on sets of paths.
To define a probability space on paths we use the measure theory formalized
in [8]. This provides us with the concepts of extended real numbers, σ-algebras,
measure spaces, the Lebesgue integral, the Lebesgue measure and, as a way to
construct measures, Caratheodory’s theorem. We write B for the Borel sets, σ(A)
for the σ-algebra generated by A, f ∈ A1 →M A2 for a measurable function f
mapping from A1 to A2,

∫
ω f ωdμ for the Lebesgue integral, and AEμ ω. P ω if

the predicate P holds almost everywhere, i.e. the complement of P is a subset
of a null set in μ. In the following two sections we will introduce the infinite
product of probability spaces and based on this a probability measure on paths
in Markov chains. This was not yet formalized in [8], and we are not aware of
any formalization of these concepts in interactive theorem provers.

A probability space is a measure space which assigns 1 to the entire space:

Definition 1. Probability space

prob-space (Ω,A, μ) :←→ measure-space (Ω,A, μ) ∧ μ Ω = 1

Our first step in introducing a probability space for paths is to formalize the
infinite product of probability spaces (Ω i,A i, μ i), for i in some index set
I. We used the proof in [2] as the base of our formalization of infinite prod-
ucts. The space of infinite products of probability spaces is the function space
ΩP :=×i∈I

Ω i. The generating set of infinite products is the collection of all
embeddings of finite products:

Definition 2. Embedding of finite products and the product σ-algebra AP

emb J F :=
{
ω ∈ ΩP | ∀i ∈ J. ω i ∈ F i

}
AP := σ

({
emb J F | finite J ∧ J ⊆ I ∧ (∀i ∈ J. F i ∈ A i)

})

350 J. Hölzl and T. Nipkow

With Caratheodory’s theorem we show that a probability measure on AP exists
which maps emb J F to the product of the real numbers μ i (F i), the property
we want to have from a product space.

Theorem 3. Probability measure on AP

There exists a unique probability measure μP on AP

prob-space (ΩP ,AP , μP)

with: If J ⊆ I is finite and F ∈×i∈J
A i then

μP (emb J F) =
∏
i∈J

μ i (F i) .

We choose such a probability measure μP with I := N and A i := λλ[0;1[, the
Borel-Lebesgue measure restricted to [0; 1[. Hence μP is now a probability mea-
sure on sequences N→ [0; 1[. From the equation in Theorem 3 we have

μP

(×
i

F i
)

=
∏

i

λλ[0;1[(F i) .

Hence the elements in the product space induce countably many, independent
random variables with a continuous, uniform distribution. The formalization
in [7] only provides a probability measure on sequences N → B, which induces
random variables with a discrete distribution.

3.3 Markov Chains

We introduce Markov chains as probabilistic automata, i.e. as discrete-time time-
homogeneous finite-space Markov processes. A Markov chain is defined by its
state space S and an associated transition matrix τ . We assume no initial dis-
tribution or starting state, however when measuring paths we always provide a
starting state. A path on a Markov chain is a function N → S, i.e. an infinite
sequence of states visited in the Markov chain.

Definition 4. Markov chain

markov-chain S τ :←→ finite S ∧ S �= ∅
∧ ∀s, s′ ∈ S. 0 ≤ τ s s′

∧ ∀s ∈ S.
(∑

s′∈S τ s s′
)

= 1

For the rest of the paper we assume a Markov chain with state space S and
transition matrix τ . We write E(s) for the set of all successor states, i.e. all
s′ ∈ S with τ s s′ �= 0. Note that a path ω does not require that ω (i + 1) is a
successor of ω i. Our first goal is to define a probability space (Ω, T , μs) on the
space of all paths N → S. We call the set of all paths starting with a common
prefix, namely ω′, Cy ω′ n := {ω ∈ N→ S | ∀i < n. ω i = ω′ i}, a cylinder. The
probability measure on paths assigns to cylinders the product of the transition
probabilities:

Verifying pCTL Model Checking 351

Definition 5. Path σ-algebra, and pre-measure μ′
P

Ω := N→ S
T := σ({Cy ω n | ω ∈ Ω})

∀ω ∈ N→ S, s ∈ S, n. μ′
s (Cy ω n) :=

∏
i<n τ ((s·ω) i) (ω i)

Note that μ′
s explicitly carries the starting state, hence we assign to Cy ω n the

transition probability for the steps s→τ ω 0→τ ω 1→τ · · · →τ ω (n−1). Before
we use this as a probability space we need to show that μ′

s can be extended to
a probability measure. To this end, we provide a function path which constructs
a path out of a sequence N→ [0; 1[, and show that this function is measurable.

As S is finite and not empty we know that there exists a bijective function
mapping from {0, . . . , |S| − 1} to S, we define order to be such a function. Using
order we introduce select which splits [0; 1[into disjoints intervals of size τ s s′,
see Fig. 1. The recursive function path now walks along a sequence X of values
in the unit interval and selects the next state.

s

s1

s2

s3

x

0 1

τ s s1

τ s s1

+τ s s2

Fig. 1. The next state after s selected by x is s2 = select s x

Definition 6. Path selection

select s x := order
(
min

{
i | x <

∑
j≤i τ s (order j)

})
path s X 0 := select s (X 0)
path s X (n + 1) := select (path s X n) (X (n + 1))

The set T s s′ := {x ∈ [0; 1[| select s x = s′} is measurable and λλ[0;1[(T s s′) =
τ s s′. We represent the inverse image of cylinders over path with emb and T :

Lemma 7. For all states s, paths ω, and prefix length n:{
ω ∈ ΩP | path s ω ∈ Cy ω n

}
= emb {0, 1, . . . , n− 1} (λi. T ((s·ω) i) (ω i))

As Cy ω n are the generators of T and emb is measurable in AP , path s is in
AP →M T . With this we show that μs A := μP

{
ω ∈ ΩP | path s ω ∈ A

}
defines

a probability measure, and with Lemma 7 we show that μP extends μ′
P .

352 J. Hölzl and T. Nipkow

Theorem 8. μs is the unique probability measure on paths which extends μ′
s

prob-space (Ω, T , μs)

∀ω ∈ Ω, s ∈ S, n. μs (Cy ω n) =
∏

i<n τ ((s·ω) i) (ω i)

The Markov chain induces iterative equations on the measure μs, the Lebesgue
integral and the AE-quantifier, relating properties about s to properties of E(s),
states that are not successors of s are ignored. These equations are often useful
in inductive proofs, and already give a hint how to implement a probabilistic
model checker. In the rest of the paper we write the AE-quantifier on the path
measure μs as AEs ω. P ω instead of AEμs ω. P ω.

Theorem 9. Iterative equations for μs, the Lebesgue integral and AEs

If s, A, P , and f are measurable, i.e. s is in S, A and {ω ∈ Ω | P ω} are in
T , and f is in T →M B then the following equations hold:

μs A =
∑

s′∈E(s)

τ s s′ · μs′{ω ∈ Ω | s′·ω ∈ A}∫
ω

f ωdμs =
∑

s′∈E(s)

τ s s′ ·
∫

ω

f (s′·ω)dμs′

AEs ω. P ω ←→ ∀s′ ∈ E(s). AEs′ ω. P (s′·ω)

We prove the iterative equation for μs by proving the equality when A is a
cylinder, with the uniqueness of measures [8] follows that they are equal for
all measurable sets A. Based on this the integral equation is shown for simple
functions, and then for B-measurable functions.

A state s′ is reachable in Φ starting in s iff there is a non-zero probability to
reach s′ by only going through the specific set of states Φ. The starting state s
and the final state s′ are not necessary in Φ.

Definition 10. Reachability of states

reachable Φ s := {s′ ∈ S | ∃ω ∈ Ω, n. (∀i ≤ n. ω i ∈ E((s·ω) i)) ∧
(∀i < n. ω i ∈ Φ) ∧ ω n = s′}

Reachability is a purely qualitative property, as it is defined on the graph of
non-zero transitions. Hence an upper bound R of reachable Φ s is given when all
successor states of R ∩ Φ are in R again.

Lemma 11. Sets closed under E contain reachable

s ∈ R ∩ Φ ∧ (∀t ∈ R ∩ Φ. E(t) ⊆ R) ∧R ⊆ S ∧ Φ ⊆ S
−→ reachable Φ s ⊆ R

The until-operator introduces a similar concept on paths. Its definition does not
assume that a state is a successor state of the previous one, as this is already
ensured by the probability measure μs.

Verifying pCTL Model Checking 353

Definition 12. Until on paths

until Φ Ψ := {ω ∈ Ω | ∃n. (∀i < n. ω i ∈ Φ) ∧ ω n ∈ Ψ}

Can we compute the probability of μs(until Φ Ψ) by only using reachable? It is
easy to show that μs(until Φ Ψ) = 0 iff (reachable Φ s)∩Ψ = ∅. But is there also
a method to characterize μs(until Φ Ψ) = 1 in terms of reachable? For this we
need to introduce state fairness. A path ω is state fair w.r.t. s and t if t appears
infinitely often as the successor of s in ω, provided that s appears infinitely often.
The definition and proofs about state fairness are based on Baier [1].

Definition 13. State fairness

fair s t :=
{ω ∈ Ω | (∃n. ∀i ≥ n. ω i �= s) ∨ (∀n. ∃i ≥ n. ω i = s ∧ ω (i + 1) = t)}

Baier [1] defines state fairness and a more general version called p-fairness, but
we only need state fairness. We show that almost every path is state fair for each
state and its successors.

Lemma 14. Almost every path is state fair

∀s ∈ S. AEs ω. ∀s′ ∈ S. ∀t′ ∈ E(s′). s·ω ∈ fair s′ t′

Using this we prove that starting in a state s almost every path fulfills until Φ Ψ
if (1) all states reachable by Φ are in Φ or Ψ and (2) each state reachable from
s has again the possibility to reach Ψ . This theorem allows us to prove that
until Φ Ψ holds almost everywhere by a reachability analysis on the graph, and
hence μs(until Φ Ψ) = 1.

Theorem 15. Reachability implies until

s ∈ Φ ∧ Φ ⊆ S ∧ reachable (Φ \ Ψ) s ⊆ Φ ∪ Ψ
∧ ∀t ∈ (reachable (Φ \ Ψ) s ∪ {s}) \ Ψ. reachable (Φ \ Ψ) t ∩ Ψ �= ∅
−→ AEs ω. s·ω ∈ until Φ Ψ

The hitting time on a path ω is the first index at which a state from a set Φ
occurs.

Definition 16. hitting-time Φ ω = min{i | ω i ∈ Φ}
For the computation of rewards it is important to know if the expected hitting
time is finite. Standard textbook proofs assume an irreducible chain. We took
such a proof from [16], and adapted it to our setting. Instead of a irreducible
chain we assume Φ is always reached from s. We show that the expected hitting
time of Φ for paths starting in s is finite if almost every path starting in s
reaches Φ.

Theorem 17. Finite expected hitting time
If s is in S and AEs ω. s·ω ∈ until S Φ then∫

ω

hitting-time Φ (s·ω)dμs �=∞

354 J. Hölzl and T. Nipkow

4 Verifying pCTL Model Checking

4.1 pCTL Formulas

We do not introduce a labeled Markov chain as [12] does, instead we define labels
to be subsets of S. We introduce a Markov chain with rewards as a Markov
chain with ρ, the rewards associated per state, and ι, the rewards associated per
transitions. These rewards are non-negative, real numbers.

Definition 18. Markov chain with rewards
rewarded-markov-chain S τ ρ ι := markov-chain S τ

∧ ∀s ∈ S. 0 ≤ ρ s
∧ ∀s, s′ ∈ S. 0 ≤ ι s s′

For the rest of the paper we assume a Markov chain with rewards, with the state
space S, the transition matrix τ , and the reward functions ρ and ι.

The pCTL syntax is introduced as an inductive data type.

Definition 19. pCTL syntax

sform := label P(S) | ¬sform | sform ∧ sform
| P ��R pform | E��R eform

pform := X sform | sform U≤N sform | sform U∞ sform
eform := C<N | I=N | F∞ sform

� := ≤ | < | = | > | ≥
Informally, a state s fulfills P ��r Φ (or E��r Φ) if the probability (expected
reward) of the paths starting in s and fulfilling Φ is related with � r. A path
fulfills X Φ if its second state fulfills Φ. A path fulfills Φ U≤k Ψ (or Φ U∞ Ψ ,
the unbounded until) if it stays in Φ, until it reaches Ψ in at least k steps (at
some step). The reward C<k sums all state and transitions rewards for the first
k steps, I=k is the state reward at step k, and the unbounded cumulated reward
F∞ Φ sums rewards until Φ is reached, if it is never reached it is infinity. We
define now semantics to assign a formal meaning to the pCTL syntax, cf. [6,12].

Definition 20. pCTL semantics

�label S′� := {s ∈ S | s ∈ S′}
�¬ Φ� := S \ �Φ�
�Φ ∧ Ψ� := �Φ� ∩ �Ψ�
�P ��r Φ� := {s ∈ S. μs{ω ∈ Ω | �Φ, s·ω�P } � r}
�E��r Φ� := {s ∈ S |

∫
ω
�Φ, s·ω�Edμs � r}

�X Φ, ω�P :←→ ω 1 ∈ �Φ�
�Φ U≤k Ψ, ω�P :←→ ∃n ≤ k. ω n ∈ �Ψ� ∧ (∀i < n. ω i ∈ �Φ�)
�Φ U∞ Ψ, ω�P :←→ ∃n. ω n ∈ �Ψ� ∧ (∀i < n. ω i ∈ �Φ�)

�C<k, ω�E :=
∑

i<k ρ (ω i) + ι (ω i) (ω (i + 1))
�I=k, ω�E := ρ (ω k)

�F∞ Φ, ω�E :=

{
�C<hitting-time �Φ� ω, ω�E if ∃i. ω i ∈ �Φ�
∞ otherwise

Verifying pCTL Model Checking 355

We see that �Φ� is a subset of S and hence also finite. The set {ω ∈ Ω | �Φ, ω�P }
is measurable in T , and λω. �Φ, ω�E ∈ T →M B, i.e. is Borel-measurable on T .
So the probability for �P ��r Φ�, and the integral for �E��r Φ� are well-defined.

4.2 Verifying the Algorithm

The model checking algorithm Sat for pCTL formulas is based on three methods:

– Iterative methods to compute the probability of bounded until and the ex-
pectation of bounded rewards

– Reachability analysis on the graph of non-zero transitions to compute the
sets �P=0(Φ U∞ Ψ)� and �P=1(Φ U∞ Ψ)�.

– Solving systems of linear equations for the unbounded until operator and un-
bounded rewards. This requires the previous methods to construct a system
of linear equations with a unique solution.

Solving systems of linear equations may (in general) fail. To cater for this pos-
sibility we use option values in our computation and formulate our algorithm
with the help of the do-syntax (recall Section 3.1).

The definition and the correctness proof of the algorithm Sat is by induction
over the syntax of pCTL formulas. For a better overview of the formalization
we split the definition of Sat into multiple parts interleaved with the necessary
auxiliary definitions. The final soundness theorem states that Sat Φ returns a
result and computes the set of states s for which s ∈ �Φ� holds, i.e. Sat Φ =
Some �Φ�.

The definition of Sat on label S′, ¬Φ, Φ∧Ψ , and P ��r(XΦ) is easy. The sound-
ness proof of the first three is done automatically, the last one needs Theorem 9.

Definition 21. Computing pCTL-satisfiability (1)

Sat (label S′) := return {s ∈ S | s ∈ S′}
Sat (¬ Φ) := do

F ← Sat Φ
return (S \ F)

Sat (Φ ∧ Ψ) := do
F1 ← Sat Φ
F2 ← Sat Ψ
return (F1 ∩ F2)

Sat (P ��r (X Φ)) := do
F ← Sat Φ
return

{
s ∈ S |

(∑
s′∈F τ s s′

)
� r

}
The iterative methods to compute bounded until (ProbUb k s S1 S2), cumulative
expectation (ExpC k s) and state expectation (ExpI k s) are simply defined by
recursion on the bounding value k. Soundness is proved by induction on the
bounding value k and using the iterative equations given by Theorem 9.

356 J. Hölzl and T. Nipkow

Definition 22. Computing pCTL-satisfiability (2)

ProbUb 0 s S1 S2 := if s ∈ S2 then 1 else 0
ProbUb (k + 1) s S1 S2 := if s ∈ S1 \ S2 then

∑
s′∈S τ s s′ · ProbUb k s′ S1 S2

else (if s ∈ S2 then 1 else 0)

ExpC 0 s := 0
ExpC (k + 1) s := ρ s +

∑
s′∈S τ s s′ · (ι s s′ + ExpC k s′)

ExpI 0 s := ρ s
ExpI (k + 1) s :=

∑
s′∈S τ s s′ · ExpI k s′

Sat (P ��r (Φ U≤k Ψ)) := do
F1 ← Sat Φ
F2 ← Sat Ψ
return

{
s ∈ S | ProbUb k s F1 F2 � r

}
Sat (E��r (C<k)) := return

{
s ∈ S | ExpC k s � r

}
Sat (E��r (I=k)) := return

{
s ∈ S | ExpI k s � r

}
Our next step is to check the unbounded until operator. Here we compute the
probability PΦ,Ψ (s) := μs{ω ∈ Ω | �Φ U∞ Ψ, s·ω�P } for each state s by setting up
a system of linear equations. From Theorem 9 and the behavior of the unbounded
until operator we derive a system of linear equations for PΦ,Ψ (s).

PΦ,Ψ (s) =

⎧⎪⎨⎪⎩
∑

s′∈E(s) τ s s′ · PΦ,Ψ (s′) if s ∈ Φ \ Ψ

1 if s ∈ Ψ

0 otherwise

We show that such a linear equation system has a unique solution, with two
conditions: (1) the solutions are equal on Ψ and (2) the solutions are equal in
all states which never reach Ψ , i.e. PΦ,Ψ (s) = 0. We proved this lemma following
the uniqueness proof in [6].

Lemma 23. Unique solution

Φ ⊆ S ∧ Ψ ⊆ N ⊆ S
∧ ∀s ∈ S. PΦ,Ψ (s) = 0 −→ s ∈ N
∧ ∀s ∈ S \N. l1 s− c s =

∑
s′∈S τ s s′ · l1 s′

∧ ∀s ∈ S \N. l2 s− c s =
∑

s′∈S τ s s′ · l2 s′

∧ ∀s ∈ N. l1 s = l2 s
−→ ∀s ∈ S. l1 s = l2 s

To find a solution of such a system of linear equations, we formalized Gauss-
Jordan elimination on matrices represented as functions [19]. Then we adapted
this to use states as indices instead of natural numbers. Correctness says that
if gauss-jordan M a returns Some x, then x is a solution to the equation system
M · x = a.

Verifying pCTL Model Checking 357

Lemma 24. Gauss-Jordan elimination

gauss-jordan M a = Some x −→ ∀s ∈ S.
(∑

s′∈S M s s′ · x s′
)

= a s

Before we use the uniqueness of our system of linear equationss, Lemma 23 re-
quires us to compute the states with PΦ,Ψ (s) = 0 before the algorithm builds the
system of linear equations. Prob0 computes the set of all states with PΦ,Ψ (s) > 0
and returns the complement. The set of all s with PΦ,Ψ (s) > 0 is computed by
starting with R = Ψ and adding states to R which are in Φ and are predeces-
sors of a state in R. With Lemma 11 we know that R contains all reachable
states, hence PΦ,Ψ (s) > 0 for all s ∈ R. The termination measure for the while-
combinator is the difference S \R, with each step either states are added, or the
loop terminates.

Definition 25. Compute �P=0(Φ U∞ Ψ)�

pred Φ R := {s ∈ Φ | R ∩E(s) �= ∅}
Prob0 Φ Ψ := S \ while (λR. ¬pred Φ R ⊆ R) (λR. R ∪ pred Φ R) Ψ

The system of linear equations solved by gauss-jordan M a needs to be in the
right form, i.e. the matrix M contains all variable coefficients and a all constants.
We introduce LES F to define the matrix of the linear equation system l s =
(
∑

s∈S τ s s′ · l s′) + a s for s /∈ F , and l s = a s if s ∈ F .

Definition 26. Linear Equation System to Compute Unbounded Until

LES F r c := if r ∈ F then (if c = r then 1 else 0)
else (if c = r then τ r c− 1 else τ r c)

Combining all this we can finally compute the probability of a unbounded until
formula. We prove its soundness using Lemmas 24 and 23, and Theorem 9.

Definition 27. Computing pCTL-satisfiability (3)

Sat (P ��r (Φ U∞ Ψ)) := do
F1 ← Sat Φ
F2 ← Sat Ψ
p← gauss-jordan (LES (F2 ∪ Prob0 F1 F2))

(λs. if s ∈ F2 then 1 else 0)
return

{
s ∈ S | p s � r

}
The last equation of Sat computes the unbounded reward E��r(F∞ Φ). Similar
to the unbounded until operator, we introduce a system of linear equations for
RΦ(s) :=

∫
ω�F

∞ Φ, s·ω�Edμs. With Theorem 17 we know that RΦ(s) is finite
if PS,Φ(s) = 1. If PS,Φ(s) < 1 there is a non-zero probability that Φ is never
reached, and hence RΦ(s) =∞.

RΦ(s) =

⎧⎪⎨⎪⎩
∑

s′∈E(s) τ s s′ · (ρ s + ι s s′ + RΦ(s′)) if PS,Φ(s) = 1 ∧ s /∈ Φ

0 if s ∈ Φ

∞ otherwise

358 J. Hölzl and T. Nipkow

To be usable with LES, we rewrite the first equation into:

RΦ(s)−

⎛⎝ρ s +
∑

s′∈E(s)

τ s s′ · ι s s′

⎞⎠ =
∑

s′∈E(s)

τ s s′ · RΦ(s′) .

The Gauss-Jordan elimination we use works only on real numbers, luckily we
can replace ∞ by 0 and replace it again after we solved the equation system.
This is sound since for each s and s′ ∈ E(s) with RΦ(s′) = ∞ either s ∈ Φ or
RΦ(s) =∞ hold. The states s with PS,Φ(s) = 1 are computed by Prob1, building
on Prob0.

Definition 28. Compute �P=1(Φ U∞ Ψ)�

Prob1 Φ Ψ := Prob0 (Φ \ Ψ) (Prob0 Φ Ψ)

We know that the resulting states only reach states which again reach Ψ , hence
the assumptions of Theorem 15 are fulfilled, and we know that Prob1 S Φ is
the set of all states s with PS,Φ(s) = 1. With all this, we can formalize the last
equation for Sat.

Definition 29. Computing pCTL-satisfiability (4)

Sat (E��r (F∞ Φ)) := do
F ← Sat Φ
let Y = Prob1 S F
l ← gauss-jordan (LES (S \ (Y \ F)))

(λs. if i ∈ Y \ F then −(ρ s+(
∑

s′∈S . τ s s′ · ι s s′))
else 0)

let e = (λs. if s ∈ Y then l s else ∞)
return

{
s ∈ S | e s � r

}
Finally we show the soundness of Sat by induction on the structure of Φ. If we
assume that Sat terminates with a result F , then F is the same set as defined
by the semantic.

Theorem 30. Soundness of Sat

Sat Φ = Some F −→ �Φ� = F

Now we turn to completeness. The only case in which Sat returns None is when
the Gauss-Jordan elimination does not find a unique solution. Hence we need the
property that if a unique solution exists, then gauss-jordan returns this solution.

Theorem 31. Completeness of gauss-jordan
If there is a unique solution x for M · x = a:

∀s ∈ S.
∑
s′∈S

M s s′ · x s′ = a s

Verifying pCTL Model Checking 359

∀y.

(
∀s ∈ S.

∑
s′∈S

M s s′ · y s′ = a s

)
−→ ∀s ∈ S. x s = y s

then gauss-jordan returns a result:

∃x′. gauss-jordan M a = Some x′

With this and Lemma 23 we prove that Sat always returns a result:
Theorem 32. Completeness of Sat

∃F. Sat Φ = Some F .

Using Theorem 30 we finally show
Corollary 33. Soundness and completeness of Sat

Sat Φ = Some �Φ� .

5 Discussion

We used the tutorial [12] as a guideline to formalize the pCTL model checking
algorithm. Most parts of the soundness proof are straightforward. Three parts,
however, required a more substantial formalization of the background theory:

– The correctness of Prob1 is based on Theorem 15, which required us to
formalize state fairness as found in [1].

– For the unbounded until and the unbounded rewards we solve a linear equa-
tion system. We needed to show that the solution of this equation system is
unique, for which we followed the original proof from [6].

– The unbounded reward for a state can only be characterized as a linear
equation if the reward is finite. We needed Theorem 17 to show that the
reward is finite, if the final states are almost always reached.

Technically, the largest difference between our work and Kwiatkowska et. al. [12]
is the construction of the probability space of paths: we use infinite products of
probability spaces, whereas they use Caratheodory on semi-rings of sets. We do
not need to show that the probability of cylinders is countably additive, this
is generically done for infinite products. We want to reuse the infinite prod-
ucts for continuous-time Markov chains and Markov decision processes. With
Caratheodory on semi-rings of sets it would be necessary to show countably
additivity for each of them. Nevertheless, we intend to formalize the latter con-
struction, too, as it is a valuable addition to our library.

The equations we give for the algorithm are not directly executable by the
code generator in Isabelle [5]. We use sets in our equations, and the adaption
of Gauss-Jordan elimination uses an arbitrary mapping from {0, . . . , |S| − 1} to
S. One method to obtain a executable version is to create a copy SatL of Sat
operating on lists instead of subsets of S. We assume as input a list of states
xs := [s0, s1, . . . sn], and define the Markov chains on S := set-of xs. It should
be straightforward to show that Sat Φ = Some F implies set-of (SatL Φ) = F .
The biggest hurdle is the while-combinator in Prob0 and the adaption of Gauss-
Jordan elimination.

360 J. Hölzl and T. Nipkow

6 Conclusion

The formalization of pCTL model checking in a proof assistant opens up a num-
ber of possible application scenarios:

Model Checking as an Isabelle Proof Method. Once we have made our
pCTL model checker executable as explained in Section 5, we can call it as
an automated proof method for pCTL formulas within Isabelle. Of course
this is only practical for small examples, for larger ones an external pCTL
model checker would be used as an oracle that must be trusted.

Certified Model Checking. Result checking is an established technique where,
rather than verifying an algorithm, each execution of the algorithm is checked.
This requires the algorithm to return a checkable certificate. A particularly
successful example of such a system architecture is CeTA [24], a checker for ter-
mination proofs which regularly finds bugs in termination proof tools. CeTA
is verified in Isabelle and an efficient Haskell program is extracted that can
check large proof certificates.

Verification of Parametrized Models. The Markov chain may depend on
parameters like the number of parallel processes. Such parameterized models
can be model checked only for fixed parameter values. Our theory allows one
to formalize and verify such parameterized models for all possible parameter
values interactively. As case studies we formalized IPv4 address allocation
in the ZeroConf protocol and anonymity of the Crowds protocol [9]. The
formalizations we describe in Section 3 where essential for these case studies.

The formalization is available in the AFP [9,19]. It has about 4480 lines: 3670
lines for the formalization of DTMCs, 270 lines for Gauss-Jordan elimination,
and 1140 lines for pCTL model checking.

Our future goal is to formalize more probabilistic models with the corre-
sponding model checking algorithms, like pCTL for Markov decision processes,
continuous stochastic logic for continuous-time Markov chains and probabilistic
timed CTL for probabilistic timed automata.

References

1. Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation,
Universität Mannheim (1998)

2. Bauer, H.: Probability Theory. de Gruyter (1995)
3. Chou, C.T., Peled, D.: Formal verification of a partial-order reduction technique

for model checking. Journal of Automated Reasoning 23(3-4), 265–298 (1999)
4. Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. Ph.D. thesis,

King’s College, University of Cambridge (2009)
5. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems.

In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Tech.
Rep. SICS/R90013, Swedish Institute of Computer Science (December 1994)

Verifying pCTL Model Checking 361

7. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University
of Cambridge (2002)

8. Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In: van
Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 135–151. Springer, Heidelberg (2011)

9. Hözl, J., Nipkow, T.: Markov models. In: Klein, G., Nipkow, T., Paulson, L. (eds.)
The Archive of Formal Proofs, formal proof development (January 2012),
http://afp.sf.net/entries/Markov_Models.shtml

10. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68, 90–104
(2011)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Symposium on
Operating Systems Principles 2009, pp. 207–220 (2009)

12. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

14. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Pushdown
Networks with Tree-Regular Constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)

15. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43, 363–
446 (2009)

16. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. AMS (2006)
17. Liu, L., Hasan, O., Tahar, S.: Formalization of Finite-State Discrete-Time Markov

Chains in HOL. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 90–104. Springer, Heidelberg (2011)

18. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Entropy Measures in HOL.
In: van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011.
LNCS, vol. 6898, pp. 233–248. Springer, Heidelberg (2011)

19. Nipkow, T.: Gauss-Jordan elimination for matrices represented as functions. In:
Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs, formal
proof development (August 2011),
http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

21. Reif, W., Schellhorn, G., Vollmer, T., Ruf, J.: Correctness of efficient real-time
model checking. J. UCS 7(2), 194–209 (2001)

22. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi Automata for LTL
Model Checking Verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer,
Heidelberg (2009)

23. Sprenger, C.: A Verified Model Checker for the Modal μ-Calculus in Coq. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg
(1998)

24. Thiemann, R., Sternagel, C.: Certification of Termination Proofs Using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009)

http://afp.sf.net/entries/Markov_Models.shtml
http://afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml

Parameterized Synthesis�

Swen Jacobs1 and Roderick Bloem2

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
swen.jacobs@epfl.ch

2 IAIK, Graz University of Technology, Austria
roderick.bloem@iaik.tugraz.at

Abstract. We study the synthesis problem for distributed architectures
with a parametric number of finite-state components. Parameterized
specifications arise naturally in a synthesis setting, but thus far it was
unclear how to decide realizability and how to perform synthesis. Us-
ing a classical result from verification, we show that for specifications in
LTL\X, parameterized synthesis of token ring networks is equivalent to
distributed synthesis of a network consisting of a few copies of a single
process. Adapting a result from distributed synthesis, we show that the
latter problem is undecidable. We then describe a semi-decision proce-
dure based on bounded synthesis and show applicability on a simple case
study. Finally, we sketch a general framework for parameterized synthesis
based on cut-off results for verification.

1 Introduction

Synthesis is the problem of turning a temporal logical specification into a reactive
system [1,2]. In synthesis, parameterized specifications occur very naturally. For
instance, Piterman, Pnueli, and Sa’ar illustrate their GR(1) approach with two
parameterized examples of an arbiter and an elevator controller [3]. Similarly, the
case studies given in [4,5] consist of a parameterized specification of the AMBA
bus arbiter. A simple example of a parameterized specification may be

∀i. G(ri → F gi) ∧ ∀i �= j. G(¬gi ∨ ¬gj).

This specification describes an arbiter serving an arbitrary number of clients,
say n. Client i receives an input ri for requests and controls an output gi for
grants. The specification states that for each client i, a request ri is eventually
followed by a grant gi, but grants never occur simultaneously.

Previous approaches have focused on the synthesis of such systems for a fixed
n. The question whether such a specification is realizable for any n is natural: it
occurs, for instance, in the work on synthesis of processes for the leader election
problem by Katz and Peled [6]. Only an answer to this question can determine
whether a parameterized specification is correct. A further natural question is

� This work was supported by the Austrian Science Fund (FWF) under the RiSE
National Research Network (S11406) and by the Swiss NSF Grant #200021 132176.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 362–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parameterized Synthesis 363

how to construct a parameterized system, i.e., a recipe for quickly constructing
a system for an arbitrary n. Such a construction would avoid the steep increase
of runtime and memory use with n that current tools incur [4,5,7].

Parameterized systems have been studied extensively in the context of ver-
ification. It is well known that the verification of such systems is undecidable
[8,9], although it can be decided for some restricted cases. In particular, for re-
stricted topologies, the problem of verifying a network of isomorphic processes
of arbitrary size can be reduced to the verification of a small network [10,11].
As a corollary, synthesis of a network of an arbitrary number of processes can
be reduced to synthesis of a small network, as long as the restricted topology is
respected. In this paper, we focus on token ring topologies [10].

The question of synthesis of token rings is thus equivalent to the synthesis
of a small network of isomorphic processes. This question is closely related to
that of distributed synthesis [12,13,14]. Distributed synthesis is undecidable for
all systems in which processes are incomparable with respect to their informa-
tion about the environment. Our problem is slightly different in that we only
consider specifications in LTL\X and that our synthesis problem is isomorphic,
i.e., processes have to be identical. Unfortunately, this problem, and thus the
original problem of parameterized synthesis, is also undecidable.

Having obtained a negative decidability result, we turn our attention to a semi-
decision procedure, namely bounded synthesis [15,16], an approach that searches
for systems with a bounded number of states. We modify this approach to deal
with isomorphic token-passing systems. Bounded synthesis reduces the problem
of realizability to an SMT formula, a model of which gives an implementation
of the system. Using Z3 [17], we show that a simple parameterized arbiter can
be synthesized in reasonable time. Finally, we sketch a framework that extends
our approach to the more general topologies of [11], and other classes of systems
and specifications, in particular those that allow a cut-off for the corresponding
verification problem.

2 Preliminaries

We consider the synthesis problem for distributed systems, with specifications
in (fragments of) LTL. Given a system architecture A and a specification ϕ,
we want to find implementations of all system processes in A, such that their
composition satisfies ϕ.

Architectures. An architecture A is a tuple (P, env, V, I, O), where P is a finite
set of processes, containing the environment process env and system processes
P− = P \ {env}, V is a set of boolean system variables, I = {Ii ⊆ V | i ∈ P−}
assigns a set Ii of boolean input variables to each system process, and O =
{Oi ⊆ V | i ∈ P} assigns a set Oi of boolean output variables to each process,
such that ·

⋃
i∈POi = V . In contrast to output variables, inputs may be shared

between processes. Wlog., we use natural numbers to refer to system processes,
and assume P− = {1, . . . , k} for an architecture with k system processes.

364 S. Jacobs and R. Bloem

Implementations. An implementation Ti of a system process i with inputs Ii
and outputs Oi is a labeled transition system (LTS) Ti = (Ti, ti, ρi, oi), where Ti

is a set of states including the initial state ti, ρi : Ti × P(Ii) → Ti a transition
function, and oi : Ti → P(Oi) a labeling function.

The composition of the set of system process implementations {T1, . . . , Tk}
is the LTS TA = (TA, t0, ρ, o), where the states are TA = T1 × · · · × Tk, the
initial state t0 = (t1, . . . , tk), the labeling function o : TA → P(·

⋃
1≤i≤kOi)

with o(t1, . . . , tk) = o1(t1) ∪ · · · ∪ ok(tk), and finally the transition function
ρ : TA × P(Oenv)→ TA with

ρ((t1, . . . , tk), e) = (ρ1(t1, (o(t1, . . . , tk)∪e)∩I1), . . . , ρk(tk, (o(t1, . . . , tk)∪e)∩Ik)),

i.e., every process advances according to its own transition function and input
variables, where inputs from other system processes are interpreted according to
the labeling of the current state.

A run of an LTS (T, t0, ρ, o) is an infinite sequence (t0, e0), (t1, e1), . . ., where
t0 = t0, e

i ⊆ Oenv and ti+1 = ρ(ti, ei). An LTS satisfies a formula ϕ if for every
run, the sequence o(t0) ∪ e0, o(t1) ∪ e1, . . . is a model of ϕ.

Asynchronous Systems. An asynchronous system is an LTS such that in
every transition, only a subset of the system processes changes their state. This
is decided by a scheduler, which can choose in every step which of the processes
(including the environment) is allowed to make a step. In our setting, we will
assume that the environment is always scheduled, and consider the scheduler as
a part of the environment.

Formally, Oenv contains additional scheduling variables s1, . . . , sk, and si ∈ Ii
for every i. We require ρi(t, I) = t for any i and set of inputs I with si �∈ I.

Token Rings. We consider a class of architectures called token rings, where
the only communication between system processes is a token. At any time only
one process can possess the token, and a process i which has the token can pass
it to process i+1 by raising an output sendi ∈ Oi ∩ Ii+1. For processes in token
rings of size k, addition and subtraction is done modulo k.

We assume that token rings are implemented as asynchronous systems, where
in every step only one system process may change its state, except for token-
passing steps, in which both of the involved processes change their state.

Distributed Synthesis. The distributed synthesis problem for a given architec-
ture A and a specification ϕ, is to find implementations for the system processes
of A, such that the composition of the implementations T1, . . . , Tk satisfies ϕ,
written A, (T1, . . . , Tk) |= ϕ. A specification ϕ is realizable with respect to an
architecture A if such implementations exist. Synthesis and checking realizabil-
ity of LTL specifications have been shown to be undecidable for architectures
in which not all processes have the same information wrt. environment outputs
in the synchronous case [13], and even for all architectures with more than one
system process in the asynchronous case [14].

Parameterized Synthesis 365

Bounded Synthesis. The bounded synthesis problem for given architecture A,
specification ϕ and a family of bounds {bi ∈ N | i ∈ P−} on the size of system
processes as well as a bound bA for the composition TA, is to find implementations
Ti for the system processes such that their composition TA satisfies ϕ, with
|Ti| ≤ bi for all process implementations, and |TA| ≤ bA.

3 Parameterized Synthesis

In this section, we introduce the parameterized synthesis problem. Using a clas-
sical result for the verification of token rings by Emerson and Namjoshi [10],
we show that parameterized synthesis for token ring architectures and specifica-
tions in LTL\X can be reduced to distributed synthesis of isomorphic processes
in a ring of fixed size. We then show that for this class of architectures and
specifications, the isomorphic distributed synthesis problem is still undecidable.

3.1 Definition

Parameterized Architectures and Specifications. Let A be the set of
all architectures. A parameterized architecture is a function Π : N → A.
A parameterized token ring is a parameterized architecture R with R(n) =
(Pn, env, Vn, In, On), where

– Pn = {env, 1, . . . , n},
– In is such that all system processes are assigned isomorphic sets of inputs,

consisting of the token-passing input sendi−1 from process i− 1 and a set of
inputs from the environment, distinguished by indexing each input with i.

– Similarly, On assigns isomorphic, indexed sets of outputs to all system pro-
cesses, with sendi ∈ On(i), and every output of env is indexed with all values
from 1 to n.

A parameterized specification ϕ is an LTL specification with indexed variables,
and universal quantification over indices. We say that a parameterized architec-
ture Π and a process implementation T satisfy a parameterized specification
(written Π, T |= ϕ) if for any n, Π(n), (T , . . . , T) |= ϕ.

Example 1. Consider the parameterized token ring Rarb with Rarb(n) =
(Pn, env, Vn, In, On), where

Pn = {env, 1, . . . , n} (1)

Vn = {r1, . . . , rn, g1 . . . , gn, send1, . . . , sendn} (2)

In(i) = {ri, sendi−1} (3)

On(env) = {r1, . . . , rn} (4)

On(i) = {gi, sendi} (5)

366 S. Jacobs and R. Bloem

The architecture R(n) defines a token ring with n system processes, with each
process i receiving an input ri from the environment and another input sendi−1

from the previous process in the ring, and an output sendi to the next process,
as well as an output gi to the environment.

An instance of this parameterized architecture for n = 4 is depicted in Fig. 1.
Together with the parameterized specification from Section 1, we will use it in
Section 5 to synthesize process implementations for a parameterized arbiter.

1

2

3

4

r1

g1

send1

r2

g2

send2

r3

g3

send3

r4

g4

send4

Fig. 1. Token ring architecture with 4 processes

Isomorphic and Parameterized Synthesis. The isomorphic synthesis prob-
lem for an architecture A and a specification ϕ is to find an implementation T
for all system processes (1, . . . , k) such that A, (T , . . . , T) |= ϕ. The parameter-
ized synthesis problem for a parameterized architecture Π and a parameterized
specification ϕ is to find an implementation T for all system processes such that
Π, T |= ϕ. The parameterized (isomorphic) realizability problem is the question
whether such an implementation exists.

3.2 Reduction of Parameterized to Isomorphic Synthesis

Emerson and Namjoshi [10] have shown that verification of LTL\X properties for
implementations of parameterized token rings can be reduced to verification of a
small ring with up to five processes, depending on the form of the specification.

Theorem 1 ([10]). Let R be a parameterized token ring, T an implementation
of the isomorphic system processes that ensures fair token passing, and ϕ a
parameterized specification. Then

a) If ϕ = ∀i. fi, where fi is a formula that only refers to variables indexed by
i, then R, T |= ϕ ⇐⇒ R(2), T |= ϕ

Parameterized Synthesis 367

b) If ϕ = ∀i. fi,i+1, where fi,i+1 is a formula that only refers to variables
indexed by i and i+ 1, then R, T |= ϕ ⇐⇒ R(3), T |= ϕ

c) If ϕ = ∀i �= j. fi,j, where fi,j is a formula that only refers to variables
indexed by i and j, then R, T |= ϕ ⇐⇒ R(4), T |= ϕ

d) If ϕ = ∀i �= j. fi,i+1,j , where fi,i+1,j is a formula that only refers to variables
indexed by i, i+ 1, and j, then R, T |= ϕ ⇐⇒ R(5), T |= ϕ

This theorem implies that verification of such structures is decidable. For syn-
thesis, we obtain the following corollary:

Corollary 1. For a given parameterized token ring R and parametric specifica-
tion ϕ, parameterized synthesis can be reduced to isomorphic synthesis in rings
of size 2 (3, 4, 5) for specifications of type a) (b, c, d, resp.).

In the following, we will show that this reduction in general does not make the
synthesis problem decidable.

3.3 Decidability

The parameterized synthesis problem is closely related to the distributed syn-
thesis problem [12,13]. We will use a modification of the original undecidability
proof for distributed systems to show undecidability of isomorphic synthesis in
token rings, which in turn implies undecidability of parameterized synthesis.

Theorem 2. The isomorphic realizability problem is undecidable for token rings
with 2 or more processes and specifications in LTL\X.

Proof. The proof follows that of Pnueli and Rosner [12] (see also Finkbeiner
and Schewe [13]). The original proof is for two synchronous processes, neither
of which can observe the inputs or outputs of the other. The proof builds a
specification that allows a single implementation, and forces the two processes
to each simulate a Turing machine and halt. Thus, it is realizable iff the Turing
machine halts, which shows undecidability. We will show that we can specify (in
LTL\X) an asynchronous system in a token ring that simulates the behavior of
these two synchronous processes. The proof works for rings of arbitrary size, if
we assume that the specification is the same for all processes.

In the original proof, each process has a start signal that triggers the pro-
cesses to output the next configuration of the Turing machine. The specification
assumes that the number of start signals for the two processes is never different
by more than one and requires that the configurations that are output by the
two processes are either equal (if the number of start signals is equal) or that
they are successors (if the number of start signals is off by one). This is easily
specified because the processes are synchronized by a global clock.

We need to modify the original proof such that it works for asynchronous
systems, and the specification can be written without the X operator.

368 S. Jacobs and R. Bloem

This can be achieved by forcing the asynchronous system to simulate a syn-
chronous system by using the token for synchronization: We augment the spec-
ification to assume that the token starts at a designated process, say 1. A clock
cycle consists of a full cycle of the token, and we require that each process
changes its output only once in each cycle. Thus, the asynchronous system
simulates a synchronized system, where the synchronous states consist of the
state of the asynchronous system immediately after the token passes to 1. Us-
ing tok1 to identify these states, it is now possible to correlate the states of
the simulated system: for instance, X qi for the synchronous system corresponds
to ¬tok1 W (tok1 ∧ qi) for the asynchronous system, and G qi corresponds to
G(¬tok1 =⇒ ¬tok1 W tok1 ∧ qi). This allows us to translate the construction in
[12] to our setting, and remove all occurrences of X in the specification.

Finally, the token cannot be used to pass any additional information (beyond
the synchronization): the only freedom a process has is when to pass the token,
and by lack of a global clock and visibility of the input and output signals of
the other processes, a given process cannot measure this time or observe any
changes of the system during this time.

Thus, our asynchronous system simulates the synchronous system from [12]
and is realizable iff the Turing machine halts. ��

Combining Theorems 1 and 2, we obtain the following result.

Theorem 3. The parametric realizability problem is undecidable for token rings
and specifications of type (a), (b), (c), or (d).

Proof. By Theorem 1, the isomorphic realizability problem for a specification
of type (a) and two processes can be reduced to a parameterized realizability
problem of type (a). Since the former problem is undecidable, so is the latter.
The proof for cases (b)–(d) is analogous. ��

4 Bounded Isomorphic Synthesis

The reduction from Section 3 allows us to reduce parameterized synthesis to
isomorphic synthesis with a fixed number of processes. Still, the problem does
not fall into a class for which the distributed synthesis problem is decidable.

For distributed architectures that do not fall into decidable classes, Finkbeiner
and Schewe have introduced the semi-decision procedure of bounded synthe-
sis [15,16], which converts an undecidable distributed synthesis problem into
a sequence of decidable synthesis problems, by bounding the size of the imple-
mentation. In the following, we will show how to adapt bounded synthesis for
isomorphic synthesis in token rings, which by Corollary 1 amounts to parame-
terized synthesis in token rings.

4.1 Bounded Synthesis

The bounded synthesis procedure consists of three main steps:

Parameterized Synthesis 369

Step 1: Automata translation. Following an approach by Kupferman and
Vardi [18], the LTL specification ϕ (including fairness assumptions like fair
scheduling) is translated into a universal co-Büchi-automaton U which accepts
an LTS T iff T satisfies ϕ.

Step 2: SMT Encoding. Existence of an LTS which satisfies ϕ is encoded
into a set of SMT constraints over the theory of integers and free function sym-
bols. States of the LTS are represented by natural numbers, state labels as free
functions of type N → B, and the global transition function as a free function of
type N × B|Oenv| → N. Transition functions of individual processes are defined
indirectly by introducing projections di : N → N, mapping global to local states.
To ensure that local transitions of process i only depend on inputs in Ii, we add
a constraint

∀i. ∀t, t′. ∀I, I ′. di(t) = di(t
′) ∧ I ∩ Ii = I ′ ∩ Ii → di(τ(t, I)) = di(τ(t

′, I ′)).

To obtain an interpretation of these symbols that satisfies the specification ϕ,
additional annotations of states are introduced. This includes labels λB

q : N → B

and free functions λ#
q : N → N, which are defined such that (i) λB

q (t) is true iff
the product of T and U contains a path from an initial state to a state (t, q) with
q ∈ Q, i.e., the product automaton can reach a state in which U is in q, among
other states, and (ii) valuations of the λ#

q must be increasing along paths of U ,
and strictly increasing for transitions that enter a rejecting state of U . Together,
this ensures that an LTS satisfying these constraints cannot have runs which
enter rejecting states infinitely often (and thus would be rejected by U).

Step 3: Iteration for Increasing Bounds. To obtain a decidable problem,
we restrict the number of states in the LTS that we are looking for, which allows
us to instantiate all quantifiers over state variables t, t′ explicitly with all values
in the given range. If the constraints are unsatisfiable for a given bound, we
increase it and try again. If they are satisfiable, we obtain a model, giving us an
implementation for the system processes such that ϕ is satisfied.

4.2 Adaption to Token Rings

We adapt the bounded synthesis approach for synthesis in token rings, and intro-
duce some optimizations we found vital for a good performance of the synthesis
method.

Additional Constraints and Optimizations. We use some of the general
modifications and optimizations mentioned in [16]:

– We use an additional constraint to ensure that the resulting system imple-
mentation is asynchronous. In general, we could directly add a constraint
∀i. ∀I. si �∈ I → di(τ(t, I)) = di(t) (where I is a set of inputs and si is the
scheduling variable for process i). For the particular case of token rings we
use a modified version, explained below.

370 S. Jacobs and R. Bloem

– We use symmetry constraints to encode that all processes should be isomor-
phic. Particularly, we use the same function symbols for state labels of all
system processes, and special constraints for the local transition functions,
also explained below.

– We use the semantic variant where environment inputs are not stored in
system states, but are directly used in the transition term that computes
the following state. This results in an implementation which is a factor of
|Oenv| smaller.1

Encoding Token Rings. For the particular case of token rings, we use the
following modifications to the SMT encoding:

– We want to obtain an asynchronous system in which the environment is
always scheduled, along with exactly one system process. Thus, we do not
need |P | scheduling variables, but can encode the index of the scheduled
process into a binary representation with log2(|P−|) inputs.

– We encode the special features of token rings: i) exactly one process should
have the token at any time, ii) only a process which has the token can send
it, iii) if process i is scheduled, currently has the token and wants to send
it, then in the next state process i+1 has the token and process i does not,
and iv) if process i has the token and does not send it (or is not scheduled),
it also has the token in the next state. Properties ii) – iv) are encoded in
the following constraints, where toki((di(t)) is true in state t iff process i has
the token, send(di(t)) is true iff i is ready to send the token, and schedi(I)
is true iff the scheduling variables in I are such that process i is scheduled:

∀i. ∀t. ∀I. tok(di(t)) → (send(di(t)) ∧ schedi(I)) ∨ tok(di(τ(t, I)))
∀i. ∀t. ¬tok(di(t)) → ¬send(di(t))
∀i. ∀t. ∀I. send(di(t)) ∧ schedi(I) → ¬tok(di(τ(t, I)))
∀i. ∀t. ∀I. send(di−1(t)) ∧ schedi(I) → tok(di(τ(t, I)))

We do not encode property i) directly, because it is implied by the remaining
constraints whenever we start in a state where only one process has the token.

– Token passing is an exception to the rule that only the scheduled process
changes its state: if process i is scheduled in state t, and both tok(di(t)) and
send(di(t)) hold, then in the following transition both processes i and i + 1
will change their state. The constraint which ensures that only scheduled
processes may change their state is modified into

∀i. ∀t. ∀I. ¬schedi(I) ∧ ¬(schedi−1(I) ∧ tok(di−1(t)) ∧ send(di−1(t)))
→ di(τ(t, I)) = di(t)

– Finally, we need to restrict local transitions in order to obtain isomorphic
processes. The general rule is that local transitions of process i should only

1 The different semantics (compared to the input-preserving LTSs used in [15,16]) is
already reflected in our definition of LTSs and satisfaction of LTL formulas.

Parameterized Synthesis 371

depend on the local state and inputs in Ii. With our definition, token passing
is an exception to this rule. The resulting constraints for local transitions
are:

∀i > 1. ∀t, t′. ∀I, I ′. d1(t) = di(t
′) ∧ sched1(I) ∧ schedi(I

′)
→ d1(τ(t, I)) = di(τ(t

′, I ′))

∀i > 1. ∀t, t′. ∀I, I ′. d1(t) = di(t
′) ∧ send(dn(t)) ∧ send(di−1(t

′))
∧ schedn(I) ∧ schedi−1(I

′) ∧ I ∩ I1 = I ′ ∩ Ii
→ d1(τ(t, I)) = di(τ(t

′, I ′))

Fairness of Scheduling and Token Passing. A precondition of Thm. 1 is
that the implementation needs to ensure fair token-passing. Thus, we always add

∀i. fair scheduling → (G(toki → F sendi))

to ϕ, where fair scheduling stands for ∀j. GF schedj . Note that with this condi-
tion, the formula does not fall into any of the cases from Thm. 1. However, in the
model of Emerson and Namjoshi, fairness of scheduling is an implicit assump-
tion, since otherwise fairness of token passing will also be violated. Thus, by
adding this formula, we are making explicit two of the assumptions of Emerson
and Namjoshi, and this formula does not need to be taken into account when
choosing which case of the theorem needs to be applied.

Similarly, the fair scheduling assumption needs to be added to any liveness
conditions of the specification, as without fair scheduling in general liveness
conditions cannot be guaranteed. As before, this does not need to be taken into
account considering Thm. 1.

Correctness and Completeness of Bounded Synthesis for Token Rings.
Based on completeness of the original bounded synthesis approach (and correct
modeling of the features of token rings), we obtain

Corollary 2. If a given specification ϕ is satisfiable in a token ring of a given
size n, then the bounded synthesis algorithm, adapted to token rings, will even-
tually find this implementation.

Finally, based on the correctness of our adaption of bounded synthesis, and
Corollary 1, we obtain

Theorem 4. If a given specification ϕ falls into class a (b,c,d) of Thm. 1 and
the adapted bounded synthesis algorithm finds an implementation that satisfies
ϕ in a token ring of size 2 (3,4,5), then this implementation satisfies ϕ in token
rings of arbitrary size.

5 Synthesizing a Parameterized Arbiter

In this section, we show how parameterized synthesis can be used to obtain pro-
cess implementations for token ring architectures. Our example is a parameter-
ized arbiter in a token ring as depicted in Fig. 1, with the following specification:

372 S. Jacobs and R. Bloem

∀i �= j. G¬(gi ∧ gj)
∀i. (G(ri → F gi))

Every process i has an input ri for requests from the environment, which it
can grant by activating an output gi. We want grants of all processes to be
mutually exclusive, and every request to be eventually followed by a grant. The
specification satisfies case c) in Theorem 1, i.e., a ring of size 4 is sufficient to
synthesize implementations that satisfy the specification for rings of any size.

According to the adapted bounded synthesis approach from Sect. 4.2, we need
to add the token fairness requirement, and add the fair scheduling assumption
to all liveness constraints. This results in the extended specification

∀i �= j. G¬(gi ∧ gj)
∀i. fair scheduling → (G(ri → F gi))
∀i. fair scheduling → (G(toki → F sendi)).

We translate the specification into a universal co-Büchi automaton, shown for 2
processes in Fig. 2. This automaton translates to a set of first-order constraints
for the annotations of an LTS implementing ϕ, a part of which is shown in
Fig. 3 (only constraints for states 0, 1, 3, 5 of the automaton are shown). These
constraints, together with general constraints for asynchronous systems, isomor-
phic processes, token rings, and size bounds, are handed to Z3 [17]. For correctly
chosen bounds (|TA| ≤ 4 and |Tp| ≤ 2), we obtain a model of the process imple-
mentation in ∼10 seconds (on an Intel Core i7 CPU @ 2.67 GHz). The solution
is very simple: every process needs only 2 states, with sendi and gi signals high
iff the process has the token. In the parallel composition of 4 such processes,
only 4 global states are reachable. Theorem 4 guarantees that with this process
implementation, ϕ will be satisfied for any instance of the architecture.

Note that synthesis is “easy” in this case because we can restrict it to a small
ring of 4 processes, and have a rather simple specification. For 5 processes (and
|TA| ≤ 5), Z3 already needs ∼100 seconds to solve the resulting constraints.
We expect similar increases in needed time for specifications with more system
variables.

The translation of specifications into SMT constraints is currently not fully
automated. We leave the development of an automatic tool and its application
to more complex case studies for future work.

6 A Framework for Parameterized Synthesis

Our approach for reduction of parameterized synthesis to distributed/isomorphic
synthesis is not limited to token rings. In the following, we sketch a framework
which allows us to lift decision procedures for the verification of parameterized
systems to semi-decision procedures for their synthesis.

Parameterized Synthesis 373

0

1 ⊥ 2

3 5 46

r1g1 g1g2 r2g2

∗

s1g1

s1g1
s2g1

s2g1

s1g1s2g1 s2g2s1g2

s1g2
s2g2s1g2

s2g2

7 8

9 11 1012

tok1send1 tok2send2

s1send1

s1send1
s2send1

s2send1

s1send1s2send1 s2send2s1send2

s1send2
s2send2s1send2

s2send2

Fig. 2. Universal co-Büchi automaton for specification ϕ

6.1 General Token-Passing Systems

Clarke, Talupur, Touilli, and Veith [11] have extended the results of Emerson and
Namjoshi to arbitrary token-passing networks. They reduce the parameterized
verification problem to a finite set of model checking problems, where the number
of problems and the size of systems to be checked depends on the architecture
of the parameterized system and on the property to be proved.

To lift these results to the synthesis of parameterized token-passing systems in
general, we need to adapt the bounded synthesis algorithm further, such that it
searches for a process implementation which satisfies the required properties for
all verification problems in the set determined by architecture and specification.
This requirement can easily be encoded into corresponding constraints for the
SMT solver, but may of course increase complexity of synthesis significantly.

Encoding of token-passing into SMT constraints must be adapted to the pos-
sibility that processes may be able to choose which other process will receive
the token. Furthermore, Clarke et al. [11] have the assumption that the sys-
tem satisfies fair token passing. For synthesis, we must strengthen the given
specification of the system such that it will satisfy this property. For general

374 S. Jacobs and R. Bloem

λB

0(0)
tok(d1(0)) ∧ ∀i = 1. ¬tok(di(0))

∀t. ∀I. λB

0(t) → λB

0(τ (t, I)) ∧ λ#
0 (τ (t, I)) ≥ λ#

0 (t)

∀i = j. ∀t. λB

0(t) → ¬(g(di(t)) ∧ g(dj(t)))

∀i. ∀t. ∀I. λB

0(t) ∧ sched1(I) ∧ ri ∈ I → λB

1(t) ∧ λ#
1 (τ (t, I)) > λ#

0 (t)

∀i = j. ∀t. ∀I. λB

1(t) ∧ ¬sched2(I) ∧ ¬g(d1(t)) → λB

3(t) ∧ λ#
3 (τ (t, I)) ≥ λ#

1 (t)

∀i = j. ∀t. ∀I. λB

1(t) ∧ sched2(I) ∧ ¬g(d1(t)) → λB

5(t) ∧ λ#
5 (τ (t, I)) ≥ λ#

1 (t)

∀i = j. ∀t. ∀I. λB

3(t) ∧ ¬sched2(I) ∧ ¬g(d1(t)) → λB

3(t) ∧ λ#
3 (τ (t, I)) ≥ λ#

3 (t)

∀i = j. ∀t. ∀I. λB

5(t) ∧ ¬sched1(I) ∧ ¬g(d1(t)) → λB

5(t) ∧ λ#
5 (τ (t, I)) ≥ λ#

5 (t)

∀i = j. ∀t. ∀I. λB

5(t) ∧ sched1(I) ∧ ¬g(d1(t)) → λB

1(t) ∧ λ#
1 (τ (t, I)) > λ#

5 (t)
.

Fig. 3. Constraints that are equivalent to realizability of ϕ

token-passing networks, the assumption that every process that holds the token
will always eventually send it may not be enough to ensure fair token passing.
One possibility to ensure fair token-passing in general networks is to require

∀i.∀j.G(toki → F send(i,j)),

where i quantifies over all processes as usually, j over all processes which can
receive the token from process i, and send(i,j) means that i sends the token to j.

6.2 Other Results with Cutoffs

In the literature, there is a vast body of work on the verification of parameter-
ized systems, much of it going beyond token-passing systems (e.g., [19,20]). In
particular, many of these results prove a cutoff for the given class of systems and
specifications [21,22,23], making the verification problem decidable.

In principle, any verification result that provides a cutoff, i.e., reduces the
verification of LTL properties for parameterized systems to the verification of a
finite set of fixed-size systems, can be used in a similar way to obtain a semi-
decision procedure for the parameterized synthesis problem. Our limitation is the
ability to encode the special features of the class of systems in decidable first-
order constraints, and the specifications under consideration are omega regular.

Approaches that detect a cutoff for a given system implementation dynam-
ically [24,25] (i.e., not determined by architecture and specification) are less
suited for our framework: they could in principle be integrated with our ap-
proach, but cutoff detection would have to be interleaved with generation of
candidate implementations, making it hard or impossible to devise a complete
synthesis approach.

7 Conclusions

We have stated the problem of parameterized realizability and parameterized
synthesis: whether and how a parameterized specification can be turned into a

Parameterized Synthesis 375

simple recipe for constructing a parameterized system. The realizability problem
asks whether a parameterized specification can be implemented for any number
of processes, i.e., whether the specification is correct. The answer to the synthesis
question gives a recipe that can quickly be turned into a parameterized system,
thus avoiding the steeply rising need for resources associated with synthesis for
increasing n using classical, non-parameterized methods.

We have considered the problem in detail for token rings, and to some extent
for general token-passing topologies. Using results from parameterized verifica-
tion, we showed that the parameterized synthesis problem reduces to distributed
synthesis of a small network of isomorphic processes with fairness constraints on
token passing. Unfortunately, the synthesis problem remains undecidable.

Regardless of this negative result, we managed to synthesize an actual—albeit
very small—example of a parameterized arbiter. To this end, we used Schewe
and Finkbeiner’s results on bounded synthesis. In theory, this approach will
eventually find an implementation if it exists. In practice, this currently only
works for small implementations. One line of future work will be on making
synthesis feasible for larger systems, possibly as an extension of the lazy synthesis
approach [7].

For unrealizable specifications, our approach will run forever. It is an inter-
esting question whether it could be combined with incomplete methods to check
unrealizability.

We note that the topologies we considered do limit communication between
processes and therefore also the possible solutions. For our running example,
processes give grants only when they hold the token. Obviously, this means that
response time increases linearly with the number of processes, something that can
be avoided in other topologies. The use of more general results on parameterized
verification may widen the class of topologies that we can synthesize.

Acknowledgments. Many thanks to Leonardo de Moura for his help with
little known features of Z3. We thank the members of ARiSE, particularly Hel-
mut Veith, for stimulating discussions on parameterized synthesis, and Bernd
Finkbeiner for discussions on distributed and bounded synthesis. Finally, thanks
to Hossein Hojjat for useful comments on a draft of this paper.

References

1. Church, A.: Logic, arithmetic and automata. In: Proceedings International Math-
ematical Congress (1962)

2. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. Symposium
on Principles of Programming Languages (POPL 1989), pp. 179–190 (1989)

3. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005)

4. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware form PSL. In: 6th International Workshop on
Compiler Optimization Meets Compiler Verification. Electronic Notes in Theoret-
ical Computer Science (2007)

376 S. Jacobs and R. Bloem

5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: A case study. In: Proceedings
of the Design, Automation and Test in Europe, pp. 1188–1193 (2007)

6. Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using
Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

7. Finkbeiner, B., Jacobs, S.: Lazy Synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)

8. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters 22, 307–309 (1986)

9. Suzuki, I.: Proving properties of a ring of finite state machines. Information pro-
cessing Letters 28, 213–214 (1988)

10. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. International Journal
of Foundations of Computer Science 14, 527–549 (2003)

11. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by Network Decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
276–291. Springer, Heidelberg (2004)

12. Pnueli, A., Rosner, R.: Distributed systems are hard to synthesize. In: Proc. Foun-
dations of Computer Science (FOCS), pp. 746–757 (1990)

13. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Logic in Computer
Science (LICS), pp. 321–330. IEEE Computer Society Press (2005)

14. Schewe, S., Finkbeiner, B.: Synthesis of Asynchronous Systems. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)

15. Schewe, S., Finkbeiner, B.: Bounded Synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

16. Finkbeiner, B., Schewe, S.: Bounded synthesis. Software Tools for Technology
Transfer (to appear)

17. deMoura, L., Bjørner, N.: Z3: An Efficient SMTSolver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.)TACAS2008.LNCS, vol. 4963, pp. 337–340. Springer,Heidelberg (2008)

18. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS, pp. 531–542
(2005)

19. Clarke, E.M., Grumberg, O., Jha, S.: Verifying parameterized networks. ACM
Trans. Program. Lang. Syst. 19(5), 726–750 (1997)

20. Zuck, L.D., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures 30(3-4), 139–169
(2004)

21. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992)

22. Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

23. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning About Threads Communicating Via
Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

24. Hanna, Y., Basu, S., Rajan, H.: Behavioral automata composition for automatic
topology independent verification of parameterized systems. In: ESEC/SIGSOFT
FSE, pp. 325–334 (2009)

25. Kaiser, A., Kroening, D., Wahl, T.: Dynamic Cutoff Detection in Parameterized
Concurrent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 377–391, 2012.
© Springer-Verlag Berlin Heidelberg 2012

QuteRTL: Towards an Open Source Framework
for RTL Design Synthesis and Verification

Hu-Hsi Yeh1, Cheng-Yin Wu2, and Chung-Yang (Ric) Huang1,2

1 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
2 Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

Abstract. We build an open-source RTL framework, QuteRTL, which can
serve as a front-end for research in RTL synthesis and verification. Users can
use QuteRTL to read in RTL Verilog designs, obtain CDFGs, generate hierar-
chical or flattened gate-level netlist, and link to logic synthesis/ optimization
tools (e.g. Berkeley ABC). We have tested QuteRTL on various RTL designs
and applied formal equivalence checking with third party tool to verify the cor-
rectness of the generated netlist. In addition, we also define interfaces for the
netlist creation and formal engines. Users can easily adopt other parsers into
QuteRTL by the netlist creation interface, or call different formal engines for
verification and debugging by the formal engine interface. Various research op-
portunities are made possible by this framework, such as RTL debugging,
word-level formal engines, design abstraction, and a complete RTL-to-gate tool
chain, etc. In this paper, we demonstrate the applications of QuteRTL on con-
strained random simulation and property checking.

Keywords: Synthesis, Verification, Open Source, Framework.

1 Introduction

In a typical EDA (Electronic Design Automation) software, a quality front-end is
necessary for reading in complex design and extracting significant information for
later executions. A quality front-end should be capable of reading in all the defined
descriptions and translating them into efficient data structures. Traditional academic
tools, such as SIS [1], VIS [2], and MVSIS [3], focus on the Boolean-level
optimization algorithms that can improve the quality of circuits in various aspects.
They are robust enough and, at the same time, scalable for practical use. In the past
decades, people from industry and academia have adopted and developed their
synthesis and verification tools from these tools. However, as the design paradigm
moves to Register-Transfer-Level (RTL) and up, most of the new research have to
deal with the high-level design constructs, syntax, and semantics. Without a robust
front-end, the applicability of these tools will be limited.

Recently, Berkeley ABC [4], which is a software system for synthesis and
verification, has become very popular in both academia and industry. It proposes: (1)
fast and scalable logic optimization based on And-Inverter Graphs (AIGs), (2)

378 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

optimal-delay DAG-based technology mapping for standard cells and FPGAs, and (3)
innovative algorithms for integrated sequential optimization and verification.
However, it still has incomplete support on design formats; for example, it cannot
read in most of the descriptions in RTL Verilog, hierarchical BLIF and BLIF-MV,
and it mainly handles the specialized format－BLIF, which is bit-level. Therefore, we
need to resort to other tools to translate the RTL design into the BLIF format.
Consequently, we will then lose most of the high-level design intents such as FSM,
counter, and control/data separation, etc., which can be useful in guiding the design
verification.

On the other hand, there are also some open-source front-ends, including VIS and
Icarus Verilog [5]. The front-end of VIS acts as an intermediate role to translate
designs into BLIF format. It does not completely keep the high-level design intents
and does not have complete support for HDL. On the other hand, Icarus Verilog aims
at simulation and FPGA synthesis. It still has some known and unknown bugs and the
author continues releasing patches.

We implement a quick and quality RTL front-end (QuteRTL) which supports most
of the synthesizable RTL Verilog with different library formats and can synthesize the
design to word-level circuit netlist. The key features of QuteRTL include: (1)
complete Verilog support, (2) flexible design view: word-level or bit level;
hierarchical or flatten, (3) formally verified by commercial equivalent checker, and
(4) complete netlist creation interface for other parsers (e.g. VHDL/System Verilog
parser) and engine interface for external solvers (e.g. BDD, MiniSAT [6], and
Boolector [7]).

As an exemplar application of the QuteRTL framework, we publish an Automatic
Target Constraint Generation (ATCG) technique in [8] to address the bottleneck in
the constrained random simulation flow. Instead of focusing on the constraint solving
techniques as other research [9, 10] do, we propose an alternative approach to
alleviate the burden of the users by automatically generating high-quality constraints
with the support of QuteRTL. In another application, we devise a property-specific
sequential invariant extraction algorithm in [11] to improve the performance of the
SAT-based unbounded model checking (UMC). We first utilize QuteRTL to extract
the property-related predicates and their corresponding high-level design constructs
such as FSMs and counters. Thus, we can quickly identify the sequential invariants
and then utilize them to refine the inductive hypothesis [12] in induction-based UMC,
and to improve the accuracy of reachable state approximation in interpolation-based
UMC [13, 14].

The rest of the paper is organized as follows: in Section 2, we first give an
introduction of the architecture and interfaces of QuteRTL. Section 3 presents the tool
implementation and data structure, and Section 4 presents the applications of
QuteRTL. In Section 5, we give a user guide and some demo examples for general
users. Finally, we conclude the paper in Section 6.

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 379

2 Architecture of QuteRTL Framework

In this section, we will present our RTL synthesis and verification framework ―
QuteRTL. Section 2.1 gives an overview of the framework while Section 2.2
describes the design and engine interfaces of QuteRTL. Finally, Section 2.3 provides
a comparison between QuteRTL and other open-source front-ends

2.1 Overview of QuteRTL Framework

Figure 1 shows the architecture of QuteRTL framework, which can be separated into
two parts, RTL synthesis and circuit verification/debugging. In the RTL synthesis
part, the RTL design is first translated into some intermediate representations, for
example, Control-Data Flow Graph (CDFG). Then, QuteRTL resolves such
temporary models by elaborating an equivalent circuit netlist and extracting plenty of
design intents, including hierarchy information, FSM, counter structures, etc. These
intents can help both test pattern generation and safety/liveness property checking in
the circuit verification/debugging part. For general users, we release the source code
of our parsers, netlist creation procedure and interface functions.

Fig. 1. Architecture of QuteRTL

Synthesis

Engine
Interface

Verilog Parser Netlist Creation Interface BLIF Parser

Design Intent
Extraction

Circuit De-
bugging

Model
Checking

Safety / Liveness

Coverage-
Driven TPG

PGM / ATPG

BDD MiniSAT

Boolector MiniSAT+

FORMAL ENGINES

Flatten

DESIGN

Simulator

Control Data
Flow Graph

Hierarchical
Word-level Circuit

Flattened

Word-level Circuit

Open Source

Applications
VERIFY/ DEBUG

380 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

In the view of design, we have both hierarchical and flattened word-level circuit
structure in QuteRTL. Using the hierarchical structure, we can analyze designs more
systematically and identify predicates easily in the original RTL. For example,
QuteRTL can determine the independence between modules with the hierarchy, and
then the information is utilized to alleviate design complexity. For formal engines, the
search space can be pruned significantly; for simulators, the efficiency can be
improved by the divide-and-conquer algorithm. On the other hand, for circuit
redundancy elimination and global optimization, QuteRTL can flatten the design into
a single circuit netlist. When flattening the hierarchical design, it will collect the
necessary cells in depth first search from PO to PI, and remove redundant cells, which
come from bad coding styles or function-less buffers.

In the view of circuit netlist, most logic optimization tools perform their algorithm
on bit-level logic netlist, but they rarely handle the word-level netlist. The proposed
tool in the paper can completely translate netlist into what logic optimization tools
support. That is, QuteRTL can output both the word-level or the bit-level netlist, or
even the mixed-level netlist. In addition, it can utilize some word-level circuit
components to assist logic optimization tools. For example, QuteRTL can use high-
speed adders, says carry look-ahead adders, to substitute carry ripple adders, or
Booth’s multipliers for high speed designs.

2.2 Supported Features of QuteRTL

Various features are supported by QuteRTL. To illustrate them more clearly and suc-
cinctly, we categorize them as follows:

Design Formats. As shown in Figure 1, QuteRTL supports several kinds of design
input formats, which include not only Verilog but also other well-known word-level
or Boolean network, for instance BLIF and BTOR. Moreover, we provide a complete
set of interface functions for interactive netlist creation. The biggest advantage is that
anyone can simply call our netlist creation functions to build up a hierarchical word-
level network in QuteRTL despite what input formats of the designs are. Hence, any
word-level or Boolean network can be intuitively constructed in QuteRTL with the
help of these interface functions. On the contrary, QuteRTL also supports
corresponding design output formats, including both hierarchical and flattened
structural Verilog, and BLIF.

Design Intent Extraction. Design intents contain useful information to help
optimization or verification tools improve design and dependability, but many tools
and research abandon the information when they proceed. In QuteRTL, the
synthesized circuit can be easily annotated to the original RTL structure before logic
optimization. Thus, we can extract some design intents from the circuit netlist and
CDFG. These design intents include local FSMs, counters, constraints, and invariants.

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 381

Interface for Verification and Debugging. After constructing the target design, we
can adopt the following interface functions to verify or debug the properties. We split
these functions into two parts:

1. Property Specification Interface: We support various types of assertion
specifications. These assertions including simple CTL safety and liveness
properties in either AG(p) or EG(p) format, where p can be specified as an
auxiliary Boolean output signal formulated from the design; for instance a + b < c
or x * y > 10. Besides, part of System Verilog Assertions (SVA) semantics is also
supported for common industrial instances.

2. Engine Interface: Formal engines are crucial to both verification and debugging,
especially in formal approaches. However, every engine embraces its individual
interface functions, so users need to use the respective interface functions when
applying different solvers. It causes maintainability problems in the interfaces for
the solvers. Therefore, we integrate those interfaces into a union set of functions
that are conformable to different verification and debugging needs in QuteRTL.
The integrated engine interface makes the usage of formal engines simple and
unified. That is, users can specify which formal engine they expect to adopt in their
applications.

2.3 Comparison with other Open Source RTL Front-End

In this subsection, we discuss the comparison between QuteRTL and other open-
source front-ends, including VIS and Icarus Verilog. The VIS group releases a
Verilog HDL front-end VL2MV, which compiles a subset of Verilog into an
intermediate format BLIF-MV (a multi-valued extension of BLIF). With the support
of VL2MV, VIS is able to synthesize finite state systems and verify properties of such
system. Besides, VL2MV extracts a set of interacting FSMs which preserve the
behavior of the source Verilog defined in terms of the simulated results. However, the
front-end does not guarantee the extracted FSMs are optimal, and is not able to handle
full set Verilog language due to its dynamic nature.

Another open source RTL front-end Icarus Verilog aims at simulation and FPGA
synthesis. It can support richer syntax for simulation in RTL language, and generate
the text or waveform output of the simulation results. Icarus Verilog is intended to
work mainly as a simulator, although its synthesis capabilities are improving.
However, the tool focuses on generating specific netlist format for FPGA synthesis,
and it is hard to utilize novel formal techniques on the specific netlist.

To apply modern formal techniques to industrial RTL design, we implement a
quick and quality RTL front-end QuteRTL. It can synthesize most of the
synthesizable RTL with different library (Verilog and Liberty) formats into word-
level circuit netlist. For design verification, QuteRTL also supports other design input
formats, for example BLIF and BTOR, etc. Besides, users can easily implement novel
formal techniques on the word-level circuit netlist, for example UMC, property
directed reachability (PDR) [15], etc.

382 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

3 Tool Implementation

In this section, we describe the implementation of QuteRTL, which consists of a Veri-
log parser, an RTL synthesizer, and a circuit flattening procedure.

3.1 Parser and Preprocessor

Verilog Parser. We use Lex and Yacc to implement the Verilog parser. If the syntax
of the design conforms to Verilog Backus-Naur Form (BNF), the parser will parse
corresponding syntax trees for a start. It also checks the grammars of the syntaxes and
lints for Verilog. Then we construct CDFG of the design from the syntax trees for
each module. For the purpose of design synthesis and verification, we focus on the
synthesizable Verilog subset, which includes synthesizable “for loop”, “task” and
“function” declarations, etc.

Preprocessor. The preprocessor mainly handles macro substitution, hierarchy
construction, and parameter overriding. After generating the CDFGs, we first perform
a simple substitution and expand the occurrence of each argument in macro using the
replacement text. For the modules containing macros, we revise their CDFGs. Next,
we construct a hierarchical tree to represent the relation of the module instances in the
design, and then perform parameter overriding from top to down in the hierarchical
tree to set up the overridden parameter for each module instance. After the steps, the
CDFGs and hierarchical tree are ready for synthesis.

3.2 RTL Synthesis and Circuit Flattening

Data Structure of Circuit Netlist. Figure 2 shows the data structure of circuit netlist
in QuteRTL. We use three components–Cell, InPin, and OutPin to describe a circuit.
The Cell contains OutPin(s) to fan out to other cells and an InPin list to receive
multiple fanins from other Cells to construct the circuit netlist. The pins can be
multiple bits to describe word-level netlist.

Fig. 2. The data structure of circuit netlist in QuteRTL

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 383

The types of cells can be classified as follows:

• Operator cell: arithmetic, relational, equality, logical, bit-wise, reduction, shift cell,
and multiplexer

• IO cell: primary input, primary output, and primary inout
• Sequential cell: flip-flop and latch
• Module cell: module instantiation
• Modeling cell: bit-merging, bit-splitting, bus, memory, bufif, etc.

The operator cells are synthesized from the common operators in Verilog. For
example, the multiplexers are synthesized from conditional operator (?:) or
conditional block (if, case, etc.). For the instances used in a module, we model them
as module cells in the hierarchical view of design. Besides, to support the specific
elements in circuit, we create some modeling cells for net, bus, memory, and high
impedance. Please note that the pins in word-level netlist are multiple bits, so we use
bit-merging (bit-splitting) cells to concatenate (slice) pins to form specific fanins to
other cells.

RTL Synthesis Procedure. The synthesis procedure translates CDFGs to the circuit
netlist data structures we defined above. The synthesizer first traverses the CDFG of
each module and flattens each variable to the data structure “SynVar”. Figure 3 gives
an example to show the relations between RTL and SynVar. In the data structure,
each node contains the data and conditional fanins, which are respectively synthesized
from data predicate list (DPL) and control predicate list (CPL) of the variable. The
tree structure represents the priority of control predicates in nodes, and then we
connect these pins with multiplexers. If the variable is in a sequential block or is not
fully assigned in a combinational block in the original Verilog code, the output of the
last multiplexer will be connected to a sequential cell (flip-flop/latch). Finally, the
synthesized circuit netlist is illustrated in Figure 4. In order to back-annotate the
netlist information to the original RTL code, we just synthesize the RTL design to an
equivalent circuit netlist without optimizing the netlist during this procedure.

Circuit Flattening. The circuit flattening is to generate a flattened circuit netlist
which is functionally equivalent to the hierarchical netlist. The implementation
includes the concretion of instance models (i.e. module cells) and the removal of
redundant cells (ex. buffers, non-fan-out cells). First, we traverse the hierarchical tree
built in preprocessor, and duplicate the non-IO cells (except top level module) to a
new flattened module. Simultaneously, we make the connections between cells within
the same hierarchical module, and record the connections between different
hierarchical modules. After duplicating all necessary cells, we connect the cells in
different hierarchical and then traverse the flattened netlist to remove the redundant
cells.

384 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

Fig. 3. RTL synthesis procedure

Fig. 4. The synthesized circuit

4 Applications of QuteRTL

In this section, we introduce two applications of QuteRTL, which include intent
extraction in Section 4.1 and model checking in Section 4.2.

4.1 Intent Extraction

For FSM extraction, we categorize the types of FSM as either explicit FSMs or
implicit FSMs according to the definition of state values. In an explicit FSM, its state
values are explicit defined as parameters or constants, while there are no explicit state
values defined in an implicit FSM, where the state values are implicitly embedded in
conditions or expressions. In our implementation of the extractor, we extract both of

always@ (posedge clk) begin
 if (rst) begin
 x <= 1;
 y <= 0;
 end
 else begin
 y <= x;
 if (x < 100)
 x <= y+x;
 end
end

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 385

them and identify counters. Note that we extract the explicit FSMs based on the
coding styles [16] and implicit FSMs from the transition relations computed by BDDs
[17]. The extraction algorithm is mainly performed in the three steps: candidate state
variable extraction, state transition extraction, and state transition graph (STG)
construction. We briefly express these steps as follows:

1. Candidate state variable identification: In sequential blocks of Verilog, we first
treat the variables in left hand side of assignments as possible state variables. Then,
we traverse the data dependency list of the possible state variable to find a loop of
assign statements to identify the candidate state variables.

3. State transition extraction: In this step, we extract the state transition relation from
each candidate state variable. For explicit FSM, we can extract a set of state pair
(Si, Sj), which represents the state transition from Si to Sj. While for implicit FSM,
we traverse the assignments of the candidate state variables to build the state
transition relation in binary decision diagram (BDD).

4. State transition graph construction: For explicit FSM, we use the set of state pair to
construct the STG. In order to extract the STG of implicit FSM, we will traverse
the BDD to enumerate all transition conditions and relations.

Further, these extracted FSMs are utilized to identify the sequential invariants and
then improve the property proving capabilities in [11]. On the other hand, for
constrained random simulation, we proposed an ATCG technique [8] based on
QuteRTL. In that work, we extract compact constraints for a set of coverage holes
from the circuit netlist and CDFG. The experimental results show that the extracted
constraints indeed help simulation achieves the highest coverage and smallest runtime
when compared to both random and directed simulations.

4.2 Model Checking

The powerful characteristics of our QuteRTL that retain word-level information with
high-level design intent provide us an adequate circuit abstraction level for
researching on word-level verification and debugging problems. With the prosperous
SMT solvers, it becomes practical and ideal to apply model checking on our word-
level netlist with a word-level solver.

There are basically two approaches to implement a model checking algorithm on
QuteRTL. First, we can adopt the provided engine interface functions to realize a new
model checking algorithm. This is commonly used by almost all the verification
algorithms we have implemented. Second, we can dump out word-level netlist from
QuteRTL and then call the solvers by their supported interfaces. When transforming
word-level functions into CNF for Boolean SAT engines, such as adder, multiplier,
comparators, etc., we perform naïve bit-blasting technique with better encodings.

Traditional SAT-based model checking algorithms, including bounded model
checking (BMC), k-induction, and their extensions such as simple-path and
interpolation-based, can be simply implemented with circuit traversal and
transforming individual gate function into corresponding solver input formula (e.g.
CNF). Without loss of generosity, all the Boolean model checking algorithms can be

386 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

implemented on QuteRTL. Moreover, our word-level framework provides even better
capability in coping with more complex designs and realistic properties by abstraction
and refinement techniques, for instance, predicate abstraction, interpolation, design
intent extraction, and probabilistic inferences.

5 Availability for General Users

For general users, we release our RTL front-end source code and the compiled
QuteRTL executable in the following website:

http://dvlab.ee.ntu.edu.tw/~publication/QuteRTL/

In this section, we first give a brief overview to the command-line interface of
QuteRTL. Then we show some examples related to what QuteRTL can do for general
users through our user-friendly command-line interface. Users can also download
these examples in our website, which include a general RTL to gate synthesis flow, an
example to construct hierarchical word-level netlist, and a property checking instance.

5.1 A Brief Description to QuteRTL Command-Line Interface

Similar to most tools from EDA vendors, QuteRTL supports friendly command-line
interface for users. Our commands are usually composed by one or two mandatory
key words followed by a set of required/optional parameters. For example, command
to parse an input design from a single file or filelist is “REAd DEsign [-
Verilog | -Blif] <[-Filelist] (string filename)>”. We can see the command is named by
“REAd DEsign”, where the upper case letters are mandatory for command-line
parser. Parameters in square brackets indicate optional arguments, and those in angle
brackets indicate required arguments. More detailed description to our command rules
can be found in our website, and we will mention some of them in our examples later.

Besides, there is a command “HELp” for showing all available commands, or
showing detailed usage of each command (for instance, “HELp REAd DEsign”).

5.2 Example: RTL to Gate Synthesis Flow

In the first example, we are going to show the synthesis flow of QuteRTL. The adopted
designs are “i2c” and “usb_phy” from OpenCore [18]. We present the commands of the
flow in Figure 5. Note that users can run the series of commands from a batch file using
“dofile” command or execute argument “-f” to specify the batch file.

In the first line of Figure 5, we record the commands we are going to execute
throughout the program into a log file, which can be used as batch file in the future
run. Then we parse the Verilog design from the file list. Note that users must write all
related files in the file list for QuteRTL once. After the Verilog design is parsed, the
command “syn” performs synthesis procedure to transform the design into a word-
level circuit netlist, and the command “flat” flatten the design into a single flattened
module. Note that internal signals in the flattened module will be renamed.

 QuteRTL: Towards

After our front-end proc
using the command “write
ckt”. As shown in Figur
hierarchical word-level ne
flattened one (i2c_ckt.v) in
design (i2c_ckt.blif). The
Boolean network, and easily
Accompanied with the m
Conformal LEC [19] equi
original design and all g
synthesized word-level cir
ellipses respectively represe

Fig. 5. Batc

Fig. 6. T

set log -cmd flow_
read des -f fileli
syn
flat
write des i2c_desig
write ckt i2c_ckt.v
write ckt -blif i2c
q -f

1.
2.
3.
4.
5.
6.
7.
8.

// Example : flow_i2c.d

s an Open Source Framework for RTL Design Synthesis

cessing, QuteRTL can output either hierarchical design
design” or flattened circuit by using the command “w

re 5, after performing circuit flattening, we outpu
etlist in Verilog format (i2c_design.v) in line 5, and

line 6. Besides, we can also output the BLIF format of
BLIF format is a suitable input for other research

y transformed into other related formats, for instance, A
macro library file “lib2.v”, users can run the Cade
ivalence checker script to check the equivalence amo
generated output designs. Figure 6 shows the par
rcuit of “i2c”. In the figure, rectangles, trapezoids,
ent flip-flops, multiplexers, and other operating gates.

ch files for RTL to gate synthesis flow example

The part synthesis word-level circuit of i2c

i2c.dofile
st

gn.v
v
c_ckt.blif

dofile
set logfile -cmd flow_usb.dofil
read design -f filelist
synthesis
flatten
write design usb_design.v
write ckt usb_ckt.v
write ckt usb_ckt.blif -blif
quit -f

1.
2.
3.
4.
5.
6.
7.
8.

// Example : flow_usb.dofile

387

n by
write
ut a
d a

f the
on

AIG.
ence
ong
rtial
and

le

388 H.-H. Yeh, C.-Y. Wu, and C.-Y. Huang

5.3 Example: Hierarchical Word-Level Netlist Creation

As shown in Fig 1, QuteRTL has a complete set of interface functions for netlist
creation. Especially, we also support users to construct design through our command-
line interface. It is especially convenient to build small designs for instant
experiments.

Fig. 7. An example of circuit netlist

Suppose we want to construct the circuit netlist in Figure 7. We present two
scripts: “construct_flat.dofile” for constructing the design with only one module, and
“construct_hier.dofile” for constructing a hierarchical design, which is functionality
identical to the former. The batch files are shown in Figure 8 and 9, respectively. (A
portion of commands in “construct_hier.dofile” is omitted in Figure 9 due to space
concerns.)

Fig. 8. Batch file for design construction with single module

Fig. 9. Batch file for hierarchical design construction with multiple modules

define net a[3:0] 4
define net a[7:4] 4
define cell SLICE a[7:4] a 7 4
define cell SLICE a[3:0] a 3 0
define cell ADD plus_out a[7:4] a[3:0]
define cell AND conj_out plus_out b
define cell DFF prev_out conj_out clk reset
define cell OR out prev_out

10.
11.
12.
13.
14.
15.
16.
17.

create design flat_design
define net -PI clk 1
define net -PI reset 1
define net -PI a 8
define net -PI b 4
define net -PO out 1
define net prev_out 4
define net plus_out 4
define net conj_out 4

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_flat.dofile

define net -PI clk 1
define net -PI reset 1
…
define cell or out prev_out
define inst sub_test hier_inst a[7:4] a[3:0] plus_out
flat
write des
write ckt
write ckt -blif

10.
11.

25.
26.
27.
28.
29.
30.

create design hier_test
define module sub_test
define net a 3 0
define net a 4
define net -PI a 4
define net -PI b 4
define net -PO out 4
define cell add out a b
change module

1.
2.
3.
4.
5.
6.
7.
8.
9.

// Example : construct_hier.dofile

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 389

At first, we create a new design named “flat_design” (line 1) in Figure 8. Then we
use the command “DEFine NET” to create word-level nets with widths. Parameter
“[-PI | -PO | -PIO]” is used if such the net is also an I/O port. Note that some illegal
names to Verilog, e.g. “a[3:0]” in line 10, will be renamed by QuteRTL; hence it is
convenient for general users. Then we construct cells from line 12 to the end, which
include a register with synchronous reset in line 16 (we omit the reset value and use
default value). In this example, although all nets are defined before cells, actually the
only restriction is that all the I/O nets of the defined cell should be defined before.
Hence, users can construct a netlist with great flexibility in QuteRTL. Note that
commands for cell definition can be comparably complex, due to different type of
word-level cells. Users can type “HELp DEFine CELL” to see the detailed usages in
the command line mode.

Next, we construct a hierarchical design with the batch file “construct_hier.dofile”
in Figure 9. After constructing design “hier_test” in line 1, we define a sub-module
“sub_test” in line 2. Now, our current scope is transformed into module “sub_test”.
Hence all nets and cells defined in line 3-8 will be constructed in module “sub_test”.
After “sub_test” is constructed, a simple command “CHAnge MODule” will bring us
back to the parent module, which is “hier_test” in the case. Note that it is impossible
to enter into sub-module “sub_test” again for incremental construction further. Once a
sub-module is defined, we expect that it will eventually be instantiated in other
modules. The command for module instantiation is “DEFine INST”, as shown in line
26, where an instance named “hier_inst” is constructed. In this command, I/O nets
defined after the instance name, namely, “a[7:4], a[3:0], and plus_out”, will be
connected to I/O ports of module “sub_test” in the order identical to the I/O port
defined in “sub_test” previously. Hence, I/O relation of “hier_inst” will be “plus_out”
= “a[7:4]” + “a[3:0]”.

Note that when building a hierarchical design through those commands, users can
write out the hierarchical Verilog directly, or write out circuit after flatten, as
introduced in Section 5.2.

5.4 Example: Property Checking

One of the important applications to QuteRTL is word-level verification and
debugging. In the last example, we utilize QuteRTL to perform safety property
checking on a simple traffic light controller. We simplify the design to only two
primary inputs (clock and reset) and only one output (time_left), which shows clock
cycles left before the light changes to the next. As light is changed, we reset
“time_left” to the number of cycles, which is the time to keep the same light: 60 for
RED, 40 for GREEN and 5 for YELLOW. Initially, light is RED and time_left is
zero, so the light will turn GREEN in the next cycle. We illustrate the state transition
graph of the design in Figure 10.

390 H.-H. Yeh, C.-Y. Wu

Fig. 10. State

We adopt three safety p
assert that time_left should
60. Second, we assert the
false for this design. Final
which is encoded as “2’d3”

Figure 11 show the batch
formulas as the three safety
will call the formal engine t
see the first and third prop
42-cycle trace from initial s

Fig. 11. Batch file

In this example, we do
however, QuteRTL allows
setting parameters in the co
dump in Value Change Dum
counterexample for the sec
trace from initial state.

Fig. 12. Th

read des Traffic.v
syn
fla
set formula 1 "time_le
set formula 2 "Light_S
set formula 3 "Light_S

1.
2.
3.
4.
5.
6.

// Example : traffic_light

u, and C.-Y. Huang

e transition graph for traffic light design example

properties for verifying the traffic light design: First,
d never exceed 60, as the longest time in the same ligh
light will never turn YELLOW, which should be pro
lly, we assert light will never turn to an unknown st

” in the design.
h file for property checking. In line 4, 5, and 6, we set th
y properties, and then three “MODel CHecking” comma
to check whether these properties are true or not. Users

perties are proved, and the second one is disproved wit
state.

 for property checking on traffic light design example

o not specify anything but property to model check
users to change solvers and model checking algorithms

ommand, or even to specify a file for counter-example tr
mp (VCD) file format. Figure 12 shows the waveform o
cond property. It disproves the property with a 42-cy

he waveform of a counterexample of formula 2

// Property Checking : AG(formula 1)
model check 1
// Property Checking : AG(formula 2)
model check 2
// Property Checking : AG(formula 3)
model check 3

7.

8.

9.

ft <= 8'd60"
ign != 2'd2"
ign != 2'd3"

t_check.dofile

we
ht is
oven
tate,

hree
ands
can
th a

ker;
s by
race
of a
ycle

 QuteRTL: Towards an Open Source Framework for RTL Design Synthesis 391

6 Conclusion

We construct an open source framework for RTL design synthesis and verification,
and verify the correctness and robustness of the framework with a third party tools ―
Cadence Conformal LEC and Berkeley ABC. With the framework, various research
directions on RTL can be made possible. In the future, we will develop some
techniques on RTL design debugging with the extracted design intents.

References

1. SIS,
http://embedded.eecs.berkeley.edu/pubs/
downloads/sis/index.html

2. VIS, http://vlsi.colorado.edu/~vis/
3. MVSIS,

http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/
4. Berkeley ABC, http://www.eecs.berkeley.edu/~alanmi/abc/
5. Icarus Verilog, http://iverilog.icarus.com/
6. MiniSAT, http://minisat.se/
7. Boolector, http://fmv.jku.at/boolector/
8. Yeh, H.-H., Huang, C.-Y.: Automatic Constraint Generation for Guided Random Simula-

tion. In: Asia and South Pacific Design Automation Conference, pp. 613–618 (2010)
9. Kitchen, N., Kuehlmann, A.: Stimulus generation forconstrained random simulation. In:

International Conference on Computer-Aided Design, pp. 258–265 (2007)
10. Wu, B.-H., Yang, C.-J., Tso, C.-C., Huang, C.-Y.: Toward an Extremely-High-Throughput

and Even-Distribution Pattern Generator for the Constrained Random Simulation Tech-
niques. In: International Conference on Computer-Aided Design, pp. 602–607 (2011)

11. Yeh, H.-H., Wu, C.-Y., Huang, C.-Y.: Property-Specific Sequential Invariant Extraction
for SAT-based Unbounded Model Checking. In: International Conference on Computer-
Aided Design, pp. 674–678 (2011)

12. Thalmaier, M., Nguyen, M.D., Wedler, M., Stoffel, D., Bormann, J., Kunz, W.: Analyzing
k-step induction to compute invariants for SAT-based property checking. In: Design Au-
tomation Conference, pp. 176–181 (2010)

13. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., So-
menzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

14. Vizel, Y., Grumberg, O.: Interpolation-Sequence Based Model Checking. In: Formal Me-
thods in Computer Aided Design, pp. 1–8 (2009)

15. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Directed Rea-
chability. In: Formal Methods in Computer Aided Design, pp. 125–134 (2011)

16. Liu, C.-N., Jou, J.-Y.: A FSM Extractor from HDL Description at RTL Level. In: Asia Pa-
cific Conference on Hardware Description Languages, pp. 33–38 (1998)

17. Touati, H., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.: Implicit State
Enumeration of Finite State Machines using BDDs. In: International Conference on Com-
puter-Aided Design, pp. 130–133 (1990)

18. OpenCores, http://www.opencores.org
19. Cadence Conformal LEC, http://www.cadence.com/products/

Template-Based Controller Synthesis

for Timed Systems

Bernd Finkbeiner and Hans-Jörg Peter

Reactive Systems Group
Universität des Saarlandes, Germany

Abstract. We present an effective controller synthesis method for real-
time systems modeled as timed automata with safety requirements.
Under the realistic assumption of partial observability, the problem is
undecidable in general, and prohibitively expensive (2ExpTime-
complete) if a bound on the granularity of the controller is set in ad-
vance. We investigate the synthesis of controllers from templates, given
as timed automata with parametric control structure. Template-based
synthesis is significantly cheaper (PSpace-complete) than standard syn-
thesis and produces much simpler controllers. We present an efficient
symbolic synthesis algorithm based on automatic abstraction refinement
and report on encouraging experimental results from an implementation
in the timed verification and synthesis tool Synthia.

1 Introduction

In controller synthesis, we automatically transform a given model of a plant and
a safety requirement into a finite-state controller that monitors and affects the
ongoing behavior of the plant to ensure the safety of its operation. There has
been a lot of recent progress [1,8,5,24,23] in synthesizing controllers for real-time
systems, where the plant is given as a timed automaton. Notably, the Uppaal-

Tiga tool [5], which is based on the popular timed model checker Uppaal,
has extended the highly efficient state-space traversal based on symbolic zone
representations from verification to synthesis.

Unfortunately, timed controller synthesis quickly turns into an intractable
problem if one makes the realistic assumption that the controller does not have
access to the full state of the plant, but rather only sees a subset of the events.
Under partial observability, the controller synthesis problem is undecidable in
general, and remains prohibitively expensive (2ExpTime-complete) if the prob-
lem is made decidable by fixing a bound on the granularity of the controller
in advance [6]. Furthermore, since the size of the controller may be doubly-
exponential in the size of the plant, it is often infeasible to actually construct
the controller.

In this paper, we propose a new synthesis approach, where the size and general
shape of the controller is fixed in advance in the form of a template. A template
is a timed or untimed automaton with parametric control structure. Figures 1

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 392–406, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Template-Based Controller Synthesis for Timed Systems 393

a?

b!

a?

b!

a?

b!

a?

b!

a?

b!

a?

b!

a?

b!

a?

b!

a?

b!

b!

a?
a?

b!

a?

b!

a?

b!

a?

b!

Fig. 1. Full template with one, two, and three locations

a?

b?

c!

d!

a?

b?

c!

d!

a?

b?

c!

d!

Fig. 2. Cyclic-executive template with two and four locations

and 2 show two example template families. In the full template, shown in Fig-
ure 1, every pair of locations is connected by an edge for every possible action.
In the cyclic-executive template, shown in Figure 2, the controller implements
some schedule according to which the actions are handled; the controller alter-
nates between waiting for an uncontrollable action and responding with some
controllable action. The template families are organized according to the number
of locations. Typically, we start the synthesis process with small templates and
then iteratively increase the size until an optimal controller is found. A controller
matches a template if it can be obtained by removing a subset of the edges. We
encode the presence of edges using Boolean parameter variables and combine the
resulting parametric timed automaton with the plant automaton: any valuation
of the Boolean parameters under which only safe states are reachable represents
a correct controller.

Template-based synthesis has several attractive features: Since the observa-
tions of the controller are limited by the template, template-based synthesis
naturally solves the controller synthesis problem with partial observability. The
size of the controller is also limited by the size of the template. Because the
templates model standard types of controllers, the synthesized controllers are
well-structured, resembling a manually built controller.

In terms of complexity, it is not surprising that template-based synthesis
is much simpler than standard synthesis. The problem is PSpace-complete,

394 B. Finkbeiner and H.-J. Peter

matching the complexity of model checking. Template-based synthesis can in
fact be understood as parametric model checking, where we verify a timed au-
tomaton that is parametrized with Boolean variables.

The technical challenge in developing fast algorithms for template-based syn-
thesis thus lies in the efficient manipulation of the potential valuations of the
parameters. In the paper, we present a solution to this challenge based on auto-
matic abstraction refinement. Starting with an initial abstraction that considers
all parameter valuations, a refinement loop incrementally focuses the search to-
wards smaller and smaller sets of parameter valuations. The loop terminates as
soon as, for the remaining parameter valuations, only safe states are reachable.
New refinements are computed by identifying situations where an unsafe state
is reachable for a subset of the parameter valuations.

Our experimental results indicate that template-based synthesis is not only an
effective solution to the controller synthesis problem with partial observability,
it is an attractive alternative to standard synthesis also in the simpler case of
complete observability, outperforming tools like Uppaal-Tiga on benchmarks
where structurally simple controllers, corresponding to the available templates,
exist.

Related Work. The basic timed controller synthesis problem for timed au-
tomata [2] with complete observability was defined by Maler et al. [21,4] in the
setting of turn-based timed games. In their fundamental work, the decidability
of the problem was shown by demonstrating that the standard discrete attrac-
tor construction [26] on the region graph suffices to obtain winning strategies.
Henzinger and Kopke showed that this construction is theoretically optimal by
proving that the problem is ExpTime-complete [17]. D’Souza and Madhusudan
investigated the complexity of timed controller synthesis against external speci-
fications [12]. Bouyer et al. continued this line of research and also investigated
the impact of partial information [6].

A first more practical approach to timed controller synthesis, implemented in
the tool SynthKro, was proposed by Altisen and Tripakis [1]. The approach
requires, however, an expensive preprocessing step. Cassez et al. presented a
symbolic algorithm, implemented inUppaal-Tiga, that avoids the upfront state
explosion by combining the backward attractor construction with a forward zone
graph exploration [8,5]. Our timed verification and synthesis tool Synthia [23]
is based on abstraction refinement techniques that combine symbolic represen-
tations for the discrete and the continuous state components [14] and exploit
the compositional structure of the timed system [24]. We have implemented the
approach presented in this paper as an extension of Synthia.

Compared to the significant body of work on timed controller synthesis with
complete observability, there has been comparatively little work on the more
realistic setting of partial observability. Fundamental results on the undecidabil-
ity of the general problem and the complexity for fixed granularity are due to
Bouyer et al. [6]. Cassez et al. proposed a pragmatic approach to handle partial
information, which restricts the choices and the observability of the controller so
that a zone-based synthesis algorithm remains possible [9]. An extension of this

Template-Based Controller Synthesis for Timed Systems 395

work uses alternating timed simulation relations to efficiently control partially
observable systems [10]. This approach has also been implemented in Uppaal-

Tiga.
Template-based synthesis is related to the bounded synthesis approach [25],

where one fixes the size (but not the structure) of the controller. Bounded syn-
thesis has so far been limited to purely discrete systems. There are efficient
algorithms for bounded synthesis based on SMT-solving [16], antichains [15],
and BDDs [13], which, however, unfortunately do not seem to have straight-
forward extensions to the timed case. Another interesting restriction on the type
of controllers to be considered has been proposed by Lustig et al.: synthesis from
component libraries [20] attempts to construct a controller by assembling rou-
tines from a given library. The difference to template-based synthesis is that the
synthesized controller is a combination of predefined components rather than an
instantiation of a parametric template. Currently, this approach is also limited
to discrete systems.

2 Timed Systems

Timed Automata. The components of a timed system are represented by
timed automata. A timed automaton [2] is a tuple A = (L, l0, Σ,Δ,X, I), where
L is a finite set of (control) locations, l0 ∈ L is the initial location, Σ is a finite
set of actions, Δ ⊆ (L × Σ × C(X)× 2X × L) is an edge relation, X is a finite
set of real valued clocks, I : L→ C(X) maps each location to an invariant, and
C(X) is the set of clock constraints over X . A (rectangular) clock constraint
ϕ ∈ C(X) is of the form

ϕ = true | x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in �0. A clock valuation t : X → IR≥0

assigns a nonnegative value to each clock and can also be represented by a |X |-
dimensional vector t ∈ R, whereR = IRX

≥0 denotes the set of all clock valuations.
The states of a timed automaton are pairs (l, t) of locations and clock valu-

ations. Timed automata have two types of transitions: timed transitions, where
only time passes and the location remains unchanged, and discrete transitions,
where no time passes, the current location can be changed and some clocks can

be reset to zero. In a timed transition, denoted by (l, t)
d−→ (l, t+ d ·1), the same

nonnegative value d ∈ IR≥0 is added to all clocks such that, for each 0 ≤ d′ ≤ d,
t + d′ satisfies the location invariant I(l). A discrete transition, denoted by

(l, t)
a−→ (l′, t′) for some action a ∈ Σ, corresponds to an edge δ = 〈l, a, ϕ, λ, l′〉 of

Δ such that t satisfies the clock constraint ϕ of δ, and t′ = t[λ := 0] is obtained
from t by setting the clocks in λ to 0 and satisfies the location invariant I(l′).

For two states s and s′, we write s
δ−→ s′ if there is a delay d ∈ IR≥0 and an

edge δ with action a such that there is an s′′ with s
d−→ s′′ and s′′

a−→ s′.
We say that a state s is reachable if there is a finite sequence of transitions

of the form s0
δ0−→ s1 . . . sn−1

δn−1−−−→ s such that δ0, . . . , δn−1 ∈ Δ are edges in Δ,

396 B. Finkbeiner and H.-J. Peter

s0 = (l0,0) is the initial state (where 0 is the zero vector), and for all 1 ≤ i ≤ n,
the individual si = (li, ti) are states of the automaton. We define Reach(A) as
the set of all forward reachable states of a timed automaton A.
Composition. Timed automata can be composed to networks, in which the
automata run in parallel and synchronize on shared actions. For two timed au-
tomataA = (L1, l

1
0, Σ1, Δ1, X1, I1) andA′ = (L2, l

2
0, Σ2, Δ2, X2, I2) with disjoint

clock sets X1 ∩X2 = ∅, the parallel composition A1‖A2 is the timed automaton
(L1 × L2, (l

1
0, l

2
0), Σ1 ∪Σ2, Δ,X1 ∪X2, I), where I(l1, l2) = I1(l1) ∧ I2(l2) for all

l1 ∈ L1 and l2 ∈ L2, and Δ is the smallest set that contains

– for a ∈ Σ1 ∩Σ2, 〈(l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l
′
1, l

′
2)〉 if 〈l1, a, ϕ1, λ1, l

′
1〉 ∈ Δ1

and 〈l2, a, ϕ2, λ2, l
′
2〉 ∈ Δ2,

– for a ∈ Σ1 \Σ2, 〈(l1, l2), a, ϕ1, λ1, (l
′
1, l2)〉 if 〈l1, a, ϕ1, λ1, l

′
1〉 ∈ Δ1, and

– for a ∈ Σ2 \Σ1, 〈(l1, l2), a, ϕ2, λ2, (l1, l
′
2)〉 if 〈l2, a, ϕ2, λ2, l

′
2〉 ∈ Δ2.

Finite Semantics. The decidability of the reachability problem of timed au-
tomata relies on the existence of the region equivalence relation [2] on R which
has a finite index.

For a timed automaton A = (L, l0, Σ,Δ,X, I), we call the value of a clock
x ∈ X maximal if it is strictly greater than the highest constant cmax any clock
is compared to. We say that two clock valuations t1, t2 ∈ R are in the same clock
region, denoted t1 ∼R t2, if

– the set of clocks with maximal value is the same in t1 and in t2 (∀x ∈ X :
t1(x) > cmax ⇔ t2(x) > cmax), and

– t1 and t2 agree (1) on the integer parts of the clock values, (2) on the relative
order of the noninteger parts of the clock values, and (3) on the equality
of the noninteger parts of the clock values with 0. That is, for all clocks
x and y with nonmaximal value, it holds that (1) #t1(x)$ = #t2(x)$, (2)�t1(x) ≤ �t1(y) ⇔ �t2(x) ≤ �t2(y), and (3) �t1(x) = 0 if, and only if, �t2(x) = 0,
where �ti(x) = ti(x)− #ti(x)$ for i ∈ {1, 2}.

We denote with [t]R = {t′ ∈ R | t ∼R t′} the clock region t belongs to. We say
that two states s1 = (l1, t1) and s2 = (l2, t2) of A are region-equivalent, denoted
by s1 ∼R s2, if their locations are the same (l1 = l2) and the clock valuations are
in the same clock region (t1 ∼R t2), and denote with [(l, t)]R = {(l, t′) ∈ L×R |
t ∼R t′} the equivalence class of region-equivalent states that (l, t) belongs to.

Regions are a suitable semantics for the abstraction of timed automata be-
cause they essentially preserve the language: if there is a discrete transition
s

a−→ s′ from a state s to a state s′ of a timed automaton, then there is, for all
states r with r ∼R s, a state r′ with r′ ∼R s′ such that r

a−→ r′ is a discrete
transition with the same label. For timed transitions, a slightly weaker property

holds: if there is a timed transition s
t−→ s′ from a state s to a state s′, then there

is, for all states r with r ∼R s, a state r′ with r′ ∼R s′ such that there is a timed

transition r
t′−→ r′ (but possibly with t′ �= t).

The finite semantics of a timed automaton A = (L, l0, Σ,Δ,X, I) is the finite
graph �A� = (Q, q0, T) where

Template-Based Controller Synthesis for Timed Systems 397

– the symbolic state set Q = {[(l, t)]R | (l, t) ∈ L × R} of �A� is the set of
equivalence classes of region-equivalent states of A, with

– the initial state q0 = [(l0, t0)]R, and

– the set T = {(q, q′) ∈ Q × Q | ∃r ∈ q, r′ ∈ q′, a ∈ Σ ∪ IR≥0. r
a−→ r′} of

transitions.

The finite semantics is reachability-preserving:

Lemma 1. [2] For a timed automaton A = (L, l0, Σ,Δ,X, I) there is a finite
path from a state (l, t) to a state (l′, t′) if, and only if, there is a finite path from�
(l, t)

�
R

to
�
(l′, t′)

�
R

in �A�.

Assuming a binary encoding of the constants in the clock constraints, the number
of states of the finite semantics is exponential in the number of clocks and in the
magnitude of the constants:

Lemma 2. [2] For a timed automaton A = (L, l0, Σ,Δ,X, I), with cx as the
maximal constant appearing in any constraint of A, the number of states of �A�
is bounded by

|L| · |X |! · 2|X|−1 ·
�
x∈X

O(cx) = |L| · |X |! ·O(cx)
|X|.

As it turns out, the finite semantics is a theoretically optimal state space repre-
sentation for deciding reachability:

Theorem 1. [2] For a timed automaton A and a set of states B, testing whether
Reach(A) ∩B = ∅ is PSpace-complete.

In practice, instead of deciding Reach(A) ∩ B = ∅ based on an explicit con-
struction of the finite semantics, tools like Synthia or Uppaal use the much
coarser clock zones as the fundamental representation of clock values.

3 Template-Based Controller Synthesis

In this section, we formalize controller templates and the template instantia-
tion problem. A controller template is a tuple (T , P,Π) consisting of a timed
automaton T = (L, l0, Σ,Δ,X, I), a finite set of Boolean parameters P , and a
total function Π : P → 2Δ defining which edges are enabled for a given param-
eter valuation, where P = P → � is the set of all parameter valuations. In the
following, we will assume that the timed automaton modeling the environment
(or plant) is already integrated (by parallel composition) in T . As usual, we
assume that the controller does neither reset plant clocks, inhibit plant actions,
nor introduce timelocks.

Definition 1. For a controller template (T , P,Π) with T = (L, l0, Σ,Δ,X, I)
and a set of bad states B, the instantiation problem asks for a parameter valu-
ation p ∈ P such that I = (L, l0, Σ,Π(p), X, I) and Reach(I) ∩B = ∅.

398 B. Finkbeiner and H.-J. Peter

We call an instantiation of the template that satisfies the condition of the defi-
nition feasible. Synthesizing a template-based controller corresponds to statically
finding a feasible instantiation. This is in contrast to the classical formulation of
the timed controller synthesis problem [21,4], where the controller is an arbitrary
timed automaton whose behavior depends dynamically on the observed events
of the plant.

The complexity of the template instantiation problem is the same as the
complexity of standard timed model checking: the exponential size of the region
graph dominates the size of the search space (the possible valuations of the
parameters).

Theorem 2. The instantiation problem for a controller template (T , P,Π) and
a set of bad states B is PSpace-complete.

We note that the synthesis of controllers with full observability is already
ExpTime-complete [17]. The case where the controller can only observe a sub-
set of the events of the plant, is even undecidable in general, or 2ExpTime-
complete if the granularity (number and precision of the clocks) of the controller
is bounded in advance [6]. Furthermore, the size of the controller can be exponen-
tial or even, in case of partial observability, doubly-exponential in the size of the
plant. Template-based synthesis is not only much cheaper (PSpace-complete),
it also has the advantage that the size of the controller is fixed in advance.

Template-based synthesis thus provides a much more promising setting for
effective controller synthesis than the standard approach. The remainder of the
paper is devoted to the development of an efficient template-based synthesis
algorithm and an experimental evaluation.

4 Symbolic Parameter Synthesis

We now present a symbolic algorithm for finding feasible instantiations for a
given controller template (T , P,Π) with T = (L, l0, Σ,Δ,X, I) and a set of bad
states B ⊆ S, where S is the set of states of T . In the rest of this section, we
assume that T , P , Π , S, and B are fixed.

We develop the algorithm in three steps: first, we describe the immediate,
exact, computation of the set of feasible instantiations based on forward and
backward propagation; then we give an approximate computation based on an
abstraction of the template; finally, we describe an abstraction refinement proce-
dure, which increases the precision of the approximate computation until either
a feasible instantiation has been found, or it has been shown that no feasible
instantiation exists.

4.1 Precise Computation of the Feasible Instantiations

The precise set of feasible instantiations can be computed in a standard fixed
point construction that either starts from the initial state and propagates, in a
forward manner, the reachable combinations of states and parameter valuations,

Template-Based Controller Synthesis for Timed Systems 399

or starts with the bad states and propagates, in a backward manner, those
combinations of states and parameter valuations that have a path to the bad
states.

To accommodate both directions, we define a successor and a predecessor
propagation function Succ,Pred : 2S×P → 2S×P with

Succ(Y) =
�
(s′,p) ∈ S × P | ∃δ ∈ Π(p) : ∃s ∈ S : (s,p) ∈ Y ∧ s

δ−→ s′
�
and

Pred(Y ′) =
�
(s,p) ∈ S × P | ∃δ ∈ Π(p) : ∃s′ ∈ S : (s′,p) ∈ Y ′ ∧ s

δ−→ s′
�
.

The set FR of forward-reachable states and parameter valuations and the set
BR of backward-reachable states and parameter valuations are obtained by the
following fixed point computations (the index identifies the round of the fixpoint
iteration):

FR0 = {(l0,0)} × P BR0 =B × P
FRi+1 =Succ(FRi) ∪ FRi BRi+1 =Pred(BRi) ∪ BRi

FR = limi FRi BR = limi BRi.

Clearly, if there is some (s,p) ∈ FRi then this means that state s is reached
after i ∈ � forward steps for parameter valuation p, which corresponds to a

path s0
δ1−→ s1

δ2−→ . . .
δi−→ s, where each δ1, δ2, . . . , δi is in Π(p). Dually, if

there is some state (s,p) ∈ BRi then this means that state s is reached after
i ∈ � backward steps for parameter valuation p, which corresponds to a path

s
δ1−→ s1

δ2−→ . . .
δi−→ b, where b ∈ B and each δ1, δ2, . . . , δi is in Π(p).

We can obtain the feasible instantiations either by looking for parameter val-
uations in FR that are not paired up with bad states, or by looking for parameter
valuations in BR that are not paired up with the initial state. Both constructions
identify the same set of feasible instantiations.

Theorem 3. The set

G = {p ∈ P | (B × {p}) ∩ FR = ∅} = {p ∈ P | ((l0,0),p) �∈ BR}

consists of exactly the feasible instantiations.

In practice, neither construction performs well. The problem is that it is difficult
and expensive to maintain the correlation between parameter valuations and
reachable states; typically, each parameter valuation results in a different set of
states.

Instead of directly computing the precise set of parameter valuations, in the
next subsection, we will present an abstraction technique that allows us to reason
about approximations of parameter valuations.

4.2 The Focus Abstraction

We now consider an abstraction of the template based on a given set P ⊆ P
of parameter valuations, which we call focus. We use the parameter valuations

400 B. Finkbeiner and H.-J. Peter

in P to obtain an over- or underapproximation of the sets FR and BR, by con-
sidering P as an equivalence class: we require that a transition must exist for
some or all parameter valuations in P , respectively. In the following, we use
an overapproximation for the forward construction and an underapproximation
for the backward construction; obviously, all constructions can also be dual-
ized. We obtain the following approximate successor and predecessor functions:

Succ
P
,PredP : 2S → 2S with

Succ
P
(Y) =

�
s′ ∈ S | ∃p ∈ P : ∃δ ∈ Π(p) : ∃s ∈ Y : s

δ−→ s′
�
and

PredP (Y ′) =
�
s ∈ S | ∀p ∈ P : ∃δ ∈ Π(p) : ∃s′ ∈ Y ′ : s

δ−→ s′
�
.

Replacing the precise Succ and Pred operators in the fixed point construc-
tion from Subsection 4.1, we obtain two new fixed point constructions for the

approximations FR
P
and BRP :

FR
P

0 = {(l0,0)} BRP
0 =B

FR
P

i+1 =Succ
P
(FR

P

i) ∪ FR
P

i BRP
i+1 =PredP (BRP

i) ∪ BRP
i

FR
P

= limi FR
P

i BRP = limi BR
P
i .

Clearly, if there is some state s ∈ FR
P

i then this means that state s is reached
after i ∈ � forward steps for a set of parameter valuations P , which corresponds

to a path s0
δ1−→ s1

δ2−→ . . .
δi−→ s, where, for each δi, there is a pi ∈ P such that

δi in Π(pi). Dually, if there is some state s ∈ BRP
i then this means that state s

is reached after i ∈ � backward steps for a set of parameter valuations P , which

corresponds to a path s
δ1−→ s1

δ2−→ . . .
δi−→ b, where b ∈ B and, for each δi and

each p ∈ P , we have δi in Π(p).
The following lemma clarifies the relationships between the approximate and

precise versions of FR and BR: FR
P

overapproximates FR on P , BRP underap-
proximates BR on P .

Lemma 3. For every set P ⊆ P of parameter valuations, it holds that

FR
P ⊇ {s ∈ S | ∃p ∈ P : (s,p) ∈ FR} and

BRP ⊆ {s ∈ S | ∃p ∈ P : (s,p) ∈ BR}.

Combining Lemma 3 with Theorem 3, we obtain that the focus abstraction
allows us to approximate the set of feasible instantiations: A set of parameter
valuations P definitely represents feasible instantiations if no bad states appear

in FR
P
. Dually, the parameter valuations in P definitely represent infeasible

instantiations if the initial state appears in BRP . Hence, we obtain the following
lower and upper bounds for the set of feasible instantiations.

Theorem 4. Let G be the precise set of feasible instantiations. For every set
P ⊆ P, it holds that

�
p ∈ P | B ∩ FR

P
= ∅

�
⊆ G ⊆

�
p ∈ P | p ∈ P ⇒ (l0,0) �∈ BRP

�
.

Template-Based Controller Synthesis for Timed Systems 401

In the next subsection, we will describe an automatic refinement algorithm
for the Focus abstraction.

4.3 Abstraction Refinement

We now describe a refinement procedure that computes an increasingly precise
approximation of the set of feasible instantiations. The procedure starts with
the set P of all parameter valuations, and then splits the set into smaller and
smaller subsets, until either a feasible instance is found, or it is established that
no feasible instance exists.

Algorithm 1. Solve(P): The algorithm computes a safe subset of a given set P
of parameter valuations, or returns fail if no safe subset exists.

1: if P = ∅ then
2: return fail
3: else if (l0,0) ∈ BRP then
4: return fail
5: else if FR

P ∩ BRP = ∅ then
6: return P
7: else
8: P1 := Refine(P)
9: R1 := Solve(P1)
10: if R1 = fail then
11: return R1

12: else
13: P2 := P \ P1

14: return Solve(P2)

The procedure is shown as Algorithm 1. The input to the procedure is the
current focus P , for which we initially use P . Unless the (un)reachability of some
bad state can be surely established, after each refinement step, Solve recurs on
the refined focus. In each call of Solve, the set of bad states are augmented with
the states in BRP . This is justified by the following lemmas, which state that the

old underapproximation BRP is a subset of the new underapproximation BRP ′

for a refinement P ′ ⊂ P , and that excluding BRP from FR
P
does not affect the

resulting upper bound on the feasible instantiations.

Lemma 4. For two sets P, P ′ ⊆ P of parameter valuations such that P ′ ⊂ P ,

it holds that BRP ⊆ BRP ′
.

Lemma 5. For every set P ⊆ P of parameter valuations, it holds that

�
p ∈ P | B ∩ FR

P
= ∅

�
=
�
p ∈ P | BRP ∩ FR

P
= ∅

�
.

It remains to specify the function Refine, which is called in procedure Solve
to find an appropriate subset of P to split on. Since P is finite, we could, in

402 B. Finkbeiner and H.-J. Peter

principle, choose any strict (and non-empty) subset of P during the refinement
step. In the following we describe a heuristic choice that has proved useful in
practice: we choose a set of parameter valuations that are guaranteed to increase
BRP in the next iteration.

Suppose the termination conditions of procedure Solve are not true yet, i.e.,

the initial state is not in BRP and there are still states in FR
P ∩BRP . We choose

a state s ∈ FR
P \BRP and a state s′ ∈ BRP , such that there exists a transition

δ ∈ Π(p) that leads from s to s′ for some p ∈ P , but not for all p ∈ P . The
refinement proceeds with the parameter valuations that allow a transition from
s to s′:

Refine(P) = {p ∈ P | ∃δ ∈ Π(p) : s
δ−→ s′}

Since such a pair s, s′ of states can be found until the termination conditions
of procedure Solve become true, we obtain that Refine always ensures progress
of our refinement algorithm.

Lemma 6. For every set of parameter valuations P ⊆ P, if P �= ∅, (l0,0) �∈
BRP , and FR

P ∩ BRP �= ∅, then there is a state s ∈ FR
P \ BRP and a state

s′ ∈ BRP such that

∅ ⊂ Refine(P) ⊂ P.

Putting everything together, we obtain the following correctness theorem for
Solve(P), where Lemma 6 guarantees termination and Theorem 4 guarantees
soundness of the result.

Theorem 5. Called with the set P of parameter valuations, Procedure Solve(P)
terminates after at most |P| refinement steps and either computes a feasible
template instantiation or reports failure, in which case no feasible template in-
stantiation exists.

5 Experimental Results

In this section, we report on experimental results based on a prototype imple-
mentation of the symbolic instantiation algorithm from Section 4.

Implementation. We have implemented the symbolic instantiation algorithm
from Section 4 in the Synthia tool [23]. Synthia is a verification and synthe-
sis tool for timed automata extended with bounded integer variables. The tool
provides facilities for automatic abstraction refinement and combines reduced
ordered binary decision diagrams (ROBDDs) [7] with difference bound matri-
ces (DBMs) [11] to obtain symbolic state representations for both discrete and
continuous state components.

While standard Synthia already includes a game-based synthesis algorithm
for timed controllers with complete observability, we only use the verification
functionality of Synthia for template-based synthesis. For a template instanti-
ation problem given by a controller template (T , P,Π) and a set of bad states,

Template-Based Controller Synthesis for Timed Systems 403

we encode the Boolean parameters P by global integer variables whose initial
values are left undefined.

The algorithm from Section 4 is realized as a specialized refinement procedure
for Synthia’s standard (location-based) abstraction refinement loop. Whenever
an edge for refinement is found, we identify the parameter valuations associated
with that edge and split the global abstraction with these valuations. In the
subsequent refinement step, we focus (i.e., we restrict the forward exploration)
on the identified parameters of the last refinement.

Benchmarks. In the Chinese Juggler benchmark [19], a performer needs to
stabilize spinning plates to prevent them from falling. After a certain amount of
time has passed since a plate was stabilized, it can nondeterministically become
unstable. If no restabilization takes place, it ultimately falls down. The plates
have different sizes, and hence, different times to become unstable. It takes the
performer one time unit to stabilize a certain plate. During that time, he cannot
stabilize another plate. The controller synthesis task consists in finding a safe
strategy for the performer such that no plate will ever fall down. The benchmark
size is parametrized in the number of plates n. For the template-based synthesis,
we use a generic cyclic-executive template (cf. Section 1) with n locations. In
each step of the cyclic execution, the controller decides which plate should be
stabilized next.

In the Dam benchmark, a controller is to be synthesized that determines the
speed of the inflow to a dam. The controller can either stop the inflow or choose
between a slow or a fast inflow speed. The bounded reachability requirement
is that the fill level should reach a certain value between a minimal and max-
imal bound. While a fast speed might reach the desired fill level more quickly,
the variance of the actual inflow is larger so that the maximal level might be
exceeded. On the other hand, being in slow mode, it takes longer to reach the
desired fill level, but the variance is not so high so that it is always possible
to exactly reach a desired fill level. Thus, being in one mode all the time is
not feasible, since a feasible controller must alternate between fast and slow at
least once to fulfill the requirement. The benchmark size is parametrized in the
degree of precision in which the fill level and the inflow amount is digitized.
For the template-based synthesis, we use a controller template that models a
parametric two-phase program: in the first phase, a certain inflow speed is set
until a threshold of the current fill level is passed. Then, the controller enters
the second phase with a possibly different speed. The controller stops as soon
as a desired fill level is reached. The first and the second speed, as well as the
phase-switching threshold are parameters, for which feasible instantiations are
to be found.

Results. We compare the performance of the template-based extension of Syn-
thia against standard Synthia and Uppaal-Tiga 0.16 [5]. In Table 1, the
columns show, from left to right, the benchmark instance, the number of re-
finement steps and abstract locations in the final abstraction of the parameter
synthesis algorithm, the running time and memory consumption of our template-
based implementation, the performance of Synthia’s standard controller syn-

404 B. Finkbeiner and H.-J. Peter

Table 1. Experimental evaluation of template-based synthesis. We compare the per-
formance of the template-based extension of Synthia against standard Synthia and
Uppaal-Tiga.

Template-based Synthia Standard Synthia Uppaal-Tiga

Benchmark Steps Abs Time Mem Steps Abs Time Mem States Time Mem

Juggler 2 6 19 0 53 2 5 1 53 57 0 6
Juggler 3 38 136 0 61 6 9 1 61 477 0 6
Juggler 4 110 421 2 87 TIMEOUT 6755 6 57
Juggler 5 423 1899 59 247 TIMEOUT 81292 1095 79
Juggler 6 1445 8335 1932 1335 TIMEOUT TIMEOUT
Juggler 7 TIMEOUT TIMEOUT TIMEOUT

Dam 5 58 100 1 80 230 149 4 80 88592 2 65
Dam 25 268 380 13 87 1115 718 1182 91 3114648 307 443
Dam 50 530 730 87 105 TIMEOUT 13545848 5018 2355
Dam 75 793 1080 329 111 TIMEOUT TIMEOUT
Dam 100 1055 1430 927 143 TIMEOUT TIMEOUT
Dam 125 1318 1780 1949 149 TIMEOUT TIMEOUT
Dam 150 1580 2130 3483 153 TIMEOUT TIMEOUT
Dam 175 1843 2480 5127 213 TIMEOUT TIMEOUT
Dam 200 TIMEOUT TIMEOUT TIMEOUT

thesis algorithm, Uppaal-Tiga’s number of explored states, running time and
memory consumption. For Uppaal-Tiga, we measured the performance for var-
ious parameters and always selected the best results. Running times are given in
seconds, memory consumption in MB, the time limit was set to 2 hours, and the
memory limit was set to 4 GB. All experiments were conducted on a 2.6 GHz
AMD Opteron computer running Ubuntu 10.04.

For both benchmarks, template-based Synthia clearly outperforms the game-
based synthesis techniques implemented in standard Synthia and Uppaal-

Tiga. A closer look at the Chinese Juggler example reveals that a major source
of complexity results from the subtraction operation that occurs in the backwards
computation of the winning states. Subtraction is expensive because it does not
preserve convexity, and therefore requires a split into multiple zones. The much
better performance of template-based synthesis is due to the fact that template-
based synthesis is based on model checking, rather than game solving, and model
checking does not require such nonconvex operations. In the Dam example, we
observe that the size of the abstraction, and, thus, the running time, of the
template-based approach increases polynomially in the size of the benchmark,
while both standard Synthia and Uppaal-Tiga suffer from an exponential
blow-up.

6 Conclusion

Our results demonstrate that template-based synthesis is an attractive alterna-
tive to the standard game-based approach to timed synthesis. Template-based

Template-Based Controller Synthesis for Timed Systems 405

synthesis has the better worst-case complexity, is easier to implement with sym-
bolic data structures such as DBMs, and produces nicely structured controllers
with a small number of locations.

In future work, we plan to expand the class of templates considered by the
synthesis algorithm. Particularly interesting is the introduction of parameters in
the clock constraints. Results from parametric timed model checking [3] indicate
that the analysis of such templates is in general undecidable. However, subclasses
of parametric timed automata, such as L/U automata [18], for which the empti-
ness problem is decidable, are promising candidates for a more expressive and
yet computationally feasible class of templates.

The long-term goal is to obtain a succinct but comprehensive library of stan-
dard templates that serves as a basis for a fully automatic template-based syn-
thesis approach.

Acknowledgments. The authors would like to thank Alexandre David for
pointing out the Chinese Juggler benchmark and Christoph Scholl for helpful
comments on an early draft of the paper.

This work was supported by the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

References

1. Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: 2nd
Workshop on Real-Time Tools, RT-TOOLS (2002)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601 (1993)

4. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed au-
tomata. In: Lafay, J.-F. (ed.) Proc. 5th IFAC Conference on System Structure and
Control, pp. 469–474. Elsevier (1998)

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for Playing Games! In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

6. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed Control with Partial
Observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

8. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-Fly
Algorithms for the Analysis of Timed Games. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

9. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with
observation based and stuttering invariant strategies. In: [22], pp. 192–206

10. Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. In: Giua,
A., Silva, M., Zaytoon, J. (eds.) Proceedings of the 3rd IFAC Conference on Anal-
ysis and Design of Hybrid Systems (ADHS 2009), Zaragoza, Spain (September
2009)

406 B. Finkbeiner and H.-J. Peter

11. Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Sys-
tems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Hei-
delberg (1990)

12. D’Souza, D., Madhusudan, P.: Timed Control Synthesis for External Specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002)

13. Ehlers, R.: Symbolic Bounded Synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)

14. Ehlers, R., Mattmüller, R., Peter, H.-J.: Combining Symbolic Representations for
Solving Timed Games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 107–121. Springer, Heidelberg (2010)

15. Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

16. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Pro-
ceedings of the 2nd Workshop on Automated Formal Methods (AFM 2007),
November 6, pp. 69–76. ACM Press, Atlanta (2007)

17. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-
tomata. Theoretical Computer Science 221(1-2), 369–392 (1999)

18. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear Parametric Model
Checking of Timed Automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 189–203. Springer, Heidelberg (2001)

19. Larsen, K.G., Behrmann, G., Skou, A.: Exercises for Uppaal,
http://www.cs.aau.dk/~bnielsen/TOV08/ESV04/exercises

20. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

21. Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed
Systems (An Extended Abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

22. Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.): ATVA 2007. LNCS,
vol. 4762. Springer, Heidelberg (2007)

23. Peter, H.-J., Ehlers, R., Mattmüller, R.: Synthia: Verification and Synthesis for
Timed Automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 649–655. Springer, Heidelberg (2011)

24. Peter, H.-J., Mattmüller, R.: Component-based abstraction refinement for timed
controller synthesis. In: Baker, T.P. (ed.) IEEE Real-Time Systems Symposium,
pp. 364–374. IEEE Computer Society (2009)

25. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: [22], pp. 474–488
26. Thomas, W.: On the Synthesis of Strategies in Infinite Games. In: Mayr, E.W.,

Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

http://www.cs.aau.dk/~bnielsen/TOV08/ESV04/exercises

Zeno: An Automated Prover for Properties

of Recursive Data Structures

William Sonnex, Sophia Drossopoulou, and Susan Eisenbach

Imperial College London

Abstract. Zeno is a new tool for the automatic generation of proofs of
simple properties of functions over recursively defined data structures. It
takes a Haskell program and an assertion as its goal and tries to contruct
a proof for that goal. If successful, it converts the proof into Isabelle
code. Zeno searches for a proof tree by iteratively reducing the goal into
a conjunction of sub-goals, terminating when all leaves are proven true.

This process requires the exploration of many alternatives. We have
adapted known, and developed new, heuristics for the reduction of the
search space. Our new heuristics aim to promote the application of func-
tion definitions, and avoid the repetition of similar proof steps.

We compare with the rippling based tool IsaPlanner and the industrial
strength tool ACL2s on the basis of a test suite from the IsaPlanner
website. We found that Zeno compared favourably with these tools both
in terms of theorem proving power and speed.

1 Introduction

Proving algebraic properties of recursive functions usually requires inductive
reasoning. SMT solvers[6], while successfully applied in imperative program
verification[1,2], can only construct such proofs when supplied with induction
schemata. Recent work[12] automatically sets up the base case and the induc-
tion step, and then passes the proof obligation to an SMT solver, and has been
successful in proving several such properties. Nevertheless, such an approach
runs into difficulties with proofs which require several inductive sub-proofs.

Such cases require proof systems which explicitly handle induction, such as
ACL2s[3,7] or IsaPlanner[8]. ACL2 is an industrial strength proof system based
on the Boyer-Moore technique, recently extended to ACL2s, the “Sedan Edi-
tion”. IsaPlanner is a proof-planning framework for the Isabelle[13] proof sys-
tem.

To address the huge search space ensuing from the fact that at each proof
step several induction steps and case-splits are applicable, ACL2 uses recursion-
analysis[3] while IsaPlanner enumerates every free variable or potential split.
IsaPlanner features the rippling technique for applying function definitions, “pre-
ferring” steps which make it possible to apply the induction hypothesis. IsaPlan-
ner can also discover auxiliary lemmas needed for a larger proof by appealing to
proof critics when a proof search is unable to progress [9].

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 407–421, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

408 W. Sonnex, S. Drossopoulou, and S. Eisenbach

We propose a novel approach, which differs from those above in the following
aspects: First, in contrast to rippling, we “prefer” steps which make it possible
to apply function definitions, and thus we “bring the proof forwards”. Second,
through intelligently chosen generalization or CUT steps, we introduce interme-
diary auxiliary lemmas which the tool tries to prove. Third, we avoid revisiting
proof steps which have recently been tried out, and thus we reduce the search
to finite space. Furthermore, we adopted some known techniques, e.g. a search
for counterexamples before trying to prove new sub-goals.

To support our approach, we introduce a concept called a critical term, which
is either a variable which appears in the original term (guiding the tool to apply
induction on this variable), or a new term which was not a part of the original
term (guiding the tool to apply a case-split on this new term), or a “non-minimal
term”(guiding the tool to discover an auxiliary lemma). We also introduce critical
paths, which reflect the cases already visited in a proof branch and avoid applying
steps whose paths expand those of earlier steps.

Based on these ideas, we built Zeno, a fully automated verification tool which
requires no extra lemmas to be supplied by the user, and often discovers the
necessary auxiliary lemmas. Zeno supports HC, a minimal functional language
with a small language of properties which allows for algebraic properties with
entailment. From the constructed proof tree, Zeno creates a proof in Isabelle.

We evaluated Zeno against IsaPlanner and ACL2s using a test suite from the
IsaPlanner website, and found that Zeno could prove strictly more properties
than either, and with similar computation times.

This paper is organised as follows. Section 2 defines the input language HC.
Section 3 describes the steps Zeno uses to construct its proofs. Section 4
describes the heuristics which trim the search space. Section 5 compares Zeno,
IsaPlanner and ACL2s and discusses our Isabelle proof output. In Section 6 we
conclude and discuss future work.

Download files and instructions are at haskell.org/haskellwiki/Zeno, and
try out Zeno online at tryzeno.org.

2 Zeno’s Internal Functional Language HC

In this section we describe HC, Zeno’s internal language. HC is annotated with
labels, which are used by the heuristics for trimming the search space. These
labels will not be of interest before Section 4, and are written in this colour.

Fig. 1 describes HC, a slightly simplified version of GHC Core, the inter-
nal language of the Glasgow Haskell Compiler. HC is created from GHC Core
through an almost direct translation through the GHC API - Zeno uses GHC
for parsing and type-checking. For simplicity, in this paper we do not present
polymorphic typing, even though Zeno is able to handle it.

Fig. 2 contains an example Haskell program, while Fig. 3 contains its rep-
resentation in HC (GHC has inlined the definition of (&&) in ord). We use infix
operator syntax inHC in the same way as Haskell, as well as the built-in Boolean
data type and list type and syntax - [] for the empty list and (:) for cons.

haskell.org/haskellwiki/Zeno
tryzeno.org

Zeno: An Automated Prover for Properties of Recursive Data Structures 409

Fig. 1. Zeno’s internal language HC

x, y ∈ V ar f, g ∈ Fun K ∈ Con T ∈ TypeV ar i ∈ Id

E ∈ Expr ::= V ar<Path∗> | Fun | Con Variable/Function/Constructor
| (Expr Expr) Application
| \V ar -> Expr Lambda abstraction
| case<Id> Expr of { Alt∗ } Pattern

Alt ::= Con V ar∗ -> Expr A pattern match
| _ -> Expr _ is the default pattern

Bind ::= let Fun = Expr Non-recursive definition
| letrec Fun = Expr (Mutually) recursive

(and Fun = Expr)∗ definitions

TypeDef ::= data TypeV ar = Con Type∗

(| Con Type∗)∗ Data-type definition

τ ∈ Type ::= TypeV ar Simple type
| Type -> Type Function type

Prog ::= TypeDef∗ Bind∗ An HC program

p ∈ Path ::= [] | Id : Path A critical path

P ∈ Prop ::= all x∗ . Cls | Cls Properties
Φ ∈ Cls ::= Prop∗ ==> Eq | Eq Clauses
ϕ ∈ Eq ::= Expr = Expr Equations

Fig. 2. Example program in Haskell

data Nat = Zero | Succ Nat

(<=) :: Nat -> Nat -> Bool

Zero <= _ = True; Succ x <= Zero = False

Succ x <= Succ y = x <= y

ord :: [Nat] -> Bool

ord [] = True; ord [x] = True

ord (x:y:ys) = x <= y && ord (y:ys)

ins :: Nat -> [Nat] -> [Nat]

ins n [] = [n]

ins n (x:xs) | n <= x = n:x:xs | otherwise = x:(ins n xs)

sort :: [Nat] -> [Nat]

sort [] = []; sort (x:xs) = ins x (sort xs)

410 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Fig. 3. The interpretation of Fig. 2 in HC, all uses of a variable have implicitly
empty paths

data Nat = Zero | Succ Nat

letrec (<=) = \x -> \y -> case <lq1 > x of

{ Zero -> True; Succ x’ -> case <lq2 > y of

{ Zero -> False; Succ y’ -> x’ <= y’ } }

letrec ord = \ns -> case <o1> ns of

{ [] -> True; x:xs -> case <o2> xs of

{ [] -> True; y:ys -> case <o3> (x <= y) of

{ True -> ord (y:ys); False -> False } } }

letrec ins = \n -> \ns -> case <i1> ns of

{ [] -> n:[]; x:xs -> case <i2> (n <= x) of

{ True -> n:x:xs; False -> x:(ins n xs) } }

letrec sort = \ns -> case <s1> ns of

{ [] -> True; x:xs -> ins x (sort xs) }

Fig. 1 also defines the language in which we express properties P . These have
the obvious meaning, where free variables are implicitly universally quantified.
Thus, ord (sort as) = True asserts that sort returns an ordered list.

Fig. 4 defines reduction, P � E � E′, which means that E reduces to E′

given the facts P . The first rule uses call-by-value reduction (
bv� ⊆ Expr×Expr).

For example, as shown in Fig. 5, ord (ins b (d:ds)) reduces to ord (b:d:ds),
using an intermediate step which applies b <= d = False. Even though our input
syntax is Haskell, the evaluation is eager - thus our proofs talk about finite
structures only. Some expressions, e.g. pattern matching, are not conducive to
proofs. To distinguish those expressions that are conducive, we introduce in Fig.
4 terms, Term ⊆ Expr, which are expressions with a name leftmost, and normal
terms, NormalT erm ⊆ Term, which cannot be further reduced to other terms.

Notation. We use �+ for the transitive, and �∗ for the reflexive transitive
closure of �. For symbols s ranging over S, we use s to range over ℘(S), e.g.
P ∈ ℘(Prop). Functions are lifted to sets in the obvious way, e.g. for s ∈ ℘(S)
and f ∈ S → X , we have f(s) ∈ ℘(X). We use a syntactic notion of expres-
sion equality, where we ignore critical pairs, since, as we will see, these are
annotations and do not change the semantics of an expression; for example,
f x<p2, p3> = f x<p1>. Set membership operators between expressions (E ∈ E′)
denote the reflexive sub-expression relationship (ignoring critical paths), e.g.
f x<p1> ∈ g (f x<p2>) y.

Zeno: An Automated Prover for Properties of Recursive Data Structures 411

Fig. 4. Reduction modulo rewriting, Terms and NormalT erms

E
bv� E′

P � E � E′
(E′

= E′′) ∈ P ∨ (E′′
= E′) ∈ P

P � E � E[E′ := E′′]c

Term = V ar ∪ Fun ∪ Con ∪ { (E E′) | E ∈ Term, E′ ∈ Expr }
NormalTerm = { E ∈ Term | �E′ ∈ Term . E

bv�+ E′ }

Fig. 5. An example of reduction modulo rewriting

(b <= d) = False � ord (ins b (d:ds)) Starting expression
�∗ ord (case<i2> b <= d of { False -> b:d:ds; ... }) Unfold ins definition
�∗ ord (case<i2> False of { False -> b:d:ds; ... }) Apply fact as rewrite
�∗ ord (b:d:ds) Reduce pattern match

3 Proof Steps

In this section we discuss the individual proof steps used in Zeno’s proofs. We
define these steps through the rules in Fig. 6.

Zeno constructs proof-trees by applying these rules “backwards”. As usual,
in a given situation, several different rules may be applicable, and a rule may
be applicable in several different ways. Zeno searches for a proof in a depth-first
manner. We reduced the search space considerably by prioritizing some rules
over others, and by restricting the applicability of some of the rules by requiring
further conditions. These further conditions are expressed through premises in
the rules written in this colour. In this section we ignore the extra conditions,
and will discuss them in Section 4.

Fig. 7 describes parts of Zeno’s proof that ord (sort as) = True, i.e. that our
insertion sort function produces ordered lists. For simplicity, we write E to mean
E = True and not E to mean E = False, e.g. b <= d means (b <= d) = True. We
use Greek letters between α and μ to denote particular steps in the proof.

Steps (eql) and (con) are the only two not to follow from a sub-proof and so
can close a proof branch. (eql) means that both sides of the property consequent
are syntactically equal so the goal is true, e.g. in step [δ] and [θ] of our example
we close these branches as we have True = True as our goal. (exp) applies our
previously defined reduction rule to a property, e.g. in step [λ] we apply the
rewrite shown in Fig. 5. (fac) means that with expression application on both
sides of our goal equation it suffices to prove equality between both functions
and both arguments respectively - known as “factoring”. (use) converts an an-

tecedent in Prop to one in Eq, i.e. all x . P
′
==> ϕ′ is converted to ϕ′[x := Ex], by

choosing a value for each quantified variable (x) and proving all its antecedents

(P
′
); ϕ′ can now be used in a later step like (exp) or (con).

412 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Fig. 6. Zeno’s proof steps

(eql)

E =c E′

� P ==> (E = E′)
(con)

K = K
′ (K E = K

′ E
′
) ∈ P

� P ==> ϕ

(exp)

�
(
P ==> ϕ

)
[E := E′]c

P � E �∗ E′ E′ ∈ NormalTerm

� P ==> ϕ
(fac)

� P ==> (Ef = E′
f)

� P ==> (Ea = E′
a)

� P ==> (Ef Ea = E′
f E′

a)

(use)

�
{
ϕ′[x := Ex]

}
∪ P ==> ϕ

(
all x . P

′
==> ϕ′

)
∈ P

foreach
(
all y . P

′′
==> ϕ′′

)
∈ P

′
.

⎧⎪⎨
⎪⎩
� (P ∪ P

′′′
) ==> ϕ′′′

where P
′′′
= P

′′
[x := Ex] [y := Ey]

ϕ′′′ = ϕ′′[x := Ex] [y := Ey]

⎫⎪⎬
⎪⎭

� P ==> ϕ

(gen)

� Φ[E := x]c
fresh x : τ E : τ

E ∈ gens(Φ)

� Φ
(cut)

� P ==> E = E′ � (P ∪ {E = E′}) ==> ϕ

〈E, 〉 ∈ cases(P ==> ϕ)
K ∈ cons(T) (E′,) = inst(K)

� P ==> ϕ

(case)

foreach
K ∈ cons(T)

.

⎧⎪⎪⎨
⎪⎪⎩

� (P ∪ {E = EK
′}) ==> ϕ

where
(EK,) = inst(K)

E′
K = addHistory(EK, {p})

⎫⎪⎪⎬
⎪⎪⎭

E : T 〈E, p〉 ∈ cases(P ==> ϕ)

� P ==> ϕ

(ind)

foreach
K ∈ cons(T)

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� P h ∪ P [x := EK
′]c ==> ϕ[x := EK

′]c
where

(EK, r) = inst(K) E′
K = addHistory(EK, p)

y = (FV (P ==> ϕ))\{x} y′ all fresh
Ph = { all y′.(P

′
==> ϕ)[y := y′][x := r<p>]c | r ∈ r }

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

E : T 〈x, p〉 ∈ inds(P ==> ϕ)

� P ==> ϕ

Zeno: An Automated Prover for Properties of Recursive Data Structures 413

Fig. 7. Parts of Zeno’s proof for ord (sort as). Proof steps are annotated by
the name of the rule applied, and by a different Greek letter.

[κ](case)

[μ](exp)

. . .

� . . . , not (b <= d)

==> ord (d:(ins b bs))

� . . . , not (b <= d)

==> ord (ins b (d:ds))

[λ](exp)

. . .

� . . . , b <= d

==> ord (b:d:ds))

� . . . , b <= d

==> ord (ins b (d:ds))

� all b’ . ord ds ==> ord (ins b’ ds), ord (d:ds)

==> ord (ins b (d:ds))

[β](exp)

[δ](eql)
� True

� ord (sort [])
[η](exp)

[θ](eql)
� True ==> True

� ord [] ==> ord (ins b [])

[α](ind)
[β]

[γ](exp)

[ε](gen)

[ζ](ind)
[η] [κ]

� ord cs ==> ord (ins b cs)

� ord (sort bs) ==> ord (ins b (sort bs))

� ord (sort bs) ==> ord (sort (b:bs))

� ord (sort as)

(gen) and (cut) both discover necessary sub-lemmas of our goal. Generalisa-
tion replaces an expression with a fresh variable of the same type - it corresponds
to ∀-elimination. E.g., step [ε] “discovers” the sub-lemma ord cs ==> ord (ins

b cs) by generalising sort bs. (cut) is cumulative transitivity; it adds a new
antecedent by proving it from the existing ones - this proof is our discovered
sub-lemma.

The partial function inst in Fig. 8 takes an expression of function type and
applies fresh argument variables until the expression is simply typed - returning
the new simply typed expression and the set of every recursively typed fresh
variable applied, i.e. those variables whose type is the simple type of the returned
expression. For example inst((:)) = (b:bs, {bs}); this follows from inst(b:) =
(b:bs, {bs}); which, in its turn, follows from inst(b:bs) = (b:bs, ∅).

(case)-splitting proves a goal by choosing a simply typed expression (E :
T) and proving a branch for each value this expression could take, viz. each
constructor of its type (cons(T)). The value this expression has been assigned
down each branch is added as an antecedent. In step [κ] we case-split upon b <=

d creating two branches - [μ] (b <= d) = False, and [λ] (b <= d) = True.
(ind) applies structural induction on a variable x, proving branch for every

constructor of its type where an inductive hypothesis is added for every recursive
variable in that constructor - Ph is the set of all these new hypotheses. Every free
variable that is not x becomes ∀-quantified in our new hypotheses. In step [α] we
apply induction on as, creating two branches - [β] as = [] and [γ] as = (b:bs)

which gains the hypothesis ord (sort bs). In step [ζ] we apply induction on

414 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Fig. 8. Instantiation function

rtype : Type → TypeV ar rtype(T) = T rtype(τ1 -> τ2) = rtype(τ2)

inst : Expr ⇀ Expr× ℘(V ar)

inst(E) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(E, ∅) if E : T

(E′, {x} ∪ x) if E : (rtype(τ) -> τ)

where x : rtype(τ) is fresh, (E′, x) = inst(E x)

(E′, x) if E : (τa -> τr), τa = rtype(τr)

where x : τa is fresh, (E
′, x) = inst(E x)

cs, creating branches [η] and [κ], where the latter gains a hypothesis in which b

has been replaced by a fresh b’ which is ∀-quantified.
Soundness. We believe, but have not yet proven, that the proof-steps presented
in this section are sound, i.e., that any property provable using these steps is
provable in first order logic enhanced with structural induction, provided that
induction or case splits are only applied on terms guaranteed to terminate. Un-
soundness through non-terminating functions does not arise in our case, because,
as we will see in Section 4, the calculation of critical terms for expressions
containing such functions would not terminate. Thus, when faced with non-
terminating functions, Zeno might loop for ever but will not produce erroneous
proofs. We want to adopt termination checkers in further work. Moreover, cre-
ated proofs are checked by Isabelle; this gives a strong guarantee of soundness.

4 Heuristics

In Section 3 we discussed the proof rules without discussing the highlighted,
further conditions. In this section we describe the most important heuristics
which trim the search space, and in particular the further conditions.

4.1 Prioritize (eql) and (con), and Counterexamples

The steps (eql) and (con) are applied whenever possible, as they immediately
close their proof branch.

When generating a new proof goal, before attempting to prove it, Zeno searches
for counterexamples, and abandons the proof search if it finds any. Our approach
is similar to SmallCheck[14], in that both use execution to generate values, but
differs in that SmallCheck uses depth of recursion to restrict to a finite set,
whereas we use our critical pair technique, described later on. In contrast, ACL2s
generates a constant number of random values, much more like QuickCheck[5].

4.2 Applying (cut) Only When (case) is also Possible

In principle, (cut) is applicable at any point during proof search, and for any
intermediate goal E = E′, which follows from the current antecedents, and which
implies the current goal. This makes (cut) highly non-deterministic.

Zeno: An Automated Prover for Properties of Recursive Data Structures 415

Fig. 9. A (cut) step

[ν](cut)

[σ]
. . .

� . . . , not(b<=d) ==> d<=b
[ξ]

. . .

� . . . , not(b<=d), d<=b ==> ord [d, b]

� . . . , not(b<=d) ==> ord [d, b]

Our heuristic resticts the applicability of (cut), and the search for an appro-
priate intermediate goal, by requiring that this step should be chosen only when
a (case) would have been applicable too (i.e. when E.. ∈ cases(...)), and only
when the intermediate goal E = E′ can be inferred from the current antecedents.
Thus, (cut) discovers necessary sub-lemmas.

In Fig. 9 we use a (cut) in the proof of not (b <= d) ==> ord [d,b]; the
latter is a subproof for [μ] from Fig. 7. At [ν], a case analysis on b<=d is possible,
however, since b<=d follows from the antecedents, our heuristic prefers a (cut)
instead. In the process, it proves the sublemma that not (b <= d) ==> d <= b.

4.3 Critical Terms

Critical pairs1, defined in Fig. 11, are pairs of terms and paths, and are used
to select between induction, case analysis, generalization and cut steps. We will
first discuss the first component of these pairs, i.e. the critical terms, and then,
in 4.4 we will refine the picture and introduce the critical paths. As our running
example we use Fig. 10, which revisits the example from Fig. 7, this time
annotated with critical paths.

For a motivation for critical terms, consider the bottom of Fig. 10, annotated
with [α], where – ignoring the empty critical path <> – the aim is to prove
that ord (sort as). At this point, it would be possible to apply induction on
as, or case analysis on as, or generalization on sort as. Nevertheless, Zeno only
considers the (ind) step. It does this based on the critical term of the expression.

We focus in Fig. 11 on the term E′ such that pair(P ,E) = 〈E′, ...〉. Then,
E′ is crucial for the evaluation of E, i.e. the evaluation of E can continue only if
we have some more information about the value of E′ than currently available
in E′ itself or in P . For example, because sort as �∗ case as of { ... }, and
ord (sort as) �∗ case as of { ... }, we have pair(∅, sort as) = 〈as, ...〉 and
pair(∅, ord (sort as)) = 〈as, ...〉. Also, ord (ins b (d:ds)) �∗ case b <= d of

{ ... }, and thus pair(..., ord (ins b (d:ds))) = 〈b <= d, ...〉. With pairs (Fig.
11) critical pairs are lifted to equations, clauses and properties, allowing for
more than one critical pair per goal.

Now we focus again on the proof steps in Fig. 6, and consider the extra
conditions in (ind), (case), (gen), which restrict the applicability of these steps.
For example, induction is applicable only on inds(...). In Fig. 12 we define
functions inds, cases and gens. We will discuss paths in the next section, but
we can see already that if a critical term is a variable, then Zeno uses it for

1 Not to be confused with the critical pairs of term rewriting.

416 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Fig. 10. First part of the example from Fig. 7 revisited.
Here Φα, Φγ , Φε, and Φζ , stand for the proof goals at [α], [γ], [ε], and [ζ]. The
goals are annotated with paths.
We use names for paths: p1 = o1:s1:[], p2 = o1:i1:s1:[], p3 = o1:i1:[], and
p4=s1:[].
Then we have p1 � p2, and p1 �� p3, and p4 � p3.
Also, inds(Φα) = pairs(Φα) = { 〈as, p1〉 }, and cases(Φα) = gens(Φα) = ∅.
Also, gens(Φε)={ isort bs<p1> }, and inds(Φε)=cases(Φε)=∅.
Also, pairs(Φζ)={ 〈bs<p1>, p2〉, 〈bs<p1>, p1〉 }, and pairs(Φζ) ∩MinPairs=∅.
Thus, pairs(Φζ) ∩MinPairs = { 〈cs<p1>, p3〉, 〈cs<p1>, p4〉 }.
Thus, inds(Φζ) = { 〈cs<p1>, p3〉 }, and cases(Φζ) = gens(Φζ) = ∅.

[κ](case)
[μ] [λ]

� (all b’ . ord ds<p1, p3> ==> ord (ins b’ ds<p1, p3>)) ,
ord (d<p1, p3>:ds<p1, p3>)

==> ord (ins b<p1> (d<p1, p3>:ds<p1, p3>))

[α](ind)
[β]

[γ](exp)

[ε](gen)

[ζ](ind)
[η] [κ]

� ord cs<p1> ==>

ord (ins b<p1> cs<p1>) (Φζ)

� ord (sort bs<p1>) ==>

ord (ins b<p1> (sort bs<p1>)) (Φε)

� ord (sort bs<p1>) ==>

ord (sort (b<p1>:bs<p1>)) (Φγ)

� ord (sort as<>) (Φα)

Fig. 11. Defining critical pairs

Pair = NormalTerm× Path

pair : ℘(Prop)× Expr ⇀ Pair

pair(P,E) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈E, []〉 if E ∈ NormalTerm, E : T, �K.∃E.E = K E

〈E′, [i]〉 if P � E �∗ case<i> E′ of { ... }, E′ /∈ E,

E′ ∈ NormalTerm

〈E′′, i : p〉 if P � E �∗ case<i> E′ of { ... }, E′ ∈ E

where 〈E′′, p〉 = pair(P,E′)

exprs : Prop → ℘(Expr)
exprs(E1 = E2) = { E1, E2 }
exprs(P ==> ϕ) =

⋃
exprs(P) ∪ exprs(ϕ)

exprs(all x . Φ) = { E ∈ exprs(Φ) | �x ∈ x . x ∈ E }

pairs : Cls → ℘(Pair)

pairs(P ==> ϕ) = { pair(P,E) | E ∈ exprs(P ==> ϕ) }

Zeno: An Automated Prover for Properties of Recursive Data Structures 417

induction, if it is not a sub-term of the current goal, then Zeno uses it for case
analysis. This is why, in step [α] of Fig. 10 the only applicable step is induction
on as. Similarly, in step [κ] of Fig. 10 a case-split on b <= d is applicable.

4.4 Critical Paths

Although critical terms are essential in pruning the search space, they do not
prevent repeated application of what is essentially the same step. Consider, e.g.,
step [γ] in Fig. 10; here pair(..., ord (sort bs)) = 〈bs, ...〉. Näıve application of
critical terms as we have considered them so far would be applying induction
again, and in fact, would be applying induction for ever!

For this, we built into Zeno a way of remembering which cases in a function defi-
nition it has tried so far, and then avoiding covering the same cases when selecting
the next step. We use the notion of path, which consists of a sequence of labels; the
labels indicate cases in the definition of functions. For this, the full syntax defini-
tion in Fig. 1 prescribes distinct labels for each case in a function definition, c.f.
the labels o1, o2, c1 etc., in Fig. 3. Furthermore,Fig. 1 prescribes each variable in
an expression to be decorated with a set of paths. We call these paths the history
of an expression, as they record for each of these variables the reason why this this
variable has been introduced. The variables in the function definitions and in the
original property have an empty history (e.g. we start with ord (sort as<>) in [α]
in Fig. 10). Then, as the proof progresses, new variables gain history.

We now read the full definition of critical pairs in Fig. 11. We call the second
component of the critical pair the intention of the pair. It is a path, which
describes the function cases that would be covered if that term were used in the
next step of the proof. For example, pair(∅, ord (sort as<>)) = 〈as, p1〉 where
p1 = o1:s1:[], which means that selecting the variable as would progress the
proof along the cases o1 and s1. Also, pair(..., ord (sort bs<p1>)) = 〈bs<p1>, p2〉,
where p2 = o1:i1:s1:[]. Finally, pair(..., Φγ) = { 〈bs<p1>, p1〉, 〈bs<p1>, p2〉 }.

When we use a critical pair in a (case) or (ind) step we store its intention in
the corresponding variables in the new goal (see Fig. 6, addHistory is given in
Fig. 12). For example, in step [γ] in Fig. 10, we store the path p1 in bs.

In Fig. 12 we define the partial order � on paths, where p � p′ if p′ contains
all cases from p extended at places with further cases. For example, o1:s1:[]�
o1:i1:s1:[]. We also define MinimalPairs, so as to remove any pairs where the
history of the term “covers” (in the sense of �) the intention of the pair. Thus,
MinPairs are critical pairs which do not represent a previously applied similar
path. For example, the pair 〈bs<p1>, p2〉 is not minimal.

For induction and case splits, we only take the minimal pairs, c.f. Fig. 12, and
thus we avoid chosing paths which have been essentially covered in earlier proof
steps. Therefore, at [γ] in Fig. 10 induction and case analysis are not applicable,
but generalization is. On the other hand, the purpose of generalisation, when
discovering intermediary lemmas, w.r.t. to critical paths is to shorten the critical
path of the critical pair of an expression. Thus, in Fig. 10 in [γ] we apply
generalisation and turn Φε into Φζ which has the critical pair 〈cs<p1>, p3〉, in
MinPairs since p1 �� p3 - here generalisation has shortened p2 to p3, yielding a
less complex step (p3 � p2) and no longer covered by the previous p1 step.

418 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Fig. 12. Critical-pair-based heuristics: inds, cases and gens, and auxiliary def-
initions

p1.p2...pn � q1.p1.q2.p2...pn.qn+1 where pi, qi ∈ Path

history : Expr → ℘(Path)
history(E) =

⋃
{ p | x<p> ∈ FV (E) }

addHistory : Expr × ℘(Path)→ Expr
addHistory(E,p) = E{ [x<p′> := x<p ∪ p′>] | x<p′> ∈ FV (E) }

MinPairs ⊆ ℘(Pair)
MinPairs = { 〈E, p〉 ∈ Pair | �p′ ∈ history(E) . p′ � p }

maxPaths : ℘(Pair) → ℘(Pair)
maxPaths(π) = { 〈E, p〉 ∈ π | �〈E, p′〉 ∈ π . p � p′ }

inds : Cls → ℘(Pair)
inds(Φ) = maxPaths({ 〈x, p〉 ∈ (pairs(Φ) ∩MinPairs) })

cases : Cls → ℘(Pair)
cases(Φ) = maxPaths({ 〈E, p〉 ∈ (pairs(Φ) ∩MinPairs)

| �EΦ ∈ exprs(Φ) . E ∈ EΦ })

gens : Cls → ℘(Expr)
gens(Φ) = { E | Ec ∈ E ∈ EΦ ∈ exprs(Φ), E : T

〈Ec, p〉 ∈ (pairs(Φ) \ MinPairs),
�E′ : T′ . Ec ∈ E′ ∈ E ∧E′ = E }

Fig. 13. Partial definition of substitution preserving critical paths

E =c E′ iff �E� = �E′� where �� removes all stored critical paths

E[E′ := E′′]c = addHistory(E′′, history(E) ∪ history(E′))
if E =c E′

...

(\x -> E)[E′ := E′′]c =

{
\x -> E[E′ := E′′]c if x /∈ E′ ∧ x /∈ E′′

\x -> E otherwise
...

Zeno: An Automated Prover for Properties of Recursive Data Structures 419

Notice, that although induction is not applicable on Φγ , it is applicable on
Φζ : Our critical pairs technique blocked induction until we had generalised to
our intermediary lemma, and then re-enabled it.

Substitution and comparison in the presence of paths. In order to preserve
the history of an expression after substitution - such as in (gen)eralisation or
(ind)uction - we have defined “capture avoiding substitution preserving critical
paths” (E[E′ := E′′]c) in Fig. 13. The first line is all we have changed from
regular capture avoiding substitution; we have left out most of the definition
since it is as you would expect and we give the rule for abstraction as an exam-
ple. We define this, and some of our earlier rules in terms of “equality modulo
critical paths” (=c), which is syntactic equality ignoring critical paths stored in
variables, as these are an annotation and do not affect execution.

5 Comparisons and the Output of Isabelle Proofs

We now compare Zeno, IsaPlanner[4,8,10], ACL2s[3,7], and Dafny’s extension
with induction [12], in terms of their respective performance on the 87 lemmas
from a test-suite from the IsaPlanner website2, which also appears in [10].

Of the 87 lemmas, 2 are false. Zeno can prove 82 lemmas, IsaPlanner can prove
47, while ACL2s can prove 74. All lemmas unprovable by Zeno are unprovable
for the other tools too. ACL2s can prove 28 lemmas unprovable by Isaplanner,
and Isaplanner can prove 1 lemma unprovable by ACL2s; the latter over a binary
tree – something with a more natural representation in IsaPlanner. See below
for percentages of proven, and lists of, unproven lemmas:

Tool Percent. Proven Id’s of unproven lemmas
Dafny+indct. 53.5% 45 - 85
IsaPlanner 55% 48 - 85
ACL2s 86% 47, 50, 54, 56, 67, 72, 73, 74, 81, 83, 84, 85
Zeno 96% 72, 74, 85

Zeno’s proofs take between 0.001s and 2.084s on an Intel Core i5-650 processor.
ACL2s and Isaplanner produce proofs in similar times. The Haskell code to test
Zeno and the LISP code to test ACL2s can be found at tryzeno.org/comparison.
As functions in ACL2s are untyped, we supplied the type information ourselves
through proven theorems. Without this information, ACL2s is unable to prove
6, 7, 8, 9, 15, 18, and 21.

To avoid ending up “training” Zeno towards the specific IsaPlanner test-suite,
we developed a suite of 71 further lemmas. We tried to find lemmas to differ-
entiate the tools, and show their respective strengths. Indeed, we found lemmas
provable by ACL2s but not by Zeno, and lemmas provable by IsaPlanner but
not by ACL2s, but none which IsaPlanner could prove and Zeno couldn’t. Below
we discuss five lemmas from our suite:
2 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/

case-analysis-rippling.txt

tryzeno.org/comparison
http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/case-analysis-rippling.txt
http://dream.inf.ed.ac.uk/projects/lemmadiscovery/results/case-analysis-rippling.txt

420 W. Sonnex, S. Drossopoulou, and S. Eisenbach

Nr. Lemma Nr. Lemma
P1 sort (sort xs) = sort xs P2 x * (S 0) = x

P3 x * (y + z) = (x * y) + (x * z) P4 x ^ (y + z) = (x ^ y) * (x ^ z)

P5 even(x), even(y) ==> even(x+y)

Zeno can prove P1, while IsaPlanner and ACL2s can not. Zeno takes around
2s to find the proof, has a proof tree 14 steps deep and discovers the sub-lemmas
ins x (ins y xs) = ins y (ins x xs) and sort (ins x xs) = ins x (sort xs).
Both Zeno and IsaPlanner can prove P2, P3, P4, but ACL2s can not. Because
Zeno does not support strong induction, it cannot prove P5, while ACL2s can.

Our (cut) makes Zeno robust to multiple names of the same function. For
example, when we defined ord so that it uses leq for comparison, while ins uses
<=, where leq and <= are semantically equivalent, then ACL2s goes into an infinite
loop, whereas Zeno applies several (cut) steps, discovers the sub-lemmas leq x

y ==> x <= y, and x <= y ==> leq x y, and not (x <= y) ==> leq y x, and leq

x y, leq y z ==> x <= z, and finally finds the proof.

Isabelle Output Zeno translates its internal proof tree into an Isar[16] proof -
every sub-goal of its proof becomes a new line and each step has a natural coun-
terpart in Isabelle. The HC functions and data-types are easily converted into
Isabelle’s ML. Zeno’s internal proof is purely backwards reasoning; we kept high-
level structure of the proof output this way but we mixed in forwards reasoning
for small internal sections of non-branching proof steps. At certain points we
restart the output in a new sub-lemma, to keep the proof tree from becoming
too deep and to display important sub-lemmas to the user. All lemmas from this
section have had their proof output checked by Isabelle.

6 Conclusions and Future Work

We have described Zeno’s proof steps and its heuristics; in particular, how critical
pairs guide the selection of proof rules and avoid revisiting earlier proof steps.
Zeno requires no further lemmas to be suggested to it, and indeed often discovers
interesting auxiliary lemmas. We found that Zeno compared favourably with
other tools both in terms of theorem proving power and speed.

On the other hand, Zeno cannot use auxiliary lemmas, while IsaPlanner and
ACL2s can, and therefore are better suited for larger, human guided proofs. In
particular, ACL2s has been used in the verification of properties of real-world
systems. Integration of Zeno into a proof system like Isabelle, perhaps as a tactic
for IsaPlanner, would be a useful next step – we also plan to adapt Zeno so
that it can use background lemmas. Furthermore, ACL2s can prove properties
over full first-order logic whereas Zeno lacks negation and existentials - another
potential extension. Currently, Zeno does not check for function termination
before attempting a proof, leaving us with a potential infinite loop in the critical
pair discovery step; we plan to integrate techniques for termination checking.

The three properties from our test suite which Zeno is unable to prove re-
quire auxiliary lemmas which are not generalisations of sub-goals. Therefore, we

Zeno: An Automated Prover for Properties of Recursive Data Structures 421

want to develop intelligent methods of finding such necessary lemmas, through
techniques like IsaCoSy’s[11] random perturbation of property terms.

Acknowledgements. We thank D. Ancona, SLURP research group, K. Broda, M.
Johansson, R. Leino, and most particularly T. Allwood for useful feedback.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

2. Barnett, M., Leino, K., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Boyer,R.S.,Moore,J.S.:Atheoremprover foracomputational logic. In:CADE(1990)
4. Bundy, A., Stevens, A., Harmelen, F.V., Ireland, A., Smaill, A.: Rippling: A Heuris-
tic for Guiding Inductive Proofs. Art. Intell. (62) (1993)

5. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268–279 (2000)

6. deMoura, L., Bjørner, N.: Z3: An Efficient SMTSolver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.)TACAS2008.LNCS, vol. 4963, pp. 337–340. Springer,Heidelberg (2008)

7. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: ”The ACL2 Sedan”.
In: ICSE, pp. 59–60 (2007)

8. Dixon, L., Fleuriot, J.: IsaPlanner: A Prototype Proof Planner in Isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer,
Heidelberg (2003)

9. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of
Automated Reasoning 16, 16–1 (1995)

10. Johansson, M., Dixon, L., Bundy, A.: Case-Analysis for Rippling and Inductive
Proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
291–306. Springer, Heidelberg (2010)

11. Johansson, M., Dixon, L., Bundy, A.: Conjecture Synthesis for Inductive Theories.
Journal of Automated Reasoning 47, 251–289 (2011)

12. Leino, K.R.M.: Automating Induction with an SMT Solver. In: Kuncak, V., Ry-
balchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer, Hei-
delberg (2012)

13. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated
Reasoning 5 (1989)

14. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy Smallcheck: auto-
matic exhaustive testing for small values. In: First ACM SIGPLAN Symposium on
Haskell, pp. 37–48 (2008)

15. Walther, C., Schweitzer, S.: About VeriFun. In: Baader, F. (ed.) CADE 2003. LNCS
(LNAI), vol. 2741, pp. 322–327. Springer, Heidelberg (2003)

16. Wenzel, M.: Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

17. Xu, D., Peyton-Jones, S., Claesen, K.: Static Contract Checking for Haskell. In:
POPL (2009)

A Proof Assistant for Alloy Specifications

Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi,
and Mana Taghdiri

Karlsruhe Institute of Technology, Germany
{mulbrich,geilmann,elghazi,taghdiri}@ira.uka.de

Abstract. Alloy is a specification language based on a relational first-
order logic with built-in operators for transitive closure, set cardinality,
and integer arithmetic. The Alloy Analyzer checks Alloy specifications
automatically with respect to bounded domains. Thus, while suitable
for finding counterexamples, it cannot, in general, provide correctness
proofs. This paper presents Kelloy, a tool for verifying Alloy specifications
with respect to potentially infinite domains. It describes an automatic
translation of the full Alloy language to the first-order logic of the KeY
theorem prover, and an Alloy-specific extension to KeY’s calculus. It
discusses correctness and completeness conditions of the translation, and
reports on our automatic and interactive experiments.

1 Introduction

Due to their expressive logics, theorem provers have been successfully used to
prove detailed properties of complex system specifications. However, they are
often considered too expensive to use frequently during software development.
The cost is twofold: (1) the proof process is often interactive and requires the user
to be an expert in both the problem domain being analyzed and the theorem
prover being used, and (2) the input language is often a low-level logic that
makes specifications unintuitive and error-prone.

Lightweight formal methods [17], on the other hand, promote checking soft-
ware partially, yet frequently, during design and implementation. Alloy [16], for
example, has been successfully used for checking several software systems against
their requirements (see [7] for some examples). The main reasons for Alloy’s
popularity are its concise language, simple semantics, and fully automatic ana-
lyzer. Alloy provides a first-order logic based on relations that is augmented with
built-in transitive closure (reachability), set cardinality, and basic integer arith-
metic operators, which makes it suitable for specifying structure-rich systems.
Alloy specifications are automatically analyzed using a SAT solver by requiring
a bound on the number of elements of each relation. Consequently, while the
counterexamples are non-spurious, lack of a counterexample, in general, does
not constitute a proof of correctness. Thus, for safety-critical systems, the user
must perform a second round of analysis in which he specifies the problem again,
in the input language of a theorem prover for full verification.

This paper introduces Kelloy, an engine for verifying Alloy specifications, with
the goal of bridging the gap between lightweight formal methods and theorem

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 422–436, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Proof Assistant for Alloy Specifications 423

provers. To reduce the cost of using the underlying theorem prover, namely
KeY [4], it (1) provides a fully automatic translation of Alloy to KFOL—the
first-order logic of KeY, (2) defines an Alloy-specific extension to KeY’s calculus
and a reasoning strategy that improves KeY’s capability in finding proofs au-
tomatically, and (3) simplifies user interaction by generating intermediate proof
obligations that are easy to understand.

KeY is attractive because it combines an interactive proof assistant with an
automatic engine, and its calculus strategy is extensible: one can easily add
new calculus rules and assign them to different proof search heuristic strategies.
Kelloy translates Alloy’s operators to function symbols, thus generating formulas
that conform to the high-level structure of the analyzed Alloy specification. This
makes the tool easy to interact with.

Our target logic is first-order because it is semi-decidablewhich indicates a higher
automation potential in practice than higher order logics. KeY has built-in integer
support and provides a set of rules implementing Peano arithmetic [5] extended to
integers. Therefore, unlike previous approaches [2,13,14], we are able to translate
the entire Alloy language including integer expressions, cardinality, and the order-
ingmodule (see Section 4.5). Our calculus cannot be complete because integers are
not FOL-axiomatizable, but it suffices in almost all practical cases [10, p.153]. Al-
though we target KFOL, our resulting formulas (with minor modifications) can be
verified by any prover for first-order logic, which supports integers.

While some Alloy specifications can be verified automatically, specifications
that extensively use quantifiers or transitive closure result in proof obligations
that are too difficult to discharge fully automatically. In a user-guided, semi-
automatic proof system such as KeY, however, it often suffices if the user pro-
vides only a few inputs (e.g. in the form of quantifier instantiations or induction
hypotheses) to help the system find a proof. Since trying to prove an invalid
assertion is particularly costly, we suggest Kelloy be used after the assertion has
been checked by the Alloy Analyzer. The user can increase the analysis bounds
to gain more confidence in the correctness of the assertion before using Kelloy
for full verification.

In this paper, we describe a fully automatic translation of Alloy to KFOL,
and establish that the translation is correct (for finite and infinite domains) and
complete (for finite domains). We also describe an Alloy-specific extension to
KeY’s calculus and reasoning strategy. We evaluate the approach by conducting
both automatic and interactive proofs. Out of a total of 22 proved Alloy asser-
tions in 10 specifications, 12 were proved without any user interaction. We also
evaluate the impact of the user’s experience on the interactive proof process.

2 Related Work

Several approaches address the verification of Alloy specifications. Prioni [2] is
the closest to ours: it translates Alloy to a first-order logic in which function
symbols represent Alloy operators. Prioni’s theorem prover, Athena [3], has a
polymorphic type system that allows a more succinct representation of operators,

424 M. Ulbrich et al.

but cannot handle infinite sets. Therefore, unlike Kelloy that verifies assertions
in both finite and infinite domains, Prioni only analyzes finite domains.

Another approach [12] to verifying Alloy specifications is via a translation
to omega closure fork algebras [11]. Since the target system is an equational
calculus, the translation eliminates all Alloy quantifiers, leading to intermediate
expressions that are extremely hard to understand [14]. To reduce the cost of
user interaction, Dynamite [14] has been developed, which targets a calculus in
fork algebra that supports quantifiers. Unlike Kelloy that uses a first-order logic,
Dynamite uses the higher-order logic of the PVS theorem prover [20].

To our knowledge, unlike Kelloy, Prioni and Dynamite do not support the
complete Alloy language; they cannot handle integers and set cardinality. How-
ever, they integrate the Alloy Analyzer in their interactive proof processes by
checking user-provided intermediate hypotheses using the Analyzer first. A sim-
ilar feature can be added to Kelloy as well.

In [8,9], SMT solvers are used to verify Alloy specifications fully automatically.
However, since Alloy is undecidable, in many cases, SMT solvers fail to verify
valid specifications. As described in [7], these approaches are complementary to
a full verification, but semi-automatic engine like Kelloy.

In [18], proof obligations for Event-B [1]—a set-theoretical language support-
ing integer expressions, cardinalities, and binary relations—are translated to
KFOL. Similar to Kelloy, this approach targets a first-order theory that re-
sembles the constructs of the source language. This work, however, targets an
untyped logic, provides no calculus rules, no tool support, and no discussion of
soundness and completeness of the translation. Furthermore, relations of higher
arities and the transitive closure operator are not supported by Event-B and
thus not covered by this work.

3 Background

3.1 Alloy and the Alloy Analyzer

Alloy [16] is a first-order relational logic with built-in transitive closure, set
cardinality, and integer arithmetic operators. Our analysis introduces function
symbols for the Alloy constructs of Fig. 1. In addition to the core Alloy logic,
this subset of Alloy—called Alloy0—contains commonly-used Alloy constructs.
It therefore enables us to generate formulas that closely conform to the structure
of the Alloy specification being analyzed, and thus simplifies user interactions.
Alloy constructs not present in Alloy0 are desugared by Kelloy.

As shown in Fig. 1, an Alloy0 problem consists of declarations and an assertion
to check1. The Alloy Analyzer checks assertions with respect to a user-provided,
finite scope—an upper bound on the number of elements of each type—fully
automatically. While the reported counterexamples are guaranteed to be non-
spurious, absence of a counterexample does not constitute proof.

1 An Alloy problem with facts f1, . . . , fn and an assertion a is an Alloy0 problem with
an assertion (f1 and ... and fn) implies a.

A Proof Assistant for Alloy Specifications 425

problem ::= dcl∗ assertion
dcl ::= sig id [(in | extends) type]
| rel : type [→ type]+

assertion ::= formula
exp ::= type | var | rel | none | exp + exp
| exp - exp | exp & exp | exp.exp
| exp → exp |~exp | ^exp | Int intExp

intExp ::= number | #exp | int var
| intExp (+ | - | *) intExp
| (sum var : exp|intExp)

formula ::= intExp intComp intExp
| exp (in | =) exp | not formula
| formula (and | or | implies) formula
| (lone | some | one) exp
| all var : set exp|formula
| some var : set exp|formula

intComp ::= < | > | =
type ::= id | Int
rel ::= id
var ::= id

Fig. 1. Abstract syntax for Alloy0

Declarations.Alloy0 types represent sets of uninterpreted atoms. The signature
sig A declares A as a top-level type. sig B in A declares B as a subtype (subset)
of A. The extends keyword has the same effect with the additional constraint
that extensions of a type are mutually disjoint. Relations can have arbitrary
arities and are declared as f : A1 → . . .→ An.

Expressions. Alloy0 expressions evaluate to relations. Sets are unary relations
and scalars are singleton unary relations. The built-in relation none denotes
the empty set. Operators +, -, and & denote union, difference, and intersection,
respectively. For relations r and s, relational join (composition), Cartesian prod-
uct, and transpose are denoted by r.s, r -> s, and ~r, respectively. Transitive
closure ^r denotes the smallest transitive relation that contains r.

Integer expressions evaluate to integer values (Z) and are constructed from
numbers, arithmetic operators +, -, and *, set cardinality #, and sum. The built-
in signature Int denotes the set of integer atoms. The cast operators int and
Int give the integer value corresponding to an integer atom, and vice versa. The
expression (sum x: A | ie) gives the sum of the integer expression ie for all
distinct bindings of the variable x in the unary relation A.

Formulas. Basic Alloy0 formulas are constructed using the subset (in), equal-
ity, and integer comparison operators, and combined using the usual logical
operators. The formulas lone e, some e, and one e constrain the cardinality
of a relational expression e to be at most one, at least one, and exactly one,
respectively. The quantifiers all and some denote the universal and existential
quantifiers, and are supported by the Alloy Analyzer if the quantified variable is
either a scalar or can be skolemized [16]. In our analysis, however, relations are
first-order constructs, and thus quantifiers in the general form of Q x : set e | F
are allowed, where e is an expression of an arbitrary arity, x ranges over all
subsets of e, and Q is either the universal or existential quantifier.

3.2 The KeY Proof System

KeY [4] is a deductive theorem prover based on a sequent calculus for JavaDL—
a first-order dynamic logic for the Java programming language—which allows

426 M. Ulbrich et al.

both automatic and interactive proofs. Kelloy uses the many-sorted, first-order
subset of JavaDL, called KFOL.

Declarations. KFOL declarations consist of a set of types, a set of function
symbols, and a set of predicate symbols. We write f : T1× . . . Tn → T to declare
an n-ary function symbol f that takes arguments of types T1, . . . , Tn, and returns
a value of type T . A constant symbol c of type T is a function with no arguments,
and is denoted by c : T . A predicate symbol p that takes arguments of types
T1, . . . , Tn is denoted by p: T1 × . . .× Tn → Prop.

Expressions and Formulas. The set of all expressions for a declaration is de-
noted by Expr, and the set of all formulas by Frml. Expressions are constructed
from function applications, and formulas from predicate applications. The equal-
ity predicate = is built-in. In addition, KFOL provides boolean constants true
and false, and the propositional connectives ∧, ∨, ⇒, ⇔, and the negation ¬
to combine formulas. Universal and existential quantification are written, re-
spectively, as ∀x: T | φ and ∃x:T | φ for a variable symbol x of type T and a
formula φ. KFOL has a built-in type int along with the binary function symbols
+,−, ∗ : int× int → int, and the predicate symbol < : int× int → Prop which
are all written in infix notation.

For a KFOL declaration C, a set of formulas A and a formula f we write
A |=C f to denote that f is a logical consequence of A in C.

4 Axiomatization of Alloy0

As shown in Fig. 2, Alloy0 specifications are translated to KFOL using the trans-
lation function T which takes two arguments: a well-typed Alloy0 problem P ,
and a set fin of signatures that are marked by the user to be considered as
finite. This is because some specifications require a finite setting (see Section
4.3). The translation T [<p, fin>] returns a ternary tuple <C, kd, ka> where C
denotes a set of KFOL constant declarations that represents the signatures and
relations of P , kd is a KFOL formula that encodes the declaration constraints
and the finite types (using the finite1 predicate described in Section 4.3), and ka
denotes a KFOL formula encoding the assertion. Instead of reducing Alloy0 con-
structs to their definitions, our translation uses function symbols. This increases
the automation level, makes the formulas easy-to-understand, and clarifies their
correspondence to the original Alloy0 formulas. The semantics of these KFOL
functions are defined by a set of KFOL axioms Ax. To prove the intended asser-
tion in P , we invoke KeY on the proof obligation for Ax |=C kd ⇒ ka.

4.1 Declarations

Let max denote the maximum relation arity used in the analyzed Alloy0 prob-
lem. For every 1 ≤ n ≤ max, we introduce a KFOL type Reln to denote the set
of n-ary relations. Atoms of the universe are denoted by the KFOL type Atom.

For every arity n, the membership predicate inn : Atom
n ×Reln → Prop al-

lows the construction of the KFOL formula inn(a1, . . . , an, r) which denotes the

A Proof Assistant for Alloy Specifications 427

T : problem × P(type)→ P(KFOL-decl)× Frml× Frml

S : dcl → KFOL-decl
F : dcl ∪ formula → Frml

N : type ∪ rel ∪ var → KFOL-const ∪KFOL-var
Ax : P(Frml)

T [<d1 . . . dn, a, fin>] = <
⋃i=n

i=1 {S[di]},
∧i=n

i=1 F [di] ∧
∧

S∈fin finite1(N [S]), F [a]>
S[sig A] = N [A] : Rel1
S[sig A (in|extends) B] = N [A] : Rel1
S[r:A1 → . . . → An] = N [r] : Reln
F [sig A] =

∧
S disj1(N [A], N [S]) for any top-level signature S = A

F [sig A in B] = subset1(N [A], N [B])
F [sig A extends B] = F [sig A in B] ∧∧

S disj1(N [A], N [S]) for any extension S of B where S = A
F [r:A1 → .. → An] = subsetn(N [r], prod1×(n−1)(N [A1], (.., prod1×1(N [An−1], N [An]))))

KFOL Axioms:

∀r, s:Reln | subsetn(r, s)⇔ ∀a1:n:Atom | inn(a1:n, r)⇒ inn(a1:n, s)
∀r, s:Reln | disjn(r, s)⇔ ∀a1:n:Atom | ¬(inn(a1:n, r) ∧ inn(a1:n, s))

Fig. 2. Translation rules for Alloy0 declarations. P(S) denotes the powerset of a set S.

membership of an n-ary tuple <a1, . . . , an> in an n-ary relation r. We write ai:j
as a shorthand for ai, . . . , aj. The uninterpreted function sin1 : Atom → Rel1
relates atoms and singleton sets.

In Fig. 2, the auxiliary translation function S translates any Alloy0 signature
or relation r of arity n to a constant of type Reln with a unique name N [r].
The auxiliary translation function F constrains subtypes to be subsets of their
parents using the uninterpreted predicate subsetn: Reln ×Reln → Prop. Top-
level signatures as well as extensions of a common signature are constrained to be
mutually disjoint using the uninterpreted predicate disj n: Reln ×Reln → Prop.
The semantics of these predicates are given by the axioms of Fig. 2. The type
information of a relation r is encoded by constraining N [r] to be a subset of
the Cartesian product of its column types. Function prodn×m : Reln ×Relm →
Reln+m denotes the Cartesian product of two relations of arities n and m, and
is defined in Fig. 4.

Fig. 3 provides an example of translating Alloy0 declarations to KFOL. Fig. 3(a)
gives a simple representation of a rooted, weighted, directed graph in Alloy0 and
Fig. 3(b) gives its KFOL translation. The line numbers denote which Alloy0
statement produces each KFOL formula.

It should be noted that our type system is less precise than that of Alloy0; we
encode some type-related properties as additional formulas that are incorporated
as assumptions. Using the same type system would require a vast number of
operators to be defined for all types, and a completely untyped system would
not be compatible with our distinction of atoms and relations. Our calculus
represents a useful compromise where arity information is captured syntactically
by types, but the signature hierarchy is enforced semantically by formulas.

428 M. Ulbrich et al.

1 sig WT
2 sig Node
3 edges: Node→Node→WT
4 sig Root in Node

1 WT : Rel1
2 Node : Rel1
1,2 disj 1(WT ,Node)
3 edges : Rel3
3 subset3(edges , prod1×2(Node, prod1×1(Node ,WT)))
4 Root : Rel1
4 subset1(Root ,Node)

(a) (b)

Fig. 3. An example of translating declarations: (a) Alloy0, (b) KFOL

4.2 Relational Expressions

We use the auxiliary translation function E : exp ∪ intExp → Expr to translate
Alloy expressions. A basic expression, namely a type, relation, or variable t is
translated to its KFOL counterpart N [t]. The translation of other relational
expressions is given in Fig. 4. Integer expressions are discussed in Section 4.3.

The Alloy0 relation none is translated to a KFOL constant none1 : Rel1 and is
axiomatized to be empty. Relational operators are translated to KFOL functions
whose names are subscripted by the arity information of their arguments. The
semantics of these functions are defined by axioms over the predicates inn.

Most axioms of Fig. 4 directly define the Alloy0 semantics of the corresponding
operators. Due to the compactness of FOL, however, transitive closure cannot
be characterized by a recursively enumerable set of first-order axioms [19]. Such
an axiomatization is possible for finite interpretations [6], but because we are
interested in infinite systems as well, those results are not applicable to our
approach.

We define transitive closure using a primitive recursive function itrJoin2 that
uses the built-in integer type of KeY. This translation is comprehensible for users
and allows us to define canonical induction calculus rules. As shown in Fig. 4,
for a binary relation r and any integer i ≥ 0, the KFOL expression itrJoin2 (r, i)
evaluates to a relation that contains the pairs (a, b) where b is reachable from a
by following 0 to i steps in r.

4.3 Integer Expressions and Cardinality

The Alloy Analyzer calculates arithmetic expressions with respect to a fixed
bitwidth, and thus calculations are subject to overflow. When verifying speci-
fications, however, overflow is often not intended and integers are assumed to
represent the infinite set of mathematical integers. Therefore, we translate Al-
loy0 integer expressions using KFOL’s int type that models the semantics of
mathematical integers, thus deliberately deviating from the Alloy semantics. In-
teger numbers, arithmetic expressions, and comparisons in Alloy0 are translated
to their counterparts in KFOL.

The Alloy Analyzer requires all relations to be finite, and thus the cardinality
operator is defined for all expressions. In our translation, however, relations

A Proof Assistant for Alloy Specifications 429

E : exp ∪ intExp → Expr

E[none] = none1 E[~x2] = transpose2(E[x2])
E[xn + yn] = unionn(E[xn], E[yn]) E[^x2] = tc2(E[x2])
E[xn - yn] = diff n(E[xn], E[yn]) E[Int ie] = sin1(i2a(E[ie]))
E[xn & yn] = intersectn(E[xn], E[yn]) E[int v] = a2i(ordInv1(E[v], 1))

E[xn.ym] = joinn×m(E[xn], E[ym]) E[i1
*

±i2] = E[i1]
∗
±E[i2]

E[xn -> ym] = prodn×m(E[xn], E[ym]) E[#xn] = cardn (E[xn])

E[(sum v : x1 | ie)] = Σ
i=card1 (E[x1])
i=1 E[ie][sin1(ordInv1(E[x1], i))/N [v]]

KFOL Axioms:

∀a:Atom | in1(a,none1)⇔ false
∀a, b:Atom | in1(b, sin1(a))⇔ a = b
∀r, s:Reln, a1:n:Atom | inn(a1:n, unionn(r, s))⇔ inn(a1:n, r) ∨ inn(a1:n, s)
∀r, s:Reln, a1:n:Atom | inn(a1:n, diff n(r, s))⇔ inn(a1:n, r) ∧ ¬inn(a1:n, s)
∀r, s:Reln, a1:n:Atom | inn(a1:n, intersectn(r, s))⇔ inn(a1:n, r) ∧ inn(a1:n, s)
∀r:Reln, s:Relm, a1:n+m−2:Atom | inn+m−2(a1:n+m−2, joinn×m(r, s))

⇔ (∃b:Atom | inn(a1:n−1, b, r) ∧ inm(b, an:n+m−2, s))
∀r:Reln, s:Relm, a1:n+m:Atom |

inn+m(a1:n+m, prodn×m(r, s))⇔ inn(a1:n, r) ∧ inm(an+1:n+m, s)
∀r:Rel2, a1, a2:Atom | in2(a1, a2, transpose2(r))⇔ in2(a2, a1, r)
∀r:Rel2, a1:2:Atom | in2(a1:2, tc2(r))⇔ ∃i: int | i ≥ 0 ∧ in2(a1:2, itrJoin2(r, i))
∀r:Rel2, i: int

≥0 | itrJoin2(r, 0) = r ∧
itrJoin2 (r, i+ 1) = union2(itrJoin2(r, i), join2×2(r, itrJoin2(r, i))))

∀r:Reln, a1:n:Atom | (finiten(r) ∧ inn(a1:n, r))⇒ 1 ≤ ordn(r, a1:n) ≤ cardn(r)
∀r:Reln, i: int | (finiten(r) ∧ 1 ≤ i ≤ cardn(r))

⇒ ∃a1:n:Atom | inn(a1:n, r) ∧ ordn(r, a1:n) = i
∀r:Reln, a1:n, b1:n:Atom | (finiten(r) ∧ inn(a1:n, r) ∧ inn(b1:n, r)

∧ ordn(r, a1:n) = ordn(r, b1:n))⇒ (a1 = b1 ∧ . . . ∧ an = bn)
∀r:Rel1, a:Atom | in1(a, r)⇒ ordInv1(r, ord1 (r, a)) = a
∀a:Atom | in1(a,N [Int])⇒ i2a(a2i(a)) = a
∀i: int | in1(i2a(i), N [Int]) ∧ a2i(i2a(i)) = i

Fig. 4. Translation rules for Alloy0 expressions. xi and yi represent Alloy0 expressions
of arity i. The expression e[e1/e2] substitutes e1 for all occurrences of e2 in e.

are potentially infinite, and thus cardinality is defined only for those that are
explicitly known to be finite. For this purpose, we introduce a family of finiteness
predicates finiten : Reln → Prop that hold if the user marks a signature as finite,
or if finiteness can be inferred2. Unlike the Alloy Analyzer that finitizes relations
by user-provided, specific upper bounds, Kelloy considers all finite domains for
those relations that are flagged as finite.

As shown in Fig. 4, we translate Alloy0’s cardinality operator to a KFOL
function cardn : Reln → int≥0 which yields the cardinality of an n-ary relation r
if it is finite, and is unspecified otherwise. cardn is computed using an ordering
function ordn : Reln×Atomn → int>0—a bijection from the elements of a finite

2 Kelloy includes a set of axioms to infer finiteness. For example, the singleton sin1(a)
is always finite, and the union of two finite relations is finite.

430 M. Ulbrich et al.

F : dcl ∪ formula → Frml F [one xn] = onen(E[xn])
F [xn in yn] = subsetn(E[xn], E[yn]) F [lone xn] = lonen(E[xn])
F [xn = yn] = (E[xn] = E[yn]) F [some xn] = somen(E[xn])
F [all a : set xn | g] = (∀ N [a]:Reln | subsetn(N [a], E[xn])⇒ F [g])
F [some a : set xn | g] = (∃ N [a]:Reln | subsetn(N [a], E[xn]) ∧ F [g])

KFOL Axioms:

∀r, s:Reln | r = s ⇔ ∀a1:n:Atom | inn(a1:n, r)⇔ inn(a1:n, s)
∀r:Reln | onen (r)⇔ somen (r) ∧ lonen (r)
∀r:Reln | lonen (r)⇔

∀a1 :n , b1 :n :Atom | inn(a1 :n , r) ∧ inn(b1 :n , r)⇒ (a1 = b1) ∧ . . . ∧ (an = bn)
∀r:Reln | somen (r)⇔ ∃a1:n:Atom | inn(a1:n, r)

Fig. 5. Translation rules for Alloy0 formulas. xn denotes an Alloy0 expression of arity n.

relation r to the inclusive integer interval [1, . . . , cardn(r)]. It is easy to show that
if the axioms for ordn , as shown in Fig. 4 hold, cardn(r) gives the cardinality of
r. We also define the function ordInv1 : Rel1× int → Atom to denote the inverse
of ord1(r) for any unary relation r.

The Alloy0 signature Int is translated like other top-level signatures to a
constant function symbol N [Int] : Rel1. The Alloy0 cast operators Int and int

are translated using the bijections i2a : int→ Atom and a2i : Atom→ int that
give the atom corresponding to an integer value and vice versa. Since in Alloy0,
the int operator is only applicable to scalar variables, the atom corresponding
to v in the expression (int v) can be retrieved by ordInv1(E[v], 1).

The sum construct is translated using the cardinality function and KFOL’s
bounded sum operator. Note that, due to the underspecification of card1 and
ordInv1, the result of the sum operation is unspecified if E[S] is not finite.

4.4 Formulas

Alloy0 formulas are translated using the auxiliary translation function F given
in Fig. 5. Subset and equality formulas are translated using the subseti predi-
cates and KFOL’s built-in (polymorphic) equality. Negation, conjunction, dis-
junction, and implication operators in Alloy0 are translated to their counterparts
in KFOL, and skipped in Fig. 5 in the interest of space. For an Alloy0 expres-
sion x of arity n, a multiplicity formula (mult x) is translated to a predicate
multn(E[x]) in KFOL where mult stands for the multiplicities some, lone, and
one. Further axioms give the semantics of these predicates. Universal and exis-
tential quantifiers in Alloy0 are translated to those in KFOL where the bounding
expression is incorporated into the body of the quantifier.

4.5 The Ordering Module

The Alloy Analyzer provides some library modules that can be used in Alloy
problems. Most library functions are inlined and treated like other expressions.
The ordering module, however, triggers special optimizations in the Analyzer.

A Proof Assistant for Alloy Specifications 431

Since this module is widely used, we also treat it specially. The declaration
ord[S] defines a total order3 on a signature S, which is represented by Alloy0
relations next:S->S, first:S, and last:S which, respectively, denote the suc-
cessor of an element, and the smallest and the largest elements of the order.
These relations are translated to KFOL constants nextS : Rel2, firstS : Rel1,
and lastS : Rel1, respectively.

If finite1(N [S]) holds, the previously defined ord1 function induces an or-
dering. When N [S] is not finite, nextS relates each element to its immediate
successor and thus makes N [S] countable (i.e. isomorphic to the natural num-
bers). In this case, we extend the axioms for ord1 to define a bijection from N [S]
to int>0. The semantics of nextS is then given by:

∀a, b:Atom |(in1(a,N [S]) ∧ in1(b,N [S]))

⇒ (in2(a, b,nextS)⇔ ord1(N [S], b) = ord1(N [S], a) + 1)

Ordered signatures in Alloy0 cannot be empty. This is encoded as ¬(N [S] =
none1). The constant firstS yields the element associated with 1, and lastS
yields the one associated with card1(N [S]) if N [S] is finite, and the empty set
otherwise.

firstS = sin1(ordInv1(N [S], 1)) ¬finite1(N [S])⇒ lastS = none1

finite1(N [S])⇒ (lastS = sin1(ordInv1(N [S], card1(N [S]))))

Properties about the elements of a countable set are often proved using induc-
tion. KeY provides an induction scheme for its integer type which can be used
for this purpose.

4.6 Theoretical Properties

This section discusses the correctness and completeness of our translation. In
KFOL, the semantics of the built-in integers is set to Z. KeY’s calculus contains
a set of inference rules to deal with arithmetic expressions. The calculus, however,
cannot be complete because according to Gödel’s incompleteness theorem, there
is no sound and complete calculus for integer arithmetic [4, §2.7].

The first two theorems state the properties for Alloy0 problems without in-
tegers and the third one handles the integer case. The proof sketches for the
theorems can be found elsewhere [21].

In the following, we use sigs(P) to denote the set of all signatures (not in-
cluding the signature Int) defined in an Alloy0 problem P .

Theorem 1 (Correctness). Let P be an Alloy0 problem that does not contain
any integer expression (neither of type int nor Int) and fin ⊆ sigs(P) a set of
signatures. Let T [<P, fin>] = <C, kd, ka> be the translation of P . If Ax |=C

kd ⇒ ka, then P is valid in all structures that interpret the signatures in fin as
finite.

3 The Alloy Analyzer treats signatures as finite, so the last element of the order does
not have a next element.

432 M. Ulbrich et al.

This theorem implies that the Alloy Analyzer will not produce a counterex-
ample for an Alloy0 problem (not containing integers) that has been proved by
Kelloy. If fin = ∅, Thm. 1 implies that our translation is correct with respect to
all structures, i.e. both finite and infinite ones. The Alloy Analyzer, on the other
hand, interprets Alloy0 problems only with respect to finite structures.

Completeness, however, holds only for finite structures. In first-order logic,
it is not possible to formalize that one type is the powerset of another type.
Consequently, our axioms cannot guarantee that the KFOL type Reln represents
the set of all n-ary relations. This limitation did not appear problematic in
practice, but restricts the completeness theorem to the case of finite structures.

Theorem 2 (Relative completeness). Let P be an Alloy0 problem that does
not contain any integer expression (neither of type int nor Int).
Let T [<P, sigs(P)>] = <C, kd, ka> be the translation of P with all the sig-
natures finitized. If P has no counterexample which interprets all signatures as
finite, then Ax |=C kd ⇒ ka.

The next theorem considers Alloy0 problems that contain integer expressions.
The Alloy Analyzer—due to its methodology—finitizes all domains. Hence, it
cannot check problems for validity with respect to Z, but only with respect to a
fixed bitwidth. In contrast, integers in KFOL are never interpreted bounded.
Therefore, we cannot establish a relationship between arbitrary Alloy0 and
KFOL counterexamples. For example, an Alloy0 formula that specifies that there
is a maximum integer value is not valid with respect to Z and thus cannot be
proved by Kelloy. However, the Alloy Analyzer will not produce a counterexam-
ple either since the formula is valid in all structures with a finite integer domain.
Consequently, we generalize the correctness and completeness results by fixing
the semantics of the Alloy signature Int to Z:

Theorem 3 (Correctness and Completeness modulo integers). Let P be
an Alloy0 problem (which may contain integer expressions) and fin ⊆ sigs(P) a
set of signatures. Let T [<P, fin>] = <C, kd, ka> be the translation of P .

If Ax |=C kd ⇒ ka, then P is valid in all structures that interpret the signa-
tures in fin as finite and interpret the signature Int as Z.

If fin = sigs(P) and P has no counterexample which interprets all signatures
in sig(P) as finite and the signature Int as Z, then Ax |=C kd ⇒ ka.

5 Reasoning Strategy

The KeY system uses a sequent calculus [15] for proving. A proof-tree is con-
structed by applying the calculus rules to a proof sequent. This can either be done
manually through the GUI, or automatically by KeY’s proof search strategy that
assigns priorities to all applicable rules and instantiates quantifiers heuristically.
We extend the existing strategy by incorporating new (Alloy-specific) calculus
rules. All axioms from the previous sections are implemented as rules for the cal-
culus. For example, axioms that follow the form ∀x: T | P (x)⇒ (F (x)⇔ G(x))

A Proof Assistant for Alloy Specifications 433

become conditional rewrite rules that replace F (x) with G(x) when the guard
P (x) is known to hold. Since all axioms become rules, the set of Axioms Ax is
no longer included in the proof obligation.

The axiom rules rewrite all invocations of the predicates subsetn , disjn , lonen ,
onen , somen , and relational equality to their quantified definitions. We consider
this undesirable for two reasons: (1) formulas grow considerably in size and
are thus hard to understand, and (2) when quantifiers cannot be eliminated by
skolemization, they require the strategy to provide a suitable instantiation which
is a heuristic task.

Our strategy addresses this by only expanding predicates to their definitions
when skolemization is applicable. Otherwise, lemma rules are used to exploit the
semantics of the predicates without rewriting them. For example, a lemma lets
us conclude inn(a1:n, sn) from inn(a1:n, rn) and subsetn(rn, sn). This maintains
the structural correspondence between formulas and the Alloy0 specification,
and allows reasoning on the abstraction level of relations. Overall, the strategy
features around 500 lemma rules that have been proved using KeY to follow from
the axioms.

The recursive nature of the definition of transitive closure (tc2) poses a special
challenge during proving. In order to simplify proofs and to increase the automa-
tion level, we use additional lemmas to capture several simple properties about
tc2, such as its transitivity. Such lemmas are useful for proving some assertions
that involve transitive closure. For some cases, however, an induction scheme
is required. We can use induction on the integers in the definition of itrJoin2.
However, formulas generated this way get cumbersome quickly. We therefore de-
fine special induction schemes that are more intuitive, and thus easier to use.
Further information can be found elsewhere [21].

6 Evaluation

In this section, we summarize our experimental results of proving Alloy assertions
with Kelloy. We proved a total of 22 assertions in 10 Alloy problems of varying
sizes and complexity4. The chosen collection of Alloy problems is included in the
Alloy Analyzer 4.1 distribution and involves all relevant aspects of the language,
including transitive closure, integer arithmetic, and the ordering module. In the
following, we first elaborate on the automatically proved assertions and show
the impact of our reasoning strategy. We then report on the interactive proofs.

6.1 Automation

Out of the 22 assertions, 12 have been proved completely automatically by Kel-
loy. The remaining 10 assertions required manual guidance as discussed in the
next section. Table 1 shows runtime measured on an Intel Core2Quad, 2.8GHz,
8GB memory, and the number of proof steps (i.e. the number of single rule
applications) required for each automatic proof.

4 All Alloy problems and proofs can be found at http://asa.iti.kit.edu/306.php

http://asa.iti.kit.edu/306.php

434 M. Ulbrich et al.

Table 1. Automatically-proved assertions (time in seconds, time-out after 2h)

Kelloy Strategy Basic Strategy

Problem Assertion Time (Steps) Result Time (Steps) Result

address book delUndoesAdd 9.3 (2476) proved 27.1 (5475) proved
addIdempotent 0.1 (113) proved 5.0 (1176) proved

abstract memory writeRead 0.8 (567) proved 1.0 (597) proved
writeIdempotent 14.0 (4482) proved 6.5 (1009) proved

media assets hidePreservesInv 0.0 (39) proved 0.1 (70) proved
pasteNotAffectsHidden 15.9 (2619) proved time-out (–) failed

mark sweep soundness1 3.0 (1195) proved time-out (–) failed
grandpa noSelfFather 0.0 (77) proved 0.0 (77) proved

noSelfGrandpa 26.5 (3144) proved 39.8 (3276) proved
filesystem FileInDir 0.5 (160) proved time-out (–) failed

SomeDir 0.2 (205) proved time-out (–) failed
birthday addWorks 0.1 (129) proved 1.2 (506) proved

Kelloy’s strategy uses numerous lemmas to maintain the structure of formulas
and to allow reasoning on the abstraction level of relations. To evaluate the
impact of these lemmas on the automation level, we compared Kelloy’s strategy
to a basic strategy that applies all the axiom rules, but none of the lemmas.
Table 1 also shows these numbers.

Out of the 12 assertions automatically proved by Kelloy, 4 could not be proved
automatically by the basic strategy. Furthermore, although for the remaining
assertions, the basic strategy suffices, Kelloy performs most of the proofs faster
and requires fewer proof steps. Exceptions include writeIdempotent for which
the basic strategy is superior, and noSelfFather and writeRead for which the
two strategies perform equally well. These assertions involve simple formulas for
which rewriting function symbols as their quantified definitions and using the
default quantifier instantiation is sufficient.

6.2 Interactive Proofs

10 of the verified Alloy assertions required user interaction to guide the prover.
During interactive proving, the user manually applies rules to the sequent (KeY’s
GUI makes this quite convenient). The automatic proof search strategy can be
invoked anytime on the subgoals of a proof. The strategy then either proves
the subgoal, or stops when the maximum number of steps (set by the user) is
reached. It is a common practice to frequently invoke the strategy and only focus
on those cases that the prover cannot solve on its own.

The manual rule applications can be categorized into three groups of de-
scending complexity: (1) Hypothesis introduction: for example as an induction
hypothesis or for a case distinction. (2) Prover guidance: rule applications that
allow the strategy to solve a subgoal (more quickly). These include, for example,
quantifier instantiations and case distinctions on formulas from the sequent. (3)
Non-essential steps: simple steps that the strategy would find automatically but
the user prefers to do manually to keep track of the proof.

The complexity of the proofs for the 10 interactively-proved assertions differ
considerably. 7 assertions required only very few (max. 10) interactive steps. One
example of such a proof is the completeness assertion for the mark and sweep

A Proof Assistant for Alloy Specifications 435

Alloy problem: only one, yet quite a complex step to handle transitive closure
had to be done interactively. The remaining 3 assertions required between 36
and 291 interactive steps. The assertion stating the correctness of Dijkstra’s
deadlock prevention algorithm had the most complex proof: we introduced seven
intermediate hypotheses that were proved using induction. Overall, the proof
took 18875 steps out of which 7/219/65 were manual steps of the categories
1/2/3. A proof of this complexity can be conducted by an experienced user in
roughly one work day.

In order to evaluate the impact of the user’s expertise on the interactive proof
process, we asked an Alloy user with no previous experience in KeY to prove a
soundness assertion for the mark and sweep Alloy problem. Out of 1389 steps,
207 (2/57/148) have been performed manually. The proof, including a proof-
sketch on paper, was conducted within two work days.

In comparison to that, an experienced user in both Alloy and KeY, proved the
same assertion in 4 hours with only 10 (5/1/4) interactive steps out of a total of
9372 steps. The higher number of total steps, but drastically smaller number of
interactive steps show that it requires some experience to effectively leverage the
automation strategy. However, the experiment indicates that the proof process
is intuitive enough for a user with no prior experience in Kelloy.

7 Conclusion

We presented Kelloy, a tool for full verification of Alloy problems. We formally
defined a translation of the Alloy language to the first-order logic of the theorem
prover KeY and discussed its correctness and completeness. To our knowledge,
Kelloy is the only system that provides proof capability for the whole Alloy
language (including integers, cardinality, and the ordering module).

We used Kelloy to prove some challenging Alloy assertions semi-automatically.
Our experiments showed that usually only structurally complex systems or sys-
tems that involve inductive properties require user interaction. Moreover, con-
siderable parts of a proof can be automated while the user only performs central
steps interactively. In many cases, however, conducting a proof using Kelloy re-
quires in-depth knowledge of the analyzed Alloy problem; the required time and
effort depend on the user’s experience in the tool. Kelloy is thus intended to be
used in conjunction with automatic approaches as described in [7].

The presentation of proof obligations in Kelloy resembles the original Alloy
structure such that even a non-expert in KeY can conduct interactive proofs.
The effort of interaction might be further lowered in the future, for example
by pretty-printing expressions in the Alloy syntax or integration of the Alloy
Analyzer for counterexample generation and visualization.

Several program analysis tools (see [7] for some examples) use Alloy as their
specification languages. Incorporating Alloy into KeY raises the opportunity of
full verification of programs that contain Alloy specifications, leveraging both
the expressiveness of Alloy and the dynamic logic of KeY. Pursuing this idea is
left for future work.

436 M. Ulbrich et al.

Acknowledgement. We thank Peter H. Schmitt and the anonymous reviewers
for their helpful comments. This work was funded in part by the MWK-BW
grant 655.042/taghdiri/1.

References

1. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamenta Informaticae (2007)

2. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.: Integrating model checking
and theorem proving for relational reasoning. In: RMICS (2003)

3. Athena, http://people.csail.mit.edu/kostas/dpls/athena/
4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

5. Buss, S.R.: First-order proof theory of arithmetic. In: Handbook of Proof Theory,
pp. 79–147. Elsevier (1998)

6. van Eijck, J.: Defining (reflexive) transitive closure on finite models,
http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf

7. El Ghazi, A.A., Geilmann, U., Ulbrich, M., Taghdiri, M.: A Dual-Engine for Early
Analysis of Critical Systems. In: DSCI (2011)

8. El Ghazi, A.A., Taghdiri, M.: Analyzing Alloy Constraints using an SMT Solver:
A Case Study. In: AFM (2010)

9. El Ghazi, A.A., Taghdiri, M.: Relational Reasoning via SMT Solving. In: Butler,
M., Schulte,W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011)

10. Fortune, S., Leivant, D., O’Donnell, M.: The expressiveness of simple and second-
order type structures. J. ACM (1983)

11. Frias, M., Pombo, C.G.L.: Interpretability of first-order linear temporal logics in
fork algebras. In: Journal of logic and algebraic programming (2006)

12. Frias, M.F., Pombo, C.G.L., Aguirre, N.M.: An Equational Calculus for Alloy. In:
Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.
162–175. Springer, Heidelberg (2004)

13. Frias, M., Pombo, C.G.L., Baum, G., Aguirre, N.M., Maibaum, T.: Taking Alloy
to the movies. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS,
vol. 2805, pp. 678–697. Springer, Heidelberg (2003)

14. Frias, M.F., Pombo, C.G.L., Moscato, M.M.: Alloy Analyzer+PVS in the Analysis
and Verification of Alloy Specifications. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 587–601. Springer, Heidelberg (2007)

15. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift (1935)

16. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press
(2006)

17. Jackson, D., Wing, J.: Lightweight formal methods. IEEE Computer (1996)
18. Köker, C.: Discharging Event-B proof obligations. Studienarbeit, Universität

Karlsruhe, TH (2008)
19. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.:

Simulating reachability using first-order logic with applications to verification of
linked data structures. Logical Methods in Computer Science 5(2) (2009)

20. Shankar, N., Owre, S., Rushby, J., Stringer-Calvert, D.: PVS Prover Guide. Com-
puter Science Laboratory, SRI International (1999)

21. Ulbrich, M., Geilmann, U., Ghazi, A.A.E., Taghdiri, M.: On proving alloy specifi-
cations using KeY. Tech. Rep. 2011-37, Karlsruhe Institute of Technology (2011)

http://people.csail.mit.edu/kostas/dpls/athena/
http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf

Reachability under Contextual Locking

Rohit Chadha1, P. Madhusudan2, and Mahesh Viswanathan2

1 LSV, ENS Cachan & CNRS & INRIA
2 University of Illinois, Urbana-Champaign

Abstract. The pairwise reachability problem for a multi-threaded pro-
gram asks, given control locations in two threads, whether they can be
simultaneously reached in an execution of the program. The problem is
important for static analysis and is used to detect statements that are
concurrently enabled. This problem is in general undecidable even when
data is abstracted and when the threads (with recursion) synchronize
only using a finite set of locks. Popular programming paradigms that
limit the lock usage patterns have been identified under which the pair-
wise reachability problem becomes decidable. In this paper, we consider
a new natural programming paradigm, called contextual locking, which
ties the lock usage to calling patterns in each thread: we assume that
locks are released in the same context that they were acquired and that
every lock acquired by a thread in a procedure call is released before the
procedure returns. Our main result is that the pairwise reachability prob-
lem is polynomial-time decidable for this new programming paradigm as
well.

1 Introduction

In static analysis of sequential programs [7], such as control-flow analysis, data-
flow analysis, points-to analysis, etc., the semantics of the program and the data
that it manipulates is abstracted, and the analysis concentrates on computing
fixed-points over a lattice using the control-flow in the program. For instance, in
flow-sensitive context-sensitive points-to analysis, a finite partition of the heap
locations is identified, and the analysis keeps track of the set of possibilities of
which variables point may point to each heap-location partition, propagating this
information using the control-flow graph of the program. In fact, several static
analysis questions can be formulated as reachability in a pushdown system that
captures the control-flow of the program (where the stack is required to model
recursion) [10].

In concurrent programs, abstracting control-flow is less obvious, due to the
various synchronization mechanisms used by threads to communicate and or-
chestrate their computations. One of the most basic questions is pairwise reach-
ability: given two control locations pc1 and pc2 in two threads of a concurrent
program, are these two locations simultaneously reachable? This problem is very
basic to static analysis, as many analysis techniques would, when processing pc1,
take into account the interference of concurrent statements, and hence would

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 437–450, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

438 R. Chadha, P. Madhusudan, and M. Viswanathan

like to know if a location like pc2 is concurrently reachable. Data-races can also
be formulated using pairwise reachability, as it amounts to asking whether a
read/write to a location (or an abstract heap region) is concurrently reachable
with a write to the same location (or region). More sophisticated verification
techniques like deductive verification can also utilize such an analysis. For in-
stance, in an Owicki-Gries style proof [8] of a concurrent program, the invariant
at pc1 must be proved to be stable with respect to concurrent moves by the
environment, and hence knowing whether pc2 is concurrently reachable will help
determine whether the statement at pc2 need be considered for stability.

Pairwise reachability of control locations is hence an important problem.
Given that individual threads may employ recursion, this problem can be mod-
eled as reachability of multiple pushdown systems that synchronize using the
synchronization constructs in the concurrent program, such as locks, barriers,
etc. However, it turns out that even when synchronization is limited to using
just locks, pairwise reachability is undecidable [9]. Consequently, recently, many
natural restrictions have been identified under which pairwise reachability is
decidable.

One restriction that yields a decidable pairwise reachability problem is nested
locking [5,4]: if each thread performs only nested locking (i.e. locks are released
strictly in the reverse order in which they are acquired), then pairwise reachabil-
ity is known to be decidable [5]. The motivation for nested locking is that many
high-level locking constructs in programming languages naturally impose nested
locking. For instance the synchronize(o) { ...} statement in Java acquires
the lock associated with o, executes the body, and releases the lock, and hence
nested synchronized blocks naturally model nested locking behaviors. The use-
fulness of the pairwise reachability problem was demonstrated in [5] where the
above decision procedure for nested locking was used to find bugs in the Daisy
file system. Nested locking has been generalized to the paradigm of bounded
lock chaining for which pairwise reachability has also been proved to be decid-
able [2,3].

In this paper, we study a different restriction on locking, called contextual
locking. A program satisfies contextual locking if each thread, in every context,
acquires new locks and releases all these locks before returning from the context.
Within the context, there is no requirement of how locks are acquired and re-
leased; in particular, the program can acquire and release locks in a non-nested
fashion or have unbounded lock chains.

The motivation for contextual locking comes from the fact that this is a very
natural restriction. First, note that it’s very natural for programmers to release
locks in the same context they were acquired; this makes the acquire and release
occur in the same syntactic code block, which is a very simple way of managing
lock acquisitions.

Secondly, contextual locking is very much encouraged by higher-level locking
constructs in programming languages. For example, consider the code fragment
of a method, in Java [6] shown in Figure 1. The above code takes the lock
associated with done followed later by a lock associated with object r. In order

Reachability under Contextual Locking 439

public void m() {

synchronized(done) {

...

synchronized(r) {

...

while (done=0)

try {

done.wait();

}

...

}

Fig. 1. Synchronized blocks in Java

to proceed, it wants done to be equal to 1 (a signal from a concurrent thread,
say, that it has finished some activity), and hence the thread waits on done,
which releases the lock for done, allowing other threads to proceed. When some
other thread issues a notify, this thread wakes up, reacquires the lock for done,
and proceeds.

Notice that despite having synchronized blocks, the wait() statement causes
releases of locks in a non-nested fashion (as it exhibits the sequence acq lock done;
acq lock r; rel lock done; acq lock done; rel lock r; rel lock done;). However, note
that the code above does satisfy contextual locking; the locks m acquires are
all released before the exit, because of the synchronized-statements. Thus, we
believe that contextual locking is a natural restriction that is adhered to in many
programs.

The main result of this paper is that pairwise reachability is decidable under
the restriction of contextual locking. It is worth pointing out that this result
does not follow from the decidability results for nested locking or bounded lock
chains [5,2]. Unlike nested locking and bounded lock chains, contextual lock-
ing imposes no restrictions on the locking patterns in the absence of recursive
function calls; thus, programs with contextual locking may not adhere to the
nested locking or bounded lock chains restrictions. Second, the decidability of
nested locking and bounded lock chains relies on a non-trivial observation that
the number of context switches needed to reach a pair of states is bounded by a
value that is independent of the size of the programs. However, such a result of a
bounded number of context switches does not hold for programs with contextual
locking. Thus, the proof techniques used to establish decidability are different
as well.

We conclude this introduction with a brief outline of the proof ideas behind our
decidability result. We observe that if a pair of states is simultaneously reachable
by some execution, then they are also simultaneously reachable by what we call
a well bracketed computation. A concurrent computation of two threads is not
well bracketed, if in the computation one process, say P0, makes a call which is
followed by the other process (P1) making a call, but then P0 returns from its
call before P1 does (but after P1 makes the call). We then observe that every

440 R. Chadha, P. Madhusudan, and M. Viswanathan

well bracketed computation of a pair of recursive programs can simulated by
a single recursive program. Thus, decidability in polynomial time follows from
observations about reachability in pushdown systems [1].

The rest of the paper is organized as follows. Section 2 introduces the model
of concurrent pushdown systems communicating using locks and presents its
semantics. Our main decidability result is presented in Section 3. Conclusions
are presented in Section 4.

2 Model

Pushdown Systems. For static analysis, recursive programs are usually modeled
as pushdown systems. Since we are interested in modeling threads in concurrent
programs we will also need to model locks for communication between threads.
Formally,

Definition 1. Given a finite set Lcks, a pushdown system (PDS) P using Lcks
is a tuple (Q,Γ, qs, δ) where

– Q is a finite set of control states.
– Γ is a finite stack alphabet.
– qs is the initial state.
– δ = δint ∪ δcll ∪ δrtn ∪ δacq ∪ δrel is a finite set of transitions where

• δint ⊆ Q×Q.
• δcll ⊆ Q× (Q× Γ).
• δrtn ⊆ (Q × Γ)×Q.
• δacq ⊆ Q× (Q× Lcks).
• δrel ⊆ (Q × Lcks)×Q.

For a PDS P , the semantics is defined as a transition system. The configuration
of a PDS P is the product of the set of control states Q and the stack which is
modeled as word over the stack alphabet Γ. For a thread P using Lcks, we have
to keep track of the locks being held by P . Thus the set of configurations of P
using Lcks is ConfP = Q× Γ ∗ × 2Lcks where 2Lcks is the powerset of Lcks.

Furthermore, the transition relation is no longer just a relation between con-
figurations but a binary relation on 2Lcks×ConfP since the thread now executes
in an environment, namely, the free locks (i.e., locks not being held by any other
thread). Formally,

Definition 2. A PDS P = (Q,Γ, qs, δ) using Lcks gives a labeled transition
relation −→P⊆ (2Lcks × (Q × Γ ∗ × 2Lcks)) × Labels × (2Lcks × (Q × Γ ∗ × 2Lcks))
where Labels = {int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks} and −→P is defined as
follows.

– fr : (q, w, hld)
int−→P fr : (q′, w, hld) if (q, q′) ∈ δint.

– fr : (q, w, hld)
cll−→P fr : (q′, wa, hld) if (q, (q′, a)) ∈ δcll.

– fr : (q, wa, hld)
rtn−→P fr : (q′, w, hld) if ((q, a), q′) ∈ δrtn.

– fr : (q, w, hld)
acq(l)−→ P fr \ {l} : (q′, w, hld ∪ {l}) if (q, (q′, l)) ∈ δacq and l ∈ fr.

– fr : (q, w, hld)
rel(l)−→P fr ∪ {l} : (q′, w, hld \ {l}) if ((q, l), q′) ∈ δrel and l ∈ hld.

Reachability under Contextual Locking 441

2.1 Multi-pushdown Systems

Concurrent programs are modeled as multi-pushdown systems. For our paper,
we assume that threads in a concurrent program communicate only through
locks which leads us to the following definition.

Definition 3. Given a finite set Lcks, a n-pushdown system (n-PDS) CP com-
municating via Lcks is a tuple (P1, . . . ,Pn) where each Pi is a PDS using Lcks.

Given a n-PDS CP, we will assume that the set of control states and the stack
symbols of the threads are mutually disjoint.

Definition 4. The semantics of a n-PDS CP = (P1, . . . ,Pn) communicating
via Lcks is given as a labeled transition system T = (S, s0,−→) where

– S is said to be the set of configurations of CP and is the set (Q1 × Γ ∗
1 ×

2Lcks)× · · · × (Qn × Γ ∗
n × 2Lcks) where Qi is the set of states of Pi and Γi is

the stack alphabet of Pi.
– s0 is the initial configuration and is ((qs1, ε, ∅), · · · , (qsm, ε, ∅)) where qsi is

the initial state of Pi.
– The set of labels on the transitions is Labels × {1, . . . , n} where Labels =

{int, cll, rtn} ∪ {acq(l), rel(l) | l ∈ Lcks}. The labeled transition relation
(λ,i)−→

is defined as follows

((q1, w1, hld1), · · · (qn, wn, hldn))
(λ,i)−→ ((q′1, w

′
1, hld

′
1), · · · (q′n, w′

n, hld
′
n))

iff

Lcks \ ∪1≤r≤nhldr : (qi, wi, hldi)
λ−→Pi Lcks \ ∪1≤r≤nhld

′
r : (q′i, w

′
i, hld

′
i)

and for all j �= i, qj = q′j , wj = w′
j and hldj = hld′j.

Notation: Given a configuration s = ((q1, w1, hld1), · · · , (qn, wn, hldn)) of a
n-PDS CP , we say that Confi(s) = (qi, wi, hldi),CntrlSti(s) = qi, Stcki(s) =
wi, LckSti(s) = hldi and StHti(s) = |wi|, the length of wi.

Computations. A computation of the n-PDS CP, Comp, is a sequence s0
(λ1,i1)−→

· · · (λm,im)−→ sm such that s0 is the initial configuration of CP. The label of the com-
putation Comp, denoted Label(Comp), is said to be the word (λ1, i1) · · · (λm, im).

The transition sj
(cll,i)−→ sj+1 is said to be a procedure call by thread i. Similarly, we

can define procedure return, internal action, acquisition of lock l and release of

lock l by thread i. A procedure return sj
(rtn,i)−→ sj+1 is said to match a procedure

call s�
(cll,i)−→ s�+1 iff � < j, StHti(s�) = StHti(sj+1) and for all � + 1 ≤ p ≤ j,

StHti(s�+1) ≤ StHti(sp).

442 R. Chadha, P. Madhusudan, and M. Viswanathan

Example 1. Consider the two-threaded program showed in Figure 2. For sake of
convenience, we only show the relevant actions of the programs. Figure 3 shows
computations whose labels are as follows:

Label(Comp1) = (cll, 0)(acq(l1), 0)(cll, 1)(acq(l2), 0)(rel(l1), 0)(acq(l1), 1)
(rel(l2), 0)(rtn, 0)(rel(l1), 1)(rtn, 1)

and

Label(Comp2) = (cll, 0)(acq(l1), 0)(cll, 1)(acq(l2), 0)(rel(l1), 0)(acq(l1), 1)
(rel(l1), 1)(rtn, 1)(rel(l2), 0)(rtn, 0).

respectively.

int a(){

acq l1;

acq l2;

if (..) then{

....

rel l2;

....

rel l1;

};

else{

.....

rel l1

.....

rel l2

};

return i;

};

public void P0() {

n=a();

}

int b(){

acq l1;

rel l1;

return j;

};

public void P1() {

l=a();

}

Fig. 2. A 2-threaded programs with threads P0 and P1

2.2 Contextual Locking

In this paper, we are considering the pairwise reachability problem when the
threads follow the discipline of contextual locking. Informally, this means that –

– every lock acquired by a thread in a procedure call must be released before
the corresponding return is executed, and

– the locks held by a thread just before a procedure call is executed are not
released during the execution of the procedure.

Reachability under Contextual Locking 443

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Comp1

Comp2

cll acq(l1) cll acq(l2) rel(l1) acq(l1) rel(l2) rtn rel(l1) rtn

cll acq(l1) cll acq(l2) rel(l1) acq(l1) rel(l1) rtn rel(l2) rtn

Fig. 3. Computations Comp1 and Comp2. Transitions of P0 are shown as solid edges
while transition of P1 are shown as dashed edges; hence the process ids are dropped
from the label of transitions. Matching calls and returns are shown with dotted edges.

Formally,

Definition 5. A thread i in a n-PDS CP = (P1, . . . ,Pn) is said to follow con-

textual locking if whenever s�
(cll,i)−→ s�+1 and sj

(rtn,i)−→ sj+1 are matching procedure

call and return along a computation s0
(λ1,i)−→ s1 · · ·

(λm,i)−→ sm, we have that

LckSti(s�) = LckSti(sj) and for all � ≤ r ≤ j. LckSti(s�) ⊆ LckSti(sr).

Example 2. Consider the 2-threaded program shown in Figure 2. Both the threads
P0 and P1 follow contextual locking. The program P2 in Figure 4 does not follow
contextual locking.

int a(){

acq l1;

rel l2;

return i;

};

public void P2(){

acq l2;

n=a();

rel l1;

}

Fig. 4. A program that does not follow contextual locking

Example 3. Consider the 2-threaded program in Figure 5. The two threads P3
and P4 follow contextual locking as there is no recursion! However, the two

444 R. Chadha, P. Madhusudan, and M. Viswanathan

public void P3(){

acq l1;

while (true){

acq l2;

rel l1;

acq l3;

rel l2;

acq l1;

rel l3;

}

}

public void P4(){

acq l3;

while (true){

acq l1;

rel l3;

acq l2;

rel l1;

acq l3;

rel l2;

}

}

Fig. 5. A 2-threaded program with unbounded lock chains

threads do not follow either the discipline of nested locking [5] or of bounded
lock chaining [2]. Hence, algorithms of [5,2] cannot be used to decide the pairwise
reachability question for this program. Notice that the computations of this pair
of threads require an unbounded number of context switches as the two threads
proceed in lock-step fashion. The locking pattern exhibited by these threads can
present in any program with contextual locking as long as this pattern is within
a single calling context (and not across calling contexts). Such locking patterns
when used in a non-contextual fashion form the crux of undecidability proofs for
multi-threaded programs synchronizing with locks [5].

3 Pairwise Reachability

The pairwise reachability problem for a multi-threaded program asks whether
two given states in two threads can be simultaneously reached in an execution
of the program. Formally,

Given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks, indices 1 ≤ i, j ≤ n
with i �= j, and control states qi and qj of threads Pi and Pj respectively, let
Reach(CP, qi, qj) denote the predicate that there is a computation s0 −→
· · · −→ sm of CP such that CntrlSti(sm) = qi and CntrlStj(sm) = qj . The
pairwise control state reachability problem asks if Reach(CP, qi, qj) is true.

The pairwise reachability problem for multi-threaded programs communicating
via locks was first studied in [9], where it was shown to be undecidable. Later,
Kahlon et. al. [5] showed that when the locking pattern is restricted the pairwise
reachability problem is decidable. In this paper, we will show that the problem is
decidable for multi-threaded programs in which each thread follows contextual
locking. Before we show this result, note that it suffices to consider programs
with only two threads [5].

Reachability under Contextual Locking 445

Proposition 1. Given a n-PDS CP = (P1, . . . ,Pn) communicating via Lcks, in-
dices 1 ≤ i, j ≤ n with i �= j and control states qi and qj of Pi and Pj respectively,
let CP i,j be the 2-PDS (Pi,Pj) communicating via Lcks. Then Reach(CP, qi, qj)
iff Reach(CPi,j , qi, qj).

Thus, for the rest of the section, we will only consider 2-PDS.

3.1 Well-Bracketed Computations

The key concept in the proof of decidability is the concept of well-bracketed
computations, defined below.

Definition 6. Let CP = (P0,P1) be a 2-PDS via Lcks and let Comp = s0
(λ1,i1)−→

· · · (λm,im)−→ sm be a computation of CP. Comp is said to be non-well-bracketed if
there exist 0 ≤ �1 < �2 < �3 < m and i ∈ {0, 1} such that

– s�1
(cll,i)−→ s�1+1 and s�3

(retn,i)−→ s�3+1 are matching call and returns of Pi, and

– s�2
(cll,i)−→ s�2+1 is a procedure call of thread P1−i whose matching return either

occurs after �3 + 1 or does not occur at all.

Furthermore, the triple (�1, �2, �3) is said to be a witness of non-well-bracketing
of Comp.

Comp is said to be well-bracketed if it is not non-well-bracketed.

Example 4. Recall the 2-threaded program from Example 1 shown in Figure 2.
The computation Comp1 (see Figure 3) is non-well-bracketed, while the com-
putation Comp2 (see Figure 3) is well-bracketed. On the other hand, all the
computations of the 2-threaded program in Example 3 (see Figure 5) are well-
bracketed as the two threads are non-recursive.

The importance of well-bracketing for contextual locking is that if there is a
computation that simultaneously reaches control states p ∈ P0 and q ∈ P1 then
there is a well-bracketed computation that simultaneously reaches p and q.

Lemma 1. Let CP = (P0,P1) be a 2-PDS communicating via Lcks such that
each thread follows contextual locking. Given control states p ∈ P0 and q ∈ P1,
we have that Reach(CP, p, q) iff there is a well-bracketed computation swb

0 −→
· · · −→ swb

r of CP such that CntrlSt0(s
wb
r) = p and CntrlSt1(s

wb
r) = q.

Proof. Let Compnwb = s0
(λ1,i1)−→ · · · (λm,im)−→ sm be a non-well-bracketed com-

putation that simultaneously reaches p and q. Let �mn be smallest �1 such that
there is a witness (�1, �2, �3) of non-well-bracketing of Compnwb. Observe now
that it suffices to show that there is another computation Compmod of the same
length as Compnwb that simultaneously reaches p and q and

446 R. Chadha, P. Madhusudan, and M. Viswanathan

– either Compmod is well-bracketed,
– or if Compmod is non-well-bracketed, then for each witness (�′1, �

′
2, �

′
3) of non-

well-bracketing of Compmod, it must be the case �′1 > �mn.

We show how to construct Compmod. Observe first that any witness (�mn, �2, �3)
of non-well-bracketing of Compnwb must necessarily agree in the third component
�3. Let �rt denote this component. Let �sm be the smallest �2 such that (�mn, �2, �rt)
is a witness of non-well-bracketing of Compmod. Thus, the transition s�mn −→
s�mn+1 and s�rt −→ s�rt+1 are matching procedure call and return of some thread
Pr while the transition s�sm −→ s�sm+1 is a procedure call by thread P1−r whose
return happens only after �rt. Without loss of generality, we can assume that
r = 0.

Let u, (cll, 0), v1, (cll, 1), v2, (rtn, 0) and w be such that Label(Compnwb) =
u(cll, 0)v1(cll, 1)v2(rtn, 0)w. and length of u is �mn + 1, of u(cll, 0)v1 is �sm + 1.
and of u(cll, 0)v1(cll, 1)v2 is �rt + 1. Thus, (cll, 0) and (rtn, 0) are matching call
and return of thread P0 and (cll, 1) is a call of the thread P1 whose return does
not happen in v2.

We construct Compmod as follows. Intuitively, Compmod is obtained by “rear-
ranging” the sequence Label(Compnwb) = u(cll, 0)v1(cll, 1)v2(rtn, 0)w as follows.
Let v2|0 and v2|1 denote all the “actions” of thread P0 and P1 respectively
in v2. Then Compmod is obtained by rearranging u(cll, 0)v1(cll, 1)v2(rtn, 0)w to
u(cll, 0)v1(v2|0)(rtn, 0)(cll, 1)(v2|1)w. This is shown in Figure 6.

s0 · · · s�mn s�mn+1 · · · s�sm s�sm+1 s�rt s�rt+1

u v1 v2

Compnwb

s0 · · · s�mn s�mn+1 · · · s′r s′r+1 s′r+2
u v1 v2|0 v2|1

Compmod

cll cll rtn

cll rtn cll

Fig. 6. Computations Compnwb and Compmod. Transitions of P0 are shown as solid
edges and transitions of P1 are shown as dashed edges; hence process ids are dropped
from the label of transitions. Matching calls and returns are shown with dotted edges.
Observe that all calls of P1 in v1 have matching returns within v1.

The fact that if Compmod is non-well-bracketed, then there is no witness
(�′1, �

′
2, �

′
3) of non-well-bracketing with �′1 ≤ �mn will follow from the following

observations on Label(Compnwb).

Reachability under Contextual Locking 447

† v1 cannot contain any returns of P1 which have a matching call that occurs
in u (by construction of �mn).

†† All calls of P1 in v1 must return either in v1 or after c′ is returned. But the
latter is not possible (by construction of �sm). Thus, all calls of P1 in v1 must
return in v1.

Formally, Compmod is constructed as follows. We fix some notation. For each 0 ≤
j ≤ m, let Confj0 = Conf0(sj) and Confj1 = Conf1(sj). Thus sj = (Confj0,Conf

j
1).

1. The first �sm + 1 transitions of Compmod are the same as Compnwb, i.e.,
initially Compmod = s0 −→ · · · −→ s�sm .

2. Consider the sequence of transitions s�sm
(λsm+1,ism+1)−→ · · · (λrt+1,irt+1)−→ s�rt+1 in

Comp. Let k be the number of transitions of P0 in this sequence and let

�sm ≤ j1 < · · · < jk ≤ �rt be the indices such that sjn
(λjn+1,0)−→ sjn+1. Note

that it must be the case that for each 1 ≤ n ≤ k

Conf�sm0 = Confj10 , Confjn+1
0 = Conf

jn+1

0 and Confjk+1
0 = Confrt+1

0 .

For 1 ≤ n ≤ k, let
s′�sm+n = (Confjn+1

0 ,Conf�sm1).

Observe now that, thanks to contextual locking, the set of locks held by P1

in Conf�sm1 is a subset of the locks held by P1 in Conf
�jn+1

1 for each 1 ≤ n ≤ k.
Thus we can extend Compmod by applying the k transitions of P0 used to
obtain sjn −→ sjn+1 in Compnwb. In other words, Compmod is now

s0 −→ · · · −→ s�sm
(λj1+1,0)−→ s′�sm+1 · · ·

(λjk+1,0)−→ s′�sm+k.

Note that s′�sm+k = (Confrt+1
0 ,Conf�sm1). Thus the set of locks held by P0 in

s′�sm+k is exactly the set of locks held by P0 at Conf�mn
0 .

3. Consider the sequence of transitions s�sm
(λsm+1,ism+1)−→ · · · (λrt+1,irt+1)−→ s�rt+1 in

Comp. Let t be the number of transitions of P1 in this sequence and let

�sm ≤ j1 < · · · < jt ≤ �rt be the indices such that sjn
(λjn+1,1)−→ sjn+1. Note

that it must be the case that for each 1 ≤ n ≤ t,

Confj11 = Conf�sm1 , Confjn+1
1 = Conf

jn+1

1 and Confjt+1
1 = Confrt+1

1 .

For 1 ≤ n ≤ t, let

s′�sm+k+n = (Confrt+1
0 ,Confjn+1

1).

Observe now that, thanks to contextual locking, the set of locks held by P0

in Conf�rt+1
0 is exactly the set of locks held by P0 at Conf�mn

0 and the latter

is a subset of the locks held by P0 in Conf
�jn+1

1 for each 1 ≤ n ≤ t. Thus
we can extend Compmod by applying the t transitions of P1 used to obtain
sjn −→ sjn+1 in Compnwb. In other words, Compmod is now

s0 −→ · · · −→ s′�sm+k

(λj1+1,1)−→ s′�sm+k+1 · · ·
(λjt+1,1)−→ s′�sm+k+t.

448 R. Chadha, P. Madhusudan, and M. Viswanathan

Observe now that the extended Compmod is a sequence of rt + 1 transitions

and that the final configuration of Compmod, s
′
�sm+k

(λj1+1,1)
= (Confrt+1

0 ,Confrt+1
1)

is exactly the configuration srt+1.

4. Thus, now we can extend Compmod as

s0 −→ · · · −→ s′�sm+k+t = srt+1
(λrt+2,irt+2)−→ · · · (λm,im)−→ sm.

Clearly Compmod has the same length as Compnwb and simultaneously reaches
p and q.

The lemma follows. ��

3.2 Algorithm for Deciding the Pairwise Reachability

We are ready to show that the problem of checking pairwise reachability is
decidable.

Theorem 1. There is an algorithm that given a 2-threaded program CP =
(P0,P1) communicating via Lcks and control states p and q of P0 and P1 respec-
tively decides if Reach(P , p, q) is true or not. Furthermore, if m and n are the
sizes of the programs P0 and P1 and � the number of elements of Lcks, then this
algorithm has a running time of 2O(�)O((mn)3).

Proof. The main idea behind the algorithm is to construct a single PDS Pcomb =
(Q,Γ, qs, δ) which simulates all the well-bracketed computations of CP. Pcomb

simulates a well-bracketed computation as follows. The set of control states of
Pcomb is the product of control states of P0 and P1. The single stack of Pcomb

keeps track of the stacks of P0 and P1: it is the sequence of those calls of the well-
bracketed computation which have not been returned. Furthermore, if the stack
of Pcomb is w then the stack of P0 is the projection of w onto the stack symbols
of P0 and the stack of P1 is the projection of w onto the stack symbols of P1.
Thus, the top of the stack is the most recent unreturned call and if it belongs to
Pi, well-bracketing ensures that no previous unreturned call is returned without
returning this call.

Formally, Pcomb = (Q,Γ, qs, δ) is defined as follows. Let P0 = (Q0, Γ0, qs0, δ0)
and P1 = (Q1, Γ1, qs1, δ1). Without loss of generality, assume that Q0 ∩Q1 = ∅
and Γ0 ∩ Γ1 = ∅.

– The set of states Q is (Q0 × 2Lcks)× (Q1 × 2Lcks).

– Γ = Γ0 ∪ Γ1.

– qs = ((qs0, ∅), (qs1, ∅)).
– δ consists of three sets δint, δcll and δrtn which simulate the internal actions,

procedure calls, and returns and lock acquisitions and releases of the threads
as follows. We explain here only the simulation of actions of P0 (the simula-
tion of actions of P1 is similar).

Reachability under Contextual Locking 449

• Internal actions. If (q0, q
′
0) is an internal action of P0, then for each

hld0, hld1 ∈ 2Lcks and q1 ∈ Q1

(((q0, hld0), (q1, hld1)), ((q
′
0, hld0), (q1, hld1))) ∈ δint.

• Lock acquisitions. Lock acquisitions are also modeled by δint. If (q0, (q
′
0, l))

is a lock acquisition action of thread P0, then for each hld0, hld1 ∈ 2Lcks

and q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), ((q
′
0, hld0 ∪{l}), (q1, hld1))) ∈ δint if l /∈ hld0∪hld1.

• Lock releases. Lock releases are also modeled by δint. If ((q0, l), q
′
0) is

a lock release action of thread P0, then for each hld0, hld1 ∈ 2Lcks and
q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), ((q
′
0, hld0 \ {l}), (q1, hld1))) ∈ δint if l ∈ hld0.

• Procedure Calls. Procedure calls are modeled by δcll. If (q0, (q
′
0, a)) is a

procedure call of thread P0 then hld0, hld1 ∈ 2Lcks and q1 ∈ Q1,

(((q0, hld0), (q1, hld1)), (((q
′
0, hld0), (q1, hld1)), a)) ∈ δcll.

• Procedure Returns. Procedure returns are modeled by δrtn. If (q0, (q
′
0, a))

is a procedure call of thread P0 then hld0, hld1 ∈ 2Lcks and q1 ∈ Q1,

((((q0, hld0), (q1, hld1)), a), ((q
′
0, hld0), (q1, hld1))) ∈ δrtn.

It is easy to see that (p, q) is reachable in CP by a well-bracketed computation
iff there is a computation of Pcomb which reaches ((p, hld0), (q, hld1)) for some
hld0, hld1 ∈ 2Lcks. The complexity of the results follows from the observations
in [1] and the size of Pcomb. ��

4 Conclusions

The paper investigates the problem of pairwise reachability of multi-threaded
programs communicating using only locks. We identified a new restriction on
locking patterns, called contextual locking, which requires threads to release
locks in the same calling context in which they were acquired. Contextual locking
appears to be a natural restriction adhered to by many programs in practice. The
main result of the paper is that the problem of pairwise reachability is decidable
in polynomial time for programs in which the locking scheme is contextual.
Therefore, in addition to being a natural restriction to follow, contextual locking
may also be more amenable to practical analysis. We observe that these results
do not follow from results in [5,4,2,3] as there are programs with contextual
locking that do not adhere to the nested locking principle or the bounded lock
chaining principle. The proof principles underlying the decidability results are
also different. Our results can also be mildly extended to handling programs

450 R. Chadha, P. Madhusudan, and M. Viswanathan

that release locks a bounded stack-depth away from when they were acquired
(for example, to handle procedures that call a function that acquires a lock, and
calls another to release it before it returns).

There are a few open problems immediately motivated by the results in this
paper. First, decidability of model checking with respect to fragments of LTL
under the contextual locking restriction remains open. Next, while our paper
establishes the decidability of pairwise reachability, it is open if the problem of
checking if 3 (or more) threads simultaneously reach given local states is decid-
able for programs with contextual locking. Finally, from a practical standpoint,
one would like to develop analysis algorithms that avoid to construct the cross-
product of the two programs to check pairwise reachability.

For a more complete account for multi-threaded programs, other synchroniza-
tion primitives such as thread creation and barriers should be taken into account.
Combining lock-based approaches such as ours with techniques for other primi-
tives is left to future investigation.

Acknowledgements. P. Madhusudan was supported in part by NSF Career
Award 0747041. Mahesh Viswanathan was supported in part by NSF CNS
1016791 and NSF CCF 1016989.

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Au-
tomata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

2. Kahlon,V.:Boundedness vs. unboundedness of lock chains:Characterizingdecidabil-
ity of pairwise CFL-Reachability for threads communicating via locks. In: Proceed-
ings of the IEEE Symposium on Logic in Computer Science, pp. 27–36 (2009)

3. Kahlon, V.: Reasoning about Threads with Bounded Lock Chains. In: Katoen, J.-
P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp.
450–465. Springer, Heidelberg (2011)

4. Kahlon, V., Gupta, A.: An automata-theoretic approach for model checking threads
for LTL properties. In: Proceedings of the IEEE Symposium on Logic in Computer
Science, pp. 101–110 (2006)

5. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning About Threads Communicating via
Locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005)

6. Lea, D.: Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley (1999)

7. Muchnick, S.S.: Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc. (1997)

8. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta
Informatica 6, 319–340 (1976)

9. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems 22(2), 416–430
(2000)

10. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the ACM Symposium on the Principles of
Programming Languages, pp. 49–61 (1995)

Bounded Phase Analysis

of Message-Passing Programs�,��

Ahmed Bouajjani and Michael Emmi� � �

LIAFA, Université Paris Diderot, France
{abou,mje}@liafa.jussieu.fr

Abstract. We describe a novel technique for bounded analysis of asyn-
chronous message-passing programs with ordered message queues. Our
bounding parameter does not limit the number of pending messages, nor
the number of “contexts-switches” between processes. Instead, we limit
the number of process communication cycles, in which an unbounded
number of messages are sent to an unbounded number of processes across
an unbounded number of contexts. We show that remarkably, despite
the potential for such vast exploration, our bounding scheme gives rise
to a simple and efficient program analysis by reduction to sequential pro-
grams. As our reduction avoids explicitly representing message queues,
our analysis scales irrespectively of queue content and variation.

1 Introduction

Software is becoming increasingly concurrent: reactivity (e.g., in user interfaces,
web servers), parallelization (e.g., in scientific computations), and decentraliza-
tion (e.g., in web applications) necessitate asynchronous computation. Although
shared-memory implementations are often possible, the burden of preventing
unwanted thread interleavings without crippling performance is onerous. Many
have instead adopted asynchronous programming models in which processes com-
municate by posting messages/tasks to others’ message/task queues— [19] dis-
cuss why such models provide good programming abstractions. Single-process
systems such as the JavaScript page-loading engine of modern web browsers [1],
and the highly-scalable Node.js asynchronous web server [11], execute a series
of short-lived tasks one-by-one, each task potentially queueing additional tasks
to be executed later. This programming style ensures that the overall system
responds quickly to incoming events (e.g., user input, connection requests). In
the multi-process setting, languages such as Erlang and Scala have adopted
message-passing as a fundamental construct with which highly-scalable and
highly-reliable distributed systems are built.

Despite the increasing popularity of such programming models, little is known
about precise algorithmic reasoning. This is perhaps not without good reason:

� Partially supported by the project ANR-09-SEGI-016 Veridyc.
�� An extended version of this paper is online [6]

� � � Supported by a Fondation Sciences Mathématiques de Paris post-doctoral fellowship.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 451–465, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

452 A. Bouajjani and M. Emmi

decision problems such as state-reachability for programs communicating with
unbounded reliable queues are undecidable [10], even when there is only a single
finite-state process (posting messages to itself). Furthermore, the known decid-
able under-approximations (e.g., bounding the size of queues) represent queues
explicitly, are thus doomed to combinatorial explosion as the size and variability
of queue content increases.

Some have proposed analyses which abstract message arrival order [23, 14, 13],
or assumemessages can be arbitrarily lost [2, 3]. Such analyses do not suffice when
correctness arguments rely on reliable messaging—several systems specifically do
ensure the ordered delivery of messages, including Scala, and recent web-browser
specifications [1]. Others have proposed analyses which compute finite symbolic
representations of queue contents [5, 8]. Known bounded analyses which model
queues precisely either bound the maximum capacity of message-queues, ignoring
executions which exceed the bound, or bound the total number of process “con-
texts” [21, 16], where each context involves a single process sending and receiv-
ing messages. For each of these bounding schemes there are trivial systems which
cannot be adequately explored, e.g., by sending more messages than the allowed
queue-capacity, having more processes than contexts, or by alternating message-
sends to two processes—we discuss such examples in Section 3. All of the above
techniques represent queues explicitly, though perhaps symbolically, and face com-
binatorial explosion as queue content and variation increase.

In this work we propose a novel technique for bounded analysis of asyn-
chronous message-passing programs with reliable, ordered message queues. Our
bounding parameter, introduced in Section 3, is not sensitive to the capacity
nor content of message queues, nor the number of process contexts. Instead, we
bound the number of process communication cycles by labeling each message
with a monotonically-increasing phase number. Each time a message chain visits
the same process, the phase number must increase. For a given parameter k, we
only explore behaviors of up to k phases—though k phases can go a long way.
In the leader election distributed protocol [24] for example, each election round
occurs in 2 phases: in the first phase each process sends capture messages to the
others; in the second phase some processes receive accept messages, and those
that find themselves majority-winners broadcast elected messages. In these two
phases an unbounded number of messages are sent to an unbounded number of
processes across an unbounded number of process contexts!

We demonstrate the true strength of phase-bounding by showing in Sections 4
and 5 that the bounded phase executions of a message-passing program can be
concisely encoded as a non-deterministic sequential program, in which message-
queues are not explicitly represented. Our so-called “sequentialization” sheds
hope for scalable analyses of message-passing programs. In a small set of simple
experiments (Section 4), we demonstrate that our phase-bounded encoding scales
far beyond known explicit-queue encodings as queue-content increases, and even
remains competitive as queue-content is fixed while the number of phases grows.
By reducing to sequential programs, we leverage highly-developed sequential
program analysis tools for message-passing programs.

Bounded Phase Analysis of Message-Passing Programs, 453

2 Asynchronous Message-Passing Programs

We consider a simple multi-processor programming model in which each proces-
sor is equipped with a procedure stack and a queue of pending tasks. Initially
all processors are idle. When an idle processor’s queue is non-empty, the oldest
task in its queue is removed and executed to completion. Each task executes
essentially a recursive sequential program, which besides accessing its own pro-
cessor’s global storage, can post tasks to the queues of any processor, including
its own. When a task does complete, its processor again becomes idle, chooses the
next pending task to execute to completion, and so on. The distinction between
queues containing messages and queues containing tasks is mostly aesthetic, but
in our task-based treatment queues are only read by idle processors; reading
additional messages during a task’s execution is prohibited. While in principle
many message-passing systems, e.g., in Erlang and Scala, allow reading addi-
tional messages at any program point, we have observed that common practice
is to read messages only upon completing a task [25].

Though similar to [23]’s model of asynchronous programs, the model we
consider has two important distinctions. First, tasks execute across potentially
several processors, rather than only one, each processor having its own global
state and pending tasks. Second, the tasks of each processor are executed in ex-
actly the order they are posted. For the case of single-processor programs, [23]’s
model can be seen as an abstraction of the model we consider, since there the task
chosen to execute next when a processor is idle is chosen non-deterministically
among all pending tasks.

2.1 Program Syntax

Let Procs be a set of procedure names, Vals a set of values, Exprs a set of expres-
sions, Pids a set of processor identifiers, and let T be a type. Figure 1 gives the
grammar of asynchronous message-passing programs. We intentionally leave the
syntax of expressions e unspecified, though we do insist Vals contains true and
false, and Exprs contains Vals and the (nullary) choice operator �.

Each program P declares a single global variable g and a procedure sequence,
each p ∈ Procs having a single parameter l and top-level statement denoted sp;
as statements are built inductively by composition with control-flow statements,
sp describes the entire body of p. The set of program statements s is denoted
Stmts. Intuitively, a post ρ p e statement is an asynchronous call to a procedure
p with argument e to be executed on the processor identified by ρ; a self-post
to one’s own processor is made by setting ρ to . A program in which all post
statements are self-posts is called a single-processor program, and a program
without post statements is called a sequential program.

The programming language we consider is simple, yet very expressive, since
the syntax of types and expressions is left free, and we lose no generality by
considering only single global and local variables. Our extended report [6] lists
several syntactic extensions which we use in the source-to-source translations of
the subsequent sections, and which easily reduce to the syntax of our grammar.

454 A. Bouajjani and M. Emmi

P ::= var g:T (proc p (var l:T) s)∗

s ::= s; s | skip | x := e
| assume e
| if e then s else s
| while e do s
| call x := p e
| return e
| post ρ p e

x ::= g | l

Fig. 1. The grammar of asynchronous
message-passing programs P . Here T is an
unspecified type, and e, p, and ρ range,
resp., over expressions, procedure names,
and processor identifiers.

Dispatch

〈g, ε, f · q〉 S−→ 〈g, f, q〉

Complete

f = 〈�, return e; s〉

〈g, f, q〉 S−→ 〈g, ε, q〉

Self-Post

s1 = post p e; s2
�2 ∈ e(g, �1) f = 〈�2, sp〉

〈g, 〈�1, s1〉w, q〉 S−→ 〈g, 〈�1, s2〉w, q · f〉

Fig. 2. The single-processor transition
rules →S; see our extended report [6]
for the standard sequential statements.

2.2 Single-Processor Semantics

A (procedure) frame f = 〈�, s〉 is a current valuation � ∈ Vals to the procedure-
local variable l, along with a statement s ∈ Stmts to be executed. (Here s
describes the entire body of a procedure p that remains to be executed, and is
initially set to p’s top-level statement sp; we refer to initial procedure frames
t = 〈�, sp〉 as tasks, to distinguish the frames that populate processor queues.)
The set of all frames is denoted Frames.

A processor configuration κ = 〈g, w, q〉 is a current valuation g ∈ Vals to the
processor-global variable g, along with a procedure-frame stack w ∈ Frames∗ and
a pending-tasks queue q ∈ Frames∗. A processor is idle when w = ε. The set of
all processor configurations is denoted Pconfigs. A processor configuration map
ξ : Pids → Pconfigs maps each processor ρ ∈ Pids to a processor configuration
ξ(ρ). We write ξ (ρ �→ κ) to denote the configuration ξ updated with the mapping
(ρ �→ κ), i.e., the configuration ξ′ such that ξ′(ρ) = κ, and ξ′(ρ′) = ξ(ρ′) for all
ρ′ ∈ Pids \ {ρ}.

For expressions without program variables, we assume the existence of an
evaluation function �·�e : Exprs→ ℘(Vals) such that ���e = Vals. For convenience
we define e(g, �)

def
= �e[g/g, �/l]�e to evaluate the expression e in a global valuation

g by substituting the current values for variables g and l. As these are the only
program variables, the substituted expression e[g/g, �/l] has no free variables.

Figure 2 defines the transition relation →S for the asynchronous behavior
of each processor; the standard transitions for the sequential statements are
listed in our extended report [6]. The Self-Post rule creates a new frame to
execute the given procedure, and places the new frame in the current processor’s
pending-tasks queue. The Complete rule returns from the final frame of a task,
rendering the processor idle, and the Dispatch rule schedules the least-recently
posted task on a idle processor.

Bounded Phase Analysis of Message-Passing Programs, 455

Switch

ρ2 ∈ enabled(m, ξ)

〈ρ1, ξ,m〉 −→
M

〈ρ2, ξ,m〉
Step

ξ1(ρ)
S−→ κ ξ2 = ξ1 (ρ → κ)

ρ ∈ enabled(m1, ξ1) m2 = step(m1, ξ1, ξ2)

〈ρ, ξ1,m1〉 −→
M

〈ρ, ξ2,m2〉
Post

ξ1(ρ1) = 〈g1, 〈�1,post ρ2 p e; s〉w1, q1〉
ξ1(ρ2) = 〈g2, w2, q2〉

ρ1 = ρ2 �2 ∈ e(g1, �1) f = 〈�2, sp〉
ρ1 ∈ enabled(m1, ξ1) m2 = step(m1, ξ1, ξ3)

ξ2 = ξ1 (ρ1 → 〈g1, 〈�1, s〉w1, q1〉)
ξ3 = ξ2 (ρ2 → 〈g2, w2, q2 · f〉)
〈ρ1, ξ1,m1〉 −→

M
〈ρ1, ξ3,m2〉

Fig. 3. The multi-processor transition rela-
tion →M parameterized by a scheduler M =
〈D, empty, enabled, step〉

// translation of var g: T
var G[k]: T

// translation of
// proc p (var l: T) s
proc p (var l: T, phase: k) s

// translation of g
G[phase]

// translation of call x := p e
call x := p (e,phase)

// translation of post _ p e
if phase+1 < k then

call p (e,phase+1)

Fig. 4. The k-phase sequential
translation ((P))k of a single-
processor asynchronous message-
passing program P

2.3 Multi-processor Semantics

In reality the processors of multi-processor systems execute independently in par-
allel. However, as long as they either do not share memory, or access a sequentially
consistent shared memory, it is equivalent, w.r.t. the observations of any single
processor, to consider an interleaving semantics : at any moment only one proces-
sor executes. In order to later restrict processor interleaving, we make explicit the
scheduler which arbitrates the possible interleavings. Formally, a scheduler M =
〈D, empty, enabled, step〉 consists of a data type D of scheduler
objects m ∈ D, a scheduler constructor empty ∈ D, a scheduler decision function
enabled : (D × (Pids → Pconfigs)) → ℘(Pids), and a scheduler update function
step : (D × (Pids → Pconfigs) × (Pids → Pconfigs)) → D. The arguments to
enabled allow a scheduler to decide which processors are enabled depending on
the execution history. A scheduler is deterministic when |enabled(m, ξ)| ≤ 1 for
all m ∈ D and ξ : Pids → Pconfigs, and is non-blocking when for all m and ξ, if
there is some ρ ∈ Pids such that ξ(ρ) is either non-idle or has pending tasks, then
there exists ρ′ ∈ Pids such that ρ′ ∈ enabled(m, ξ) and ξ(ρ′) is either non-idle or
has pending tasks. A configuration c = 〈ρ, ξ,m〉 is a currently executing processor
ρ ∈ Pids, along with a processor configuration map ξ, and a scheduler object m.

Figure 3 defines the multi-processor transition relation →M , parameterized
by a scheduler M . The Switch rule non-deterministically schedules any enabled
processor, while the Step rule executes one single-processor program step on the
currently scheduled processor, and updates the scheduler object. Finally, the
Post rule creates a new frame to execute the given procedure, and places the
the new frame on the target processor’s pending-tasks queue.

456 A. Bouajjani and M. Emmi

Until further notice, we assumeM is a completely non-deterministic scheduler;
i.e., all processors are always enabled. In Section 5 we discuss alternatives.

An M -execution of a program P (from c0 to cj) is a configuration sequence
c0c1 . . . cj such that ci →M ci+1 for 0 ≤ i < j. An initial condition ι =
〈ρ0, g0, �0, p0〉 is a processor identifier ρ0, along with a global-variable valuation
g0 ∈ Vals, a local-variable valuation �0 ∈ Vals, and a procedure p0 ∈ Procs. A
configuration c = 〈ρ0, ξ, empty〉 of a program P is 〈ρ0, g0, �0, p0〉-initial when
ξ(ρ0) = 〈g0, ε, 〈�0, sp0〉〉 and ξ(ρ) = 〈g0, ε, ε〉 for all ρ �= ρ0. A configuration
〈ρ, ξ,m〉 is gf -final when ξ(ρ′) = 〈gf , w, q〉 for some ρ′ ∈ Pids, and w, q ∈ Frames∗.
We say a global valuation g is M -reachable in P from ι when there exists an
M -execution of P from some c0 to some c such that c0 is ι-initial and c is g-final1.

Definition 1. The state-reachability problem is to determine for an initial con-
dition ι, valuation g, and program P , whether g is reachable in P from ι.

3 Phase-Bounded Execution

Because processors execute tasks precisely in the order which they are posted
to their unbounded task-queues, our state-reachability problem is undecidable,
even with only a single processor accessing finite-state data [10]. Since it is not
algorithmically possible to consider every execution precisely, in what follows we
present an incremental under-approximation. For a given bounding parameter
k, we consider a subset of execution (prefixes) precisely; as k increases, the
set of considered executions increases, and in the limit as k approaches infinity,
every execution of any program is considered—though for many programs, every
execution is considered with a finite value of k.

In a given execution, a task-chain t1t2 . . . ti from t1 to ti is a sequence of tasks2

such that the execution of each tj posts tj+1, for 0 < j < i, and we say that t1
is an ancestor of ti. We characterize execution prefixes by labeling each task t
posted in an execution with a phase number ϕ(t) ∈ N:

ϕ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t is initially pending.

ϕ(t′)
if t is posted to processor ρ by t′,
and t has no phase-ϕ(t′) ancestor on processor ρ.

ϕ(t′) + 1 if t is posted by t′, otherwise.

For instance, considering Figure 5a, supposing all on a single processor, an
initial task A1 posts A2, A3, and A4, then A2 posts A5 and A6, and then A3 posts
A7, which in turn posts A8 and A9. Task A1 has phase 0. Since each post is made
to the same processor, the phase number is incremented for each posted task.
Thus the phase 1 tasks are {A2, A3, A4}, the phase 2 tasks are {A5, A6, A7}, and
the phase 3 tasks are {A8, A9}. Notice that tasks of a given phase only execute

1 In the presence of the assume statement, only the values reached in completed
executions are guaranteed to be valid.

2 We assume each task in a given execution has implicitly a unique task-identifier.

Bounded Phase Analysis of Message-Passing Programs, 457

A1

A3A2 A4

A6A5 A7

A8 A9

(a)

A1

C1B1 B2

D2D1 D2n-1

C2 Bn Cn

D2nD4D3

(b)

A1 B1

A2 B2

An Bn

(c)

Fig. 5. Phase-bounded executions with processors A, B, C, and D; each task’s label
(e.g., Ai) indicates the processor it executes on (e.g., A). Arrows indicate the posting
relation, indices indicate execution order on a given processor, and dotted lines indicate
phase boundaries.

after all tasks of the previous phase have completed, i.e., execution order is in
phase order; only executing tasks up to a given phase does correspond to a valid
execution prefix.

Definition 2. An execution is k-phase when ϕ(t) < k for each executed task t.

The execution in Figure 5a is a 4-phase execution, since all tasks have phase
less than 4. Despite there being an arbitrary number 4n + 1 of posted tasks,
the execution in Figure 5b is 1-phase, since there are no task-chains between
same-processor tasks. Contrarily, the execution in Figure 5c requires n phases
to execute all 2n tasks, since every other occurrence of an Ai task creates a
task-chain between A-tasks.

Note that bounding the number of execution phases does not necessarily
bound the total number of tasks executed, nor the maximum size of task queues,
nor the amount of switching between processors. Instead, a bound k restricts the
maximum length of task chains to k · |Pids|. In fact, phase-bounding is incom-
parable to bounding the maximum size of task queues. On the one hand, every
execution of a program in which one root task posts an arbitrary, unbounded
number of tasks to other processors (e.g., in Figure 5b) are explored with 1
phase, though no bound on the size of queues will capture all executions. On the
other hand, all executions with a single arbitrarily-long chain of tasks (e.g., in
Figure 5c) are explored with size 1 task queues, though no limited number of
phases captures all executions. In the limit as the bounding parameter increases,
either scheme does capture all executions.

Theorem 1 (Completeness). For every execution h of a program P , there
exists k ∈ N such that h is a k-phase execution.

4 Phase-Bounding for Single-Processor Programs

Characterizing executions by their phase-bound reveals a simple and efficient
technique for bounded exploration. This seems remarkable, given that phase-
bounding explores executions in which arbitrarily many tasks execute, making

458 A. Bouajjani and M. Emmi

the task queue arbitrarily large. The first key ingredient is that once the number
of phases is bounded, each phase can be executed in isolation. For instance,
consider again the execution of Figure 5a. In phase 1, the tasks A2, A3, and A4

pick up execution from the global valuation g1 which A1 left off at, and leave
behind a global valuation g2 for the phase 2 tasks. In fact, given the sequence
of tasks in each phase, the only other “communication” between phases is a
single passed global valuation; executing that sequence of tasks on that global
valuation is a faithful simulation of that phase.

The second key ingredient is that the ordered sequence of tasks executed in a
given phase is exactly the ordered sequence of tasks posted in the previous phase.
This is obvious, since tasks are executed in the order they are posted. However,
combined with the first ingredient we have quite a powerful recipe. Supposing
the global state gi at the beginning of each phase i is known initially, we can
simulate a k-phase execution by executing each task posted to phase i as soon
as it is posted, with an independent virtual copy of the global state, initially set
to gi. That is, our simulation will store a vector of k global valuations, one for
each phase. Initially, the ith global valuation is set to the state gi in which phase
i begins; tasks of phase i then read from and write to the ith global valuation. It
then only remains to ensure that the global valuations gi used at the beginning
of each phase 0 < i < k match the valuations reached at the end of phase i− 1.

This simulation is easily encoded into a non-deterministic sequential program
with k copies of global storage. The program begins by non-deterministically
setting each copy to an arbitrary value. Each task maintains their current phase
number i, and accesses the ith copy of global storage. Each posted task is simply
called instead of posted, its phase number set to one greater than its parent—
posts to tasks with phase number k are ignored. At the end of execution, the
program ensures that the ith global valuation matches the initially-used valuation
for phase i+1, for 0 ≤ i < k−1. When this condition holds, any global valuation
observed along the execution is reachable within k phases in the original program.
Figure 4 lists a code-to-code translation which implements this simulation.

Theorem 2. A global-valuation g is reachable in a k-phase execution of a single-
processor program P if and only if g is reachable in ((P))k—the k-phase sequential
translation of P .

When the underlying sequential programmodel has a decidable state-reachability
problem, Theorem 2 gives a decision procedure for the phase-bounded state-
reachability problem, by applying the decision procedure for the underlying
model to the translated program. This allows us for instance to derive a de-
cidability result for programs with finite data domains.

Corollary 1. The k-phase state-reachability problem is decidable for
single-processor programs with finite data domains.

More generally, given any underlying sequential program model, our translation
makes applicable any analysis tool for said model to message-passing programs,
since the values of the additional variables are either from the finite domain
{0, . . . , k − 1}, or in the domain of the original program variables.

Bounded Phase Analysis of Message-Passing Programs, 459

Note that our simulation of a k-phase execution does not explicitly store the
unbounded task queue. Instead of storing a multitude of possible unbounded task
sequences, our simulation stores exactly k global state valuations. Accordingly,
our simulation is not doomed to the unavoidable combinatorial explosion en-
countered by storing (even bounded-size) task queues explicitly. To demonstrate
the capability of our advantage, we measure the time to verify two fabricated
yet illustrative examples (listed in full in our extended report [6], comparing our
bounded-phase encoding with a bounded task-queue encoding. In the bounded
task-queue encoding, we represent the task-queue explicitly by an array of in-
tegers, which stores the identifiers of posted procedures3. When control of the
initial task completes, the program enters a loop which takes a procedure iden-
tifier from the head of the queue, and calls the associated procedure. When the
queue reaches a given bound, any further posted tasks are ignored.

The first program P1(i), parameterized by i ∈ N, has a single Boolean global
variable b, i procedures named p1, . . . , pi, which assert b to be false and set b
to true, and i procedures named q1, . . . , qi which set b to false. Initially, P1(i)
sets b to false, and enters a loop in which each iteration posts some pj followed
by some qj . Since a qj task must be executed between each pj task, each of
the assertions are guaranteed to hold. Figure 6a compares the time required to
verify P1(i) (using the Boogie verification engine [4]) for various values of i, and
various bounds n on loop unrolling. Note that although every execution of P1(i)
has only 2 phases, to explore all n loop iterations in any given execution, the
size of queues must be at least 2n, since two tasks are posted per iteration. Even
for this very simple program, representing (even bounded) task-queues explicitly
does not scale, since the number of possible task-queues grows astronomically as
the size of task-queues grow. This ultimately prohibits the bounded tasks-queue
encodings from exploring executions in which more than a mere few simple tasks
execute. On the contrary, our bounded-phase simulation easily explores every
execution up to the loop-unrolling bound in a few seconds.

To be fair, our second program P2 is biased to support the bounded task-queue
encoding. Following the example of Figure 5c, P2 again has a single Boolean
global variable b, and two procedures: p1 asserts b to be false, sets b to true,
and posts p2, while p2 sets b to false and posts p1. Initially, the program P2 sets
b to false and posts a single p1 task. Again here, since a p2 task must execute
between each p1 task, each of the assertions are guaranteed to hold. Figure 6b
compares the time required to verify P2 for various bounds n on the number
of tasks explored4. Note that although every execution of P2 uses only size 1
task-queues, to explore all n tasks in any given execution, the number of phases
must be at least n, since each task must execute in its own phase. Although

3 For simplicity our examples do not pass arguments to tasks; in general, one should
also store in the task-queue array the values of arguments passed to each posted
procedure.

4 The number n of explored tasks is controlled by limiting the number of loop un-
rollings in the bounded task-queue encoding, and limiting the recursion depth, and
phase-bound, in the bounded-phase encoding.

460 A. Bouajjani and M. Emmi

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

loop iterations (n)

2n-queue, i=1
2n-queue, i=2
2n-queue, i=4
2n-queue, i=8

1-phase, i=8
2-phase, i=8
3-phase, i=8
4-phase, i=8

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

tasks explored (n)

1-size queue
2-size queue
3-size queue
4-size queue

n-phase

(b)

Fig. 6. Time required to verify (a) the program P1(i), and (b) the program P2 with the
Boogie verification engine using various encodings (bounded queues, bounded phase),
and various loop unrolling bounds. Time-out is set to 100s.

verification time for the bounded-phase encoding does increase with n faster
than the bounded task-queue encoding—as expected—due to additional copies
of the global valuation, and more deeply in-lined procedures, the verification time
remains manageable. In particular, the time does not explode uncontrollably:
even 50 tasks are explored in under 20s.

5 Phase-Bounding for Multi-processor Programs

Though state-reachability under a phase bound is immediately and succinctly
reducible to sequential program analysis for single-processor programs, the multi-
processor case is more complicated. The added complexity arises due to the
many orders in which tasks on separate processors can contribute to others’ task-
queues. As a simple example, consider the possible bounded-phase executions of
Figure 5b with four processors, A, B, C, and D. Though B’s tasks B1, . . . , Bn

must be executed in order, and C’s tasks C1, . . . , Cn must also be executed in
order, the order ofD’s tasks are not pre-determined: the arrival order ofD’s tasks
depends on how B’s and C’s tasks interleave. Suppose for instance B1 executes
to completion before C1, which executes to completion before B2, and so on. In
this caseD’s tasks arrive to D’s queue, and ultimately execute, in the index order
D1, D2, . . . as depicted. However, there exist executions for every possible order
of D’s tasks respecting D1 < D3 < . . . and D2 < D4 < . . . (where < denotes an
ordering constraint)—many possible orders indeed! In fact, due to the capability
of such unbounded interleaving, the problem of state-reachability under a phase-
bound is undecidable for multi-processor programs, even for programs with finite
data domains.

Theorem 3. The k-phase bounded state-reachability problem is undecidable for
multi-processor programs with finite data domains.

Bounded Phase Analysis of Message-Passing Programs, 461

Note that Theorem 3 holds independently of whether memory is shared be-
tween processors: the fact that a task-queue can store any possible (unbounded)
shuffling of tasks posted by two processors lends the power to simulate Post’s
correspondence problem [20].

Theorem 3 insists that phase-bounding alone will not lead to the elegant en-
coding to sequential programs which was possible for single-processor programs.
If that were possible, then the translation from a finite-data program would lead
to a finite-data sequential program, and thus a decidable state-reachability prob-
lem. Since a precise algorithmic solution to bounded-phase state-reachability is
impossible for multi-processor programs, we resort to a further incremental yet
orthogonal under-approximation, which limits the number of considered proces-
sor interleavings. The following development is based on delay-bounded schedul-
ing [12].

We define a delaying scheduler M = 〈D, empty, enabled, step, delay〉, as a sched-
uler 〈D, empty, enabled, step〉, along with a function delay : (D × Pids× (Pids →
Pconfigs))→ D. Furthermore, we extend the transition relation of Figure 3 with
a postponing rule of Figure 7 which we henceforth refer to as a delay (operation),
saying that processor ρ is delayed. Note that a delay operation may or may not
change the set of enabled processors in any given step, depending on the sched-
uler. A delaying scheduler is delay-accessible when for every configuration c1 and
non-idle or task-pending processor ρ, there exists a sequence c1 →M . . .→M cj
of Delay-steps such that ρ is enabled in cj . Given executions h1 and h2 of
(delaying) schedulers M1 and M2 resp., we write h1 ∼ h2 when h1 and h2 are
identical after projecting away delay operations.

Definition 3. An execution with at most k delay operators is called k-delay.

Consider again the possible executions of Figure 5b, but suppose we fix a deter-
ministic scheduler M which without delaying would execute D’s tasks in index
order: D1, D2, . . .; furthermore suppose that delaying a processor ρ in phase i
causes M to execute the remaining phase i tasks of ρ in phase i + 1, while
keeping the tasks of other processors in their current phase. Without using any
delays, the execution of Figure 5b is unique, since M is deterministic. However,
as Figure 8 illustrates, using a single delay, it is possible to also derive the order
D1, D3, . . . , D2n−1, D2, D4, . . . , D2n (among others): simply delay processor C
once before C1 posts D2. Since this forces the D2i tasks posted by each Ci to
occur in the second phase, it follows they must all happen after the D2i−1 tasks
posted by each Bi.

Theorem 4 (Completeness). Let M be any delay-accessible scheduler. For
every execution h of a program P , there exists an M -execution h′ and k ∈ N

such that h′ is a k-delay execution and h′ ∼ h.

Note that Theorem 4 holds for any delay-accessible scheduler M—even deter-
ministic schedulers. As it turns out there is one particular scheduler Mbfs for
which we know a convenient sequential encoding, and this scheduler is described
in our extended report [6]. For the moment, the important points to note are

462 A. Bouajjani and M. Emmi

Delay

m2 = delay(m1, ρ, ξ)

〈ρ, ξ,m1〉 −→
M

〈ρ, ξ,m2〉

Fig. 7. The delay operation

A1

C1

B1 B2

D2

D1 D2n-1

C2

Bn

Cn

D2nD4

D3

C1

delay

Fig. 8. A 2-phase delaying ex-
ecution varying the 1-phase ex-
ecution of Figure 5b

// translation of var g: T
var G[k+d]: T
var shift[Pids][k], delay: d
var ancestors[Pids][k+d]: B

// translation of proc p (var l: T) s
proc p (var l: T , pid: Pids, phase: k)

// translation of g
G[phase + shift[pid][phase]]

// code to be sprinkled throughout
while � and delay < d do

shift[pid][phase]++; delay++

// translation of call x := p e
call x := p (e,pid,phase)

// translation of post ρ p e
let p = phase + shift[pid][phase] in
let p’ = p + (if ancestors[ρ][p] then 1 else 0) in
if p’ < k then

ancestors[ρ][p’ + shift[ρ][p’]] := true;
call p (e, ρ, p’)
ancestors[ρ][p’ + shift[ρ][p’]] := false

Fig. 9. The k-phase d-delay sequential translation
((P))bfsk,d of a multi-processor message-passing asyn-
chronous program P

that Mbfs is deterministic, non-blocking, and delay-accessible. Essentially, deter-
minism allows us to encode the scheduler succinctly in a sequential program; the
non-blocking property ensures this scheduler does explore some execution, rather
than needlessly ceasing to continue; delay-accessibility combined with Theorem 4
ensure the scheduler is complete in the limit. Figure 9 lists a code-to-code trans-
lation which encodes bounded-phase and bounded-delay exploration of a given
program according to the Mbfs scheduler as a sequential program.

Our translation closely follows the single-processor translation of Section 4,
the key differences being:

– the phase of a posted task is not necessarily incremented, since posted tasks
may not have same-processor ancestors in the current phase, and

– at any point, the currently executing task may increment a delay counter,
causing all following tasks on the same processor to shift forward one addi-
tional phase.

As the global values reached by each processor at the end of each phase i − 1
must be ensured to match the initial values of phase i, for 0 < i < k + d, so
must the values for the shift counter: an execution is only valid when for each
processor ρ ∈ Pids and each phase 0 < i < k, shift[ρ][i− 1] matches the
initial value of shift[ρ][i].

Bounded Phase Analysis of Message-Passing Programs, 463

Theorem 5. A global valuation g is reachable in a k-phase d-delay
Mbfs-execution of a multi-processor program P if and only if g is reachable in
((P))

bfs
k,d.

As is the case for our single-processor translation, our simulation does not ex-
plicitly store the unbounded tasks queue, and is not doomed to combinatorial
explosion faced by storing tasks-queues explicitly.

6 Related Work

Our work follows the line of research on compositional reductions from con-
current to sequential programs. The initial so-called “sequentialization” [22] ex-
plored multi-threaded programs up to one context-switch between threads, and
was later expanded to handle a parameterized amount of context-switches be-
tween a statically-determined set of threads executing in round-robin order [21,
18]. [17] later extended the approach to handle programs parameterized by an un-
bounded number of statically-determined threads, and shortly after, [12] further
extended these results to handle an unbounded amount of dynamically-created
tasks, which besides applying to multi-threaded programs, naturally handles
asynchronous event-driven programs [23]. [9] pushed these results even further
to a sequentialization which attempts to explore as many behaviors as possible
within a given analysis budget. Each of these sequentializations necessarily do
provide a bounding parameter which limits the amount of interleaving between
threads or tasks, but none are capable of precisely exploring tasks in creation
order, which is abstracted away from their program models [23]. [15]’s sequen-
tialization is sensitive to task priorities, their reduction assumes a finite number
of statically-determined tasks.

In a closely-related work, [16] propose a “context-bounded” analysis of shared-
memory multi-pushdown systems communicating with message-queues. Accord-
ing to this approach, one “context” involves a single process reading from its
queue, and posting to the queues of other processes, and the number of con-
texts per execution is bounded. Our work can be seen as an extension in a few
ways. First, and most trivially, in their setting a process cannot post to its own
message queue; this implies that at least 2k contexts must be used to simulate
k phases of a single-processor program. Second, there are families of 1-phase
executions which require an unbounded number of task-contexts to capture; the
execution order D1D2D3 . . . D2n of Figure 5b is such an example. We conjecture
that bounded phase and delay captures context-bounding—i.e., there exists a
polynomial function f : N → N such that every k-context bounded execution
of any program P is also a f(k)-phase and delay bounded execution. Finally,
though phase-bounding leads to a convenient sequential encoding, we are un-
aware whether a similar encoding is possible for context-bounding.

[5] and [7] have proposed analyses of message-passing programs by
computing explicit finite symbolic representations of message-queues. As our se-
quentialization does not represent queues explicitly, we do not restrict the content

464 A. Bouajjani and M. Emmi

of queues to conveniently-representable descriptions. Furthermore, reduction to
sequential program analyses is easily implementable, and allows us to leverage
highly-developed and optimized program analysis tools.

7 Conclusion

By introducing a novel phase-based characterization of message-passing program
executions, we enable bounded program exploration which is not limited by
message-queue capacity nor the number of processors. We show that the re-
sulting phase-bounded analysis problems can be solved by concise reduction to
sequential program analysis. Preliminary evidence suggests our approach is at
worst competitive with known task-order respecting bounded analysis techniques,
and can easily scale where those techniques quickly explode.

Acknowledgments. We thank Constantin Enea, Cezara Dragoi, Pierre Ganty,
and the anonymous reviewers for helpful feedback.

References

[1] HTML5: A vocabulary and associated APIs for HTML and XHTML,
http://dev.w3.org/html5/spec/Overview.html

[2] Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS
1993: Proc. 8th Annual IEEE Symposium on Logic in Computer Science, pp. 160–
170. IEEE Computer Society (1993)

[3] Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-Fly Analysis of Systems with
Unbounded, Lossy FIFO Channels. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 305–318. Springer, Heidelberg (1998)

[4] Barnett, M., Leino, K.R.M., Moskal, M., Schulte, W.: Boogie: An intermediate ver-
ification language, http://research.microsoft.com/en-us/projects/boogie/

[5] Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. Formal Methods in System Design 14(3), 237–
255 (1999)

[6] Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs
(2011), http://hal.archives-ouvertes.fr/hal-00653085/en

[7] Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of fifo-channel sys-
tems with nonregular sets of configurations. Theor. Comput. Sci. 221(1-2), 211–250
(1999)

[8] Bouajjani, A., Habermehl, P., Vojnar, T.: Verification of parametric concurrent
systems with prioritised FIFO resource management. Formal Methods in System
Design 32(2), 129–172 (2008)

[9] Bouajjani, A., Emmi, M., Parlato, G.: On Sequentializing Concurrent Programs.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011)

[10] Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

[11] Dahl, R.: Node.js: Evented I/O for V8 JavaScript, http://nodejs.org/

http://dev.w3.org/html5/spec/Overview.html
http://research.microsoft.com/en-us/projects/boogie/
http://hal.archives-ouvertes.fr/hal-00653085/en
http://nodejs.org/

Bounded Phase Analysis of Message-Passing Programs, 465

[12] Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. In: POPL 2011:
Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 411–422. ACM (2011)

[13] Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs.
CoRR, abs/1011.0551 (2010), http://arxiv.org/abs/1011.0551

[14] Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007: Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 339–350. ACM (2007)

[15] Kidd, N., Jagannathan, S., Vitek, J.: One Stack to Run Them All: Reducing
Concurrent Analysis to Sequential Analysis Under Priority Scheduling. In: van
de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer,
Heidelberg (2010)

[16] La Torre, S., Madhusudan, P., Parlato, G.: Context-Bounded Analysis of Con-
current Queue Systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

[17] La Torre, S., Madhusudan, P., Parlato, G.: Model-Checking Parameterized Con-
current Programs Using Linear Interfaces. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

[18] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods in System Design 35(1), 73–97 (2009)

[19] Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers. In: De
Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 195–229. Springer,
Heidelberg (2005)

[20] Post, E.L.: A variant of a recursively unsolvable problem. Bull. Amer. Math.
Soc. 52(4), 264–268 (1946)

[21] Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

[22] Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI 2004: Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 14–24. ACM (2004)

[23] Sen, K., Viswanathan, M.: Model Checking Multithreaded Programs with Asyn-
chronous Atomic Methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

[24] Svensson, H., Arts, T.: A new leader election implementation. In: Erlang 2005:
Proc. ACM SIGPLAN Workshop on Erlang, pp. 35–39. ACM (2005)

[25] Trottier-Hebert, F.: Learn you some Erlang for great good!,
http://learnyousomeerlang.com/

http://arxiv.org/abs/1011.0551
http://learnyousomeerlang.com/

Demonstrating Learning of Register Automata�

Maik Merten1, Falk Howar1, Bernhard Steffen1, Sofia Cassel2,
and Bengt Jonsson2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{maik.merten,falk.howar,steffen}@cs.tu-dortmund.de
2 Dept. of Information Technology, Uppsala University, Sweden

{sofia.cassel,bengt.jonsson}@it.uu.se

Abstract. We will demonstrate the impact of the integration of our
most recently developed learning technology for inferring Register Au-
tomata into the LearnLib, our framework for active automata learning.
This will not only illustrate the unique power of Register Automata,
which allows one to faithfully model data independent systems, but also
the ease of enhancing the LearnLib with new functionality.

1 Introduction

Active automata learning (aka regular extrapolation) has been proposed to semi-
automatically infer formal behavioral models of underspecified systems. The re-
sulting formal behavioral models can be used, e.g., for documentation or regres-
sion testing and thus can be an enabler for continued system evolution. Au-
tomated mediation between networked systems by automatically synthesizing
connectors from behavioral models is a current research interest. This approach
is currently in development in the Connect project [6].

To cater the various use-cases of automata-learning, LearnLib has been cre-
ated to offer a versatile library of learning algorithms and related tools. Result of
an extensive reengineering effort, the Next Generation LearnLib [8] implements a
flexible component-based approach that supports quick iteration and refinement
of learning setups (in the following the Next Generation LearnLib will simply be
referred to as “LearnLib”).

The reengineered LearnLib has seen continued evolution, for which a complete
account will not be provided in this paper. We will rather focus on two main
innovations:

– The modeling paradigm in LearnLib Studio underwent significant changes.
For example, in the old modeling paradigm a dedicated setup phase would
precede the actual learning process. This has been replaced by on-the-fly
configuration during the learning phase itself, with only minimal static con-
figuration needed beforehand.

� This work is supported by the European FP 7 project CONNECT (IST 231167).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 466–471, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Demonstrating Learning of Register Automata 467

– LearnLib has been outfitted with support for the Register Automata au-
tomaton model [4], which is a simple extension of finite automata with data
from infinite domains. It can model data-independent systems [7], i.e., sys-
tems that do not compute or manipulate data but manage their adequate
distribution, such as protocols and mediators, in an intuitive way.

The demonstration will not only cover these two points in isolation, but will
also highlight the ease of integration of new functionality into the overall learning
framework.

In the remainder of the paper, we will recall the basics of active automata
learning in Section 2, followed by an introduction to Register Automata in Sec-
tion 3. A learning solution for Register Automata will be presented in Section 4,
demonstrating the innovations outlined above. In Section 5 a conclusion is pro-
vided, with references showcasing the broad application scope of the presented
tool environment.

2 Active Automata Learning

Angluin’s seminal algorithm L∗ [2] defines two query types to gather information
about the System Under Learning (SUL):

– Membership Queries (MQs) are traces of symbols from a predefined alphabet
of inputs of the SUL. The learning algorithm will construct such input traces,
execute these on the SUL and capture system output. From the gathered
information a hypothesis model is generated.

– Equivalence Queries (EQs) compare the produced hypotheses with the tar-
get system. If the model is not accurate, a counterexample will be provided
revealing a difference between the current hypothesis and the SUL. Evaluat-
ing counterexamples the learning algorithm will produce refined hypothesis
models using additional MQs. Once no counterexample can be produced the
learning procedure has produced an accurate model and can be stopped.

With those two query types, L∗ is guaranteed to produce a minimal and correct
model. In current practice, however, EQs can only be implemented approxi-
mately for a large class of systems, e.g., with additional invocations of the target
system.

The original L∗ algorithm has originally been presented for DFAs, but has
since been adapted to Mealy Machines, which are a better fit for learning actual
reactive systems as they can encode system output in a natural way. A major
and recent increase in expressiveness is achieved with Register Automata [5],
which are described in the following section.

3 Register Automata

Register Automata are an extension of finite automata with data from infinite
domains and are, e.g., well-suited for describing communication protocols. Reg-
ister Automata are defined as follows:

468 M. Merten et al.

l0

l1

l2
(register,〈p1,p2〉) | true

x1:=p1;x2:=p2

(login,〈p1,p2〉) | x1=p1∧x2=p2
−

(logout,∅) | true
−

(delete,∅) | true
−

(change,〈p1〉) | true
x2:=p1

Fig. 1. Partial RA model for a fragment of XMPP

Definition 1. Let a symbolic input be a pair (a, p̄), of a parameterized input
a of arity k and a sequence of symbolic parameters p̄ = 〈p1, . . . , pk〉 Let further
X = 〈x1, . . . ,xm〉 be a finite set of registers. A guard is a conjunction of equalities
and negated equalities, e.g., pi �= x j, over formal parameters and registers. An
assignment is a partial mapping ρ : X → X ∪P for a set P of formal parameters.

Definition 2. A Register Automaton (RA) is a tuple A = (A,L, l0,X ,Γ,λ), where

– A is a finite set of actions.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– X is a finite set of registers.
– Γ is a finite set of transitions, each of which is of form 〈l,(a, p̄),g,ρ, l′〉, where

l is the source location, l′ is the target location, (a, p̄) is a parameterized
action, g is a guard, and ρ is an assignment.

– λ : L �→ {+,−} maps each location to either + (accept) or − (reject). ��
Let us define the semantics of an RA A = (A,L, l0,X ,Γ,λ). A X-valuation, denoted
by ν, is a (partial) mapping from X to D. A state of A is a pair 〈l,ν〉 where l ∈ L
and ν is a X-valuation. The initial state is 〈l0,ν0〉, i.e., the pair of initial location
and empty valuation.

A step of A , denoted by 〈l,ν〉 (a,d̄)−−−→ 〈l′,ν′〉, transfers A from 〈l,ν〉 to 〈l′,ν′〉 on
input (a, d̄) if there is a transition 〈l,(a, p̄),g,ρ, l′〉 ∈ Γ such that (1) g is modeled
by d̄ and ν, i.e., if it becomes true when replacing all pi by di and all xi by ν(xi),
and such that (2) ν′ is the updated X-valuation, where ν′(xi) = ν(x j) wherever
ρ(xi) = x j, and ν′(xi) = d j wherever ρ(xi) = p j.

An example instance of a Register Automaton is provided in Figure 1, which
models a subset of the XMPP instant messaging protocol focused on aspects of
user authentication. In location l0 no user account exists. With the parameterized
action register a new account can be created, with the parameters p1 and p2

denoting a username and password. When executing the register action, the
parameter values are copied into the registers x1 and x2 respectively. This action
is unconditionally invocable in l0, meaning that its guard is true. In contrast,
the login in action of l1 has a guard that specifies that the parameters p1 and p2

provided with the login action have to match the register contents of x1 and x2,
i.e., the credentials provided during login have to match the ones stored in the
registers. The other system actions represent logging out, changing the account
password, and deleting the user account.

Demonstrating Learning of Register Automata 469

Fig. 2. A modeled learning setup created in LearnLib Studio. The model is currently
executed, with bold edges denoting the path of execution. The current query and its
answer are made visible in the panel on the lower left side.

4 The Tool Demo

We will present the LearnLib framework and highlight recently integrated in-
novations. LearnLib Studio allows the model-based composition and execution
of learning setups, where LearnLib components are made available as reusable
building blocks. In Figure 2 a learning setup tooled for learning register au-
tomata is shown, configured to learn the system shown in Figure 1. The result
of executing this learning setup is presented in Figure 3.

The reworked modeling approach: In the learning setup presented in Figure
2 the distinct pattern specific to active automata learning can be witnessed: a
learning algorithm is invoked, resulting in MQs an “oracle” has to answer. In
this context, oracles are components that execute queries on a target system
and gather the invocation results, meaning they produce an answer for a given
query. Once the learning algorithm has formed a hypothesis it can be displayed
and the data structure gathering the observations can be visualized, e.g., for
debugging purposes. In the displayed setup, EQs are approximated by a random
walk conformance test, which generates additional queries that are answered by
the system oracle. If no counterexample can be found, the learning procedure
will terminate, displaying the final result. Otherwise the counterexample will be
consumed and analyzed, which can result in the production of additional queries.
Once these have been answered and the counterexample is exploited so that a
refined hypothesis can be produced, the learning process will restart the learning
algorithm.

470 M. Merten et al.

Fig. 3. The resulting model from executing the learning setup. Guards are in square
brackets, the next register contents are explicitly denoted on every transition as is the
acceptance status of the following state. Register values are denoted as vi.

The general workflow is reusable in nature. The only application-specific parts
that have to be provided are the definition of the alphabet and the system oracle,
which has to interface the SUL. These application-specific parts can be loaded
in a standardized way with parameterized building blocks.

Compared to the previous modeling style supported by LearnLib Studio, the
new modeling style is much improved in terms of usability and flexibility: in the
old modeling paradigm, a dedicated setup phase would create a fixed configura-
tion, connecting, e.g., the learning algorithm to the SUL oracle. This setup would
then be instantiated and started, with limited ways to influence the behavior of
the setup afterwards. In the new modeling paradigm, only an alphabet has to
be specified beforehand, after which the learning algorithm can directly begin
operation. Learning queries are delegated on-the-fly according to the setup exe-
cution flow. This greatly increases flexibility, as, for instance, setups can decide
at runtime what oracle instances are used to answer queries.

Integration of Register Automata learning: Thanks to the flexible
component-based approach of LearnLib, components for learning this new model
type could be integrated into the general framework without changes to the
LearnLib architecture.

In the learning setup presented above, the only components that are specific
for the RA machine model are the building blocks encapsulating the learning al-
gorithm and the equivalence approximation. The overall infrastructure provided
by the LearnLib is reused to a high degree when using RAs despite adapting a
much richer automata model. The overall flavor of how learning setups can be
created is completely unchanged compared to how setups are specified for other
machine models, abstracting from the details of the underlying data structures
and algorithms and thus shielding the user from additional complexity.

Due to being integrated into the component framework, learning setups for
Register Automata can use all facilities LearnLib offers for debugging, visualiza-
tion and statistics. Thus our extension provides a powerful and unique framework
for learning data independent systems [7].

Demonstrating Learning of Register Automata 471

5 Conclusion

The LearnLib framework and accompanying tools provide a rich environment for
experimentation with the new Register Automata formalism. Embedded into a
flexible component model, much functionality is shared between learning setups
for different machine models, which enables a high degree of reuse. Users already
versed in the operation of the LearnLib Studio will not have to learn a new style
of modeling when adapting Register Automata, while users new to LearnLib
Studio are only exposed to a limited set of generic concepts that are easy to
understand.

The LearnLib is mature and used by several independent research groups. It
has, e.g., been used to infer the behavior of a electronic passports [1], in security
research [3], and it is a central enabler within the Connect framework.

LearnLib is available for download at http://www.learnlib.de and free for
all academic purposes.

References

1. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and Abstraction of the Biometric
Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 673–686. Springer, Heidelberg (2010)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Bossert, G., Hiet, G., Henin, T.: Modelling to Simulate Botnet Command and Con-
trol Protocols for the Evaluation of Network Intrusion Detection Systems. In: 2011
Conference on Network and Information Systems Security (SAR-SSI), pp. 1–8 (May
2011)

4. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical
Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 366–380. Springer, Heidelberg (2011)

5. Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Inferring Canonical Register Au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp.
251–266. Springer, Heidelberg (2012)

6. Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Ca-
linescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Chal-
lenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS,
pp. 154–161 (2009)

7. Lazić, R., Nowak, D.: A Unifying Approach to Data-Independence. In: Palamidessi,
C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)

8. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

Symbolic Automata: The Toolkit

Margus Veanes and Nikolaj Bjørner

Microsoft Research, Redmond, WA

Abstract. The symbolic automata toolkit lifts classical automata
analysis to work modulo rich alphabet theories. It uses the power of
state-of-the-art constraint solvers for automata analysis that is both ex-
pressive and efficient, even for automata over large finite alphabets. The
toolkit supports analysis of finite symbolic automata and transducers
over strings. It also handles transducers with registers. Constraint solving
is used when composing and minimizing automata, and a much deeper
and powerful integration is also obtained by internalizing automata as
theories. The toolkit, freely available from Microsoft Research1, has re-
cently been used in the context of web security for analysis of potentially
malicious data over Unicode characters.

Introduction. The distinguishing feature of the toolkit is the use and oper-
ations with symbolic labels. This is unlike classical automata algorithms that
mostly work assuming a finite alphabet. Adtantages of a symbolic representa-
tion are examined in [4], where it is shown that the symbolic algorithms con-
sistently outperform classical algorithms (often by orders of magnitude) when
alphabets are large. Moreover, symbolic automata can also work with infinite
alphabets. Typical alphabet theories can be arithmetic (over integers, rationals,
bit-vectors), algebraic data-types (for tuples, lists, trees, finite enumerations),
and arrays. Tuples are used for handling alphabets that are cross-products of
multiple sorts. In the following we describe the core components and functional-
ity of the tool. The main components are Automaton〈T 〉, basic automata opera-
tions modulo a Boolean algebra T ; SFA〈T 〉, symbolic finite automata as theories
modulo T ; and SFT〈T 〉, symbolic finite transducers as theories modulo T . We
illustrate the tool’s API using code samples from the distribution.

Automaton〈T 〉. The main building block of the toolkit, that is also defined as
a corresponding generic class, is a (symbolic) automaton over T : Automaton〈T 〉.

The type T is assumed to be equipped with effective Boolean operations over
T : ∧, ∨, ¬, ⊥, is⊥ that satisfy the standard axioms of Boolean algebras, where
is⊥(ϕ) checks if a term ϕ is false (thus, to check if ϕ is true, check is⊥(¬ϕ)).
The main operations over Automaton〈T 〉 are ∩ (intersection), ∪ (union) � (com-
plementation), A ≡ ∅ (emptiness check). As an example of a simple symbolic
operation consider products: when A,B are of type Automaton〈T 〉, then A ∩ B
has the transitions 〈(p, q), ϕ∧ψ, (p′, q′)〉 for each transition 〈p, ϕ, p′〉 ∈ A, and

1 The binary release is available from http://research.microsoft.com/automata

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 472–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Symbolic Automata: The Toolkit 473

〈q, ψ, q′〉 ∈ B. Infeasible and unreachable transitions are pruned by using the
is⊥ tester. Note that Automaton〈T 〉 is also a Boolean algebra (using the op-
erations ∩,∪, �,≡ ∅). Consequently, the tool supports building and analyzing
nested automata Automaton〈Automaton〈T 〉〉.

The tool provides a Boolean algebra solver CharSetSolver that uses specialized
BDDs (see [4]) of type CharSet. This solver is used to efficiently analyze .Net
regexes with Unicode character encoding. The following code snippet illustrates
its use, as well as some other features like visualization.

CharSetSolver solver = new CharSetSolver(CharacterEncoding.Unicode); // charset solver
string a = @"^[A-Za-z0-9]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$"; // .Net regex
string b = @"^\d.*$"; // .Net regex
Automaton<CharSet> A = solver.Convert(a); // create the equivalent automata
Automaton<CharSet> B = solver.Convert(b);
Automaton<CharSet> C = A.Minus(B, solver); // construct the difference
var M = C.Determinize(solver).Minimize(solver); // determinize then minimize the automaton
solver.ShowGraph(M, "M.dgml"); // save and visualize
string s = solver.GenerateMember(M); //generate some member, e.g. "HV7@9.2.8.-d2bVu0YH.z1f.R"

The resulting graph from line 8 is shown below.

SFA〈T 〉. A symbolic finite automaton SFA〈T 〉 is an extension of Automaton〈T 〉
with a logical evaluation context of an SMT (Satisfiability Modulo Theories)
solver that supports operations that go beyond mere Boolean algebraic oper-
ations. The main additional solver operations are: assert (to assert a logical
formula), push/pop (to manage scopes of assertions), get model : T →M to ob-
tain a model for a satisfiable formula. A model M is a dictionary from the free
constants in the asserted formulas to values. The method assert theory takes an
SFA〈T 〉 A and adds the theory of A to the solver. It relies on a built-in theory
of lists and uses it to define a symbolic language acceptor for A that is a unary
relation symbol accA such that accA(s) holds iff s is accepted by A.

The following code snippet illustrates the use of SFAs together with Z3 as
the constraint solver. The class Z3Provider is a conservative extension of Z3 that
extends its functionality for use in the automata toolkit. The sample is similar (in
functionality) to the one above, but uses the Z3 Term type rather than CharSet
for representing predicates over characters.

Z3Provider Z = new Z3Provider();
string a = @"^[A-Za-z0-9]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$"; // .Net regex
string b = @"^\d.*$"; // .Net regex
var A = new SFAz3(Z, Z.CharacterSort, Z.RegexConverter.Convert(a)); // SFA for a
var B = new SFAz3(Z, Z.CharacterSort, Z.RegexConverter.Convert(b)); // SFA for b
A.AssertTheory(); B.AssertTheory(); // assert both SFA theories to Z3
Term inputConst = Z.MkFreshConst("input", A.InputListSort); // declare List<char> constant
var assertion = Z.MkAnd(A.MkAccept(inputConst), // get solution for inputConst

Z.MkNot(B.MkAccept(inputConst))); // accepted by A but not by B
var model = Z.GetModel(assertion, inputConst); // retrieve satisfying model
string input = model[inputConst].StringValue; // the witness in L(A)-L(B)

474 M. Veanes and N. Bjørner

SFA acceptors can be combined with arbitrary other constraints. This feature
is used in Pex2 for path analysis of string manipulating .Net programs that use
regex matching in branch conditions.

SFT〈T 〉. A symbolic finite transducer over labels in T (SFT) is a finite state
symbolic input/output* automaton. A transition of an SFT〈T 〉 has the form
(p, ϕ, out∗, q) where ϕ is an input character predicate and out∗ is a sequence of
output terms that may depend on the input character. For example, a transition
(p, x > 10, [x+ 1, x+ 2], q) means that, in state p, if the input symbol is greater
than 10, then output x+ 1 followed by x+ 2 and continue from state q.

An SFT is a generalization of a classical finite state transducer to operate
modulo a given label theory. The core operations overs SFTs are the following:
union T ∪ T , (relational) composition T ◦ T , domain restriction T � A, sub-
sumption T (T and equivalence T ≡ T . These operation form (under some
conditions, such as single-valuedness of SFTs) a decidable algebra over SFTs.
The theory and the algorithms of SFTs are studied in [7].

Bek is a domain specific language for string-manipulating functions. It is to
SFTs as regular expressions are to SFAs. The toolkit includes a parser for Bek
as well as customized visualization support using the graph viewer of Visual
Studio. Key scenarios and applications of Bek for security analysis of sanitation
routines are discussed in [3]. The following snippet illustrates using the library for
checking idempotence of a decoder P (it decodes any consecutive digits d1 and d2
between ‘5’ and ‘9’ to their ascii letter dec(d1, d2), e.g. dec(‘7’, ‘7’) = ‘M’, thus
P ("7777") = "MM". The Bek program decoder is first converted to an equivalent
SFT (where the variable b is eliminated).

string bek = @"program P(input) { // The Bek program P
return iter(c in input) [b := 0;] { // P decodes certain digit pairs

case (b == 0): if ((c>=’5’)&&(c<=’9’)) { b:=c; } else { yield(c); }
case (true): if ((c>=’5’)&&(c<=’9’)) { yield(dec(b,c));b:=0; } else { yield(c); }

} end { case (b != 0): yield (b);};}";
Z3Provider Z = new Z3Provider(); // analysis uses the Z3 provider
var f = BekConverter.BekToSTb(Z, bek).ToST().Explore(); // convert P to an SFT f
var fof = f + f; // self-compostion of f
if (!f.Eq1(fof)) { // check idempotence of f

var w = f.Diff(fof); // find a witness where f and fof differ
string input = w.Input.StringValue; // e.g. "5555"
string output1 = w.Output1.StringValue; // e.g. f("5555") == "77"
string output2 = w.Output2.StringValue; } // e.g. f(f("5555")) == "M"

Users and tool availability. This is the first public release of the toolkit.
It has so far been used at Microsoft, and part of the tool (Rex) is also
an integrated part of the parameterized unit testing tool Pex. Applications
that illustrate some key usage scenarios, are also used from the web services
http://www.rise4fun.com/rex and http://www.rise4fun.com/bek. The tool
has been used in numerous experiments, some of which are described in [4,3],
that show scalability and applicability to concrete real-life scenarios.

2 http://research.microsoft.com/pex/

http://www.rise4fun.com/rex
http://www.rise4fun.com/bek
http://research.microsoft.com/pex/

Symbolic Automata: The Toolkit 475

Tool Overview. An overview of the toolkit is illustrated in the diagram below.
The core components are in bold. Arrows indicate dependencies between the
components. They are labeled by the main relevant functionality.

Rex

Symbolic
Automata

Bek

SFTs

SFA
Algebra

SFAs

CharSet
Solver SFT Algebra

Regex
analysis

Representation

Analysis

Parsing

Analysis/composition

Domain
analysis

Theory
analysis

Symbolic exploration/representation/analysis/optimization

Analysis/composition

Regex
support Z3

AGL

.Net
Reg.
Expr

Domain
operations

Constraint
solving

Pex

Graph layout

Code
gen. C#/C/...

Related Tools. String analysis has recently received increased attention, with
several automata-based analysis tools. We make a systematic comparison of re-
lated techniques in [4]. Tools include the Java String Analyzer [1], with the
dk.brics.automaton library as a constraint solver for finite alphabets. It com-
presses contiguous character ranges. Hampi [5] solves bounded length string con-
straints over finite alphabets using a reduction to bit-vectors. Kaluza extends
Hampi to systems of constraints with multiple variables and concatenation [6].
MONA [2] uses MTBDDs for encoding transitions. BDDs are used in the PHP
string analysis tool in [8].

References

1. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg
(2003)

2. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sand-
holm, A.: Mona: Monadic Second-Order Logic in Practice. In: Brinksma, E., Stef-
fen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS,
vol. 1019, pp. 89–110. Springer, Heidelberg (1995)

3. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with bek. In: USENIX Security Symposium (August 2011)

4. Hooimeijer, P., Veanes, M.: An Evaluation of Automata Algorithms for String Anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011)

5. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: ISSTA (2009)

6. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A Symbolic
Execution Framework for JavaScript (March 2010)

7. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic finite
state transducers: Algorithms and applications. In: POPL 2012 (January 2012)

8. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An Automata-Based String Analysis
Tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

476 M. Veanes and N. Bjørner

A Bek

Bek is a domain specific language for writing common string functions. With
Bek, you can answer questions like: Do these two programs output the same
strings? Given a target string, is there an input string such that the program
produces the target string? Does the composition of two programs produce a
desired result? Does the order of composition matter? Bek has been specifically
tailored to capture common idioms in string manipulating functions.

A.1 UTF8Encode Example

Bek includes a fairly complete set of arithmetic operations that are, by default,
over 16-bit bit-vectors, since the most common case of analysis is over strings
that use UTF-16 encoding. The example shows a concrete representation of a
UTF8 encoding routine written in Bek. It takes a UTF-16 encoded string and
transforms it into the corresponding UTF8 encoded string. The encoder “raises
an exception” when invalid surrogate pairs are detected. These exception cases
define, in terms of the generated SFTs, partial behavior, i.e., that the input is
not accepted by the SFT.

// UTF8 encoding from UTF16 strings, hs is the lower two bits of the previous high surrogate
// this encoder raises an exception when an invalid surrogate is detected

program UTF8Encode(input){
return iter(c in input)[HS:=false; hs:=0;]
{
case (HS): // the previous character was a high surrogate

if (!IsLowSurrogate(c)) { raise InvalidSurrogatePairException; }
else {
yield ((0x80|(hs << 4))|((c>>6)&0xF), 0x80|(c&0x3F));
HS:=false; hs:=0;

}
case (!HS): // the previous character was not a high surrogate

if (c <= 0x7F) { yield(c); } // one byte: ASCII case
else if (c <= 0x7FF) { // two bytes
yield(0xC0 | ((c>>6) & 0x1F), 0x80 | (c & 0x3F)); }

else if (!IsHighSurrogate(c)) {
if (IsLowSurrogate(c)) { raise InvalidSurrogatePairException; }
else { //three bytes

yield(0xE0| ((c>>12) & 0xF), 0x80 | ((c>>6) & 0x3F), 0x80 | (c&0x3F));} }
else {
yield (0xF0|(((1+((c>>6)&0xF))>>2)&7), (0x80|(((1+((c>>6)&0xF))&3)<<4))|((c>>2) & 0xF));
HS:=true; hs:=c&3; }

} end {
case (HS): raise InvalidSurrogatePairException;
case (true): yield();
};
}

The following code is a unit test from the automata toolkit. Assume that the
above Bek program is in the file "UTF8Encode.bek". The code does the following.
First, it converts the Bek program into a symbolic transducer stb (that allows
branching conditions in rules). It then eliminates the registers hs and HS by fully
exploring stb. Then the domain of the resulting sft is restricted with the regular
expression that excludes the empty input string. The theory of the resulting sft
is asserted as a background theory extension of the solver. New uninterpreted

Symbolic Automata: The Toolkit 477

constants are defined for input and output lists of the sft. Then the Z3 provider
is used to generate (50) solutions. Old solutions are pruned from iterated calls
to the solver.

public void TestUTF8Encode() {
Z3Provider solver = new Z3Provider();
var stb = BekConverter.BekFileToSTb(solver, "UTF8Encode.bek");
var sft = stb.Explore();
//sft.ShowGraph(); //saves the sft in DGML format and opens it in Visual Studio.

var restr = sft.ToST().RestrictDomain(".+");
restr.AssertTheory();

Term inputConst = solver.MkFreshConst("input", restr.InputListSort);
Term outputConst = solver.MkFreshConst("output", restr.OutputListSort);

solver.AssertCnstr(restr.MkAccept(inputConst, outputConst));

//validate correctness for some values against the actual UTF8Encode
int K = 50;
for (int i = 0; i < K; i++) {

var model = solver.GetModel(solver.True, inputConst, outputConst);
string input = model[inputConst].StringValue;
string output = model[outputConst].StringValue;

Assert.IsFalse(string.IsNullOrEmpty(input));
Assert.IsFalse(string.IsNullOrEmpty(output));

byte[] encoding = Encoding.UTF8.GetBytes(input);
char[] chars = Array.ConvertAll(encoding, b => (char)b);
string output_expected = new String(chars);

Assert.AreEqual<string>(output_expected, output);

// exclude this solution, before picking the next one
solver.AssertCnstr(solver.MkNeq(inputConst, model[inputConst].Value));

}
}

The whole unit test takes a few seconds to complete. In this case the unit test
simply tests on 50 random samples that the encoder does not differ from the
built-in implementation.

A.2 Bek on Rise4Fun.com

The web-site http://rise4fun.com/bek illustrates several examples of Bek pro-
grams. It runs the Symbolic Automata Toolkit with the Bek extensions and con-
verts Bek programs into ECMA script (Java script) and also shows a graphical
representation of an graph representation of the transducer.

B Rex on Rise4Fun.com

The web-site http://rise4fun.com/rex illustrates several examples of Rex as
a game. The game is to guess a secret regular expression. The user enters a
candidate expression, and the Symbolic Automata Toolkit is used to find strings
that are (1) accepted by both languages (if any), (2) accepted by one and rejected
by the other (if any), and (3) rejected by both languages.

http://rise4fun.com/bek
http://rise4fun.com/rex

McScM: A General Framework for the

Verification of Communicating Machines�

Alexander Heußner1, Tristan Le Gall2, and Grégoire Sutre3

1 Université Libre de Bruxelles, Brussels, Belgium
2 CEA, LIST, DILS/LMeASI, Gif-sur-Yvette, France

3 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract. We present McScM, a platform for implementing and
comparing verification algorithms for the class of finite-state processes
exchanging messages over reliable, unbounded FIFO channels. McScM
provides tools for the safety verification and controller synthesis of these
infinite-state models. Our verification tool implements several model-
checking techniques: CEGAR with different abstraction-refinement meth-
ods, abstract interpretation, abstract regular model checking, and lazy
abstraction. Seen as a general framework for the class of transition sys-
tems with finite control/infinite data, McScM delivers the basic infras-
tructure for implementing verification algorithms, and privileges to
conveniently implement new ideas on a high level of abstraction. It also
allows us to compare and benchmark different algorithmic approaches
with the same backend.

1 Introduction

The automatic verification of distributed algorithms and communication pro-
tocols is one of the most crucial tasks in software/hardware development and
maintenance. It is also one of the hardest, e.g., as one cannot directly infer the
global behaviour of a distributed system from its local components due to asyn-
chronous communication. This renders already simple analysis, verification, and
synthesis questions hard problems in theory. However, in practice, this leads to
a growing demand for versatile tools that also apply semi-algorithmic solutions,
approximations, abstractions, and heuristics.

We focus on the safety verification of communicating finite-state machines
(CM), an infinite-state formalism that consists of a set of local, finite state ma-
chines that communicate via global, asynchronous, reliable and unbounded FIFO
channels. The latter are demanded in practice by, e.g., distributed applications
based on TCP, the Sockets API, or MPI. Note that CM do not demand the
channels to be a priori point-to-point. The safety verification question demands,
given a CM and a set of “bad” states, whether no execution of this CM reaches
the bad states. This is known to be undecidable [3].

� This work was partially supported by the ANR project Vacsim (ANR-11-INSE-004).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 478–484, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

McScM: A General Framework for the Verification of Communicating Machines 479

As for other classes of Turing-complete infinite-state models, there are two
ways to tackle this problem. The first one is to restrict CM to a decidable frag-
ment, e.g., by imposing a bound on the size of the FIFO channels, or assuming
the channels to lose messages [1]. The second one is to provide only “partial”
results, either by semi-algorithmic methods that may not terminate, or over-
approximative approaches that may be inconclusive. Despite the rich theoretical
work concerning CM, there is currently no versatile tool that can be directly ap-
plied to CM’s safety question , and that gives the user a choice among different
algorithmic approaches to solve a concrete verification question.

We aim at filling this gap by presenting a Model Checker for Systems of
Communicating Machines (McScM) that combines different algorithms for the
safety verification problem of CM under the same roof and provides a ready-to-
use front-end with the tool verify. McScM is available via our project’s web
page [14] either as a precompiled binary distribution (including man pages, a
suite of examples, and some benchmarking scripts), or as source code release.
McScM is programmed in OCaml and available under a BSD license. The de-
velopment of McScM takes place in a software forge [14] that provides a wiki
for documentation (including man pages and API), a bug and issue tracker, as
well as our theoretical work [6, 7]. The following discussion refers to McScM’s
release 1.2.

In the following, we present our implemented algorithms (Section 2) and
verify’s modular architecture (Section 3) before applying the tool in a small
comparative benchmark in Section 4 that shows its capabilities. Finally, we
change the focus to McScM as generic API/framework (Section 5) to implement
novel algorithms and ideas and compare to existing tools and frameworks.

2 Safety Verification of Communicating Machines

In our setting, an instance of the safety verification problem is given by a textual
representation of a CM (in a simple and intuitive automata-based language), and
a set of bad states, i.e., a set of global control states together with a represen-
tation of the channel’s contents by regular expressions (for details, see scm(5)

man page). The tool verify allows the user to input this instance and to choose
among a variety of verification techniques. After completion of the analysis,
verify outputs either “model safe” if it finds an inductive invariant that proves
the system safe, or returns a counterexample, i.e., a proof that the system is not
safe. The tool aborts if it runs out of a resource that was a priori limited by
the user, e.g., the number of analysis steps or the maximum precision allowed
for abstraction. A closer look on the modular architecture of verify and the
generic aspects underlying McScM is postponed to the next section.

McScM currently implements the following four different verification
techniques:

absint: this abstract interpretation based approach [8] reduces verification to
the calculation of a fixpoint in an abstract lattice, and terminates in a finite
number of steps with either a positive answer (model safe), or aborts.

480 A. Heußner, T. Le Gall, and G. Sutre

armc: the Abstract Regular Model Checking semi-algorithm [2] refines a global
regular abstraction of the system by symbolic successor (or predecessor) cal-
culation; we reimplemented the basic idea in our setting;

cegar: Counterexample Guided Abstraction Refinement is a semi-algorithmic ap-
proach that allows to start with a rough, safety-conservative abstraction that
is refined along spurious counterexamples [4]; McScM started originally by
porting this approach to CM relying on a novel notion of path invariant
based refinement [6]; the implemented generic algorithm allows for a variety
of parameterization (in particular, path invariant generation methods);

lart: we implemented the lazy abstraction approach [9] based on the construction
of an abstract reachability tree; each vertex of the tree contains an abstract
region, which may be refined with the help of path invariants when needed;

We can compare the algorithms on the same background as they share an under-
lying infrastructure implementing abstraction/extrapolating for CM, as well as a
library of graph algorithms and (path) invariant generators. The first three tech-
niques are semi-algorithms based on the abstract-check-refine paradigm. When
the CM is not safe, they provide counterexamples that are an important feedback
when using safety verification in practical (engineering) situations. Contrariwise,
absint always terminates without guaranteeing a conclusive answer. A compari-
son of the four approaches with respect to a suite of example protocols derived
from practice follows in Section 4.

Already revealing the benchmark’s outcome, there is no silver bullet among
the four techniques. Hence, to tackle a given instance of a CM safety verification
problem, one has to choose among approaches and need fine-grained influence
by additional parameterizations to the underlying algorithms (e.g., depth-first
versus breadth-first exploration of the CM). This is exactly what verify offers:
a “swiss army knife” for model checking systems of communicating machines.

In addition, McScM includes a supervisory control tool: control. If a CM
system does not satisfy a safety property, control automatically computes a
restriction of this system that assures safety by implementing the distributed
control algorithm presented in [7] (see control(1) man page for details).

3 A Closer Look on verify’s Modular Architecture

Figure 1 shows the modular architecture of McScM’s verify tool. The latter
provides a common (command line based) interface and infrastructure for the
implemented verification algorithms (absint, armc, cegar, lart), as well as allows
to plug in a symbolic representation of the infinite data part of the CM, i.e.,
the queue contents. Currently, we only provide a wrapper for a library based on
queue-content decision diagrams (QDD) [15]. The tool’s input is an instance of
the safety decision problem. Each algorithm accepts additional adaptations via
command line parameters. The tool outputs either a counterexample, a positive
result, or an abort message. McScM provides additional logging and profiling
information that can be output by the tool, and helps to benchmark and compare
algorithms, as seen in the next section.

McScM: A General Framework for the Verification of Communicating Machines 481

F
C
ID

verify

log

va
li
d
a
to
r

scm
wrapper

external libraries:
scm, latticeautomata

extrapolation

absint armc cegar lart

pathinvariant
generator

trace
checker

CM

+ safety cond.
in

out“inconclusive” / abort

counterexample or safety certificate

(statistics/profiling/logging)

Fig. 1. Modular Architecture of McScM’s Verification Tools

The cornerstone of McScM’s development is generic programming which is
supported by OCaml’s modules and functors. This functional programming lan-
guage based on type inference encloses the proof of behavioural guarantees at
compile time with respect to our implemented algorithm’s interfaces. In addi-
tion, we also provide means for the on-the-fly validation of both intermediary
results (i.e., checking the result of a path invariant generation in cegar) and the
inductive safety invariant. Both add an additional layer of reliability, especially
when implementing new algorithms in McScM.

As our API is well specified and reasonably documented, it is relatively easy to
implement also other algorithms for CMs. For example, the previously mentioned
control tool is build of top of several OCaml modules of verify, and uses the
same fixpoint computation as absint.

4 A Comparative Benchmark of Verification Algorithms

Figure 2 was generated by using verify to benchmark the included verification
algorithms (on default parameters) on a suite of examples derived from practice.
The latter includes the alternating bit protocol (ABP), a simplified version of
TCP, and a distributed leader election algorithm (“Peterson”); the examples
range from simple protocols with 5 global control states (“c/d”) to around 104

for Peterson. The benchmark was run on an off-the-shelf computer (3.2GHz Intel
i7-965, 64-bit Linux) and is contained as shell script in the latest McScM release.

In general, verify is able to give a solution for each example in a reasonable
amount of time and memory. However, there is no algorithm that proves to be
superior. absint provides a fast way of determining if a protocol is safe, however,
it is not able to cope with unsafe examples. Due to its termination guarantee,
it proves to be ideal as first line of attack when trying to verify an unknown
protocol. The main difference between cegar and armc is their way of refining
the abstraction, either locally and adapted, or globally for the whole model. This
gives an advantage for cegar in the examples that require a “precise” abstraction
only for a few control loops (like the Peterson algorithm, the erroneous load
balancer, or the token ring example), and for armc in most other cases. However,
our armc implementation is not able to cope with a simple non-regular protocol.
As cegar allows a variety of additional parameters to the algorithm, we can fill
the two gaps in the table by changing the underlying path invariant generation

482 A. Heußner, T. Le Gall, and G. Sutre

AB
P
BR
P

c/d loa
d-b
ala
nc
er

loa
d-b
ala
nc
er
(er
r)

ne
ste
d c
/d

no
n-r
egu
lar

Pe
ter
son

PO
P3

ser
ver
/2
cli
en
ts

slid
ing
wi
nd
ow
s

(si
mp
lifi
ed
) T
CP

TC
P
(er
ror
)

tok
en
rin
g

ω ω ω ω ω ω b b b ω b ω ω b bounded
 � � � safe

absint 0.05 1.70 0.02 0.00 1.72 0.00 0.07 85.00 1.18 298.6 6.53 0.10 0.16 27.43 time (s)

2.97 5.88 2.97 2.75 4.91 2.97 2.97 54.31 6.84 5.58 7.81 3.94 3.94 14.44 mem (MiB)
armc 0.11 331.92 0.01 0.00 — 0.02 — 4.79 3.14 195.88 0.21 0.12 0.03 328.18

4.95 773.8 2.97 2.97 2.97 106.62 31.06 14.59 6.84 5.88 3.94 3143.52
cegar 0.23 — 0.02 0.06 2.66 0.40 0.02 1.41 8.06 — 7.92 0.89 0.12 14.9

3.94 2.97 2.97 7.91 3.94 2.97 46.56 14.59 18.47 6.84 3.94 35.91
lart — — 0.01 0.02 56.21 — 0.02 1.62 1184.4 — 437.81 — 0.01 —

2.97 2.97 16.53 2.97 41.56 18.47 73.69 2.97

Fig. 2. Benchmarking verify’s Different Algorithms on a Suite of Examples (we denote
an abort due to an 1h time limit by “—”, and note for each example if it is safe () or
not safe (�), as well as if queues are used in a bounded way (b) or without restriction
(ω); inconclusive results of absint are marked gray)

(e.g., -tc-engine apinv-fwd -k-min -1 leads to 13.48s/15.56MiB (BRP) and
5.67s/10.72MiB (server)); however, there is also no default parameterization for
cegar that can be shown to be superior (see [6] for details).

To conclude, there is no silver bullet for the safety verification of CM among
our algorithms; however, their common front-end via verify proves to be a
flexible tool that can cope with all our examples.

5 The McScM Framework

McScM’s generic approach is based on symbolic finite control infinite data tran-
sition systems (FCID) (a notion inspired by [5]); the latter are given by a finite
transition system enhanced by an appropriate region algebra as symbolic repre-
sentation of the infinite data. For CM, the region algebra is given by QDD, and
we define a regular abstraction for our systems thereupon.

Thus, McScM provides a generic API for, on the one hand, implementing new
algorithms on a high level of abstraction; and, on the other hand, allows to apply
the implemented algorithms to other members of the FCID family, by supplying
a fitting region algebra and a suited notion of abstraction.

Related Tools: McScM relates to other symbolic model checking tools that can
verify CM or subclasses thereof. SPIN [16], for example, allows to verify only CM
with a priori bounded channels (e.g., those marked b in Figure 2), but allows for
deciding properties specified in linear temporal logic. The CADP [10] toolbox
includes a μ-calculus model checking tool limited to finite labelled transition
systems, i.e., CM with bounded channels only. The same restriction to finite
transition systems holds for other tools, like LTSA [13]. TReX [18] analyzes
infinite state systems: lossy channel systems with local timed/counter automata.
LEVER [12] is a learning-based model checker that supported CM with regular
channel languages in a previous, not further available version. So, McScM offers—
to our knowledge—the only currently freely available tool that can directly verify
CM with reliable, unbounded FIFO channels.

The LASH library [11] offers only symbolic data structures channels, but does
not provide any model checking algorithm for CM. The LASH API permits to

McScM: A General Framework for the Verification of Communicating Machines 483

symbolically present several classes of FCID (e.g., by QDD, number decision di-
agrams (NDD), real vector automata (RVA)), and to implement algorithms for
each. Modular front-ends like TaPAS [17] (for FCIDs based on Presburger arith-
metic) even allow to implement for multiple FCID libraries at once. Even tough
McScM can be used in the same spirit to implement and compare model checking
algorithms for a given class of FCID, we are able to provide generic algorithms
that can be parameterized by any FCID for which we can provide a symbolic
representation. The latter must only be conform to the above mentioned region
algebra and supply an appropriate notion of abstraction, e.g., a suitable wrapper
for LASH’s RVA would directly port cegar to FCID representable by real vector
automata, e.g. timed or hybrid systems.

Future Work: McScM is a work in progress, hence, we are always optimizing in-
ternals and provide extensions that prove handy for practical verification tasks,
like our planned direct support for PROMELA as input language. Our next
big step will lead beyond CM by allowing the local machines to have infinite
data (like counters or timers), which demands new insights and notions for ab-
stractions and invariants for these systems, as well as practicable algorithmic
data-structures for implementing a region algebra.

References

[1] Aziz Abdulla, P., Jonsson, B.: Undecidable verification problems for programs
with unreliable channels. Information and Computation 130(1), 71–90 (1996)

[2] Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

[3] Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J.
ACM 30(2), 323–342 (1983)

[4] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided Ab-
straction Renement for Symbolic Model Checking. J. ACM 50(5), 752–794 (2003)

[5] Henzinger, T., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition
systems. ACM Transactions on Computational Logic 6, 1–32 (2005)

[6] Heußner, A., Le Gall, T., Sutre, G.: Extrapolation-Based Path Invariants for Ab-
straction Refinement of Fifo Systems. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS,
vol. 5578, pp. 107–124. Springer, Heidelberg (2009)

[7] Kalyon, G., Le Gall, T., Marchand, H., Massart, T.: Global State Estimates for
Distributed Systems. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS
2011. LNCS, vol. 6722, pp. 198–212. Springer, Heidelberg (2011)

[8] Le Gall, T., Jeannet, B., Jéron, T.: Verification of Communication Protocols Using
Abstract Interpretation of FIFO Queues. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 204–219. Springer, Heidelberg (2006)

[9] McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

[10] CADP, http://www.inrialpes.fr/vasy/cadp/
[11] LASH, http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
[12] LEVER, http://abhayspace.com/static/lever.html
[13] LTSA, http://www.doc.ic.ac.uk/ltsa/

http://www.inrialpes.fr/vasy/cadp/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://abhayspace.com/static/lever.html
http://www.doc.ic.ac.uk/ltsa/

484 A. Heußner, T. Le Gall, and G. Sutre

[14] McScM, https://altarica.labri.fr/forge/projects/mcscm
[15] SCM, Lattice Automata, http://gforge.inria.fr/projects/bjeannet/
[16] SPIN, http://spinroot.com
[17] TaPAS, http://altarica.labri.fr/forge/projects/3/wiki/TaPAS/
[18] TReX, http://www.liafa.jussieu.fr/~sighirea/trex/

https://altarica.labri.fr/forge/projects/mcscm
http://gforge.inria.fr/projects/bjeannet/
http://spinroot.com
http://altarica.labri.fr/forge/projects/3/wiki/TaPAS/
http://www.liafa.jussieu.fr/~sighirea/trex/

SLMC: A Tool for Model Checking Concurrent Systems
against Dynamical Spatial Logic Specifications

Luı́s Caires and Hugo Torres Vieira

CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. The Spatial Logic Model Checker is a tool for verifying π-calculus
systems against safety, liveness, and structural properties expressed in the spatial
logic for concurrency of Caires and Cardelli. Model-checking is one of the most
widely used techniques to check temporal properties of software systems. How-
ever, when the analysis focuses on properties related to resource usage, localities,
interference, mobility, or topology, it is crucial to reason about spatial proper-
ties and structural dynamics. The SLMC is the only currently available tool that
supports the combined analysis of behavioral and spatial properties of systems.
The implementation, written in OCAML, is mature and robust, available in open
source, and outperforms other tools for verifying systems modeled in π-calculus.

1 Introduction

Model-checking is one of the most widely used verification techniques in the analysis
of software applications. The usual focus is on behavioral/temporal properties, which
allow to check liveness and safety properties of systems, from the standpoint of their ex-
ternally observable behavior. However, it is often the case that verification really needs
to address on properties about (spatial) distribution, mobility, or resource usage. It is
then crucial to be able to observe the structural/spatial configuration of systems. Exam-
ples of such properties include connectivity – there is always an access route between
two sites – or unique handling – there is at most one server listening on a given channel
name – or race absence – no simultaneous sends/writes to the same receiver/reader.

The Spatial Logic Model Checker [3] is a tool that allows the user to automatically
verify behavioral and spatial properties of distributed and concurrent systems expressed
in the π-calculus. Its base logic is a very rich dynamical spatial logic for concurrency,
conveniently containing as a subset the logics supported by other model-checkers for
π-calculi (e.g., [15,11,18]). The verification algorithm (using on-the-fly techniques) is
provably correct for all expressible processes, and complete for the class of bounded
processes [4], including the finite control π-calculus. In the next section, we present
the SLMC by going through a simple example, which already illustrates the usefulness
of the tool, briefly presenting the input languages in the meanwhile (see, e.g., [12,14]
and [4,5,6,7] for background on π-calculus and on dynamic spatial logics, respectively).

2 Checking a Topological Property of a Distributed Protocol

The example we now discuss models a protocol which allows a set of nodes to orga-
nize itself into a ring like structure. The basic idea of the protocol is that in each step

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 485–491, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

486 L. Caires and H.T. Vieira

two rings (which includes the case of the singleton ring, i.e., a ring with one node)
are merged into a larger ring. Then, regardless of the intermediate configurations, a se-
quence of such steps leads to the point in which the whole set of nodes is included in the
ring. The correctness of such protocol may be verified by our tool, since we are able to
observe the topology of the system and check if the protocol yields a ring configuration.

We start by the specification of the three possible states of a node in our system:
state Node represents the initial state of a node, which has no connections; state Link
represents a node which is in a ring, hence connected to its left and to its right (we use
left and right for the sake of illustration); state Leader also represents a node which is
in a ring, but is the only node in its ring that is willing to connect to other nodes.

The specification of the Node in SLMC syntax is as follows:
defproc Node(com) =

new link,chan in select {
com!(link,chan).chan?(right).Leader(com,link,right);
com?(right,newch).newch!(link).Link(link,right)};

The defproc introduces a π-calculus process definition in the system, named Node.
The parameter com is the name of a public channel used by nodes to connect to each
other. The process specified creates names link and chan (cf., π-calculus name restric-
tion) and then may select one of two possible behaviors: either it outputs on channel
com the freshly created names link and chan or it receives some names right and
newch in channel com. In the former case, the process proceeds by receiving right

in chan, after which becomes the Leader of the ring. In the latter case, the process
proceeds by sending link in the received newch, and then becomes a Link node.

We then specify a Link node as a process that either inputs from the node on its left
or outputs to the node on its right, and after which proceeds as a Link node:
defproc Link(left,right) =

select { left?().Link(left,right);
right!().Link(left,right)};

Like the Link, a Leader also receives from its left node and outputs to its right:
defproc Leader(com,left,right) =

new chan in select {
left?().Leader(com,left,right);
right!().Leader(com,left,right);
com?(newr,newch).newch!(right).Link(left,newr);
com!(right,chan).chan?(newr).Leader(com,left,newr)};

Furthermore, a Leader node is willing to connect to another ring via channel com
(and a freshly created chan). Intuitively, two Leaders connect by swapping their right
links, in such way merging two rings into one. This is the case both when the Leader
receives or outputs on com, the difference is that the former implies yielding the Leader
status (proceeding as Link), while the latter does not (proceeding as Leader).

The system is specified as a set of (e.g., four) Nodes that share a public com channel:
defproc System = Node(com) | Node(com) | Node(com) | Node(com);

We may now present the spatial/behavioral properties that characterize the system.
For starters, we describe a leader node:
defprop leader(a,b) =

1 and (a != b) and (@com) and (<a?> true) and (<b!> true);

SLMC: A Tool for Model Checking Concurrent Systems 487

This defprop command defines property leader (with parameters a,b), which
describes processes which are indivisible (1), that have com as a free name (@com)
and that are able to input on a name (<a?> after which proceeding as processes that
satisfy true, i.e., any) and output on another name (<b!> after which proceeding as
any process). A link has a similar description, where com is not a free name:
defprop link(a,b) =

1 and (a != b) and (not @com) and (<a?> true) and (<b!> true);

A node may be described as an indivisible process which is not a link nor a leader:
defprop node =

1 and not exists a. exists b. (leader(a,b) or link(a,b));

Notice properties link, leader and node are specially suited for the node specifi-
cation of this system in particular. However, testing for indivisibility (single-threaded) is
a generic feature of a node, which is possible to observe thanks to the expressiveness of
the logic. Property 1 may be taken as an abbreviation of “non-empty system which can-
not be decomposed into two non-empty parts” – not 0 and not (not 0 | not 0).

The separating composition A|B is a key operator of the dynamic spatial logic, char-
acterizing systems that can be decomposed (via structural congruence) in two parts, one
satisfying property A and the other satisfying property B. Using parallel composition,
we may, e.g., specify the initial state of the system as a composition of four nodes:
defprop initial = inside (node | node | node | node);

Property inside is used so as to reveal all name restrictions, i.e., open the scopes
of all name restrictions, in such way allowing for spatial decomposition to split threads
otherwise indivisible because of the sharing of some restricted name.

We now turn to the verification of the correctness of the protocol. In order to charac-
terize rings, we first introduce the notion of a chain of connected link nodes:
defprop chain(c,d) = (minfix C(a,b).(link(a,b) or

(exists x. (link(a,x) | C(x,b)))))(c,d);

Intuitively, the least fixpoint (minfix), parameterized by a,b initially instantiated
by c,d, characterizes a chain of linked nodes where the leftmost and rightmost links
are a and b, respectively. Such chain may either be a single link node, or there exists
(the existential quantifier) name x such that there is a link(a,x) in parallel with a
chain from x to b. Then, a ring is a chain of links in parallel with a leader:
defprop ring = exists a. exists b. (leader(a,b) | chain(b,a));

Notice the chain connects b to a, for some names b,a, which are the right and left
link of the leader node, respectively. We may now ask the tool if all execution paths
lead (always and eventually, defined as usual) to a ring configuration:
check System |= always (eventually (inside (ring)));

The success of this verification, which explores all possible execution paths of the
system and exploits the unique combination of behavioral and spatial properties sup-
ported by the tool, guarantees the protocol always leads, regardless of intermediate
steps, to a final configuration of a ring that connects all nodes.

3 Verification Algorithms and Implementation

In this section we discuss the verification algorithms, based on [4] and on a canonical
representation of processes, and present some benchmark figures.

488 L. Caires and H.T. Vieira

The model-checking procedure is based on an on-the-fly technique, which means
the model state space is explored gradually, guided by the deconstruction of the for-
mula. In our case, the verification comprises observing both structure and behavior of
processes. Namely, model-checking relies on decompositions of processes – up to struc-
tural congruence – to check the composition formula A | B, on observing behaviors of
processes – up to the labeled transition system which defines the operational semantics
– to check action modalities, and, crucially to check fixpoints, on the ability to compare
two processes – up to the identification of some irrelevant names for the purpose of the
model-checking, i.e., names that are not referred by the formula [4]. A great deal of the
reasoning performed by our algorithms is optimized by relying on equivariance [10]
(working up to name permutations).

Processes are modeled by data structures representing sets of equations in a normal
form. Each equation describes a flat state of the process, where only immediate actions
are represented. Using X to range over equation identifiers and α to range over actions
we then write X (x) �→ (νa) (α1 | . . . | αk) to represent the equation identified by
variableX , parameterized by the x variable set (x abbreviates x1, . . . , xj), specifying a
flat configuration with restricted names a and consists of the composition of k actions
α1 to αk. Action prefixes, denoted by p, and actions, denoted by α, are given by:

p ::= n!(m) (Output) | n?(x) (Input) α ::= α+ α (Sum)
| [n = m] (Test) | τ (Internal) | p.X (n) (Prefix)

An action prefix may be an output n!(m) (read “send names m on channel n”), an
input n?(x) (read “instantiate variables x with the names received on channel n”), a
test [n = m] (read “if n is the same as m proceed”) and τ which represents a process
internal action. Actions are either the non-deterministic choice of two actions α + α,
or a prefix and its respective continuation. Continuations in our setting are specified by
the corresponding equation variable, hence p.X (n) represents a process which after p
behaves as specified in the equation identified by X , instantiating its parameters with n.

Abstracting continuation states with equation variables is crucial to quickly verify if
two processes are the same, since we only need to check if the immediate actions and
their respective continuations are the same. This simplification is crucial for the veri-
fication of fixpoints, which rely on an approximation of the fixpoint which is updated
and consulted throughout unfolding, via the process comparison mechanism.

A process model may then be represented by a set of equations, together with an
entry point. To further optimize the verification we model active (top-level) processes
considering the set of connected components [9]: two processes that share a restricted
name and thus cannot be decomposed via π-calculus structural congruence. Hence, for
the sake of verifying the composition formula, which involves exploring all possibilities
for decomposing a process, it is vital that the representation clearly identifies which
threads are not decomposable, identifying the basic units of decomposition. The SLMC
top-level process representation is then given by:

(νa1) (α
1
1 | . . . | α1

k) | . . . | (νaj) (αj
1 | . . . | αj

k)

where each (νai) (α
i
1 | . . . | αi

k) piece (for some i) is an indivisible process because
the αi

t actions share between them the ai restricted names. This way, the several possi-

SLMC: A Tool for Model Checking Concurrent Systems 489

Table 1. Model-Checking Deadlock Absence (in seconds)

SLMC Petruchio MWB (prove) MWB (check) MMC

Handover 0.0005 0.2 0.002 0.015 0.01
Arrow (a) 0.01 0.8 0.115 – –
Arrow (b) 0.3 4.3 6.2 – –

Table 2. Model-Checking Spatial properties (in seconds)

Ring Handover Arrow (a) Arrow (b)

0.08 0.02 0.11 7.76

bilities for decomposing a process in two pieces are obtained by the possible combina-
tions of gathering these basic indivisible blocks.

At the level of the optimizations, the main challenge we address is the expedite (re-
)building of the process normal form, i.e., updating the top-level process representation
as the consequence of observing an action/transition. For example, observing an output
action entails updating the top-level process with the continuation of the output which
then becomes active. So, actions and name restrictions specified in the continuation con-
figuration (given by the equation identified by the variable prefixed by the output) must
be integrated in the top-level representation, and the set of connected components must
be updated considering the “new” actions and due to restricted names scope changes.

We now present some benchmark figures, comparing with other existing π-calculus
model-checkers: the Petruchio tool [11], the Mobility Workbench (MWB) [15], and
the Mobility Model Checker (MMC) [18]. The comparison is established for the ver-
ification of a fundamental behavioral property: deadlock absence. We consider two
challenging systems: Milner’s implementation of the Handover protocol [12] and a π-
calculus implementation of the Arrow Distributed Directory Protocol [8], both available
in the SLMC homepage [3].

The numbers shown in Table 1 list the amount of time needed for each tool to ver-
ify the systems are deadlock free, obtained running the tools on a Mac OS X 10.5.8,
2.4GHz Intel Core 2 Duo. For the Petruchio tool in particular, the figures indicate the
time needed to translate π-calculus specifications into petri-nets [13], since Petruchio
exports such petri-nets to external verification engines to carry out the model-checking.
In the case of the MWB, we distinguish between the prove and check procedures. We
consider the arrow system as available in [3] – (a) – and also a small variation obtained
by adding one node to the system – (b). Notice that both the check procedure available
in the MWB and the MMC did not provide results for checking deadlock absence for
the arrow system, due to timeout and memory overflow, respectively. The comparison
with Petruchio and the MWB prove procedure is favorable to the SLMC, where the
figures obtained hint on the complexity of the arrow system itself.

Notice however none of the tools mentioned above supports the verification of struc-
tural properties, and there exists none, to the best of our knowledge, which allows for
the combined analysis of behavioral and spatial specifications as the ones expressible in

490 L. Caires and H.T. Vieira

dynamic spatial logic. Table 2 reports on figures obtained for verifying spatial properties
over the same systems, namely the verification shown in the previous section in the Ring
system, race-freedom in the Handover system, and a complex correctness property of
the Arrow system (see [3]): it is always the case that every node may eventually gain
exclusive access to the shared object. As stated above, no comparison is possible in this
case, since no other tool can handle spatial properties as the SLMC does.

4 Concluding Remarks

The SLMC is publicly available online, in open source, and is often downloaded. The
tool, in development since 2004, has reached a very high maturity and robustness level,
and is very fast in practical use. It has been routinely used for teaching purposes in our
department, and we would like to further promote its use elsewhere. The development
of the first version of the tool was supported by the FET Profundis project [1]. The
development continued under the support of project IP Sensoria [2], where the tool was
included in the Sensoria tool suite, and extended for the verification of service-oriented
systems, as described in [17]. In particular, we have also concluded recently further
extensions to the tool, namely an extension to the applied π-calculus (for security), and
another for checking choreography conformance of service-oriented applications, based
on an encoding of the Conversation Calculus [16]. Further information about the Spatial
Logic Model Checker may be found in http://ctp.di.fct.unl.pt/SLMC/.

References

1. FET Profundis Project, http://www.it.uu.se/profundis/
2. IP Sensoria Project, http://www.sensoria-ist.eu/
3. Spatial Logic Model Checker, http://ctp.di.fct.unl.pt/SLMC/
4. Caires, L.: Behavioral and Spatial Observations in a Logic for the π-Calculus. In:

Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Heidelberg
(2004)

5. Caires, L.: Dynamical Spatial logics: A Tutorial Survey. Bulletin of the EATCS (2008)
6. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and Computa-

tion 186(2), 194–235 (2003)
7. Cardelli, L., Gordon, A.: Anytime, Anywhere: Modal Logics for Mobile Ambients. In: Pro-

ceedings of POPL 2000, pp. 365–377. ACM Press (2000)
8. Demmer, M.J., Herlihy, M.P.: The Arrow Distributed Directory Protocol. In: Kutten, S. (ed.)

DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)
9. Engelfriet, J., Gelsema, T.: Multisets and Structural Congruence of the π-Calculus with

Replication. Theor. Comput. Sci. 211(1-2), 311–337 (1999)
10. Gabbay, M., Pitts, A.: A New Approach to Abstract Syntax with Variable Binding. Formal

Aspects of Computing 13(3-5), 341–363 (2002)
11. Meyer, R., Strazny, T.: Petruchio: From Dynamic Networks to Nets. In: Touili, T., Cook, B.,

Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer, Heidelberg (2010)
12. Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP (1999)
13. Petri, C., Reisig, W.: Petri net. Scholarpedia 3(4), 6477 (2008)
14. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes. CUP (2001)

http://ctp.di.fct.unl.pt/SLMC/
http://www.it.uu.se/profundis/
http://www.sensoria-ist.eu/
http://ctp.di.fct.unl.pt/SLMC/

SLMC: A Tool for Model Checking Concurrent Systems 491

15. Victor, B., Moller, F.: The Mobility Workbench - A Tool for the π-Calculus. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

16. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-Oriented
Computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283. Springer,
Heidelberg (2008)

17. Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg (2011)
18. Yang, P., Ramakrishnan, C., Smolka, S.: A Logical Encoding of the π-Calculus: Model-

Checking Mobile Processes Using Tabled Resolution. STTT 6(1), 38–66 (2004)

TAPAAL 2.0: Integrated Development

Environment for Timed-Arc Petri Nets�

Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen,
Mikael H. Møller, and Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

Abstract. TAPAAL 2.0 is a platform-independent modelling, simula-
tion and verification tool for extended timed-arc Petri nets. The tool
supports component-based modelling and offers an automated verifica-
tion of the EF, AG, EG and AF fragments of TCTL via translations to
Uppaal timed automata and via its own dedicated verification engine.
After more than three years of active development with a main focus on
usability aspects and on the efficiency of the verification algorithms, we
present the new version of TAPAAL 2.0 that has by now reached its ma-
turity and offers the first publicly available tool supporting the analysis
and verification of timed-arc Petri nets.

1 Introduction

Timed-arc Petri nets (TAPN) are a particular time extension of the classical
Petri net model where the time information is attached to the tokens in the net,
representing their ages, and arcs from places to transition contain time intervals
that restrict the ages of tokens which are moved along the arcs. The model of
TAPN was first studied by Bolognesi, Lucidi, Trigila and Hanisch [4,9] and it has
proved particularly suitable for modelling of manufacturing systems, workflow
management systems and other applications [1,2,14,15,16].

We present TAPAAL 2.0, an open source and platform-independent tool
(available from www.tapaal.net) that allows users to edit, simulate and verify
extended TAPN models in a component-based fashion through shared interfaces.
There exist several other verification tools for timed models, like Uppaal [19]
for networks of timed automata, and Romeo [8] and Tina [3] for time Petri nets
(where time intervals are associated with transitions, as opposed to tokens like
in the TAPN model). However, all these models are rather different (and com-
plementary) and even though translations among them are possible [18], their
suitability from the modeller’s point of view depends on the application domain.
For example, time Petri nets use an a priory fixed number of clocks (one for
each transition) while TAPN allow for dynamic creation of tokens that carry
their own local clocks. Some criticism on the classical TAPNs mentions the lack
of modelling features for ensuring urgent behaviour and lack of read-arcs. In

� The paper was supported by VKR Center of Excellence MT-LAB.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 492–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

TAPAAL 2.0: Integrated Development Environment 493

the extended TAPN model used in TAPAAL, the weak points are dealt with
by enforcing urgency via age invariants, modelling read-arcs in a more general
setting via transport arcs and introducing other features, like inhibitor arcs and
components, facilitating a more convenient modelling.

We are not aware of other tools for the analysis of TAPN, except for two
tool prototypes implementing a backward coverability algorithm based on the
better-quasi-ordering technique [2] and a forward reachability algorithm pre-
sented in [1]. Both implementations consider only the basic TAPN model. The
former tool allows to verify solely coverability queries (remarkably also for un-
bounded nets) while the latter one may not terminate as the reachability ques-
tions are in general undecidable. Neither of the tools supports a GUI interface
and they do not seem to be maintained.

TAPAAL 1.1 was presented in [6] as a tool providing a TAPN editor, simulator
and translator to Uppaal timed automata. The two translations implemented in
TAPAAL 1.1 preserve only safety properties but have showed the potential of the
translation approach. In the present version of TAPAAL 2.0, the tool now has a
completely new and dedicated verification engine (implemented in C++) and two
novel translations preserving liveness. In addition, the GUI and the modelling
features were significantly extended; notably we now support component-based
model development, constants, inhibitor arcs, advanced query creation dialog,
batch processing engine and numerous other features. The theory behind the
tool has been published in [17,5,11,12].

2 Tool Description

The architecture of the tool is outlined in Figure 1. The GUI of the tool has
originally been developed as an open source project PIPE 2.5 [10] but since its
TAPAAL branch in 2008, it has been significantly extended with new features
like a component-based editor that allows to describe component interfaces via
shared places and transitions. The composed net can be simulated in a timed
simulator, displaying traces with concrete delays, or verified either via TAPAAL’s
own engine or via automatic translations to the Uppaal engine. Verification can
be initiated from a user-friendly query dialog or as a batch job.

Verification Options. TAPAAL 2.0 adds two new translations from extended
TAPNs to networks of timed automata that use the broadcast communication
feature of Uppaal [11] and contrary to the previous two translations that rely
on handshake synchronization (already present in TAPAAL 1.1), they do not
produce additional deadlocks and hence allow us to verify also liveness prop-
erties. The two new translations can additionally handle all the new extended
features, including inhibitor arcs. The main extension of TAPAAL 2.0 is its own
dedicated engine implementing an efficient forward reachability algorithm on ab-
stract markings (ages of tokens represented via zones) while applying on-the-fly
active clock reduction (resizing of zones to contain only clocks of the active to-
kens) and other optimizations. The monotonicity property (more tokens added

494 A. David et al.

0

t
[1, 5]

C
1

t

≤L

s

p

[L,∞)

C
2

p
[0,∞)

C
3

L:= 2

Constants

Main Features:
components
transport arcs
age invariants
inhibitor arcs
constants

Editor

0

t

≤ 2

s

p

[1, 5]

[2,∞)

[0,∞)

Composed TAPN

Query: EF p > 0

native boundedness check, symmetry
reduction with trace generation,
discrete inclusion, advanced GUI

Query Builder

1: TAPAAL engine
2: TAPAAL engine with discrete incl.

3: Standard reduction to Uppaal

4: Optimized reduction to Uppaal

5: Broadcast reduction to Uppaal

6: Broadcast reduction degr. 2 to Uppaal

Translator

Uppaal

engine
TAPAAL
engine

Multiple models
Spreadsheet export

Batch Verifier

t

≤ 22

s p

[1
,
5
]

[2
,∞

)

[0
,∞

)

→delay: 1
→fire: t
→delay: 2
→fire: s

Trace

Simulator

Fig. 1. Architecture of TAPAAL 2.0

to the net cause only more behaviour) that holds for the basic TAPNs, but breaks
for the extended TAPNs due to the features like age invariants and inhibitor arcs,
can be used to speed-up the verification. From the static analysis of the net, we
define a novel ordering on markings of the net so that monotonicity is preserved
even for the extended TAPN model and we exploit this in the reachability al-
gorithm, still providing exact verification answers but often with considerable
speed-up as demonstrated in Section 3. This technique, called discrete inclusion,
can be further optimized by a manual intervention of the modeller. The verifi-
cation engine also implements an automatic symmetry reduction technique and
returns executable traces even if symmetry is activated (unlike e.g. Uppaal or
TAPAAL 1.1). Finally, the new engine implements a k-boundedness check of a
given net. Even if the net is unbounded, the verification up to k tokens in the
net is possible, providing a suitable under-approximation of the net behaviour.

Management of Tool Development. To facilitate easy collaboration between the
TAPAAL tool contributors, we utilize launchpad.net/tapaal, a free tool-chain
for collaboration in open source projects. Among others, all software bugs found
in TAPAAL are registered and tracked using launchpad’s bug management sys-
tem. To this day, more than 20 individuals have contributed to the development
of TAPAAL, working on more than 200 registered bugs and features, during over
ten official releases of TAPAAL.

launchpad.net/tapaal

TAPAAL 2.0: Integrated Development Environment 495

Uppaal engine TAPAAL translations TAPAAL engine
original improved original improved original improved

no yes no yes no yes no yes no yes no yes

3 0.1 <0.1 <0.1 <0.1 0.4 0.2 <0.1 <0.1 0.2 <0.1 <0.1 <0.1
4 0.4 <0.1 <0.1 <0.1 16.8 0.3 <0.1 0.1 2.8 <0.1 <0.1 <0.1
5 5.3 0.1 <0.1 <0.1 — 0.6 <0.1 0.1 89.1 0.2 <0.1 <0.1
6 220.5 0.2 <0.1 <0.1 — 1.8 <0.1 0.1 — 0.9 <0.1 <0.1
7 — 1.1 0.1 <0.1 — 14.5 0.1 0.1 — 6.3 <0.1 <0.1
8 — 3.6 0.5 <0.1 — 104.8 0.1 0.1 — 48.9 <0.1 <0.1
9 — 20.7 3.1 <0.1 — — 0.1 0.1 — — <0.1 <0.1
10 — 143.6 23.2 <0.1 — — 0.1 0.1 — — <0.1 <0.1
11 — — 148.0 <0.1 — — 0.1 0.1 — — <0.1 <0.1
40 — — — 0.9 — — 0.6 0.7 — — 4.1 0.6
80 — — — 22.8 — — 11.1 12.7 — — 158.9 11.0
120 — — — 159.8 — — 73.9 84.8 — — — 68.3
160 — — — — — — 293.8 — — — — 262.3

Fig. 2. Scheduling Feasibility of MPEG-2 Encoder (time in seconds)

3 Experiments

We present two new case studies in order to argue for the efficiency and appli-
cability of the tool. More experimental results can be found e.g. in [5,12] and
several TAPN models are available within the tool (under File/Example nets).
All the models used in the following experiments can be obtained from the tool
homepage (section Download). The experiments were carried out on a MacBook
Pro equipped with a 2.7GHz Intel Core i7 and 8GB of RAM with a 300 seconds
time limit. We used the 64-bit versions of TAPAAL 2.0.2 and Uppaal 4.1.4.

MPEG-2 Case Study. We model the MPEG-2 algorithm that encodes a group
of frames on a multiprocessor architecture. The algorithm treats one initial I-
frame, a number of B-frames (we parameterize our model on this number), and
a final P-frame. The TAPN model was taken directly from [14]. We recreated the
Uppaal model from the descriptions in [7] since their original Uppaal model
was not available anymore. The results are in Figure 2. The columns called
original list the verification times for the model described in [14]; in the improved
variant we employed several additional modelling optimizations (both in the
timed automata and the TAPN model) via the use of invariants and symmetry
reduction (features not available to the authors of [14]). The query asks whether
the encoding can be performed within a given time bound (that we vary). In
positive cases (yes columns) we used DFS, otherwise (no columns) we used BFS.
This allows us to see how good the tools are to find a trace to a reachable state
or to explore the whole state-space. The discrete inclusion technique does not
improve the performance of the TAPAAL engine in this particular case.

Lynch-Shavit Protocol. The second case study is a timed-based mutual exclusion
algorithm by Lynch and Shavit [13]. Both the TAPN and timed automata models

496 A. David et al.

Uppaal TAPAAL TAPAAL TAPAAL TAPAAL TAPAAL
engine translations engine inclusion M-incl. M*-incl.

15 0.2 0.4 0.9 0.2 0.2 0.2
25 2.4 3.0 8.5 1.1 0.9 0.9
35 14.6 15.8 42.7 4.6 4.00 3.9
45 62.6 57.1 153.3 14.3 11.3 10.5
55 190.8 164.7 — 38.8 27.2 25.0
65 — — — 106.5 57.7 52.7
75 — — — 262.4 113.2 100.5
85 — — — — 203.2 178.6
95 — — — — — 299.2

Fig. 3. Lynch-Shavit Protocol for Mutual Exclusion (time in seconds)

were taken from [1]. The column called inclusion refers to the generic application
of the discrete inclusion technique, M-incl. refers to a manual optimization of
the technique and M*-incl. shows a possible best performance of the technique
(optimized by a brute force search with an automatic script). The results are
presented in Figure 3 for a different number of processes participating in the
protocol. The discrete inclusion technique is not an over-approximation of the
behaviour and provides conclusive answers applied to any model, not only the
protocol in this case study.

TAPAAL’s performance is convincing in comparison with state-of-the-art
model checkers like Uppaal and, in several cases, it provides a considerably
faster verification. Due to space limitation, we present only two case studies
but we also observed similar performance improvements for other models. In
particular, if the net structure allows for more tokens in the same place, the
generic discrete inclusion technique often gives a significant speed up and it can
be further manually tuned up. Moreover, if symmetry reduction is applicable,
it is often better exploited in the net models (where its detection is automatic
on contrary to the user defined one in Uppaal models) and our translations
create networks of timed automata that are significantly faster to verify than
the native Uppaal models. Last but not least, TAPAAL allows for simulation
of concrete error traces (even in case of symmetry reduction) while many other
timed automata and Petri net tools display only the abstract ones, which makes
them difficult to understand for the end-users.

4 Conclusion

TAPAAL 2.0 is an open source, platform-independent modelling and verification
tool for extended timed-arc Petri nets. The tool has reached its maturity both
in the GUI aspects as well as in the actual verification performance. The tool
is becoming increasingly popular as documented by the total number of 2089
downloads (calculated in October 2011), out of which more than 650 downloads
took part since April 2011.

TAPAAL 2.0: Integrated Development Environment 497

References

1. Abdulla, P.A., Deneux, J., Mahata, P., Nylén, A.: Using forward reachability anal-
ysis for verification of timed Petri nets. Nordic J. of Computing 14, 1–42 (2007)

2. Abdulla, P.A., Nylén, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

3. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA — construction of
abstract state spaces for Petri nets and time Petri nets. International Journal of
Production Research 42(14), 2741–2756 (2004)

4. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In:
Proc. of the IFIP WG 6.1 10th International Symposium on Protocol Specification,
Testing and Verification, pp. 1–14. North-Holland, Amsterdam (1990)

5. Byg, J., Jørgensen, K.Y., Srba, J.: An Efficient Translation of Timed-Arc Petri
Nets to Networks of Timed Automata. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 698–716. Springer, Heidelberg (2009)

6. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: Editor, Simulator and Verifier of
Timed-Arc Petri Nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 84–89. Springer, Heidelberg (2009)

7. Cambronero, M.E., Ravn, A.P., Valero, V.: Using UPPAAL to analyze an mpeg-2
algorithm. In: Proc. of VII Workshop Brasileiro de Tempo Real, pp. 73–82 (2005)

8. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: A Tool for Analyzing Time
Petri Nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

9. Hanisch, H.M.: Analysis of Place/Transition Nets with Timed-Arcs and Its Ap-
plication to Batch Process Control. In: Ajmone Marsan, M. (ed.) ICATPN 1993.
LNCS, vol. 691, pp. 282–299. Springer, Heidelberg (1993)

10. Platform Independent Petri net Editor 2.5, http://pipe2.sourceforge.net
11. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: A Framework for Relating

Timed Transition Systems and Preserving TCTL Model Checking. In: Aldini, A.,
Bernardo, M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp.
83–98. Springer, Heidelberg (2010)

12. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of Timed-Arc Petri
Nets. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić,
M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 46–72. Springer, Heidelberg
(2011)

13. Lynch, N., Shavit, N.: Timing-based mutual exclusion. In: Proceedings of the 13th
IEEE Real-Time Systems Symposium, pp. 2–11 (1992)

14. Pelayo, F.L., Cuartero, F., Valero, V., Macia, H., Pelayo, M.L.: Applying timed-
arc Petri nets to improve the performance of the MPEG-2 encoding algorithm. In:
Proc. of MMM 2004, pp. 49–56. IEEE (2004)

15. Valero, V., Pardo, J.-J., Cuartero, F.: Translating TPAL Specifications into Timed-
Arc Petri Nets. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360,
pp. 414–433. Springer, Heidelberg (2002)

16. Ruiz, V.V., Pelayo, F.L., Cuartero, F., Cazorla, D.: Specification and analysis of
the MPEG-2 video encoder with timed-arc Petri nets. ENTCS 66(2) (2002)

17. Srba, J.: Timed-Arc Petri Nets vs. Networks of Timed Automata. In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer,
Heidelberg (2005)

18. Srba, J.: Comparing the Expressiveness of Timed Automata and Timed Extensions
of Petri Nets. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 15–32. Springer, Heidelberg (2008)

19. UPPAAL, http://uppaal.org

http://pipe2.sourceforge.net
http://uppaal.org

A Platform for High Performance Statistical

Model Checking – PLASMA

Cyrille Jegourel, Axel Legay, and Sean Sedwards�

INRIA Rennes – Bretagne Atlantique
sean.sedwards@inria.fr

Abstract. Statistical model checking offers the potential to decide and
quantify dynamical properties of models with intractably large state
space, opening up the possibility to verify the performance of complex
real-world systems. Rare properties and long simulations pose a challenge
to this approach, so here we present a fast and compact statistical model
checking platform, PLASMA, that incorporates an efficient simulation
engine and uses importance sampling to reduce the number and length
of simulations when properties are rare. For increased flexibility and ef-
ficiency PLASMA compiles both model and property into bytecode that
is executed on an in-built memory-efficient virtual machine.

1 Introduction

The need to provide accurate predictions about the behaviour of complex sys-
tems is increasingly urgent. With computational power ever-more affordable and
compact, man-made systems are inevitably becoming increasingly computerised,
distributed and concurrent, creating a correspondingly increased burden to check
that they function correctly. At the same time, following the success of the human
genome project, there is an increased expectation that computers can provide
answers to important questions raised by complex systems in the life sciences.

Complex systems tend to pose two particular challenges to formal verification:
the non-determinism caused by concurrency and unpredictable environmental
conditions and the size of the state space. Our focus here is model checking,
that can verify the most intricate details of a system’s dynamical behaviour and
where non-determinism may be handled by assigning probabilistic distributions
to unknowns and by quantifying results with a probability - probabilistic model
checking. ‘Exact’ probabilistic model checking quantifies these probabilities to
the limit of numerical precision by an exhaustive exploration of the state space,
but is restricted in practise by what can be conveniently stored in memory. Tech-
niques exist to work with a reduced state space (abstraction, lumping, etc.), but
the state space of most real natural and man-made systems remain intractable.

Statistical model checking (SMC) avoids an explicit representation of the state
space by building a statistical model of the executions of a system and estimating
results within confidence bounds. An executable model of the system is run
repeatedly and each simulation trace is verified against a property specified in

� Corresponding author.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 498–503, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Platform for High Performance Statistical Model Checking – PLASMA 499

temporal logic. Examples of tools that have successfully applied this approach are
[10,7]. Knowing a result with less than 100% confidence is often sufficient, since
the confidence bounds may be made arbitrarily tight, however the key challenges
of this approach are to reduce the length (simulation steps and cpu time) and
number of simulation traces necessary to achieve a result with given confidence.
The current proliferation of parallel computer architectures (multiple cpu cores,
grids, clusters, clouds and general purpose computing on graphics processors,
etc.) makes the production of multiple independent simulation runs relatively
easy, but it is still necessary to make simulation as efficient as possible. Rare
properties pose a particular problem for simulation-based approaches, since they
are not only difficult to observe (by definition) but their probability is difficult
to bound [2].

In what follows we present the prototype of a flexible SMC platform,
PLASMA1, that incorporates an in-built compiler and virtual machine to per-
form memory- and time-efficient simulations. PLASMA incorporates an efficient
discrete event simulation algorithm and uses importance sampling to reduce the
necessary number of simulation runs when properties are rare.

2 Software Architecture

PLASMA adopts a modular architecture to facilitate the extension of its fea-
tures (Fig. 1). Models can already be specified using the PRISM reactive mod-
ules syntax [3] and biochemical syntax of the form A + B → C + D, while the
implementation of other modelling formalisms, such as timed automata and pro-
cedural programming languages such as C and Java, is in prospect. The input
specification is translated into a notional common intermediate language based
on elements (referred to as simple commands because they have no explicit syn-
chronisation and no choice of actions) having the structure (guard,rate,actions),
where guard, rate and actions are functions over the current state (constants,
variables, clocks) of the system. The intermediate language thus expresses the
semantics of a system that advances by discrete events: the guard enables the
command, the rate resolves non-determinism between enabled commands (and
controls the delay in continuous time systems) and the actions update the state
of the system. Different input languages may be facilitated by implementing
parsers that construct and fill data structures that reflect simple commands.
Once the model is represented in the intermediate language it is compiled into
an executable form (the model program).

PLASMA uses in-built compilers to create bytecode for execution on its own
stack-based virtual machine (VM) that comprises a logic VM (LogicVM in Fig.
1) and a simulation VM (SimVM in Fig. 1). PLASMA’s bytecode instructions
constitute a domain-specific, low level, platform-independent language designed
for efficient statistical model checking. This language contains standard low level
instructions, such as push, pop, add, sub, mul, div, etc., as well as non-standard

1 A demonstration version of PLASMA may be downloaded from
https://sites.google.com/site/plasmasmc

500 C. Jegourel, A. Legay, and S. Sedwards

Fig. 1. The architecture of PLASMA

instructions to construct efficient model checking algorithms. The VM is imple-
mented in a high level procedural programming language (currently Java, but
the code uses no features that cannot easily be adapted to other languages)
and is efficient because it is optimised for its domain of application: high level
instructions are efficient sub-parts of model-checking algorithms and all instruc-
tions are optimised with respect to the hardware level. The compiler and VM
are also sufficiently compact to allow PLASMA to be implemented as a browser
application, a distributed component or in an embedded system etc.

PLASMA verifies properties specified in bounded temporal logic. Such prop-
erties are compiled into bytecode programs (property programs) and then exe-
cuted on the logic VM. Our current focus is discrete time, however continuous
time and other logics may be easily facilitated by implementing additional logic
parser-compilers. Overall control of the verification process is maintained by the
simulation management kernel (SMK) according to the options specified by the
user. In general, the property program executes the model program until it has
seen sufficient steps to decide a result and the SMK executes the property pro-
gram until it has sufficient results to return an answer to the user. In this way,
simulation traces contain the minimum number of states necessary to decide
the property and the minimum number of simulations are generated. The logic
accepts arbitrarily nested path formulae, however formulae that are not nested
are particularly memory efficient: by employing a multivalued logic (true, false,
undecided) PLASMA need only store the current state of the system. Nested
formulae are also handled efficiently. In general, PLASMA stores only a subset
of the full trace, having length equal to the maximum sum of the time bounds
of any nested formulae.

2.1 Stochastic Simulation Algorithm

PLASMA performs discrete event simulation using the ‘method of arbitrary
partial propensities’ (MAPP [6]). The MAPP is based on the Gillespie ‘direct

A Platform for High Performance Statistical Model Checking – PLASMA 501

method’ (DM [8]) but performs significantly better in large-scale practical appli-
cations than either the DM or the asymptotically better ‘next reaction method’
(NRM [1]). In a system of M simple commands, each step of the DM is O(M)
because it iterates through all the commands in the system to find the command
to execute and then again to update all the guards and rates following the exe-
cution of the chosen command. The MAPP divides the M commands into

√
M

subsets of
√
M commands and thus divides choosing a command into two oper-

ations of O(
√
M): choosing a subset and choosing a command within the subset.

By performing an initial dependency analysis of the system the MAPP avoids
updating commands whose guards and rates are not affected during the simula-
tion. Since the average number of dependent commands, D, tends to be smaller
than and independent of M , the overall complexity of the MAPP is O(

√
M).

The NRM achieves asymptotic complexity of O(logM) by performing a similar
dependency analysis and by arranging the commands in an ordered binary tree
whose root always contains the next command to be executed. Choosing a reac-
tion is O(1), but maintaining the invariant property of the tree is proportional to
D log2 M . D is assumed constant, but the fact that it multiplies the complexity
of the NRM tends to make the MAPP more efficient in most small to large-scale
applications. See Figure 3.

2.2 Rare Properties and Importance Sampling

The process of statistical model checking estimates the probability of a property
by verifying the execution paths of multiple independent simulation runs. If Ω is
a probability space of traces (ω ∈ Ω), f(ω) the probability measure over Ω and
z(ω) ∈ {0, 1} is a function indicating whether ω satisfies some property, then the
expected probability of the property is given exactly by γ =

∫
Ω z(ω)f(ω) dω.

This leads directly to the standard Monte Carlo estimator: γ̃ = 1
N

∑N
i=1 z(ωi),

where ωi are simulation paths realised under distribution f .
As γ → 0, however, it becomes increasingly difficult to bound the relative er-

ror in γ̃ and N becomes prohibitively large [2]. Importance sampling can be used
to reduce N by performing simulations under a ‘tilted’ (importance sampling)
distribution that produces the rare paths more frequently and by compensating
for the tilt using the ‘likelihood ratio’. If f ′ is the importance sampling distri-

bution then l(ω) = f(ω)
f ′(ω) is the likelihood ratio and γ =

∫
Ω z(ω) f(ω)

f ′(ω)f
′(ω) dω.

This leads to the importance sampling estimator γ̃ = 1
N

∑N
i=1 l(ω

′
i)z(ω

′
i), where

ω′
i are simulation paths realised under the the importance sampling distribution

and l(ω′
i) is calculated on the fly.

By individually optimising all the probabilities in the transition system (‘state
dependent tilting’) it is conceivable to create very good importance sampling
distributions, however this is not in general tractable. PLASMA therefore adopts
a parameterised (state independent) tilting scheme based on its intermediate
language representation of the model. For each simple command in the system,
an importance sampling parameter taking strictly positive values is introduced to
bias the rates. To test the performance of PLASMA’s paramterised importance

502 C. Jegourel, A. Legay, and S. Sedwards

sampling engine we applied it to repair models from [5] that have previously been
considered in the context of state dependent tilting and which may be verified by
PRISM’s numerical algorithm. We have found that our state independent tilting
scheme is nevertheless capable of achieving dramatic increases in performance.
For instance, example 1 of [5] considers a property with probability 1.17×10−7,
requiring an expected 108 simulation runs to see a few examples. Using just
six parameters PLASMA is able to make a 106-fold increase in the frequency of
observing the rare event.

3 Results

Figure 2 illustrates typical performance scaling2 of PLASMA’s SMC engine rela-
tive to PRISM’s numerical algorithm, applying them to increasing instance sizes
of a classic probabilistic model checking problem (the randomised dining philoso-
phers protocol of [4]). The state space increases exponentially with respect to
instance size, hence PRISM’s time scaling is exponential and its maximum in-
stance size is here limited by available memory to about 35 philosophers. By
estimating a result with (arbitrarily) bounded error, PLASMA can work with
much larger models and its performance scales linearly in time proportional to
the length of the property formula. Since PLASMA’s memory requirement also
scales linearly with instance size, its limit is much higher than the maximum
shown in Figure 2.

1
10

10
0

10
00

10
00

0

Philosophers

S
ec

on
ds

3 10 30 100 300 1000

PRISM

PLASMA

Fig. 2. Performance scaling of
PLASMA’s SMC engine vs. PRISM’s
numerical algorithm. PLASMA per-
formed 118595 simulations per point.

1
10

10
0

10
00

10
00

0

Commands

S
ec

on
ds

/1
00

00
00

0
st

ep
s

10 100 1000 10000 10^5

PRISM

PLASMA

DM

Fig. 3. Simulation algorithm perfor-
mance scaling using the genetic oscilla-
tor of [9] as a building block. The DM
was implemented in PLASMA.

Figure 3 illustrates typical simulation performance scaling of PLASMA’s MAPP
algorithm in comparison to the direct method of [8] and PRISM’s simulation en-

2 All results generated under Windows 7 Enterprise 64-bit and Java 1.6.0 26 32-bit
on Intel Core i7 CPU M640 @ 2.80Ghz with 4GB RAM. PRISM 4.0.1 was used.

A Platform for High Performance Statistical Model Checking – PLASMA 503

gine. A stochastic oscillatory model from systems biology [9] was used as the
building block to construct plausible biological models of increasing complexity.
Using the DM’s O(M) scaling as reference, the lower order scaling of PLASMA’s
MAPP algorithm is clear. The performance of PRISM’s simulation algorithm is
also here limited by memory, but in this case the limit is not related to the state
space, which is intractable for even the smallest instance.

4 Conclusion and Future Challenges

PLASMA is a compact, efficient and flexible SMC platform that incorporates
a novel importance sampling engine. Its broad goal is to take SMC beyond
proof of concept and to tackle the analysis of real-world systems. Since such
systems are usually not written in abstract modelling languages, we foresee a
need to implement other input languages to avoid errors and make the process of
verification more convenient. Of particular interest are timed and hybrid systems,
since these are commonly used in industrial applications. Importance sampling
constitutes a major thread of our research, as it has the potential to dramatically
increase the performance of simulation-based techniques. A key challenge is the
discovery of good parameterised importance sampling distributions and we are
currently developing algorithms to infer these automatically.

References

1. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. of Physical Chemistry A 104, 1876 (2000)

2. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Trans. Model. Comput. Simul. 5, 43–85 (1995)

3. The PRISM manual,
http://www.prismmodelchecker.org/manual/

4. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Dis-
tributed Computing 1, 53–72 (1986)

5. Ridder, A.: Importance sampling simulations of markovian reliability systems using
cross-entropy. Annals of Operations Research 134, 119–136 (2005)

6. Sedwards, S.: A Natural Computation Approach To Biology: Modelling Cellular
Processes and Populations of Cells With Stochastic Models of P Systems. PhD
thesis, University of Trento (2009)

7. Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and
analyzer for probabilistic systems. In: QEST, pp. 251–252. IEEE (2005)

8. Daniel, T., Gillespie: A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions. Journal of Computational
Physics 22(4), 403–434 (1976)

9. Vilar, M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in
genetic oscillators. Proceedings of the National Academy of Science 99 (2002)

10. Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

http://www.prismmodelchecker.org/manual/

Competition on Software Verification�

(SV-COMP)

Dirk Beyer

University of Passau, Germany

Abstract. This report describes the definitions, rules, setup, procedure,
and results of the 1st International Competition on Software Verification.
The verification community has performed competitions in various areas
in the past, and SV-COMP’12 is the first competition of verification tools
that take software programs as input and run a fully automatic verifica-
tion of a given safety property. This year’s competition is organized as a
satellite event of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).

1 Introduction

The area of verification, in particular model checking, has grown to an own major
research area within computer science, which is witnessed and acknowledged by
a recent ACM Turing Award in the area and the growth of conferences in the
field of verification to some of the top computer-science conferences with high
impact on the research community. Model checking started to get adopted in
software industry (e.g., Microsoft, NASA, NEC) about ten years ago, and major
tool-development projects in software model checking began around that time
(Blast at UC Berkeley, Slam at MSR, Magic at CMU).

Several new and powerful software-verification tools became available, but
they have not been compared systematically in the past. The reason for this
is that no widely distributed benchmark suite was available and most concepts
were only validated in research prototypes. This can be changed by a compe-
tition. Comparison, and thus competition, is a driving force for the invention
of new methods, technologies, and tools. This article describes the competition
of software-verification tools, which this year is organized as a satellite event
of the conference TACAS. SV-COMP’12 is the first competition that compares
verification tools for software source code.

Only few research projects aim at producing stable tools that can be used by
people outside the respective development groups, and the development of such
tools is not continuous. PhD students and post-docs do not adequately benefit
from tool development because theoretical papers are still considered more rele-
vant than papers that present technical contributions, like tool papers. Through
its visibility, the Competition on Software Verification changes this, by showing
� http://sv-comp.sosy-lab.org

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 504–524, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sv-comp.sosy-lab.org/

Competition on Software Verification 505

off the latest implementation of the research results in our community, and giving
credits and benefits to researchers and students who spend considerable amounts
of time implementing verification algorithms in practical software packages (win-
ning the verification competition in a category serves as acknowledgment). More
discussion on problems and barriers in developing tools for software verification
can be found in a position paper by Alglave et al. [1].

A competition event fosters the transfer of theoretical and conceptual ad-
vancements in software verification into practical tools. The main goals of the
Competition on Software Verification are the following:

– Establish a set of benchmarks for software verification in the community,
i.e., create and maintain a set of programs together with explicit properties
to check, and make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

– Provide an overview of the state-of-the-art in software verification for the
community, i.e., compare, independently from particular paper projects and
specific techniques, different verification tools in terms of precision and per-
formance.

– Increase the visibility and credits that tool developers receive, i.e., provide
a forum for presentation of tools and discussion of the latest technologies,
and give students the opportunity to publish about the implementation work
that they have done.

Related Events. Competitions are widely acknowledged as a means to improve
the available tools, the visibility of their strengths, and to establish a publicly
available set of benchmark problems. In the formal-methods community (loosely
interpreted), there are competitions on, e.g., SAT 1, SMT 2, Planning 3, QBF 4,
HWMC 5, and Theorem Proving 6. These events seem to have a positive impact
on the development speed and the quality of the participating software tools;
theoretical results are transferred to practical tools almost instantly.

2 Procedure and Schedule

The competition compared state-of-the-art software verifiers with respect to ef-
fectiveness and efficiency. The overall process was composed of several phases,
as described in the following.

Announcement and Benchmark Submission. The competition was publicly
announced on July 19, 2011 at the conference event CAV. During the preparation
phase, calls for contributions were made in various mailings, the web page was set
1 http://www.satcompetition.org
2 http://www.smtcomp.org
3 http://ipc.icaps-conference.org
4 http://www.qbflib.org/competition.html
5 http://fmv.jku.at/hwmcc11
6 http://www.cs.miami.edu/∼tptp/CASC

http://www.satcompetition.org
http://www.smtcomp.org
http://ipc.icaps-conference.org
http://www.qbflib.org/competition.html
http://fmv.jku.at/hwmcc11
http://www.cs.miami.edu/~tptp/CASC

506 D. Beyer

up, and benchmark verification tasks were collected and classified into competi-
tion categories. Since this was the first competition, all contributed benchmarks
were initially accepted, and we only disqualified benchmark programs (after dis-
cussion) if they violated the requirements below.

Training Phase. The set of all benchmark verification tasks was finalized and
made publicly available on September 14, 2011. During the training phase, the
teams of the competition candidates were able to download the benchmarks in
order to train their tools on the given verification tasks. At the end of this phase,
the competition contributions (consisting of the software together with a three-
page description of the competition candidate) were submitted. Also during the
training phase, some benchmark programs were corrected (without changing the
verification outcome), and some verification tasks were disqualified (by the rules
below and after community discussion) and removed from the benchmark set.

Benchmark Evaluation Phase. The submission of competition contributions
ended on October 14, 2011; all competition candidates were downloaded and
installed on a competition machine, and the verification tools were applied to
the sets of benchmark verification tasks. All submitted artifacts of the compe-
tition contribution (tool description and software archive files) were stamped
with SHA hash values. The hash values were sent to all members of the program
committee (= jury) of the competition, in order to eliminate the possibility of
undue advantages of any tool.

Also in this phase, all descriptions of competition candidates (the three-page
summary papers) were reviewed, each by several members of the program com-
mittee, in order to ensure the quality standards of the TACAS proceedings.

Approval of Verification Results. After the results were obtained on a
competition machine 7 (the number of solved instances and the run time were
measured), each participating team received the (preliminary) results that were
obtained using their submitted competition candidate. This step gave the jury
the opportunity to discuss some unexpected results with the corresponding au-
thors of the competing tools. This approval phase was completed by December
9, 2011. By this time, a list of all participating teams was publicly announced.

Notification. On December 16, the notification of acceptance of the competition
contribution, together with the reviews, were sent to all authors. All teams were
informed of the results of all competition candidates, and tables with rankings
were made available to all teams.

7 One complete competition run of all candidates on all verification tasks required
a total of 163 hours of non-stop machine time; several such competition runs were
necessary.

Competition on Software Verification 507

3 Definitions and Rules

This section presents the definitions and rules that regulated the execution of
the competition and how the results were evaluated towards a ranking.

Definition of Verification Task. A verification task consists of a C program
and a safety property. For simplicity, the safety properties to be verified are
reduced to reachability problems and encoded in the program source code (using
the error label ‘ERROR’). In other words, the competition candidate is asked,
given a C program and the error label ‘ERROR’, whether there is a concrete
execution path through the program such that the error label can be reached.
A verification run is a non-interactive execution of a competition candidate on
a single verification task. The result of a verification run is either

SAFE: there is no path that reaches the error location,
UNSAFE + Path: there exists a path that reaches the error location, or
UNKNOWN: the competition candidate does not succeed in computing an

answer ‘SAFE’ or ‘UNSAFE’.

There is no particular fixed format for the error path. The error path has to
be written to a file or on stdout in a reasonable format to make it possible to
manually check validity.

Benchmark Verification Tasks. All verification tasks were provided by the
specified date on the competition web site 8. Most programs were provided in
Cil (C Intermediate Language). The programs were assumed to be written in
GNU C (most of them adhere to ANSI C).

Potential competition participants were invited to submit benchmark
verification tasks until the specified date. Programs had to fulfill two require-
ments to be eligible for the competition: (1) the program has to be writ-
ten in GNU C or ANSI C, and can be successfully Cil-pre-processed 9 with
the parameters --dosimplify --printCilAsIs --save-temps --domakeCFG
--no-convert-field-offsets --no-convert-direct-calls, and (2) the
property is instrumented into the program and is violated if the label ‘ERROR’
is reached.

As a further convention, a verification tool can assume that a function call
__VERIFIER_assume(expression) has the following meaning: If expression is
evaluated to ‘0’, then the function loops forever, otherwise the function returns
(no side effects). The verification tool can assume the following implementation:

void __VERIFIER_assume(int expression) {
if (!expression) { LOOP: goto LOOP; }
return;

}

8 http://sv-comp.sosy-lab.org
9 We used Cil version 1.3.7, from http://cil.sourceforge.net, with extensions.

http://sv-comp.sosy-lab.org/
http://cil.sourceforge.net/

508 D. Beyer

Similarly, the following functions can be assumed to return an arbitrary value
of the indicated type: __VERIFIER_nondet_X() (and nondet_X(), deprecated)
with X being one of int, float, char, short, or pointer (no side effects,
pointer refers to void *). The verification tool can assume that the functions
are implemented according to the following template:

X __VERIFIER_nondet_X() {
X val;
return val;

}

Setup. The verification runs of the competition were (natively) executed on a
dedicated unloaded compute server with a 3.4 GHz 64-bit Quad Core CPU (Intel
i7-2600K) and a GNU/Linux operating system (x86_64-linux). The machine had
16 GB of RAM, of which exactly 15 GB were made available to the competition
candidate. Every verification run had a run-time limit of 15 min. The run time
was measured in seconds of CPU time.

The verification runs were started by a batch script that collects statistics and
interprets the result of every competition candidate on every verification task as
one of the following categories of verification results: SAFE (verifier states that
the property holds), UNSAFE (verifier states that the property does not hold,
an error path is reported), UNKNOWN (result does not fall into the other two
categories: verification result not known, resources exhausted, verifier crashed).

Qualification. A verification tool was qualified to participate as competition
candidate if the tool was publicly available (for the GNU/Linux platform, more
specifically, it had to run on an x86_64 machine) and succeeded in more than
50 % of all training verification tasks to parse the input and start the verification
process (a tool crash during the verification phase does not disqualify). A person
(participant) was qualified as competition contributor for a competition candi-
date if the person was a contributing designer/developer of the submitted com-
petition candidate (witnessed by occurrence of the person’s name on the tool’s
project web page, a tool paper, or in the revision logs). A contribution paper was
qualified if the quality of the description of the competition candidate sufficed to
run the tool in the competition and was appropriate as competition-candidate
representation for the TACAS proceedings.

A verification tool could participate several times as an independent competi-
tion candidate, if a significant difference of the conceptual or technological basis
of the implementation is justified in the accompanying description paper. This
applies to different versions as well as different configurations, in order to avoid
forcing developers to create a new tool name for every new concept. Competition
candidates were allowed to opt-out from certain categories.

Evaluation by Scores and Run Time. The scores were assigned according
to the scoring schema in Table 1. Every verification task comes with an ex-
pected result, which was provided by the contributor of the verification task. The

Competition on Software Verification 509

Table 1. Scoring schema

Reported result Points Description
UNKNOWN 0 Failure to compute verification result,

out of resources, program crash.
UNSAFE correct +1 The error in the program was found and

an error path was reported.
UNSAFE incorrect −2 An error is reported for a program that fulfills the

property (false alarm, imprecise analysis).
SAFE correct +2 The program was analyzed to be free of errors.
SAFE incorrect −4 The program had an error but the competition

candidate did not find it (missed bug, unsound analysis).

interpretation of ‘UNSAFE’ is that a verification tool is supposed to find a path
to the error label. The interpretation of ‘SAFE’ is that no executable path to the
error label exists in the program, assuming the C semantics [2] and a standard
POSIX run-time environment. The results of type ‘SAFE’ yield higher absolute
score values compared to type ‘UNSAFE’, because it is expected to be heuristi-
cally easier to detect errors than it is to prove correctness. The absolute score val-
ues for incorrect results are higher compared to correct results, because a single
correct answer should not be able to compensate for a wrong answer. This scor-
ing schema ensures a disadvantage for (hypothetical) competition candidates
that always return the same result or random results.

The participating competition candidates are ranked according to the sum
of points. Competition candidates with the same sum of points are sub-ranked
according to success run time. The success run time for a competition candi-
date is the total CPU time over all verification tasks for which the competition
candidate reported a correct verification result.

The participants had the opportunity to check the verification results against
their own expected results and discuss inconsistencies with the competition chair
(cf. Sect. 2). A candidate that opted out from a category or obtained a negative
total score in a category, was assigned zero points in that category as total score.

To ensure that no undue advantage occurs from knowing the benchmark pro-
grams beforehand, we obfuscated all benchmark programs (by renaming all vari-
able and function names, as well as the file name) and ran the competition can-
didates on the obfuscated versions of the benchmark programs. All verification
results obtained using obfuscated versions matched the verification results of the
corresponding original program.

Publication and Presentation of the Competition Candidates. A de-
scription of every qualified competition candidate (contribution paper) was pub-
lished in the LNCS proceedings of TACAS 2012. In addition, every qualified
competition candidate was granted a demonstration slot in the TACAS program
to present the competition candidate to the TACAS audience.

510 D. Beyer

Competition Jury. The program committee that oversees the process of the
competition consists of one member of each participating team. The tasks of this
committee are to review the competition contribution papers and help the orga-
nizer to resolve any disputes that might occur. Deviation from the competition
rules need to be approved by the committee. The 2012 competition jury consists
of the following members:

Dirk Beyer, University of Passau, Germany (Chair)
Bernd Fischer, University of Southampton, UK
Vadim Mutilin, Russian Academy of Sciences, Russia
Andrey Rybalchenko, TU Munich, Germany
Carsten Sinz, Karlsruhe Institute of Technology, Germany
Michael Tautschnig, University of Oxford, UK
Helmut Veith, TU Vienna, Austria
Tomas Vojnar, Brno University of Technology, Czech Republic
Georg Weissenbacher, Princeton University, USA
Philipp Wendler, University of Passau, Germany
Daniel Wonisch, University of Paderborn, Germany

The term of the jury is one year, and the next jury consists of the chair and one
member of each participating team of the next competition.

4 Benchmark Verification Tasks

All verification tasks are available for browsing and download via the public
SVN repository for the Competition on Software Verification 10. The competition
was organized in several categories of benchmark verification tasks, which are
explained in the following.

The benchmark verification tasks were contributed by several research and
development groups. After the submission deadline for benchmarks, a group of
people (organizer and participants) were working on improving the quality of the
verification tasks. This means that after the benchmark sets were made public,
some programs were removed (not qualified, no property encoded, unknown
architecture), and some programs were technically improved (Cil simplifications,
compiler warnings, memory model). These changes have improved the overall
quality of the final set of verification tasks for the competition, and have not
changed the intended verification result; all changes are tracked in the public
repository.

The expected verification result is encoded in the file name of each verification
task: the sub-strings ‘BUG’ and ‘unsafe’ indicate that the program violates the
property, i.e., the error label is reachable.

10 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp12

https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp12

Competition on Software Verification 511

Control Flow and Integer Variables. The first set of verification tasks con-
sists of the programs in the set ControlFlowInteger:

ntdrivers-simplified/*_BUG.cil.c
ntdrivers-simplified/*[!G].cil.c
ntdrivers/*.BUG.i.cil.c
ntdrivers/*[!G].i.cil.c
ssh-simplified/*_BUG.cil.c
ssh-simplified/*[!G].cil.c
ssh/*.BUG.i.cil.c
ssh/*[!G].i.cil.c
locks/*.BUG.c
locks/*[!G].c

The programs and properties in this category use problems that relate mostly
to control-flow structure and integer variables. There is no particular focus on
pointers, data structures, and concurrency. The verification tasks were taken
from the source-code repositories of the tools Blast [6] and CPAchecker [9].

The directories ‘ntdrivers*’ contain 19 verification tasks that were derived
from (parts of) device drivers of the Windows NT kernel. The directories ‘ssh*’
contain 61 verification tasks s3_clnt* and s3_srvr*, which represent the sub-
routine for the connection handshake protocol (a state machine) of the SSH
client and server. The different versions represent various protocol-specific safety
properties (one program for each property). The directories with the suffix ‘sim-
plified’ contain versions of the drivers and SSH programs that were manually
pre-processed in order to remove heap access. The verification tasks with the suf-
fix ‘BUG’ have artificial bugs injected, which cause the assertions to fail. The 13
verification tasks in directory ‘locks’ were taken from the CPAchecker project,
where they served the purpose of demonstrating the advantage of adjustable-
block encoding [5, 10].

Linux Device Drivers 32-bit. This category consists of problems that require
the analysis of pointer aliases and function pointers (32-bit machine model):

ldv-regression/*-unsafe*.cil.c
ldv-regression/*-safe*.cil.c
ddv-machzwd/*_BUG.cil.c
ddv-machzwd/*[!G].cil.c

The 46 verification tasks in directory ‘ldv-regression’ were contributed by the
Linux Driver Verification (LDV) project 11. The verification tasks are used in the
LDV project as regression tests for Blast and CPAchecker. The benchmark set
consists of small programs that check for features rather than imposing a high
verification load; some of these tests are inspired by the problem patterns that
were seen in real device-driver code.

The 13 verification tasks in the directory ‘ddv-machzwd’ were generated using
DDVerify [30]. The main file ddv_machzwd_all contains several assertions. Then,
11 http://linuxtesting.org/project/ldv

http://linuxtesting.org/project/ldv

512 D. Beyer

there is one separate file for each assertion in file ddv_machzwd_all; the file
names of these separate files have a suffix that indicates the name of the function
in which the assertion occurs.

Linux Device Drivers 64-bit. This category consists of problems that require
the analysis of pointer aliases and function pointers (64-bit machine model):

ldv-drivers/*-unsafe*.cil.c
ldv-drivers/*-safe*.cil.c

The verification tasks in this category were contributed by the LDV project.
The directory contains 41 recent (Sept. 2011) driver-verification tasks that were
taken directly from the x86_64 Linux kernel. Among them are 16 programs with
bugs, which are accompanied by sample error traces. Some of these are confirmed
bugs that were reported by the LDV project to the kernel developers.

Heap Manipulation. The problems in this category require the analysis of data
structures on the heap and consist of the programs in the set HeapManipulation:

heap-manipulation/*BUG.cil.c
heap-manipulation/*[!G].cil.c
list-properties/*.cil.c

The eight verification tasks in directory ‘heap-manipulation’ were provided
by the Predator project 12. The program bubble_sort_linux is a bubble-sort
implementation that operates on Linux lists. Verification tasks with the suf-
fix ‘BUG’ have an artificial bug injected. The program dll_of_dll operates
on a NULL-terminated doubly-linked list of doubly-linked lists. The program
creates a doubly-linked list of doubly-linked lists, and then destroys the data
structure in several phases. The program merge_sort is an implementation of
the merge-sort algorithm that operates on two-level singly-linked lists. The pro-
gram sll_to_dll_rev converts a singly-linked list to a doubly-linked list, then
reverses the list, and coverts it back to a singly-linked list.

The six verification tasks in the directory ‘list-properties’ are taken from a
supplementary web page of the Blast 3.0 project [7]. This set contains several
C programs that manipulate list data structures containing integers as data
elements. The programs simple and simple_built_from_end both create a list
that represents a sequence of integers that matches 1*0 (regular expression), i.e.,
an arbitrary number of list elements that are initialized with the data value 1
with the last element initialized with 0. Then, the programs traverse the list to
check that every element is set to 1 and the last to 0. The difference between the
two programs is the order in which the list elements are created. The program
list creates a sequence that matches 1*2*3. The program list_flag creates a
sequence that matches c*3, where c is a constant determined by a flag. Then, the
program traverses the list to check that the integers occur in the correct order.

12 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

Competition on Software Verification 513

The program alternating is similar to list except that the list begins with
alternating 1s and 2s, and ends with a value 3, i.e., it creates a sequence that
matches (12)*3. The program splice first builds the same list as alternating.
Then, the list is split into two different lists: the first list contains the nodes at
odd positions and the second list contains nodes at even positions of the original
list, without the last value 3. Each new list is then traversed to check that all
its elements have the same data value.

SystemC. This category contains SystemC-related problems:

systemc/*BUG.cil.c
systemc/*[!G].cil.c

This set of 62 verification tasks was provided by the SyCMC project [14].
The programs were transformed to sequential C programs by incorporating the
scheduler into the C code. More details can be found in the research article that
defines the benchmark [14].

Concurrency. Some concurrency problems are contained in this set:

pthread/*BUG.cil.c
pthread/*[!G].cil.c

This benchmark set of eight verification tasks was contributed by the Esbmc

project 13. The program fib_bench starts two threads, which are together com-
puting a Fibonacci number, and then compares if the results of the two threads
are smaller than an upper bound. The program fib_bench_BUG is a version
which checks a wrong bound and thus is expected to yield an error. The programs
fib_bench_longer and fib_bench_longer_BUG are using the same algorithm
but a larger number of iterations.

The programs queue_ok and queue_BUG operate on a queue data structure,
where the former is expected to work correctly and the second to reach the error
label. Two threads are started, one trying to write to the queue and one trying
to read from the queue, after acquiring a mutex lock, respectively, while the
programs check for some properties to hold.

The program reorder_5_BUG lets a set of threads write values to two variables
and another set of threads verify that the two values are either both untouched
or both changed to the new values. Due to certain interleavings in the execution,
a violation of the property is possible. The program twostage_3_BUG creates two
sets of threads. One set of threads is writing a value to one global variable and an
increased value to a second variable. The other set of threads verifies the success
of the first set of threads. Again, due to certain interleavings, the property might
be violated in some executions.

Overall. The category ‘Overall’ consists of the union of all above-mentioned
sets of verification tasks.
13 http://esbmc.org

http://esbmc.org/

514 D. Beyer

5 Participating Teams

In the following, we briefly introduce the competition candidates, listed in al-
phabetical order. Table 2 gives an overview of the participating candidates. The
top-three placements achieved in the competition for each category are given in
the paragraph for the corresponding tool. The detailed summary of the results
is presented in Sect. 6.

Table 3 provides an overview of the technologies and concepts used by the var-
ious competition candidates. The technique of counterexample-guided abstrac-
tion refinement (CEGAR) [15] is used by the majority of tools. Other techniques
that are offered by the competition candidates are predicate abstraction [3, 19],
bounded model checking [12], shape analysis [23], construction of an abstract
reachability tree (ART) as proof of correctness [6], lazy abstraction [21], and
Craig interpolation for discovering new predicates to refine a predicate analy-
sis [17, 25]. Only three tools provide verification of concurrent programs.

Blast 2.7 [26], submitted by Pavel Shved, Vadim Mutilin, and Mikhail
Mandrykin (Institute for System Programming of the Russian Academy of Sci-
ences, Russia), has achieved the following placements:

– Winner in DeviceDrivers64
– Bronze in DeviceDrivers

Blast 2.7
14 is a model checker that is based on predicate abstraction, with a

focus on verifying control-flow intensive programs such as device drivers and
system programs. It is based on the CEGAR algorithm [15] and uses Craig in-
terpolation [17] on infeasible error paths to discover new predicates for increasing
the precision of the predicate abstraction. The tool was originally developed at
the University of California at Berkeley and at EPFL Lausanne [6], but later
significantly improved by the Linux Driver Verification group at the Institute
for System Programming of the Russian Academy of Sciences in Moscow. The
tool uses Cvc 3 [28] as SMT solver, CSIsat [11] as interpolation procedure, and
is implemented in OCaml.

CPAchecker 1.0.10-abe [24], submitted by Stefan Löwe and Philipp Wendler
(University of Passau, Germany), has achieved the following placements:

– Winner in ControlFlowInteger
– Silver in Overall
– Bronze in SystemC
– Bronze in HeapManipulation

CPAchecker 1.0.10-abe is based on a predicate analysis, with an applica-
tion focus similar to that of Blast. CPAchecker [9] 15 is a flexible veri-
fication framework that implements the formalism of configurable program
14 http://mtc.epfl.ch/software-tools/blast
15 http://cpachecker.sosy-lab.org

http://mtc.epfl.ch/software-tools/blast
http://cpachecker.sosy-lab.org/

Competition on Software Verification 515

Table 2. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Representing jury memb. Affiliation
Blast 2.7 [26] Vadim Mutilin Moscow, Russia
CPAchecker 1.0.10-abe [24] Philipp Wendler Passau, Germany
CPAchecker 1.0.10-memo [31] Daniel Wonisch Paderborn, Germany
Esbmc 1.17 [16] Bernd Fischer Southampton, UK
FShell 1.3 [22] Helmut Veith Vienna, Austria
Llbmc 0.9 [27] Carsten Sinz Karlsruhe, Germany
Predator 2011-10-11 [18] Tomas Vojnar Brno, Czech Republic
QArmc-Hsf(c) [20] Andrey Rybalchenko Munich, Germany
SATabs 3.0 [4] Michael Tautschnig Oxford, UK
Wolverine 0.5c [29] Georg Weissenbacher Princeton, USA

Table 3. Technologies and features that the competition candidates offer

Competition
candidate C

E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

S
h
ap

e
A

n
al

ys
is

A
R

T
-b

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

C
on

cu
rr

en
cy

S
u
p
p
or

t

Blast ✓ ✓ ✓ ✓ ✓

CPA-abe ✓ ✓ ✓ ✓ ✓

CPA-memo ✓ ✓ ✓ ✓ ✓

Esbmc ✓ ✓

FShell ✓

Llbmc ✓

Predator ✓

QArmc-Hsf(C) ✓ ✓ ✓ ✓ ✓

SATabs ✓ ✓ ✓

Wolverine ✓ ✓ ✓ ✓

516 D. Beyer

analysis (CPA) [8]. The competition candidate CPAchecker 1.0.10-abe uses
the concept of adjustable-block encoding [10], which is implemented as a CPA
in the framework. The algorithm uses an interpolation-based refinement of the
predicate precision and explores the abstract state space by building an abstract
reachability graph. The framework currently uses MathSAT [13] as SMT solver
and interpolation procedure, and is implemented in Java.

CPAchecker 1.0.10-memo [31], submitted by Daniel Wonisch (University
of Paderborn, Germany), has achieved the following placements:

– Winner in Overall
– Silver in ControlFlowInteger
– Silver in DeviceDrivers64
– Bronze in HeapManipulation

CPAchecker 1.0.10-memo is based the verification framework CPAchecker,
configured for large-block encoding [5] and boolean predicate abstraction. The
novel feature of the competition candidate CPAchecker 1.0.10-memo is the inte-
gration of the concept of block-abstraction memoization as a CPA. Intermediate
analysis results of large blocks are cached in order to avoid repeated verification
of similar program traces. This concept yields a significant improvement over
the standard configuration of CPAchecker in the category ‘DeviceDrivers64’,
as shown in Table 4.

Esbmc 1.17 [16], submitted by Lucas Cordeiro, Jeremy Morse, Denis Nicole,
and Bernd Fischer (University of Southampton, UK), has achieved the following
placements:

– Winner in SystemC
– Winner in Concurrency
– Bronze in Overall

Esbmc 1.17
16 is a bounded model checker that is based on the concept of gener-

ating verification conditions for the program, which are then passed to an SMT
solver for checking if a feasible error path exists. The focus of Esbmc is to provide
a context-bounded verification of multi-threaded C programs, in addition to se-
quential C programs. The tool uses components of the CProver framework 17,
the external solvers Z3 18 and Boolector 19, and is implemented in C++.

FShell 1.3 [22], submitted by Andreas Holzer, Daniel Kröning, Christian
Schallhart, Michael Tautschnig, and Helmut Veith (TU Vienna, Austria), is
a test-generation tool for C programs, which is based on bit-precise bounded
model checking for identifying program paths that fulfill a given test-coverage
16 http://esbmc.org
17 http://www.cprover.org
18 http://research.microsoft.com/projects/z3
19 http://fmv.jku.at/boolector

http://esbmc.org/
http://www.cprover.org/
http://research.microsoft.com/projects/z3
http://fmv.jku.at/boolector/

Competition on Software Verification 517

criterion, for which test vectors can be derived using satisfying assignments.
The tool FShell

20 is based on the CProver framework, uses the SAT solver
MiniSAT

21, and is implemented in C++.

Llbmc 0.9 [27], submitted by Carsten Sinz, Stephan Falke, and Florian Merz
(Karlsruhe Institute of Technology, Germany), has achieved the following place-
ments:

– Winner in DeviceDrivers
– Silver in HeapManipulation

Llbmc 0.9
22 is a bounded model checker that operates on LLVM’s intermediate

representation, with a focus on providing a bit-precise analysis of C code, in partic-
ular for detecting violations of safe memory usage. The tool is based on the Llvm
compiler infrastructure, and passes the verification conditions to the SMT solver
Stp 23, which supports bit-vectors and arrays. Llbmc is implemented in C++.

Predator 2011-10-11 [18], submitted by Kamil Dudka, Petr Muller, Petr
Peringer, and Tomas Vojnar (Brno University of Technology, Czech Republic),
has achieved the following placements:

– Winner in HeapManipulation
– Silver in DeviceDrivers

Predator 2011-10-11
24 is a program analyzer that is based on separation logic,

with a focus on verifying C programs with dynamically linked list data structures.
The separation-logic formulas that describe (infinite) sets of heaps are internally
represented as heap graphs. The main objective of the Predator project is to
support the verification of system code, which also uses low-level programming
techniques like pointer arithmetics. The tool uses no external decision procedure,
is designed as a plug-in for GCC, and is implemented in C++.

QArmc-Hsf(c) [20], submitted by Sergey Grebenshchikov, Ashutosh Gupta,
Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko (TU Munich, Ger-
many), has achieved the following placements:

– Bronze in ControlFlowInteger

QArmc-Hsf(c)
25,26 is a model checker that is based on predicate abstraction

with a special focus on liveness properties in addition to being able to check safety
20 http://code.forsyte.de/fshell
21 http://minisat.se
22 http://baldur.iti.uka.de/llbmc
23 http://sites.google.com/site/stpfastprover
24 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
25 This tool participated in the competition as QArmc and was renamed to Hsf(c)

when the proceedings were due.
26 http://www7.in.tum.de/tools/hsf

http://code.forsyte.de/fshell
http://minisat.se/
http://baldur.iti.uka.de/llbmc/
http://sites.google.com/site/stpfastprover/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www7.in.tum.de/tools/hsf/

518 D. Beyer

properties. The tool is based on the CEGAR algorithm, but instead of operating
on transition systems, it operates directly on Horn-clause representations of the
program and its proof rules. The tool is based on the Armc infrastructure and
the constraint solver Clp(q). The frontend Cil is used as parser and for the
transformation of C programs into the internal representation; the backend is
implemented in Prolog and requires the SICStus compiler package.

SATabs 3.0 [4], submitted by Alastair Donaldson, Alexander Kaiser, Daniel
Kröning, Michael Tautschnig, and Thomas Wahl (Oxford University, UK), has
achieved the following placements:

– Silver in SystemC
– Silver in Concurrency
– Bronze in DeviceDrivers64

SATabs 3.0
27 is a model checker that is based on predicate abstraction with a fo-

cus on bit-precise analysis of program variables. The tool implements an explicit
abstract-check-refine loop of the CEGAR algorithm for sequential and concur-
rent programs. In every iteration, an abstract (boolean) program is computed,
then this abstract program is model-checked, then the error path is checked
for feasibility, and predicates are discovered in order to compute a more pre-
cise abstract program in the next iteration. The tool uses components from
the CProver framework, Smv or Boom as model checkers, MiniSAT as SAT
solver, and is implemented in C++.

Wolverine 0.5c [29], submitted by Georg Weissenbacher, Daniel Kröning,
and Sharad Malik (Princeton University, USA), is a model checker that is based
on interpolation-based predicate analysis without computing predicate abstrac-
tions during single post-operations. Instead of discovering predicates and col-
lecting them in a predicate precision, the interpolants from infeasible paths are
directly used as part of the abstract states. Wolverine 0.5c

28 is based on an in-
tegrated interpolating decision procedure, uses components from the CProver
framework, and is implemented in C++.

6 Results and Discussion

The results in this paper represent the state-of-the-art in software verification
in terms of precision and performance, as available and participated, when the
benchmark verification runs for the 1st Competition on Software Verification were
performed. We sent all results to the participating competition teams for review;
all results shown in this paper are approved by the competing teams. The to-
tal quantitative overview is provided in Table 4. The run time in the tables is given

27 http://www.cprover.org/satabs
28 http://www.cprover.org/wolverine

http://www.cprover.org/satabs/
http://www.cprover.org/wolverine/

Competition on Software Verification 519

Table 4. Summary of all results. The tools are listed in alphabetical order. In every
table cell for competition results, we list the points in the first row and the CPU time
for successful runs in the second row (cf. Table 1 for the scoring schema). The top-three
candidates have their score set in bold face and in larger font size. The entry ‘—’ means
that the competition candidate opted-out or obtained a total of less than 0 points in the
category.

Competition
candidate

Representing
jury member

Affiliation C
on

tr
ol

F
lo

w
In

te
ge

r
14

4
po

in
ts

m
ax

.
93

ve
ri
fic

at
io

n
ta

sk
s

D
ev

ic
eD

ri
ve

rs
10

3
po

in
ts

m
ax

.
59

ve
ri
fic

at
io

n
ta

sk
s

D
ev

ic
eD

ri
ve

rs
64

66
po

in
ts

m
ax

.
41

ve
ri
fic

at
io

n
ta

sk
s

H
ea

p
M

an
ip

u
la

ti
on

24
po

in
ts

m
ax

.
14

ve
ri
fic

at
io

n
ta

sk
s

S
ys

te
m

C
87

po
in

ts
m

ax
.

62
ve

ri
fic

at
io

n
ta

sk
s

C
on

cu
rr

en
cy

11
po

in
ts

m
ax

.
8

ve
ri
fic

at
io

n
ta

sk
s

O
ve

ra
ll

43
5

po
in

ts
m

ax
.

27
7

ve
ri
fic

at
io

n
ta

sk
s

Blast
Vadim Mutilin 71 72 55 — 33 — 231
Moscow, Russia 9900 s 30 s 1400 s 4000 s 15000 s
CPA-abe
Philipp Wendler 141 51 26 4 45 0 267
Passau, Germany 1000 s 97 s 1900 s 16 s 1100 s 0 s 4100 s
CPA-memo

Daniel Wonisch 140 51 49 4 36 0 280
Paderborn, Germany 3200 s 93 s 500 s 16 s 450 s 0 s 4300 s
ESBMC
Bernd Fischer 102 63 10 1 67 6 249
Southampton, UK 4500 s 160 s 870 s 220 s 760 s 270 s 6800 s
FShell
Helmut Veith 28 20 0 — — 0 48
Vienna, Austria 580 s 3.5 s 0 s 0 s 580 s
LLBMC
Carsten Sinz 100 80 1 17 8 — 206
Karlsruhe, Germany 2400 s 1.6 s 110 s 210 s 2.4 s 2700 s
Predator
Tomas Vojnar 17 80 0 20 21 0 138
Brno, Czech Republic 1100 s 1.9 s 0 s 1.0 s 630 s 0 s 1700 s
QArmc-Hsf(c)
Andrey Rybalchenko 140 — — — 8 — 148
Munich, Germany 4800 s 820 s 5600 s
SATabs
Michael Tautschnig 75 71 32 — 57 1 236
Oxford, UK 5400 s 140 s 3200 s 5000 s 1.4 s 14000 s
Wolverine
Georg Weissenbacher 39 68 16 — 36 — 159
Princeton, USA 580 s 65 s 1300 s 1900 s 3800 s

520 D. Beyer

Table 5. Overview of the top-five candidates for each category. The run time is given in
seconds of CPU usage for the verification tasks that were successfully solved. The column
‘False Alarms’ indicates the number of verification tasks for which the tool reported an
error but the program was safe (false positive), and column ‘Missed Bugs’ indicates the
number of verification tasks for which the tool claims that the program is safe although
it contains a bug (false negative).

Rank Candidate Score Run Solved False Missed
Time Tasks Alarms Bugs

ControlFlowInteger
1 CPAchecker-abe 141 1000 91
2 CPAchecker-memo 140 3200 91
3 QArmc-Hsf(c) 140 4800 91
4 Esbmc 1.17 102 4500 70 4
5 Llbmc 0.9 100 2400 79 5 3

DeviceDrivers
1 Llbmc 0.9 80 1.6 46
2 Predator 80 1.9 46
3 Blast 2.7 72 30 51 6 1
4 SATabs 3.0 71 140 43 1
5 Wolverine 0.5c 68 65 48 2 3

DeviceDrivers64
1 Blast 2.7 55 1400 33
2 CPAchecker-memo 49 500 33 2
3 SATabs 3.0 32 3200 17
4 CPAchecker-abe 26 1900 23 2
5 Wolverine 0.5c 16 1300 12

HeapManipulation
1 Predator 20 1.0 12
2 Llbmc 0.9 17 210 10
3 CPAchecker-abe 4 16 9 5
3 CPAchecker-memo 4 16 9 5
5 Esbmc 1.17 1 220 6 3 1

SystemC
1 Esbmc 1.17 67 760 58 4
2 SATabs 3.0 57 5000 40
3 CPAchecker-abe 45 1100 34
4 CPAchecker-memo 36 450 30
5 Wolverine 0.5c 36 1900 25

Concurrency
1 Esbmc 1.17 6 270 7 1
2 SATabs 3.0 1 1.4 1

Overall
1 CPAchecker-memo 280 4300 209 20
2 CPAchecker-abe 267 4100 203 20
3 Esbmc 1.17 249 6800 191 9 11
4 SATabs 3.0 238 15000 149 1
5 Blast 2.7 231 15000 158 6 1

Competition on Software Verification 521

in seconds of CPU time. All measurement values are rounded to two significant
digits. The points are calculated according to the scoring schema in Table 1. Some
more details on the top-five tools for each category are given in Table 5.

The main result of this competition is that there is currently no single tech-
nique that is absolutely superior in comparison with the other tools. The compe-
tition candidates have scored differently in the various categories, with no single
candidate being the absolute winner.

Towards Robustness. There is one single competition candidate that achieved
positive scores in all categories: Esbmc 1.17. The following candidates partici-
pated in all categories, with a non-negative score in all categories: CPAchecker

1.0.10-abe, CPAchecker 1.0.10-memo, Esbmc 1.17, and Predator 2011-10-11.

Towards Soundness. There are four competition candidates that never re-
ported the answer ‘SAFE’ for a benchmark program that actually contains a bug
(missed a bug): CPAchecker 1.0.10-abe, CPAchecker 1.0.10-memo, Predator

2011-10-11, and QArmc-Hsf(c).

Towards Completeness. There are three competition candidates that never
reported a bug for a safe program (false alarm): FShell 1.3, QArmc-Hsf(c),
and SATabs 3.0.

Fig. 1. Quantile functions: For each competition candidate, we plot all pairs (x, y) such
that the maximum run time of the x fastest results is y. A logarithmic scale is used for
the time range from 1 s to 1000 s, and a linear scale is used for the time range between
0 s and 1 s. The graphs are decorated with symbols at every tenth data point in order
to make the graphs distinguishable on gray-scale prints.

522 D. Beyer

About Solved Instances and Run Time. Figure 1 illustrates the competi-
tion results using the quantile functions over all benchmark verification tasks.
The function graph for a competition candidate yields the maximum run time y
for the x fastest computed correct results. On the left, the plot shows that two
candidates need a few seconds of run time even for the simplest benchmark pro-
grams; this seems due to the setup time for the Java virtual machine that these
two candidates are using. The right-most data point of each graph yields the
number of successfully solved verification tasks by the corresponding competi-
tion candidate. The area below a graph (its integral) is the accumulated run
time for all successfully solved verification tasks.

7 Summary and Future Plans
The competition on software verification was well received in the research com-
munity, and the participants were enthusiastic about the event. The participation
of ten teams in the first competition, which exceeded the expectation, witnesses
the need for such an event. The organizer and the jury were making sure that
the competition follows the high quality standards of the TACAS conference, in
particular to respect the important principles of fairness, community support,
transparency, and technical accuracy. The conclusion is that the event shall be
held annually from now on. One important objective for the next competition
is to significantly extend the benchmark set, especially in the categories ‘Heap-
Manipulation’ and ‘Concurrency’. Since software verification becomes more and
more relevant in practice, we are convinced that the pool of available benchmarks
will considerably grow in the next few years. We also hope that the number of
participants even increases in the next years, and that a wider range of verifica-
tion technologies will be covered.

Acknowledgments. We thank the TACAS steering committee and the pro-
gram chairs for hosting the Competition on Software Verification as satellite
event of the conference TACAS, and for the encouragement and support during
the design of the event. Most importantly, we thank the participating teams
for contributing their tools and system descriptions. In particular, we want to
thank (among others) Pavel Shved, Kamil Dudka, Georg Weissenbacher, Cor-
neliu Popeea, Bernd Fischer, and Carsten Sinz for their help in preparing the
benchmark verification tasks for the competition (contributing verification tasks,
sending patches and comments). The biggest thanks goes to Karlheinz Fried-
berger, who programmed the benchmark processing script and helped with con-
figuring the tools and infrastructure that we used for the competition.

References

1. Alglave, J., Donaldson, A.F., Kröning, D., Tautschnig, M.: Making Software Verifi-
cation Tools Really Work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28–42. Springer, Heidelberg (2011)

Competition on Software Verification 523

2. American National Standards Institute. ANSI/ISO/IEC 9899-1999: Programming
Languages — C. American National Standards Institute, 1430 Broadway, New
York, NY 10018, USA (1999)

3. Ball, T., Rajamani, S.K.: The Slam Project: Debugging System Software via Static
Analysis. In: Proc. POPL, pp. 1–3. ACM (2002)

4. Basler, G., Donaldson, A., Kaiser, A., Kröning, D., Tautschnig, M., Wahl, T.:
SATabs: A Bit-Precise Verifier for C Programs. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 551–554. Springer, Heidelberg (2012)

5. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-Block Encoding. In: Proc. FMCAD, pp. 25–32. IEEE
(2009)

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505–525 (2007)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy Shape Analysis. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg
(2006)

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program Analysis with Dynamic Pre-
cision Adjustment. In: Proc. ASE, pp. 29–38. IEEE (2008)

9. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

10. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

11. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer,
Heidelberg (2008)

12. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

13. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The
MathSAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 299–303. Springer, Heidelberg (2008)

14. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A Soft-
ware Model Checking Approach. In: Proc. FMCAD, pp. 51–59. FMCAD Inc. (2010)

15. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking. J. ACM 50(5), 752–794
(2003)

16. Cordeiro, L., Morse, J., Nicole, D., Fischer, B.: Context-Bounded Model Checking
with Esbmc. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 534–537. Springer, Heidelberg (2012)

17. Craig, W.: Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem.
J. Symb. Log. 22(3), 250–268 (1957)

18. Dudka, K., Müller, P., Peringer, P., Vojnar, T.: Predator: A Verification Tool
for Programs with Dynamic Linked Data Structures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 544–547. Springer, Heidelberg (2012)

19. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

20. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C):
A Software Verifier Based on Horn Clauses. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 548–550. Springer, Heidelberg (2012)

524 D. Beyer

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc.
POPL, pp. 58–70. ACM (2002)

22. Holzer, A., Kröning, D., Schallhart, C., Tautschnig, M., Veith, H.: Proving Reach-
ability Using FShell. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 537–540. Springer, Heidelberg (2012)

23. Jones, N.D., Muchnick, S.S.: A Flexible Approach to Interprocedural Data-Flow
Analysis and Programs with Recursive Data Structures. In: POPL, pp. 66–74
(1982)

24. Löwe, S., Wendler, P.: CPAchecker with Adjustable Predicate Analysis. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 527–529.
Springer, Heidelberg (2012)

25. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

26. Shved, P., Mandrykin, M., Mutilin, V.: Predicate Analysis with Blast 2.7. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 524–526.
Springer, Heidelberg (2012)

27. Sinz, C., Merz, F., Falke, S.: Llbmc: A Bounded Model Checker for Llvms Inter-
mediate Representation. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 541–543. Springer, Heidelberg (2012)

28. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A Cooperating Validity Checker.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504.
Springer, Heidelberg (2002)

29. Weissenbacher, G., Kröning, D., Malik, S.: Wolverine: Battling Bugs with In-
terpolants. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
555–557. Springer, Heidelberg (2012)

30. Witkowski, T., Blanc, N., Kröning, D., Weissenbacher, G.: Model Checking Con-
current Linux Device Drivers. In: Proc. ASE, pp. 501–504. ACM (2007)

31. Wonisch, D.: Block Abstraction Memoization for CPAchecker. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 531–533. Springer, Heidelberg
(2012)

Predicate Analysis with BLAST 2.7

(Competition Contribution)

Pavel Shved, Mikhail Mandrykin, and Vadim Mutilin

Institute for System Programming of the Russian Academy of Sciences
{shved,mandrykin,mutilin}@ispras.ru

Abstract. We present the software verification tool BLAST 2.7, which
we submitted for the Competition on Software Verification. The tool is
an improvement over BLAST 2.5, and its development is mostly targeted
at its performance and usability in the Linux Driver Verification project.
The paper overviews the tool and outlines our contribution to it.

1 Verification Approach

BLASTuses theCounterExample-GuidedAbstractionRefinement approach (CE-
GAR)with “lazy abstraction” [1], a decision procedure to explore all possible paths
from the entry point, abstracting away from the realizable memory states as far as
possible to prove the unreachability of the error label. BLAST marks each loca-
tion with a conjunction of predicates over program variables in a path-sensitive
way, such conjunctions being overapproximations of the set of feasible memory
states at the locations. Path validity is checked with formula satisfiability solvers ;
interpolating provers automatically retrieve predicates to track. The concepts of
BLAST are more thorougly described in [1] and [2]. BLAST may also combine the
predicate domain with lattice-based explicit-value dataflow analysis [3], which we
used in the competition setup.

This has been implemented in BLAST 2.5, which was maintained by Dirk
Beyer et al. [2]. In this paper, we present the improvements that we added
to BLAST since the release of version 2.5 in 2008; we assigned version 2.7 to
the competition release. Most of the improvements are merely more efficient
implementations of already known algorithms.

The tool as of version 2.7 is capable to track states that may be expressed
in terms of logical formulæ over atomic predicates that only contain linear
(in)equalities over program variables, including aliases of pointers to scalar or
structure variables. The analysis may be unsound if the unreachability proof
requires reasoning about bit-vectors, bounded integers, or arrays.

2 Tool Architecture

The tool first converts the program into a set of per-function control flow au-
tomata with aid of the CIL C frontend (integrated into the tool). It converts

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 525–527, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

526 P. Shved, M. Mandrykin, and V. Mutilin

the structure of C source code directly into OCaml memory structures, and helps
to perform transformations that simplify the semantics of individual operators.

Having built the CFAs, BLAST starts the abstract-check-refine loop, inlining
each function call it encounters on demand, and skipping recursive calls. In the
forward search phase, it uses an SMTlib solver to compute the abstract post-
condition for predicates (CVC3 is shipped alongside the tool, but any other
decent SMTlib solver would work), and updates symbolic execution lattice ele-
ments [3]. The predicates are stored as BDDs over atomic predicate symbols.
A potential error path is converted to a path formula (weakest precondition of
each operator starting from the end with explicit substitution, see section 5.3
of [1]). It is checked for satisfiability with SMTlib solver, then filtered with mul-
tiple SMTlib solver calls to get unsatifiability cores, which then undergo Craig
interpolation with CSIsat (or any other tool that supports the FOCI format)
to get the predicates to track.

Both forward exploration and path analysis are supplemented with inter-
procedural points-to may-alias information provided by an subset-based An-
dersen analysis with BDDs as a storage and querying mechanism.

BLAST is implemented in OCaml.

3 Tool Improvements and Benchmarking

As BLAST 2.5 demonstrated some success in verifying drivers, we used it in the
Linux Driver Verification (LDV) project [4], and improved it further to make
the tool faster for Linux drivers. The rules instrumented into drivers used states
expressed as simple integers, but the drivers themselves used structures and
pointers to maintain data flow; therefore, we focused on improving implemen-
tations of the existing theoretical achievements, and did not try to extend the
abstract domain.

In version 2.6, we improved folmulæ conversion between the internal OCaml
representation and SMTlib format, making its overhead negligible, tuned the
CVC3 solver to work faster for quantified formulæ, decreased the asymptotics of
pre-interpolation trace filtering from O(N) to O(logN) solver calls, and imple-
mented stopsep and merge-pred-join for combining predicate analysis with lat-
tices. We thorougly described these and many other improvements of 2.6 over 2.5
in [5]. The speedup we achieved on Linux drivers, compared with version 2.5,
ranged from a factor of 5–8 on average to 30 on the most complex drivers. Our
tool performed well on all driver-related benchmarks.

In the competition version 2.7, we also dramatically improved alias and struc-
ture analysis that are used to generate additional variable updates at assignment
preconditions. We noticed that updates of indexed variables that are not used in
the bottom part of the path formula were useless, and, while they would be ruled
out by solvers anyway, BLAST spent a lot of time generating them. We revamped
the generation algorithms so that only the variables that are in the already built
part of a formula are considered as potential aliases or targets for structure up-
dates; this made alias analysis overhead negligible. The new analysis is sound,

Predicate Analysis with BLAST 2.7 527

but sometimes incomplete for variable-depth shapes. It improved the results
on list-properties benchmarks, but the heap-manipulation benchmarks are
analyzed with errors due to abuse of low-level-style accesses to structure fields
via casts and raw pointer shifts.

Other benchmarks, such as SystemC or synthetic locks, involved state ex-
plosions that should be mitigated by verification algorithms that automatically
merge states without loss of precision. BLAST does not merge paths with differ-
ent predicate states assigned, so it times out on most of such benchmarks, which
more recent tools should pass.

4 Downloading and Using BLAST

To use the tool, download binaries, unpack, add the bin/ folder to your PATH,
and run: ocamltune pblast.opt -alias bdd -enable-recursion -noprofile

-cref -sv-comp -lattice -include-lattice symb FILE NAME.c. Download:
http://forge.ispras.ru/attachments/download/1157/blast-2.7-bin-x86 64.tgz.

Visit http://forge.ispras.ru/projects/blast/ to get the source code and 32-bit
binaries. BLAST is licensed under Apache-2.0, and all external tools it relies on
during compilation or at runtime are free software.

The verdict and the error trace, if any, are written to standard output. For
more information on the tool usage, please, refer to the README file.

The binary distribution of the tool does not require external tools except for
the Perl interpreter, C and C++ runtime libraries. BLAST is compatible with
most modern Linux distributions, including Ubuntu 8.04 or newer.

Acknowledgements. BLAST 2.7 was prepared as a part of the Linux Driver
Verification project with the help of our colleagues at ISPRAS. A number of
people contributed to BLAST, including its former maintainers Dirk Beyer, Ru-
pak Majumdar, Ranjit Jhala, and Thomas Henzinger, and the others mentioned
in the README file.

References

1. Henzinger, T.A., Jhala, R., Majumdar, R.: Lazy abstraction. In: Symposium on
Principles of Programming Languages, pp. 58–70. ACM Press (2002)

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST: Applications to software engineering. Int. J. Softw. Tools Technol.
Transf. 9(5), 505–525 (2007)

3. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. SIGSOFT
Softw. Eng. Notes 30, 227–236 (2005)

4. Khoroshilov, A., Mutilin, V., Novikov, E., Shved, P., Strakh, A.: Towards an open
framework for C verification tools benchmarking. In: Proceedings of PSI (2011)

5. Shved, P., Mutilin, V., Mandrykin, M.: Static verfication “under the hood”: Im-
plementation details and improvements of BLAST. In: Proceedings of SYRCoSE,
vol. 1, pp. 54–60 (2011)

http://forge.ispras.ru/attachments/download/1157/blast-2.7-bin-x86_64.tgz
http://forge.ispras.ru/projects/blast/

CPAchecker with Adjustable Predicate Analysis

(Competition Contribution)

Stefan Löwe and Philipp Wendler

University of Passau, Germany

Abstract. CPAchecker is a freely available software-verification
framework, built on the concepts of Configurable Program

Analysis (CPA). CPAchecker integrates most of the state-of-the-art
technologies for software model checking, such as counterexample-guided
abstraction refinement (CEGAR), lazy predicate abstraction,
interpolation-based refinement, and large-block encoding. The CPA

for predicate analysis with adjustable-block encoding (ABE) is very
promising in many categories, and thus, we submit a CPAchecker

configuration that uses this analysis approach to the competition.

1 Verification Approach

Predicate analysis is a common approach to software verification, and tools like
Blast and SLAM showed that it can be used effectively for software verifica-
tion of medium sized programs. CPAchecker [2] constructs —like Blast— an
abstract reachability graph (ARG) as a central data structure, by continuous
successor computations along the edges of the control-flow automaton (CFA)
of the program. The nodes of the ARG, representing sets of reachable program
states, store relevant information like control-flow location, call stack, and, most
importantly, the formulas that represent the abstract data states.

When single-block encoding (as implemented in Blast) is used, abstractions
are computed for every single edge in the CFA. The major drawback of this
approach is the large number of successor computations, each requiring expensive
calls to a theorem prover. Furthermore, boolean abstraction is prohibitive for
such a large number of successor computations, and only the more imprecise
cartesian abstraction can be used.

Therefore, CPAchecker implements an approach called adjustable-block en-
coding [3], which completely separates the process of computing successors from
the process of computing a predicate abstraction for a formula. The post opera-
tions in this approach (purely syntactically) assemble formulas for the strongest
postcondition. Then, at certain points that can be chosen arbitrarily, the pro-
cedure applies an (expensive) computation of the predicate abstraction for a
given abstract state. This method reduces the number of theorem-prover calls
by effectively combining program blocks of arbitrary size into a single formula
before computing an abstraction. Because the model checker now delegates much
larger problems to the SMT solver (the formulas will contain a disjunction for
each control-flow join point inside a block), this technique is able to leverage

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 528–530, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

CPAchecker with Adjustable Predicate Analysis 529

the huge performance increase of SMT solvers being witnessed over the last
decade. Experiments have shown that using adjustable blocks (e.g., loop-free
blocks spanning across function calls) is orders of magnitudes faster than com-
puting an abstraction for every single abstract state. Furthermore, the reduced
number of abstractions (and refinements) makes it feasible to use the more ex-
pensive boolean abstraction, which makes the analysis more precise. This predi-
cate analysis is wrapped in an algorithm for counterexample-guided abstraction
refinement that uses Craig interpolation and lazy abstraction.

2 Software Architecture

CPAchecker is designed as an extensible framework for software verification
and is written in Java. The framework provides the parsing of the input pro-
gram (by using the C parser from the Eclipse CDT project1), interfaces to the
SMT solver and interpolation procedures (using the SMT solver MathSAT42),
and the central verification algorithms. In CPAchecker, every analysis is im-
plemented as a Configurable Program Analysis (CPA) [1], which makes it
easier to implement new concepts (separation of concerns). Different CPAs can
be flexibly combined on demand, enabling reuse of verification components. For
the software verification competition, we use a configuration consisting of the
CPAs for predicate analysis, program-counter tracking, call-stack analysis, and
function-pointer analysis.

3 Strengths and Weaknesses

CPAchecker is meant as an infrastructure for implementing and evaluating in-
novative verification algorithms. Due to that, the framework is not focused on
optimizing as much as possible, but instead advocates a strong compliance of the
theoretical concepts and its respective implementation, thus easing the integra-
tion of new algorithms and concepts. Furthermore, the use of CPAs provides a
high degree of re-usability, which makes the tool kit highly interesting for other
groups, some of which already use CPAchecker to build their own extensions.

From a conceptional point of view, CPAchecker, and the CPA for predicate
analysis in particular, lack support for checking multi-threaded or recursive pro-
grams. Further areas of improvement, well documented by the false positives
given in the categories DeviceDrivers and HeapManipulation, include a more
complete handling of pointers as well as proper support for more advanced con-
structs of the C programming language, like structs and unions.

4 Setup and Configuration

The source code for CPAchecker is released under the Apache 2.0 license and is
available online at http://cpachecker.sosy-lab.org. Because the tool is written
in Java, it runs on almost any platform. The predicate analysis currently works
only under GNU/Linux because the MathSAT library is available only for this

1 http://www.eclipse.org/cdt/
2 http://mathsat4.disi.unitn.it/

http://cpachecker.sosy-lab.org
http://www.eclipse.org/cdt/
http://mathsat4.disi.unitn.it/

530 S. Löwe and P. Wendler

platform. CPAchecker requires a Java 1.6 compatible JDK (e.g., OpenJDK),
Ant 1.7, and the GNU Multiprecision library for C++ (required by MathSAT).
The build process is performed by calling ant from the CPAchecker root direc-
tory. For the purpose of the software-verification competition, we use the trunk
directory in revision 4569 and the configuration -sv-comp12. Thus the command
line for running CPAchecker is

./scripts/cpa.sh -sv-comp12 -heap 12500m path/to/sourcefile.cil.c

For C programs that assume a 64-bit environment (i.e., those in the category
DeviceDrivers64) the below parameter needs to be added:

-setprop cpa.predicate.machineModel=64-Linux

The programs in the category DeviceDrivers need the following additional op-
tion, because they make heavy use of pointers:

-setprop cpa.predicate.handlePointerAliasing=true

For general purpose verification tasks (outside the competition), we recom-
mend the configuration -predicateAnalysis instead. Also, the amount of mem-
ory given to the Java VM needs to be adjusted on machines with less RAM.
CPAchecker will print the verification result and the name of the output di-
rectory to the console. Additional information (such as the error path) will be
written to files in this directory.

5 Project and Contributors

The CPAchecker project was founded in 2007 by Dirk Beyer, and is hosted
by the Software Systems Lab at the University of Passau. CPAchecker is an
international open-source project which is used and contributed to by several
research groups, e.g., the Russian Academy of Science, the Technical University
of Vienna, and the University of Paderborn.

We thank all contributors for their help and efforts spent on the CPAchecker

project. A complete list of contributors is provided on the project homepage
at http://cpachecker.sosy-lab.org/. In particular, we would like to thank Dirk
Beyer as the project leader and main architect, and Peter Häring, Michael Käufl,
and Andreas Stahlbauer for their eager implementation work on CPAchecker

as student assistants.

References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

2. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

3. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Proc. FMCAD, pp. 189–197. FMCAD (2010)

http://cpachecker.sosy-lab.org/

Block Abstraction Memoization

for CPAchecker�

(Competition Contribution)

Daniel Wonisch

University of Paderborn, Germany
dwonisch@mail.upb.de

Abstract. Block Abstraction Memoization (ABM) is a technique in
software model checking that exploits the modularity of programs dur-
ing verification by caching. To this end, ABM records the results of
block analyses and reuses them if possible when revisiting the same
block again. In this paper we present an implementation of ABM into
the predicate-analysis component of the software-verification framework
CPAchecker. With our participation at the Competition on Software
Verification we aim at providing evidence that ABM can not only sub-
stantially increase the efficiency of predicate analysis but also enables
verification of a wider range of programs.

1 Verification Approach

Currently, software model checking is getting more and more successful and is
getting applied to industrial-size programs. Yet, scalability of the applied meth-
ods is still an issue. One approach to improve the scalability of model check-
ing is block abstraction memoization (ABM). ABM exploits the modularity of
programs by caching intermediate analyses of blocks. That is, ABM records
the results of block analyses as for example analyses of loops or functions, and
reuses them if possible when revisiting the same block again. We have imple-
mented ABM into the predicate-analysis component of the software verification-
frameworkCPAchecker [3], including support for lazy refinements. It shows that
ABM does not only increase the efficiency of the predicate analysis but also allows
to successfully analyze programs that were not possible to analyze without.

As illustrative example, consider the C program (fragment) shown in the left
of Figure 1. The program consists of three nested while loops, each incrementing
a respective counter variable twice. After the execution of all loops it is asserted
that the counting variables of the loops are indeed 2. On the right, Figure 1
shows a representation of this program as control-flow automaton (CFA). When
analyzing the program using predicate abstraction we can prove the safety of
the program with, e.g., the set of predicates {i = 0, i = 1, i = 2, j = 0, j =
1, j = 2, k = 0, k = 1, k = 2}. While doing so, CPAchecker will visit, e.g.,

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 531–533, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

532 D. Wonisch

L0: int i=2, j=2, k=2;

L1: i = 0;

L2: while(i < 2) {

L3: j = 0;

L4: while(j < 2) {

L5: k = 0;

L6: while(k < 2) {

//no-op

L7: k++;}

L8: j++;}

L9: i++;}

L10: assert(i==2 && j==2 && k==2)

i < 2

j < 2

k++

!(i<2)

k < 2

k=0

j=0

i=0

(i==2 && j==2 &&
k==2)

L1

L2

L7
L10

i++
!(j<2)

!(k<2)

i=2, j=2, k=2

j==2 &&
k==2)

!(i==2 &&

L9
j++

L3

L5

L8

L0

L4

L6

Error

Fig. 1. Program NESTED and its control-flow automaton with 3 blocks

location L5 four times. At each visit the respective predicate abstractions only
differ from each other in the valuation of the outer loop counter variables i and j.
ABM allows to avoid this redundancy by considering the loop bodies as separate
blocks as indicated in the right of Figure 1 by dotted rectangles. ABM initiates
at each visit of a block a separate analysis whose result is cached. For example, if
L3 is reached with an abstract state i = 0∧ j = 2∧ k = 2, ABM first recognizes
that i is irrelevant for the block and thus analyzes the loop body starting with
the reduced initial element j = 2 ∧ k = 2. After reaching the end of the block,
the final abstract element j = 2 ∧ k = 2 is expanded to the full state space
again, i.e., to i = 0 ∧ j = 2 ∧ k = 2 (i cannot change due an execution of this
block), and the analysis of the program continues. In the next loop iteration,
when reaching L3 again, the cached analysis can be reused and a re-analysis
avoided. Similarly, with ABM, the most inner block starting with location L5
has to be analyzed only once. Hence, in this example, the amount of explored
abstract elements for ABM-based model checking only grows linearly with the
number of nested loops, leading to an exponential speed-up compared to the
exponentially growing amount with classical model checking.

2 Implementation

We implemented our approach in the program-analysis tool CPAchecker [3].
CPAchecker is a framework for configurable program analyses (CPAs) [2].
CPAs allow users to specify different verification approaches in a uniform for-
malism. ABM is implemented as CPA in CPAchecker in order to benefit from
existing verification components. Because ABM always functions as extension
CPA (e.g., predicate analysis), it is technically implemented as a WrapperCPA.
The wrapped CPA needs to comply with the CPAWithABM interface that basi-
cally requires the CPA to provide a reduce and expand operation for its abstract

Block Abstraction Memoization for CPAchecker 533

elements. So far, we have only implemented this interface in the PredicateAnal-
ysis CPA. However, in principle, we could also easily enable ABM for other
analyses (like e.g. shape analysis) by just implementing a reduce and expand
operation for abstract elements of the respective domain.

In its supplied configuration, ABM considers loops and functions as blocks.
Furthermore, it will consider all those predicate as relevant for a block for
which a contained variable occurs in the block. As wrapped CPA we use pred-
icate analysis with adjustable-block encoding (ABE) [1] configured to com-
pute an abstraction at the start and end of a loop or function body. Math-
SAT 4 (http://mathsat4.disi.unitn.it) is used as underlying SMT solver.
Using this configuration, CPAchecker with ABM performs very well on the
ControlFlowInteger and reasonably well on the SystemC and DeviceDrivers64
benchmark sets. With an incomplete analysis of pointer-aliases and heap struc-
tures, our approach is naturally rather unsuccessful for the DeviceDrivers and
HeapManipulation sets. Concurrency (Pthreads) is currently not supported at
all. Compared to CPAchecker without ABM, our technique is especially ben-
eficial on the DeviceDrivers64 benchmark set.

3 Installation Instructions

ABM is fully integrated into the official source code of CPAchecker.
It can thus be downloaded from the official CPAchecker webpage
http://cpachecker.sosy-lab.org (Apache 2.0 license; Software Systems Lab, Univer-
sity of Passau). We use Revision 4573 for the competition. CPAchecker

can be compiled by executing ant in the checkout folder. To run CPA-

checker with the ABM configuration on a test file, execute scripts/cpa.sh

-sv-comp12-abm -heap 12500m source file in the checkout folder. For the DeviceDrivers64
set, -setprop cpa.predicate.machineModel=64-Linux needs to be specified addition-
ally. Contrary to this, for the DeviceDrivers set the script should be
called with the arguments -setprop cpa.predicate.handlePointerAliasing=true, -setprop

cpa.abm.blockHeuristic=LoopPartitioning, -sv-comp12-abm-funpoint, and -heap 12500m. Coun-
terexamples, if found, are written to test/output/ErrorPath.txt.

Acknowledgement. We would like to thank Philipp Wendler for his extensive
help with the integration of ABM into CPAchecker.

References

1. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate Abstraction with Adjustable-
Block Encoding. In: FMCAD 2010, pp. 189–197 (2010)

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable Software Verification: Con-
cretizing the Convergence of Model Checking and Program Analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

3. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

http://mathsat4.disi.unitn.it
http://cpachecker.sosy-lab.org

Context-Bounded Model Checking with ESBMC 1.17
(Competition Contribution)

Lucas Cordeiro1, Jeremy Morse2, Denis Nicole2, and Bernd Fischer2

1 Electronic and Information Research Center, Federal University of Amazonas, Brazil
2 Electronics and Computer Science, University of Southampton, UK

esbmc@ecs.soton.ac.uk

Abstract. ESBMC is a context-bounded symbolic model checker for single- and
multi-threaded ANSI-C code. It converts the verification conditions using differ-
ent background theories and passes them directly to an SMT solver.

1 Overview

ESBMC is a context-bounded symbolic model checker that allows the verification of
single- and multi-threaded C code with shared variables and locks. ESBMC supports
full ANSI-C (as defined in ISO/IEC 9899:1990), and can verify programs that make use
of bit-level operations, arrays, pointers, structs, unions, memory allocation and floating-
point arithmetic. It can reason about arithmetic under- and overflows, pointer safety,
memory leaks, array bounds violations, atomicity and order violations, local and global
deadlocks, data races, and user-specified assertions. However, as with other bounded
model checkers, ESBMC is in general incomplete.

ESBMC uses the CBMC [2] frontend to generate the verification conditions (VCs)
for a given program, but converts the VCs using different background theories and
passes them to a Satisfiability Modulo Theories (SMT) solver. ESBMC natively sup-
ports Z3 and Boolector but can also output the VCs using the SMTLib format.

ESBMC supports the analysis of multi-threaded ANSI-C code that uses the synchro-
nization primitives of the POSIX Pthread library. It traverses a reachability tree (RT)
derived from the system in depth-first fashion, and calls the SMT solver whenever it
reaches a leaf node. It stops when it finds a bug, or has explored all possible interleav-
ings (i.e., the full RT). This combination of symbolic model checking with explicit state
space exploration is similar to the ESST approach [1] for SystemC.

2 Verification Approach

We model a program as a transition system M=(S,R, S0), where S is the set of states,
S0 ⊆ S the initial states, and R ⊆ S × S the transition relation. A state s ∈ S consists
of the values of all program variables, including the program counter pc. We use I(s0)
to denote that s0 ∈ S0 and γ(si, si+1) to denote the constraints that correspond to a
transition between two states si and si+1.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 534–537, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

esbmc@ecs.soton.ac.uk

Context-Bounded Model Checking with ESBMC 1.17 535

Given a transition system M, a safety property φ, a context switch bound C, and a
bound k, ESBMC builds an RT that represents the program unfolding for C, k, and φ.
For each interleaving π that passes through the RT nodes ν1 to νk, it derives a formula
ψπ
k = I(s0) ∧

∨k
i=0

∧i−1
j=0 γ(sj , sj+1) ∧ ¬φ(si) which is satisfiable iff φ has a coun-

terexample of depth k or less that is exhibited by π. Since I(s0) ∧
∧i−1

j=0 γ(sj , sj+1)
represents an execution of M of length i, ψπ

k is satisfied iff for some time step i ≤ k
there exists a reachable state along π at which φ is violated. The SMT solver then pro-
vides a satisfying assignment, from which we can extract a counterexample trace to the
property violation. If ψπ

k is unsatisfiable, we can conclude that no error state is reachable
in k steps or less along π. Finally, we use ψk=

∨
π ψπ

k to check all interleavings.
ESBMC uses a quantifier-free fragment of a logic of linear integer arithmetics with

arrays and uninterpreted functions to represent the VCs derived for a given ANSI-C pro-
gram. Scalar datatypes can be represented either as bitvectors (i.e., using the SMTLib
logic QF AUFBV), or as abstract integers (i.e., QF AUFLIA). Floating point arithmetic
is approximated either by abstract reals (i.e., using the SMTLib logic AUFLIRA), by
fixed-point arithmetic using bit vectors, or by rational arithmetic over abstract integers.
Structures, unions, and pointer types are encoded using tuples [3,4]. ESBMC uses a
simple but effective heuristic to select the best data representation and SMT solver.

ESBMC uses an instrumented model of the Pthread synchronization primitives to
handle multi-threaded code [3]. The model allows an unbounded set of threads T ,
but ESBMC will only explore a finite number of context switches. It assumes that an
enabled thread tj ∈ T can transition between statements to any enabled thread, and
computes all states for which a transition exists to (implicitly) build the RT. ESBMC
assumes sequential consistency, and by default assumes that variable accesses in indi-
vidual statements are atomic.

3 Architecture, Implementation, and Availability

ESBMC is implemented in C++. It has been branched off CBMC v2.9, and still uses
its parser, goto conversion, and core of the symbolic execution. The goto conversion
replaces all control structures by (conditional) jumps, which simplifies the program
representation. The symbolic execution of this goto representation converts the pro-
gram into SSA form and unrolls loops and recursive functions on-the-fly, generating
unwinding assertions that fail if the given bound is too small. It also generates the VCs
for the safety properties and user-specified assertions.

Changes to the CBMC components include the addition of the new safety properties
and more optimizations (e.g., better constant propagation), and the integration of native
SMT backends. In order to support the analysis of multi-threaded code ESBMC im-
plements a partial-order reduction (POR) [3,5] scheme to reduce the number of states
that have to be explored. It first applies the visible instruction analysis POR, which re-
moves the interleavings of instructions that do not affect the global variables, followed
by the read-write analysis POR in which two (or more) independent interleavings can be
safely merged into one. Additionally, it implements a two-level symbolic state hashing
scheme [6] that represents a particular RT node and all constraints affecting a particu-
lar assignment to a variable separately. Since each new RT node can only change the

536 L. Cordeiro et al.

(symbolic) value of at most one variable, this scheme reduces the computational effort,
as it allows us to retain the hash values of the unchanged variables.

User Interface. ESBMC can be invoked through a standard command-line interface or
configured through an Eclipse plug-in. When a property violation is detected, it pro-
duces a counterexample trace in the CBMC format. The plugin visualizes such traces
and provides direct access to the corresponding code.

Availability and Installation. Self-contained binaries for 32-bit and 64-bit Linux envi-
ronments are available at www.esbmc.org; versions for other operating systems are
available on request. The competition version only uses the Z3 solver (V3.1). It assumes
a 64-bit architecture and uses experimentally determined unwinding bounds; setting ex-
plicit context switch bounds is not required for the given concurrency benchmarks. It
only checks for the reachability of the error label and ignores all other properties, in-
cluding unwinding assertions. It is called as follows:

esbmc --timeout 15m --memlimit 15g --64 --unwind <n>
--no-unwinding-assertions --no-assertions --error-label ERROR
--no-bounds-check --no-div-by-zero-check --no-pointer-check <f>

4 Results

With unwinding assertions enabled, ESBMC proves 30 programs correct and finds er-
rors in 27. However, it also claims errors in two correct programs and fails to find
existing errors in another nine. ESBMC’s performance is largely similar across all cat-
egories, although unwinding assertions and timeouts are, as expected, concentrated on
the larger benchmarks.

With unwinding assertions disabled, a correctness claim is not a full correctness
proof, because errors could occur for larger unwinding bounds. In fact, the number of
false negatives/positives increases to ten and nine, resp., but their rate remains roughly
the same, so that ESBMC’s overall performance improves markedly: with 121 programs
rightly claimed correct and 71 errors identified, it achieves a total score of 249. Four
programs do not conform to the supported ANSI-C standard and cause parsing errors.
The remaining programs time out during the symbolic execution (21) or fail with an
internal error (41). These errors results are mostly caused by problems in ESBMC’s
pointer handling that are exposed by the excessive typecasts in the CIL-converted code.

Acknowledgments. The development of ESBMC is funded by EPSRC, EC FP7, the
Royal Society, and INdT. Q. Li implemented the Eclipse plugin.

References

1. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: a software model
checking approach. In: FMCAD, pp. 121–128 (2010)

2. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)

Context-Bounded Model Checking with ESBMC 1.17 537

3. Cordeiro, L.: SMT-Based Bounded Model Checking of Multi-Threaded Software in Embed-
ded Systems. PhD Thesis, U Southampton (2011)

4. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking for embed-
ded ANSI-C software. In: ASE, pp. 137–148 (2009)

5. Cordeiro, L., Fischer, B.: Verifying Multi-Threaded Software using SMT-based Context-
Bounded Model Checking. In: ICSE, pp. 331–340 (2011)

6. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Context-Bounded Model Checking of LTL
Properties for ANSI-C Software. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011.
LNCS, vol. 7041, pp. 302–317. Springer, Heidelberg (2011)

Proving Reachability Using FShell
�

(Competition Contribution)

Andreas Holzer1, Daniel Kroening2, Christian Schallhart2,
Michael Tautschnig2, and Helmut Veith1

1 Vienna University of Technology, Austria
2 University of Oxford, United Kingdom

Abstract. FShell is an automated white-box test-input generator for
C programs, computing test data with respect to user-specified code
coverage criteria. The pillars of FShell are the declarative specification
language FQL (FShell Query Language), an efficient back end for com-
puting test data, and a mathematical framework to reason about cover-
age criteria. To solve the reachability problem posed in SV-COMP we
specify coverage of ERROR labels. As back end, FShell uses bounded
model checking, building upon components of CBMC and leveraging the
power of SAT solvers for efficient enumeration of a full test suite.

1 Overview

FShell implements automatic white-box test-input generation according to a
user-defined coverage specification given in the declarative language FQL [5,6].
To resemble formal verification and solve the reachability problem presented in
the SW Verification Competition we specify coverage of all ERROR labels.

FQL is built on top of a concise mathematical framework for formalising
code coverage criteria. This framework enables automatic processing of FQL

queries and together with FQL makes our approach oblivious to the algorithmic
details of test-input generation. As this overall architecture is analogous to that
of databases, we refer to our approach as query-driven program testing [4].

As back end for solving FQL queries, i.e., computing test inputs, FShell
uses components of the C bounded model checker (CBMC) [1], which enables
support for full C syntax and semantics, and makes efficient use of SAT solving
(using MiniSat 2.2.0 [2]). An overview of the architecture is presented in the next
section. The technical approach was first sketched in [3], further refined in [4]
and full details of the current implementation can be found in [7].

2 Architecture

FShell comprises two main parts: The front end handles user interactions with
a command-line interface. There, control commands such as loading source files,

� This research is supported by the FWF research network RiSE, the WWTF grant
PROSEED and EPSRC project EP/H017585/1.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 538–541, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Proving Reachability Using FShell 539

C Source

FQL Query

Test Suite

CBMC Com-
ponents

Automata
Construction

Guided
SAT Enu-
meration

Test Suite
Minim-
isation

Fig. 1. Query processing

macro definitions, and FQL queries are entered by the user. The back end per-
forms the actual test case generation. Figure 1 sketches the conceptual steps:

1. We use the code base of CBMC to first obtain an intermediate representation
(GOTO functions) of the program under test.

2. We translate the given FQL query into automata over statements in the
GOTO functions. We refer to these automata as trace automata.

3. CBMC builds a Boolean equation describing all states yielding a violation of
a given property (assertion) of the input program. It is then able to produce
an example of such a violation (counterexample).
In test case generation, we use this scheme by adding the property stat-
ing that no program execution accepted by the trace automata exists. Any
counterexample (i.e., test case) then describes a path that fulfills the query.
We efficiently enumerate test cases using guided SAT enumeration [4]. The
resulting test suite satisfies the given coverage specification by construction.

4. To remove redundant test cases, we perform test suite minimisation. This
problem is an instance of the minimum set cover problem, which we reduce
to a series of SAT instances.

5. We display the generated test suite as a list of initial values of variables.

3 Strengths and Weaknesses

The main advantage of FShell over its underlying back end CBMC is com-
puting counterexamples for all reachable error locations. Apart from this fact,
however, FShell mainly acts as bounded model checker in this competition. As
such, FShell was successful as it was, together with SatAbs, one of only two
competition participants that never reported a spurious “UNSAFE”.

As bounded model checking is necessarily incomplete for all benchmarks with
unbounded loops, a choice had to be made how to handle those. Without further
options, FShell performs an additional step to prove given loop unwindings (see
below) to be sufficient. This step would ensure that FShell does not return
“SAFE” without having properly proved safety, but instead aborts early.

As consequence, however, FShell would not have scored any points on pro-
grams with unbounded loops. Therefore we decided to disable the early abort and
instead perform verification under the assumption that the given loop bounds
suffice. On the one hand, this is helpful in bug finding and permitted to prove un-
safety on several benchmarks with unbounded loops. Whenever this loop bound

540 A. Holzer et al.

is insufficient for finding paths to the error location, however, FShell wrongly
reports “SAFE” and becomes unsound.

This is the classic bounded model checking setting, but proved to be even
less successful under the presented scoring system: in the categories “Control-
FlowInteger” and “DeviceDrivers” FShell correctly determined the result in
more than 70% of the instances, but scored only 19% of the possible points. For
all other categories (except for “Concurrency”, which is presently unsupported)
problems in the back end caused verification to fail; these have mostly been fixed
by now and future versions are expected to perform much better.

4 Tool Setup

The competition participant is FShell version 1.3, which can be downloaded
from http://code.forsyte.de/fshell. To avoid the interactive operation of FShell,
a file “query” should first be set up containing the following statements:

cover @label(ERROR)

quit

Then, FShell can be run as

fshell --unwind 10 --no-unwinding-assertions --query-file query FOO.c

for a source file “FOO.c”. By default, FShell will assume a 64-bit memory
model as this is the competition platform. For those benchmarks written with a
32-bit memory model in mind, the option --32 must be given in addition.

By definition, FShell produces test inputs instead of full counterexample
traces; each set of inputs uniquely determines a single execution, however. An
instance is found to be “SAFE” if no test inputs are found. In this case, FShell
prints Test cases: 0 – an “UNSAFE” instance yields a non-zero count.

Software Project. FShell is maintained by Michael Tautschnig as an extension
of CBMC. FShell was jointly designed by the authors. FShell is released at
the above web site as binary for several platforms under an Apache 2.0 license.

References

1. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004)

2. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case
Generation for Dynamic Analysis and Measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-Driven Program Test-
ing. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.
151–166. Springer, Heidelberg (2009)

http://code.forsyte.de/fshell

Proving Reachability Using FShell 541

5. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your test
suite? In: ASE, pp. 407–416. ACM (2010)

6. Holzer, A., Tautschnig, M., Schallhart, C., Veith, H.: An Introduction to Test Spe-
cification in FQL. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp. 9–22. Springer,
Heidelberg (2010)

7. Tautschnig, M.: Query-Driven Program Testing. Ph.D. thesis, Vienna University of
Technology (2011)

LLBMC: A Bounded Model Checker for LLVM’s

Intermediate Representation�

(Competition Contribution)

Carsten Sinz, Florian Merz, and Stephan Falke

Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany

{carsten.sinz,florian.merz,stephan.falke}kit.edu

Abstract. We present LLBMC, a bounded model checker for C programs.
LLBMC uses the LLVM compiler framework in order to translate C pro-
grams into LLVM’s intermediate representation (IR). The resulting code
is then converted into a logical representation and simplified using rewrite
rules. The simplified formula is finally passed to an SMT solver. In con-
trast to many other tools, LLBMC uses a flat, bit-precise memory model.
It can thus precisely model, e.g., memory-based re-interpret casts.

1 Verification Approach

Bounded model checking (BMC) has proven to be a very successful technique
in hardware verification. More recently, it has also been applied for verifying
software written in C [1,4]. Applying BMC for verifying C programs, however,
comes with many obstacles that have to be tackled. One of the most important
differences is that the syntax and semantics of a programming language like C
is much more complicated than a hardware description. One has to deal, e.g.,
with memory allocation and de-allocation, (function) pointers, complex data
structures, and function calls.

LLBMC uses an approach which, instead of exploring the source code directly,
makes use of existing compiler technology and performs the analysis on a com-
piler intermediate representation. Such an intermediate representation offers a
much simpler syntax and semantics than a programming language like C, and
thus eases a logical encoding of the verification problem considerably.

We have chosen the LLVM [5] compiler infrastructure and its assembler-like in-
termediate representation as the starting point for our approach, but the idea can
also be applied to other low-level languages. LLVM is both a (GCC-compatible)
C/C++/Objective-C compiler and a library of compiler technologies, providing,
e.g., source- and target-independent optimizations.

Our primary goal is to detect memory errors in C code [7,2,6]. Memory errors
include invalid memory accesses, heap and stack buffer overflows, and invalid
frees (e.g., double frees).

� This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 542–544, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LLBMC: A Bounded Model Checker for LLVM’s Intermediate Representation 543

2 Software Architecture

While LLBMC is designed for C programs, its input format is LLVM-IR, the inter-
mediate representation of the LLVM compiler framework. LLVM-IR is an abstract
assembler language that is programming-language-independent. This makes it
easier to extend LLBMC to other languages supported by LLVM (like C++ or
Objective-C). Furthermore, the challenges in parsing complex high-level language
syntax, such as C++, are eliminated. Instead, only a limited instruction set needs
to be supported. LLVM-IR is architecture-dependent in the sense that the com-
piler frontend selects, e.g., the bitwidth of pointers and integer data types.

After reading in the LLVM-IR code, LLBMC applies a number of transforma-
tions to it. In particular, loops are unrolled, functions are inlined, and the control
flow graph is simplified. The transformed code is then converted to ILR, which
is a representation of a program in the logic of bit-vectors and arrays plus some
extensions, related to memory allocation. ILR provides an explicit state object
for the memory content as well as for the state of the memory allocation sys-
tem. These state objects encode the dependencies between memory accessing
instructions in the ILR formula. Because of this, dependencies between instruc-
tions in LLVM, which were implicitly given by the ordering of the read and write
operations are made explicit in the ILR formula. This change makes the expres-
sions in an ILR formula ordering-independent. The ILR formula is then simplified
using rewrite rules, and memory access correctness expressions are reduced to
bit-vector formulas (see [2,7] for details). If no more rewrite rules can be applied,
the formula is passed to the SMT solver STP [3].

3 Strengths and Weaknesses of the Approach

LLBMC is tailored towards finding bugs in C programs, especially memory-related
ones (not so much towards proving their absence). Detectable errors include:

– arithmetic overflow and underflow, including shift overflow,
– invalid memory access operations,
– invalid memory allocation, including invalid frees, and
– overlapping memory regions in memcpy.

Furthermore, LLBMC supports checking of user assertions and reachability of la-
bels named “ERROR” in the C-code. It can also detect whether the loop unrolling
and function inlining bound was sufficient or has to be increased in order to
achieve full coverage.

In the competition, LLBMC was used with a fixed unwinding bound of 7 and an
automatically determined function inlining bound. It was not checked whether
the unwinding bound is sufficient, but only whether the “ERROR” label was reach-
able within these bounds (as other comparable tools have chosen similar set-
tings). If no error was found, the instance was considered safe. LLBMC was able
to successfully handle 146 out of 269 benchmark instances (not participating
in category “Concurrency”, as this is not supported by LLBMC), resulting in a
first place in category “Device Drivers” and a second place in category “Heap

544 C. Sinz, F. Merz, and S. Falke

Manipulation”. Among the unsolved instances, 65 were due to time-outs, and 48
due to current restrictions of LLBMC (e.g., related to memcpy or inline assembly).
LLBMC produced 7 false positives and 3 false negatives. The false negatives (i.e.
where an error was missed) were due to an insufficient loop unrolling bound.
Among the 7 false positives, one was due to an error in LLBMC related to detect-
ing a malloc function. The other 6 were due to uninitialized pointer variables,
by which other (e.g., global) variables could be overwritten and thus be mod-
ified, resulting in the “ERROR” label becoming reachable. We do not consider
these errors as “false positives”, but see here a special strength of LLBMC and its
precise memory model, as such errors are very hard to detect and, in practice,
result in non-deterministic program behavior.

4 Tool Setup and Configuration

The version of LLBMC (0.9) submitted to TACAS can be downloaded from

http://llbmc.org/llbmc-tacas12.zip.

LLBMC requires llvm-gcc (version 2.9) in order to convert C input files to LLVM’s
intermediate representation. For instructions on how to use LLBMC, just enter
llbmc --help. The ZIP archive also contains two wrapper shell scripts to run
LLBMC on individual C files. The first, llbmcc, iteratively increases the loop
unwind bound and also checks whether the unwind bound is sufficient. The
second, llbmcc2, which was used in the competition, also increases the unwind
bound, but only up to a maximal value of 7, and does not perform unwind bound
checks. Both shell scripts compile the C program, run LLBMC, and perform only a
reachability check for a basic block labelled “ERROR”, but no other checks, such
as for invalid memory accesses. They output either SAFE, if the error label is
unreachable (within the given bound for llbmcc2), or UNSAFE otherwise.

Further information on LLBMC is available on the web at http://llbmc.org.

References

1. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004)

2. Falke, S., Merz, F., Sinz, C.: A theory of C-style memory allocation. In: Proc. SMT
2011, pp. 71–80 (2011)

3. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

4. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. TCS 404(3), 256–274 (2008)

5. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proc. CGO 2004, pp. 75–88 (2004)

6. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

7. Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model
checking. In: Proc. SSV 2010 (2010)

http://llbmc.org/llbmc-tacas12.zip
http://llbmc.org

Predator: A Verification Tool for Programs
with Dynamic Linked Data Structures�

(Competition Contribution)

Kamil Dudka, Petr Müller, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. Predator is a tool for automated formal verification of sequential C
programs with dynamic linked data structures. It is in principle based on separa-
tion logic, but uses a graph-based heap representation. This paper first provides
a brief overview of Predator and then discusses experience with its participation
in the Software Verification Competition of TACAS’12.

1 Introduction

Predator is a tool for automated formal verification of sequential C programs with dy-
namic linked data structures. Currently, it supports verification of various linked list
variants, including nested, cyclic, and/or shared lists, possibly using limited pointer
arithmetics to navigate through list nodes as is usual in real-life implementations of
list manipulating programs. Predator implicitly detects various memory-related errors
and can also check for reachability of error labels, which made its participation in the
TACAS’12 Software Verification Competition (SV-COMP’12) possible. However, most
of the capabilities of Predator to detect memory-specific errors could not be applied in
the competition. Predator is publicly available1 as open-source under GPLv3.

This paper provides a brief overview of Predator’s design principles and capabilities,
and then discusses experiments with Predator on the benchmarks of SV-COMP’12.
More details about Predator can be found in the tool paper [1].

2 Overview of Predator

Predator is conceptually based on separation logic with higher-order inductive pred-
icates. It encodes infinite sets of heaps in a finite symbolic way using a graph-based
representation of separation logic formulae. There are two kinds of nodes in the graphs:
(1) possibly nested objects corresponding to statically and automatically allocated pro-
gram variables, dynamically allocated storage, list segments, etc. and (2) values of the
objects, e.g., addresses of objects and the special values undefined, deleted, and

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009, MSM 0021630528), and the EU/Czech
IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 545–548, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

546 K. Dudka et al.

null in the case of pointers and function pointers. This allows for dealing with point-
ers to any variable (not only dynamically allocated) and detection of some classes of
memory-related bugs (stack smashing, buffer overrun, and the like). Predator also im-
plicitly detects other memory-related errors like memory leaks, invalid dereferences,
and double frees. Predator uses a specialised join operator, applicable both on entire
symbolic heaps as well as on their parts. The latter functionality serves for discovering
new list predicates used for a subsequent abstraction (summarisation) of list segments.
The join algorithm is also used for checking entailment of symbolic heaps (by checking
that the join of two symbolic heaps produces one of them). Hence, Predator does not
use any off-the-shelf decision procedures.

The main goal of Predator is to verify real system code in a fully automated way.
Since real-life implementations of lists often use limited pointer arithmetics (e.g., in
Linux, the list header structure is embedded at any place in list nodes, and pointer
arithmetics is used to move within the list nodes), Predator is capable of handling typ-
ical patterns of such low-level programming techniques. For this, offsets of sub-objects
within their encapsulating objects are tracked.

Predator is implemented as a GCC plug-in2, which brings significant advantages.
For the many real-life programs whose production versions are built using GCC, the
analysis is performed on the same program representation as the one used for producing
the actual binary. GCC has also a very large coverage of what it can parse (standard C
and GNU extensions), while other tools, like CIL, used by some other analysers, usually
implement only a subset of the C language standard. Further, using GCC allows an
easier integration with other commonly used development tools. In particular, Predator
presents errors and warnings in the standard GCC format, which many development
tools can handle by default.

Predator is written in C++ and uses Boost libraries. The only dependencies that need
to be installed are GCC 4.4.6+ with C++ support and CMake. It is recommended to
build Predator against a local build of GCC. This can be done in several steps, which
are described in the README file3 of the Predator’s distribution. The local build of GCC
is fully automated and the whole process takes up to 10 minutes assuming a fast enough
Internet connection (needed for downloading GCC sources). The current version of
Predator runs on Linux, but the code of the analyser itself is architecture-independent.

3 Experience with Predator

Predator is distributed with a collection of more than 200 test cases. The test cases in-
clude real-world code snippets as well as code focused on corner cases in the use of the
dynamic linked data structures. This collection also serves as our internal benchmark
for measuring the performance of the tool. The errors sought in these benchmarks are
typical memory manipulation errors (memory leakage, double free, etc.) for which no
user-provided specification is needed. More information on our test cases can be found

2 Predator uses the low-level GIMPLE representation of the GCC’s intermediate code.
3 Instructions specific for the Software Verification Competition held at TACAS’12 are located

in the file named README-sv-comp-TACAS-2012 available in the distribution of Predator.

Predator: A Verification Tool for Programs 547

in [1]. Four of our test cases were extended by explicit checks of shape properties and
sent as a contribution to the SV-COMP’12 benchmarks.

Below, we summarise our experience with Predator from the training phase of SV-
COMP’12, describe the results we reached on the competition benchmarks, and discuss
problems encountered on particular test cases. We refrain from stating precise quantita-
tive data about our results, which is a part of the presentation of SV-COMP’12 itself.

During the experiments with the training set of test cases of SV-COMP’12, we en-
countered problems resulting from Predator’s implicit detection of memory-related er-
rors (such as invalid dereferences or buffer overruns), which Predator never ignores.
Some of the test cases in the benchmark were problematic from this point of view since
they assumed idealised memory models. These test cases caused Predator to terminate
prematurely and report memory errors unrelated to the reachability of the given error
label. Hence, we needed to create a special layer on top of Predator that distinguishes
between errors defined by the competition rules (where UNSAFE means that an error
label is reachable) and errors caused by using memory in a wrong way.

From the SV-COMP’12 categories, we focused on those that Predator is designed to
verify, especially on the Dynamic Data Structures category. This category contained test
cases contributed by the Predator project itself (heap-manipulation) and test cases taken
from the web page of the BLAST 3.0 project (list-properties). In this category, Predator
succeeded in all but two test cases, which contained lists with alternating small integral
numbers in their nodes. The current version of Predator cannot represent numbers in
an abstract way (as, e.g., integral ranges), which prevented the list segment abstraction
from being applied and consequently the analysis failed to terminate.

Verifying Linux drivers is one of the major goals for Predator, so we expected good
results in this category too. On the ldv-regression benchmark, we ended up with the
highest possible score (at least in our home environment). For that to happen, it was
necessary to improve some test cases to make them allocate the memory they use and to
write a few dummy models of external functions, but these changes were accepted by the
competition organisers. Unfortunately, Predator was not successful in the ddv-machzwd
benchmark due to the lack of abstraction over integral values as mentioned above.

Across all benchmark categories, Predator never returned SAFE for a test case de-
clared UNSAFE, which confirms that the analysis done by Predator is sound. On the
pthread benchmark, Predator instantly returned UNKNOWN for all test cases because
of an unhandled call to pthread create(). As Predator does currently not aim at
the analysis of concurrent programs, this was an expected response. In the locks bench-
mark, Predator could solve all of the test cases, however, given time and space larger
than allowed by the rules of SV-COMP’12. In the given limits, Predator managed to
analyse only a few of these test cases. This is due to the analysis done by Predator
is quite inefficient for such kind of programs since no (refinable) abstraction of non-
pointer data is currently supported by Predator. Such data is either tracked precisely or
completely discarded. Predator also succeeded on several test cases from the systemc
benchmark, which were proven SAFE. Like in the ddv-machzwd benchmark, Predator
lost many points here because of the lack of abstraction over integral values.

548 K. Dudka et al.

4 Conclusions and Future Work

We have briefly presented Predator and its participation in SV-COMP’12. Predator is
regularly updated and enhanced. We plan to add support for further kinds of dynamic
data structures (like trees), improve the support for non-pointer data, provide support for
analysing C++ code, and possibly add techniques allowing one to analyse incomplete
programs (e.g., using bi-abduction). SV-COMP’12 provides many interesting test cases,
which represent a good motivation for further development of Predator.

Reference

1. Dudka, K., Peringer, P., Vojnar, T.: Predator: A Practical Tool for Checking Manipulation of
Dynamic Data Structures Using Separation Logic. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg (2011)

HSF(C): A Software Verifier

Based on Horn Clauses

(Competition Contribution)

Sergey Grebenshchikov1, Ashutosh Gupta2,
Nuno P. Lopes3, Corneliu Popeea1, and Andrey Rybalchenko1

1 Technische Universität München
2 IST Austria

3 INESC-ID / IST - TU Lisbon

Abstract. HSF(C) is a tool that automates verification of safety and
liveness properties for C programs. This paper describes the verification
approach taken by HSF(C) and provides instructions on how to install
and use the tool.

1 Verification Approach

HSF(C) is a tool for verification of C programs based on predicate abstrac-
tion and refinement following the counterexample-guided abstraction refinement
(CEGAR) paradigm [4]. There are a number of successful tools [1,7,5,10,2] based
on abstraction refinement. We give here a brief description of our verification al-
gorithm; interested readers can find more details about the underlying theory
behind our implementation in [10,6].

The algorithm used in HSF(C) is a generalization of the CEGAR scheme that
deals with Horn-like clauses instead of transition systems/programs with pro-
cedures. We use Horn clauses to represent both the program to be verified and
the proof rule used for verification, i.e., safety checking for programs with pro-
cedures. The proof rule lists premises for program safety and requires auxiliary
assertions that represent inductive invariants. Given Horn clauses as input, our
algorithm proceeds in three steps.

1. With a fixed set of predicates, initially empty, we find a solution for the
auxiliary assertions. At this step we perform logical inference and rely on
abstraction to ensure termination in the presence of recursion and to ensure
efficiency in the presence of large sets of clauses.

2. We check whether the computed solution satisfies program safety. If so, the
verification succeeds and the algorithm returns “safe”.

3. We check whether the logical inference performed in the first step in the
setting without any abstraction yields a solution that still violates program
safety. If the violation is still present then we return “unsafe” and the infer-
ence tree as an error path that reaches the error location. Otherwise, we use
the obtained solution to refine the abstraction function and go back to the
first step.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 549–551, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

550 S. Grebenshchikov et al.

2 Software Architecture

HSF(C) relies on the CIL library [9] as a frontend for our tool. An additional
frontend step transforms the CIL abstract syntax tree representation in Horn
clauses. The Horn clauses are generated automatically from a proof rule for safety
checking with support for procedure summarization [11]. These Horn clauses are
then solved with the CEGAR algorithm described in the previous section. Our
solver is implemented in Prolog and compiled using the SICStus Prolog compiler
[12]. Our implementation relies on the constraint solver for linear arithmetic
CLP(Q) [8].

3 Discussion

In this section, we present our experience running HSF(C) on the benchmarks
from the software competition.

ControlFlowInteger. We found the approach based on abstraction and refinement
well suited for the benchmarks in the category. The proofs found by HSF(C)
typically involve a small number of predicates. For handling the few pointers
and heap-allocated structures that are used by these benchmarks, we found the
use of the pointer analysis provided by CIL to be sufficiently precise.

SystemC. The benchmarks from this category encode concurrency from the pro-
gram in finite-domain auxiliary variables. Some heuristics proposed in [3] com-
bine explicit-state model checking to model the states of the SystemC scheduler
with predicate abstraction. Such heuristics would have been more appropriate
to handle these benchmarks than our current approach based only on predicate
abstraction.

Other Categories. HSF(C) did not participate in the other four competition
categories, i.e., Concurrency, DeviceDrivers, DeviceDrivers64, and HeapManip-
ulation. Here we list the current limitations of our tool that we need to address
to be able to handle these benchmarks:

– Concurrency: the frontend of HSF(C) needs a model for the functions from
the Pthreads library.

– DeviceDrivers, DeviceDrivers64: some of the features of the C language that
HSF(C) does not precisely model are fixed-size integers, union types, volatile
variables, and bitwise operations.

– HeapManipulation: the pointer analysis that we use is not precise to handle
the data structures from these benchmarks.

To summarize, we ran our tool on 158 benchmarks from two categories. HSF(C)
obtained the following results:

HSF(C): A Software Verifier Based on Horn Clauses 551

– ControlFlowInteger (140/144 points): for all benchmarks where HSF(C) re-
ported a result, the result was correct. HSF(C) ran out of time for two
benchmarks.

– SystemC (8/87 points): for all benchmarks where HSF(C) reported a result,
the result was correct. HSF(C) ran out of time or memory on 57 benchmarks.

4 Tool Setup

HSF(C) can be downloaded from the following webpage:

http://www7.in.tum.de/tools/hsf/

The HSF(C) distribution consists of three statically compiled binaries that corre-
spond to the C frontend, a converter to Horn clauses, and the Horn clause solver.
The distribution also contains a script that runs the three executables with ap-
propriate parameters. The tool should be run as follows: ./qarmc.sh <file.c>.
The working directory (PWD) must be the directory where the HSF(C)’s files are
located. The only required library is the standard glibc 32-bit.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL (2002)

2. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

3. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A soft-
ware model checking approach. In: FMCAD, pp. 51–59 (2010)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

6. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL, pp. 331–344 (2011)

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

8. Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

9. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

10. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

11. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

12. The Intelligent Systems Laboratory. SICStus Prolog User’s Manual. Swedish Insti-
tute of Computer Science, Release 4.2.0 (2011)

http://www7.in.tum.de/tools/hsf/

SatAbs: A Bit-Precise Verifier for C Programs�

(Competition Contribution)

Gérard Basler, Alastair Donaldson1, Alexander Kaiser2, Daniel Kroening2,
Michael Tautschnig2, and Thomas Wahl3

1 Imperial College, London, United Kingdom
2 University of Oxford, United Kingdom

3 Northeastern University, Boston, United States

Abstract. SatAbs is a bit-precise software model checker for ANSI-C
programs. It implements sound predicate-abstraction based algorithms
for both sequential and concurrent software.

1 Verification Approach

SatAbs [7] is a verifier for C programs that uses counterexample-guided abstrac-
tion refinement [8] (Fig. 1), based on predicate abstraction [12], as pioneered by
SLAM [2]. By interpreting variables of the C program as bit-vectors, efficient
SAT procedures are used for abstraction and simulation [6]. This renders the
theorem prover calls that are made during abstraction decidable, and enables
bit-precise verification, which is essential when analysing system-level software.

In [10] the first sound and symmetry-aware predicate abstraction based ap-
proach towards model checking multi-threaded programs was presented. These
results have now been integrated with SatAbs, allowing scalable verification of
concurrent C programs comprised of replicated threads.

1.) Compute
Abstraction

2.) Check
Abstraction

3.) Check
Feasibility

4.) Refine
Predicates

C program

OK

report counterexample

[no error]

[feasible]

Fig. 1. Key components of SatAbs

Efficient symmetry-aware predicate ab-
straction requires amendments in all four
key components of Figure 1: (1) the
Boolean program computed as abstrac-
tion will use passive predicates and broad-
casts [10]; (2) the underlying model
checker for Boolean programs must be
able to make use of symmetry and sup-
port passive predicates, which presently
only Boom [3] does; (3) as adding new
predicates makes Boolean program model
checking more expensive, we primarily
rely on transition refinement (cf. [1]) –
symmetry-aware analysis requires a particular variant that handles both ac-
tive and passive threads; (4) adding new predicates in case of replicated threads
requires extra care (cf. [10]).

� This research is supported by EPSRC projects EP/G026254/1, EP/G051100/1 and
EP/H017585/1 and ERC project 280053.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 552–555, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SatAbs: A Bit-Precise Verifier for C Programs 553

2 Architecture

SatAbs shares large portions of the underlying C++ framework withCBMC [5],
including the ANSI-C front end, the internal representation as GOTO programs,
and interfaces to decision procedures. The competition candidate is linked with
MiniSat 2.2.0 [11] as SAT solver.

Boolean Program Model Checking. Boolean program model checking is
typically the bottleneck for a CEGAR-based verifier. SatAbs treats the Boolean
program model checker as black box, and can be configured to use any suitable
tool. For the competition, we use either Boom [4] together with a wrapper to
analyse concurrent programs with as few threads as necessary, or Cadence SMV.

Refinement Strategy. SatAbs starts verification with a coarse abstraction,
cheaply computed over predicates derived from assertions appearing in the pro-
gram. The abstraction is refined in response to spurious counterexamples ac-
cording to the following strategy: first, a spurious counterexample is checked for
spurious transitions. If any exist, they are refined away using the technique of
Das and Dill [9], following the approach of SLAM [1]. If no individual transition
is spurious, weakest precondition calculations are used to derive new predicates
from the counterexample, which are used to compute a more precise abstraction.

3 Strengths and Weaknesses

SatAbs supports all categories, including “Concurrency”. In the presence of
replicated concurrent programs, SatAbs exploits symmetry [13] to curb state
explosion. Although the tool can also be applied to asymmetric concurrent pro-
grams, no scalability is expected for this case. As the focus on symmetric threads
is not reflected in the benchmarks, SatAbs timed out on most of the benchmarks
in the category “Concurrency”. In the category “HeapManipulation”, SatAbs

failed because of a bug in the counterexample analysis; this has been fixed and
in future we expect positive results there as well.

Overall, SatAbs proved to be reliable: bit-precise reasoning paired with some
degree of maturity made SatAbs return only a single wrong result, which was
due to bugs that have been fixed in the meantime. Yet we are aware of sev-
eral limitations and weaknesses, which concern both sequential and concurrent
code. Current technical limitations of predicate discovery may lead to SatAbs

reporting “refinement failures”. Furthermore overall efficiency and performance
require closer inspection to reduce the number of timeouts that SatAbs had in
the competition.

4 Tool Setup

SatAbs is hosted at http://www.cprover.org/satabs/ and is available both in bi-
nary form for popular platforms and as source code under a 4-clause BSD license.
A C preprocessor is required (as provided by GCC on Unix-like platforms or

http://www.cprover.org/satabs/

554 G. Basler et al.

Visual Studio on Microsoft Windows). The model checkers Boom and Cadence
SMV were used in the competition – SMV must be downloaded separately.1

The following command-line options were used for the competition, depending
on category: 1) --modelchecker boom: Select Boom as model checker; without this
option, Cadence SMV is used as default. 2) --full-inlining: Inline all functions.
This is required for proper operation when using Boom. 3) --error-label ERROR:
Instead of searching for violated assertions, prove (un)reachability of the label
“ERROR” as specified in the competition rules. 4) --32: Select the basic bit-
width of the architecture; by default, the bit-width of the execution platform
is assumed, but some categories were designated to contain 32-bit benchmarks.
5) --concurrency: Enable use of passive threads and broadcast assignments, as
described above. 6) --max-threads 5: Passed to Boom: only analyse executions
involving no more than 5 concurrently running threads. 7) --iterations 500:
Sets the upper bound on the number of CEGAR iterations to 500.

For categories “ControlFlowInteger” and “SystemC” we used SMV as model
checker, i.e., option 1) was not given. Options 5) and 6) were only used for the
category “Concurrency”.

References

1. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining Approximations in Software
Predicate Abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 388–403. Springer, Heidelberg (2004)

2. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: PLDI, pp. 203–213 (2001)

3. Basler, G., Hague, M., Kroening, D., Ong, C.-H.L., Wahl, T., Zhao, H.: Boom:
Taking Boolean Program Model Checking One Step Further. In: Esparza, J., Ma-
jumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 145–149. Springer, Heidelberg
(2010)

4. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Context-aware counter abstrac-
tion. Formal Methods in System Design 36(3), 223–245 (2010)

5. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–
C programs using SAT. Formal Methods in System Design (FMSD) 25, 105–127
(2004)

7. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
LICS (2001)

1 Available at http://www.kenmcmil.com/

http://www.kenmcmil.com/

SatAbs: A Bit-Precise Verifier for C Programs 555

10. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-Aware Predicate
Abstraction for Shared-Variable Concurrent Programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

11. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symmetry in automated
formal verification. Symmetry 2(2), 799–847 (2010)

Wolverine: Battling Bugs with Interpolants�

(Competition Contribution)

Georg Weissenbacher1,��, Daniel Kroening2, and Sharad Malik1

1 Department of Electrical Engineering, Princeton University
2 Department of Computer Science, Oxford University

(georg.weissenbacher@magd.oxon.org)

Abstract. Wolverine is a software verifier that checks safety proper-
ties of sequential ANSI-C and C++ programs, deploying Craig interpola-
tion to derive program invariants. We describe the underlying approach
and the architecture, and provide instructions for installation and usage.

1 Approach

Wolverine [1] is a software verification tool for ANSI-C and C++ programs
that aims at finding either a Hoare-style correctness proof or a counterexam-
ple for a given reachability property. The tool is an implementation of the
interpolation-based lazy abstraction algorithm [2] outlined in Figure 1. A de-
scription of the steps ➀ to ➄ of Figure 1 is provided below.

➀ Front-end
Generate
CFG

➁ Explore
Expand ART
leaf node

[else]

➂ Simulate
Check path
feasibility

⎡
⎣ reached

error

node

⎤
⎦

➃ Interpolate
Generate new
Hoare triples

[
path

is safe

]

[
path is

unsafe

]

➄ Check Safety
Check Hoare
proof for CFG

[
e
l
s
e
][

Hoare proof

is complete

]

Fig. 1. UML activity diagram describing the work-flow of Wolverine

➀ Wolverine generates a control flow graph (CFG) representation of the
program and encodes reachability properties using assertions/error nodes.

➁ Following the lazy abstraction paradigm established by [3], Wolverine con-
structs an abstract reachability tree (ART). To this end, it explores the paths
of the CFG (in a depth first search manner) until it encounters an assertion.1

� Supported by a gift from the Intel Labs Academic Research Office.
�� Corresponding author.
1 The search algorithm of Wolverine 0.5c incorporates a constant propagation do-
main in order to enable early pruning of infeasible execution traces.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 556–558, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

georg.weissenbacher@magd.oxon.org

Wolverine: Battling Bugs with Interpolants 557

CProver

C/C++ ➀

Front-end

CFG

CProver

Symbolic ➂

Simulator

SSA

Interpolating
Decision ➃

Procedure

Reachability Checker ➁,➄

(a) UML component diagram for Wolverine

path interpolatort

+interpolate(...)

wolver interpolatort

wp interpolatort1
1

(b) Interpolator class hierarchy

Fig. 2. Software architecture of Wolverine

➂ Given a path that reaches an assertion, Wolverine deploys symbolic sim-
ulation to determine whether the path corresponds to a feasible program
execution violating the assertion; such unsafe executions are reported.

➃ If the path is safe, Wolverine uses Craig interpolation to generate Hoare
triples that prove that the assertion holds (c.f. [4]) and updates the edges
and nodes of the ART accordingly: the spurious counterexample serves as a
catalyst for refining the current approximation of safely reachable states [5].

➄ If the Hoare triples of the ART are sufficient to prove the safety of all paths
of the CFG, Wolverine concludes that the program is correct. Otherwise,
the tool continues to expand paths that are not yet covered (step ➁).

2 Software Architecture

Figure 2a shows the components and architecture of Wolverine. Our im-
plementation uses the front-end (➀) and the symbolic simulator (➂) of the
CProver framework (http://www.cprover.org). Wolverine uses an inter-
polating decision procedure (➃) to extract Hoare triples from infeasible paths.
To this end, the tool deploys its built-in decision procedure for equality logic
with uninterpreted functions and limited support for bit-vectors [6,7,8] and falls
back on the weakest precondition should this interpolator fail (see Figure 2b).

3 Tool Setup and Usage

Installation. Binaries for Linux, Windows, and MacOS X can be downloaded
from the project website (http://www.cprover.org/wolverine) and should be
deployed in a directory listed in the PATH environment variable. Wolverine

requires a pre-processor (cl.exe, which is part of Visual Studio Express, on
Windows and GNU’s gcc on Unix-based platforms) and the header files typi-
cally packaged with it to be installed.

Usage. Wolverine must be executed from within the Visual Studio command
prompt on Windows or a terminal on Linux and Mac OS X, and accepts options
and source file names of the program to be verified as operands. By default,
Wolverine scans the program for assertions and checks whether they hold. If
executed with the option --error-label ERROR, Wolverine checks whether
the label ERROR is reachable.

http://www.cprover.org
http://www.cprover.org/wolverine

558 G. Weissenbacher, D. Kroening, and S. Malik

By default, Wolverine assumes that the host platform and the target plat-
form for the program under test coincide. Therefore, in order to verify a Win-
dows device driver on a Linux host, the options --no-library --i386-win32

are recommended (but were not applied in the competition). The target proces-
sor architecture of the program under test has to be specified using the options
--32 or --64 where it differs from the host. In the competition, these options
were applied accordingly to all benchmarks.

4 Strengths and Limitations

While Wolverine shares many of the characteristics of predicate abstraction-
based verifiers (most prominently, Slam [9]), it avoids the computationally ex-
pensive image computation required to construct the abstraction (c.f. [2]), en-
abling the rapid detection of counterexamples (discussed in [1]).

Wolverine’s performance is contingent on the Hoare triples that the interpo-
lating decision procedure derives from spurious counterexamples. The inherent
properties of interpolants typically enable concise abstractions. A “diverging”
sequence of predicates, however, can result in a failed verification attempt. The
built-in interpolator of Wolverine version 0.5c provides no support for linear
arithmetic, quantified invariants, and heap models. In the competition, this led
to a sub-optimal performance of Wolverine for benchmarks containing arith-
metic expressions, unbounded arrays, or dynamic data structures. Moreover,
Wolverine does currently not support the verification of concurrent programs.

References

1. Kroening, D., Weissenbacher, G.: Interpolation-Based Software Verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 573–578. Springer, Heidelberg (2011)

2. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

3. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70. ACM (2002)

4. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244. ACM (2004)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145.
Springer, Heidelberg (2010)

7. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-
level. In: FMCAD, pp. 85–89. IEEE (2007)

8. Kroening, D., Weissenbacher, G.: An Interpolating Decision Procedure for Transitive
Relations with Uninterpreted Functions. In: Namjoshi, K., Zeller, A., Ziv, A. (eds.)
HVC 2009. LNCS, vol. 6405, pp. 150–168. Springer, Heidelberg (2011)

9. Ball, T., Rajamani, S.K.: The slam project: Debugging system software via static
analysis. In: POPL, pp. 1–3. ACM (2002)

Author Index

Abdulla, Parosh Aziz 204
Ábrahám, Erika 299
Albarghouthi, Aws 157
Alur, Rajeev 188
Armando, Alessandro 267
Arsac, Wihem 267
Atig, Mohamed Faouzi 204
Avanesov, Tigran 267

Babiak, Tomáš 95
Barbot, Benôıt 331
Barletta, Michele 267
Basler, Gérard 552
Becker, Bernd 299
Beyer, Dirk 504
Bjørner, Nikolaj 472
Bloem, Roderick 362
Bouajjani, Ahmed 451
Bozga, Marius 252

Caires, Lúıs 485
Calvi, Alberto 267
Cappai, Alessandro 267
Carbone, Roberto 267
Cassel, Sofia 466
Chadha, Rohit 437
Chang, Bor-Yuh Evan 33
Chechik, Marsha 157
Chen, Taolue 315
Chen, Yu-Fang 204
Chevalier, Yannick 267
Compagna, Luca 267
Cordeiro, Lucas 534
Cox, Arlen 33
Cuéllar, Jorge 267

David, Alexandre 492
Donaldson, Alastair 552
Drossopoulou, Sophia 407
D’Silva, Vijay 48
Dudka, Kamil 545

Eisenbach, Susan 407
El Ghazi, Aboubakr Achraf 422

Emmi, Michael 451
Erzse, Gabriel 267

Falke, Stephan 542
Fehnker, Ansgar 173
Finkbeiner, Bernd 392
Fischer, Bernd 534
Forejt, Vojtěch 315
Frau, Simone 267
Friedmann, Oliver 64

Geilmann, Ulrich 422
Gopinath, Divya 2
Grebenshchikov, Sergey 549
Gupta, Ashutosh 549
Gurfinkel, Arie 157
Gurney, Alexander J.T. 283

Haddad, Serge 331
Haller, Leopold 48
Hamlen, Kevin W. 126
Hardin, David 18
Hermanns, Holger 1
Heußner, Alexander 478
Höfner, Peter 173
Holzer, Andreas 538
Hölzl, Johannes 347
Howar, Falk 466
Huang, Chung-Yang (Ric) 377

Iosif, Radu 252

Jacobs, Swen 362
Jacobsen, Lasse 492
Jacobsen, Morten 492
Jansen, Nils 299
Jegourel, Cyrille 498
Jiang, Zhihao 188
Jin, Huafeng 220
Jørgensen, Kenneth Yrke 492
Jones, Micah M. 126
Jonsson, Bengt 466

Kaiser, Alexander 552
Katoen, Joost-Pieter 299

560 Author Index

Khurshid, Sarfraz 2
Konečný, Filip 252
Křet́ınský, Mojmı́r 95
Kroening, Daniel 48, 538, 552, 556
Kwiatkowska, Marta 315

Lang, Frédéric 141
Lange, Martin 64
Le Gall, Tristan 478
Legay, Axel 498
Lengál, Ondřej 79
Leonardsson, Carl 204
Loo, Boon Thau 283
Lopes, Nuno P. 549
Löwe, Stefan 528

Madhusudan, P. 437
Malik, Sharad 556
Mandrykin, Mikhail 525
Mangharam, Rahul 188
Mateescu, Radu 141
McIver, Annabelle 173
McKinley, Kathryn S. 2
Merten, Maik 466
Merz, Florian 542
Minea, Marius 267
Moarref, Salar 188
Mödersheim, Sebastian 267
Møller, Mikael H. 492
Morse, Jeremy 534
Müller, Petr 545
Mutilin, Vadim 525

Nicole, Denis 534
Nipkow, Tobias 347
Nokhbeh Zaeem, Razieh 2

Pajic, Miroslav 188
Parker, David 315
Pellegrino, Giancarlo 267
Peringer, Petr 545
Peter, Hans-Jörg 392
Pham, Tuan-Hung 18
Picaronny, Claudine 331
Ponta, Serena Elisa 267
Popeea, Corneliu 237, 549
Portmann, Marius 173

Řehák, Vojtěch 95
Rezine, Ahmed 204
Rocchetto, Marco 267

Rusinowitch, Michael 267
Rybalchenko, Andrey 237, 549

Sanders, Beverly A. 220
Sankaranarayanan, Sriram 33
Scedrov, Andre 283
Schallhart, Christian 538
Sedwards, Sean 498
Shved, Pavel 525
Šimáček, Jǐŕı 79
Simaitis, Aistis 315
Sinz, Carsten 542
Slind, Konrad 18
Song, Fu 110
Sonnex, William 407
Srba, Jǐŕı 492
Sridhar, Meera 126
Steffen, Bernhard 466
Strejček, Jan 95
Sutre, Grégoire 478

Taghdiri, Mana 422
Talcott, Carolyn 283
Tan, Wee Lum 173
Tautschnig, Michael 48, 538, 552
Torabi Dashti, Mohammad 267
Touili, Tayssir 110
Turuani, Mathieu 267

Ulbrich, Mattias 422

van Glabbeek, Rob 173
Veanes, Margus 472
Veith, Helmut 538
Vieira, Hugo Torres 485
Viganò, Luca 267
Viswanathan, Mahesh 437
Vojnar, Tomáš 79, 545
von Oheimb, David 267

Wahl, Thomas 552
Wang, Anduo 283
Weissenbacher, Georg 556
Wendler, Philipp 528
Whalen, Michael 18
Wimmer, Ralf 299
Wonisch, Daniel 531
Wu, Cheng-Yin 377

Yavuz-Kahveci, Tuba 220
Yeh, Hu-Hsi 377

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Contribution
	Quantitative Models for a Not So Dumb Grid
	References

	SAT and SMT Based Methods
	History-Aware Data Structure Repair Using SAT
	Introduction
	Background
	Cobbler Framework
	Overview
	Example
	Implementation in Cobbler

	Evaluation
	EvaluationMetrics
	Subject Programs
	Errors
	Subject Tools
	Results
	ANTLR BaseTree addChild

	Related Work
	Conclusions
	References

	The Guardol Language and Verification System
	Introduction
	An Example Guard
	Generating Verification Conditions by Deduction
	Guardol Operational Semantics
	Decompilation

	Verification Condition Solving Using SMT
	Experimental Results

	Discussion
	References

	A Bit Too Precise? Bounded Verification of Quantized Digital Filters
	Introduction
	Preliminaries: Digital Filter Basics
	Bit-Precise Encoding
	Real-Arithmetic Encoding
	Experimental Evaluation
	Related Work
	Conclusion
	References

	Numeric Bounds Analysis with Conflict-Driven Learning
	Introduction
	Overview
	Related Work

	Program Model and Domain
	Static Analysis as Second-Order Constraint Solving
	Safety as Satisfiability

	Conflict Driven Fixed Point Learning
	Overview of CDFL
	Data Structure and Phases of CDFL
	Abstract Conflict Graphs

	Implementation and Experiments
	Conclusion
	References

	Automata
	Ramsey-Based Analysis of Parity Automata
	Introduction
	Preliminaries
	The Ramsey-Based Method for Parity Automata
	Universality for NPA
	Inclusion for NPA
	Comparing Direct and Indirect Methods

	Experimental Evaluation
	A Random Model of Parity Automata
	Comparison in Practice

	Conclusion and Further Work
	References

	VATA: A Library for Efficient Manipulation of Non-deterministic Tree Automata
	Introduction
	Preliminaries
	Design of the Library
	Explicit Encoding
	Semi-symbolic Encoding

	Supported Operations
	Removing Unreachable States
	Downward and Upward Simulation
	Simulation-Based Size Reduction
	Bottom-Up Inclusion
	Top-Down Inclusion
	Computing Simulation over LTS

	Experimental Evaluation of VATA
	Experiments with the Explicit Encoding
	Experiments with the Semi-symbolic Encoding

	Conclusion
	References

	LTL to B¨uchi Automata Translation: Fast and More Deterministic
	Introduction
	Preliminaries
	Alternating Formulae
	Improvements in Reduction of LTL Formulae
	Improvements in LTL to VWAA Translation
	Improvements in VWAA to TGBA Translation
	Optimization of BA
	Implementation and Experimental Result
	Conclusion
	References

	Model Checking
	Pushdown Model Checking for Malware Detection
	Introduction
	Formal Model: Pushdown Systems
	Malicious Behavior Specification
	Environments, Predicates and Regular Expressions
	Stack Computation Tree Predicate Logic
	Modeling Malicious Behaviors Using SCTPL

	SCTPL Model-Checking for Pushdown Systems
	Variable Automata
	Symbolic Alternating B¨uchi Pushdown Systems
	From SCTPL Model Checking for PDSs to Emptiness of SABPDS
	SCTPL Model-Checking for PDSs

	Experiments
	References

	Aspect-Oriented Runtime Monitor Certification
	Introduction
	Related Work
	Policy Language and Rewriter
	Verifier
	Case Studies
	Conclusion and Future Work
	References

	Partial Model Checking Using Networks of Labelled Transition Systems and Boolean Equation Systems
	Introduction
	The Modal -Calculus
	Networks of LTSs
	Quotienting for Networks Using Networks
	Formula Graph Simplifications
	Simplification of Alternation-Free Formula Graphs
	Implementation
	Experimentation
	Conclusion
	References

	From Under-Approximations to Over-Approximations and Back
	Introduction
	Overview
	Abstract Reachability Graphs
	The UFO Algorithm
	Refinement
	Implementation and Evaluation
	Related Work
	Conclusion
	References

	Case Studies
	Automated Analysis of AODV Using UPPAAL
	Introduction
	Ad Hoc On-Demand Distance Vector Routing Protocol
	The Basic Routine
	Process Algebraic Model of AODV

	Modelling AODV in UPPAAL
	UPPAAL Automata
	From AWN to UPPAAL

	Experiments
	Scenarios and Topologies
	Properties
	Modifications
	Experimental Results

	Related Work
	Conclusions and Outlook
	References

	Modeling and Verification of a Dual Chamber Implantable Pacemaker
	Introduction
	Heart and Pacemaker Basics
	System Modeling
	Timed Automata and UPPAAL
	System Overview
	Basic DDD Pacemaker Modeling
	Random Heart Model (RHM)

	Verification Regarding Unsafe Regions
	Lower Rate Limit
	Upper Rate Limit

	Verification Regarding Unsafe Transitions
	Verification Procedure
	Verification of the Mode-Switch Algorithm
	Verification of Endless Loop Tachycardia (ELT) algorithm

	Related Work
	Conclusion and Future Work
	References

	Memory Models and Termination
	Counter-Example Guided Fence Insertion under TSO
	Introduction
	Preliminaries
	TSO Semantics
	Single-Buffer Semantics
	The SB Reachability Algorithm
	Fence Insertion
	Experimental Results
	Conclusion
	References

	Java Memory Model-Aware Model Checking
	Introduction
	Background
	Java PathRelaxer (JPR)
	Properties of the JPR Algorithm
	Experience
	Related Work
	Conclusion
	References

	Compositional Termination Proofsfor Multi-threaded Programs
	Introduction
	Preliminaries
	Proof Rules
	Compositional Termination of Multi-threaded Programs
	Compositional Thread Termination

	Proof Rule Automation
	Experiments
	Related Work
	References

	Deciding Conditional Termination
	Introduction
	Related Work

	Preconditions for Non-termination
	Difference Bounds Relations
	Octagonal Relations
	On the Existence of Linear Ranking Functions

	Linear Affine Relations
	Experimental Evaluation
	Conclusions
	References

	Internet Protocol Verification
	The AVANTSSAR Platform for the Automated Validation of Trust and Security of Service-Oriented Architectures
	Introduction
	The AVANTSSAR Platform
	Description and Architecture
	The Specification Languages ASLan and ASLan++
	The Connectors Layer
	The Orchestrator
	The Validator
	The AVANTSSAR Platform: Web Services and Web Interface

	AVANTSSAR Library and Experimental Results
	Technology Migration
	Concluding Remarks
	References

	Reduction-Based Formal Analysis of BGP Instances
	Introduction
	Analyzing BGP Anomalies
	Network Reduction
	Hierarchical Reduction
	Network Reduction
	Examples: Reducing eBGP and iBGP Instances

	Correctness of Network Reduction
	eBGP Correctness
	iBGP correctness: Cyclic iBGP Route Preference
	iBGP Correctness: IGP-iBGP Consistency Property

	Network Reduction in Maude
	Computing the Static BGP Representation
	Reduction by Merging All Pairs of Unifiable Nodes

	Evaluation
	Conclusion
	References

	Stochastic Model Checking
	Minimal Critical Subsystems for Discrete-Time Markov Models
	Introduction
	Foundations
	Computing Minimal Critical Subsystems for DTMCs
	Formulation as an SMT Problem
	Formulation as a Mixed Integer Linear Program
	Optimizations

	Computing Minimal Critical Subsystems for MDPs
	SMT Formulation
	MILP Formulation

	Experimental Evaluation
	Conclusion
	References

	Automatic Verification of Competitive Stochastic Systems
	Introduction
	Preliminaries
	Property Specification: The Logic rPATL
	Model Checking for rPATL
	Computing Probabilities
	Computing Rewards

	Implementation and Case Studies
	Experimental Results
	MDSM: Microgrid Demand-Side Management
	CDMSN: Collective Decision Making for Sensor Networks

	Conclusions
	References

	Coupling and Importance Sampling for Statistical Model Checking
	Introduction
	Motivation and State of the Art
	General Approach
	Preliminaries
	An Importance Sampling Method with Variance Reduction and Confidence Interval
	Generalisation

	Experimentation
	Implementation
	Example 1: Global Overflow in Tandem Queues
	Example 2 : Parallel Random Walk
	Example 3: Local Overflow in Tandem Queues
	Example 4: Bottleneck in Tandem Queues

	Conclusion
	References

	Verifying pCTL Model Checking
	Introduction
	Related Work
	Foundations
	Isabelle/HOL
	Probability Space
	Markov Chains

	Verifying pCTL Model Checking
	pCTL Formulas
	Verifying the Algorithm

	Discussion
	Conclusion
	References

	Synthesis
	Parameterized Synthesis
	Introduction
	Preliminaries
	Parameterized Synthesis
	Definition
	Reduction of Parameterized to Isomorphic Synthesis
	Decidability

	Bounded Isomorphic Synthesis
	Bounded Synthesis
	Adaption to Token Rings

	Synthesizing a Parameterized Arbiter
	A Framework for Parameterized Synthesis
	General Token-Passing Systems
	Other Results with Cutoffs

	Conclusions
	References

	QuteRTL: Towards an Open Source Framework for RTL Design Synthesis and Verification
	Introduction
	Architecture of QuteRTL Framework
	Overview of QuteRTL Framework
	Supported Features of QuteRTL
	Comparison with other Open Source RTL Front-End

	Tool Implementation
	Parser and Preprocessor
	RTL Synthesis and Circuit Flattening

	Applications of QuteRTL
	Intent Extraction
	Model Checking

	Availability for General Users
	A Brief Description to QuteRTL Command-Line Interface
	Example: RTL to Gate Synthesis Flow
	Example: Hierarchical Word-Level Netlist Creation
	Example: Property Checking

	Conclusion
	References

	Template-Based Controller Synthesis for Timed Systems
	Introduction
	Timed Systems
	Template-Based Controller Synthesis
	Symbolic Parameter Synthesis
	Precise Computation of the Feasible Instantiations
	The Focus Abstraction
	Abstraction Refinement

	Experimental Results
	Conclusion
	References

	Provers and Analysis Techniques
	Zeno: An Automated Prover for Properties of Recursive Data Structures
	Introduction
	Zeno's Internal Functional Language HC
	Proof Steps
	Heuristics
	Prioritize (eql) and (con), and Counterexamples
	Applying (cut) Only When (case) is also Possible
	Critical Terms
	Critical Paths

	Comparisons and the Output of Isabelle Proofs
	Conclusions and Future Work
	References

	A Proof Assistant for Alloy Specifications
	Introduction
	Related Work
	Background
	Alloy and the Alloy Analyzer
	The KeY Proof System

	Axiomatization of Alloy0
	Declarations
	Relational Expressions
	Integer Expressions and Cardinality
	Formulas
	The Ordering Module
	Theoretical Properties

	Reasoning Strategy
	Evaluation
	Automation
	Interactive Proofs

	Conclusion
	References

	Reachability under Contextual Locking
	Introduction
	Model
	Multi-pushdown Systems
	Contextual Locking

	Pairwise Reachability
	Well-Bracketed Computations
	Algorithm for Deciding the Pairwise Reachability

	Conclusions
	References

	Bounded Phase Analysis of Message-Passing Programs
	Introduction
	Asynchronous Message-Passing Programs
	Program Syntax
	Single-Processor Semantics
	Multi-processor Semantics

	Phase-Bounded Execution
	Phase-Bounding for Single-Processor Programs
	Phase-Bounding for Multi-processor Programs
	Related Work
	Conclusion
	References

	Tool Demonstrations
	Demonstrating Learning of Register Automata
	Introduction
	Active Automata Learning
	Register Automata
	The Tool Demo
	Conclusion
	References

	Symbolic Automata: The Toolkit
	Bek
	UTF8Encode Example
	Bek on Rise4Fun.com

	Rex on Rise4Fun.com

	McScM: A General Framework for the Verification of Communicating Machines
	Introduction
	Safety Verification of Communicating Machines
	A Closer Look on verify's Modular Architecture
	A Comparative Benchmark of Verification Algorithms
	The McScM Framework
	References

	SLMC: A Tool for Model Checking Concurrent Systemsag ainst Dynamical Spatial Logic Specifications
	Introduction
	Checking a Topological Property of a Distributed Protocol
	Verification Algorithms and Implementation
	Concluding Remarks
	References

	TAPAAL 2.0: Integrated Development Environment for Timed-Arc Petri Nets
	Introduction
	Tool Description
	Experiments
	Conclusion
	References

	A Platform for High Performance Statistical Model Checking – PLASMA
	Introduction
	Software Architecture
	Stochastic Simulation Algorithm
	Rare Properties and Importance Sampling

	Results
	Conclusion and Future Challenges
	References

	Competition on Software Verification
	Competition on Software Verification
	Introduction
	Procedure and Schedule
	Definitions and Rules
	Benchmark Verification Tasks
	Participating Teams
	Results and Discussion
	Summary and Future Plans
	References

	Predicate Analysis with BLAST 2.7
	Verification Approach
	Tool Architecture
	Tool Improvements and Benchmarking
	Downloading and Using BLAST
	References

	CPAchecker with Adjustable Predicate Analysis
	Verification Approach
	Software Architecture
	Strengths and Weaknesses
	Setup and Configuration
	Project and Contributors
	References

	Block Abstraction Memoization for CPAchecker
	Verification Approach
	Implementation
	Installation Instructions
	References

	Context-Bounded Model Checking with ESBMC 1.17
	Overview
	Verification Approach
	Architecture, Implementation, and Availability
	Results
	References

	Proving Reachability Using FShell
	Overview
	Architecture
	Strengths and Weaknesses
	Tool Setup
	References

	LLBMC: A Bounded Model Checker for LLVM’s Intermediate Representation
	Verification Approach
	Software Architecture
	Strengths and Weaknesses of the Approach
	Tool Setup and Configuration
	References

	Predator: A Verification Tool for Programs with Dynamic Linked Data Structures
	Introduction
	Overview of Predator
	Experience with Predator
	Conclusions and Future Work
	Reference

	HSF(C): A Software Verifier Based on Horn Clauses
	Verification Approach
	Software Architecture
	Discussion
	Tool Setup
	References

	SatAbs: A Bit-Precise Verifier for C Programs
	Verification Approach
	Architecture
	Strengths and Weaknesses
	Tool Setup
	References

	Wolverine: Battling Bugs with Interpolants
	Approach
	Software Architecture
	Tool Setup and Usage
	Strengths and Limitations
	References

	Author Index

