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Preface

The small conference we arranged to celebrate the 100th anniversary of Mie’s
theory was a fascinating event. The two nephews of Gustav Mie were present, one
of them presenting a real live account on his uncle. We got in touch with them
when one of us (TW) started to redesign a web page on a collection of Mie
scattering programs back in 2000. A photo of Gustav Mie scanned from a source at
the local university library and some information about his life was included in this
web page. This photo can still be found at the ScattPort light scattering information
portal [1] and since then the photo has been widely distributed on the Internet. One
of the nephews called by phone introducing himself as the caretaker of the
scientific inheritance of his uncle and asked for the source of the photo. Appar-
ently, he did not know about this specific photo. Since that time our interest on the
history of science in the topic of light scattering arose and we collected papers and
other sources of information. Somehow the idea to arrange a conference on the
anniversary in 2008 of Gustav Mie’s original paper arose. After two attempts we
managed to secure some funding to arrange this conference. Scientists from all
over the world presented talks on the current state of light scattering by particles
including simulations and applications. The current edited volume is a compilation
of selected extended versions of papers presented at this conference arranged in
Halle (Saale) in 2008. We would like to thank all the authors for their contributions
and acknowledge the support of the conference by Deutsche Forschungsgeme-
inschaft (DFG).

Halle, Bremen, Germany Wolfram Hergert
Thomas Wriedt

Reference

1. Information on Gustav Mie at ScattPort, http://www.scattport.org/index.
php/gustav-mie-special.
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Chapter 1
Gustav Mie: From Electromagnetic
Scattering to an Electromagnetic View
of Matter

Wolfram Hergert

Abstract The year 2008 saw the 100th anniversary of the publication of Gustav
Mie’s work ‘‘Contributions to the optics of turbid media, particularly colloidal
metal solutions’’ in Annalen der Physik. This event was an occasion to express
appreciation for his contribution to the theory of scattering of electromagnetic
waves. The achievements of Gustav Mie in the framework of the development
of an unified field theory and his contributions to the discussion around the
formulation of the theory of general relativity have been mentioned many times in
other contexts. A detailed description of Gustav Mie’s work has, until now, been
unavailable. This contribution undertakes the task of presenting a comprehensive
account of the life and scientific work of Gustav Mie.

1.1 Introduction

It is generally perceived that the revolutions in physics at the beginning of the
twentieth century are marked by the development of quantum physics and the
special and general theories of relativity. Planck’s introduction of the concept of
quantum of action, regarded as the dawn of quantum physics, in December 1900
and Einstein’s annus mirabilis 1905 mark this development. These milestones of
progress in modern physics are often reflected as achievements of theoretical
physics, although their starting points were experimental results and questions of
those times. The best-known is the discovery of a new kind of radiation by W.C.
Röntgen in the year 1895, based on experiments with cathode rays. In 1891,
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Gustav Mie (1868–1957) (Fig. 1.1), then a 23-year-old postdoctoral research
fellow, stood at the beginning of his scientific career. Besides the development of
modern physics, changes in the structure of the institutions occured at that time.
Cahan [1] discussed the institutional revolution in German physics in the years
1865–1914. The professional ethos of physicists at universities changed from pure
teaching to research. The typical structure of a physical institute developed at
German universities in the second half of the nineteenth century, accompanied by
the construction of new and adequate buildings. Rostock and Heidelberg, were
Mie studied, received new buildings for the physical institutes only after the turn
of the century, whereas during 1890–1891, the buildings in Greifswald, Halle
and Freiburg, where he later got a professorship, were ready for occupancy and
operation. Gustav Mie’s most creative years coincided with the time, when
theoretical physics was established as an independent discipline [2].

Mie said of himself about his work:

As far as I can adjudicate on me, it became my occupation to establish the connection
between theoretical and experimental physics, which stood at that time in danger, to
diverge more and more. I believe that my most important achievement was the publication
of a text book on electricity, in which I, above all, show Maxwell’s differential equations,
which to an outsider appear quite abstract, are nothing else as the shortest and most exact
formulation of experimentally found laws, by which electrical and magnetic fields are
linked with one another.1

Fig. 1.1 Gustav Mie
(29.9.1868–13.2.1957).
[Archives University of
Freiburg (UAF)]

1 [Mie81], p. 738f.
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First, the stages of Mie’s scientific career are reviewed. His scientific work is
then highlighted in the second section. The connection between experimental and
theoretical physics was very important for him. The following discussion will be
concentrated on his theoretical work. Classical electrodynamics, field theory,
theory of relativity and the quantum theory are his main fields of research. The
work on the theory of matter and the contributions to the theory of the scattering of
electromagnetic waves are particularly important. Gustav Mie’s role as a lecturer
along with a description of his disciples is the main theme of the next section.
Mie’s publications document also his desire, to present modern physical devel-
opments to a broader audience. These activities are treated together with his role as
a lecturer.

The scientific achievements and conflicts of his long life were also overshad-
owed by two world wars and the time of the National Socialist movement. In this
context, his reflections of social developments will also be discussed, as far as they
can be concluded from his diaries, letters and secondary sources. I attempt to list a
bibliography of the publications of Gustav Mie, as completely as possible. A
bibliography of biographic notes on Mie is also provided.

Biographic details are specified in footnotes for persons who were important to
Mie’s scientific career and life; otherwise only biographical data is given. The
origins of the figures and the photographs which did not originate from the author
are explicitly cited.

1.2 Life and Scientific Career

1.2.1 Childhood in Rostock

Gustav Adolf Feodor Wilhelm Ludwig Mie was born on 29 September 1868 in
Rostock (Fig. 1.2) to Hans Friedrich Ernst Amandus Mie (1828–1906), a salesman
active in the insurance business and his wife Caroline, nee Ziegler (1834–1901).
His parents were both children of Prostestant pastors. Many of his Mecklenburgian
relatives were Protestant pastors.2 His uncle, Fedor Mie (1840–1905), worked as a
Protestant pastor at St. Petri in Rostock.

Gustav Mie spent his childhood and youth in Rostock. He had three brothers and
one sister. His brother Friedrich (1865–1911) became a high school professor in
Berlin. His brother Johannes Mie worked as a merchant in Hamburg. His brother
Amandus carried on with the family tradition and worked as a Protestant pastor in
Scharnebeck.3 Gustav Mie attended High School at the Great City School (Große
Stadtschule) in Rostock (Fig. 1.3), an educational institution rich in tradition, from

2 The origins of the branched family can be followed up in [3].
3 H. Spehl, Mie, Gustav Adolf Feodor Wilhelm Ludwig in: [Bio6] p. 186ff., [4], [Mie81], p. 734.
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1877 to 1886.4 The Christian Protestant family tradition instigated his desire for
studies in theology after his Abitur. During high school, his interest shifted from
theology to natural sciences. In his memoirs, he wrote about this change:

It was not until I was a sixth former that I got the idea of becoming a natural scientist and
mathematician. Even today, I can recall the blessedness I felt when this idea came to mind
and my parents agreed upon it. I have never been happier in my whole life than during
those days and it felt like I was wandering around in paradise. The fact that I took the
exam in Hebrew for my Abitur in 1886, typical of someone aiming at studying theology,
proved how late I made my decision.5

However, it was not all plain sailing. Mie’s brother Friedrich struggled to leave
his career as a Protestant pastor imposed on him by his parents. In the year 1886,
Mie received his school leaving certificate (Abitur). In the Abitur certificate
(cf. Fig. 1.4), he was assessed to have a commendable behaviour. His diligence
and attention was reported as, ‘‘in former times [as] insufficient, in the last terms
good and very good’’. He finished the subject Mathematics with the grade ‘‘very
good’’. ‘‘In Mathematics, he demonstrated ...good knowledge. Solving problems

Fig. 1.2 Mie’s birthplace (house on the corner), Wokrenter Strasse 35 in Rostock. The house was
all but destroyed in the war; however, it was carefully rebuilt in 1981–1982

4 The Great City School was installed in 1580 under the superintendence of the humanist Nathan
Chyträus (1543–1598) in the former Dominician monastery St. Johannis. In the years 1864–1867
the new classicistic building was built by the Rostock architect Th.H. Klitzing. Between Easter
1860 and Michaelis 1901, 7 pupils named Mie completed the Great City School [5].
5 [Mie81], p. 734.
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never caused difficulties for him. The exam results were very good. Therefore, he
was excused from the verbal examination’’.6 He also achieved a good grade in
Physics. The school leaving certificate states: ‘‘In Physics he always had keen
interest, a good understanding of natural phenomena and acquired a good

Fig. 1.4 Part of Gustav Mie’s Abitur certificate. (UAF, Nachlass Mie, C136/1—Zeugnisse)

Fig. 1.3 The Great City School in Rostock

6 Archives University of Freiburg (UAF), Nachlass Mie, C136/1—Zeugnisse.
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knowledge of the physical laws’’.7 In Chemistry, Hebrew, Greek and History he
also achieved good grades, while he was not as successful in the foreign languages
English and French, and neither was he very successful in his native German.

1.2.2 Study in Rostock and Heidelberg (1886–1890)

Mie completed his studies at the university in his hometown Rostock as well as in
Heidelberg. He first enrolled in Rostock in the winter semester of 1886–1887.
After three terms, he moved on to Heidelberg in the summer of 1888, ‘‘to become
acquainted with something else’’ as he writes in his memories.8 It might be, that
also the Rostock mathematician Martin Krause (1851–1920), a disciple of Leo
Königsberger (1837–1921) the prominent mathematician in Heidelberg at that
time, contributed to his decision. The summer term of 1889 saw him back in
Rostock. He finished his studies in Heidelberg, where he spent the remaining time
from the winter semester 1889–1890 up to the summer semester 1890.

Initially, he placed emphasis on chemistry, geology and mineralogy. In the
winter semester of 1886–1887, 18 students were enrolled in chemistry at Rostock
University.9 Chemistry was lectured by Oscar Jacobsen.10 Chemistry in Rostock
had a good reputation at the time. Mie attended lectures on mineralogy and
geology given by Eugen Geinitz.11

Prior to the beginning of Mie’s studies in Rostock, mathematics, physics,
geology and astronomy were represented by Hermann Karsten,12 born into an old
Mecklenburgian family, which produced a number of scholars. Karsten was, at the
same time, director of the Navigation School. Only late, in contrast to other
German universities, did an independent chair for physics become installed in
Rostock. The first full professor was Heinrich Matthiessen13 who started at 1873.

Physics was housed in the same building as chemistry for a long time. As a result
of considerable extensions to the university available in the years 1870–1890 a

7 ibid.
8 [Mie81] p. 735.
9 [6], p. 1003.
10 Oscar Jacobsen (1840–1889), study in Kiel, 1865 assistant at the Chemical Laboratory of the
University of Kiel, 1868 graduation, 1871 private lecturer, 1873 professorship in Rostock, see
also [7].
11 Eugen Geinitz (1854–1925), study in Dresden and Leipzig, 1876 graduation Leipzig, 1877
habilitation Göttingen, private lecturer in Göttingen and Heidelberg, 1878 professorship in
Rostock. Geinitz is the father of the geology of Mecklenburg (Book ‘‘Geologie Mecklenburgs’’).
12 Hermann Karsten (1809–1877), studies in Bonn, Berlin and in Königsberg with Bessel, 1830
private lecturer in mathematics and mineralogy in Rostock, 1832 extraordinary professor, 1836
professor.
13 Heinrich Friedrich Ludwig Matthiessen (1830–1906) studies of natural sciences in Kiel with
G. Karsten, grammar school teacher in Jever and Husum, 1873 professor in Rostock.
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building within the yard of the main building became available for physics, which
had already served as a chemical laboratory from 1834 to 1844 [8] (see Fig. 1.5). This
was the situation the student Gustav Mie encountered at the physical institute.

In the year 1879, the mathematical–physical seminar was established; the first
directors were physicist Hermann Matthiessen and mathematician and astronomer
Johann Martin Krause.

Paragraph 1 of the statutes of this seminar reads as:

The mathematical–physical seminar has to give the students suggestions and guidance for
independent investigations and free lectures in the field of abstract mathematics and in
mathematical physics. Subject to further regulations, the control of this institute will be
transferred to the professors of mathematics and physics under the superintendence of the
Ministry, Department of Education. Independent from each other they offer topics for
small and larger written work and free lectures and give suggestion and guidance to the
members for execution of the tasks. The details of the contents and scheduling of the
seminar-like exercises are left to the directors.14

The directors could nominate three students for one award per term. Mie was
awarded in the year 1889.15 Chemistry and physics, however, quickly slipped into
the background of Mie’s studies.

In the middle of the nineteenth century, Heidelberg was oustandingly
represented in physics, chemistry and mathematics. Chemist Robert Bunsen
(1811–1899) taught there from 1852 until retirement in the year 1889. Hermann
von Helmholtz (1821–1894) a versatile physiologist and physicist, held the chair
for physiology in Heidelberg from 1858 to 1870. Gustav Kirchhoff (1824–1887)

Fig. 1.5 Left View of the old Institute of Physics in the year 1885 (still without the front
extension). On the back of the original photo Prof. Matthiessen noted the following in August
1885: ‘‘The Physical Institute—1885 photo taken by Dr. phil. Mönnich, Privatdozent, and given
to the Institute. The persons presented on it, from left to the right, are: Institute servant Maass,
cand. König, stud. Black (IInd assistant), cand. Karnatz (assistant) and teacher Klingberg’’, Right
Interior of the old Institute of Physics, persons from left to right Dr. Groesser, Prof. Matthiessen,
Dr. Brüsch and Maass ([9], pp. 96 and 99.)

14 [10], p. 223.
15 [11], p. 828.
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was a full professor for physics in Heidelberg from 1854 to 1875. His successor
was Georg Hermann Quincke (1834–1924). Mathematics was also outstandingly
represented in Heidelberg. Following Ludwig Otto Hesse (1811–1874), Leo
Königsberger16 taught for a short period between 1869 and 1874 (Fig. 1.6).
Succeeding Immanuel Lazarus Fuchs (1833–1902), Königsberger taught from
1884 to 1914 for the second time in Heidelberg. In 1869, a mathematical–physical
seminar was established at Heidelberg university, with Kirchhoff and Königs-
berger as the first directors.17 In the year 1890, the subjects physics, chemistry,
botany, zoology, mineralogy, mathematics and agriculture were separated from
the Philosophical Faculty and combined to form a new Scientific-mathematical
Faculty. The physicist Quincke was the first dean and the mathematician
Königsberger became his deputy.

In spite of Quincke and Bunsen being outstanding scholars in physics
and chemistry, Mie continued to concentrate on mathematics and mineralogy.

Fig. 1.6 Left Leo Königsberger (1837–1921), mathematician, Right Harry Rosenbusch
(1836–1914), mineralogist and petrographer. (Courtesy of UAH)

16 Leo Königsberger (1837–1921) Professor in Greifswald, Dresden Vienna and Heidelberg,
work on the theory of elliptical and hyperelliptical integrals and complex differential equations,
Helmholtz biography, see also [12].
17 Statutes of the seminar in, Archives of University of Heidelberg (UAH), Fak. -Akte H-IV-102/
71, Nr. 78, fol. 75–76, cf. [13]. Statutes of such seminars are regularly printed in ‘‘Zeitschrift für
mathematischen und naturwissenschaftlichen Unterricht’’, for example in vol. 5, 173 (1874) the
statutes of the mathematical–physical seminar of Halle University can be found.
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One reason for this choice may have been the absence of lectures in theoretical
physics. Mie acquired his knowledge in theoretical physics mainly by self-
instruction. It may be, due to his engagement in mineralogy, that Mie was not a
regular member of the mathematical–physical seminar; only students having
mathematics and physics as their main subjects could be regular members.

In Heidelberg, the mathematician Leo Königsberger and the mineralogist and
petrographer Rosenbusch18 (Fig. 1.6) were his academic teachers. Königsberger
was a excellent academic teacher. A student reported on his lectures:

Königsberger performed with virtuoso control of the material rapidly, clearly, dragging
the listener along. His fresh, self-confident, strong nature, as well as his kindness and
fairness secured him the affection of the academic youth.19

Mie completed the summer semester of 1889, once again in Rostock, and
concluded his study in the summer of 1890 in Heidelberg. The emphasis of his
study was mineralogy and mathematics. His preoccupation with mineralogy was
so intense that Harry Rosenbusch, the founder of the systematic petrography,
employed him as a junior research assistant. Mie’s task was to organise and
catalogue the hand piece and thin section collection consisting of 7,000 pieces.

Leo Königsberger remembers his student Mie in his memories. He writes:

My lecturer activity ... turned out well beyond all expectation, excellent young men, who
later occupied many chairs of mathematics, physics, astronomy at German and foreign
universities, like Ph. Lenard, M. Wolf, G. Mie, K. Boehm among others, whom I call my
scholars.20

Max Wolf (1863–1932) later was the director of the National Observatory of
Baden in Heidelberg and Phillip Lenard (1862–1947), Nobel Laureate of the year
1905, occupied the physics chair in Heidelberg.

Gustav Mie registered for the state examination of the higher teaching pro-
fession in 1890. He had to take the exam at the Technical University of Karlsruhe.
He requested the examination in mathematics and physics as major subjects, and
took mineralogy and chemistry as minor subjects. He also took an exam in religion
through his own volition. His topic in physics was ‘‘to deduce, from the laws of
induction, the basic principles necessary for the construction of dynamo-electric
machines, as well as it’s mode of action in a mathematical way’’. He worked on
this topic with such enthusiasm and interest, leaving himself only 24 h to write his
report on the mathematical topic. The situation was reflected in the assessment on
his mathematical work:

The written examination in mathematics ‘‘On the geodetic lines on the surfaces of second
order’’, even if the developments in the individual points could be more detailed and more

18 Karl Heinrich Rosenbusch (1836–1914), professor for petrography and mineralogy at the
universities of Strasbourg and Heidelberg, 1903 Wollaston medal, cf. also [14, 15].
19 Report of the student O. Rausenberger in [16], p. 179.
20 [12] p. 187.
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clearly expressed and also, the order and care of elaboration could be better, but overall,
the contents and conception of the task can probably be rated sufficient.21

This is in contrast to the judgement of Otto Lehmann (1855–1922) with respect
to the written examination in physics:

The treatment of the topic: ‘‘Mathematical deduction of the the basic principles of con-
struction of dynamo-electric machines from the laws of induction’’ proves that the can-
didate applied himself to a level of excellence in particularly difficult theories of electricity
and is able to move and independently proceed with full certainty in this area. It is
acknowledged that the resulting work is be rated as excellent’’.22

In the summer of 1891, Mie attained a doctorate with the thesis ‘‘On the
Fundamental Principle of the Existence of Integrals of Partial Differential Equa-
tions’’. In the personal record for the thesis he wrote:

During his study time he [the author] visited the lectures of the following Mr. professors
and associate professors: Krause, Matthiessen, Geinitz, Jacobsen, Königsberger, Cantor,
Schapira, Rosenbusch, Osann, Goldschmidt, Andrae. To all his admired teachers, most of
all Mr. Geh. Rat Königsberger and Mr. Geh. Bergrat Rosenbusch, the author expresses
devoted thanks [Mie1].

1.2.3 Karlsruhe: Beginning of the Scientific Career (1892–1902)

After graduation, the pursuit of a scientific career seemed unlikely. Mie found an
employment in Dresden at a private school in summer 1892.23 Anyway, Mie sent a
copy of his thesis to Otto Lehmann, his examiner in physics in the state exami-
nation, and was offered an assistantship at the Technical University of Karlsruhe.
Otto Lehmann24 was the successor of Heinrich Hertz (1857–1894), who was active
from 1885–1889 at the TH Karlsruhe (Fig. 1.7). Hertz had accomplished his
innovative experiments on the propagation of electromagnetic waves at that time.
His successor Lehmann became famous for the investigation of liquid crystals.

Gustav Mie had to lead the physical practical course25 and used this in order
to gain appropriate knowledge in experimental physics. Furthermore, he had to

21 UAF, Nachlass Mie, C136/1 Zeugnisse.
22 ibid.
23 From the copy of testimonials existing in the archives, it was revealed that this refers to the
Müller Gelinek Six-form High School. This school had a long tradition and before the
transformation into a private school on the 26 April 1819, it was the urban Friedrich August
School.
24 Otto Lehmann (1855–1922), Study Strasbourg, Teacher for Physics, Mathematics and
Chemistry in Mulhouse (Alsace), 1883 Lecturer in Physics TH Aachen, 1888 Professor for
Electrotechnology at the Polytechnic Institute Dresden, 1889 Ordinarius at Karlsruhe Technical
University Fridericiana with teaching assignment for Physics and Electrotechnology.
25 see Lehmann’s report in [17], p. 84.
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support Lehmann with the experiment lectures. The large number of students in
Karlsruhe and the impression of the lectures of Kundt (1839–1894) during his
study in Strasbourg brought Lehmann to dedicate himself to the intensive devel-
opment of experiment lectures.26 Regarding the experiments shown in the lectures
of Lehmann it is said:

Also today most experimental physicists prefer the demonstration of physical experiments
in the large-scale setups, which could be noticed from all places of the lecture room. This
style was consequently pursued by Lehmann. The enormous size of his experimental
assemblies and the spryness of the experimental presentation led to largest acceptance and
concentration among his students. To demonstrate the forces that could be produced by
electric currents, Lehmann, according to the verbal report of a student, catapulted a lab
assistant to the lecture room ceiling using current power. Although such experimental
setups could not become completely accepted, they surely remained not without influence
on the modern presentation of physical experiments. They have been certainly treasured
by his students, who reported after the lecture grinning due to ‘‘Circus Lehmann’’.27

Lehmann’s appointment to an extraordinary professorship of electrotechnology
at the Polytechnic Institute in Dresden took place with himself quoted as saying,
‘‘without any intention of dedicating myself permanently to electrotechnology’’.28

In the year 1895 in Karlsruhe the Electrotechnical Department was created and
thus electrotechnology was separated from physics. At this time the technical
universities Darmstadt and Hannover were prominent in the training of electrical
engineers. Karlsruhe, although one of the latecomers with regard to the institu-
tionalisation of electrotechnology, ascended in 1910 to become the prominent
training centre for electrical engineers.29 In the year 1892, an electrotechnical
extraordinary professorship was awarded to August Schleiermacher (1857–1953),
a former assistant of H. Hertz. Over three decades, from 1896 to 1927, he rep-
resented theoretical electrotechnics as professor ordinarius.30 There was a friendly
and collegial contact between Hertz and his assistant of only a year younger,
Schleiermacher, recorded in Hertz’s diaries.31 Schleiermacher, as the first pro-
fessor at a German technical university, conducted his lectures on theoretical
electrotechnics based on Maxwell’s theory. However, the appointment of
Engelbert Arnold32 in the year 1894 was considerably more important to the

26 see [17], p. 88f., see also [18].
27 [19], p. 108, private communication K.A. Turban 1881.
28 see [17], p. 72.
29 see: W. König, Gewinner und Verlierer. Der Stellenwert der einzelnen Hochschulen im
Institutionalisierungsprozess der Elektrotechnik in Deutschland 1882 bis 1914, in [20], p. 171ff.
30 In 1892 he was appointed as first budgetary professor for electrotechnics in Karlsruhe. On 11
July 1896 Schleiermacher became regular professor for theoretical physics in the electrotechnical
department of Engelbert Arnold. In 1926 the chair was rededicated to theoretical electrotechnics
after Schleiermacher’s retirement. cf. [21].
31 cf. [21], p. 25.
32 Engelbert Arnold (1856–1911), 1874–1878 studies in Zürich, 1880–1891 Polytechnic Institute
Riga, joint founder of the Russian-Baltic Electrotechnical Factory 1888, 1891 chief electrician of
Maschinenfabrik Oerlikon, from 1894 Karlsruhe, see also [22].
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success of electrotechnology in Karlsruhe (Fig. 1.7). Arnold focussed his work in
the area of the construction of high performance, high-speed d.c. machines. This
was the area which was treated by Mie in his state examination work. All in all,
Mie found a scientific environment in Karlsruhe strongly influenced by the ideas
and scientific work of J.C. Maxwell and H. Hertz. He did not follow Lehmann’s
work on liquid crystals; however, an exchange of letters with Lehmann continued
until much later.

In the first Karlsruhe years, Gustav Mie trained himself increasingly in physics,
where electrodynamics and their technical application became his preferred field,
both in practical experiments and theoretical treatment. Suggestions on how to
deal with the problems with the systems of units put forward by Lehmann who was
himself preoccupied with such questions at the time.33 Electrotechnical problems
were permanently present due to Arnold’s work. Mie also worked on electro-
technical problems in Greifswald, the next institution of his academic career.
Interestingly, Mie published work on d.c. machines together with Arnold [Mie8].

With the work ‘‘Draft of a general Theory of the Energy Transmission’’ Gustav
Mie attained habilitation on 29 July 1897.34

Fig. 1.7 Engelbert Arnold (1856–1911), Otto Lehmann (1855–1922). (Archives Karlsruhe
Institute of Technology, Karlsruhe)

33 O. Lehmann, Das absolute Maßsystem, Verh. des Naturwiss. Vereins zu Karlsruhe 12, 365
(1897), excerpts in: Zeitschr. für den physikal. und chem. Unterricht 10, 77 (1897).
34 University and regional Library (ULB) Halle: Dissertationes polytechn. Karlsruhanae 1896–
1899, No. 11, Entwurf einer allgemeinen Theorie der Energieübertragung von Dr. Gustav Mie,
Habilitationsschrift zur Erlangung der venia legendi für mathematische Physik an der
Großherzoglichen Technischen Hochschule in Karlsruhe. (Sonderdruck aus den Sitzungsberich-
ten der K. Akad. der Wiss. Wien [Mie6]).
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In the year 1900 Mie was appointed professor with the teaching assignment
‘‘Modern Trends and Opinions on Electricity and the Science of the Electrical
Waves’’.35

In the scientific life of the university town Karlsruhe scientific associations
were very important. Such an association was already created in 1840 by
Alexander Braun (1805–1877), the director of the Naturalienkabinett at that time.
Starting from 1862, the association arose as ‘‘Naturwissenschaftlicher Verein in
Karlsruhe’’ with new statute. The ‘‘Naturwissenschaftlicher Verein Karlsruhe
e.V.’’ has presently been active for 150 years. The report on the meetings of the
years 1888–1895 proves that 12 to 15 meetings per year took place. The mean
number of listeners was approximately 30. In average, physical topics have been
discussed five times a year. The professors and members of the Physical Institute
participated actively in this association since its inception. Heinrich Hertz pre-
sented his experiments for the first time to the public during one of the meetings of
this association. From 1885 to 1889 Hertz presented eight times. Thus, he lectured
on 24 June 1887 on ‘‘New Relationship between Light and Electricity’’36 and on
22 February 1889 he gave a lecture on ‘‘Relations between Light and Electric-
ity’’.37 The original apparatuses used by Hertz were still present in the institute
with Lehmann’s assumption of office. Lehmann wrote:

I came into possession of the physical cabinet which belonged to Hertz that contained
several intrinsically worthless items, however, amongst them were, from a historical
perspective, very precious apparatuses. There are in particular items, which in occasion of
the International Electrotechnical Exhibition in Frankfurt a. M. in 1891 occupied an
important place ... and will be later relinquished to the German Museum in Munich on its
strong request ...’’38

Otto Lehmann spoke regularly at the association meetings. Lehmann met with
the other members for meetings mostly in the physics lecture hall, in order to be
able to demonstrate experiments. The ‘‘Experimental Lecture on Röntgen’s
X-rays’’ presentation by Lehmann was held on 7 February 1896.39 While Hertz
and Lehmann participated regularly and actively in the meetings of the scientific
association, Engelbert Arnold, a member of the association too, hardly contributed.

Gustav Mie became a member during the 432th meeting on 16 December 1892.
He gave his first lecture on 5 January 1894, entitled ‘‘On the Nature of Heat’’.
During his time in Karlsruhe Mie gave seven additional lectures in the meetings of

35 [17], p. 84.
36 Verh. des Naturwiss. Vereins zu Karlsruhe 10, pp. 150–51 (1883–1889).
37 ibid. 11, pp. 41–43 (1883–1895).
38 cf. [17], p. 71, in 1913 the Karlsruhe devices were inventoried in the German Museum in
Munich. For the history of the devices see also: J.H. Bryant, Heinrich Hertz’s Experiments and
Experimental Apparatus: His Discovery of Radio Waves and his Delineation of their Properties,
in [23], p. 39 ff.
39 Verh. des Naturwiss. Vereins zu Karlsruhe 13, p. 37 (1895–1900), ‘‘The lecture, which was
given by the speaker, over 3 weeks on five occasions, for different corporations and associations,
is printed in the papers’’., see also [Mie4].
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the scientific association of Karlsruhe. He spoke in the 488th meeting on 15 May
1896 on the topic of ‘‘On the Meaning of Hertz’ Mechanics’’ [Mie10].

The replication of the Hertz experiments with the original equipments still
existing in the institute at the time made a lasting impression on Mie. He also used
parts of the original Hertz equipment in the meeting of the scientific association on
16 July 1897 to report on ‘‘Telegraphing without Wires, with Experiments’’.40 The
work crucial for Gustav Mie’s further career was his publication on the Lecher
problem [Mie9]. From this work he was noticed, for the first time, as a theoretical
physicist, and not as an electrical engineer.

On 14 March 1901, Gustav Mie and Berta Hess, daughter of Friedrich Hess,
district surveyor in Heidelberg, got married. It turned out to be a childless
marriage. However, Gustav and Berta Mie spent a long and fulfilled life together.
On 3 January 1916 he wrote about himself and his wife:

For an outsider, it is difficult to understand, how an inherently pedantic and quite scientific
person, as I am, can be compatible with a person with an artistic nature and infused with
fantasy, such as, like my wife.41

1.2.4 Greifswald: The productive Period (1902–1917)

From his theoretical work in Karlsruhe, in particular by the investigation of
electrical waves on parallel wire systems [Mie9], Mie had already acquired a
certain reputation. The attainment of an extraordinary professorship was thus the
next logical step.

At the beginning of the twentieth century, Greifswald was a small Prussian
university town at the Baltic Sea, not far away from Rostock, Mie’s native city.
The university in Greifswald was founded way back in 1456.42 In the years
1888–1891 the Physical Institute acquired a new building under the auspices of
Professor Anton Oberbeck (1846–1900), well adapted to the needs of physical
research of that time (Fig. 1.8). Prior to his full professorship in Greifswald,
Oberbeck held a chair for theoretical physics in Halle. The University of Halle was
one of the first German universities, establishing such a chair.43

The successor of Oberbeck in Greifswald was Franz Richarz (1860–1920).
Richarz accepted a professorship at Marburg in 1901. The subsequent regulation
paved the way for Mie to Greifswald. Carl König (1859–1936), who did not have a
large impact in physics, was a professor extraordinarius in Greifswald since 1899.
In the proposal by the faculty for Richarz’s successor, Hallwachs (1859–1922)
(Dresden) and Dietrici (1858–1929) (Hannover) have been mentioned, but the

40 Verh. des Naturwiss. Vereins zu Karlsruhe 13, S. 98–103 (1895–1900).
41 UAF, Nachlass Mie, E12/69.
42 For the history of physics in Greifswald see [25–28].
43 cf. [2] vol. 2, chapter 15, p. 33 ff.
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faculty insisted in transfering the chair to König. In the course of this personnel
decision the replacement of the professor extraordinarius should be settled
at the same time.44 The proposal list for the occupation of the extraordinary
professorship covered Pringsheim (1881–1963) (Berlin), Elster (1854–1920)
(Wolfenbüttel), Wiechert (1861–1928) (Göttingen), Mie (Karlsruhe) and Straubel
(1864–1943) (Jena). Mie was set only on fourth place and the judgement over him
was however farsighted and lead the Minister to entrust the position to a ‘‘coming
man’’:

Mie’s work shows the fact that his mathematical skill is linked also with the ability of
physical opinion and important achievements for the future are to be expected from him.
His publications are however up to now purely theoretical in nature.45

The years in Greifswald were Mie’s most scientifically fruitful time. To a
considerable degree it fulfilled the expectation that accompanied his appointment.
In the year 1905, König was relocated to Gießen. During the Richartz follow-up
discussion the budgetary professor extraordinarius was still favoured by the fac-
ulty, but now the situation took a different turn. The philosophical faculty reacted
to the transfer of König with a three person proposal: Rubens (1865–1922)
(Charlottenburg), Dieterici (Hannover), Pringsheim (Berlin). Concerning Mie the
faculty explicated:

The present professor extraordinarius, Professor Mie has, by his scientific achievements
and his personal integrity, acquired a respectable position and we would not hesitate to
suggest him for the full professorship. However, it is our desire to put more emphasis on
the experimental aspects of physics and a more fundamental form of presentation than we
expect them to be given by Prof. Mie with his predominantly theoretical capabilities.46

The ministry insisted on a more detailed rationale, and in the long run Mie got
the position. Both appointment procedures show that theoretical physics began to
be established that time. On 17 September 1905, Mie became a full professor
under the condition that he represented physics in its entire extent. At the same
time he was appointed the director of the Physical Institute and the Astronomical–
mathematical Institute. From winter semester 1836–1837 until 1887 the Astro-
nomical–mathematical Institute belonged to the Mathematics department. The
Astronomical–mathematical Institute was moved to Physics department during the
directorship of A. Oberbeck in the winter semester 1887–1888. Lectures in
astronomy were given by W. Ebert (1871–1916) from 1903 till 1905.47 During
Mie’s directorship astronomy was abandoned. It was reactivated in 1922.48 Gustav

44 Archive of the University of Greifswald (UAG), Phil.Fak I290.
45 ibid.
46 UAG Phil. Fak. I 298.
47 cf. A. Schnell, Gestrandet in Wien: Wilhelm Ebert (1871–1916), Acta Hist. Astr. 43, 318
(2011).
48 The building of the physical institute also contained an observatory. A modern astrodome on
the tower can be seen on Fig. 1.8, cf. H. Kersten, Astronomie in Greifswald in [25], p. 51ff.
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Mie was Dean of the Philosophical Faculty in Greifswald in the year 1912–1913,
and was elected rector of the university on 15 May 1916 for a one-year period. He
began his rectorship with the lecture ‘‘Law of Nature and Spirit’’ [Mie39].

In the year 1916, Mie received an offer to be the successor of Ernst Dorn in
Halle. After some hesitation and repeated negotiations with the ministry he
accepted the offer in December 1916. As candidates for his successor, he brought
Johannes Stark (1874–1957) (Aachen), as well as in second place, pari loco
Johannes Königsberger (1874–1946) (Freiburg) and Clemens Schäfer (1878–1968)
(Breslau) to discussion. Mie had already become acquainted with Stark during his
time in Greifswald where Stark was serving as a substitute professor, in the years
1907–1908, for professor extraordinarius Starke (1874–1960), who was later an
ordinarius at the RWTH Aachen from 1917 to 1940. The faculty at the end
followed Mie’s proposal.

Inferred from his diaries, it was a happy time for Mie personally in Greifswald,
despite difficulties due to the World War. During one evening on a sailing yacht
Stark reported:

He [Mie] had an assistant named Falkenberg, who possessed a beautiful large sailing yacht
with a habitable space. It lay on the Ryck opposite Wieck. Once we spent an amusing
evening on it. It had already become dark, when we rose to the deck, in order to go ashore.
It followed Guschen, as he was referred to by Mrs. Mie, deep in thought as usual, he
continued to rise when he fell into the water which was, fortunately, only as deep as his

Fig. 1.8 The Physical Institute in Greifswald (built 1889–1891). A commemorative plaque is
posted on the wall of the building. The text reads: ‘‘Professor Dr. Gustav Mie (1868–1957)
cofounder of a uniform theory of particles and field, Greifswald 1902–1917’’, see also [24]
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height. Despite the unfortunate accident we had to laugh at the sudden disappearance of
the great philosopher. We pulled him out rapidly and he laughed, too.49

1.2.5 Halle: Intermediate Station (1917–1924)

In 1890, at practically the same time as the Physical Institute in Greifswald, the
Physical Institute of Halle University also got a new modern functional building.
Also in Halle, special care was taken to set up a building that meets all the
requirements of the physical research at this time [30]. Here, Ernst Dorn50

acquired special merits. As successor of Oberbeck in Halle, he was considerably
involved in the construction of the new institute.

After 1870, theoretical physics itself began to be institutionalised in Halle.51

With Anton Oberbeck, Halle had a professor extraordinarius for theoretical
physics starting from 1878. In 1884, Oberbeck received an offer to Karlsruhe, his
position was subsequently converted to a personal chair in order to maintain a
position for him in Halle. The vacant chair in Karlsruhe was occupied by Heinrich
Hertz. Hertz had an offer from Greifswald, but preferred Karlsruhe due to
the excellent conditions in comparison to those at the institute in Greifswald.
Oberbeck’s personal professorship was occupied by Ernst Dorn later on. After the
death of the full professor of experimental physics, Carl Hermann Knoblauch,52

Dorn took over his chair for experimental physics and became the director of the
institute. The second position was downgraded to an extraordinary professorship
for theoretical physics and transferred to Karl Schmidt.53 This decision was
unfortunate, to that extent, since Schmidt’s field of interests had been more
technical and applied physics than theoretical physics.

The institute in Halle was larger than the institute in Greifswald, had a higher
reputation and even a higher remuneration. Theoretical physics, which was Mie’s
main focus, at least formally, was already institutionalised in Halle. Advancing
this institute must have appeared as an appealing task to Mie, so much so that he
accepted the offer from Halle. However, the hearings of the appeal were

49 [29], p. 35.
50 Ernst Dorn (1848–1916), studies in Königsberg, teacher in Königsberg and Berlin, 1873
habilitation in mathematics Greifswald, 1873 extraordinarius for physics in Breslau, 1881
professor in Darmstadt, 1886 professor in Halle as a successor of Oberbeck, 1895 director of the
physical institute, see also [30].
51 see [2] vol. 2, p. 33ff.
52 Carl Hermann Knoblauch (1820–1895), studies in Berlin, 1845 cofounder of the Berlin
Physical Society, 1848 habilitation in Berlin, 1849 professor in Marburg, 1853 professor in Halle,
1886–1871 rector of the University of Halle, 1878 President of the Leopoldina, see also [30, 31].
53 Karl Schmidt (1862–1946), studies in Göttingen and Berlin, assistant in Strasbourg and
Königsberg, 1889 habilitation Halle, 1895 extraordinary professorship for theoretical physics,
1912 personal tenured professorship.
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complicated. The special position held by Schmidt, being the cause for conflicts
over the next years, was a contributing factor.

During the regulation of the successor to Dorn, the faculty first mentioned Peter
Debye (1884–1966), then Max von Laue (1879–1960) and in third place, Gustav
Mie. As criteria for the selection the faculty stated:

Conserving the existing ordinaries is of outmost importance for the faculty. In addition, we
would like to engage a scientific personality capable of arranging the academic instruction
together with the present full professor in a harmonic and versatile manner. Another
decisive aspect is that the former contrast between experimental and theoretical research
has vanished and the present full professor’s effort has developed in the more experimental
direction. Therefore the faculty agreed on personalities with focus on theoretical aspects
without excluding experimental work.54

Debye and Laue were not to be attracted for Halle. Corresponding to the
qualities of Mie the faculty noted:

As a distant third choice following these two researchers we propose Gustav Mie,
Greifswald. ...The number of the Mie’s papers is not as large as those of the two physicists
selected first, nevertheless the treated problems and the kind of their solution marks Mie as
a researcher of outstanding gift, deep thoroughness and great originality.55

A large portion of the documents in the archive of Halle University from Mie’s
time in Halle reveals his conflicts with Karl Schmidt. Schmidt, who had large
support within the faculty and from the chancellor, steadily tried to increase his
influence in the institute. Mie’s plans for the modernisation of the institute in Halle
were thwarted by Schmidt.

During his time in Halle, Mie actively participated in the sessions of the
so-called ‘‘Naturforschende Gesellschaft’’. This society was founded already in
1779. On 20 June 1918 he spoke about ‘‘The study of the physics of the inner atom by
X-rays’’ and on 8 July 1919 about ‘‘The decay of atoms during radioactive pro-
cesses’’.56 Other scientific societies were also active in Halle. In 1917 the so-called
‘‘Hallescher Verband für die Erforschung der Mitteldeutschen Bodenschätze
und Ihrer Verwertung’’ was founded. Mie was also interested in such activities.
He was a member of this society until his departure to Freiburg. On 28 September
1917 he wrote:

On Wednesday, there was a great occasion: Foundation of Halle’s Federation for the Study
of the Mineral Resources. I hope that this will result in my increased contact with the
industrial circles, because I want to gain much knowledge of the technology. That’s my
largest desire.57

On 7 February 1917 Mie became member of the German Academy of the
Natural Scientists Leopoldina. The photo (cf. Fig. 1.9) was filed along with his
member documents.

54 Archive of Halle University (UAH), PA11453: Peronalakte Mie 1916–1918.
55 ibid.
56 cf. Mitteilungen der Naturforschenden Gesellschaft zu Halle 5, 53f. (1920), [32].
57 UAF, Nachlass Mie, E12/71.
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Although his theory of matter was conceived in Greifswald, the discussion and
exchange of letters about field theory and general relativity with Einstein mainly
occurred during his time in Halle. Mie’s time in Halle was scientifically fruitful,
although he could not realize all his ideas for the development of the institute.
On the other hand, Halle was intellectually exciting for him. Mie and his wife
regularly visited the theatre and concerts. He visited the art gallery near the institute
building, but did not get acquainted with expressionism, a main collection area of
the gallery. He met also ‘‘old Rostock guys’’ like the philologist K. Brockmann
(1868–1956) and the botanist G.H. Karsten (1863–1937). Both professors also
received their Abiturs from the Great City School in Rostock. While in Freiburg, on
26 October 1924, Mie wrote about that time in Halle:

I think back at Halle, as a time of my highest mental stimulation, in contrast to the
enormously rich industries and crowds of dissatisfied workers living in darkness, to
the mental contrasts of men of the industry, completely oriented on power and will, and
the religious powers, before with which I had never become acquainted. It was the most
interesting, spirited interplay of brightness and darkness, although somewhat though on

Fig. 1.9 Gustav Mie in 1917,
when he became a member of
the Leopoldina. (Courtesy of
Archive of the Leopoldina,
member documents Gustav
Mie, member number 3412)
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the nerves at the time. Now, I withdrew myself here into peace, because I still want to
muster my strength, in order to produce something.58

1.2.6 Freiburg: Ordinarius and Retirement
in Baden (1924–1957)

Gustav Mie did not fully assimilate with Halle, probably due to the conflicts with
K. Schmidt. The political riots at the beginning of the 1920s in central Germany
surely was another reason for him to look for a position at a respected university.
His positive memories of the first years of his scientific career in Karlsruhe and
his wife’s family ties made a return to Baden seemed reasonable. In a letter to
Sommerfeld he wrote:

I have to say that I am looking forward not only to leaving here, but also to being at the
beautiful Freiburg institute and returning to the beautiful Baden country, with which I am
so familiar.59

In 1895, Franz Himstedt60 became a full professor in Freiburg succeeding
Emil Warburg,61 who went to Berlin. Wolfgang Gaede’s62 development of
pumps was of crucial importance to Himstedt’s work on channel rays, alpha-rays
and X-rays. As with the appellate procedures in Greifswald and Halle, Mie
was not the faculty’s favoured applicant, however, the reasons in this case
were different. In the report of the selection to the Faculty of Sciences of the
University of Freiburg from 25 April 1923 J. Zenneck (1871–1959) (Munich),
Chr. Füchtbauer (1877–1959) (Rostock), Cl. Schäfer (Marburg) and W. Gaede
(Karlsruhe) have been mentioned.63 The list finally handed to the ministry
included: Zenneck, Schäfer and Füchtbauer. Zenneck rejected the offer, and thus
the ministry allowed the faculty to supplement the list. In a letter of the faculty
to the rector and senate for submission to the ministry, now Mie was mentioned
primo loco. It was written:

We make use of the opportunity granted by the ministry, because it came to our attention,
that Professor Gustav Mie (Halle), one of our most prominent physicists, may be inclined

58 UAF, Nachlass Mie, E12/72.
59 UAF, Nachlass Mie, E12/37 Nr.18.
60 Franz Himstedt (1852–1933), studies in Göttingen, graduation and habilitation University of
Göttingen, 1878 private lecturer Göttingen, 1880 private lecturer Freiburg, 1889 successor of
Röntgen in Gießen, 1895 professor in Freiburg.
61 Emil Warburg (1846–1931), studies in Heidelberg and Berlin, 1867 graduation, 1870
habilitation, 1872 Strasbourg, 1876 professor in Freiburg, 1894 professor in Berlin, 1905 director
of the Physikalisch-Technische Reichsanstalt.
62 Wolfgang Gaede (1878–1945), studies in Freiburg, 1901 graduation, 1909 habilitation in
Freiburg, 1913 professor in Freiburg, 1919 professor in Karlsruhe.
63 UAF, Generalakten, Bestand B1/1287.
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to accept the offer from Freiburg. We did not mention him before, because we considered
it unlikely that he might be willing to accept our offer, however, it seems like he did not
get assimilated in Halle and would like to come to South Germany. Prof. M. Wien, Jena,
writes about him: ‘‘Among the living German physicists, I consider him among those of
highest rank, not only as a theoretician, but also as an experimentalist’’. Not only is he an
outstanding researcher, but also a very successful teacher, as proven by numerous
experimental and theoretical theses accomplished under his supervision. His style of
presentation is plain and clear. Mie is a subtle, highly educated man and a pleasant, kind
colleague.64,65

Wilhelm Kast (1898–1980), Mie’s assistant in Halle followed him to Freiburg.
Mie’s years in Freiburg were associated with a number of honours. In 1925, his

first station in his scientific career celebrated the 100th anniversary of the foun-
dation. On this occasion Schleiermacher initiated the award of the honorary title
‘‘Doctor Engineer’’ to Mie. Schleiermacher pointed out in his report: ‘‘...his
habilitation about the general validity of Poynting’s theorem of energy flux, pre-
pared in Karlsruhe, showed the direction of research, pointing to general and basic
questions’’.66 Gaede added in his report: ‘‘This outstanding and profound scientist
stands out from other physicists by having a lot of sympathy for technical issues
and proven this on several occasions’’.67 On his 70th birthday the issue 3 of
volume 425 of ‘‘Annalen der Physik’’ (1938) was dedicated to Mie; it also con-
tained papers by his disciples. In 1938, G. Mie and A. Sommerfeld became
honorary members of the German Physical Society.

Mie was awarded with the Goethe-Medal for Art and Science on his
75th birthday in November 1943. The medal was given to artists, scientists and
others as authorised by Hindenburg. In 1934, Adolf Hitler, in his position as
German Head of State, took over the authority for awarding this medal. Kast,
Mie’s former assistant in Halle and Freiburg started the activities to effect this
award.68 One of the main arguments of the referees is the seminal influence of
Mie’s textbook [Mie37].

The building of the Physical Institute in Freiburg was destroyed during the
Second World War. In honour of the eminent physicist, the new building was
named ‘‘Gustav Mie Haus’’.69

Apart from the obligations at the institute, Mie took part in the scientific life
of the university town Freiburg, as he usually did. As in Karlsruhe and Halle,
Freiburg also had a lively scientific society, so-called the ‘‘Naturforschende

64 ibid.
65 Dissertations with purely theoretical content supervised by Mie could not be found.
66 UAK, Best. 27059, Sig. 1, 385.
67 ibid.
68 cf. UAF, B24/2448.
69 In honour of Mie’s time in Halle the new main physics lecture hall of Halle University was
named ‘‘Gustav-Mie-Hörsaal’’. Also, a so-called Mie prize is awarded to excellent students of
physics in Halle.
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Gesellschaft zu Freiburg im Breisgau’’, founded 1821. On 16 December 1925 Mie
spoke about fundamentals of the quantum theory [Mie62].

Mie was active right to his very last semester. He retired in June 1935. On 1
February 1935, Mie wrote to Sommerfeld:

...In this winter semester I gave lectures for the gentlemen of my institute and of the
physical-chemical institute about your handbook article about ‘‘Electron Theory of Met-
als’’. Eventually I will continue in the next semester, to speak also about the further
development of the theory corresponding to the article of Bethe. I guess, we spoke about
that in Pyrmont. I have had a lot of fun with this matter.70

After retirement, epistemological and theological questions became the focus
of his attention. He published several papers on these subjects.71 [Mie78, Mie80,
Mie83] In honour of Mie’s 85th birthday, a colloquium was organised by his
former students and assistants on the 1 November 1953. Berta Mie died in 1954
and Gustav Mie passed away on 13 February 1957 at the ripe old age of 89.

1.3 Scientific Fields of Activity

The name of Gustav Mie is surely most frequently mentioned in connection with
the term ‘‘Mie scattering’’ and ‘‘Mie effect’’. His contributions to the development
of field theory and general theory of relativity are acknowledged in many reviews
[33, 34]. Other scientific contributions of Gustav Mie are still of great interest.

In a certain manner, Mie’s scientific papers are standard examples in the frame-
work of the sociology of scientific knowledge. Corresponding to R.K. Merton the
following thesis holds: ‘‘all scientific discoveries are, in principle, multiples,
including those that, on the surface, appear to be singletons’’.72 Stigler’s law of
eponymy states that the naming of an effect, a law, an equation rarely follows the
name of the discoverer.73 The scientific community has to be prepared also for the
breakthrough of a new theory. ‘‘If an early valid statement of a theory falls on deaf
ears, and a later restatement is accepted by the science, this is surely proof that the
science accepts ideas only when they fit into the then-current state of science’’.74 Mie
scattering can be discussed in such a context. In the Dictionary of the named Effects
and Laws in Chemistry, Physics und Mathematics, Mie does not appear as associated
with Mie scattering, instead, the ‘‘Mie-Grüneisen equation of state’’ is cited.75

70 Letter of Mie to Sommerfeld from 1 Februaray 1935, UAF, E12/37, Nr.23.
71 The value of those articles should not be discussed here. It was a subject of controversy among
the editors of the planned Mie edition Höhnl and Plötze. cf. UAF, Nachlass Hönl E14/2, see also
review to Mie’s ‘‘Naturwissenschaften und Theologie’’, Die Naturwissenschaften 20, 566 (1932).
72 [35], p. 298.
73 Stigler’s law of eponymy. [36], cf. also [37].
74 [38], p. 146.
75 [39], p. 212.
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A list of Mie’s publications is given as completely as possible in the appendix.
Table 1.1 gives an overview of the distribution of his publications at the institu-
tions of his scientific career. Furthermore, the attempt was made to sort his pub-
lications corresponding to the subject. Table 1.1 clearly shows that the Greifswald
years have been the most successful period. The papers concerning scattering
theory [Mie25] as well as the three publications concerning the theory of matter
[Mie32, Mie33, Mie36] were written in Greifswald. Also, the beginning of the
discussion with Einstein about the basics of the theory of general relativity dates
back to that time [34].

A revision of Mie’s publications shows that he appeared as the coauthor of an
article only on a few occasions. In Karlsruhe, he published a paper with E. Arnold
[Mie8] and in Halle with J. Hergweg [Mie53]. Two papers in Freiburg were about
roentgenographic investigations of polymeric formaldehyde. The investigations were
conducted in collaboration with Hermann Staudinger (1881–1965), later a Nobel
Laureate in Chemistry [Mie68, Mie69]. The subject of the investigation was the proof
of existence of the fibroid structure. This verification was fundamental for later work
of Carothers (1896–1937) to develop fully synthetic fibres. In 1931, he published a
paper with E. Frankenberger about the measurement of refractive indices [Mie73].

Some of Mie’s areas of scientific interest will be discussed in more detail now.
At the beginning, some of his early and nowadays somewhat unknown publica-
tions will be considered. His work on electrotechnics and electrodynamics, field
theory and the theory of relativity and of course on scattering theory will be
discussed in more detail.

Table 1.1 Distribution of Gustav Mie’s publications on the stations of his scientific career and
on his scientific fields of activity

Period Station Publications

1892–1902 Karlsruhe 12
1903–1918 Greifswald 33
1919–1924 Halle 14
1925–1936 Freiburg 21
1937–1950 Retirement 7

Field of activity Publications

Field theory, theory of relativity 17
Electrodynamics, electrotechnics 10
X-rays 8
Thermodynamics, statistics 7
Quantum physics 6
Mathematics 4
Scattering theory, optics 3
Textbook /textbook contributions 4
Philosophy, religion 7
Popular science 8
Biographic contributions 4
Miscellanea 9
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1.3.1 Transport of Energy and Thermodynamics

Two publications will be mentioned at first, dealing with problems of fundamental
nature. The findings of those papers became common property during the devel-
opment of physics. Therefore the papers are rarely cited nowadays.

Gustav Mie’s paper, produced during his habilitation, ‘‘Draft of a General
Theory of the Energy Transmission’’ [Mie6] is one of his less known publications.
The development of Maxwell’s theory and especially Poynting’s work had shown
that the transport of energy is not restricted to electric conductors. This changed
point of view led to the reconsideration of the term energy. In particular H. Hertz
(1857–1894) called for additional investigations in this field.76 Mie’s habilitation
was one step in this direction. Max Jammer (1905–2010) writes about this work:

Mie showed, in this publication, whose importance for the development of modern physics
can hardly be overestimated, that not only a fluid under pressure transports energy,
transferring it in relation to pressure and velocity, but that every deformation of an elastic
body causes a current of energy, that can be exactly determined. ...However, Mie was not
able to draw the final conclusion. Matter and energy were still two different aspects of
physical reality for him.77

It should be mentioned that this work is recently discussed in the framework of
problems of scientific education in schools [41].

Methods for a direct investigation of the interaction of atoms were still a long
way from being feasible at the beginning of the twentieth century. Therefore, the
influence of interatomic interactions on macroscopic properties was studied
starting from a number of assumptions. This is also the way of thinking presented
by Gustav Mie in his paper ‘‘On the kinetic gas theory of single atomic bodies’’
[Mie13]. This paper is a fundamental contribution to the microscopic theory of
solids. Eduard Grüneisen (1877–1949) wrote in his article ‘‘State of Solids’’78 for
the ‘‘Handbuch der Physik’’:

In his fundamental work about the kinetic theory of single atomic bodies G. Mie intro-
duced the assumption, that the potential of attractive as well as repulsive forces between
two atoms, is inversely proportional to the distance of the atoms. Hence, the potential
energy of two atoms at distance q is given by

/ ¼ � a

qm
þ b

qn
; ð1:1Þ

76 H. Hertz, Untersuchungen über die Ausbreitung der elektrischen Kraft, Gesammelte Werke,
Leipzig 1894, Bd. 2, S. 234 und S. 294 and G. Helm, Die Energetik nach ihrer geschichtlichen
Entwicklung, Leipzig 1898.
77 [40], p. 187f.
78 [42], E. Grüneisen: Zustand des festen Körpers, p. 1 ff.
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where the first term represents the attractive and the second term the repulsive force. a and
b are constants.79

Mie considered [Mie13] mainly single atomic gases, but Grüneisen [43]
extended the field of application of the potential to solids. Both authors did not
speculate about the origin of the forces. Experimental results for the coefficients m
and n are given for example by Fürth [44]. Usually the Mie potential is written in
the form

VðrÞ ¼ D0
n

m� n

r
r

� �m
� m

m� n

r
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The Mie potential is a precursor of the Lennard–Jones potential, which fixes the
exponents to m ¼ 12; n ¼ 6. The Lennard–Jones potential is written as
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The 12–6 form was introduced by Lennard–Jones (1894–1954) in 1924 [45–47].
The Mie potential witnessed a renaissance as a model potential during the last
years. The solution of the Schrödinger equation with a Mie potential was discussed
[48–52]. The potential (1.2) was used in [53] to describe the interaction of He with
a Cu (110) surface, in relation to He scattering. Thermoelastic properties have also
been investigated using such a potential [54, 55]. Barakat et al. [56] used the Mie
potential to calculate the binding energy of metallic nanoparticles. Potentials of the
form (1.2, 1.3) are named sporadically also Mie-Lennard–Jones potentials.80 The
Mie-Grüneisen equation of state follows from the assumptions of the power
function form of the interaction and the corresponding potential.81

1.3.2 Electrotechnics and Electrodynamics

Electrotechnics and electrodynamics were Mie’s preferred areas of interest during
his time in Karlsruhe as well as at the beginning of his Greifswald years. His
investigation of electromagnetic waves along a wire are connected to the work of
Heinrich Hertz. The impression Hertz’s work had on the young Gustav Mie whilst
in Karlsruhe was very significant.

Ernst Lecher (1856–1926) published his paper on the investigation of a system
of parallel wires in 1890 [58]. Arnold Sommerfeld (1868–1951) published his
theoretical investigation about the propagation of electromagnetic waves along a

79 ibid, p. 11. Grüneisen refers in the discussion on Mie’s paper [Mie13] and his own article
published considerably later [43].
80 z.B. W.C. de Markus, Planetary Interiors, S. 441 in [57].
81 s. [42], p. 22, [Mie13], [43].
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wire in 1899 [59]. In the year 1900, Mie’s article containing the complete theo-
retical solution of the Lecher problem appeared [Mie9]. Mie gave a complete
mathematical analysis, a style we encounter later in his treatment of the scattering
problem.

Sommerfeld answered on the consignation of the article on the parallel wire
system by Mie:

Dear colleague, Many thanks for the consignment of your treatise. It was, as you can
imagine, exceptionally interesting for me. I am personally not only glad about the sci-
entific progress, but also that my wire waves got such a competent and thorough reader.
...You have done an ample piece of work!82

Mie answered immediately:

Dear Professor, I have been very glad about your friendly letter and your appreciative
words. In fact, I finished the laborious task, because I was almost completely preoccupied
by the task for 3/4 of a year, insofar as when lectures or practical course work did not
require my attention. Hence, it is in a certain manner a bit regrettable, that the Fourier
series as a result of complex calculations can be truncated in case of air wires almost
always after the first term....83

This particular investigation established Mie’s reputation as a theoretical
physicist. During the years 1900 and 1901, Mie exchanged ideas on wire waves
with Sommerfeld several times. Soon after, there was to be a further development
in this area. Mie’s solution was rigorous and was based on Maxwell’s theory, but
due to the series expansions used by Mie, the results appeared in the form of
confusing formulas. Sommerfeld wrote: ‘‘But—if you want to open a lock, you
have to use a key and not a hatchet. The power series expansion [in Mie’s paper]
appears in this case as a hatchet, not as a proper key’’ [60]. D. Hondros, a Ph.D
student of Sommerfeld’s, investigated in his theses a further development of the
theory, starting from considerations of G. Gentile (1875–1944) about diffraction by
a pair of parallel wires [61, 62]. Mie did not come back to his investigations of
1900. It seems that he was not very interested in following the development in this
field.

Motivation by Engelbert Arnold played an important role for Mie in Karlsruhe
and at the beginning of his time in Greifswald by way of occupying himself with
practical electrotechnical problems. Arnold contributed substantially to the
development of direct current machines. The commutation was one of the main
problems in the development of more effective direct current machines. The
question came into the focus of several researchers and a couple of publications
appeared practically at the same time. Concerning the value of their own publi-
cation, written together with Gustav Mie, Arnold explicated:

Due to the thankworthy cooperation of Dr. Mie the complicated solution of differential
equation (3) was successfully presented in a neat manner. The graphical representation of
the conversion of energy during the short circuit period leads to results, different from the

82 Letter of Sommerfeld to Mie from 1 July 1900, UAF, E12/37 Nr.1.
83 Letter of Mie to Sommerfeld from 9 July 1900, UAF, E12/37 Nr.2.
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conceptions used so far for the processes during the short circuit. Therefore the publication
of this work is still of interest.84

Apart from the development and construction of generators and motors, the
rating and improvement of distribution networks was an important issue of that
time.85 Mie studied heat conduction in stranded cables, a problem important for
the dimensioning of such cables [Mie17, Mie19].

1.3.3 Scattering Theory

Mie’s article ‘‘Contributions to the optics of turbid media, particularly colloidal
metal solutions’’ [Mie25], published in the year 1908, belongs to the so-called
‘‘Sleeping beauties and wallflowers’’, i.e. papers that received much-delayed
appreciation [64, 65]. It was not until 1945 that this investigation received a broad
appreciation and application. The development of computer engineering, espe-
cially, advanced the application of Mie’s theory. This seminal work is not only
important with respect to its scientific content. The commonly used terminology,
Mie scattering, does not accommodate the history of Mie’s investigation.86 This
work of Gustav Mie seems to be a singular point in his scientific opus. Most of the
biographical notes about Mie do not keep track of the genesis and context of this
paper on scattering theory. Both points of view will be discussed here in more
detail.

The young professor extraordinarius Mie had to represent theoretical physics.
The Ph.D students at the institute Karl Degen, Erich Lischner and later also Walter
Steubing87 visited the lectures of Mie. Under supervision of the ordinarius König,
experimental investigations on colloidal metal solutions were performed. Degen
and Lischner defended their theses connected to such investigations in May 1903
[66–68]. The topic of Degen’s Ph.D was the experimental investigation of the
dielectric properties of a magnesium sol. Lischner investigated the elliptical
polarisation of light, reflected from pigment solutions. One special example of his
investigation was fuchsin, a triphenylmethane pigment dissolved in alcohol. Mie
was familiar with those investigations of course. At the same time, H. Siedentopf
(1872–1940) and R. Zsigmondy (1865–1929) developed the so called ultrami-
croscopy, a version of dark field microscopy, to uncover submicroscopic particles
with a size of a few nanometer by means of their scattered light [69]. Zsigmondy’s
interest in colloids was motivated by his work on coloured glasses with the glass

84 cf. [Mie8], p. 97.
85 cf. [63], p. 132ff.
86 Instead of Mie theory, occasionally the terms Lorenz-Mie theory or Lorenz-Mie-Debye theory
are used.
87 Walter Steubing (1885–1965), Ph.D 1908 Greifswald, TH Aachen (Stark), 1927 professor for
applied physics Breslau, 1948 professor in Hamburg.
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factory Schott und Genossen in Jena. It was possible to correlate colour changes
with particle sizes and particle forms by means of ultramicroscopy. In 1905,
Zsigmondy published a review on the ultramicroscopic investigations on colloids
[70]. Zsigmondy wrote:

A series of examples should be used to demonstrate, how by an incremental fragmentation
of a solid—the metallic gold—the properties of the same will change. The fragmentation
of the solid should be continued as far as possible; if possible down to molecular
dimensions. On the other hand, size and properties of the single particles, obtained as a
result of the fragmentation, should be determined exactly.88

Chapters 10 and 11 of Zsigmondy’s book discuss the connection between
particle size and colour, and also the colour change of colloidal gold. Zsigmondy
sums up:

Based on this fact, also supported by investigations of gold ruby glass, we have to denote
every attempt to calculate the particle size in case of metal hydrosols from the light
absorption as untimely.89

In 1906, the journal ‘‘Zeitschrift für Chemie und Industrie der Kolloide’’ was
founded.90 The introduction pointed to Zsigmondy’s book [70] and stated, ‘‘...that
we are at the doorstep of a new great area, where science has to develop and
industry to exploit—this is the colloids’’.91 In 1902, Mie studied Planck’s dis-
persion theory [71, 72]. This can be concluded from the exchange of letters with
Max Planck (1858–1947).92 The reasons that motivate the investigations of
Steubing were revealed clearly in the report ‘‘The optical properties of colloidal
gold solutions’’ [Mie23] published in ‘‘Zeitschrift für Chemie und Industrie der
Kolloide’’ in November 1907. The topic of Steubing’s and Mie’s investigation was
perfectly suitable for the new journal. Part of the reason why this journal was
chosen was probably due to its fast publication turnaround time. This article was a
report on a talk given by Mie on 18 September 1907 on the 79th ‘‘Versammlung
Deutscher Naturforscher und Ärzte’’ in Dresden.93 During the discussion of the
talk Siedentopf pointed out a paper by J. C. Maxwell Garnett (1880–1958) [73]
unknown to Mie that time. Siedentopf also discussed the possibility extending the
calculations to elliptical particles.94 Walter Steubing defended his thesis on 16
December 1907 in Greifswald [74]. In 1908, a corresponding publication appeared
in ‘‘Annalen der Physik’’ [74]. Steubing himself did not come back to the topic of
his Ph.D work in his future work. He started his scientific career with Johannes

88 [70], preface.
89 ibid., p. 112.
90 vol. 1 (1906)–vol. 12 (1913) Zeitschrift für Chemie und Industrie der Kolloide, vol. 13
(1913)–vol. 179 (1961) Kolloid-Zeitschrift, vol. 180 (1962)–vol. 251 (1973) Kolloid-Zeitschrift
& Zeitschrift für Polymere, than Colloid & Polymer Science.
91 Zeitschrift für Chemie und Industrie der Kolloide, 1 (1906).
92 UAF: E012/38, exchange of letters Mie-Planck, Nachlass Gustav Mie.
93 see also the publication in ‘‘Berichte der Dt. Physikal. Gesellschaft’’ [Mie24].
94 see also ‘‘Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte’’, 79, 40 (1907).
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Stark (1874–1957) in Aachen and published three papers with him on canal rays
from 1908 to 1910.

The first communications on the work done in Greifswald appeared at the end
of the year 1907. Mie sent his complete paper to Wilhelm Wien, editor of
‘‘Annalen der Physik’’, in January 1908. Mie wrote:

Dear colleague,

I have enclosed within an article of theoretical work on the optics of turbid media, to
request publication in the Annalen. Perhaps, I will send more soon, but hopefully with less
voluminous amount of material. ...Eventually it will be possible to meet you at Easter.
Maybe I intend to start with some kind of snow sport, because I see that I need some
physical fitness. If it is not possible to meet you in Würzburg, I would go to the Bavarian
mountains for a few days.95

Wilhelm Wien responded:

Dear colleague,

I confirm the receipt of your work on optics of turbid media, which discusses a really
relevant topic. I would be very happy to welcome you here and to discuss a number of
things. At the end of the winter semester I have to go to Mittenwald immediately to stay
there for several weeks. I have to advise you strongly to start skiing. ...Because, as always,
when a number of theoreticians gather together, it is also a time for scientific
conversation.96

The submission of the paper was practically also the starting point for Mie’s
participation in the winter sports meetings in Mittenwald.

The publication of the article [Mie25] marked the conclusion of Mie’s work on
this topic. This was often considered as exceptional in retrospect. It is not
uncommon for a scientist to keep working on the same topic for years or decades
to become a specialist in a narrow field. Mie’s behaviour can be understood from
his style of work and the development of physics till that time. In his work on the
Lecher problem, a complete mathematical solution of a certain physical problem
was given. Also, in case of the seminal contribution to scattering theory, a com-
plete mathematical solution for spherical particles was given. An extension to
spheroids, when the expected difficulties in the numerical evaluation were taken
into consideration, did not look very promising. Mie was also busy with his
‘‘Lehrbuch der Elektrizität und des Magnetismus’’, which appeared 1910. His book
was dedicated to the electromagnetic program and in its intention exceeded the
solution of a single problem. Mie himself wrote in the preface:

It is without any doubt, that the actual foundation of the whole physics is electricity.
Electricity fills the place, that was occupied 100 years ago by mechanics. Mechanics itself
as well as optics becomes more and more a part of electricity.97

95 UAF: E01248, 16, exchange of letters Mie-Wien, Nachlass Gustav Mie.
96 UAF: E01248, 13, exchange of letters Mie-Wien, Nachlass Gustav Mie.
97 [Mie27], Vorwort, S. VII.
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Einsteins annus mirabilis was three years prior in 1908. The theory of special
relativity was intensively discussed and Mie found more excitement thinking about
a new foundation of a theory of matter instead of puzzling over details of a special
problem. A sign of such an attitude was his participation in the congress of natural
scientists in Salzburg in 1909. Einstein took part in such a large congress for the
first time. Mie participated in the discussions on talks about basic questions in
electromagnetism and the theory of special relativity. Contributions to the dis-
cussions on other topics are not documented.98 This demonstrated that his main
interest was already focussed on topics other than scattering theory.

The historical development of scattering theory will be now summarised.99

Table 1.2 lists a few milestones in the development of the scattering theory, that
were mainly, as it were, precursors to Mie’s paper. Clebsch (1833–1872) [78]
investigated boundary value problems in elastic media, especially of sound waves
impinging on spherical surfaces. Clebsch’s work is fundamental from several
points of view. It had already contained work on potentials that were later named
Debye potentials. Clebsch’s treatise was published before Maxwell’s theory. It
presented the theory in component form as opposed to the modern notation of
vector analysis. This might be the reason why the work of Clebsch is only rarely
cited. The work of Lord Rayleigh (1842–1919) on the exact solution of the
scattering problem of a dielectric cylinder [81], published in 1881, is based on
Maxwell’s theory. Lamb (1849–1934) [82] solved the vectorial wave equation
with methods, used also by Clebsch, and provideed a basis for a series of further
publications.

Table 1.2 Summarizing timetable to the development of scattering theory, based on [77]

Year Author Ref. Achievement, Remark

1863 A. Clebsch [78] Elastic wave equation
1871 Lord Rayleigh [79] ‘‘Rayleigh’’ scattering
1872 Lord Rayleigh [80] Scattering of sound by a sphere
1881 Lord Rayleigh [81] Scattering by a dielectric cylinder
1881 H. Lamb [82] Elastic waves
1890 L.V. Lorenz [83] Results analogous to [Mie25, 84]
1893 J.J. Thomson [85] Scattering by a conducting sphere
1899/1900 G.W. Walker [86, 87] Scattering by a sphere
1908 G. Mie [Mie25] Complete reference solution
1909 P. Debye [84] Debye potentials
1910 J.W.N. Nicholson [88] Scattering by a sphere
1915 H. Bateman [89] Complete review
1917 A.J. Proudman et al. [90] Numerical results to [91]
1920 G.N. Watson [92] Theory of Bessel functions
1920 T.J. Bromwich [91] Complete solution (started in 1899)

98 see Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 80 (1908), 81 (1909).
99 The remarks are based on the the reviews of Kerker [75] and Logan [76, 77]. For a detailed
discussion see especially [77].
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Ludvig Lorenz100 (Fig. 1.10) is mainly known as the ‘‘second Lorenz’’ from the
Lorentz-Lorenz formula and, incidentally, the so-called Lorenz gauge is often
erroneously attributed to H.A. Lorentz.101 Lorenz’s work from 1890 [83] is based
on the work of Clebsch and contains the exact solution of the scattering problem
for the sphere. The Lorenz theory is not based on Maxwell’s theory, but based on
the exact solution of the same boundary problem. This work has remained prac-
tically unknown. As already mentioned, Mie was pointed to a paper by Maxwell
Garnett at the conference of natural scientists in Dresden 1907. Mie cites Maxwell
Garnett [73] in his paper, but also an older publication of L. Lorenz [96]. In
contrast to Mie, to Maxwell Garnett, the work of Lorenz from 1890 was known.
He cited the Lorenz paper [83] together with publications of Lord Rayleigh and
H. Hertz in the first part of his own publication. Therefore, Mie could have found a
hint to the work by Lorenz. However, Lorenz’s original work in the Danish lan-
guage was most likely not known to him. Nicholson (1881–1955) [88] investigated

Fig. 1.10 Ludvig Lorenz
(1829–1891). (Portrait from
[93])

100 Ludvig Lorenz (1829–1891), studies in Kopenhagen, 1852 diploma as chemical engineer,
September 1858- Juli 1859 studies in Paris, 1866 teacher at the academy of military sciences in
Kopenhagen, 1887 working as a free scientist, funded by Carlsberg, 1876 professor, 1887 doctor
honoris causa of Uppsala University (see also [94, 95]).
101 see for instance H. Klingbeil, Elektromagnetische Feldtheorie, Teubner-Verlag Stuttgart,
2003; W. Nolting, Grundkurs Theoretische Physik 3—Elektrodynamik, Springer-Verlag, Berlin
2002.
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the light scattering from a metallic sphere and compared the results with those from
geometrical optics. He also developed a series of asymptotic formulae for Bessel
functions, necessary for the discussion of the scattering on large spheres. The same
formulae have been developed earlier by Lorenz and were part of his 1890 work.
The publications of Mie [Mie25] and Debye [97] remained largely unknown in
England as exemplified by the Nicholson paper [88]. This lack of knowledge of the
work of others is in strong contrast to the complete overview, given by Bateman for
the first time [89]. The bilateral appreciation and knowledge of scientific work
disembogued at the beginning of Word War I in appeals, that depressed the
atmosphere in the international scientific community for a long time (see also
Chap. 5). Finally, the work of Bromwich (1875–1929) and his co-workers
Proudman, Dodson and Kennedy should be mentioned. Bromwich published his
paper in 1920 [91], but the exact solution was already known to him in 1899.
Proudman et al. [90] performed detailed numerical calculations, published in 1917.

Logan summarised the distinctive feature of Mie’s contribution, which resulted
in the paper to be generally accepted as a reference, in an apposite manner:

What Mie did that was different from the work of previous writers was to set out on an
ambitious computing program. He made calculations which involved summing the first
several partial waves, in order to be able to obtain numerical results for spheres, which
were too large to qualify for the criterion to be small enough for only the first partial wave
(Rayleigh scattering) to be important. Mie’s paper is complete in itself, and it served as the
basis for much of the work which has been done in this field since its publication. ...Mies
paper caught the attention of his and later generations because he employed the results of
his very thorough paper to study a very interesting practical problem, and others, who
came after him, found that his paper provided them with a good and a complete, guide to
follow in their applied work in light scattering.102

In 1904 Mie’s booklet ‘‘Molecules, Atoms, World Ether’’ appeared [Mie18].
It was a result of lectures from a summer school in Greifswald in 1903.
He discussed the properties of turbid media, using atmosphere, milk and also gold
colloids as examples. Further editions appeared in 1907 and 1911. The final
sentences of the part about turbid media are identical in the first two editions:

The small oscillators in the two colloidal gold specimen, that I have shown, have the
special property of the absorption of certain types of light strongly, especially the green
color. Therefore the red color prevails in the passing light.103

In the third edition from 1911 his intensive study of the subject is reflected in
the following reformulation of that passage:

That the colloidal metal solutions show totally different colors than the usual turbid media
is related to the special optical properties of metals. They show with respect to the
different types of light a very strong selective behavior, certain colors are strongly
absorbed, whereas other colors are strongly reflected. In the red gold solutions, for
example, a very strong absorption of green light by the gold particles occurs, but for blue
solutions one obtains mostly an abnormally strong lateral emission of yellow-red light.

102 Logan [77], p. 9 and footnote 16.
103 [Mie18], p. 57 1st edition, p. 61 2nd edition.
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The theory of Lord Rayleigh, which we have already discussed, is valid only for particles
of such substances, which do not strongly absorb or reflect, that means substances which
would appear as a form of a coarse powder that is white or only weakly colored. Most
substances belong to this class.104

1.3.4 Theory of Matter and Theory of Relativity

Even today, Gustav Mie’s publication ‘‘Contributions to the optics of turbid media,
particularly colloidal metal solutions’’ is the basis of many practical applications,
but his contributions to the theory of matter are interesting only in a historical
context. His three publications ‘‘Grundlagen einer Theorie der Materie’’ [Mie32,
Mie33, Mie36] have had strong influence on the development of field theory at that
time. Mie’s contributions in this area are appreciated and discussed in-depth in a
series of reviews and books.105

Up to his contribution to scattering theory, Mie’s scientific work was much
influenced by Maxwell’s theory. He contributed to the extension of the theory and,
propagation by way of his textbook [Mie29]. Therefore it is not surprising, that
Mie is seen, from a historical point of view, as a proponent of the electromagnetic
field program. The unified description of electric, magnetic and optic phenomena
based on Maxwell’s theory as well as the success of electron theory of H.A.
Lorentz (1853–1928) provided the electromagnetic field program a dominant role.
The program was formulated mainly by E. Wiechert (1861–1928) and J. Larmor
(1857–1942) in the 1890s and was at the turn of the century the dominant concept.
Significant contributions made by, to name only a few, M. Abraham (1875–1922),
W. Wien (1864–1928), A. Sommerfeld (1868–1951), J.J. Thomson (1856–1940),
H.A. Lorentz (1853–1928) and H. Poincaré (1854–1912). Vizgin states:

The radical form of the electromagnetic program advanced by Wiechert in 1894 and
somewhat later by Larmor declared the ether to be primary reality; its excited states gave
the charged particles (electrons), and the origin of their mass was explained on the basis of
the concept of electromagnetic mass developed in the 1880s and 1890s, primarily by
British scientists (J.J. Thompson, Heaviside, and also, somewhat later, Searle and Morton).
It was assumed that the laws of Newtonian mechanics could be deduced from the equa-
tions of the electromagnetic field.106

The persistent result of this effort was the introduction of the field concept and
the attempt to unify physical phenomena on this basis. Mie’s substantial work with
the field concept and the attempt to develop a new theory of matter in the
framework of the electromagnetic program is rather connected with the end of this
development. Late highlights in this sense are the unified theories of Hilbert

104 [Mie18], p. 66 3rd edition.
105 see Vizgin [98], Kohl [33], Renn (Ed.) [99, 100], Corry [101].
106 [98], p. 7.
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(1862–1943) in 1915 and Weyl (1885–1955) in 1917. They tried to develop a
unified theory of the electromagnetic field and the gravitational field based on the
the theory of general relativity. Mie’s work stimulated the attempts of Hilbert and
Weyl and also later work on nonlinear field theories of Born (1882–1970) and
Infeld (1898–1968) [102]. The dawn of the 1920s was characterised by the boom
of the quantum mechanical program. Most of the physicists preferred to work in
this framework, because it was easier to relate the theoretical developments to the
real physical processes.

Mie published his theory of matter in three articles in the years 1912 and 1913
[Mie32, Mie33, Mie36]. It was a very ambitious program to unify electromag-
netism, gravitation and the first ideas of quantum mechanics. Mie’s aim was to
finally get a theory which describes the existence and properties of the electron and
later on also of atoms and molecules, which produces the atomic spectra and also
delivers the field equations of gravitation.

Mie’s work was connected with the discussion around the theory of general
relativity. Einstein emphasised, that the extensions he aimed for should be inde-
pendent of any assumptions about the constitution of matter. In contrast to this
point of view, Mie was searching for a theory of matter based on an electro-
magnetic field concept. He wanted to start from a set of equations describing the
state and dynamical evolution of the ether. Elementary particles, as an inherent
part of the theory, should manifest themselves as so-called knots of the ether. To
explain a stable electron in electromagnetic terms (charged sphere) an additional
attractive force, the so called Poincaré stress, is necessary. Mie made a different
choice. He considered nonlinear field equations. Maxwell’s equations are expected
to be the weak field limit of the nonlinear field equations. He started from a world
function and got the field equations by means of Hamilton’s variational principle.
In contrast to Einstein, the solution of the gravitational problem would have been a
bonus of his unified field theory.

A series of notes in his diary reflect his struggle with mathematical problems
but also his pleasure in thinking about the solution of physical problems.

In the last week I was submerged in a fog of mathematical formulae and calculations. They
concerned the effect of the gravitational field on the internal structure of an electron.
I believed that I had found a beautiful entry into the dark region by the Born transformation
and with the introduction of bipolar coordinates and I hoped to head for a light soon.
However, I immediately came into a sea of fog, drove around in it wildly back and forth,
because I thought, once I could get to the border of the fog by chance, I could then slip free.107

At the end Mie missed his grandiose goal, but his formalism has had a large
influence on the further development of unified field theories. A sign of the
importance of Mie’s work is that Weyl discusses the theory in his famous book
‘‘Raum-Zeit-Materie’’.108

107 UAF, Nachlass Mie, E12/68, diary note from 28 October 1915.
108 See [103] and also [104].

34 W. Hergert



Hilbert included Mies’s work in his field theory and mentioned this in his
publication at the very beginning. Hilbert wrote:

The tremendous problems stated by Einstein and his subtle methods conceived to their
solution as well as the profound ideas and original conceptualisations whereby Mie for-
mulates his electrodynamics, opened new routes for the investigation of the foundations of
physics. I want in the following—in terms of the axiomatic method—essentially starting
from two simple axioms, to develop a new system of fundamental equations of physics,
which are of ideal beauty. I believe that the equation contains the solution of the problems
of Einstein and Mie simultaneously.109

Mie was very excited about the progress made by Hilbert. After the receipt of
Hilbert’s publication he noted:

Yesterday a separate print of Hilbert’s paper ‘‘The Fundamentals of Physics’’ arrived. In
this essay he combines my theory of matter with the principle of general relativity, which
Einstein aims at, but only Hilbert really fulfils. It is a completely wonderful work! With
what a strong fist this Mathematician strikes hard! He smashes the largest obstacles to
smithereens. My boldest dreams are exceeded. I believe that it will not take long, before
we really get the true world function and will be able to create matter like god in a
mathematical way. I just wrote a letter to Hilbert. I am extremely excited about this
event.110

Mie was also invited to the Wolfskehl lectures111 in 1917. In 1915, Einstein was
invited to give Wolfskehl lectures and M.v. Smoluchovski was the invitee in 1916.
Other renowned invitees have been Poincaré, Lorentz, Sommerfeld, Planck,
Debye, Born and others. Mie’s Wolfskehl lectures appeared in print in 1917
[Mie43, Mie44, Mie45]. After finishing the corrections in the proof sheets, Mie
commented:

I have now completed the last proof-sheet of my Einsteiniade and soon, the third and final
lecture will also be printed. I cannot help myself, I found it enormously interesting
reading.112

An important place for discussion and controversy was the regular meeting of
the ‘‘Gesellschaft deutscher Naturforscher und Ärzte’’. Mie and Einstein visited
the meetings regularly. They presented their own contributions or commented on
contributions from others during the discussion. A conflict between Mie and
Einstein appeared at the meeting in Vienna in 1913 (see Fig. 1.11). Einstein
presented an overview, ‘‘To the state of the art of the gravitational problem’’.
Einstein discussed his theory, developed together with Marcel Großmann, and also

109 D. Hilbert, Die Grundlagen der Physik. Erste Mitteilung. Vorgelegt in der Sitzung vom 20.
November 1915. in ‘‘Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu
Göttingen. Mathematisch-physikalische Klasse’’, Heft 5, 395–407 (1915).
110 UAF, Nachlass Mie, E12/69, diary note from 13 February 1916.
111 Paul Wolfskehl (1856–1906) was an industrialist with mathematical interest. He bequeathed
100000 Mark to the Royal Academy of Sciences of Göttingen to be given to that person, who will
proof Fermat’s Theorem during the next 100 years. (Wolfskehl prize) The interest of the prize
money was used to organize the Wolfskehl lectures.
112 UAF, Nachlass Mie, E12/71, diary note from 8 December 1917.
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included attempts, especially Nordström’s theory, in his talk. The discussion was
led mainly by Mie and Einstein. Mie was angry that Einstein failed to mention his
theory. A controversy documented in the Physikalische Zeitschrift was the result.
In an exchange of letters from 1917 to 1919 both scientists discussed their different
points of view. Illy summarised the exchange of letters and discussion between
Mie and Einstein:

The case of Einstein and Mie underlines a rather sceptical thesis: there is no perfect
understanding of each other. Theories change in the hands of scientists, taking part in a
relay race called science with each member of the team leaving the fingerprints of his
commitments and beliefs on it. These fingerprints are often nonrational and incompre-
hensible to others. But this is the way science always grows...113

Fig. 1.11 ‘‘Naturforscherver-
sammlung’’ in Vienna, 21 to
28 September 1913. (Courtesy
of Techniseum Mannheim)

113 [105], p. 256.
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The ‘‘Naturforscherversammlung’’ in 1920 took place in Bad Nauheim and was
dominated by controversies about Einstein’s theory of relativity and the dispute
between Einstein and Lenard (1862–1947). Mie spoke about ‘‘The electrical field
of a charged particle rotating around a center of gravitation’’. Mie appeared in the
discussion as a critical promoter of the theory of general relativity.114

1.4 Gustav Mie as University Teacher

1.4.1 Lectures

Gustav Mie was full professor for experimental physics and director of the insti-
tutes in Greifswald, Halle and Freiburg. The obligation which accompanied with
these positions was to cover teaching in experimental physics. A check of the
university calendars of the corresponding years demonstrates that Mie did not
regard teaching as an annoying obligation. On 2 November 1915, he wrote in his
diaries with reference to the beginning of the practical course of the students of
medicine and the difficult times during World War I:

In such a situation one is automatically kind and attentive to the young people and
immediately forgets to play the role of the schoolmaster, which is often, for me, so
inexpressibly distastefull. Yesterday, I took to being a teacher with great pleasure, and by
the way, there were also three ladies sprucing up the otherwise so martial audience.
...Then, I had my first lecture in this term ...and it was a great pleasure for me to tell the
young people, as an introduction to electricity, a little bit about my old friend, the world
ether to teach them respect.115

As an example, the canon of the courses that Mie lectured in Freiburg from
winter semester of 1925–1926 until the winter semester of 1934–1935 is given in
Table 1.3. The courses remained almost unchanged during the whole period.
Starting from the summer semester 1930 the half-day courses Advanced Practical
Course I and II, where Mie lectured the first part together with Kast (1896–1980),
replaced Physical Exercises for advanced Students. The workload from the lec-
tures was high and, apart from the large experimental physics lecture, also
included the work in practical courses.

Theoretical physics was lectured by Emil Cohn116 and Johann Georg Königs-
berger.117 Courses in theoretical physics were only rarely given by Mie.

114 For a summary see of the meeting see Weyl [106].
115 UAF, Nachlass Mie, E12/69, diary note from 2 November 1915.
116 Emil Cohn (1854–1944), 1879 Dr. phil. in Strassburg, assistant of A. Kundt, 1884
habilitation in theoretical physics, 1919 honorary professor in Rostock, 1920–1935 honorary
professor in Freiburg, 1938 together with Gans, Graetz, Jaffé, Kaufmann and other physicists of
Jewish descent withdrew out of DPG, 1939 emigrating to Switzerland.
117 J.G. Königsberger (1874–1946), 1904–1936 professor of physics at the University of
Freiburg, pioneer of semiconductor physics, coined 1911 together with Weiss the term
‘‘semiconductor’’ (sun of the mathematician Leo Königsberger).

1 Gustav Mie 37



Occasionally, instead of the the Mathematical Additions to Experimental Physics,
lectures on quantum mechanics were offered. In the summer semester of 1927 The
Schrödinger Mechanics118 was taught and Quantum Mechanics was offered in the
summer semesters of 1929 and 1931. The lecture of the summer semester 1927
continued into the winter term of 1927–1928 with the lecture The Schrödinger
Mechanics II. This was followed by the lecture The Dirac Theory of the Electron
in the winter semester of 1929–1930.

The courses in Greifswald and Halle mainly followed the structure in Table 1.3.
From 1911 to 1914, Mie also offered theoretical lectures in Greifswald, for
example Theory of Relativity (WS12/13) and Theory of the Quantum of Action
(SS13). Due to the difficulties with K.E.F. Schmidt, Mie did not offer lectures in
theoretical physics in Halle.

Regarding the structure and effect of Mie’s lectures, Kast wrote:

It had always been his concern that the field representation should be introduced at high
school level, not only to university students. Just as he did not place the topic of electric
forces but electric field pattern at the beginning of the 2nd part of his basic lecture, he did
not begin the first part with the laws of motion but with the weight of bodies as a
consequence of the gravitational field of earth, taking his audience as far as the theory of
relativity. Therefore, his lectures were not easy, particularly as he did not allow simpli-
fication that would have affected the rigour in the content of the presentation. By this
however, the lectures attained a degree of coherence that deeply impressed those who were
willing to follow.119

Table 1.3 Courses of Gustav Mie at the University of Freiburg from the WS 25/26 up to the WS
34/35

Lecture Amount

SS Experimental Physics I (Mechanics, Acoustics, Thermodynamics) 5 h/week
Mathematical Additions to Experimental Physics 2 h/week
Physical Exercises for Students of Natural Sciences 6 h/Wweek
Small Physical Practical Course for Physicians and Pharmacists 3 h/week
Physical Exercises for advanced students Daily
Guidance for independent work Daily
Physical Colloquium 2 h/week

WS Experimental Physics II (Electricity and Optics) 5 h/week
Mathematical Additions to Experimental Physics 2h/week
Physical Exercises for Students the Natural Sciences 6 h/week
Small Physical Practical Course for Physicians and Pharmacists 3 h/week
Physical Exercises for advanced students Daily
Guidance for independent work Daily
Physical Colloquium 2 h/week

see university calendars on-line in FREIMORE - FREIburger Multimedia Object REpository
http://freimore.uni-freiburg.de

118 Königsberger lectured in the same term Elements of the Quantum Theory.
119 [Bio10], p. 130.
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1.4.2 Disciples

Within the institute, Mie predominantly appeared as an experimental physicist.
During his activity as a professor in Greifswald, Halle and Freiburg he did not
supervise purely theoretical theses.120 In this sense, Mie, concerning his theoretical
work, did not form a school in the way Sommerfeld did. Nevertheless, he pro-
moted several young physicists in their career systematically. As an example,
August Julius Herweg121 came from W. Wien (1864–1928) (Würzburg) to
Greifswald. After Herweg’s habilitation Mie requested the title professor on his
behalf and tried to obtain him a teaching appointment for spectroscopy.122 This
request for the teaching appointment was declined by the minister for religious and
educational affairs. Herweg followed Mie to Halle. In Halle however, a teaching
appointment for ‘‘Research Methods of latest Physics’’ was then obtained for
Herweg. In 1923 Herweg accepted an offer as a regular extraordinary professor for
high-frequency engineering, outlines of physics and photography to the Technical
University Hannover. The vacant assistantship was occupied by Wilhelm Kast,123

who later also followed Mie, as assistant, to Freiburg and in 1937 became full
professor and director of the Physical Institute in Halle.

1.4.3 Textbooks and Popular Scientific Brochures

Gustav Mie wrote a series of popular scientific brochures and papers on actual
problems of physics for the general public. The brochures ‘‘Ions and Electrons’’
[Mie14] and ‘‘Molecules, Atoms, World Ether’’ [Mie18] are two examples. Mie
also published a popular description of Einstein’s theory in 1921 [Mie50]. His final
treatise ‘‘Foundations of Mechanics’’ dates back to 1950 [Mie86]. His book
entitled, ‘‘Textbook on Electricity and Magnetism. An Experimental Physics of the
World Ether for Physicists, Chemists an Electrotechnicians’’. [Mie29] is highly

120 See: Jahresverzeichnis der an den deutschen Universitäten erschienenen Schriften (1887–
1913), Jahresverzeichnis der an den deutschen Universitäten und Technischen Hochschulen
erschienenen Schriften (19-14-1925), Jahresverzeichnis der an den deutschen Universitäten und
Hochschulen erschienenen Schriften (1926–1936). Purly theoretical Ph.D thesis supervised by
Mie could not be found.
121 August Julius Herweg (1879–1936), studies in Würzburg, scholar of W. Wien, graduation
Würzburg 1905, habilitation Greifswald 1907, 1913 professor, 1914–1918 army service, 1921
extraordinary professor in Halle, from 1923, extraordinary professor at TH Hannover.
122 UAG, Acta of the Phil.Fak. of the Königl. Univ. Greifswald I 324 (Dekanat Mie), J.Nr. 1245.
123 Wilhelm Kast (1898–1980), studies in Halle, 1922 graduation, 1924 Freiburg, 1927
habilitation, 1933 appointment as extraordinary Professor, 1937 full professor and director of
institute in Halle, 1947 Bayer AG Leverkusen, 1954 honorary professor University Cologne,
1957 honorary professor university Freiburg.
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regarded, was printed in three editions 1910, 1941 and 1948, Mie was 80-years old
when he finished working on the final edition of his textbook.

Mie’s book was the first to contain a consequent classification of the field
quantities in quantities of intensity and quantities of quality. He also developed an
electromagnetic system of units, based on Volt, Coulomb, Centimeter and Second,
which is no longer relevant. The first edition starts from the physical phenomenon
rather than the mathematical approach.

Mie’s textbook, dedicated to Engelbert Arnold and Otto Lehmann in memory
of his Karlsruhe years of apprenticeship, appeared in the publishing house of
Ferdinand Enke, Stuttgart. Mie kept connections with this publisher for over 40
years. The exchange of letters between Enke and Mie highlights the relationship,
which was not entirely frictionless at times, between a scientist and the publisher,
who also had economic interests.124 Enke visited Mie in Halle at the beginning of
1924, to discuss details of a second edition after the success of the first edition.
They reached an agreement and settled on the deadline of April 1925. This
deadline was exceeded by more than 15 years in the end. Mie wrote in a letter to
Enke on 29 November 1925:

I started to rewrite my book to get a shorter version after your visit to Halle, but I cannot
do this without completely changing the character of the book. Therefore I finally decided
to follow the second possible way, namely to adapt it to a truly complete textbook which
includes all elements of the mathematical theory. ...I assume, that I will need nearly three
years to get it done. It will be a totally new book.125

Schäfer quoted in his recension of the second edition regarding the relevance of
Mie’s textbook as follows:

The first edition of Mie’s ‘‘Textbook of Electricity and Magnetism’’ appeared in 1910.
This was the first experimental textbook which took the introduction and realisation of the
field concept seriously into account, introducing the reader in the mindscape of Faraday
and Maxwell following a thoroughly thought out plan. Mie did not go back to ideas and
concepts of the theory of remote action. To the expert it is unquestionable that this book
has had a profound impact to the textbook literature after 1910, even if the authors did not
mention their source explicitly.126

The following remark of Schäfer about the style in Mie’s textbook seems to be
characteristic of Mie’s mode of practice: ‘‘The diction is sober, objective, clear,
and empathic. The formulation of the important theorems is presented in almost
pedantic accuracy to avoid any misunderstanding about the meaning of the
material: The learner cannot expect a better leader’’.127

124 vergl. UAF—Nachlass Mie, Bestand E12/30 Verlagsverhandlungen 1912–1946.
125 ibid.
126 Mie, Gustav: Lehrbuch der Elektrizität und des Magnetismus, Stuttgart 1941, Besprechung
durch Cl. Schaefer, Die Naturwissenschaften H. 17/18, S. 267f (1942).
127 ibid., S. 268.
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1.5 Scientific Community and Society

Gustav Mie was strongly affected by the events of his times, in particular in his
work as a university teacher. His time in Greifswald coincides with World War I.
In these awkward times, he also officiated as rector of Greifswald University. The
time in Halle was accompanied by the revolution of 1918–1919, the Kapp Putsch
of 1920, the Central-German rebellion in March 1921 and the effects of hyper-
inflation in 1922–1923. During his last years at Freiburg University, Mie felt
the seizure of power of National Socialists and their increasing influence on the
University. Mie’s retirement was marked by the experience of the horrors of
World War II, as well as the beginning of the democratic reconstruction of
Western Germany. It is beyond the scope of this text to give a complete analysis
of the development of the academic, political and ideological opinions of Mie.
In addition, among other things, a detailed evaluation of the diaries would be
necessary.128

Gustav Mie was fully integrated into the network of theoretical physicists at
that time. He came into contact with Arnold Sommerfeld over his work on the
parallel wire system [Mie9]. At almost the same time, Mie began an exchange
of letters with W. Wien in 1900.129 Soon, Mie belonged to the community of
prominent German theoretical physicists, who met for skiing holidays, often in
Mittenwald. Mie was friends with W. Wien, A. Sommerfeld, M. von Laue and
P. Debye. The appreciation of his work was also expressed in the fact that his
colleagues recommended him for full professorships several times. He was sug-
gested for the post of the full professor in Frankfurt/Main by Sommerfeld
along with Laue and Debye in 1913, Wien suggested Mie for a full professor in
Tübingen as the second choice after Stark in 1916.

Mie’s extensive scientific exchange of letters as well as the numerous letters of
appraisal in appointment procedures130 show that Mie was strongly integrated into
the physics community of that time. S.L. Wolff places Mie in a network of
reactionary physicists during the time of the Weimar Republic [107, 108]. Gustav
Mie’s basic political orientation can be regarded as national conservative.131

Gustav Mie’s mainly conservative and somewhat nationalistic point of view can
be deduced, for example, from his publication ‘‘Werner Siemens as a Physicist’’
[Mie40] from 1916. At the end of the essay he characterised Siemens as a person.
Mie wrote:

If we consider Siemens as a person, as we can see him from the memoirs of his life, one
can conclude that he possess to a large degree the typical characteristics of a German. It is

128 UAF, inventory E012/68-E012/72 (copies), Nachlass Gustav Mie.
129 UAF, E012/48, Briefwechsel Mie-Wien, see also Archives Deutsches Museum Munich,
Nachlass Wilhelm Wien, Briefwechsel.
130 see UAF: E012/33, E012/34, Nachlass Gustav Mie, Berufungen.
131 Diary entries to current events prove Mie’s political point of view, UAF, inventory E012/68-
E012/72.
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definitely impossible to conceive this man to have grown up anywhere else but in
Germany. Also the peculiar connection of the desire for clear, scientific and objective
insight with a strong compulsion to influence the environment in an active and creative
way has to be counted as the typical properties which, in the end, makes the difference
between the German technology in general and that of other peoples. This unification of
energy and spirit of research in Germans, which allowed Siemens, with ingenious pecu-
liarity, to pace through his life as a hero, faced by the largest difficulties, which will
hopefully also contribute such that our native country will overcome the actual ordeal.132

World War I, involving all industrial nations, also gave rise to industrial con-
flicts, in which scientists were professionally mobilised [109]. At the beginning of
the war, scientists tried to justify the points of view of the respective belligerent
parties with invocations and corresponding replies. This development is charac-
terised by the term ‘‘War of the Spirit’’.133 After an article by Sir J.J. Thompson in
The Times on the 1 August 1914 on the 4 October 1914 the appeal ‘‘An die
Kulturwelt! Ein Aufruf’’ followed as a reply.

In this time also the Aufforderung, initiated by Wilhelm Wien appeared,
polemising against the ‘‘Ausländerei’’ and in particular the strong English influ-
ence. Finally it led to a politically motivated regimentation of the citations of
scientific work. Mie was one of the 16 signatories of the Aufforderung, 700 copies
of which were sent to all Universities in Germany and Austria.

To evaluate Mie’s attitude at the time of the National Socialism, one must
consider that he had already reached his retirement age in 1933 [110]. In the
conflict centred around ‘‘German Physics’’ the article ‘‘German and Jewish
Physics’’ by W. Menzel was published in the ‘‘Völkischer Beobachter’’ on 29
January 1936. Heisenberg answered in the same journal on the 28 February fol-
lowed by another reply by Stark. Thereupon, Heisenberg prepared a memorandum
to the Reichserziehungsminister Rust, which pointed out the difficulties of physics,
and in particular the importance of theoretical education and the cooperation
between theoretical and experimental physics. The memorandum was signed by 75
experimental and theoretical professors in the summer of 1936. Being asked by
Werner Heisenberg to sign the memorandum on 11 May 1936, Mie replied, that he
would do it with ‘‘great pleasure’’.134 In addition to the examples specified by
Heisenberg, Mie pointed out another example of fruitful collaboration between
theory and experiment:

A more impressive example, albeit from older times, ...is the discovery of the electro-
magnetic waves propagating freely in air by Heinrich Hertz. It is safe to state that without
Maxwell’s theory no one would ever have got the idea of performing such experiments.
H. Hertz considered them as an explicit verification of Maxwell’s theory. As I know
from a trustworthy source in Karlsruhe, any practical applications were far from his

132 [Mie40], p. 776.
133 After the title of the book ‘‘Krieg der Geister’’ from Hermann Kellermann, Dresden, 1915. In
this book corresponding calls and signatory lists are printed.
134 UAF, inventory E012/41, exchange of letters Mie-Heisenberg, 1a, letter Heisenberg at Mie of
11 1936, 1b, letter Mie at Heisenberg 15 May 1936, 2b text of the memorandum Leipzig, 30 May
1936.
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considerations. What was more amazing is to see the world being reshaped by the elec-
tromagnetic waves.135

Besides physics and mathematics, philosophy (interest in Kant’s philosophy)
and theology played an important role in Mie’s life. His talk at the beginning of his
rectorate in Greifswald in 1916, entitled ‘‘Law of Nature and Spirit’’ [Mie41],
dealing with questions of causality, received, to Mie’s surprise, much attention
amongst the members of the theological faculty. After 1930, he published a series of
writings of religious and ideological content [Mie76, Mie78, Mie82, Mie84, Mie87].
In Freiburg, Mie, along with the philosopher Jonas Cohn (1869–1947) and the
zoologist Spemann (1869–1941) founded a scientific society called ‘‘Pentathlon’’,
which met monthly for lectures and discussions. The society ceased to exist in 1933,
when Cohn was forced to leave Germany.

During the November pogroms on the night from 10 to 11 November 1938,
amongst many others, the synagogue of Freiburg was set on fire by the SS. These
events led to the establishment of the ‘‘Freiburger Kreis’’, a resistance group, to
which Mie and his wife belonged [111–113]. The Group organised monthly dis-
cussions, in private dwellings, of persons involved until September 1944.

1.6 Concluding Remarks

Single aspects of Mie’s scientific work have been illuminated in the past, often in
the context of different contributions to the history of physics, especially larger
historical studies about field theory and the theory of relativity [33, 98, 114]. Parts
of his extensive correspondence can be found in the edited correspondence of
Arnold Sommerfeld [115] as well as in the ‘‘Collected Papers of Albert Einstein’’
[116]. Gustav Mie’s archives136 are, to a large extent, unexplored.

In the 1970s an initiative existed to publish parts of scientific legacy, in par-
ticular the correspondence of Gustav Mie.137 This project was driven in particular
by Helmut Hönl138 in collaboration with Herbert Fröhlich139 and Ernst Plötze.
The Mie edition should have been published with the support of the Leopoldina.
The correspondence between Helmut Hönl and Heinz Bethge (1919–2001),
president of the Leopoldina in Halle at that time, documents this attempt. In the

135 ibid., 1b.
136 UAF, E0012, Nachlass Gustav Mie.
137 see UAF: C136, materials for the edition Gustav Mie, worked on by Rolf Steinmann 2001;
E14, Nachlass Helmut Hönl, worked on by David Geiger, 2003.
138 Helmut Hönl (1903–1981), Studies in Heidelberg, Göttingen and Munich, 1926 graduation
with A. Sommerfeld, 1933 habilitation in Stuttgart, 1940 extraordinary Professor in Erlangen,
1943 professor in Freiburg, 1971 emeritus.
139 Herbert Fröhlich (1905–1991), graduation 1930 with Sommerfeld, private lecturer in
Freiburg, as Jew forced to leave Germany, 1935 University of Bristol, 1948 University of
Liverpool.
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end, the project could not be realised. A detailed investigation of the life and
scientific work of Gustav Mie is thus still pending.
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Chapter 2
Mie Theory: A Review

Thomas Wriedt

Abstract In optical particle characterisation and aerosol science today light scatter-
ing simulations are regarded as an indispensable tool to develop new particle charac-
terisation techniques or in solving inverse light scattering problems. Mie scattering
and related computational methods have evolved rapidly during the past decade such
that scattering computations for spherical scatterers a few order of magnitudes larger,
than the incident wavelength can be easily performed. This significant progress has
resulted from rapid advances in computational algorithms developed in this field and
from improved computer hardware. In this chapter the history and a review of the
recent progress of Mie scattering and Mie-related light scattering theories and avail-
able computational programs is presented. We will focus on Mie scattering theories
but as there is much overlap to related scattering theories they will also be mentioned
where appropriate. Short outlines of the various methods are given. This review is of
course biased by my interest in optical particle characterisation and my daily reading.

2.1 Introduction

When Gustav Mie wrote his classic paper on light scattering by dielectric absorb-
ing spherical particles in 1908 he was interested in explaining the colourful effects
connected with colloidal Gold solutions. Nowadays, the interest in Mie’s theory is
much broader. Interests range from areas in physics problems involving interstellar
dust, near-field optics and plasmonics to engineering subjects like optical particle
characterisation. Mie theory is still being applied in many areas because scattering
particles or objects are often homogeneous isotropic spheres or can be approximated
in such a way that Mie’s theory is applicable.
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On the 100th anniversary of Mie’s theory a number of review papers, special papers
and conference proceedings were published [1–10] commemorating his 1908th
paper.

In this chapter I would like to review the history and the state of the art in Mie
scattering as it developed over the previous decades. I will give a short description
of the various extensions to Mie scattering available and provide information about
computation programs making reference to review papers where available. For more
profound reviews the interested reader is referred to the cited review articles.

2.2 Nonspherical Particles

In this review I am concerned with spherical scattering particles. Nevertheless, to
guide the reader interested in the broader aspects of light scattering I will also briefly
consider nonspherical particles in this section.

A number of light scattering theories also suitable for nonspherical particles have
been developed, all having their pros and cons. Extensive overviews of available
theories have been published by Wriedt [11], Kahnert [12] and more recently by
Veronis and Fan [13]. A review of this subject with emphasis on colloid science has
been written by Niklasson and Vargas [14]. A paper by Zhao et al. [15] provides an
overview of the methods that are currently being used to study the electromagnetics
of silver and gold nanoparticles. Of historic interest might be the critical review by
Bouwkamp [16] who presents the progress in classical diffraction theory up to 1954.
In this paper both scalar and electromagnetic problems are discussed. This report
may also serve as an introduction to general diffraction theory. Interesting reviews
on related subjects of nanooptics and metamaterials have recently been published by
Myroshnychenko et al. [17] and by Veselago et al. [18].

2.3 History of Mie’s Theory

In 1908, Gustav Mie published his famous paper on simulation of the colour effects
connected with colloidal Gold particles [19]. In this paper he gave a first outline of
how to compute light scattering by small spherical particles using Maxwell’s electro-
magnetic theory. With his first computations he managed to explain the colour of gold
colloids changing with diameter of the Gold spheres, which was later interpreted in
terms of surface plasmon resonances. First computations of scattering diagrams for
larger spheres of diameters up to 3.2λ are presented by Richard Gans (1880–1954)
[20] and Hans Blumer [21] in 1925. The early study of scattering by a sphere is
traced by Nelson A. Logan [22], who comments on Blumer’s results, that he missed
the regular undulations in the scattering diagram because of numerical mistakes.
This paper is interesting reading for all interested in the history of light scattering.
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Electromagnetic scattering by a homogeneous, isotropic sphere is commonly
referred to as Mie theory, although Gustav Mie (1868–1957) was not the first to
formulate this electromagnetic scattering problem. Before him Alfred Clebsch (1833–
72), solving the elastic point source scattering problem of a perfectly rigid sphere
using potential functions [23], and Ludvig Lorenz (1829–91) [24, 25] contributed to
this problem. In 1909, Peter Debye (1884–1966) considered the related problem of
radiation pressure on a spherical particle [26] utilising two scalar potential functions
like Mie. Therefore, plane wave scattering by a homogeneous isotropic sphere is
also referred to as Lorenz-Mie theory [27], or even Lorenz-Mie-Debye theory [28].
The incorrect name Lorentz-Mie theory is also quite commonly used (e.g. in Burlak
[29]). Milton Kerker (1920) provides an extensive postscript on the history of scat-
tering by a sphere in his book [30].

In 1890, Danish physics Ludvig Lorenz published essentially the same calculation
on the scattering of radiation by spheres [24]. This paper was not much noticed at the
time because it was written in Danish and it remained hardly known even after it had
been translated to French [25]. Also, Lorenz did not connect his derivation with the
Maxwells theory of electromagnetics [31, 32]. For information about Ludvig Lorenz,
see the article by Helge Kragh [33] who outlines his career and his contributions to
optical theory.

Cardona and Marx [34] commented that Mie’s 1908 paper was almost ignored
until about 1945 but its importance rose with increasing interest in colloids starting
from the 1950s such that hundred years after publication the paper is still much cited
[35] with currently 291 citations a year according to the Web of Science. Google
currently gives 4,064 citations and the Web of Science 4,958. The paper is called
Dornröschen (Sleeping Beauty) by the researchers at Information Retrieval Services
of Max Planck Society [36] because of its low recognition considering the number of
citations during the first years after its publication. But in the 1930s, contemporary
scientists acknowledged the importance of his contribution. In a special issue devoted
to Mie’s 70th birthday Ilse Fränz-Gotthold and Max von Laue [37] dedicate their
paper to “Gustav Mie whom physics owes the mathematical treatment of diffraction
by a sphere”.

Apparently one of the first English language versions of Mie theory was published
by Harry Bateman (1882–1946) [38]. Mie’s original paper was translated into the
English language as late as 1976 by the Royal Aircraft Establishment in the UK [39]
and 2 years later by Sandia Laboratories in US [40]. Recently, a Spanish translation of
the original paper became available [41] and Chinese, Hebrew and Italian translations
are on the way [42]. For information about typographical errors in the original paper
please refer to the Mie Translation Project [42]. Those typographical errors have
been corrected in the Spanish version of the paper [41].

Early citations of Mie’s theory make reference to the classical textbook on electro-
magnetic theory by Julius Adams Stratton (1901–1994) [43]. In outlining the theory,
Stratton made use of so-called vector spherical wave functions (VSWF) as first intro-
duced by William Webster Hansen (1909–1949) [44]. Later references were made
to the classic optics book by Max Born (1882–1970) and Emil Wolf (1922) [45]
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who used the Debye potential in their derivation. Hendrik Christoffel van de Hulst
(1918–2000) [46] and Bohren and Hufman [47] follow the Stratton approach.

An up-to-date version of the derivation of Mie’s theories has been published in
Appendix H of the recent book by Le Ru and Etchegin [48] and in a book chapter
by Enguehard [49]. Both provide an outline on how to solve the electromagnetic
scattering problem in the case of a spherical particle using Mie’s theory which give
the most useful mathematical expressions of Mie theory and its derivatives and also
information about implementation.

2.4 Mie Algorithms

Understandably, prior to the development of electronic computers in the middle of the
last century there were not many papers written on computing scattering problems
using Mie’s theory since the computational labour involved in evaluating functions
such as Riccati-Bessel functions was quite extreme.

Even with the rise of the computer it took some time before stable algorithms were
developed. Gradually, several generally reliable and stable scattering programs were
published. Early well-known algorithms were published by Giese [50] and Dave [51].
In a report Cantrell [52] reviews the different numerical methods for the accurate
calculation of spherical Bessel functions as needed in Mie’s theory. Deirmendjann
[53] presents computational results of scattering parameters of polydispersions in a
number of tables, produced by application of the Mie theory. According to Cantrell
[52], Deirmendjian et al. [54] appear to have been the first to calculate the logarithmic
derivative of the Riccati-Bessel function to evaluate the Mie coefficients. Dave [51]
improved upon the approach of Deirmendjian et al. by applying downward recursion
to the correct calculation of logarithmic derivative of the Riccati-Bessel function.
The IBM report by Dave from 1968 [51] was still sent out on request in the 1990s.

Apparently at that time there was also independent research in this field such that
one can find papers not often cited such as Metz and Dettmar [55]. With multiple
databases and easy Internet search available today, the existence of other early and
at that time available Fortran program can be confirmed such as for example the
program by Maguire [56].

Nowadays, a number of efficient algorithms and Fortran programs are available. A
major step was the program MIEV0 written by Wiscombe [57, 58], which is based on
Lentz’s continued-fraction method for the calculation of spherical Bessel functions
[59]. The program is well-tested and widely used. The Supermidi program by Gréhan
and Gouesbet [60] is also based on Lentz’s algorithm. The authors give numerical
results over a wide range of size parameters and refractive indices. The advantage of
Lentz’s method is that errors do not accumulate as can occur with the use of faster
recurrence relation methods [61].

It has been demonstrated that Mie’s theory can now be successfully applied up
to size parameters of 10.000 [62–64]. Recently, Gogoi et al. [65] presented a new
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efficient and reliable computer program written in the C programming language to
compute the scattering matrix elements.

2.5 Spheres in an Absorbing Medium

Originally, the Mie theory was restricted to a nonabsorbing ambient medium although
some real-world applications require that the absorbing surrounding media be
accounted for in the theory. This is a topic in colloid science and computer graphics.

Apparently one of the first derivation of the Lorenz-Mie theory for a scattering
sphere immersed in an absorbing host medium is presented by Mundy et al. [66]
and by Bohren and Gilra [67]. Similar extension to the Mie theory was studied by
Quinten and Rostalski [68], Sudiarta [69] and Frisvad et al. [70]. It was found that
the absorption of the ambient medium can alter the scattering efficiency and the
scattering pattern of a sphere. The effect on the absorption efficiency is much less.
To extend such theories for light scattering by coated sphere immersed in an absorbing
medium is a small step [71].

2.6 Coated Spheres

As it is easy to consider spherical scatterers there are many extensions of the Mie
theory covering different aspects. A theory for a coated dielectric sphere was first
published by Aden and Kerker [72]. The Fortran code BART by Arturo Quirantes
[73] is based on the Aden-Kerker theory to calculate light-scattering properties for
coated spherical particles. In the program polydispersity is included for either core,
coating or entire particle.

A basic Fortan (BHCOAT) code is printed in the appendix of the book by Bohren
and Huffman [47]. An advanced algorithm is given by Toon and Ackerman [74].
An algorithm for a sphere having two coatings has been presented by Kaiser and
Schweiger [75]. These theories have also been extended to spherical particles con-
sisting of multiple layers by Li Kai [76]. Another algorithm for plane wave and
shaped beam scattering by a multilayered sphere has been published by Wu et
al. [77]. Even in recent times, improved algorithms have been published on this
subject [78].

2.7 Distorted Spheres

To compute scattering by a slightly distorted sphere Martin [79, 80] developed a
first-order perturbation theory. He derives formulae bearing close resemblance to the
zero-order ones encountered in Mie scattering theory, expressing the perturbation
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applied to the surface of the sphere in angular functions identical to those used in the
spherical harmonic expansion. The approximation is that the particle be smooth and
not deviate far from sphericality.

2.8 Magnetic Spheres

With growing interest in magnetic nanostructures there is also interest in Mie scatter-
ing of magnetic spheres. A Mie theory allowing for magnetic media where the media
properties includes a nonzero permeability μ has been developed early by Kerker
et al. [81, 82]

A Fortran code for spherical scatterers with both a complex permittivity and
a complex permeability is listed in a report by Milham [83]. Tarento et al. [84]
considered Mie scattering of magnetic spheres extending the classical Mie scattering
approach to a media where the dielectric constant is no more a real number but a tensor
with a gyrotropic form. A usable code for scattering by a sphere having a different
magnetic permeability than the surrounding is included in the Matlab program by
Christian Mätzler [85].

2.9 Chiral and Anisotropic Spheres

During the previous decades, much attention has been focused on the light scatter-
ing interaction between chiral and anisotropic particles and electromagnetic waves,
as a result of numerous applications in the electromagnetic scattering and antenna
theory. The historical background, and a general description, of the subject of elec-
tromagnetic chirality and its applications can be found in the books by Lakhtakia
and Varadan [86] and Weiglhofer and Lakhtakia [87]. A isotropic chiral medium or
an optical active medium is rotationally symmetric but not mirror symmetric. Only
circularly polarised plane waves can propagate in the chiral medium without a change
in their state of polarisation.

A scattering sphere can also be chiral. The extension of Mie’s theory to an optically
active sphere was published by Bohren [88] and later extended to a sphere with a
chiral shell [89]. Bohren devised a transformation to decompose the problem such
that he could consider two independent modes of propagation in the chiral medium,
namely left- and right-circularly polarised waves. In the limit of no chirality the
solution is identical to the Mie solution.

Theories and programs for such types of scatterers have been published by Bohren
in his thesis for a chiral sphere [90].

Using the Bohren decomposition Hinders and Rhodes [91] investigate the problem
of scattering by chiral spheres embedded in a chiral host medium.

As colour pigments and crystals are often anisotropic there is some interest to
extend Mie’s theory to such kind of scattering particles. Stout et al. [92] established
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a vector spherical harmonic expansion of the electromagnetic field propagating inside
an arbitrary anisotropic medium to solve this problem. A similar problem of a uniaxial
anisotropic sphere was considered by Geng et al. [93] to find the coefficients of the
scattered field. Droplets of liquid crystals may be considered as spherical particles
with radial anisotropy. This scattering problem is discussed by Qiu et al. [94] using
an extension of Mie theory.

2.10 Scattering by a Short Pulse

The history of the investigation of time domain scattering by a sphere, given an
incident short pulse, can be traced back at least to Kennaugh [95]. The interest
was to investigate short-pulse radar systems for target discrimination. The incident
pulse is expanded in a Fourier series. For each wavelength in the Fourier series Mie
scattering is computed.

Ito et al. [96] analyse the transient responses of a perfectly conducting sphere.
For numerical calculation a Laplace transform algorithm is used. This method was
later extended to a dielectric sphere [97] to analyse the multiple reflections within a
sphere. Bech et al. [98] provided an extension by way of the Fourier-Lorenz-Mie-
Theory (FLMT) [99], which permits the scattering of a laser beam and the separation
of individual scattered light orders using the Debye series expansion to compute
scattering by a femtosecond Laser pulse to determine the particle diameter from the
time differences between the scattered light orders of the Debye series. The Debye
series expansion is analogous to a multiple internal reflection treatment such that it
is similar to geometrical optics where each term has a clear physical interpretation
such as diffraction, reflection, refraction and higher order refractions.

2.11 Nanosized Spheres

With a nanosized nobel metal particle of size lower than about 20 nm, various modi-
fications, extensions and corrections to Mie’s original theory are needed to take into
account that “sharp” boundary conditions do not hold in the nanoscale [100]. In his
recent survey paper [101] Kreibig lists among others the following supplementary
models to the Mie theory, i.e. non plane-wave incident field, non step-like boundary
condition and a particle size-dependent dielectric function. Applying these exten-
sions help to explain measured absorption spectra of Ag nanoparticles and plasmon
polaritons.
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2.12 Gaussian Beam Scattering

The traditional Lorenz-Mie theory describes the scattering by a spherical homoge-
neous dielectric particles illuminated by an incident plane wave. However, in many
applications such as optical particle sizers, confocal microscopes, optical trapping
and optical manipulation scattering by a focused laser beam is quite often of interest.
In his recent book Quinten [102] refers to Möglich [103] who in 1933 derived expres-
sion for the expansion coefficients of the field in the focal point of a lens system to
compute scattering in the Rayleigh approximation.

There are different concepts available to handle the problem of laser beam scat-
tering. With a point matching approach you just need an analytical description of the
incident field at the matching points on the particle surface. This method which is
also suitable for a spherical scatterer has been implemented in the Multiple Multi-
pole Program (MMP) by Evers et al. [104]. But in this review we are concerned with
the Mie theory and within this theory various beam expansion methods have been
developed.

A laser beam with Gaussian intensity distribution can be expanded into spherical
vector wave functions or into a spectrum of plane waves [105]. The Generalised
Lorenz Mie Theory (GLMT) developed by Gérard Gouesbet and co-workers is
based on the first approach computing beam shape coefficients. It has recently been
reviewed by Gouesbet [106]. Plane wave expansion is used by Albrecht et al. [99]
and it is integrated into the Null-Field Methods with Discrete Sources (NFM-DS)
developed by Doicu and co-workers [107]. Doicu et al. [105] give quantitative com-
parison of the localised approximation method and the plane wave spectrum method
for the beam shape coefficients of an off-axis Gaussian beam. Usually the plane wave
expansion method is considered computationally inefficient compared to the GLMT
method [108].

Since its foundation at the end of the 1970s Gérard Gouesbet and his co-worker
Gérard Gréhand developed the Generalised Lorenz-Mie Theory (GLMT). Initially
the theory only included a single spherical scatterer but the theory was later extended
to aggregates of spheres [109], coated spheres [110], a sphere with an eccentrically
located spherical inclusion [111] and pulsed Laser scattering [112]. Based on the
Davis formulation of the Gaussian beam [113] Gouesbet and co-workers developed
a theory to expand the beam into vector spherical wave functions which is compatible
with the Lorenz-Mie Theory. In the first implementation the expansion was restricted
to on-axis spheres. This theory was later extended to an arbitrarily positioned sphere.
Parallel to this development the localised approximation was investigated to reduce
the computational demand in computing the beam shape coefficients. Since 1998
the Livre GMTL, fully outlining the GLMT theory and providing printouts of For-
tran programs, is available via the Internet [114]. This year Gouesbet and Gréhan
published a revised version with the Springer publisher [106].

Moore et al. [115] developed an alternate generalisation of the Lorenz-Mie theory
wherein the incident fields are complex focus fields which are nonparaxial generali-
sations of Gaussian beams. This approach results in an easily calculable closed form
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for the coefficients in the multipolar expansion of the incident field that results from
a beam passing through a high numerical aperture lens system.

2.13 Near Fields

With the recent rise of plasmonics there seems to be an increasing interest in com-
puting the near field or the internal field by scattering particles. There is especially
interest in morphological resonances and in plasmon resonances. There are not many
programs available which focus on near field computation. Most programs consider
the far field approximation of the radiating spherical vector wave functions to com-
pute scattering patterns in the far field. The T-Matrix programs on the disk accom-
panying the book by Barber and Hill [116] allow for the simulation of the internal
and external near field intensity distribution by a scattering sphere.

Near field and internal field computations of a spherical particle in a Gaussian
laser beam can be done using the Windows program GLMT Champ Internes by Loic
Mees [117].

To compute near fields by a number of scattering spheres you can use the extension
of Yu-lin Xu’s GMM program by Moritz Ringer. He extended GMM while working
on his PhD thesis [118]. His Fortran program GMM-Field allows for the computa-
tion of the near field. GMM-Dip gives the near field with a dipole as the incident
field. Apparently Giovanni Pellegrini did a similar extension of the GMM program
in this PhD thesis [119]. A paper on parallising multiple scattering and near field
computation by coated spheres was recently published by Boyde et al. [120].

The LightScatPro Matlab program by Sylvain Lecler used for his thesis [121] is
also suitable for near field computation for light scattering by a number of spheres.

2.14 Longitudal Modes

Basically, in the Mie theory, transverse wave modes are dominant. However, there
is the question about what the theory would look like if there were also longitudinal
modes created inside the scattering sphere.

Ruppin [122] extended Mie theory to the case of small metal spheres whose
material sustains the propagation of longitudinal waves. This theory is also outlined
in the book by Borghese et al. [123]. Ruppin demonstrated that a slight shift of the
surface plasmon peak towards higher frequencies would occur. According to Quinten
in his recent book [102], all effects connected with longitudal modes have not yet been
identified experimentally. Travis and Guck [124] recently revisited the Mie theory
and also include longitudinal vector spherical wavefunctions in the expansion of the
internal field. The authors argue that in the optical wavelength range the longitudinal
wavenumber is almost purely imaginary such that for particles larger than about 2 nm
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the longitudinal plasma modes are evanescent and the normal Mie approximation is
acceptable.

2.15 Aggregates of Spheres

Scattering by an aggregate or cluster of spheres will be considered in this section.
There is a recent extensive review on this topic by Okada [125] giving a timeline
of the development in the field since the 1960s. Multiple scattering by a number of
spheres dates at least as far back as Trinks [126], who used multipole expansions
combined with the translation addition theorem for spherical vector wave functions
to express the scattered fields of all other spheres at the origin of a sphere.

Levine et al. [127] extended the work of Trinks by considering two Rayleigh
particles, arbitrarily positioned in relation to the incident plane wave. Lenine et al.
also made use of Debye scalar potentials as did Trinks. In the following years various
rigorous methods extending the Mie theory were developed. Bruning and Lo [128,
129] presented the first solution for two spheres using recursive relations for the
translation coefficients.

Later, Fuller et al. [130] considered the two-sphere problem using the order-of-
scattering approach, a chain of spheres [131] and an arbitrary cluster of spheres
[132].

Next, two well-known rigorous methods were developed to simulate the light scat-
tering by an aggregate of spheres, Mackowski [133] and Mackowski and Mishchenko
[134] developed the multiple scattering T-matrix algorithm and the generalised mul-
tisphere Mie-solution (GMM) method developed by Xu [135, 136]. Today, there are
efficient Fortran programs made available by Mackowski [134] and Yu-lin Xu [135].

These multiple scattering programs are commonly used to study the scattering
and absorption properties of soot aggregates [137].

The theory has recently been extended to clusters of rotationally symmetric
particles [138] and arbitrary shaped particles [6] using the T-Matrix method.

2.16 Parallelisation

Another current issue is the parallelisation of executing programs. Various methods
such as Open Multiple-Processing (OpenMP) and Message Passing Interface (MPI)
are available. Within the T-Matrix methods the NFM-DS has recently been paral-
lelised [139]. With the T-Matrix method the computational demand lies mostly in the
need to compute the surface integrals. This can of course be easily done by dividing
the surface of the scatterer into different sections and then computing the integral
of this sections using a separate parallel thread. Mackowski et al. [140] recently
implemented parallelisation of a multiple scattering program. A paper on parallizing
multiple scattering by coated spheres was published by Boyde et al. [120].
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2.17 Further Topics

Not all extensions of the Mie theory can be extensively covered in this chapter.
Therefore, in this section some interesting topics not treated above will be briefly
mentioned.

Travis and Guck revised the Mie theory [124] using a modern T-matrix formalism
and discuss inclusion of longitudinal components of the dielectric permittivity tensor.

Tagviashvili [141] considered the classical Mie theory for electromagnetic radia-
tion scattering by homogeneous spherical particles in the dielectric constant (ε) → 0
limit and TE field resonances in the visible spectrum are demonstrated.

With Mie scattering morphological resonances show up. This can be used to deter-
mine the diameter of a spherical droplet to a high precision. Ward et al. [142] used
a white light LED for illumination to study the broadband Mie backscattering from
optically levitated aerosol droplets to observe the morphological Mie resonances
simultaneously across a spectral range from 480 to 700 nm. Correlating the mea-
sured resonances to the mode order and mode number using Mie theory the droplet
size can be determined with an accuracy of ±2 nm.

As the scattering of a plane electromagnetic wave by a dielectric sphere is con-
sidered a canonical problem, Mie’s theory is still widely used as a standard reference
to validate methods intended for more complex scattering problems [143, 144]. For
example, Khoury et al. [145] compare COMSOL’s finite element method (FEM)
algorithm with the Mie theory for solving the electromagnetic fields in the vicin-
ity of a silica–silver core–shell nanoparticle. It is demonstrated that the COMSOL
FEM algorithm also generates accurate solutions of the near field. Takano and Liou
[146] developed a geometrical optics ray-tracing program to compute scattering for
concentrically stratified spheres and in the validation section show that it produces
the same general scattering features as the “exact” Lorenz–Mie theory for a size
parameter of 600.

2.18 Further Reading

There are various topics not considered in this review. For these topics I suggest some
further reading. For the basics on the Mie theory readers may refer to the classical
books by Stratton [43], van de Hulst [46] (available as a budget Dover edition), Born
and Wolf [45], Kerker [30] and Bohren and Huffman [47]. For a more recent and
extensive discussion on the topic refer to Grandy [27]. Morphological resonances in
Mie scattering are extensively covered in the book by Davis and Schweiger [28].

Scattering particles are commonly positioned on a plane interface and particle–
surface scattering interaction will have to be considered in the corresponding exten-
sion of Mie theory. This is for example a problem when simulation particle surface
scanners detect particle conterminants on wafers. For these who are interested in such
kinds of problems there are methods based on the T-matrix method taking account
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of the plane surface. Such methods are fully outlined in the books by Doicu et al.
[147] and Borghese et al. [123]. There is a section on supported nanoparticles in the
recent book by Quinten [102]. For those interested in plasmonics and the optics of
nanosized noble metalparticles, Quinten’s book gives an overview of analytical and
numerical models for the optical response of nanoparticles and nanoparticle systems.
Nanooptics is the topic of the book by Novotny and Hecht [148] who also care for
the topic of particles on surfaces in an extensive way.

2.19 Available Programs

Those looking for computational programs to compute Mie scattering or to solve
related scattering problems there are various web sites available which provide infor-
mation about these topics or give links to available computer programs. First of all
there is the portal ScattPort [149] which is intended to be a Light Scattering Informa-
tion Portal for the light scattering community. The basic concept of this information
portal includes features such as database of available computer programs and up-to-
date information related to the subject of light scattering, e.g. conference announce-
ments, available jobs, new books, etc. Many of the listed programs are based on Mie
theory or are extensions of Mie theory. Further information about the history and
concept of the portal is presented by Hellmers and Wriedt [150].

SCATTERLIB by Flatau [151] is another web site with an emphasis to list open
access computational programs suitable to compute light scattering by particles.
In the list Mie theory has been implemented in various traditional programming
languages originating in Fortran, but are also available in Pascal, C++ and Java. It has
also been programmed in computer algebra systems such as Maple and Mathematica.
Additionally, it is available in numerical mathematical systems such as IDL and
Matlab [149] and 3 years ago the Mie theory has even been programmed on a Java
enabled Mobile Phone using a Matlab clone [152].

2.20 Sample Simulation Results

To graphically demonstrate the differences of various kinds of extensions of the
Mie’s theory we next plot some scattering diagrams. All programs used are avail-
able from ScattPort [149]. As basic parameters for this comparison, we choose
a particle diameter of d = 700 nm and an incident wavelength of λ = 500 nm.
Figure 2.1 shows the scattering pattern of a dielectric sphere with a refractive index of
n = 1.5 calculated using the Mie theory. Both p- and s-polarisation are plotted. The
next figures demonstrate the variation in the scattering pattern with change in the
properties of the scattering sphere. Even a small amount of absorption gives a change
in the scattering pattern as seen from Fig. 2.2. Also, a coating with a shell having a
slightly lower refractive index gives another scattering diagram (Fig. 2.3). The next
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Fig. 2.1 Scattering pattern of
a homogeneous nonabsorbing
sphere d = 700 nm, λ =
500 nm, n = 1.5

Fig. 2.2 Scattering pattern
of a homogeneous absorbing
sphere d = 700 nm, λ =
500 nm, n = 1.5 + i 0.1

Fig. 2.3 Scattering pattern of
a homogeneous coated sphere
d1 = 700 nm, d2 = 500 nm,
λ = 500 nm, n1 = 1.5, n2 =
1.33

scattering pattern (Fig. 2.4) is for a sphere possessing a refractive index gradient gra-
dient with n = 1.33 at the centre of the sphere and n = 1.5 at the boundary of the
sphere. This gradient is approximated by 50 steps. With a chiral or optically active
sphere there are also great differences in the scattering pattern (Fig. 2.5).

If the sphere is positioned in a highly focused laser beam with Gaussian intensity
distribution pronounced differences to the first scattering diagram show up (Fig. 2.6).
A slightly perturbed sphere gives also only slight perturbation in the scattering dia-
gram (Fig. 2.7). With an unisotropic particle having three different refractive indices
in the three cartesian coordinates the scattering pattern is no longer rotationally sym-
metric (Fig. 2.8).
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Fig. 2.4 Scattering pattern
of a sphere possessing a
refractive index gradient
d = 700 nm, λ = 500 nm,
gradient n = 1.33–1.5

Fig. 2.5 Scattering pattern of
a homogeneous chiral sphere
d = 700 nm. λ = 500 nm,
n = 1.5, kb=0.1

Fig. 2.6 Scattering pattern
of a homogeneous sphere
in a Gaussian laser beam
d = 700 nm, λ = 500 nm,
beam waist diameter =
500 nm, n = 1.5

Fig. 2.7 Scattering pattern of
a homogeneous slighly rough
sphere beam d = 700 nm, λ =
500 nm, epsilon (perturbation)
= 0.2, n = 1.5
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Fig. 2.8 Scattering pattern of
an unisotropic sphere beam d
= 700 nm, λ = 500 nm, nx =
1.2, ny = 1.3, nz = 1.5

2.21 Conclusion

What is the current state of Mie’s theory? It seems to be as lively as ever. It is con-
tinuously used for code validation. Wherever particles can be considered spherical,
Mie scattering is applicable. It is applied everyday in diffraction-based instruments
to characterise particles. To this day, new approaches in computing Mie scattering
are developed and the methods are continuously extended to cover related scattering
problems such as coated spheres.

It is not only used for educating students and the validation of more advanced
theories but also it is the basis of radiative transfer, Lidar and optical particle char-
acterisation. Even today there is still progress in programming and new programs
which are based on Mie theory or which extend Mie theory in some respect show up
every year.

In this chapter an overview of the progress in developing light scattering programs
suitable for Mie-related scattering problems has been given. A short description of
each technique has been presented and suitable references have been provided such
that the reader can find more detailed information about the various methods and
sources of computer programs.

The state of the art in numerical light scattering modelling is progressing rapidly
especially with fast advancing research fields such as nanophotonics and near-field
optics. With almost all concepts there was much progress in the recent years.

The recent advances in computer hardware and the development of fast algorithms
with reduced computational demands and memory requirements have made the exact
numerical solution of the problem of scattering from large scattering particles highly
feasible. Today, scattering by spherical particles of realistic sizes can be computed in
an efficient way. Especially, the number of open source programs and development
projects is increasing continuously.
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Chapter 3
From Theories by Lorenz and Mie
to Ontological Underdetermination
of Theories by Experiments

Gerard Gouesbet

Abstract In 1908, relying on Maxwell’s electromagnetism, Gustav Mie published a
theory describing the interaction between an electromagnetic plane wave and a sphere
characterised by its diameter and its complex refractive index. A theory treating
the same problem has however been published by Lorenz about 20 years before.
Furthermore, this theory did not rely on Maxwell’s electromagnetism, but did rely on
a mechanical theory of ether. Yet, although relying on two deeply different ontologies,
both theories generate the same experimental predictions. Experts in epistemology
would say that they are empirically equivalent. The existence of conflicting theories
being empirically equivalent may be discussed in the framework of a thesis called
Quine’s thesis of underdetermination of theories by experiments to which this chapter
is devoted.

3.1 Introduction

In light scattering theory, the most famous theory is likely to be the one published by
Gustav Mie in 1908 [1]. This theory describes the quasi-elastic interaction between
an electromagnetic plane wave and a homogeneous sphere defined by its (arbitrary)
diameter and its (arbitrary) complex refractive index. It allows one to calculate scat-
tered fields outside the sphere, internal fields, phase relations and various cross sec-
tions, including for radiation pressure forces. The theory is built using Maxwell’s
electromagnetism.

The year 2008 was the year of the 100th anniversary of Mie’s paper which has been
commemorated in several conferences (i) GAeF conference on “Light scattering:
Mie and More”, 3 and 4 July 2008, in Karlsruhe, Germany [2] (ii) 11th conference
on electromagnetic and light scattering, 7–12 September 2008, in Hatfield, UK [3]
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(iii) “Mie theory 1908–2008: Present developments and interdisciplinary aspects of
light scattering”, 15–17 September 2008, University of Halle-Wittenberg, Germany
(present book) and (iv) International Radiation Symposium IRS 2008, 3–8 August,
Foz do Iguaçu, Brazil [4].

Nevertheless, actually, about 20 years before Mie’s paper, another theory, treating
the same problem, had been produced by Lorenz [5, 6]. Hence, rather than speaking
of Mie’s theory, I always preferred to give the name of Lorenz–Mie to the theory under
discussion, namely Mie’s theory. Several historical papers are available concerning
the formulation of Lorenz, and its relationship with that of Mie [7–10]. According
to these references, Mie’s and Lorenz’ theories lead to the same experimental pre-
dictions, that is to say, they are empirically equivalent. The work of Lorenz has been
overlooked, certainly in part because it has been written in Danish but, most impor-
tantly, certainly as another reason, it happens that the theoretical framework used by
Lorenz was not that of Maxwell, but another one, of a mechanical nature, relying on
the existence of ether. Therefore, although the two theories are empirically equiva-
lent, they rely on two different visions of the world, i.e. two different ontologies. In
other words, we are facing two conflicting empirically equivalent theories. When I
heard of this story, I found it weird. It took me much time before being able to dis-
cuss this issue in a satisfactory enough context. This context pertains to epistemology
and is described by what can be called the Quine’s thesis of underdetermination of
theories by experiments (Quine’s underdetermination in short), to which this paper
is essentially devoted, i.e. I am taking the pretext of theories by Lorenz and Mie to
take the reader to a tour and detour in the landscape of epistemology.

Quine’s underdetermination is related to the issue of realism in science. Many
scientists have opted for a strong (sometimes also called: naive) realistic interpreta-
tion of science. Such a realistic vision has been challenged by many philosophical
doctrines, since a long time, such as by various kinds of idealisms, obviously includ-
ing the transcendental idealism of Kant. More recently, the realistic interpretation
has been also challenged by quantum mechanics. Quine’s underdetermination thesis
constitutes another source of troubles for those who would like to share a realistic
interpretation of science. This thesis may receive various formulations. One of them
states that, for any one theory formulation, there is another one that is empirically
equivalent to it but logically incompatible with it, and cannot be rendered logically
equivalent to it by any reconstrual of predicates [11]. This is a rather abstract enun-
ciation but, for this chapter, it is sufficient to remark that the previous statement is in
agreement with the following one: we may face several theories which are empiri-
cally equivalent but conflicting. There are different ways for theories to conflict. One
of them is indeed at the stage when we are facing two logically incompatible theories.
However, we shall consider another possible way to encounter conflicting theories,
namely theories may conflict when they exhibit different ontologies (furnitures of
the world). Such a situation defines what I call the ontological underdetermination.
Ontological underdetermination is easier to grasp than Quine’s underdetermination.
In particular, while Quine’s underdetermination thesis has not been satisfactorily
exemplified (in the viewpoint of physicists, to the best of my present knowledge),
I may provide quite decent examples for ontological underdetermination.
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This chapter is organised as follows. After a discussion concerning the con-
cept of underdetermination of theories by experiments (Sect. 3.2), I shall discuss,
in Sect. 3.3, three examples, or case studies, relevant to physical sciences (i) one
pertaining to classical mechanics: Newton’s formulation of classical mechanics ver-
sus Hamilton-Jacobi’s formulation (ii) causal interpretations of quantum mechanics
(mainly: pilot wave theory) versus Copenhagen interpretation and, last but not least,
at least for a scatterist (iii) Mie’s theory versus Lorenz’ theory. In Sect. 3.4, dis-
criminations between undecidable ontologically under-determined theories are later
achieved using ampliative arguments, that is to say arguments allowing one to decide
between undecidables. Section 3.5 is the conclusion.

3.2 Quine’s and Ontological Underdeterminations,
with Precursors

Before any attempt to systematise the concepts of underdetermination and associated
undecidability, it may be useful to provide a flavour of them by invoking the history
of sciences. As far as I have been able to find, the first relevant historical notice is
to be found in Osiander (laconically mentioned by Harré [12], but without referring
to Quine). Osiander has been in charge of printing the famous book by Copernicus
(De Revolutionibus Orbium Coelestium). In a rather contested famous preface [13],
[14], he wrote that “Copernicus hypotheses did not need to be true or even proba-
ble. It would be sufficient if they saved the appearances”. Answering a letter from
Copernicus, wondering whether he should publish his book, Osiander replied that
“as far as he is concerned, he always believed that hypotheses are not articles of
faith but starting points for computations, so that, even if they are false, it does not
matter, if they simply exactly represent the phenomena”. In another letter, he wrote
that “Aristotelians and theologians will be easily pacified if they are told that several
hypotheses can be used to explain the same apparent movements; and that the present
hypotheses are not proposed because they are actually true, but because they are the
most convenient to compute the apparent combined motions.”

Later on, in the same context (geocentrism versus heliocentrism), but regarding the
famous Galileo Galilei’s affair, the Pope Urbain VIII stated that a hypothesis which
gives results does not necessarily represent the reality, for there may be several ways
to explain how the Lord produces phenomena. This statement from Urbain VIII is
reflected in a statement from Simplicio [15] concerning the ebb and flow of tides: ...
“God ... can give to water the alternated motion that we observe ... by using various
ways, unthinkable to our mind.” Let us however mention that this statement might
have been motivated by a political and strategic desire to pacify the catholic hierarchy
(although, this is a statement from Simplicio, not from Salviati).

Later, we have to mention Descartes, quoted by both Duhem [16] and Van Fraassen
[17]. In the third part of his principles of philosophy [18], Descartes indeed stated
that what he wrote should be taken as a hypothesis, possibly far remote from the
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truth. But, even in this case, Descartes believed he would have done much if only all
the things that can be deduced from the causes he exhibited would entirely agree with
the experiments. Furthermore, such a false hypothesis, agreeing with experiments,
would be as useful to the life as a correct one, because it can be used in the same
way as the correct one to produce the effects that we want to produce.

There are actually many places in the principles of philosophy by Descartes where
such considerations are put forward. Let us simply mention another one, taken from
the fourth part of the principles [19], in which Descartes wrote that, “... in the same
way than an industrious watchmaker can produce two watches which indicate the
same time, without any difference which can be perceived for the external eye ... it
is certain that God possesses an infinity of various means, allowing him to make that
all the things of this world look as they now look, without however any possibility
for the human mind to know, among all the means it could use, which one he actually
used.” And Descartes reiterated the idea that, in some sense, it does not matter: ..and
I would believe having done enough if the causes I explained are such that all the
effects they can produce are like the ones that we see in the world, without informing
myself whether it is by them or by others that they are produced. I even believe that
it is equivalently useful in life to know the causes we have imagined or to know the
true ones.

Just after, Descartes, referring to Aristotle, also wrote that regarding the things
which our senses do not perceive, it is sufficient to explain what they could be, though
perhaps they are not as we describe them. For Van Fraassen [17], Descartes here
voiced a thoroughly empirical sentiment. Under a given interpretation, a physical
theory describes how things are - one way they might indeed be - but the story is
not unique, and for an empiricist it need not be unique. The idea that we may have
several stories is indeed in the spirit of Quine’s underdetermination.

In most cases, the history of Quine’s underdetermination, as has been reported
up to now, heavily relies on the invocation of the Supreme Being, namely God. The
process from a theological understanding of Quine’s underdetermination to its secular
interpretation is already achieved with Pascal. In a letter to the Révérend Père Noël
[20], he wrote: “In the same way than a same cause may produce several different
effects, a same effect can be produced by several different causes. Therefore, when
one discusses, with our human abilities, of the motion and of the stability of the
Earth, all phenomena of movements and retrogradations of the planets may perfectly
be derived from the hypotheses of Ptolemy, of Tycho, of Copernicus and of many
others, although from all of them only one can be correct”.

With Duhem, and his famous book on the structure of physical theories [16], we
arrive at one of the two thinkers who gave his name to a Duhem-Quine thesis (holism),
not to be confused however with Quine’s underdetermination [11], although the name
of Duhem can also be (and has been) associated with Quine’s underdetermination.

Duhem expressed the issue under discussion, in general terms, by comparing,
and opposing, the French and the English styles of making physics. As he stated, for
geometricians, like Laplace or Ampère (on the French side, but forgetting Descartes,
a theological precursor of Duhem), it would be absurd to give to a law of physics
two different theoretical explanations, and to express the idea that two such different
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explanations can be simultaneously valid. But, in contrast, for scientists building
models, like Thomson or Maxwell (on the English side), there is no contradiction in
the fact that a given law could be apprehended by two different models.

Lifting the issue to still more general terms, beyond a plain comparison between
different national ways of thinking and working, he raised the question to know
whether it is allowed to symbolise several distinct groups of experimental laws, or
even a single group of laws, by using several theories, each one relying on hypothe-
ses which cannot be reconciled with the hypotheses underlying the other ones. For
Duhem, the answer is that, “if we restrain ourselves to the use of pure logical reasons
(emphasised because Duhem himself emphasised), then one cannot prevent a physi-
cist to use several irreconcilable theories to represent various sets of laws, or even
a single set of laws.” And, he concluded, one cannot condemn incoherence in the
physical theory. This is a point of view which agrees with the opinion of Poincaré,
quoted by Duhem, according to which two contradictory theories, if we do not com-
bine them, and if we do not search with them to do things thoroughly, can both be
useful tools for research.

Among other discussions from Duhem, not always convincing, there are discus-
sions of physical laws or of theoretical facts that have nothing to do with formally
and consistently structured theories such as relativity or quantum mechanics (that
Duhem could not know) or Newtonian mechanics and Maxwell’s electromagnetism
(that Duhem did know).

Up to now, with all these precursors, we possess some general formulations of
Quine’s underdetermination without however any concrete example, nor demonstra-
tion, that could usually satisfy a physicist. Could possibly Quine himself be more
convincing? The reader might refer to “Word and Object”, regarded as the most
important book from Quine [21] or to the “Pursuit of Truth” [22], his last book. The
French reader may also find a synthetic account of the work of Quine in Ref.[23].
But a specific and specialised report is available in a famous paper by Quine [11] to
which I shall better refer.

At the beginning of his paper, Quine stated what could be the essence of the
underdetermination thesis as follows: If all observable events can be accounted for
in one comprehensive scientific theory- one system of the world, to echo Duhem’s echo
of Newton- then we may expect that they can all be accounted for equally in another,
conflicting system of the world. Such an expectation may rely on the examination of
how scientists work. For they do not rest with mere inductive generalizations of their
observations: mere extrapolation to observable events from similar observed events.
Scientists invent hypotheses that talk of things beyond the reach of observation. These
hypotheses are related to observation only by a kind of one-way implication, namely,
the events we observe are what a belief in the hypotheses would have led us to
expect. These observable consequences of the hypotheses do not, conversely, imply
the hypotheses. In the words of Quine, this defines a doctrine, a doctrine saying that
natural science is empirically under-determined, a doctrine from which we can say
that it is plausible insofar as it is intelligible, but it is less readily intelligible that
it may seem. The doctrine is afterward exposed in general terms (i.e. again without
any convincing example) which alone do not allow one to be clearly convinced,
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something which is implicitly acknowledged by Quine when, instead of using the
word “truthfulness”, he is content of using the word “plausibility”. Redefining more
carefully the thesis, Quine arrived to the following formulation: “underdetermination
says that for any one theory formulation there is another that is empirically equivalent
to it but logically incompatible with it, and cannot be rendered logically equivalent
to it by any reconstrual of predicates.” Eventually, after more discussions, he landed
on the following form, that “our system of the world is bound to have empirically
equivalent alternatives which, if we were to discover them, we would see no way
of reconciling by reconstrual of predicates.” Whether the thesis, under this vague
and modest form, is true or not, this remains for Quine an open question. However
Quine, as he said, believed to it. A logician might roar in face of such an incongruous
object: a (scientific? philosophical? rational?) thesis which cannot be demonstrated
but must be a matter of faith. At this stage, we may certainly agree with Harré [12]
when he spoke of the myth of the underdetermination of theories by data.

One of the most difficult things to correctly state Quine’s underdetermination
thesis is to precisely define what is a theory and/or to define to which kinds of theories
the thesis applies. Consider for instance the old theory of Bohr correctly explaining
the energy levels of the hydrogen atom. The energy levels predicted by Bohr are in
perfect agreement with the energy levels predicted by Schrödinger from his equation.
Should we consider that we have here a simple example of the application of Quine’s
underdetermination thesis? Certainly not, and this for at least one reason, namely that
all predictions of Bohr’s model do not agree with all predictions of Schrödinger’s
wave mechanics. Therefore, we have here two theories (let us accept the name of
theory) which are not experimentally equivalent in all aspects.

Quine himself was aware of this difficulty. On the one hand, one of the formu-
lations of the thesis, the one I provided at the beginning of this section, refers to
all observable events. If we interpret this expression as concerning what it means,
i.e. all observable events, whether they have been already actually observed, in the
past, or are to be potentially observed, in the future, then the underdetermination
thesis should be applied to the whole of science, however, not yet completed. The
validity of the thesis when applied to the whole of science is certainly something
overwhelmingly difficult to convincingly establish. On the other hand, the thesis is
of no value for weak theories, i.e. theories that imply no rich store of observation
conditionals, cases where the thesis can be trivially and therefore uninterestingly
satisfied. So, at the best of our present common understanding, examples of Quine’s
underdetermination thesis should be searched for theories which are rich enough
without being, because unrealistic, the whole of science.

Another complementary point of view may be gained if we attach a domain of
validity (or of application) to each theory, from the simple ones (fire burns, water
is humid) to the most achieved one, the ultimate theory which would generate the
whole of science, encompassing all domains of validity, if any. If we affirm, by a fiat,
that we are just interested with energy levels of the hydrogen atom, therefore defining
in this way a domain of validity, then we could take the agreement between Bohr’s
model and the results from Schrödinger’s equation as a decent example of Quine’s
underdetermination. This, however, is something that we are very reluctant to accept,
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because the levels of the hydrogen atom define a very weak domain of application.
Therefore, the problem is not only to define exactly what can be named a theory, but
also what are admissible domains of validity (or of application). There is indeed a
quasi-continuum of theoretical constructions, from a simple experimental law to a
consistent theory like relativity, and there is also a quasi-continuum of domains of
validity, from a certain domain, like the quantum mechanical domain, to subdomains,
and sub-subdomains, like the one concerning only the predictions of energy levels
of the hydrogen atom.

A pertinent analysis of Quine’s anthropology is available from Laugier-Rabaté
[24]. According to this author, it appears that Quine did not provide convincing
examples for his thesis of the underdetermination of the radical translation (another
famous thesis from Quine, not discussed in this paper). And, as other authors like
Duhem, the lack of convincing examples is also characterising the thesis of the
underdetermination of theories by experiments. Quine himself would certainly agree
with this statement if we refer to the mood expressed in his Erkentniss-paper [11].

Another author who is often quoted as relevant to the issue of Quine’s under-
determination is Van Fraassen, in particular in reference to his book “Laws and
Symmetries” [25]. Van Fraassen distinguished between theoretical equivalence and
empirical equivalence. For him, if two statements are logically (theoretically) equiv-
alent, then they are saying the same thing. However, if we consider a theory as a kind
of statement, say a meta statement, we have at least one example to demonstrate that
the affirmation of Van Fraassen is erroneous. This example concerns the Newton’s
and Hamilton-Jacobi’s formulations of classical mechanics (soon to be discussed).
As we shall see, both theories may be viewed as logically, theoretically, equivalent
by the simple fact that they are mathematically equivalent. But they are not saying
the same thing. Contrarily, they are proposing two drastically different visions of the
world, one with local trajectories, the other with local trajectories embedded into a
non-local field.

Also, Van Fraassen believed (as everyone he said!) that there exist numerous
theories, may be not yet formulated, but which are in agreement with the experimental
facts which are up to now known, and these theories are at least as explanatory as
the best theories that we possess nowadays. However, he added, the big majority
of these theories must be erroneous because they may disagree, in many different
manners, with experimental facts not yet known. He concluded that our best theory
is very unlikely to be correct. I would like to express this idea with a probabilistic
flavour: if there is only one truth, we are sure to be in error.

Elsewhere, Van Fraassen [17] discussed the lack of unicity asserted by Quine’s
underdetermination in association with the existence of different interpretations of
quantum mechanics. As he wrote, “why then be interested in interpretation at all?
If we are not interested in the metaphysical question of what the world is really like,
what need is there to look into these issues? Well, we should still be interested in the
question of how the world could be the way quantum mechanics–in its metaphysical
vagueness but empirical audacity–says it is. That is the real question of understand-
ing. To understand a scientific theory, we need to see how the world could be the
way that the theory says it is. An interpretation tells us that.” Later on, he added:
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“the answer is not unique, because the question ‘How could the world be the way
the theory says it is?’ is not the sort of question to call for a unique answer.”

The issue of interpretation is also considered by Cushing [26]: “Very loosely,
the formalism refers to the equations and calculational rules that prove empiri-
cally adequate (i.e. getting the numbers right) and the interpretation refers to the
accompanying representation the theory gives us about the physical universe (i.e. the
picture story that goes with the equations of what our theory ‘really’ tells us about the
world). Since a (successful) formalism does not uniquely determine its interpretation,
there may be two radically different interpretations (and ontologies) corresponding
equally well to one adequate formalism. This can be taken as an instantiation of the
Duhem-Quine thesis of undetermination of theory by an empirical base. Even if one
wants to restrict (and, arguably, that would be a mistake) the Duhem-Quine thesis
to different formalisms each handling equally well a given body of empirical infor-
mation, there nevertheless remains the interesting and important point of opposing
ontologies equally well supported by a common empirical base.”

The correct understanding of this Cushing’s quotation requires us to tell more
on the terminologies we may use. We have extensively discussed Quine’s thesis of
underdetermination. As underlined by Quine himself [11], this thesis “is not to be
confused with holism. It is holism that has rightly been called the Duhem thesis and
also, rather generously, the Duhem-Quine thesis. It says that scientific statements
are not separately vulnerable to adverse observations, because it is only jointly as
a theory that they imply their observable consequences.” In contradiction with this
quotation from Quine, but in agreement with other authors, Cushing used the termi-
nology “Duhem-Quine” to designate Quine’s underdetermination. Sometimes, the
expression of Duhem-Quine theorem (a philosophical theorem not demonstrated!)
may be found to express an enunciation of Quine’s underdetermination thesis.

Now, both van Fraassen and Cushing, driving us towards the issues of inter-
pretations and ontologies, allow one to put forward another point of view on the
interpretation of Quine’s underdetermination thesis, a point of view concerning
ontologies associated with theories and interpretations of theories. Let us enunciate
a Duhem-Quine theorem under the following form: we may have several conflicting
theories which are empirically equivalent. Now, such an enunciation is not complete
if we do not specify the meaning of the word “conflicting”. The meaning could be
as given by Quine, for example: two theories are conflicting when they are logi-
cally incompatible, and cannot be rendered logically equivalent by any reconstrual
of predicates. From now on, we use another definition: two theories are conflicting
when they exhibit different ontologies. The thesis of ontological underdetermination
then states that we may have empirically equivalent theories which do not exhibit the
same ontologies. It remains to define what is an ontology: the ontology of a theory
tells us which kinds of entities are populating the world. It describes the furniture of
the world as implied by the interpretation of the theory. For instance, the furniture of
classical physics is made out from localised objects and fields (possibly taking the
form of waves).

We are now going to provide explicit and well-defined examples of ontologi-
cal underdetermination, relying on theories which are rich enough, although not
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describing the whole of science, namely classical mechanics, quantum mechanics
and electromagnetism.

3.3 Case studies

The possibility of an underdetermination of theories by experiments is usually much
disliked by physicists, and the vagueness which remains attached to this concept after
the somewhat fuzzy efforts of philosophers does not help. Squires [27] expressed
this point with a bit of humour or even irony by saying that “the statement that two
theories, both of which fit the data, are equally good can be seen to be unreasonable if
we note that a theory in which the sun always turns into cream cheese as it disappears
over the horizon, and turns back again later, gives a perfectly adequate account of my
observation.” Hence, to be convinced, the physicist demands convincing examples,
concerning rich enough theories.

3.3.1 From Classical Mechanics

This section introduces the first example of ontological underdetermination with a
rich enough domain of validity which is that of (nonrelativistic) classical mechanics.
We restrict ourselves to the mechanics of matter points without any loss of generality;
however, insofar as an extended body may be viewed as a collection of matter points
(in Newtonian framework).

It is known that classical mechanics can be declined under four different for-
mulations, which are empirically equivalent. These are Newton’s, Lagrange’s,
Hamilton’s and Hamilton-Jacobi’s formulations. We only need in this chapter to
discuss Newton’s and Hamilton-Jacobi’s formulations. Discussing Newton’s formu-
lation is fast. It is sufficient (and necessary) to recall that, using the basic law telling
us that force is equal to mass multiplied by acceleration, and integrating with initial
conditions, we can build trajectories of matter points. Hamilton-Jacobi’s formula-
tion is however less familiar, see for instance Louis de Broglie [28], Blotkhintsev
[29], Landau and Lifchitz [30] and Holland [31]. For several reasons, in particular to
save room, I am not going to provide here a thorough exposition of this formulation,
I mean using mathematical expressions. The essence may be conveyed in plain words.
The typical main quantity of the Hamilton-Jacobi’s formulation is an extended field
S having the dimension of an action, satisfying a certain partial derivative equation,
for which a general solution is to be found. The trajectories of the Newton’s formu-
lation are orthogonal to iso-values surfaces of S. For the first time, in the history of
science, the motion of a localised object (a matter point of classical mechanics) was
associated with the existence of an extended field.

Therefore, we now indeed possess two formulations of classical mechanics, the
Newton’s and Hamilton-Jacobi’s formulations, which are empirically equivalent, but
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which are in contradiction insofar as they do not say the same thing on the world, i.e.
they do not exhibit the same ontologies. Indeed, Newton’s formulation only deals with
localised objects following trajectories, while Hamilton-Jacobi’s formulation deals
with localised objects following trajectories dressed by an unobservable, non-local,
action field filling the space. Because they are conflicting, these two formulations may
be counted as two different theories. They have to be taken as forming an example
of ontological underdetermination, for rich enough theories, except if we just shrug
our shoulders and rashly sweep S under the carpet.

A possible escape could be as follows. Since we are used to observe trajectories
of macroscopic objects in our everyday experience (macroscopic objects, not matter
points however), we are keen to believe that the field S of the Hamilton-Jacobi’s
formulation does not have any physical reality, but is simply an intermediary tool
for computations. After all, this field does not pertain to our sense data. Then, we
would have found a way to discriminate between Newton’s and Hamilton-Jacobi’s
formulations (theories) in favour of Newton’s formulation, by denying S to be an
ontological entity. As we shall see, this point of view, although highly reasonable,
will reveal itself to be erroneous.

3.3.2 From Quantum Mechanics

For the second case study, we are going to compare two different kinds of interpre-
tations (actually two different theories) of quantum mechanics, the usual one, the
one in textbooks, which is conventional, standard, orthodox and the causal theories,
the heretical and unorthodox ones, mainly developed by Louis de Broglie and David
Bohm. As for the previous case, we shall avoid mathematical formulae to express
the essence in plain words.

The usual quantum mechanics, on the one hand, exhibits an intrinsic undeter-
minacy, associated with the Von Neumann’s projection postulate governing any
quantum measurement process. The causal theories, on the other hand, restore the
determinism in quantum mechanics by invoking a subquantum level containing
Newton-like trajectories of hidden particles. These causal theories are examples of
what is called “hidden variables theories”.

By definition, “causal theories” specifically refers to two theories initiated by
Louis de Broglie (double solution and pilot wave) intending to restore determinism
in quantum mechanics, hence producing a picture of the world much different from
the one provided by quantum mechanics. A good enough understanding of the issue
may be gained by reporting on a brief history of causal theories. Reporting on such a
history is a fairly simple exercise because we possess many invaluable testimonies,
in particular from the two main protagonists of the enterprise, namely Louis de
Broglie and Bohm, e.g. [28, 32–39] or [40], for a selection. Complementary historical
analyses and reports are also available from Vigier [41], Jammer [42, 43], Pinch
[44], Wheeler and Zurek [45], Holland [31] or Cushing [46], among others. A more
general point of view, not only on causal theories, but also on larger classes of hidden
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variables theories, is also discussed by Freistadt [47], Belinfante [48], Pipkin [49] or
d’Espagnat [50].

It happened that, for many reasons, Louis de Broglie was dissatisfied with quantum
mechanics, and then committed himself to the development of alternative theories.
Indeed, he certainly has been one of the most severe and most eloquent opponents
to the Copenhagen orthodoxy. He took many opportunities to claim his displeasure,
and even his reluctance, in particular with respect to the following items: the impos-
sibility to represent the motion of a quantum object in ordinary space and time and, in
contrast, the use of an abstract configuration space; more generally, the impossibility
of reconciling quantum mechanics with the clear ideas of classical physics; or the
fictitious and subjective character of the wave function (its probabilistic interpreta-
tion, or his lack of objectivity when it is interpreted as representing only a state of
knowledge). Indeed, for Louis de Broglie whose mind was educated with classical
physics, the ideas of the new physics, out of space, out of time and out of causality,
generated a head-on conceptual collision. Also, Louis de Broglie complained about
what has been called elsewhere the complacency to quantum mechanics, for instance
in [37] where he expressed his increasing conviction that the reasonings underlying
the present interpretation of quantum mechanics are not as decisive as they look, and
contain many small cracks. He later also expressed his feeling that most of the present
theoreticians, capitulating in face of exaggerated abstract tendencies, renounced too
easily to the building of an intelligible picture of quantum physical phenomena.

Very likely, the most important clash in Louis de Broglie’s mind arose from the
conflict between the concepts of particles and waves. This may be inferred from the
very writings of Louis de Broglie, in particular when he stated [34] that the duality
between waves and particles constituted the big tragedy of contemporary physics.
Quantum mechanics succeeded in a magnificent way to dissolve the duality between
waves and particles by a synthesis. Quantum objects are not classical waves and
they are not classical particles: not wave nor particle, but something else. For Louis
de Broglie, however, the price to pay was too heavy. In building hidden-variables
theories, he made the choice of another option: wave and particle [42]. The duality
became a complementarity, not however in the sense of Bohr. As soon as Louis
de Broglie conceived his first ideas on wave mechanics, there was no doubt for
him that it was necessary to find a new theory, synthesising the concepts of waves
and particles, and retaining as far as possible their traditional aspects. Concerning
particles, although quantum mechanics rejects the very concept of trajectory, Louis
de Broglie wanted to preserve it. For him, the two points of view (rejecting and
preserving) were not deeply conflicting because [35], from the fact that quantum
measuring processes do not allow us to simultaneously assign a position and a state
of motion to a corpuscle, it does not necessarily follow that, in reality , the corpuscle
does not have any position nor velocity. Concerning waves, for Louis de Broglie,
they had to be preserved too. In particular, Louis de Broglie was impressed by the
fact that the theory of atoms introduced integers to deal with the stationary motion
of electrons. But, in classical physics, such occurrences of integers only arose in
interference phenomena, and in oscillatory normal modes. Therefore, for Louis de
Broglie, corpuscles and waves were to become, in some way, two aspects of the same
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thing. As he expressed during the Solvay Congress of 1927 [51], the existence of
elementary corpuscles for matter and radiation being admitted as a matter of fact,
these corpuscles are supposed to be endowed with a periodicity. In such a vision, a
matter point is no more conceived as a static entity only concerning a tiny part of
space, but as the centre of a periodic phenomenon spreading around it. This idea that
a periodic phenomenon must be associated with a corpuscle, has been an obsession
to which Louis de Broglie dedicated most of his life.

The way to achieve the synthesis was to consider the corpuscle as a kind of per-
manent singularity embedded in an extended wavy phenomenon. This has led Louis
de Broglie to a theory known as the double solution. The name of the theory comes
from the idea (about 1925–1927) that the equation of motion of wave mechan-
ics (Schrödinger’s equation of course) is satisfied simultaneously by two coupled
equations. One solution, denoted u, represents a singularity, describing really the
corpuscle associated with the wave while the other solution, with a continuously
variable amplitude, describes only the statistical behaviour of the motion of a cloud
of particles. The first singular solution exhibits very high values of amplitudes, even
infinite in an early version, around a moving point of space. We are then facing a local
moving singularity which can be identified with a corpuscle. For Louis de Broglie,
although the motion of this corpuscle should admittedly satisfy new dynamical laws,
it should develop itself along a trajectory, with a well-defined velocity at each point
of it. The second solution formally identifies with the Ψ of quantum mechanics, but
with a different interpretation. For Louis de Broglie, the Ψ of the double solution, as
the Ψ of quantum mechanics, does not exactly describe the physical reality. It leads
indeed to a statistical theory, representing some kind of average, when the actual
trajectories followed by the corpuscles are totally unknown, with the exhibition of
two layers, the second layer, the deepest one, being of a classical nature and there-
fore deterministic. Then, at the level of the first layer , Ψ can be viewed as fictitious,
statistical, subjective, without however any epistemological damage.

The quantum mechanical indeterminacy then results from our lack of knowledge
concerning the initial conditions required to build the trajectories of the corpuscles in
the cloud. Therefore, determinism is restored in a classical way, with indeterminism
as the consequence of a lack of knowledge, instead of being of an intrinsic nature.
We obtain a hidden variables theory with hidden variables associated with quantities
describing the hidden trajectories. This is a brief summary of the first causal theory
of Louis de Broglie.

To gain a better understanding of the theory of the double solution, and more
important, of where it may come from, let us return to the Hamilton-Jacobi’s formu-
lation of classical mechanics. Let us recall that, in Hamilton-Jacobi’s formulation
of classical mechanics, we are facing trajectories which are orthogonal to iso-value
surfaces of the action S. Actually, we may consider a cloud of particles, generating
a compact set of trajectories, embedded in and orthogonal to a field phenomenon
extended in space. This is a classical structure that Louis de Broglie attempted to
generalise to a quantum mechanical structure. The motivation for this attempt was
that Louis de Broglie believed that it was wrong to abandon the notion of trajec-
tories, followed by classical particles. The Hamilton-Jacobi structure then provided
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a natural already ready framework for an efficient generalisation because, now, in
quantum mechanics as in classical mechanics, we have trajectories embedded in a
field. In the corresponding structure for quantum mechanics, quantum trajectories are
now orthogonal to a field formed by the phase of Ψ . It may be demonstrated that, in
the classical limit, this phase of Ψ identifies with the field S (within a multiplicative
constant).

Next, Brussels, in 1927, has been the very place where occurred a living con-
frontation between eminent experts of the time, the very place where the Copenhagen
interpretation has become the dominating one [42, 51, 52]. It also has been a turning
point for the history of the newly born causal theories, the very place where Louis de
Broglie has been defeated. This happened as follows. In the spring of 1927, Lorentz
asked Louis de Broglie to prepare a report on wave mechanics for the forthcoming
Solvay Congress to be held in october. Louis de Broglie, at this time, was fighting
with the many mathematical difficulties he encountered when trying to make his
double solution satisfactory enough. He then found it too hazardous to expose his
not yet ready theory, and decided to fall back on a simpler half-hearted point of view,
named the pilot wave theory, the second causal theory of Louis de Broglie, that he
himself called a degenerated version of the double solution.

In the pilot wave theory, Louis de Broglie held fast on to the existence of corpuscles
and also admitted the validity of the wave equation of wave mechanics, even if only
of a statistical nature. He then placed the corpuscle inside the wave and assumed
that its motion is driven by the propagation of the wave. The driving process is
described by a guidance formula which made trajectories orthogonal to the isophases
of Ψ (again our now familiar Hamilton-Jacobi’s picture). Therefore, the corpuscle
is viewed as an entity which is piloted by the wave Ψ , hence the name given to the
theory. Something is lost however with respect to the double solution. The corpuscle
is guided by the wave but it is no more incorporated in a tight way inside the wave.
Also, the wave-particle duality is acknowledged as a matter of fact, but there is no
more any understanding of its nature. However, the intuitively appealing notion of a
localised particle with a deterministic motion along its trajectory is preserved [53].

During the Solvay Congress, discussions were sharp: Bohr, Heisenberg, Born
defended the Copenhagen probabilistic interpretation. In particular, Bohr
re-expressed his idea of complementarity (presented previously in a Como lec-
ture), the fact that underlying quantum events are outside of space and time, and
that the space/time description and the causal description are complementary [54].
Schrödinger attempted to put forward its interpretation of a corpuscle viewed as a
wave packet, i.e. he did not believe in the existence of corpuscles as basic entities.
He expressed his displeasure in the face of what would become the orthodox inter-
pretation. For him, it seems that there is an indication that, when our knowledge
has progressed enough, everything will eventually become understandable again in
a 3D space. But he did not support Louis de Broglie [55]. Lorentz rejected the prob-
abilistic approach and insisted on the fact that physics should rely on clear notions
in the framework of space and time. Pauli attacked the pilot wave, stating that he
did not believe that the representation of Louis de Broglie could be developed in a
satisfactory way. Einstein, deeply hostile to a genuine probabilistic interpretation,
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vigorously attacked it, against Bohr and did not win. But more important and most
disappointing for Louis de Broglie is that Einstein, although in principle in favour of
a deterministic interpretation, did not support him. For details, we may return to the
printed discussion following the presentation of Louis de Broglie [53] which is not
very enthusiastic, and also to the final discussion following the bulk of the Congress
[51].

As a whole, besides the laconic indifference of Einstein, the pilot wave theory of
Louis de Broglie was severely criticised, possibly in a much more acerbic way than
the one we could draw by simply studying the accounts of the Congress [51]. You
know, during a congress, there is not only a conference room for public debates but
also coffee breaks, corridors and all sorts of informal gossips, particularly if, as was
the case, all participants shared the same hotel. Indeed, according to a testimony from
Heisenberg [56], the most animated discussions occurred during meals at the hotel.
This is the place where Einstein put forward, several times, his famous objection
that God does not play dices, to which Bohr could only reply that it is not to us to
prescribe how God should rule the world [56]. It might however be significant that
the name of Louis de Broglie is not mentioned at all by Heisenberg in this book [56]
where he reported so many details on what has been going on during the Solvay
Congress of 1927. This was however not a complete boycott of Louis de Broglie.
Indeed, Heisenberg let him express extensively in one of his books [57], although not
on the issue of hidden variables. A dramatic feature is that Pauli made an objection
that Louis de Broglie could not successively strike down. This objection was that the
pilot wave theory (or model) could not be applied in a coherent way to the case of
a two-body scattering process, specifically to the Fermi quantised rotator. Louis de
Broglie had become a lonesome warrior.

Returning from Brussels to Paris, thinking more about the pilot wave and on what
happened during the Solvay Congress (no support from Einstein, at least publicly,
Pauli’s objection, generally little support to him even from the parts of Schrödinger or
Lorentz ...), Louis de Broglie felt poignantly alone (Bohm’s testimony in [44]). It is
not a big step forward to believe that he must have felt depressed too. He thought that
Pauli’s objection could possibly be refuted, but more important, he found new objec-
tions by himself (such objections are discussed in [28]). The most significant one is
that, in the pilot wave model, the objective corpuscle was guided by a waveΨ which,
insofar as it was reflecting our state of knowledge, was of a subjective nature. How
something subjective could possibly guide something objective? Another objection,
again associated with the status of Ψ , concerns the many-body problem because,
for this case, it is even more difficult to consider the pilot wave theory as giving a
genuine physical picture of phenomena, due to the fictitious and abstract character of
the propagation of a wave in the configuration space. Also, there was little comfort
with the double solution. It did not suffer from the above objections but was buried
in mathematical difficulties that, actually, Louis de Broglie never succeeded to solve.
For Louis de Broglie however, if the causal theories he started to develop were one
day or another day able to grow again from their ashes, it would be from the double
solution approach. Such a phoenix process would certainly be impossible from the
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pilot wave model (he erroneously thought), because this degenerated version was
absolutely indefensible.

Facing such a situation, Louis de Broglie felt so discouraged that he gave up
the causal theories, only a few years after he introduced them. He then capitulated,
defeated by the probabilistic interpretation, and even accepted to teach it, although,
we guess, reluctantly. Later on, Born will take notice of the acceptance by Louis de
Broglie of his defeat, and of his acknowledgment that the probabilistic interpretation
(the one of Born) is the only adequate one [58]. In 1932, five years after Brussels,
1927, von Neumann, in his celebrated book [59], produced a proof of the impossibility
of hidden variables which, seemingly, closed the issue forever. Apparently, this was
the final knock.

Ironically enough, it was not the double solution but, in contradiction with Louis
de Broglie’s expectation, the pilot wave theory which made the legendary Arabian
bird born anew from ashes. In 1952, Bohm published two papers on a pilot wave
approach [38, 60] in which he pointed out the fallacy of von Neumann’s proof of
impossibility, provided a rebuttal to Pauli’s objection and proposed a consistent solu-
tion to the measurement problem, among other issues. From an epistemological and
also methodological point of view, one of the most interesting features of Bohm’s
approach is the way he dealt with one of Louis de Broglie objections, namely the one
concerning the subjectivity of Ψ and the damning question to know how such a sub-
jective entity could pilot an objective corpuscle. For Bohm, the answer is incredibly
simple. By a kind of fiat, he just decreed from the beginning that Ψ is an objective
wave. This is however made consistent by the fact that Bohm provided an objective
solution to the measurement problem.

I shall not investigate deeply whether Bohm was aware or not of Louis de Broglie’s
work when he started to develop his theory, although we have the following testimony
from Bohm [39]: “then, in 1951 ... the author (that is to say Bohm) began to seek
such a model, and indeed shortly thereafter, he found a simple causal explanation of
the quantum mechanics which, as he later learned, had already been proposed by de
Broglie in 1927.” But, in any case, it is well attested that he was aware of it in 1951
because, one year before having his seminal papers published in 1952 in the Physical
Review, he sent preprints to Louis de Broglie. According to the latter, Bohm fully
picked up the pilot wave theory as it was exposed at the Solvay Congress of 1927,
including certain developments such as the introduction of a quantum potential. As a
matter of fact, he also acknowledged that Bohm was not aware of this work produced
25 years before, when he engaged himself on causal theories. He also acknowledged
that Bohm achieved a few more steps, in particular regarding Pauli’s objection and
the measurement problem [34]. The official reaction of Louis de Broglie has then
been to publish a C.R.A.S. to recall his indisputable priority in the topic, and also
the difficulties which made it repudiating the pilot wave after 1927 [33]. Objections
against the pilot wave are also summarised by Louis de Broglie in Refs. [28] and
[34].

According to a testimony of Bohm to Pinch [44], after having received the 1951
preprints, Louis de Broglie wrote back saying that he had already done this sort
of thing. Upon looking at the preprints, Pauli manifested a similar reaction, saying
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that “it was old stuff, dealt with long ago.” See Pauli [61] reporting on de Broglie-
Bohm story. But Louis de Broglie, in his reply to Bohm, also explicitly discussed
the objections against the pilot wave that made him give it up, and Bohm found that
he could answer them. The rebuttals are included in Appendix B of the second 1952
paper of Bohm [60] , saying: “all the objections of de Broglie and Pauli could have
been met if only de Broglie had carried his ideas to their logical conclusion.” Later
on, in many places, Bohm referred to Louis de Broglie as the primary father of the
filiation. For instance, in Bohm and Hiley [40], he wrote: “thus de Broglie proposed
very early what is, in essence, the germ of our approach,” and he considers his theory
as “‘an extension’ of de Broglie which answered all the objections.” But, as a whole,
the primary reception of Bohm’s ideas by Louis de Broglie was rather negative. In
the words of Belinfante [48], “when Bohm in his 1951 theory revived de Broglie’s
1927 theory of the pilot wave without attaching to it a theory of the double solution,
de Broglie objected against this by arguments that might have been presented by a
pupil of the Copenhagen school.”

Although Louis de Broglie’s reactions to Bohm’s work were not, at the beginning,
very enthusiastic (to say the least), he changed his mind rather fast, likely in part due
to the relevant answers of Bohm to his objections. According to Pinch [44], “these
answers were in part enough to convince de Broglie who then took up his original
interpretation again.” In the words of Cushing [46], “David Bohm’s 1952 paper was
to have a profound reconversion effect on de Broglie.” This was a new start for Louis
de Broglie who felt encouraged to take up his old ideas again, and to develop them in
various ways, with however his previous recurrent belief that the double solution was
on the right track. As testified in 1956 [35], Louis de Broglie has been wondering
since 1951 (the year when he received Bohm’s preprints) whether his first idea, the
double solution, after all, was not the correct one. In fact, already in 1952 [32], he
published a work in which he examined how the objective and causal theory of the
double solution could be taken up again.

Improvements and modifications are then introduced by Louis de Broglie. May
be the most innovative one concerns a new hypothesis telling that the equation of
propagation of the singularity wave u should be nonlinear, in contrast with the one for
Ψ which remains linear, although both equations are nearly everywhere identical.
Such a late focus on nonlinear equations was motivated by some developments
due to Einstein, in general relativity and unified field theory, in which besides the
gravitational field there also exist superimposed gravity singularities having to satisfy
nonlinear equations. We are here facing a strong similarity between the original ideas
of Louis de Broglie’s double solution and latest researches of Einstein, a similarity
pointed out by Vigier, and that Louis de Broglie tentatively exploited [35, 39, 41].

It is easy to pass from the double solution to the pilot wave. Essentially, what
we have to do is to forget anything concerning the second solution, that is to say
concerning the u-waves and their singularities, and to preserve the first solution Ψ
and the guidance formula driving the underlying hidden objective particles. Then,
these particles are piloted by the wave Ψ , hence the name of the theory. We are
still left with two versions, the pilot wave theory of Louis de Broglie, and the pilot
wave theory of Bohm. They essentially differ by the epistemological status of Ψ ,
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subjective for Louis de Broglie and objective for Bohm, and by the fact that Bohm
developed the theory much further, up to its logical conclusion, as he wrote. In
particular, objections which have been addressed to the version by Louis de Broglie
have been successfully enough answered by Bohm. From now on, when referring to
the pilot wave, we meant the 1952 version of Bohm [38, 60], which is enough for
further discussions.

In short, avoiding again, as in the previous case study, any mathematical devel-
opment, let us summarise by telling the reader that Bohm accepted the validity of
Schrödinger’s equation to describe the wave Ψ . However, Ψ is now viewed as an
objective field from the very beginning, exactly such as an electromagnetic field sat-
isfying Maxwell’s equations. We do not know from first principles why there should
be an electromagnetic field, nor do we know what is an electromagnetic field. There-
fore, why should we not adopt the same complacency for Ψ as the one we have for
E and H, or for their unification in an electromagnetic tensor Hi j ? In the words of
Bohm: “in the last analysis, there is, of course, no reason why a particle should not
be acted on by a Ψ -field, a gravitational field, a set of meson fields, and perhaps by
still other fields that have not yet been discovered.”

Elaborating on Schrödinger’s equation, Bohm demonstrated that the usual quan-
tum mechanics can be recast in another framework exhibiting Newton-like hidden
trajectories, forming a deterministic sublevel below the quantum level. In connection
with Hamilton-Jacobi’s formulation which inspired this approach, and to which it is
formally closely related, the velocity of the particles is orthogonal to the iso-phase
surfaces of Ψ which, therefore, indeed plays the role of a pilot wave.

Now, a most important fact is that the pilot wave is empirically equivalent to
quantum mechanics. Following Bohm, “all the results of the usual interpretation are
obtained from our interpretation if we make the following three special assumptions
which are mutually consistent:

(1) That the Ψ -field satisfies Schrödinger’s equation.
(2) That the particle momentum is restricted top j = ∂S/∂x j .

(3) That we do not predict or control the precise location of the particle, but
have, in practice, a statistical ensemble with probability density P = |Ψ |2. The
use of statistics is, however, not inherent in the conceptual structure, but merely a
consequence of our ignorance of the precise initial conditions of the particle.”

Therefore, we again have, in this example, two empirically equivalent theories
with conflicting ontologies: the orthodox quantum mechanics exhibiting an intrinsic
indeterminacy, and the heretical pilot wave relying on the deterministic motion of
hidden trajectories. In the pilot wave framework, indeterminacy is no more of an
intrinsic nature. It is simply the consequence of our lack of knowledge concerning
hidden trajectories. Probabilities are no more intrinsic, but now receive a classical
interpretation, like when tossing a coin, where our inability to predict the outcome
of the toss merely reflects our ignorance of initial conditions (and our inability to
carry out computations which are much too complicated and CPU-demanding).
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3.4 An Escape to Underdetermination: Ampliative
Arguments

3.4.1 Undecidability

The diagnosis of an underdetermination by experiments (whether ontological or not)
is the same as a diagnosis of undecidability. Let us comment on this issue by focusing
on the undecidability between usual quantum mechanics and pilot wave.

It has been argued that the pilot wave is simply quantum mechanics recast in
another language and, if this were true, the issue of undecidability could be of little
significance. We could say: just use the language you have learnt, except if you are
inquisitive enough to feel the desire to learn another language. But learning another
language means entering another world, facing a quite different way of thinking. And,
if this is true for natural languages, it is still true, or even more, when we compare
quantum mechanics and pilot wave. These two empirically equivalent, ontologically
conflicting theories, offer different visions and interpretations of the world.

This looks like a severe blow against realism, in some sense, that is to say against
the very idea that science could pretend to really tell us something on the world around
us. This might drive us towards cultural relativism. But what our case study does
imply is not an absolute relativism. It precisely tells us the following: in some cases,
we may be facing some undecidable statements because they pertain to undecidable
and even contradictory theories, which have however to be simultaneously accepted,
insofar as they are empirically equivalent. It does not tell us that undecidability is the
ultimate fate in all cases, nor in all aspects. For instance, both quantum mechanics
and pilot wave agree on the nonlocality of microscopic phenomena (in agreement
with experiments), i.e. some of the aspects of the veiled reality could possibly be
unveiled [62].

The most significant undecidable issue concerning quantum mechanics and pilot
wave is that of determinism, actually an issue which boosted the search for hidden
variables. Indeed, if we cannot decide between quantum mechanics and pilot wave,
we cannot decide between the intrinsic indeterminacy of quantum mechanics and the
determinism postulated, and later constructed, by causal theories. Both Einstein (an
opponent to quantum mechanics) and Born (a defender of quantum mechanics) even
agreed on the undecidability between determinism and indeterminism. In a letter to
Einstein, Born wrote: “You are absolutely right that an assertion about the possible
future acceptance or rejection of determinism cannot be logically justified. For there
can always be an interpretation which lies one layer deeper than the one we know
(as your example of the kinetic theory as against the macroscopic theory shows)”
[63]. Bohm used a similar argument and explicitly extended it to defend the unde-
cidability under question. For him, starting from an deterministic (indeterministic)
level of description, we can always imagine and construct a sub-level which would
be indeterministic (deterministic), and this ad infinitum. For instance, determinism
at a certain upper level may be the result of indeterministic, or possibly stochas-
tic, processes at the next lower level, e.g. macroscopic determinism resulting from
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averages over quantum indeterminist processes or atomic classical stochastic processes,
at a microscopic level. And indeterminism at a certain upper level may be the result
of deterministic processes at the next lower level, e.g. quantum indeterminacy under-
lied by deterministic hidden variables. In the words of Bohm himself [39], “... one
sees that the possibility of treating causal laws as statistical approximation to laws
of chance is balanced by a corresponding possibility of treating laws of probability
as statistical approximations to the effects of causal laws... The assumption that any
particular kind of fluctuations are arbitrary and lawless relative to all possible con-
texts, like the similar assumption that there exists an absolute and final determinate
law, is therefore evidently not capable of being based on any experimental or the-
oretical developments arising out of specific scientific problems, but it is instead a
purely philosophical assumption.”

Interestingly enough, Bohm and Hiley [40] took advantage of the issue of unde-
cidability to advocate a peaceful relationship between Bohm’s interpretation and
quantum mechanics. For them, and also for us at the present time, “there does not
seem to be any valid reason ... to decide finally what would be the accepted interpre-
tation,” and they asked: “is there a valid reason why we need to make such a decision
at all?” So, they went on, “would it not be better to keep all options open and to con-
sider the meaning of the interpretations on its own merits, as well as in comparison
with others? This implies that there should be a kind of dialogue between different
interpretations rather than a struggle to establish the primacy of any of them.” If we
observe that these quotations are contained in the last book of Bohm (with Hiley),
published one year after his death, we can view the above statements as forming
a kind of final testamentary auto appraisal. But, is it true that we cannot have any
argument to decide? This is the issue of ampliative arguments.

3.4.2 Ampliative Arguments

We can actually, at least in some cases, decide between undecidable physical theories.
When this is possible, it is achieved by using what is called ampliative arguments.
Harré [12], and Van Frassen quoting and rewording Harré [25] defined what an
acceptable theory is. Elaborating on these authors, I came to the following proposal.
A theory is satisfactory (acceptable, admissible...) if (1) it agrees with experimental
facts, (2) it is logically consistent and (3) it satisfies other demands. These other
demands, let us call them ampliative arguments. The word “ampliative” means that
these arguments enlarge our possibilities of choosing between several theories, the
enlargement being made with respect to the underdetermination by experiments. In
other words, ampliative arguments allow us to decide between undecidables. There-
fore, we may now build a new list of criteria as follows. A theory is satisfactory if
(1) it agrees with experimental facts, (2) it is logically consistent and (3) it satisfies
ampliative arguments.

It is interesting to remark that Einstein had something to tell us concerning Quine’s
underdetermination (without referring to it) and ampliative arguments (without using
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this terminology). Indeed, in an address he delivered in 1918 before the Physical
Society of Berlin on the occasion of Planck 60th birthday, he expressed himself
as follows [26]: “there is no logical paths in these laws; only intuition, resting on
sympathetic understanding of experience, can reach them. In this methodological
uncertainty, one might suppose that there were any number of possible systems of
theoretical physics all equally well justified; and this opinion is no doubt correct,
theoretically. But the development of physics has shown that at any given moment,
out of all conceivable constructions, a single one has always proved itself decidedly
superior to all the rest. Nobody who has really gone deeply into the matter will deny
that in practice the world of phenomena uniquely determines the theoretical system,
in spite of the fact that there is no logical bridge between phenomena and their
theoretical principles.”

In this chapter, I do not intend to take the risk of listing what could be acceptable
ampliative arguments (this might be postponed to future epistemological researches).
I shall be content in using one of them, convincing enough, at least for many indi-
viduals, as an example, and as a tool to proceed further. This example relies on a
non-singularity principle which, if accepted, implies the falseness of Newton’s for-
mulation of classical mechanics (and, more generally, of classical mechanics as a
whole), the rational necessity of wave mechanics, and the inadequacy of the pilot
wave theory. We shall use another ampliative argument to deal with the case study
from electromagnetism.

3.4.3 The Mechanical Rainbow

Similarly as for the optical rainbow, there exists a mechanical rainbow. To introduce
it, let us consider classical mechanics. A subtopic of classical mechanics is classical
scattering, e.g. [64, 65]. Following Nussenzveig [65], let us discuss the scattering of
a nonrelativistic particle of mass m by a central potential V (r). The trajectory of the
incoming particle is deflected by an angle θ called the deflection angle which depends
on the impact parameter b. For a repulsive interaction, θ ranges from 0 toπ but, for an
attractive interaction, it can take arbitrary large values (in modulus). There is a simple
relationship between the deflection angle θ and the more usual scattering angle θ ,
namely: θ + 2nπ = ±θ, n = 0, 1, 2, ... It is then established that the differential
cross-section in the direction θ contains terms of the form

∣
∣dθ/db j

∣
∣
−1, where the

index j arises from the fact that, in general, there exist several impact parameters
b j that lead to a same scattering angle θ . From this result, we see that we have a
divergence whenever dθ/db = 0, for at least one j , and for some angle θR = θ , that
is to say when the deflection function, say θ(b), goes through an extremum. We then
have a stationary trajectory and the singularity is a rainbow singularity occurring at the
rainbow angle θR . Other singularities involved in the phenomenon are glory, forward
scattering, orbiting, but we do not need to discuss them here. I then invoke a non-
singularity principle telling us that such singularities are inadmissible. From this, I
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conclude, without referring to any experiment (i.e. a priori), that classical mechanics,
which therefore contained the germ of its own destruction, is an approximation to a
more general theory. This more general theory must be a wave theory, say a wave
mechanics, in order to smooth out the rainbow singularity, and any other singularity,
as well. We therefore also conclude to the rational necessity of a wave mechanics.

3.4.4 On the Nonsingularity Principle

I have used above a nonsingularity principle that I may call a special non-singularity
principle. This special principle might be an example of a more general nonsingularity
principle that I am not going, even tentatively, to formulate in this paper. Let us
however recall that there has been a long and venerable history concerning the concept
of infinity, both in mathematics and physics, even starting from the presocratic age.
And, nowadays, most physicists would certainly agree with the special nonsingularity
principle used above and with its consequences. Indeed, physicists are most usually
much reluctant to accept the actual existence of local infinite quantities in the world
they study. Whenever a physicist encounters a local infinity in physics, he instinctively
immediately recognises that something is going deeply wrong, or that he has been
dealing with convenient idealisations which cannot be actual, and possibly that he
has to think more. In other words, the non-singularity principle is indeed something,
at least implicitly, anchored in the mind of physicists, intimely associated with their
intuition. This does not imply that this intuition is correct, and does not mean that
it should be shared by everyone. Also, in any case, we possibly have to accept the
idea that any statement is revisable, even logical statements [66–68]. Nevertheless,
those who accept the special nonsingularity principle possess a decent ampliative
instrument to proceed further.

3.4.5 Newtonian Trajectories of Matter Points do not Exist

We are all used to the concept of trajectory, so easy to extract from classical mechan-
ics, in deep agreement with our intuition, and with our sense data: trajectories of cars,
of balls, or even of planets. There is no apparent difficulty to consider trajectories
of matter points. They at least constitute efficient models for the behaviour of so
many objects around us. Furthermore, physicists, when they are students, have been
trained, when learning classical mechanics, to the study of the mechanical behaviour
of matter points, before entering the realm of the mechanics of extended solids. There
is also this famous theorem telling us that the force between two uniform spheres
of masses M1, M2 is equal to the force between two point masses M1, M2 at their
respective centers [69].

We therefore feel very comfortable with the concept of trajectories in the Newton’s
formulation of classical mechanics and, as a consequence, we may feel very uncom-
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fortable with the Hamilton-Jacobi’s formulation in which trajectories are dressed by
a field. What could physically be this field S, which extends in the space around the
object under motion, that no one has ever seen and which is effectively unobserv-
able? At the best, it is a convenient intermediary for computations and, at the worst,
it is some kind of metaphysical artificial excrescence. At least, this is what we could
instinctively believe.

But, actually, although this way of thinking seems very reasonable, it may be
dramatically misleading. Let us effectively consider the special non-singularity prin-
ciple and its application to classical scattering. It leads us to the rejection of classical
mechanics, as being inadmissible, on the basis that, in some cases, a classical problem
may produce singularities, in particular the rainbow singularity when the differential
cross-section becomes infinite. If we hold fast on to this conclusion and use it as an
ampliative argument, we reach an immediate consequence: Newtonian trajectories
of matter points do not exist (and cannot exist).

This statement is actually in agreement with sense data. Effectively, no one ever
observed the trajectory of a matter point. Simply try to imagine, at the most funda-
mental level of understanding, what could be the trajectory of a matter point, that
is to say the trajectory of an object of mass m, confined to a vanishingly small vol-
ume. Such an object would have an infinite density, and Newtonian mechanics would
have to be merged with the most extraordinary predictions of general relativity. There
would not be any domain of validity for classical mechanics.

A special kind of trajectory is the motionless trajectory of a particle at rest. Then,
we have the particle (the matter point) standing still (in some frame of reference).
From this, we can see that the concept of a matter point, independently of the concept
of trajectory, cannot be accepted. Beside what we have already said, including the idea
of a collapse of a mass m to a geometrical point to generate a matter point, just think,
for instance, of the unbelievable behaviour of potentials of point charges varying
as 1/r , and therefore diverging when the point charge is indefinitely approached
(producing an actual infinity). Obviously, from a pure logical point of view, we
might as well start to refute first the existence of matter points invoking the special
non-singularity principle, and thereafter the existence of trajectories of matter points,
since something which does not exist cannot have any trajectory.

Nevertheless, what about trajectories of cars, balls ... and planets? The answer is
that there should not be any deep and definitive conflict between the nonexistence of
trajectories of matter points, and the observability of trajectories of extended solids.
Cars, balls, ... planets are not matter points that we cannot observe, but macroscopic
objects that we do observe. Their existence, their properties, the fact that we can
observe them, and by which processes we observe them, must emerge as the con-
sequences of a quantum theory, whatever its ultimate formulation will be. In other
words, classical Newtonian trajectories of extended objects have to be accepted, but
such extended objects, rather than being considered as a collection of matter points,
in the Newton’s style, must emerge from a more fundamental description of nature,
e.g. from the underlying quantum mechanical level (e.g. decoherence theory). Hence,
the rejection of matter points, and of their trajectories, does not offend our everyday
intuition.
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3.4.6 Deciding Between Undecidables

The fact that Newtonian trajectories of matter points do not exist is the ultimate
ampliative argument to discriminate between Newton’s and Hamilton-Jacobi’s for-
mulation of classical mechanics. In contrast with our naive expectation in which
the field S was viewed as a simple intermediary tool for computations, without any
physical significance, it is the Newtonian formulation of classical mechanics which
is to be rejected, and the Hamilton-Jacobi’s formulation which is to be given a due
privilege, let us say which is “closer to truth”. We are then left with a dressing field S
without any trajectory to be dressed. To understand such a weird situation, it is suffi-
cient to remark that, not only do Newtonian trajectories of matter points not exist but
also, it is classical mechanics as a whole which collapsed. Hence, Hamilton-Jacobi’s
formulation of classical mechanics is also to be rejected. Nevertheless, the field S still
remains physically meaningful. It actually appears to be related to the phase of Ψ in
quantum mechanics. Indeed [29], we may writeΨ under the formΨ = exp(i S/�) in
which, in the classical limit, the quantum field S of the previous expression identifies
with the classical field S of Hamilton-Jacobi’s formulation. The physical meaning of
the classical S of the inadmissible classical mechanics is therefore that it constitutes
a formal anticipation of the Ψ of quantum mechanics, more precisely of its phase.
The constant �, which has the dimension of an action, has the virtue of changing S,
which has the dimension of an action too, to a dimensionless phase i S/�.

Concerning the second case study (pilot wave versus usual quantum mechanics),
the relevance of ontological underdetermination for a discussion of Bohm’s pilot
wave has been noticed by Cushing [46, 70]. His point of view is that [70] “one
formalism, with two different interpretations, counts as two different theories” and
that [46] “the physical interpretation refers to what the theory tells us about the
underlying structure of ... phenomena, i.e. the corresponding story about the furniture
of the world.” This furniture of the world is that he called an ontology (the point of
view also adopted in this paper). Therefore, quantum mechanics and Bohm’s pilot
wave, although experimentally equivalent (implying that both of them should be
accepted by positivists), provided two different ontologies. Bohm himself was aware
of the issue at least implicitly [39].

However, we may ampliatively discriminate between the pilot wave and the usual
quantum mechanics. For this, we just need to remark that the same ampliative
arguments (non-singularity principle, inexistence of Newtonian trajectories of mat-
ter points) which have been used to discriminate between Newton’s and Hamilton-
Jacobi’s formulations of classical mechanics may be used to discriminate between
Bohm’s pilot wave and quantum mechanics. If objective, deterministic, Newtonian
trajectories of matter points (and matter points themselves) do not exist, it is non-
sensial to introduce them in quantum mechanics as done by Bohm. The attempt
to propulse the classical concepts of matter points and matter point trajectories in
the quantum domain leads definitively to a failure. Trajectories of matter points do
not exist in classical mechanics; hence, they should not be reintroduced in quantum
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mechanics, even if they are hidden. This statement applies to all causal theories (pilot
wave of Louis de Broglie and Bohm, and double solution of Louis de Broglie).

The rejection of inadmissible theories is not contradictory with the fact that they
can make very decent models, much useful in practice. And, after all, our best theories
are very far from being perfect and completed: from this point of view, they are
all models. In particular, the fact that singularities in the behaviour of Newtonian
trajectories are rare, occurring only occasionally, demonstrate that the concept of
trajectory of matter points still remains useful for many practical purposes, in the
same way that optical ray computing and tracing will forever remain invaluable
tools. But, if you need to dig deep into the mysteries of the world, it is definitely of
good advice, and even compulsory, to abandon inadmissible theories, when possible.
The idea, expressed by Bohm in its auto appraisals, and by other authors, that the
pilot wave could provide complementary insights in to a better, more thorough, and
deeper, understanding of quantum mechanics, is then erroneous and even dangerous,
for there could not be complementary insights in erroneous ideas, only an opportunity
to spoil the clarity of the mind. Any theoretician in quantum field theory, for whom
the description of reality in terms of particles being permanent entities with fixed
numbers is more than naive, would agree with this statement.

The two case studies discussed above are strongly correlated. One pertains to clas-
sical mechanics, the other to quantum mechanics, but both of them were anchored
on the existence of the Hamilton-Jacobi’s formulation of classical mechanics, and
undecidables were made decidable by relying on similar ampliative arguments. We
are now going to briefly discuss a third case study, related to another physical frame-
work, as discussed in the introduction, and solve a question that I asked myself about
30 years ago, a long time before I heard from Quine’s underdetermination and from
ampliative arguments, when I started to work on light scattering theories with the
building of a generalised Lorenz–Mie theory (GLMT) in mind [71].

For this third case study, we may again rely on an ampliative argument to dis-
criminate between Lorenz and Mie. This argument simply invokes the well-founded
rejection of ether by Einsteinian relativity. Hence, Mie was “closer to truth” than
Lorenz. Considering the effort accomplished by Lorenz, he certainly deserved to
have his name associated to what I always preferred to call Lorenz–Mie theory.
Nevertheless, the two theories, although empirically equivalent, are ontologically
different (conflicting), and better have to be viewed as two genuine different theo-
ries.

3.5 Conclusion

Quine’s underdetermination thesis, loosely speaking, states that theories are under-
determined by experiments. I also introduced an ontological version in which we may
have several empirically equivalent theories, with however different ontologies. We
have examined three exemplifying case studies. Two of them (Newton’s formulation
versus Hamilton-Jacobi’s formulation of classical mechanics, causal theories versus
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the orthodox interpretation in quantum mechanics) are closely related to the debates
on the foundations of quantum mechanics. The third case study (Mie’s theory versus
Lorenz’ theory) is borrowed from electromagnetic theory, more specificaly from
light scattering theory. Each case study exhibits a couple of theories which lead to
identical experimental predictions but are contradictory insofar as they do provide
conflicting visions of the world. The existence of conflicting empirically equivalent
theories implies, in principle, strong limitations to any realistic interpretation of
science. However, in each case study discussed in this chapter, we have been able to
invoke ampliative arguments allowing one to decide between undecidables.
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Chapter 4
Predicting the Appearance of Materials Using
Lorenz–Mie Theory

Jeppe Revall Frisvad , Niels Jørgen Christensen and Henrik Wann Jensen

Computer graphics systems today are able to produce highly realistic images. The
realism has reached a level where an observer has difficulties telling whether an
image is real or synthetic. The exception is when we try to compute a picture of a
scene that really exists and compare the result to a photograph of the real scene. In
this direct comparison, an observer quickly identifies the synthetic image. One of the
problems is to model all the small geometrical details correctly. This is a problem
that we will not consider. But even if we pick a simple experimental set up, where the
objects in the scene have few geometrical details, a graphics system will still have a
hard time predicting the result of taking a picture with a digital camera. The problem
here is to model the optical properties of the materials correctly. In this chapter, we
show how Lorenz–Mie theory enables us to compute the optical properties of turbid
materials such that we can predict their appearance. To describe the entire process of
predicting the appearance of a material, we include a description of the mathematical
models used in realistic image synthesis.

4.1 Introduction

The appearance of an object is a result of light reaching the eye after interacting with
matter. One way to capture the appearance of an object is to take a picture of it. This
means that a digital camera is not only an inexpensive consumer product, it is also a
fairly advanced device for measuring light. As we know from spectroscopy, light can
tell us a great deal about the material that it is illuminating. The question is then: what
can we learn about a material by taking a picture of it using a digital camera? The
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immediate response is: not a lot. Unless we have a lot of pictures of similar materials
in the same lighting environment which we can use to make a statistical model (this
is image analysis). Or unless we have a physical model of the material and lighting
environment that we can use to predict the picture (this is computer graphics). The
purpose of this chapter is to show how to construct a model which predicts the result
of taking a picture of a material in a controlled lighting environment. In short, we
describe how to predict the appearance of materials. Once we have an appearance
model that predicts the result of taking a picture of a material, we can take a picture
of a similar material and fit the parameters in the model such that the picture of this
similar material is obtained. In this way, we can use a picture of a material to estimate
the properties of the material (analysis by synthesis).

The advantage of using a camera instead of a spectrometer is that it is inexpensive
and that it does not require small samples to be prepared for analysis inside a larger
device. Taking a picture using a digital camera is a simple, non-invasive process. This
means that it is particularly useful for food quality control and medical diagnosis.

To construct an appearance model that predicts the result of taking a picture of a
material, we need (a) a model of the camera, (b) a geometrical model of the material
sample, (c) a model of the light sources, (d) a model for light propagation and
(e) a model for light scattering. The problematic model is the one for light scattering
because the material properties are unknown. The macroscopic optical properties of
materials are so diverse that it is impossible to measure and tabulate the properties
of all materials directly. This is where Lorenz–Mie theory comes in handy. Lorenz–
Mie theory provides the link between the particle composition of a material and
its macroscopic optical properties. The particle composition of a material is a very
flexible starting point. There are many different ways to combine small particles
into one macroscopic bulk material. To limit the potentially large number of input
parameters, we use empirical models to describe the size distribution and optical
properties of the particles. When available, these empirical models enable us to
construct material appearance models that depend on only few essential inputs. A
list of ingredients, for example, where the relative contents are specified in weight
percent. The example used in this chapter is cow’s milk with fat and protein contents
of the milk (in weight percent) as input parameters.

4.2 Realistic Image Synthesis

The development of models for computing realistic images is a branch of computer
graphics known as realistic image synthesis [1, 2]. This field of research provides the
link between physical models of light and materials and the process of computing an
image as if it were taken with a real digital camera or as if it were seen with the eyes
of a human observer. Light transport and scattering is modelled in realistic image
synthesis using the mathematical model developed for radiative transfer [3, 4]. The
process of generating an image using a computer is referred to as rendering. Thus
realistic image synthesis is also known as realistic rendering.
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The basics of realistic image synthesis have been described in many textbooks.
A useful reference which provides both detailed descriptions and source code is the
book by Pharr and Humphreys [5]. The following sections provide brief descriptions
of the five models that we need.

4.2.1 Camera

Think about taking a picture. The first thing you do is to position the camera and
orient it towards the objects that you wish to photograph. To model this set up,
we need a camera position p, a viewing direction v, and an up-vector u. A digital
camera is built around a photoactive charge-coupled device chip (CCD chip) which
has a limited number of bins across its area. This means that output images from a
digital camera have a specific resolution (image width W and height H ) measured
in numbers of pixels. Each pixel corresponds to a small area of the CCD chip and
has an associated vector which describes the amount of light (of different colours)
that reached this area during exposure. To capture an image is to expose the chip for
a short amount of time and record the vectors for all the pixels. We model the light
sensitive area of the CCD chip by a rectangle in the image plane, and we will call it
the film. The viewing direction v is normal to the image plane and the up direction of
the image plane is given by the up-vector u. To position the film in space, we centre
it around the camera position p and move it a distance d in the viewing direction.
The distance d depends on the lens system of the camera and is called the camera
constant. The size of the film (width by height, w × h) is usually specified by an
angle in the vertical direction called the field of view, fov and an aspect ratio a such
that

w = ah

h = 2d tan(fov/2).

Using the camera resolution (W × H ), we can divide the film into pixels. To compute
an image, we trace a number of rays from p through each pixel of the film.

4.2.2 Geometry of Objects

Representation of arbitrarily shaped objects is a difficult problem with many solu-
tions. The computer graphics community is with little doubt the most extensive user
of surface models. The mainstream approach is to use a large number of small trian-
gles. If we let some triangles have common edges with others, we obtain a triangle
mesh. If there are no holes in the mesh, it represents the surface of a volume which
could be an object in our scene.
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The triangle mesh poses some problems. Unless we want to make objects with
sharp edges, we need an awfully large number of triangles to make an object look
smooth. Even more triangles are needed if we want smooth reflections and refractions
as well. This problem is usually solved by computing a normal for each vertex in
the triangle mesh as originally suggested by Phong [6]. Such a vertex normal is an
average of the normals associated with the neighbouring triangle faces. When we
want to find the surface normal where a ray intersects a triangle, we interpolate the
vertex normals across the triangle using trilinear interpolation. In this way, we have
a number of points (the vertices in the triangle mesh) which make out a discrete
representation of a smooth surface.

4.2.3 Light Sources

A light source is typically modelled by letting an object in the scene emit light equally
in all directions from every surface point. Another option is to have a spherical map
around the scene which acts as a background source or environment lighting. This
is called an environment map and it is modelled as if it were infinitely far away.
It is particularly useful for outdoor sceneries, where one can use a model of the
atmosphere to compute a realistic environment map [7–9].

Another important type of light source is laser. As has been discovered in bio-
medical optics [10], shining a laser into a turbid material (skin, for example) tells us
surprisingly much about the material. To model a laser source, we use a circular disk
which emits light weighted by a Gaussian function diminishing with the distance to
the centre of the disk. Laser is also nearly collimated. This is modelled by letting the
source emit light only in the direction normal to the surface of the disk.

4.2.4 Light Propagation

Pictures most often capture light in the visible part of the electromagnetic spectrum.
Visible wavelengths are very short, ranging from 380 to 780 nm, and it was shown
by Sommerfeld and Runge [11] that plane electromagnetic waves propagating in a
non-absorbing, homogeneous dielectric are equivalent to rays of light for λ → 0,
where λ denotes the wavelength in vacuum. This means that rays of light are often
a good model of visible light. According to Fermat’s principle, rays of light follow
the path of least time [12, pp. 457–463]. We can use this principle to trace rays of
light through a digitally modelled scene. The main limitation is that wave phenomena
such as interference and diffraction will not be captured. The visual effects from such
phenomena must then be incorporated into the scattering properties of the materials
in the scene. Diffraction by particles is incorporated into the macroscopic scattering
properties of a material using Lorenz–Mie theory. This is covered in Sect. 4.2.5.
Interference and diffraction effects caused by microfacets in the surface of an object



4 Predicting the Appearance of Materials 105

are incorporated into surface reflection models. We will not discuss microfacetted
surface reflection models.

Rays of light are traced in straight lines as long as they travel in a homogeneous
medium, since, in this case, the shortest path is also the path of least time. Having
settled on a ray theory of light, we trace light backwards from the camera position p
through a pixel into our scene to see if it intersects one of the triangles that the objects
are composed of. The number of triangles is large, so some kind of spatial data
structure is needed to find the triangles that are most likely to be intersected [13–16].
An efficient ray-triangle intersection algorithm has been developed by Möller and
Trumbore [17]. Only the closest intersected triangle is considered, other intersected
triangles are hidden behind it. Once a point of intersection is identified and a surface
normal has been computed, the next step is to estimate the light that reaches this
point. Assuming a smooth surface, light reflects off the surface and refracts into the
material as described by Fresnel’s formulae for reflectance [18]. New rays are traced
from the point of intersection in the directions of reflection and refraction (as dictated
by the laws of reflection and refraction). Light reflects and refracts recursively until
it reaches a light source. This is called ray tracing, and this recursive version, where
new rays are traced from the point of intersection, was first described for graphics
by Whitted [19]. If light refracts into a turbid material, it scatters as described in
Sect. 4.2.5.

What we trace along a ray is electromagnetic energy. The rays follow the direction
of the time-averaged Poynting vector as closely as possible.

4.2.5 Light Scattering

In the previous section, we found a way to trace energy through matter. This is all
we need to render materials with a continuous interior. However, if a material is
composed of millions of microscopic particles, it is infeasible to model the surface
of every particle. Therefore, we introduce a model for macroscopic scattering. The
model used to describe light scattering is the radiative transfer equation [3]:

(ω · ∇)L(x,ω) = −σt (x)L(x,ω)+ σs(x)
∫

4π

p(x,ω′,ω)L(x,ω′) dω′ + Le(x,ω),

(4.1)
where L(x,ω) is the radiance at x in the direction ω, the subscript e denotes emis-
sion, and σs , σa , and σt = σs + σa are the scattering, absorption and extinction
coefficients, respectively. The phase function p specifies the normalised distribu-
tion of the scattered light. Radiance is a radiometric quantity measured in energy
flux per solid angle per projected area. The equation splits the directional derivative
(left-hand side), that is, the change in radiance along a ray, into three terms (right-
hand side): The first term denotes the exponential attenuation, the second denotes
the in-scattering from all directions and the third is an emission term.
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The radiometric quantity radiance is fundamental in radiative transfer. It is what
the radiative transfer equation (Eq. 4.1) is concerned with and is defined (radiomet-
rically) by

L = d3 Q

dt dω dA⊥
= d2�

dω dA cos θ
,

where Q is energy, t is time, Φ = dQ/dt is energy flux, ω is solid angle, A⊥ is
projected area, A is area and θ is the angle between the normal to the area dA and the
considered direction. Radiance describes the flow of energy through a differential
area dA. The energy flows in a directional differential volume dω which is not
necessarily normal to the area. The purpose of radiance is thus to describe the energy
flow in a ray of light incident on a surface.

Since radiance is a quantity based on energy, we assume that it follows the flow
of energy through a medium. Thus we trace rays using Fermat’s principle. However,
we have to be careful and take into account that radiance denotes flux per solid angle
per projected area. When we follow a ray of light through a material, we have to take
into account that the radiance may change along the ray. Let us see how radiance
changes upon refraction.

Consider a ray of light in a medium with refractive index n1 = n′
1 + i n′′

1 incident
on a surface patch dA of a medium with refractive index n2 = n′

2 + i n′′
2. Due to

energy conservation at the boundary, the following condition must hold:

Li cos θi dA dωi = Lr cos θr dA dωr + Lt cos θt dA dωt ,

where Li , Lr and Lt are the incident reflected and transmitted radiances and likewise
θi , θr , and θt are the angles of incidence, reflection, and refraction. In spherical
coordinates, the solid angles are defined by

dωi = sin θi dθi dφi

dωr = sin θr dθr dφr

dωt = sin θt dθt dφt .

Using the law of reflection θi = θr and the fact that both the reflected and transmitted
rays lie in the plane of incidence φi = φr = φt , the boundary condition becomes

Li cos θi sin θi dθi = Lr cos θi sin θi dθi + Lt cos θt sin θt dθt .

To find the transmitted angle, we have to consider the direction of the transmitted
ray. This is given by the law of refraction. We find

sin θt = n′
1

n′
2

sin θi

cos θt dθt = n′
1

n′
2

cos θi dθi .
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With this result, the boundary condition is Li = Lr +
(

n′
1

n′
2

)2
Lt . Or, in terms of

outgoing radiance,

L0 = RLi + (1 − R)

(
n′

1

n′
2

)2

Li , (4.2)

where R is the Fresnel reflectance.
These equations show that radiance is not constant along a ray of light. If we

move along a ray through a heterogeneous medium, the radiance should be modified.
Generalising the result above to the interior of a medium, we approximately have
[20, 21]

L1

n′2
1

dA1 = L2

n′2
2

dA2,

where the subscripts 1 and 2 denote two locations along a ray of light. This means
that the quantity L1/n′2

1 is (approximately) constant along the ray. If we store L1/n′2
1

before tracing a ray from one point in a medium, then the radiance at the destination
point is L2 = n′2

2 L1/n′2
1 . Now that we know how radiance behaves as we move along

a ray, we are ready to evaluate the radiative transfer Eq. (4.1) using ray tracing.
Rendering realistic images using the radiative transfer equation, was first pro-

posed by Kajiya and Von Herzen [22]. Most rendering algorithms use approximate
evaluation schemes to gain speed. Here, we will only describe the general way of
evaluating the radiative transfer equation. The remainder of this section is a short
account of Monte Carlo path tracing, which is a sampling-based rendering algo-
rithm that works in general. More information is available in the book by Pharr and
Humphreys [5]. Unfortunately, Pharr and Humphreys stop their treatment at sin-
gle scattering. Evaluation of the general case has been described by Pattanaik and
Mudur [23].

The emission term in the radiative transfer equation is just an added constant. It
is not difficult to include it, but it makes the equations rather long. Therefore, we
leave out the emission term in the following. The general approach is as follows. We
first parameterise the radiative transfer equation using the distance s′ that light has
travelled along a path into a medium. We have (for a non-emitter):

dL(s′)
ds′ + σt (s

′)L(s′) = σs(s
′)

∫

4π

p(s′,ω′,ω)L(s′,ω′) dω′, (4.3)

where ω denotes the tangential direction of the path at the distance s′ along the path.
The parameterised Eq. (4.3) is a linear, first-order, ordinary differential equation

(where σt (s′) is a variable coefficient). One way to solve such an equation is by
means of an integration factor:
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Tr (s
′, s) = exp

⎛

⎝−
s∫

s′
σt (t) dt

⎞

⎠ . (4.4)

With this factor, Eq. (4.3) becomes

d

ds′
(

Tr (s
′, s)L(s′)

) = Tr (s
′, s)σs(s

′)
∫

4π

p(s′,ω′,ω)L(s′,ω′) dω′. (4.5)

Note that Tr (s, s) = 1. Then by integration along the ray from the surface s′ = 0 to
the considered location in the medium s′ = s, Eq. (4.5) attains the form:

L(s) = Tr (0, s)L(0)+
s∫

0

Tr (s
′, s)σs(s

′)
∫

4π

p(s′,ω′,ω)L(s′,ω′) dω′ ds′. (4.6)

For convenience, some of the different mathematical quantities encountered in
this derivation have been given appropriate names in radiative transfer theory [3].
The distance s (or s′) travelled along the ray inside the medium, is referred to as the
depth. The integral in Eq. (4.4) is called the optical thickness and is denoted by the
symbol τ , that is,

τ(s′, s) =
s∫

s′
σt (t) dt.

The integration factor itself Tr (s′, s) = e−τ(s′,s) is sometimes referred to as the beam
(or path) transmittance. Finally, the first term on the right-hand side of the formal
solution (4.6) for the radiative transfer equation (Eq. 4.1) is referred to as the direct
transmission term, whereas the second term is called the diffusion term. Realistic
rendering is all about evaluating these terms in various kinds of ways.

To evaluate Eq. (4.6) using Monte Carlo path tracing, we first take a look at the
direct transmission term Tr (0, s)L(0). For this term we need to estimate the value of
the optical thickness τ(0, s). If the medium is homogeneous, this optical thickness
is simply given by

τ(0, s) = σt s. (4.7)

For heterogeneous media, we use sampling. The optical thickness is found quite
efficiently by the estimator:

N−1
∑

i=0

σt (ti )�t, (4.8)

where�t is the step size (given as user input) and ti are locations along the ray found
using a single uniform random variable ξ ∈ [0, 1]:
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ti = ξ + i

N
s. (4.9)

The number N of locations along the ray is found using the depth s which is the
distance to the next surface, that is, N = �s/Δt�. Having estimated the optical
thickness τ(0, s), the beam transmittance Tr (0, s) is easily found and multiplied by
the amount of radiance L(0) to reveal the direct transmission term. The radiance
L(0) is the radiance which contributes to the ray at the surface of the medium.

Evaluating the diffusion term is more involved. What we need is an estimator of
the form

1

N

N−1
∑

j=0

Tr (s′
j , s)σs(s′

j )J (s
′
j )

pdf(s′
j )

, (4.10)

where the probability distribution function (pdf) preferably cancels out the transmit-
tance. The source function

J (s′) =
∫

4π

p(s′,ω′,ω)L(s′,ω′) dω′ (4.11)

is evaluated using a distribution of samples over the entire unit sphere.
The following pdf is a good choice for the diffusion term estimator (4.10):

pdf(s′
j ) = σt (s

′
j )Tr (s

′
j , s),

since it has the simple complementary cumulative distribution function

ccdf(s′
j ) =

s∫

s′
j

σt (t)Tr (t, s) dt = Tr (s, s)− Tr (s
′
j , s) = 1 − Tr (s

′
j , s).

Using the inverse transformation method [5, e.g.], we get the following equation for
sampling an interaction along the ray according to this pdf:

ξ j = 1 − Tr (s
′
j , s) = 1 − e−τ(s′

j ,s) or ln(ξ j )+ τ(s′
j , s) = 0,

where ξ j ∈ [0, 1] is a uniform random variable for sample j . An interaction is either
scattering according to the source function (4.11) or absorption. The depth of the
sample is easily found for homogeneous media, where we have τ(s′

j , s) = (s−s′
j )σt ,

which gives

s′
j = s + ln(ξ j )

σt
. (4.12)

If s′
j < 0, there is no interaction for sample j . For heterogeneous media we have to

step along the ray to find out where the optical thickness matches the event. Starting at
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t1 in ti = s−iΔt , we step along the ray by incrementing i , and if ln(ξ j )+τ(ti , s) > 0,
we stop and compute the location of the interaction as follows [23]:

s′
j = s − (i − 1)Δt + τ(ti−1, s)+ ln(ξ j )

σt (ti )
. (4.13)

Here, it is assumed that σt (ti ) is approximately constant in steps of size Δt along
the ray, such that σt (s′

j ) ≈ σt (ti ). If we end up with ti ≤ 0 before the other criteria
is fulfilled, there is no interaction for sample j . The optical thicknesses needed in
order to find s′

j are evaluated in the same way as when we evaluated τ(0, s) only
with s − ti in Eq. (4.9) instead of s.

Finally, the scattering coefficient σs(s′
j ) in the estimator (4.10) and the extinction

coefficient σt (s′
j ) in the probability distribution function (pdf) are cancelled out by

means of a Russian roulette. At every interaction a Russian roulette is carried out
using the scattering albedo, which is defined by

α(s′
j ) = σs(s

′
j )/σt (s

′
j ),

as the probability of a scattering event.
Using the sampling scheme described above, the estimator (4.10) becomes:

1

N

N−1
∑

j=0

J (s′
j ) = 1

N M

N−1
∑

j=0

M−1
∑

k=0

p(s′
j ,ω

′
k,ω)L(s

′
j ,ω

′
k)

pdf(ω′
k)

(4.14)

for ξ < α(s′
j ) and 0 otherwise. For an isotropic phase function, sampling a uniform

distribution over the unit sphere leaves only L(s′
j ,ω

′
k) in the sum.

To summarise the algorithm, a ray is traced from an observer through a scene,
when it refracts into a turbid material, we do the following:

1. Trace a refracted ray. The radiance carried along the refracted ray is corrected
according to the boundary condition (Eq. 4.2).

2. The tracing of the refracted ray gives the depth s to the next surface.
3. The radiance L(0)which contributes to the ray at the surface is found by tracing

new rays in the directions of reflection and refraction. If L(0) is not too small,
we evaluate the direct transmission term:

a. The optical thickness τ(0, s) is estimated using Eqs. 4.8 and 4.9 (or Eq. 4.7
for homogeneous media).

b. The direct transmission term Tr (0, s)L(0) is found using the optical thick-
ness τ(0, s) (see Eq. 4.4) and the radiance which contributes to the ray at
the surface L(0).

4. For every diffusion term sample j = 1, . . . , N , a sample depth s′
j is found using

Eq. 4.13 (or Eq. 4.12 for homogeneous media).



4 Predicting the Appearance of Materials 111

5. For the samples s′
j > 0, a Russian roulette is done using the scattering albedo

α(s′
j ). For ξ < α(s′

j ), where ξ ∈ [0, 1] is a random variable, there is a scattering
event.

6. For every scattering event, the phase function p(s′
j ,ω

′
k,ω) is evaluated in M

sampled directions ω′
k with k = 1, . . . ,M . Likewise, M new rays are traced

at the position s′
j in the directions ω′

k to obtain the radiances L(s′
j ,ωk). Using

Eq. 4.14 this gives an estimate of the diffusion term.
7. Finally, the direct transmission term and the diffusion term are added to get the

radiance emergent at the surface L(s).

The number of samples chosen are often N = 1 and M = 1. Then, we get a very
noisy sample image rather quickly. Another sample is then rendered and this is
averaged with the previous one. The next sample is weighted by one-third and added
to the other two samples which are weighted by two-thirds and so on. In this way the
image will improve itself over time. Even so, the Monte Carlo path tracing procedure
spawns a formidable number of rays. It is very slow, but it converges to the intended
result in an unbiased manner. This is nice in a predictive rendering context, where
we want to predict the appearance of real-world materials.

4.3 Predicting Appearance

In order to predict the result of taking a picture with a digital camera, we need to
digitally model the 3D scenery that is going to be in the picture as explained in
Sect. 4.2.2. For example, in order to compute a realistic image of a glass of milk,
we need a geometric model of the glass and the milk inside it. The most practical
way of modelling such geometry is to use a computer aided design (CAD) system
(e.g. AutoCAD® or Pro/ENGINEER®) or a 3D modelling system (e.g. 3ds Max®,
Softimage® or Blender™). A scene modelled using one of these systems can be
exported to a text file and imported into a rendering system which implements a
camera model (see Sect. 4.2.1) and the models for light propagation and scattering
described in Sects. 4.2.4 and 4.2.5. This could be our own rendering system or another
physically based rendering system such as Maxwell Render™ or Indigo Renderer.
Once the geometry of the scene is in place, we need information about the materials
and the light sources in the scene. More specifically, we need the optical properties
of the materials and the emission profiles of the light sources.

To acquire the optical properties of a material, one option is to measure them.
Another option is to compute them from the particle contents of the material. The
second option is made possible by the Lorenz–Mie theory, and it provides us with
a very flexible way of modelling how the appearance of a material changes when
we change its contents. Nevertheless, the Lorenz–Mie theory has only reluctantly
been adopted in graphics. In the two papers [24, 25] where the theory was first
considered for graphics applications, it was found to be either too complicated [24]
or too restricted [25] to be useful. The problematic restrictions are that the mate-
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rial should consist of nearly spherical particles embedded in a non-absorbing host
medium. This significantly limits the number of materials that can be modelled by
the original version of the theory. Even so, the original theory has proven useful
for modelling the appearance of some special materials: Callet [26] used the theory
to model pigmented materials (such as paints, plastics, inks and cosmetics which
consist of pigmented particles in a transparent solvent). Jackèl and Walter [8] used
it to model the atmosphere and rainbows. Nishita and Dobashi [27] used the theory
to model various other materials consisting of particles in air (clouds, smoke/gas,
fog/haze, snow and sand). Most recently, we have seen a development towards gen-
eralisation of the Lorenz–Mie theory such that it becomes useful for a wider range
of materials. Such new developments were adapted for graphics by Frisvad et al.
[28]. In the following section, we describe the link between material contents and
macroscopic optical properties of the material as provided by the Lorenz–Mie theory.

4.3.1 Computing Optical Properties

The input parameters for the radiative transfer equation (Eq. 4.1) are the phase func-
tion p(x,ω′,ω), the scattering coefficient σs(x) and the extinction coefficient σt (x)
(or the absorption coefficient since σt = σa +σs). Together with the index of refrac-
tion nbulk(x), these parameters constitute the optical properties of a material. In the
following, we will omit the dependency on the position x in the material. Then we
just have to remember that this dependency should be inserted if the material is
heterogeneous.

The phase function and the scattering coefficient are collectively referred to as
the scattering properties of the material. The direction of the incoming light ω′ is
called the forward direction while ω is the direction of the scattered light. The plane
spanned by these two vectors is called the scattering plane and the angle between
them θ is called the scattering angle.

Scattering under the surface of a material is typically caused by particles. For
simplicity, let us assume that the particles are small, randomly distributed throughout
the material, not too densely packed, and approximately spherical. A particle is
considered small when it is not directly visible to the human eye from the distance
that it is observed. If every particle were visible, we would have to model the surface
of each individual particle. If the particles were not randomly distributed, we would
again need to make a very precise model taking into account the ordered placement
of the particles in the material. When we assume that the particles are not too densely
packed, we assume that the distance between them is considerably larger than the
wavelength of the light. Under this assumption, we say that the particles scatter light
independently of each other. The assumption about approximately spherical particles
ensures that scattering is symmetric around the forward direction and that the two
polarisation components do not affect each other. In other words, we only need two
scattering components to describe the scattering of a spherical particle: S1(θ) for
the polarisation component with the electric vector perpendicular to the scattering
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plane and S2(θ) for the polarisation component with the electric vector parallel to
the scattering plane. For unpolarised light, these two scattering components define
the phase function of a single particle by

pr (θ) = |S1(θ)|2 + |S2(θ)|2
2|k|2Cs

, (4.15)

where Cs is the scattering cross section of the particle, k = 2πnmed/λ is the wave
number and nmed is the refractive index of the host medium. If the host medium is
absorbing, nmed is a complex number. The scattering components (S1 and S2) and
the scattering cross section of a particle change depending on the radius r of the
particle. To indicate this, we let pr denote the phase function of a single particle of
radius r .

The scattering cross section Cs of a particle is the area that would receive the same
amount of energy as the particle scatters if we subtend it normal to the incident light.
If we multiply the scattering cross section of a particle with the number density of
this type of particle in the material, we get the amount of light that will be scattered
away from a ray of light per unit distance as it propagates through the material, that
is, we get the scattering coefficient σs . Since the particles may have many sizes with
different cross sections and scattering components, the scattering coefficient is an
integral over particle radii r :

σs =
rmax∫

rmin

Cs(r)N (r) dr. (4.16)

The number density in this expression is N (r) dr while N (r) itself is a number density
distribution. It is a distribution because it denotes the number of particles of radius
r in the range of particle sizes dr . The justification for this simple combination of
scattering cross sections into the macroscopic scattering coefficient is the assumption
about independent scattering of the particles.

To keep the phase function normalised, the expression for the macroscopic phase
function, often called the ensemble phase function, is:

p(θ) =

rmax∫

rmin

(|S1(θ)|2 + |S2(θ)|2
)

dr

2|k|2σs
= 1

σs

rmax∫

rmin

Cs(r)pr (θ) dr.

As the equation shows, another way to find the ensemble phase function is as a
scattering cross section weighted average of the single particle phase functions pr

(defined by Eq. 4.15).
Now we have an idea about how to find the scattering due to one type of particle in

a medium. To deal with several different types of particles, we let A denote the set of
homogeneous substances appearing as particles in the host medium. Then pi , σs,i and
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σt,i denote the phase function and the scattering and extinction coefficients for every
individual particle inclusion i ∈ A. Once the phase function has been determined for
each individual particle inclusion, the ensemble phase function is computed using a
scattering coefficient weighted average:

p(θ) = 1

σs

∑

i∈A

σs,i pi (θ). (4.17)

Considering the number of single particle phase functions required to approximate
the ensemble phase function p(θ), it is only practical to either tabulate the phase
function or to use the ensemble asymmetry parameter g (see below) with one of
the standard phase functions, e.g. the Henyey-Greenstein phase function which is
defined by [29]

p(θ) = 1

4π

1 − g2

(1 + g2 − 2g cos θ)3/2
.

A more exact option is to use a multi lobed phase function where the Henyey-
Greenstein function replaces pi (θ) in Eq. 4.17. The asymmetry parameter is defined
by the integral over all solid angles of the cosine weighted phase function:

g =
∫

4π

p(θ) cos θ dω.

If the asymmetry parameter is computed for single particles and individual parti-
cle inclusions, we can compute the ensemble asymmetry parameter as a weighted
average using the same weights as for the ensemble phase function.

Because we assume that particles scatter light independently, not only scattering
cross sections are additive (see Eq. 4.16), but also scattering coefficients (and extinc-
tion coefficients) are additive. Finding the bulk scattering coefficient is straightfor-
ward:

σs =
∑

i∈A

σs,i .

Note that volume fractions are not included in this formula, because they are a part
of the number density distributions.

In a transparent medium, the extinction coefficient is defined by an equivalent
sum, but in an absorbing medium an important correction must be made. Since the
host medium is a part of the extinction process, a non-absorbing particle will reduce
the extinction of the bulk medium. This means that the extinction cross sections can
be negative [30]. The extinction cross section resulting from the Lorenz–Mie theory
is, in other words, relative to the absorption of the host medium and the necessary
correction is to include the host medium absorption σa,med in the sum. For this
purpose, we compute the bulk extinction coefficient for particles in an absorbing
medium by
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σt = σa,med +
∑

i∈A

σt,i ,

and the bulk absorption coefficient is given by the simple relation σa = σt − σs .
These bulk coefficients are never negative.

To compute the refractive index of the bulk medium nbulk, we follow van de Hulst’s
[31] derivation of a formula for the effective index of refraction, but we remove the
assumptions of non-absorbing media and particles of only one radius. This gives the
following approximate relation for the real part of the bulk refractive index:

Re(nbulk(λ)) = Re(nmed(λ))+ λ
∑

i∈A

rmax∫

rmin

Im

(
Si,r,λ(0)

k2

)

Ni (r) dr,

where Si,r,λ(0) = S1(0) = S2(0) is the amplitude in the forward direction of the
wave of wavelength λ scattered by a type i particle of radius r , Ni (r) is the number
density distribution and k is the wave number. The imaginary part is found by its
relation to the bulk absorption coefficient:

Im(nbulk(λ)) = σa(λ)
λ

4π
. (4.18)

4.3.2 Lorenz–Mie Theory

Lorenz [32] and Mie [33] showed that when the scattering components are expanded
using spherical functions they are defined, for a homogeneous plane wave, by [31–34]

S1(θ) =
∞
∑

n=1

2n + 1

n(n + 1)
(anπn(cos θ)+ bnτn(cos θ)) (4.19)

S2(θ) =
∞
∑

n=1

2n + 1

n(n + 1)
(anτn(cos θ)+ bnπn(cos θ)) , (4.20)

where the functions πn and τn are related to the Legendre polynomials Pn as follows:

πn(cos θ) = P1
n (cos θ)

sin θ
= dPn(cos θ)

d(cos θ)

τn(cos θ) = dP1
n (cos θ)

dθ
= cos θπn(cos θ)− sin2 θ

dπn(cos θ)

d(cos θ)
.

Their numeric evaluation can be found in standard references on Lorenz–Mie theory
[35, 36].
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It remains to give expressions for the Lorenz–Mie coefficients an and bn . Suppose
the refractive index of the particle is n p. Then the coefficients are given, in the far
field, by [31–34]

an = nmedψ
′
n(y)ψn(x)− n pψn(y)ψ ′

n(x)

nmedψ ′
n(y)ζn(x)− n pψn(y)ζ ′

n(x)
(4.21)

bn = n pψ
′
n(y)ψn(x)− nmedψn(y)ψ ′

n(x)

n pψ ′
n(y)ζn(x)− nmedψn(y)ζ ′

n(x)
, (4.22)

where the primes ′ denote derivative. The spherical functions ψn(z) and ζn(z) are
known as Riccati-Bessel functions. They are related to the spherical Bessel functions
jn(z) and yn(z) as follows:

ψn(z) = z jn(z)

ζn(z) = z( jn(z)− iyn(z)).

The argument z is an arbitrary complex number, the arguments x and y used for the
Lorenz–Mie coefficients are related to particle and host media as follows:

x = 2πrnmed

λ
and y = 2πrn p

λ
,

where λ is the wavelength in vacuum and r is the radius of the spherical particle.
When computers came around, it turned out to be quite difficult to find a numer-

ically stable way of evaluating the spherical functions ψn and ζn for complex argu-
ments. Eventually, the numerical difficulties were solved for complex y [35, 37,
38]. This is sufficient for the traditional Lorenz–Mie theory with a non-absorbing
host medium. When people started considering spheres in an absorbing host, starting
with Mundy et al. [39], it became necessary to find a robust way of evaluating the
Lorenz–Mie coefficients for complex x as well. This is considerably more difficult.
The following describes a robust evaluation scheme proposed by Frisvad et al. [28].

In the case of an absorbing host medium, nmed has an imaginary part and then the
parameter x is complex. The consequence is that most numerical evaluation schemes
become unstable because the Riccati-Bessel functions enter the exponential domain
and run out of bounds.

To avoid the ill-conditioning of the Riccati-Bessel functions ψn and ζn , the
Lorenz–Mie coefficients (4.21–4.22) are rewritten in a form involving only ratios
between them [37]

an = ψn(x)

ζn(x)

nmed An(y)− n p An(x)

nmed An(y)− n p Bn(x)
(4.23)

bn = ψn(x)

ζn(x)

n p An(y)− nmed An(x)

n p An(y)− nmed Bn(x)
. (4.24)
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Here An(z) and Bn(z) denote the logarithmic derivatives ofψn(z) and ζn(z), respec-
tively:

An(z) = ψ ′
n(z)

ψn(z)
and Bn(z) = ζ ′

n(z)

ζn(z)
.

The ratio An is only numerically stable with downward recurrence. Therefore, the
following formula is employed for its evaluation [37]

An(z) = n + 1

z
−

(
n + 1

z
+ An+1(z)

)−1

. (4.25)

This formula is also valid for the ratio Bn , but then it is unfortunately unstable for
both upward and downward recurrences [40]. Instead, we use a different formula for
Bn which has been developed by Mackowski et al. [41] in the field of multilayered
particles embedded in a non-absorbing medium. It is numerically stable with upward
recurrence for any complex argument [41]:

Bn(z) = An(z)+ i

ψn(z)ζn(z)
(4.26)

ψn(z)ζn(z) = ψn−1(z)ζn−1(z)

(
n

z
− An−1(z)

)(
n

z
− Bn−1(z)

)

. (4.27)

It remains to give a recurrence relation for the ratioψn(z)/ζn(z) in Eqs. 4.23 and 4.24.
Recent developments in the context of multilayered particles, provide a recurrence
relation that works well for small Im(z) [42, 43]:

ψn(z)

ζn(z)
= ψn−1(z)

ζn−1(z)

Bn(z)+ n/z

An(z)+ n/z
. (4.28)

The restriction to small Im(z) is not a problem in graphics applications, as a larger
Im(z) means that the host medium is highly absorbing, and then we would not be
able to see the effect of particle scattering anyway.

The amplitude functions (4.19– 4.20) are defined by an infinite sum, and in order
to get a decent approximation, we must find an appropriate number of terms M
to sum. This is also necessary for initialisation of the downward recurrence (4.25)
which computes An(x) and An(y). A formula determining M , which has both an
empirical [38, 41] and a theoretical [40] justification, is

M =
⌈

|x | + p|x |1/3 + 1
⌉

,

where p = 4.3 gives a maximum error of 10−8. It is possible to calculate an approxi-
mate initial value for the downward recurrence (4.25), but, as explained by Dave [35],
the recurrence is not sensitive to the initial value, and therefore we can arbitrarily
choose AM (z) = 0.
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Once A0(z), . . . , AM (z) have been computed for both z = x and z = y, we are
able to find the ratios Bn(x) andψn(x)/ζn(x) as well as the Lorenz–Mie coefficients,
an and bn , step by step. Note that there is no need to store Bn(x) and ψn(x)/ζn(x)
since they are computed using upward recurrences (4.26– 4.28). These recurrences
should be initialised by

B0(z) = i
ψ0(z)ζ0(z) = 1

2

(

1 − ei2z
)

ψ0(z)/ζ0(z) = 1
2

(

1 − e−i2z
)

.

Recall that there is a direct relationship between wavelengthλ and the size parame-
ters x and y. This tells us that the Lorenz–Mie coefficients are spectrally dependent
and should preferably be sampled at different wavelengths. They also depend on
the particle radius r and are valid for spherical particles of arbitrary size as long
as they do not exhibit diffuse reflection (which is only possible if the particle size
greatly exceeds the wavelength and, even so, the surface of the particle might still be
smooth) [31]. Furthermore, the equations provided in this section reveal that the com-
plex refractive index of each particle inclusion, as well as that of the host medium,
are needed as input parameters for computing the optical properties of a scattering
material.

This robust way of computing the Lorenz–Mie coefficients enables us to compute
the scattering amplitudes S1 and S2 (using Eqs. 4.19 and 4.20). With these, we are
able to find the extinction and scattering cross sections as well as the phase function
of the particle. These are all well-defined quantities for particles in a non-absorbing
medium. For a particle in an absorbing medium, the scattering cross section is a
problematic quantity because the resulting formula depends on the distance to the
observer.

When particles are embedded in an absorbing host, the extinction cross section
Ct is the only well-defined observable quantity [30]. It is computed using an optical
theorem first presented by van de Hulst [31, 44]. The original theorem by van de
Hulst is valid for particles of arbitrary shape and size, but it only applies to a non-
absorbing host medium. To account for an absorbing host, we use a slightly modified
equation presented by Bohren and Gilra [30]:

Ct = 4πRe

(
S(0)

k2

)

, (4.29)

where S(0) = S1(0) = S2(0) is the amplitude in the forward direction of the scattered
wave and k = 2πnmed/λ is the wave number. Since the host medium was assumed
by van de Hulst to be non-absorbing, nmed and therefore also k were assumed real
and moved outside the Re operator (which takes the real part of a complex number).
This is not allowed if the host medium is absorbing as the result would be a mean-
ingless complex extinction coefficient. Correction by discarding the imaginary part
of the result would not be a good approximation (except when particle absorption is
considerably stronger than that of the host medium [30]). Inserting the expression
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for S(0) in this optical theorem (4.29), we get

Ct = λ2

2π

∞
∑

n=1

(2n + 1)Re

(

an + bn

n2
med

)

.

A form has not been found for the scattering cross section Cs which is independent
of the distance to the observer, but we still have to approximate Cs to evaluate the
radiative transfer Eq. (4.1). We use a far-field approximation which has been reported
to be consistent with measured data [45, 46]. The chosen formula is identical to the
scattering cross section for transparent media except for two correction terms: an
exponential term and a geometrical term γ . The formula is

Cs = λ2e−4πr Im(nmed)/λ

2πγ |nmed|2
∞
∑

n=1

(2n + 1)
(

|an|2 + |bn|2
)

, (4.30)

where r in the exponential term is the uncertain part of the equation because it ought
to be the distance to where the scattered wave is observed. This distance is unknown,
and consequently it has been projected to the particle surface, such that r denotes
the particle radius.

The geometrical term γ accounts for the fact that the incident wave changes over
the surface of the particle as a consequence of the absorbing host medium. It is
defined by [39]

γ = 2(1 + (α − 1)eα)

α2 , (4.31)

whereα = 4πr Im(nmed)/λ andγ → 1 forα → 0. Note thatα is 0 when the medium
is transparent and close to 0 for small particles in a weakly absorbing medium.
To avoid numerical errors, one should use γ = 1 for α < 10−6.

The precision of the far-field approximation (4.30, 4.31) has recently been
reviewed [47] and compared to experimental data [45, 46]. The conclusion is that it
(as expected) does not give entirely accurate results, but it does give physically plau-
sible results. It is also concluded that significant errors can result if the absorption
of the host medium is ignored (this is especially true when the size parameter x is
large).

In the same way that it is possible to formulate expressions for the scattering and
extinction cross sections of a spherical particle using Lorenz–Mie theory, it is also
possible to derive the following formula for the asymmetry parameter of a single
spherical particle [31]:

g =
∑∞

n=1

{
n(n+2)

n+1 Re(ana∗
n+1 + bnb∗

n+1)+ 2n+1
n(n+1)Re(anb∗

n)
}

1
2

∑∞
n=1(2n + 1)

(|an|2 + |bn|2
) ,

where the asterisks ∗ denotes the complex conjugate.
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This concludes the robust scheme for computing the scattering properties of a
sphere in a host medium. When using the Lorenz–Mie theory to compute macroscopic
scattering properties of a medium (as described in Sect. 4.3.1), some information
about the particle shapes and sizes is needed. We will look at this in Sects. 4.3.3 and
4.3.4.

4.3.3 Number Density Distributions

Particle size distribution is the common term for distributions that we can use to find
the number densities of particles of different sizes. One type of size distribution,
which is often encountered in the literature, is the volume frequency distribution
r3 N (r). Such distributions typically follow a log-normal distribution. Log-normal
distributions are often described by a mean particle size μ and a coefficient of vari-
ation cv = σ/μ, where σ is the standard deviation.

If we find that the volume frequency of some type of particle in a medium follows
the log-normal distribution with mean value μ and standard deviation σ , the volume
frequency distribution is given by

r3 N (r) = 1

rβ
√

2π
e
− 1

2

(
ln r−α
β

)2

, (4.32)

where r is the particle radius and

α = lnμ− 1

2
ln

(
σ 2

μ2 + 1

)

and β =
√

ln

(
σ 2

μ2 + 1

)

.

This type of distribution is commonly observed for small particles. Distributions of
larger particles tend to follow a power law. If the particle number density of some
type of particle in a medium follows a power law, the distribution is given by

N (r) = N∗r−α,

where α is usually determined empirically and N∗ is a constant which is determined
by the relationship between number density and the volume fraction of the medium
occupied by the considered type of particle (Eq. 4.33).

Measured data are sometimes available which specify the volume fraction vi ,
i ∈ A, of each particle inclusion that is present in the bulk medium. In any case,
volume fractions are a reasonable choice of input parameters. The number density
distribution N (r) specifies the number of particles per unit volume with radii in
the interval [r, r + dr ]. This means that the volume fraction occupied by a particle
inclusion, which consists of spherical particles, is
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v = 4π

3

rmax∫

rmin

r3 N (r) dr. (4.33)

Suppose we measure the particle size distributions for some sample of material. Then
we would have empirical functions or tabulated data that fit the volume fractions of the
particles in the original sample. Most probably the original volume fractions are not
the volume fractions we desire in our medium. Equation (4.33) is important because
it explains how we find the original volume fraction voriginal,i of particle type i .
If the volume fraction vi is desired rather than voriginal,i , the measured number density
distribution should be scaled by vi/voriginal,i .

4.3.4 Non-Spherical Particles

Particles are not always spherical. There exist a number of theories for the scattering
of other perfect mathematical shapes like cylinders, hexagonal columns and plates,
etc. They are useful because some materials actually do consist of particles approxi-
mately of these shapes. Halos are, for example, the result of scattering by hexagonal
ice crystals in the atmosphere. Instead of the mathematical approach, let us use a
more practical approach for non-spherical particles.

With the theory we have already developed, we are able to approximate non-
spherical particles by an appropriate collection of spherical particles. It is not obvious
what set of spheres we should choose to model a non-spherical particle in the best
way. Many different concepts have been tried: equal-volume spheres, equal-area
spheres, etc. The best approach we are aware of is that of Grenfell and Warren [48].
They use volume-to-area equivalent spheres. As opposed to equal-volume and equal-
area spheres, the volume-to-area equivalent spheres have proven to be quite exact.
They have been tested for cylinders [48], hexagonal columns and plates [49], and
hollow columns and plates [50]. In most cases the error is less than 5 %. At least this
is true for scattering and extinction coefficients. The approximation is, as could be
expected, less accurate with respect to the phase function.

To represent a particle of volume V and surface area A by a collection of spheres,
the radius of the equivalent spheres is found simply using the volume to surface area
ratio of a sphere [48]:

req = 3
V

A
.

Since the number of equivalent spheres is not equal to the number of non-spherical
particles, the number density must be adjusted accordingly [48]:

Neq

N
= 3V

4πr3
eq
.
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The equivalent radius req and the equivalent number density Neq are then used for
computing the optical properties of the material with Lorenz–Mie theory for com-
puting the cross sections of the equivalent spheres. This is a simple and practical
approach which gives rather good results. It has been used with the theory presented
here to develop an appearance model for natural ice. which contains both cylindri-
cally and spheroidally shaped particles [28, 51]. In the milk case study (Sect. 4.4),
the volume-to-area equivalent size distribution is reported directly in the literature,
so the radius and number density adjustments are not necessary.

4.3.5 Scattering of a Gaussian Beam

In wave optics, a generalised version of the Lorenz–Mie theory [52, 53] would be
needed to model the scattering by a particle of a shaped beam such as laser. However,
we are using the scattering by particles in a geometrical optics context. The scattering
of a ray, which traces an infinitely thin part of the wavefront, is adequately modelled
by the scattering of a plane wave. Thus we do not employ the generalised Lorenz–Mie
theory, but model a Gaussian beam (a laser source) as described in Sect. 4.2.3.

When we render an image using the algorithm described in Sect. 4.2.5, the laser
source poses a problem. Rays are traced from the observer and new directions are
sampled at every scattering event. Since the laser source is small and collimated,
the chance of a ray hitting the laser source from the right direction is almost non-
existing. To solve this problem, we use bidirectional path tracing [54]. As described
in Sect. 4.2, rays are traced from the observer through each pixel in the image into
the scene. To account for a laser source, we also sample a position on the laser
source and trace a ray from this position to the first scattering event in a medium. For
every ray from the observer that reaches this medium, we compute the contribution
from the scattered laser light. Every time all pixels have been sampled once by rays
from the observer, a new sample ray is traced from the laser source. This is how we
accommodate a laser source in the path tracing algorithm. In the following, we will
use the theory to predict the appearance of milk.

4.4 Milk as a Case Study

Milk consists roughly of an emulsion of milkfat globules; a colloidal suspension of
protein particles; and lactose, soluble proteins, minerals, vitamins, acids, enzymes
and other components dissolved in water [55]. About 80 % of the protein in milk
is casein protein. Most of this casein, about 95 % [56], exists in colloidal particles
known as casein micelles. From an optical point of view, milk can then be treated
as two different types of nearly spherical particles, namely fat globules and casein
micelles, suspended in a host medium with almost the same optical properties as pure
water. The absorption spectrum of the host medium needs to be adjusted because
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Table 4.1 The coefficients for the empirical formula (4.34) by Quan and Fry [57]

n1 = 1.779 · 10−4 n4 = −2.02 · 10−6 n7 = −0.00423
n2 = −1.05 · 10−6 n5 = 15.868 n8 = −4382
n3 = 1.6 · 10−8 n6 = 0.01155 n9 = 1.1455 · 106

of dissolved vitamin B2 (riboflavin) which exhibits absorption in the visible range
of the spectrum. In fact riboflavin is also fluorescent, but we will not take that into
account. What we use is, in other words, a simplified model of milk, but it should be
sufficient for considering the appearance of milk.

4.4.1 Particle Composition

The host medium is water in which many different components are dissolved. For
the real part of the refractive index of the milk host, we use the refractive index for
pure fresh water (S = 0‰ in Eq. 4.34).

Quan and Fry [57] have developed an empirical formula for computing the real part
of the refractive index of pure water or brine as a function of salinity S, temperature
T , and wavelength λ. It is as follows [57]:

n′
water(λ, T, S) = 1.31405 + (n1 + n2T + n3T 2)S + n4T 2

+ n5 + n6S + n7T

λ
+ n8

λ2 + n9

λ3 . (4.34)

The coefficients are listed in Table 4.1. This formula describes the dependency of
n′

water on salinity in the range 0‰ < S < 35‰, temperature in the range 0 ◦C < T <

30 ◦C, and wavelength in the range 400 nm < λ < 700 nm. Moreover, Huibers [58]
has reported that the same formula is valid over a broader spectrum of wavelengths
(200 nm < λ < 1100 nm) than originally assumed.

To find the imaginary part of the refractive index of the milk host, we make a
correction for the imaginary part of the refractive index of pure water. The dissolved
component exhibiting the most significant absorption in the visible range is vitamin
B2 (riboflavin). Spectral data for the absorption of vitamin B2 are available in the
PhotochemCAD application1 [59]. The absorption coefficient is not measured
directly, instead the absorbance D is measured. The absorption coefficient is calcu-
lated from the absorbance using a molar absorption coefficient ε for some wavelength.
A molar absorption coefficient of riboflavin is ε(266.5 nm) = 3.3 · 106 M−1m−1

[60]. The following formula finds the remaining molar absorption coefficients for
riboflavin using the absorbance data:

1 http://omlc.ogi.edu/spectra/PhotochemCAD/abs_html/riboflavin.html.

http://omlc.ogi.edu/spectra/PhotochemCAD/abs{_}html/riboflavin.html.
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Table 4.2 Imaginary part of the refractive index for pure water [61], riboflavin [59] (0.17 mg pr.
100 g solution), milk host n′′

milk, and milk fat n′′
fat

λ(nm) n′′
water n′′

riboflavin n′′
milk n′′

fat

375 3.393 · 10−10 2.927 · 10−7 2.93 · 10−7 4.0 · 10−6

400 2.110 · 10−10 2.603 · 10−7 2.60 · 10−7 6.4 · 10−6

25 1.617 3.363 3.36 8.6
50 3.302 4.096 4.10 1.1 · 10−5

75 4.309 3.323 3.33 1.1
500 8.117 · 10−10 1.076 · 10−7 1.08 · 10−7 1.0 · 10−5

25 1.742 · 10−9 5.470 · 10−8 5.64 · 10−8 4.7 · 10−6

50 2.473 5.772 6.02 4.6
75 3.532 7.554 7.91 4.7
600 1.062 · 10−8 6.889 · 10−8 7.95 · 10−8 4.9 · 10−6

25 1.410 7.169 8.58 5.0
50 1.759 7.563 9.32 5.0
75 2.406 4.967 7.37 5.1
700 3.476 · 10−8 7.937 · 10−8 1.14 · 10−7 5.2 · 10−6

25 8.591 4.683 1.33 5.2
50 1.474 · 10−7 7.287 2.20 5.2
775 1.486 · 10−7 8.626 · 10−8 2.35 · 10−7 5.2 · 10−6

The milk host spectrum is n′′
water + n′′

riboflavin. The milk fat spectrum is from Michalski et al. [62]

ε(λ) = ε(266.5 nm)

D(266.5 nm)
ln(10)D(λ).

The natural content in milk of riboflavin is 0.17 mg per 100 g milk [56]. Using the
molar mass of riboflavin which is 376.3682 g/mol, we find that the natural concen-
tration of riboflavin in milk is

c = 0.17 mg

376.3682 g/mol

/ 100 g

1.03 g/mL
= 4.65 · 10−6 mol/L.

By multiplication of the molar absorption coefficient with this concentration, we
obtain the absorption coefficient of riboflavin which is converted into the imaginary
part of a refractive index (Eq. 4.18) and added to the imaginary part of the refractive
index for pure water to obtain the imaginary part for the milk host, n′′

milk. See Table 4.2.

The Fat Inclusion

Walstra and Jenness [63] have found experimentally that the real part of the refractive
index of milk fat approximately follows the function

n′
fat(λ, T ) =

√

(b(T )+ 2)λ2 − 0.03

(b(T )− 1)λ2 − 0.03
, (4.35)
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where wavelength is measured in μm and b is found using a measurement of the
refractive index at the temperature T . We use measurements by Michalski et al. [62]
since they also present the wavelength dependent imaginary part of the refractive
index. They find n′

fat(0.589μm, 20 ◦C) = 1.461 which gives b(20 ◦C) = 3.73. This
corresponds well to the b(40 ◦C) = 3.77 reported by Walstra and Jenness [63].
Table 4.2 includes the imaginary part of the refractive index for milk fat n′′

fat as we
read it from the curve reported by Michalski et al. [62].

The volume frequency of the fat globules follows a log-normal distribution [64]
(cf. Eq. 4.32). The mean of the volume-to-area equivalent sphere radii req,fat of the
fat globules change depending on the volume fraction of the globules in the milk.
By a least-squares, two-piece fit to measured data reported by Olson et al. [65], we
have found a functional expression describing this relationship:

r43,fat =
{

−0.2528 w2
f + 1.419 w f for w f < 2.0

1.456 w0.36
f otherwise

,

where r43,fat is measured in micrometres. The relationship between r43,fat and req,fat
is [64]

req,fat = r43,fat/(c
2
v,fat + 1).

The radius r43,fat is used since it can be estimated empirically with good accuracy [64].
The coefficient of variation cv,fat is usually between 0.4 and 1.2 in normal milk.
Reasonable limits for the range of fat globule radii are rmin,fat = 0.005μm and
rmax,fat = 10μm.

The Protein Inclusion

The refractive index of casein micelles is not readily available in the literature. For
comparison to goat’s milk it has been determined to be the following for cow’s
milk [66]:

ncasein = 1.503.

This value is assumed to be constant in the visible range and absorption of the casein
micelles is neglected.

Structure and size distribution of casein micelles is still being disputed in the
literature. Recent research on the matter is discussed by Gebhardt et al. [67]. Most
investigations are based on either light scattering or electron microscopy. Light scat-
tering approaches find micelles of large average size while electron microscopy
report a large number of very small casein particles in addition to the larger micelles.
Sometimes, these very small particles are excluded from the reported size distribu-
tion since they are regarded to represent non-micellar casein or single submicelles.
No matter what we call these very small particles, they scatter light as do the larger
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Table 4.3 A summary of the microscopic properties of cow’s milk

Property Milk host Fat globules Casein micelles

n′ Eq. 4.34 Eq. 4.35 1.503
n′′ Table 4.2 Table 4.2 0.00
r [0.005μm, 10μm] [0 nm, 150 nm]
N (r) Eq. 4.32 Eq. 4.32

Table 4.4 Densities for computing of milk fat and casein volume fractions using weight percents

ρfat ρprotein ρmilk

1.11 g/mL 0.915 g/mL 1.03 g/mL

Measured by Walstra and Jenness [63] at 20 ◦C

aggregates and therefore should be included in the size distribution employed for the
Lorenz–Mie calculations.

A size distribution based on electron microscopy, which includes the single
submicelles in the distribution, was reported by Schmidt et al. [68]. They found
the mean req,casein = 43 nm and showed that a log-normal distribution (4.32) of
r/(rmax,casein − r) is a good fit of the measured volume frequency distribution. The
limits for the casein micelle radii are rmin,casein = 0 nm and rmax,casein = 150 nm.

The microscopic properties of milk are summarised in Table 4.3.

4.4.2 Appearance Model

To model the concentration of fat and protein we use wt% (g per 100 g milk), since this
value is used on content declarations on the side of milk cartons. In the remainder
of this chapter we let w f and wp denote the wt% of fat and protein respectively.
To translate wt% into volume fractions, we use the densities given by Walstra and
Jenness [63]. They are summarised in Table 4.4. Casein micelles make up about
80% · 95% = 76% of the protein volume fraction (see above). This means that

vfat = w f /ρfat

100 g/ρmilk
and vcasein = 0.76

wp/ρprotein

100 g/ρmilk
.

This simple translation from fat and protein contents to volume fractions of the
particle inclusions in the milk means that we have an appearance model with the
following parameters:

• Fat content w f

• Protein content wp.

These two parameters are all we need to model most types of milk.



4 Predicting the Appearance of Materials 127

Fig. 4.1 Rendered images of the components in milk (top row) as well as mixed concentrations
(bottom row). From top left to bottom right the glasses contain: pure water, water and vitamin B2,
water and protein, water and fat, skimmed milk, regular milk, and whole milk

4.4.3 Results

The protein content of the milk we buy in a grocery store is usually around wp =
3.4 wt.% while the content of fat is what we use to distinguish between different
milk products: skimmed milk, w f = 0.1 wt.%; low fat milk, w f = 1.5 wt.%; whole
milk w f = 3.5 wt.%. This information, and the appearance model described above,
enables us to visualise different types of milk. We are also able to show the visual
significance of each component in the milk. This is a particular strength of the
approach that we take. Knowing the visual significance of the different ingredients
in a material is important if we would like to design the appearance of the material
or if we would like to interpret the appearance of the material. Figure 4.1 shows
the visual significance of different components in milk as well as the predicted
appearance of different milk products. Starting leftmost in the top row, the first glass
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Fig. 4.2 A simple experi-
mental setup where we can
take a picture of a laser pointer
shining light into a cup of milk

contains pure water, the second includes the absorption of vitamin B2 and is the
host medium of the particles in the milk, the third glass contains casein micelles in
water, the fourth contains fat globules in water, and the three glasses in the bottom
row contain skimmed milk, low fat milk and whole milk, respectively. The contents
of these glasses have all been rendered using the appearance model described in
this section. Spectral optical properties (sampled at every 25 nm) were computed
as described in Sect. 4.3 for all the milk materials. For rendering, we computed
RGB representations of the optical properties by weighted averages using the RGB
colour matching functions of a standard human observer [69]. We used homogeneous
scattering properties for the milk and the approximative Henyey-Greenstein phase
function with an ensemble asymmetry parameter.

The results provided in Fig. 4.1 (bottom row) compare only qualitatively to pic-
tures of real milk. Our eyes are the instruments in such a comparison. To find out if
our model correctly predicts the appearance of real milk, some sort of quantitative
comparison is necessary. We can do a quantitative comparison by constructing a sim-
ple experimental setup which we can easily model and render. The set-up we choose
is photographed in Fig. 4.2. It consists of a digital camera on a tripod pointing at the
surface of milk in a cup, and some arbitrary device for hanging up a laser pointer over
the cup. The experiment is to take a picture of the milk while the laser pointer shines
light into it directly from above. The room should be darkened as much as possible,
but it is usually not possible nor practical to black it out completely. For this reason,
a picture was first taken with the laser pointer turned off and one was then taken with
the laser pointer turned on. Subtracting the first picture from the second removes the
background illumination to reveal the scattering of the laser in the milk alone. To
avoid scattering of light in the cup itself, the white cup in Fig. 4.2 was replaced by a
black, opaque cup when the pictures were taken. In addition, the digital camera was
and should be configured to process the picture as little as possible.

To model the experimental set-up digitally, all we need is a correctly sized cylinder
of milk, a laser source placed directly above it, and a camera placed at the right
distance from the milk surface. The laser pointer we used had a diameter of 3 mm,
power of Φ = 1 mW, and wavelength of λ = 650 nm. This means that all the laser
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Laser in skimmed milk − photo
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Fig. 4.3 Photographed laser in skimmed milk (w f = 0.1 wt.%, wp = 3.4 wt.%), simulated laser in
skimmed milk, and comparison of the diffusion curves, that is, the middle lines through the images

light should go into the red colour band. The horizontal line in the image through
the laser spot centre is referred to as the diffuse reflectance curve. We only use the
diffuse reflectance curve of the red colour band in our quantitative comparison. This
line is perpendicular to the direction towards the camera, so only the distance to the
camera is important not the angle. For this reason, we place both camera and laser
pointer directly above the milk in our digital scene. To save computations, we only
render pixels from the laser spot centre to the right border of the film (half the diffuse
reflectance curve), and then we revolve this result around the centre to get a full
synthesised image of the laser spot.

The photographed milk, the rendered milk, and the quantitative comparison are
provided in Fig. 4.3. There are a few differences between theory and experiment
that we should discuss. The real camera is overexposed by the reflected laser light
while the synthetic camera is not (the top of the blue curve has been cut off). The
reason is the background illumination which was subtracted. In this experiment,
the background illumination was just enough to overexpose the laser spot in the
photograph. Another difference is that the photographed laser spot is not symmetric.
It is more elliptically shaped. The reason for this deviation in the rendered image
is that the laser source was modelled as a circular disc (see Sect. 4.2.3), and this is
not the shape of the light emitted by a standard laser pointer. Finally, the central
part of the photographed laser spot is not only red. The most likely explanation is
that light penetrates the colour filters in the CCD chip when it is overexposed. This
means that some of the red light spills into the other colour bands in the overexposed
area of the image. Apart from these explainable differences, there is surprisingly
good quantitative agreement between theory and experiment (the diffuse reflectance
curves are close to each other).

From a qualitative perspective, the rotational symmetry of the simulated image
is a giveaway which makes it easy for the human eye to spot the synthetic image in
comparison to the real one. This might not be as easy if we had not revolved a single
line in the image around the centre to save computations. Although it is not physically
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Fig. 4.4 Photographed laser in whole milk (w f = 3.5 wt.%, wp = 3.4 wt.%), simulated laser in
whole milk, and comparison of the diffusion curves, that is, the middle lines through the images

accurate, the red light spilling into the other colour bands where the light is intense
in the photograph convinces the eye that the photograph is more real. This is because
the human eye is able to perceive a more intense red colour than what the camera
can capture (and what a standard computer screen can display). The added intensity
from the other colour bands therefore seems more realistic than a flat red colour. As
a final example, to illustrate that the appearance model is reliable for different types
of milk, Fig. 4.4 compares photographed and simulated laser in whole milk.

4.5 Conclusion

The milk example demonstrates that we are able to show the visual significance
of the different components in a material by computing synthetic images. It also
demonstrates that we are able to predict the appearance for various ratios between
the contents. This makes a number of interesting applications possible:

• If you want to design materials with a specific appearance, the appearance model
can help you choose the right components to obtain the desired appearance.

• If you want to detect whether a component is present in a material or not, the
appearance model can help you visualise the material as it would look with and
without the component.

In other words, synthesised images with a connection to the contents and the physical
conditions of a material enable us to learn a lot about the reasons for the appearance
of materials.

Considering the input parameters that brought us to the simulated diffuse
reflectance curves in Figs. 4.3 and 4.4, the presented method is definitely useful
for analysis by synthesis. If we simulate a large number of diffuse reflectance curves
for milks with different particle inclusions, we can construct numerical methods for
analysing the properties of these inclusions from photographed diffuse reflectance
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curves. The slope of the diffuse reflectance curve, for example, reveals a lot about
the fat content of the milk (as is obvious from the figures). Further investigation can
lead to more precise models for determining the fat content of milk from a digital
photograph.

The Lorenz–Mie theory provides the link from the particle composition of a mate-
rial to the macroscopic scattering properties that we can use with radiative transfer
theory to compute a realistic image. In this way, a century after its formulation, the
Lorenz–Mie theory is the key component when we want to predict the appearance
of materials using a physical model.
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Chapter 5
Dipole Re-Radiation Effects in Surface
Enhanced Raman Scattering

Logan K. Ausman and George C. Schatz

Abstract In this chapter we use extensions of Mie theory to study electromagnetic
enhancement factors associated with surface enhanced Raman scattering (SERS)
from molecules adsorbed onto metal sphere array structures, comparing results from
the more rigorous dipole re-radiation (DR) expression for Raman enhancement with
the commonly used plane-wave (PW) enhancement formula. The DR and PW cal-
culations are based on the T-matrix method for determining optical scattering from
multiple spheres. In the PW expression, the enhancement is considered to be equal
to the product of the squares of the local electric fields, |Eloc(ω)|2|Eloc(ω

′)|2 or
|Eloc(ω)|4 for zero Stokes shift, obtained from plane wave Mie scattering. In the DR
calculation, the induced dipole in a molecule that is located at the surface of one of the
particles serves as a dipole source at the Stokes-shifted frequency that scatters from
the particles to define an overall enhancement factor. The SERS enhancement factors
are determined for chains of 100 nm diameter Ag spheres and for chains of 100 nm
Ag sphere dimers for various sphere and dimer separations and for various chain
lengths, with the dimer gap fixed at 6.25 nm. We compare the PW and DR results for
two different detector locations, a backscattering configuration normal to the axis of
the chain, and a 135◦ scattering direction that includes the plane of the chain axis, in
order to highlight far-field phase interference effects that are incorporated in the DR
result but not PW. We find that the DR and PW results have negligible differences
for the backscattering geometry, but far-field effects play a significant role in the
overall enhancement factor for the non-backscattered location. This demonstrates
the importance of including DR effects in the interpretation of SERS experiments.
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5.1 Introduction

Surface enhanced Raman scattering (SERS) was discovered in the mid-1970s when
it was realised that Raman scattering from molecules like pyridine adsorbed in mono-
layer concentrations on anodised (roughened) silver electrode surfaces was enhanced
by a factor of 106 compared to the same scattering process for molecules in solution
[1–3]. Shortly after this discovery, it was postulated that this enhancement could be
understood based on the enhancement in local fields on the surfaces of the nanoparti-
cles being irradiated as a result of plasmon excitation in these particles [4]. Approx-
imate theories that include plasmon excitation were then formulated, as reviewed
in many places in the mid-1980s [5–10], in which the electromagnetic (EM) con-
tribution to the enhancement factor is given by |Eloc(ω)|2|Eloc(ω

′)|2, where Eloc is
the electric field at the position of the molecule and ω and ω′ are the incident and
Stokes shifted frequencies, respectively. This so-called plane wave (PW) approxima-
tion assumes that the incident and scattered field enhancements can both be derived
from the scattering of plane waves from the metal nanostructure; however, it was
noted in 1980 by Kerker [11] that this is only an approximation to the rigorous
EM enhancement factor. Kerker used concepts derived from Mie theory [12] which
he had extended in the mid-1970s to describe fluorescence from molecules inside
polymer nanoparticles [13–15] to show that although the incident photon enhance-
ment factor is given by |Eloc(ω)|2, the emitted photon enhancement factor should
be derived from emission by the dipole induced in the adsorbed molecule at the
Stokes frequency. The emitted radiation interacts with the nanostructure, leading to
plasmon enhancement in the scattered field. Kerker demonstrated that this dipole
re-radiation (DR) enhancement factor matches the plane wave (PW) enhancement
factor for spherical particles in the quasistatic (small particle limit) approximation
for molecules in special locations. However, the more general evaluation of DR
effects has received scant attention over the years, with the few exceptions being
work done by Kerker and others in the mid-1980s [10, 16–18], and a recent study by
Ausman and Schatz [19]. Instead the vast majority of the SERS models are based on
the PW approximation [20–29]. A further restriction is often made where the differ-
ence between ω and ω′ is neglected, leading to the zero Stokes shift enhancement
factor |Eloc(ω)|4.

The lack of interest in using the dipole re-radiation expression for the SERS
enhancement factor has arisen in part because of the technical difficulty associated
with evaluation of the enhancement factor (few codes provide this capability and the
computational effort is higher), and in part because Kerker’s early estimates of DR
effects [18] suggested that the PW approximation was generally adequate. However,
in the recent work by Ausman and Schatz [19], it has been found that the DR/PW
comparison can show a factor of 2–3 differences for large enough particles or for
dimers of particles when averaged over detector locations. In addition, there can be
much larger differences for specific molecule/detector locations. These differences
are typically due to interference effects that are important in the DR enhancements but
which are completely neglected by PW. These interference effects typically become
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important when multipole resonances are important, or when the molecule is located
in a position that does not lead to large SERS enhancement based on PW excitation.
Such effects can be significant for many kinds of SERS measurements, particularly
single molecule SERS measurements [27, 29–34] and for other measurements that
are designed to yield the highest possible SERS enhancements.

Many SERS substrates are currently being produced with the goal of being highly
sensitive and at the same time highly reproducible in applications to biomolecule
[29, 35–38] and chemical sensing [39–41]. Array structures are one substrate of
interest due to fabrication capabilities that are routinely available, along with the
added benefit that plasmon resonances in each particle can couple to give photonic
enhancement at wavelengths that can be specified by the array structure [20–25,
42–44]. Experiments on nanoparticle aggregates and array structures have generated
interest in the incorporation of dipole re-radiation into SERS models [19, 45–49];
however, the comparison between DR and PW results for these structures has not been
assessed. Therefore, knowledge concerning the limitations of the PW approximation
for these structures will aid in its proper employment and also hopefully spur new
advances in numerical methods (i.e. DDA, FDTD, etc) for describing SERS.

This chapter will highlight the incorporation of dipole re-radiation in the modeling
of SERS due to silver particles and silver particle array structures where all particles
are modeled as spheres so that Mie theory (with extensions) can be used. We will
only briefly consider applications to an isolated sphere and to a dimer of spheres as
this has been addressed in our previous work. Instead, most of our development will
refer to larger array structures, with the aim of determining the validity of the PW
approximation and to assess the conditions under which it breaks down. We do this
by considering SERS enhancements for several molecule locations and two different
detector locations. These applications will show that far-field phase interference
effects can result in SERS enhancement factors that differ significantly from the PW
approximation.

5.2 Methods

5.2.1 Theory

There is a vast literature that presents Mie theory and its extensions to coupled
spheres; however, our focus will be on the inclusion of dipole re-radiation. For
thorough treatments of single sphere plane wave scattering see Bohren and Huffman
[50]. The extension of this to multiple spheres using the T-matrix method can be found
in papers by Mackowski and Mishchenko [51–53], along with the accompanying
references.

The starting point for all of these theories is the single sphere scattering problem.
This is treated through an expansion of incident and scattered electric fields in a basis
of vector spherical harmonics. A general incident electric field has the form
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Ei (r, ω) =
∞
∑

l=0

l
∑

m=−l

[

plmN(1)lm (kr)+ qlmM(1)
lm (kr)

]

, (5.1)

and the resulting scattered electric field is

Esc(r, ω) =
∞
∑

l=0

l
∑

m=−l

[

almN(3)
lm (kr)+ blmM(3)

lm (kr)
]

, (5.2)

where Nlm and Mlm are the vector spherical harmonic basis functions that can be
found in [11, 50, 51, 54]. The coefficients alm and blm are related to the general
incident electromagnetic field coefficients plm and qlm through the Lorenz–Mie
single sphere coefficients αl and βl by the following:

alm = αl plm, (5.3)

blm = βlqlm . (5.4)

Explicit expressions for the Lorenz–Mie single sphere coefficients αl and βl for a
sphere of radius a and permittivity ε1 in a medium with ε0 are

αl = − ε1 jl (k1a) [k0ajl (k0a)]′ − ε0 jl (k0a) [k1ajl (k1a)]′

ε1 jl (k1a)
[

k0ah(1)l (k0a)
]′ − ε0h(1)l (k0a) [k1ajl (k1a)]′

, (5.5)

βl = − jl (k1a) [k0ajl (k0a)]′ − jl (k0a) [k1ajl (k1a)]′

jl (k1a)
[

k0ah(1)l (k0a)
]′ − h(1)l (k0a) [k1ajl (k1a)]′

. (5.6)

In (5.5) and (5.6) jl(x) is the spherical Bessel function and h(1)l (x) is the spherical
Hankel function of the first kind. The coefficients plm and qlm when the incident
field is a plane wave (the traditional Lorenz–Mie theory), and the resulting scattered
field coefficients alm and blm can be found in [50], in [51] and in Ausman and
Schatz [54].

In order to describe dipole re-radiation, the coefficients plm and qlm in (5.1) are
modified from their usual plane wave expressions by making use of the fact that
the electric dipole field can be expressed as the product of the free-space tensor
Green’s function, Gs , with the dipole moment induced by plane wave scattering,
p = αR · [

Epw(r0)+ Esc,pw(r0)
]

, through the relation

Edp(r;ωs) = 4πk2
s

εs
Gs(r, r0;ωs) · p. (5.7)
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The terms in the induced dipole moment are the Raman polarisability tensor,
αR, and the local field at the molecule location, r0, due to plane wave scattering.
The field Edp can be expressed in a vector spherical harmonic basis by noting that
the tensor Green’s function can be expanded in a basis of vector spherical harmonics
by way of the Ohm-Rayleigh method as described by Tai [55]. With the modified
plm and qlm for a molecule located at r0, the resulting scattered field coefficients alm

and blm have the form [11, 16, 19, 54]

alm = (−1)mαl
ik3

s

εs

2l + 1

l(l + 1)
N(3)l(−m)(ksr0) · p, (5.8)

blm = (−1)mβl
ik3

s

εs

2l + 1

l(l + 1)
M(3)

l(−m)(ksr0) · p. (5.9)

In the above equations εs is the dielectric function of the medium at the frequency
ωs, ks = ωs

√
εsμs/c and

√
εsμs is the complex refractive index of the medium.

Note that the expressions in (5.8) and (5.9) will generally be nonzero for all values
of m between −l and +l. In the case of plane wave scattering m will only take on the
values of ±1 which means that only specific symmetry components of any multipole
l can be induced in a sphere. This is no longer the case for the scattering of an electric
dipole field. As the l value increases the difference between accessible modes for a
plane wave compared to those of a dipole field increases.

Now we extend this theory to dipole re-radiation that arises from emission in the
presence of many interacting spheres, following the notation used in [51]. By making
use of (5.9) and (5.10), sphere i is then coupled to sphere j by use of the addition
theorem for vector spherical harmonics in the same way as plane wave scattering is
treated. These coefficients are [19, 51–53]

ai
lm = αi

l

(
ik3

s

εs
N(3)l(−m)

(

ksri
0

)

· p

+
Ns∑

j=1
j �=i

∞
∑

l ′=1

l ′
∑

m′=−l ′

[

aj
l ′m′ A

(3)
lml ′m′

(

ksRji
)

+ bj
l ′m′ B

(3)
lml ′m′

(

ksRji
)]

⎞

⎟
⎟
⎠
,

(5.10)

bi
lm = β i

l

(
ik3

s

εs
M(3)

l(−m)

(

ksri
0

)

· p

+
Ns∑

j=1
j �=i

∞
∑

l ′=1

l ′
∑

m′=−l ′

[

bj
l ′m′ A

(3)
lml ′m′

(

ksRji
)

+ aj
l ′m′ B

(3)
lml ′m′

(

ksRji
)]

⎞

⎟
⎟
⎠
.

(5.11)
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A(3)lml ′m′ and B(3)lml ′m′ are vector harmonic addition coefficients, expressions for which
can be found in [51–53]. The superscript (3) signifies that the coefficients are gener-
ated using spherical Hankel functions and Rji = r − r0.

When the individual sphere coefficients are determined, the total field, Etot
sc , at a

point r is generated by taking the sum of the individual scattered fields from each
sphere in Cartesian space

Etot
sc =

Ns∑

i=1

Ei
sc. (5.12)

This field is then added to the field Edp produced by the radiating dipole, and for a
sufficiently large rs is multiplied by rs/ exp(ikrs) to obtain the far-field amplitude
FR(θs, φs) = rs(Edp + Etot

sc )/ exp(ikrs). With this it is possible to obtain the dipole
re-radiation Raman enhancement factor, G, using

G(θs, φs) = |FR(θs, φs)|2
∣
∣FR,0(θs, φs)

∣
∣
2 , (5.13)

with FR(θs, φs) being the far-field amplitude of the molecule/particle system and
FR,0(θs, φs) being the corresponding far-field amplitude of the scattered radiation
from an isolated molecule. We note that F implicitly depends on rs but we simply
assume that this distance is large with respect to the wavelength of light and fixed.

5.2.2 Computational Details

As is mentioned elsewhere, determining the coefficients ai
lm and bi

lm would formally
be done by fully inverting a (2No,i(No,i+2))2 matrix where the l value of each sphere
is truncated at No,i; however, in practice these are solved iteratively by employing
a biconjugate gradient method. The computational cost is further reduced by tak-
ing advantage of various rotational and translational transformations and symmetry
properties of the A(3)lml ′m′ and B(3)lml ′m′ with the details of these available in the
previously mentioned references.

In this chapter we use the dielectric data for Ag as reported by Johnson and Christy
[56]. We also mention that in all calculations performed in this work the incident
electric field is assumed to be plane polarised in the x̂ direction and propagating in
the ẑ direction. Additionally, the external medium is taken to be a vacuum, and the
reported enhancement factors are evaluated for zero Stokes shift (so that the PW
enhancement factor is |Eloc|4). The molecule location is denoted by the coordinates
r0, θ0 and φ0 while the detector location is denoted by the coordinates rs, θs and φs;
depictions of these are shown in Fig. 5.1. Also in Fig. 5.1 we show the arrangement
of the sphere chains and dimer chains with respect to the incident electric field.
In the single sphere chains the spheres are aligned along the axis that coincides with
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Fig. 5.1 Scheme of the rel-
evant molecule and detector
coordinates and the arrange-
ment of the spheres

H (the y-axis). The dimer chains are similarly arranged, with the second sphere in
the dimer being offset along the axis that coincides with E. The molecule is located
along the E-axis (i.e., x-axis) a distance 0.5 nm from the surface of the sphere that
is at the origin. This is the central sphere in the chain,and the central dimer in the
chain of dimers. Note that the classical point dipole is assumed to have an isotropic
response. While there are likely to be many interesting effects due to anisotropic
responses, the choice of an isotropic αR is done for simplicity and we note that other
responses could be considered. Indeed, a quantum mechanical molecular response
can be included (still keeping the particle as a classical scatterer) by employing the
many-body theory of SERS developed by Masiello and Schatz [57].

5.3 Dipole Re-Radiation Effects in SERS from Isolated
Particles and Dimers

The most extensive studies of dipole re-radiation have been done for isolated spheres.
In 1980, Kerker and coworkers examined SERS in the presence of Ag spheres and
dielectric spheres [11], considering distance dependence, frequency dependence and
sphere size dependence of the SERS enhancement factor. Later, Kerker studied sen-
sitivity of the estimated enhancement factors to the dielectric data used [17] and also
briefly compared the average enhancement over the surface of a sphere as calcu-
lated by dipole re-radiation with the average local electric field enhancement [18].
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Fig. 5.2 SERS excitation
profile for a single 100 nm
diameter Ag sphere with
a molecule located 0.5 nm
from the sphere surface along
the axis parallel with the
incident E-field polarisation.
The solid black line is the
PW approximation result,
the dashed red line is the
backscattering DR result and
the blue dash–dotted line is
the DR result for a detector at
θs = 3π/4 and φs = π/2 350 400 450 500 550 600 650 700 750 800
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However, Kerker fixed the detector location in these studies at a position that is
orthogonal to the kE-plane. Recently, we compared the dipole re-radiation G value
and the PW approximation for other detector locations [19]. In that work we found
that the agreement between the PW approximation and G is dependent upon both
molecule and detector location. Here, we only consider the influence of the detector
location.

In Fig. 5.2 we present an isolated sphere result so that a comparison with arrays
made up of a chain of spheres can be made later. The sphere under consideration is a
100 nm diameter Ag sphere in vacuum. We choose two different detector locations:
(1) a backscattering configuration at θs = π and (2) an off axis direction θs = 3π/4
and φs = π/2. Neither of these locations was considered in our earlier study.
The first location corresponds to a common detector direction while the second
is somewhat arbitrarily chosen but is typical of directions used for SERS measure-
ments. As was observed in [19] for other detector locations, we see that the PW
approximation is accurate for the dipole plasmon part of the spectrum but there are
significant differences for higher order multipoles. For the detector positions con-
sidered here there is no difference between the G values except in the blue region
of the spectrum. This behaviour is indicative of far-field interference effects due to
the angular structure of higher order multipoles. These effects have been explained
previously [19], and we will return to this in more detail later.

As can be seen in Fig. 5.2 the peak SERS enhancement factor from an isolated
sphere is rather small (approximately 3 × 103). However, the junction of a sphere
dimer can produce large local electric field enhancements that lead to considerably
larger SERS enhancement factors. Therefore, we also will briefly examine SERS
enhancements due to sphere dimers in order to make later comparisons with chains
of dimers analogous to the sphere chains. In Fig. 5.3 we present the PW enhancement
factor along with the dipole re-radiation enhancement factor at the same two detector
locations as used in the isolated sphere case for two 100 nm diameter Ag spheres
separated by 6.25 nm. It has been shown previously that the absolute maximum
enhancement factors occur when the interparticle axis of the dimer system lies parallel
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Fig. 5.3 SERS excitation profile for a dimer of 100 nm diameter Ag spheres with a gap distance
of 6.25 nm. The molecule is located in the junction between the two spheres at a distance of 0.5 nm
from the surface of the sphere that is at the coordinate origin and the inter-sphere axis lies along the
polarisation direction of the incident E-field. The solid black line is the PW approximation result,
the dashed red line is the backscattering DR result, and the blue dash-dotted line is the DR result
for a detector at θs = 3π/4 and φs = π/2

to the incident electric field polarisation. In this case we see in Fig. 5.3 that the peak
enhancement factor for the sphere dimer is around 3 × 107 which is approximately
4 orders of magnitude larger than the isolated sphere case.

For the dimer system phase interference effects in the far-field are small at the two
detector locations chosen in this work and therefore the SERS excitation profiles are
qualitatively similar to the PW enhancements. We note that this is not necessarily
true for other detector locations as has been described previously in [19]. What is
interesting about the dimer excitation profile is that the most intense peak occurs for
the quadrupole plasmon rather than the dipole plasmon, whereas the opposite is the
case for smaller spheres. This is likely due to the fact that the near-zone quadrupole
field varies as 1/r4 which means that at close enough distances it can play a more
significant role than the electric dipole field.

5.4 Dipole Re-Radiation Effects in SERS from Single
Sphere Chains

Having introduced some ideas concerning the differences between dipole re-radiation
and the locally enhanced field approximation for an isolated sphere and a sphere
dimer we now turn our attention to systems that are more complex. Earlier work
has examined the role of linear arrays of spheres separated by various distances.
It was shown by Zou and Schatz [20–24] that 1D arrays with sufficiently many
spheres, specific sphere separations and sphecific choices of polarization and wave-
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Fig. 5.4 Extinction spectra
for sphere chains made up of
5 spheres (a) and 45 spheres
(b) for different sphere sepa-
rations. The separations given
in the legend are the center-
to-center distances
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vector could exhibit long range interactions that can increase the isolated sphere
enhancement factor by at least one order of magnitude at specific wavelengths. These
photonic effects are characterised by a sharp peak in the extinction spectrum that
occurs at a wavelength that is roughly equal to the center-to-center particle spacing
(and higher order modes also exist). In this section, we examine the role of DR effects
for these structures.

Figure 5.4 presents the extinction spectra of 1D arrays of either 5 or 45 diameter
spheres measuring 100 nm, where the array axis is taken to be perpendicular to both
the k and E directions (and therefore is along the y-direction). The figure shows that
for short separation distances the dipole plasmon in the isolated sphere spectrum
near 390 nm is suppressed (by destructive interference of interacting dipole near-
fields) while it becomes enhanced at longer separations (due to the different dipolar
interactions for far-field interaction compared to near-field interaction). As has been
described [20–24], we see that longer separations with a larger number of spheres
can result in sharp peaks in the extinction spectrum at wavelengths that roughly
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Fig. 5.5 SERS excitation
profile for a linear chain
made of 100 nm diameter Ag
spheres with a center-to-center
separation of 106.25 nm.
The molecule is located 0.5 nm
from the surface of the sphere
at the coordinate origin along
the axis parallel with the
incident E-field polarisation.
The case of 5 spheres is
presented in a and the case of
45 spheres is presented in b.
In both a and b the solid black
line is the PW approximation
result, the dashed red line is
the backscattering DR result,
and the blue dash–dotted line
is the DR result for a detector
at θs = 3π/4 and φs = π/2
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match the sphere separation. These are photonic resonance peaks, and we note that
the peaks here are not as sharp as were observed previously due to the fact that our
chains are truncated at 45 spheres (because of computational limitations), instead of
hundreds.

The trends observed in the extinction spectra are also seen in the frequency depen-
dence of the PW enhancement factor for a molecule that is located along the x-axis.
Figure 5.5 shows sharp peaks near 425 nm that do not correlate with features in the
extinction spectrum, reflecting the contributions of localised photonic enhancement
at the position of the molecule that are obscured by the more global nature of extinc-
tion. Figure 5.6 also shows a peak near 415 nm, but in this case the resonance peak
reflects a photonic resonance at that wavelength. Figure 5.7 shows similar photonic
resonance behaviour near 500 nm. The largest enhancement factors occur for sphere
to sphere separations around 400 nm. For backscattered polarisation, there is gener-
ally good agreement between DR and PW results except at very short wavelengths
where higher multipoles are expected to be important. This good agreement indicates
that for a detector that is located in a nearly symmetric position with respect to the
chain, mismatches between the phases of the scattered fields in the far-field, an effect
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Fig. 5.6 SERS excitation
profile for a linear chain
made of 100 nm diameter
Ag spheres with a center-
to-center separation of
400 nm. The molecule is
located 0.5 nm from the sur-
face of the sphere at the
coordinate origin along the
axis parallel with the incident
E-field polarisation. The case
of 5 spheres is presented in
a and the case of 45 spheres
is presented in b. In both a
and b the solid black line is
the PW approximation result,
the dashed red line is the
backscattering DR result, and
the blue dash–dotted line is
the DR result for a detector at
θs = 3π/4 and φs = π/2
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that we will explain later, are largely balanced and cancel out. This leaves the major
contribution to the enhancement factor being from the local environment near the
molecule.

The blue dash–dot lines in Figs. 5.5–5.7 are for the case when the detector is at
θs = 3π/4 and φs = π/2. For this detector location there are significant differences
between the PW and DR results, demonstrating far-field phase interference effects
that are significant for an array structure that is not symmetrically positioned with
respect to the detector. The enhancement factors for this detector location are gener-
ally lower than for the backscattering arrangement in the blue region of the spectrum
where the maximum enhancement occurs, and are larger in the red region of the spec-
trum if the minimum separation between the spheres in the chain is below 300 nm. The
change for longer separation distances arises because cavity-like photonic resonance
effects begin to occur in the visible region of the spectrum for separation distances
larger than 400 nm. One thing to note is that for the largest separations the local field
from each sphere closely approximates the radiation profile of a point dipole when
evaluated at the position of other spheres. In other words, the point-dipole approxi-
mation works well since the spheres are far-enough apart and the wavelengths long
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Fig. 5.7 SERS excitation
profile for a linear chain
made of 100 nm diameter
Ag spheres with a center-
to-center separation of
500 nm. The molecule is
located 0.5 nm from the sur-
face of the sphere at the
coordinate origin along the
axis parallel with the incident
E-field polarisation. The case
of 5 spheres is presented in
a and the case of 45 spheres
is presented in b. In both a
and b the solid black line is
the PW approximation result,
the dashed red line is the
backscattering DR result and
the blue dash–dotted line is
the DR result for a detector at
θs = 3π/4 and φs = π/2
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enough that higher multipolar contributions are unimportant. We will expand on this
point later when examining chains of sphere dimers.

Since the most interesting features of the excitation profiles are the maximum
enhancement factors, we now note the absolute errors in the PW approximation
for the two detector positions. For the backscattering position the errors in the
5–sphere chains are 1.74, 0.31 and 0.88% at separations of 106.25, 400 and 500 nm in
Figs. 5.5a, 5.6a, and 5.7a. The error is 0.52, 2.37 and 0.13% for these same separations
in Figs. 5.5b, 5.6b and 5.7b when the number of spheres is increased to 45. Of course
all these errors would be negligible in practical applications, which means that the
PW approximation can be used with confidence. When the detector is moved to the
second position at θs = 3π/4 and φs = π/2 the errors become considerably larger.
With the same separations as before the 5–sphere PW errors are 63.5, 416 and 64.5%
while the 45–sphere PW errors are 80.6, 16.2 and 334%. Looking at Figs. 5.5–5.7
we note that the wavelength at which the maximum enhancement occurs can change
depending on the detector location. In these results we have taken the maximum to
be the location at which the PW is largest.
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The reason that we see significant differences between the PW approximation and
dipole re-radiation results can be explained by phase interference effects as follows.
We recall from Sect. 5.2.1 that the electric field in the far-field has the form

E = F exp(ikr)

r

and therefore each field Ei for sphere i has an oscillatory term that behaves as
exp(ikr i

s )/r i
s , where r i

s is the distance from the center of sphere i to the detector
location. Therefore, the overall far-field amplitude behaves as

Ftot =
∑

i

rs

r i
s

Fi exp
(

ik
[

r i
s − rs

])

,

where rs is defined in Fig. 5.1. The result of this is that for array structures where
spheres have larger separations there can be interference patterns in the far-field
between amplitudes of the form

Re
{

F∗
i · Fj

}

cos
(

k
[

r j
s − r i

s

])

− I m
{

F∗
i · Fj

}

sin
(

k
[

r j
s − r i

s

])

,

where i �=j. These phase interference effects contribute to differences between the PW
and dipole re-radiation enhancement factors. In our earlier study, it was demonstrated
that phase interferences are smallest when the nanospheres are arranged symmetri-
cally with respect to the detector location such that emission from the different parti-
cles is all in-phase. This also applies in the present application to the backscattering
results, which explains the small errors we find for that geometry. In the nonsym-
metric geometry that we have studied (detector along the y-axis), the scattering from
different particles is no longer in-phase, so much larger errors are found.

5.5 Dipole Re-Radiation Effects in SERS from Dimer Chains

As was mentioned earlier, the largest observed enhancement factors in SERS have
been found to occur at the junction between two particles. In an analogous fashion
to the construction of arrays made up of single sphere chains, arrays made of two
chains next to each other, in effect a chain of dimers, can be constructed. This
structure was also examined by Zou and Schatz [22] and it was found that long
range photonic effects similar to those observed with single sphere chains can be
combined with plasmonic hotspots between the particles to produce even higher
enhancement factors. The main difference is that the location of the most intense
photonic resonances are now red shifted from the isolated sphere case due to the
red shift in the dipole plasmon mode of a sphere dimer system. In this work we
study models similar to Zou and Schatz, but now including for DR effects in the
enhancement.
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Fig. 5.8 Extinction spectra
for dimer chains made up of
5 dimers (a), 15 dimers (b),
and 45 dimers (c) for different
dimer separations. The dimer-
to-dimer separations given
in the legend are the center-
to-center distances. The gap
between the two spheres in the
dimers is 6.25 nm
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In Fig. 5.8 we present the extinction spectra of arrays of sphere dimer chains with
a dimer gap of 6.25 nm for various chain lengths and dimer-to-dimer separation dis-
tances. Note that the dimer chain is taken to be along the y-axis, but with each dimer
oriented along the x-axis. Also, the spheres have a diameter of 100 nm, and the mole-
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Fig. 5.9 SERS excitation
profile for a linear chain made
of a dimer of 100 nm diameter
Ag spheres with a dimer
center-to-center separation of
106.25 nm. The gap between
the two chains is 6.25 nm.
The molecule is located 0.5 nm
from the surface of the sphere
at the coordinate origin along
the axis parallel with the
incident E-field polarisation.
The case of 5 dimers is
presented in a and the case of
15 dimers is presented in b.
In both a and b the solid black
line is the PW approximation
result, the dashed red line is
the backscattering DR result
and the blue dash-dotted line
is the DR result for a detector
at θs = 3π/4 and φs = π/2
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cule is located 0.5 nm from the surface of one sphere in the gap of the central dimer.
An examination of the extinction spectra of the arrays of dimers shows trends similar
to the single sphere chains in Fig. 5.4. For small dimer-to-dimer separations the dipole
peak is suppressed and then becomes enhanced as the separation between the dimers
becomes larger. Increasing the number of components in the chains for both single
spheres and dimers increases the extinction, and an examination of Figs. 5.5–5.7 and
Figs. 5.9–5.11 indicates that this also leads to an increase in the PW enhancement
factor. At separations greater than 400 nm we see intense enhancements that are due
to long range photonic resonances. These become more prominent as the number
of dimers is increased, just as is observed for single sphere chains. There is little
change in the maximum observed enhancement factor when the number of dimers
is increased from 5 to 15, but the larger number of dimers results in a maximum in
the dipole plasmon region that is not as prominent in the 5–dimer case.

In Figs. 5.9a, 5.10a and 5.11a the SERS excitation profiles for chains made up of
5 dimers are shown. We see that chains made up of 5 dimers where the detector is
located in a backscattering configuration have SERS enhancement factors that are
accurately approximated by the PW enhancement factor. In fact comparisons with
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Fig. 5.10 SERS excitation
profile for a linear chain made
of a dimer of 100 nm diameter
Ag spheres with a dimer
center-to-center separation
of 500 nm. The gap between
the two chains is 6.25 nm.
The molecule is located 0.5 nm
from the surface of the sphere
at the coordinate origin along
the axis parallel with the
incident E-field polarisation.
The case of 5 dimers is
presented in a, the case of
15 dimers is presented in b,
and the case of 45 dimers is
presented in c. In a, b, and
c the solid black line is the
PW approximation result,
the dashed red line is the
backscattering DR result and
the blue dash-dotted line is
the DR result for a detector at
θs = 3π/4 and φs = π/2
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Figs. 5.5a, 5.6a and 5.7a show that the PW approximation is better in the dimer case
than is observed in the case of single sphere chains. This is because for single sphere
chains, higher order multipoles are important at certain frequencies (towards the blue)
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Fig. 5.11 SERS excitation
profile for a linear chain made
of a dimer of 100 nm diameter
Ag spheres with a dimer
center-to-center separation
of 600 nm. The gap between
the two chains is 6.25 nm.
The molecule is located 0.5 nm
from the surface of the sphere
at the coordinate origin along
the axis parallel with the
incident E-field polarisation.
The case of 5 dimers is
presented in a, the case of
15 dimers is presented in b,
and the case of 45 dimers is
presented in c. In a, b, and
c the solid black line is the
PW approximation result,
the dashed red line is the
backscattering DR result and
the blue dash-dotted line is
the DR result for a detector at
θs = 3π/4 and φs = π/2
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which are not accessed by plane wave scattering. However the dimer resonances are
dipolar in character so the influence of higher multipoles is less important.

Figures 5.9b, 5.10b and 5.11b show SERS excitation profiles for 15–dimer chains
at dimer-to-dimer separations of 106.25, 500 and 600 nm while Figs. 5.10c and 5.11c
show excitation profiles of 45–dimer chains with dimer-to-dimer separations of 500
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and 600 nm. Again there is good agreement of PW and DR results for the backscat-
tering arrangement. In Figs. 5.10b and 5.11b we see the influence of long range
photonic resonances which become more prominent in Figs. 5.10c and 5.11c. These
photonic resonances combine with the large field enhancement associated with the
dimer to give peak enhancement factors above 108, thus confirming the previous
conclusions of Zou and Schatz concerning the effect of combining plasmonic and
photonic resonance contributions to the electromagnetic enhancement.

As seen in Sect. 5.4 with single sphere chains, Figs. 5.9b, 5.10b and 5.11b show
that changing the detector position so that it is no longer symmetric with respect
to the dimer chain results in significant differences between the PW approximation
and dipole re-radiation. These differences are due to phase interference effects as
discussed earlier. There are certain frequencies where the PW and DR results are in
good agreement for this detector location, especially for larger dimer separations and
for longer dimer chains. This is especially noticeable for shorter wavelengths, where
there are no important photonic resonances, so only localised plasmonic excitatiton
is important.

We now examine the absolute errors associated with the PW approximation at the
maximum enhancement for the dimer chains. The reported errors are for separations
of 106.25, 500, and 600 nm for the 5–dimer chains in Figs. 5.9a, 5.10a, and 5.11a, the
15–dimer chains in Figs. 5.9b, 5.10b, and 5.11b and separations of 500 and 600 nm
for the 45–dimer chains in Figs. 5.10c and 5.11c. In a similar fashion to the single
sphere chains, the backscattering detector location results in smaller errors which for
5–dimer chains are 0.077, 0.22 and 3.7 %. For 15–dimer chains these errors become
0.59, 0.23 and 3.84% and for 45 dimers the errors are 0.89 and 0.56%. Larger
errors are again seen when the detector location is at θs = 3π/4 and φs = π/2.
The 5–dimer chain has errors of 1205, 636 and 5.78% for this detector location
while the 15–dimer chain has errors of 56.2, 1192 and 7.72%. The errors associated
with this detector location in the 45–dimer chain are 986 and 1555%.

5.6 Conclusions

Dipole re-radiation effects can play a significant role in the modeling of SERS
enhancement factors. In single particle chains and in dimer chains we observe that
the main differences between dipole re-radiation calculations and the PW approxi-
mation are the result of phase interference effects that result from scattering of the
emitted dipole wave from multiple spheres. Such interferences are relatively unim-
portant for cases where the detector location is in a location that is symmetric with
respect to the array structure; however, they can produce major differences in peak
SERS enhancement factors for other detector geometries. Differences between PW
and DR also occur in certain cases for isolated spheres due to multipole excitation
effects, as multipole resonances can be more easily excited by a dipole field than by
plane waves.
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The maximum enhancement factors for single spheres are around 103, and for
sphere dimers around 107. Photonic resonances in sphere chains and dimer chains
with the right orientation can increase these enhancement factors by 1–2 orders of
magnitude when the center-to-center separation distance is close to the wavelength
of light. We note, however, that these effects will be smaller when nonzero Stokes
shifts are included in the Raman intensity evaluation.
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Chapter 6
Optical Force and Torque on Single and
Aggregated Spheres: The Trapping Issue

Rosalba Saija, Paolo Denti and Ferdinando Borghese

Abstract Radiation force and radiation torque stem from the conservation theorems
governing the interaction between radiation and particles. As a result, even simple
plane waves may yield force and torque that are nonnegligible when studying the
dynamics of particles. We show how these forces and torques can be put into formulas
of practical use starting with the expansion of the electromagnetic field in a series
of vector multipole fields, and adapt the formalism for particles that are fairly well
modeled as single or aggregated spheres. Then, we extend the formalism to deal with
the case the field is a highly focalized laser beam, that, as is well known, may trap
particles within the focal region. Finally, we present our calculations performed by
the theory we exposed, finding a convincing concordance as long as comparison can
be made with available experimental data.

6.1 Introduction

The interaction of radiation field with particles obeys the conservation of energy as
well as the conservation both of the linear and of the angular momentum. As a result,
particles illuminated by a radiation field may experience both a force FRad and a
torque Γ Rad that contribute in determining their dynamical behavior. For instance,
in an astrophysical context, the radiation force may determine the space distribution
of the cosmic dust grains [1], whereas the radiation torque is considered as a non-
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negligible agent of their partial alignment [2]. In laboratory applications both FRad
and Γ Rad proved useful in manipulating microsized and nanosized particles under
controlled conditions.

The actual calculation of FRad and Γ Rad requires the knowledge of the electro-
magnetic field in the presence of the particles. This amounts to say that besides the
incident radiation fields EI and BI one has to know the fields ES and BS scattered by
the particles. The latter fields can be calculated by several methods among which we
prefer the one based on the expansion of the electromagnetic field in a series of vec-
tor spherical multipole fields in the framework of the transition matrix approach [3].
Actually, this is the approach on which Mie theory is based [4], although in 1908 the
concept itself of transition matrix was still to be devised. The advantages of resorting
to the transition matrix stem from its independence of the direction of incidence and
of the polarization, even for nonspherical particles, and from its well-defined trans-
formation properties under rotation of the coordinate frame. As a consequence, the
elements of the transition matrix need to be calculated only once for an arbitrarily
chosen orientation of the particle with respect to the incident field.

In this contribution we will describe how the multipole fields expansion can be
applied to calculate the force and torque exerted by a radiation field on particles that
either are spherical or can be modeled as aggregates of spheres that may be radially
inhomogeneous and need not be identical to each other. In any case, most of the
theory can be formulated without referring to the shape of the particles or to their
dielectric properties. It is only when one has to perform the calculation of ES that
the shape and properties of the particles enter into play.

In particular, the theory we are going to describe will prove suitable to deal
with the problem of trapping of microsized and nanosized particles and to study the
orientation they assume under the effect of the radiation torque.

Anyway, we do not present here a review of the theories of trapping and manipu-
lation of small particles but only a description of our own approach and some of its
applications.

6.2 Radiation Force and Radiation Torque

The geometry of the problem we deal with is depicted in Fig. 6.1, which also applies
when the incident radiation is a focalized laser beam. We choose a reference frame
Σ fixed in the laboratory, with respect to which the particle, i.e., its center of mass,
has the vector position RO ′ . Of course, the coincidence of O ′ with the center of
mass is non-necessary, but it is useful when one is interested both in the translational
and in the rotational dynamics of the particle. We also attach to the particle a local
frame of reference Σ ′ with origin at O ′ and whose axes are parallel to the axes of
Σ . Then, the radiation force and the radiation torque on the particle are given by the
integrals [5]
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Fig. 6.1 Coordinate system
we adopt to describe the radi-
ation force and the radiation
torque on a particle located
at RO ′ . In case the radiation
field is a focalized laser beam,
the origin of the coordinates
O and the z axis coincide with
the nominal focus F of the
lens and with the optical axis,
respectively

FRad = r ′2
∫

�′
r̂′ · 〈TM〉 d�′ (6.1)

and

Γ Rad = −r ′3
∫

�′
r̂′ · 〈TM〉 × r̂′ d�′ , (6.2)

respectively. In (6.1) and (6.2) the integration is over the full solid angle, r ′ is the
radius of a large (possibly infinite) sphere with center at RO ′ surrounding the particle,
and

〈TM〉 = 1

8π
Re

[

n2E′ ⊗ E′∗ + B′ ⊗ B′∗ − 1

2

(

n2|E′|2 + |B′|2)I] (6.3)

is the time averaged Maxwell stress tensor in the form of Minkowski [5]. In (6.3),
the fields E′ and B′ are considered in the frame Σ ′, ⊗ denotes dyadic product, the
asterisk denotes complex conjugation, and I is the unit dyadic. In turn, n is the real
refractive index of the homogeneous, non absorbing, isotropic medium surrounding
the particle. Of course, choosing for 〈TM〉 the form of Minkowski rather than the form
of Becker is somewhat arbitrary as discussed by Pfeiffer et al. [6], who also stress
that no experiment has been able, till date, to encourage the choice of the Minkowski
form over the Becker form. Actually, the form of Minkowski is nonsymmetric in an
anisotropic medium, but since the particles we deal with are embedded in an isotropic
medium, no inconvenience arises because of our choice.
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6.2.1 Radiation Force by Plane Waves

According to our statement in Sect. 6.1, the fields E′ and B′ that enter (6.3) are the
superposition of the incident field and of the field scattered by the particle. We, for
now, assume that the incident radiation is the plane wave

EI = E0ûIe
ikI·r = E0ûIe

ikI·(r′+RO′ ) = E ′
0ûIe

ikI·r′ = E′
I (6.4)

of wavevector kI = k̂Ik = k̂Inkv, where k̂I is the unit vector in the direction of
incidence, kv = ω/c, and ûI is the (unit) polarization vector that may be either real
(linear polarization) or complex (elliptic polarization). Obviously, in (6.4), |E ′

0|2 =
|E0|2 = II, the intensity of the incident field. In view of our choice of the incident
field and of the large radius of the integration sphere, the integral in (6.1) can be
calculated by resorting to the asymptotic expansion of a plane wave [7]

E′
I = E ′

0ûI
2π i

r ′k

[

δ
(

k̂I + r̂′) exp
(−ikr ′) − δ

(

k̂I − r̂′) exp
(

ikr ′)] .

Then, a straightforward calculation leads to the conclusion that the first two terms,
i.e., the dyadic products in the expression of 〈TM〉 give a vanishing contribution to
the radiation force [8]. In Appendix 1 we will prove this result through a different
approach that applies even when the incident field is not a single plane wave. Anyway,
since I·r̂′ = r̂′, the component of the radiation force along the direction characterized
by the unit vector v̂ζ turns out to be

FRad ζ = − r ′2

16π
Re

∫

�′

(

r̂′ · v̂ζ
) [

n2
(

|E′
S|2 + 2E′∗

I · E′
S

)

+
(

|B′
S|2 + 2B′∗

I · B′
S

)]

d�′ . (6.5)

Of course, choosing v̂ζ to coincide in turn with the unit vectors that characterize the
axes ofΣ one gets the cartesian components of the radiation force, whereas, choosing
v̂ζ along k̂I, one gets the radiation pressure in the form derived by Mishchenko [8]
in terms of the customary asymmetry parameter. The components of FRad in a plane
orthogonal to k̂I can also be calculated and imply the definition of two new asymmetry
parameters [9].

Obviously, since the incident field is a plane wave, the integral (6.5) gets no con-
tribution from the terms E′

I · E′∗
I , and B′

I · B′∗
I that, accordingly, have been omitted.

However, it is less obvious, although conceptually expected, that the integral (6.5)
gets no contribution from the same terms even when the incident field is a superpo-
sition of plane waves with different directions of propagation. This statement will be
proved in Appendix 1.

We expand both the incident and the scattered field in a series of vector multipole
fields [10]. Accordingly,
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E′
I = E ′

0

∑

plm

J(p)
lm

(

r′, k
)

W (p)
lm

(

ûI, k̂I

)

, (6.6)

E′
S = E ′

0

∑

plm

H(p)
lm

(

r′, k
)

A(p)
lm

(

ûI, k̂I

)

, (6.7)

hence the multipole expansion of the magnetic field can be inferred through the
equation

B = − i

kv
∇ × E.

In (6.7) the amplitudes of the scattered field bear the arguments ûI and k̂I to recall that
in general they depend both on the polarization and on the direction of propagation
of the incident field. The multipole fields in (6.6) are

J(1)lm (r, k) = jl(kr)Xlm
(

r̂
)

, J(2)lm (r, k) = 1

k
∇ × J(1)lm (r, k) ,

where Xlm(r̂) denotes vector spherical harmonics [5]. The multipole fields H(p)
lm (r, k)

in (6.7) are identical to the J(p)
lm (r, k) fields except for the substitution of the spherical

Hankel functions of the first kind hl(kr) in place of the spherical Bessel functions
jl(kr). The superscript p = 1, 2 is a parity index that distinguishes the magnetic
multipole fields from the electric ones, respectively. The J fields are everywhere
regular, whereas the H fields satisfy the radiation condition at infinity. The multipole
amplitudes of the incident field are defined as

W (p)
lm

(

ûI, k̂I

)

= 4π ip+l−1ûI · Z(p)∗
lm

(

k̂I

)

,

where
Z(1)lm

(

k̂
)

= Xlm

(

k̂
)

, Z(2)lm

(

k̂
)

= Xlm

(

k̂
)

× k̂

are transverse vector harmonics [10, 11], and the amplitudes of the scattered field
A(p)

lm are calculated by imposing the customary boundary conditions across the sur-
face of the particle. The actual calculation of the A-amplitudes in the framework of
the transition matrix method will be discussed in Appendix 2.

Once the scattered field has been calculated, we perform the integration in (6.5)
by exploiting the asymptotic expansion of the multipole fields [10] up to terms which
give a contribution of order 1/r . Actually, these expansions for the incident and the
scattered field give
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E′
I → E ′

0

∑

plm

Z(p)
lm

(

r̂′) W (p)
I lm
(−)p−1

kr ′ sin
[

kr ′ − (l + 1 − p)π/2
]

, (6.8a)

E′
S → E ′

0

∑

plm

Z(p)
lm

(

r̂′) A(p)
lm

exp
(

ikr ′)

kr ′ i−l−p (6.8b)

which, when substituted into (6.5), yield the result

FRad ζ = − II

16πk2
v

Re

⎡

⎣
∑

plm

∑

p′l ′m′

(

A(p)∗
lm A(p′)

l ′m′ + A(p′′)∗
lm A(p′′′)

l ′m′
)

il−l ′ I (pp′)
ζ lml ′m′

⎤

⎦

− 2II

16πk2
v

Re

⎡

⎣
∑

plm

∑

p′l ′m′

(

W (p)∗
Ilm A(p′)

l ′m′ + W (p′′)∗
Ilm A(p′′′)

l ′m′
)

× sin [kr − (l − 1 + p)π/2] eikr (−i)l+pil−l ′ I (pp′)
ζ lml ′m′

⎤

⎦

= −F (Sca)
Rad ζ + F (Ext)

Rad ζ , (6.9)

with p′′ 	= p and p′′′ 	= p′. In (6.9) we define [12, 13]

I (pp′)
ζ lml ′m′ =

∫

�′

(

r̂′ · v̂ζ
)

i p−p′
Z(p)∗

lm

(

r̂′) · Z(p′)
l ′m′

(

r̂′) d�′

=4π

3

∑

μ

Y ∗
1μ

(

v̂ζ
) il

′−l

16π2 K (pp′)
μ;lml ′m′ ,

where Y1μ(v̂ζ ) denotes spherical harmonics whose arguments are the polar angles
of v̂ζ , and

K (pp′)
μ;lml ′m′ = 16π2il−l ′

∫

�′
Y1μ

(

r̂′) ip−p′
Z(p)∗

lm

(

r̂′) · Z(p′)
l ′m′

(

r̂′) d�′ .

The integrals K (pp′)
μ;lml ′m′ can be performed in closed form [9, 10] with the result

K (pp′)
μ;lml ′m′ = 16π2

√

3

4π
C

(

1, l ′, l;μ,m′,m
)

i l−l ′ O(pp′)
ll ′ , (6.10)

where C
(

1, l ′, l;μ,m′,m
)

are Clebsch-Gordan coefficients [14] and



6 Optical Force and Torque on Single and Aggregated Spheres: The Trapping Issue 163

O(pp′)
ll = − 1√

l(l + 1)

(

1 − δpp′
)

, O(pp′)
l,l−1 =

√

(l − 1)(l + 1)

l(2l + 1)
δpp′ ,

O(pp′)
l,l+1 = −

√

l(l + 2)

(l + 1)(2l + 1)
δpp′ .

The K -integrals have the symmetry properties

K (11)
ζ lml ′m′ = K (22)

ζ lml ′m′ , K (12)
ζ lml ′m′ = K (21)

ζ lml ′m′ ,

which help us to get a more compact expression for F (Sca)
Rad ζ and F (Ext)

Rad ζ . In fact, from
(6.9) we get

F (Sca)
Rad ζ = II

8πk2
v

Re
∑

plm

∑

p′l ′m′
A(p)∗

lm A(p′)
l ′m′ i l−l ′ I (pp′)

ζ lml ′m′ , (6.11a)

F (Ext)
Rad ζ = − II

8πk2
v

Re
∑

plm

∑

p′l ′m′
W (p)∗

I lm A(p′)
l ′m′ i l−l ′ I (pp′)

ζ lml ′m′ . (6.11b)

Note that in (6.11b) above the apparent undue dependence on r remaining in (6.9)
disappeared. The meaning of the superscripts (Ext) and (Sca) will be explained in
Sect. 6.2.3.

6.2.2 Radiation Torque by Plane Waves

In order to calculate the radiation torque, we remark that, since r̂′ · I × r̂′ = 0, the
last two terms in 〈TM〉 give no contribution to the integral in (6.2), which, therefore,
reduces to

Γ Rad = −r ′3
∫

�′

[

n2 (

r̂′ · E′) E′∗ × r̂′ + (

r̂′ · B′) B′∗ × r̂′] d�′ . (6.12)

Since the radius of the integration sphere is large, possibly infinite, we can resort
to the asymptotic expression of the fields. Nevertheless, the reader is warned that,
as regards the scattered field, the customary far zone expression in terms of the
scattering amplitude

ES = E0
exp (ikr)

r
f
(

k̂S, k̂I

)

cannot be used lest to get a vanishing result [8] because r̂ · f = 0. The correct result
is obtained by solving the problem of scattering and then by expanding the fields for
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large r and retaining all terms that give contributions of order 1/r3 to the integrand
in (6.2).

Assuming the scattered field has been calculated, let us search for its expression
in the far zone. For the H-multipole fields we get [15]

H(1)
lm → (−i)l+1 eikr ′

kr ′ Z(1)lm ,

H(2)
lm → (−i)l

k2r ′2
√

l(l + 1)eikr ′
Ylm r̂′ − (−i)l+1

k2r ′2 eikr ′
Z(2)lm − (−i)l

kr ′ eikr ′
Z(2)lm . (6.13)

Analogously, for the J-multipole fields we get [15]

J(1)lm → 1

kr ′ sin
(

kr ′ − lπ/2
)

Z(1)lm ,

J(2)lm → i

k2r ′2
√

l(l + 1) sin
(

kr ′ − lπ/2
)

Ylm r̂′ − 1

k2r ′2 sin(kr ′ − lπ/2)Z(2)lm

− 1

kr ′ sin
[

kr ′ − (l − 1)π/2
]

Z(2)lm . (6.14)

Now, the H-fields and J-fields enter the integrand in (6.2) through the dot products

r̂′ · H(2)
lm = √

l(l + 1)(−i)l
eikr ′

k2r ′2 Ylm = cr2lYlm,

r̂′ · J(2)lm = i
√

l(l + 1)
sin

(

kr ′ − lπ/2
)

k2r ′2 Ylm = cr1lYlm,

and through the cross products

H( p̄)∗
l̄m̄

× r̂′ = il̄+ p̄ e−ikr ′

kr ′ Z( p̄)∗
l̄m̄

× r̂′ = c( p̄)
t2l̄

Z( p̄)∗
l̄m̄

× r̂′
,

J( p̄)∗
l̄m̄

× r̂′ = sin
[

kr ′ − (l̄ + p̄ − 1)π/2
]

kr ′ Z( p̄)∗
l̄m̄

× r̂′ = c( p̄)
t1l̄

Z( p̄)∗
l̄m̄

× r̂′
,

where we neglected the further terms that would come from (6.13) and (6.14) because
they vanish at infinity to an order higher than the order we have to retain.

At this stage we found it convenient to focus on the spherical components of
the radiation torque Γμ, that are related to the rectangular components of Γ Rad
through [14]

ΓRad x = Re

[
1√
2
(Γ−1 − Γ1)

]

, ΓRad y = Re

[
i√
2
(Γ−1 + Γ1)

]

,

ΓRad z = Re (Γ0) . (6.15)
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Accordingly, we note that the integrand in (6.12) gets contributions that can be
written as

K (p p̄)
μ;αᾱlml̄m̄

= δ
p2

d
αlm
v
( p̄)
μ;ᾱl̄m̄

, (6.16)

where
d1lm = r̂′ · J(2)lm , d2lm = r̂′ · H(2)

lm ,

v
( p̄)
μ;1l̄m̄

=
(

J( p̄)∗
l̄m̄

× r̂′)

μ
, v

( p̄)
μ;2l̄m̄

=
(

H( p̄)∗
l̄m̄

× r̂′)

μ
.

The subscripts α and ᾱ in (6.16) denote terms coming either from the incident field
(α, ᾱ = 1) or from the scattered field (α, ᾱ = 2). Thus, performing in (6.16) the
appropriate substitutions and integrating according to (6.2), we get

I (21)
1;αᾱlml̄m̄

= icrαl c
(1)
tᾱl̄

√

2l + 1

2l̄ + 1
C(1, l, l̄; 0, 0)δm,m̄−1

×[

C(1, l̄, l̄; 1, m̄ − 1)C(1, l, l̄; 0,m, m̄ − 1)

−C(1, l̄, l̄; 0, m̄)C(1, l, l̄; 1,m, m̄)
]

,

I (21)
0;αᾱlml̄m̄

= icrαl c
(1)
tᾱl̄

√

2l + 1

2l̄ + 1
C(1, l, l̄; 0, 0)δm,m̄

×[

C(1, l̄, l̄; 1, m̄ − 1)C(1, l, l̄;−1,m, m̄ − 1)

−C(1, l̄, l̄;−1, m̄ + 1)C(1, l, l̄; 1,m, m̄ + 1)
]

,

I (21)
−1;αᾱlml̄m̄

= icrαl c
(1)
tᾱl̄

√

2l + 1

2l̄ + 1
C(1, l, l̄; 0, 0)δm,m̄+1

×[

C(1, l̄, l̄; 0, m̄)C(1, l, l̄;−1,m, m̄)

−C(1, l̄, l̄;−1, m̄ + 1)C(1, l, l̄; 0,m, m̄ + 1)
]

,

and
I (22)
μ;αᾱlml̄m̄

= crαl c
(2)
tᾱl̄

C(1, l, l̄;μ, m̄ − μ)δll̄δm,m̄−μ, (6.17)

where the C’s denote Clebsch-Gordan coefficients [14]. Finally, collecting all the
terms one obtains

Γμ = −n2r3

8π

∑

αᾱ

[
∑

p̄

∑

lm

∑

l̄m̄

I (2 p̄)
μ;αᾱlml̄m̄

(

a(2)αlma( p̄)∗
ᾱl̄m̄

+ a(1)αlma( p̄′)∗
ᾱl̄m̄

)
]

, (6.18)

where p̄′ 	= p̄, a(p)1lm = W (p)
I lm , and a(p)

2lm = A(p)
lm .

At this stage we remark that (6.18) could be used for a brute force calculation of
the spherical components of the radiation torque. However, we can obtain a more
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efficient formula through a detailed inspection of the terms present. In fact, (6.18) is
built as a sum of contributions with different α, ᾱ, and p̄ or p̄′.

• The contributions with α = ᾱ = 1 are just vanishing both for p̄ = 2 or p̄ = 1
and for p̄′ = 1 or p̄′ = 2. This result, that is identical to the one of Marston
and Crichton [16], comes from the fact that these terms describe the flux of the
momentum of the Maxwell stress tensor through a closed surface in the absence
of any scatterer.

• The contribution with α = ᾱ = 2 vanishes both for p̄ = 1 and for p̄′ = 2.
• The contributions for α 	= ᾱ depend on r , i.e., on the radius of the spherical surface

of integration. Nevertheless, those with p̄ = 1 are identical but of opposite sign
and cancel each other; on the other hand, the sum of those with p̄ = 2 turns out
to be independent of r . Analogous considerations hold true for the contributions
with p̄′ = 2 and p̄′ = 1, respectively. This result is a consequence of the fact that
the torque cannot depend on the choice of the surface of integration.

Now, separating in (6.18) the sum over α 	= ᾱ from the one over α = ᾱ, we can
write

Γμ = Γ (Ext)
μ − Γ (Sca)

μ , (6.19)

with

Γ (Sca)
μ = − II

8πnk3
v

∑

plm

sμ;lm A(p)
l,m−μA(p)∗

lm , (6.20a)

Γ (Ext)
μ = II

8πnk3
v

∑

plm

sμ;lm W (p)
Il,m−μA(p)∗

lm , (6.20b)

where

s−1;lm = −
√

(l − m)(l + 1 + m)

2
, s1;lm =

√

(l + m)(l + 1 − m)

2
,

s0;lm = −m .

We want to stress that the radiation torque does not vanish for a homogeneous
sphere provided the polarization is elliptical and the sphere is absorbing. This result
has been first proved by Marston and Chricton [16] just in terms of multipole fields
expansion. The radiation torque due to an elliptically polarized plane wave does not
vanish either for an absorbing scatterer with axial symmetry provided the incidence
is along the cylindrical axis.
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6.2.3 Contributions to Radiation Force and Torque

Although in our approach the radiation force and torque have been separated into
two contributions labeled (Sca) and (Ext), there is no similarity with the customary
separation into a field gradient contribution and a scattering contribution. The latter
contributions, in fact, arise when exploiting the dipole approximation [17], whereas
the separation effected in (6.11a) and (6.11b) as well as in (6.20a) and (6.20b) can
be tracked back to (6.1) and (6.2).

Equation (6.1), due to the structure of the Maxwell stress tensor, includes |E′
S|2

and E′∗
I · E′

S as well as the corresponding terms from the magnetic field. When these

terms are expanded as a series of multipole fields we get F (Sca)
Rad ζ , that depends on

the multipole amplitudes of the scattered field only, and F (Ext)
Rad ζ that depends on the

multipole amplitudes both of the incident and of the scattered fields, in analogy to
what one finds for the scattering cross section and for the extinction cross section of
a particle, respectively [10]. As a consequence, FRad ζ can loosely be related to the
absorptivity of a particle.

In turn, (6.2) gets from the Maxwell tensor the terms (r′ · E′
S)(E

′∗
S × r′) and

(r′ · E′
I)(E

′∗
S × r′), and the corresponding terms from the magnetic field. Again, the

multipole expansion of these terms yields justΓ Sca
Radμ andΓ Ext

Radμ which depend on the
multipole amplitudes of the scattered field only and by the multipole amplitudes of
the incident and of the scattered field, respectively. Thus, considerations analogous
to those made above for the radiation force hold true also for the radiation torque
[18, 19]: in particular, the torque exerted by an elliptically polarized plane wave on a
spherical scatterer can be explicitly written in terms of the difference of the extinction
and of the scattering cross section [16].

6.3 Radiation Force and Torque on Aggregated Spheres

The theory that we summarized in Sect. 6.2 can be applied to particles of any shape,
provided we are able to calculate their transition matrix and the incident field is
well represented by simple plane waves. This is often the case in an astrophysical
environment, because the cosmic dust grains are well represented either by single
spheres or by aggregates of spheres [20]. The component of the radiation force
along the direction of propagation is the well-known radiation pressure, whereas the
transverse components, although less well-known, produce dynamical effects whose
relevance has been recognized in the last few years [21]. In turn, the radiation torque
may produce the so-called superthermal spin-up whose relevance for the alignment
of the cosmic dust grains has been investigated, e.g., by Purcell [22] and by Draine
and Weingartner [23]. Although we dealt with the calculation of the radiation force
and torque on reliable models of cosmic dust grains [24], in the present context we
prefer to expound a more illuminating study on clusters of selected geometry. Our aim
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is, indeed, to highlight the dependence of radiation force and torque on the structure
and refractive index of particles of known geometry and dielectric properties.

6.3.1 Radiation Pressure on Aggregated Spheres

We apply the theory to binary aggregates of latex spheres whose dielectric function,
according to Ma et al. [25] has the value ε = 2.490087 + i0.001578 at λ = 600 nm.
More precisely, we considered a reference sphere with radius 200 nm and the aggre-
gate composed by two mutually contacting spheres whose radius is 158.77 nm so that
their total volume equals that of the reference sphere. The frame Σ ′ attached to the
aggregate is chosen to coincide to the laboratory frame Σ and the point of contact
of the spheres always coincide with the origin, whereas the axis of the aggregate
lies in the z′-x ′ plane. We considered four configurations each characterized by the
angle ϑ between the axis of the aggregate and the z′ axis: (i) ϑ = 90◦, (ii) ϑ = 60◦,
(iii) ϑ = 30◦, and (iv) ϑ = 0◦. We assume the incident field to be linearly polar-
ized and that the plane of reference is the meridional plane through the z = z′ axis
and the incident wavevector kI whose direction is individuated by the polar angles
ϑI and ϕI. We decompose the radiation force along the triplet formed by k̂I = v̂3,
ϑ̂ I = v̂1, and ϕ̂I = v̂2. The component Fk = FRad · k̂I is the well-known radiation
pressure, whereas the transverse components are FT η = FRad · v̂η, η = 1, 2. Actu-
ally, the quantities that we report in the following figures are Fk = 8πFk/II and

FT = 8π
(

F2
T 1 + F2

T 2

)1/2
/II, as well as their axial averages around the z axis ofΣ .

All these quantities are given in μm2 and, although they depend on the polarization
of the incident field, are reported only for polarization parallel to the plane of scat-
tering. The interested reader can find a more complete set of figures in [9, 10]. As
our calculations are based on the multipole expansion of the fields, their convergence
must carefully be checked. Actually the size parameter of the smallest mathematical
sphere that includes a whole binary aggregate is x = 3.1, so that convergence to 4
significant digits required lM = 8.

We start by stating that the radiation pressure on the reference sphere is
0.125027 μm2, whereas the transverse components vanish due to the spherical sym-
metry. On the contrary, the results reported in Fig. 6.2 show that, as expected, the
transverse components on the binary aggregate do not vanish for any value of ϕI
and their value is a significant fraction of the radiation pressure. These results are
confirmed by the axial averages we report in Fig. 6.3 for all the configurations we
considered. Perhaps the most interesting results are those reported in Fig. 6.4 where
we study the dependence of the axial averages on the absorptivity of the aggregates.
In other words, we considered particles whose real part of the dielectric function is
that of Ma et al. [25], whereas the imaginary part changes from 0 to 0.1. In fact,
the transverse components of the radiation force show a weak dependence on Im(ε),
whereas the radiation pressure has a comparatively stronger dependence. This behav-
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Fig. 6.2 FηT in a, and Fηk , in b, in μm2 for the binary cluster in configuration (i), for polarization
of the incident wave parallel to the plane of reference (η = 1), as a function of ϑI for the values of
ϕI indicated in the inset in a
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Fig. 6.3 Axial averages of FηT in a, and of Fηk in b in μm2 for the binary cluster in configurations
(i), (ii), (iii), and (iv), for polarization of the incident wave parallel to the plane of reference (η = 1),
as a function of ϑI. The averages over random orientation give Fηk = 0.08543 μm2 both for η = 1
and for η = 2

ior may be important for understanding the possible expulsion of cosmic dust grains
from galaxies and protoplanetary disks [26].

6.3.2 Radiation Torque on Aggregated Spheres

The absorptivity of the particles is important also for understanding their rotational
behavior when driven by the radiation torque. To show this we report in the following
figures the adimensional vector
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Fig. 6.4 Dependence on Im(ε) of the axial averages of FηT in a, and of Fηk in b in μm2 for the
binary cluster in configuration (iii) for polarization parallel to the plane of reference (η = 1) as a func-
tion of ϑI. The averages over random orientation of Fηk (in μm2) are 0.08595, 0.08621, 0.08499,
and 0.1095 for Im(ε) = 0, 0.001, 0.01, and 0.1, respectively, both for η = 1 and for η = 2. Note
that in a the curves for Im(ε) = 0.0, 0.001, and 0.01 are almost coincident on the scale of the figure

Fig. 6.5 Component of T1
along kI for a binary cluster
composed of astronomical
silicates both when the imag-
inary part of their dielectric
function has its actual value
[27] and when it is arbitrarily
set to zero. The axis of the
cluster is orthogonal to kI
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Tη = 8πk

n2 IIσTη
Γ Rad η, (6.21)

where Γ Rad η and σTη are the radiation torque and the extinction cross section calcu-
lated for incident light with polarization η, and n = 1. The incident field is circularly
polarized and we show the results for η = 1 only, because, on account of the sym-
metry of the scatterer, the results for η = 2 are identical, except for the sign.

First, we consider a binary aggregate of identical spheres with radius 50 nm,
composed of astronomical silicates [27]. The origin of the frame of reference lies at
the point of contact of the spheres. Since, according to Sect. 6.2.2, the torque depends
on the absorptivity of the particles, we report in Fig. 6.5 the quantity Tηk = Tη · k̂I
as a function of the wavelength for the binary cluster with its axis perpendicular to
kI both in the case in which the imaginary part of the dielectric function is set to
zero or assumes its actual value. As expected, the transverse components of Γ Rad η,
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Fig. 6.6 Cartesian components of T1 and T2 for the five-spheres cluster whose geometry is given
in Table 6.1. The direction of the incident wavevector is along the z axis

Table 6.1 Coordinates of the
centers of the spheres in nm

x y z

0.000 0.000 0.000
70.710 −70.710 0.000
−5.982 50.218 −86.851
70.855 81.028 −143.837
−61.734 7.789 78.923

i.e., those in the plane orthogonal to kI, were found to be zero. We do not report the
results for the case in which the axis of the aggregate is parallel to kI, because, in
this case, Γ Rad η · k̂I is nonvanishing only for complex refractive index, and changes
its sign with the change of polarization. Even in this case the transverse components
are rigorously zero for symmetry reasons. Anyway, the results in Fig. 6.5 show the
great importance of the absorptivity of the particles on the value of the torque, and
in our opinion do not deserve further comments.

As a second example we now consider a more complex cluster composed of five
spheres identical to each other and to the spheres we used above to compose the binary
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cluster. The geometry is chosen so that no symmetry is present, and the coordinates of
the centers of the spheres are listed in Table 6.1. The incident wavevector kI is parallel
to the z axis (k̂I ≡ êz) and circular polarization is assumed. In Fig. 6.6 we report the
cartesian components of Tη both for η = 1 and for η = 2. We assume here that the
refractive index is just that of astronomical silicates [27]. We first notice that the x and
y components of Γ Rad do not change their sign with changing polarization, unlike
the z component which does change sign. Of course, the lack of symmetry prevents
the curves of each component to coincide with changing polarization. Nevertheless,
the most striking result is the coincidence of the axial average around the z axis,
〈Γ Rad η · k̂I〉, with Γ Rad η · k̂I. This result would be quite evident for the axial average
of the binary cluster with its axis along kI. In the present case, because of the lack of
symmetry, the occurrence of this coincidence deserves a few additional comments.
It is not easy to extract any conclusion from the results on the basis of the formulas
of Sect. 6.2.2. Nevertheless, a few heuristic remarks can be drawn with the help of
a complete set of calculations, in the sense that they were also performed using
linearly polarized incident radiation. Both when we assume circular and when we
assume linear polarization, the components of Γ Rad η in a plane orthogonal to kI are
found, in general, nonzero and different from each other, whereas their axial averages
around kI do vanish. Actually, averaging around kI makes the average particle akin
to an axially symmetric particle, for which the mentioned result is to be expected.
Furthermore, assuming circular polarization, we found 〈Γ Rad η · k̂I〉 = Γ Rad η · k̂I
that follows at once, if one considers the behavior of the field of a circularly polarized
wave. On the other hand, in case linear polarization is assumed, the axial average
of Γ Rad η around kI turns out to be independent of η. In fact, as regards the axial
averaging, the different polarization is seen only as a different orientation of the
particle around z′. Of course, in general, the axial average 〈Γ Rad η · k̂I〉 	= Γ Rad η · k̂I
for linear polarization.

At this stage, since Γ Rad depends on the orientation of the particle, the problem
arises out of the stability of the rotational motion driven by the electromagnetic
torque. Actually, we performed a study of this problem using as a model just the
aggregate whose geometry is given in Table 6.1. The interested reader is referred to
[28] for a detailed discussion of the problem.

6.4 Laser Beams as a Superposition of Plane Waves

The theory of Sect. 6.2 can be extended to deal with the issue of trapping and manip-
ulation of microsized and nanosized particles. The extension is necessary because
the so-called optical trapping occurs when a laser beam is focalized through a high
numerical aperture lens. The radiation force may then trap a particle within the focal
region. At the same time, the torque exerted by the same laser beam may force the
particle to assume particular orientations or to perform rotational motions. Now, a
laser beam is quite different from a plane wave, nevertheless, whatever its transverse
profile, it can be represented as a superposition of plane waves with the same fre-
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quency but with a different direction of propagation. This is the so-called angular
spectrum representation of an optical field. Moreover, when the angular spectrum
representation is considered in the far field zone, one may exploit the geometrical
optics to describe the focalization in terms of rays.

6.4.1 The Angular Spectrum Representation

Let us consider a monochromatic field E(r) that propagates within a region of space
that contains no sources and is filled by a homogeneous isotropic medium of real
refractive index n. The propagation of such a field is described by the Helmholtz
equation. Let us now choose a rectangular system of axes, the direction of the z axis
being quite arbitrary, and perform the bidimensional space Fourier transform of E(r)
in a plane orthogonal to z,

Ê(kx , ky; z) = 1

4π2

∞∫

−∞
E(x, y, z) exp[−i(kx x + ky y)] dxdy

with inverse

E(x, y, z) =
∫ ∞

−∞
Ê(kx , ky; z) exp[i(kx x + ky y)] dkx dky . (6.22)

Substituting (6.22) into the Helmholtz equation and putting

kz = (k2 − k2
x − k2

y)
1/2, Im(kz) ≥ 0, (6.23)

it is an easy matter to see that the space Fourier transform in the plane z = 0 is
related to the one in the plane at z 	= 0 by

Ê(kx , ky; z) = Ê(kx , ky; 0) exp(±ikzz) .

As a result, we can write

E(x, y, z) =
∞∫

−∞
Ê(kx , ky; 0) exp[i(kx x + ky y ± kzz)] dkx dky, (6.24)

that is, by definition, the angular spectrum representation of the field E(r). Note that
the ± sign in front of kz is due to the fact that the field can propagate either in the
positive or in the negative z direction. However, henceforth we consider only beams
propagating along the positive z axis, so that only the positive sign will be retained
in front of kz . We stress that, although n is real, kz may be imaginary, so that (6.24)
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describes E(r) as a superposition of plane waves (with real kz) and of evanescent
waves (those with Im(kz) 	= 0).

6.4.2 Far Field in the Angular Spectrum Representation

We will now show that the geometrical optics stems from the angular spectrum
representation when we consider the field in the far zone, i.e., at a large distance
from its source, that is assumed to be of finite extent. Let us thus consider an optical
field in the plane z = 0 and let us use the angular spectrum representation to describe
how the field transforms when it is considered in a plane at z = z∞ at large distance
from the chosen origin. To this end we need to find the limiting expression of (6.24)
for r → r∞. Let us introduce the unit vector

ŝ = sx êx + sy êy + sz êz = x/r êx + y/r êy + z/r êz

in the direction of r∞. Of course r = (x2 + y2 + z2)1/2 is the distance of r∞ from
the origin. Then the field in the far zone in the direction of ŝ is given by

E∞(sx , sy, sz) =
lim

kr→∞

∫

(k2
x +k2

y)≤k2

Ê(kx , ky; 0)eikr(kx sx/k+kysy/k+kzsz/k) dkx dky . (6.25)

We remark that in (6.25) the evanescent waves, due to their fast decay, do not con-
tribute to the field at infinity so that the limits of integration have accordingly been
set. The integral in (6.25) can be performed through the stationary phase method
[29] with the result

E∞(sx , sy, sz) = −2π ikszÊ(ksx , ksy; 0)
eikr

r
. (6.26)

The field (6.26) has the typical form of the scattered field in the far zone with Ê
playing the role of the scattering amplitude. Note, however, that the argument of Ê
is parallel to r∞, so that a single plane wave, the one that propagates along ŝ, enters
the description of the far field. This is enough to justify the use of the geometrical
optics for any optical field. As a consequence, on account that ŝ is fully determined
by kx and ky only, we can write

Ê(kx , ky; 0) = ire−ikr

2πkz
E∞(kx , ky)

and the angular spectrum representation becomes
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E(x, y, z) = ire−ikr

2πkz

∫

(k2
x +k2

y)≤k2
E∞(kx , ky)e

i(kx x+ky y+kz z) dkx dky . (6.27)

Equation (6.27) can now be interpreted as a description of the field in terms of rays.

6.5 Radiation Force from a Highly Focalized Laser Beam

Exploiting the geometrical optics simplifies the description of the focalization of a
paraxial optical beam, i.e., of an optical field whose angular spectrum representation
includes only k-vectors that are almost parallel to a fixed direction. For our purposes
we choose this direction to coincide with the axis of an aplanatic optical system, i.e.,
a stigmatic optical system that satisfies the Abbe sine condition. Let f be the focal
length of the lens, whose exit pupil has the radius f sin ϑMax; of course, ϑMax is
the angle under which the radius of the exit pupil is seen from the focus and is thus
related to the numerical aperture of the lens by

NA = n sin ϑMax,

where n is the refractive index of the medium that fills the image space. We consider,
as an example, the focalization of a gaussian TEM00 beam, whose waist, of radiusw0,
is taken to coincide with the entrance pupil of the lens. Then, according to Novotny
and Hecht [17], the field at any point within the focal region can be written in the
angular spectrum representation as

E(r) =
∫

k2
x +k2

y≤k2⊥

EPW(k̂)ûk̂eik·r dkx dky, (6.28)

where k⊥ = k sin ϑMax, k has polar angles ϑk and ϕk, ûk̂ = û(ϑk, ϕk); the limits of
integration ensure that only the rays that actually traverse the exit pupil of the optical
system are considered. In (6.28)

EPW(k̂) = E0 i f
eik f

2πk

√

nI

n
(cosϑk)

−1/2 fw,

where nI is the refractive index of the object space and fw is the apodization function

fw = exp

[

− 1

f 2
0

sin2 ϑk

sin2 ϑMax

]

, (6.29)

in which f0 is the filling factor
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f0 = w0

f sin ϑMax
.

The apodization function (6.29) is common also to the higher gaussian modes TEM10
and TEM01, and when fw = 1, i.e., for w0 → ∞, one recovers the description of
the field of Richards and Wolf [30].

Often, the image space is not filled by a single homogeneous medium but rather
by two homogeneous media, of refractive indexes n and nF, separated by a plane
interface orthogonal to the optical axis. We assume the interface to be located at
zs = −D between the exit pupil and the nominal focus. Hereafter, the quantities
considered in the region z > zs will be characterized by the index F, even when,
strictly speaking, this notation would not be necessary. For instance, since kx and
ky are unaffected by the refraction, we have kx = kFx and ky = kFy , and thus also
k⊥ = kF⊥. On the contrary, kz is affected by the refraction according to

kFz = (

k2
F − k2

x − k2
y

)1/2 =
[(

nF

n

)2

k2 − k2
x − k2

y

]1/2

.

The refraction of the rays through the interface introduces a spherical aberration
and a polarization-dependent transmission that can be taken into account by the
Fresnel coefficients Tη [5]; η = 1 stands for polarization parallel and η = 2 for
polarization perpendicular to the plane of incidence that, for each ray, coincides with
the meridional plane defined by the k or by the kF vector, and the z axis (optical
axis). The decomposition of the polarization vectors of each of the plane waves in
(6.28) into their components parallel and perpendicular to the plane of incidence can
be effected by introducing for each plane of incidence a pair of unit vectors û

ηk̂.
Thus, we have

ûk̂ =
∑

η

(

ûk̂ · ûηk
)

ûηk =
∑

η

cηû
ηk̂ (6.30)

and, the refraction through the interface yields

E(r) =
∫

k2
Fx +k2

Fy≤k2
F⊥

EFPW

(

k̂F

)∑

η

cηTη(ϑk)ûηk̂FeikF·r dkFx dkFy, (6.31)

where
EFPW

(

k̂F

)

= exp[izs(kz − kFz)]EPW(k̂) .

We stress that, although ϑk appears in place of ϑkF in (6.31), Snell’s law grants
an immediate relation between these angles. Moreover, the same law makes the
apodization function (6.29) insensitive to the use of ϑk or of ϑkF (Fig. 6.7).

We are now able to calculate the radiation force that the field exerts on a particle
at O ′. To this end we rewrite (6.31) as
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Fig. 6.7 Sketch of the focal-
ization of an aberrated laser
beam

E′(r′) =
∫

k2
Fx +k2

Fy≤k2
F⊥

EFPW

(

k̂F

)

eikF·RO′

×
∑

η

cηTη(ϑk)ûηk̂F
eikF·r′

dkFx dkFy, (6.32)

and perform the multipole expansion

û
ηk̂FeikF·r′ =

∑

plm

J(p)
lm (r

′, kF)W
(p)
lm

(

û
ηk̂F
, k̂F

)

.

Since the J multipole fields depend on the magnitude of kF only, they can be carried
outside the integral with the result

E′ =
∑

plm

J(p)
lm (r

′, kF)W
(p)

lm (RO ′), (6.33)

where

W
(p)

lm (RO ′) =
∑

η

cη

∫

k2
Fx +k2

Fy≤k2
F⊥

EFPW

(

k̂F

)

eikF·RO′

×Tη(ϑk)W
(p)
lm

(

û
ηk̂F, k̂F

)

dkFx dkFy . (6.34)

Of course, (6.33) refers to the case in which there is a plane of separation between
two media of different refractive index, so that the consequent refraction must be
taken into account. It is an easy matter to show that, when nF → n, (6.33) simplifies
into
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E′ =
∑

plm

J(p)
lm (r

′, k)W (p)
lm (RO ′), (6.35)

where

W
(p)

lm (RO ′) =
∫

k2
x +k2

y≤k2⊥
EPW

(

k̂
)

eik·RO′ W (p)
lm

(

ûk̂, k̂
)

dkx dky . (6.36)

According to the case we deal with, (6.33) and (6.35) show that the multipole expan-
sion of the field in the focal region resembles the expansion of a plane wave, whose
amplitudes W

(p)
lm (RO ′), according to (6.34) or (6.36) depend on the position of the

particle. Thus, when calculating the radiation force or the radiation torque exerted on
a particle, we only have to substitute the newly defined amplitudes W

(p)
lm into (6.38)

of Appendix 2 to get the amplitudes of the scattered field A
(p)

lm , and into (6.11a) and
(6.11b) to get FRad ζ , and into (6.20a) and (6.20b) to get Γμ. In practice, the required
result is still given by (6.11a) and (6.11b) and by (6.20a) and (6.20b) provided that

E ′
0W (p)

Ilm → W
(p)

lm (RO ′) , E ′
0 A(p)

lm → A
(p)

lm .

The preceding considerations highlight the importance of the quantities W
(p)

lm (RO ′)
that describe the lens, as they depend on the characteristics of the latter. Then, the
integrals (6.34) or (6.36) can be calculated numerically once for all at the nodes of
a suitably chosen grid for a given lens and stored for further use.

6.6 Trapping and Manipulation of Single and Aggregated
Spheres

The theory we expounded in Sect. 6.2 is, in a sense, nonconventional. In fact, although
both the radiation force and torque were separated into a scattering contribution and
an extinction contribution, these parts have no relation with the customary gradient
contribution and scattering contributions, that, as stated in Sect. 6.2.3, come from the
application of the dipole approximation [17]. Our theory is exact, as it goes beyond
the dipole approximation, its accuracy depending on the use of a sufficiently large
lM to ensure the convergence of the multipole field expansions.

6.6.1 Trapping of Dielectric Spheres

We calculate the trapping position and the stiffness constants (see later) of homo-
geneous spheres of latex (np = 1.57) of various sizes and compare our results with
the experimental data existing in the literature. To this end, we assumed an aplanatic
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optical system with numerical aperture NA = 1.2 both in case the image space is
filled of water with refractive index n = 1.33 and in case the exit pupil is immersed
in oil with refractive index n = 1.52, whereas the trapping particle is immersed in
water. These media are separated by a cover slip orthogonal to the optical axis located
at zs = −20μm with respect to the origin at the nominal focus of the lens. Since
NA < 1.33 no plane wave is totally reflected at the separation interface. As the pres-
ence of two media of different refractive indexes introduces a spherical aberration,
the maximum field intensity occurs at a point F ′ with zF′ ≈ −4.0μm. The incident
field is assumed to be a TEM00 Gaussian beam, linearly polarized along the x axis,
with filling factor f0 = 2 and wavelength λ0 = 1064 nm in vacuo, i.e., λ = 800 nm
in water. The contour plot of the focalized field [28] shows that the effect of the
aberration manifests as a large shift of the field maximum and a more accentuated
lack of cylindrical symmetry around the optical axis due to the linear polarization of
the incident beam. These results are in substantial agreement with those reported by
Rohrbach and Stelzer [31].

We now go to consider the trapping of single spheres both in the unaberrated
and in the aberrated field. According to the experimentalists we define the so-called
trapping efficiency as

Q(r) = FRad(r)c/(Pn),

where P is the power of the trapping beam and n is the refractive index of the medium
surrounding the particle. Thus, n = 1.33 in all the cases we deal with. The argument
r = RO ′ (see Fig. 6.1) denotes the position of the particles that is assumed to coin-
cide with their center. In Fig. 6.8 we report, as a representative example of spheres to
which, according to our experience, the Rayleigh or the Born approximations do not
apply, the components of the trapping efficiency for single spheres with diameter of
d = 850 nm both for the case of an unaberrated field and in the case spherical aberra-
tion is present. The trapping occurs where the components of the trapping efficiency
vanish with a negative derivative. Figure 6.8 shows that the spheres we considered
undergo trapping on the optical axis. In fact, both Qx (x, 0, 0) and Qy(0, y, 0) vanish
on the optical axis for evident symmetry reasons. As regards Qz(0, 0, z), we see that
there exist at least one value of z that satisfies the trapping condition. The values of
z at which the trapping occurs both for unaberrated (z0) and for the aberrated field
(z0a) in Table 6.2 for spheres of diameter d = 220–1900 nm.

Since the behavior of the components of the trapping efficiency is almost linear in
the vicinity of the trapping point, one is able to define the stiffness of the optical trap
by introducing the constants κx , κy , and κz such that the components of the radiation
force, in the absence of aberration, can be written as

Fx = −κx x, Fy = −κy y, Fz = −κz(z − z0) (6.37)

in the neighborhood of the point where they vanish. In case aberration is present we
must put

Fz = −κz(z − z0a) .
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Fig. 6.8 Qx (x, 0, 0) (blue solid line), Qy(0, y, 0) (red dashed line), and Qz(0, 0, z) (green dotted
line) for single spheres with diameter d = 850 nm both in unaberrated gaussian (left panel) and
aberrated gaussian beam (right panel). Note that the origin of the z axis in the right panels is shifted
by −zF ′ = 4.0μm

Table 6.2 Calculated and
experimental values of
sl = 1 − κx/κy as well as the
trapping position for the
spheres we deal with in this
contribution

d (nm) z0 (nm) sl calc. z0a (nm) sla calc. sl exp. sla exp.

220 120 0.38 800 0.19 0.38
530 200 0.27 1280 0.16 0.31
690 240 0.11 1520 0.09 0.08
850 120 −0.07 1200 0.05 0.03

1030 80 −0.13 1040 −0.01 −0.12
1280 0 −0.02 480 −0.30 −0.33
1500 40 0.20 560 −0.20 −0.18
1660 40 0.02 400 −0.10 −0.10
1900 160 0.06 480 0.12 0.08

A good parameter to be compared with the experimental data is the so-called stiffness
asymmetry factor sl = 1 − κx/κy that we report, for all the spheres we dealt with,
in Table 6.2 both for the unaberrated field (sl ) and for the aberrated field (sla). The
experimental values of the asymmetry factor were taken from the paper of Rohrbach
[32] for the unaberrated field and from the paper of Zakharian et al. [33] for the
aberrated field. We note that the size parameter x = πnd/λ0 for the spheres con-
sidered in Table 6.2 goes from 0.6 to 5.61 in vacuo, i.e., from 0.80 to 7.46 in water,
so that we had to use up to lM = 12 to get full convergence of all the calculated
values [34]. Table 6.2 seems to show a fair agreement between theory and experi-
ment. This agreement seems confirmed by Fig. 6.9, where we report the curves of
the asymmetry factor calculated both for unaberrated and for the aberrated field,
together with the experimental values for the spheres used by Rohrbach (circles) and
by Zakharian et al. (dots). Nevertheless, we call the attention on the values of the
asymmetry parameters for the spheres with d = 850 and 1660 nm. Actually, these
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Fig. 6.9 Comparison of cal-
culated asymmetry factors
sl (dashed blue line) and sla
(solid red line) with experi-
mental data of Rohrbach [32]
(blue circles) and of Zakharian
et al. [33] (red dots)
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values are favorably located on at least one of the two theoretical curves we draw
in Fig. 6.9. We stress, however, that Rohrbach declares the experimental values at
d = 850 and 1660 nm as obtained in the absence of aberration [32], whereas in
Fig. 6.9 they appear to be on the curve for the aberrated field. On the other hand,
the experimental values of Zakharian et al. appear very close to our curve for the
aberrated field, that has been used in [33]. In this respect, it may be interesting to
notice that the values of sla measured by Zakharian et al. are not located on their
theoretical curve (see Fig. 6.12 of [33]). This discrepancy, in our opinion, may be due
to an inadequate consideration of the effect of aberration, and/or to the fact that with
so large a diameter any approximation used to calculate the Lorenz force density
does not apply. Moreover, the diameter of these spheres is larger than the size of the
trap, that, according to our calculations, spans ≈λ = 800 nm so that one must be
very careful both in computations and in the interpretation of the experimental data
when dealing with such large objects.

6.6.2 Trapping of Gold Spheres

In this section we calculate the optical forces on gold nanospheres with the purpose of
checking up to what size our theoretical approach foresees the trapping of spherical
particles of noble metals. To this end, we adopt even in this section the geometry that
is sketched in Fig. 6.1.

A critical point in the calculation of the radiation force, whatever the approach
one chooses to use, is the knowledge of the dielectric properties of the particles.
Here, we use the dielectric function tabulated by Johnson and Christy [35], which
yields a good agreement between calculated and experimental extinction spectra of
such nanoparticles. The main feature for gold spheres is the structure of the plasmon
resonances whose position and complexity depends on the radius of the particles. In
this respect, we notice that at λ = 1064 nm, the wavelength used by Hansen et al.
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[36] in their experiments, particles with r = 77 nm still show a large extinction in
comparison with particles of smaller radius.

All the parameters that we adopt in our calculations are those of [36]. Thus, we
assume an optical system with numerical aperture NA=1.2 in water illuminated by
an x-polarized TEM00 laser beam. Since in [36] the objective has been only slightly
overfilled, we chose the filling factor f0 = 2 according to the common choice
reported in the literature [17, 28, 32]. We also consider the case of an oil immersion
lens, and consequently change the numerical aperture to NA=1.32 (see [36]). We
did not compensate for the spherical aberration by using oils of different refractive
indexes [37]. We preferred to use noil = 1.54 and to consider several values of
D = −zs, the distance from the nominal focus of the cover slip that separates oil
from water, as in all cases the particles are embedded in water. In fact, the effect
of the aberration produced by the presence of the cover slip can be minimized by
locating the latter as near as possible to the trapping volume [36]. On the other
hand, in [36] it is stressed that the effect of the aberration is to reduce the maximum
size of the trappable particles and that the best results are obtained using a water
immersion lens. Since trapping particles of different sizes require different powers
of the laser beam, in [36] the experimental stiffnesses of the trap are normalized to
the laser power P . Our calculated κz/P and κx/P versus the size of the spheres are
reported in Fig. 6.10 together with the experimental data of [36]. Figure 6.10 also
includes some points that are marked by an arrow: these points will be discussed
later. At present, we see at once that we do not succeed in the trapping of spheres
with r > 77 nm, whereas Hansen et al. were able to trap spheres with r up to 127 nm.
Nevertheless, in [36] the authors stress that they were unable to get stable trapping of
spheres with r = 77 nm. In a sense, this is not surprising, because the experimental
measurements include all effects, linear and nonlinear, yielded by the radiation field
with scarce or no possibility of discrimination. On the other hand, our calculations
are performed for fixed parameters of the model, i.e., fixed radius and refractive index
of the particles, and fixed refractive index of the surrounding medium.

Hansen et al. report their measured κz/P for the nonaberrated setup only, but our
calculated curves for nonaberrated and aberrated setup, provided −6μm ≤ zs ≤
−2μm, are almost indistinguishable from each other and show a good agreement
with the experimental data up to radii at which trapping is predicted by the theory.
Our results for κx/P in Fig. 6.10 show that the calculated curves for nonaberrated and
aberrated setup are quite superposable, and agree rather well with the experimental
data for the nonaberrated setup. In fact, the experimental data for aberrated and non-
aberrated setup show strong differences. We believe that this is due to experimental
difficulties in the power normalization when using oil immersion objectives.

In Fig. 6.10 a clear size scaling is evident for small radii. The optical trapping
stiffnesses lie on straight lines with slope 3 on a log–log scale, thus showing the
existence of a scaling law with the volume of the particle. The fact that our calculated
results change their slope for radii larger that 50 nm suggests the transition from a
proportionality to the volume to a dependence on some other feature. Indeed, in the
range of radii between 70 and 80 nm occurs a change in the trapping regime. In
order to understand the mechanism of this change we first studied the behavior of the
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Fig. 6.10 Experimental (from [36]) and calculated stiffness κz/P and κx/P in pN/(nm · W) for
gold spheres, both for water immersion lens (red points and lines) and for oil immersion lens (blue
points and lines). The points marked by an arrow refer to our calculations for unaberrated field on
particles embedded into a steam bubble

radiation force both in the case of unaberrated field and, in the case of an aberrated
field, for different values of D, in order to see to what extent the aberration plays a
significant role in degrading the trapping in the axial direction. In agreement with
[36], we found that the more the field is aberrated the more its ability to trap relatively
large particles weakens, perhaps by reduction of the trapping region. As regards the
behavior of the radiation force within that region, it strongly suggests that a given
model with parameters chosen once for all cannot explain the trapping of the larger
particles, i.e., of spheres with r > 77 nm: the theory is linear in power, indeed. We
must thus consider the possibility that the parameters of the model, essentially the
refractive index, may change with increasing power. In this respect, it is quite natural
to suspect the heating both of the medium and of the particles yielded by the laser
beam. Therefore, we first considered the study of Liz-Marzán and Mulvaney [38] who
measured the change of the dielectric properties of Au colloids, more precisely of the
surface plasmon absorption, in the temperature range of 14–70◦ C. These authors,
after carefully considering all the physical effects that stem from the increase in
temperature, were led to the conclusion that the most important factor is the change
of resistivity of gold with a consequent change of its refractive index. Nevertheless,
the experiments of Liz-Marzán and Mulvaney were performed on Au spheres with
an average diameter d = 15 nm. When the corrections that they suggest on the basis
of the findings of Doremus [39, 40] and of Kreibig [41] (these corrections depend
on the size of the particles) are calculated for spheres with a radius r ≥ 77 nm, the
change of the refractive index turns out to be negligible and leads to no increase in
the radius of the trappable particles.
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Table 6.3 Temperature change with respect to room temperature for the Au nanospheres used in
[36] at their trapping position. r is the radius (in nm) of the spheres used in [36], σabs (in μm2) is
the absorption cross section, and �T/P is the change of temperature (in K/W) due to heating by
the trapping beam. �T has been estimated using the formulas in [42] at 5 nm from the surface of
the nanospheres

r σabs �T/P

15 3.48 × 10−6 36.43
25 1.87 × 10−5 130.46
35 6.01 × 10−5 313.75
45 1.47 × 10−5 614.78
50 2.15 × 10−4 817.74
77 1.05 × 10−3 1679.90
98 2.50 × 10−3 5072.50
127 4.61 × 10−3 7303.20

Next, we considered that, according to Hansen et al., the power needed to trap
the larger Au spheres was of 135 mW, and that Seol et al. [42] in their study of
the heat developed by the trapping beam, estimate an increase in temperature at the
surface of Au nanospheres as high as 260◦ C/W. Much lower temperatures were
estimated by Peterman et al. [43] at the surface of dielectric particles, but in a recent
paper Lapotko [44] demonstrated that the laser-induced heating around plasmonic
nanoparticles, in particular Au nanospheres, may excite detectable vapor bubbles.
These studies suggested us to use the formulas reported by Seol et al. to estimate the
change in temperature, with respect to room temperature, at 5 nm from the surface
of the Au nanospheres considered in [36]. The results of our estimate are reported in
Table 6.3 where we also reported the absorption cross sections that, unlike [42], we
calculated without resorting to the dipole approximation. The other parameters were
taken as reported by Seol et al. because they are compatible even with our focalized
beam.

The increases in temperature reported in Table 6.3 should be taken with some
caution as they are due to a simplified model of the thermal equilibrium of the naked
metal spheres and the surrounding water, yielding perhaps too large values for the
largest Au spheres. Anyway, these increases turn out to be large enough to justify
the working hypothesis that the particles, especially the largest ones, may become
embedded into a steam bubble. In turn, the presence of a steam bubble, provided
it is stable enough, will attenuate the effect of the metallic nature of the particles.
Of course, we kept the thickness of the steam layer, which we assumed to have the
refractive index nsteam = 1, as small as possible, for the sake of stability, and made
also the assumption that the particle remains steadily at the center of the bubble. The
spheres with r = 98 nm are surrounded by a steam bubble with thickness 100 nm,
and those with r = 127 nm are surrounded by a bubble with thickness 130 nm. We
stress that the total diameters (particle plus bubble) are smaller than the width of the
trapping spot and of the resolution of the imaging system used in the experiments.
Thus we calculated the field scattered by the stratified particle that includes the metal
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Table 6.4 Trapping positions
of Au nanospheres (the
largest embedded into a steam
bubble with thickness of the
steam layer t). r is the radius
of the spheres used in [36], z0
is the calculated trapping
position, and zE the trapping
position determined by the
extinction contribution alone.
r , t , z0, and zE are all in nm

r t z0 zE

15 40 40
25 65 64
35 118 113
45 213 200
50 283 262
77 916 841
77 5 864 781
98 100 −1492 −1470
127 130 −1379 −1362

nanosphere surrounded by the steam layer and embedded into water. This has been
done by exploiting the procedure that we developed to study the resonances of layered
metal spheres [45]. The resulting scattered field, when introduced into the Maxwell
stress tensor, yields through (6.1) the radiation force acting on the center of mass of
the particle. We also calculated the trapping position for spheres with r = 77 nm
surrounded by a steam layer with thickness 5 nm in order to see whether the presence
of the bubble improves the trapping. All these calculations were performed for the
unaberrated field, the one able to trap the largest particles we are considering. In fact,
in our calculations the steam layer grants stable trapping (at negative values of z)
also for the r = 98 and r = 127 nm spheres. We collect in Table 6.4 all the trapping
positions for the unaberrated field together with the thickness of the steam layer
enveloping the largest spheres. As regards the entries in Table 6.4 one may wonder
about the relevance of zE. For the Au spheres we considered here that absorption
and extinction prevail over scattering. Thus, according to Sect. 6.2.3 we found that
for the spheres with r ≤ 77 nm F (Sca)

Rad z as a function of z within the focal region is, in

general, two orders of magnitude smaller than F (Ext)
Rad z . As a consequence, it is mainly

F (Ext)
Rad z that determines the trapping near the point where it vanishes. However, for

r = 77 nm at that point the zero is in no way a sharp one, and for r > 77 nm for
F (Ext)

Rad z there is no zero point at all. Adding the steam layer results in a slightly less

stable trapping of the r = 77 nm spheres but makes a reshaping of F (Ext)
Rad z for the

r = 98 and for the r = 127 nm spheres, so that F (Ext)
Rad z has again a zero point for

stable trapping. In conclusion, the zE entry shows that for the Au spheres the trapping
is due to the behavior of F (Ext)

Rad z .
The stiffnesses of the trap for spheres into a steam bubble are reported and marked

by arrows in Fig. 6.10. We see at once that our calculated values of κz/P , rather
surprisingly, coincide with the experimental values. In particular, the addition of the
bubble to the 77 nm spheres produces little change of κz/P . As for κx/P , we see that
for 77 nm spheres it lies on the calculated curve, whereas, for the largest spheres, it
lies on a line parallel to the experimental data.
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Fig. 6.11 Sketch of the
geometry of the optical trap
for a x-polarized TEM00
laser beam propagating in the
positive direction of the z axis.
The vector T represents the
radiation torque exerted on
the chain trapped at z0 with its
axis in the xz plane
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6.7 Radiation Torque on Elongated Nanostructures

In the last few years there has been a growth of interest in trapping and manipulating
elongated nanostructures such as nanowires and fibers. Indeed, these structures are
characterized by a large aspect ratio and a subwavelength diameter that makes them
suitable for several applications such as nanoprobe microscopy and spectroscopy
[46]. However, for these applications to take hold it is of fundamental importance
to understand the optical trapping properties of quasi-1D nanostructures, to evaluate
quantitatively radiation force and torque acting on them and eventually to shed light
on their dynamics within the optical trap.

In this section we study the torque exerted on optically trapped linear nanostruc-
tures that we model as linear aggregates of identical spheres of diameter d and length
L . The geometry of the problem is sketched in Fig. 6.11 that is a specialized version
of Fig. 6.1.

The setup we assume is the aberrated one that we considered in Sect. 6.6.1. The
L and d values of the particles we deal with were chosen so as to highlight the
orientational behavior of the chains, as we will show below. We also investigate long
chains (up to 20 spheres) with d = 50 nm in order to compare our calculated results
with some experimental data available for semiconductor nanowires [46, 47]. In fact,
the d = 50 nm spheres are much smaller than the wavelength, so that these chains
are a good model for quasi-1D nanostructures [10, 48].

We consider linear chains composed of latex spheres (refractive index np = 1.57),
with diameter 220, 100, and 50 nm, and for each chain we calculate the radiation
force FRad(r), the argument r denoting the position of O ′, the center of mass of
the chain. The trapping occurs on the optical axis [31] where all the components of
FRad(r) vanish with a negative derivative, and in the vicinity of the trapping point
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Fig. 6.12 Calculated trapping
position z0 (μm) a and Ty b
as a function of the tilt angle ϑ
for chains of spheres of latex
with diameter d = 220 nm
and lengths L = 0.44 (2
spheres), 0.66 (3 spheres), and
1.32μm (6 spheres). In a the
origin of the z axis is shifted
by −zs (see Sect. 6.6.1). The
vertical dashed line marks
the tilt beyond which the
6-spheres chains do not trap
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r0 ≡ (0, 0, z0) the components of FRad(r) can be approximated as in (6.37). The
orientation of the aggregates is individuated by the polar angles ϑ and ϕ of the axis
of the linear chain. For each orientation we determined first the trapping position
of the center of mass of the chain, then calculated the torque Γ Rad at that position.
As regards the torque, we actually calculate the adimensional vector Tη defined in
(6.21). The orientational stability occurs when the cartesian components of T vanish
with a negative derivative with respect to both ϑ and ϕ. In this respect we notice
that, in all the cases we dealt with the components Tx and Tz vanish (with negative
derivatives) when the chain lies in the xz plane, i.e., when ϕ = 0. In other words,
the xz plane is a plane of orientational stability with respect to ϕ, as expected on
account of the symmetry of the chains and of the polarization of the incident beam.
Accordingly, in all the following figures we assume ϕ = 0. On this assumption,
when Ty < 0 the chains are forced to align to the optical axis, whereas when Ty > 0
they tend to align along the polarization axis. Let us first consider the linear chains
composed of 2, 3, and 6 latex spheres of diameter 220 nm. In Fig. 6.12 (a) we report
the trapping position as a function of ϑ for all the chains. Even a cursory examination
shows that the trapping position is strongly dependent on the tilt angle and that the
6 spheres chains are not trapped for ϑ > 70◦. It is tempting to attribute this result to
the length of these chains (L = 1.32μm) that exceeds the width of the trapping spot
(≈800 nm). Nevertheless, we will show below that chains with a length of 1μm and
diameter of 50 nm do trap even when orthogonal to the optical axis (ϑ = 90◦). In this
respect, we remark that σT, the extinction cross section of the particles, depends on
their orientation and that the dominant term in FRad z , the component of the radiation
force along the optical axis, is proportional just to σT [8]. Now, our calculations show
that, at any tilt angle, the extinction cross section of the 220 nm chains is about 1000
times larger than that of the 50 nm chains. Therefore, FRad z may grow so large as
to prevent the trapping of the 220 nm chains for ϑ > 70◦. However, the curves in
Fig. 6.12 (b), show that Ty < 0 so that the torque forces the chains to align their axis
to the optical axis, the strongest torque being exerted just on the 6 spheres chains.

The chains of diameter 100 nm include up to 6 spheres and thus their maximum
length is 600 nm, whereas those with a diameter of 50 nm include up to 20 spheres
with a maximum length of 1μm. We first state that all the chains of 100 nm spheres
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Fig. 6.13 Calculated Ty as a
function of the tilt angle ϑ for
several values of the length L
of the chains of latex spheres
with diameter d = 100 nm in
a and 50 nm in b
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undergo trapping, whatever their tilt angle, and that the trapping position is almost
independent of ϑ . Moreover, Fig. 6.13a, in which we report Ty as a function of ϑ
for these chains, shows that for the 2-spheres chains Ty > 0, whereas Ty < 0 for
the 6-spheres chains. Thus, the shorter chains tend to orient along the polarization
axis, whereas the longer ones tend to align with the optical axis. The chains with
L = 400 nm mark a change in the sign of Ty , hence a change in the orientational
stability.

The behavior of the chains with diameter 50 nm is quite analogous, i.e., whatever
their length they undergo trapping. According to Fig. 6.13b, in which we report Ty as
a function of ϑ , for the shorter chains Ty > 0, whereas for the longer ones Ty < 0.
The point of inversion lies somewhere between the 8 and the 9-spheres chains, i.e.,
at L ≈ 400 nm.

The results discussed above show that the trapping of our model linear chains
presents features that are akin to those observed for trapped nanowires. In fact,
force constants and torque we calculated for several materials for long chains of
spheres modeling nanowires are in qualitative agreement with the few available
and comparable experimental results. For instance, calculations confirmed trapping,
alignments along the optical axis, and linear dependence of κz on laser power, as
expected according to [47].

6.8 Appendix 1

As anticipated in Sect. 6.2, with the help of the asymptotic multipole expansions it
is easily proved that the dyadic terms

r̂′ ·
[

n2(E′ ⊗ E′∗)+ (B′ ⊗ B′∗)
]

= n2(r̂′ · E′)E′ + (

r̂′ · B′)B′
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give a vanishing contribution at the radiation force. In fact, a look to (6.8a) and
(6.8b) shows that the asymptotic multipole expansions of E′

I and E′
S contain the

transverse harmonics Z(p)
lm (r̂

′
) which, according to their definition are orthogonal,

in the ordinary vector sense, to r̂′. This decrees the vanishing of the contribution of
the dyadic terms for whatever form of the incident amplitudes W (p)

Ilm , even when the

latter are substituted by the W
(p)

lm (RO ′).
Now, we show how it happens that the terms E′

I · E′∗
I and B′

I · B′∗
I give a vanishing

contribution to the radiation force even when the incident field is not a single plane
wave but rather a superposition of plane waves with the same magnitude of k but
different direction of propagation, i.e., different k̂.

Let us thus assume that the incident electric field is a superposition of plane waves
of the kind of (6.28). Thus a typical term that would enter (6.1) is

IE = Re

⎡

⎣r ′2n2
∫

�′
E′

I(k̂) · E′∗
I

(

k̂′
)

r̂′ d�′
⎤

⎦ ,

where E′
I

(

k̂
)

= E ′
PW

(

k̂
)

ûk̂ exp(ik · r′) = E′
PW

(

k̂
)

exp(ik · r′). An analogous

term IB comes from B′
I. Since r ′ is large, we can use the asymptotic form of a plane

wave [7, 8] so that IE becomes

IE = Re
{4πn2

k2

∫

�′
E′

PW

(

k̂
)

· E′∗
PW

(

k̂′
)

×
[

δ
(

k̂ + r̂′) exp(−ikr ′)− δ
(

k̂ − r̂′) exp(ikr ′)
]

×
[

δ
(

k̂′ + r̂′) exp(ikr ′)− δ
(

k̂′ − r̂′) exp(−ikr ′)
]

r̂′ d�′} .

Due to the properties of the δ-function, the result of the integration is

IE = Re
{4πn2

k2 E′
PW(k̂) · E′∗

PW

(

k̂′
) [

−k̂δ
(

k̂ − k̂′
)

+ k̂′δ
(

k̂ − k̂′
)

+ k̂′δ
(

k̂ + k̂′
)

exp(2ikr ′)− k̂′δ
(

k̂ + k̂′
)

exp(−2ikr ′)
]}

.

A quite similar expression, except for the absence of n, is obtained for IB , so that
collecting all the terms we get

I = IE + IB

= Re
{4π

k2

[

n2E′
PW

(

k̂
)

· E′∗
PW

(

k̂′
)

+ B′
PW

(

k̂
)

· B′∗
PW

(

k̂′
)]

×k̂′δ
(

k̂ + k̂′
) [

exp(2ikr ′)− exp(−2ikr ′)
]}
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which is easily seen to vanish, even when k̂′ = −k̂, on account that

B′
PW(k̂) = −in k̂ × E′

PW

(

k̂
)

.

Similar conclusions can be reached, starting from (6.31), for the case of an aberrated
laser beam.

Finally we note that, on account of the definition of the amplitudes W
(p)

lm (RO ′)

and of the related amplitudes A
(p)

lm , in analogy to Sect. 6.2.2, the radiation torque

Γ Rad does not get contributions from terms of the form W
(p)

lm (RO ′)W (p′)∗
l ′m′ (RO ′).

In conclusion, neither a plane wave field nor a focal field gives direct contributions
to the radiation force or torque, as they are just the fields in the absence of particles.

6.9 Appendix 2

In Sect. 6.1 we stated that the calculation of FRad and Γ Rad requires the knowledge of
the field scattered by the particles. We solve the scattering problem for the particles
concerned by expanding both the incident and the scattered field in a series of vector
multipole fields (see (6.6) and (6.7)). Then, according to Waterman [3] we relate the
multipole amplitudes, the incident field W (p)

Ilm , to those of the scattered field A(p)
lm , by

the equation [10]

A(p)
lm

(

ûI, k̂I

)

=
∑

p′l ′m′
S
(pp′)

lml ′m′ W
(p′)
I l ′m′

(

ûI, k̂I

)

, (6.38)

that defines the elements of the transition matrix of the particle. Let us stress that, in
principle, the sums in (6.6) and (6.7) and thus also (6.38) include an infinite number
of terms. In practice, for computational reasons, these sums must be truncated to
some suitable lM chosen so as to ensure a fair description of the fields. Therefore, all
sums over the multipole order l should be understood to extend up to l = lM. Since
the particles we deal with either are, or can be modeled as aggregates of spheres,

we calculate S
(pp′)

lml ′m′ for such aggregates by inverting the matrix of the linear system
that is obtained by imposing to the fields the boundary conditions across each of the
spherical surfaces [10, 49]. The order of the matrix to be inverted is 2NlM(lM + 2),
where N is the number of the spheres of the aggregate. The convergence of such
kinds of calculations, i.e., the choice of the appropriate lM is studied in Refs. [34].
A comprehensive treatment of all the topics mentioned above related to the calcula-
tion of the transition matrix can be found in Ref. [10]. It may be useful to note that
for a homogeneous sphere

S
(pp′)

lml ′m′ = S
(p)

l δpp′δll ′δmm′ ,
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and S (1)
l = bl , S (2)

l = al , al and bl being the well-known Mie coefficients [4, 10].

The transition matrix is related to the scattering amplitude of the particle f(k̂S, k̂I; ûI)

through the equation

f
(

k̂S, k̂I; ûI

)

= 1

k

∑

plm

(−i)l+pZ(p)
lm

(

k̂S

)

A(p)
lm

(

ûI, k̂I

)

(6.39)

where the amplitudes of the scattered field are given by (6.38). Equation (6.39) thus
allows to express the scattering cross section and the extinction cross section in terms
of the elements of the transition matrix.

The usefulness of the transition matrix stems from the its transformation properties
under rotation of the coordinate frame. In fact, if the frameΣ ′ attached to the particle
rotates to an orientation characterized by the Eulerian angles α, β, and γ ,� for short,
the elements of the transition matrix become

S
(pp′)

lml ′m′ =
∑

μμ′
D(l)∗

mμ (�)S̄
(pp′)

lml ′m′ D
(l ′)
m′μ′(�) (6.40)

where S̄
(pp′)

lml ′m′ denotes the elements of the transition matrix calculated in the frame
Σ ′ so that they are independent of the orientation of the particle. As a result, the ele-
ments of the transition matrix depend on the orientation through the rotation matrices
D(l) only. Then, the averages over the orientation of the particles for all the physically
significant quantities result in integrals of products of up to four elements of rotation
matrices further multiplied by P(�), the latter being the appropriate function that
describes the distribution of orientations. There are relevant cases, e.g., the case of
random orientations (random average), or the case of random orientation around a
fixed axis (axial average), in which the integration above can be performed analyt-
ically. These averaging procedures, although straightforward, yield rather complex
formulas so that we refer the interested reader to the details that are fully expounded
elsewhere [9, 10, 50].
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Chapter 7
Rainbows, Coronas and Glories

Philip Laven

Abstract Rainbows, coronas and glories are examples of atmospheric optical phe-
nomena caused by the scattering of sunlight from spherical drops of water. It is
surprising that the apparently simple process of scattering of light by spherical drops
of water can result in this wide range of colourful effects. However, the scattering
mechanisms are very complicated. Eminent scientists (such as Descartes, Newton,
Young, Airy and many others) offered various explanations for the formation of
rainbows—thus making major contributions to our understanding of the nature of
light. The basic features of rainbows can be explained by geometrical optics but, in the
early 1800s, supernumerary arcs on rainbows provided crucial supporting evidence
for the wave theory of light. In 1908, Mie provided a rigorous (but very complicated)
solution to the problem of scattering of light by spherical particles. More than 100
years later, Mie’s solution can now be used to produce excellent full-colour simula-
tions. Examples of such simulations show how the appearance of these phenomena
vary with the size of the water drops, as well as describing the scattering mechanisms
that are responsible for their formation.

7.1 Introduction

The rainbow, corona and glory are examples of atmospheric optical phenomena
caused by the scattering of sunlight from spherical drops of water. Eminent sci-
entists (such as Descartes, Newton, Young, Airy and many others) offered various
explanations for the formation of rainbows—thus making major contributions to our
understanding of the nature of light [1, 3, 7, 37, 61].

Mie’s rigorous solution [46] for the scattering of plane waves from homoge-
neous spheres has been available since 1908 but, for many years, its computational
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Fig. 7.1 Mie calculations for scattering of unpolarised monochromatic red light (λ = 650 nm) by
a spherical water drop with radius r = 0.1 µm to r = 1,000 µm for refractive index n = 1.33257

complexity was a formidable obstacle to its practical application, especially for large
spheres. For scattering of light by water drops in the atmosphere, we are concerned
with water drops of radius r < 10 µm in fog to r > 1,000 µm in heavy rain. Rapid
advances in computer power now allow Mie’s solution to be used for such calcula-
tions [15–18, 29, 30, 32, 36, 58–60] and, indeed, computer software for full-colour
simulations of rainbows, coronas and glories is now freely available [11, 35].

Figure 7.1 shows the results of Mie calculations of scattered intensity for light
of wavelength λ as a function of scattering angle θ for monochromatic red light
for spherical water drops of different radius r. Note that θ = 0◦ implies forward
scattering (i.e. in the original direction) and θ = 180◦ implies backscattering (i.e.
back towards the source of the light). The primary and secondary rainbows are fairly
obvious in Fig. 7.1 for large values of r, whereas the corona and the glory appear on
the curve for r = 10 µm as a series of maxima and minima at θ → 0◦ and θ → 180◦
respectively.

Given the availability since 1908 of Mie’s rigorous solution for scattering of light
by homogeneous spherical particles, it might be assumed that everything is now
known about the rainbow, corona and glory. However, as Mie’s solution is based
on the summation of a large number of terms (which converges when the number
of terms is slightly greater than the size parameter x = 2πr/λ), it provides little
information about the scattering mechanisms causing the rainbow, corona and glory.
At this point, it is appropriate to refer to the Debye series (also published in 1908)
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Fig. 7.2 Definitions of ray paths scattered from a sphere

[13, 23] which is essentially a reformulation of Mie’s solution separating the contri-
butions made by different scattering mechanisms of order p, where:

• p = 0 corresponds to external reflection plus diffraction;

• p = 1 corresponds to direct transmission through the sphere;

• p = 2 corresponds to one internal reflection;

• p = 3 corresponds to two internal reflections;

• and so on.

Figure 7.2 shows an example of the various ray paths, as indicated by different
values of p. Unlike calculations based on geometrical optics, the Debye series is
not an approximation: the summation of the Debye series for all integer values of p
from zero to infinity gives the same result as Mie’s solution. Figure 7.3 compares
the results of Mie and Debye series calculations for scattering of red light from a
water drop of radius r = 100 µm. The results of Mie calculations are not easy to
understand, whereas calculations using the Debye series reveal the intricacy of the
scattering processes. For example, the Debye series calculations in Fig. 7.3 show that
p = 2 rays are responsible for the primary rainbow at θ ≈ 139◦ and that p = 3
rays are responsible for the secondary rainbow at θ ≈ 128◦. Although such results
are well known from geometrical optics, geometrical optics fails to predict that the
appearance of rainbows varies with the radius r of the water drops (as is evident from
the Mie results shown in Fig. 7.1). Similarly, Fig. 7.3 shows that the large variations
in intensity in the Mie results at θ ≈ 68◦ coincide with the crossing point of the
p = 0 and p = 1 contributions in the Debye series calculations. In this area, the
intensities of the two components are similar, but their relative phases vary rapidly
as a function of θ thus producing the complicated interference pattern at θ ≈ 68◦.
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Fig. 7.3 Comparison of Mie calculations (top) and Debye series calculations (bottom) for scattering
of monochromatic red light (λ = 650 nm) from a spherical water drop with radius r = 100 µm for
refractive index n = 1.33257 (perpendicular polarisation)
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7.2 Rainbows

Rainbows have long played an important role in the development of scientific knowl-
edge. Descartes and Newton used geometrical optics to explain the formation of rain-
bows. In discussing Figs. 7.1 and 7.3, the term rainbow has been used to denote the
concentration of light in a narrow angular zone (such as 138◦ < θ < 140◦) despite
the fact that these graphs are concerned with the scattering of monochromatic light.
To produce simulations of natural rainbows caused by the scattering of sunlight from
water drops, Mie calculations must be performed at many wavelengths across the
visible spectrum, taking account of the spectrum of sunlight and of the variations in
the refractive index n of water.

According to geometrical optics, the rainbow angles θrainbow for p = 2 and p = 3
can be calculated according to the following formulae [2]:

Primary rainbow (p = 2):

θrainbow = 2 arccos

⎡

⎣
1

n2

(
4 − n2

3

) 3
2

⎤

⎦ (7.1)

Secondary rainbow (p = 3):

θrainbow = 2 arcsin

⎡

⎣

√

n2 − 1

(√
9 − n2

2n

)3
⎤

⎦ (7.2)

As θrainbow is dependent on refractive index n, θrainbow varies with wavelength as
shown in Table 7.1 which indicates that the colours of the secondary rainbow are
reversed in order compared with the colours of the primary rainbow. Table 7.1 also
shows that the width of the primary rainbow (from violet to red) is about 1.9◦, whilst
the width of the secondary rainbow is about 3.4◦. However, it must be stressed that
calculations using geometrical optics for rainbows do not entirely agree with the
results of Mie calculations: first, geometric optics wrongly predicts infinite intensity
at the rainbow angle and, second, Mie calculations show that the peak intensity
is offset slightly from the geometric rainbow angle θrainbow. For example, Mie and
Debye series results show that forλ = 650 nm and a water drop of radius r = 100 µm,
the maximum intensity occurs at θ ≈ 138.8◦, whereas geometrical optics suggests
a primary rainbow angle of θrainbow = 137.9◦ irrespective of r .

Another failing of geometric optics is that it does not predict the series of maxima
and minima associated with rainbows (known as supernumerary arcs), which are
clearly shown in Fig. 7.3 on the p = 2 and p = 3 curves obtained with the Debye
series. What causes these supernumerary arcs? The primary rainbow marks the tran-
sition between no geometrical rays when θ < θrainbow and two geometrical rays when
θ > θrainbow (as shown in Fig. 7.4). As the two rays corresponding to a given value of
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Table 7.1 Geometric rainbow angles for water

Wavelength λ (nm) n Primary θrainbow Secondary θrainbow

400 1.34451 139.57◦ 126.14◦
450 1.34055 139.01◦ 127.15◦
500 1.33772 138.60◦ 127.88◦
550 1.33560 138.30◦ 128.43◦
600 1.33393 138.06◦ 128.87◦
650 1.33257 137.86◦ 129.22◦
700 1.33141 137.69◦ 129.53◦

Fig. 7.4 Two p = 2 geometric rays contributing to scattering at θ = 141◦ by a water drop
with refractive index n = 1.33257—in this case, the geometric rainbow angle θrainbow = 137.9◦
corresponds to an impact parameter b = √

arccos[(n2 − 1)/(p2 − 1)] = 0.861 (i.e. between the
two rays shown)

θ > θrainbow have different optical path lengths, there is a phase difference between
the two rays. Constructive interference occurs when this phase difference is a mul-
tiple of 360◦ (leading to a maximum of intensity), whilst destructive interference
occurs when the phase difference is an odd multiple of 180◦ (leading to a minimum
of intensity). The maxima and minima in the scattered intensity as a function of θ
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Fig. 7.5 Scattering of sunlight by a spherical drop of water with radius r = 100 µm

occur because the phase difference varies with θ . From a historical perspective, it is
noteworthy that the appearance of supernumerary arcs on natural rainbows was used
by Young to support the wave theory of light [61].

Figure 7.5 shows Mie calculations for scattering of sunlight by a spherical drop
of water with radius r = 100 µm. The graph shows that the intensity of the pri-
mary rainbow is about one order of magnitude greater than that of the secondary
rainbow, whilst the horizontal coloured bars immediately above the graph show sim-
ulations of the rainbows—with the top bar showing perpendicular polarisation, the
middle bar showing parallel polarisation and the bottom bar showing unpolarised
light. Both rainbows are strongly polarised, with perpendicular polarisation being
dominant in both cases. Note that the maxima of the primary rainbow’s supernu-
merary arcs for parallel polarisation coincide with the minima for perpendicular
polarisation (and vice versa) [27]. The reason for this extraordinary behaviour is
that, for parallel polarisation, an abrupt phase change of 180◦ (due to the Brewster
angle) occurs when the impact parameter b = sin[arctan[n]]. For n = 1.33257, this
critical value occurs when b = 0.7998. Figure 7.4 shows that, for θ = 141◦, one
of the rays is at b < 0.7998, whilst the other is at b > 0.7998. This means that
the phase difference between the two rays for parallel polarisation is 180◦ greater
than the phase difference for perpendicular polarisation—thus explaining the coinci-
dence of the maxima and minima of the supernumerary arcs. In fact, the real coinci-
dence is that critical impact parameter b = sin[arctan[n]] and the impact parameter
b = √

arccos[(n2 − 1)/(p2 − 1)] corresponding to θrainbow are very similar for
p = 2 and for the refractive index n of water.

Figure 7.6 shows a series of simulations of the rainbows caused by the scattering
of sunlight by spherical water drops of various values of r between 10 and 500µm.
For very small water droplets (e.g. for r = 10 µm), the rainbow (or fogbow) is
almost white and not well-defined. For r = 50 µm, the primary rainbow is predom-
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Fig. 7.6 Simulations of the primary and secondary rainbow caused by scattering of sunlight by
spherical water drops of specified radius r

inantly white with a hint of red at its outer edge. The colours of the primary rainbow
become more obvious for larger drops, together with the fainter secondary rain-
bow and Alexander’s dark band. Supernumerary arcs can be seen inside the primary
rainbow for r = 50 µm, r = 100 µm and r = 200 µm, as well as on the outside
of the secondary rainbow for r = 100 µm and r = 200 µm. However, the supernu-
merary arcs disappear for larger water drops (e.g. r = 500 µm) because the angular
separation between these arcs is less than the sun’s apparent angular diameter of 0.5◦.

The Lee diagram [36] in Fig. 7.7 illustrates more generally how the appearance of
rainbows varies with the radius r of the water drops. Each coloured point in Fig. 7.7
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Fig. 7.7 Lee diagram showing variations in the appearance of primary and secondary rainbows
caused by scattering of sunlight by spherical water drops as a function of drop radius from r = 10 µm
to r = 1,000 µm

represents the colour of light scattered in a specific direction θ by a drop of radius r .
This diagram has been calculated for 400 values of r between 10 µm and 1,000 µm.
For each value of r , the primary and secondary rainbows are depicted by a vertical
column of colours, in which the brightness of column has been normalised by the
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Fig. 7.8 Left simulation of the primary and secondary rainbows caused by spherical drops of water
with radius r = 100 µm. Right simulation of primary and secondary rainbows caused by spherical
drops of fixed refractive index n = 1.33 across the visible spectrum with radius r = 100 µm

maximum luminance for that value of r . Figure 7.7 shows that the angle of maximum
intensity for the primary rainbow decreases from θ ≈ 142◦ when r = 10 µm to
θ ≈ 138◦ when r = 1,000 µm. Similarly, the angle of maximum intensity for the
secondary rainbow increases from θ ≈ 124◦ when r = 10 µm to θ ≈ 128◦ when
r = 1,000 µm.

As shown in Table 7.1, the variations in the refractive index n of water across the
visible spectrum are relatively small (≈1%). However, these slight variations in n
are responsible for the colours of the natural rainbow. The availability of software
for simulation of rainbows allows us to isolate the effects of these variations in n.
For example, Fig. 7.8 compares natural rainbows caused by scattering of sunlight by
water drops with the hypothetical rainbows that would be caused by drops with a
fixed value of n = 1.33—the hypothetical rainbows are essentially white with tinges
of colour on the supernumerary arcs.

7.3 Coronas

The corona appears as a series of concentric coloured rings around a cloud-covered
sun or moon. As the brightness of the sun is generally overwhelming to the human
eye, coronas are more frequently observed around the moon.

Figure 7.9 compares simulations of the corona and glory caused by scattering
of sunlight by water droplets of radius r = 10 µm. The brightness of the simulated
corona in Fig. 7.9 has been increased by a factor of 20 so that the sun and its immediate
surroundings are “over-exposed.” The corona is obviously centred on the sun or moon
at θ = 0, whilst the glory is centred on the anti-solar point at θ = 180◦. The corona
and the glory have different sizes, but the sequence of colors is almost identical. The
key differences are that the glory for r = 10 µm has a dark ring around θ ≈ 179.3◦
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Fig. 7.9 Simulations of the corona (top) and glory (bottom) caused by scattering of sunlight by
spherical water drops of radius r = 10 µm

and that, in general, the outer rings of glories are relatively bright compared with
those of coronas.

Although similar in appearance, these two phenomena are caused by completely
different mechanisms. The corona is generally considered to be due to diffraction
by small droplets of water in the clouds [10, 47, 54, 55, 58, 59]—and thus the
intensity of the corona I (θ) is calculated using the Fraunhofer diffraction equation1:

I (θ) ∝
(

x2
[

1 + cos θ

2

] [
J1(x sin θ)

x sin θ

])2

(7.3)

where:

• θ is the scattering angle;

• J1 is the first-order Bessel function;

• x = 2πr/λ where r is the radius of the scattering sphere and λ is the wavelength of the
incident light.

1 Such equations are frequently attributed to Fraunhofer, but Craig Bohren has pointed out in a pri-
vate communication that, without diminishing the importance of Fraunhofer’s pioneering work in
experimental optics, there is no evidence to suggest that Fraunhofer developed any theoretical treat-
ment of diffraction. Consequently, Fresnel-Fraunhofer-Airy-Schwerd might be a more appropriate
designation. Schwerd’s contribution is described in [22].
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(a) (b) (c)

(d) (e) (f)

Fig. 7.10 Lee diagrams showing the corona caused by scattering of sunlight by spherical water
drops as a function of drop radius from r = 0.1 µm to r = 10 µm. a–c show diffraction calculations.
d–f show Mie calculations. The brightness of (b) and (e) has been increased by a factor of ten to
reveal the colours of the corona. The results shown in a and b have been processed to remove the
brightness information, leaving only the saturated colours

The rings of the corona correspond to maxima in the last term of Eq. 7.3: the first
4 maxima occur when x sin θ = 5.136, 8.418, 11.62 and 14.796—corresponding
to sin θ = 0.8174λ/r , 1.3398λ/r , 1.8494λ/r and 2.3549λ/r . If θ is measured
in degrees and r is measured in µm, the inner rings of the corona for red light
(λ = 0.65 µm) are therefore defined by θ1 = 30.5/r , θ2 = 50/r , θ3 = 69/r and
θ4 = 88/r .

There are significant differences between the diffraction model and Mie’s solution
for the corona, as highlighted by van de Hulst [57] and by Lock and Yang [38].
The Lee diagrams for the corona in Fig. 7.10 compare the diffraction model with
Mie calculations for scattering of sunlight from water droplets for 0.1< r < 10 µm.
Figure 7.10a shows the results of diffraction calculations. As the brightest scattering
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occurs at θ = 0◦, Fig. 7.10a contains little information because the corona is very
much darker than the forward scattered light (i.e the sun or the moon) and computer
displays cannot reproduce the necessary large dynamic range. To overcome this
problem, the brightness of Fig. 7.10b has been increased by a factor of 10 so that
the top part of is “over-exposed”, allowing the colours of the corona to become
visible. The data from Fig. 7.10a have been re-plotted in Fig. 7.10c so as to remove
the brightness information, instead showing the saturated colour of each pixel. This
form of presentation shows that, according to the diffraction model, the sequence
of colours in the corona is independent of r. Figure 7.10c suggests that no more
than two or three rings of the corona will be visible even under optimum viewing
conditions. Although diagrams based on saturated colours (such as Figs. 7.10c and f)
are useful for comparing colours, it must be emphasised that they do not represent
the appearance of scattered light.

Looking now at the equivalent diagrams (Figs. 7.10d–f) produced using Mie calcu-
lations, the key difference between Fig. 7.10a and d is that, for 0.5 µm < r < 2 µm,
Mie calculations predict uniform bands of colour at scattering angles θ < 8◦: for
example, red for r = 0.8 µm and for r = 1.6 µm and violet for r = 1 µm.
Comparison of Fig. 7.10b and e shows that Mie calculations produce very com-
plex patterns for r < 3 µm. Comparison of Fig. 7.10c and f indicates that Mie and
diffraction calculations produce similar results for r > 5 µm, but the diffraction
model is totally inadequate for r < 3 µm. Figure 7.10f also confirms the findings of
Gedzelman and Lock [18] who reported:

The sequence of corona colors changes rapidly for small droplets but becomes fixed once
droplet radius exceeds about 6µm.

The irregular patterns shown in Fig. 7.10 are caused by interference between p = 0
(diffraction) and p = 1 (transmission through the sphere) contributions. Obviously,
the p = 1 contributions are not taken into account in diffraction calculations using
Eq. 7.3.

More generally, the Lee diagrams in Fig. 7.10 for scattering of sunlight show
that the size of the corona is inversely proportional to the radius r of the water
droplets: Fig. 7.10c suggests that the inner 3 red rings occur at θ1 ≈ 16/r , θ2 ≈ 31/r
and θ3 ≈ 47/r . These results for scattering of sunlight should be compared with
those obtained above for monochromatic red light: the red ring at θ1 ≈ 16/r does
not coincide with a maximum of the Fraunhofer equation. The “main beam” of the
diffraction pattern is wider for red light than for the rest of the visible spectrum—thus
producing a red ring that has no equivalent in the diffraction pattern of monochromatic
red light. However, the next two red rings at θ2 ≈ 31/r and θ3 ≈ 47/r for sunlight
are close to the values of 30.5/r and 50/r obtained for monochromatic red light.

The diffraction model is appealing because of its simplicity compared with Mie
calculations, but the above results show that it can give misleading results for the
corona—because the corona is not solely due to diffraction. In any event, the diffrac-
tion model relies on the evaluation of Bessel functions, thus requiring the user either
to use published tables of Bessel functions or to adopt a numerical solution—thus
negating some of its apparent simplicity. Given the ready availability of software for
Mie calculations, it is suggested that the diffraction model should be avoided.
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Fig. 7.11 Left A glory as seen from a commercial aircraft. Right Mie simulation of this glory
assuming scattering of sunlight by spherical water droplets with radius r = 4.3 µm

7.4 Glories

In the past, sightings of glories were rare and usually associated with the Brocken
Spectre, which refers to the elongated shadows of mountaineers appearing on fog or
clouds beneath them. In such circumstances, a mountaineer might observe that the
shadow of his head was surrounded by a glory (consisting of a series of concentric
coloured rings). Strangely, such coloured rings appear around the shadow of your
head, but not apparently around the shadows of your companions! Nowadays, glories
are seen much more frequently surrounding the shadow of an aircraft on clouds: the
author has taken more than 4,000 pictures of glories whilst travelling on commercial
aircraft within the last 10 years. Figure 7.11 shows one such picture, together with a
matching simulation based on Mie calculations.

The effects of viewing a glory through a vertical polariser (equivalent to the view
seen through polarised sunglasses worn in the usual orientation) are simulated in
Fig. 7.12. The distinctive dark spots immediately above and below the antisolar point
in the right-hand image in Fig. 7.12 were initially predicted by Können [28]. These
theoretical simulations have been confirmed by the publication of several images of
polarised glories [32]. Figure 7.13 offers an explanation of the formation of polarised
glories.

Figure 7.14 is a Lee diagram showing how the appearance of the glory varies with
the radius r of the water drop. The sequence of ring colors is essentially independent
of r . Glories with large rings imply that they are caused by scattering from small
droplets, whereas glories with small rings imply large droplets. To a first approxi-
mation, the radius R of a given ring from the anti-solar point θ = 180◦ is inversely
proportional to r ; for example, the four inner red rings have radii of R1 ≈ 24/r ,
R2 ≈ 37/r , R3 ≈ 56/r and R4 ≈ 75/r , where R is measured in degrees and r is
measured in µm. This very simple relationship allows the values of r of the clouds
to be estimated very easily from images of glories [33].
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Fig. 7.12 The left image shows a simulation of a glory caused by scattering of sunlight from
spherical water droplets with r = 10 µm (the width of the image is about ±5◦). The right image
shows the same glory as viewed through a polariser with its transmission axis vertical

(a) (f)

(b)

(c)

(d)

(d)

Fig. 7.13 An unpolarised glory, shown as image (a), can be separated into two components (b)
and (c), which have polarisations perpendicular and parallel to the scattering plane, respectively.
When viewed through a vertical polariser, (b) is transformed into (d), while (c) is transformed into
(e). Image (d) shows that the polariser suppresses perpendicular polarisation along the vertical line
through the antisolar point, but has no effect along the horizontal line. This is similar to the effect
of viewing the primary rainbow through a polariser, because the primary rainbow is dominated
by perpendicular polarisation. Image (e) shows that the polariser suppresses parallel polarisation
along the horizontal line through the antisolar point. When (d) and (e) are combined, the resulting
image (f) shows the polarised glory with its distinctive dark spots above and below the antisolar
point. Note that the colors of the polarised glory along the horizontal line through the antisolar point
correspond to perpendicular polarisation, whereas those along the vertical correspond to parallel
polarisation. Other orientations obviously involve a mixture of the two polarisations

Most glories seem to be caused by water droplets with 4 < r < 25 µm, thus
overlapping with the white fogbows described in Sect. 7.2. In fact, fogbows can
usually be observed when glories are visible—and vice versa. In practice, it can
be difficult to observe a glory and a fogbow simultaneously, especially as glories
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Fig. 7.14 Lee diagram showing variations in the appearance of glories caused by scattering of
sunlight by spherical water drops as a function of drop radius r from r = 5 µm to r = 20 µm
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Fig. 7.15 Left image of a glory and a cloudbow. Right Mie simulation assuming scattering of
sunlight by water drops of radius r = 20 µm

are now most frequently seen from inside commercial aircraft where the field of
view is generally very limited. Nevertheless, Fig. 7.15 shows a layer of cloud which
produced a glory at θ > 176◦ and a primary rainbow at θ ≈ 142◦—it would be more
appropriate to call the latter a “cloudbow”. In practice, such effects are not easy to
observe because white clouds are typically very bright, but one useful tip is to look
for the dark band just inside the fogbow/cloudbow (at θ ≈ 144◦ in Fig. 7.15). Having
found this dark band, it is much easier to identify the white band corresponding to
the primary fogbow/cloudbow.

The Lee diagram in Fig. 7.16 shows that, although the angular size of the coloured
rings of the glory decreases as r increases, the angular size of the fogbow or primary
rainbow (as measured from the anti-solar point) increases with r . Although the rings
of the glory and the fogbow (and its supernumerary arcs) are easily separable when
seen in Fig. 7.16, the simulation in Fig. 7.17 shows a puzzling mixture of glory rings,
supernumerary arcs and fogbows that can be observed when r = 5 µm. Confronted
with such a complex display, it is almost impossible for observers to identify which
are glory rings and which are supernumerary arcs!

Mie’s solution can be used to simulate glories, but it does not offer any expla-
nation for their formation. In his seminal paper A theory of the anti-coronae [56],
van de Hulst suggested that the glory could be explained as the diffraction pattern
corresponding to a toroidal wave front and noted that back-scattering θ = 180◦ by
geometrical p = 2 rays (apart from the trivial case of central rays with impact para-
meter b = 0) would require refractive index n >

√
2 ≈ 1.414. Given that n ≈ 1.333

for water, this explanation left something to be desired! However, in his 1957
book [57], van de Hulst extended his treatment of the glory to propose that it is
caused by p = 2 rays with b = ±1 and that the 14.4◦ gap between θ = 165.6◦ and
θ = 180◦ could be bridged by surface waves, as illustrated in Fig. 7.18. This gap of
14.4◦ is depicted in Fig. 7.18 for simplicity as the last part of the ray path before it
emerges from the sphere, but this gap could be covered by three separate segments
of surface waves covering a total of 14.4◦. Because of symmetry of the sphere, ray
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Fig. 7.16 Lee diagram showing variations in the appearance of glories and fogbows caused by
scattering of sunlight by spherical water drops as a function of drop radius from r = 3 µm to
r = 30 µm

paths of the form shown in Fig. 7.18 generate a toroidal wavefront with a diameter
nearly equal to that of the sphere, propagating in the direction θ = 180◦.



7 Rainbows, Coronas and Glories 211

Fig. 7.17 The left image shows a Mie simulation of scattering of sunlight by spherical water drops
of radius r = 5 µm as would be captured by a camera with a very wide-angle lens: the width of
this image is ≈±50◦ measured from the anti-solar point. The right image shows the same glory as
viewed through a polariser with its transmission axis vertical

Fig. 7.18 van de Hulst’s
surface wave associated with
a p = 2 ray with impact
parameter b = 1 for a sphere
with refractive index n =
1.333

Fahlen and Bryant [14] conducted an experiment in which a water drop of
1.23 mm diameter was suspended in a sound field and illuminated by a He-Ne laser.
They reported that, when the drop was viewed from θ ≈ 180◦, bright patches of light
appeared near the centre of the droplet (probably corresponding to light reflected from
the front and back of the water drop for b ≈ 0) and around the circumference of the
sphere. Although the latter observation is consistent with van de Hulst’s explanation,
it does not provide any information about the physical nature of the glory-making
rays or about the actual role of surface waves.

The pioneering work of van de Hulst has been endorsed and extended by many
other authors [8, 9, 12, 24]. Nussenzveig’s many studies of the glory [26, 48–51]
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include use of the Debye series to analyse the relative importance of various scattering
processes in the formation of the glory. His results indicated that p = 2 contributions
are dominant for droplets with effective radius x = 150, corresponding to r ≈ 13 µm
for scattering of white light.

Despite the success of van de Hulst’s theory for the formation of the glory, various
authors have bemoaned the lack of a simple physical model for the mechanisms
causing the glory. For example, Lynch and Livingston [43] remark:

Although the glory pattern is correctly predicted by Mie theory, a good physical expla-
nation is, in our opinion, lacking. In some way light is back-scattered after traversing the
periphery of the droplet. Examined in detail, each drop is found to shine uniformly around
its edge with an annulus of light that is coherent (the waves are in phase).

Greenler [21] notes:

In one sense, the glory is now well understood. A mathematical theory (Mie scattering
theory) enables us to calculate the intensity variation in the glory pattern. Unfortunately,
it gives us little physical insight into the process that produces the rings …I wonder if there
is no simple model containing the physical essence of the glory.

Similarly, Bohren and Huffmann [6] state:

Unlike the rainbow, the glory is not easy to explain, other than to say that it is a consequence
of all of the thousands of terms in the scattering series, a correct but unsatisfying statement.

In a paper [52] entitled Does the glory have a simple explanation? Nussenzveig
tried to respond to the above requests, but he concluded that:

Mie theory describes the glory by the sum of a large number of complicated terms within
which the physical mechanisms cannot be discerned. CAM [Complex Angular Momentum]
theory brings out the dominant physical effects and provides an accurate representation for
each of them. That it does so by analytic continuation seems inevitable. I know of no other
way of quantitatively representing tunneling.

The above extracts indicate that the glory cannot be explained (even by eminent
scientists), except by “scientific arm waving”. Fortunately, the availability of software
for Mie and Debye series calculations allow us to investigate the glory in considerable
detail. For example, Fig. 7.19 shows that the Mie results are almost identical to the
Debye series p = 2 contributions (i.e. those that have suffered one internal reflection
in the sphere). This indicates that p = 2 scattering is the dominant mechanism for the
formation of the glory—except in the vicinity of θ = 180◦ where p = 11, p = 7 and
p = 6 scattering makes a significant contribution. The coloured rings of the glory
(e.g. between θ = 175◦ and θ = 178◦) are obviously due to Debye p = 2 rays. Note
that the colours of the plotted lines represent the saturated colours. In particular,
the p = 0 contribution (caused by reflection from the exterior of the sphere and
by diffraction) is essentially white, but all of the contributions from higher orders
(e.g. p = 6, p = 7, p = 11 and so on) show colours which are essentially identical
to those for p = 2.

Figure 7.20 shows two simulations of the glory caused by scattering of sunlight
from a spherical drop of water with r = 10 µm: the left side shows a simulation
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Fig. 7.19 Mie and Debye series calculations showing backscattering of sunlight by a spherical water
drop of radius r = 10 µm. The labels on the curves indicate the value of p with the symbols ⊥
indicating perpendicular polarisation and // denoting parallel polarisation

Fig. 7.20 The left part of
the image shows a simula-
tion of the glory caused by
scattering of sunlight from
spherical water droplets with
r = 10 µm (based on Mie cal-
culations). The right part of
the image shows an equivalent
simulation based on Debye
p = 2 contributions

using Mie calculations, whilst the right side considers only p = 2 scattering. The
key difference is that, as indicated in Fig. 7.19, Mie calculations predict a bright white
zone near the centre (i.e. θ → 180◦). More importantly, both simulations produce
essentially identical sequences of coloured rings, thus confirming that the coloured
rings of the atmospheric glory are primarily caused by light that has suffered only
one reflection within the water drop (i.e. p = 2 scattering).

Nussenzveig also suggested that resonances are important in forming the glory;
for example, in 2003, he wrote [53]:

The glory provides direct and visually stunning experimental evidence of the importance of
resonances and light tunneling in clouds.
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In particular, several of Nussenzveig’s papers highlight the importance of p = 24
contributions to the glory on the basis that geometrical p = 24 rays with impact
parameter b = ±1 result in θ = 180◦ when n = 1.33007. However, p = 24
contributions do not appear to be very important in Fig. 7.19. There are several
possible reasons for this disagreement with Nussenzveig’s results: first, as shown by
Table 7.1, n = 1.33007 is outside the range of n for water in the visible spectrum;
second, Debye series calculations for p = 24 do not show any enhancement in back-
scattering in the vicinity of n = 1.33007. In any event, Nussenzveig’s calculations
were made for θ = 180◦ (i.e. only for the central feature of the glory) and, therefore,
do not cover the much more relevant case of the coloured rings of the glory (typically
observed when 170◦ < θ < 178◦). Given the dominance of p = 2 contributions
shown in Fig. 7.19, it seems unlikely that resonances are important in the formation
of the glory.

Having confirmed that the glory is essentially caused by p = 2 scattering, it is
necessary to investigate van de Hulst’s hypothesis that surface waves play a major
rule in formation of the glory. Although Mie and Debye series calculations are rig-
orous, they do not separate the surface waves from other scattering mechanisms.
Regrettably, no rigorous method seems to be available for calculating the intensity
of scattering caused by surface waves. Various authors [20, 25, 41, 51] have proposed
approximate methods applicable to scattering of light by small spheres, but all warn
that their approximations are not valid at θ = 180◦ or, indeed, at θ ≈ 180◦. These
limitations are especially problematic for investigations of the glory! Although these
approximate methods are fairly similar, Khare’s method [25] seems to give results
which are closest to the rigorous results obtained by Mie and Debye series calcula-
tions [31].

Fortunately, there is a simple method of calculating the maxima resulting from
the light paths shown in Fig. 7.21. Scattering at an angle of θ = 180◦ − δ can be
considered as the vector sum of two surface waves:

• one following a short path resulting in deviation of the incoming rays by θ =
180◦ − δ;

• one following a longer path resulting in deviation of the incoming rays by
θ = 180◦ + δ.

If the short path involves clockwise deviation, the long path involves counter-
clockwise deviation (and vice versa). The interference pattern is determined by the
phase difference between the short and long paths. Surface waves travel at a speed
determined by the refractive index of the medium (not by the refractive index of
the sphere) [34]. For water droplets in air, the medium has a refractive index of
about 1.003 ≈ 1). Consequently, the difference in path length between the two
p = 2 contributions at θ = 180◦ − δ is approximately the length of the arc of
radius r corresponding to the angle 2δ. Maxima will occur when the path difference
2πr(2δ/360◦) = kλ where k is an integer and λ is wavelength of the light. Rear-
ranging this equation gives δ = 90kλ/(πr). Taking a numerical example, when
λ = 0.65 µm, δ = 18.62k/r (where r is measured in µm and δ in degrees).
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Fig. 7.21 Ray paths contributing to scattering at θ = 175◦ by a water drop with refractive index
n = 1.333. Each of the two edge rays with impact parameters b = 1 and b = −1 suffer one
internal reflection and generate surface waves: in this case, the short path surface wave travels about
10◦ around the circumference of the sphere before exiting at θ = 175◦, whereas the long path
surface wave travels about 20◦ around the circumference of the sphere, thus being deviated by 185◦
(equivalent to θ = 175◦)

If r = 10 µm, maxima will occur at θk = 180◦−1.862k, corresponding to θ0 = 180◦,
θ1 = 178.1◦, θ2 = 176.4◦ and θ3 = 174.1◦. These maxima are the rings of the
glory—agreeing well with the results of Mie and Debye series calculations.

Another way to test van de Hulst’s hypothesis is to examine the effects of illu-
minating a droplet of water with a narrow beam of light aligned so that it has an
impact parameter b = ±1, thus generating surface waves. Calculation techniques
for scattering of Gaussian beams by homogeneous spherical particles were pioneered
by Gouesbet and colleagues [19], resulting in a large body of scientific literature as
summarised in [42]. Figure 7.22 shows the results of Gaussian beam calculations
based on algorithms described by [39, 40]. The top graph in Fig. 7.22 shows the
result of an edge ray with b = 1 illuminating a water droplet of radius r = 10 µm.
The peak intensity for perpendicular polarisation at θ ≈ 142◦ corresponds to the
primary fogbow, whereas scattering at θ > 170◦ is due to surface waves which are
dominated by parallel polarisation. As surface waves shed light along their path, the
intensity declines smoothly with increasing θ . The middle graph in Fig. 7.22 adds
results for an incident beam with b = −1 which results in propagation in the oppo-
site direction to that caused by the b = 1 beam. For the b = −1 beam, the primary
fogbow occurs at θ ≈ 218◦ = 360◦ −142◦ and the surface waves result in scattering
at θ < 190◦ with intensity declining with decreasing θ . We can see that scattering at,
say, θ = 175◦ is due to two sets of surface waves: the short path corresponding to
b = 1 and the long path corresponding to b = −1. The resulting interference pattern
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Fig. 7.22 Debye p = 2 calculations for scattering of light of wavelength λ = 650 nm from a
spherical water drop of radius r = 10 µm assuming an incident Gaussian beam of widthw0 = 2 µm
with x0 = 0 and z0 = 0. The top diagram shows results for y0 = 10 µm (corresponding to
impact parameter b = 1), the middle diagram shows results for y0 = 10 µm and y0 = −10µm
(corresponding to b = 1 and b = −1), whilst the bottom diagram shows the vector sum of the
results for y0 = 10 µm and y0 = −10 µm

due to the vector sum of these two components is shown in the bottom graph of
Fig. 7.22.

Various authors have examined the effects of illuminating a spherical particle with
very short pulses of light [44, 45]. Bech and Leder [4, 5] extended such work by
producing various diagrams showing how the impulse response of a sphere varies
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Fig. 7.23 Mie calculations of the impulse response of a spherical water drop of radius r = 100 µm
when illuminated by a 50 femtosecond pulse of light of wavelength λ = 650 nm. This false-colour
map shows the intensity of the scattered signal as a function of scattering angle θ and time delay



218 P. Laven

Fig. 7.24 Debye series p = 2 calculations of the impulse response of a spherical water drop of
radius r = 10 µm when illuminated by a 10 femtosecond pulse of light of wavelength λ = 650 nm.
The zone marked A shows scattering of geometric “central” rays with impact parameter b < 0.1.
As b increases, the scattered signal moves through B until it reaches the primary rainbow at C
caused by rays with b ≈ 0.86. As b → 1, the scattered signal moves from C towards D. Between D
and E, the scattered signal is due to short-path surface waves. Between E and F, the scattered signal
is due to long-path surface waves, which decline in intensity towards G. The maxima and minima
near E correspond to the glory, which can be considered as the interference pattern caused by the
short path and long path surface waves
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as a function of scattering angle θ . Such techniques have been used to generate
the false-colour map shown in Fig. 7.23 for scattering by a water drop of radius
r = 100 µm illuminated by a 100 femtosecond raised-cosine pulse. In this case, it is
fairly easy to identify the various contributions to the scattering process. As might be
expected from geometrical considerations, the minimum delay corresponds to p = 0
scattering (i.e. reflection from the exterior of the sphere) at θ = 180◦. Elsewhere,
the diagram shows that the maximum p = 2 intensity at θ ≈ 138◦ and time delay
t ≈ 10,000 fs corresponds to the primary rainbow, shown with its supernumerary arcs
at θ > 140◦. Similarly, p = 3 scattering at θ < 129◦ corresponds to the secondary
rainbow and its supernumerary arcs. Such results have already been confirmed by
Debye series calculations and, indeed, by geometrical optics. However, the power of
this calculation method becomes more obvious in Fig. 7.24 which shows the results of
Debye p = 2 calculations for a spherical water drop of radius r = 10 µm illuminated
by a 10 fs pulse. This form of presentation separates the various p = 2 scattering
mechanisms by the differences in the time delay caused by the propagation paths—in
this case, it is possible to identify not just that the rainbow is caused by two geometric
rays (as shown in Fig. 7.4), but also the contributions made by short path and long
path surface waves.

7.5 Conclusions

The apparently trivial process of scattering of sunlight by spherical drops of water
produces beautifully-coloured rainbows, coronas and glories. Mie calculations are
necessary to provide accurate simulations of these phenomena. The appearance of
rainbows depends crucially on the radius r of the spherical drops of water—ranging
from a white fogbow when r = 10 µm to a vividly-coloured rainbow when r =
1,000 µm. At intermediate values of r , supernumerary arcs can appear if the water
drops are of uniform size. Care should be taken when performing calculations for
scattering by very large drops of water (e.g. r > 1,000 µm) because such drops are
often flattened at the bottom—in these circumstances, Mie calculations are not valid.

The refractive index n of water varies across the the visible spectrum, thus gen-
erating the colours of the rainbow. If n was constant across the visible spectrum,
rainbows would be essentially white with hints of colour amongst the supernumer-
ary arcs. However, the colours of the corona and glory are almost independent of n.
Consequently, these phenomena are, to a first approximation, determined purely by
the radius r of the water droplet.

Rainbows and glories are strongly polarised resulting in complex displays when
viewed through a polarising filter, but coronas are essentially unpolarised.

Mie calculations do not provide any useful information about the scattering mech-
anisms responsible for these phenomena. Fortunately, calculations using the Debye
series help to identify the scattering mechanisms—for example, by showing that
the primary rainbow and the glory are both caused by p = 2 scattering (involv-
ing one internal reflection in the spherical water drops). To verify van de Hulst’s
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hypothesis that surface waves are responsible for the glory, it is necessary to call on
other calculation techniques, such as:

• Mie and Debye series calculations for spherical particles illuminated by Gaussian
beams;

• Mie and Debye series calculations of the impulse response of spherical particles
illuminated by femtosecond pulses of light.

Although Mie’s rigorous solution for the scattering of plane wave light by an
homogeneous sphere has been available for more than 100 years, it is surprising to
realise that rainbows, coronas and glories are still not entirely understood.
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Chapter 8
The Extension of Mie Theory to Multiple
Spheres

Daniel Mackowski

Abstract A generalized mathematical formulation is presented for the scattering and
absorption of electromagnetic time harmonic waves by multiple spherical particles. A
central element of this formulation is the addition theorem for vector wave functions,
which allows a scattered field from one sphere to be represented as an exciting field
about another sphere. A simplified derivation of the addition theorem, and important
characteristics of where it can and can not be used, are developed. The Mie solution,
coupled with the addition theorem, results in a system of linear interaction equations
for the multipole coefficients that describe the scattered field from each sphere in
the system. In this regard, the multiple sphere formulation results in an implicit,
rather than explicit, solution for the scattered field; numerical methods (i.e., linear
equation solvers) must be applied to obtain numerical results. The calculation of the
T matrix of the multiple sphere system, from which orientation averaged scattering
and absorption properties can be obtained, is described. The presentation ends with
a discussion on the application of the multiple sphere formulation to describing the
propagation of electromagnetic waves in discretely inhomogeneous media.

8.1 Introduction

As the very presence of this text makes clear, analytical solutions to light scattering
by objects are both rare and historically significant. Indeed, it can be argued that
Mie’s solution for the sphere is the only analytical light scattering solution for a
3-D object that is routinely applied in scientific and engineering disciplines. Of
course, analytical solutions do exist for other shapes—most notably the ellipsoids—
yet a review of the literature will reveal that most of the theoretical examinations
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of scattering by such objects are conducted using the numerical extended boundary
condition method (EBCM), a.k.a., T matrix or discrete dipole approximation (DDA)
procedures. That such is the case has much to do with the relative inaccessibility
of the analytical solutions for ellipsoids as well as the relative ease, accuracy, and
computational efficiency of the numerical procedures.

Mie, in developing his solution, was concerned primarily with the scattering
behavior of a single sphere when exposed to a plane–wave source of illumination.
His solution, however, is recognized today as representing a general relationship
between the incident and scattered field for a sphere. That is, the solution will provide
a description of the scattered field for an arbitrary incident field; the only requirement
being the ability to represent the incident field in a vector wave harmonic (VWH)
expansion. One specific extension of Mie theory in this regard is the description of
scattering of light by spheres when exposed to focussed, Gaussian–profile beams;
the effort behind this theory has not been spent to determine the response of the
sphere to the incident field—as this is already known from Mie’s solution–rather, it
has been directed to approximating the Gaussian beam in a VWH expansion [1, 2].

This paper addresses a similar extension—or generalization—of Mie theory; that
being the scattering response of a group of two or more spheres, in close proximity
to each other, that are collectively exposed to an incident field. By ‘close proximity’,
I am referring to situations in which the scattered field from one sphere becomes
a significant component to the exciting field of a neighboring sphere. That is, the
sphere system exhibits near-field coupling. The presence of such effects would be
expected to render inaccurate an independent-scattering model of the sphere system,
i.e., a model which assumes that the spheres interact solely with the incident field.

The multiple-sphere scattering problem can be properly viewed as an extension
of Mie theory, in that the crux of the problem is the representation of the exciting
field at each of the spherical surfaces comprising the system. Once such information
is known, the scattering response follows from a simple application of Mie theory.
However, the scattered fields from neighboring spheres will contribute to the excit-
ing fields, and in this sense the scattered fields from all the spheres are coupled. As
will be described herein, this coupling results in an implicit solution for the scatter-
ing behavior of the multiple-sphere system as opposed to the explicit formulas for
the single-sphere case; practical calculation of the multiple-sphere solution will
invariably involve solutions to linear equations which describe the intersphere cou-
pling. Nevertheless, the multiple-sphere solution should be considered an analytical
solution to the boundary-value problem in the same sense as Mie theory is; the
solution identically satisfies the governing differential equations and far-field radi-
ation conditions, and matches the continuity conditions at the sphere surfaces to an
arbitrary precision based entirely on the truncation of the VWH expansions used to
represent the fields.

The most important element in constructing the multiple sphere solution—apart
from the underlying Mie theory—is the ability to represent an outgoing VWH cen-
tered about one origin as an expansion of regular VWH centered about another
origin. This transformation, which is generally known as an addition theorem, was
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first derived by Stein [3] and, shortly thereafter, improved by Cruzan [4]; all subse-
quent contributions to the multiple sphere scattering theory can trace their lineage,
either directly or indirectly, back to these two seminal works. Liang and Lo, and
Brunning and Lo [5, 6], were the first to combine the addition theorems with Mie
theory to develop an exact solution for a pair of spheres. Significant advances in,
and applications of, the formulation were subsequently developed by Borghese et al.
[7, 8], Fuller et al. [9, 10], and Mackowski et al. [11–13]. Comprehensive reviews
of the historical development of the method can be found in [14, 15].

At the time of this report the multiple sphere solution can be considered well
established and mature; little remains to be done in the way of mathematical work to
uncover hidden features of the formulation, and most of the current work is aimed
at applying the solution method to predict the scattering and absorption proper-
ties of aggregated and cluster particles. A measure of this progress can be seen
in the recent compendia of references related to the T matrix method [16, 17];
listed are over 200 citations under the category of multiple sphere scattering, and the
vast majority of these works deal with the application of the solution method—in
a diversity of fields ranging from nanotechnology to astrophysics—as opposed to
mathematical/theoretical developments. Indeed, the accessibility and efficiency of
the multiple sphere formulation and codes—combined with the increasing capabili-
ties of modern computational machinery—are now enabling the direct simulation (or,
alternatively, numerical experiments) of radiation propagation in particulate media
via calculations involving on the order of 103 spheres [18, 19].

In keeping with the historical occasion and context of this volume, my report will
revisit the mathematical side of the multiple sphere scattering solution. One objective
of the report is to show that the entire solution—including the details of the VWH
addition theorem—can be derived using the basic properties of the VWH functions.
The basic procedures for applying the solution to obtain the observable properties of
a cluster of spheres, in either a fixed orientation with respect to the incident field or in
a random orientation, will be reviewed. The report will finish with a brief discussion
of future directions and applications of the multiple sphere formulation.

8.2 The Multiple Sphere Solution

8.2.1 The Superposition Strategy

A general configuration for the multiple sphere problem is illustrated in Fig. 8.1. The
ensemble consists of NS nonoverlapping spheres, each characterized by a radius ai,
refractive index mi, and position ri relative to a common origin, for i = 1, 2, . . .NS .
Incident upon the ensemble is a monochromatic, time harmonic electromagnetic field
of wavelength λ, typically in the form of a plane, linearly polarized wave.

The objective of the problem, in the most general sense, is to obtain a solution to
Maxwell’s time harmonic equations which satisfies the continuity conditions on all
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Fig. 8.1 Ensemble configura-
tion
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surfaces. This problem would likely be intractable if the ensemble was mathemati-
cally represented as a single particle with a single—albeit discontinuous—surface.
On the other hand, the problem becomes relatively simple by adopting a superposi-
tion strategy. In this approach, the field external to the spheres is represented by the
superposition of the incident field and the fields scattered from each sphere in the
ensemble;

Eext = Einc + Esca = Einc +
NS∑

i=1

Esca,i (8.1)

And as was done for the single sphere problem, the incident and scattered fields,
at the ith sphere in the cluster, can be represented by regular and outgoing vector
spherical harmonic (VWH) expansions, centered about the origin of the sphere;

Einc =
Li∑

n=1

n∑

m=−n

2∑

p=1
pi

mnp N(1)mnp(r − ri) (8.2)

Esca,i =
Li∑

n=1

n∑

m=−n

2∑

p=1
ai

mnp N(3)mnp(r − ri) (8.3)

In the above, Nmnp denotes the VWH of either type 1 (regular) or 3 (outgoing), of
order n, degree m, and mode p = 1 (TM) or 2 (TE). The VWH functions used in this
report are defined by

N(ν)mn2(r) =
(

1

n(n + 1)

)1/2

∇ ×
(

rψ(ν)mn (r)
)

(8.4)

N(ν)mn1(r) = 1

k
∇ × N(ν)mn2(r) (8.5)

where ψ denotes the scalar wave harmonic;
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ψ(ν)mn (r) =
{

jn(kr)Ymn(cos θ, φ) ν = 1
hn(kr)Ymn(cos θ, φ) ν = 3

(8.6)

with jn and hn = jn + i yn representing the spherical Bessel and Hankel functions
and Ymn denoting the spherical harmonic,

Ymn(cos θ, φ) =
(

2n + 1

4π

(n − m)!
(n + m)!

)1/2

Pm
n (cos θ) ei m φ (8.7)

The order truncation limit Li in Eq. (8.3) is chosen to provide an acceptable precision
in the calculated scattering properties of the cluster; Li can typically be set using the
Lorenz/Mie criterion, although in certain cases the neighboring spheres can have a
significant effect on the convergence of Eq. (8.3) [12]. The incident field expansion
coefficients pi

mnp, for sphere i, will depend on the characteristics of the incident field

and the relative position of sphere i, whereas the scattering coefficients ai
mnp for each

sphere are initially unknown and are sought from the analysis.

8.2.2 Translated Fields and the Addition Theorem

Lorenz/Mie theory provides a means of relating the scattering coefficients for sphere
i to those representing the exciting field at i, yet this exciting field will consist not
only of the incident field, but also the scattered fields from the other spheres. In this
respect, what is needed to close the problem is a means of casting the outgoing VWH
about some origin j—which describes the scattered field from j—into an expansion
of VWH about origin i. This feat is accomplished with an addition theorem.

In a general sense, an addition theorem transforms an eigenfunction for a given
differential equation, referenced to a given coordinate origin, into an expansion of
eigenfunctions satisfying the same DE about a different coordinate origin. The exis-
tence of such a transformation can be anticipated simply from the fact that the vector
harmonics form a complete basis for representation of fields which satisfy (with the
exception of singular points) the vector wave equation. Consequently, a harmonic
centered about one origin describes a field which must be representable—within a
given radius of convergence—by an expansion of harmonics centered about a dif-
ferent origin.

With regard to an outgoing VWH centered about an origin j, the form and conver-
gence of the addition theorem is dictated by whether the singularity at origin j lies
inside or outside the radial bounds of the translated VWH expansion at some new ori-
gin i. For the latter case, which corresponds to the region defined by |r−ri| < |ri−j|,
where r and ri−j denote the evaluation point of the harmonics and the position vec-
tor between origins i and j (case 1 in Fig. 8.2), the field generated by the outgoing
harmonic will be represented entirely within the region by an expansion of reg-
ular VWH centered about i. Accordingly, the addition theorem for this case will
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Fig. 8.2 Regions of reexpan-
sion for an outgoing harmonic

j

r < ri-j   
(case 1)

ri-j
i
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appear as

N(3)mnp(r − rj) =
∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Hklq mnp(ri−j)N(1)klq(r − ri),
∣
∣ri−j

∣
∣ > |r − ri| (8.8)

in which the as-of-yet-undetermined translation matrix H would be a function solely
of the distance and direction between origins i and j. The derivation and properties
of the translation matrix will be examined in a subsequent section; addressed now
will be the incorporation of Eq. (8.8) into the formal solution for the multiple sphere
scattering problem.

Since the spheres in the ensemble are assumed not to overlap, Eq. (8.8) will be
valid for representing the scattered field from sphere j in terms of a regular VWH
expansion about i that is convergent on all points on the surface of i. Combining the
scattered fields from all spheres in the ensemble and the incident field, the exciting
field at i can be described by a single, regular VWH expansion given by

Eexi,i =
∑

n=1

n
∑

m=−n

2
∑

p=1

gi
mnp N(1)mnp(r − ri)

with

gi
mnp = pi

mnp +
NS∑

j=1
j �=i

∑

l=1

l
∑

k=−l

2
∑

q=1

Hi−j
mnp klq aj

klq

The scattering coefficients for sphere i will then be given by the Mie formula,

ai
mnp = ai

np gi
mnp (8.9)

in which ai
np denote the Mie coefficients of the sphere and depend on the sphere size

parameter xi = k ai and the refractive index mi. Equation (8.9) is recognized as a T
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matrix relationship; made specific for the special case of the sphere in which the T
matrix is diagonal and azimuthal–degree independent.1

8.2.3 The Interaction Equations

By combining the previous two equations, one arrives at the interaction equations
for the sphere ensemble;

ai
mnp − ai

np

NS∑

j=1
j �=i

∑

l=1

l
∑

k=−l

2
∑

q=1

Hi−j
mnp klq aj

klq = ai
np pi

mnp (8.10)

Equation (8.10), in conjunction with Eqs. (8.1–8.3), represents the formal solution
for the scattered field produced by the sphere ensemble. In the case of equal-
sized spheres with equal truncation limits LS , Eq. (8.10) forms a system of 2NS LS

(LS + 2) linear equations for the set of scattering coefficients. The matrix Hi−j will
be fully populated for an arbitrary translation between j and i, and correspondingly
all orders/degrees/modes of the scattered field from a sphere j will (in general) influ-
ence a particular order/degree/mode of the field at i. This is in stark contrast to the
isolated sphere case, in which each scattering order/degree/mode is excited only by
the same harmonic component for the incident field. And it is in this respect that
the multiple sphere solution departs—in a practical sense—from the single sphere
Mie theory: the latter provides an explicit formula for the scattered field, whereas the
former gives only an implicit relationship. That is, numerical methods (in the form
of linear equation solvers) are needed to produce a useable solution.

Important properties of the interaction equations, and the calculation of relevant
quantities (scattering matrix, cross sections) from the solution, will be presented
in a subsequent section. Before getting to this material, it is necessary to develop
formulas and properties for the translation matrix elements.

8.3 The Addition Theorem

8.3.1 Forms of the Addition Theorem

The same arguments that were used to pose Eq. (8.8) can be applied to the transfor-
mation of a regular VWH, centered about origin j, into an expansion of harmonics
about some new origin i. Since the regular harmonic contains no singularities, its
expansion about a new origin will not be constrained to a specified convergence
radius. Accordingly, the addition theorem for regular harmonics will appear as

1 The anp coefficients defined by Eq. (8.9) are the negative of those formulated in previous works,
e.g., Bohren and Huffman.
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N(1)mnp(r − rj) =
∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Jklq mnp(ri−j)N(1)klq(r − ri) (8.11)

where J denotes the regular harmonic translation matrix.
Some basic properties of the translation matrices H and J can be obtained directly

from Eqs. (8.8) and (8.11). Since both sides of Eqs. (8.8) and (8.11) must satisfy the
vector wave equation, and since application of the differential operators to the right
hand sides can be taken with either ri−j or r−ri fixed, the elements of the translation
matrices H and J must satisfy the scalar wave equation. It follows that these elements
will be represented as expansions of the scalar wave harmonic functions ψ defined
in Eq. (8.6). In addition, by taking the limit of |r −ri| → 0 in Eqs. (8.8) and (8.11)—
for which the only surviving term on the right-hand side will involve l = 1 and
q = 1—the outgoing and regular VWH functions can be related to the translation
matrix elements by

N(3)mnp(r) =
1
∑

k=−1

Pk Hk11 mnp(r) (8.12)

N(1)mnp(r) =
1
∑

k=−1

Pk Jk11 mnp(r) (8.13)

with

Pk = 1

2
√

3π

[

δ|k|−1

(

(−1)(k+1)/2 x̂ − i ŷ
)

+ √
2 δk ẑ

]

(8.14)

in which δk = (0, 1) for k( �=,=)0 is the Kronecker delta function. By using the above
formulas along with the definitions of the vector and scalar harmonics in Eqs. (8.4)
and (8.6), it can be deduced that ψ(3)(rij) and ψ(1)(rij) are the basis functions for H
and J , respectively. Since N(3) = N(1) + iN(2), it follows that H + J + i Y , where
N(2) and Y are the VWH and the translation matrix based on the spherical Neumann
function yn. Consequently, the only difference in the formulas for the H and J must
be the basis functions ψ(3) and ψ(1).

The remaining form of the addition theorem that needs to be identified concerns
the translation of an outgoing harmonic from j to i for the condition |r − ri| > |rij|,
i.e., when the spherical surface, centered about i, upon which the harmonics are
evaluated encloses the singularity at origin j (case 2 in Fig. 8.2). In order to maintain
the correct far-field behavior (k |r − ri| → ∞), the translated harmonic must appear
as an expansion of outgoing harmonics about the new origin. The translation must
also yield an identity relation when |rij| → 0, which implies that the translation
matrix will be generated from the regular scalar harmonic basis functions ψ(1). And
since the regular components of the outgoing harmonics must translate according to
Eq. (8.11), the translation matrix must be identical to that appearing in Eq. (8.11).
Therefore, the addition theorem for this case will appear as
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Fig. 8.3 Recursive transla-
tions: the addition theorem
cannot be cheated!

1 r2-1 2

r - r1

3

r - r2

r - r3

r3-2

r2-1r3-2 r3-1

N(3)mnp(r − rj) =
∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Jklq mnp(ri−j)N(3)klq(r − ri),
∣
∣ri−j

∣
∣ < |r − ri| (8.15)

8.3.2 Recursive Translations

Equations (8.8), (8.11), and (8.15) can be used to infer the following translation and
factorization properties of the translation matrices,

Jmnp klq(ri−j) =
∞∑

n′=1

n′
∑

m′=−n′

2∑

p′=1
Jmnp m′n′p′(ri−i′) Jm′n′p′ klq(ri′−j) (8.16)

Hmnp klq(ri−j) =
∞∑

n′=1

n′
∑

m′=−n′

2∑

p′=1
Jmnp m′n′p′(ri−i′)Hm′n′p′ klq(ri′−j),

∣
∣ri−i′

∣
∣ <

∣
∣ri′−j

∣
∣ (8.17)

Hmnp klq(ri−j) =
∞∑

n′=1

n′
∑

m′=−n′

2∑

p′=1
Hmnp m′n′p′(ri−i′) Jm′n′p′ klq(ri′−j),

∣
∣ri−i′

∣
∣ >

∣
∣ri′−j

∣
∣ (8.18)

Care must be exercised when applying Eqs. (8.8) and/or (8.15) recursively via
the above three formulas. In particular, it is not possible to extend, or to bypass, the
convergence radius criteria of the translations via a successive set of translations. One
such fallacious approach is illustrated using Fig. 8.3. In this example, an outgoing
harmonic centered about origin 1 and evaluated at point r is first translated to origin
2. Because |r−r2| > |r2−1|, the expansion will be in the form of Eq. (8.15), i.e., with
outgoing VWH centered about origin 2. One might then attempt to apply a second
translation, in which the outgoing VWH, centered about 2, are expanded about origin
3. And since |r − r3| > |r3−2|, it would appear that Eq. (8.15) would again apply,
leading to outgoing VWH centered about 3. The net result would be
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Fig. 8.4 Application of the
addition theorem to a far-field
point

j

ri-j
i

r - ri
r - rj

far field point
to both i and j

N(3)μ (r − r1) =
∑

ν

Jν μ(r2−1)N(3)ν (r − r2)

=
∑

ν

Jν μ(r2−1)
∑

ν′
Jν′ ν(r3−2)N(3)

ν′ (r − r3)

=
∑

ν′
Jν′ μ(r3−1)N(3)

ν′ (r − r3) −→ ±∞ (8.19)

In the above Greek subscripts are shorthand for order/degree/mode, i.e., ν = (klq).
Although the first equation in the above is valid, the second and third are not because
the implied result would contradict the convergence criterion of Eq. (8.15): the trans-
lations shown in Fig. 8.3 have |r − r3| < |r3−1|, and the translation of N(3)μ (r − r1)

can only appear as an expansion of regular harmonics centered about 3.

8.3.3 Derivation of the Addition Theorem

It was demonstrated in [14] that the translation coefficients can be derived from the
expansion of a plane wave in regular VWH. Alternatively, a more compact derivation
can be obtained by consideration of the far-field behavior of outgoing VWH. This
derivation begins with the translation of an outgoing VWH from origin j to i for
|r − ri| > |ri−j| given in Eq. (8.15). Referring to Fig. 8.4, and recognizing that the
translation coefficients are independent of the location of the evaluation point r, the
distances k|r − ri| and k|r − rj| can be made arbitrarily large so that the VWH attain
their far-field asymptotic forms, which are represented by

N(3)mnp(r − rj)

∣
∣
∣
∣
k|r−rj |→∞

→ 1

ik |r − rj| eik |r−rj | Πmnp(cos θj, φj) (8.20)

and likewise for N(3)klq(r − ri). In the above Π represent the vector spherical har-
monic (VSH) functions, which are formally defined by

Πmn1(cos θ, φ) = (−i)n+1 r

(
1

n(n + 1)

)1/2

∇ Ymn(cos θ, φ) (8.21)

Πmn2(cos θ, φ) = i r̂ × Πmn1(cos θ, φ) (8.22)
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and are functionally given by

Πmnp(cos θ, φ) = (−i)n+1 (τmnp(cos θ) êθ + iτmn3−p(cos θ) êφ
)

eimφ (8.23)

τmn1(x) = −(1 − x2)1/2
(

2n + 1

4πn(n + 1)

(n − m)!
(n + m)!

)1/2 d Pm
n (x)

dx
(8.24)

τmn2(x) = m (1 − x2)−1/2
(

2n + 1

4πn(n + 1)

(n − m)!
(n + m)!

)1/2

Pm
n (x) (8.25)

The origin separation distance |ri−j| can also be made small with respect to both
|r − ri| and |r − rj| so that θi ≈ θj = θ , φi ≈ φj = φ, and |r − ri| ≈ |r − rj|. By
incorporating these limits into Eq. (8.15), and accounting for the phase shift due to
the displacement of the origin, one obtains

ei k·ri−j Πmnp(cos θ, φ) =
∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Jklq mnp(ri−j)Πklq(cos θ, φ) (8.26)

in which the argument of the exponential is

k · ri−j = k
[(

xi−j cosφ + yi−j sin φ
)

sin θ + zi−j cos θ
]

(8.27)

= k ri−j
[

sin θ sin θi−j cos(φ − φi−j)+ cos θ cos θi−j
]

(8.28)

Inversion of Eq. (8.26) can be accomplished by use of the VSH orthogonality rela-
tions;

2π∫

0

1∫

−1

Πmnp(x, φ) · Π∗
klq(x, φ) dx dφ = δn−lδm−k δp−q (8.29)

and the formula for the regular VWH translation matrix becomes

Jklq mnp(rij) =
2π∫

0

1∫

−1

eik·ri−j Πmnp(cos θ, φ) · Π∗
klq(cos θ, φ) d cos θ dφ (8.30)

Evaluation of the integrals in Eq. (8.30) can be performed by utilizing the linearization
expansion for VSH functions,

Πmnp · Π∗
klq = il−n

[
(2n + 1)(2l + 1)

4π

]1/2

×
w2∑

w=w1,2

1√
2w + 1

Cw
−kl mn Cw

−1l 1n Ym−k w(cos θ, φ) (8.31)
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in which Cw
kl mn is shorthand for the Clebsch-Gordon coefficient C(k, l; m, n; k +

m,w). The limits on the summation are w1 = |n − l|+ |p − q|, w2 = n + l −|p − q|,
and the notation w = w1, 2 indicates that every other term is added, i.e., w = w1,w1 +
2, . . . ,w2. The exponential can also be expanded via

eik·ri−j = 4π
∞
∑

w=0

w
∑

v=−w

iw jw(kri−j)Yvw(cos θi−j, φi−j)Y−vw(cos θ, φ) (8.32)

The orthogonality properties of the spherical harmonics can now be employed to
integrate Eq. (8.30), and the formula for the regular VWH translation matrix becomes

Jklq mnp(ri−j) = −(−1)k il−n [4π (2n + 1)(2l + 1)]1/2

×
w2∑

w=w1,2

iw√
2w + 1

Cw
−kl mn Cw

−1l 1n ψ
(1)
m−k w(ri−j) (8.33)

It is implicitly understood that Cw
kl mn is zero for w < ws = Max(|n−l|, |m+k|). In this

sense, the evaluation of the sum in Eq. (8.33) should begin with w2 = n+l−|p−q| and
step downwards by two until ws is reached. The formula for the outgoing harmonic
translation matrix is obtained simply by replacing ψ(1) with ψ(3) in the above;

Hklq mnp(ri−j) = −(−1)k il−n [4π (2n + 1)(2l + 1)]1/2

×
w2∑

w=w1,2

iw√
2w + 1

Cw
−kl mn Cw

−1l 1n ψ
(3)
m−k w(ri−j) (8.34)

Calculation of the translation matrix elements is discussed in the Appendix.

8.3.4 Application to the Plane Wave Expansion

Equation (8.26) shows that the VSH functions and the exponential phase factor rep-
resent the eigenvectors and eigenvalues to the regular VWH translation matrix. This
feature, along with the translation properties of the J matrix, can be used to identify
the coefficients for the VWH expansion of a plane, linearly polarized wave. By taking
the magnitude of both sides of Eq. (8.26) and applying Eq. (8.29), it can be shown
that the J matrix is unitary,

∑

l=1

l
∑

k=−l

2
∑

q=1

Jklq mnp(rj−i) J∗
klq m′n′p′(rj−i) = δm−m′δn−n′δp−p′ (8.35)
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and by using the recursive translation properties of J in combination with the above
formula, it follows that

Jklq mnp(rj−i) = J∗
mnp klq(ri−j) (8.36)

Consequently, Eq. (8.26) has the alternative form

ei k·ri−j Π∗
mnp(cos θ, φ) =

∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Jmnp klq(ri−j)Π
∗
klq(cos θ, φ) (8.37)

This formula is now multiplied by N(1)mnp(r − ri), where r denotes an arbitrary point,
and summed over (m, n, p). Application of the translation properties in Eq. (8.11)
results in

ei k·ri−j

∞
∑

n=1

n
∑

m=−n

2
∑

p=1

Π∗
mnp(cosβ, α)N(1)mnp(r − ri)

=
∞
∑

l=1

l
∑

k=−l

2
∑

q=1

Π∗
klq(cosβ, α)N(1)klq(r − rj) (8.38)

The angles β and α, which represent the polar and azimuthal direction of the vector
k, have been introduced to avoid confusion with the coordinates of the vector r.
Equation (8.38) indicates that the VWH expansions centered about origins i and j
must each be proportional to exp(k · (r − ri)) and exp(k · (r − rj)). In this context,
Eq. (8.38) represents a generalized plane wave VWH expansion for a wave that is
propagating in the θ = β, φ = α direction as illustrated in Fig. 8.5. The vector Π

in this expansion defines the direction of the electric field vector in the transverse
plane; the two cases of β̂ · Π and α̂ · Π would represent plane wave polarization
parallel and perpendicular to the ẑ − k plane. A unit amplitude can established by
multiplying the coefficients in the expansion by a constant, which can be obtained
evaluating the right-hand side in the limit of |r − rj| → 0.

In the general case, the electric field vector can be defined by the angle γ relative
to the ẑ − k plane. The expansion coefficients for the field, referenced to the target
origin, will then be given by

pmnp = cos γ pmnp, 1 + sin γ pmnp, 2 (8.39)

with

pmnp, 1 = −4π in+1 τmnp(cosβ) e−i m α (8.40)

pmnp, 2 = −4π in τmn3−p(cosβ) e−i m α (8.41)
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Fig. 8.5 Target and incident
field frames

As illustrated in Fig. 8.5, the angles α, β, and γ , define an incident field frame,
obtained by Euler rotation of the target frame, so that z′ denotes the propagation
direction.The pmnp, 1 and pmnp, 2 expansion coefficients describe an incident plane
wave that is polarized either in the x′ or y′ directions.

8.3.5 Far-Field Limit of the Translation Matrix

When a pair of spheres are widely separated, so that the scattered field from one
attains the far-field form about the other, the translation operation in Eq. (8.8) can
be reduced to a much simpler form. The approach is to replace the Hankel function
appearing in the scalar wave harmonic in Eq. (8.34) with the asymptotic limit

hn(kr) ∼ (−i)n

ikr
eikr, k r � n2 (8.42)

By employing the linearization relation in Eq. (8.31), the outgoing wave translation
matrix will reduce to

Hklq mnp(ri−j) ∼ 4π

ikri−j
eikri−j Πmnp(cos θi−j, φi−j) · Π∗

klq(cos θi−j, φi−j) (8.43)

8.4 Properties of the Multiple Sphere Solution

8.4.1 Numerical Issues

All the necessary details underlying Eq. (8.10) are now in place, and we can now
turn to the problem of solving Eq. (8.10) for the scattering coefficients and, from
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the solution, determining the observable scattering and absorption properties for
the given cluster of spheres. Linear system of equations such as Eq. (8.10) can be
solved using either iteration or direct (i.e., inversion) methods; the optimum strategy
will depend on the properties of the system (such as the condition number which
will affect the iterative convergence rate), the requirements of the solution (e.g.,
solutions for one versus multiple right-hand sides), and the experience of the user
(perhaps the most important criterion of all). Iteration methods will typically be more
computationally efficient than direct inversion when a solution is needed for a small
number of specified incident directions. Our experience, and that of others, is that
the biconjugate gradient method provides the most reliable, and fastest, solution as
compared to over/under relaxation and order-of-scattering methods [20]. The number
of iterations required for a solution depends on a host of parameters; i.e., the number,
size parameters, and refractive indices of the spheres, and the proximity of the spheres
to each other. In general, as the spheres become more widely separated the solution
will converge faster. An important factor affecting convergence is whether any of the
spheres is at or near a resonance mode; such conditions can lead to extremely small
convergence rates and may be more effectively solved using direct methods [21].

In situations where the scattering properties are needed for a relatively large
number of incident directions, or where the random-orientation properties of the
cluster are sought, it becomes most efficient to calculate a T matrix for the cluster.
The T matrix will provide the linear relationship between the VWH coefficients
representing the incident and the scattered field, and the matrix can be obtained via
direct inversion of Eq. (8.10). It turns out, however, that the multiple-spheres problem
allows for a computationally efficient, iteration-based method for calculating the
cluster T matrix.

8.4.2 The T Matrix Relationships

There are three levels of T matrix relationships for a cluster of spheres.The first,
referred to as the sphere–sphere T matrix, represents the formal solution to Eq. (8.10)
and appears as

ai
μ =

NS∑

j=1

∑

ν

Ti−j
μν pj

ν (8.44)

in which the sphere–sphere Ti−j matrix is the solution to

1

aμ
Ti−j
μν −

NS∑

j′=0
j′ �=i

∑

ν′
Hi−j′
μν′ Tj′−j

ν′ ν = δi−j δμ−ν (8.45)
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In the above and what follows, Greek subscripts are a shorthand for order/degree
/mode, i.e., μ = (m, n, p). The Tj−i matrix describes the scattered field produced at
sphere i due to an incident field at j; all the effects of multiple scattering are embedded
within the matrix.

The next T matrix relationship describes the scattered field at sphere i due to the
entire effect of the incident field on the ensemble.This description begins with an
expansion of the incident field about the coordinate origin of the target;

Einc =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

pmnp N(1)mnp(r) (8.46)

The order truncation limit L in this expansion—which is chosen so that the expansion
will yield an acceptable description of the incident field on each sphere in the ensem-
ble—will typically depend on the size parameter kaC based on the circumscribing
radius aC (illustrated in Fig. 8.1).As was the case with the individual sphere limits
Li, the target L can typically be estimated using the Mie criterion applied to k aC .
The sphere centered incident field expansion coefficients can then be obtained from
the target coefficients via the translation operation,

pi
mnp =

L
∑

l=1

l
∑

k=−l

2
∑

q=1

Ji−0
mnp klq pklq (8.47)

where origin 0 denotes the target origin. Replacing this into Eq. (8.44) results in

ai
μ =

NS∑

i=1

∑

ν

∑

ν′
Ti−j
μν′ Jj−0

ν′ν pν

=
∑

ν

Ti
μν pν (8.48)

In general, the sphere-cluster matrix Ti
μν will have more columns than rows; the

largest row and column order will be Li and L, respectively.
A set of interaction equations for Ti—which obviate the need to directly perform

the contraction in Eq. (8.48)—can be obtained by substituting Eqs. (8.47) and (8.48)
into Eq. (8.10), leading to

1

ai
μ

Ti
μν −

NS∑

j=1
j �=i

∑

ν′
Hi−j
μν′ Tj

ν′ν = Ji−0
μν (8.49)

This system can be solved by iteration for successive values of ν = (klq) to build
up the Ti matrices for the spheres. Such a method is often more computation-



8 The Extension of Mie Theory to Multiple Spheres 239

ally efficient—and less requiring of memory resources—than direct inversion of
Eq. (8.45) followed by Eq. (8.48) [13].

The third T matrix relationship performs a contraction on Ti, so that the scattered
field from the cluster—which, per Eq. (8.1), is the sum of the individual-sphere direct
scattered fields—is represented by a single outgoing VWH expansion centered about
the target origin. The coefficients for the target-centered expansion are obtained by
applying Eq. (8.15) to Eq. (8.3) for each sphere, and results in

Esca =
L
∑

n=1

n
∑

m=−n

2
∑

p=1

amnp N(3)mnp(r) (8.50)

aμ =
NS∑

i=1

∑

ν

J0−i
μν ai

ν (8.51)

And by using Eq. (8.48) in Eq. (8.51), one obtains,

aμ =
NS∑

i=1

∑

ν

∑

ν′
J0−i
μν′ Ti

ν′ν pν

=
∑

ν

Tμν pν (8.52)

The cluster-centered T matrix treats the ensemble of spheres as a single—albeit
nonspherical—particle, and in this respect it is directly analogous to the Mie relation
of Eq. (8.9). It is a very useful quantity, for the cross sections of the ensemble and the
scattering matrix—in either fixed or random orientation—can be obtained analyti-
cally from its properties. However, the T matrix cannot predict the fields within the
cluster or the cross sections of the individual spheres; realize that, as per the restric-
tion on the addition theorem in Eq. (8.15), and (8.50) will be valid only for radii
that exceed the largest sphere-target origin distance. The detailed individual-sphere
and near-field information—which is inaccessible from Eq. (8.15)—can, however,
be obtained from the original superposition model.

8.4.3 Coordinate Rotation and the Amplitude and Scattering
Matrix

Calculation of the full polarimetic scattering properties of the ensemble for a fixed
incident direction requires the solution of Eq. (8.10) for two mutually perpendicu-
lar linear polarization states of the incident wave. Referring again to Fig. 8.5, the
polarization state of the incident beam is specified by the angle γ . Since the incident
field coefficients defined in Eq. (8.39) are a linear combination of cos γ and sin γ
components, a solution to Eq. (8.10) for an arbitrary γ can be obtained via
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ai
mnp,‖ = ai

mnp,1 cos γ + ai
mnp,2 sin γ (8.53)

where ai
mnp,1 and ai

mnp,2 denote the two solutions to Eq. (8.10) for incident field
coefficients of pmnp, 1 and pmnp, 2 given by Eqs. (8.40) and (8.41), i.e., γ = 0 andπ/2.
The parallel (‖) notation will be described shortly. The scattering plane used to define
the amplitude matrix will now be adopted as the x′−z′ plane, and following the usual
convention, the parallel and perpendicular incident polarization states will correspond
to the electric field pointing in the x′ and the −y′ directions, respectively. The solution
corresponding to the parallel case will therefore be that given in Eq. (8.53), and the
perpendicular solution will be that obtained by replacing γ with γ − π/2;

ai
mnp,⊥ = ai

mnp,1 sin γ − ai
mnp,2 cos γ (8.54)

The amplitude and scattering matrix of the ensemble can be calculated using
either the superposition representation in Eq. (8.1), which would retain the scattering
coefficients for the individual spheres, or the single-origin expansion in Eq. (8.50).
In the far-field limit, the former method is made complicated by the need to explic-
itly account for the relative phase shift among the different scattering origins as a
function of the scattering angle, yet this method can also be more computationally
efficient in situations in which the spheres are relatively far apart (i.e., large k aC),
for which a large value of L would be required for convergence of Eq. (8.50) [22].
However, the latter method retains a spherical harmonic representation of the scat-
tered field, and as such allows for a more direct identification of various moments
of the scattered intensity (such as the scattering efficiency and the asymmetry para-
meter). Our experience is that advantages of the single-expansion method outweigh
the disadvantages; it should be noted as well that convergence or loss-of-precision
problems associated with the numerical implementation of Eq. (8.51) have not been
encountered in our codes.

Equations (8.53) and (8.54) will hold equally for the total scattered field coeffi-
cients amnp,1 and amnp,2 that are obtained from Eq. (8.51). The expansion in Eq. (8.50)
that is obtained from these coefficients would describe the scattered field in a target-
based reference frame; to conform to the conventional, incident-based frame it is
necessary to perform a rotation transformation on Eq. (8.50). The incident frame is
obtained by a Euler rotation of the target frame through (α, β γ ), and the correspond-
ing rotation transformation on the harmonic functions is given by

N(3)mnp(kr, θ, φ) = ei m α
n
∑

m′=−n

D (n)
m′m(cosβ) ei m′ γ N(3)m′np(kr, θ ′, φ′) (8.55)

where θ ′, φ′ denote the polar and azimuthal angles in the incident frame; θ ′ = 0
(corresponding to θ = β) now represents the forward scattering direction. The
generalized spherical functions D (n)

mk are related to the Jacobi polynomials; defini-
tions and properties of the functions are presented in the Appendix. Application of
Eq. (8.55) to (8.50) will transform the expansion so that the VWH become based on
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the incident frame (i.e., r replaced with r′); the total scattering coefficients appearing
in the rotated expansion will be given by

a′
mnp,s = ei m γ

n
∑

m′=−n

D (n)
mm′(cosβ) ei m′ α am′np,s (8.56)

where s = 1, 2 denotes the incident polarization state.
Following the convention of Bohren and Huffman [23], the amplitude matrix is

defined so that
(

Esca,‖
Esca,⊥

)

= − 1

i k r
ei k(r−z′)

(

S2 S3
S4 S1

)(

Einc,‖
Einc,⊥

)

(8.57)

where Einc,‖ and Einc,⊥ denote the magnitudes of the incident electric field ampli-
tude parallel and perpendicular to the scattering plane. The explicit formulas for the
amplitude matrix elements are obtained by applying to the rotated Eq. (8.50) the
far-field asymptotic form of the outgoing VWH in Eq. (8.20), and noting that the
scattering plane corresponds to φ′ = 0.This gives

S1 =
L∑

n=1

n∑

m=−n

2∑

p=1
(−i)na′

mnp,⊥τmn3−p(cos θ ′) (8.58)

S2 =
L∑

n=1

n∑

m=−n

2∑

p=1
(−i)n+1a′

mnp,‖τmnp(cos θ ′) (8.59)

S3 =
L∑

n=1

n∑

m=−n

2∑

p=1
(−i)n+1a′

mnp,⊥τmnp(cos θ ′) (8.60)

S4 =
L∑

n=1

n∑

m=−n

2∑

p=1
(−i)na′

mnp,‖τmn3−p(cos θ ′) (8.61)

Elements of the scattering matrix can be obtained directly from those of the amplitude
matrix following the formulas presented in Bohren and Huffman [23].

8.4.4 Cross Sections and Energy Conservation

The absorption cross section of sphere i is defined so that Cabs,iI0 is the rate at which
the sphere absorbs energy from the incident wave of irradiance I0. This quantity
can be obtained by integration of the Poynting vector over the inside surface of the
particle. By employing the formulas of Lorenz/Mie theory to relate the internal and
external fields, the expression for the absorption cross section is
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Cabs, i = 2π

k2

Li∑

n=1

n
∑

m=−n

2
∑

p=1

b
i
np

∣
∣
∣ai

mnp

∣
∣
∣

2
(8.62)

in which b
i
np is a positive (or zero) real valued property solely of sphere i and is

defined by

b
i
np = −Re

(

1

ai
np

+ 1

)

(8.63)

The scattering coefficients in the above formula would correspond to either the paral-
lel or perpendicular polarization values; the absorption cross section for unpolarized
incident radiation would be the average of the two. By simple conservation-of-energy
considerations, the absorption cross section of the entire ensemble is the sum of the
individual sphere cross sections;

Cabs =
NS∑

i=1

Cabs,i (8.64)

In a similar manner, an extinction cross section of an individual sphere can be
defined so that I0 Cext,i is the rate at which the sphere removes energy from the
incident wave. The optical theorem applied to the field scattered from the sphere
gives

Cext, i = −2π

k2 Re
Li∑

n=1

n
∑

m=−n

2
∑

p=1

ai
mnppi∗

mnp (8.65)

As before, the scattering and incident field coefficients would correspond to the
particular polarization state. The total ensemble extinction cross section would also
be obtained from the sum of the parts;

Cext =
NS∑

i=1

Cext,i (8.66)

Unlike the absorption cross section, the extinction cross section for the individual
sphere would be difficult—if not impossible—to experimentally measure. The def-
inition of this quantity relies on the superposition model of the scattered field, and
although this model serves perfectly well as a means to solve Maxwell’s equations for
the ensemble, it is not obvious how the ‘partial’ fields scattered from the individual
spheres could be discriminated in an experiment.

The individual sphere extinction cross section is also not bounded by the usual
behavior for an isolated particle; although the total cross sections must satisfy Cext ≥
Cabs, it is entirely possible for Cext,i < Cabs,i and even for Cext,i to be negative. The
precise balance of radiant energy, at the individual sphere level, can be identified
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by multiplying Eq. (8.10) through by 2π/k2 ai∗
mnp/a

i
np, summing over m, n, p, and

rearranging to isolate Eqs. (8.62) and (8.65). This results in

Cext,i − Cabs,i = 2π

k2

∑

μ

∣
∣
∣ai
μ

∣
∣
∣

2 + 2π

k2 Re
∑

μ

ai∗
μ

NS∑

j=1
j �=i

∑

ν

Hi−j
μν aj

ν

= Ci−sca,i + Cd−sca,i (8.67)

The quantities appearing on the right-hand side are referred to as the independent
and the dependent scattering cross sections of the sphere.The former will always
be positive, yet the latter—which accounts for energy transfer via the interference
between the fields scattered from i and the neighboring spheres—can take on positive
or negative values. And since Cabs,i + Ci−sca,i > 0, the above balance implies that
Cext,i > Cd−sca,i.

By using Hi−j = Ji−j + iYi−j in Eq. (8.67), and applying Eq. (8.104) to both J
and Y , it follows that the total dependent scattering cross section is given by

Cd−sca =
NS∑

i=1

Cd−sca,i

= 2π

k2

NS∑

i=1

NS∑

j=i+1

∑

μ,ν

Re

[

ai∗
μ Hi−j

μν aj
ν + aj∗

μ Hj−i
μν ai

ν

]

= 2π

k2

NS∑

i=1

NS∑

j=i+1

∑

μ,ν

Re

[

ai∗
μ

(

Ji−j
μν + i Yi−j

μν

)

aj
ν

+ ai
μ

[(

Ji−j
μν − i Yi−j

μν

)

aj
ν

]∗]

= 2π

k2

NS∑

i=1

NS∑

j=1
j �=i

∑

μ,ν

ai∗
μ Ji−j

μν aj
ν (8.68)

Note that it is no longer necessary to indicate the real part in the last line, because
the quantity will be identically real. The regular–wave translation matrix can now be
reexpanded about the target origin, via

Ji−j
mnp klq =

L
∑

n′=1

n′
∑

m′=−n′

2
∑

p′=1

Ji−0
mnp m′n′p′ J0−j

m′n′p′ klq

=
L
∑

n′=1

n′
∑

m′=−n′

2
∑

p′=1

(

J0−i
m′n′p′ mnp

)∗
J0−j

m′n′p′ klq (8.69)
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Substituting the above into the previous equation and using Eq. (8.51) gives the
expected result for energy conservation,

Cext − Cabs =
NS∑

i=1

(

Ci−sca,i + Cd−sca,i
) = Csca (8.70)

with the total scattering cross section given by

Csca = 2π

k2

∑

μ

∣
∣aμ
∣
∣2 (8.71)

8.4.5 Random Orientation

The random orientation cross sections can be obtained by using the matrix rela-
tionships for the scattered and incident field (Eqs. 8.44, 8.47, 8.48) in Eqs. (8.62)
and (8.65) and integrating the incident field over all propagation and polarization
directions. For a plane wave, this integration results in

〈

pi
ν

(

pi
ν′
)∗〉 = δν−ν′ (8.72)

where < . . . > denotes orientation averaging. Consequently,

〈

Cabs,i
〉 = 2π

k2

∑

μ

∑

ν

b
i
μ

∣
∣
∣Ti
μν

∣
∣
∣

2

= 2π

k2

∑

μ

∑

ν

b
i
μ

NS∑

j=1

NS∑

j′=1

∑

ν′
Ti−j
μν′ Jj−j′

ν′ ν

(

Ti−j′
μν

)∗
(8.73)

〈

Cext,i
〉 = −2π

k2 Re
∑

μ

∑

ν

J0−i
μν Ti

ν μ

= −2π

k2 Re
∑

μ

NS∑

j=1

∑

ν

Ti−j
μν Jj−i

ν μ (8.74)

As before, the total orientation–averaged absorption and extinction cross sections
for the cluster will be the sum of the individual sphere values, and the total scattering
cross section will be the difference between the total extinction and absorption cross
sections. Alternatively, the conservation-of-energy properties of Eq. (8.49) can be
used to identify the traditional formula for the scattering cross section, which is based
on the total scattered power from the ensemble. By multiplying Eq. (8.49) through
by Ti

μν , contracting over all indices, and applying the relations used in Eqs. (8.68)
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and (8.69), it can be shown that

2π

k2

∑

μ

∑

ν

∣
∣Tμν

∣
∣
2 = 2π

k2

NS∑

i=1

[

−Re
∑

μ

∑

ν

J0−i
μν Ti

ν μ −
∑

μ

∑

ν

b
i
μ

∣
∣
∣Ti
μν

∣
∣
∣

2
]

= 2π

k2

⎡

⎣−Re
∑

μ

Tμμ −
∑

μ

∑

ν

NS∑

i=1

b
i
μ

∣
∣
∣Ti
μν

∣
∣
∣

2

⎤

⎦

= 〈Cext〉 − 〈Cabs〉 = 〈Csca〉 (8.75)

Explicit formulas for the random–orientation scattering matrix elements, which
involve operations on the cluster T matrix and yield expansions for the matrix ele-
ments in terms of generalized spherical functions, have been derived and are pre-
sented in [13].

8.4.6 Emission Cross Sections and Inter–Sphere Energy
Transfer

A careful distinction must be made when interpreting the sphere absorption cross
section in the context of Kirchoff’s law. Consider the situation in which each sphere
in the ensemble is at a uniform temperature of Ti and the ensemble is surrounded
by a black environment at Te. As per the definition of the absorption cross section,
and considering the isotropic environmental radiation, the rate at which sphere i
absorbs radiant energy from the environment about a wavelength interval dλ will
be qe−i = 4π

〈

Cabs,i
〉

Ib,λ(Te) dλ, in which Ib,λ denotes the blackbody intensity
function. Consequently, Kirchoff’s law states that qi−e = 4π

〈

Cabs,i
〉

Ib,λ(Ti) dλ
will be the rate at which emission from sphere i is transferred to the environment.
That is,

〈

Cabs,i
〉

does not directly measure the rate of energy emission from sphere i;
only how much of this rate escapes the confines of the ensemble.On the other hand,
the detailed transfer of radiant energy among the particles should be embedded
within the formula for

〈

Cabs,i
〉

. This structure is not obvious in the definition given
in Eq. (8.73), and an alternative definition is needed to elucidate the interactive form
of the absorption cross section.

The first step in this process is to combine Eqs. (8.97) and (8.101), so that

Hi−j
mnp klq = (−1)m+k Hj−i

−klq −mnp (8.76)

It can then be shown from Eq. (8.45) that Ti−j will also have this property, and that
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1

aj
ν

Ti−j
μν −

NS∑

j′=1
j′ �=i

∑

ν′
Ti−j′
μν′ Hj′−j

ν′ ν = δij δμν (8.77)

This equation is now multiplied by (Ti−j
μν )

∗ and summed over j and ν. By employing
the contraction properties of the translation matrices used in Eqs. (8.68) and (8.69),
it follows that

NS∑

j=1

∑

ν

b
j
ν

∣
∣
∣Ti−j
μν

∣
∣
∣

2 +
∑

ν

∣
∣
∣Ti
μν

∣
∣
∣

2 = −Re Ti−i
μμ (8.78)

This relation can be interpreted as a conservation-of-energy statement for an incident
field that interacts solely with sphere i, i.e., for the hypothetical case when Einc,j = 0
for j �= i. When multiplied by 2π I0,λ dλ/k2 and summed over μ, the term on the
right would represent the orientation–averaged extinction power removed from the
localized incident field at sphere i, e.g., including only the j = i term in Eq. (8.74).
The energy removed from the beam is either absorbed by the surrounding spheres
(represented by the first term on the left-hand side) or scattered into all other directions
(the second term).

A more concrete interpretation of Eq. (8.78) is obtained by multiplying the equa-

tion by 2π/k2 b
i
μ and summing over all μ. By using the formula for

< Cabs,i > in Eq. (8.73) and rearranging, one obtains

〈

Cabs,i
〉 =2π

k2

∑

μ

b
i
μ

[

−Re Ti−i
μμ

−
∑

ν

b
i
ν

∣
∣
∣Ti−i
μν

∣
∣
∣

2 −
NS∑

j=1
j �=i

∑

ν

b
j
ν

∣
∣
∣Ti−j
μν

∣
∣
∣

2]

(8.79)

Each of the terms appearing in this formula can be interpreted according to a radiant
exchange relationship among the spheres. When multiplied by 4π Ib,λ(Ti) dλ, the first
and second terms on the right represent the source of emissive power from sphere i
and the rate of reabsorption by sphere i; the net emissive power being the sum of the
two. The third term accounts for the absorption of the net emissive power from i by
all the other spheres in the ensemble. The net emissive power from a sphere, and the
emissive exchange between a pair of spheres, can be used to define emission cross
sections via

Cemis,i = −2π

k2

∑

μ

b
i
μ

[

Re Ti−i
μμ +

∑

ν

b
i
ν

∣
∣
∣Ti−i
μν

∣
∣
∣

2
]

(8.80)

Cemis,i−j = 2π

k2

∑

μ

b
i
μ

∑

ν

b
j
ν

∣
∣
∣Ti−j
μν

∣
∣
∣

2
(8.81)
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The exchange cross section is defined so that net rate of monochromatic emissive
transfer between a pair of spheres is given by

qi−j = 4π
(

Cemis,i−j Ib,λ(Ti)− Cemis,j−i Ib,λ(Tj)
)

dλ (8.82)

As per the symmetry property of the Ti−j matrix, the exchange cross section will
automatically satisfy the required reciprocity condition of

Cemis,i−j = Cemis,j−i (8.83)

When a sphere is nonabsorbing—which corresponds to b = 0 for the sphere—the
exchange cross section to the sphere will be zero. For a single, isolated sphere the
self-interaction T matrix reduces to Ti−i

μν → ai
μδμν , and using

b
i
μ = − 1

∣
∣ai
μ

∣
∣
2

(

Re aμ +
∣
∣
∣ai
μ

∣
∣
∣

2
)

(8.84)

it follows that

Cemis,1
∣
∣
NS=1 = 2π

k2

∑

μ

[

−Re a1
μ −

∣
∣
∣a1
μ

∣
∣
∣

2
]

= 2π

k2

L1∑

n=1

2
∑

p=1

(2n + 1)

[

−Re a1
np −

∣
∣
∣a1

np

∣
∣
∣

2
]

= Cext,1 − Csca,1 = Cabs,1 (8.85)

In other words, the emission cross section for an isolated sphere becomes identical
to the absorption cross section for the sphere.

Unlike the case for the absorption cross sections of the individual spheres, the
magnitude of Cemis,i and Cemis,i−j, as well as the number of orders required for
convergence of Eqs. (8.80) and (8.81), is strongly dependent on the separation dis-
tance between the spheres [24, 25].Indeed, as the gap between a pair of spheres
shrinks to zero, Eqs. (8.80) and (8.81) individually will fail to converge, although
their difference—which is the sphere absorption cross section per Eq. (8.79)—will
converge. This behavior is a consequence of the isothermal-sphere assumption that
formed the basis of the formulas; for two spheres each at uniform yet distinct temper-
atures, the radiative heat transfer between the spheres would become unbounded as
the spheres approached contact. In this limit, however, the spheres could not maintain
isothermal conditions as conduction heat transfer, within each sphere, would act to
maintain temperature continuity at the point of contact.
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Fig. 8.6 Extensions of the
multiple sphere formulation

8.5 Extensions and Future Challenges

The focus of the presentation so far has been on the extension of Mie theory to
multiple sphere systems. In this sense, we have not examined a fundamentally new
solution to a boundary value problem: the only real boundaries in the problem are at
the sphere surfaces, and the continuity conditions at these points are provided by Mie
theory. The general formulation provided by the multiple sphere solution, however,
can be extended into topics well beyond that of light scattering by sphere clusters.

Figure 8.6 illustrates the two fundamental directions that such extensions can
take. One path concerns the description of EM wave propagation in discretely inho-
mogeneous media; i.e., a medium consisting of particles dispersed in an otherwise
continuous matrix. This situation can be viewed as the application of the multiple
sphere solution to a semi–infinite system of spheres, and an objective of this applica-
tion is to identify an effective propagation constant of the medium which describes
the attenuation of the average (or coherent) field via absorption and scattering by
the particles. In the diagram Fig. 8.6, this extension takes the situation on the left
and models it as that on the right, i.e., representing an inhomogeneous medium as
effectively homogeneous.

A robust theory exists for describing the propagation of EM waves in particulate
media, and the reader is referred to the seminal works of Ishimaru [26], Varadan et al.
[27], and Waterman and Pedersen [28] for the derivations and details. Most typically,
the theoretical models address the reflection and propagation of a plane wave by a
half space of particles that are either randomly distributed with a known concentra-
tion and pair distribution function, or arranged onto a lattice. Development of the
models begins with the interaction equations for the sphere scattering coefficients,
Eq. (8.10), applied to the semi–infinite expanse of particles. Closure of the equa-
tions is made possible by simplifying assumptions regarding the high–order correla-
tions among the particle positions and scattered fields—such as the quasi–crystalline
approximation—from which the configuration–averaged scattering coefficients can
be represented by a functional, plane-wave model [29–31].

A simplified presentation of the key elements in an effective medium theory will
be given in the following section. Before doing so, it will be noted that the second
basic extension of the multiple sphere solution can be viewed as the reverse of the
effective medium problem. The task here is to represent a homogeneous—albeit
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nonspherical—particle as an equivalent ensemble of “simple” particles with known
properties; the point being that the multiple sphere formulation can be applied to the
model particle to describe the scattering characteristics of the actual particle. This
rationale forms the basis of the well–known discrete dipole approximation (DDA).
Although the DDA was originally derived from an integral formulation of Maxwell’s
equations, the multiple sphere formulation described herein, when applied in the
dipole limit (i.e., using only the first-order, TM coefficient in the field expansions) and
when using a mixing rule formulation for the Mie coefficient a, becomes equivalent
to the DDA. The reader is referred to works by Draine and Flatau [32], and Yurkin
and Hoekstra [33] for details on the derivation and implementation of the DDA. The
calculation of the particle T matrix via a coupling of the present formulation with
the DDA framework is presented in [34].

8.5.1 Application to Inhomogeneous Media

As opposed to applying Eq. (8.10) to a half space of particles, it is possible to identify
the basic relations making up an effective medium theory via consideration of the
equation for the sphere–sphere Ti−j matrix, Eq. (8.45), when applied to an infinite
expanse of particles. Considering the case where origins i and j are not coincident,
and assuming that the spheres are all identical so that ai = a (this constraint could
be relaxed), the equations have

1

aμ
Ti−j
μν −

∞
∑

i′=1
i′ �=j,i

∑

μ′
Hi−i′
μμ′ Ti′−j

μ′ ν −
∑

μ′
Hi−j
μμ′ Tj−j

μ′ ν = 0 (8.86)

Of interest here is identifying the configuration–averaged forms of the interaction
matrices. A random dispersion of spheres will be considered, characterized by a
volume fraction f and a pair correlation function g(ri−j)which describes the relative
probability of a sphere origin located a distance ri−j from another sphere origin.
Since the spheres are identical and do not overlap, g = 0 for ri−j < 2a, and for a
sufficiently large distance, denoted as rc, the relative positions of the pair become
uncorrelated so that g → 1 for ri−j ≥ rc.

For the infinite system of spheres, it can be assumed that 1) the averaged self–
interaction matrix Tj−j becomes a diagonal and constant matrix, independent of
position j, and 2) the averaged matrix Ti−j becomes a function solely of the distance
vector between i and j. General relations for the average Tj−j and far-field Ti−j (i.e.,
for ri−j > rc) can be identified by examining Eq. (8.86) for the situation in which
origins i and j become separated by at least 2rc, as illustrated in Fig. 8.7. Following
the model of Ishimaru [26], the interaction matrix Ti−j is represented by a translation
matrix evaluated for a medium with an effective propagation constant ke, i.e.,
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Fig. 8.7 Effective medium
ansatz
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Ti−j
μν ≈ αμH i−j

μν αν, H i−j
μν = Hμν(keri−j) (8.87)

in which α denotes an as–of-yet undetermined coefficient. The sum over position i′
in Eq. (8.86) is now split into three parts, corresponding to i′ within the correlation
distance of i, of j, or neither, and the properties of the translation matrices can
be applied to convert the first two parts into sums involving spherically-symmetric
functions. Omitting the subscripts on the matrices, and implying the usual matrix
multiplication rules, the interaction term becomes

∞
∑

i′=1
i′ �=j,i

Hi−i′ Ti′−j =
⎛

⎝
∑

ri−i′<rc

Hi−i′ αJ i′−i

⎞

⎠ H i−j α

+ Hi−j

⎛

⎝
∑

rj−i′<rc

Jj−i′ Ti′−j

⎞

⎠+
∑

i′∈b

Hi−i′ αH i′−j α (8.88)

in which J is the J translation matrix evaluated for a medium with propagation
constant ke, and b in the third sum denotes the background region, i.e., outside the
zones surrounding i and j. This sum can now be represented by an integral over
volume, the integrand of which will vanish at infinity. Since the translation matrices
in the integrand both satisfy the scalar Helmholtz equation, the volume integral can
be converted into a pair of surface integrals, by use of Green’s second identity, over
the two spherical surfaces surrounding the i and j zones. This gives

∑

i′∈b

Hi−i′ αH i′−j α = − 〈H αJ
〉

H i−j α − Hi−j 〈J αH 〉 α (8.89)

in which
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〈

H αJ
〉 = 3f r2

c

4πa3(k2
e − k2)

×
∫

4π

(
∂ H(k(−r))

∂r
αJ (ker) − H(k(−r)) α

∂J (ker)
∂r

)

r=rc

d�

(8.90)

with d� = d(cos θ) dφ, and −r = (r,− cos θ, φ + π). The analogous formula
applies to 〈J αH 〉. These quantities can be evaluated analytically by using the
orthogonality properties of the translation matrix basis functions.

By substitution of Eqs. (8.87–8.89), Eq. (8.86) can be separated into two parts
proportional to either H i−j or Hi−j. Both of these parts must therefore equate to
zero, as the result must be independent of ri−j. The derived relations have the form

αμ − aμ
∑

ν

⎛

⎝
∑

r0−i<rc

H0−i
μν αν J i−0

ν μ + 〈Hμν αν Jμμ

〉

⎞

⎠ = 0 (8.91)

Tj−j
μμ +

∑

ν

⎛

⎝
∑

rj−i′<rc

Jj−i′
μν Ti′−j

ν μ − 〈Jμν αν Hν μ

〉

αμ

⎞

⎠ = 0 (8.92)

Equation (8.91) represents a homogeneous linear system for the α coefficients.
Accordingly, the determinant of the system matrix must vanish, and this provides
a formula for the effective propagation constant ke. The inner sum in this relation
can be evaluated as a finite sum, as done for a cubic lattice of spheres by Waterman
and Pedersen [28], or via a volume integral involving the pair distribution function
[27, 31]. Equation (8.92) can be viewed as a form of the Ewald–Oseen extinction
theorem for the medium [31]. Referring to Eq. (8.74), this relation states the obvi-
ous point that the random–orientation cross sections of a sphere, surrounded by an
infinite expanse of spheres, must be zero. On a practical level, Eq. (8.92) provides a
relation between the self–interaction matrix Tj−j and the eigenvectorsα of Eq. (8.91).
A second relation, which would formally close the problem, would be obtained from
the interaction matrix equations, Eq. (8.45), applied for i = j.

8.5.2 Future Applications: Direct Simulations and the Bridge
to the RTE

Of course, many additional details would be needed to develop the basic con-
cepts, presented above, into a working computational scheme.Analytical formulas
for the effective propagation constant can be derived for spheres in the dipole limit
[28, 31, 34]. However, calculation of ke for sphere size parameters of order unity
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or greater—which involves multiple harmonic orders—can become a formidable
numerical problem.

In this respect, an alternative and increasingly attractive route to calculating the
effective radiative properties of inhomogeneous media is by direct simulations, or
equivalently, numerical experiments. The basic concept is to apply the multiple
sphere formulation, given by either Eq. (8.10) or (8.45), to systems containing a
sufficiently large number of spheres so that the system, as a whole, can represent a
radiative continuum. Such calculations have been made feasible by the development
and availability of efficient codes for implementing the multiple sphere formula-
tion, and—more importantly—the decreasing cost and increasing speed of computa-
tional hardware. A demonstration of a direct simulation approach to calculating the
reflectance and transmittance properties of particle deposits was recently performed
by the author, in which the modeled target consisted of a slab of spherical particles,
with NS ranging from 500 to 1,600, that was exposed to a Gaussian–profile incident
beam [18]. More recently, Mishchenko et al. conducted sets of direct simulation cal-
culations on systems containing on the order of 100–1,000 spheres to examine weak
localization and coherent backscattering in discrete random media [19].

A practical objective of such calculations would be to use the exact, microscopic–
level solution, provided by the multiple sphere formulation, as a benchmark—or
replacement—to the phenomenological, macroscopic–level radiative transport equa-
tion in particulate media. This is especially relevant in situations such as particle
deposits, paint pigments, composite materials, etc., for which the particle concen-
trations can become sufficiently high so that prediction of the bulk medium optical
properties via the single–scattering formulations becomes suspect.

The microscopic–level detail of the fields in a particulate medium, which are
accessible via direct simulations using the multiple sphere formulation, are also
of interest in and of themselves. Specifically, resonant behavior of particle inclu-
sions can lead to enhanced scattering and strong localization of the fields. Interest
in this behavior relates to the possible manipulation of the EM field in periodic or
random inhomogeneous media, with potential application in photonic devices (i.e.,
zero–threshold lasers, all–optical transistors, suppression of spontaneous emission)
[35, 36].

8.6 Appendix

8.6.1 Calculation of the Translation Matrix Elements

Equations (8.33) and (8.34) provide a compact and relatively simple means of calcu-
lating the translation matrices. More computationally-efficient methods have been
devised, such as recurrence relations for the matrix elements, yet in the overall
scheme of things, the execution time required to evaluate the translation matrices
will typically be small compared to that required to solve the interaction equations.
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Calculation of the Bessel, Hankel, and Legendre functions that appear in the scalar
harmonic ψ should pose no problem to those familiar with Lorenz/Mie theory. The
Clebsch–Gordon coefficients, on the other hand, are not as common. These quantities
appear most often in problems relating to angular momentum in quantum mechanics
and the representation of the rotation group, and they are part of the intrinsic function
set in Mathematica.In numerical codes they are most efficiently calculated using
recurrence relations. The downwards recurrence is stable up to the maximum L
values encountered in our codes, and is given by

Cw−2
mn,kl = a

(

b Cw−1
mn,kl − c Cw

mn,kl

)

(8.93)

with

a = 2(w − 1)

(
(2w − 3)

(w − m − k − 1)(w + m + k − 1)(l − n + w − 1)

)1/2

×
(

(2w − 1)

(n − l + w − 1)(n + l − w + 2)(n + l + w)

)1/2

b = (m − k)w(w − 1)− (m + k)(n(n + 1)− l(l + 1))

2w(w − 1)

c = 1

2w

(
(w + m + k)(w − m − k)(n − l + w)

(w + w + 1)

)1/2

×
(
(l − n + w)(n + l − w + 1)(n + l + w + 1)

(w + w − 1)

)1/2

(8.94)

The index w in Eq. (8.93) begins with w = n+l, and the Clebsch–Gordon coefficients
for indices w < ws = Max(|n − l|, |m + k|) are implied to be zero. Starting values
for the C coefficients are obtained from

Cn+l
mn,kl =

⎛

⎜
⎜
⎝

(
n + l + m + k

l + k

)(
n + l − m − k

l − k

)

(
2(n + l)

2l

)

⎞

⎟
⎟
⎠

1/2

(8.95)

with (
n

l

)

= n!
l!(n − l)! (8.96)

Symmetry and reflection properties of the J translation matrix are
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Jmnp klq(x, y, z) = (−1)m+n+k+l+p+qJ−klq −mnp(x, y, z) (8.97)

Jmnp klq(−x, y, z) = (−1)p+q J−mnp −klq(x, y, z) (8.98)

Jmnp klq(x,−y, z) = (−1)m+k+p+q J−mnp −klq(x, y, z) (8.99)

Jmnp klq(x, y,−z) = (−1)m+n+k+l+p+qJmnp klq(x, y, z) (8.100)

Jmnp klq(−x,−y,−z) = (−1)n+l+p+q Jmnp klq(x, y, z) (8.101)

The same relations will hold for H. Additional relations are

Jmnp klq(−x, y, z) = (−1)m+k+p+q J∗
mnp klq(x, y, z) (8.102)

Jmnp klq(x,−y, z) = (−1)p+q J∗
mnp klq(x, y, z) (8.103)

Jmnp klq(−x,−y,−z) = J∗
klq mnp(x, y, z) (8.104)

In the three previous equations, it is understood that the conjugate operation does
not apply to the Bessel function jw(kr). This has no bearing for translation in a non-
absorbing medium, for which k and jw(kr) will be real. The three previous formulas
can also be applied to the H translation matrix, yet again the conjugate operator does
not apply to the Hankel function hw(kr).

8.6.2 The Rotation-Axial Translation Operation

A time–intensive step during the iterative solution to Eq. (8.10) is the matrix–vector
product,

aj,i
mnp =

L
∑

l=1

l
∑

k=−l

2
∑

q=1

Hi−j
mnp klq aj

klq (8.105)

For an arbitrary translation, the number of operations in this calculation, as performed
directly, will scale (roughly) as L4. This process can be made more efficient by
the factorization of H into rotational and axial–translation matrices. The rotational
matrices are diagonal in order, and the axial translation matrix are diagonal in degree.
Consequently, the matrix-vector multiplication for the factored H will scale as L3,
and the time savings can become significant for large L.

The three–step procedure is

1. Rotate aj towards i,

aj,1
mnp =

n
∑

k=−n

D (n)
mk (cos θi−j) exp(ikφi−j) aj

knp (8.106)

2. Axial translation to i,
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aj,2
mnp =

L
∑

l=1

2
∑

q=1

Hmnp mlq(krij, θ = 0, φ = 0) aj,1
mlq (8.107)

3. Inverse rotation,

aj,i
mnp = exp(−imφi−j)

n
∑

k=−n

D (n)
−m−k(cos θi−j) aj,2

knp (8.108)

8.6.3 Generalized Spherical Functions

The generalized spherical functions D (n)
mk (x) are defined by

D (n)
mk (x) = (−1)m+k

(
(n − k)!(n + k)!
(n − m)!(n + m)!

)1/2

×
(

1 + x

2

)(m+k)/2 (1 − x

2

)(k−m)/2

Pk−m, k+m
n−k (x) (8.109)

in which Pα,βn is the Jacobi polynomial.
A stable recurrence formula for calculation of the D (n)

mk functions starts with

D (n)
0k (x) =

(
(n − m)!
(n + m)!

)1/2

Pk
n(x) (8.110)

and, for m = 1, 2, . . . n,

D (n)
mk (x) = 1

[(n − m + 1)(n + m)]1/2

(

[(n + k)(n − k + 1)]1/2 1 + x

2
D (n)

m−1k−1(x)

−[(n − k)(n + k + 1)]1/2 1 − x

2
D (n)

m−1k+1(x)

−k (1 − x2)1/2 D (n)
m−1k(x)

)

(8.111)

and
D (n)

−m−k(x) = (−1)m+k D (n)
mk (x) (8.112)
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