
Branching-Time Model Checking
of Parametric One-Counter Automata

Stefan Göller1, Christoph Haase2, Joël Ouaknine2, and James Worrell2

1 Institut für Informatik, Universität Bremen, Germany
2 Department of Computer Science, University of Oxford, UK

Abstract. We study the computational complexity of model checking EF logic
and modal logic on parametric one-counter automata (POCA). A POCA is a one-
counter automaton whose counter updates are either integer values encoded in
binary or integer-valued parameters. Given a formula and a configuration of a
POCA, the model-checking problem asks whether the formula is true in this con-
figuration for all possible valuations of the parameters. We show that this problem
is undecidable for EF logic via reduction from Hilbert’s tenth problem, however
for modal logic we prove PSPACE-completeness. Obtaining the PSPACE upper
bound involves analysing systems of linear Diophantine inequalities of exponen-
tial size that admit solutions of polynomial size. Finally, we show that model
checking EF logic on POCA without parameters is PSPACE-complete.

1 Introduction

Counter automata, a fundamental and widely-studied model of computation, consist
of a finite-state controller which manipulates a finite set of counters ranging over the
naturals. A classic result by Minsky states that Turing completeness can already be ob-
tained when restricting to two counters [17]. Due to this fact, research has subsequently
focused on studying restricted classes of counter automata and related formalisms.
Among others, we note the use of restrictions to a single counter (one-counter automata
or OCA, for short), restrictions on the underlying structure of the controller (such as flat-
ness [5,15]), restrictions on the kinds of allowable tests on the counters, and on the types
of computations considered (such as reversal-boundedness [10,11]). Counter automata
are also closely related to Petri nets and pushdown automata. In recent years, motivated
by complexity-theoretic considerations on the one hand and practical applications on
the other, researchers have investigated decision problems for counter automata with
additional primitive operations on counters, such as additive updates encoded in bi-
nary [1,15] or even in parametric form, i.e., updates whose precise values depend on a
finite set of parameters [3,12]. We refer to such counter automata as succinct and para-
metric respectively, the former being a subclass of the latter. Natural applications of
such counter automata include the modeling of resource-bounded processes, numeric
data types, programs with lists, recursive or multi-threaded programs, and XML query
evaluation; see, e.g., [4,11,10,1].

The two most prominent decision problems for counter automata are reachability and
model checking. Reachability asks whether there is path between two configurations in
the potentially infinite transition system generated by a counter automaton. For counter

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 406–420, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Branching-Time Model Checking of Parametric One-Counter Automata 407

automata with parameters, this problem generalises to asking whether there exists a
valuation of the parameters such that reachability holds between two configurations in
the concrete transition system induced through the valuation. Model checking is the
problem of deciding whether a formula given in some temporal logic holds in a con-
figuration of the transition system induced by a counter automaton, and when param-
eters are present whether the formula holds in a configuration in all transition systems
induced by all possible valuations. Due to Minsky’s result, the restriction to a single
counter is a natural way to potentially obtain decidability for reachability and model
checking problems. Consequently, in this paper we restrict our attention to this class of
counter automata, and in particular investigate model checking problems for succinct
one-counter automata (SOCA) and parametric one-counter automata (POCA).

State of the art. Reachability is known to be NL-complete for OCA and has recently
been shown to be NP-complete for SOCA and decidable for POCA [9]. The complex-
ity of model-checking problems for various temporal logics including LTL, CTL and
fragments thereof has been studied for OCA, SOCA and POCA in a number of re-
cent works [20,8,7,6,22]. When comparing OCA with SOCA, an exponential complex-
ity jump for the model checking problem may arise: both CTL and μ-calculus model
checking on OCA are PSPACE-complete [20,7], whereas for SOCA these problems
are EXPSPACE-complete [20,6]. However, this jump is not inherent, since for example
model checking LTL is PSPACE-complete for both OCA and SOCA. When parameters
come into play, model checking LTL on POCA is NEXP-complete and becomes unde-
cidable for CTL [6]. In [8], model checking the fragment EF of CTL on OCA, which
can be seen as an extension of modal logic with a reachability predicate, is shown to be
complete for PNP. Despite its relatively limited expressiveness, EF is a useful specifica-
tion language, and in particular bisimilarity checking of arbitrary systems against finite
systems is polynomial-time reducible to EF model checking [13].

Our contribution. In this paper, we investigate the decidability and complexity of
EF and modal logic (ML) model checking on transition systems generated by SOCA
and POCA. As mentioned above, CTL model checking of POCA is undecidable [6],
which is shown by reduction from the reachability problem for two-counter automata.
In [6], we conjectured that EF model checking on POCA could be decidable, which
is not unreasonable for two reasons. First, the undecidability proof for CTL on POCA
in [6] heavily relies on the use of the until operator. Second, reachability for POCA
is decidable [9], which is shown via a translation into the quantifier-free fragment of
Presburger arithmetic with divisibility. Since there exist extensions of the latter theory
that allow for universal quantification, see e.g. [2], and since EF primarily allows for
reasoning about reachability relations, it seemed plausible that an instance of an EF
model-checking problem on POCA could be translated into a sentence in such an ex-
tended theory. Nevertheless, we show in this paper that model checking EF logic on
POCA is undecidable via a different reduction, namely from Hilbert’s tenth problem,
which Matiyasevich showed to be undecidable [16]. On the positive side, we establish
tight complexity bounds for model checking POCA and SOCA against large fragments
of EF. First, by dropping the reachability modality and thus restricting EF to ML, we
show that the model-checking problem for POCA becomes PSPACE-complete. Obtain-
ing the PSPACE upper bound involves a careful analysis of the size of the solution sets

408 S. Göller et al.

Table 1. Complexity of model checking EF, ML and CTL/modal μ-calculus on OCA, SOCA and
POCA

OCA SOCA POCA

CTL, μ-cal. PSPACE-complete [7,20] EXPSPACE-complete [6,20] Π0
1 -complete[6]

EF PNP-complete [7,8] Π0
1-complete

ML P-complete [14]
PSPACE-complete

of certain systems of linear Diophantine inequalities of potentially exponential size.
Second, when no parameters are present, we show that EF model checking for SOCA
is PSPACE-complete. The main technical challenge is to develop an “exponential peri-
odicity property” that characterizes those counter values at which an EF formula holds.
Our results are summarized in bold font in Table 1, which also summarizes known
results from the literature.

Structure of this paper. We introduce basic definitions and notations in Section 2
and present results on model checking POCA in Section 3. Section 4 deals with model
checking SOCA before we conclude in Section 5. Due to space limitations, details of
some proofs are deferred to a full version of this paper.

2 Preliminaries

Throughout this paper, we denote by N = {0, 1, . . .} the non-negative integers and by

Z the integers. We define [i, j]
def
= {i, i+ 1, . . . , j} and introduce [i] as an abbreviation

for [1, i]. For any n ∈ N, we denote by lgn the smallest i ∈ N such that n ≤ 2i. Given
a function f : N → N, we write f(n) = poly(n) (resp. f(n) = exp(n)) if there is some
polynomial p(n) such that f(n) ≤ p(n) (resp. f(n) ≤ 2p(n)) for each n ∈ N.

The Branching-Time Logic EF: Formulas of EF over a finite set P of atomic propo-
sitions are inductively defined by the following grammar, where p ranges over P:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | EXϕ | EFϕ.

We define the standard Boolean abbreviationsϕ1 ∨ϕ2
def
= ¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2

def
=

¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2
def
= ϕ1 → ϕ2 ∧ ϕ2 → ϕ1. Moreover, we define the additional

modalities AXϕ
def
= ¬EX¬ϕ and AGϕ

def
= ¬EF¬ϕ. Modal Logic (ML) is obtained from

EF by disallowing the EF operator. An EF formula ϕ is in negation normal form if
all negation symbols occur only in front of atomic propositions. The size |ϕ| of EF
formulas ϕ is defined as usual.

The semantics of an EF formula is given in terms of transition systems. A transition
system T is a tuple T = (S,P, λ,−→), where S is the set of states, P is a finite set
of atomic propositions, λ : S → 2P is the state-labeling function and −→ ⊆ S × S
is the transition relation. We use infix notation for −→ and write s −→ s′ whenever
(s, s′) ∈−→. An s-s′ path � in a transition system T is a finite sequence of states
� : s1 · · · sn such that s = s1, s′ = sn and si −→ si+1 for all i ∈ [n − 1], and we
write � : s −→∗ s′ to express that � is an s-s′ path. Table 2 presents the semantics

Branching-Time Model Checking of Parametric One-Counter Automata 409

Table 2. Semantics of EF

(T, s) |= p ⇐⇒ p ∈ λ(s)

(T, s) |= ¬ϕ ⇐⇒ (T, s) �|= ϕ

(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and (T, s) |= ϕ2

(T, s) |= EXϕ ⇐⇒ ∃s′ ∈ S.(T, s′) |= ϕ and s −→ s′

(T, s) |= EFϕ ⇐⇒ ∃s′ ∈ S.(T, s′) |= ϕ and s −→∗ s′

of EF formulas. Given an EF formula ϕ, a transition system T and a state s ∈ S, the
satisfaction relation (T, s) |= ϕ is defined by induction on the structure of ϕ, and we
say ϕ holds at s in T if (T, s) |= ϕ.

Parametric One-Counter Automata: Let X = {x1, . . . , xn} denote a finite set of

parameters, and let Op
def
= {add(z), add(x) : z ∈ Z, x ∈ X} ∪ {zero} be a set of oper-

ations. A parametric one-counter automaton (POCA) is a tuple A = (Q,X,P, λ,Δ),
where Q is a finite set of control locations, P is a finite set of atomic propositions,
λ : Q → 2P is the location-labeling function, and Δ ⊆ Q × Op × Q is the transi-
tion relation. A succinct one-counter automaton (SOCA) is a POCA with X = ∅. We
write q

op−→ q′ whenever (q, op, q′) ∈ Δ. By nmax (A) we denote the largest absolute
value of all integers occurring in the operations of A. The size |A| of a POCA A is

defined as |A| def
= |Δ| + lg nmax (A). A valuation ν : X → Z is a function assign-

ing an integer to each parameter. Given a POCA A, a valuation induces a SOCA Aν

which is obtained by replacing each transition q
add(xi)−−−−→ q′ with q

add(ν(xi))−−−−−−→ q′. For

a SOCA A, we denote by T (A)
def
= (SA,P, λA,−→A) the transition system induced

by A, where SA
def
= Q × N, λA

def
= (q, n) �→ λ(q), and (q, n) −→A (q′, n′) if, and

only if, either q
add(z)−−−−→ q′ and n′ = n + z, or q

zero−→ q′ ∈ Δ and n = n′ = 0. For
convenience, we write q(n) instead of (q, n) for states in SA. Given two states q(n) and
q′(n′), reachability is to decide whether there exists a q(n)-q′(n′) path in T (A).

Proposition 1 ([9]). Reachability in SOCA is NP-complete.

The model-checking problem for POCA, and thus for SOCA, is defined as follows:
ML/EF MODEL CHECKING ON POCA

INPUT: A POCA A = (Q,X,P, λ,Δ), q ∈ Q and an ML/EF formula ϕ.
QUESTION: Does (T (Aν), q(0)) |= ϕ hold for each assignment ν : X → Z?

We note that deciding whether (T (Aν), q(0)) |= ϕ holds for each assignment ν is the
complement of deciding if (T (Aν), q(0)) |= ¬ϕ holds for some assignment ν.

We close this section with an example of a model-checking problem. Figure 1
depicts a SOCA Ai with i ∈ [0,m] for some m ∈ N. Starting in state qi(n) with
n ∈ [0, 2m+1 − 1], it is easily verified that the state qz(0), which is labeled with pi,
is reachable from qi(n) if, and only if, the coefficient of 2i in the binary expansion
of n is 1, which is the case if, and only if, (T (A), qi(n)) |= EFpi or alternatively
(T (A), qi(n)) |= EXm+2pi. Here, EXm+2 is an abbreviation for the m+ 2-fold appli-
cation of the EX operator.

410 S. Göller et al.

qi •

add(−20)

add(0)
. . . • • •

add(−2i−1)

add(0) add(−2i)
•

add(−2i+1)

add(0)
. . . • •

add(−2m)

add(0)
qzzero pi

Fig. 1. SOCA Ai used for testing a bit of a number n ∈ [2m+1 − 1]

3 Model Checking POCA

In this section, we prove that model checking EF on POCA is undecidable (Section
3.1). We show that for ML model checking on POCA is decidable and in PSPACE
(Section 3.2).

3.1 Model Checking EF on POCA

We now consider model checking EF on POCA and show that this problem is Π0
1 -

complete. With EF being a notational fragment of CTL, membership in Π0
1 follows

from the fact that CTL model checking on POCA is Π0
1 -complete [6]. Thus, we con-

centrate in this section on a matching Π0
1 -lower bound by giving a reduction from

Hilbert’s Tenth Problem to the complement of the model checking problem.

HILBERT’S TENTH PROBLEM (HTP)

INPUT: A polynomial p with coefficients ranging over the integers.
QUESTION: Do there exist a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0?

HTP was shown to beΣ0
1 -complete by Matiyasevich [16]. Note that HTP remainsΣ0

1 -
hard if we restrict the ai to range over N: A Diophantine equation p(x1, x2, .., xn) = 0
is solvable in the integers if, and only if, one of the 2n equations p(±x1, . . . ,±xn) = 0
has a solution in the naturals. Replacing every unknown with the sum of squares of four
unknowns gives, by Lagrange’s Theorem, the reduction in the other direction.

Moreover, we may assume with no loss of generality that ai > 0 for each i ∈ [n].
If some ai were to be zero in a solution, we can obtain a new polynomial p′ in n − 1
variables by replacing ai with 0 in p.

Let us fix some polynomial p with coefficients ranging over Z. We will subsequently
show how we can compute from p a POCA Ap with a control state qp and an EF formula
ϕp such that p has a solution over the naturals if, and only if, (T (Aν

p), qp(0)) |= ϕp for
some valuation ν of the parameters of A. Recall that the valuation of the parameters
of Ap ranges over Z. However, we can easily ensure with a simple EF formula that a
parameter x is positive. For the following SOCA Ax≥1.

(T (Aν
x≥1), q(0)) |= ¬EF	

we have if, and only if,

ν(x) ≥ 1.
q • •

add(1)

add(x) zero
	

More challenging than testing if a parameter is positive when reducing fromHTP is that
we need to be able to express a multiplication relation over the parameters in the POCA.

Branching-Time Model Checking of Parametric One-Counter Automata 411

In order to do that, we employ a trick that became popular by the work of Robinson [18]
which allows us to define multiplication in terms of the least common multiple. In fact
given x, y ∈ N, we have

lcm(x+ y, x+ y + 1)− lcm(x, x + 1)− lcm(y, y + 1)

=(x2 + x+ 2xy + y2 + y)− (x2 + x) − (y2 + y) = 2xy

We note that addition and subtraction of the parameters can easily be realized by in-
troducing additional slack parameters in the POCA. Thus, we can enhance our POCA
by transitions of the kind sub(x), meaning that ν(x) is subtracted from the counter,
provided the counter is at least ν(x). We now demonstrate that for parameters x, y, z
of some POCA that each assume positive values, which we can check as seen above,
we can “express” in EF that z = lcm(x, y). Consider the following POCA Alcm, where
unlabeled transitions are assumed to be labeled with “add(0)”:

Alcm : q •

•

•

•

•

•

•

pz

py

px

p?

add(1)

sub(z)

sub(y)

sub(x)

zero

zero

zero

The idea is to express that for all n ∈ N, we have that both x and y divide n if, and
only if, z divides n. We note that for each ν : {x, y, z} → Z with ν(x), ν(y), ν(y) ≥ 1
we have that (T (Aν

lcm), q(0))) |= AG(p? → ((EFpx ∧ EFpy) ↔ EFpz)) if, and only if,
ν(z) = lcm(ν(x), ν(y)).

Thus, by introducing a sufficient number of slack variables, we can express mul-
tiplication, addition and subtraction, which allows us to solve HTP for any arbitrary
polynomial. Thus, we obtain the following theorem.

Theorem 2. Model checking EF logic on POCA is Π0
1 -complete.

We note that by [16] there exists a fixed universal polynomial pu(n, k, x1, . . . , xm)
such that for each recursively enumerable set S ⊆ N, there is some k0 ∈ N such that
S = {n ∈ N | ∃n1, . . . , nm ∈ N : pu(n, k0, n1, . . . , nm) = 0}. This allows us to
strengthen our result insofar as there exists a fixed EF formula ϕ and a fixed POCA

A = (Q,X,P, λ,Δ) with a transition q
add(y)−−−−→ q′ ∈ Δ and a control state q0 ∈ Q

such that it is Π0
1 -complete to decide for a given n ∈ N whether by replacing y with n,

(T (Aν), q0(0)) |= ϕ holds for all ν : X → Z.

3.2 Model Checking ML on POCA

This section will be devoted to proving a PSPACE upper bound for model checking ML
on POCA. Let us fix some POCA A = (Q,X,P, λ,Δ) with X = {x1, . . . , x�}, some

412 S. Göller et al.

control state q0 ∈ Q and some ML formula α. Provided that ML model checking of
SOCA is in PSPACE (we show that even model checking EF on SOCA is in PSPACE
in Section 4.2), in order to obtain a PSPACE upper bound, it is sufficient to show that
if (T (Aν), q0(0)) |= α holds for some ν : X → Z then there is some μ : X → Z such
that (T (Aμ), q(0)) |= α and |μ(x)| can be represented with polynomially many bits in
|A|+ |α| for each x ∈ X , since such an assignment can be guessed in PSPACE.

For each q ∈ Q and each subformulaϕ of α, let us defineM(q, ϕ) ⊆ Z
�×N ⊆ Z

�+1

as follows:

M(q, ϕ)
def
= {(z1, . . . , z�, n) | (T (Aν), q(n)) |= ϕ and ν(xi) = zi, i ∈ [1,]}.

Before we proceed with the proof of the upper bound, we need to introduce some ad-
ditional notation. For an integer matrix A = (aij) ∈ Z

m×n, we denote by ||A|| =
maxi{

∑
j |aij |} the norm of A. For an integer vector b = (bi), we denote by ||b|| =∑

i |bi| the norm of b. A system of linear Diophantine inequalities (SLDI) is a system
of the form S = (Ax ≥ b), where A ∈ Z

m×n is an m × n matrix, b ∈ Z
m is an m-

vector and x is an n-vector of indeterminates all ranging over the integers. By Sol(S),
we denote the set of integer solutions to the SLDI S = (Ax ≥ b). Finally, we define

||S||mat
def
= ||A|| and ||S||vec

def
= ||b||.

Recall that x1, . . . , x� are the parameters ofA. Our overall goal is to expressM(q, ϕ)
by a union of solutions to SLDIs, each of the form

S = (Ax ≥ b), where A ∈ Z
m×(�+1) and b ∈ Z

m for some m ≥ 1.

In the remainder of this section, we will assume for any (Ax ≥ b) that A is some
m × (+ 1) matrix and b is some m-vector for some m ≥ 1. The intuition is that the
ith component of x with i ∈ [] is going to correspond to the parameter xi of A and
the (+ 1)th component of x is going to correspond to the counter value where the ML

formula is evaluated. In case A = (aij) we define ||A||�+1
def
= max{|ai(�+1)| : i ∈ [m]}

and lift this definition to ||S||�+1
def
= ||A||�+1.

In order to prove that small valuations ν : X → Z suffice for α, we are now going
to prove that for each q ∈ Q and each subformula ϕ of α, we have

M(q, α) =
⋃

i∈I

Sol(Si)

for some index set I with ||Si||mat = poly(|ϕ|) and ||Si||vec = poly(|ϕ|) · exp(|A|)
for each i ∈ I . Once this fact has been established, we will show that each SLDI Si

admits solutions that can be represented using polynomially many bits in |A|+ |α|, thus
establishing the desired upper bound on necessary valuations of the parameters of A.

We require some additional notation that, together with the subsequent lemma, will
be useful for proving the existence of sets of SLDIs of “small” size for each M(q, ϕ).

LetH ⊆ Z
�+1. We defineH−xk def

= {(z1, . . . , z�, z�+1−zk) ∈ Z
�+1 | (z1, . . . , z�+1) ∈

H} for each k ∈ [] andH−z def
= {(z1, . . . , z�, z�+1−z) ∈ Z

�+1 | (z1, . . . , z�+1) ∈ H}
for each z ∈ Z. The following lemma states that solutions to SLDIs are closed under
the operations −xk and −z and gives bounds on the blow-up of the introduced norms.

Branching-Time Model Checking of Parametric One-Counter Automata 413

We remark that we do not require an effective variant of this lemma to establish our
PSPACE upper bound.

Lemma 3. Let S = (Ax ≥ b) be an SLDI with A = (aij) ∈ Z
m×(�+1). Then the

following holds:

(1) For each k ∈ [] there is some SLDI S ′ with Sol(S ′) = Sol(S) − xk , ||S ′||mat ≤
||S||mat + ||S||�+1, ||S ′||�+1 = ||S||�+1, and ||S ′||vec = ||S||vec.

(2) For each z ∈ Z, there is some SLDI S ′ with Sol(S ′) = Sol(S)−z, ||S ′||mat = ||S||mat,
||S ′||�+1 = ||S||�+1, and ||S ′||vec ≤ ||S||vec + ||S||�+1 · |z|.

Proof. Let us assume b = (bi). For Point (1), let k ∈ [1,]. For each (z1, . . . , z�+1) ∈
Z
�+1 we have

(z1, . . . , z�+1) ∈ Sol(S) − xk

⇐⇒ (z1, . . . , z�, z�+1 + zk) ∈ Sol(S)

⇐⇒ ∀i ∈ [1,m] :

⎛

⎝
∑

j∈[1,�]

aij · zj + ai(�+1)(z�+1 + zk) ≥ bi

⎞

⎠

⇐⇒ ∀i ∈ [1,m] :

⎛

⎜
⎝(aik + ai(�+1))zk +

∑

j∈[1,�+1],
j �=k

aij · zj ≥ bi

⎞

⎟
⎠ .

We can thus define the matrix A′ = (a′ij), where a′ij = aij if j �= k and aij =
aij + ai(�+1) if j = k, for each i ∈ [1,m]. We put S ′ = (A′x ≥ b) and we just
proved Sol(S ′) = Sol(S) − xk . Moreover, it holds ||S ′||mat = ||A′|| ≤ ||A|| + ||A||�+1 =
||S||mat + ||S||�+1, ||S ′||�+1 = ||A||�+1 = ||S||�+1, and ||S ′||vec = ||b|| = ||S||vec.

Point (2) is shown analogously. ��
We are now ready to prove the desired lemma.

Lemma 4. For every q ∈ Q and every subformula ϕ of α in negation normal form, we
have M(q, ϕ) =

⋃
i∈I Sol(Si), where I is some index set and each Si is some SLDI

with ||Si||mat ≤ |ϕ|, ||Si||�+1 ≤ 1, ||Si||vec ≤ (nmax(A) + 1) · |ϕ|.
Proof. We prove the lemma by structural induction on ϕ.

Case ϕ = p for some p ∈ P (the case ϕ = ¬p is dual).
First, let us assume p ∈ λ(q). Then M(q, ϕ) = Z

� × N, which can be described by

the solutions to the single SLDI S def
= (Ax ≥ b) with b

def
= 0 andA

def
= (aij) ∈ Z

1×(�+1)

with a1j
def
= 0 for each j ∈ [1,] and a1(�+1)

def
= 1. Note that ||S||mat = ||A|| = 1 = |ϕ|,

||S||�+1 = ||A||�+1 = 1, and ||S||vec = ||b|| = 0 ≤ (nmax(A) + 1) · |ϕ|.
In case p �∈ λ(q), we have M(q, ϕ) = ∅, which we express as the solutions of

the SLDI S = (Ax ≥ b), where A is 1 × (+ 1) zero matrix and b
def
= 1. We have

||S||mat = ||A|| = 0 ≤ 1 = |ϕ|, ||S||�+1 = ||A||�+1 = 0 ≤ 1, and ||S||vec = ||b|| = 0 ≤
(nmax(A) + 1) · |ϕ|.

414 S. Göller et al.

Case ϕ = ψ ∨ ψ′: By the induction hypothesis we have M(q, ψ) =
⋃

i∈I Sol(Si) for
some index set I and for SLDI Si, for each i ∈ I and M(q, ψ′) =

⋃
i∈I′ Sol(S ′

i) for
some index set I ′ and for SLDI S ′

i , for each i ∈ I ′. Obviously we can write M(q, ϕ)
as

⋃
i∈I Sol(Si) ∪

⋃
i∈I′ Sol(S ′

i) and the bounds on the norms easily carry over from
induction hypothesis.

Case ϕ = ψ ∧ ψ′: By induction the hypothesis we have M(q, ψ) =
⋃

i∈I Sol(Si) for
some index set I and for SLDIs Si, for each i ∈ I and M(q, ψ′) =

⋃
i∈I′ Sol(S ′

i) for
some index set I ′ and for SLDIs S ′

i , for each i ∈ I ′. Let us assume Si = (Aix ≥ bi)

for each i ∈ I and S ′
i = (A′

ix ≥ b′i) for each i ∈ I ′. We define the matrixAii′
def
=

(
Ai

Ai′

)

and the vector bii′
def
=

(
bi
bi′

)
for each i ∈ I and each i′ ∈ I ′. Obviously, we have

M(q, ϕ) = M(q, ψ) ∩ M(q, ψ′) =
⋃

i∈I,i′∈I′ Sol(Aii′x ≥ bii′). Again, the bounds
on the norms immediately carry over from induction hypothesis.

Case ϕ = AXψ: By the induction hypothesis, we have M(q′, ψ) =
⋃

i∈Iq′
Sol(Si,q′)

for some SLDIs Si,q′ for each q′ ∈ Q. Let us assume that Si,q′ = (Ai,q′x ≥ bi,q′) for
each i ∈ Iq′ and each q′ ∈ Q. Before giving the translation, we need to introduce some
auxiliary SLDIs S◦z and S◦xk

for each z ∈ Z, each k ∈ [] and each ◦ ∈ {<,>,≤,≥}
such that

Sol(S◦z) = {(z1, . . . , z�+1) ∈ Z
�+1 | z�+1 ◦ z} and

Sol(S◦xk
) = {(z1, . . . , z�+1) ∈ Z

�+1 | z�+1 ◦ zk}.

For z ∈ Z, we only give S◦z for ◦ =“<”, the remaining cases for ◦ can be defined

analogously. We put S<z
def
= (Ax ≥ b), where A

def
= (a1j) ∈ Z

1×(�+1) with a1j
def
= 0 if

j ∈ [] and a1(�+1)
def
= −1, and finally b

def
= (−z + 1) since over the integers we have

z�+1 < z if, and only if, z�+1 ≤ z − 1 if, and only if, −z�+1 ≥ −z + 1. Observe that
||S◦z ||mat ≤ 1, ||S◦z ||�+1 ≤ 1, and ||S◦z ||vec ≤ |z|+ 1 for each ◦ ∈ {<,>,≤,≥}.

Likewise, we define S◦xk
for ◦ =“<“, the other cases for ◦ can be dealt with

analogously. The reader easily verifies that one can define S<xi

def
= (Cx ≥ d) with

C
def
= (c1j) ∈ Z

1×(�+1) with c1j
def
= 1 if j = i, c1j

def
= −1 if j = 	 + 1, and c1j

def
= 0

otherwise. Moreover, we put d
def
= (1). Observe that ||S◦xk

||mat ≤ 1, ||S◦xk
||�+1 ≤ 1, and

||S◦xk
||vec ≤ 1 for each ◦ ∈ {<,>,≤,≥}. We now define

M(q, ϕ)
def
= Sol(S≥0) ∩

⋂

q
add(y)−→ q′∈Δ
y∈Z∪X

⎛

⎝Sol(S<y) ∪
⋃

i∈Iq′

(Sol(Si,q′)− y)

⎞

⎠ .

In the same fashion as for disjunction and conjunction, we can express the right-hand
side of the latter equality as a union of SLDIs. Note that in this modification process
the number of rows of the matrix may change, but neither do the norms of the matrices
nor the norms of the vectors of the systems. The reader easily verifies that the || · ||mat,
|| · ||�+1, and || · ||vec norms of each auxiliary SLDI satisfy the bounds required by the
lemma. Hence, in order to bound the norms of the SLDI that occur in the final union, it

Branching-Time Model Checking of Parametric One-Counter Automata 415

suffices to bound the norms of each SLDI S such that Sol(S) = Sol(Si,q′)−y for some

q′ ∈ Q, some i ∈ Iq′ and some q
add(y)−−−−→ q′ ∈ Δ, where y ∈ Z ∪ X . To this end, we

apply Lemma 3 by distinguishing between y ∈ Z and y ∈ X .
If y = xk for some k ∈ [], i.e. y ∈ X , we obtain the following bounds by Point (1)

of Lemma 3:

– ||S||mat

Lemma 3 (1)
≤ ||Ai,q′ ||+ ||Ai,q′ ||�+1

IH≤ |ψ|+ 1 = |ϕ|,
– ||S||�+1

Lemma 3 (1)
= ||Ai,q′ ||�+1

IH≤ 1, and

– ||S||vec
Lemma 3 (1)

= ||bi,q′ || IH≤ (nmax(A) + 1) · |ψ| ≤ (nmax(A) + 1) · |ϕ|
In case y ∈ Z, we obtain the following by Point (2) of Lemma 3:

– ||S||mat
Lemma 3 (2)

= ||Ai,q′ ||
IH≤ |ψ| ≤ |ϕ|,

– ||S||�+1
Lemma 3 (2)

= ||Ai,q′ ||�+1

IH≤ 1, and

– ||S||vec

Lemma 3 (2)
≤ ||bi,q′ || + ||Ai,q′ ||�+1 · |y|

IH≤ (nmax(A) + 1) · |ψ| + 1 · nmax(A) ≤
(nmax(A) + 1) · |ϕ|

Case ϕ = EXψ. By induction hypothesis, we have M(q′, ψ) =
⋃

i∈Iq′
Sol(Si,q′) for

some SLDIs Si,q′ for each q′ ∈ Q. Let us assume that Si,q′ = (Ai,q′x ≥ bi,q′) for each
i ∈ Iq′ and each q′ ∈ Q. We define

M(q, ϕ)
def
= Sol(S≥0) ∩

⎛

⎜
⎝

⋃

q
add(y)−→ q′∈Δ

⋃

i∈Iq′

(Sol(Si,q′)− y)

⎞

⎟
⎠ .

The analysis of the sizes of the norms can be proven analogously as for the case ϕ =
AXψ. ��
The following lemma from [19] states that solvable SLDIs have small solutions whose
norm is independent on the number of rows of the SLDI.

Lemma 5 ([19], p. 239). Each solvable SLDI Ax ≥ b has a solution of norm at most
poly(||A||+ ||b||).
Let us return to our original formula α. By Lemma 4, there exists some SLDI Si such
that M(q0, α) = Sol(Si), and where ||Si||mat ≤ |α| and ||Si||vec ≤ (nmax(A) + 1) · |α|.
Since we are interested if (T (Aν), q0(0)) |= α for some ν : X → Z, think of adding to
each matrix that occurs in Si two more rows expressing that x�+1 = 0. Let us call the
resulting SLDI S ′

i. By Lemma 5, we know that if S ′
i is solvable, then S ′

i has a solution
of norm at most poly(nmax(A) + |α|). In other words, if (T (Aν), q0(0)) |= α for some
ν : X → Z, then (T (Aμ), q0(0)) |= α already holds for some μ : X → Z and μ(x) is
polynomially bounded in |A|+ |α| for each x ∈ X .

Hence, we obtain the following theorem.

Theorem 6. ML model checking for POCA is in PSPACE.

416 S. Göller et al.

q0 •

add(21)

add(0)
•

add(22)

add(0)
· · · • •

add(2n)

add(0)

q1 A1

Anqn

...

add(0)

add(0)

Fig. 2. SOCA A constructed for simulating the QBF formula α

4 Model Checking SOCA

In this section we prove that model checking ML on SOCA is PSPACE-hard (Section
4.1) and that model checking EF on SOCA is in PSPACE (Section 4.2).

4.1 Model Checking ML on SOCA

PSPACE-hardness of ML model checking on SOCA follows from a straight-forward
reduction from QBF.

Proposition 7. Model checking ML on SOCA is PSPACE-hard.

Proof. We give a reduction from QBF. Let α = ∃x1∀x2 · · · ∃xnβ(x1, . . . , xn) be an
instance of QBF. Without loss of generality, we can assume that β is in 3-CNF, i.e.,
of the form β =

∧
i∈[m] βi, where each clause βi consists of three literals, so βi =

(i1 ∨ 	i2 ∨ 	i3). We construct in polynomial time a SOCA A = (Q,P, λ,Δ) and
an ML formula ϕ such that for some q0 ∈ Q we have that α is valid if, and only if,

(T (A), q0(0)) |= ϕ. We define P
def
= {pi | i ∈ [n]}. The states and transitions of A are

given in Figure 2, where the SOCA Ai is taken from Figure 1. Finally, we define ϕ to
be the ML formula that is obtained by replacing each ∃xi from α with EX, each ∀xi
with AX, and each literal 	ij with EXn+2pij if 	ij = xij and ¬EXn+2pij if 	ij = xij .
It is easily verified that α is valid if, and only if, (T (A), q0(0)) |= ϕ. ��

4.2 Model Checking EF on SOCA

In this section, we are going to show that EF model checking on SOCA is in PSPACE,
and hence PSPACE-complete by Proposition 7. To this end, let us fix some SOCA A =
(Q,P, λ, δ). Our result is based on the following lemma, which expresses periodicity
properties of reachability relations in A.

Lemma 8. There are naturals τ, ε, δ = exp(|A|) with ε ≥ nmax(A) such that for each
n, n′,m,m′ > τ with n ≡ n′ mod δ and m ≡ m′ mod δ the following statements hold
for each q, q′ ∈ Q:

Branching-Time Model Checking of Parametric One-Counter Automata 417

(1) If m+ ε < n and m′ + ε < n′, then q(n) −→∗
A q′(m) if, and only if, q(n′) −→∗

A
q′(m′).

(2) If m > n+ ε and m′ > n′ + ε, then q(n) −→∗
A q′(m) if, and only if, q(n′) −→∗

A
q′(m′).

Section 4.3 will be devoted to sketching a proof of Lemma 8. Assume the constants τ ,
ε and δ from Lemma 8 to be fixed for the rest of this section. Let us define M(q, ϕ) =
{n ∈ N : (T (A), q(n)) |= ϕ} for each control state q ∈ Q and each EF formula ϕ over
P. For the PSPACE upper bound, we will show that M(q, ϕ) is ultimately periodic with
period δ.

Lemma 9. If n ≡ n′ mod δ, then n ∈ M(q, ϕ) if, and only if, n′ ∈ M(q, ϕ), for each
control state q ∈ Q, each EF formula ϕ over P and each n, n′ > τ + |ϕ| · ε+ δ.

Proof. Without loss of generality assume n′ > n. We show (T (A), q(n)) |= ϕ if, and
only if, (T (A), q(n + δ)) |= ϕ by induction on |ϕ|, from which the statement will
follow. We only consider the most interesting cases ϕ = EXϕ′ and ϕ = EFϕ′, the other
cases are easy.

If ϕ = EXϕ′, we have (T (A), q(n)) |= ϕ if, and only if, there is some q′ ∈ Q and

z ∈ Z such that q
add(z)−→ q′ ∈ Δ and (T (A), q′(n+z)) |= ϕ′. Since n+z > τ+|ϕ′|·ε+δ,

the induction hypothesis yields (T (A), q′(n+ z)) |= ϕ′ if, and only if, (T (A), q′(n+
z + δ)) |= ϕ′. Hence (T (A), q(n)) |= EXϕ′ if, and only if, (T (A), q(n+ δ)) |= EXϕ′.

If ϕ = EFϕ′, we have (T (A), q(n)) |= ϕ if, and only if, there are q′ ∈ Q, m ∈ N

and � such that � : q(n) −→∗
A q′(m) and (T (A), q(m)) |= ϕ′. Suppose m > τ +

|ϕ′| · ε + δ and no counter value less than δ occurs along �, so in particular there is
no zero test along �. The induction hypothesis yields (T (A), q(m + δ)) |= ϕ′, and by
shifting � by δ the existence of a path �′ : q(n + δ) −→∗

A q(m + δ) follows, hence
(T (A), q(n + δ)) |= EFϕ′. Otherwise, if m ≤ τ + |ϕ′| · ε + δ or a counter value less
than δ occurs along �, Lemma 8, Point (1) guarantees that q(n) →∗

A q′(m) if, and only
if, q(n+ δ) →∗

A q′(m), which again allows us to conclude that (T (A), q(n)) |= EFϕ′.
The direction (T (A), q(n)) |= ϕ implies (T (A), q(n+ δ)) |= ϕ follows analogously.

��
Theorem 10. EF model checking of SOCA is PSPACE-complete.

Proof. PSPACE-hardness has already been established in Section 4.1. For the upper
bound, Algorithm 1 is an alternating algorithm that decides (T (A), q(n)) |= ϕ in
PSPACE. For brevity, the cases ϕ = AXϕ′ and ϕ′ = AGϕ′ have been left out, they
are defined complementary to their EX respectively EF counterparts. We only sketch
correctness of the case ϕ = EFϕ′ by induction on |ϕ|, all other cases are obviously cor-
rect. Let m = max{n+ ε+ δ, τ + |ϕ′| · ε+ δ}. Suppose T (A), q(n)) |= EFϕ′, there is
some q′(n′) such that q(n) −→∗

A q′(n′) and (T (A), q′(n′)) |= ϕ′. If n′ > m, Lemma
9 guarantees that there is n′′ ∈ [0,m] such that T (A), q′(n′′)) |= ϕ′, and Lemma 8,
Point (2) yields q(n) −→∗

A q′(n′′), which by Proposition 1 can be checked in NP. By
the induction hypothesis, Algorithm 1 returns true on input q′(n′′) and ϕ′, which con-
cludes the correctness proof. ��

418 S. Göller et al.

Algorithm 1. Fragment of the EF SOCA model checking algorithm
Input: EF formula ϕ, configuration q(n) of A

case ϕ = p: return p ∈ λ(q)
case ϕ = ¬p: return p /∈ λ(q)
case ϕ = ϕ1 ∧ ϕ2: return (T (A), q(n)) |= ϕ1 and (T (A), q(n)) |= ϕ2

case ϕ = ϕ1 ∨ ϕ2: return (T (A), q(n)) |= ϕ1 or (T (A), q(n)) |= ϕ2

case ϕ = EXϕ′: existential move:
choose q

op−→ q′ ∈ Δ
case op = add(z): return (T (A), q′(n+ z)) |= ϕ′

case op = zero and n = 0: return (T (A), q′(0)) |= ϕ′

case ϕ = EFϕ′: existential move:
choose q′(m) such that q(n) −→∗

A q′(m) and m ∈ [0,max{n+ε+δ, τ+|ϕ′|·ε+δ}]
return (T (A), q′(m)) |= ϕ′

4.3 Proof Sketch of Lemma 8

In this section, we give a proof sketch of Lemma 8 which was left open in the previous
section. The technical details are deferred to a full version of this paper.

On a technical level, it is helpful to view SOCA as weighted graphs, an approach
also used in [9]. Given a SOCA A, its corresponding weighted graphGA is obtained by
removing all zero-labeled edges from A, and for every edge labeled with add(z), GA
has an edge labeled with z. Thus, we can assign any path π in GA a weight w(π) and
a drop d(π), which is the smallest weight of all prefixes of π. This allows us to relate
runs in T (A) with paths in GA: there is a zero-test free run q(n) −→∗

A q′(n′) if, and
only if, there is a path π from q to q′ in GA with w(π) = n′ − n and d(π) ≥ −n.

Let us fix a SOCA A and its corresponding graphG. In order to prove the periodicity
properties expressed in Lemma 8, we will use cycles in G in order to construct paths
whose weight is periodic for some period δ. For a start, let us concentrate on cycles
in G with negative weight. Given a strongly connected component (SCC) S in G, we
define gcdS as greatest common divisor of the set of all weights of all loop-free cycles
in S. Note that gcdS = exp(|A|). It is easy to check that gcdS divides the weight of
every cycle that runs through S, so gcdS could potentially serve as a period. However,
if the weights of all cycles in S have the same sign, we cannot necessarily construct
a cycle whose weight is an arbitrary multiple of gcdS. For example, let {5, 7} be the
set of all weights of simple cycles in some SCC S with S = {q} for some q ∈ Q. We
have gcdS = 1, however there is no cycle π in S with, say, w(π) = 23. This obstacle
is related to the Frobenius problem, which is stated as follows [21]: given x1 < . . . <
xn ∈ N such that gcd{x1, . . . , xn} = 1, what is the largest g ∈ N such that g cannot
be represented as non-negative integer linear combination of the xi. It is shown in [21]
that g < x2n. Thus in our example, this fact guarantees that there is a q-cycle π with
w(π) = m for every m ≥ 49. The preceding observations allow us to conclude that
once a certain threshold is crossed, we have periodicity of weights of cycles in an SCC.

Lemma 11. There exists a local threshold γ ∈ N such that γ = exp(|A|) and for all
w,w′ < −γ and q ∈ Q such that w ≡ w′ mod (gcdS) for some SCC S such that

Branching-Time Model Checking of Parametric One-Counter Automata 419

q ∈ S, whenever there exists a q-cycle π with w(π) = w then there exists q-cycle π′

with w(π′) = w′ and d(π′) ≥ w(π′)− γ.

Proving this lemma involves some tedious analysis of paths in G, but it is not too com-
plicated. Note that the drop of π′ does not get too large. We can now generalise Lemma
11 to arbitrary paths, and we define the global period δ as the least common multi-
ple of gcdS of all SCCs in G. It is easily checked that δ = exp(|A|). Now consider
an arbitrary q-q′ path π in G with negative weight. If we find a q′′-cycle π′ along π
with w(π′) < −γ, we can invoke Lemma 11 in order to obtain a q′′-cycle π′′ with
w(π′) ≡ w(π′′) mod δ. Thus, by using a counting argument on the number of control
locations of A, we can define a global threshold ε = exp(|A|) that guarantees the ex-
istence of such a cycle. This allows us to state a variant of Lemma 11 for arbitrary paths:

Lemma 12. For all w,w′ ∈ Z such that w,w′ < −ε and w ≡ w′ mod δ, whenever
there exists a q-q′ path π with w(π) = w then there exists a q-q′ path π′ with w(π′) =
w′ and d(π′) ≥ w(π′)− γ.

We can now “re-import” the observations made for paths in weighted graphs to paths

in T (A) and sketch how to prove Lemma 8. To this end, we define τ
def
= 2ε. Regarding

Point 1 of the lemma, we have that min{n, n′} − min{m,m′} > ε. Lemma 12 thus
guarantees the existence of a path π with w(π) = n−m if, and only if, there is a path
π′ with w(π′) = n′ −m′. Since d(π) ≥ w(π) − τ and m > τ , the existence of a run
q(n) −→∗

A q′(m) is guaranteed. The same argument yields a run q(n′) −→∗
A q′(m′).

Finally regarding Point 2, by using a symmetry argument, we can get a similar statement
as in Lemma 12 for paths with positive weight that exceed ε. The existence of the
desired runs then follows from an argument similar to Point 1.

5 Conclusion

We have strengthened our results from [6] and have proved that model checking the
CTL fragment EF on POCA is undecidable via reduction from Hilbert’s tenth prob-
lem. We showed that, when dropping the reachability modality, we regain decidability:
Model checking ML on POCA is PSPACE-complete, which was proved by showing
the existence of small solutions for a class of systems of linear Diophantine inequalities
whose matrix norm is small. We showed that it is also PSPACE-complete to model
check EF on SOCA by establishing an exponential periodicity property. It is inter-
esting to mention that, in contrast to CTL, one can avoid an exponential complexity
jump for EF and ML when model checking SOCA. More precisely, model checking
EF (respectively ML) is PNP-complete (respectively P-complete) on OCA, whereas it
is PSPACE-complete for SOCA.

References

1. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with Lists
are Counter Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–
531. Springer, Heidelberg (2006)

420 S. Göller et al.

2. Bozga, M., Iosif, R.: On Decidability within the Arithmetic of Addition and Divisibility.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 425–439. Springer, Heidelberg
(2005)

3. Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588.
Springer, Heidelberg (2006)

4. Chitic, C., Rosu, D.: On validation of xml streams using finite state machines. In: Proc. of
WebDB, pp. 85–90. ACM, New York (2004)

5. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arith-
metic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

6. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model Checking Succinct and Parametric
One-Counter Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg
(2010)

7. Göller, S., Lohrey, M.: Branching-time Model Checking of One-counter Processes. In: Proc.
of STACS. LIPIcs, vol. 5, pp. 405–416. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010)

8. Göller, S., Mayr, R., To, A.W.: On the Computational Complexity of Verifying One-Counter
Processes. In: Proc. of LICS, pp. 235–244. IEEE Computer Society (2009)

9. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in Succinct and Paramet-
ric One-Counter Automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

10. Hague, M., Lin, A.W.: Model Checking Recursive Programs with Numeric Data Types. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer,
Heidelberg (2011)

11. Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applica-
tions. Theor. Comput. Sci. 352(1), 342–346 (2006)

12. Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way
counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP
1993. LNCS, vol. 700, Springer, Heidelberg (1993)

13. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state
processes. Theor. Comput. Sci. 258(1-2), 409–433 (2001)

14. Lange, M.: Model checking propositional dynamic logic with all extras. J. Applied
Logic 4(1), 39–49 (2006)

15. Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A., Tsay,
Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)

16. Matiyasevich, Y.: Enumerable sets are Diophantine. Soviet Math. Dokl. 11, 354–357 (1970)
17. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory

of Turing machines. Annals of Mathematics. Second Series 74, 437–455 (1961)
18. Robinson, J.: Definability and Decision Problems in Arithmetic. J. Symbolic Logic 14(2),

98–114 (1949)
19. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York

(1986)
20. Serre, O.: Parity Games Played on Transition Graphs of One-Counter Processes. In: Aceto,

L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Hei-
delberg (2006)

21. Shallit, J.: The Frobenius Problem and its Generalizations. In: Ito, M., Toyama, M. (eds.)
DLT 2008. LNCS, vol. 5257, pp. 72–83. Springer, Heidelberg (2008)

22. To, A.W.: Model Checking FO(R) over One-Counter Processes and beyond. In: Grädel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 485–499. Springer, Heidelberg (2009)

	Branching-Time Model Checking
of Parametric One-Counter Automata
	Introduction
	Preliminaries
	Model Checking POCA
	Model Checking EF on POCA
	Model Checking ML on POCA

	Model Checking SOCA
	Model Checking ML on SOCA
	Model Checking EF on SOCA
	Proof Sketch of Lemma 8

	Conclusion
	References

