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Abstract. UML Class Diagrams (UCDs) are the best known class-based
formalism for conceptual modeling. They are used by software engineers
to model the intensional structure of a system in terms of classes, at-
tributes and operations, and to express constraints that must hold for
every instance of the system. Reasoning over UCDs is of paramount im-
portance in design, validation, maintenance and system analysis; how-
ever, for medium and large software projects, reasoning over UCDs may
be impractical. Query answering, in particular, can be used to verify
whether a (possibly incomplete) instance of the system modeled by the
UCD, i.e., a snapshot, enjoys a certain property. In this work, we study
the problem of querying UCD instances, and we relate it to query answer-
ing under guarded Datalog±, that is, a powerful Datalog-based language
for ontological modeling. We present an expressive and meaningful class
of UCDs, named Lean UCD, under which conjunctive query answering
is tractable in the size of the instances.

1 Introduction

Developing complex systems requires accurate design and early prototyping. To
avoid the cost of fixing errors at later stages of a project, system designers use
models of the final system to negotiate the system design, ensure all resulting
requirements, and rule out unintended behavior manifesting itself during the
system’s lifetime. Models are also of paramount importance for software mainte-
nance and for recovering the structure of a legacy and undocumented software.

UML Class Diagrams. The Unified Modeling Language (UML)1 is one of the
major tools for the design of complex systems such as software, business processes
and even organizational structures. UML models were proposed by the Object
Modeling Group (OMG) to diagrammatically represent the static and dynamic,
e.g., behavioral aspects of a system, as well as the use cases the system will
operate in. More specifically, UML class diagrams (UCDs) are widely used to
represent the classes (types or entities) of a domain of interest, the associations
(relationships) among them, their attributes (fields) and operations (methods).

1 http://www.omg.org/spec/UML/2.4.1/
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Fig. 1. A UCD which is not fully satisfiable

UCDs for complex projects become very large. Therefore, reasoning tasks such
as verifying that a UCD is satisfiable, meaning that the model is realizable, can
easily become unfeasible in practice. As a consequence, it is critical to adopt
automated procedures to reason on the diagrams and to ensure that the final
system will behave as planned.

When a UCD models a software system, the typical reasoning tasks include
the following (see [7,37] for additional reasoning tasks):

1. Checking for satisfiability (or consistency) of the UCD, i.e., checking whether
the class diagram admits at least one instantiation, that is, an instance of
the system modeled by the UCD that satisfies the diagram.

2. Checking for full satisfiability (or strong consistency) of the UCD, i.e., check-
ing whether the class diagram admits at least one instantiation where all
classes and associations are non-empty. For example, consider the UCD G
of Figure 1, which expresses that each student is a worker, and also that
students and workers are disjoint sets of persons. It is easy to see that G is
satisfiable, but not fully satisfiable since the class Student must be empty.

3. Querying the UCD, i.e., verifying whether a given property — expressed as
a query — holds for a given instance of the system modeled by the UCD.
This is the reasoning task that we address in this work.

(Full) Satisfiability of UCDs. The seminal work by Berardi et al. [7] estab-
lished that reasoning on UCDs is hard. In fact, even satisfiability of UCDs is
exptime-complete w.r.t. the size of the given diagram. The exptime-hardness
is obtained by a reduction from the problem of checking the satisfiability of a
concept in ALC KBs [23,26]. The exptime membership is obtained by providing
a polynomial translation of UCD constructs to DLRifd KBs [16].

The above results have been refined and extended to full satisfiability of UCDs
by Artale et al. [2] and Kaneiwa et al. [30]; upper (resp., lower) bounds are
obtained by a reduction to (resp., from) satisfiability of UCDs. In [2], classes of
UCDs were identified for which statisfiability is np-complete and nlogspace-
complete by restricting the constructs allowed in the diagrams. In [30], it has also
been shown that there exists a fragment of UCDs for which full satisfiability is
in ptime. Moreover, in the same paper, a fragment of UCDs has been identified
that allows to check satisfiability in constant time, since the expressive power of
its constructs is not enough to capture any unsatisfiable UCD.
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Fig. 2. The UCD of Example 1

Despite its expressiveness, the language of UCDs is often insufficient to express
all constraints the designer would like to enforce. For this reason, the OMG
consortium devised the Object Constraint Language (OCL)2, which allows for
expressing arbitrary constraints on UCDs. OCL is a powerful language, but is
not widely adopted due to its complex syntax and ambiguous semantics.

Example 1. Consider the UCD shown in Figure 2 which represents the fact that
part-time students are, at the same time, workers and regular students. However,
the fact that whenever a student is also a worker, then necessarily (s)he must
be a part-time student, cannot be expressed using UCDs. We can express such
a constraint using the FOL expression

∀X Student(X) ∧Worker (X)→ PTStudent(X).

Note that the FOL constraint above corresponds to the OCL expression

context PTStudent inv:

Student.allInstances -> forAll ( s: Student |

Worker.allInstances -> forAll ( w: Worker |

s=w implies c.oclIsTypeOf(PTStudent)

)

)

For OCL syntax and semantics we refer the interested reader to [39].

Reasoning on UML with OCL constraints is considerably harder. It is well known
that satisfiability of UCDs extended with OCL constraints is undecidable since
it amounts to checking satisfiability of arbitrary first-order formulas. Following
Queralt et al. [36,38], the approaches can be classified into three families:

1. Unrestricted OCL constraints without guaranteeing termination, except for
specific cases [24,37].

2. Unrestricted OCL constraints with terminating, but incomplete reasoning
procedures [8,9,28,40].

3. Restricted classes of OCL constraints with both terminating and complete
reasoning procedures [38].

2 http://www.omg.org/spec/OCL/2.3/

http://www.omg.org/spec/OCL/2.3/
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Fig. 3. UCD for the trading scenario

Querying UCDs. UCD satisfiability is an intensional property as it depends
only on the class diagram and the OCL constraints, without involving any in-
stance of the system modeled by the UCD. On the other hand, in many cases
it is useful to reason over instances together with the diagram. For example,
a typical task in specification recovery [20] is the reconstruction of a model of
an unknown system involving low-level information obtained directly from a
running instance of the system. The analyst usually starts from a partial speci-
fication (i.e., a UCD) and refines it based on information provided by instances,
e.g., by verifying that they are consistent with the specification, and by adjust-
ing the specification when they are not. However, instance-data collected during
the analysis is partial but poorly structured. As a consequence they can easily
become very large, emphasizing the importance of having procedures that are
capable of handling very large instances. In this setting, query answering is a
very useful tool for checking whether a property, not expressible diagrammati-
cally, holds. More formally, given an instance D of a system modeled by a UCD
G, we can verify whether a property, represented as a query q, holds by check-
ing whether q is a logical consequence of D and G. This problem is known, in
the knowledge representation (resp., database) community, as ontological query
answering (resp., query answering over incomplete databases).

Example 2. Consider the UCD of Figure 3 representing a simplified high-
frequency trading system. The diagram models companies and the associated
stocks together with board members and stakeholders. The conjunctive query

Conflict ← Person(P ),Company(C1),Company(C2), Stock(S),
BoardMember (P,C1),Owns(P, S),Has(C2, S),
Competes(C1, C2)

can be used to detect whether the system allows persons to be, at the same time,
in the board of a company and owners of shares of a competing company, and
are therefore operating in a conflict of interest.

Conjunctive query answering under UCDs and OCL constraints is undecidable
in its general form, and has been addressed mainly by reducing it to answering
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queries in known formalisms such as Prolog [21,41]. Decidable fragments of UCDs
have been identified by comparing their expressive power with that of known
description logics [3,14,18]. By leveraging on the results of Berardi et al. [7],
Calvanese et al. [15] and Lutz [33], it is easy to see that the combined complexity
of conjunctive query answering over UCDs (without OCL constraints), that is,
the complexity w.r.t. the combined size of the the query, the system instance, and
the corresponding diagram, is decidable and exptime-complete; this is shown by
a reduction from conjunctive query answering under ALC KBs, and a reduction
to conjunctive query answering under DLRf,id KBs. Calvanese et al. [18] showed
the conp-completeness w.r.t. data complexity, i.e., the complexity calculated by
considering only the system instance as part of the input, while the query and
the diagram are considered fixed. Artale et al. [3] established that fragments

of UCDs are captured by the description logic DL-Lite
(HN )
horn , for which query

answering is np-complete w.r.t. combined complexity, and in ac0 w.r.t. data
complexity. This result subsumes the tractability results for restricted classes of
UCDs provided by [18].

Contributions. In this work, we study conjunctive query answering over UCDs
and (a restricted class of) OCL constraints that are instrumental to the enforce-
ment of specific assumptions that are commonly adopted for UCDs. We relate the
problem to query answering under guarded Datalog± [11], a powerful Datalog-
based ontological language under which query answering is not only decidable,
but also tractable w.r.t. data complexity. In particular, we identify an expres-
sive fragment of UCDs with a limited form of OCL constraints, named Lean
UCD, which translates into guarded Datalog±, that features tractable conjunc-
tive query answering w.r.t. data complexity.

Roadmap. After providing some preliminary notions in Section 2, we introduce
the UML class diagram formalism, and describe its semantics in terms of first-
order logic in Section 3. In Section 4, we present Lean UCD, and we study
query answering under the proposed formalism. Finally, Section 5 draws some
conclusions and delineates future research directions.

2 Theoretical Background

As we shall see, query answering under UCDs can be reduced to query answering
under relational constraints, in particular, tuple-generating dependencies. There-
fore, in this section, we recall some basics on relational instances, (Boolean) con-
junctive queries, tuple-generating dependencies, and the chase procedure relative
to such dependencies.

Alphabets.We define the following pairwise disjoint (infinite) sets of symbols: a
set Γ of constants, that constitute the “normal” domain of a database, a set ΓN of
labeled nulls, used as placeholders for unknown values, and thus can be also seen
as (globally) existentially-quantified variables, and a set ΓV of (regular) variables,
used in queries and dependencies. Different constants represent different values
(unique name assumption), while different nulls may represent the same value.
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A lexicographic order is defined on Γ∪ΓN , such that every value in ΓN follows all
those in Γ . We denote by X sequences (or sets, with a slight abuse of notation) of
variables or constants X1, . . . , Xk, with k � 0. Throughout, let [n] = {1, . . . , n},
for any integer n � 1.

Relational Model. A relational schema R (or simply schema) is a set of re-
lational symbols (or predicates), each with its associated arity. A term t is a
constant, null, or variable. An atomic formula (or simply atom) has the form
r(t1, . . . , tn), where r is an n-ary relation and t1, . . . , tn are terms. Conjunctions
of atoms are often identified with the sets of their atoms. A relational instance
(or simply instance) I for a schema R is a (possibly infinite) set of atoms of the
form r(t), where r is an n-ary predicate of R and t ∈ (Γ ∪ ΓN )n. A database is
a finite relational instance.

Substitutions and Homomorphisms.A substitution from one set of symbols
S1 to another set of symbols S2 is a function h : S1 → S2 defined as follows: ∅ is
a substitution (empty substitution), and if h is a substitution, then h∪{X → Y }
is a substitution, where X ∈ S1 and Y ∈ S2. If X → Y ∈ h, then we write
h(X) = Y . A homomorphism from a set of atoms A1 to a set of atoms A2 is a
substitution h from the set of terms of A1 to the set of terms of A2 such that:
if t ∈ Γ , then h(t) = t, and if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) =
r(h(t1), . . . , h(tn)) is in A2.

(Boolean) Conjunctive Queries. A conjunctive query (CQ) q of arity n over
a schema R, written as q/n, is an assertion the form q(X) ← ϕ(X,Y), where
ϕ(X,Y) is a conjunction of atoms over R, and q is an n-ary predicate that does
not occur in R. ϕ(X,Y) is called the body of q, denoted as body(q). A Boolean
conjunctive query (BCQ) is a CQ of arity zero. The answer to a CQ q/n over
an instance I, denoted as q(I), is the set of all n-tuples t ∈ Γn for which there
exists a homomorphism h : X ∪ Y → Γ ∪ ΓN such that h(ϕ(X,Y)) ⊆ I and
h(X) = t. A BCQ has only the empty tuple 〈〉 as possible answer, in which case
it is said that has positive answer. Formally, a BCQ has positive answer over I,
denoted as I |= q, iff 〈〉 ∈ q(I), or, equivalently, q(I) �= ∅.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ
over a schema R is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms over R, called the body and
the head of σ, and denoted as body(σ) and head(σ), respectively. Such σ is
satisfied by an instance I for R, written as I |= σ, iff, whenever there exists a
homomorphism h such that h(ϕ(X,Y)) ⊆ I, then there exists an extension h′ of
h, i.e., h′ ⊇ h, such that h′(ψ(X,Z)) ⊆ I. We write I �|= σ if I violates σ. Given
a set of TGDs Σ, we say that I satisfies Σ, denoted as I |= Σ, iff I satisfies all
the TGDs of Σ. Conversely, we say that I violates Σ, written as I �|= Σ, iff I
violates at least one TGD of Σ.

Query Answering under TGDs. Given a database D for a schema R, and
a set of TGDs Σ over R, the answers we consider are those that are true in all
models of D w.r.t. Σ, i.e., all instances that contain D and satisfy Σ. Formally,
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the models of D w.r.t. Σ, denoted as mods(D,Σ), is the set of all instances I
such that I |= D ∪ Σ. The answer to a CQ q/n w.r.t. D and Σ, denoted as
ans(q,D,Σ), is the set of n-tuples {t | t ∈ q(I), for each I ∈ mods(D,Σ)}.
The answer to a BCQ q w.r.t. D and Σ is positive, denoted as D ∪ Σ |= q, iff
〈〉 ∈ ans(q,D,Σ), or, equivalently, ans(q,D,Σ) �= ∅.

Given a CQ q/n over a schema R, a database D for R, a set Σ of TGDs
over R, and an n-tuple t ∈ Γn, CQAns is defined as the problem whether
t ∈ ans(q,D,Σ). In case that q is a BCQ (and thus, t is the empty tuple
〈〉), the above problem is called BCQAns. Notice that these two problems under
general TGDs are undecidable [6], even when the schema and the set of TGDs
are fixed [10], or even when the set of TGDs is restricted to a single rule [4].
Following Vardi’s taxonomy [42], the data complexity of the above problems is
the complexity calculated taking only the database as input, while the query
and the set of dependencies are considered fixed. The combined complexity is
the complexity calculated considering as input, together with the database, also
the query and the set of dependencies.

It is well-known that the above decision problems are logspace-equivalent;
this result is implicit in [19], and stated explicitly in [10]. Henceforth, we thus
focus only on BCQAns, and all complexity results carry over to CQAns.

The TGD Chase Procedure. The chase procedure (or simply chase) is a
fundamental algorithmic tool introduced for checking implication of dependen-
cies [34], and later for checking query containment [29]. Informally, the chase
is a process of repairing a database w.r.t. a set of dependencies so that the re-
sulted instance satisfies the dependencies. By abuse of terminology, we shall use
the term “chase” interchangeably for both the procedure and its result. The
building block of the chase procedure is the so-called TGD chase rule.

Definition 1 (TGD Chase Rule). Consider an instance I for a schema R,
and a TGD σ : ϕ(X,Y)→ ∃Zψ(X,Z) over R. If σ is applicable to I, i.e., there
exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I, but there is no extension
h′ of h (i.e., h′ ⊇ h) that maps ψ(X,Z) to I, then: (i) define h′ ⊇ h such
that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null not
introduced before, and following lexicographically all those introduced so far, and
(ii) add to I the set of atoms in h′(ψ(X,Z)), if not already in I.

Given a database D and a set Σ of TGDs, the chase algorithm for D w.r.t. Σ
consists of an exhaustive application of the TGD chase rule, which leads to a
(possibly infinite) instance denoted as chase(D,Σ). We assume that the chase
algorithm is fair, i.e., each TGD that must be applied during the construction
of chase(D,Σ) is eventually applied.

Example 3. Consider the set Σ constituted by the TGDs σ1 : ∀X,Y r(X,Y ) ∧
s(Y ) → ∃Z r(Z,X) and σ2 : ∀X,Y r(X,Y ) → s(X). Let D be the database
{r(a, b), s(b)}. During the chase of D w.r.t. Σ, we first apply σ1 and we add
the atom r(z1, a), where z1 ∈ ΓN . Also, σ2 is applicable and we add the atom
s(a). Now, σ1 is applicable and the atom r(z2, z1) is obtained, where z2 ∈ ΓN .
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Then, σ2 is applicable and the atom s(z1) is generated. It is straightforward to
see that there is no finite chase. Satisfying both TGDs σ1 and σ2 would require
to built the infinite instance {r(a, b), s(b), r(z1, a), s(a), r(z2, z1), s(z1), r(z3, z2),
s(z2), . . .}, where, for each i > 0, zi ∈ ΓN .

The fact that the chase algorithm is fair allows us to show that chase of a
database D w.r.t. a set of TGDs Σ is a universal model of D w.r.t. Σ, i.e.,
for each I ∈ mods(D,Σ), there exists a homomorphism from chase(D,Σ) to
I [22,25]. Using this fact it can be shown that the chase is a useful tool for query
answering under TGDs. More precisely, the problem whether the answer to a
BCQ q is positive w.r.t. a database D and a set of TGDs Σ, is equivalent to the
problem whether q is entailed by the chase of D w.r.t. Σ.

Theorem 1 ([22,25]). Consider a BCQ q over a schema R, a database D for
R, and a set Σ of TGDs over R. D ∪Σ |= q iff chase(D,Σ) |= q.

Guarded Datalog±. Since query answering under TGDs is undecidable, several
classes of TGDs have been proposed under which the problem becomes decidable,
and even tractable w.r.t. data complexity (see, e.g., [4,25,31]). In particular,
Datalog± [12] is a family of languages for ontological modeling based on classes
of TGDs under which query answering is decidable and, in almost all cases,
tractable w.r.t. data complexity. Datalog± proved to be a valid alternative to
description logics in many database and knowledge management applications.

A member of the Datalog± family which is of special interest for our work
is guarded Datalog± [10,11]. A TGD σ is guarded if it has a body-atom which
contains all the universally quantified variables of σ. Such atom is called the
guard atom (or simply guard) of σ. The non-guard atoms are the side atoms
of σ. For example, the TGD r(X,Y ), s(Y,X,Z) → ∃Ws(Z,X,W ) is guarded
(via the guard s(Y,X,Z)), while the TGD r(X,Y ), r(Y, Z) → r(X,Z) is not
guarded. Note that sets of guarded TGDs (with single-atom heads) are theories
in the guarded fragment of first-order logic [1].

As shown in [10], the chase constructed under a set of guarded TGDs has
finite treewidth, which, intuitively speaking, means that the chase is a tree-
like structure. This is exactly the reason why query answering under guarded
TGDs is decidable. The data and combined complexity of query answering under
guarded TGDs have been investigated in [11] and [10], respectively.

Theorem 2 ([10,11]). BCQAns under guarded TGDs is ptime-complete w.r.t.
data complexity, exptime-complete in the case of bounded arity, and 2exptime-
complete w.r.t. combined complexity.

3 UML Class Diagrams

As already mentioned in Section 1, UML class diagrams (UCDs) describe the
static structure of a system by showing the system’s classes, their attributes and
operations, and the relationships among the classes. In this section, we describe
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Fig. 4. Class representation

the semantics of each construct of UCDs in terms of first-order logic (FOL)
generalized by counting quantifiers. The formalization adopted in this paper is
based on the one presented in [30].

Classes. A class is graphically represented as shown in Figure 4, i.e., as a
rectangle divided into three parts. The top part contains the name of the class
which is unique in the diagram, the middle part contains the attributes of the
class, and the bottom part contains the operations of the class, that is, the
operations associated to the instances of the class. Note that both the middle
and the bottom part are optional.

An attribute assertion of the form a[i..j] : T states that the class C has
an attribute a of type3 T , where the optional multiplicity [i..j] specifies that a
associates to each instance of C at least i and at most j instances of T . When
there is no lower (resp., upper) bound on the multiplicity, the symbol 0 (resp.,
∞) is used for i (resp., j). Notice that attributes are unique within a class.
However, different classes may have attributes with the same name, possibly
with different types.

An operation of a class C is a function from the instances of C, and possibly
additional parameters, to objects and values. An operation assertion of the form
f(T1, . . . , Tn) : T asserts that the class C has an operation f with n � 0 param-
eters, where its i-th parameter is of type Ti and its result is of type T . Let us
clarify that the class diagram represents only the signature, that is, the name of
the functions as well as the number and the types of their parameters, and the
type of their result. The actual behavior of the function, which is not part of
the diagram, can be represented using OCL constraints. Notice that operations
are unique within a class. However, different classes may have operations with
the same name, possibly with different signature, providing that they have the
same number of parameters.

We are now ready to give the formal translation of a UML class definition
into FOL. A class C is represented by a FOL unary predicate C. An attribute
a for class C corresponds to a binary predicate a, and the attribute assertion

3 For simplicity, types, i.e., collections of values such as integers, are considered as
classes, i.e., as collections of objects.
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Fig. 5. Association representation

a[i..j] : T is translated into two FOL assertions. The first one asserts that for
each instance c of class C, an object c′ related to c by the attribute a is an
instance of T :

∀X,Y C(X) ∧ a(X,Y )→ T (Y ).

The second one asserts that for each instance c of class C, there exist at least i
and at most j different objects related to c by a:

∀X C(X)→ ∃�iZ a(X,Z) ∧ ∃�jZ a(X,Z).

If i = 0, which implies that there is no lower bound, then the corresponding
FOL assertion is of the form ∀X C(X) → ∃�jZ a(X,Z). Dually, if j = ∞,
which implies that there is no upper bound, then the obtained assertion is of the
form ∀X C(X)→ ∃�iZ a(X,Z).

An operation f , withm � 0 parameters, for class C corresponds to an (m+2)-
ary predicate f , and the operation assertion f(T1, . . . , Tm) : T is translated into
the FOL assertions

∀X,Y1, . . . , Ym, Z C(X) ∧ f(X,Y1, . . . , Ym, Z)→
∧m

i=1 Ti(Yi) ∧ T (Z),

which imposes the correct typing for the parameters and the result, and

∀X,Y1, . . . , Ym, Z1, Z2 C(X) ∧ f(X,Y1, . . . , Ym, Z1)
∧ f(X,Y1, . . . , Ym, Z2)→ Z1 = Z2,
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i.e., the operation f is a function from the instances of C and the parameters to
the result.

Associations. An association is a relation between the instances of two or more
classes, that are said to participate in the association. Names of associations are
unique in the diagram. A binary association A between two classes C1 and C2

is graphically represented as in Figure 5a. The multiplicity n�..nu specifies that
each instance of class C1 can participate at least n� times and at most nu times
to A; similarly we have the multiplicity m�..mu for C2.

Clearly, we can have also n-ary associations which relate several classes as
shown in Figure 5. As already discussed in [7], while multiplicity constraints
in binary associations appear natural, for non-binary associations they do not
correspond to an intuitive property of the multiplicity. Due to this fact, their
presence in non-binary associations is awkward to a designer, and also they
express a constraint which is (in general) too weak in practice. Therefore, in this
paper, multiplicity in non-binary associations it is assumed to be always 0..∞.
Notice that in [30] arbitrary multiplicity constraints in non-binary associations
are allowed.

An association can have an association class which describes properties of the
association such as attributes and operations. A binary association between C1

and C2 with an association class CA is graphically represented as in Figure 5c.
An n-ary association can also have an association class as depicted in Figure 5d.

Let us now give the formal translation of an association definition into FOL.
An n-ary association A corresponds to an n-ary predicate A. Assuming that A
is among classes C1, . . . , Cn, A is translated into the FOL assertion

∀X1, . . . , Xn A(X1, . . . , Xn)→
∧n

i=1 Ci(Xi).

If A has a related association class CA, then we have also the FOL assertions
(in the sequel, rn is an (n+ 1)-ary auxiliary predicate)

∀X1, . . . , Xn, Y A(X1, . . . , Xn) ∧ rn(X1, . . . , Xn, Y )→ CA(Y ),

which types the association A,

∀X1, . . . , Xn A(X1, . . . , Xn)→ ∃Z rn(X1, . . . , Xn, Z),

i.e., for each instance 〈x1, . . . , xn〉 of A, there exists at least one object related
to 〈x1, . . . , xn〉 by rn,

∀X1, . . . , Xn, Y1, Y2 A(X1, . . . , Xn) ∧ rn(X1, . . . , Xn, Y1)
∧ rn(X1, . . . , Xn, Y2)→ Y1 = Y2,

that is, for each instance 〈x1, . . . , xn〉 of A, there exists at most one object related
to 〈x1, . . . , xn〉 by rn, and

∀X1, . . . , Xn, Y1, . . . , Yn, Z rn(X1, . . . , Xn, Z) ∧ rn(Y1, . . . , Yn, Z)
∧ CA(Z)→

∧n
i=1Xi = Yi,
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Fig. 6. Association generalization

Fig. 7. Aggregation and composition

which imposes that there are no two different instances of CA that are related by
rn with the same instance of A; this rule guarantees the faithful representation
of the association A by CA, according to the original UML semantics.

Now, for a binary association A among C1 and C2 with multiplicities m�..mu

and n�..nu, we have also the FOL assertions

∀X C1(X)→ ∃�n�
Z A(X,Z) ∧ ∃�nuZ A(X,Z),

∀X C2(X)→ ∃�m�
Z A(Z,X) ∧ ∃�muZ A(Z,X).

We can also have association generalization such that an n-ary association A′

between C′
1, . . . , C

′
n generalizes the n-ary association A between C1, . . . , Cn (see

Figure 6 for the binary case). This feature is captured by the FOL assertion

∀X1, . . . , Xn A(X1, . . . , Xn)→ A′(X1, . . . , Xn).

A special kind of binary associations are aggregations and compositions, repre-
senting two different forms of whole-part or part-of relationship. An aggregation
(see Figure 7a) between two classes C1 and C2 specifies that each instance of
C2, called the contained class, is conceptually part of an instance of C1, called
the container class ; for example, a handle is part of a door. A composition (see
Figure 7b) is more specific than aggregation. Composition has a strong life cycle
dependency between instances of the container class and instances of the con-
tained class. In particular, if the container is destroyed, then each instance that
it contains is destroyed as well. Notice that the contained class of a composition
must have a multiplicity of 0..1 or 1..1. Clearly, the life cycle dependency of a
composition must be considered during the implementation phase of a system,
however it is not relevant for query answering purposes. The translation of an
aggregation and a composition into FOL is the same as the one given above for
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Fig. 8. A class hierarchy

binary associations without an association class (since aggregations and compo-
sitions have no association class).

Class Hierarchies. Similar to association generalization, one can use class
generalization to assert that each instance of a child class is also an instance of
the parent class. Several generalizations can be grouped together to form a class
hierarchy, as shown in Figure 8. Disjointness and completeness constraints can
also be enforced on a class hierarchy (graphically, by adding the labels {disjoint}
and {complete}). A class hierarchy, as the one in Figure 8, is translated into the
FOL assertions

∀X C1(X)→ C(X),
...

∀X Cn(X)→ C(X),

i.e., each instance of Ci is also an instance of C,

∀X Ci(X)→ ∧n
j=i+1 ¬Cj(X),

for each i ∈ [n− 1], which specify the disjointness constraints, and

∀X C(X)→ ∨n
i=1 Ci(X),

which specify the completeness constraints.
Sometimes, it is assumed that all classes in the same hierarchy are disjoint.

However, we do not enforce this assumption, and we allow two classes to have
common instances. When needed, disjointness can be enforced by means of FOL
assertions, called negative constraints, of the form

∀Xϕ(X)→ ⊥,
where ϕ(X) is a conjunction of atoms, and ⊥ denotes the truth constant false .
Moreover, we do not enforce the most specific class assumption, stating that
objects in a hierarchy must belong to a single most specific class. Therefore, two
classes in a hierarchy may have common instances, even though they may not
have a common subclass. When needed, the existence of the most specific class
can be enforced by means of multi-linear TGDs [11] of the form

∀X C1(X) ∧ . . . ∧ Cn(X)→ Cn+1(X),
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Fig. 9. A class hierarchy with most specific class assumption

where each Ci is a unary predicate representing a class. Observe that multi-
linear TGDs are guarded TGDs where each body-atom is a guard. Notice that
negative constraints and multi-linear TGDs can be represented using suitable
OCL constraints.

For example, besides the assertions representing the hierarchy depicted in
Figure 9 (taken from [7]), the most specific class assumption can be expressed
by the following FOL assertions:

∀X C1(X) ∧C3(X)→ ⊥
∀X C2(X) ∧C3(X)→ ⊥
∀X C1(X) ∧C2(X)→ C12(X).

4 Querying Lean UML Class Diagrams

The main goal of the present work is to study the problem of conjunctive query
answering under UCDs. In particular, we are interested to identify an expressive
fragment of UCDs which can be encoded in Datalog± so that chase-like tech-
niques (for the chase algorithm see Section 2) and known complexity results can
be employed.

In this section, we propose mild syntactic restrictions on the full version of
UCDs, presented in Section 3, in order to get a fragment with the aforementioned
desirable properties, called Lean UCD. We then study query answering under
the proposed formalism. As we shall see, given a Lean UCD G, by applying the
translation of UCDs into FOL assertions given in the previous section — in the
following we refer to this translation by τ — on G, we get FOL assertions which
have one of the following forms:

1. ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y) and ψ(X,Z) are conjunc-
tions of atoms, and ϕ(X,Y) has an atom that contains all the universally
quantified variables; recall that an assertion of this form is called guarded
TGD.
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2. ∀Xϕ(X) → Xi = Xj , where ϕ(X) is a conjunction of atoms, and both Xi

and Xj are variables of X; assertions of this form are known as equality-
generating dependencies (EGDs).

3. ∀Xϕ(X) → ⊥, where ϕ(X) is a conjunction of atoms, and ⊥ denotes the
truth constant false ; recall that assertions of this form are called negative
constraints.

The rest of this section is organized as follows. In Subsection 4.1, we formal-
ize Lean UCDs by applying a series of syntactic restrictions on UCDs. Then,
the problem of query answering under Lean UCDs is defined and studied in
Subsection 4.2.

4.1 Formalizing Lean UCDs

Lean UCDs are obtained by restricting the multiplicity of attributes and binary
associations, and by omitting completeness constraints. Formally, a UML class
diagram G is a Lean UCD if the following conditions hold:

1. For each attribute assertion of the form a[i..j] : T of G:
– i ∈ {0, 1} and j ∈ {1,∞}.

2. For each binary association A of G, either with or without an association
class (consider the binary associations depicted in Figures 5a and 5c):
– n�,m� ∈ {0, 1} and nu,mu ∈ {1,∞},
– if A generalizes some other binary association of G, then nu = mu =∞.

3. There are no completeness constraints in G.

Example 4. The Lean UCD of Figure 10 describes members of a university de-
partment working in research groups. In particular, the class hierarchy specifies
that students and professors, which are disjoint classes, are members of the de-
partment. A member of the department works in at least one research group, and
at least one departmental member works in a research group. Moreover, a pro-
fessor leads at most one research group, while a research group is led by exactly
one professor; notice that a professor works in the same group that (s)he leads.
Finally, a publication is authored by at least one member of the department.

Interestingly, the FOL assertions which represent multiplicities of attributes or
multiplicities of binary associations, obtained by applying the translation τ on
a Lean UCD G, are guarded TGDs and EGDs. More precisely, from a class C
with an attribute assertion a[i..j] : T we get FOL assertions of the form

∀X C(X)→ ∃�1Z a(X,Z) ≡ ∀X C(X)→ ∃Z a(X,Z),
∀X C(X)→ ∃�1Z a(X,Z) ≡ ∀X,Y, Z C(X) ∧ a(X,Y ) ∧ a(X,Z)→ Y = Z.

From a binary association A among C1 and C2 with multiplicities m�..mu and
n�..nu, we get FOL assertions of the form

∀X C1(X)→ ∃�1Z A(X,Z) ≡ ∀X C1(X)→ ∃Z A(X,Z),
∀X C1(X)→ ∃�1Z A(X,Z) ≡ ∀X,Y, Z C1(X) ∧ A(X,Y ) ∧ A(X,Z)→ Y = Z,
∀X C2(X)→ ∃�1Z A(Z,X) ≡ ∀X C2(X)→ ∃Z A(Z,X),
∀X C2(X)→ ∃�1Z A(Z,X) ≡ ∀X,Y, Z C2(X) ∧ A(Y,X) ∧A(Z,X)→ Y = Z.
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Fig. 10. Lean UCD of Example 4

It is an easy task to verify that, given a Lean UCD G, the set of FOL assertions
τ(G) is constituted by guarded TGDs, EGDs and negative constraints.

4.2 Query Answering under Lean UCDs

The problem of query answering under TGDs (discussed in Section 2) can be
naturally extended to sets of TGDs, EGDs and negative constraints. An EGD
∀Xϕ(X) → Xi = Xj is satisfied by a relational instance I if, whenever there
exists a homomorphism h such that h(ϕ(X)) ⊆ I, then h(Xi) = h(Xj). A
negative constraint ∀Xϕ(X)→ ⊥ is satisfied by I if there is no homomorphism
h such that h(ϕ(X)) ⊆ I.

From the above discussion we immediately get that query answering under
Lean UCDs is a well-defined problem. Formally, given a Lean UCD G, a BCQ
q (which represents a desirable property of the system; recall Example 2), and
a relational database D (which is an instance of the system), the answer to q
w.r.t. D and G is positive, denoted as D ∪ G |= q, iff 〈〉 ∈ ans(q,D, τ(G)), or,
equivalently, ans(q,D, τ(G)) �= ∅.

In the rest of the paper, given a Lean UCD G we denote by RG the relational
schema associated to G, i.e., the set of predicates occurring in τ(G), excluding
the auxiliary predicates of the form ri, where i � 2. Moreover, an instance of
the system modeled by G is considered as a (relational) database for RG , while
a property to be verified is encoded as a BCQ over RG .

Elimination of EGDs and Negative Constraints. Recall that our main
algorithmic tool for query answering is the chase algorithm. However, the chase
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algorithm presented in Section 2 can treat only TGDs4, but in the set of FOL
assertions that we obtain by applying τ on a Lean UCD G we have also EGDs
and negative constraints. Interestingly, as we shall see, providing that the log-
ical theory constituted by the given database and the set of assertions τ(G) is
consistent, we are allowed to eliminate the EGDs and the negative constraints,
and proceed only with the TGDs.

Let us first concentrate on the EGDs. Consider a Lean UCD G. For notational
convenience, in the rest of this section, let τ1(G) be the set of TGDs occurring in
τ(G), τ2(G) be the set of EGDs occurring in τ(G), and τ3(G) be the set of negative
constraints occurring in τ(G). The semantic notion of separability expresses a
controlled interaction of TGDs and EGDs, so that the presence of EGDs does
not play any role in query answering, and thus can be ignored [11,13]. Similarly,
we can define separable Lean UCDs.

Definition 2 (Separability). A Lean UCD G is separable if, for every
database D for RG , either D �|= τ2(G), or D∪τ1(G)∪τ2(G) |= q iff D∪τ1(G) |= q,
for every BCQ q over RG.

It is possible to show that each Lean UCD G is separable. Lean UCDs, in fact,
enjoy a stronger property than separability: during the construction of the chase
of a databaseD for RG w.r.t. τ1(G), it is not possible to violate an EGD of τ2(G),
and therefore, if D satisfies τ2(G), then chase(D, τ1(G)) is a universal model of
D w.r.t. τ1(G) ∪ τ2(G) which implies separability of G.
Lemma 1. Each Lean UCD is separable.

Proof (sketch). Consider a Lean UCD G, and a database D for RG such that
D |= τ2(G); if D �|= τ2(G), then the claim holds trivially. We need to show that
D∪ τ1(G)∪ τ2(G) |= q iff D∪ τ1(G) |= q, for every BCQ q over RG . Observe that
each model of the logical theory D ∪ τ1(G) ∪ τ2(G) is also a model of D ∪ τ1(G).
Therefore, if D ∪ τ1(G) ∪ τ2(G) |= q, then D ∪ τ1(G) |= q. It remains to establish

the other direction. It suffices to show that, for each i � 0, chase [i](D, τ1(G)), i.e.,
the initial segment of chase(D, τ1(G)) obtained starting from D and applying i
times the TGD chase rule (see Definition 1), does not violate any of the EGDs
of τ2(G). We proceed by induction on i � 0.

Base Step. Clearly, chase [0](D, τ1(G)) = D, and the claim follows since D |=
τ2(G).
Inductive Step. Suppose that during the i-th application of the TGD chase
rule we apply the TGD σ ∈ τ1(G) with homomorphism λ, and the atom a is
obtained. Notice that each set Σ of guarded TGDs can be rewritten into an
equivalent set Σ′ of guarded TGDs, where each TGD of Σ′ has just one head-
atom [10]. Therefore, for technical clarity, we assume w.l.o.g. that each TGD of
τ1(G) has just one head-atom.

4 Notice that the chase algorithm can be extended to treat also EGDs (see, e.g., [25]).
However, such an extended version of the chase algorithm is not needed for the
purposes of the present paper.
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Consider an EGD η ∈ τ2(G). It suffices to show that there is no homomor-

phism which maps body(η) to chase [i](D, τ1(G)). Suppose that η is of the form
∀X1, . . . , Xn, Y1, Y2 A(X1, . . . , Xn)∧ rn(X1, . . . , Xn, Y1)∧ rn(X1, . . . , Xn, Y2)→
Y1 = Y2. We show that there is no homomorphism that maps the set of atoms
A = {rn(X1, . . . , Xn, Y1), rn(X1, . . . , Xn, Y2)} ⊂ body(η) to chase [i](D, τ1(G)),
and thus there is no homomorphism that maps body(η) to chase [i](D, τ1(G)).
The critical case is when σ is of the form ∀X1, . . . , Xn A(X1, . . . , Xn) →
∃Z rn(X1, . . . , Xn, Z). In the sequel, let a = rn(t), and consider an arbitrary

atom a′ = rn(t
′) ∈ chase [i−1](D, τ1(G)). Towards a contradiction, suppose that

there exists a homomorphism that maps A to {a, a′}. This implies that there

exists an extension of λ that maps head(σ) to a′ ∈ chase [i−1](D, τ1(G)), and
hence σ is not applicable with homomorphism λ. But this contradicts the fact
that σ has been applied during the i-th application of the TGD chase rule.

By providing a similar argument, we can establish the same fact for all the
forms of EGDs that can appear in τ2(G), and the claim follows.

Let us now focus on the negative constraints. Given a Lean UCD, checking
whether τ3(G) is satisfied by a database D for RG and the set of assertions
τ1(G) ∪ τ2(G) is tantamount to query answering; this is implicit in [11]. More
precisely, for each negative constraint ν of the form ∀Xϕ(X) → ⊥ of τ3(G),
we evaluate the BCQ qν : p ← ϕ(X) over D ∪ τ1(G) ∪ τ2(G). If at least one of
such queries answers positively, then the logical theory D ∪ τ(G) is inconsistent,
and thus D ∪ G |= q, for every BCQ q; otherwise, given a BCQ q, it holds that
D∪τ(G) |= q iff D∪τ1(G)∪τ2(G) |= q, i.e., we answer q by ignoring the negative
constraints. The next lemma follows immediately.

Lemma 2. Consider a Lean UCD G, a BCQ q over RG , and a database D for
RG . Then, D ∪ G |= q iff (i) D ∪ τ1(G) ∪ τ2(G) |= q or (ii) there exists ν ∈ τ3(G)
such that D ∪ τ1(G) ∪ τ2(G) |= qν .

By combining Lemmas 1 and 2, we immediately get the following useful technical
result, which implies that query answering under Lean UCDs can be reduced
to query answering under guarded TGDs, and thus chase-like techniques and
existing complexity results can be employed.

Corollary 1. Consider a Lean UCD G, a BCQ q over RG , and a database D
for RG . If D |= τ2(G), then D ∪ G |= q iff (i) D ∪ τ1(G) |= q or (ii) there exists
ν ∈ τ3(G) such that D ∪ τ1(G) |= qν .

Complexity of Query Answering. We are now ready to investigate the com-
plexity of BCQAns under Lean UCDs. Before we proceed further, let us analyze
the complexity of the problem of deciding whether a database violates the set
of EGDs obtained from a Lean UCD.

Lemma 3. Consider a Lean UCD G, and a database D for RG . The problem
of deciding whether D �|= τ2(G) is feasible in ptime if G is fixed, and in np in
general.
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Fig. 11. The construction in the proof of Theorem 3

Proof. It is possible to show that a database D′ and a set of BCQs Q can be
constructed in ptime such that D �|= τ2(G) iff D′ |= q, for some q ∈ Q. The
database D′ is constructed by adding to D an atom neq(c1, c2), for each pair
〈c1, c2〉 of distinct constants occurring in D, where neq is an auxiliary binary
predicate not occurring in RG . Clearly, the number of atoms that we need to
add in D is at most n2, where n is the number of constants occurring in D, and
thus D′ can be constructed in polynomial time. The set Q of BCQs is defined as
follows. For each EGD ∀Xϕ(X) → Xi = Xj of τ2(G), in Q there exists a BCQ
p← ϕ(X), neq(Xi, Xj), where p is a 0-ary auxiliary predicate. Clearly, Q can be
constructed in linear time. Clearly, by construction, D �|= τ2(G) iff D′ |= q, for
some q ∈ Q. Since the evaluation of a BCQ over a database is feasible in ac0 if
the query is fixed [43], and in np in general [19], the claim follows.

We continue to investigate the data complexity of BCQAns under Lean UCDs;
recall that the data complexity is calculated by considering only the database
as part of the input, while the query and the diagram are considered fixed.

Theorem 3. BCQAns under Lean UCDs is ptime-complete w.r.t. data
complexity.

Proof. By Corollary 1, given a Lean UCD G, a BCQ q over RG , and a database
D for RG , we can decide whether D ∪ G |= q by applying the following simple
algorithm: (1) if D �|= τ2(G), then answer yes ; (2) if D ∪ τ1(G) |= q, then answer
yes ; (3) if there exists ν ∈ τ3(G) such that D ∪ τ1(G) |= qν , then answer yes ;
(4) answer no. Since the diagram is fixed, Lemma 3 implies that the first step
can be carried out in ptime. Recall that τ1(G) is a set of guarded TGDs. Since,
by Theorem 2, BCQAns under guarded TGDs is feasible in ptime w.r.t. data
complexity, the claimed upper bound follows.

Let us now establish the ptime-hardness of the problem under consideration.
The proof is by reduction from Path System Accessibility (PSA) which is ptime-
hard [27]. An instance of PSA is a quadruple 〈N,E, S, t〉, where N is a set of
nodes, E ⊆ N×N×N is an accessibility relation (its elements are called edges),
S ⊆ N is a set of source nodes, and t ∈ N is a terminal node. The question is
whether t is accessible, where a node v ∈ N is said to be accessible if v ∈ S or
there exist accessible nodes v1 and v2 s.t. 〈v, v1, v2〉 ∈ E.
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Let G be the Lean UCD depicted in Figure 11, which contains also the addi-
tional rule ∀X T1(X) ∧ T2(X)→ C(X). Clearly, τ(G) is constituted by

σ1 : ∀X,Y C(X) ∧ a1(X,Y )→ T1(Y )
σ2 : ∀X,Y C(X) ∧ a2(X,Y )→ T2(Y )
σ3 : ∀X,Y C(X) ∧ a3(X,Y )→ C(Y )
σ4 : ∀X T1(X) ∧ T2(X)→ C(X).

For the construction of the database D we make use of the nodes and the edges
of N and E, respectively, as constants. In particular, the domain of D is the set
of constants {cv | v ∈ N}∪ {ce | e ∈ E}. For a node v ∈ N , let ev1 , . . . , e

v
n, where

n � 0, be all edges of E that have v as their first component (the order is not
relevant). The database D contains, for each node v ∈ N , the following atoms:

– a3(cev1 , cv) and a3(cevi+1
, cevi ), for each i ∈ [n− 1],

– a1(cu, cevi ) and a2(cw, cevi ), where e
v
i = 〈v, u, w〉, for each i ∈ [n].

In addition, D contains an atom C(cv) for each v ∈ S. Finally, let q be the BCQ
p ← C(ct). Intuitively speaking, T1 keeps all the edges 〈v1, v2, v3〉 where v2 is
accessible, T2 keeps all the edges 〈v1, v2, v3〉 where v3 is accessible, and C keeps
all the nodes which are accessible, and also all the edges 〈v1, v2, v3〉 where v1 is
accessible. Let us say that the above construction is similar to a construction
given in [17], where the data complexity of query answering under description
logics is investigated. It is easy to verify that G, D and q can be constructed in
logspace. Moreover, observe that only the database D depends on the given
instance of PSA, while the diagram and the query are fixed. It remains to show
that t is accessible iff D ∪ G |= q, or, equivalently, chase(D, τ(G)) |= q. For
brevity, in the rest of the proof, a constant cx, where x is either a node of N or
an edge of E, is denoted as x.

(⇒) Suppose first that t is accessible. It is possible to show, by induction
on the derivation of accessibility, that if a node v ∈ N is accessible, then
chase(D, τ(G)) |= qv, where qv is the BCQ p← C(v).

Base Step. Suppose that v ∈ S. By construction, C(v) ∈ D, and thus
chase(D, τ(G)) |= qv.

Inductive Step. Clearly, there exists an edge 〈v, v1, v2〉 ∈ E, where both v1 and
v2 are accessible. By induction hypothesis, both atoms C(v1) and C(v2) belong
to chase(D, τ(G)). Let e1, . . . , en be the edges of E that have v as their first com-
ponent, where en = 〈v, v1, v2〉; assume the same order used in the construction
of the database D. Since the atoms a1(v1, en) and a2(v2, en) belong to D, and
chase(D, τ(G)) |= τ(G), the atoms T1(en) and T2(en) belong to chase(D, τ(G)).
Therefore, due to the TGD σ4, C(en) ∈ chase(D, τ(G)). Now, by exploiting the
atoms {a3(ei+1, ei)}i∈[n−1] ⊂ D and the TGD σ3, it is easy to show that the
atom C(e1) belongs to chase(D, τ(G)). Finally, since a3(e1, v) ∈ chase(D, τ(G)),
we get that C(v) ∈ chase(D, τ(G)). Consequently, chase(D, τ(G)) |= qv.

(⇐) Suppose now that chase(D, τ(G)) |= q. We need to show that t is accessi-
ble. We are going to show that, for each v ∈ N , if C(v) ∈ chase(D, τ(G)), then v
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Fig. 12. The chase derivation in the proof of Theorem 3

is accessible. Observe that the only way to obtain C(v) during the construction
of the chase is as depicted in Figure 12. Since C(u1) and C(u2) are database
atoms, by construction, both u1 and u2 belong to S, and thus they are accessi-
ble. Since en = 〈w, u1, u2〉, we immediately get that w is accessible. But observe
that w = v, and hence v is accessible. This completes the proof.

We conclude this subsection by investigating the combined complexity of
BCQAns under Lean UCDs; recall that the combined complexity is calculated
by considering, apart from the database, also the query and the diagram as part
of the input. As we shall see, query answering under Lean UCDs can be re-
duced to query answering under guarded TGDs of bounded arity, and thus (by
Theorem 2) we get an exptime upper bound.

Theorem 4. BCQAns under Lean UCDs is in exptime w.r.t. combined
complexity.

Proof. As already discussed in the proof of Theorem 3, given a Lean UCD G, a
BCQ q over RG , and a database D for RG , we can decide whether D ∪ G |= q
by applying the following simple algorithm: (1) if D �|= τ2(G), then answer yes ;
(2) if D ∪ τ1(G) |= q, then answer yes ; (3) if there exists ν ∈ τ3(G) such that
D ∪ τ1(G) |= qν , then answer yes ; (4) answer no. By Lemma 3, we get that the
first step can be carried out in np. Now, in order to show that steps (2) and
(3) can be carried out in exptime, we are going to show that the problem of
answering a BCQ under the set τ1(G) can be reduced to query answering under
a set of guarded TGDs of bounded arity, which is in exptime (by Theorem 2).

Any TGD of τ1(G) which has one of the following forms is called harmless :

∀X1, . . . , Xn A(X1, . . . , Xn)→ C1(X1), . . . , Cn(Xn),
∀X1, . . . , Xn, Y A(X1, . . . , Xn) ∧ r′(X1, . . . , Xn, Y )→ CA(Y ),

∀X1, . . . , Xn A(X1, . . . , Xn)→ ∃Z r′(X1, . . . , Xn, Z),
∀X1, . . . , Xn A(X1, . . . , Xn)→ A′(X1, . . . , Xn).
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Let Σh be the set of harmless TGDs of τ1(G). It is not difficult to see that, for
every BCQ p over RG , D ∪ τ1(G) |= p iff chase(chase(D,Σh)↓, τ1(G) \Σh) |= p,
where chase(D,Σh)↓ is the (finite) database obtained by freezing chase(D,Σh),
i.e., by replacing each null of ΓN occurring in chase(D,Σh) with a fresh constant
of Γ . Now, observe that atoms of the form f(c1, . . . , cn) are necessarily database
atoms since the predicate f does not occur in the head of any of the TGDs
of τ1(G). Therefore, whenever a TGD of the form ∀X,Y1, . . . , Ym, Z C(X) ∧
f(X,Y1, . . . , Ym, Z) → T1(Y1), . . . , Tm(Ym), T (Z) is applied during the chase,
the variable X is mapped (via a homomorphism) to a constant. Thus, for each
database atom f(c1, . . . , cm+2), we can replace the above rule with the rule
C(c1)→ T1(c2), . . . , Tm(cm+1), T (cm+2). Let Σ be the set obtained by applying
the above transformation on the set τ1(G) \Σh. It holds that, D ∪ τ1(G) |= p iff
chase(chase(D,Σh)↓, Σ) |= p, for every BCQ p over RG . It is not difficult to see
that Σ is a set of guarded TGDs of bounded arity, and the claim follows.

Notice that the above theorem does not provide tight combined complexity
bounds for the problem of query answering under Lean UCDs. The exact bound
is currently under investigation, and the results will be presented in an upcoming
work. Preliminary findings can be found in an online manuscript5.

Interestingly, both the data and combined complexity of query answering un-
der Lean UCDs can be reduced by applying further restrictions. In particular,
this can be achieved by assuming that each attribute and operation is associ-
ated to a unique class, i.e., different classes have disjoint sets of attributes and
operations, and also an association A with an association class CA does not
generalize some other association A′. These assumptions allow us to establish
the following: given a diagram G, a BCQ q over RG , and a database D for RG ,
there exists a set Σ of multi-linear TGDs over a schema R, where each predicate
of R has bounded arity, such that D ∪ τ1(G) |= q iff D ∪ Σ |= q; recall that a
multi-linear TGD is a guarded TGD where each body-atom is a guard. Since
query answering under multi-linear TGDs is in ac0 w.r.t. data complexity and
np-complete in the case of bounded arity [11], we immediately get that query
answering under Lean UCDs that satisfy the above assumptions is in ac0 w.r.t.
data complexity and np-complete w.r.t. combined complexity.

5 Discussion and Future Work

In this work, we have studied the problem of query answering under UML class
diagrams (UCDs) by relating it to the problem of query answering under guarded
Datalog±. In particular, we have identified an expressive fragment of UCDs,
called Lean UCD, under which query answering is ptime-complete w.r.t. data
complexity and in exptime w.r.t. combined complexity.

In the immediate future we plan to investigate expressive, but still tractable,
extensions of Lean UCD with additional constructs such as stratified negation.

5 http://dl.dropbox.com/u/3185659/uml.pdf

http://dl.dropbox.com/u/3185659/uml.pdf
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Moreover, we are planning to investigate the problem of query answering under
Lean UCDs by considering only finite instantiations. This is an interesting and
important research direction since, in practice, it is natural (for obvious reasons)
to concentrate only on finite instances of a system.

Reasoning on UCDs by considering only finite instantiations has been studied
first by Cadoli et al. [9] by building on results of Lenzerini and Nobili [32] estab-
lished for the Entity-Relationship model. In particular, [9] proposes an encoding
of satisfiability of UCDs under finite instantiations into a constraint satisfaction
problem, showing that satisfiability of UCDs under finite instantiations is ex-
ptime-complete. Later, more efficient algorithms based on linear programming
were presented by Maraee and Balaban for specific instances of the problem [35].
Recently, Queralt et al. [38] extended the results of [9] to cope with a restricted
form of OCL constraints, called OCL-Lite, and shown that satisfiability of UCDs
and OCL-Lite constraints under finite instantiations is exptime-complete.

An important notion related to query answering under UCDs and OCL
constraints is the so-called finite controllability. A class of UCDs C (possibly
with OCL constraints) is finitely controllable if the following holds: given a
diagram G that falls in C, an instance D of the system modeled by G, and a
query q, D ∪ G |= q iff D ∪ G |=fin q, i.e., q is entailed by D ∪ G under arbitrary
instantiations iff it is entailed by D ∪ G under finite instantiations only. It is
worthwhile to remark that by forbidding functional participation Lean UCD is
finitely controllable. This is a consequence of the fact the guarded fragment of
first-order logic, and thus guarded Datalog±, is finitely controllable [5].
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