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Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.



VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),



Foreword VII

Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair



Preface

FoSSaCS presents original papers on the foundations of software science. The
Program Committee (PC) invited submissions on theories and methods to sup-
port analysis, synthesis, transformation, and verification of programs and soft-
ware systems. We received 100 full-paper submissions; of these, 29 were selected
for presentation at FoSSaCS and inclusion in the proceedings. Also included are
two invited papers, one by Cal̀ı, Gottlob, Orsi, and Pieris on “Querying UML
Class Diagrams,” presented by the ETAPS 2012 invited speaker Georg Gottlob;
and one by Glynn Winkskel, the FoSSaCS 2012 invited speaker, on “Bicategories
of Concurrent Games.”

I thank all the authors of papers submitted to FoSSaCS 2012; the quality
of the submissions was very high indeed, and the Program Committee had to
reject several good papers. I thank also the members of the PC for their excellent
work, as well as the external reviewers for the expert help and reviews they
provided. Throughout the phases of submission, evaluation, and production of
the proceedings, we relied on the invaluable assistance of the EasyChair system;
we are very grateful to its developer Andrei Voronkov and his team. Last but
not least, we would like to thank the ETAPS 2012 Local Organizing Committee
(chaired by Tarmo Uustalu) and the ETAPS Steering Committee (chaired by
Vladimiro Sassone) for their efficient coordination of all the activities leading up
to FoSSaCS 2012.

January 2012 Lars Birkedal
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Stefan Breuers, Christof Löding, and Jörg Olschewski

Extending H1-Clauses with Path Disequalities . . . . . . . . . . . . . . . . . . . . . . . 165
Helmut Seidl and Andreas Reuß

Brookes Is Relaxed, Almost! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Radha Jagadeesan, Gustavo Petri, and James Riely

Revisiting Trace and Testing Equivalences for Nondeterministic and
Probabilistic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Marco Bernardo, Rocco De Nicola, and Michele Loreti



XVI Table of Contents

Is It a “Good” Encoding of Mixed Choice? . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Kirstin Peters and Uwe Nestmann

Event Structure Semantics of Parallel Extrusion in the Pi-Calculus . . . . . 225
Silvia Crafa, Daniele Varacca, and Nobuko Yoshida

Narcissists Are Easy, Stepmothers Are Hard . . . . . . . . . . . . . . . . . . . . . . . . . 240
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Querying UML Class Diagrams

Andrea Cal̀ı2,3, Georg Gottlob1,3,4, Giorgio Orsi1,4, and Andreas Pieris1

1 Department of Computer Science, University of Oxford, UK
2 Dept. of Computer Science and Inf. Systems, Birkbeck University of London, UK

3 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
4 Institute for the Future of Computing, Oxford Martin School, UK

andrea@dcs.bbk.ac.uk,
{georg.gottlob,giorgio.orsi,andreas.pieris}@cs.ox.ac.uk

Abstract. UML Class Diagrams (UCDs) are the best known class-based
formalism for conceptual modeling. They are used by software engineers
to model the intensional structure of a system in terms of classes, at-
tributes and operations, and to express constraints that must hold for
every instance of the system. Reasoning over UCDs is of paramount im-
portance in design, validation, maintenance and system analysis; how-
ever, for medium and large software projects, reasoning over UCDs may
be impractical. Query answering, in particular, can be used to verify
whether a (possibly incomplete) instance of the system modeled by the
UCD, i.e., a snapshot, enjoys a certain property. In this work, we study
the problem of querying UCD instances, and we relate it to query answer-
ing under guarded Datalog±, that is, a powerful Datalog-based language
for ontological modeling. We present an expressive and meaningful class
of UCDs, named Lean UCD, under which conjunctive query answering
is tractable in the size of the instances.

1 Introduction

Developing complex systems requires accurate design and early prototyping. To
avoid the cost of fixing errors at later stages of a project, system designers use
models of the final system to negotiate the system design, ensure all resulting
requirements, and rule out unintended behavior manifesting itself during the
system’s lifetime. Models are also of paramount importance for software mainte-
nance and for recovering the structure of a legacy and undocumented software.

UML Class Diagrams. The Unified Modeling Language (UML)1 is one of the
major tools for the design of complex systems such as software, business processes
and even organizational structures. UML models were proposed by the Object
Modeling Group (OMG) to diagrammatically represent the static and dynamic,
e.g., behavioral aspects of a system, as well as the use cases the system will
operate in. More specifically, UML class diagrams (UCDs) are widely used to
represent the classes (types or entities) of a domain of interest, the associations
(relationships) among them, their attributes (fields) and operations (methods).

1 http://www.omg.org/spec/UML/2.4.1/

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 1–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 A. Cal̀ı et al.

Fig. 1. A UCD which is not fully satisfiable

UCDs for complex projects become very large. Therefore, reasoning tasks such
as verifying that a UCD is satisfiable, meaning that the model is realizable, can
easily become unfeasible in practice. As a consequence, it is critical to adopt
automated procedures to reason on the diagrams and to ensure that the final
system will behave as planned.

When a UCD models a software system, the typical reasoning tasks include
the following (see [7,37] for additional reasoning tasks):

1. Checking for satisfiability (or consistency) of the UCD, i.e., checking whether
the class diagram admits at least one instantiation, that is, an instance of
the system modeled by the UCD that satisfies the diagram.

2. Checking for full satisfiability (or strong consistency) of the UCD, i.e., check-
ing whether the class diagram admits at least one instantiation where all
classes and associations are non-empty. For example, consider the UCD G
of Figure 1, which expresses that each student is a worker, and also that
students and workers are disjoint sets of persons. It is easy to see that G is
satisfiable, but not fully satisfiable since the class Student must be empty.

3. Querying the UCD, i.e., verifying whether a given property — expressed as
a query — holds for a given instance of the system modeled by the UCD.
This is the reasoning task that we address in this work.

(Full) Satisfiability of UCDs. The seminal work by Berardi et al. [7] estab-
lished that reasoning on UCDs is hard. In fact, even satisfiability of UCDs is
exptime-complete w.r.t. the size of the given diagram. The exptime-hardness
is obtained by a reduction from the problem of checking the satisfiability of a
concept in ALC KBs [23,26]. The exptime membership is obtained by providing
a polynomial translation of UCD constructs to DLRifd KBs [16].

The above results have been refined and extended to full satisfiability of UCDs
by Artale et al. [2] and Kaneiwa et al. [30]; upper (resp., lower) bounds are
obtained by a reduction to (resp., from) satisfiability of UCDs. In [2], classes of
UCDs were identified for which statisfiability is np-complete and nlogspace-
complete by restricting the constructs allowed in the diagrams. In [30], it has also
been shown that there exists a fragment of UCDs for which full satisfiability is
in ptime. Moreover, in the same paper, a fragment of UCDs has been identified
that allows to check satisfiability in constant time, since the expressive power of
its constructs is not enough to capture any unsatisfiable UCD.
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Fig. 2. The UCD of Example 1

Despite its expressiveness, the language of UCDs is often insufficient to express
all constraints the designer would like to enforce. For this reason, the OMG
consortium devised the Object Constraint Language (OCL)2, which allows for
expressing arbitrary constraints on UCDs. OCL is a powerful language, but is
not widely adopted due to its complex syntax and ambiguous semantics.

Example 1. Consider the UCD shown in Figure 2 which represents the fact that
part-time students are, at the same time, workers and regular students. However,
the fact that whenever a student is also a worker, then necessarily (s)he must
be a part-time student, cannot be expressed using UCDs. We can express such
a constraint using the FOL expression

∀X Student(X) ∧Worker (X)→ PTStudent(X).

Note that the FOL constraint above corresponds to the OCL expression

context PTStudent inv:

Student.allInstances -> forAll ( s: Student |

Worker.allInstances -> forAll ( w: Worker |

s=w implies c.oclIsTypeOf(PTStudent)

)

)

For OCL syntax and semantics we refer the interested reader to [39].

Reasoning on UML with OCL constraints is considerably harder. It is well known
that satisfiability of UCDs extended with OCL constraints is undecidable since
it amounts to checking satisfiability of arbitrary first-order formulas. Following
Queralt et al. [36,38], the approaches can be classified into three families:

1. Unrestricted OCL constraints without guaranteeing termination, except for
specific cases [24,37].

2. Unrestricted OCL constraints with terminating, but incomplete reasoning
procedures [8,9,28,40].

3. Restricted classes of OCL constraints with both terminating and complete
reasoning procedures [38].

2 http://www.omg.org/spec/OCL/2.3/

http://www.omg.org/spec/OCL/2.3/
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Fig. 3. UCD for the trading scenario

Querying UCDs. UCD satisfiability is an intensional property as it depends
only on the class diagram and the OCL constraints, without involving any in-
stance of the system modeled by the UCD. On the other hand, in many cases
it is useful to reason over instances together with the diagram. For example,
a typical task in specification recovery [20] is the reconstruction of a model of
an unknown system involving low-level information obtained directly from a
running instance of the system. The analyst usually starts from a partial speci-
fication (i.e., a UCD) and refines it based on information provided by instances,
e.g., by verifying that they are consistent with the specification, and by adjust-
ing the specification when they are not. However, instance-data collected during
the analysis is partial but poorly structured. As a consequence they can easily
become very large, emphasizing the importance of having procedures that are
capable of handling very large instances. In this setting, query answering is a
very useful tool for checking whether a property, not expressible diagrammati-
cally, holds. More formally, given an instance D of a system modeled by a UCD
G, we can verify whether a property, represented as a query q, holds by check-
ing whether q is a logical consequence of D and G. This problem is known, in
the knowledge representation (resp., database) community, as ontological query
answering (resp., query answering over incomplete databases).

Example 2. Consider the UCD of Figure 3 representing a simplified high-
frequency trading system. The diagram models companies and the associated
stocks together with board members and stakeholders. The conjunctive query

Conflict ← Person(P ),Company(C1),Company(C2), Stock(S),
BoardMember (P,C1),Owns(P, S),Has(C2, S),
Competes(C1, C2)

can be used to detect whether the system allows persons to be, at the same time,
in the board of a company and owners of shares of a competing company, and
are therefore operating in a conflict of interest.

Conjunctive query answering under UCDs and OCL constraints is undecidable
in its general form, and has been addressed mainly by reducing it to answering
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queries in known formalisms such as Prolog [21,41]. Decidable fragments of UCDs
have been identified by comparing their expressive power with that of known
description logics [3,14,18]. By leveraging on the results of Berardi et al. [7],
Calvanese et al. [15] and Lutz [33], it is easy to see that the combined complexity
of conjunctive query answering over UCDs (without OCL constraints), that is,
the complexity w.r.t. the combined size of the the query, the system instance, and
the corresponding diagram, is decidable and exptime-complete; this is shown by
a reduction from conjunctive query answering under ALC KBs, and a reduction
to conjunctive query answering under DLRf,id KBs. Calvanese et al. [18] showed
the conp-completeness w.r.t. data complexity, i.e., the complexity calculated by
considering only the system instance as part of the input, while the query and
the diagram are considered fixed. Artale et al. [3] established that fragments

of UCDs are captured by the description logic DL-Lite
(HN )
horn , for which query

answering is np-complete w.r.t. combined complexity, and in ac0 w.r.t. data
complexity. This result subsumes the tractability results for restricted classes of
UCDs provided by [18].

Contributions. In this work, we study conjunctive query answering over UCDs
and (a restricted class of) OCL constraints that are instrumental to the enforce-
ment of specific assumptions that are commonly adopted for UCDs. We relate the
problem to query answering under guarded Datalog± [11], a powerful Datalog-
based ontological language under which query answering is not only decidable,
but also tractable w.r.t. data complexity. In particular, we identify an expres-
sive fragment of UCDs with a limited form of OCL constraints, named Lean
UCD, which translates into guarded Datalog±, that features tractable conjunc-
tive query answering w.r.t. data complexity.

Roadmap. After providing some preliminary notions in Section 2, we introduce
the UML class diagram formalism, and describe its semantics in terms of first-
order logic in Section 3. In Section 4, we present Lean UCD, and we study
query answering under the proposed formalism. Finally, Section 5 draws some
conclusions and delineates future research directions.

2 Theoretical Background

As we shall see, query answering under UCDs can be reduced to query answering
under relational constraints, in particular, tuple-generating dependencies. There-
fore, in this section, we recall some basics on relational instances, (Boolean) con-
junctive queries, tuple-generating dependencies, and the chase procedure relative
to such dependencies.

Alphabets.We define the following pairwise disjoint (infinite) sets of symbols: a
set Γ of constants, that constitute the “normal” domain of a database, a set ΓN of
labeled nulls, used as placeholders for unknown values, and thus can be also seen
as (globally) existentially-quantified variables, and a set ΓV of (regular) variables,
used in queries and dependencies. Different constants represent different values
(unique name assumption), while different nulls may represent the same value.
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A lexicographic order is defined on Γ∪ΓN , such that every value in ΓN follows all
those in Γ . We denote by X sequences (or sets, with a slight abuse of notation) of
variables or constants X1, . . . , Xk, with k � 0. Throughout, let [n] = {1, . . . , n},
for any integer n � 1.

Relational Model. A relational schema R (or simply schema) is a set of re-
lational symbols (or predicates), each with its associated arity. A term t is a
constant, null, or variable. An atomic formula (or simply atom) has the form
r(t1, . . . , tn), where r is an n-ary relation and t1, . . . , tn are terms. Conjunctions
of atoms are often identified with the sets of their atoms. A relational instance
(or simply instance) I for a schema R is a (possibly infinite) set of atoms of the
form r(t), where r is an n-ary predicate of R and t ∈ (Γ ∪ ΓN )n. A database is
a finite relational instance.

Substitutions and Homomorphisms.A substitution from one set of symbols
S1 to another set of symbols S2 is a function h : S1 → S2 defined as follows: ∅ is
a substitution (empty substitution), and if h is a substitution, then h∪{X → Y }
is a substitution, where X ∈ S1 and Y ∈ S2. If X → Y ∈ h, then we write
h(X) = Y . A homomorphism from a set of atoms A1 to a set of atoms A2 is a
substitution h from the set of terms of A1 to the set of terms of A2 such that:
if t ∈ Γ , then h(t) = t, and if r(t1, . . . , tn) is in A1, then h(r(t1, . . . , tn)) =
r(h(t1), . . . , h(tn)) is in A2.

(Boolean) Conjunctive Queries. A conjunctive query (CQ) q of arity n over
a schema R, written as q/n, is an assertion the form q(X) ← ϕ(X,Y), where
ϕ(X,Y) is a conjunction of atoms over R, and q is an n-ary predicate that does
not occur in R. ϕ(X,Y) is called the body of q, denoted as body(q). A Boolean
conjunctive query (BCQ) is a CQ of arity zero. The answer to a CQ q/n over
an instance I, denoted as q(I), is the set of all n-tuples t ∈ Γn for which there
exists a homomorphism h : X ∪ Y → Γ ∪ ΓN such that h(ϕ(X,Y)) ⊆ I and
h(X) = t. A BCQ has only the empty tuple 〈〉 as possible answer, in which case
it is said that has positive answer. Formally, a BCQ has positive answer over I,
denoted as I |= q, iff 〈〉 ∈ q(I), or, equivalently, q(I) �= ∅.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ
over a schema R is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where
ϕ(X,Y) and ψ(X,Z) are conjunctions of atoms over R, called the body and
the head of σ, and denoted as body(σ) and head(σ), respectively. Such σ is
satisfied by an instance I for R, written as I |= σ, iff, whenever there exists a
homomorphism h such that h(ϕ(X,Y)) ⊆ I, then there exists an extension h′ of
h, i.e., h′ ⊇ h, such that h′(ψ(X,Z)) ⊆ I. We write I �|= σ if I violates σ. Given
a set of TGDs Σ, we say that I satisfies Σ, denoted as I |= Σ, iff I satisfies all
the TGDs of Σ. Conversely, we say that I violates Σ, written as I �|= Σ, iff I
violates at least one TGD of Σ.

Query Answering under TGDs. Given a database D for a schema R, and
a set of TGDs Σ over R, the answers we consider are those that are true in all
models of D w.r.t. Σ, i.e., all instances that contain D and satisfy Σ. Formally,



Querying UML Class Diagrams 7

the models of D w.r.t. Σ, denoted as mods(D,Σ), is the set of all instances I
such that I |= D ∪ Σ. The answer to a CQ q/n w.r.t. D and Σ, denoted as
ans(q,D,Σ), is the set of n-tuples {t | t ∈ q(I), for each I ∈ mods(D,Σ)}.
The answer to a BCQ q w.r.t. D and Σ is positive, denoted as D ∪ Σ |= q, iff
〈〉 ∈ ans(q,D,Σ), or, equivalently, ans(q,D,Σ) �= ∅.

Given a CQ q/n over a schema R, a database D for R, a set Σ of TGDs
over R, and an n-tuple t ∈ Γn, CQAns is defined as the problem whether
t ∈ ans(q,D,Σ). In case that q is a BCQ (and thus, t is the empty tuple
〈〉), the above problem is called BCQAns. Notice that these two problems under
general TGDs are undecidable [6], even when the schema and the set of TGDs
are fixed [10], or even when the set of TGDs is restricted to a single rule [4].
Following Vardi’s taxonomy [42], the data complexity of the above problems is
the complexity calculated taking only the database as input, while the query
and the set of dependencies are considered fixed. The combined complexity is
the complexity calculated considering as input, together with the database, also
the query and the set of dependencies.

It is well-known that the above decision problems are logspace-equivalent;
this result is implicit in [19], and stated explicitly in [10]. Henceforth, we thus
focus only on BCQAns, and all complexity results carry over to CQAns.

The TGD Chase Procedure. The chase procedure (or simply chase) is a
fundamental algorithmic tool introduced for checking implication of dependen-
cies [34], and later for checking query containment [29]. Informally, the chase
is a process of repairing a database w.r.t. a set of dependencies so that the re-
sulted instance satisfies the dependencies. By abuse of terminology, we shall use
the term “chase” interchangeably for both the procedure and its result. The
building block of the chase procedure is the so-called TGD chase rule.

Definition 1 (TGD Chase Rule). Consider an instance I for a schema R,
and a TGD σ : ϕ(X,Y)→ ∃Zψ(X,Z) over R. If σ is applicable to I, i.e., there
exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I, but there is no extension
h′ of h (i.e., h′ ⊇ h) that maps ψ(X,Z) to I, then: (i) define h′ ⊇ h such
that h′(Zi) = zi, for each Zi ∈ Z, where zi ∈ ΓN is a “fresh” labeled null not
introduced before, and following lexicographically all those introduced so far, and
(ii) add to I the set of atoms in h′(ψ(X,Z)), if not already in I.

Given a database D and a set Σ of TGDs, the chase algorithm for D w.r.t. Σ
consists of an exhaustive application of the TGD chase rule, which leads to a
(possibly infinite) instance denoted as chase(D,Σ). We assume that the chase
algorithm is fair, i.e., each TGD that must be applied during the construction
of chase(D,Σ) is eventually applied.

Example 3. Consider the set Σ constituted by the TGDs σ1 : ∀X,Y r(X,Y ) ∧
s(Y ) → ∃Z r(Z,X) and σ2 : ∀X,Y r(X,Y ) → s(X). Let D be the database
{r(a, b), s(b)}. During the chase of D w.r.t. Σ, we first apply σ1 and we add
the atom r(z1, a), where z1 ∈ ΓN . Also, σ2 is applicable and we add the atom
s(a). Now, σ1 is applicable and the atom r(z2, z1) is obtained, where z2 ∈ ΓN .
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Then, σ2 is applicable and the atom s(z1) is generated. It is straightforward to
see that there is no finite chase. Satisfying both TGDs σ1 and σ2 would require
to built the infinite instance {r(a, b), s(b), r(z1, a), s(a), r(z2, z1), s(z1), r(z3, z2),
s(z2), . . .}, where, for each i > 0, zi ∈ ΓN .

The fact that the chase algorithm is fair allows us to show that chase of a
database D w.r.t. a set of TGDs Σ is a universal model of D w.r.t. Σ, i.e.,
for each I ∈ mods(D,Σ), there exists a homomorphism from chase(D,Σ) to
I [22,25]. Using this fact it can be shown that the chase is a useful tool for query
answering under TGDs. More precisely, the problem whether the answer to a
BCQ q is positive w.r.t. a database D and a set of TGDs Σ, is equivalent to the
problem whether q is entailed by the chase of D w.r.t. Σ.

Theorem 1 ([22,25]). Consider a BCQ q over a schema R, a database D for
R, and a set Σ of TGDs over R. D ∪Σ |= q iff chase(D,Σ) |= q.

Guarded Datalog±. Since query answering under TGDs is undecidable, several
classes of TGDs have been proposed under which the problem becomes decidable,
and even tractable w.r.t. data complexity (see, e.g., [4,25,31]). In particular,
Datalog± [12] is a family of languages for ontological modeling based on classes
of TGDs under which query answering is decidable and, in almost all cases,
tractable w.r.t. data complexity. Datalog± proved to be a valid alternative to
description logics in many database and knowledge management applications.

A member of the Datalog± family which is of special interest for our work
is guarded Datalog± [10,11]. A TGD σ is guarded if it has a body-atom which
contains all the universally quantified variables of σ. Such atom is called the
guard atom (or simply guard) of σ. The non-guard atoms are the side atoms
of σ. For example, the TGD r(X,Y ), s(Y,X,Z) → ∃Ws(Z,X,W ) is guarded
(via the guard s(Y,X,Z)), while the TGD r(X,Y ), r(Y, Z) → r(X,Z) is not
guarded. Note that sets of guarded TGDs (with single-atom heads) are theories
in the guarded fragment of first-order logic [1].

As shown in [10], the chase constructed under a set of guarded TGDs has
finite treewidth, which, intuitively speaking, means that the chase is a tree-
like structure. This is exactly the reason why query answering under guarded
TGDs is decidable. The data and combined complexity of query answering under
guarded TGDs have been investigated in [11] and [10], respectively.

Theorem 2 ([10,11]). BCQAns under guarded TGDs is ptime-complete w.r.t.
data complexity, exptime-complete in the case of bounded arity, and 2exptime-
complete w.r.t. combined complexity.

3 UML Class Diagrams

As already mentioned in Section 1, UML class diagrams (UCDs) describe the
static structure of a system by showing the system’s classes, their attributes and
operations, and the relationships among the classes. In this section, we describe
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Fig. 4. Class representation

the semantics of each construct of UCDs in terms of first-order logic (FOL)
generalized by counting quantifiers. The formalization adopted in this paper is
based on the one presented in [30].

Classes. A class is graphically represented as shown in Figure 4, i.e., as a
rectangle divided into three parts. The top part contains the name of the class
which is unique in the diagram, the middle part contains the attributes of the
class, and the bottom part contains the operations of the class, that is, the
operations associated to the instances of the class. Note that both the middle
and the bottom part are optional.

An attribute assertion of the form a[i..j] : T states that the class C has
an attribute a of type3 T , where the optional multiplicity [i..j] specifies that a
associates to each instance of C at least i and at most j instances of T . When
there is no lower (resp., upper) bound on the multiplicity, the symbol 0 (resp.,
∞) is used for i (resp., j). Notice that attributes are unique within a class.
However, different classes may have attributes with the same name, possibly
with different types.

An operation of a class C is a function from the instances of C, and possibly
additional parameters, to objects and values. An operation assertion of the form
f(T1, . . . , Tn) : T asserts that the class C has an operation f with n � 0 param-
eters, where its i-th parameter is of type Ti and its result is of type T . Let us
clarify that the class diagram represents only the signature, that is, the name of
the functions as well as the number and the types of their parameters, and the
type of their result. The actual behavior of the function, which is not part of
the diagram, can be represented using OCL constraints. Notice that operations
are unique within a class. However, different classes may have operations with
the same name, possibly with different signature, providing that they have the
same number of parameters.

We are now ready to give the formal translation of a UML class definition
into FOL. A class C is represented by a FOL unary predicate C. An attribute
a for class C corresponds to a binary predicate a, and the attribute assertion

3 For simplicity, types, i.e., collections of values such as integers, are considered as
classes, i.e., as collections of objects.
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Fig. 5. Association representation

a[i..j] : T is translated into two FOL assertions. The first one asserts that for
each instance c of class C, an object c′ related to c by the attribute a is an
instance of T :

∀X,Y C(X) ∧ a(X,Y )→ T (Y ).

The second one asserts that for each instance c of class C, there exist at least i
and at most j different objects related to c by a:

∀X C(X)→ ∃�iZ a(X,Z) ∧ ∃�jZ a(X,Z).

If i = 0, which implies that there is no lower bound, then the corresponding
FOL assertion is of the form ∀X C(X) → ∃�jZ a(X,Z). Dually, if j = ∞,
which implies that there is no upper bound, then the obtained assertion is of the
form ∀X C(X)→ ∃�iZ a(X,Z).

An operation f , withm � 0 parameters, for class C corresponds to an (m+2)-
ary predicate f , and the operation assertion f(T1, . . . , Tm) : T is translated into
the FOL assertions

∀X,Y1, . . . , Ym, Z C(X) ∧ f(X,Y1, . . . , Ym, Z)→
∧m

i=1 Ti(Yi) ∧ T (Z),

which imposes the correct typing for the parameters and the result, and

∀X,Y1, . . . , Ym, Z1, Z2 C(X) ∧ f(X,Y1, . . . , Ym, Z1)
∧ f(X,Y1, . . . , Ym, Z2)→ Z1 = Z2,
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i.e., the operation f is a function from the instances of C and the parameters to
the result.

Associations. An association is a relation between the instances of two or more
classes, that are said to participate in the association. Names of associations are
unique in the diagram. A binary association A between two classes C1 and C2

is graphically represented as in Figure 5a. The multiplicity n�..nu specifies that
each instance of class C1 can participate at least n� times and at most nu times
to A; similarly we have the multiplicity m�..mu for C2.

Clearly, we can have also n-ary associations which relate several classes as
shown in Figure 5. As already discussed in [7], while multiplicity constraints
in binary associations appear natural, for non-binary associations they do not
correspond to an intuitive property of the multiplicity. Due to this fact, their
presence in non-binary associations is awkward to a designer, and also they
express a constraint which is (in general) too weak in practice. Therefore, in this
paper, multiplicity in non-binary associations it is assumed to be always 0..∞.
Notice that in [30] arbitrary multiplicity constraints in non-binary associations
are allowed.

An association can have an association class which describes properties of the
association such as attributes and operations. A binary association between C1

and C2 with an association class CA is graphically represented as in Figure 5c.
An n-ary association can also have an association class as depicted in Figure 5d.

Let us now give the formal translation of an association definition into FOL.
An n-ary association A corresponds to an n-ary predicate A. Assuming that A
is among classes C1, . . . , Cn, A is translated into the FOL assertion

∀X1, . . . , Xn A(X1, . . . , Xn)→
∧n

i=1 Ci(Xi).

If A has a related association class CA, then we have also the FOL assertions
(in the sequel, rn is an (n+ 1)-ary auxiliary predicate)

∀X1, . . . , Xn, Y A(X1, . . . , Xn) ∧ rn(X1, . . . , Xn, Y )→ CA(Y ),

which types the association A,

∀X1, . . . , Xn A(X1, . . . , Xn)→ ∃Z rn(X1, . . . , Xn, Z),

i.e., for each instance 〈x1, . . . , xn〉 of A, there exists at least one object related
to 〈x1, . . . , xn〉 by rn,

∀X1, . . . , Xn, Y1, Y2 A(X1, . . . , Xn) ∧ rn(X1, . . . , Xn, Y1)
∧ rn(X1, . . . , Xn, Y2)→ Y1 = Y2,

that is, for each instance 〈x1, . . . , xn〉 of A, there exists at most one object related
to 〈x1, . . . , xn〉 by rn, and

∀X1, . . . , Xn, Y1, . . . , Yn, Z rn(X1, . . . , Xn, Z) ∧ rn(Y1, . . . , Yn, Z)
∧ CA(Z)→

∧n
i=1Xi = Yi,
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Fig. 6. Association generalization

Fig. 7. Aggregation and composition

which imposes that there are no two different instances of CA that are related by
rn with the same instance of A; this rule guarantees the faithful representation
of the association A by CA, according to the original UML semantics.

Now, for a binary association A among C1 and C2 with multiplicities m�..mu

and n�..nu, we have also the FOL assertions

∀X C1(X)→ ∃�n�
Z A(X,Z) ∧ ∃�nuZ A(X,Z),

∀X C2(X)→ ∃�m�
Z A(Z,X) ∧ ∃�muZ A(Z,X).

We can also have association generalization such that an n-ary association A′

between C′
1, . . . , C

′
n generalizes the n-ary association A between C1, . . . , Cn (see

Figure 6 for the binary case). This feature is captured by the FOL assertion

∀X1, . . . , Xn A(X1, . . . , Xn)→ A′(X1, . . . , Xn).

A special kind of binary associations are aggregations and compositions, repre-
senting two different forms of whole-part or part-of relationship. An aggregation
(see Figure 7a) between two classes C1 and C2 specifies that each instance of
C2, called the contained class, is conceptually part of an instance of C1, called
the container class ; for example, a handle is part of a door. A composition (see
Figure 7b) is more specific than aggregation. Composition has a strong life cycle
dependency between instances of the container class and instances of the con-
tained class. In particular, if the container is destroyed, then each instance that
it contains is destroyed as well. Notice that the contained class of a composition
must have a multiplicity of 0..1 or 1..1. Clearly, the life cycle dependency of a
composition must be considered during the implementation phase of a system,
however it is not relevant for query answering purposes. The translation of an
aggregation and a composition into FOL is the same as the one given above for
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Fig. 8. A class hierarchy

binary associations without an association class (since aggregations and compo-
sitions have no association class).

Class Hierarchies. Similar to association generalization, one can use class
generalization to assert that each instance of a child class is also an instance of
the parent class. Several generalizations can be grouped together to form a class
hierarchy, as shown in Figure 8. Disjointness and completeness constraints can
also be enforced on a class hierarchy (graphically, by adding the labels {disjoint}
and {complete}). A class hierarchy, as the one in Figure 8, is translated into the
FOL assertions

∀X C1(X)→ C(X),
...

∀X Cn(X)→ C(X),

i.e., each instance of Ci is also an instance of C,

∀X Ci(X)→ ∧n
j=i+1 ¬Cj(X),

for each i ∈ [n− 1], which specify the disjointness constraints, and

∀X C(X)→ ∨n
i=1 Ci(X),

which specify the completeness constraints.
Sometimes, it is assumed that all classes in the same hierarchy are disjoint.

However, we do not enforce this assumption, and we allow two classes to have
common instances. When needed, disjointness can be enforced by means of FOL
assertions, called negative constraints, of the form

∀Xϕ(X)→ ⊥,
where ϕ(X) is a conjunction of atoms, and ⊥ denotes the truth constant false .
Moreover, we do not enforce the most specific class assumption, stating that
objects in a hierarchy must belong to a single most specific class. Therefore, two
classes in a hierarchy may have common instances, even though they may not
have a common subclass. When needed, the existence of the most specific class
can be enforced by means of multi-linear TGDs [11] of the form

∀X C1(X) ∧ . . . ∧ Cn(X)→ Cn+1(X),
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Fig. 9. A class hierarchy with most specific class assumption

where each Ci is a unary predicate representing a class. Observe that multi-
linear TGDs are guarded TGDs where each body-atom is a guard. Notice that
negative constraints and multi-linear TGDs can be represented using suitable
OCL constraints.

For example, besides the assertions representing the hierarchy depicted in
Figure 9 (taken from [7]), the most specific class assumption can be expressed
by the following FOL assertions:

∀X C1(X) ∧C3(X)→ ⊥
∀X C2(X) ∧C3(X)→ ⊥
∀X C1(X) ∧C2(X)→ C12(X).

4 Querying Lean UML Class Diagrams

The main goal of the present work is to study the problem of conjunctive query
answering under UCDs. In particular, we are interested to identify an expressive
fragment of UCDs which can be encoded in Datalog± so that chase-like tech-
niques (for the chase algorithm see Section 2) and known complexity results can
be employed.

In this section, we propose mild syntactic restrictions on the full version of
UCDs, presented in Section 3, in order to get a fragment with the aforementioned
desirable properties, called Lean UCD. We then study query answering under
the proposed formalism. As we shall see, given a Lean UCD G, by applying the
translation of UCDs into FOL assertions given in the previous section — in the
following we refer to this translation by τ — on G, we get FOL assertions which
have one of the following forms:

1. ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y) and ψ(X,Z) are conjunc-
tions of atoms, and ϕ(X,Y) has an atom that contains all the universally
quantified variables; recall that an assertion of this form is called guarded
TGD.
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2. ∀Xϕ(X) → Xi = Xj , where ϕ(X) is a conjunction of atoms, and both Xi

and Xj are variables of X; assertions of this form are known as equality-
generating dependencies (EGDs).

3. ∀Xϕ(X) → ⊥, where ϕ(X) is a conjunction of atoms, and ⊥ denotes the
truth constant false ; recall that assertions of this form are called negative
constraints.

The rest of this section is organized as follows. In Subsection 4.1, we formal-
ize Lean UCDs by applying a series of syntactic restrictions on UCDs. Then,
the problem of query answering under Lean UCDs is defined and studied in
Subsection 4.2.

4.1 Formalizing Lean UCDs

Lean UCDs are obtained by restricting the multiplicity of attributes and binary
associations, and by omitting completeness constraints. Formally, a UML class
diagram G is a Lean UCD if the following conditions hold:

1. For each attribute assertion of the form a[i..j] : T of G:
– i ∈ {0, 1} and j ∈ {1,∞}.

2. For each binary association A of G, either with or without an association
class (consider the binary associations depicted in Figures 5a and 5c):
– n�,m� ∈ {0, 1} and nu,mu ∈ {1,∞},
– if A generalizes some other binary association of G, then nu = mu =∞.

3. There are no completeness constraints in G.

Example 4. The Lean UCD of Figure 10 describes members of a university de-
partment working in research groups. In particular, the class hierarchy specifies
that students and professors, which are disjoint classes, are members of the de-
partment. A member of the department works in at least one research group, and
at least one departmental member works in a research group. Moreover, a pro-
fessor leads at most one research group, while a research group is led by exactly
one professor; notice that a professor works in the same group that (s)he leads.
Finally, a publication is authored by at least one member of the department.

Interestingly, the FOL assertions which represent multiplicities of attributes or
multiplicities of binary associations, obtained by applying the translation τ on
a Lean UCD G, are guarded TGDs and EGDs. More precisely, from a class C
with an attribute assertion a[i..j] : T we get FOL assertions of the form

∀X C(X)→ ∃�1Z a(X,Z) ≡ ∀X C(X)→ ∃Z a(X,Z),
∀X C(X)→ ∃�1Z a(X,Z) ≡ ∀X,Y, Z C(X) ∧ a(X,Y ) ∧ a(X,Z)→ Y = Z.

From a binary association A among C1 and C2 with multiplicities m�..mu and
n�..nu, we get FOL assertions of the form

∀X C1(X)→ ∃�1Z A(X,Z) ≡ ∀X C1(X)→ ∃Z A(X,Z),
∀X C1(X)→ ∃�1Z A(X,Z) ≡ ∀X,Y, Z C1(X) ∧ A(X,Y ) ∧ A(X,Z)→ Y = Z,
∀X C2(X)→ ∃�1Z A(Z,X) ≡ ∀X C2(X)→ ∃Z A(Z,X),
∀X C2(X)→ ∃�1Z A(Z,X) ≡ ∀X,Y, Z C2(X) ∧ A(Y,X) ∧A(Z,X)→ Y = Z.
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Fig. 10. Lean UCD of Example 4

It is an easy task to verify that, given a Lean UCD G, the set of FOL assertions
τ(G) is constituted by guarded TGDs, EGDs and negative constraints.

4.2 Query Answering under Lean UCDs

The problem of query answering under TGDs (discussed in Section 2) can be
naturally extended to sets of TGDs, EGDs and negative constraints. An EGD
∀Xϕ(X) → Xi = Xj is satisfied by a relational instance I if, whenever there
exists a homomorphism h such that h(ϕ(X)) ⊆ I, then h(Xi) = h(Xj). A
negative constraint ∀Xϕ(X)→ ⊥ is satisfied by I if there is no homomorphism
h such that h(ϕ(X)) ⊆ I.

From the above discussion we immediately get that query answering under
Lean UCDs is a well-defined problem. Formally, given a Lean UCD G, a BCQ
q (which represents a desirable property of the system; recall Example 2), and
a relational database D (which is an instance of the system), the answer to q
w.r.t. D and G is positive, denoted as D ∪ G |= q, iff 〈〉 ∈ ans(q,D, τ(G)), or,
equivalently, ans(q,D, τ(G)) �= ∅.

In the rest of the paper, given a Lean UCD G we denote by RG the relational
schema associated to G, i.e., the set of predicates occurring in τ(G), excluding
the auxiliary predicates of the form ri, where i � 2. Moreover, an instance of
the system modeled by G is considered as a (relational) database for RG , while
a property to be verified is encoded as a BCQ over RG .

Elimination of EGDs and Negative Constraints. Recall that our main
algorithmic tool for query answering is the chase algorithm. However, the chase
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algorithm presented in Section 2 can treat only TGDs4, but in the set of FOL
assertions that we obtain by applying τ on a Lean UCD G we have also EGDs
and negative constraints. Interestingly, as we shall see, providing that the log-
ical theory constituted by the given database and the set of assertions τ(G) is
consistent, we are allowed to eliminate the EGDs and the negative constraints,
and proceed only with the TGDs.

Let us first concentrate on the EGDs. Consider a Lean UCD G. For notational
convenience, in the rest of this section, let τ1(G) be the set of TGDs occurring in
τ(G), τ2(G) be the set of EGDs occurring in τ(G), and τ3(G) be the set of negative
constraints occurring in τ(G). The semantic notion of separability expresses a
controlled interaction of TGDs and EGDs, so that the presence of EGDs does
not play any role in query answering, and thus can be ignored [11,13]. Similarly,
we can define separable Lean UCDs.

Definition 2 (Separability). A Lean UCD G is separable if, for every
database D for RG , either D �|= τ2(G), or D∪τ1(G)∪τ2(G) |= q iff D∪τ1(G) |= q,
for every BCQ q over RG.

It is possible to show that each Lean UCD G is separable. Lean UCDs, in fact,
enjoy a stronger property than separability: during the construction of the chase
of a databaseD for RG w.r.t. τ1(G), it is not possible to violate an EGD of τ2(G),
and therefore, if D satisfies τ2(G), then chase(D, τ1(G)) is a universal model of
D w.r.t. τ1(G) ∪ τ2(G) which implies separability of G.
Lemma 1. Each Lean UCD is separable.

Proof (sketch). Consider a Lean UCD G, and a database D for RG such that
D |= τ2(G); if D �|= τ2(G), then the claim holds trivially. We need to show that
D∪ τ1(G)∪ τ2(G) |= q iff D∪ τ1(G) |= q, for every BCQ q over RG . Observe that
each model of the logical theory D ∪ τ1(G) ∪ τ2(G) is also a model of D ∪ τ1(G).
Therefore, if D ∪ τ1(G) ∪ τ2(G) |= q, then D ∪ τ1(G) |= q. It remains to establish

the other direction. It suffices to show that, for each i � 0, chase [i](D, τ1(G)), i.e.,
the initial segment of chase(D, τ1(G)) obtained starting from D and applying i
times the TGD chase rule (see Definition 1), does not violate any of the EGDs
of τ2(G). We proceed by induction on i � 0.

Base Step. Clearly, chase [0](D, τ1(G)) = D, and the claim follows since D |=
τ2(G).
Inductive Step. Suppose that during the i-th application of the TGD chase
rule we apply the TGD σ ∈ τ1(G) with homomorphism λ, and the atom a is
obtained. Notice that each set Σ of guarded TGDs can be rewritten into an
equivalent set Σ′ of guarded TGDs, where each TGD of Σ′ has just one head-
atom [10]. Therefore, for technical clarity, we assume w.l.o.g. that each TGD of
τ1(G) has just one head-atom.

4 Notice that the chase algorithm can be extended to treat also EGDs (see, e.g., [25]).
However, such an extended version of the chase algorithm is not needed for the
purposes of the present paper.
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Consider an EGD η ∈ τ2(G). It suffices to show that there is no homomor-

phism which maps body(η) to chase [i](D, τ1(G)). Suppose that η is of the form
∀X1, . . . , Xn, Y1, Y2 A(X1, . . . , Xn)∧ rn(X1, . . . , Xn, Y1)∧ rn(X1, . . . , Xn, Y2)→
Y1 = Y2. We show that there is no homomorphism that maps the set of atoms
A = {rn(X1, . . . , Xn, Y1), rn(X1, . . . , Xn, Y2)} ⊂ body(η) to chase [i](D, τ1(G)),
and thus there is no homomorphism that maps body(η) to chase [i](D, τ1(G)).
The critical case is when σ is of the form ∀X1, . . . , Xn A(X1, . . . , Xn) →
∃Z rn(X1, . . . , Xn, Z). In the sequel, let a = rn(t), and consider an arbitrary

atom a′ = rn(t
′) ∈ chase [i−1](D, τ1(G)). Towards a contradiction, suppose that

there exists a homomorphism that maps A to {a, a′}. This implies that there

exists an extension of λ that maps head(σ) to a′ ∈ chase [i−1](D, τ1(G)), and
hence σ is not applicable with homomorphism λ. But this contradicts the fact
that σ has been applied during the i-th application of the TGD chase rule.

By providing a similar argument, we can establish the same fact for all the
forms of EGDs that can appear in τ2(G), and the claim follows.

Let us now focus on the negative constraints. Given a Lean UCD, checking
whether τ3(G) is satisfied by a database D for RG and the set of assertions
τ1(G) ∪ τ2(G) is tantamount to query answering; this is implicit in [11]. More
precisely, for each negative constraint ν of the form ∀Xϕ(X) → ⊥ of τ3(G),
we evaluate the BCQ qν : p ← ϕ(X) over D ∪ τ1(G) ∪ τ2(G). If at least one of
such queries answers positively, then the logical theory D ∪ τ(G) is inconsistent,
and thus D ∪ G |= q, for every BCQ q; otherwise, given a BCQ q, it holds that
D∪τ(G) |= q iff D∪τ1(G)∪τ2(G) |= q, i.e., we answer q by ignoring the negative
constraints. The next lemma follows immediately.

Lemma 2. Consider a Lean UCD G, a BCQ q over RG , and a database D for
RG . Then, D ∪ G |= q iff (i) D ∪ τ1(G) ∪ τ2(G) |= q or (ii) there exists ν ∈ τ3(G)
such that D ∪ τ1(G) ∪ τ2(G) |= qν .

By combining Lemmas 1 and 2, we immediately get the following useful technical
result, which implies that query answering under Lean UCDs can be reduced
to query answering under guarded TGDs, and thus chase-like techniques and
existing complexity results can be employed.

Corollary 1. Consider a Lean UCD G, a BCQ q over RG , and a database D
for RG . If D |= τ2(G), then D ∪ G |= q iff (i) D ∪ τ1(G) |= q or (ii) there exists
ν ∈ τ3(G) such that D ∪ τ1(G) |= qν .

Complexity of Query Answering. We are now ready to investigate the com-
plexity of BCQAns under Lean UCDs. Before we proceed further, let us analyze
the complexity of the problem of deciding whether a database violates the set
of EGDs obtained from a Lean UCD.

Lemma 3. Consider a Lean UCD G, and a database D for RG . The problem
of deciding whether D �|= τ2(G) is feasible in ptime if G is fixed, and in np in
general.
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Fig. 11. The construction in the proof of Theorem 3

Proof. It is possible to show that a database D′ and a set of BCQs Q can be
constructed in ptime such that D �|= τ2(G) iff D′ |= q, for some q ∈ Q. The
database D′ is constructed by adding to D an atom neq(c1, c2), for each pair
〈c1, c2〉 of distinct constants occurring in D, where neq is an auxiliary binary
predicate not occurring in RG . Clearly, the number of atoms that we need to
add in D is at most n2, where n is the number of constants occurring in D, and
thus D′ can be constructed in polynomial time. The set Q of BCQs is defined as
follows. For each EGD ∀Xϕ(X) → Xi = Xj of τ2(G), in Q there exists a BCQ
p← ϕ(X), neq(Xi, Xj), where p is a 0-ary auxiliary predicate. Clearly, Q can be
constructed in linear time. Clearly, by construction, D �|= τ2(G) iff D′ |= q, for
some q ∈ Q. Since the evaluation of a BCQ over a database is feasible in ac0 if
the query is fixed [43], and in np in general [19], the claim follows.

We continue to investigate the data complexity of BCQAns under Lean UCDs;
recall that the data complexity is calculated by considering only the database
as part of the input, while the query and the diagram are considered fixed.

Theorem 3. BCQAns under Lean UCDs is ptime-complete w.r.t. data
complexity.

Proof. By Corollary 1, given a Lean UCD G, a BCQ q over RG , and a database
D for RG , we can decide whether D ∪ G |= q by applying the following simple
algorithm: (1) if D �|= τ2(G), then answer yes ; (2) if D ∪ τ1(G) |= q, then answer
yes ; (3) if there exists ν ∈ τ3(G) such that D ∪ τ1(G) |= qν , then answer yes ;
(4) answer no. Since the diagram is fixed, Lemma 3 implies that the first step
can be carried out in ptime. Recall that τ1(G) is a set of guarded TGDs. Since,
by Theorem 2, BCQAns under guarded TGDs is feasible in ptime w.r.t. data
complexity, the claimed upper bound follows.

Let us now establish the ptime-hardness of the problem under consideration.
The proof is by reduction from Path System Accessibility (PSA) which is ptime-
hard [27]. An instance of PSA is a quadruple 〈N,E, S, t〉, where N is a set of
nodes, E ⊆ N×N×N is an accessibility relation (its elements are called edges),
S ⊆ N is a set of source nodes, and t ∈ N is a terminal node. The question is
whether t is accessible, where a node v ∈ N is said to be accessible if v ∈ S or
there exist accessible nodes v1 and v2 s.t. 〈v, v1, v2〉 ∈ E.
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Let G be the Lean UCD depicted in Figure 11, which contains also the addi-
tional rule ∀X T1(X) ∧ T2(X)→ C(X). Clearly, τ(G) is constituted by

σ1 : ∀X,Y C(X) ∧ a1(X,Y )→ T1(Y )
σ2 : ∀X,Y C(X) ∧ a2(X,Y )→ T2(Y )
σ3 : ∀X,Y C(X) ∧ a3(X,Y )→ C(Y )
σ4 : ∀X T1(X) ∧ T2(X)→ C(X).

For the construction of the database D we make use of the nodes and the edges
of N and E, respectively, as constants. In particular, the domain of D is the set
of constants {cv | v ∈ N}∪ {ce | e ∈ E}. For a node v ∈ N , let ev1 , . . . , e

v
n, where

n � 0, be all edges of E that have v as their first component (the order is not
relevant). The database D contains, for each node v ∈ N , the following atoms:

– a3(cev1 , cv) and a3(cevi+1
, cevi ), for each i ∈ [n− 1],

– a1(cu, cevi ) and a2(cw, cevi ), where e
v
i = 〈v, u, w〉, for each i ∈ [n].

In addition, D contains an atom C(cv) for each v ∈ S. Finally, let q be the BCQ
p ← C(ct). Intuitively speaking, T1 keeps all the edges 〈v1, v2, v3〉 where v2 is
accessible, T2 keeps all the edges 〈v1, v2, v3〉 where v3 is accessible, and C keeps
all the nodes which are accessible, and also all the edges 〈v1, v2, v3〉 where v1 is
accessible. Let us say that the above construction is similar to a construction
given in [17], where the data complexity of query answering under description
logics is investigated. It is easy to verify that G, D and q can be constructed in
logspace. Moreover, observe that only the database D depends on the given
instance of PSA, while the diagram and the query are fixed. It remains to show
that t is accessible iff D ∪ G |= q, or, equivalently, chase(D, τ(G)) |= q. For
brevity, in the rest of the proof, a constant cx, where x is either a node of N or
an edge of E, is denoted as x.

(⇒) Suppose first that t is accessible. It is possible to show, by induction
on the derivation of accessibility, that if a node v ∈ N is accessible, then
chase(D, τ(G)) |= qv, where qv is the BCQ p← C(v).

Base Step. Suppose that v ∈ S. By construction, C(v) ∈ D, and thus
chase(D, τ(G)) |= qv.

Inductive Step. Clearly, there exists an edge 〈v, v1, v2〉 ∈ E, where both v1 and
v2 are accessible. By induction hypothesis, both atoms C(v1) and C(v2) belong
to chase(D, τ(G)). Let e1, . . . , en be the edges of E that have v as their first com-
ponent, where en = 〈v, v1, v2〉; assume the same order used in the construction
of the database D. Since the atoms a1(v1, en) and a2(v2, en) belong to D, and
chase(D, τ(G)) |= τ(G), the atoms T1(en) and T2(en) belong to chase(D, τ(G)).
Therefore, due to the TGD σ4, C(en) ∈ chase(D, τ(G)). Now, by exploiting the
atoms {a3(ei+1, ei)}i∈[n−1] ⊂ D and the TGD σ3, it is easy to show that the
atom C(e1) belongs to chase(D, τ(G)). Finally, since a3(e1, v) ∈ chase(D, τ(G)),
we get that C(v) ∈ chase(D, τ(G)). Consequently, chase(D, τ(G)) |= qv.

(⇐) Suppose now that chase(D, τ(G)) |= q. We need to show that t is accessi-
ble. We are going to show that, for each v ∈ N , if C(v) ∈ chase(D, τ(G)), then v
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Fig. 12. The chase derivation in the proof of Theorem 3

is accessible. Observe that the only way to obtain C(v) during the construction
of the chase is as depicted in Figure 12. Since C(u1) and C(u2) are database
atoms, by construction, both u1 and u2 belong to S, and thus they are accessi-
ble. Since en = 〈w, u1, u2〉, we immediately get that w is accessible. But observe
that w = v, and hence v is accessible. This completes the proof.

We conclude this subsection by investigating the combined complexity of
BCQAns under Lean UCDs; recall that the combined complexity is calculated
by considering, apart from the database, also the query and the diagram as part
of the input. As we shall see, query answering under Lean UCDs can be re-
duced to query answering under guarded TGDs of bounded arity, and thus (by
Theorem 2) we get an exptime upper bound.

Theorem 4. BCQAns under Lean UCDs is in exptime w.r.t. combined
complexity.

Proof. As already discussed in the proof of Theorem 3, given a Lean UCD G, a
BCQ q over RG , and a database D for RG , we can decide whether D ∪ G |= q
by applying the following simple algorithm: (1) if D �|= τ2(G), then answer yes ;
(2) if D ∪ τ1(G) |= q, then answer yes ; (3) if there exists ν ∈ τ3(G) such that
D ∪ τ1(G) |= qν , then answer yes ; (4) answer no. By Lemma 3, we get that the
first step can be carried out in np. Now, in order to show that steps (2) and
(3) can be carried out in exptime, we are going to show that the problem of
answering a BCQ under the set τ1(G) can be reduced to query answering under
a set of guarded TGDs of bounded arity, which is in exptime (by Theorem 2).

Any TGD of τ1(G) which has one of the following forms is called harmless :

∀X1, . . . , Xn A(X1, . . . , Xn)→ C1(X1), . . . , Cn(Xn),
∀X1, . . . , Xn, Y A(X1, . . . , Xn) ∧ r′(X1, . . . , Xn, Y )→ CA(Y ),

∀X1, . . . , Xn A(X1, . . . , Xn)→ ∃Z r′(X1, . . . , Xn, Z),
∀X1, . . . , Xn A(X1, . . . , Xn)→ A′(X1, . . . , Xn).
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Let Σh be the set of harmless TGDs of τ1(G). It is not difficult to see that, for
every BCQ p over RG , D ∪ τ1(G) |= p iff chase(chase(D,Σh)↓, τ1(G) \Σh) |= p,
where chase(D,Σh)↓ is the (finite) database obtained by freezing chase(D,Σh),
i.e., by replacing each null of ΓN occurring in chase(D,Σh) with a fresh constant
of Γ . Now, observe that atoms of the form f(c1, . . . , cn) are necessarily database
atoms since the predicate f does not occur in the head of any of the TGDs
of τ1(G). Therefore, whenever a TGD of the form ∀X,Y1, . . . , Ym, Z C(X) ∧
f(X,Y1, . . . , Ym, Z) → T1(Y1), . . . , Tm(Ym), T (Z) is applied during the chase,
the variable X is mapped (via a homomorphism) to a constant. Thus, for each
database atom f(c1, . . . , cm+2), we can replace the above rule with the rule
C(c1)→ T1(c2), . . . , Tm(cm+1), T (cm+2). Let Σ be the set obtained by applying
the above transformation on the set τ1(G) \Σh. It holds that, D ∪ τ1(G) |= p iff
chase(chase(D,Σh)↓, Σ) |= p, for every BCQ p over RG . It is not difficult to see
that Σ is a set of guarded TGDs of bounded arity, and the claim follows.

Notice that the above theorem does not provide tight combined complexity
bounds for the problem of query answering under Lean UCDs. The exact bound
is currently under investigation, and the results will be presented in an upcoming
work. Preliminary findings can be found in an online manuscript5.

Interestingly, both the data and combined complexity of query answering un-
der Lean UCDs can be reduced by applying further restrictions. In particular,
this can be achieved by assuming that each attribute and operation is associ-
ated to a unique class, i.e., different classes have disjoint sets of attributes and
operations, and also an association A with an association class CA does not
generalize some other association A′. These assumptions allow us to establish
the following: given a diagram G, a BCQ q over RG , and a database D for RG ,
there exists a set Σ of multi-linear TGDs over a schema R, where each predicate
of R has bounded arity, such that D ∪ τ1(G) |= q iff D ∪ Σ |= q; recall that a
multi-linear TGD is a guarded TGD where each body-atom is a guard. Since
query answering under multi-linear TGDs is in ac0 w.r.t. data complexity and
np-complete in the case of bounded arity [11], we immediately get that query
answering under Lean UCDs that satisfy the above assumptions is in ac0 w.r.t.
data complexity and np-complete w.r.t. combined complexity.

5 Discussion and Future Work

In this work, we have studied the problem of query answering under UML class
diagrams (UCDs) by relating it to the problem of query answering under guarded
Datalog±. In particular, we have identified an expressive fragment of UCDs,
called Lean UCD, under which query answering is ptime-complete w.r.t. data
complexity and in exptime w.r.t. combined complexity.

In the immediate future we plan to investigate expressive, but still tractable,
extensions of Lean UCD with additional constructs such as stratified negation.

5 http://dl.dropbox.com/u/3185659/uml.pdf

http://dl.dropbox.com/u/3185659/uml.pdf
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Moreover, we are planning to investigate the problem of query answering under
Lean UCDs by considering only finite instantiations. This is an interesting and
important research direction since, in practice, it is natural (for obvious reasons)
to concentrate only on finite instances of a system.

Reasoning on UCDs by considering only finite instantiations has been studied
first by Cadoli et al. [9] by building on results of Lenzerini and Nobili [32] estab-
lished for the Entity-Relationship model. In particular, [9] proposes an encoding
of satisfiability of UCDs under finite instantiations into a constraint satisfaction
problem, showing that satisfiability of UCDs under finite instantiations is ex-
ptime-complete. Later, more efficient algorithms based on linear programming
were presented by Maraee and Balaban for specific instances of the problem [35].
Recently, Queralt et al. [38] extended the results of [9] to cope with a restricted
form of OCL constraints, called OCL-Lite, and shown that satisfiability of UCDs
and OCL-Lite constraints under finite instantiations is exptime-complete.

An important notion related to query answering under UCDs and OCL
constraints is the so-called finite controllability. A class of UCDs C (possibly
with OCL constraints) is finitely controllable if the following holds: given a
diagram G that falls in C, an instance D of the system modeled by G, and a
query q, D ∪ G |= q iff D ∪ G |=fin q, i.e., q is entailed by D ∪ G under arbitrary
instantiations iff it is entailed by D ∪ G under finite instantiations only. It is
worthwhile to remark that by forbidding functional participation Lean UCD is
finitely controllable. This is a consequence of the fact the guarded fragment of
first-order logic, and thus guarded Datalog±, is finitely controllable [5].
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28. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. of Computer Progr. 69(1-3), 27–34 (2007)

29. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

30. Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted
UML class diagrams. Theor. Comput. Sci. 411(2), 301–323 (2010)

31. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclic-
ity and guardedness. In: Proc. of IJCAI, pp. 963–968 (2011)

32. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Inf. Syst. 15(4), 453–461 (1990)

33. Lutz, C.: The Complexity of Conjunctive Query Answering in Expressive Descrip-
tion Logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

34. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

35. Maraee, A., Balaban, M.: Efficient Reasoning about Finite Satisfiability of UML
Class Diagrams with Constrained Generalization Sets. In: Akehurst, D.H., Vogel,
R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 17–31. Springer, Heidel-
berg (2007)

36. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
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Abstract. This paper summarises recent results on bicategories of
concurrent games and strategies. Nondeterministic concurrent strategies,
those nondeterministic plays of a game left essentially unchanged by
composition with copy-cat strategies, have recently been characterized
as certain maps of event structures. This leads to a bicategory of gen-
eral concurrent games in which the maps are nondeterministic concurrent
strategies. It is shown how the bicategory can be refined to a bicategory of
winning strategies by adjoining winning conditions to games. Assigning
“access levels” to moves addresses situations where Player or Opponent
have imperfect information as to what has occurred in the game. Finally,
a bicategory of deterministic “linear” strategies, a recently discovered
model of MALL (multiplicative-additive linear logic), is described. All
the bicategories become equivalent to simpler order-enriched categories
when restricted to deterministic strategies.

Keywords: Games, strategies, concurrency, event structures, winning
conditions, determinacy.

1 Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, leisure and in life. As abundant, but much less understood, are
concurrent games in which a Player (or team of players) compete against an
Opponent (or team of opponents) in a highly interactive and distributed fash-
ion, especially when we recognize that the dichotomy Player vs. Opponent has
several readings, as for example, process vs. environment, proof vs. refutation,
or more ominously as ally vs. enemy. This paper summarises recent results on
the mathematical foundations of concurrent games. It describes what it means
to be a concurrent game, a concurrent strategy, a winning strategy, a concurrent
game of imperfect information, and a linear strategy, and generally illustrates
the rich mathematical structure concurrency brings to games.

Our primary motivation has come from the semantics of computation and
the role of games in logic, although games are situated at a crossing point of
several areas. In semantics it is becoming clear that we need an intensional
theory to capture the ways of computing, to near operational and algorithmic
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concerns. Sometimes unexpected intensionality is forced through the demands of
compositionality, e.g. in nondeterministic dataflow [1]. More to the point we need
to repair the artificial division between denotational and operational semantics.
But what is to be our fundamental model of processes? Game semantics provides
a possible answer: strategies. (There are others, e.g. profunctors as maps between
presheaf categories [2,3].) Meanwhile in logic the well-known Curry-Howard
correspondence “propositions as types, proofs as programs” is being recast as
“propositions as games, proofs as strategies.”

However, in both semantics and logic, traditional definitions of strategies and
games are not general enough: they do not adequately address the concurrent
nature of computation and proof—see e.g. [4]. Game semantics has developed
from simple sequential games, where only one move is allowed at a time and, for
instance, it is often assumed that the moves of Player and Opponent alternate.
Because of its history it is not obvious how to extend traditional game semantics
to concurrent computation, or what relation it bears to other generalised domain
theories such as those where domains are presheaf categories [2,3]. It is time
to build game semantics on a broader foundation, one more squarely founded
within a general model for concurrent processes. The standpoint of this paper
is to base games and strategies on event structures, the analogue of trees but in
a concurrent world; just as transition systems, an “interleaving” model, unfold
to trees so do Petri nets, a “concurrent” model, unfold to event structures.
In doing so we re-encounter earlier work of Abramsky and Melliès, first in their
presentation of deterministic concurrent strategies as closure operators, and later
in Melliès programme of asynchronous games, culminating in his definition with
Mimram of ingenuous strategies; a consequence of the work described here is a
characterization of Melliès and Mimram’s receptive ingenuous strategies [5] as
precisely those deterministic pre-strategies for which copy-cat strategies behave
as identities.

Our slogan: processes are nondeterministic concurrent strategies. For method-
ology we adopt ideas of Joyal who recognized that there was a category of games
underlying Conway’s construction of the “surreal numbers” [6,7]. Like many 2-
party games Conway’s games support two important operations: a form of paral-
lel composition G‖H ; a dualizing operationG⊥ which reverses the roles of Player
and Opponent in G. Joyal defined a strategy σ from a game G to a gameH , to be
a strategy σ in G⊥‖H . Following Conway’s method of proof, Joyal showed that
strategies compose, with identities given by copy-cat strategies.

We shall transport the pattern established by Joyal to a general model for con-
current computation: games will be represented by event structures and strategies
as certain maps into them. The motivation is to obtain: forms of generalised do-
main theory in which domains are replaced by concurrent games and continuous
functions by nondeterministic concurrent strategies; operations, including higher-
order operations via “function spaces” G⊥‖H , within a model for concurrency;
techniques for logic (via proofs as concurrent strategies), and possibly verification
and algorithmics. However, first things first, here we will concentrate on the rich
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algebra of concurrent strategies. Most proofs and background on stable families,
on which proofs often rely, can be found in [8].

2 Event Structures

An event structure comprises (E,Con,≤), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite ⇒ X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation
of immediate dependency e � e′, meaning e and e′ are distinct with e ≤ e′

and no event in between, will play a very important role. For X ⊆ E we write
[X ] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X ; note if X ∈ Con, then
[X ] ∈ Con.

Notation 1. Let E be an event structure. We use x−⊂y to mean y covers x

in C∞(E), i.e. x ⊂ y in C∞(E) with nothing in between, and x
e−−⊂ y to mean

x ∪ {e} = y for x, y ∈ C∞(E) and event e /∈ x. We sometimes use x
e−−⊂ ,

expressing that event e is enabled at configuration x, when x
e−−⊂ y for some y.

2.1 Maps of Event Structures

Let E and E′ be event structures. A (partial) map of event structures f : E ⇀ E′

is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E) its direct
image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. Partial maps of event
structures compose as partial functions, with identity maps given by identity
functions.
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For any event e a map of event structures f : E ⇀ E′ must send the con-
figuration [e] to the configuration f [e]. Partial maps preserve the concurrency
relation, when defined.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from
x is injective; the restriction of f to a function from x to fx is thus bijective.
A partial map of event structures which preserves causal dependency whenever
it is defined, i.e. e′ ≤ e implies f(e′) ≤ f(e) whenever both f(e′) and f(e) are
defined, is called partial rigid. We reserve the term rigid for those total maps of
event structures which preserve causal dependency.

2.2 Process Operations

Products. The category of event structures with partial maps has products
A×B with projections Π1 to A and Π2 to B. The effect is to introduce arbitrary
synchronisations between events of A and events of B in the manner of process
algebra.

Restriction. The restriction of an event structure E to a subset of events R,
written E � R, is the event structure with events E′ = {e ∈ E | [e] ⊆ R} and
causal dependency and consistency induced by E.

Synchronized Compositions and Pullbacks. Synchronized compositions
play a central role in process algebra, with such seminal work as Milner’s CCS
and Hoare’s CSP. Synchronized compositions of event structures A and B are
obtained as restrictions A × B � R. We obtain pullbacks as a special case. Let
f : A→ C and g : B → C be maps of event structures. Defining

P =def A×B � {p ∈ A×B | fΠ1(p) = gΠ2(p) with both defined}

we obtain a pullback square

P
Π1

����
��
��
���� Π2

���
��

��
��

�

A

f ���
��

��
��

B

g
����
��
��
��

C

in the category of event structures. When f and g are total the same construction
gives the pullback in the category of event structures with total maps.
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2.3 Projection

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V , to be E↓V =def (V,≤V ,ConV ), where v ≤V

v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

3 Event Structures with Polarities

Both a game and a strategy in a game are to be represented as an event struc-
ture with polarity, which comprises (E, pol ) where E is an event structure with
a polarity function pol : E → {+,−} ascribing a polarity + (Player) or − (Op-
ponent) to its events. The events correspond to (occurrences of) moves. Maps
of event structures with polarity are maps of event structures which preserve
polarity.

3.1 Operations

Dual. The dual, E⊥, of an event structure with polarity E comprises a copy of
the event structure E but with a reversal of polarities.

Simple Parallel Composition. The operation A‖B simply forms the disjoint
juxtaposition of A,B, two event structures with polarity; a finite subset of events
is consistent if its intersection with each component is consistent.

4 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand
for the possible occurrences of moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.
A pre-strategy represents a nondeterministic play of the game—all its moves
are moves allowed by the game and obey the constraints of the game; the con-
cept will later be refined to that of strategy (and winning strategy in Section 7).
A pre-strategy in A is defined to be a total map σ : S → A from an event struc-
ture with polarity S. Two pre-strategies σ : S → A and τ : T → A in A will
be essentially the same when they are isomorphic, i.e. there is an isomorphism
θ : S ∼= T such that σ = τθ; then we write σ ∼= τ .

Let A and B be event structures with polarity. Following Joyal [7], a pre-
strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.
It thus determines a span

S

σ1

����
��
��
�� σ2

���
��

��
��

�

A⊥ B ,
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of event structures with polarity where σ1, σ2 are partial maps and for all s ∈ S
either, but not both, σ1(s) or σ2(s) is defined. Two pre-strategies from A to
B will be isomorphic when they are isomorphic as pre-strategies in A⊥‖B, or
equivalently are isomorphic as spans. We write σ : A + ��B to express that σ is
a pre-strategy from A to B. Note a pre-strategy σ in a game A coincides with a
pre-strategy from the empty game σ : ∅ + ��A.

4.1 Composing Pre-strategies

We can present the composition of pre-strategies via pullbacks.1 Given two pre-
strategies σ : S → A⊥‖B and τ : T → B⊥‖C, ignoring polarities we can
consider the maps on the underlying event structures, viz. σ : S → A‖B and
τ : T → B‖C. Viewed this way we can form the pullback in the category of
event structures

P

�����
���

���
� ��

����
���

���
��

S‖C

σ‖C ����
��

��
��

�
A‖T

A‖τ					
		
		
		

A‖B‖C .
There is an obvious partial map of event structures A‖B‖C → A‖C undefined
on B and acting as identity on A and C. The partial map from P to A‖C given
by following the diagram (either way round the pullback square)

P

					
			

			
	 ��

����
���

���
��

S‖C

σ‖C ��















A‖T

A‖τ		���
��
��
��

A‖B‖C




A‖C

factors as the composition of the partial map P → P ↓ V , where V is the set of
events of P at which the map P → A‖C is defined, and a total map P ↓ V →
A‖C. The resulting total map gives us the composition τ�σ : P ↓ V → A⊥‖C
once we reinstate polarities.

1 The construction here gives the same result as that via synchronized composition
in [9]— I’m grateful to Nathan Bowler for this observation. Notice the analogy with
the composition of relations S ⊆ A × B, T ⊆ B × C which can be defined as
T ◦S = (S×C ∩ A×T ) ↓ A×C, the image of S×C ∩ A×T under the projection
of A×B ×C to A× C.
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4.2 Concurrent Copy-Cat

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of
a pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent,
or distributed, strategy based on the idea that Player moves, of +ve polarity,
always copy previous corresponding moves of Opponent, of −ve polarity.

For c ∈ A⊥‖A we use c to mean the corresponding copy of c, of opposite po-
larity, in the alternative component. Define CCA to comprise the event structure
with polarity A⊥‖A together with extra causal dependencies c ≤CCA

c for all
events c with polA⊥‖A(c) = +.

Proposition 1. Let A be an event structure with polarity. Then event struc-
ture with polarity CCA is an event structure. Moreover, x ∈ C(CCA) iff x ∈
C(A⊥‖A) & ∀c ∈ x. polA⊥‖A(c) = + =⇒ c ∈ x .
The copy-cat pre-strategy γA : A + ��A is defined to be the map γA : CCA →
A⊥‖A where γA is the identity on the common set of events.

Example 1. We illustrate the construction of the copy-cat strategy for the event
structure A comprising the single immediate dependency a1 � a2 from an Op-
ponent move a1 to a Player move a2. The event structure CCA is obtained from
A⊥‖A by adjoining the additional immediate dependencies shown:

A⊥ a2 � � ���


 ⊕ a2 A

a1 ⊕


�
�

� a1


�
�

�
�� 
 
 


5 Strategies

The main result of [9] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible
moves of Opponent. Innocence restricts the behaviour of Player; Player may
only introduce new relations of immediate causality of the form � � ⊕ beyond
those imposed by the game.

Receptivity. A pre-strategy σ is receptive iff σx
a−−⊂ & polA(a) = − ⇒ ∃!s ∈

S. x
s−−⊂ & σ(s) = a .

Innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s � s′ & pol(s) = + then σ(s) � σ(s′), and
−-innocent: if s � s′ & pol(s′) = − then σ(s) � σ(s′).

Theorem 1. Let σ : A + ��B be pre-strategy. Copy-cat behaves as identity w.r.t.
composition, i.e. σ ◦ γA ∼= σ and γB ◦ σ ∼= σ, iff σ is receptive and innocent.
Copy-cat pre-stategies γA : A + ��A are receptive and innocent.
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5.1 The Bicategory of Concurrent Games and Strategies

Theorem 1 motivates the definition of a strategy as a pre-strategy which is recep-
tive and innocent. In fact, we obtain a bicategory, Games, in which the objects
are event structures with polarity—the games, the arrows from A to B are strate-
gies σ : A + ��B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies � (which extends to a functor on 2-cells via the
universality of pullback).

A strategy σ : A + ��B corresponds to a dual strategy σ⊥ : B⊥ + ��A⊥. This
duality arises from the correspondence

S

σ1

����
��
��
�

σ2

���
��

��
��

�

A⊥ B

←→ S

σ2

����
��
��
�� σ1

���
��

��
��

�

(B⊥)⊥ A⊥ .

The dual of copy-cat, γ⊥A , is isomorphic to the copy-cat of the dual, γA⊥ , for
A an event structure with polarity. The dual of a composition of pre-strategies
(τ�σ)⊥ is isomorphic to the composition σ⊥�τ⊥. This duality is maintained in
the major bicategories of games we shall consider.

One notable sub-bicategory of games, though one not maintaining duality, is
obtained on restricting to objects which comprise purely +ve events: then we
obtain the bicategory of stable spans, which have played a central role in the
semantics of nondeterministic dataflow [1].

5.2 The Subcategory of Deterministic Strategies

Say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg [X ] ∈ ConS =⇒ X ∈ ConS ,

where Neg[X ] =def {s′ ∈ S | pol(s′) = − & ∃s ∈ X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends only
on a consistent set of opponent moves. Say a strategy σ : S → A is deterministic
if S is deterministic.

Lemma 1. An event structure with polarity S is deterministic iff

∀s, s′ ∈ S, x ∈ C(S). x s−−⊂ & x
s′−−⊂ & pol (s) = + =⇒ x ∪ {s, s′} ∈ C(S) .

In general, a copy-cat strategy can fail to be deterministic, illustrated below.

Example 2. Take A to consist of two events, one +ve and one −ve event, incon-
sistent with each other (indicated by the wiggly line). The construction CCA:

A⊥ � � ���




��
��
��

⊕ A

��
��
��

⊕ ��
�� 
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To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

Copy-cat γA is deterministic iff immediate conflict in A respects polarity, or
equivalently that there is no immediate conflict between +ve and −ve events, a
condition we call race-free.

Lemma 2. Let A be an event structure with polarity. The copy-cat strategy γA
is deterministic iff A is race-free, i.e. for all x ∈ C(A),

x
a−−⊂ & x

a′
−−⊂ & pol(a) = + & pol(a′) = − =⇒ x ∪ {a, a′} ∈ C(A) .

Lemma 3. The composition of deterministic strategies is deterministic.

Lemma 4. A deterministic strategy σ : S → A is injective on configurations
(equivalently, σ is mono in the category of event structures with polarity).

We obtain a sub-bicategory DGames of Games by restricting objects to race-
free games and strategies to being deterministic. Via Lemma 4, deterministic
strategies in a game correspond to certain subfamilies of configurations of the
game. A characterization of those subfamilies which correspond to deterministic
strategies shows them to coincide with the receptive ingenuous strategies of Mim-
ram and Melliès [5]. This work grew out of Abramsky and Melliès early work
in which deterministic concurrent strategies are presented, essentially, as partial
closure operators on the domain of configurations of an event structure [4]. Via
the presentation of deterministic strategies as families DGames is equivalent
to an order-enriched category. There are notable subcategories: when the ob-
jects are countable event structures with polaritywhich consist of purely +ve
events we recover as a full subcategory the classical category of stable domain
theory, viz. Berry’s dI-domains and stable functions; this in turn has Girard’s
qualitative domains and coherence spaces, both with stable functions, as full
subcategories [10]. The category of simple games [11,12], underlying both HO
and AJM games, is a subcategory, though not full.

6 From Strategies to Profunctors

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+

x′ to mean x ⊆ x′ and pol(x′ \ x) ⊆ {+}, i.e. the configuration x′ extends
the configuration x solely by events of +ve polarity. Similarly x ⊆− x′ means
configuration x′ extends x solely by events of −ve polarity. With this notation
in place we can give an attractive characterization of concurrent strategies:

Lemma 5. A strategy S in a game A comprises a total map of event structures
with polarity σ : S → A such that
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(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′


σ





⊆ x


σ




y ⊆+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆
x′ & σx′ = y , i.e.

x


σ





⊆ x′


σ




σx ⊆− y .

The above lemma tells us how to form a discrete fibration, so presheaf, from a
strategy. For A, an event structure with polarity, we can define a new order, the
Scott order, between configurations x, y ∈ C∞(A), by

x �A y ⇐⇒ x ⊇− x ∩ y ⊆+ y .

Proposition 2. Let σ : S → A be a pre-strategy in game A. The map σ“ taking a
finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from (C(S),�S)
to (C(A),�A) iff σ is a strategy.

As discrete fibrations correspond to presheaves, an alternative reading of Propo-
sition 2 is that a pre-strategy σ : S → A is a strategy iff σ“ determines a presheaf
over (C(A),�A).

Consequently, a strategy σ : A + ��B determines a discrete fibration over
(C(A⊥‖B),�A⊥‖B). But

(C(A⊥‖B),�A⊥‖B) ∼= (C(A⊥),�A⊥)×(C(B),�B) ∼= (C(A),�A)
op×(C(B),�B) ,

so σ determines a presheaf over (C(A),�A)
op × (C(B),�B), i.e. a profunctor

σ“ : (C(A),�A) + ��(C(B),�B) .

The operation σ“, on a strategy σ, forms a lax functor from Games to Prof ,
the bicategory of profunctors: whereas it preserves identities, it is not the case
that (τ�σ)“ and τ“◦σ“ coincide up to isomorphism; the profunctor composition
τ“ ◦ σ“ will generally contain extra “unreachable” elements.

However, in special cases composition is preserved up to isomorphism. Say a
strategy σ is partial rigid when the components σ1, σ2 are partial-rigid maps of
event structures (with polarity). Partial-rigid strategies form a sub-bicategory
of Games—see Section 9. For composable partial-rigid strategies σ and τ we do
have (τ�σ)“ ∼= τ“ ◦ σ“. Stable spans and simple games lie within the bicategory
partial-rigid strategies.
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7 Winning Strategies

A game with winning conditions comprises G = (A,W ) where A is an event
structure with polarity and W ⊆ C∞(A) consists of the winning configurations
for Player. We define the losing conditions to be C∞(A) \W .2

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ : S → A in G
is winning (for Player) if σx ∈ W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s−−⊂ then the event s has −ve

polarity. Any achievable position z ∈ C∞(S) of the game can be extended to a +-
maximal, so winning, configuration (via Zorn’s Lemma). So a strategy prescribes
Player moves to reach a winning configuration whatever state of play is achieved
following the strategy. Note that for a game A, if winning conditionsW =C∞(A),
i.e. every configuration is winning, then any strategy in A is a winning strategy.

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ : S → A is a strategy in a game (A,W ). A counter-strategy
is strategy of Opponent, so a strategy τ : T → A⊥ in the dual game. We
can view σ as a strategy σ : ∅ + ��A and τ as a strategy τ : A + ��∅. Their
composition τ�σ : ∅ + ��∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures σ : S → A and τ : T → A. Form their pullback,

P
Π1

����
��
��
���� Π2

���
��

��
��

�

S

σ
���

��
��

��
� T

τ
����
��
��
��

A ,

to obtain the event structure P resulting from the interaction of σ and τ . Because
σ or τ may be nondeterministic there can be more than one maximal configura-
tion z in C∞(P ). A maximal configuration z in C∞(P ) images to a configuration
σΠ1z = τΠ2z in C∞(A). Define the set of results of the interaction of σ and τ
to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P )} .
It can be shown that a strategy σ is a winning for Player iff all the results of
the interaction 〈σ, τ〉 lie within the winning configurations W , for any counter-
strategy τ : T → A⊥ of Opponent.

2 It is fairly straightforward to generalize to the situation where configurations may
be neutral, neither winning nor losing [13,8].
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7.1 Operations

There is an obvious dual of a game with winning conditions G = (A,WG):

G⊥ = (A⊥, C∞(A) \WG) ,

reversing the role of Player and Opponent, and consequently that of winning
and losing conditions.

The parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is

G`H =def (A‖B, WG`H)

where, for x ∈ C∞(A‖B),

x ∈ WG`H iff x1 ∈WG or x2 ∈ WH

—a configuration x of A‖B comprises the disjoint union of a configuration x1 of
A and a configuration x2 of B. To win in G `H is to win in either game. The
unit of ‖ is (∅, ∅). Defining G ⊗H =def (G

⊥‖H⊥)⊥ we obtain a game where to
win is to win in both games G and H . The unit of ⊗ is (∅, {∅}).

Defining G� H =def G
⊥ `H , a win in G� H is a win in H conditional on

a win in G: For x ∈ C∞(A⊥‖B),

x ∈ WG�H iff x1 ∈WG =⇒ x2 ∈ WH .

7.2 The Bicategory of Winning Strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G� H . We compose strategies as before.
The composition of winning strategies is winning. However, for a general game
with winning conditions (A,W ) the copy-cat strategy need not be winning, as
shown in the following example.

Example 3. Let A be the event structure with polarity of Example 2. Take as
winning conditions the set {{⊕}}. To see CCA is not winning consider the con-
figuration x consisting of the two −ve events in CCA. Then x is +-maximal as
any +ve event is inconsistent with x. However, x1 ∈ W while x2 /∈ W , failing
the winning condition of (A,W ) � (A,W ).

Recall from Section 6, that each event structure with polarityA possesses a Scott
order on its configurations C∞(A): x′ � x iff x′ ⊇− x ∩ x′ ⊆+ x . With it we
can express a necessary and sufficient for copy-cat to be winning w.r.t. a game
(A,W ):

∀x, x′ ∈ C∞(A). if x′ � x & x′ is +-maximal & x is −-maximal,

then x ∈ W =⇒ x′ ∈W .
(Cwins)
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The condition (Cwins) is assured for event structures with polarity which are
race-free.

We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditions G,H, · · · satisfying
(Cwins) and arrows winning strategies G + ��H ; 2-cells, their vertical and hori-
zontal composition are as before. Its restriction to deterministic strategies yields
a bicategory equivalent to a simpler order-enriched category.

7.3 Applications

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent [14,11]—see [8] for details. Often problems can be reduced to
whether Player or Opponent has a winning strategy, for which it is important
to know when concurrent games are determined, i.e. either Player or Opponent
has a winning strategy. As a first step, well-founded, race-free concurrent games
have now been shown to be determined and have been applied to give a concur-
rent game semantics to predicate logic [8,15]. (A game A is well-founded if all
configurations in C∞(A) are finite.) The game semantics extends to Hintikka’s
“independence-friendly” logic, using ideas of the next section to associate ‘levels’
with quantified variables.

8 Imperfect Information

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“paper”).
The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1 ⊕

��
��
��
��
��

��
��

��
��

��
� r2

�	
�	
�	
�	
�	

��
��

��
��

��

s1⊕ 
�
�
�
�
�
�
� ⊕ p1 s2 � 
�
�
�
�
�
�
� � p2
comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}
and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a



Concurrent Games 39

dominant move. Explicitly, the winning strategy σ : S → RSP is given as the
obvious map from S, the following event structure with polarity:

r1 ⊕

��
��
��
��
��

��
��

��
��

��

s1⊕ 
�
�
�
�
�
�
� ⊕ p1 � s2

���� � � � � � � � � � � � � � � � �

�	
�	
�	
�	
�	

��
��

��
��

��

p2 �

���� � � � � � � � � � � � � � �

�
�
�
�
�
�
� � r2

���� � � � � � � � � � � � � � �

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible
to both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

We can extend concurrent games to games with imperfect information. To do
so in way that respects the operations of the bicategory of games we suppose a
fixed preorder of levels (Λ,�). The levels are to be thought of as levels of access,
or permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

A Λ-game (G, l) comprises a game G = (A,W ) with winning conditions to-
gether with a level function l : A→ Λ such that

a ≤A a
′ =⇒ l(a) � l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ : S → A for
which

s ≤S s
′ =⇒ lσ(s) � lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under �. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to level
1 and −ve events to level 2. The strategy above, where Player awaits the move
of Opponent then beats it with a dominant move, is now disallowed because it is
not a Λ-strategy—it introduces causal dependencies which do not respect levels.
If instead we took Λ to be the unique preorder on a single level the Λ-strategies
would coincide with all the strategies.

Fortunately the introduction of levels meshes smoothly with the bicategorical
structure on games. For Λ-games (G, lG) and (H, lH), define the dual (G, lG)

⊥

to be (G⊥, lG⊥) where lG⊥ = lG, and define the parallel composition (G, lG) `
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(H, lH) to be (G`H, lG`H) where lG`H(a) = lG(a) for a ∈ G, lG`H(b) = lH(b)
for b ∈ H .

A Λ-strategy between Λ-games from (G, lG) to (H, lH) is a strategy in
(G, lG)

⊥ ` (H, lH). Let (G, lG) be a Λ-game where G satisfies (Cwins). The
copy-cat strategy on G is a Λ-strategy. The composition of Λ-strategies is a
Λ-strategy.

9 Linear Strategies

It has recently become clear that concurrent strategies support several refine-
ments. For example, define a partial-rigid strategy to be a strategy σ in which
both components σ1 and σ2 are partial rigid. Copy-cat strategies are partial
rigid, and the composition of partial-rigid strategies is partial-rigid, so partial-
rigid strategies form a sub-bicategory of Games. We can refine partial-rigid
strategies further to linear strategies, where each +ve output event depends on
a maximum +ve event of input, and dually, a −ve event of input depends on a
maximum −ve event of output. By introducing this extra relevance, of input to
output and output to input, we can recover coproducts and products lacking in
Games.

Formally, a (nondeterministic) linear strategy is a strategy

S

σ1

����
��
��
�� σ2

���
��

��
��

�

A⊥ B ,

where σ1 and σ2 are partial rigid maps such that

∀s ∈ S. polS(s) = + & σ2(s) is defined

=⇒
∃s0 ∈ S. polS(s0) = − & σ1(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ1(s1) is defined & s1 ≤S s =⇒ s1 ≤S s0

and

∀s ∈ S. polS(s) = + & σ1(s) is defined

=⇒
∃s0 ∈ S. polS(s0) = − & σ2(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ2(s1) is defined & s1 ≤S s =⇒ s1 ≤S s0 .

Copy-cat strategies are linear and linear strategies are closed under composi-
tion. Linear strategies form a sub-bicategory Games. Its sub-bicategory Lin of
deterministic subcategories is a model of MALL (multiplicative-additive linear
logic) and a promising candidate in which to establish full-completeness—work
in progress.
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10 Conclusion

We have summarised the main results on concurrent strategies to date
(December 2011). Two current research directions: One current is the develop-
ment of an intensional semantics of processes and proofs. But games and concur-
rent strategies form a generalized affine domain theory. Does the bicategory Lin
of deterministic linear strategies provide a fully-complete model of MALL? A next
step is to extend concurrent games to allow back-tracking via “copying” monads
in event structures with symmetry [16]. Another direction concerns the possible
application of concurrent games for which we seek stronger determinacy results.
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Abstract. This paper provides several induction rules that can be used
to prove properties of effectful data types. Our results are semantic in
nature and build upon Hermida and Jacobs’ fibrational formulation of
induction for polynomial data types and its extension to all inductive
data types by Ghani, Johann, and Fumex. An effectful data type μ(TF ) is
built from a functor F that describes data, and a monad T that computes
effects. Our main contribution is to derive induction rules that are generic
over all functors F and monads T such that μ(TF ) exists. Along the way,
we also derive a principle of definition by structural recursion for effectful
data types that is similarly generic. Our induction rule is also generic
over the kinds of properties to be proved: like the work on which we
build, we work in a general fibrational setting and so can accommodate
very general notions of properties, rather than just those of particular
syntactic forms. We give examples exploiting the generality of our results,
and show how our results specialize to those in the literature, particularly
those of Filinski and Støvring.

1 Introduction

Induction is a powerful principle for proving properties of data types and the
programs that manipulate them. Probably the simplest induction rule is the
familiar one for the set of natural numbers: For any property P of natural num-
bers, if P0 holds, and if P (n+1) holds whenever Pn holds, then Pn holds for all
natural numbers n. As early as the 1960s, Burstall [2] observed that induction
rules are definable for various forms of tree-like data types as well. The data
types he considered can all be modelled by polynomial functors on Set, and even
today induction is most often used to prove properties of these types. But while
most treatments of induction for tree-like data types use a specific notion of
predicate, other reasonable notions are possible. For example, a predicate on a
set A is often taken by type theorists to be a function P : A→ Set, by category
theorists to be an object of the slice category Set/A, and by logicians to be a
subset of A. Thus, even just for tree-like data types, induction rules are typi-
cally derived on an ad hoc basis, with seemingly different results available for
the different kinds of properties of data types and their programs to be proved.

Until fairly recently a comprehensive and general treatment of induction re-
mained elusive. But in 1998 Hermida and Jacobs [9] showed how to replace ad hoc

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 42–57, 2012.
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treatments of induction by a unifying axiomatic approach based on fibrations. The
use of fibrations was motivated by the facts that i) the semantics of data types in
languages involving, say, non-termination usually involves categories other than
Set; ii) in such circumstances, standard set-based notions of predicates are no
longer germane; iii) evenwhen working in Set there aremany reasonable notions of
predicate (e.g., the three mentioned above); and iv) when deriving induction rules
for more sophisticated classes of data types, we do not want to have to develop a
specialised theory of induction for each one; We hope instead to appropriately in-
stantiate a single, generic, axiomatic theory of induction that is widely applicable
and abstracts over the specific choices of category, functor, and predicate giving
rise to different induction rules for specific classes of data types. Fibrations sup-
port precisely such an axiomatic approach.

Although Hermida and Jacobs derive their induction rules only for data types
modelled by polynomial functors, this result was recently extended to all induc-
tive data types — i.e., all data types that are fixed points of functors — by
Ghani, Johann, and Fumex [7,8]. Examples of non-polynomial inductive data
types include rose trees, inductive families (e.g., perfect trees), quotient types
(e.g., finite power sets), and hyperfunctions. These data types are sophisticated,
but nevertheless are still pure, i.e., effect-free. This leads us to ask:

How can we reason inductively about data types in the presence of effects?

In this situation, we are interested in effectful data structures — i.e., data struc-
tures whose constructors can perform effectful computations — and the (possibly
effectful) programs that manipulate them. Such programs can fail to terminate,
raise exceptions, alter state, perform non-deterministic computations, and so on.

Moggi’s landmark paper [13] suggests that one way to handle effectful pro-
grams is to model effects via a monad T , where TX represents effectful compu-
tations that return values of type X with effects described by T . In Haskell, for
example, input/output effects are modelled by the monad IO, and we can define
the following effectful data type of IO-lists:

type IOList a = IO (IOList’ a)

data IOList’ a = IONil | IOCons a (IO (IOList’ a))

For any list of type IOList a, some IO action must be performed to discover
whether or not there is an element at the head of the list. Additional IO actions
must be performed to obtain any remaining elements. Such a data type could be
used to read list data “on demand” from some file or input device, for instance.
Recalling that the standard append function is associative on pure lists, and
observing that standard induction techniques for lists do not apply to functions
on effectful data types, we can ask whether or not it is possible to prove by
induction that the following effectful append function is associative on IO-lists:

appIO :: IOList a -> IOList a -> IOList a

appIO s t = do z <- s

case z of IONil -> t

IOCons w u -> return (IOCons w (appIO u t))
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In fact, an even more fundamental question must first be addressed: How do
we know that appIO is well-defined? After all, it is not at all obvious that the
argument u to the recursive call of appIO is smaller than the original input s.

More generally, we can consider effectful data types given by the following
type definitions. These generalise IO-lists by abstracting, via f, over the data
structure involved and, via m, over the monad involved.

type D f m = m (Mu f m)

data Mu f m = In (f (m (Mu f m))

We can then ask whether structural recursion can be used to define functions on
data structures of type D f m and induction can be used to prove their properties.

Filinski and Støvring [5] provide partial answers to these questions. Taking
types to be interpreted in the category CPO of ω-complete partial orders and
total continuous functions, and taking a predicate to be an admissible subset of
a CPO, they give a mathematically principled induction rule for establishing the
truth of predicates for effectful strictly positive data types that can be modelled
in CPO. Their induction rule is modular, in that they separate the premises
for inductive reasoning about data structures from those for inductive reasoning
about effects, and a number of examples are given to illustrate its use. Filinski
and Støvring also give a principle of definition by structural recursion for effect-
ful data types. But because they restrict attention to CPO, to a syntactically
restricted class of functors, and to a particular notion of predicate, their results
are not as widely applicable as we might hope.

In this paper we show how the fibrational approach to induction can be
extended to the effectful setting. We obtain a generalisation of Filinski and
Støvring’s induction rule that is completely free of the above three restrictions.
We also derive a principle of definition by structural recursion for effectful data
types that is similarly restriction-free. Our principle of definition can be used to
show that appIO is well-defined, and our induction rule can be used to show that
it is associative on IO-lists (see Example 6). These results lie outside the scope of
Filinski and Støvring’s work. (Interestingly, while the standard reverse function
is an involution on lists, a similarly effectful reverse function is not an involu-
tion on IO-lists, so not all results transfer from the pure setting to the effectful
one.) When specialised to the fibration of subobjects of CPO implicitly used by
Filinski and Støvring, Theorem 2 and Corollary 1 give precisely their definition
principle and induction rule, respectively. But because we treat functors that
are not strictly positive, we are able to derive results for data types they cannot
handle. Moreover, even if we restrict to the same class of functors as Filinski
and Støvring, our fibrational approach allows us to derive, in addition to our
generalisation of their modular one, another more powerful effectful induction
rule (see Theorem 4). More specifically, our contributions are as follows:

• Given a functor F and a monad T , we first show in Theorem 2 that the carrier
μ(TF ) of the initial TF -algebra deserves to be thought of as the effectful
data type built from data described by F and effects computed by T . In
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fact, the effectful data types introduced by the Haskell code above are all of
the form μ(TF ). Informally, the data type μ(TF ) contains all interleavings
of F and T ; formally, it is the free structure which is the carrier of both
an F -algebra and Eilenberg-Moore algebra for T . Theorem 2 also gives a
principle of definition by structural recursion for effectful data types.

• We then turn to the question of proof by induction and show that there are
a number of useful induction rules for effectful data types. (See Corollary 1
and Theorems 4, 6, and 7.) We consider the relative merits of these rules,
and note that in the proof-irrelevant case, which includes that considered
by Filinski and Støvring, Theorems 4 and 6 coincide. We note that each
of our induction rules also gives us a definitional format for dependently
typed functions whose domains are effectful data types. This generalises the
elimination rules for (pure) inductive data types in Martin-Löf Type Theory.

• Finally, we consider effectful induction in fibrations having very strong sums.
Examples include the codomain and families fibrations, used heavily by cat-
egory theorists and type theorists, respectively. In such fibrations, we show
that the key operation of lifting is a strong monoidal functor from the cate-
gory of endofunctors on the base category to the category of endofunctors on
the total category of the fibration, and thus that liftings preserve monads.
This ensures that all of our inductive reasoning can be performed in the total
category of the fibration (see Section 6).

The rest of this paper is structured as follows. Section 2 introduces some cate-
gorical preliminaries. Section 3 formalises the notion of an effectful data type. It
also shows how to construct algebras for the composition of two functors from
algebras for each of the component functors, gives a converse construction when
one of the functors is a monad, and uses these two constructions to generalise
Filinski and Støvring’s induction rule to arbitrary effectful data types. This is
all achieved without the use of fibrations, although, implicitly, Section 3 takes
place entirely within the subobject fibration over CPO. Section 4 reviews the
fibrational approach to induction. Section 5 relaxes the restriction to the subob-
ject fibration on CPOs and uses arbitrary fibrations explicitly to further abstract
the notion of predicate under consideration. We capitalise on this abstraction
to give a number of different induction rules derivable in the fibrational setting.
Section 6 considers induction in the presence of very strong sums. Section 7
concludes and discuss directions for further research.

2 Categorical Preliminaries

We assume familiarity with basic category theory, initial algebra semantics of
data types, and the representation of computational effects as monads.

Let B be a category and F : B → B be a functor. Recall that an F -algebra is
a morphism h : FX → X for some object X of B, called the carrier of h. For
any functor F , the collection of F -algebras itself forms the category AlgF . In
AlgF , an F -algebra morphism from the F -algebra h : FX → X to the F -algebra
g : FY → Y is a morphism f : X → Y such that f ◦ h = g ◦Ff . When it exists,
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the initial F -algebra in : F (μF ) → μF is unique. We write UF for the forgetful
functor mapping each F -algebra to its carrier, and we suppress the subscript F
on U and on in when convenient.

Let B be a category and (T, η, μ) be a monad on B.1 We write T for the monad
(T, η, μ) when no confusion may result. An Eilenberg-Moore algebra for T is a
T -algebra h : TX → X such that h◦μX = h◦Th and h◦ηX = id; we can think of
such algebra as a T -algebra that respects the unit and multiplication of T . The
collection of Eilenberg-Moore algebras for a monad T forms the category EMT .
In EMT , an EMT -morphism from an Eilenberg-Moore algebra h : TX → X to
an Eilenberg-Moore algebra g : TY → Y is just a T -algebra morphism from h
to g. It is easy to check that EMT is a full subcategory of AlgT .

3 Effectful Data Types and an Effectful Induction Rule

The carrier μF of the initial F -algebra can thought of as the data type defined
by F . But if we are in an effectful setting, with effects modelled by a monad
(T, η, μ), then what type should we consider the effectful data type defined by F
and T together? Whatever it is, it should be the carrier of an F -algebra f that
describes the data. It should also be the carrier of a Eilenberg-Moore algebra g
for T so that it respects η and μ. Finally, it should be the carrier of an algebra
constructed from f and g that is initial in the same way that μF is the carrier
of the initial F -algebra. We therefore define the effectful data type generated by
F and T to be μ(TF ). Moreover, in ◦ η is an F -algebra, and in ◦μT ◦T (in−1) is
an Eilenberg-Moore algebra for T , both with carrier μ(TF ). It is easy to verify
that no T -algebra structure exists on the other obvious choice, namely μ(FT ).

Unfortunately, however, carriers of initial TF -algebras can be hard to work
with. We therefore write μ(TF ) for T (μ(FT )) when convenient. This is justified
by the “rolling lemma” [6], which entails that if F and G are functors such
that μ(GF ) exists, then μ(FG) exists and μ(GF ) = G(μ(FG)). The data types
D f m from the introduction all have the form T (μ(FT )). We establish that
T (μ(FT )) satisfies the above specification by first showing in Lemma 1 how to
construct FT -algebras from F -algebras and T -algebras, and then refining this
construction in Theorem 1 to take into account that T is a monad and we are
actually interested in its Eilenberg-Moore algebras. We begin with a definition.

Definition 1 Let F,G : B → B be functors, and let AlgF ×B AlgG be defined by
the pullback of UF : AlgF → B and UG : AlgG → B in Cat. An F -and-G-algebra
is an object of AlgF ×B AlgG, i.e., a triple comprising an object A of B, an F -
algebra f : FA→ A, and a G-algebra g : GA→ A. Morphisms of AlgF ×B AlgG
are morphisms of B that are simultaneously F -algebra and G-algebra morphisms.

Lemma 1. Let F,G : B → B be functors. There is a functor Φ : AlgF×BAlgG →
AlgFG that sends F -and-G-algebras to FG-algebras.

1 We use μ to denote both least fixed points of functors and multiplication operators
of monads as is traditional. Which is meant when will be made clear from context.
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Proof. Define Φ(A, f, g) = f ◦ Fg. The action of Φ on morphisms is obvious. �

In the setting of effectful data types, where G is a monad in whose Eilenberg-
Moore algebras we are interested, Lemma 1 can be strengthened.

Definition 2 Let F : B → B be a functor, let (T, η, μ) be a monad on B, and
let AlgF ×B EMT be the category defined by the pullback of UF : AlgF → B
and UT : EMT → B in Cat. An F -and-T -Eilenberg-Moore algebra is an object
of AlgF ×B EMT , i.e., a triple comprising an object A of B, an F -algebra f :
FA → A, and an Eilenberg-Moore algebra g : TA → A for T . Morphisms of
AlgF ×B EMT are morphisms of B that are simultaneously F -algebra morphisms
and EMT -morphisms, i.e., F -algebra morphisms and T -algebra morphisms.

The key point about F -and-T -Eilenberg-Moore algebras is that the functor map-
ping them to FT -algebras has a left adjoint. Since every Eilenberg-Moore algebra
for T is a T -algebra, we abuse notation and also call this functor Φ.

Theorem 1. Let F : B → B be a functor and (T, η, μ) be a monad on B. The
functor Φ : AlgF ×BEMT → AlgFT has a left adjoint Ψ : AlgFT → AlgF ×B EMT .

Proof. Define Ψ by Ψ(k : FTA→ A) = (TA, η◦k : FTA→ TA, μ : T 2A→ TA)
on objects and by Ψf = Tf on morphisms. For any FT -algebra morphism
f : A→ B, naturality of η and μ ensure that Ψf is a morphism in AlgF ×BEMT .

To see that Φ and Ψ are adjoint let k : FTA→ A be an object of AlgFT and
(B, f : FB → B, g : TB → B) be an object of AlgF ×B EMT . We construct a
natural isomorphism between morphisms from Ψ k to (B, f, g) and morphisms
from k to Φ(B, f, g). Given h : Ψ k → (B, f, g), define φ(h) : k → Φ(B, f, g) by
φ(h) = h ◦ η. Then φ(h) is an FT -algebra morphism because f ◦Fg ◦FTφ(h) =
f◦Fg◦FTh◦FTη = f◦Fh◦Fμ◦FTη = f◦Fh = h◦η◦k = φ(h)◦k. Here, the first
equality holds because FT is a functor, the second holds because h is a T -algebra
morphism, the third by the monad laws, and the fourth because h is an F -algebra
morphism. Conversely, given h : k → Φ(B, f, g), define ψ(h) : Ψ k → (B, f, g) by
ψ(h) = g◦Th. Then ψ(h) is an F -algebra morphism because ψ(h)◦η◦k = g◦Th◦
η ◦k = g ◦η ◦h◦k = h◦k = f ◦Fg ◦FTh = f ◦Fψ(h). Here, the second equality
holds by naturality of η, the third because g is an Eilenberg-Moore algebra for T ,
and the fourth since h is an FT -algebra morphism. Moreover, ψ(h) is a T -algebra
morphism because g◦Tψ(h) = g◦Tg◦TTh= g◦μ◦TTh = g◦Th◦μ = ψ(h)◦μ.
Here, the second equality holds since g is an Eilenberg-Moore algebra for T and
the third holds by naturality of μ.

To see that φ and ψ constitute an isomorphism, first note that φ(ψ(h)) =
φ(g ◦ Th) = g ◦ Th ◦ η = g ◦ η ◦ h = h by naturality of η and the fact that g
is an Eilenberg-Moore algebra for T . We also have that ψ(φ(h)) = ψ(h ◦ η) =
g ◦Th ◦Tη = h ◦μ ◦Tη = h by the fact that h is a T -algebra morphism and the
monad laws. Naturality of φ and ψ is easily checked. �

A slightly slicker proof abstracts away from the category of Eilenberg-Moore
algebras for T to any adjunction L � R : B → D whose induced monad RL
is T . In this setting, we define AlgF ×B D to be the pullback of the forgetful
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functor UF and R. The adjunction L � R : B → D then lifts to an adjunction
L† � R† : AlgFT → AlgF ×BD. Theorem 1 is the special case of this more general
construction for which D is EMT . Another special case takes D to be the Kleisli
category of T .

We can now give our principle of definition by effectful structural recursion.

Theorem 2. Let F be a functor and T be a monad. Then T (μ(FT )), if it exists,
is the carrier of the initial F -and-T -Eilenberg-Moore algebra.

Proof. Since inFT is the initial FT -algebra, and since left adjoints preserve initial
objects, we have that the initial F -and-T -Eilenberg-Moore algebra is Ψ inFT , i.e.,
the triple (T (μ(FT )), η ◦ in , μ). �

Given an F -and-T -Eilenberg-Moore algebra (A, f, g), Theorem 2 ensures the
existence of a unique F -and-T -Eilenberg-Moore algebra morphism from the ini-
tial such algebra to (A, f, g). This gives a morphism from T (μ(FT )) to A, and
hence a principle of definition by effectful structural recursion. Indeed, when T
is the identity monad, we recover precisely the standard principle of definition
by structural recursion for (pure) carriers of initial algebras.

Example 1. We can place the definition of appIO from the introduction on a for-
mal footing as follows. First note that IOList a is of the form T (μ(FT )), where
FX = 1+ a×X and T is the monad IO. The F -and-T -Eilenberg-Moore algebra
whose F -algebra sends inl ∗ to ys and inr(z, zs) to (η◦in)(inr(z, zs)), and whose
Eilenberg-Moore algebra for T is μ, defines appIO _ ys. It further ensures that
appIO _ ys is a T -algebra morphism between the T -algebra structure within
the initial F -and-T -Eilenberg-Moore algebra and the T -algebra structure within
the F -and-T -Eilenberg-Moore algebra just defined.

From Theorem 2 we also get the first of our effectful induction rules.

Corollary 1. Let P be a subobject of T (μ(FT )), as well as the carrier of an F -
and-T -Eilenberg-Moore algebra such that the inclusion map from P to T (μ(FT ))
is an F -and-T -Eilenberg-Moore algebra morphism. Then P = T (μ(FT )).

Proof. There is an F -and-T -Eilenberg-Moore algebra morphism from the initial
such algebra to any with carrier P , and this induces a morphism from T (μ(FT ))
to P . That this morphism is an inverse to the inclusion map from P to T (μ(FT ))
follows from initiality and the fact that the inclusion map is monic. �

In Theorem 7 below we generalise Corollary 1 to handle more general notions
of predicate than that given by subobjects. But first we argue that Corol-
lary 1 specialises to recover Filinski and Støvring’s induction rule. This rule
assumes a minimal T -invariant (TC, i) for F and a subset P of TC that is both
T -admissible and F -closed, and concludes that P = TC. But i) the minimal
T -invariant for F is precisely the initial F -and-T -algebra T (μ(FT )) in CPO, ii)
P ⊆ T (μ(FT )) is T -admissible iff there exists a T -algebra k : TP → P such
that the inclusion map ι from P to T (μ(FT )) is a T -algebra morphism from k to
μ : T 2(μ(FT )) → T (μ(FT )), and iii) P ⊆ T (μ(FT )) is F -closed iff there exists
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an F -algebra h : FP → P such that ι is an F -algebra morphism from h to η◦ in .
Thus, P is the carrier of an F -and-T -Eilenberg-Moore algebra. Moreover, since
k coincides with μ and h coincides with η ◦ in on P , ι is an F -and-T -Eilenberg-
Moore algebra morphism. Thus, by Corollary 1, P = T (μ(FT )). Of course this
observation allows us to handle all of Filinski and Støvring’s examples.

4 Induction in a Fibrational Setting

Thus far we have characterised effectful data types and given our first induction
rule for them. This rule is generic over the category interpreting data types, as
well as over both the monad interpreting the effects in question and the functor
constructing the data type, and specialises to Filinski and Støvring’s rule. On the
other hand, it holds only for a specific notion of predicate, namely that given by
subobjects. Since we seek an induction rule that is also generic over predicates,
we turn to fibrations, which support an axiomatic approach to them. We begin
by recalling the basics of fibrations. More details can be found in, e.g., [10].

Let U : E → B be a functor. A morphism g : Q → P in E is cartesian over a
morphism f : X → Y in B if Ug = f , and for every g′ : Q′ → P in E for which
Ug′ = f ◦ v for some v : UQ′ → X there exists a unique h : Q′ → Q in E such
that Uh = v and g ◦h = g′. The cartesian morphism f §P over a morphism f with

codomain UP is unique. We write f∗P for the domain of f §P .
Cartesian morphisms are the essence of fibrations. A functor U : E → B is a

fibration if for every object P of E and every morphism f : X → UP in B there
is a cartesian morphism f §P : f∗P → P in E such that U(f §P ) = f . If U : E → B
is a fibration, we call B the base category of U and E the total category of U .
Objects of E can be thought of as predicates, objects of B can be thought of as
types, and U can be thought of as mapping each predicate P in E to the type
UP on which P is a predicate. We say that an object P in E is over its image
UP under U , and similarly for morphisms. For any object X of B, we write EX
for the fibre over X , i.e., for the subcategory of E consisting of objects over X
and vertical morphisms, i.e., morphisms over idX . If f : X → Y is a morphism
in B, then the function mapping each object P of E to f∗P extends to a functor
f∗ : EY → EX . We call the functor f∗ the reindexing functor induced by f .

Example 2. The category Fam(Set) has as objects pairs (X,P ), where X is a
set and P : X → Set. We refer to (X,P ) simply as P when convenient and
call X its domain. A morphism from P : X → Set to P ′ : X ′ → Set is a pair
(f, f∼) : P → P ′, where f : X → X ′ and f∼ : ∀x : X.P x → P ′(f x). The
functor U : Fam(Set) → Set mapping (X,P ) to X is called the families fibration.

Dependently typed programmers typically work in the families fibration, in which
induction amounts to defining dependently typed functions. It can be generalised
(in an equivalent form) to the following fibration.

Example 3. Let B be a category. The arrow category of B, denoted B→, has
the morphisms of B as its objects. A morphism in B→ from f : X → Y to
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f ′ : X ′ → Y ′ is a pair (α1, α2) of morphisms in B such that f ′ ◦α1 = α2 ◦ f . The
codomain functor cod : B→ → B maps an object f : X → Y of B→ to the object
Y of B. If B has pullbacks, then cod is a fibration, called the codomain fibration
over B: given an object f : X → Y in (B→)Y and a morphism f ′ : X ′ → Y in
B, the pullback of f and f ′ gives a cartesian morphism over f at f ′.

Example 4. If B is a category, then the category of subobjects of B, denoted
Sub(B), has (equivalence classes of) monomorphisms in B as its objects.
A monomorphism f : X ↪→ Y is called a subobject of Y . A morphism in Sub(B)
from f : X ↪→ Y to f ′ : X ′ ↪→ Y ′ is a map α2 : Y → Y ′ for which there exists a
unique map α1 : X → X ′ such that α2 ◦ f = f ′ ◦ α1. The map U : Sub(B) → B
sending f : X ↪→ Y to Y extends to a functor. If B has pullbacks then U is
a fibration since the pullback of a monomorphism is a monomorphism. In this
case, U is called the subobject fibration over B.
We also need the notion of an opfibration. Abstractly, U : E → B is an opfibration
iff U : Eop → Bop is a fibration. More concretely, U is an opfibration if for every
object P of E and every morphism f : UP → Y in B there is an opcartesian
morphism fP§ : P → ΣfP in E over f . Moreover, if f : X → Y is a morphism in
B, then the function mapping each object P of EX to ΣfP extends to a functor
Σf : EX → EY which we call the opreindexing functor. A functor is a bifibration
if it is both a fibration and an opfibration. The families and codomain fibrations
are examples of bifibrations. More generally, a fibration is a bifibration iff, for
every morphism f : X → Y in B, f∗ is left adjoint to Σf .

We can now give the key definitions and results for our fibrational approach
to induction. If U : E → B is a fibration and F : B → B is a functor, then a
lifting of F with respect to U is a functor F̂ : E → E such that UF̂ = FU . We
say that U has fibred terminal objects if each fibre has a terminal object and
reindexing functors preserve them. In this case, the functor � : B → E mapping
each object to the terminal object of the fibre over it is called the truth functor
for U . A lifting F̂ of F is called truth-preserving if �F = F̂�.

Example 5. A truth-preserving lifting F→ of F with respect to the codomain
fibration cod is given by the action of F on morphisms.

A comprehension category with unit (or CCU, for short) is a fibration U : E → B
that has fibred terminal objects and is such that the terminal object functor �
has a right adjoint {−}. In this case, {−} is called the comprehension functor for
U . If ε is the counit of the adjunction � � {−}, then defining πP = UεP gives
a projection natural transformation from {P} to UP . Truth-preserving liftings
with respect to CCUs are used in [9] to give induction rules. The key result is:

Theorem 3. Let U : E → B be a CCU and F : B → B be a functor such that μF
exists, and let F̂ be a truth-preserving lifting of F . Then for every object P of E
and every algebra α : F̂P → P , there is a unique morphism indFα : μF → {P}
such that πP ◦ indF α = fold(Uα).

The proof consists of constructing a right adjoint 〈−〉 : AlgF̂ → AlgF mapping

F̂ -algebras with carrier P to F -algebras with carrier {P}. Given an F̂ -algebra
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α : F̂P → P , we can define indF α to be fold 〈α〉 : μF → {P}. For second part of
the theorem, first note that πP is an F -algebra morphism from 〈α〉 to Uα. Then,
by the uniqueness of folds, we have that πP ◦ indF α = πP ◦ fold〈α〉 = fold(Uα).

Fibrations thus provide just the right structure for defining induction rules for
inductive data types. Although the truth-preserving liftings are given in [9] only
for polynomial functors, this restriction was removed in [7,8], which showed that
in a Lawvere fibration — i.e., a CCU that is also a bifibration — every functor
has a truth-preserving lifting. Indeed, observing that π extends to a functor
π : E → B→ with left adjoint I : B→ → E defined by I (f : X → Y ) = Σf (�X),

we have that for any functor F , F̂ = IF→π : E → E is a truth-preserving
lifting with respect to U , where F→ is the lifting from Example 5. If μF exists,
then Theorem 3 guarantees that it has an induction rule.

5 Effectful Induction

In the remainder of the paper we assume a Lawvere fibration U : E → B, a
functor F : B → B, and a monad (T, η, μ) on B. We further assume that μ(FT )
exists. Our first effectful induction rule is obtained by recalling that T (μ(FT ))
is the initial TF -algebra and instantiating Theorem 3 for TF .

Theorem 4. For every object P of E and algebra α : (T̂ F )P → P there is a
unique morphism indTF α : T (μ(FT )) → {P} with πP ◦ indTF α = fold(Uα).

Unfortunately, the induction rule in Theorem 4 is more complicated than we
would like since the rule requires the user to supply a T̂ F -algebra, and thus to
deal with F and T at the same time, rather than separately as in Corollary 1.
To produce a fibrational variant of Corollary 1, we therefore need to understand
the relationship between T̂ F and T̂ F̂ . We turn to this now.

Lemma 2. If F and G are functors on B, and α : F → G is a natural trans-
formation, then there is a natural transformation α̂ : F̂ → Ĝ.

Proof. Since I and π are functors, we can define α̂ = Iα→π, where α→ : F→ →
G→ maps f : X → Y in B→ to the naturality square for α at f . �

Theorem 5. The lifting operation (̂−) defines a lax monoidal functor mapping
functors on B to functors on E.

Proof. That (̂−) preserves identity and composition of natural transformations
is verified by simple calculation, so it is indeed a functor. To see that this functor
is lax monoidal, we need natural transformations from Îd to Id and from F̂G
to F̂ Ĝ. We take the former to be the counit of the adjunction I � π. For the
latter, define σ : F̂G → F̂ Ĝ — i.e., σ : I(FG)→π → IF→πIG→π — by σ =
IF→ηG→π, where η is the unit of the adjunction I � π.
We will use the natural transformation σ : F̂G → F̂ Ĝ from the proof of Theo-
rem 5 in the proof of Theorem 6 below. Note that if σ were oplax rather than
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lax — i.e., if we had σ : F̂ Ĝ→ F̂G— then T̂ would be a monad whenever T is.
An induction rule for effectful data types that assumes T̂ is a monad is discussed
in Section 6. For now, we derive induction rules for effectful data types that hold
even when T̂ is not a monad. The first is a fibrational variant of Corollary 1:

Theorem 6. Let P be an object of E, and let f : F̂P → P and g : T̂P → P be
morphisms of E. Then there is a unique morphism h : T (μ(FT )) → {P} in B
such that πP ◦ h = fold(Ug ◦ TUf). If P is over T (μ(FT )), g is over μ, and f
is over η ◦ in, then πP ◦ h = id.

Proof. From the algebra Φ(P, g, f) : T̂ F̂P → P , where Φ is as in Lemma 1,

we can construct the T̂ F -algebra Φ(P, g, f) ◦ σP . By Theorem 4, there exists a
morphism h : T (μ(FT )) → {P} in B such that πP ◦h = fold (U(Φ(P, g, f)◦σP )).
If f : X → Y is an object of B→, then ηf is a pair whose second component
is id . The second component of F→ηf is thus also id , so by the definition of
I we have that IF→ηf is vertical. Since σP = IF→ηG→πP , σP is also vertical.
Thus fold (U(Φ(P, g, f) ◦ σP )) = fold(U(Φ(P, g, f))), and by the definition of Φ
and the fact that T̂ is a lifting of T , we have that πP ◦ h = fold(Ug ◦ TUf) as
desired. If g is over μ and f is over η ◦ in, then πP ◦ h = fold(Ug ◦ TUf) =
fold(μ ◦ Tη ◦ T (in)) = fold (T (in)) = fold in = id . �

The condition πP ◦ h = id ensures that h maps every element t of T (μ(FT )) to
a proof that Pt holds. We will make good use of the following generalisation of
Prop. 2.13 in [5], which shows how to build new T̂ -algebras from old.

Lemma 3. Let k : TA→ A be an Eilenberg-Moore algebra for T .

1. Let δ be the natural transformation defined by δA : A→ A×A and consider
the equality predicate EqA = Σδ�(A). Then U(EqA) = A × A and 〈k ◦
Tπ1, k ◦ Tπ2〉 : T (A× A) → A × A is an Eilenberg-Moore algebra for T . If
{EqA} = A for every A ∈ B, then there exists a morphism h : T̂ EqA → EqA
such that Uh = 〈k ◦ Tπ1, k ◦ Tπ2〉.

2. Let h : T̂P → P be a T̂ -algebra such that UP = A and Uh = k. Then for
every Eilenberg-Moore algebra k′ : TB → B for T and T -algebra morphism
f : B → A, there exists a morphism h′ : T̂ (f∗P ) → f∗P such that Uh′ = k′.

3. Let I be a set and suppose E has I-indexed products in its fibres. Then for
any I-indexed family (Pi, hi : T̂Pi → Pi) of T̂ -algebras with UPi = A and
Uhi = k for all i, there is a morphism h : T̂ (Πi∈IPi) → Πi∈IPi with Uh = k.

Proof. The first part follows from a lemma in [10], and the third part follows
from the universal property of products. For the second part, note that because
h is over k, there is a vertical morphism v : T̂P → k∗P . We construct h′ :
T̂ (f∗P ) → P by first noting that, since f is a T -Eilenberg-Moore algebra mor-
phism, we have (Tf)∗(k∗P ) = k′∗(f∗P ). We can then take h′ to be the compo-
sition of j : T̂ (f∗P ) → (Tf)∗(T̂P ) and (Tf)∗v : (Tf)∗(T̂P ) → (Tf)∗(k∗P ) and

k′§f∗P : k′∗(f∗P ) → f∗P . Here, j is constructed by first observing that T̂ (f∗P ) =

ΣTπf∗P
�(T {f∗P}) by definition of T̂ , and that this is ΣTπf∗P

(T {f §P})∗�(T {P})
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because reindexing preserves terminal objects. We then construct a morphism
from ΣTπf∗P

(T {f §P})∗�(T {P}) to (Tf)∗ΣTπP �(T {P}) using a morphism in-

duced by a natural transformation from ΣTπf∗P
(T {f §P})∗ to (Tf)∗ΣTπP that

is itself constructed using i) the fact that f is a T -algebra morphism, ii) the
unit of the adjunction ΣTπP � (TπP )

∗, and iii) the counit of the adjunction
ΣTπf∗P

� (Tπf∗P )
∗. Noting that (Tf)∗ΣTπP �(T {P}) = (Tf)∗(T̂P ) by the

definition of T̂ completes the proof. �

Example 6. We can now prove that appIO is associative. We use the families fi-
bration, and so exploit the generality of our framework over that of [5] by working
with a base category other than CPO and a notion of predicate other than that
given by subobjects. The predicate P : IOList a → Set sends xs to 1 if, for
all ys zs: IOList a, appIO xs (appIO ys zs) = appIO (appIO xs ys) zs

holds and to ∅ otherwise. Recalling that IOList a is T (μ(FT )) for F and T
as in Example 1, we can show that P is the carrier of a T̂ -algebra by observ-
ing that i) the equality predicate on IOList a is the carrier of a T -algebra over
〈μ◦Tπ1, μ◦Tπ2〉 by the first part of Lemma 3; ii) for all ys zs : IOList a, the
predicate appIO xs (appIO ys zs) = appIO (appIO xs ys) zs on IOList a

× IOList a is the carrier of a T̂ -algebra over μ by the second part of Lemma 3;
and iii) P is thus the carrier of a T̂ -algebra over μ by the third part of Lemma 3.
In addition, P is the carrier of an F̂ -algebra: indeed by direct calculation we
have that the predicate F̂P : FX → Set sends inl ∗ to 1 and sends inr(x, xs)
to P xs. An F̂ -algebra with carrier P over η ◦ in is therefore given by an ele-
ment of P (return IONil) and, for every x:a and xs : IOList a, a function
P xs → P (return (IOCons x xs)). Both can be computed directly using the
definition of appIO. By Theorem 6, we thus have that P holds for all elements
of IOList a.

Example 7. We can exploit our ability to move beyond the effectful strictly posi-
tive data types treated by Filinski and Støvring to reason about indexed effectful
data types. We work in the subobject fibration over SetN (see Example 4). For
any set A and monad T on SetN, consider the N-indexed data type of effectful
perfect trees with data from A and effects from T given by T (μ(FAT )) : Set

N,
where, FA(X : SetN) = λn.{∗ | n = 0} + {(a, x1, x2) | ∃n′. a ∈ A, x1 ∈
Xn′, x2 ∈ Xn′, n = n′ + 1}. By Theorem 2, if f : A → B then we can
define a morphism map(f,−) : T (μ(FAT )) → T (μ(FBT )) in SetN by giving
an FA-and-T -Eilenberg-Moore algebra with carrier T (μ(FBT )). The FA-algebra
sends, when n = 0, inl ∗ to η(in(inl ∗)), and, when n = n′ + 1, inr(a, x1, x2)
to η(in(inr(fa, x1, x2))). The Eilenberg-Moore algebra for T is just the multi-
plication μ of T . Now define the subobject i : P ↪→ T (μ(FAT )) in Sub(SetN)
by Pn = {t : T (μ(FAT ))n | ∀f, g. map(f,map(g, t)) = map(f ◦ g, t)}. To show
that P = T (μ(FAT )), and hence that map preserves composition, we apply
Theorem 6. As in Example 6, we use Lemma 3 to give a T̂ -algebra on i over
μ; this uses the fact that map(f,−) is a T -Eilenberg-Moore algebra morphism
by construction. The existence of a F̂ -algebra on i over η ◦ in follows by direct
calculation. By Theorem 6 there is a morphism h : T (μ(FAT )) → {P} such that
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πP ◦ h = id . But since {P} = P in Sub(SetN), we have that i and h together
give P = T (μ(FAT )).

Should we be satisfied with the effectful induction rule in Theorem 6? It is not as
expressive as that in Theorem 4 since not all T̂ F -algebras arise from T̂ -algebras
and F̂ -algebras individually, but it is easier to use since we can check whether or
not predicates have T̂ -algebra structures without considering the functor F̂ at
all and vice-versa. However, neither rule ensures that h respects the structure of
the monad, i.e., is an F -and-T -Eilenberg-Moore algebra morphism. As we now
see, this is the case if 〈g〉 is an Eilenberg-Moore algebra for T .

Theorem 7. Let f : F̂P → P and g : T̂ P → P be morphisms of E such that 〈g〉
is an Eilenberg-Moore algebra for T . Then there is a unique h : T (μ(FT )) → {P}
in B that is an F -and-T -Eilenberg-Moore algebra morphism. Further, πp ◦ h =
fold (Uf ◦ FUg). If g is over μ and f is over η ◦ in, then πp ◦ h = id.

Proof. Since ({P}, 〈f〉, 〈g〉) is an F -and-T -Eilenberg-Moore algebra there is a
unique F -and-T -Eilenberg-Moore algebra morphism from the initial such alge-
bra to it. Since T (μ(FT )) is the carrier of the initial F -and-T -Eilenberg-Moore
algebra, this gives the required morphism h : T (μ(FT )) → {P}. Indeed, h is the
morphism guaranteed by Theorem 6, and so πp ◦ h = id as desired. �

As expected, the effectful world contains the pure world. For example, if (T, η, μ)
is a monad, then we can think of η as a family of functions ηX : X → TX map-
ping values of type X to the pure computations that just return those values.
Similarly, an effectful data structure T (μ(FT )) contains the pure data structure
μF : indeed, the natural transformation ηF : F → TF and the functoriality of
the fixed point operator μ together give the inclusion μ(ηF ) : μF → T (μ(FT )).
Moreover, if P is a property over T (μ(FT )), then (μ(ηF ))∗P is a property over
μF . Thus given f : F̂P → P and g : T̂P → P such that 〈g〉 is an Eilenberg-
Moore algebra for T , we may ask about the relationship between proofs of
(μ(ηF ))∗P for μF obtained from f by Theorem 3 and proofs of P for T (μ(FT ))
obtained from f and g by Theorem 7. It is not hard to see that induction for
T (μ(FT )) specialises to induction for μF when T (μ(FT )) is pure.

Finally, note that in a fibred preorder, for any T̂ -algebra g, 〈g〉 is always
an Eilenberg-Moore algebra for T . This is the case for the subobject fibration
implicitly used by Filinski and Støvring since, there, admissible predicates are
Eilenberg-Moore algebras over the multiplication μ of T . However, in the non-
fibred preorder case, there are a variety of different induction rules which are
possible. This reflects a trade-off: the more we assume, the better behaved our
induction proof is! Our default preference is for structure and we believe that
Theorem 7 provides the best rule. However, if we cannot establish the stronger
premises so as to obtain the better behaved induction rules, it is comforting to
know that the induction rules of Theorems 4 and 6 are still available.



Fibrational Induction Meets Effects 55

6 A More Logical Treatment of Effectful Induction

The treatment we have given above of induction for effectful data types addresses
many of our practical concerns. It is derived from the general theory of fibra-
tional induction, it is axiomatic in terms of the functors, monads, and fibrations
involved, and Theorems 6 and 7 allow us to separate the proof obligations in an
induction proof into those pertaining only to the monad in question and those
pertaining only to the functor in question. There is, however, one feature of The-
orem 7 that is less than optimal. Underlying the fibrational methodology is the
separation between logical structure in the total category of the fibration and
type-theoretic structure in the base category of the fibration. Theorem 7 can thus
be seen as converting logical structure in the form of F̂ -algebras and T̂ -algebras
into type-theoretic structure in the form of F -and-T -Eilenberg-Moore algebras.
This is, of course, completely valid, especially in light of the propositions-as-
types interpretation, but this section shows there is a different approach which
reasons solely in the total category of the fibration and is thus purely logical.
The key idea is to deploy Theorem 2 in the total category of the fibration,
and work directly with F̂ and T̂ -algebras on P rather than converting them to
F -and-T -Eilenberg-Moore algebras on {P}. The major stumbling block to doing
this is that, in general, T̂ is not a monad. In this section we investigate effectful
induction in the case when T̂ is a monad. The condition we use to ensure this is
that the Lawvere fibration in which we work has very strong sums.

Definition 3 A Lawvere fibration U : E → B is said to have very strong sums if
for all f : X → Y in B and P ∈ EX , {f §P } : {P} → {ΣfP} is an isomorphism.

The following important property of very strong sums is from [1]: If U : E → B
is a Lawvere fibration with very strong sums, F : B → B is a functor, f : X → Y
is a morphism, and P ∈ EX , then F̂ (ΣfP ) = ΣFf F̂P . Using this, we can prove
that in a Lawvere fibration with very strong sums lifting is actually a strong
monoidal functor, i.e., that lifting preserves functor composition.

Lemma 4. Let U : E → B be a Lawvere fibration with very strong sums. If
F,G : B → B are functors, then F̂G = F̂ Ĝ. If T is a monad, then so is T̂ .

Proof. For the first part of the lemma, note that (F̂G)P = ΣFGπPK1FG{P} =
ΣFGπP F̂K1G{P} = F̂ (ΣGπPK1G{P}) = F̂ ĜP . Here, the first equality is by

the definition of F̂G, the second holds because F̂ is truth preserving, the third is
by the aforementioned property from [1], and the last is by definition of Ĝ. The
essence of the proof of the second part is the observations that monads are just
monoids in the monoidal category of endofunctors and strong monoidal functors
map monoids to monoids. �

Using Lemma 4 we can derive induction rules allowing us to work as much as
possible in the total category of a Lawvere fibration with very strong sums. To do
this, let (P, f, g) be an F̂ -and-T̂ -Eilenberg-Moore algebra. By Theorem 2, there is

a unique morphism from the initial T̂ F̂ -algebra to (P, f, g). But since T̂ F̂ = T̂ F



56 R. Atkey et al.

and μ(T̂ F ) = �(μ(TF )) (see Corollary 4.10 of [8]), there is a morphism from
�(T (μ(FT ))) to P , and thus one from T (μ(FT )) to {P} as desired.

The families and codomain fibrations both have very strong sums.

7 Conclusions, Related Work, and Future Work

We have investigated the interaction between induction and effects. We for-
malised the former using the recently developed fibrational interpretation of
induction because it is axiomatic in the category interpreting types and pro-
grams, the functor representing the data type in question, and the category
interpreting predicates. We formalised effects using monads because they are
both simple to understand and widely used. We have shown, perhaps surpris-
ingly, that several induction rules can be derived for effectful data types. These
rules assume progressively more structure in their hypotheses but deliver pro-
gressively stronger inductive proofs. Ultimately, we hope this research will lay
the foundation for a reasoning module for effectful data types in a proof system
such as Coq.

The combination of monadic effects and inductive data types has previously
been studied by Fokkinga [4] and Pardo [14]. They use distributive laws λ : FT →
TF relating functors describing data types to monads modelling effects. Given a
distributive law, it can be shown that μF is the carrier of an initial algebra in the
Kleisli category of T . From this, a theory of effectful structural recursion over
pure data is derived. By contrast, in this paper we have explored computation
and reasoning with effectful data, where data and effects are interleaved.

Lehman and Smyth [12] give a generic induction rule for (pure) inductive data
types in the case when predicates are taken to be subobjects in a category. Crole
and Pitts [3] use this rule to give a fixpoint induction rule for effectful compu-
tations, generalising the usual notion of Scott induction. Filinski and Støvring’s
induction principle, which we have generalised in this paper, extends these rules
to handle the interleaving of data and effects.
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Abstract. Coalgebra offers a unified theory of state based systems, including
infinite streams, labelled transition systems and deterministic automata. In this
paper, we use the coalgebraic view on systems to derive, in a uniform way, ab-
stract procedures for checking behavioural equivalence in coalgebras, which per-
form (a combination of) minimization and determinization. First, we show that
for coalgebras in categories equipped with factorization structures, there exists
an abstract procedure for equivalence checking. Then, we consider coalgebras in
categories without suitable factorization structures: under certain conditions, it is
possible to apply the above procedure after transforming coalgebras with reflec-
tions. This transformation can be thought of as some kind of determinization. We
will apply our theory to the following examples: conditional transition systems
and (non-deterministic) automata.

1 Introduction

Finite automata are one of the most basic structures in computer science. One partic-
ularly interesting problem is that of minimization: given a (non-)deterministic finite
automaton is there an equivalent one which has a minimal number of states?

Given a regular language L, minimal deterministic automata (DA) can be thought of
as the canonical acceptors of the given language L. A minimal automaton is universal,
in the sense that given any automaton which recognizes the same language (and where
all states are reachable) there is a unique mapping into the minimal one. Similar notions
exist for other kinds of transition systems such as Mealy machines or labelled transition
systems. However, in many interesting cases, such as for non-deterministic automata
(NDA) or for weighted automata, what it means to be a minimal system is not yet clear.
Typically, for NDA one first determinizes the automaton and then minimizes it, since
for DA minimization algorithms are well-known ([16]).
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It is the main aim of this paper to find a general notion of canonicity for a large class
of transition systems, in a uniform manner. This encompasses two things: (i) casting
the automata and the intended equivalence in a general framework; and (ii) using the
general framework to devise algorithms to minimize (and determinize) the automata,
yielding a canonical representative. To study all the types of automata mentioned above
(and more) in a uniform setting, we use coalgebras.

For a functor F : C → C, on a category C, an F -coalgebra is a pair (X, α), where
X is an object of C representing the “state space” of the system and α : X → FX is
a morphism of C defining the “transitions” of the states. For instance, given an input
alphabet A, DAs are coalgebras for the functor 2 × (−)A : Set → Set and NDAs are
coalgebras for the functor A× (−)+1: Rel → Rel, where Set is the category of sets
and functions and Rel the category of sets and relations.

The strength of the coalgebraic approach lies in the fact that many important notions,
such as behavioural equivalence, are uniquely determined by the type of the system.
Under mild conditions, functors F have a final coalgebra (unique up to isomorphism)
into which every F -coalgebra can be mapped via a unique homomorphism. The final
coalgebra can be viewed as the universe of all possible behaviours: the unique homo-
morphism into the final coalgebra maps every state of a coalgebra to its behaviour. This
provides a general notion of behavioural equivalence: two states are equivalent iff they
are mapped to the same element of the final coalgebra. In the case of DAs, the final
coalgebra is P(A∗) (the set of all languages over input alphabet A) and the unique ho-
momorphism is a function mapping each state to the language that it accepts. In the case
of NDAs, as shown in [13], the final coalgebra is A∗ (the set of all finite words over A)
and the unique homomorphism is a relation linking each state with all the words that
it accepts. In both cases, the induced behavioural equivalence is language equivalence.
The base category chosen to model the system plays an important role in the obtained
equivalence. For instance, NDAs can alternatively be modelled as coalgebras for the
functor 2×P(−)A : Set → Set, where P is the powerset functor, but then the induced
behavioural equivalence is bisimilarity (which is finer than language equivalence).

For a functor F on Set, the image of an F -coalgebra under the unique morphism is
its minimal representative (with respect to the induced behavioural equivalence) that,
in the finite case, can be computed via ordinary partition refinement algorithms. For
functors on categories not equipped with proper image factorization structures (such
as Rel, for instance) the situation is less clear-cut. This observation instantiates to the
well-known fact that for every DA there exists an equivalent minimal automaton, while
for NDAs the uniqueness of minimal automata is not guaranteed.

It is our aim to, on the one hand, offer a procedure to perform ordinary partition re-
finement for categories with suitable factorization structures (such as Set, wherein DAs
are modelled), yielding the minimization of a coalgebra. On the other hand, we want to
offer an alternative procedure for categories without proper factorization structures: we
describe a general setting for determinizations and show how to obtain a single algo-
rithm that does determinization and minimization simultaneously. It is worth to note
that the latter approach holds for functors for which a final coalgebra does not exist.

Our work was motivated by several examples, considering coalgebras in various un-
derlying categories. In this paper, we take one example in Set and two examples in
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K�(T ), the Kleisli category for a monad T . More precisely, we consider DAs in Set,
NDAs in Rel, which is K�(P) where P is the powerset monad, and conditional tran-
sition systems in K�(T ) where T is the input monad. For DAs, we recover the usual
Hopcroft minimization algorithm [16]. Instantiation to NDAs gives us (a part of) Br-
zozowski’s algorithm [7]: the obtained automata coincide with átomata, that are a new
kind of “canonical” NDAs recently introduced in [8].

Conditional Transition Systems (CTS). To better illustrate our work, we employ transi-
tion systems labelled with conditions that have similarly been studied in [14,10]. Con-
sider the transition system (1) below where transitions are decorated with conditions
a, ā, where intuitively ā stands for “not a”. Labelled transitions are either present or
absent, depending on whether a or ā hold. Unlabelled transitions are always present
(they can be thought of as two transitions labelled a and ā).
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The environment can make one choice, which can not be changed later: it decides
whether to take either a or ā. Regardless of the specific choice of the environment,
the two states 1 and 6 in (1) above will be bisimilar. If a holds then the systems above
would be instantiated to the left half of transition system (2) above. Instead if a does
not hold then we obtain the right half. In both cases, the instances of the states 1 and 6
are bisimilar.

This shows that one possible way to solve the question whether two states are always
bisimilar consists in enumerating all conditions and to create suitably many instantia-
tions of the transition system. Then the resulting transition system can be minimized
with respect to bisimilarity. This is analogous to the steps of determinization and mini-
mization for NDAs. Indeed, the base category of coalgebras of CTSs, as Rel for NDAs,
has no suitable factorization structures. In order to minimize (both NDAs and CTSs),
coalgebras should be transformed via reflections that, in the case of NDAs means deter-
minizing, while for CTS, means instantiating CTSs for all the conditions.

In this work, we will study both constructions in a general setting and also show how
they can be combined into a single algorithm. For CTSs this mean that we will provide
an algorithm that checks if two states are bisimilar under all the possible conditions,
without performing all the possible instantiations.

Now, what would be a canonical representative of the systems above? In other words,
is there a system into which CTS (1) can be mapped? In the example above, it is rel-
atively easy to see that that system would be the transition system consisting of states
x, y, z in (3) below. One would map both 1 and 6 to x, 7 to y, 4, 5, 9 and 10 to z.
What about 2 and 3? We want to map 2 to y whenever a holds and to z whenever
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ā holds, dually for 3. In order to do that we need to work in a category where we can
represent such conditional maps. As we will show in the sequel, by modelling CTS as
coalgebras in a Kleisli category this will be possible. The full mapping is represented
below.
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An extended version of this paper [2] contains all the proofs, further details and ex-
amples. In particular, there we instantiate our theory to the case of linear weighted
automata [6].

2 Background Material on Coalgebras

We assume some prior knowledge of category theory (categories, functors, monads,
limits and adjunctions). Definitions can be found in [3]. However, to establish some no-
tation, we recall some basic definitions. We denote by Ord the class of all ordinals. Let
Set be the category of sets and functions. Sets (and other objects) are denoted by capital
letters X, Y, . . . and functions (and other morphisms) by lower case f, g, . . . , α, β, . . .
We write ∅ for the empty set, 1 for the singleton set, typically written as 1 = {•}, and 2
for the two elements set 2 = {0, 1}. The collection of all subsets of a set X is denoted
by P(X) and the collection of functions from a set X to a set Y is denoted by Y X .
We write g ◦ f for function composition, when defined. The product of two sets X, Y
is written as X × Y , while the coproduct, or disjoint union, as X + Y . These opera-
tions, defined on sets, can analogously be defined on functions, yielding (bi-)functors.
A category C is called concrete if a faithful functor U : C → Set is given.

Definition 2.1 (Coalgebra). Given an endofunctor F : C → C an (F -)coalgebra is
a pair (X, α), where X is an object of C and α : X → FX a morphism in C. A
(coalgebra) homomorphism f : (X, α) → (Y, β) between two coalgebras α : X →
FX and β : Y → FY is a C-morphism f : X → Y such that Ff ◦ α = β ◦ f .

An F -coalgebra (Ω, ω) is final if for any F -coalgebra (X, α) there exists a unique
homomorphism behX : (X, α) → (Ω, ω). If C is concrete we can define behavioural
equivalence. Given an F -coalgebra (X, α) and x, y ∈ UX , we say that x and y are
behaviourally equivalent, written x ≈ y, if and only if there exist an F -coalgebra (Z, γ)
and a homomorphism f : (X, α) → (Z, γ) such that Uf(x) = Uf(y). If a final F -
coalgebra exists, we have a simpler characterization of behavioural equivalence: x ≈ y
iff UbehX(x) = UbehX(y).

Example 2.2. (DA) A deterministic automaton over the alphabet A is a pair (X, α),
where X is a set of states and α : X → 2 × XA is a function that to each state x
associates a pair α(x) = 〈ox, tx〉, where ox, the output value, determines if a state
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x is final (ox = 1) or not (ox = 0); and tx, the transition function, returns for each
a ∈ A the next state. DAs are coalgebras for the functor FX = 2 × X A on Set. The
final coalgebra for this functor is (P(A∗), ω) where P(A∗) is the set of languages over
A and, for a language L, ω(L) = 〈εL, La〉, where εL determines whether or not the
empty word is in the language (εL = 1 or εL = 0, resp.) and, for each input letter a,
La is the derivative of L: La = {w ∈ A∗ | aw ∈ L}. From any DA (X, α), there is a
unique homomorphism behX into P(A∗) which assigns to each state its behaviour (that
is, the language that the state recognizes). Two states are behaviourally equivalent iff
they accept the same language.

Take A = {a, b} and consider the DAs on the right. We call the topmost (X, α)
where X = {x, y, z} and α : X → 2×XA maps x to the
pair 〈1, {a 	→ x, b 	→ y}〉, y to 〈0, {a 	→ y, b 	→ x}〉
and z to 〈1, {a 	→ z, b 	→ y}〉. The bottom one is (Z, γ)
where Z = {�, �} and γ : Z → 2 × ZA maps � to
〈1, {a 	→ �, b 	→ �}〉 and � to 〈0, {a 	→ �, b 	→ �}〉.
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As an example of a coalgebra homomorphism, take the function e : X → Z mapping
x, z to � and y to. �

Non-deterministic automata (NDA) can be described as coalgebras for the functor 2 ×
P(−)A (on Set): to each input in A, we assign a set of possible successors states.
Unfortunately, the resulting behavioural equivalence is not language equivalence (as for
DAs), but bisimilarity (i.e., it only identifies states having the same branching structure).
In [21,13], it is shown that in order to retrieve language equivalence for NDAs, one
should consider coalgebras in a Kleisli category. In what follows, we introduce Kleisli
categories, in which we model NDAs and CTSs as coalgebras. While objects in a Kleisli
category are sets, morphisms are generalized functions that incorporate side effects,
such as non-determinism, specified by a monad (see [3,13,18]).

Definition 2.3 (Kleisli Category). Let (T : Set → Set, η, μ) (or simply T ) be a
monad on Set. Its Kleisli category K�(T ) has sets as objects and a morphism X → Y
in K�(T ) is a function X → TY . The identity idX is ηX and the composition g ◦ f of
f : X → Y , g : Y → Z (i.e., functions f : X → TY , g : Y → TZ) is μZ ◦ Tg ◦ f .

In the following we will employ overloading and use the same letter to both denote a
morphism in K�(T ) and the corresponding function in Set. Furthermore, note that Set
can be seen as a (non-full) subcategory of K�(T ), where each function f : X → Y
is identified with ηY ◦ f . Every Kleisli category K�(T ) is a concrete category where
UX = TX and Uf = μY ◦ Tf for an object X and a morphism f : X → Y .

To define coalgebras over Kleisli categories we need the notion of lifting of a functor,
which we define here directly, but could otherwise be specified via a distributive law (for
details see [13,19]): a functor F : K�(T ) → K�(T ) is called a lifting of F : Set → Set
whenever it coincides with F on Set, seen as a subcategory of K�(T ).

Since F and F coincide on objects, F -coalgebras in K�(T ) are of the form X →
TFX , where intuitively the functor F describes the explicit branching, i.e. choices
which are visible to the observer, and the monad T the implicit branching, i.e. side-
effects, which are there but cannot be observed directly. In this way, the implicit branch-
ing is part of the underlying category and is also present in the morphism from any
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coalgebra into the final coalgebra. As in functional programming languages such as
Haskell, the idea is to “hide” computational effects underneath a monad and to separate
them from the (functional) behaviour as much as possible.

Example 2.4. (NDA) Consider the powerset monad TX = P(X). The Kleisli cate-
gory K�(P) coincides with the category Rel of sets and relations. As an example of
a lifting, take FX = A × X + 1 in Set (with 1 = {•}). The functor F lifts to
F in Rel as follows: for any f : X → Y in Rel (that is f : X → P(Y ) in Set),
Ff : A × X + 1 → A × Y + 1 is defined as Ff(•) = {•} and Ff(〈a, x〉) =
{〈a, y〉 | y ∈ f(x)}. Non-deterministic automata over the input alphabet A can be re-
garded as coalgebras in Rel for the functor F . A coalgebra α : X → FX is a function
α : X → P(A×X +1), which assigns to each state x ∈ X a set which contains • if x is
final and 〈a, y〉 for all transitions x

a−→ y. For instance,
the automaton on the right is the coalgebra (X, α),
where X = {1, 2, 3} and α : X → P({a, b}×X+{•}) �������	1
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is defined as follows: α(1) = {〈a, 1〉, 〈b, 1〉, 〈b, 2〉}, α(2) = {〈a, 2〉, 〈b, 3〉} and α(3) =
{•, 〈a, 2〉, 〈b, 3〉}. In [13], it is shown that the final F -coalgebra (in Rel) is the set A∗

of words. For an NDA (X, α), the unique coalgebra homomorphism behX into A∗ is
the relation that links every state in X with all the words in A∗ that it accepts.

Example 2.5. (CTS) We shortly discuss how to specify the example from the introduc-
tion in a Kleisli category. All the details can be found in [2] .

We use the input monad TX = XA, where A is a set of conditions or inputs (for the
example of the introduction A = {a, ā}). Given a function f : X → Y , Tf : TX →
TY is fA : XA → Y A defined for all g ∈ XA and a ∈ A as fA(g)(a) = f(g(a)).

Note that a morphism f : X → Y in the Kleisli category over the input monad is a
function f : X → Y A. For instance, the dashed arrows in the introduction describe a
morphism in K�(T ): state 2 is mapped to y if condition a holds and to z if ā holds.

We will use the countable powerset functor FX = Pc(X) as endofunctor, which is
lifted to K�(T ) as follows: a morphism f : X → Y in K�(T ), which is a function of the
form f : X → Y A, is mapped to Ff : Pc(X) → Pc(Y ) with Ff(X ′)(a) = {f(x)(a) |
x ∈ X ′} for X ′ ⊆ X , a ∈ A. Hence, CTS (1) from the introduction is modelled by a
morphism α : X → Pc(X) in K�(T ) (i.e., a function α : X → Pc(X)A), where X =
{1, . . . , 10} and A = {a, ā}. For instance
α(1)(a) = α(1)(ā) = {2, 3}, α(2)(a) =
{4}, α(2)(ā) = ∅. The entire coalgebra α
is represented by the matrix on the right.

α 1 2 3 4 5 6 7 8 9 10

a {2, 3} {4} ∅ ∅ ∅ {7, 8} {9} ∅ ∅ ∅
ā {2, 3} ∅ {5} ∅ ∅ {7, 8} {10} ∅ ∅ ∅

Note that the above α : X → Pc(X)A can be seen as a coalgebra for the functor
FX = Pc(X)A in Set, which yields ordinary A-labelled transition systems. However,
the resulting behavioural equivalence (that is, ordinary bisimilarity) would be inade-
quate for our intuition, since it would distinguish the states 1 and 6. In [2], we prove
that behavioural equivalence of F -coalgebras coincides with the expected one.

3 Minimization via (E, M)-Factorizations

We now introduce the notion of minimization of a coalgebra and its iterative construc-
tion that generalizes the minimization of transition systems via partition refinement.
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This notion is parametrized by two classes E and M of morphisms that form a factor-
ization structure for the considered category C.

Definition 3.1 (Factorization Structures). Let C be a category and let E, M be classes
of morphisms in C. The pair (E, M) is called a factorization structure for C whenever

– E and M are closed under composition with isos.
– C has (E, M)-factorizations of morphisms, i.e., each morphism f of C has a fac-

torization f = m ◦ e with e ∈ E and m ∈ M.
–

A
e 		 		

f ��

B
g
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C 		 m 		 D
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d

��
C 		 m 		 D

C has the unique (E, M)-diagonalization
property: for each commutative square as
shown on the left-hand side with e ∈ E and
m ∈ M there exists a unique diagonal, i.e., a morphism d such that the diagram on
the right-hand side commutes (i.e., d ◦ e = f and m ◦ d = g). If all morphisms in
E are epis we call (E, M) a right factorization structure.

In any category with an (E, M)-factorization structure, the classes E, M are closed un-
der composition and factorizations of morphisms are unique up to iso (see [3]). For Set
we always consider below the factorization structure (E, M) with E = epimorphims
(surjections) and M = monomorphisms (injections); for the category Setop we take
the corresponding structure (M, E), i.e., where the epic part consists of functions that
in Set are monomorphisms, analogously with E. Morphisms from E are drawn using
double-headed arrows A � B, whereas morphisms from M are depicted using arrows
of the form A � B. Whenever the endofunctor F preserves M-morphisms, which we
assume in the following, the factorization structure can be straightforwardly lifted to
coalgebra homomorphisms (see [17]).

Assumption 3.2. We assume that C is a complete category with a right (E, M)-factori-
zation structure and C is E-cowellpowered, i. e., every object X only has a set of E-
quotients (i.e., E-morphisms with domain X up to isomorphism of the codomains). We
also assume that F : C → C is a functor preserving M, i. e., if m ∈ M then Fm ∈ M.

Definition 3.3 (Minimization). The minimization of a coalgebra α : X → FX is the
greatest E-quotient coalgebra. More precisely, the minimization is a coalgebra (Z, γ)
with a homomorphism e : (X, α) � (Z, γ) with e ∈ E such that for any other coalgebra
homomorphism e′ : (X, α) � (Y, β) with e′ ∈ E there exists a (necessarily) unique
coalgebra homomorphism h : (Y, β) → (Z, γ) such that e = h ◦ e′.
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Remark 3.4. (1) Since C is E-cowellpowered and E consists of epimorphisms, the E-
quotient coalgebras of a coalgebra (X, α) form a pre-ordered set: a quotient coalgebra
e′ : (X, α) � (Y ′, β′) is larger than e : (X, α) � (Y, β) iff there exists a coalgebra



A Coalgebraic Perspective on Minimization and Determinization 65

homomorphism h : (Y, β) → (Y ′, β′) with e′ = h ◦ e; notice that h is uniquely deter-
mined and h ∈ E by the properties of factorization systems. Thus, the minimization is
simply the greatest element in the pre-order of E-quotient coalgebras of (X, α).

(2) While in Set the minimization is also determined by the strict minimality of the
number of states, this is not necessarily true for other categories (see Example 4.10).

(3) We often speak about (Z, γ) (without explicitly referring to the morphism e) or
even just the object Z as the minimization of the given coalgebra.

Theorem 3.8 will show that under Assumption 3.2 the minimization always exists, even
when there is no final coalgebra. When the final coalgebra exists, minimization is the
quotient of the unique morphism.

Proposition 3.5 (Minimization and Final Coalgebra). If the final coalgebra ω : Ω →
FΩ exists, then – for a given coalgebra α : X → FX – the minimization γ : Z → FZ
can be obtained by factoring the unique coalgebra homomorphism behX : (X, α) →
(Ω, ω) into an E-morphism and an M-morphism.
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��FZ 		 Fm 		 FΩ

Note that whenever the concretization functor U : C → Set maps M-morphisms to
injections, x, y ∈ UX are behaviourally equivalent (x ≈ y) iff Ue(x) = Ue(y).

Example 3.6 (DA, Minimal Automata). Recall that DAs are coalgebras for the functor
FX = 2 × X A on Set (Example 2.2). In this case, minimization corresponds to the
well known minimization of deterministic automata. For instance, the minimization of
the top automaton (X, α) in Example 2.2 yields the automaton (Z, γ) (on the bottom).

We now describe a construction that – given a coalgebra (X, α) – obtains the mini-
mization γ without going via the final coalgebra. This closely resembles the partition
refinement algorithm for minimizing deterministic automata or for computing bisimi-
larity. Whenever the construction below becomes stationary, we obtain the minimiza-
tion. In many examples the constructed sequence might even become stationary after
finitely many steps. The construction is reminiscent of the construction (in the dual set-
ting) of the initial algebra by Adámek [1], for the coalgebraic version see Worrel [24]
and Adámek and Koubek [4]. As in those papers, our construction works for ordinals
beyond ω. Hereafter 1 denotes the final object of C.

Construction 3.7 Recall the final chain W : Ord → C given by

W0 = 1, Wi+1 = FWi, Wj = lim
i<j

Wj (j a limit ordinal.)

This is the unique chain, up to natural isomorphism, whose connecting morphisms wi,j

fulfil (a) wi+1,j+1 = Fwi,j and (b) for limit ordinals they form a limit cone.
As we do not assume that F has a final coalgebra, the chain W need not con-

verge. Every coalgebra α : X → FX defines a unique canonical cone (αi : X →



66 J. Adámek et al.

Wi)i∈Ord on W with the property that αi+1 = Fαi ◦ α : X → FWi = Wi+1.
Let ei : X � Ei, mi : Ei � Wi be an (E, M)-
factorization of αi. Then, we obtain an ordinal indexed
chain (Ei) of quotients of X with the connecting mor-
phisms ej,i obtained by diagonalization for i < j, as de-
picted on the right.
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Theorem 3.8. For every F -coalgebra (X, α), its minimization is Ei, for some i ∈ Ord.

More precisely, there exists an ordinal i such that Ei carries a coalgebra structure
ε : Ei → FEi such that ei : (X, α) → (Ei, ε) is the minimization; for details see
the proof of Theorem 3.8 in the extended version of this paper [2].

By the above theorem, minimizations always exist even when there is no final coal-
gebra. Worrell [24] shows that for a finitary functor F : Set → Set, the final chain Wi

converges at the final coalgebra in ω + ω iterations. The chain Ei, instead, converges at
the minimization in ω iterations.

Theorem 3.9. Let F : Set → Set be a finitary functor. Then for every F -coalgebra
(X, α), its minimization is Eω.

In our examples, we will use the following construction which is closer to the standard
minimization algorithm and to any reasonable implementation of Construction 3.7.

Theorem 3.10. The chain (Ei)i∈Ord of Construction 3.7 can also be defined as follows:
(a) Factor the unique morphism d0 : X → 1 into e0 : X � E0 and n0 : E0 � 1.
(b) Given ei : X � Ei, factor di+1 = Fei◦α into ei+1 : X � Ei+1 and ni+1 : Ei+1 �
FEi.
(c) For a limit ordinal j, form a limit of the preceding chain (Ei)i<j , obtaining Êj and
êj : X → Êj as mediating morphism. Factor êj into ej : X � Ej and nj : Ej � Êj .

By instantiating the above construction to the case of DAs, we obtain the standard
minimization algorithm by Hopcroft [16].

4 Determinization via Reflections

For several categories there are no suitable factorization structures. This can for in-
stance be observed in Rel, wherein we model non-deterministic automata as coalge-
bras. It is known that minimization of non-deterministic automata is not unique. The
usual procedure is to first construct the corresponding deterministic automaton (via
the powerset construction), which is then minimized in a second step. In this section,
we will give a general framework for determinization-like constructions in the form
of reflections, which can also be applied to other settings, such as conditional transi-
tion systems. For non-deterministic automata we will obtain an automaton which is
“backward-deterministic”, i.e., for every state and each letter there is exactly one pre-
decessor. Then we will show how reflections can be combined with the minimization.
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Definition 4.1 (Reflective Subcategory). Let S be a subcategory of C. Let X be an
object of C. An S-reflection for X is a morphism ηX : X → X ′, where X ′ is an S-
object, such that for every other morphism f : X → Y with Y in S there exists a unique
S-morphism f ′ : X ′ → Y such that f = f ′ ◦ ηX . S is called a reflective subcategory
of C whenever each C-object has an S-reflection.

This definition is equivalent to saying that the functor embedding S into C has a left
adjoint L : C → S called reflector. The morphisms ηX form the unit of this adjunction.
In our examples in K�(T ), the unit η of the reflection will not coincide with the natural
transformation η of the monad T . It is well-known that for a monad T : Set → Set the
category Set is coreflective in K�(T ), whereas here we need a reflective subcategory.

Example 4.2. (NDA) The category Setop is a reflective subcategory of Rel. The re-
flector L is the contravariant powerset functor, i.e., for a relation R : X → Y we have
L(R) : P(X) → P(Y ) in Setop where L(R) maps Y ′ ⊆ Y to R−1(Y ′). The reflection
ηX : X → P(X) relates an element x ∈ X with X ′ ⊆ X if and only if x ∈ X ′.

(CTS) For K�(T ) where T is the input monad, we have the following situation:
since every function f : X → Y A corresponds to a function f ′ : A × X → Y by
currying, the category K�(T ) is isomorphic to the co-Kleisli category over the comonad
V X = A × X on Set. Hence, Set is both reflective and coreflective in K�(T ). The
reflection is the Kleisli morphism ηX : X → A × X with ηX(x)(a) = 〈a, x〉. The
reflector L coincides with V on objects and takes the product of the state set X with
the label set A. More concretely, for a morphism f : X → Y in K�(T ) we obtain a
morphism Lf : A × X → A × Y in Set with Lf(〈a, x〉) = 〈a, f(x)(a)〉.

Definition 4.3 (Reflection of Coalgebras). Let S be a reflective subcategory of a cat-
egory C and let L : C → S be the reflector. Assume that S is preserved by the endo-
functor F . Then, given a coalgebra α : X → FX in C we reflect it into S, obtaining a
coalgebra α′ : LX → FLX by the following construction:

X
α 		

ηX ��
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ηF X ��

FηX
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LX
Lα 		

α′
��LFX

ζX 		 FLX

Note that the existence of a unique morphism ζX is guaranteed by Definition 4.3,
since F preserves S and hence FLX is an object of S.

Whenever C is a concrete category (with concretization functor U ) and x, y ∈ UX it
holds that x ≈ y iff UηX(x) ≈ UηY (y). Hence two states in UX are behaviourally
equivalent if and only if this holds for their images in the reflected coalgebra.

That the above construction indeed gives a reflection of coalgebras for F is a special
instance of a known result (see for instance Hermida and Jacobs [15], Corollary 2.15).

Proposition 4.4. Let S be a reflective subcategory of C, which is preserved by the
endofunctor F . The category of F -coalgebras in S is a reflective subcategory of the
category of F -coalgebras in C.
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A limit in a reflective subcategory S is also a limit in C. Hence, if the final coalgebra
exists in the subcategory S, it is also the final coalgebra in C. In particular, whenever S
is complete, the chain (Wi) (Construction 3.7) in S will coincide with the chain in C.

Example 4.5. (NDA) We will first study the effect of a reflection on a non-deterministic
automaton, for which we use the reflective subcategory Setop of Rel (see Exam-
ple 4.2). The effect of the reflection on coalgebras is a powerset automaton which
is however “backwards-deterministic”: more specifically, given a coalgebra α : X →
A × X + 1 in Rel, the reflected coalgebra α′ : P(X) → A × P(X) + 1 is a relation
which lives in Setop and, when seen as a function, maps 〈a, X ′〉 with X ′ ⊆ X to
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{x ∈ X | ∃x′ ∈ X ′ : 〈a, x′〉 ∈ α(x)} (the
set of a-predecessors of X ′) and • to {x ∈
X | • ∈ α(x)} (the set of final states, the
unique final state of the new automaton). For
instance, the reflection of the NDA (X, α) in Example 2.4 is the above backwards-
deterministic automaton. Note that the above automaton has a single final state (con-
sisting of the set of final states of the original automaton) and every state has a unique
predecessor for each alphabet letter. Hence, it can be seen as a function α′ : A×Y +1 →
Y (i.e., an algebra for the functor FY = A × Y + 1). Note that Set is not a reflective
subcategory of Rel – it is instead coreflective – and hence both categories have differ-
ent final coalgebras. However for the reflective subcategory Setop, we have exactly the
same final coalgebra as for Rel, which, as shown in [13], is the initial algebra in Set.

(CTS) Now we come back to the Kleisli category K�(T ) over the input monad T (see
Example 2.5) and coalgebras with endofunctor Pc. As discussed in Example 4.2, Set
is a reflective subcategory of K�(T ). On coalgebras reflection has the following ef-
fect: given a coalgebra α : X → Pc(X) in K�(T ) we obtain a reflected coalgebra
α′ : A × X → Pc(A × X) in Set with α′(〈a, x〉) = {〈a, x′〉 | x′ ∈ α(x)(a))}. That
is, we generate the disjoint union of |A| different transition systems, each of which de-
scribes the behaviour for some a ∈ A. For instance, the reflection of CTS (1) (formally
introduced in Example 2.5, see also the introduction) is CTS (2) from the introduction.

We now consider other forms of factorizations that do not conform to Definition 3.1.

Definition 4.6 (Pseudo-Factorization). Let C be a category and let S be a reflective
subcategory with a factorization structure (E, M). Let f : X → Y be a morphism of C
where Y is an object of S. Take the unique morphism
f ′ : LX → Y with f ′ ◦ ηX = f (which exists due to the
reflection) and factor f ′ = m ◦ e with m ∈ M, e ∈ E.
Then the decomposition f = m ◦ c with c = e ◦ ηX is
called the (E, M)-pseudo-factorization of f .
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Example 4.7. (NDA) Consider Setop as the reflective subcategory of Rel (Exam-
ple 4.2). Given a relation R : X → Y , let Z = {R−1(y) | y ∈ Y } ⊆ P(X) be the
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set of pre-images of elements of Y under R. Now define relations Rc : X → Z with
Rc(x) = {Z ∈ Z | x ∈ Z} and Rm : Z → Y with Rm(Z) = {y ∈ Y | Z = R−1(y)}.
Note that Rm ◦ Rc = R. As an example consider
the relation R between sets X = {a, b, c, d} and
Y = {1, 2, 3, 4, 5} visualized on the left (where
R(a) = R(b) = {1, 2}, R(c) = {3}, R(d) =
{3, 4}). Its pseudo-factorization into Rc and Rm is
shown on the right. Here Rm maps elements of Y to
their preimage under R in P(X).
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(CTS) For Set, the reflective subcategory of K�(T ), where T is the input monad, we
use the classical factorization structure with surjective and injective functions. Given a
morphism f : X → Y in K�(T ), seen as a function f : X → Y A, we define Y ′ = {y ∈
Y | ∃x ∈ X, a ∈ A : f(x)(a) = y}. Then fc : X → Y ′A with fc(x)(a) = f(x)(a)
and fm : Y ′ → Y A with fm(y)(a) = y for all a ∈ A, i.e., fm is simply an injection
without side-effects. Note that fm ◦ fc = f in K�(T ).

Note that pseudo-factorizations enjoy the diagonalization property as in Definition 3.1
whenever g is a morphism of S. However pseudo-factors are not necessarily closed
under composition with the isos of C.

Assumption 4.8. We assume that S is a reflective subcategory of C. We also assume
that an endofunctor F of C is given preserving S. And S and F fulfil Assumption 3.2.

Theorem 4.9. Given a coalgebra α : X → FX in C, the following four constructions
obtain the same result (we also call this result the minimization):

(i) Apply Construction 3.7 using the (E, M)-pseudo-factorizations of Definition 4.6.
(ii) Reflect α into the subcategory S according to Definition 4.3 and then apply Con-

struction 3.7 using (E, M)-factorizations.
(iii) Apply the construction of Theorem 3.10 using (E, M)-pseudo-factorizations.
(iv) Reflect α into the subcategory S and then apply the construction of Theorem 3.10

using (E, M)-factorizations.

Note that we do not have to require here that C is complete. As it is clear from the proof
of Theorem 4.9 (see the extended version of this paper [2]) Construction 3.7 and the
construction in Theorem 3.10 can be straightforwardly adapted to pseudo-factorizations
instead of factorizations: The quotients Ei and the chain ej,i of connecting morphisms
obtained in variants (i)–(iv) are identical and live in the subcategory S. Since S is re-
flective in C we obtain the same results when taking the limit in C or in S, respectively.

Variant (iii) allows to tightly integrate minimization with a determinization-like con-
struction, i.e., to do both simultaneously instead of sequentially. For practical purposes
it is usually the most efficient solution, since it avoids building the final chain of Con-
struction 3.7 and the reflected coalgebra of Definition 4.3 which both usually involve
significant combinatorial explosion.
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Example 4.10. (NDA) Theorem 4.9 suggests two ways to build the minimization of
an NDA (and thus checking the equivalence of its states). We first apply Construc-
tion (iv) to the NDA (X, α) in Example 2.4 and then we illustrate Construction (iii).
Recall that the reflection of (X, α) into Setop is
(P(X), α′) in Example 4.5. By applying Construc-
tion 3.7 (with the factorization structure of Setop), we
remove from (P(X), α′) the states that are not related to

�������	123

a,b

$$
b 		�������	23

a

$$
b 		�������	
��
����3 �������	∅

a,b

%%
a



any word in the final coalgebra or, in other words, those states from which there is no
path to the final state. Intuitively, we perform a backwards breadth-first search and the
factorizations make sure that unreachable states are discarded. The resulting automaton
is illustrated above.

Construction (iii) can be understood as an efficient implementation of Construc-
tion (iv): we do not build the entire (P(X), α′), but we construct directly the above
automaton by iteratively adding states and transitions. We start with state 3, then we
add 23 and ∅ and finally we add 123. All the details are shown in [2].

The minimized NDA can be thought of as a canonical representative of its equiva-
lence class. The quest for canonical NDAs (also referred to as “universal”) started in
the seventies and, recently, an interesting kind of canonical NDAs (called átomata) has
been proposed in [8]. In [2] , we show that our minimized NDAs coincide with átomata
of [8]. This provides a universal property that uniquely characterizes átomata (up to
isomorphism), namely the átomaton of a regular language is the minimization of any
NDA accepting the language.

It is worth noting that the automaton obtained above is precisely the automaton
in the third step of the well-known Brzozowski algorithm for minimization of non-
deterministic automata [7], which, in a nutshell, works as follows: 1) given an NDA
reverse it, by reversing all arrows and exchanging final and initial states; 2) determinize
it, using the subset construction, and remove unreachable states; 3) reverse it again; 4)
determinize it, using the subset construction, and remove unreachable states. In our ex-
ample, we are doing steps 1)–3) but without the explicit reversal. Our automata do not
have initial states, but steps 1)–3) are independent on the specific choice of initial states,
because of the two reversals.

Example 4.11. (CTS) Recall the coalgebraic description of CTS given in Example 2.5:
the base category is K�(T ), where T is the input monad and F = Pc is the count-
able powerset functor. CTS (1) of the introduction is the coalgebra α : X → Pc(X)
represented by the table in Example 2.5.

We describe the algorithm in Theorem 4.9(iii) with the pseudo-factorization of Ex-
ample 4.7 (Construction (iv) only consists in the standard minimization of the reflected
coalgebra α′, that is CTS (2) of the introduction). We start by taking the unique mor-
phism d0 : X → 1 into the final object of K�(T ), that is 1 = {•}. At the iteration i, we
obtain ei via the pseudo-factorization of di = ni◦ei, and then we build di+1 = Fei◦α.
The iterations of the algorithm are shown in the following tables below.



A Coalgebraic Perspective on Minimization and Determinization 71

d0 : X → 1 = {•} = E0

d0, e0 1 2 3 4 5 6 7 8 9 10

a • • • • • • • • • •
ā • • • • • • • • • •

d2 : X → Pc(E1), E2 = {∅, {∅}, {∅, {•}}}
d2, e2 1 2 3 4 5 6 7 8 9 10

a {∅, {•}} {∅} ∅ ∅ ∅ {∅, {•}} {∅} ∅ ∅ ∅
ā {∅, {•}} ∅ {∅} ∅ ∅ {∅, {•}} {∅} ∅ ∅ ∅

d1 : X → Pc(E0) = {∅, {•}} = E1

d1, e1 1 2 3 4 5 6 7 8 9 10

a {•} {•} ∅ ∅ ∅ {•} {•} ∅ ∅ ∅
ā {•} ∅ {•} ∅ ∅ {•} {•} ∅ ∅ ∅

d3 : X → Pc(E2), E3 = {∅, {∅}, {∅, {∅}}}
d3, e3 1 2 3 4 5 6 7 8 9 10

a {∅, {∅}} {∅} ∅ ∅ ∅ {∅, {∅}} {∅} ∅ ∅ ∅
ā {∅, {∅}} ∅ {∅} ∅ ∅ {∅, {∅}} {∅} ∅ ∅ ∅

Each table represents both di and ei : X � Ei (the morphisms ni such that di = ni ◦ei

are just the obvious injections). At the iterations 0 and 1, E0 = 1 and E1 = Pc(E0). At
the iteration 2 instead, E2 �= Pc(E1), since nothing maps to {{•}} ∈ Pc(E1).

The algorithm reaches a fixed-point at iteration 3, since there is an iso ι : E2 → E3.
The minimization (E3, Pc(ι) ◦ n3) is depicted below.

{∅, {∅}} 		 &&{∅} 		 ∅

It is easy to see that the above transition system is isomorphic to the one from the
introduction having states x, y, z. Moreover, the coalgebra morphism e3 : (X, α) �
(E3, Pc(ι) ◦ n3), illustrated in the table above, corresponds to the dashed arrow of the
introduction, where 2 is mapped to {∅} (= y) if a holds, and to ∅ (= z) if ā holds.

5 Conclusion, Related and Future Work

In this work, we have introduced a notion of minimization, which encompasses several
concepts of “canonical” systems in the literature, and abstract procedures to compute
it. Our approach only relies on (pseudo-)factorization structures and it is completely
independent of the base category and of the endofunctor F . Together with appropriate
reflections, this allows to compute minimizations of interesting types of systems that,
for the purpose of minimization, cannot be regarded as coalgebras over Set, such as
non-deterministic automata and conditional transition systems.

For non-deterministic automata, which we model as coalgebras in Rel following [13],
the result of the proposed algorithm coincides with the one of the third step of Brzo-
zowski’s algorithm [7]. The resulting automata are not minimal in the number of states
(it is well-known that there exists no unique minimal non-deterministic automata), but
they correspond to átomata, recently introduced in [8].

The example of conditional transition systems is completely original, but it has been
motivated by the work in [14,10], which introduces notions of bisimilarity depending on
conditions (which are fixed once and for all). The setting of [10] is closer to ours, but no
algorithm is given there. Our algorithm can be made more efficient by considering CTSs
where conditions are boolean expressions. We already have a prototype implementa-
tion performing the fixed-point iteration based on binary decision diagrams. Moreover,
our coalgebraic model of CTSs provides a notion of quantitative bisimulations that can
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be seen as a behavioural (pseudo-)metric. We plan to study how our approach can be
integrated to define and compute behavioural metrics.

As related work, we should also mention that the notion of minimization general-
izes simple [22] and minimal [12] coalgebras in the case where the base category is
Set with epi-mono factorizations. Moreover, several previous studies (e.g. [17,9,23])
have pointed out the relationship between the construction of the final coalgebra (via
the final chain [24,4]) and the minimization algorithm. For instance, in case of regu-
lar categories the chain of quotients ei : X � Ei (Construction 3.7) corresponds to
the chain Ki � X × X of their kernel pairs, which is precisely the relation refine-
ment sequence of Staton [23, Section 5.1]. However, none of these works employed
reflections for determinization-like constructions, that is exactly what allows us to min-
imize coalgebras in categories not equipped with a proper factorization structure, such
as non-deterministic automata and conditional transition systems.

In future work we will study general conditions ensuring finite convergence: it is
immediate to see that for any functor on Set with epi-mono factorizations, the sequence
Ei of a finite coalgebra converges in a finite number of iterations. However, discovering
general conditions encompassing all the examples of this paper seems to be non-trivial.

Preliminary research suggests that by integrating our approach with well-pointed
coalgebras [5], we might obtain an explicit account of initial states. Indeed, given the
reachable part of a pointed coalgebra for a set functor (which is defined through the
canonical graph of Gumm [11]), the result of its minimization is a well-pointed coalge-
bra, i. e., a pointed coalgebra with no proper subcoalgebra and no proper quotient.

In addition we plan to study how our work is related to [20], which also recovers
Brzozowski’s algorithm in an abstract categorical setting.
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8. Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.) DLT 2011.

LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)

http://alexandrasilva.org/files/fossacs12-extended.pdf


A Coalgebraic Perspective on Minimization and Determinization 73

9. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the
pi-calculus using polymorphic types. TCS 331(2-3), 325–365 (2005)

10. Fitting, M.: Bisimulations and boolean vectors. In: Advances in Modal Logic, vol. 4, pp.
1–29. World Scientific Publishing (2002)

11. Gumm, H.P.: From T -Coalgebras to Filter Structures and Transition Systems. In: Fiadeiro,
J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp.
194–212. Springer, Heidelberg (2005)

12. Gumm, H.P.: On minimal coalgebras. Applied Categorical Structures 16, 313–332 (2008)
13. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. LMCS 3(4:11),

1–36 (2007)
14. Hennessy, M., Lin, H.: Symbolic bisimulations. TCS 138(2), 353–389 (1995)
15. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Infor-

mation and Computation 145, 107–152 (1998)
16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 3rd edn. Wesley (2006)
17. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis,

Ludwigs-Maximilians-Universität München (2000)
18. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
19. Mulry, P.S.: Lifting Theorems for Kleisli Categories. In: Main, M.G., Melton, A.C., Mis-

love, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 304–319.
Springer, Heidelberg (1994)

20. Panangaden, P.: Duality in probabilistic automata Slides (May 19, 2011),
http://www.cs.mcgill.ca/˜prakash/Talks/duality_talk.pdf

21. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Proc. of CTCS
1999. ENTCS, vol. 29, pp. 259–274 (1999)

22. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. TCS 249, 3–80 (2000)
23. Staton, S.: Relating coalgebraic notions of bisimulation. LMCS 7(1) (2011)
24. Worrell, J.: On the final sequence of a finitary set functor. TCS 338(1-3), 184–199 (2005)

http://www.cs.mcgill.ca/~prakash/Talks/duality_talk.pdf


When Is a Container a Comonad?

Danel Ahman1,	, James Chapman2, and Tarmo Uustalu2

1 Computer Laboratory, University of Cambridge,
15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom

danel.ahman@cl.cam.ac.uk
2 Institute of Cybernetics, Tallinn University of Technology,

Akadeemia tee 21, 12618 Tallinn, Estonia
{james,tarmo}@cs.ioc.ee

Abstract. Abbott, Altenkirch, Ghani and others have taught us that
many parameterized datatypes (set functors) can be usefully analyzed
via container representations in terms of a set of shapes and a set of po-
sitions in each shape. This paper builds on the observation that datatypes
often carry additional structure that containers alone do not account for.
We introduce directed containers to capture the common situation where
every position in a datastructure determines another datastructure, in-
formally, the sub-datastructure rooted by that position. Some natural
examples are non-empty lists and node-labelled trees, and datastructures
with a designated position (zippers). While containers denote set functors
via a fully-faithful functor, directed containers interpret fully-faithfully
into comonads. But more is true: every comonad whose underlying func-
tor is a container is represented by a directed container. In fact, directed
containers are the same as containers that are comonads. We also de-
scribe some constructions of directed containers. We have formalized our
development in the dependently typed programming language Agda.

1 Introduction

Containers, as introduced by Abbott, Altenkirch and Ghani [1] are a neat rep-
resentation for a wide class of parameterized datatypes (set functors) in terms
of a set of shapes and a set of positions in each shape. They cover lists, col-
ists, streams, various kinds of trees, etc. Containers can be used as a “syntax”
for programming with these datatypes and reasoning about them, as can the
strictly positive datatypes and polynomial functors of Dybjer [8], Moerdijk and
Palmgren [16], Gambino and Hyland [9], and Kock [15]. The theory of this class
of datatypes is elegant, as they are well-behaved in many respects.

This paper proceeds from the observation that datatypes often carry ad-
ditional structure that containers alone do not account for. We introduce di-
rected containers to capture the common situation in programming where every
position in a datastructure determines another datastructure, informally, the
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L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 74–88, 2012.
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sub-datastructure rooted by that position. Some natural examples of such datas-
tructures are non-empty lists and node-labelled trees, and datastructures with a
designated position or focus (zippers). In the former case, the sub-datastructure
is a sublist or a subtree. In the latter case, it is the whole datastructure but with
the focus moved to the given position.

We show that directed containers are no less neat than containers. While
containers denote set functors via a fully-faithful functor, directed containers
interpret fully-faithfully into comonads. They admit some of the constructions
that containers do, but not others: for instance, two directed containers cannot be
composed in general. Our main result is that every comonad whose underlying
functor is the interpretation of a container is the interpretation of a directed
container. So the answer to the question in the title of this paper is: a container
is a comonad exactly when it is a directed container. In more precise terms, the
category of directed containers is the pullback of the forgetful functor from the
category of comonads to that of set functors along the interpretation functor of
containers. This also means that a directed container is the same as a comonoid
in the category of containers.

In Sect. 2, we review the basic theory of containers, showing also some ex-
amples. We introduce containers and their interpretation into set functors. We
show some constructions of containers such as the coproduct of containers. In
Sect. 3, we revisit our examples and introduce directed containers as a special-
ization of containers and describe their interpretation into comonads. We look at
some constructions, in particular the focussed container (zipper) construction.
Our main result, that a container is a comonad exactly when it is directed, is
the subject of Sect. 4. In Sect. 5, we ask whether a similar characterization is
possible for containers that are monads and hint that this is the case. We briefly
summarize related work in Sect. 6 and conclude with outlining some directions
for future work in Sect. 7

We spend a section on the background theory of containers as they are central
for our paper but relatively little known, but assume that the reader knows about
comonads, monoidal categories, monoidal functors and comonoids.

In our mathematics, we use syntax similar to the dependently typed functional
programming language Agda [18]. If some function argument will be derivable
in most contexts, we mark it as implicit by enclosing it/its type in braces in the
function’s type declaration and either give this argument in braces or omit it in
the definition and applications of the function.

For lack of space, we have omitted all proofs from the paper. We
have formalised our proofs in Agda; the development is available at
http://cs.ioc.ee/~danel/dcont.html.

2 Containers

We begin with a recap of containers. We introduce the category of containers
and the fully-faithful functor into the category of set functors defining the inter-
pretation of containers and show that these are monoidal. We also recall some

http://cs.ioc.ee/~danel/dcont.html


76 D. Ahman, J. Chapman, and T. Uustalu

basic constructions of containers. For proofs of the propositions in this section
and further information, we refer the reader to Abbott et al. [1, 4].

2.1 Containers

Containers are a form of “syntax” for datatypes. A container S � P is given by
a set S : Set of shapes and a shape-indexed family P : S → Set of positions.

Intuitively, shapes are “templates” for datastructures and positions identify
“blanks” in these templates that can be filled with data. The datatype of lists is
represented by S � P where the shapes S = Nat are the possible lengths of lists
and the positions P s = Fin s = {0, . . . , s− 1} provide s places for data in lists of
length s. Non-empty lists are obtained by letting S = Nat and P s = Fin (s+ 1)
(so that shape s has s + 1 rather than s positions). Streams are characterized
by a single shape with natural number positions: S = 1 = {∗} and P ∗ = Nat.
The singleton datatype has one shape and one position: S = 1, P ∗ = 1.

A morphism between containers S � P and S′ � P ′ is a pair t � q of maps
t : S → S′ and q : Π{s : S}. P ′ (t s) → P s (the shape map and position
map). Note how the positions are mapped backwards. The intuition is that, if a
function between two datatypes does not look at the data, then the shape of a
datastructure given to it must determine the shape of the datastructure returned
and the data in any position in the shape returned must come from a definite
position in the given shape.

For example, the head function, sending a non-empty list to a single data
item, is determined by the maps t : Nat → 1 and q : Π{s : Nat}. 1 → Fin (s+ 1)
defined by t = ∗ and q ∗ = 0. The tail function, sending a non-empty list to
a list, is represented by t : Nat → Nat and q : Π{s : Nat}.Fin s → Fin (s + 1)
defined by t s = s and q p = p + 1. For the function dropping every second
element of a non-empty list, the shape and position maps t : Nat → Nat and
q : Π{s : Nat}.Fin (s÷ 2+1) → Fin (s+1) are t s = s÷ 2 and q {s} p = p∗ 2. For
reversal of non-empty lists, they are t : Nat → Nat and q : Π{s : Nat}.Fin (s +
1) → Fin (s+1) defined by t s = s and q {s} p = s− p. (See Prince et al. [19] for
more similar examples.)

The identity morphism idc{C} on a container C = S � P is defined by idc =
id {S}�λ{s}. id{P s}. The composition h ◦c h′ of container morphisms h = t�q
and h′ = t′ � q′ is defined by h ◦c h′ = t ◦ t′ �λ{s}. q′ {s} ◦ q {t′ s}. Composition
of container morphisms is associative, identity is the unit.

Proposition 1. Containers form a category Cont.

2.2 Interpretation of Containers

To map containers into datatypes made of datastructures that have the positions
in some shape filled with data, we must equip containers with a “semantics”.

For a container C = S�P , we define its interpretation �C�c : Set → Set on sets
by �C�cX = Σs : S. P s→ X , so that �C�cX consists of pairs of a shape and an
assignment of an element of X to each of the positions in this shape, reflecting
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the “template-and-blanks” idea. The interpretation �C�c : ∀{X}, {Y }. (X →
Y ) → (Σs : S. P s → X) → Σs : S. P s → Y of C on functions is defined by�C�c f (s, v) = (s, f ◦ v). It is straightforward that �C�c preserves identity and
composition of functions, so it is a set functor (as any datatype should be).

Our example containers denote the datatypes intended. If we let C be the
container of lists, we have �C�cX = Σs : Nat.Fin s→ X ∼= ListX . The container
of streams interprets into Σ∗ : 1.Nat → X ∼= Nat → X ∼= StrX . Etc.

A morphism h = t � q between containers C = S � P and C = S′ � P ′

is interpreted as a natural transformation between �C�c and �C′�c, i.e., as a
polymorphic function �h�c : ∀{X}. (Σs : S. P s → X) → Σs′ : S′. P ′ s′ → X
that is natural. It is defined by �h�c (s, v) = (t s, v ◦ q {s}). �−�c preserves the
identities and composition of container morphisms.

The interpretation of the container morphism h corresponding to the list head
function �h�c : ∀{X}. (Σs : Nat.Fin (s+ 1) → X) → Σ∗ : 1. 1 → X is defined by�h�c (s, v) = (∗, λ∗. v 0).
Proposition 2. �−�c is a functor from Cont to [Set,Set].

Every natural transformation between container interpretations is the interpre-
tation of some container morphism. For containers C = S�P and C′ = S′�P ′,
a natural transformation τ between �C�c and �C′�c, i.e., a polymorphic func-
tion τ : ∀{X}. (Σs : S. P s → X) → Σs′ : S′. P ′ s′ → X that is nat-
ural, can be “quoted” to a container morphism �τ�c = (t � q) between C
and C′ where t : S → S′ and q : Π{s : S}. P ′ (t s) → P s are defined by
�τ�c = (λs. fst (τ {P s} (s, id)))� (λ{s}. snd (τ {P s} (s, id))).

For any container morphism h, ��h�c�c = h, and, for any natural transforma-
tion τ and τ ′ between container interpretations, �τ�c = �τ ′�c implies τ = τ ′.

Proposition 3. �−�c is fully faithful.

2.3 Monoidal Structure

We have already seen the identity container Idc = 1 � λ∗. 1. The composition
C0 ·c C1 of containers C0 = S0 � P0 and C1 = S1 � P1 is the container S � P
defined by S = Σs : S0. P0 s → S1 and P (s, v) = Σp0 : P0 s. P1 (v p0). It
has as shapes pairs of an outer shape s and an assignment of an inner shape
to every position in s. The positions in the composite container are pairs of a
position p in the outer shape and a position in the inner shape assigned to p.
The (horizontal) composition h0 ·c h1 of container morphisms h0 = t0 � q0 and
h1 = t1�q1 is the container morphism t�q defined by t (s, v) = (t0 s, t1◦v◦q0 {s})
and q {s, v} (p0, p1) = (q0 {s} p0, q1 {v (q0 {s} p0)} p1). The horizontal composi-
tion preserves the identity container morphisms and the (vertical) composition
of container morphisms, which means that − ·c − is a bifunctor.

Cont has isomorphisms ρ : ∀{C}. C ·c Idc → C, λ : ∀{C}. Idc ·c C → C
and α : ∀{C} {C′}, {C′′}. (C ·c C′) ·c C′′ → C ·c (C′ ·c C′′), defined by
ρ = λ(s, v). s � λ{s, v}. λp. (p, ∗), λ = λ(∗, v). v ∗ � λ{∗, v}. λp. (∗, p), α =
λ((s, v), v′). (s, λp. (v p, λp′. v′ (p, p′)))� λ{(s, v), v′}. λ(p, (p′, p′′)). ((p, p′), p′′).
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Proposition 4. The category Cont is a monoidal category.

There are also natural isomorphisms e : Id → �Idc�c and m : ∀{C0}, {C1}.�C0�c · �C1�c → �C0 ·c C1�c that are defined by ex = (∗, λ∗. x) and m (s, v) =
((s, λp. fst (v p)), λ (p, p′). snd (v p) p′) and are coherent.

Proposition 5. The functor �−�c is a monoidal functor.

2.4 Constructions of Containers

Containers are closed under various constructions such as products, coproducts
and constant exponentiation, preserved by interpretation.

– For two containers C0 = S0 �P0 and C1 = S1�P1, their product C0 ×C1 is
the container S � P defined by S = S0 × S1 and P (s0, s1) = P0 s0 + P1 s1.
It holds that �C0 × C1�c ∼= �C0�c × �C1�c.

– The coproduct C0 +C1 of containers C0 = S0 � P0 and C1 = S1 � P1 is the
container S�P defined by S = S0+S1, P (inl s) = P0 s and P (inr s) = P1 s.
It is the case that �C0 + C1�c ∼= �C0�c + �C1�c.

– For a set K ∈ Set and a container C0 = S0 � P0, the exponential K → C0

is the container S � P where S = K → S0 and P f = Σk : K.P (f k). We
have that �K → C0�c ∼= K → �C0�c.

3 Directed Containers

We now proceed to our contribution, directed containers. We define the category
of directed containers and a fully-faithful functor interpreting directed containers
as comonads, and discuss some examples and constructions.

3.1 Directed Containers

Datatypes often carry some additional structure that is worth making explicit.
For example, each node in a list or non-empty list defines a sublist (a suffix).
In container terms, this corresponds to every position in a shape determining
another shape, the subshape corresponding to this position. The theory of con-
tainers alone does not account for such additional structure. Directed containers,
studied in the rest of this paper, axiomatize subshapes and translation of posi-
tions in a subshape into the global shape.

A directed container is a container S � P together with three operations

– ↓ : Πs : S. P s→ S (the subshape for a position),
– o : Π{s : S}. P s (the root),
– ⊕ : Π{s : S}. Πp : P s. P (s ↓ p) → P s (translation of subshape positions

into positions in the global shape).

satisfying the following two shape equations and three position equations:
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1. ∀{s}. s ↓ o = s,
2. ∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,
3. ∀{s, p}. p ⊕ {s} o = p,
4. ∀{s, p}. o{s} ⊕ p = p,
5. ∀{s, p, p′, p′′}. (p ⊕ {s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

(Using ⊕ as an infix operation, we write the first, implicit, argument next to the
operation symbol when we want to give it explicitly.) Modulo the fact that the
positions involved come from different sets, laws 3-5 are the laws of a monoid.

To help explain the operations and laws, we sketch in Fig. 1 a datastructure
with nested sub-datastructures.
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Fig. 1. A datastructure with two nested sub-datastructures

The global shape s is marked with a solid boundary and has a root position
o {s}. Then, any position p in s determines a shape s′ = s ↓ p, marked with a
dotted boundary, to be thought of as the subshape of s given by this position.
The root position in s′ is o {s′}. Law 3 says that its translation p ⊕ o {s′} into a
position in shape s is p, reflecting the idea that the subshape given by a position
should have that position as the root.

By law 1, the subshape s ↓ o {s} corresponding to the root position o{s} in
the global shape s is s itself. Law 4, which is only well-typed thanks to law 1,
stipulates that the translation of position p in s ↓ o {s} into a position in s is
just p (which is possible, as P (s ↓ o {s}) = P s).

A further position p′ in s′ determines a shape s′′ = s′ ↓ p′. But p′ also
translates into a position p ⊕ p′ in s and that determines a shape s ↓ (p ⊕ p′).
Law 2 says that s′′ and s ↓ (p ⊕ p′) are the same shape, which is marked by a
dashed boundary in the figure. Finally, law 5 (well-typed only because of law 2)
says that the two alternative ways to translate a position p′′ in shape s′′ into a
position in shape s agree with each other.
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Lists cannot form a directed container, as the shape 0 (for the empty list),
having no positions, has no possible root position. But the container of non-
empty lists (with S = Nat and P s = Fin (suc s)) is a directed container with
respect to suffixes as (non-empty) sublists. The subshape given by a position p
in a shape s (for lists of length s + 1) is the shape of the corresponding suffix,
given by s ↓ p = s − p. The root o{s} is the position 0 of the head node. A
position in the global shape is recovered from a position p′ in the subshape of
the position p by p ⊕ p′ = p+ p′.

The “template” of non-empty lists of shape s = 5 (length 6) is given in Fig. 2.
This figure also shows that the subshape determined by a position p = 2 in the
global shape s is s′ = s ↓ p = 5 − 2 = 3 and a position p′ = 1 in s′ is rendered
as the position p ⊕ p′ = 2 + 1 = 3 in the initial shape. Clearly one could

•
p=2

��

p⊕p′=2+1=3

��

s=5
�����������������������

����
����

����
����

����
��� • •

p′=1

��

s′=s↓p=5−2=3

• • •

Fig. 2. The “template” of non-empty lists of shape 5 (length 6)

also choose prefixes as subshapes and the last node of a non-empty list as the
root, but this gives an isomorphic directed container. Non-empty lists also give
rise to an entirely different directed container structure that has cyclic shifts as
“sublists” (this example was suggested to us by Jeremy Gibbons). The subshape
at each position is the global shape (s ↓ p = s). The root is still o {s} = 0. The
interesting part is that translation into the global shape of a subshape position
is defined by p ⊕ {s} p′ = (p+ p′) mod s, satisfying all the required laws.

The container of streams (S = 1, P ∗ = Nat) carries a very trivial directed
container structure given by ∗ ↓ p = ∗, o = 0 and p ⊕ p′ = p+ p′. Fig. 3 shows
how a position p = 2 in the only possible global shape s = ∗ and a position
p′ = 2 in the equal subshape s′ = s ↓ p = ∗ give back a position p+ p = 4 in the
global shape.

Similarly to the theory of containers, one can also define morphisms between
directed containers. A morphism between directed containers (S�P, ↓, o,⊕) and
(S′�P ′, ↓′, o′,⊕′) is a morphism t� q between the containers S�P and S′�P ′

that satisfies three laws:

– ∀{s, p}. t (s ↓ q p) = t s ↓′ p,
– ∀{s}. o {s} = q (o′ {t s}),
– ∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′).
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•
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s=∗
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p′=2

��

s′=s↓p=∗

• • • ...

Fig. 3. The template of streams

Recall the intuition that t determines the shape of the datastructure that some
given datastructure is sent to and q identifies for every position in the datas-
tructure returned a position in the given datastructure. These laws say that the
positions in the sub-datastructure for any position in the resulting datastructure
must map back to positions in the corresponding sub-datastructure of the given
datastructure. This means that they can receive data only from those positions,
other flows are forbidden.

The container representations of the head and drop-even functions for non-
empty lists are directed container morphisms. But that of reversal is not.

The identities and composition of Cont can give the identities and composi-
tion for directed containers, since for every directed container E = (C, ↓, o,⊕),
the identity container morphism idc {C} is a directed container morphism and
the composition h ◦c h′ of two directed container morphisms is also a directed
container morphism.

Proposition 6. Directed containers form a category DCont.

3.2 Interpretation of Directed Containers

As directed containers are containers with some operations obeying some laws,
a directed container should denote not just a set functor, but a set functor with
operations obeying some laws. The correct domain of denotation for directed
containers is provided by comonads on sets.

Given a directed container E = (S � P, ↓, o,⊕), we define its interpretation�E�dc to be the set functorD = �S�P �c (i.e., the interpretation of the underlying
container) together with two natural transformations

ε : ∀{X}.(Σs : S. P s→ X) → X
ε (s, v) = v (o {s})
δ : ∀{X}. (Σs : S. P s→ X) → Σs : S. P s→ Σs′ : S. P s′ → X
δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′)))

The directed container laws ensure that the natural transformations ε, δ make
the counit and comultiplication of a comonad structure on D.
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Intuitively, the counit extracts the data at the root position of a datastruc-
ture (e.g., the head of a non-empty list), the comultiplication, which produces
a datastructure of datastructures, replaces the data at every position with the
sub-datastructure corresponding to this position (e.g., the corresponding suffix
or cyclic shift).

The interpretation �h�dc of a morphism h between directed containers
E = (C, ↓, o,⊕), E′ = (C′, ↓′, o′,⊕′) is defined by �h�dc = �h�c (using that h
is a container morphism between C and C′). The directed container morphism
laws ensure that this natural transformation between �C�c and �C′�c is also a
comonad morphism between �E�dc and �E′�dc.

Since Comonads(Set) inherits its identities and composition from [Set,Set],�−�dc also preserves the identities and composition.

Proposition 7. �−�dc is a functor from DCont to Comonads(Set).

Similarly to the case of natural transformations between container interpreta-
tions, one can also “quote” comonad morphisms between directed container in-
terpretations into directed container morphisms. For any directed containers
E = (C, ↓, o,⊕), E′ = (C′, ↓′, o′,⊕′) and any morphism τ between the comonads�E�dc and �E′�dc (which is a natural transformation between �C�c and �C′�c),
the container morphism �τ�dc = �τ�c between the underlying containers C and
C′ is also a directed container morphism between E and E′. The directed con-
tainer morphism laws follow from the comonad morphism laws.

From what we already know about interpretation and quoting of container
morphisms, it is immediate that ��h�dc�dc = h for any directed container mor-
phism h and that �τ�dc = �τ ′�dc implies τ = τ ′ for any comonad morphisms τ
and τ ′ between directed container interpretations.

Proposition 8. �−�dc is fully faithful.

The identity container Idc = 1 � λ∗. 1 extends trivially to an identity directed
container whose denotation is isomorphic to the identity comonad. But, similarly
to the situation with functors and comonads, composition of containers fails to
yield a composition monoidal structure on DCont.

3.3 Constructions of Directed Containers

We now show some constructions of directed containers. While some standard
constructions of containers extend to directed containers, others do not.

Coproducts. Given two directed containers E0 = (S0 � P0, ↓0, o0,⊕0), E1 =
(S1�P1, ↓1, o1,⊕1), their coproduct is (S�P, ↓, o,⊕) whose underlying container
S � P is the coproduct of containers S0 � P0 and S1 � P1. All of the directed
container operations are defined either using ↓0, o0,⊕0 or ↓1, o1,⊕1 depending on
the given shape. This means that the subshape is given by inl s ↓ p = inl (s ↓0 p)
and inr s ↓ p = inr (s ↓1 p), the root position is given by o {inl s} = o0 {s} or
o {inr s} = o1 {s} and the position in the initial shape is given by p ⊕ {inl s} p′ =
p ⊕0 {s} p′ and p ⊕ {inr s} p′ = p ⊕1 {s} p′. Its interpretation is isomorphic to
the coproduct of comonads �E0�dc and �E1�dc.
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Directed containers from monoids. Any monoid (M, e, •) gives rise to a directed
container E = (S � P, ↓, o,⊕) where there is only one shape ∗ (with S = 1)
whose positions P ∗ = M are the elements in the carrier set. The subshape
operation ∗ ↓ p = ∗ thus becomes trivial as there is only one shape to return.
Furthermore, the root position o {∗} = e in the shape ∗ is the unit of the monoid
and the position in the initial shape is given by using the monoid operation
p ⊕ {∗} p′ = p • p′. The interpretation of this directed container is the comonad
(D, ε, δ) where DX =M → X , ε = λf. f e, δ = λf. λp, p′. f (p • p′).
Cofree directed containers. The cofree directed container on a container C =
S0 � P0 is E = (S � P, ↓, o,⊕) where the underlying container is defined as
S = νZ.Σs : S0.P0 s → Z and P = μZ. λ(s, v). 1 + Σp : P0 s.Z (v p). The
subshapes are defined by (s, v) ↓ inl ∗ = (s, v) and (s, v) ↓ inr (p, p′) = v p ↓
p′. The root position is defined by o {s, v} = inl ∗ and subshape positions by
inl ∗ ⊕ {s, v} p′′ = p′′ and inr (p, p′) ⊕ {s, v} p′′ = inr (p, p′ ⊕ {v p} p′′). The
interpretation �E�dc = (D, ε, δ) of this directed container has its underlying
functor given by DX = νZ.X × �C�c Z and is the cofree comonad on the
functor �C�c.

A different directed container, the cofree recursive directed container on C is
obtained by replacing the ν in the definition of S with μ. The interpretation has
its underlying functor given by DX = μZ.X×�C�c Z and is the cofree recursive
comonad on �C�c.

There is no general way to endow the product of the underlying containers of
two directed containers E0 = (S0 �P0, ↓0, o0,⊕0) and E1 = (S1 �P1, ↓1, o1,⊕1)
with the structure of a directed container. One can define S = S0 × S1 and
P (s0, s1) = P0 s0 + P1 s1, but there are two choices o0 and o1 for o. Moreover,
there is no general way to define p ⊕ p′. But this should not be surprising, as the
product of the underlying functors of two comonads is not generally a comonad.
Also, the product of two comonads would not be a comonad structure on the
product of the underlying functors.

3.4 Focussing

Another interesting construction turning any container into a directed container
is “focussing”.

Datastructures with a focus. Any container C = S0 � P0 defines a directed
container (S � P, ↓, o,⊕) as follows. We take S = Σs : S0. P0 s, so that a shape
is a pair of a shape s, the “shape proper”, and an arbitrary position p in that
shape, the “focus”. We take P (s, p) = P0 s, so that a position in the shape (s, p)
is a position in the shape proper s, irrespective of the focus. The subshape de-
termined by position p′ in shape (s, p) is given by keeping the shape proper but
changing the focus: (s, p) ↓ p′ = (s, p′). The root in the shape (s, p) is the focus
p such that o {s, p} = p. Finally, we take the translation of positions from the
subshape (s, p′) given by position p′ to shape (s, p) to be the identity, by defining
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p′ ⊕ {s, p} p′′ = p′′. All directed container laws are satisfied. This directed
container interprets into the canonical comonad structure on the functor ∂�C�c×
Id where ∂F denotes the derivative of the functor F .

Zippers. Inductive (tree-like) datatypes with a designated focus position are
isomorphic to the zipper types of Huet [13]. A zipper datastructure encodes a
tree with a focus as a pair of a context and a tree. The tree is the subtree of the
global tree rooted by the focus and the context encodes the rest of the global
tree. On zippers, changing the focus is supported via local navigation operations
for moving one step down into the tree or up or aside into the context.

Zipper datatypes are directly representable as directed containers. We illus-
trate this on the example of zippers for non-empty lists. Such a zipper is a pair
of a list (the context) and a non-empty list (the suffix determined by the focus
position). Accordingly, by defining S = Nat×Nat, the shape of a zipper is a pair
(s0, s1) where s0 is the shape of the context and s1 is the shape of the suffix. For
positions, it is convenient to choose P (s0, s1) = {−s0, . . . , s1} by allocating the
negative numbers in the interval for positions in the context and non-negative
numbers for positions in the suffix. The root position is o {s0, s1} = 0, i.e., the
focus. The subshape for each position is given by (s0, s1) ↓ p = (s0 + p, s1 − p)
and translation of subshape positions by p ⊕ {s0, s1} p′ = p+ p′.

Fig. 4 gives an example of a non-empty list with focus with its shape fixed
to s = (5, 6). It should be clear from the figure how the ⊕ operation works on
positions p = 4 and p′ = −7 to get back the position p ⊕ p′ = −3 in the initial
shape. The subshape operation ↓ works as follows: s ↓ p gives back a subshape
s′ = (9, 2) and s ↓ (p ⊕ p′) gives s′′ = (2, 9).

• • • • • •

p=4

��

p⊕p=p+p′=−3

��

s=(5,6)
����������

��
��

��
��

��

����������

��
��
��
��
��

• • • •
p′=−7

��

s′=(9,2)

• •

Fig. 4. The template for non-empty lists of length 12 focussed at position 5

4 Containers ∩ Comonads = Directed Containers

Since not every functor can be represented by a container, there is no point
in asking whether every comonad can be represented as a directed container.
An example of a natural comonad that is not a directed container is the cofree
comonad on the finite powerset functor Pf (node-labelled nonwellfounded
strongly-extensional trees) where the carrier of this comonad is not a container
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(Pf is also not a container). But, what about those comonads whose underlying
functor is an interpretation of a container? It turns out that any such comonad
does indeed define a directed container that is obtained as follows.

Given a comonad (D, ε, δ) and a container C = S � P such that D = �C�c,
the counit ε and comultiplication δ induce container morphisms

hε : C → Idc

hε = tε � qε = �e ◦ ε�c
hδ : C → C ·c C
hδ = tδ � qδ = �m {C} {C} ◦ δ�c

using that �−�c is fully faithful. From (D, ε, δ) satisfying the laws of a comonad
we can prove that (C, hε, hδ) satisfies the laws of a comonoid in Cont. Further,
we can define

s ↓ p = snd (tδ s) p
o {s} = qε{s} ∗
p ⊕ {s} p′ = qδ {s} (p, p′)

and the comonoid laws further enforce the laws of the directed container for
(C, ↓, o,⊕).

It may seem that the maps tε and fst◦tδ are not used in the directed container
structure, but tε : S → 1 contains no information (∀{s}. tε s = ∗) and the
comonad/comonoid right unit law forces that ∀{s}. fst (tδ s) = s, which gets
used in the proof of each of the five directed container laws. The latter fact is
quite significant. It tells us that the comultiplication δ of any comonad whose
underlying functor is the interpretation of a container preserves the shape of a
given datastructure as the outer shape of the datastructure returned.

The situation is summarized as follows.

Proposition 9. Any comonad (D, ε, δ) and container C = S � P such that
D = �C�c determine a directed container �(D, ε, δ), C .
Proposition 10. ��C, ↓, o,⊕�dc, C = (C, ↓, o,⊕).

Proposition 11. ��(D, ε, δ), C �dc = (D, ε, δ).

These observations suggest the following theorem.

Proposition 12. The following is a pullback in CAT:

DCont
U ��

�−�dc f.f.





Cont

�−�c f.f.




Comonads(Set)

U �� [Set,Set]

It is proved by first noting that a pullback is provided by Comonoids(Cont)
and then verifying that Comonoids(Cont) is isomorphic to DCont.

Sam Staton pointed it out to us that the proof of the first part only hinges on
Cont and [Set,Set] being monoidal categories and �−�c : Cont → [Set,Set]
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being a fully faithful monoidal functor. Thus we actually establish a more general
fact, viz., that for any two monoidal categories C and D and a fully-faithful
monoidal functor F : C → D, the pullback of F along the forgetful functor
U : Comonoids(D) → D is Comonoids(C).

In summary, we have seen that the interpretation of a container carries the
structure of a comonad exactly when it extends to a directed container.

5 Containers ∩ Monads = ?

Given that comonads whose underlying functor is the interpretation of a con-
tainer are the same as directed containers, it is natural to ask whether a similar
characterization is possible for monads whose underlying functor can be repre-
sented as a container. The answer is “yes”, but the additional structure is more
involved than that of directed containers.

Given a container C = S � P , the structure (η, μ) of a monad on the functor
T = �C�c is interdefinable with the following structure on C

– e : S (for the shape map for η),
– • : Πs : S.(P s→ S) → S (for the shape map for μ),
– � : Π{s : S}. Πv : P s→ S.P (s • v) → P s and
– � : Π{s : S}. Πv : P s → S.Πp : P (s • v). P (v (v � {s}p)) (both for the

position map for μ)

subject to three shape equations and five position equations. Perhaps not unex-
pectedly, this amounts to having a monoid structure on C.

To get some intuition, consider the monad structure on the datatype of lists.
The unit is given by singleton lists and multiplication is flattening a list of lists
by concatenation. For the list container S = Nat, P s = Fin s, we get that e = 1,
s • v =

∑
p:Fin s v p, v � {s} p = [greatest p′ : Fin s such that

∑
p′′:Fin p′ v p′′ ≤ p]

and v � {s} p = p−∑
p′′:Fin (v�{s} p) v p

′′. The reason is that the shape of singleton
lists is e while flattening a list of lists with outer shape s and inner shape v p for
every position p in s results in a list of shape s • v. For a position p in the shape
of the flattened list, the corresponding positions in the outer and inner shapes
of the given list of lists are v � {s} p and v � {s} p.

For lack of space, we refrain from a more detailed discussion of this variation
of the concept of containers.

6 Related Work

We build on the theory of containers as developed by Abbott, Altenkirch and
Ghani [1, 4] to analyze strictly positive datatypes. Some generalizations of the
concept of containers are the indexed containers of Altenkirch and Morris [5, 17]
and the quotient containers of Abbott et al. [2]. In our work we look at a special-
ization of containers rather than a generalization. Simple/indexed containers are
intimately related to strongly positive datatypes/families and simple/dependent
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polynomial functors as appearing in the works of Dybjer [8], Moerdijk and Palm-
gren [16], Gambino and Hyland [9], Kock [15]. Girard’s normal functors [11] and
Joyal’s analytic functors [14] functors are similar to containers resp. quotient
containers, but only allow for finitely many positions in a shape.

Gambino and Kock [10] treat polynomial monads.
Abbott, Altenkirch, Ghani and McBride [3] have investigated derivatives of

datatypes that provide a systematic way to explain Huet’s zipper type [13].
Brookes and Geva [6] and later Uustalu with coauthors [20, 21, 12, 7] have

used comonads to analyze notions of context-dependent computation such as
dataflow computation, attribute grammars, tree transduction and cellular au-
tomata. Uustalu and Vene’s [22] observation of a connection between bottom-up
tree relabellings and containers with extra structure started our investigation
into directed containers.

7 Conclusions and Future Work

We introduced directed containers as a specialization of containers for describing
a certain class of datatypes (datastructures where every position determines a
sub-datastructure) that occur very naturally in programming. It was a pleasant
discovery for us that directed containers are an entirely natural concept also
from the mathematical point of view: they are the same as containers whose
interpretation carries the structure of a comonad.

In this paper, we could not discuss the equivalents of distributive laws between
comonads, the composition of comonads, strict comonads and the product of
(strict) comonads in the directed container world. We have already done some
work around these concepts and constructions and plan to report our results in
an extended version of this paper and elsewhere.
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Abstract. For set functors preserving intersections, a new description of
the final coalgebra and the initial algebra is presented: the former consists
of all well-pointed coalgebras. These are the pointed coalgebras having
no proper subobject and no proper quotient. And the initial algebra
consists of all well-pointed coalgebras that are well-founded in the sense
of Taylor [16]. Finally, the initial iterative algebra consists of all finite
well-pointed coalgebras. Numerous examples are discussed e.g. automata,
graphs, and labeled transition systems.

1 Introduction

Initial algebras are known to be of primary interest in denotational semantics,
where abstract data types are often presented as initial algebras for an endofunc-
tor H expressing the type of the constructor operations of the data type. For
example, finite binary trees are the initial algebra for the functorHX = X×X+1
on sets. Analogously, final coalgebras for an endofunctor H play an important
role in the theory of systems developed by Rutten [13]: H expresses the system
type, i. e., which kind of one-step reactions states can exhibit (input, output,
state transitions etc.), and the elements of a final coalgebra represent the behav-
ior of all states in all systems of type H (and the unique homomorphism from a
system into the final one assign to every state its behavior). For example, deter-
ministic automata with input alphabet I are coalgebras for HX = XI × {0, 1},
the final coalgebra is the set of all languages on I.

In this paper a unified description is presented for (a) initial algebras, (b) final
coalgebras and (c) initial iterative algebras (in the automata example this is the
set of all regular languages on I). We also demonstrate that this new description
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provides a unifying view of a number of other important examples. We work
with set functors H preserving intersections. This is a requirement that many
“everyday” set functors satisfy. We prove that the final coalgebra of H can then
be described as the set of all well-pointed coalgebras, i.e., pointed coalgebras not
having any proper subobject and also not having any proper quotient. Moreover,
the initial algebra can be described as the set of all well-pointed coalgebras which
are well-founded in the sense of Taylor [16]. A coalgebra (A,α) is well-founded
if no proper subcoalgebra (A′, α′) of (A,α) forms a pullback

A HAα
��

A′

A

� �

m

��

A′ HA′α′
�� HA′

HA

� �

Hm

��

(1.1)

This concept was first studied by Osius [12] for graphs considered as coalgebras
of the power-set functor P: a graph is well-founded iff it has no infinite paths.
Taylor [16,17] introduced well-founded coalgebras for general endofunctors, and
he proved that for endofunctors preserving inverse images the concepts of initial
algebra and final well-founded coalgebra coincide.

We are going to prove that this result holds for every set functor H ; the
step towards making no assumptions on H is non-trivial. And if H preserves
intersections, we describe its final coalgebra, initial algebra, and initial iterative
algebra using well-pointed coalgebras as above. The first result will be proved in
a much more general context, working with an endofunctor of a locally finitely
presentable category preserving finite intersections, but this extra assumption
can be dropped in the case of set functors.

2 Well-Founded Coalgebras

Throughout this section A denotes an LFP category with a simple initial ob-
ject. And H is an endofunctor preserving monomorphisms. Let us recall these
concepts:

Definition 2.1. 1. A category A is locally finitely presentable (LFP) if
(a) A is complete, and
(b) there is a set of finitely presentable objects whose closure under filtered

colimits is all of A .
2. An object A is called simple if it has no proper quotients. That is, every

epimorphism with domain A is invertible.

Example 2.2. The categories of sets, graphs, posets, and semigroups are locally
finitely presentable. The initial objects of these categories are empty, hence sim-
ple. The category of rings is LFP but the initial object Z is not simple.

Notation 2.3. For every endofunctor H denote by CoalgH the category of
coalgebras α : A �� HA and coalgebra homomorphisms, where a homomor-
phism h from (A,α) to (B, β) is a morphism h : A �� B such that β·h = Hh·α.
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Remark 2.4. There are some consequences of the LFP assumption that play an
important role in our development. These pertain to monomorphisms.

1. A has (strong epi, mono)-factorizations; see 1.16 in [5]. Recall that an epi-
morphis is strong iff it has the diagonal fill-in property w. r. t. all monomor-
phisms.

2. A is wellpowered, see 1.56 in [5]. This implies that for every object A the
poset Sub(A) of all subobjects of A is a complete lattice.

3. Monomorphisms are closed under filtered colimits; see 1.62 in [5].

Since subcoalgebras play a basic role in the whole paper, and quotients are
important from Section 3 onwards, we need to make clear what we mean by
those. We use the term subcoalgebra of a coalgebra (A,α) to mean a subobject
m : (A′, α′) �� (A,α) represented by a monomorphism m in A . Then m is
clearly a monomorphism of CoalgH ; however, in general, monomorphisms in
CoalgH need not be carried by monomorphisms from A . As usual, if a subcoal-
gebram is not invertible, it is said to be proper. What about quotient coalgebras?
A quotient of a coalgebra (A,α) is represented by e : (A,α) �� (A′, α′), where e
is a strong epimorphism in A . Since H is assumed to preserve monomorphisms,
CoalgH has factorizations of morphisms f : (A,α) �� (B, β) into homomor-
phisms e : (A,α) �� (C, γ) and m : (C, γ) �� (B, β), i. e., such that (C, γ) is
a quotient of (A,α) and a subcoalgebra of (B, β).

Definition 2.5. A cartesian subcoalgebra of a coalgebra (A,α) is a subcoal-
gebra (A′, α′) forming a pullback (1.1). A coalgebra is called well-founded if it
has no proper cartesian subcoalgebra.

Example 2.6. (1) The concept of well-founded coalgebra was introduced orig-
inally by Osius [12] for the power set functor P . A graph is a coalgebra
(A, a) for P, where a(x) is the set of neighbors of x in the graph. Then
a subcoalgebra of A is an (induced) subgraph A′ with the property that
every neighbor of a vertex of A′ lies in A′. The subgraph A′ is cartesian iff
it contains every vertex all of whose neighbors lie in A′. The graph A is a
well-founded coalgebra iff it has no infinite path.

(2) Let A be a deterministic automaton considered as a coalgebra for HX =
XI×{0, 1}. A subcoalgebraA′ is cartesian iff it contains every state all whose
successors (under the inputs from I) lie in A′. This holds, in particular, for
A′ = ∅. Thus, no nonempty automaton is well-founded.

(3) Coalgebras for HX = X+1 are dynamical systems with deadlocks, see [13].
A subcoalgebra A′ of a dynamical system A is cartesian iff it contains all
deadlocks and every state whose next state lies in A′.
A dynamical system is well-founded iff it has no infinite computation.

Definition 2.7. Every coalgebra α : A �� HA induces an endofunction
of Sub(A) (see Remark 2.4.2) assigning to a subobject m : A′ �� A the
inverse image ©m of Hm under α, i. e., we have a pullback square:
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A HA
α

��

©A′

A

©m

��

©A′ HA′α[m]
�� HA′

HA

Hm

��

(2.1)

This function m � �� ©m is obviously order-preserving. By the Knaster-Tarski
fixed point theorem, this function has a least fixed point.

Incidentally, the notation ©m comes from modal logic, especially the areas of
temporal logic where one reads ©φ as “φ is true in the next moment,” or “next
time φ” for short.

Example 2.8. Recall our discussion of graphs from Example 2.6 (1). The pullback
©A′ of a subgraph A′ is the set of vertices of A all of whose neighbors belong
to A′.

Remark 2.9. As we mentioned in the introduction, the concept of well-founded
coalgebra was introduced by Taylor [16,17]. Our formulation is a bit simpler.
In [17, Definition 6.3.2] he calls a coalgebra (A,α) well-founded if for every pair
of monomorphisms m : U �� A and h : H �� U such that h·m is the inverse
image of Hm under α it follows that m is an isomorphism. Thus in lieu of fixed
points of m "−→ ©m he uses pre-fixed points.

In addition, our overall work has a methodological difference from Taylor’s
that is worth mentioning at this point. Taylor is giving a general account of
recursion and induction, and so he is concerned with general principles that
underlie these phenomena. Indeed, he is interested in settings like non-boolean
toposes where classical reasoning is not necessarily valid. On the other hand, in
this paper we are studying initial algebras, final coalgebras, and similar concepts,
using standard classical mathematical reasoning. In particular, we make free use
of transfinite recursion. The definitions in Notation 2.10 just below would look
out of place in Taylor’s paper. But we believe they are an important step in our
development.

Notation 2.10. (a) For every coalgebra α : A �� HA denote by

a∗ : A∗ �� A (2.2)

the least fixed point of the function m
� �� ©m of Definition 2.7. (Thus,

(A, a) is well-founded iff a∗ is invertible.) Since a∗ is a fixed point we have
a coalgebra structure α∗ : A∗ �� HA∗ making a∗ a coalgebra homomor-
phism.

(b) For every coalgebra a : A �� HA we define a chain of subobjects

a∗i : A
∗
i

�� A (i ∈ Ord)

of A in A by transfinite recursion: a∗0 : 0 �� A is the unique morphism;
a∗i+1 = ©a∗i and for limit ordinals a∗i =

⋃
j<i a

∗
j . Since 0 is simple, a∗0 is a
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monomorphisms. Moreover, what we have is nothing else than the construc-
tion of the least fixed point of m � �� ©m (cf. Remark 2.9) in the proof
of the Knaster-Tarski Theorem in [15]. Thus, a∗ =

⋃
i∈Ord a

∗
i . Also, there

exists an ordinal i with A∗ = A∗
i (due to wellpoweredness). Henceforth, we

call A∗ the smallest cartesian subcoalgebra of A.

Proposition 2.11. For every coalgebra (A,α), the smallest cartesian subcoalge-
bra (A∗, α∗) is its coreflection in the full subcategory of well-founded coalgebras.

Remark. We thus prove that (A∗, α∗) is well-founded, and for every homomor-
phism f : (B, β) �� (A,α) with (B, β) well-founded there exists a unique ho-
momorphism f̄ : (B, β) �� (A∗, α∗) with f = a∗·f̄ .

Corollary 2.12. The full subcategory of CoalgH consisting of the well-founded
coalgebras is closed under quotients and colimits in CoalgH.

For endofunctors preserving inverse images the above corollary is Exercise VI.16
in Taylor [17] and the following theorem is Corollary 9.9 of [16]. As we mentioned
in the introduction, it is non-trivial to relax the assumption on the endofunctor,
and so our proof is different from Taylor’s.

Theorem 2.13. If H preserves finite intersections, then

initial algebra = final well-founded coalgebra.

That is, an algebra ϕ : HI �� I is initial iff ϕ−1 : I �� HI is the final
well-founded coalgebra.

Proof (Sketch). (a) Let I be an initial algebra. It follows from [20] that I is
obtained as Hi0 for some ordinal i for the initial chain introduced in [2] defined
by H00 = 0, Hi+10 = H(Hi0) and Hi0 = colimj<iH

j0 for limit ordinals i. We
prove by transfinite induction that if I = Hk0 then the connecting morphisms
Hi0 �� Hk0 for i ≤ k are precisely a∗i of Notation 2.10. Consequently, I is
well-founded. We next use the concept of recursive coalgebra of Capretta et
al [6]: It is a coalgebra from which a unique coalgebra-to-algebra morphism into
every algebra exists. Initial algebras are proved there to be precisely the final
recursive coalgebras. We prove that every well-founded coalgebra is recursive.
We thus derive that I is a final well-founded coalgebra.

(b) Let ψ : I �� HI be a final well-founded coalgebra. Factorize ψ = m·e
where e is a strong epimorphism and m a monomorphism (Remark 2.4).
By diagonal fill-in we obtain a quotient e : (I, ψ) �� (I ′, ψ′) which, by
Corollary 2.12, is well-founded, thus recursive. Consequently, a coalgebra ho-
momorphism f : (I ′, ψ′) �� (I, ψ) exists. Then f ·e is an endomorphism of the
final well-founded coalgebra, hence, f ·e = idI . This proves that e is an isomor-
phism, thus, ψ is a monomorphism. This fact is used to prove that the coalge-
bra (HI,Hψ) is well-founded. Using an argument similar to Lambek’s Lemma
we derive that ψ is invertible. Therefore results of [20] imply that the initial chain
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above converges, and for some ordinal k, Hk0 is an initial algebra. Moreover,
Hk0 is by (a) a final well-founded coalgebra, thus, isomorphic to ψ : I �� HI.
Thus (I, ψ−1) is isomorphic to the initial algebra. #$
Theorem 2.14. For every endofunctor of Set we have:

initial algebra = final well-founded coalgebra.

Proof (Sketch). There exists an endofunctor H∗ preserving finite intersections
and agreeing on nonempty sets with H , see [19]. Given H , we know from Theo-
rem 2.13 that the equation above holds for H∗. From this one can prove it for H .
The proof is quite technical because we need to compare well-foundedness of coal-
gebras for H and H∗, and the empty set plays a substantial role here. #$
This last result and Corollary 2.12 serve as a basis for a description of initial
algebras in Theorem 3.15.

3 Well-Pointed Coalgebras

We arrive at the centerpiece of this paper, characterizations of the initial algebra,
final coalgebra, and initial iterative algebra for set functors.

Throughout this section H denotes an endofunctor of Set which preserves
(wide) intersections. Many endofunctors of interest satisfy this condition, for
example:

(a) the power-set functor, all polynomial functors, the finite distribution func-
tor,

(b) products, coproducts, quotients, and subfunctors of functors preserving in-
tersections, and

(c) “almost” all finitary functors: if H is finitary then H∗ in Theorem 2.14
preserves intersections.

An example of a set functor not preserving intersections is the continuation

monad HX = R(RX), where R is the set of results. A simpler example is the one
taking every nonempty set to the terminal object and the empty set to itself.

By a pointed coalgebra is meant a triple (A, a, x), where (A, a) is a coalgebra
and x an element of A called initial state. When speaking about morphisms
between pointed coalgebras we mean those preserving the initial state. In par-

ticular, given a pointed coalgebra 1
x �� A �� HA by a subobject is meant a

subcoalgebra containing the initial state x.

Definition 3.1. A well-pointed coalgebra is a pointed coalgebra which has no
proper subobjects and no proper quotients.

Remark 3.2. Recall that a simple coalgebra (called minimal coalgebra by
Gumm[8]) is a coalgebra (A, a) with no nontrivial quotient. That is, a coal-
gebra such that every homomorphism h : (A, a) �� (B, b) has h monic. Gumm
observed that
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(a) The full subcategory of CoalgH given by all simple coalgebras is reflective:
the reflection of a coalgebra (A, a) is the simple quotient

e(A,a) : (A, a) �� (Ā, ā)

obtained as the wide pushout of all quotients of (A, a).
(b) Every subcoalgebra of a simple coalgebra is simple.
(c) The coalgebra map a : A �� HA of a simple coalgebra is monic.

Remark 3.3. Thus, 1
x �� A

a �� HA is a well-pointed coalgebra iff (A, a) is
simple and is generated by x. We call the latter condition reachability. That
is, a pointed coalgebra is reachable if it has no proper pointed subcoalgebra.
It is easy to see that this holds iff the canonical graph (see Definition 3.11 below)
is reachable: every state has a directed path from the initial state.

Examples 3.4. (a) A deterministic automaton with a given initial state is a
pointed coalgebra for HX = XI × {0, 1}. Reachability means that every
state can be reached (in finitely many steps) from the initial state. Simplic-
ity means that the automaton is observable, i.e., for every pair of different
states there exists an input word leading one of them to an accepting state
and the other to a non-accepting state.
The usual terminology is that reachability and observability together are
called minimality.

(b) For the power-set functor the pointed coalgebras are the pointed graphs.
Well-pointed means reachable and simple, where simplicity states that no
pair of different vertices is bisimilar.

Notation 3.5. Since H preserves intersections, there is a canonical process of
turning an arbitrary pointed coalgebra (A, a, x) into a well-pointed one: form
the simple quotient, see Remark 3.2(a) pointed by e(A,a)·x : 1 �� Ā, then form
the least subcoalgebra containing that point:

1 Ax
�� A Āe(A,a)

��1

Ā0

x0

������������������� Ā HĀ
ā

��

Ā0

Ā

m

��

Ā0 HĀ0
ā0 �� HĀ0

HĀ

Hm

��

That is, m is the intersection of all subcoalgebras of (Ā, ā) through which
e(A,a)·x factorizes. Then (Ā0, ā0, x0) is well-pointed due to Remark 3.2(b).

Example 3.6. For deterministic automata our process A � �� Ā0 above means
that we first merge the states that are observably equivalent and then discard
the states that are not reachable. A more efficient way is first discarding the
unreachable states and then merging observably equivalent pairs. Both ways are
possible since our functor preserves inverse images: this implies that a quotient
of a reachable pointed coalgebra is reachable.
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Notation 3.7. The collection of all well-pointed coalgebras up to isomorphism
is denoted by

νH.

For every coalgebra a : A �� HA we have a function a+ : A �� νH assigning
to every element x : 1 �� A the well-pointed coalgebra of Notation 3.5:

a+(x) = (Ā0, ā0, x0). (3.1)

Theorem 3.8. A set functor H preserving intersections has a final coalgebra
iff it has only a set of well-pointed coalgebras up to isomorphism. And, if it is
the case, νH is a final coalgebra.

Remark. Whenever νH is a set, it carries a canonical coalgebra structure ψ : νH
�� H(νH). It assigns to every member (A, a, x) of νH the following element

of H(νH):

1
x �� A

a �� HA
Ha+

�� H(νH). (3.2)

We prove below that this is a final coalgebra.

Proof. (1) If H has a final coalgebra, then due to Remark 3.2 every simple
coalgebra is its subcoalgebra, since the unique homomorphism is monic. The
final coalgebra has only a set of subcoalgebras, consequently, there exists up to
isomorphism only a set of simple coalgebras. Consequently, only a set of well-
pointed coalgebras.

(2) Let H have a set νH of representative well-pointed coalgebras. We prove
that νH with the coalgebra structure ψ from (3.2) is final.

(2a) We first prove that for every coalgebra homomorphism h : (A, a) ��

(B, b) we have
a+ = b+·h. (3.3)

Given x : 1 �� A, then b+·h assigns to it the well-pointed coalgebra (B̄0, b̄0, y0)
obtained from (B, b, y), where y = h·x, as in Notation 3.5. It is not difficult, using
Remark 3.2, to prove that this well-pointed coalgebra is isomorphic to (Ā0, ā0, x).

(2b) νH is a weakly final coalgebra because for every coalgebra (A, a) we
have a coalgebra homomorphism a+ : (A, a) �� (νH, x). Indeed, by 3.2 we
have ψ·a+(x) = Hā+0 ·ā0(x0) and the diagram below shows that this is equal to
Ha+·a(x):

HA HĀ
He ��HA

H(νH)

Ha+

��

HĀ

H(νH)

Hā+

�����
���

���
�HA HĀ��

A

HA

a

��

A Ā
e �� Ā

HĀ

ā
��

A Ā��

1

A

x

��

1 Ā0
x0 �� Ā0

Ā
��

Ā HĀ
ā ��

Ā0

Ā

m
��

Ā0 HĀ0
ā0 �� HĀ0

HĀ

Hm
��

HĀ0 H(νH)
Hā+

0 ��HĀ0

HĀ
��

H(νH)

HĀ

��
Hā+

���
���

���
�

HĀ

HĀ
id

�����
���

���
��

H(νH)

H(νH)

id

��
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Notice that the upper and lower triangles commute since m and e are homomor-
phisms, see (2a).

(2c) We next prove that for the coalgebra ψ : νH �� H(νH) we have
ψ+ = idνH . Indeed, given a well-pointed coalgebra (A, a, x) ∈ νH , consider
the equality (3.3) with h = a+ (which is a homomorphism by (2b)) and b = ψ.
Of course, a+(x) = (A, a, x), since (A, a) is simple and (A, a, x) is reachable.
Then ψ+(A, a, x) = (A, a, x).

Finally, to prove uniqueness of the homomorphism a+, suppose that h : (A, a)
�� (νH, ψ) is any homomorphism. Then we have

a+
(2a)
= ψ+·h (2b)

= h. #$

Examples 3.9. (a) For deterministic automata the final coalgebra (for HX =
XI × {0, 1}) consists of all minimal (i. e., reachable and observable) au-
tomata. The more usual description is: the set PI∗ of all formal languages.
However, this is isomorphic: every formal language is accepted by a minimal
automaton, unique up to isomorphism.

(b) The final coalgebra for the finite power-set functor is the coalgebra of all
finitely branching well-pointed graphs. See Section 4 for more details.

Remark 3.10. If νH is not a set, then H does not have a (small) final coalgebra.
However, νH is its large final coalgebra: in the above proof smallness was not
used.

Definition 3.11. For every coalgebra a : A �� HA define the canonical
graph on A: the neighbors of x ∈ A are precisely those elements of A which
lie in the least subset m : M 
 � �� A with a(x) ∈ Hm[HM ].

Proposition 3.12. A coalgebra for H is well-founded iff its canonical graph is
well-founded.

Remark. For functors H preserving inverse images this fact is proved by Taylor,
see 6.3.4 in [17]. Our proof is essentially the same.

Corollary 3.13. Subcoalgebras of a well-founded coalgebra are well-founded.

Notation 3.14. The collection of all well-founded, well-pointed coalgebras (up
to isomorphism) is denoted by

μH.

For every well-founded coalgebra a : A �� HA we have a function a+ : A
�� μH assigning to every element x : 1 �� A the well-founded, well-pointed

coalgebra (3.1). Indeed, (Ā0, ā0) is well-founded due to Corollaries 2.12 and 3.13.

Theorem 3.15. A set functor H preservring intersections has an initial algebra
iff it has only a set of well-founded, well-pointed coalgebras up to isomorphism.
And, if it is the case, μH is an initial algebra.
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Remark. Whenever μH is a set, it carries a canonical coalgebra structure ψ̄ : μH
�� H(μH) defined by (3.2). We prove below that this is a final well-founded

coalgebra. Thus, by Theorem 2.14, μH is an initial algebra with the structure
given by the inverse of ψ̄.

Proof. (1) If H has an initial algebra I, then by Theorem 2.14 this is a final well-
founded coalgebra. Every well-founded, well-pointed coalgebra is simple, whence
a subcoalgebra of I since the unique homomorphism into I is monomorphic by
Remark 3.2. Consequently, μH is a set.

(2) Let H have a set μH of representatives of well-founded, well-pointed coal-
gebras. The proof that for every well-founded coalgebra (A, a) the map a+ : A

�� μH is a unique coalgebra homomorphism into ψ̄ : μH �� H(μH) is com-
pletely analogous to the proof of finality of ψ : νH �� H(νH) in Theorem 3.8.
Just recall that subcoalgebras and quotients of a well-founded coalgebra are all
well-founded (by Corollaries 2.12 and 3.13).

It remains to prove that (μH, ψ̄) is a well-founded coalgebra. To this end no-
tice that for every well-pointed, well-founded coalgebra (A, a, x) in μH we have
a+(x) = (A, a, x). Now take the coproduct (in CoalgH) of all (A, a) for which
there is an x ∈ A such that (A, a, x) lies in μH . This coproduct is a well-founded
coalgebra by Corollary 2.12, and, as we have just seen, the unique induced ho-
momorphism from the coproduct into (μH, ψ̄) is epimorphic, whence μH is a
quotient coalgebra of the coproduct. Thus, another application of Corollary 2.12
shows that μH is a well-founded coalgebra as desired. #$
Remark 3.16. (a) Recall from [4] that an algebra a : HA �� A is iterative
provided that every (equation) morphism e : X �� HX+A, where X is a finite
set, has a unique solution, i.e., e† : X �� A such that e† = [a,A]·(He† +A)·e.
It was proved in [10] that the initial iterative algebra is precisely the final locally
finite coalgebra, where a coalgebra is called locally finite if every element of it
lies in a finite subcoalgebra.

Example 3.17 (see [4]). The initial iterative algebra for HX = XI ×{0, 1} con-
sists of all finite minimal automata. This is isomorphic to its description as all
regular languages.

Notation 3.18. For every finitary set functor denote by

�H

the set of all finite well-pointed coalgebras up to isomorphism.
Given a finite coalgebra a : A �� HA we define a function a+ : A �� �H

by (3.1).

Theorem 3.19. Every finitary set functor H has an initial iterative algebra �H
formed by all finite well-pointed coalgebras.

Remark. �H has the canonical coalgebra structure ψ̃ : �H �� H(�H) given
by (3.2). The proof that this is the final locally finite coalgebra is analogous to
the proof of Theorem 3.8.
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4 Examples of Well-Pointed Coalgebras

Example 4.1. Deterministic automata, HX = XI × {0, 1}. In Example 3.9
we saw that νH consists of all minimal automata, or, equivalently, all languages
over I. The initial iterative algebra �H consists of all finite minimal automata,
this is isomorphic to

�H = all regular languages.

Finally, no well-pointed coalgebra is well-founded because the empty subcoalge-
bra is cartesian, thus,

μH = ∅.
Example 4.2. Streams. Consider the coalgebras for HX = X × I + 1. Jan
Rutten [13] interprets them as dynamical systems with outputs in I and with
terminating states (where no next state is given). Every state q yields a stream,
finite or infinite, over I by starting in q and traversing the dynamic system as
long as possible. We call it the response of q. It is an element of Iω + I∗.

(a) For every word s1 · · · sn in I∗ we have a well-pointed dynamic system

q0�������	 �������	
s1 ��
 � �� �������	

s2 �� . . . �������	
sn ��

(b) For every eventually periodic stream in Iω,

w = uvω for u, v ∈ I∗,

we have a well-pointed dynamic system which uses u as in (a) and adds a cycle
repeating v.

The following was already proved by Arbib and Manes [9, 10.2.5].

Corollary 4.3. For HX = X × I + 1 we have

νH ∼= I∗ + Iω, all finite and infinite streams,

�H ∼= all finite and eventually periodic streams,

μH ∼= I∗, all finite streams.

Example 4.4. Binary trees. Coalgebras for the functor

HX = X ×X + 1

are given, as observed by Jan Rutten [13], by a set Q of states which are ei-
ther terminating or have precisely two next states according to a binary input,
say {l, r}. Every state q ∈ Q yields an ordered binary tree Tq (i.e, nodes that
are not leaves have a left-hand child and a right-hand one) by tree expansion:
the root is q and a node is either a leaf, if it is a terminating state, or has the
two next states as children (left-hand for input l, right-hand for input r). Binary
trees are considered up to isomorphism.
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Lemma 4.5. For every coalgebra of the functor HX = X ×X + 1 the largest
congruence merges precisely the pairs of states having the same tree expansion.

Proof. Let ∼ be the equivalence with q ∼ q′ iff Tq = Tq′ . There is an obvious
structure of a coalgebra on Q/∼ showing that ∼ is a congruence. For every
coalgebra homomorphism h : Q �� Q̄ the tree expansion of q ∈ Q is always the
same as the tree expansion of h(q) in Q̄. Thus, ∼ is the largest congruence. #$
Corollary 4.6. A well-pointed coalgebra of the functor HX = X ×X + 1 is a
coalgebra with an initial state q0 which is reachable (every state can be reached
from q0) and simple (different states have different tree expansions).

Moreover, tree expansion of the initial state is a bijection between well-pointed
coalgebras and binary trees. The coalgebra is finite iff the tree expansion is
rational, i.e., it has only finitely many subtrees up to isomorphism. And the
well-founded coalgebras are precisely those yielding a finite tree expansion.

The following result was proved by Arbib and Manes [9], 10.2.5 (description
of νH) and in [4] (description of ρH).

Corollary 4.7. For the functor HX = X ×X + 1 we have

νH ∼= all binary trees,

�H ∼= all rational binary trees,

μH ∼= all finite binary trees.

Example 4.8. Graphs. Here we investigate coalgebras for the power-set func-
tor P (that is, graphs) and for the finitary power-set functor Pω (that is,
finitely branching graphs). In the rest of Section 4 all trees are understood to be
non-ordered. That is, a tree is a directed graph with a node (root) from which
every node can be reached by a unique path.

Recall the concept of a bisimulation between graphs X and Y : it is a relation
R ⊆ X × Y such that whenever x R y then every child of x is related to a child
of y, and vice versa. Two nodes of a graph X are called bisimilar if they are
related by a bisimulation R ⊆ X ×X .

Lemma 4.9. The greatest congruence on a graph merges precisely the bisimilar
pairs of states.

This follows, since P preserves weak pullbacks, from general results of
Rutten [13].

Corollary 4.10. A pointed graph (G, q0) is well-pointed iff it is reachable (every
vertex can be reached from q0 by a directed path) and simple (all distinct pairs
of states are non-bisimilar).

Example 4.11. Peter Aczel introduced in [1] the canonical picture of a (well-
founded) set X . It is the graph with vertices all sets Y such that a sequence

Y = Y0 ∈ Y1 ∈ · · · ∈ Yn = X
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of sets exists. The neighbors of a vertex Y are all of its elements. When pointed
by X , this is a well-pointed graph which is, due to the Foundation Axiom, well-
founded. Conversely, every well-founded well-pointed graph is isomorphic to the
canonical picture of a set.

Corollary 4.12. μP = all sets.

This was proved by Rutten and Turi in [14]. The bijection between well-founded,
well-pointed graphs and sets (given by the canonical picture) takes the finite
well-founded graphs to the hereditarily finite sets X , i.e., finite sets with finite
elements which also have finite elements, etc. More precisely: a set is hereditarily
finite if all sets in the canonical picture of X are finite:

Corollary 4.13. μPω = all hereditarily finite sets.

In order to describe the final coalgebra for P in a similar set-theoretic manner,
we must move from the classical theory to the non-well-founded set theory of
Peter Aczel [1]. Recall that a decoration of a graph is a coalgebra homomorphism
from this graph into the large coalgebra (Set,∈). Non-well-founded set theory
is obtained by swapping the axiom of foundation, telling us that (Set,∈) is
well-founded, with the following

Anti-Foundation Axiom. Every graph has a unique decoration.

Example 4.14. The decoration of a single loop is a set Ω such that Ω = {Ω}.
The coalgebra (Set,∈) where now Set is the class of all non-well-founded

sets, is of course final: the decoration of G is the unique homomorphism d : G
�� Set.

Corollary 4.15. In the non-well-founded set theory: νP = all sets.

Let us turn to the finite power-set functor Pω.

Remark 4.16. Worrell introduced in [21] the notion of a tree-bisimulation be-
tween trees T1 and T2; this is a graph bisimulation R ⊆ T1 × T2 which relates
the roots and such that x1 R x2 implies that x1 and x2 are the roots or have
related parents.

A tree T is called strongly extensional iff every tree bisimulation R ⊆ T × T
is trivial: R ⊆ ΔT . The tree expansion is a bijection between all well-pointed
finitely branching graphs and strongly extensional finitely branching trees.

Corollary 4.17. For the finite power-set functor Pω we have

νPω = all finitely branching, strongly extensional trees,

�Pω = all finitely branching, rational, strongly extensional trees,

μPω = all finite strongly extensional trees.
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Example 4.18. Labeled transition systems. Here we consider, for a set A of
actions, coalgebras for Pω(−×A). A bisimulation between two finitely branching
labeled transition systems (LTS) G and G′ is a relation R ⊆ G×G′ such that

if x R y then for every transition x
a �� x′ in G there exists

a transition y
a �� y′ with x′ R y′, and vice versa.

States x, y of an LTS are called bisimilar if x R y for some bisimulation R ⊆
G×G.
A well-pointed LTS is an LTS together with an initial state q0 which is reach-
able (every state can be reached from q0) and simple (distinct states are non-
bisimilar).

The tree expansion of a state q is a (non-ordered) tree with edges labeled in A,
shortly, an A-labeled tree. For A-labeled trees we modify Definition 4.16 in an
obvious manner.

Corollary 4.19. For the finitely branching LTS we have

νPω(−×A) = all finitely branching, strongly extensional A-labeled trees,

�Pω(−×A) = all rational, finitely branching, strongly extensional
A-labeled trees,

μPω(−×A) = all finite extensional A-labeled trees.

5 Conclusions

For set functors H satisfying the (mild) assumption of preservation of intersec-
tions we described (a) the final coalgebra as the set of all well-pointed coalge-
bras, (b) the initial algebra as the set of all well-pointed coalgebras that are
well-founded, and (c) in the case where H is finitary, the initial iterative algebra
as the set of all finite well-pointed coalgebras. This is based on the observa-
tion that given an element of a final coalgebra, the subcoalgebra it generates
has no proper subcoalgebras nor proper quotients—shortly, this subcoalgebra
is well-pointed. And different elements define nonisomorphic well-pointed sub-
coalgebras. We then combined this with our result that for all set functors the
initial algebra is precisely the final well-founded coalgebra. This resulted in the
above description of the initial algebra. Numerous examples demonstrate that
this view of final coalgebras and initial algebras is useful in applications.

Whereas our result about well-founded coalgebras was proved in locally
finitely presentable categories, the description of the final coalgebra was for-
mulated for set functors only. In future research we intend to generalize this
result to a wider class of base categories.



Well-Pointed Coalgebras 103

References

1. Aczel, P.: Non-well-founded Sets. CSLL Lect. Notes, vol. 14. Stanford CSLI Pub-
lications, Stanford (1988)
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Abstract. We propose a new approach to the computer-assisted veri-
fication of functional programs. We work in first order theories of func-
tional programs which are obtained by extending Aczel’s first order
theory of combinatory formal arithmetic with positive inductive and
coinductive predicates. Rather than building a special purpose system
we implement our theories in Agda, a proof assistant for dependent type
theory which can be used as a generic theorem prover. Agda provides
support for interactive reasoning by encoding first order theories using
the formulae-as-types principle. Further support is provided by off-the-
shelf automatic theorem provers for first order logic which can be called
by a program which translates Agda representations of first order for-
mulae into the TPTP language understood by the provers. We show
some examples where we combine interactive and automatic reasoning,
covering both proof by induction and coinduction.

1 Introduction

The goal of this paper is to show a simple way to build a system for reasoning
about programs in functional languages with higher order functions, general
recursion and lazy evaluation in the style of Haskell [23]. Building a mature
proof assistant from scratch for this purpose is a daunting task, although there
are some attempts in this direction [15,20]. Here we suggest to achieve this goal
by building on existing state-of-the-art systems in interactive and automatic
theorem proving. Our solution combines the following three strands of research:

– Using a logic for general recursive functional programs [9,10,11] which is
based on Aczel’s first order theory of combinatory arithmetic [3]; we extend
this theory to deal in a seamless way with full general recursion, higher order
functions, termination proofs, and inductive and coinductive predicates.

– Using automatic theorem provers for proving properties of functional pro-
grams by translating them into first order logic as proposed by Claessen and
Hamon in their work on “The Cover Translator” (Chalmers, 2003).

– Using automatic theorem provers for first order logic for proof assistants
based on dependent type theory, see Tammet and Smith’s Gandalf [27], and
Abel, Coquand, and Norell’s AgdaLight [1].
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We use the Agda system [28] as our interactive theorem prover. It is simul-
taneously a dependently typed functional programming language and a proof
assistant. It is an extension of Martin-Löf type theory with numerous pro-
gramming language features which facilitate programming and interactive proof
construction.

Like Martin-Löf type theory, Agda has the strong normalisation property. This
property is ensured by only allowing restricted forms of recursion. A consequence
is that one cannot write programs by arbitrary general recursion. It is the goal of
the dependently typed programming community to turn this restricted discipline
of programming into a practical methodology.

In this paper we directly verify mainstream general recursive functional pro-
grams. To this end we use Agda as a logical framework in much the same way as
the Edinburgh logical framework [14], that is, as a meta-logical system which is
used as a basis for the implementation of a range of special purpose logics. Our
logic is a first order theory of combinators (FOTC) based on Aczel’s theory [3].
When implementing FOTC in Agda we get access to advanced features for in-
teractively building proofs in the proof assistant, such as, commands for refining
proof terms, definition by pattern matching, flexible mixfix syntax accepting
Unicode, etc.

Furthermore, we provide a translation of Agda representations of formulae
in the FOTC into the TPTP language [26] so that we can call off-the-shelf
automatic theorem provers (ATPs) when proving properties of our programs.

A key point of our approach is that Martin-Löf type theory is a subsystem of
our theory through a natural interpretation [3]. However, our theory is strictly
more general; in particular, we can write arbitrary general recursive functional
programs. This extra generality comes at a price: since we can now reason about
programs which do not terminate, we can no longer make use of the automatic
type-checking in the same way as before. To compensate for this loss we use
automatic first order theorem proving, although it does not fully replace the
type-checking algorithm as we shall see. On the other hand, the ATPs can prove
theorems automatically which would otherwise require manual proofs.

Overview of the paper. Section 2 introduces our FOTC for Plotkin’s PCF lan-
guage. In Section 3 we explain how to encode first order theories in Agda and
how to instruct the proof assistant to call the ATPs. Section 4 shows how to
encode FOTC for PCF in Agda and how this enables us to combine interactive
and automatic theorem proving. In Section 5 we extend FOTC by adding induc-
tive and coinductive predicates and we present an example using both. Finally,
Section 6 contains some discussion of future and related work.

The programs and the examples described in the paper are available at
www1.eafit.edu.co/asicard/code/fossacs-2012/.

2 First Order Theories of Combinators

As we mentioned before, Aczel showed how to interpret Martin-Löf type theory in
traditional first order logic. He gave an abstract realisability interpretation, where

www1.eafit.edu.co/asicard/code/fossacs-2012/


106 A. Bove, P. Dybjer, and A. Sicard-Ramı́rez

the proof objects are interpreted as terms in combinatory logic and types are
interpreted as unary predicates. Aczel’s first order theory only has two constants
(K and S) and one binary function symbol (for application). This is because
all the term formers of Martin-Löf type theory can be encoded in the usual
way using bracket abstraction, Church encodings, and fixed point operators.
The theory also has three unary predicate symbols N , P , and T meaning that
a combinatory term encodes a natural number, an internal proposition, and
an internal true proposition, respectively. Aczel’s paper was the first of several
papers on realisability interpretations of Martin-Löf type theory; see for example
Aczel [4] and Smith [25].

A Logic for PCF with Totality Predicates. Dybjer [9] showed that one of these
logics for realisability interpretations, the so called Logical Theory of Construc-
tions (LTC) is appropriate for practical verification of functional programs. This
logic is closely related to Aczel’s first order theory, but is based on the λ-calculus,
and is hence not a first order theory.

For the purpose of this paper we begin by considering an LTC-style logic for
Plotkin’s PCF language [24]. PCF does not have internal propositions, hence
we do not need the predicate symbols P and T . On the other hand, we have
two unary predicate symbols Bool and N , where Bool(t) means that t is a to-
tal boolean value (true or false), and N (t) that t is a total natural number.
We will use these predicates to assert that a certain (possibly non-terminating)
PCF program terminates with a total boolean value or a total natural number,
respectively.

In a previous paper [7] we showed how to use Agda for implementing this
LTC-style logic. The aim of the present paper is to make use of off-the-shelf
automatic theorem provers for first order logic. Hence, we must make our logic
first order by removing λ-abstraction. Instead, we work in an extensible theory
and add a new function symbol for each recursive function definition of the form

f x1 · · · xn = e[f, x1, . . . , xn].

It is well-known how to translate such definitions into terms using λ-abstraction
and fixed point operators. For convenience, we might actually define function
symbols by pattern matching, whenever it is clear that this pattern matching
can be replaced by a single recursive equation by using if, pred and iszero.

The grammar for terms is now first order:

t ::= x | t t | true | false | if | 0 | succ | pred | iszero | f

where f ranges over new combinators defined by recursive equations as above.
The axioms can be classified into three groups: (i) conversion rules for the com-
binators, (ii) discrimination rules expressing that terms beginning with different
constructors are not convertible, and (iii) introduction and elimination rules for
Bool and N . We show these axioms in Section 4.
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3 Combining Interactive and Automatic Proofs in First
Order Logic

3.1 First Order Logic in Agda

The encoding of intuitionistic first order logic in dependent type theory using
the formulae-as-types principle is of course well-known; below we briefly show
what it looks like in Agda. For example, to implement disjunction we encode it
as the disjoint union; note that below, we declare the constants as postulates.

postulate _∨_ : Set → Set → Set

inl : {A B : Set} → A → A ∨ B

inr : {A B : Set} → B → A ∨ B

case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C

The first constant declares the syntax of disjunction as an infix binary set
former. The second and third constants declare the introduction rules, and the
fourth the elimination rule. Note that these rules are axiom schemata that is,
they are sets of first order formulae, one for each instance of A, B and C. Agda
is a higher order logic; to express the schematic nature of these rules we use
(implicit) quantification over Set. Curly brackets {,} declare implicit arguments,
that is, arguments that do not appear explicitly in the proof terms.

The proof of commutativity of disjunction can now be written as

commOr : {A B : Set} → A ∨ B → B ∨ A

commOr c = case inr inl c

By using postulates we can encode all of classical first order logic. The ade-
quacy problem —the question of whether such an encoding gives rise to exactly
the same provable formulae as the original theory— is studied by Gardner [12].

However, to make the most of the proof assistant it is preferable to use Agda’s
data declarations for inductively defined types, whenever appropriate. Hence, we
declare the syntax and the introduction rules for disjunction as follows:

data _∨_ (A B : Set) : Set where

inl : A → A ∨ B

inr : B → A ∨ B

We can now write proofs by pattern matching; for example the proof of commu-
tativity of disjunction becomes

commOr : {A B : Set} → A ∨ B → B ∨ A

commOr (inl a) = inr a

commOr (inr b) = inl b

When we encode our theory using data rather than postulate we get a new
adequacy problem, since we have a more general language where we can write
proofs by pattern matching. Here, we should only use pattern matching in ways
which are reducible to the case combinator, encoding disjunction elimination.

We shall use data for all logical constants, the equality relation (denoted as ≡),
and the totality predicates in our FOTC (with the same remark as above).
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Furthermore, to define the quantifiers we postulate a domain of individuals:

postulate D : Set

The universal quantifier is implemented by the dependent function type
(x : D) → P. If the domain D can be deduced by the type checker, we use the
alternative notation ∀ x → P for this type.

Finally, since the automatic theorem provers implement classical first order
logic we need to include (a postulate for) the law of excluded middle:

postulate lem : {A : Set} → A ∨ ¬ A

3.2 Combining Agda with Automatic Theorem Provers

We have modified Agda by adding pragmas containing information to be used by
the ATPs. These pragmas instruct the system to add information in an interface
file which is generated after type-checking a file. In this way we tell the ATPs to
prove a certain formula, or that a certain formula is an axiom or a general hint,
or that a certain constant is a definition.

We tell the ATPs that the formula name is an axiom by the pragma

{-# ATP axiom name #-}

To prove a property automatically we first postulate it and add the pragma that
instructs the ATPs to prove this conjecture. For example, to prove commutativity
of disjunction automatically we write

postulate commOr : {A B : Set} → A ∨ B → B ∨ A

{-# ATP prove commOr #-}

After type-checking we run the program agda2atp, which first translates all ax-
ioms, definitions and conjectures in the generated interface file into the TPTP
language, and then tries to prove the conjectures calling independently the auto-
matic theorem provers E, Equinox, SPASS, Metis, or Vampire. In the terminal,
we get information about which property is being proved and which ATP was
able to prove a property first, if any.

Proving the conjecture in /tmp/Examples.commOr_7.tptp ...

Vampire 0.6 (...) proved the conjecture in /tmp/Examples.commOr_7.tptp

If no ATP could prove a conjecture within five minutes (by default), the process
is cancelled and the ATPs will continue and try to prove the next conjecture.

It is possible to specify local hints in the pragma {-# ATP prove ... #-} by
giving their names after the name of the conjecture to be proved.

4 Implementing FOTC for PCF in Agda

We first declare the syntax of PCF terms as the following postulates:

postulate if_then_else_ : D → D → D → D

_·_ : D → D → D

succ pred isZero : D → D

zero true false : D
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Note that if we were faithful to the syntax of PCF given in Section 2, if, succ,
pred and isZero would have type D. However, the above versions are definable,
and easier to use with the theorem prover (and easier to read for humans).

We now postulate the conversion rules, and add a pragma which declare them
to be axioms for the ATPs:

postulate if-true : ∀ d1 {d2} → if true then d1 else d2 ≡ d1
if-false : ∀ {d1} d2 → if false then d1 else d2 ≡ d2
pred-S : ∀ d → pred (succ d) ≡ d

isZero-0 : isZero zero ≡ true

isZero-S : ∀ d → isZero (succ d) ≡ false

{-# ATP axiom if-true if-false pred-S isZero-0 isZero-S #-}

We omit the discrimination rules.
Then we define a predicate for total natural numbers as a data type, and the

induction schema for natural numbers by pattern matching:

data N : D → Set where

zN : N zero

sN : ∀ {n} → N n → N (succ n)

{-# ATP axiom zN sN #-}

indN : (P : D → Set) → P zero →
(∀ {n} → P n → P (succ n)) → ∀ {n} → N n → P n

indN P P0 h zN = P0

indN P P0 h (sN Nn) = h (indN P P0 h Nn)

Note that since induction is a schema we cannot declare it as an axiom until it
is instantiated. There are analogous rules for total Booleans.

Let us now add a combinator for addition. We postulate a binary infix oper-
ation on D and the (recursive) equations as axioms for the ATPs.

postulate _+_ : D → D → D

+-0x : ∀ d → zero + e ≡ e

+-Sx : ∀ d e → succ d + e ≡ succ (d + e)

{-# ATP axiom +-0x +-Sx #-}

We can show that addition is a total function on natural numbers by induction
on the first argument. If we manually instantiate the induction schema, then both
cases can be proved automatically (using a hint in the proof of +-N1):

indN-instance : ∀ x → N (zero + x) →
(∀ {n} → N (n + x) → N (succ n + x)) →
∀ {n} → N n → N (n + x)

indN-instance x = indN (λ i → N (i + x))

postulate +-N1 : ∀ {m n} → N m → N n → N (m + n)

{-# ATP prove +-N1 indN-instance #-}

A more convenient way to instantiate the induction schema is to instruct Agda
to do pattern matching on the first argument:
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+-N : ∀ {m n} → N m → N n → N (m + n)

+-N {n = n} zN Nn = prf

where postulate prf : N (zero + n)

{-# ATP prove prf #-}

+-N {n = n} (sN {m} Nm) Nn = prf (+-N Nm Nn)

where postulate prf : N (m + n) → N (succ m + n)

{-# ATP prove prf #-}

To prove commutativity of addition we proceed in the same way: we do pattern
matching on one of the arguments, then we prove the base case and the step
case of the induction automatically.

+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m

+-comm {n = n} zN Nn = prf

where postulate prf : zero + n ≡ n + zero

{-# ATP prove prf +-rightIdentity #-}

+-comm {n = n} (sN {m} Nm) Nn = prf (+-comm Nm Nn)

where postulate prf : m + n ≡ n + m → succ m + n ≡ n + succ m

{-# ATP prove prf x+Sy≡S[x+y] #-}

Here we used the following hints, which both were proved automatically:

+-rightIdentity : ∀ {n} → N n → n + zero ≡ n

x+Sy≡S[x+y] : ∀ {m n} → N m → N n → m + succ n ≡ succ (m + n)

4.1 An Example with Nested Recursion

McCarthy’s 91-function is defined by the following axiom:

postulate mc91 : D → D

mc91-eq : ∀ n → mc91 n ≡
if n > 100 then n −· 10 else mc91 (mc91 (n + 11))

{-# ATP axiom mc91-eq #-}

We shall show that it has the following property:

mc91-res≯100 : ∀ {n} → N n → n ≯ 100 → mc91 n ≡ 91

The proof is done interactively by well-founded induction on the relation
101 −· m < 101 −· n. Most of the auxiliary properties are proved with the help
of the ATPs. We show only a few of them.

First we show that mc91 100 ≡ 91 by using the ATPs

postulate mc91-res-100 : mc91 100 ≡ 91

{-# ATP prove mc91-res-100 100+11>100 100+11−· 10>100
101≡100+11−· 10 91≡100+11−· 10−· 10 #-}

where the hints are arithmetic properties which are proved automatically. To
prove the remaining cases, we use a lemma that is proved automatically:

postulate mc91x-res≯100 : ∀ m n → m ≯ 100 → mc91 (m + 11) ≡ n →
mc91 n ≡ 91 → mc91 m ≡ 91

{-# ATP prove mc91x-res≯100 #-}
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Let m < 100. To compute mc91 m we use mc91-eq, for which we first need to
compute mc91 (m + 11). Which branch of the definition of mc91 we use for this
computation depends of the value of m.

If 90 ≤ m ≤ 99 then m + 11 > 100, so we apply the true-branch and obtain
(m + 11) −· 10 and we apply mc91 again to the result of mc91 (m + 11). We now
use mc91x-res≯100 to prove that mc91 m returns 91. For the case of 98 we have:

postulate mc91-res-109 : mc91 (98 + 11) ≡ 99

mc91-res-99 : mc91 99 ≡ 91

{-# ATP prove mc91-res-109 98+11>100 x+11−· 10≡Sx #-}

{-# ATP prove mc91-res-99 mc91x-res≯100 mc91-res-110 mc91-res-100 #-}

On the other hand, if m ≤ 89 then m + 11 ≯ 100. Hence, our inductive hy-
pothesis tells us that mc91 (m + 11) ≡ 91. Using mc91x-res≯100 on the inductive
hypothesis and on the proof that mc91 91 ≡ 91 we obtain the desired result.

Additionally, using well-founded induction on the relation 101 −· m < 101 −· n

and with the help of the ATPs, we proved that mc91 is a total function, we prove
that mc91 n ≡ n −· 10 when n > 100, and we prove that ∀ n. n < (mc91 n + 11).

5 Adding Inductive and Coinductive Predicates

5.1 Inductive Predicates

Note that FOTC for PCF is not one first order theory; it is a family of first order
theories. When we add a new recursive function, we extend the theory with a
new function symbol and one (or several) equational axioms. As we already
remarked, it is easy to extend the model accordingly, since the model is based
on Scott domains with a fixed point operator.

Furthermore, in addition to our inductively defined totality predicates N and
Bool, we may add other inductively defined predicates. For example, we may
add a new inductively defined unary predicate symbol Even with axioms stating
the introduction rules that zero is an even number and that even numbers are
closed under the function which adds 2 to a natural number; and the induction
schema stating that Even is the least predicate with those properties.

A schema for (intuitionistically valid) inductive predicates in first order logic
is given by Martin-Löf [18]. However, since we work in classical logic, nothing
prohibits us from adding inductively generated predicates by arbitrary (not nec-
essarily strictly) positive operators, since they can easily be modelled as least
fixed points of monotone operators on subsets of the domain [2].

5.2 An Example with Higher-Order Recursion

Here we define the mirror function for general trees in FOTC. First we extend
our language with constructors for lists and trees:

postulate [] : D

_::_ node : D → D → D
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Then we mutually define predicates for total forests and trees.

mutual data Forest : D → Set where

nilF : Forest []

consF : ∀ {t ts} → Tree t → Forest ts → Forest (t :: ts)

data Tree : D → Set where

treeT : ∀ d {ts} → Forest ts → Tree (node d ts)

(For space reasons we will omit the pragmas instructing the ATPs about axioms.)
Furthermore, we define the map function for lists

postulate map : D → D → D

map-[] : ∀ f → map f [] ≡ []

map-:: : ∀ f d ds → map f (d :: ds) ≡ f · d :: map f ds

and the mirror function for trees:

postulate mirror : D

mirror-eq : ∀ d ts → mirror · (node d ts) ≡
node d (reverse (map mirror ts))

We prove the following property:

mirror2 : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t

We do induction on the proof that the tree is total and then on its underlying
forest; we obtain two cases depending on whether the forest is empty or not.

mirror2 (treeT d nilF) = prf

where postulate prf : mirror · (mirror · node d []) ≡ node d []

{-# ATP prove prf #-}

mirror2 (treeT d (consF {t} {ts} Tt Fts)) = prf

where postulate prf : mirror · (mirror · node d (t :: ts)) ≡
node d (t :: ts)

{-# ATP prove prf helper #-}

The hint helper is the following lemma:

helper : ∀ {ts} → Forest ts →
reverse (map mirror (reverse (map mirror ts))) ≡ ts

It follows by induction on forests. Both cases are proved automatically.

5.3 Coinductive Predicates

We shall now show how to prove the correctness of a functional programming
version of the alternating bit protocol (ABP). The purpose of this protocol is to
ensure safe communication over an unreliable transmission channel. The sender
tags the message with an (alternating) bit which is checked by the receiver. In
the case of proper transmission the receiver sends the bit back to the sender as
an acknowledgment. Otherwise, it sends the opposite bit back to signal that the
message needs to be resent.
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We follow Dybjer and Sander [11] who showed how to represent the ABP as
a Kahn network, that is, as a network of communicating stream transformers,
written in the lazy functional programming language Miranda [30] (a precursor
of Haskell). They proved it correct in Park’s μ-calculus [21]. This is an extension
of first order classical logic with a μ-operator: for any positive formula Φ[X ]
with a free predicate variable X , we can form μX.Φ[X ], with axioms which
express that (i) μX.Φ[X ] is a prefixed point of Φ[X ] (the introduction rule for the
inductive predicate), and (ii) that it is the least prefixed point (the elimination
rule or induction principle). Since we work in classical logic we automatically
have coinductive predicates, since greatest fixed points of Φ[X ] can be defined as
special least fixed points by dualisation.

Dybjer and Sander implemented the μ-calculus in the Isabelle system [22],
and the proof was mechanically checked using Isabelle’s tactics.

We here show how to modify Dybjer and Sander’s approach so that it fits
within first order logic. Rather than using the μ-operator (a second order con-
struct) for inductive and coinductive predicates, we add new predicate symbols
to our first order theories with axioms and axiom schemata corresponding to the
least and greatest fixed point properties, respectively. In the previous section
we showed how to add some inductive predicates. Now we will also add some
coinductive predicates which will be used in the proof of the correctness of the
alternating bit protocol.

Our first example is the coinductive definition of the predicate expressing that
a certain list is infinite or productive. We add a unary predicate symbol Stream
and two axioms expressing (i) that it is a postfixed point of a certain operator,
and (ii) that it is the greatest such postfixed point:

Stream-gfp1 : ∀ {xs} → Stream xs →
∃[ x’ ] ∃[ xs’ ] Stream xs’ ∧ xs ≡ x’ :: xs’

Stream-gfp2 : (P : D → Set) →
(∀ {xs} → P xs → ∃[ x’ ] ∃[ xs’ ]

P xs’ ∧ xs ≡ x’ :: xs’) →
∀ {xs} → P xs → Stream xs

Similarly, we coinductively define when two streams are bisimilar :

≈-gfp1 : ∀ {xs ys} → xs ≈ ys → ∃[ x’ ] ∃[ xs’ ] ∃[ ys’ ] xs’ ≈ ys’

∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’

≈-gfp2 : (_R_ : D → D → Set) → (∀ {xs ys} → xs R ys →
∃[ x’ ] ∃[ xs’ ] ∃[ ys’ ] xs’ R ys’

∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’) →
∀ {xs ys} → xs R ys → xs ≈ ys

In order to express the correctness property of the ABP we need a certain fairness
property of the unreliable transmission channels. This property will be encoded
in terms of oracle bit streams, where the bits T and F represent proper and
improper transmission, respectively. Fairness here means that the bit stream
contains an infinite number of Ts and is defined as follows:

Fair-gfp1 : ∀ {fs} → Fair fs →
∃[ ft ] ∃[ fs’ ] F*T ft ∧ Fair fs’ ∧ fs ≡ ft ++ fs’
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Fig. 1. The alternating bit protocol

Fair-gfp2 : (P : D → Set) → (∀ {fs} → P fs →
∃[ ft ] ∃[ fs’ ] F*T ft ∧ P fs’ ∧ fs ≡ ft ++ fs’) →

∀ {fs} → P fs → Fair fs

Here F*T ft is an inductive predicate expressing that ft is a finite list of Fs
followed by a final T. Note that we have added the constant symbols T and F

for bits, and a binary infix function symbol ++ for appending lists. In the proof
below we will also make use of the predicate Bit : D → Set. Moreover, we use
< , > for pairs, not for negation of bits, error for a corrupted message, and ok

for a constructor for a proper message.

5.4 A Kahn Network for the Alternating Bit Protocol

Dybjer and Sander model the sender as a stream transformer abpsend and the
receiver as a pair of stream transformers abpack, which returns the acknowl-
edgement stream cs, and abpout, which returns the output stream js. Moreover,
an unreliable transmission channel is modelled as a stream transformer, which
non-deterministically corrupts the messages in the stream. To stay within the
framework of deterministic lazy functional programming, we model the chan-
nels as a stream transformer corrupt : D which accepts an oracle stream as an
auxiliary argument as described above (see Fig 1). The axioms for corrupt are:

corrupt-T : corrupt · (T :: fs) · (x :: xs) ≡ ok x :: corrupt · fs · xs

corrupt-F : corrupt · (F :: fs) · (x :: xs) ≡ error :: corrupt · fs · xs

(Note that for space reasons we have omitted the universal quantifiers. We will
do so in the sequel as well. We will also omit the keyword postulate.)

The sender is written as a program which is mutually recursive with an aux-
iliary program await:

abpsend-eq : abpsend · b · (i :: is) · ds ≡ < i , b > :: await b i is ds

await-ok≡ : b ≡ b0 → await b i is (ok b0 :: ds) ≡
abpsend · (not b) · is · ds

await-ok�= : ¬ (b ≡ b0) → await b i is (ok b0 :: ds) ≡
< i , b > :: await b i is ds

await-error : await b i is (error :: ds) ≡ < i , b > :: await b i is ds
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The first order axioms for the receiver programs abpout and abpack are

abpack-ok≡ : b ≡ b0 → abpack · b · (ok < i , b0 > :: bs) ≡
b :: abpack · (not b) · bs

abpack-ok�= : ¬ (b ≡ b0) → abpack · b · (ok < i , b0 > :: bs) ≡
not b :: abpack · b · bs

abpack-error : abpack · b · (error :: bs) ≡ not b :: abpack · b · bs

abpout-ok≡ : b ≡ b0 → abpout · b · (ok < i , b0 > :: bs) ≡
i :: abpout · (not b) · bs

abpout-ok�= : ¬ (b ≡ b0) → abpout · b · (ok < i , b0 > :: bs) ≡
abpout · b · bs

abpout-error : ∀ b bs → abpout · b · (error :: bs) ≡ abpout · b · bs

We can now write a function abptransfer which computes the output js from
the input is, and accepts three more arguments: the initial bit b, and the two
oracle streams os0 and os1:

abptransfer-eq : abptransfer b fs0 fs1 is ≡
transfer (abpsend · b) (abpack · b) (abpout · b)

(corrupt · fs0) (corrupt · fs1) is

Here transfer is the general transfer function for the network topology of Fig. 2.
It simultaneously computes the output js and the streams as, bs, cs, ds given

g1 bs
�    

   

input
is �� f1

as �!!!!!!!
f2,f3

js ��

cs��""""
""

ouput

g2ds

��######

Fig. 2. Network topology for the alternating bit protocol

the stream transformers f1, f2, f3, g1, g2:

transfer-eq : transfer f1 f2 f3 g1 g2 is ≡ f3 · (hbs f1 f2 f3 g1 g2 is)

has-eq : has f1 f2 f3 g1 g2 is ≡ f1 · is · (hds f1 f2 f3 g1 g2 is)

hbs-eq : hbs f1 f2 f3 g1 g2 is ≡ g1 · (has f1 f2 f3 g1 g2 is)

hcs-eq : hcs f1 f2 f3 g1 g2 is ≡ f2 · (hbs f1 f2 f3 g1 g2 is)

hds-eq : hds f1 f2 f3 g1 g2 is ≡ g2 · (hcs f1 f2 f3 g1 g2 is)

To prove that the alternating bit protocol is correct means to prove that each
message is eventually transmitted properly. Formally this means that the input
stream is bisimilar to the output stream computed by abptransfer. This property
can only hold if one assumes that the transmission channel(s) are “fair” in the
sense described above. Formally we thus need to prove

spec : Bit b → Stream is → Fair fs0 → Fair fs1 →
is ≈ abptransfer b fs0 fs1 is
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The proof is by coinduction. We prove the is and js are in the greatest bisimu-
lation ≈ by finding another bisimulation which they are in. This proof uses an
auxiliary proof by induction on the predicate F*T.

As in the previous examples, we manually need to instantiate the axiom
schemata (for induction and coinduction), but once this has been done a major
part (but not all) equational and logical reasoning is done automatically by the
ATPs. We do not have space here to present the details of this proof. The reader
is referred to the paper’s website.

6 Conclusions and Related Work

What is unique about our approach is that its logical basis is Aczel’s first order
theories of combinators. These theories were used for interpreting early versions
of Martin-Löf’s intuitionistic type theory, and our approach can be summarised
by saying that we work in models of type theory rather than in type theory
itself. In particular we make essential use of totality predicates (which were used
for interpreting types of type theory) and other inductive definitions.

A similar viewpoint has been exploited in the NuPrl project [29], where
Martin-Löf type theory is also viewed through an interpretation in untyped
computation systems. The difference is that in NuPrl the user still works in an
extension of (extensional) Martin-Löf’s type theory, while we work in a setting
which abandons most of the characteristics of Martin-Löf type theory. We work
in classical rather than intuitionistic logic; we do not use the formulae-as-types
principle; we have no dependent types, in fact our language is untyped rather
than typed; and we deal with non-terminating as well as terminating programs.
The advantage is that we can write our functional programs in the usual way as
in mainstream functional languages. Although our term language is untyped, we
may use polymorphic type inference during programming. However, the inferred
types play no role during verification.

In this work we use the Agda system, but we could carry out similar work
using another generic theorem prover such as Isabelle. However, Agda seems to
work well as an interface to automatic first order theorem provers is positive: we
have used it not only for FOTC but also for other first order theories such as
Group Theory and Peano Arithmetic with encouraging results.

Future research. The present approach can be improved in several ways. The
most obvious is to extend Agda so that it gives more support for FOTC and
for interacting with ATPs. It would also be interesting to modify our program
agda2atp and return witnesses for the automatically generated proofs so that
they can be checked by Agda. Another interesting direction is to connect Agda
to systems which can automatically do proof by induction; currently we only
automate pure first order logic reasoning. In fact, Agda comes with its own
automatic theorem prover Agsy - the Agda Synthesiser which can do proof by
induction [17].
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Related work. There is much related work on different aspects of this topic, and
we only have space to mention a few. Perhaps most importantly, we should com-
pare our approach with other systems which can be used for reasoning about
general recursive programs, going back at least to the LCF-system [13]. We al-
ready mentioned some recent dedicated such systems [15,20]. Another interesting
approach is the function package [16] built on top of the Isabelle system. The
logical basis is here different from ours: the basic idea is to interpret first or-
der functions as relations in Isabelle-HOL. The function package can also deal
with higher order functions. Moreover, the Boyer-Moore theorem prover [8] is
a powerful system for automatically proving properties of programs by induc-
tion. Logically, however it is based on primitive recursive arithmetic rather than
untyped combinatory logic as ours. Yet another system in somewhat the same
spirit as ours is Schwichtenberg’s Minlog [5].

We will only mention some other related areas. One such area is concerned
with methods for encoding general recursive functions in intuitionistic type the-
ory, see for example [6]. Another area is concerned with connecting theorem
provers with dependent type theory [1,27] or other generic theorem provers such
as Isabelle [19].
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Applicative Bisimulations

for Delimited-Control Operators

Dariusz Biernacki and Serguëı Lenglet	

University of Wroc�law

Abstract. We develop a behavioral theory for the untyped call-by-value
λ-calculus extended with the delimited-control operators shift and reset.
For this calculus, we discuss the possible observable behaviors and we de-
fine an applicative bisimilarity that characterizes contextual equivalence.
We then compare the applicative bisimilarity and the CPS equivalence,
a relation on terms often used in studies of control operators. In the pro-
cess, we illustrate how bisimilarity can be used to prove equivalence of
terms with delimited-control effects.

1 Introduction

Morris-style contextual equivalence [21] is usually regarded as the most natural
behavioral equivalence for functional languages based on λ-calculi. Roughly, two
terms are equivalent if we can exchange one for the other in a bigger program
without affecting its behavior (i.e., whether it terminates or not). The quantifica-
tion over program contexts makes contextual equivalence hard to use in practice
and, therefore, it is common to look for more effective characterizations of this
relation. One approach is to rely on coinduction, by searching for an appropriate
notion of bisimulation. The bisimulation has to be defined in such a way that its
resulting behavioral equivalence, called bisimilarity, is sound and complete with
respect to contextual equivalence (i.e., it is included and contains contextual
equivalence, respectively).

The problem of finding a sound and complete bisimilarity in the λ-calculus
has been well studied and usually leads to the definition of an applicative bisim-
ilarity [1,12,11] (or, more recently, environmental bisimilarity [23]). The situa-
tion is more complex in λ-calculi extended with control operators for first-class
continuations—so far, only a few works have been conducted on the behavioral
theory of such calculi. A first step can be found for the λμ-calculus (a calculus
that mimics abortive control operators such as call/cc [22]) in [3] and [9], where
it is proved that the definition of contextual equivalence can be slightly simpli-
fied by quantifying over evaluation contexts only; such a result is usually called a
context lemma. In [25], Støvring and Lassen define an eager normal form bisim-
ilarity (based on the notion of Lévy-Longo tree equivalence) [15,16,17] which
is sound for the λμ-calculus, and which becomes sound and complete when a
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notion of state is added to the λμ-calculus. In [19], Merro and Biasi define an
applicative bisimilarity which characterizes contextual equivalence in the CPS
calculus [26], a minimal calculus which models the control features of functional
languages with imperative jumps. As for the λ-calculus extended with control
only, however, no sound and complete bisimilarities have been defined.

In this article, we present a sound and complete applicative bisimilarity for a
λ-calculus extended with Danvy and Filinski’s static delimited-control operators
shift and reset [8]. In contrast to abortive control operators, delimited-control
operators allow to delimit access to the current continuation and to compose
continuations. The operators shift and reset were introduced as a direct-style
realization of the traditional success/failure continuation model of backtracking
otherwise expressible only in continuation-passing style. The numerous theoret-
ical and practical applications of shift and reset (see, e.g., [5] for an extensive
list) include the seminal result by Filinski showing that a programming language
endowed with shift and reset is monadically complete [10].

The λ-calculi with static delimited-control operators have been an active re-
search topic from the semantics as well as type- and proof-theoretic point of
view (see, e.g., [5,4,2]). However, to our knowledge, no work has been carried
out on the behavioral theory of such λ-calculi. In order to fill this void, we
present a study of the behavioral theory of an untyped, call-by-value λ-calculus
extended with shift and reset [8], called λS . In Section 2, we give the syntax
and reduction semantics of λS , and discuss the possible observable behaviors
for the calculus. In Section 3, we define an applicative bisimilarity, based on a
labelled transition semantics, and prove it characterizes contextual equivalence,
using an adaptation of Howe’s congruence proof method [12]. As a byproduct,
we also prove a context lemma for λS . In Section 4, we study the relationship
between applicative bisimilarity and an equivalence based on translation into
continuation-passing style (CPS), a relation often used in works on control oper-
ators and CPS. In the process, we show how applicative bisimilarity can be used
to prove equivalence of terms. Section 5 concludes the article and gives ideas for
future work. Most of the proofs missing from the article are avalaible in [7].

2 The Language λS

In this section, we present the syntax, reduction semantics, and contextual equiv-
alence of the language λS used throughout this article.

2.1 Syntax

The language λS extends the call-by-value λ-calculus with the delimited-control
operators shift and reset [8]. We assume we have a set of term variables, ranged
over by x and k. We use two metavariables to distinguish term variables bound
with a λ-abstraction from variables bound with a shift; we believe such distinc-
tion helps to understand examples and reduction rules. The syntax of terms and
values is given by the following grammars:
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Terms: t ::= x | λx.t | t t | Sk.t | 〈t〉
Values: v ::= λx.t

The operator shift (Sk.t) is a capture operator, the extent of which is determined
by the delimiter reset (〈·〉). A λ-abstraction λx.t binds x in t and a shift construct
Sk.t binds k in t; terms are equated up to α-conversion of their bound variables.
The set of free variables of t is written fv(t); a term is closed if it does not contain
any free variable. Because we work mostly with closed terms, we consider only
λ-abstractions as values.

We distinguish several kinds of contexts, defined below, which all can be seen
as terms with a hole.

Pure evaluation contexts: E ::= � | v E | E t
Evaluation contexts: F ::= � | v F | F t | 〈F 〉
Contexts: C ::= � | λx.C | t C | C t | Sk.C | 〈C 〉

Regular contexts are ranged over by C . The pure evaluation contexts1 (abbrevi-
ated as pure contexts), ranged over by E , represent delimited continuations and
can be captured by the shift operator. The call-by-value evaluation contexts,
ranged over by F , represent arbitrary continuations and encode the chosen re-
duction strategy. Following the correspondence between evaluation contexts of
the reduction semantics and control stacks of the abstract machine for shift and
reset, established by Biernacka et al. [5], we interpret contexts inside-out, i.e., �
stands for the empty context, v E represents the “term with a hole” E [v [ ]], E t
represents E [[ ] t], 〈F 〉 represents F [〈[ ]〉], etc. (This choice does not affect the
results presented in this article in any way.) Filling a context C (respectively E ,
F ) with a term t produces a term, written C [t] (respectively E [t], F [t]); the free
variables of t can be captured in the process. A context is closed if it contains
only closed terms.

2.2 Reduction Semantics

Let us first briefly describe the intuitive semantics of shift and reset by means of
an example written in SML using Filinski’s implementation of shift and reset [10].

Example 1. The following function copies a list [6] (the SML expression shift

(fn k => t) corresponds to Sk.t and reset (fn () => t) corresponds to 〈t〉):
fun copy xs =

let fun visit nil = nil

| visit (x::xs) = visit (shift (fn k => x :: (k xs)))

in reset (fn () => visit xs) end

This program illustrates the main ideas of programming with shift and reset:

1 This terminology comes from Kameyama (e.g., in [13]).
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– Reset delimits continuations. Control effects are local to copy.
– Shift captures delimited continuations. Each, but last, recursive call to visit

abstracts the continuation fn v => reset (fn () => visit v) and binds
it to k.

– Captured continuations are statically composed. When applied in the ex-
pression k xs, the captured continuation becomes the current delimited
continuation that is isolated from the rest of the program by a control
delimiter—witness the reset expression in the captured continuation.

Formally, the call-by-value reduction semantics of λS is defined by the following
rules, where t{v/x} is the usual capture-avoiding substitution of v for x in t:

(βv) F [(λx.t) v] →v F [t{v/x}]
(shift) F [〈E [Sk.t]〉] →v F [〈t{λx.〈E [x]〉/k}〉] with x /∈ fv(E )
(reset) F [〈v〉] →v F [v]

The term (λx.t) v is the usual call-by-value redex for β-reduction (rule (βv)).
The operator Sk.t captures its surrounding context E up to the dynamically
nearest enclosing reset, and substitutes λx.〈E [x]〉 for k in t (rule (shift)). If a
reset is enclosing a value, then it has no purpose as a delimiter for a potential
capture, and it can be safely removed (rule (reset)). All these reductions may
occur within a metalevel context F . The chosen call-by-value evaluation strategy
is encoded in the grammar of the evaluation contexts.

Example 2. Let i = λx.x and ω = λx.xx. We present the sequence of reductions
initiated by 〈((Sk1.i (k1 i)) Sk2.ω) (ω ω)〉. The term Sk1.i (k1 i) is within the
pure context E = (� (ωω)) Sk2.ω (remember that we represent contexts inside-
out), enclosed in a delimiter 〈·〉, so E is captured according to rule (shift).

〈((Sk1.i (k1 i)) Sk2.ω) (ω ω)〉 →v 〈i ((λx.〈(x Sk2.ω) (ω ω)〉) i)〉

The role of reset in λx.〈E [x]〉 becomes clearer after reduction of the (βv)-redex
(λx.〈E [x]〉) i.

〈i ((λx.〈(x Sk2.ω) (ω ω)〉) i)〉 →v 〈i 〈(i Sk2.ω) (ω ω)〉〉

When the captured context E is reactivated, it is not merged with the context
i �, but composed thanks to the reset enclosing E . As a result, the capture
triggered by Sk2.ω leaves the term i outside the first enclosing reset untouched.

〈i 〈(i Sk2.ω) (ω ω)〉〉 →v 〈i 〈ω〉〉

Because k2 does not occur in ω, the context i (� (ω ω)) is discarded when
captured by Sk2.ω. Finally, we remove the useless delimiter 〈i 〈ω〉〉 →v 〈i ω〉
with rule (reset), and we then (βv)-reduce and remove the last delimiter 〈i ω〉 →v

〈ω〉 →v ω. Note that, while the reduction strategy is call-by-value, some function
arguments are not evaluated, like the non-terminating term ωω in this example.
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There exist terms which are not values and which cannot be reduced any
further; these are called stuck terms.

Definition 1. A closed term t is stuck if t is not a value and t %→v.

For example, the term E [Sk.t] is stuck because there is no enclosing reset; the
capture of E by the shift operator cannot be triggered. In fact, closed stuck
terms are easy to characterize.

Lemma 1. A closed term t is stuck iff t = E [Sk.t′] for some E, k, and t′.

We call redexes (ranged over by r) the terms of the form (λx.t)v, 〈E [Sk.t]〉, and
〈v〉. Thanks to the following unique-decomposition property, the reduction →v

is deterministic.

Lemma 2. For all closed terms t, either t is a value, or it is a stuck term, or
there exist a unique redex r and a unique context F such that t = F [r].

Given a relation R on terms, we write R∗ for the transitive and reflexive closure
of R. We define the evaluation relation of λS as follows.

Definition 2. We write t ⇓v t
′ if t→∗

v t
′ and t′ %→v.

The result of the evaluation of a closed term, if it exists, is either a value or a
stuck term. If a term t admits an infinite reduction sequence, we say it diverges,
written t ⇑v. In the rest of the article, we use extensively Ω = (λx.x x) (λx.x x)
as an example of such a term.

2.3 Contextual Equivalence

In this section, we discuss the possible definitions of a Morris-style contextual
equivalence for the calculus λS . As usual, the idea is to express that two terms
are equivalent iff they cannot be distinguished when put in an arbitrary context.
The question is then what kind of behavior we want to observe. As in the regular
λ-calculus we could observe only termination (i.e., does a term reduce to a value
or not), leading to the following relation.

Definition 3. Let t0, t1 be closed terms. We write t0 ≈1
c t1 if for all closed C ,

C [t0] ⇓v v0 implies C [t1] ⇓v v1, and conversely for C [t1].

This definition does not mention stuck terms; as a result, they can be equated
with diverging terms. For example, let t0 = (Sk.k λx.x) Ω, t1 = Ω, and C be a
closed context. If C [t0] ⇓v v0, then we can prove that for all closed t, there exists
v such that C [t] ⇓v v (roughly, because t is never evaluated; see [7] for further
details). In particular, we have C [t1] ⇓v v1. Hence, we have t0 ≈1

c t1.
A more fine-grained analysis is possible, by observing stuck terms.
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Definition 4. Let t0, t1 be closed terms. We write t0 ≈2
c t1 if for all closed C ,

– C [t0] ⇓v v0 implies C [t1] ⇓v v1;
– C [t0] ⇓v t

′
0, where t

′
0 is stuck, implies C [t1] ⇓v t

′
1, with t

′
1 stuck as well;

and conversely for C [t1].

The relation ≈2
c distinguishes the terms t0 and t1 defined above. We believe ≈2

c

is more interesting because it gives more information on the behavior of terms;
consequently, we use it as the contextual equivalence for λS . Henceforth, we
simply write ≈c for ≈2

c .
The relation ≈c, like the other equivalences on terms defined in this article,

can be extended to open terms in the following way.

Definition 5. Let R be a relation on closed terms. The open extension of R,
written R◦, is defined on open terms as: we write t0 R◦ t1 if for every substitution
σ which closes t0 and t1, t0σ R t1σ holds.

Remark 1. Contextual equivalence can be defined directly on open terms by
requiring that the context C binds the free variables of the related terms. The
resulting relation would be equal to ≈c

◦ [11].

3 Bisimilarity for λS

In this section, we define an applicative bisimilarity and prove it equal to con-
textual equivalence.

3.1 Labelled Transition System

To define the bisimilarity for λS , we propose a labelled transition system (LTS),
where the possible interactions of a term with its environment are encoded in the
labels. Figure 1 defines a LTS t0

α−→ t1 with three kinds of transitions. An internal
action t

τ−→ t′ is an evolution from t to t′ without any help from the surrounding
context; it corresponds to a reduction step from t to t′. The transition v0

v1−→ t
expresses the fact that v0 needs to be applied to another value v1 to evolve,

reducing to t. Finally, the transition t
E−→ t′ means that t is stuck, and when t is

put in a context E enclosed in a reset, the capture can be triggered, the result
of which being t′.

Most rules for internal actions (Fig. 1) are straightforward; the rules (βv)
and (reset) mimic the corresponding reduction rules, and the compositional rules
(rightτ ), (leftτ ), and (〈·〉τ ) allow internal actions to happen within any evaluation
context. The rule (〈·〉S) for context capture is explained later. Rule (val) defines
the only possible transition for values. Note that while both rules (βv) and (val)
encode β-reduction, they are quite different in nature; in the former, the term
(λx.t) v can evolve by itself, without any help from the surrounding context,
while the latter expresses the possibility for λx.t to evolve only if a value v is
provided by the environment.
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(λx.t) v
τ−→ t{v/x}

(βv)
〈v〉 τ−→ v

(reset)
t0

τ−→ t′0

t0 t1
τ−→ t′0 t1

(leftτ )

t
τ−→ t′

v t
τ−→ v t′

(rightτ )
t

τ−→ t′

〈t〉 τ−→ 〈t′〉
(〈·〉τ )

t
�−→ t′

〈t〉 τ−→ t′
(〈·〉S)

λx.t
v−→ t{v/x}

(val)

x /∈ fv(E)

Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉
(shift)

t0
E t1−−−→ t′0

t0 t1
E−→ t′0

(leftS)
t

v E−−→ t′

v t
E−→ t′

(rightS)

Fig. 1. Labelled Transition System

The rules for context capture are built following the principles of comple-

mentary semantics developed in [18]. The label of the transition t
E−→ t′ contains

what the environment needs to provide (a context E , but also an enclosing reset,

left implicit) for the stuck term t to reduce to t′. Hence, the transition t
E−→ t′

means that we have 〈E [t]〉 τ−→ t′ by context capture. For example, in the rule
(shift), the result of the capture of E by Sk.t is 〈t{λx.〈E [x]〉/k}〉.

In rule (leftS), we want to know the result of the capture of E by the term
t0 t1, assuming t0 contains an operator shift. Under this hypothesis, the capture
of E by t0 t1 comes from the capture of E t1 by t0. Therefore, as premise of the
rule (leftS), we check that t0 is able to capture E t1, and the result t′0 of this
transition is exactly the result we want for the capture of E by t0 t1. The rule
(rightS) follows the same pattern. Finally, a stuck term t enclosed in a reset is
able to perform an internal action (rule (〈·〉S)); we obtain the result t′ of the

transition 〈t〉 τ−→ t′ by letting t capture the empty context, i.e., by considering

the transition t
�−→ t′.

Example 3. With the same notations as in Example 2, we illustrate how the LTS
handles capture by considering the transition from 〈(i Sk.ω) (ω ω)〉.

Sk.ω i (� (ω ω))−−−−−−−→ 〈ω〉
(shift)

i Sk.ω � (ω ω)−−−−−→ 〈ω〉
(rightS)

(i Sk.ω) (ω ω) �−→ 〈ω〉
(leftS)

〈(i Sk.ω) (ω ω)〉 τ−→ 〈ω〉 (〈·〉S)

Reading the tree from bottom to top, we see that the rules (〈·〉S), (leftS), and
(rightS) build the captured context in the label by deconstructing the initial term.
Indeed, the rule (〈·〉S) removes the outermost reset, and initiates the context in
the label with �. The rules (leftS) and (rightS) then successively remove the
outermost application and store it in the context. The process continues until
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a shift operator is found; then we know the captured context is completed, and
the rule (shift) computes the result of the capture. This result is then simply
propagated from top to bottom by the other rules.

The LTS corresponds to the reduction semantics and exhibits the observable
terms (values and stuck terms) of the language in the following way.

Lemma 3. The following hold:

– We have
τ−→=→v.

– If t
E−→ t′, then t is a stuck term, and 〈E [t]〉 τ−→ t′.

– If t
v−→ t′, then t is a value, and t v

τ−→ t′.

3.2 Applicative Bisimilarity

We now define the notion of applicative bisimilarity for λS . We write ⇒ for the
reflexive and transitive closure of

τ−→. We define the weak delay2 transition
α
=⇒ as

⇒ if α = τ and as ⇒ α−→ otherwise. The definition of the (weak delay) bisimilarity
is then straightforward.

Definition 6. A relation R on closed terms is an applicative simulation if t0 R
t1 implies that for all t0

α−→ t′0, there exists t′1 such that t1
α
=⇒ t′1 and t′0 R t′1.

A relation R on closed terms is an applicative bisimulation if R and R−1 are
simulations. Applicative bisimilarity ≈ is the largest applicative bisimulation.

In words, two terms are equivalent if any transition from one is matched by a
weak transition with the same label from the other. As in the λ-calculus [1,11],
it is not mandatory to test the internal steps when proving that two terms are
bisimilar, because of the following result.

Lemma 4. If t
τ−→ t′ (respectively t ⇓v t

′) then t ≈ t′.
Lemma 4 holds because {(t, t′) , t τ−→ t′} is an applicative bisimulation. Conse-
quently, applicative bisimulation can be defined in terms of big-step transitions
as follows.

Definition 7. A relation R on closed terms is a big-step applicative simulation
if t0 R t1 implies that for all t0

α
=⇒ t′0 with α %= τ , there exists t′1 such that t1

α
=⇒ t′1

and t′0 R t′1.
A relation R on closed terms is a big-step applicative bisimulation if R and

R−1 are big-step applicative simulations. Big-step applicative bisimilarity
.≈ is

the largest big-step applicative bisimulation.

Henceforth, we drop the adjective “applicative” and refer to the two kinds of
relations simply as “bisimulation” and “big-step bisimulation”.

2 Where internal steps are allowed before, but not after a visible action.
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Lemma 5. We have ≈=
.≈.

The proof is by showing that ≈ is a big step bisimulation, and that
.≈ is a

bisimulation (using a variant of Lemma 4 involving
.≈). As a result, if R is a

big-step bisimulation, then R⊆ .≈⊆≈. We work with both styles (small-step
and big-step), depending on which one is easier to use in a given proof.

Example 4. Assuming we add lists and recursion to the calculus, we informally
prove that the function copy defined in Example 1 is bisimilar to its effect-free
variant, defined below.

fun copy2 nil = nil

| copy2 (x::xs) = x::(copy2 xs)

To this end, we define the relations (where we let l range over lists, and e over
their elements)

R1 = {(〈e1 :: 〈e2 :: . . . 〈en :: 〈visit l〉〉〉〉, e1 :: (e2 :: . . . en :: (copy2 l)))}
R2 = {(〈e1 :: 〈e2 :: . . . 〈en :: 〈l〉〉〉〉, e1 :: (e2 :: . . . en :: l))}

and we prove that R1 ∪ R2 ∪{(l, l)} is a bisimulation. First, let t0 R1 t1. If l is
empty, then both visit l and copy2 l reduce to the empty list, and we obtain
two terms related by R2. Otherwise, we have l = en+1 :: l′, 〈visit l〉 reduces to
〈en+1 :: 〈visit l′〉〉, copy2 l reduces to en+1 :: (copy2 l′), and therefore t0 and
t1 reduce to terms that are still in R1. Now, consider t0 R2 t1; the transition
from t0 removes the delimiter surrounding l, giving a term related by R2 to t1 if
there are still some delimiters left, or equal to t1 if all the delimiters are removed.
Finally, two identical lists are clearly bisimilar.

3.3 Soundness

To prove soundness of ≈ w.r.t. contextual equivalence, we show that ≈ is a con-
gruence using Howe’s method, a well-known congruence proof method initially
developed for the λ-calculus [12,11]. We briefly sketch the method and explain
how we apply it to ≈; the complete proof can be found in [7].

The idea of the method is as follows: first, prove some basic properties of
Howe’s closure ≈•, a relation which contains ≈ and is a congruence by con-
struction. Then, prove a simulation-like property for ≈•. From this result, prove
that ≈• and ≈ coincide on closed terms. Because ≈• is a congruence, it shows
that ≈ is a congruence as well. The definition of ≈• relies on the notion of com-
patible refinement ; given a relation R on open terms, the compatible refinement
R̂ relates two terms iff they have the same outermost operator and their im-
mediate subterms are related by R. Formally, it is inductively defined by the
following rules.

x R̂ x

t0 R t1

λx.t0 R̂ λx.t1

t0 R t1 t′0 R t′1

t0 t
′
0 R̂ t1 t

′
1

t0 R t1

Sk.t0 R̂ Sk.t1
t0 R t1

〈t0〉 R̂ 〈t1〉
Howe’s closure ≈• is inductively defined as the smallest congruence containing
≈◦ and closed under right composition with ≈◦.
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Definition 8. Howe’s closure ≈• is the smallest relation satisfying:

t0 ≈◦ t1

t0 ≈• t1

t0 ≈•≈◦ t1

t0 ≈• t1

t0 ≈̂• t1

t0 ≈• t1

By construction, ≈• is a congruence (by the third rule of the definition), and
composing on the right with ≈◦ gives some transitivity properties to ≈•. In
particular, it helps in proving the following classical results (see [11] for the
proofs).

Lemma 6 (Basic properties of ≈•). The following hold:

– For all t0, t1, v0, and v1, t0 ≈• t1 and v0 ≈• v1 implies t0{v0/x} ≈•

t1{v1/x}.
– The relation (≈•)∗ is symmetric.

The first item states that ≈• is substitutive. This property helps in establishing
the simulation-like property of ≈• (second step of the method). Let (≈•)c be
the restriction of ≈• to closed terms. We cannot prove directly that (≈•)c is
a bisimulation, so we prove a stronger result instead. We extend ≈• to labels,
by defining E ≈• E ′ as the smallest congruence extending ≈• with the relation
� ≈• �, and by adding the relation τ ≈• τ .

Lemma 7 (Simulation-like property). If t0 (≈•)c t1 and t0
α−→ t′0, then for

all α (≈•)c α′, there exists t′1 such that t1
α′
=⇒ t′1 and t′0 (≈•)c t′1.

Using Lemma 7 and the fact that ((≈•)c)∗ is symmetric (by the second item
of Lemma 6), we can prove that ((≈•)c)∗ is a bisimulation. Therefore, we have
((≈•)c)∗ ⊆≈, and because ≈⊆ (≈•)c ⊆ ((≈•)c)∗ holds by construction, we can
deduce ≈=(≈•)c. Because (≈•)c is a congruence, we have the following result.

Theorem 1. The relation ≈ is a congruence.

As a corollary, ≈ is sound w.r.t. contextual equivalence.

Theorem 2. We have ≈⊆≈c.

3.4 Completeness and Context Lemma

In this section, we prove that ≈ is complete w.r.t. ≈c. To this end, we use
an auxiliary relation

.≈c, defined below, which refines contextual equivalence
by testing terms with evaluation contexts only. While proving completeness,
we also prove

.≈c =≈c, which means that testing with evaluation contexts is as
discriminative as testing with any contexts. Such a simplification result is similar
to Milner’s context lemma [20].

Definition 9. Let t0, t1 be closed terms. We write t0
.≈c t1 if for all closed F ,

– F [t0] ⇓v v0 implies F [t1] ⇓v v1;
– F [t0] ⇓v t

′
0, where t

′
0 is stuck, implies F [t1] ⇓v t

′
1, with t

′
1 stuck as well;

and conversely for F [t1].

Clearly we have ≈c ⊆ .≈c by definition. The relation ≈ is complete w.r.t.
.≈c.
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x = λk1k2.k1 x k2
λx.t = λk1k2.k1 (λx.t) k2
t0 t1 = λk1k2.t0 (λx0k

′
2.t1 (λx1k

′′
2 .x0 x1 k1 k

′′
2 ) k

′
2) k2

〈t〉 = λk1k2.t θ (λx.k1 x k2)

Sk.t = λk1k2.t{(λx1k
′
1k

′
2.k1 x1 (λx2.k

′
1 x2 k

′
2))/k} θ k2

with θ = λxk2.k2 x

Fig. 2. CPS translation

Theorem 3. We have
.≈c ⊆≈.

The proof of Theorem 3 is the same as in λ-calculus [11]; we prove that
.≈c

is a big-step bisimulation, using Lemmas 3, 4, and Theorem 2. The complete
proof can be found in [7]. We can now prove that all the relations defined so far
coincide.

Theorem 4. We have ≈c=
.≈c =≈.

Indeed, we have
.≈c ⊆≈ (Theorem 3), ≈⊆≈c (Theorem 2), and ≈c ⊆ .≈c (by

definition).

4 Relation to CPS Equivalence

In this section we study the relationship between our bisimilarity (and thus
contextual equivalence) and an equivalence relation based on translating terms
with shift and reset into continuation-passing style (CPS). Such an equivalence
has been characterized in terms of direct-style equations by Kameyama and
Hasegawa who developed an axiomatization of shift and reset [13]. We show
that all but one of their axioms are validated by the bisimilarity of this article,
which also provides several examples of use of the bisimilarity. We also pinpoint
where the two relations differ.

4.1 Axiomatization of Delimited Continuations

The operators shift and reset have been originally defined by a translation into
continuation-passing style [8] that we present in Fig. 2. Translated terms ex-
pect two continuations: the delimited continuation representing the rest of the
computation up to the dynamically nearest enclosing delimiter and the meta-
continuation representing the rest of the computation beyond this delimiter.

It is natural to relate any other theory of shift and reset to their definitional
CPS translation. For example, the reduction rules t →v t

′ given in Section 2.2
are sound w.r.t. the CPS because CPS translating t and t′ yields βη-convertible
terms in the λ-calculus. More generally, the CPS translation for shift and reset
induces the following notion of equivalence on terms:
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(λx.t) v = t{v/x} βv (λx.E [x]) t = E [t] if x /∈ fv(E) βΩ

〈E [Sk.t]〉 = 〈t{λx.〈E [x]〉/k}〉 〈·〉 S 〈(λx.t0) 〈t1〉〉 = (λx.〈t0〉) 〈t1〉 〈·〉 lift
〈v〉 = v 〈·〉 val Sk.〈t〉 = Sk.t S 〈·〉

λx.v x = v if x /∈ fv(v) ηv Sk.k t = t if k /∈ fv(t) S elim

Fig. 3. Axiomatization of λS

Definition 10. Terms t and t′ are CPS equivalent if their CPS translations are
βη-convertible.

In order to relate the bisimilarity of this article and the CPS equivalence, we use
Kameyama and Hasegawa’s axioms [13], which characterize the CPS equivalence
in a sound and complete way: two terms are CPS equivalent iff one can derive
their equality using the equations of Fig. 3. Kameyama and Hasegawa’s axioms
relate not only closed, but arbitrary terms and they assume variables as values.

4.2 Kameyama and Hasegawa’s Axioms through Bisimilarity

We show that closed terms related by all the axioms except for S elim are
bisimilar. In the following, we write I for the bisimulation {(t, t)}.
Proposition 1. We have (λx.t) v ≈ t{v/x}, 〈E [Sk.t]〉 ≈ 〈t{λx.〈E [x]〉/k}〉, and
〈v〉 ≈ v.

Proof. These are direct consequences of the fact that
τ−→⊆≈ (Lemma 4). #$

Proposition 2. If x /∈ fv(v), then λx.v x ≈ v.
Proof. We prove that R = {(λx.(λy.t) x, λy.t), x /∈ fv(t)}∪ ≈ is a bisimulation.

To this end, we have to check that λx.(λy.t)x
v0−→ (λy.t)v0 is matched by λy.t

v0−→
t{v0/y}, i.e., that (λy.t) v0 R t{v0/y} holds for all v0. We have (λy.t) v0

τ−→
t{v0/y}, and because

τ−→⊆≈⊆R, we have the required result. #$
Proposition 3. We have Sk.〈t〉 ≈ Sk.t.
Proof. Let R = {(〈〈t〉〉, 〈t〉)}. We prove that {(Sk.〈t〉,Sk.t)}∪ R ∪ I is a big-

step bisimulation. The transition Sk.〈t〉 E−→ 〈〈t{λx.〈E [x]〉/k}〉〉 is matched by

Sk.t E−→ 〈t{λx.〈E [x]〉/k}〉, and conversely. Let 〈〈t〉〉 R 〈t〉. It is straightforward

to check that 〈〈t〉〉 v0=⇒ v iff t
v0=⇒ v iff 〈t〉 v0=⇒ v. Therefore, any

v
=⇒ transition from

〈〈t〉〉 is matched by 〈t〉, and conversely. If 〈t〉 τ−→ t′, then t′ is a value or t′ = 〈t′′〉
for some t′′; consequently, neither 〈t〉 nor 〈〈t〉〉 can perform a

E−→ transition. #$
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Proposition 4. We have 〈(λx.t0) 〈t1〉〉 ≈ (λx.〈t0〉) 〈t1〉.
Proof. We prove that {(〈(λx.t0) 〈t1〉〉, (λx.〈t0〉) 〈t1〉)}∪ I is a big-step bisimula-

tion. A transition 〈(λx.t0) 〈t1〉〉 α
=⇒ t′ (with α %= τ) is possible only if 〈t1〉 evaluates

to some value v. In this case, we have 〈(λx.t0) 〈t1〉〉 τ
=⇒ 〈(λx.t0) v〉 τ−→ 〈t0{v/x}〉

and (λx.〈t0〉)〈t1〉 τ
=⇒ 〈t0{v/x}〉. From this, it is easy to see that 〈(λx.t0) 〈t1〉〉 α

=⇒ t′

(with α %= τ) implies (λx.〈t0〉) 〈t1〉 α
=⇒ t′, and conversely. #$

Proposition 5. If x /∈ fv(E ), then (λx.E [x]) t ≈ E [t].

Proof (Sketch). The complete proof, quite technical, can be found in [7]. Let E0

be such that fv(E0 ) = ∅. Given two families of contexts (E i
1)i, (E

i
2)i, we write

σE0

i (resp. σ
λx.E0 [x]
i ) the substitution mapping ki to λy.〈E i

1[E0 [E
i
2[y]]]〉 (resp.

λy.〈E i
1[(λx.E0 [x]) E

i
2[y]]〉). We define

R1 = {(F [(λx.E0 [x]) t]σ
λx.E0 [x]
0 . . . σλx.E0 [x]

n ,F [E0 [t]]σ
E0
0 . . . σE0

n ),

fv(t,F ) ⊆ {k0 . . . kn}}
R2 = {(tσλx.E0 [x]

0 . . . σλx.E0 [x]
n , tσE0

0 . . . σE0
n ), fv(t) ⊆ {k0 . . . kn}}

and we prove that R1 ∪ R2 is a bisimulation. The relation R1 contains the
terms related by Proposition 5. The transitions from terms in R1 give terms
in R1, except if a capture happens in t; in this case, we obtain terms in R2.
Similarly, most transitions from terms in R2 give terms in R2, except if a term
λy.〈E i

1[E0 [E
i
2[y]]]〉 (resp. λy.〈E i

1[(λx.E0 [x]) E
i
2[y]]〉) is applied to a value (i.e., if

t = F [ki v]). In this case, the β-reduction generates terms in R1. #$

4.3 Bisimilarity and CPS Equivalence

In Section 4.2, we have considered all the axioms of Fig. 3, except S elim. The
terms Sk.k t (with k /∈ fv(t)) and t are not bisimilar in general, as we can see in
the following result.

Proposition 6. We have Sk.k v %≈ v.
The

E−→ transition from Sk.k v cannot be matched by v. In terms of contextual
equivalence, it is not possible to equate a stuck term and a value (it is also forbid-
den by the relation ≈1

c of Section 2.3). The CPS equivalence cannot distinguish
between stuck terms and values, because the CPS translation turns all λS terms
into λ-calculus terms of the form λk1k2.t, where k1 is the continuation up to
the first enclosing reset, and k2 is the continuation beyond this reset. Therefore,
the CPS translation (and CPS equivalence) assumes that there is always an en-
closing reset, while contextual equivalence does not. To be in accordance with
CPS, the contextual equivalence should be changed, so that it tests terms only in
contexts with an outermost delimiter. We conjecture that the CPS equivalence
is included in such a modified contextual equivalence. Note that stuck terms can
no longer be observed in such modified relation, because a term within a reset
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cannot become stuck (see the proof of Proposition 3). Therefore, the bisimilarity
of this article is too discriminative w.r.t. to this modified equivalence, and a new
complete bisimilarity has to be found.

Conversely, there exist bisimilar terms that are not CPS equivalent:

Proposition 7. 1. We have Ω ≈ ΩΩ, but Ω and ΩΩ are not CPS equivalent.
2. Let Θ = θ θ, where θ = λxy.y (λz.x x y z), and Δ = λx.δx δx, where δx =
λy.x (λz.y y z). We have Θ ≈ Δ, but Θ and Δ are not CPS equivalent.

Contextual equivalence puts all diverging terms in one equivalence class, while
CPS equivalence is more discriminating. Furthermore, as is usual with equational
theories for λ-calculi, CPS equivalence is not strong enough to equate Turing’s
and Curry’s (call-by-value) fixed point combinators.

5 Conclusion

In this article, we propose a first study of the behavioral theory of a λ-calculus
with delimited-control operators. We discuss various definitions of contextual
equivalence, and we define an LTS-based applicative bisimilarity which is sound
and complete w.r.t. the chosen contextual equivalence. Finally, we point out some
differences between bisimilarity and CPS equivalence. We believe this work can
be pursued in the following directions.

Up-to techniques. Up-to techniques [24,14,23] have been introduced to simplify
the use of bisimulation in proofs of program equivalences. The idea is to prove
terms equivalences using relations that are usually not bisimulations, but are
included in bisimulations. The validity of some applicative bisimilarities up-to
context remains an open problem in the λ-calculus [14]; nevertheless, we want to
see if some up-to techniques can be applied to the bisimulations of this article.

Other forms of bisimilarity. Applicative bisimilarity is simpler to prove than
contextual equivalence, but its definition still involves some quantification over
values and pure contexts in labels. Normal bisimilarities are easier to use be-
cause their definitions do not feature such quantification. Lassen has developed
a notion of normal bisimilarity, sound in various λ-calculi [15,16,17], and also
complete in the λμ-calculus with state [25]. It would be interesting to see if
this equivalence can be defined in a calculus with delimited control, and if it is
complete in this setting. Another kind of equivalence worth exploring is envi-
ronmental bisimilarity [23].

Other calculi with control. Defining an applicative bisimilarity for the call-by-
name variant of λS and for the hierarchy of delimited-control operators [8] should
be straightforward. We plan to investigate applicative bisimilarities for a typed
λS as well [4]. The problem seems more complex in calculi with abortive opera-
tors, such as call/cc. Because there is no delimiter for capture, these languages
are not compositional (i.e., t→v t

′ does not imply E [t] →v E [t′]), which makes
the definition of a compositional LTS more difficult.
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Abstract. We present a framework for obtaining effective character-
izations of simple fragments of future temporal logic (LTL) with the
natural numbers as time domain. The framework is based on prophetic
automata (also known as complete unambiguous Büchi automata), which
enjoy strong structural properties, in particular, they separate the “fini-
tary fraction” of a regular language of infinite words from its “infinitary
fraction” in a natural fashion. Within our framework, we provide char-
acterizations of all natural fragments of temporal logic, where, in some
cases, no effective characterization had been known previously, and give
lower and upper bounds for their computational complexity.

1 Introduction

Ever since propositional linear-time temporal logic (LTL) was introduced into
computer science by Amir Pnueli in [18] it has been a major object of research.
The particular line of research we are following here is motivated by the question
how each individual temporal operator contributes to the expressive power of
LTL. More precisely, our objective is to devise decision procedures that determine
whether a given LTL property can be expressed using a given subset of the
set of all temporal operators, for instance, the subset that includes “next” and
“eventually”, but not “until”.

As every LTL formula interpreted in the natural numbers (the common time
domain) defines a regular language of infinite words (ω-language), the aforemen-
tioned question can be viewed as part of a larger program: classifying regular
ω-languages, that is, finding effective characterizations of subclasses of the class
of all regular ω-languages. Over the years, many results have been established
and specific tools have been developed in this program, the most fundamental
result being the one that says that a regular ω-language is star-free or, equiv-
alently, expressible in first-order logic or in LTL if, and only if, its syntactic
semigroup is aperiodic [10,23,16].

The previous result is a perfect analogue of the same result for regular lan-
guages of finite words, that is, of the classical theorems by Schützenberger [19],
McNaughton and Papert [13], and Kamp [10]. In general, the situation with in-
finite words is more complicated as with finite words; a good example for this
is given in [5], where, for instance, tools from topology and algebra are used to
settle characterization problems for ω-languages.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 135–149, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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The first characterization of a fragment of LTL over finite linear orderings was
given in [4], another one followed in [7], both following a simple and straightfor-
ward approach: to determine whether a formula is equivalent to a formula in a
certain fragment, one computes the minimum reverse DFA for the correspond-
ing regular language and verifies certain structural properties of this automaton,
more precisely, one checks whether certain “forbidden patterns” do not occur.
The first characterization for infinite words (concerning stutter-invariant tempo-
ral properties) [15] used sequential relations on ω-words; the second (concerning
the nesting depth in the until/since operator) [22] used heavy algebraic machin-
ery and did not shed any light on the computational complexity of the decision
procedures involved.

In this paper, we describe a general, conceptually simple paradigm for charac-
terizing fragments of LTL when interpreted in the natural numbers, combining
ideas from [4,7] for finite words with the work by Carton and Michel on un-
ambiguous Büchi automata [2,3]. The approach works roughly as follows. To
determine whether a given formula is equivalent to a formula in a given frag-
ment, convert the formula into what is called a “prophetic automaton” in [17],
check that the automaton, when viewed as an automaton on finite words, sat-
isfies certain properties, and check that languages of finite words derived from
the accepting loops (“loop languages”) satisfy certain other properties. In other
words, we reduce the original problem for ω-languages to problems for languages
of finite words. We show that the approach works for all reasonable fragments
of future LTL and yields optimal upper bounds for the complexity of the corre-
sponding decision procedures for all but one fragment.

A note on terminology. As just explained, we work with a variant (for details,
see below) of the automaton model introduced by Carton and Michel in [2,3]
and named CUBA model (Complete Unambiguous Büchi Automata). In [17],
Pin uses “prophetic automata” to refer to CUBA’s. We suggest to henceforth
refer to these automata as “Carton–Michel automata” (CMA).

Structure of this extended abstract. In Section 2, we provide background on the
topics relevant to this paper, in particular, CMA’s and propositional linear-time
temporal logic. In Section 3, we explain that a translation from temporal logic
into CMA’s is straightforward. In Section 4, we present our characterizations.
In Section 5, we give a proof of the correctness of one of our characterizations,
and in Section 6, we explain how our characterizations can be used effectively
and deal with complexity issues. We conclude with open problems.

2 Basic Notation and Background

2.1 Reverse Deterministic Büchi Automata

A Büchi automaton with a reverse deterministic transition function is a tuple
(A,Q, I, ⋅, F ) where A is a finite set of symbols, Q is a finite set of states, I ⊆ Q
is a set of initial states, ⋅ is a reverse transition function A×Q → Q, and F ⊆ Q is
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a

a, b b a

a

b

b

Fig. 1. CMA which recognizes (a + b)∗bω

a set of final states. As usual, the transition function is extended to finite words
by setting ε ⋅ q = q and au ⋅ q = a ⋅ (u ⋅ q) for q ∈ Q, a ∈ A, and u ∈ A∗. For ease
in notation, we write uq for u ⋅ q when the transition function ⋅ is clear from the
context.

A run of an automaton as above on an ω-word u over A is an ω-word r over Q
satisfying the condition r(i) = u(i)r(i + 1) for every i < ω. Such a run is called
initial if r(0) ∈ I; it is final if there exist infinitely many i such that r(i) ∈ F ;
it is accepting if it is initial and final. The language of ω-words recognized by
such an automaton, denoted L(A) when A stands for the automaton, is the set
of ω-words for which there exists an accepting run.

An automaton as above is called a Carton–Michel automaton (CMA) if for
every ω-word over A there is exactly one final run. Such an automaton is trim,
if every state occurs in some final run.— The original definition of Carton and
Michel in [2,3] is slightly different, but for trim automata—the interesting ones—
the definitions coincide.

As an example, consider the automaton depicted in Figure 1, which is a
CMA for the language denoted by (a + b)∗bω. Note that we depict p = aq as

p qa

An initial state has an incoming edge , a final state has a double circle .
The fundamental result obtained by Carton and Michel is the following.

Theorem 1 (Carton and Michel [2,3]). Every regular ω-language is recog-
nized by some CMA. More precisely, every Büchi automaton with n states can
be transformed into an equivalent CMA with at most (12n)n states.

Let A be a CMA over an alphabet A and u ∈ A+. The word u is a loop at q if
q = uq and there exist v,w ∈ A∗ satisfying vw = u and wq ∈ F . The set of loops
at q is denoted S(q). What Carton and Michel prove about loops is:

Lemma 1 (Carton and Michel [2,3]). Let A be a CMA over some alpha-
bet A. Then, for every u ∈ A+, there is exactly one state q, denoted u� and called
anchor of u, such that u is a loop at q.

In other words, the S(q)’s are pairwise disjoint and ⋃q∈Q S(q) = A
+.

A generalized Carton–Michel automaton (GCMA) is defined as expected. It is
the same as a CMA except that the set F of final states is replaced by a set
F ⊆ 2Q of final sets, just as with ordinary generalized Büchi automata. For such
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an automaton, a run r is final if for every F ∈ F there exist infinitely many i
such that r(i) ∈ F .

The above definitions for CMA’s can all be adapted to GCMA’s in a natural
fashion and all the statements hold accordingly. For instance, a word u is a loop
at some state q in a GCMA if q = uq and for every F ∈ F there exist v,w ∈ A∗

such that u = vw and wq ∈ F . It is a theorem by Carton and Michel that every
GCMA can be converted into an equivalent CMA.

2.2 Temporal Logic

In the following, it is understood that temporal logic refers to propositional
linear-time future temporal logic where the natural numbers are used as the
domain of time. For background on temporal logic, we refer to [6] and [8].

Given an alphabet A, the set of temporal formulas over A, denoted TLA, is
typically inductively defined by:

(i) for every a ∈ A, the symbol a is an element of TLA,
(ii) if ϕ ∈ TLA, so is ¬ϕ,
(iii) if ϕ,ψ ∈ TLA, so are ϕ ∨ ψ and ϕ ∧ψ,
(iv) if ϕ ∈ TLA, so is Xϕ (“next ϕ”),
(v) if ϕ ∈ TLA, so are Fϕ and Gϕ (“eventually ϕ” and “always ϕ”),
(vi) if ϕ,ψ ∈ TLA, so are ϕUψ and ϕRψ (“ϕ until ψ” and “ϕ releases ψ”).

Often, the operators XF (“strictly eventually”) and XG (“strictly always”) are part
of the syntax of temporal logic; we view them as abbreviations of XF and XG.
(Obviously, F and G can be viewed as abbreviations of (a∨¬a)U and (a∧¬a)R,
respectively.)

Formulas of TLA are interpreted in ω-words over A. For every such word u,
we define what it means for a formula to hold in u, denoted u ⊧ ϕ, where we
omit the straightforward rules for Boolean connectives:

– u ⊧ a if u(0) = a,
– u ⊧ Xϕ if u[1,∗) ⊧ ϕ, where, as usual, u[1,∗) denotes the word u(1)u(2) . . . ,
– u ⊧ Fϕ if there exists i ≥ 0 such that u[i,∗) ⊧ ϕ, similarly, u ⊧ Gϕ if
u[i,∗) ⊧ ϕ for all i ≥ 0,

– u ⊧ ϕUψ if there exists j ≥ 0 such that u[j,∗) ⊧ ψ and u[i,∗) ⊧ ϕ for all i < j,
similarly, u ⊧ ϕRψ if there exists j ≥ 0 such that u[j,∗) ⊧ ϕ and u[i,∗) ⊧ ψ
for all j ≤ i or if u[i,∗) ⊧ ψ for all i ≥ 0.

Clearly, a formula of the form ¬Fϕ is equivalent to G¬ϕ, and a formula of the
form ¬(ϕUψ) is equivalent to ¬ϕR¬ψ, which means F and G as well as U and R
are dual to each other; X is self-dual.

Given a TLA formula ϕ, we write L(ϕ) for the set of ω-words over A where
ϕ holds, that is, L(ϕ) = {u ∈ Aω ∶u ⊧ ϕ}. This ω-language is called the language
defined by ϕ.

Fragments of LTL. An operator set is a subset of the set of all basic temporal
operators, {X,F,XF,U}. If A is an alphabet and O an operator set, then TLA[O]
denotes all LTL formulas that can be built from A using Boolean connectives



Characterizing Fragments of LTL Using CUBA’s 139

and the operators from O. We say a language L ⊆ Aω is O-expressible if there
is a formula ϕ ∈ TLA[O] such that L(ϕ) = L. The O-fragment is the set of all
LTL-formulas ϕ such that L(ϕ) is O-expressible.

Observe that several operator sets determine the same fragment: {XF} and
{F,XF}; {U} and {F,U}; {XF,U} and {F,XF,U}; {X,F}, {X,XF} and {X,F,XF};
{X,U} and every superset of this.

What we are aiming at are decision procedures for each fragment except for
the one determined by {XF,U}, as this is kind of unnatural: a strict operator
combined with a non-strict one.

Ehrenfeucht–Fräıssé Games for LTL. The statements of our results
(Section 4.2) do not involve Ehrenfeucht–Fräıssé games (EF games), but we
use them extensively in our proofs. In this extended abstract, we make use of
them in Section 5.

In the following, we recall the basics of EF games for temporal logic, see [7]
for details.

A play of a temporal logic EF game is played by two players, Spoiler and
Duplicator, on two ω-words over some alphabet A, say u and v. The game
is played in rounds, where in every round, Spoiler moves first and Duplicator
replies. The basic idea is that Spoiler is trying to reveal a difference between
u and v which can be expressed in temporal logic, while Duplicator is trying
to show—by somehow imitating the moves of Spoiler—that there is no such
difference.

There are different types of rounds, corresponding to the temporal operators
considered. We explain the ones that we need:

X-round. Spoiler chooses either u or v, say v, and chops off the first letter of
v, that is, he replaces v by v[1,∗). Duplicator does the same for u.

F-round. Spoiler chooses either u or v, say v, and chops off an arbitrary finite
(possibly empty) prefix, that is, he replaces v by v[i,∗) for some i ≥ 0. Duplicator
replaces u (the other word) by u[j,∗) for some j ≥ 0.

XF-round. Spoiler chooses either u or v, say v, and chops off an arbitrary non-
empty finite prefix, that is, he replaces v by v[i,∗) for some i > 0. Duplicator
replaces u (the other word) by u[j,∗) for some j > 0.

Before the first round, u(0) and v(0) are compared. If they are distinct, then
this is a win (an early win) for Spoiler. After each round, the same condition
is verified, and, again, if the two symbols are distinct, then this is a win for
Spoiler. If, by the end of a play, Spoiler hasn’t won, then this play is a win for
Duplicator. For a fixed n, Duplicator wins the n-round game, if Duplicator has
a strategy to win it.

When only rounds are allowed that correspond to operators in a temporal
operator set O ⊆ {X,F,XF}, then we speak of an O-game.

The fundamental property of EF games we are going to use is the following,
which was essentially proved in [7].

Theorem 2. Let L be a language of ω-words over some alphabet A and O ⊆
{X,F,XF} a temporal operator set. Then the following are equivalent:
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(A) L is O-expressible.
(B) There is some k such that for all words u, v ∈ Aω with u ∈ L ↮ v ∈ L,

Spoiler has a strategy to win the O-game on u and v within k rounds.

3 From Temporal Logic to CMA’s

Several translations from temporal logic into Büchi and generalized Büchi au-
tomata are known, see, for instance, [24,21,9]. Here, we follow the same ideas
and “observe” that the resulting automaton is a GCMA. This is supposed to be
folklore,1 but—to the best of our knowledge—has not been made precise yet.

First note that every formula can be assumed to be in negation normal form,
which means (ii) from above is not used. So, without loss of generality, we only
work with formulas of this form in what follows.

Let ϕ ∈ TLA and let sub(ϕ) denote the set of its subformulas. We define a
GCMA A[ϕ] = (A,2sub(ϕ), I, ⋅,F). Our goal is to construct the automaton in
such a way that in the unique final run r of this automaton on a given word u
the following holds for every i and every ψ ∈ sub(ϕ):

u[i,∗) ⊧ ψ iff ψ ∈ r(i) . (1)

First, we set I = {Φ ⊆ sub(ϕ)∶ϕ ∈ Φ} (which is motivated directly by (1)).
Second, we define a ⋅ Φ to be the smallest set Ψ satisfying the following

conditions:

(i) a ∈ Ψ ,
(ii) if ψ ∈ Ψ and χ ∈ Ψ , then ψ ∧ χ ∈ Ψ ,
(iii) if ψ ∈ Ψ or χ ∈ Ψ , then ψ ∨ χ ∈ Ψ ,
(iv) if ψ ∈ Φ, then Xψ ∈ Ψ ,
(v) if ψ ∈ Ψ or Fψ ∈ Φ, then Fψ ∈ Ψ ,
(vi) if ψ ∈ Ψ and Gψ ∈ Φ, then Gψ ∈ Ψ ,
(vii) if χ ∈ Ψ or if ψ ∈ Ψ and ψUχ ∈ Φ, then ψUχ ∈ Ψ ,
(viii) if χ ∈ Ψ and if ψ ∈ Ψ or ψRχ ∈ Φ, then ψRχ ∈ Ψ .

This definition reflects the “local semantics” of temporal logic, for instance, Fψ
is true now if, and only if, ψ is true now or Fψ is true in the next point in time.
Observe, however, that the fulfillment of Fψ must not be deferred forever, which
means that local conditions are not enough to capture the entire semantics of
temporal logic. This is taken care of by the final sets.

Third, for every formula Fψ ∈ sub(ϕ) the set {Φ ⊆ sub(ϕ)∶ψ ∈ Φ or Fψ ∉ Φ}
is a member of F. Similarly, for every formula ψUχ the set {Φ ⊆ sub(ϕ)∶χ ∈
Φ or ψUχ ∉ Φ} is a member of F. No other set belongs to F.

Proposition 1. Let A be an alphabet and ϕ ∈ TLA. Then Aϕ is a GCMA and
L(Aϕ) = L(ϕ).

1 Personal communication of the second author with Olivier Carton: the observation
can already be found in the notes by Max Michel which he handed over to Olivier
Carton in the last millennium.
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Proof. We first show thatAϕ is a GCMA. To this end, let u be an ω-word overA.
We show that the word r defined by (1), for every i and every ψ ∈ sub(ϕ), is a
final run on u and the only one.

The ω-word r is a run on u. To see this, let i ≥ 0 be arbitrary and observe
that if we define Φ and Ψ by Φ = {ψ ∈ sub(ϕ)∶u[i + 1,∗) ⊧ ψ} and Ψ = {ψ ∈
sub(ϕ)∶u[i,∗) ⊧ ψ}, then the implications (i)–(viii) not only hold, but also hold
in the opposite direction. That is, r(i) = u(i) ⋅r(i+1) for every i, in other words,
r is a run on u.

The run r is final. Obvious from the semantics of temporal logic.
The run r is the only possible final run. Let s be a final run. We need to

show s = r. To this end, one shows by an inductive proof on the structure of the
elements of sub(ϕ) that for every i and every ψ ∈ sub(ϕ) condition (1) holds
for s and hence s = r. The interesting part is the inductive step for formulas of
the form Fψ and ψUχ. We only show how the proof works for Fψ.

If Fψ ∈ s(i), then u[i,∗) ⊧ Fψ. Suppose Fψ ∈ s(i). Then, by definition of ⋅,
ψ ∈ s(i) or Fψ ∈ s(i + 1). In the first case, we have u[i,∗) ⊧ ψ by the induction
hypothesis, so u[i,∗) ⊧ Fψ by the semantics of temporal logic, and we are done.
In the second case, we can apply the same argument to the next point in time and
get u[i + 1,∗) ⊧ Fψ, hence u[i,∗) ⊧ Fψ, or we get Fψ ∈ s(i + 2). Continuing like
this, we eventually (!) get u[i,∗) ⊧ Fψ or that Fψ ∈ s(j) for every j ≥ i. Because
s is final, one of the states of the final set for Fψ must occur somewhere, that is,
we get ψ ∈ s(j) for some j ≥ i, thus u[j,∗) ⊧ ψ by induction hypothesis, hence
u[i,∗) ⊧ Fψ.

If Fψ ∉ s(i), then u[i,∗) /⊧ Fψ. If Fψ ∉ s(i), then, because of the definition
of ⋅, ψ ∉ s(i) and Fψ ∉ s(i + 1). Continuing like this, we get ψ ∉ s(j) for every
j ≥ i, so, by induction hypothesis, u[j,∗) /⊧ ψ for every j ≥ i, hence u[i,∗) /⊧ Fψ.

Correctness of the construction, that is, L(ϕ) = L(Aϕ). This follows immedi-
ately from what was shown before because of the way I is defined. ⊓⊔

4 General Approach and Individual Results

This section has two purposes: it explains our general approach and presents the
characterizations we have found.

4.1 The General Approach

To describe our general approach, we first need to explain what we understand
by the left congruence of a (G)CMA.

Let A be a (G)CMA. For every q ∈ Q, let Lq denote the set of words u ∈ A∗

such that uq ∈ I. The relation ≡A on Q, which we call the left congruence of A,
is defined by q ≡A q

′ when Lq = Lq′ . The terminology is justified:

Remark 1. Let A be a (G)CMA. Then ≡A is a left congruence, that is, uq ≡A uq
′

whenever u ∈ A∗ and q, q′ ∈ A are such that q ≡A q
′.
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In other words, we can define the left quotient of A with respect to ≡A to be the
reverse semi DFA A/≡A given by

A/≡A = (A,Q
′/≡A, I/≡A, ○) (2)

where

– Q′ is the set of all states that occur in some final run of A (active states),
and

– a ○ (q/≡A) = (a ⋅ q)/≡A for all a ∈ A and q ∈ Q′.

As usual, the attribute “semi” refers to the fact that this automaton has no final
states nor final sets.

Next, we combine the left congruence of a (G)CMA with its loops. The loop
language of a state q of a (G)CMA A is denoted LL(q) and defined by

LL(q) = ⋃
q′ ∶q′≡Aq

S(q′) , (3)

that is, LL(q) contains all loops at q and at congruent states.
Our general approach is to characterize a fragment of LTL as follows. To check

whether a given formula ϕ is equivalent to a formula in a given fragment, we
compute the GCMA Aϕ and check various conditions on its left quotient and its
loop languages. It turns out that this is sufficient; intuitively, the left quotient
accounts for the “finitary fraction” of L(Aϕ), whereas the loop languages account
for its “infinitary fraction”.

4.2 Characterization of the Individual Fragments

The formal statement of our main result is as follows.

Theorem 3. Let A be some alphabet, ϕ an LTL-formula, and O a temporal
operator set as listed in Table 1. Then the following are equivalent:

(A) The formula ϕ belongs to the O-fragment.
(B) The left quotient of Aϕ and its loop languages satisfy the respective con-

ditions listed in Table 1. (Information on how to read this table follows.)

Conditions on the left quotient of Aϕ are phrased in terms of “forbidden pat-
terns” (also called “forbidden configurations” in [4]). To explain this, let A =
(A,Q, I, ○) be any reverse semi DFA. Its transition graph, denoted T(A), is the
A-edge-labeled directed graph (Q,E) where E = {(a ○ q, a, q)∶a ∈ A, q ∈ Q}.

Now, the conditions depicted in the second column of Table 1 are to be read
as follows: the displayed graph(s) do not (!) occur as subgraphs of the transition
graph of the left quotient of Aϕ, that is, as subgraphs of T(Aϕ/≡Aϕ

). Vertices
filled gray must be distinct, the others may coincide (even with gray ones);
dashed arrows stand for non-trivial paths.

For instance, the condition for the left quotient in the case of the {X}-fragment
requires that the following is not true for T(Aϕ/≡Aϕ

): there exist distinct states
q and q′ and a word x ∈ A+ such that q = x ○ q and q′ = x ○ q′.
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Table 1. Characterizations of the individual fragments of LTL

fragment left quotient loop languages

X x x no condition

F
a

a

1-locally testable

aa

XF a

a

1-locally testable

X, F x x locally testable

U aa stutter-invariant

Note that for the {X}-fragment one forbidden pattern consisting of two strongly
connected components is listed, whereas for the {F}-fragment two forbidden pat-
terns (indicated by the horizontal line) are listed.

The conditions listed in the third column of Table 1 are conditions borrowed
from formal language theory, which we explain in what follows. For a word
u ∈ A∗ and k ≥ 0, we let prfk(u), sffxk(u), and occk(u) denote the set of prefixes,
suffixes, and infixes of u of length ≤ k, respectively. For words u, v ∈ A∗, we write
u ≡k+1 v if prfk(u) = prfk(v), occk+1(u) = occk+1(v), and sffxk(u) = sffxk(v). A
language L is called (k + 1)-locally testable if u ∈ L ↔ v ∈ L, whenever u ≡k v,
and it is called locally testable if it is k-locally testable for some k, see [1].

A language L ⊆ A+ is stutter-invariant if uav ∈ L ↔ uaav ∈ L holds for all
a ∈ A, u, v ∈ A∗.



144 S. Preugschat and T. Wilke

4.3 Proof Techniques

For each fragment dealt with in Theorem 3, we have a separate proof, some of
them are similar, others are completely different. In this section, we give a brief
overview of our proofs.

For the operator set {X}, the proof is more or less a simple exercise, given
that {X}-expressibility means that there is some k such that u ⊧ ϕ is determined
by prfk(u).

For the operator sets {F}, {XF}, and {X,F}, we use similar proofs. As an
example, we treat the simplest case, {XF}, in the next section.

For {U}, we use a theorem from [14], which says that an LTL formula over
some alphabet A is equivalent to a formula in TLA[U] if the language defined
by the formula is stutter-invariant, where stutter invariance is defined using an
appropriate notion of stutter equivalence on ω-words.

5 Characterization of the {XF}-Fragment

We present the characterization of the {XF}-fragment in detail. Since every
GCMA can obviously be turned into an equivalent trim GCMA, all GCMA
are assumed to be trim subsequently.

We start with a refined version of Theorem 3 for the {XF}-fragment.

Theorem 4. The following are equivalent for a given GCMA A:

(A) L(A) is XF-expressible.
(B) (a) The transition graph T(A/≡A) doesn’t have a subgraph of the following

form (in the above sense):

p̄

q̄

r̄

s̄

a

a

x y
(T1)

(b) For all u, v ∈ A+ with occ(u) = occ(v), it holds that u� ≡A v�.
(C) (a) The same as in (B)(a).

(b) (i) For all u, v ∈ A∗, a ∈ A, it holds that uav� ≡A uaav�.
(ii) For all u, v ∈ A∗, a, b ∈ A, it holds that uabv� ≡A ubav�.

Observe that (B)(b) means that the loop languages are 1-locally testable. In
other words, the above theorem implies that the characterization of the {XF}-
fragment given in Theorem 3 is correct.

Before we get to the proof of Theorem 4 we provide some more notation and
prove some useful lemmas. For ease in notation, we often write q̄ for q/≡A. When
u ∈ Aω , then u ⋅ ∞ denotes the first state of the unique final run of A on u, and
inf(u) = {a ∈ A∶ ∃∞i(u(i) = a)}. For a ∈ A and u ∈ A∗, ∣u∣a denotes the number
of occurrences of a in u.
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Lemma 2. Assume T(A/≡A) has a subgraph of type (T1). Then for every k
there exist words u, v ∈ Aω such that Duplicator wins the k-round XF-game on u
and v, but u ∈ L(A) ↮ v ∈ L(A).

Proof. Assume T(A/≡A) has a subgraph of type (T1). That is, there are states
p̄ ≠ q̄, r̄, s̄, words x, y ∈ A+, and a letter a ∈ A such that p̄ = a ⋅ r̄, q̄ = a ⋅ s̄, s̄ = y ⋅ r̄
and r̄ = x ⋅ s̄. We find states r0, r1, . . . , and s0, s1, . . . such that
– r̄i = r̄ and s̄i = s̄ for all i < ω, and
– x ⋅ si = ri and y ⋅ ri = si+1 for all i < ω.

Because Q is a finite set, we find l > 0 and i such that ri = ri+l. Since A is trim,
we find v such that v ⋅∞ = ri and u such that ua ⋅ ri ∈ I iff ua ⋅ si ∉ I. This means
that ua(yx)lmv ∈ L↮ uax(yx)lmv ∈ L for all m ≥ 1.

Clearly, if we choose lm > k, then the two resulting words cannot be distin-
guished in the k-round XF-game. ⊓⊔

Lemma 3. Let A be a GCMA such that T(A/≡A) doesn’t have a subgraph of
type (T1). Further, let r and s be the unique final runs of A on words u, v ∈ Aω

and define r̄ and s̄ by r̄(i) = r(i)/≡A and s̄(i) = s(i)/≡A for all i < ω.
If r̄(0) ≠ s̄(0) and inf(r̄) ∩ inf(s̄) ≠ ∅, then Spoiler wins the k-round XF-game

on u and v where k is twice the number of states of A/≡A.

Proof. In the following, we use SCC as an abbreviation for strongly connected
component. In our context, a state which is not reachable by a non-trivial path
from itself is considered to be an SCC by itself. For every i < ω, let Ri and Si
be the SCC’s of r̄(i) and s̄(i) in A/≡A, respectively. Observe that because of
inf(r̄) ∩ inf(s̄) ≠ ∅ there is some l such that the Ri’s and Sj ’s are all the same
for i, j ≥ l.

Let R = {Ri∶ i > 0}, S = {Si∶ i > 0}, m = ∣R∣ − 1, and n = ∣S∣ − 1. We show that
Spoiler wins the XF-game in at most m+n rounds. The proof is by induction on
m + n.

Base case. Let m = n = 0. Then R1 = S1. Because of the absence of (T1), we
have u(0) ≠ v(0), and Spoiler wins instantly.

Induction step. Note that if r is the unique final run of A on u, then r[i,∗)
is the unique final run of A on u[i,∗) for every i.

Let m + n > 0. If u(0) ≠ v(0), then Spoiler wins instantly. If u(0) = v(0), we
proceed by a case distinction as follows.

Case 1, R1 = S1. This is impossible because of the absence of (T1).
Case 2, R1 ≠ S1, R1 ∉S. Since R1 ∉S and inf(r̄) ∩ inf(s̄) ≠ ∅ we have m > 0.

So there must be some i ≥ 1 such that r̄(i) ∈ R1 and r̄(i+1) ∉ R1. Spoiler chooses
the word u and replaces u by u[i,∗).

Now Duplicator has to replace v by v[j,∗) for some j > 0. Since R1 ∉ S we
have r̄(i) ≠ s̄(j) and the induction hypothesis applies.

Case 3, R1 ≠ S1, S1 ∉R. Symmetric to Case 2.
Case 4, R1 ≠ S1, R1 ∈ S, and S1 ∈ R. Impossible, because R1 would be

reachable from S1 and vice versa, which would mean R1 and S1 coincide. ⊓⊔
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Lemma 4. Let A be a (G)CMA. Then the following are equivalent:

(A) For all u, v ∈ A+ with occ(u) = occ(v), it holds that u� ≡A v�.
(B) (a) For all u, v ∈ A∗, a ∈ A, it holds that uav� ≡A uaav�.

(b) For all u, v ∈ A∗, a, b ∈ A, it holds that uabv� ≡A ubav�.

Proof. That (A) implies (B) is obvious. For the converse, let u, v ∈ A+ with
occ(u) = occ(v). Let occ(u) = {a0, a1, . . . , an}. Now, we have

u� ≡A a
∣u∣a0

0 a
∣u∣a1

1 . . . a
∣u∣an
n �≡A a

∣v∣a0

0 a
∣v∣a1

1 . . . a
∣v∣an
n � ≡A v� ,

where the first and the last equivalence are obtained by iterated application
of (b), and the second equivalence is obtained by iterated application of (a). ⊓⊔

In what follows, we need more notation and terminology. A word u ∈ Aω is an
infinite loop at q if q = u ⋅ ∞ and q ∈ inf(r) where r is the unique final run of A
on u.

Proof of Theorem 4. The implication from (A) to (B)(a) is Lemma 2. We prove
that (A) implies (B)(b) by contraposition. Assume (B)(b) does not hold, that is,
there are u, v ∈ A+ with occ(u) = occ(v), and u� /≡A v�. Then there exists x ∈ A∗

such that x ⋅ u� ∈ I ↮ x ⋅ v� ∈ I, that is, xuω ∈ L↮ xvω ∈ L. It is easy to see that
Duplicator wins the XF-game on xuω and xvω for any number of rounds, which,
in turn, implies L is not XF-expressible.

For the implication from (B) to (A), let n be the number of states of A/≡A.
We show that whenever u, v ∈ Aω such that u ∈ L↮ v ∈ L, then Spoiler wins the
2n-round XF-game on u and v.

Assume u, v ∈ Aω are such that u ∈ L↮ v ∈ L and let r and s be the unique
final runs of A on u and v, respectively, and r̄ and s̄ defined as in Lemma 3. We
distinguish two cases.

First case, inf(u) ≠ inf(v). Then Spoiler wins within at most 2 rounds.
Second case, inf(u) = inf(v). Then there are i, i′ and j, j′ such that

– occ(u[i, j]) = occ(v[i′, j′]),
– u[i,∗) ⋅ ∞ is an infinite loop at u[i, j]�, and
– v[i′,∗) ⋅∞ is an infinite loop at v[i′, j′]�.

From (B)(b), we conclude u[i, j]� ≡A v[i
′, j′]�. As a consequence, inf(r̄)∩inf(s̄) ≠

∅. Since r̄(0) ≠ s̄(0), Lemma 3 applies: L is XF-expressible.
The equivalence between (B) and (C) follows directly from Lemma 4. ⊓⊔

6 Effectiveness and Computational Complexity

To conclude, we explain how Theorem 3 can be used effectively. In general, we
have:

Theorem 5. Each of the fragments listed in Table 1 is decidable.

Observe that for the fragment with operator set {F,U}, this is a result from [15],
and for the fragment with operator set {X,F}, this is a result from [22].
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Proof (of Theorem 5). First, observe that Aϕ can be constructed effectively.
Also, it is easy to derive the left quotient of Aϕ from Aϕ itself and DFA’s for
the loop languages, even minimum-state DFA’s for them.

Second, observe that the presence of the listed forbidden patterns can be
checked effectively. The test for the existence of a path between two states can
be restricted to paths of length at most the number of states; the test for the
existence of two paths with the same label (see forbidden patterns for {X} and
{X,F}) can be restricted to paths of length at most the number of states squared.

Third, the conditions on the loop languages can be checked effectively. For
1-local testability, this is because a language L ⊆ A∗ is not 1-locally testable if,
and only if, one of the following conditions holds:

1. There are words u, v ∈ A∗ and there is a letter a ∈ A such that uav ∈ L↮
uaav ∈ L.

2. There are words u ∈ A∗, v ∈ A∗ and letters a, b ∈ A such that uabv ∈ L ↮
ubav ∈ L.

Again, u and v can be bounded in length by the number of states. For local
testability, we refer to [11], where it was shown this can be decided in polynomial
time. For stutter invariance, remember that a language L ⊆ A∗ is not stutter-
invariant if, and only if, the above condition 1. holds. So this can be checked
effectively, too. (One could also use the forbidden pattern listed.) ⊓⊔

As to the computational complexity of the problems considered, we first note:

Proposition 2. Each of the fragments listed in Table 1 is PSPACE-hard.

Proof. The proof is an adaptation of a proof for a somewhat weaker result given
in [15]. First, recall that LTL satisfiability is PSPACE-hard for some fixed al-
phabet [20], hence LTL unsatisfiability for this alphabet is PSPACE-hard, too.
Let A denote such an alphabet in the following.

Second, note that (because all fragments considered are proper fragments of
LTL) there exists some alphabet B such that for each operator set O in question
there exists an LTL formula αO such that αO is not O-expressible.

We can now describe a reduction from LTL unsatisfiability to the O-fragment
using formulas over the alphabet A×B. Let α′O be the formula which is obtained
from α by replacing every occurrence of a letter b by the formula ⋁a∈A(a, b).
Given a formula ϕ over A, we first construct ϕ̂, where ϕ̂ is obtained from ϕ by
replacing every occurrence of a letter a by the formula ⋁b∈B(a, b). Then ϕ is
satisfiable iff ϕ̂ is satisfiable iff ϕ̂ ∧ α′O is satisfiable. Moreover, ϕ̂ ∧ α′O cannot
be expressed in the fragment in question, provided ϕ̂ is satisfiable. Therefore,
ϕ̂ ∧ α′O is equivalent to a formula in the fragment iff ϕ is unsatisfiable. ⊓⊔

Our upper bounds are as follows:

Theorem 6. The {X,F}-fragment is in E, the other fragments listed in Table 1
are in PSPACE.

Observe that the result for the {U}-fragment is not new, but was already ob-
tained in [15].



148 S. Preugschat and T. Wilke

Proof (sketch). Observe that each property expressed as forbidden pattern can
not only be checked in polynomial time (which is folklore), it can also be checked
non-deterministically in logarithmic space, even if we are given a GCMA and
need to check it on its left quotient. So if we compose the construction of Aϕ,
which has an exponential number of states, with the non-deterministic logarith-
mic-space tests for the existence of forbidden patterns, we obtain a polynomial-
space procedure for testing the conditions on T(Aϕ/≡Aϕ

).
The situation is more complicated for the conditions on the loop languages.

We first deal with 1-local testability and stutter invariance. Observe that from
the automaton Aϕ we can get reverse DFA’s of polynomial size in the size of
Aϕ such that every loop language is the union of the languages recognized by
these reverse DFA’s. Moreover, 1. and 2. from the proof of Theorem 5 can be
transferred to this context as follows. There are two states p and q in Aϕ that are
not equivalent with respect to ≡A and such that one of the following conditions
is true:

1. There are words u, v ∈ A∗ and there is a letter a ∈ A such that uav ∈ LL(p)
and uaav ∈ LL(q).

2. There are words u, v ∈ A∗ and letters a, b ∈ A such that uabv ∈ LL(p) and
ubav ∈ LL(q).

From this, it follows that we can bound the length of u and v polynomially in
the size of Aϕ, which again yields polynomial-space procedures for both, 1-local
testability and stutter invariance.

For (general) local testability, we apply [11] to the product of the reverse DFA’s
mentioned above, which yields an exponential-time algorithm all together. ⊓⊔

7 Conclusion

We would like to state some questions:

1. Our lower and upper bounds for the complexity of the {X,F}-fragment
don’t match. What is the exact complexity of this fragment?

2. Clearly, from our proofs it can be deduced that if a formula ϕ is equivalent
to a formula in a fragment, an equivalent formula can be constructed effectively.
What is the complexity of this construction task?

3. It is not difficult to come up with examples where every equivalent formula
has exponential size (even exponential circuit size). What is the worst-case blow-
up?— Observe that, in terms of circuit size, there is a polynomial upper bound
for the {U}-fragment, see [12].
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Abstract. We consider complementing Büchi automata by applying the
Ramsey-based approach, which is the original approach already used by
Büchi and later improved by Sistla et al. We present several heuris-
tics to reduce the state space of the resulting complement automaton
and provide experimental data that shows that our improved construc-
tion can compete (in terms of finished complementation tasks) also in
practice with alternative constructions like rank-based complementation.
Furthermore, we show how our techniques can be used to improve the
Ramsey-based complementation such that the asymptotic upper bound
for the resulting complement automaton is 2O(n log n) instead of 2O(n2).

1 Introduction

The aim of this paper is to present several techniques to improve the Ramsey-
based approach to complementation of Büchi automata, which was originally
used by Büchi when he introduced this model of automata on infinite words to
show the decidability of monadic second order logic over the successor struc-
ture of the natural numbers [2]. The method is called Ramsey-based because its
correctness relies on a combinatorial result by Ramsey [10] to obtain a periodic
decomposition of the possible behaviors of a Büchi automaton on an infinite
word. Starting from a Büchi automaton with n states the construction yields
a complement automaton with 2O(n2) states [13]. A non-trivial lower bound
of n! for the complementation of Büchi automata was shown by Michel in [8].
The gap between the lower and the upper bound was made tighter by a deter-
minization construction presented by Safra [11] from which a complementation
construction with upper bound 2O(n log n) could be derived. An elegant and sim-
ple complementation construction achieving this upper bound was presented by
Klarlund in [7] using progress measures, now also referred to as ranking func-
tions. Based on Klarlund’s construction the gap between upper and lower bound
has been tightened by Friedgut, Kupferman and Vardi [5] and later even fur-
ther by Schewe [12], leaving only a polynomial gap compared to the improved
lower bound that was obtained by Yan [16]. Besides the optimizations of the
rank-based approach, a different construction has been developed by Kähler and
Wilke in [6], usually called slice-based complementation, and the determinization
construction of Safra has been optimized by Piterman [9].

Given all these different constructions, there has recently been an increased
interest in experimental evaluations of the different complementation methods.
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In experimental studies conducted by Tsai et al. [15], it turned out that the
Ramsey-based approach was not only inferior to the more modern approaches
(determinization-based, rank-based, and slice-based) in terms of the size of the
resulting complement automata, but that in most cases its implementation did
not even terminate within the imposed time and memory bounds.

Though performing inadequately for complementation, the Ramsey-based ap-
proach is used in two other fields, namely universality checking and inclusion
checking [4,1]. For these two purposes specific optimization techniques have been
developed.

Since the Ramsey-based approach to complementation has got an appealingly
simple structure and is nice to teach, our aim is to improve it on both the
practical level by using heuristics to reduce the size of the complement automata,
and the theoretical level by using the ideas underlying our heuristics to obtain
a general optimization of the method that meets the upper bound of 2O(n log n).

We have implemented these heuristics [17] and conduct experiments on a large
set of example automata, showing that the improved construction can compete
with other methods for complementation.

The remainder of the paper is structured as follows. In Section 2 we start
with some basic definitions and in Section 3 we repeat the original Ramsey-
based complementation method. In Section 4 we present our heuristics that are
used in the implementation, and we discuss our experimental results. Finally,
in Section 5 we show how the ideas from Section 4 can be used to obtain an
improvement of the Ramsey-based construction also on a theoretical level.

2 Preliminaries

The set of infinite words over an alphabet Σ is denoted by Σω. For an infinite
word α = a0a1 · · · , with α[i] we denote the letter ai at position i.

An automaton is a tuple A = 〈Q, Σ, q0, δ, F 〉 where Q is a finite set of states,
Σ is a finite alphabet, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q is the transition
function and F ⊆ Q is the set of accepting states. The transition function δ
can be extended to a function δ∗ : 2Q × Σ∗ → 2Q on subsets of the state set
and on words in the natural way. By RSC denote the set of all subsets of states
that are reachable by the subset construction, i.e. RSC := {P ⊆ Q | ∃w ∈
Σ∗ : δ∗({q0}, w) = P }. A is called deterministic if |δ(q, a)| ≤ 1 for all q ∈ Q and
a ∈ Σ.

For automata we consider two different semantics: the usual NFA semantics, in
which the automaton accepts a language of finite words, and the Büchi semantics,
in which the automaton accepts a language of infinite words. This is made precise
in the following definitions.

A run of A on a word α ∈ Σω is an infinite sequence of states ρ = p0, p1, . . .
such that p0 = q0, and pi+1 ∈ δ(pi, α[i]) for all i ≥ 0. A run ρ is Büchi-accepting
if ρ(i) ∈ F for infinitely many i ≥ 0. A path from p to q in A of a word
u = a1 · · · an ∈ Σ∗ is a finite sequence of states p0, . . . , pn such that p = p0,
q = pn, and pi ∈ δ(pi−1, ai) for all 1 ≤ i ≤ n. The path is NFA-accepting if
p0 = q0 and pn ∈ F .
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The languages recognized by an automaton A are

L∗(A) := {w ∈ Σ∗ | there is an NFA-accepting path of w in A} and
Lω(A) := {α ∈ Σω | there is a Büchi-accepting run of A on α}.

If there is a path from p to q of u in A, then we denote this fact by p
u−→ q. If

furthermore there is a path from p to q of u in A that visits a final state, then
we additionally denote this by p

u−→
F

q (in particular, this is the case if p or q is
final).

3 The Ramsey-Based Approach

Throughout this paper, A = 〈Q, Σ, q0, δ, F 〉 is a fixed automaton. Our goal is to
complement this automaton regarding the Büchi acceptance condition, i.e. we
want to obtain an automaton A′ with Lω(A′) = Σω \ Lω(A). In the Ramsey-
based approach the complement automaton basically guesses a decomposition
of the input word into finite segments such that the automaton A has a specific
behavior on these segments. These behaviors are captured by transition profiles.
Presentations of this complementation proof can be found in [13] and in [14].
In this section we repeat the essential parts of the method that are required to
describe our improvements.

A transition profile of a word u essentially describes the behavior of all states
of the automaton when reading u with respect to states that are reachable and
states that are reachable via a final state.

Definition 1. A pair t = 〈→t, →◦ t〉 with →t ⊆ Q × Q and →◦ t ⊆ →t is called a
transition profile over A. The transition profile τ(u) of the word u ∈ Σ∗ over A
is the pair 〈→, →◦ 〉 with p → q iff p

u−→ q and p →◦ q iff p
u−→
F

q.

One can visualize a transition profile as a directed graph. The nodes of the graph
represent the states of the automaton, and there is an edge (→) between two
nodes, if the word u permits a transition from one state to the other. Additionally
this edge is marked (→◦ ) if it permits a transition via a final state. A transition
profile τ(u) contains information about the behavior of A on u, relevant to a
Büchi automaton.

We define TP to be the set of all transition profiles over A. There is a natural
concatenation operation on TP. For s1, s2 ∈ TP, the transition profile t = s1 · s2
is defined by

– p →t q iff ∃r ∈ Q such that p →s1 r ∧ r →s2 q, and
– p →◦ t q iff ∃r ∈ Q such that (p →◦ s1 r ∧ r →s2 q) ∨ (p →s1 r ∧ r →◦ s2 q).

It is easy to see that the concatenation of transition profiles is associative, so
〈TP, ·〉, the set of all transition profiles together with concatenation, forms a
semigroup. With τ(ε) as the neutral element, it even is a monoid — the transition
monoid of A. Furthermore, by induction on the length of the words one can show
τ(u · v) = τ(u) · τ(v), so τ is a monoid homomorphism.
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For an automaton with |Q| = n states, there are n2 distinct pairs of states,
and for each pair, there are only three possibilities (either p 
→ q, or p → q but
p 
→◦ q, or p →◦ q). So we have exactly 3n2 distinct transition profiles in the
transition monoid. However, not for all of them there is a word which induces
this profile. By RTP we denote the set of all reachable transition profiles, i.e.,
those t ∈ TP for which there is a word u ∈ Σ∗ with τ(u) = t.

For a transition profile t, define the language

L(t) := τ−1(t) = {u ∈ Σ∗ | τ(u) = t}.

The nonempty languages L(t) form a partition of the set Σ∗ of all words into
finitely many distinct classes, for there are only finitely many transition profiles.

It is not difficult to see that for each t the language L(t) is a regular language
of finite words. In fact, the transition monoid of A can be represented by a de-
terministic finite automaton that we call the transition monoid automaton. Each
state of this automaton corresponds to a reachable transition profile, the initial
state is τ(ε), and the a-successor of a state t is computed by t ·τ(a). Constructing
this automaton can be done by starting with the initial state and spawning new
states doing a breadth-first search, until the automaton is complete.

We define TMA = 〈Q̃, Σ, q̃0, δ̃〉 with Q̃ = RTP, and q̃0 = τ(ε), and δ̃(q̃0, a) =
τ(a) and δ̃(t, a) = t · τ(a) for every a ∈ Σ and t ∈ RTP. Note that TMA does
not have final states. The reason is that we instantiate TMA with different sets
of final states, depending on the language we want to accept: By induction on
the length of words, one can show that δ̃∗(q̃0, w) = τ(w) and from that it follows
that the language recognized by TMA with final state set F = {t} is exactly
L(t).

The key observation in Büchi’s proof is the following lemma. It states that
each infinite word can be decomposed into finite segments such that the induced
sequence of transition profiles is of the form stω. This is an almost direct conse-
quence of Ramsey’s theorem which states that for each coloring of (unordered)
pairs over an infinite set with finitely many colors there is an infinite monochro-
matic subset. One can even restrict the transition profiles to those which satisfy
the equations t · t = t (so t is idempotent) and s · t = s.

Lemma 2 (Sequential Lemma). For every α ∈ Σω there is a decomposition
of α as α = uv1v2 · · · with reachable transition profiles s, t such that τ(u) = s,
τ(vi) = t for every i ≥ 1, t · t = t, and s · t = s.

Define L(〈s, t〉) := L(s) · L(t)ω and let

s-t-Pairs := {〈s, t〉 ∈ RTP2 | s · t = s, t · t = t}.

The Sequential Lemma states that the languages L(〈s, t〉) cover the set of all
infinite words:

Σω =
⋃

{L(〈s, t〉) | 〈s, t〉 ∈ s-t-Pairs} .

Given an arbitrary decomposition of an infinite word α into finite segments, the
corresponding sequence of transition profiles contains all the relevant information
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Fig. 1. A layout of a complement automaton with Rejects,t = {〈t1, t2〉, 〈t4, t3〉, 〈t4, t4〉}

on possible runs of A on α. This means that if two infinite words are both in
L(〈s, t〉), they both are accepted or both are rejected.

Lemma 3. Let s and t be transition profiles. Then either L(〈s, t〉) ∩ Lω(A) = ∅,
or L(〈s, t〉) ⊆ Lω(A).

This allows us to separate accepting and rejecting s-t-pairs into disjoint sets:

Accepts,t := {〈s, t〉 ∈ s-t-Pairs | L(〈s, t〉) ⊆ Lω(A)} and
Rejects,t := {〈s, t〉 ∈ s-t-Pairs | L(〈s, t〉) ∩ Lω(A) = ∅}.

As a consequence we obtain the following characterization of the complement of
Lω(A):

Σω \ L =
⋃

{L(〈s, t〉) | 〈s, t〉 ∈ Rejects,t} .

Using the transition monoid automaton as a basic building block one can con-
struct a Büchi automaton for the complement. There are automata for each of
the languages L(s) and L(t) for every rejecting s-t-pair. These can be combined
to obtain an automaton for L(〈s, t〉) = L(s) · L(t)ω by connecting the final states
of the first automaton (for L(s)) to the initial state of the second one (for L(t)),
and by allowing the second automaton to loop back to its initial state from its
final state with an ε-transition, and making the initial state the only final state.
This construction assumes that the initial state of the automaton for L(t) does
not have incoming transitions. Otherwise one can easily obtain this property by
adding a new copy of the initial state.
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In the construction it is even possible to reuse the same automaton for each of
the different languages L(s), as it is done in [13]. This construction is depicted in
Figure 1. The ε-transitions used in the illustration can be eliminated by standard
techniques.

We refer to the first part of the automaton that guesses the initial segment
of the decomposition as the initial part (on the left-hand side of Figure 1), and
to the remaining part of the automaton that guesses the periodic part of the
decomposition as the looping part.

The complement automaton consists of at most 3n2 Büchi automata in the loop-
ing part, each with at most 3n2 + 1 states (since we might need to add a new copy
of the initial state), plus an additional initial automaton component of 3n2 states.
This results in a complement automaton with at most 2 · 3n2 + 9n2 states.

4 Reducing State Space

In this section, we discuss several ideas to reduce the state space of the comple-
ment automaton.

4.1 Subset Construction
The first observation is that for a decomposition stω of an infinite word, the
precise transition profile s is not required to decide whether the pair s, t is in
Rejects,t. The only information that is required on s is, which states are reachable
from the initial state in s. Hence, we will replace the copy of TMA that takes care
of the initial segment L(s) of the decomposition by a standard subset automaton,
as detailed in the following.

For P ⊆ Q define L(P ) := {u ∈ Σ∗ | δ∗({q0}, u) = P } to be the set of all
words with which from q0 one can reach exactly the states in P . For a transition
profile t, define t(P ) := {q ∈ Q | ∃p ∈ P : p →t q} to be the set of all states
which are reachable from P via t. It is clear that t(s(P )) = (s · t)(P ) for all
s, t ∈ TP and P ⊆ Q.

The Sequential Lemma can easily be adapted to the new setting.
Lemma 4. For every α ∈ Σω there is a decomposition of α as α = uv1v2 · · ·
with a set P ⊆ Q and a reachable transition profile t such that u ∈ L(P ),
τ(vi) = t for every i ≥ 1, t · t = t, and t(P ) = P .
Proof. We pick a decomposition according to Lemma 2 for transition profiles s
and t. Setting P = s({q0}) one easily verifies the claimed properties. ��
So instead of considering s-t-pairs, from now on we work with P-t-pairs

P-t-Pairs := {〈P, t〉 ∈ RSC × RTP | t(P ) = P, t · t = t},

and we define L(〈P, t〉) := L(P )·L(t)ω . Then Theorem 4 shows that the P-t-pairs
again cover the set of all infinite words:

Σω =
⋃

{L(〈P, t〉) | 〈P, t〉 ∈ P-t-Pairs} ;

and we can divide the set of P-t-pairs into accepting and rejecting ones.
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Lemma 5. Let P ⊆ Q and let t be a transition profile. Then either L(〈P, t〉) ∩
Lω(A) = ∅, or L(〈P, t〉) ⊆ Lω(A).

Proof. If L(P ) · L(t)ω ∩ Lω(A) is not empty, then there is a word α which lies
in both sets. Then α can be decomposed as α = uv1v2 · · · with u ∈ L(P ) and
all vi being in L(t). Because the word α is in L, there must be an accepting run
of A on α. Consider the form of this run to be q0

u−→ q1
v1−→ q2

v2−→ q3 · · · . Note
that q1 ∈ P . This run visits infinitely often an accepting state. So for infinitely
many i it holds qi

vi−→
F

qi+1.
Now let β be any word in L(P ) · L(t)ω. Then β can also be decomposed as

β = u′v′
1v′

2 · · · with u′ ∈ L(P ) and all v′
i being in L(t). We have u′ ∈ L(P )

and τ(vi) = τ(v′
i) for all i ≥ 1. Then there is a run ρ′ of A on β of the form

q0
u′−→ q1

v′
1−→ q2

v′
2−→ q3 · · · . It holds qi

v′
i−→

F
qi+1 for the very same i as above. So

ρ′ is an accepting run and β ∈ Lω(A). ��
We adapt the definition of the set of accepting and rejecting pairs:

AcceptP,t := {〈P, t〉 ∈ P-t-Pairs | L(〈P, t〉) ⊆ Lω(A)}
RejectP,t := {〈P, t〉 ∈ P-t-Pairs | L(〈P, t〉) ∩ Lω(A) = ∅}

Summarizing the above observations, we can improve the construction from Sec-
tion 3 by replacing the initial copy TMA (on the left-hand side in Figure 1) by a
copy of a simple automaton keeping track of the set of reachable states, denoted
by PA. A set P is connected to the copy of the TMA for the transition profile t
if 〈P, t〉 ∈ RejectP,t.

Note that according to the above description all pairs of the form 〈∅, t〉 and
〈P, t∅〉 with the empty transition profile t∅ = 〈∅, ∅〉 are in RejectP,t. However, all
these pairs correspond to words on which no run exists at all and thus have a
prefix leading from {q0} to ∅ in the initial part PA of the complement automaton.
In our implementation we hence make ∅ an accepting state and do not further
consider the pairs of the above form in the construction of the automaton.

4.2 Merging Transition Profiles

In this section, we show how to merge different copies of TMA in the looping
part of the complement automaton. Our hope is to obtain, for the looping part,
a smaller number of automata and/or automata that are smaller in terms of
their state space.

As we have seen in Section 3, the automata for the right-hand part are gener-
ated by setting the acceptance component of the transition monoid automaton
TMA to a singleton set. Let us denote the resulting automata by singleton au-
tomata. A natural way to extend this practice is to allow arbitrary subsets of the
state space to be set as the acceptance component. Then the resulting automaton
(considered as a ∗-automaton) accepts the union of the languages formerly ac-
cepted by the singleton automata, and (in the best case) the singleton automata
are not needed anymore and can be removed from the right-hand part.
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Obviously, this merging cannot be done in an arbitrary fashion. Below we
state criteria that are sufficient for merging several of the singleton automata in
the looping part.

In the following, a set of P-t-pairs is called a bucket. For a bucket B =
{〈P1, t1〉, . . . , 〈Pn, tn〉}, we define the language L(B) := LP(B) · (

Lt(B)
)ω, where

LP(B) :=
⋃n

i=1 L(Pi) and Lt(B) :=
⋃n

i=1 L(ti). Obviously, for a bucket B, it
holds L(B) ⊇ L(〈P, t〉) for each 〈P, t〉 ∈ B (simply by definition of L(B)).

Now we are interested in a condition that allows to merge several rejecting
pairs into a bucket B such that L(B) has an empty intersection with L(A).

Definition 6. For a bucket B = {〈P1, t1〉, . . . , 〈Pn, tn〉}, we define its join as
the pair 〈P, t〉 with P =

⋃
i Pi and p →t q iff ∃i : p →ti q, and p →◦ t q iff

∃i : p →◦ ti q. We say that such a pair 〈P, t〉 has a lasso if there is a sequence of
states p1, . . . , pk, . . . , pn, 1 ≤ k < n such that

– p1 ∈ P ,
– pi →t pi+1 for all 1 ≤ i < n,
– pk →◦ t pk+1, and
– pn →t pk.

We say that a bucket is mergeable if its join does not have a lasso.

For the join 〈P, t〉 of a bucket, note that P is not necessarily a reachable subset
and that t is not necessarily a reachable transition profile.

The following lemma expresses, that by aggregating several mergeable P-t-
pairs into one bucket, the language accepted by the resulting automaton is still
inside the complement of L(A).

Lemma 7. Let B be a mergeable bucket. Then L(B) ∩ Lω(A) = ∅.

Proof. Let B = {〈P1, t1〉, . . . , 〈Pn, tn〉} and let 〈P, t〉 be the join of B and let
α be a word in L(B). Then α ∈ ⋃n

i=1 L(Pi) · (
⋃n

i=1 L(ti))ω and there is an
infinite sequence i0, i1, i2, . . . with 1 ≤ ij ≤ n such that α can be decomposed as
α = uv1v2 · · · with u ∈ L(Pi0 ) and vj ∈ L(tij ) for each j ≥ 1.

Assume that α ∈ L(A) and consider an accepting run ρ of A on α. Consider
the form of this run to be q0

u−→ q1
v1−→ q2

v2−→ q3 · · · , and let R be the set of
those states which occur infinitely often in this form. Since α ∈ L(A), there is
a state q ∈ F such that q is visited infinitely often in ρ. Now we argue that
〈P, t〉 has a lasso. We have q1 ∈ Pi0 and therefore q1 ∈ P . We have qi →t qi+1
for all i ≥ 1. Since there are infinitely many accepting states visited in ρ, there
must be a state qk ∈ R with qk →◦ tik

qk+1 and therefore qk →◦ t qk+1. Finally
since qk occurs infinitely often in the above form, there must be a state qn with
n > k and qn →tin

qk, and therefore qn →t qk. So 〈P, t〉 has a lasso and this is
a contradiction to the premise that B is mergeable. ��

Proposition 8. Let {B1, . . . , Bn} be a set of buckets such that each bucket Bi

is mergeable, and for each 〈P, t〉 ∈ RejectP,t there is a bucket Bi with 〈P, t〉 ∈ Bi.
Then L(B1) ∪ · · · ∪ L(Bn) = Σω \ L(A).
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Proof. Let α ∈ L(Bi) for some 1 ≤ i ≤ n. Since Bi is mergeable, by Theorem 7
it follows that α /∈ L(A).

For the other direction, let α ∈ Σω \ L(A). By Theorem 4 and the definition
of RejectP,t, we know that there is a 〈P, t〉 ∈ RejectP,t such that α ∈ L(〈P, t〉).
Then there is a bucket Bi with 〈P, t〉 ∈ Bi and since L(Bi) ⊇ L(〈P, t〉) it follows
that α ∈ L(Bi). ��
Given a set {B1, . . . , Bn} of buckets as in Proposition 8, and automata Ai =
〈Qi, Σ, qi

0, δi, Fi〉 for the languages Lt(Bi), we can now further modify the con-
struction from Section 3 by connecting for each pair 〈P, t〉 ∈ Bi the set P from
the initial PA to the automaton Ai for Lt(Bi), and applying the looping con-
struction on the Ai. This is done formally in the following definition, where we
do not use ε-transitions for the connections and loops as in Figure 1 but directly
eliminate them.

Definition 9. Let {B1, . . . , Bn} be a set of buckets as in Proposition 8 and for
each 1 ≤ i ≤ n let Ai = 〈Qi, Σ, qi

0, δi, Fi〉 be an automaton such that L∗(Ai) =
Lt(Bi). Furthermore assume that the initial states of the Ai do not have incoming
transitions. Then define the automaton A′ := 〈Q′, Σ, q′

0, δ′, F ′〉 with
– Q′ = RSC ∪ ⋃

i Qi,
– q′

0 = {q0},
– F ′ = {∅} ∪ {q1

0, . . . , qn
0 }, and

– δ′(P, a) = {δ∗(P, a)} ∪ {q ∈ Q′ | ∃i
(∃〈P, t〉 ∈ Bi for some t ∧ q ∈ δi(qi

0, a)
)}

for P ⊆ Q and a ∈ Σ, and

– δ′(q, a) =

{
δi(q, a) if δi(q, a) ∩ Fi = ∅
{qi

0} ∪ δi(q, a) otherwise
for q ∈ Qi and a ∈ Σ.

It is easy to see that Lω(A′) = L(B1) ∪ · · · ∪ L(Bn) and by Proposition 8 we
obtain that A′ is an automaton for the complement of L(A).

In the above definition the automata for Lt(Bi) are parameters and we did
not specify how to construct them. Since for a bucket B, it holds Lt(B) =⋃n

〈P,t〉∈B L(t), one can use the transition monoid automaton TMA, setting all
the states t to be final for which some pair 〈P, t〉 is in B. This is how we proceed
in our implementation. In Section 5 we work with specific buckets and for those
provide an alternative construction that allows us to give a better upper bound
on the size of the resulting automata.

Minimizing t-Automata. The automata for the languages Lt(B) that are
obtained from TMA, as described above, are deterministic. As these automata
are very large and have only few accepting states, they likely have many re-
dundant states, too. So a natural approach here is to minimize these automata.
After generating a bucket automaton At(B), our algorithm immediately com-
putes the minimal equivalent deterministic automaton, which in our experiments
often results in much smaller automata for the looping part of the complement
automaton.
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4.3 Experimental Results

In order to compare our complementation method with existing ones, we tried
to reflect the experimental setting of Tsai et al. [15]. They compared four differ-
ent implementations, named Ramsey, Safra-Piterman, Rank, and Slice. Each
of these implement one of the four approaches, Ramsey-based, determinization-
based, rank-based, and slice-based, respectively. They randomly generated 11,000
input automata, each with 15 states, an alphabet of size 2, and combinations
of 11 transition densities and 10 acceptance densities. Then they fed these com-
plementation tasks to a cluster of computers. For each task, they allocated
a 2.83 GHz CPU with 1 GB of memory and 10 minutes computation time.
Since Ramsey performed very poorly in their experiments, they excluded this
implementation from the overall comparison. The other three implementations
were then improved by various heuristics. In the end, the improved versions of
Safra-Piterman, Rank, and Slice had 4 tasks, 3,383 tasks, and 216 tasks that
aborted unsuccessfully, respectively.

We have implemented our ideas in a Java program. It can be obtained from [17],
including its Java source code. Because there is no unique distribution of P-t-
pairs to buckets, we had to agree on a concrete way to fill the buckets. We have
chosen the following greedy algorithm. Maintain a list (B1, . . . , Bn) of buckets,
which can grow if needed. For each pair 〈P, t〉 ∈ RejectP,t, add 〈P, t〉 to the
first bucket Bi such that Bi ∪ {〈P, t〉} is mergeable. If no such bucket exists,
then create a new empty bucket Bn+1 and start over again. The algorithm that
uses all of the above heuristics, the subset construction for the initial part, the
merging of transition profiles for the looping part, and the minimization of the
bucket automata, together with the greedy bucket filling algorithm, is called
improved-Ramsey.

Our complementation jobs were conducted in sequence on a single machine
with a 2.83 GHz CPU, a timeout of 10 minutes, and 4 GB of memory from which
only 1 GB was used for the Java heap space. We used the same 11,000 comple-
mentation tasks as Tsai et al. Out of these, 10,839 finished successfully, 152 ran
out of memory, and 9 violated the time limit. In terms of successfully finished
tasks, this puts improved-Ramsey second place, between Safra-Piterman and
Slice.

The size of the complement automata computed by improved-Ramsey range
from 0 to 337,464 states with an average size of 361.09 states (328.97 after
removing dead states). We were not able to adequately compare these sizes with
the results of [15] for the following reason. Tsai et al. provide average sizes only
for 7,593 of the initial 11,000 automata, namely for those tasks that finished
successfully by all of their implementations. Our numbers, on the other hand,
base upon all 10,839 finished tasks of our implementation.

5 Preorder-Based Optimization

The aim of this section is to improve the Ramsey-based construction in such a
way that the resulting complement automaton is of size 2O(n log n). There are
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two things we have to take care of: The complement automaton is composed
of the initial subset automaton and the part for the ω-iteration, in which for
each transition profile there is one copy of the transition monoid automaton. To
reduce the number of states we have to reduce (1) the number of copies, and (2)
the size of these automata.

In Section 4.2 we have seen that we can merge transition profiles in the looping
part of the complement automaton, as long as the combination of the merged
transition profiles does not introduce an accepting cycle. To obtain an automaton
for the complement it is sufficient to cover RejectP,t by mergeable buckets of
transition profiles.

In this section we show how to systematically do this merging such that the
number of buckets, and the respective size of the automata for the buckets are
of order 2O(n log n). The key idea is that we can merge all transition profiles that
can be embedded into the same preorder in such a way that →◦ edges are strictly
increasing in the order and → edges are not decreasing, thus avoiding accepting
cycles. This is made precise in the following definitions.

A total preorder (or weak order) on P ⊆ Q is a binary relation 	 on P that is
total (for all p, q ∈ P it holds p 	 q or q 	 p), and transitive (for all p, q, r ∈ P
with p 	 q and q 	 r it holds p 	 r). With Pre denote the set of all pairs 〈P,	〉
such that P ⊆ Q and 	 is a total preorder on P .

For any total preorder 	, one can define its corresponding equivalence relation
by p � q ⇔ p 	 q ∧ q 	 p. The resulting equivalence classes are linearly ordered
by [p] ≤ [q] ⇔ p 	 q. As usual one defines [p] < [q] if [p] ≤ [q] ∧ [q] 
≤ [p].

Note that the number of preorders on a set with n elements is bounded by nn

because each preorder can be characterized by a mapping that assigns to each
element of the set a number from 1 to n corresponding to its position in the
order (equivalent elements are mapped to the same number). So the number of
pairs 〈P,	〉 is bounded by 2nnn.

Definition 10. Let 〈P,	〉 ∈ Pre. We say that a transition profile t = 〈→, →◦ 〉
is compatible with 〈P,	〉 if

– t(P ) ⊆ P , and
– for all p, q ∈ P with p → q it holds [p] ≤ [q], and
– for all p, q ∈ P with p →◦ q it holds [p] < [q].

For any preordered set 〈P,	〉, let us define the bucket

B〈P,�〉 := {〈P, t〉 ∈ RSC × RTP | t is compatible with 〈P,	〉}.

It is not difficult to see that these buckets are mergeable in the sense of Section 4.2
and that each pair in RejectP,t is compatible with a suitable preorder.

Lemma 11. B〈P,�〉 is mergeable for each 〈P,	〉 ∈ Pre and for each 〈P, t〉 ∈
RejectP,t, there is a total preorder 	 on P with 〈P, t〉 ∈ B〈P,�〉.

Proof. We start with the first claim. Assume the join of B〈P,�〉 has a lasso.
Then there is a sequence of states p1, . . . , pk, . . . , pn ∈ Q, 1 ≤ k < n with
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p1 ∈ P , pi → pi+1 for all i < n, pk →◦ pk+1, and pn → pk. Since t(P ) ⊆ P for
all t compatible with 〈P,	〉, it holds pi ∈ P for all 1 ≤ i ≤ n by induction on i.
Then we have [pk+1] ≤ [pk+2] ≤ · · · ≤ [pn] ≤ [pk], and [pk] < [pk+1], which is a
contradiction.

To prove the second claim, note that by definition of RejectP,t it holds t(P ) ⊆
P . Consider the directed graph G with vertex set P and edge relation →t. The
SCCs of G are preordered by C1 R C2 iff there is a path from a state p ∈ C1 to a
state q ∈ C2 in G. We make this preorder total by ordering incomparable SCCs
of G in an arbitrary way. We obtain a total preorder R′ on the set of SCCs. This
induces a total preorder 	 on P by p 	 q iff Cp R′ Cq for p ∈ Cp and q ∈ Cq.
Clearly p →t q implies [p] ≤ [q]. Let C ⊆ P be an SCC of G. Then for states
p1, p2 ∈ C, it cannot hold p1 →◦ t p2, as otherwise we can construct an accepting
run q0

u−→ p1
v1−→
F

p2
v2−→ p3 −→ · · · pn

vn−→ p1 · · · of A on a word u(v1 · · · vn)ω

with u ∈ L(P ) and vi ∈ L(t). So p1 →◦ t p2 implies [p1] < [p2]. Altogether, t is
compatible with 〈P,	〉, and thus 〈P, t〉 ∈ B〈P,�〉. ��
According to the above lemma we have already found a covering of RejectP,t by
a number of buckets that is bounded by 2nnn. It remains to show that for a given
preorder 〈P,	〉 the language Lt(B〈P,�〉), that is, those words whose transition
profile is compatible with 〈P,	〉, can be recognized by a “small” automaton.

We realize this as follows. When reading a word v, the automaton keeps track
for each q ∈ Q which are the maximal equivalence classes [p′] and [p′′] of 〈P,	〉
such that in τ(v) there is an → edge from an element of [p′] to q and there is an
→◦ edge from and element of [p′′] to q. This information can easily be updated
when appending a new letter to v, and Lemma 13 shows that it suffices to deduce
whether τ(v) is compatible with 〈P,	〉.

To formalize this idea let M〈P,�〉 be the set of all functions f : Q → P⊥, where
P⊥ = {⊥} ∪ (P/�) and the linear order ≤ on P/� is extended to P⊥ by setting
⊥ < [p] for all [p] ∈ P/�.

The states of the automaton are pairs of such mappings. The initial state is
the pair 〈φε, ψε〉 ∈ M〈P,�〉 × M〈P,�〉 with

φε(q) :=

{
[q] if q ∈ P,

⊥ else;
and ψε(q) :=

{
[q] if q ∈ P ∩ F,

⊥ else.

For two functions φ, ψ ∈ M〈P,�〉 and for a letter a ∈ Σ, we define the update of
φ and ψ by letter a to be 〈φ, ψ〉 · a := 〈φ′, ψ′〉 with

φ′(q) = max{φ(r) | r ∈ Q, r
a−→ q}, and

ψ′(q) =

{
max{φ(r) | r ∈ Q, r

a−→ q} if q ∈ F,

max{ψ(r) | r ∈ Q, r
a−→ q} else.

We use the convention max ∅ = ⊥. Note that the definition depends on the
context 〈P,	〉 in which it is used.

We write 〈φa, ψa〉 for 〈φε, ψε〉 · a, and inductively we write 〈φva, ψva〉 for
〈φv, ψv〉 · a. The function φv maps every state q to the maximal class in
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P/� from which one can reach q by reading v; it maps to max ∅ = ⊥ if no
such class exists. Accordingly, the function ψv maps every state q to the maxi-
mal class from which one can reach q passing an accepting state by reading v;
it maps to ⊥ if no such class exists. We formalize this in the following lemma.

Lemma 12. Let 〈P,	〉 ∈ Pre and v ∈ Σ∗. Then φv(q) = max{[p] | p ∈ P, p
v−→

q} and ψv(q) = max{[p] | p ∈ P, p
v−→
F

q} for each q ∈ Q.

To define the set of final states of the automaton we have to identify those pairs
of functions that indicate whether the transition profile of the current word is
compatible with 〈P,	〉.

Let φ, ψ ∈ M〈P,�〉. We say that the pair 〈φ, ψ〉 is consistent with 〈P,	〉 if
– for all q ∈ Q \ P it holds φ(q) = ⊥, and
– for all q ∈ P it holds φ(q) ≤ [q], and
– for all q ∈ P it holds ψ(q) < [q].

Lemma 13. Let 〈P,	〉 ∈ Pre and v ∈ Σ∗. Then the transition profile τ(v) is
compatible with 〈P,	〉 iff 〈φv, ψv〉 is consistent with 〈P,	〉.
Proof. Let t = τ(v). With Theorem 12 we obtain

t(P ) ⊆ P ⇐⇒ ∀q ∈ Q \ P ¬∃p ∈ P : p
v−→ q

⇐⇒ ∀q ∈ Q \ P : φv(q) = ⊥, as well as

∀p, q ∈ P : (p v−→ q ⇒ [p] ≤ [q]) ⇐⇒ ∀q ∈ P : max{[p] | p ∈ P, p
v−→ q} ≤ [q]

⇐⇒ ∀q ∈ P : φv(q) ≤ [q], and

∀p, q ∈ P : (p v−→
F

q ⇒ [p] < [q]) ⇐⇒ ∀q ∈ P : max{[p] | p ∈ P, p
v−→
F

q} < [q]

⇐⇒ ∀q ∈ P : ψv(q) < [q].

��
Combining the above observations we can define the deterministic automaton
A〈P,�〉 := 〈Q′′, Σ, q′′

0 , δ′′, F ′′〉 as follows:
– Q′′ = {〈P,	, φ, ψ〉 | φ, ψ ∈ M(P )}
– q′′

0 = 〈P,	, φε, ψε〉
– δ′′(〈P,	, φ, ψ〉, a) = {〈P,	, φ′, ψ′〉} where 〈φ′, ψ′〉 = 〈φ, ψ〉 · a
– F ′′ = {〈P,	, φ, ψ〉 | 〈φ, ψ〉 is consistent with 〈P,	〉}
As a consequence of Lemma 13 we obtain the following result.

Lemma 14. For every 〈P,	〉, the automaton A〈P,�〉 accepts those words for
which the transition profile is compatible with 〈P,	〉, that is, L∗(A〈P,�〉) =
Lt(B〈P,�〉).
Now we can plug the automata A〈P,�〉 into the construction from Definition 9.
The results from this section in combination with Proposition 8 imply that the
resulting automaton indeed recognizes the complement language of the original
automaton.
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Theorem 15. Applied to a Büchi automaton with n states, the Ramsey-based
method in combination with preorder merging of transition profiles yields a com-
plement automaton with at most 2n + 2nnn((n + 1)2n + 1) states.

Proof. As mentioned above, the number of pairs 〈P,	〉 is bounded by 2nnn.
The number of states in A〈P,�〉 is not greater than (n + 1)2n. For applying

the ω-iteration to these automata a new initial state has to be introduced.
The initial part of the complement automaton consists of a subset automaton.

Altogether this gives the claimed bound. ��

6 Conclusion

We proposed several heuristics to improve the Ramsey-based Büchi complemen-
tation method. We implemented these heuristics and showed that, in practice,
our implementation can compete with implementations of other complementa-
tion methods. We introduced a novel optimization of the Ramsey-based method
using preorders, with a 2O(n log n) upper bound. From this and from the fact
that the improved Ramsey-based approach yields good experimental results, we
conclude that the Ramsey-based approach still has its place, in contrast to the
results in [15].

Although the preorder-based optimization results in a complement automaton
for which we can prove a better upper bound, our implementation uses a different
strategy (the greedy strategy described in Section 4.3) to construct the buckets.
The reason is that the greedy strategy easily allows to restrict to reachable
transition profiles, while the preorder based approach does not allow this (at
least not directly). Therefore, the improved Ramsey-based method still has to
compute the entire reachable part of the transition monoid, and we are not aware
of any upper bound on its size better than 3n2 . However, the experiments suggest
that in many cases the reachable part of the monoid is much smaller than the
worst case.

We see our paper also in the broader context of comparing and unifying
different complementation methods. Only recently, Fogarty et al. [3] compared
the rank-based with the slice-based method. They combined both approaches
and obtained, utilizing a total preorder on the nodes in a run DAG, a unified
complementation method. We would not be surprised if the improved Ramsey-
based method could also be unified with one of the other methods. This is one
way, of extending our work. A second direction of future work could investigate
whether the heuristics of our work can be used for universality and inclusion
checking of Büchi automata.

Acknowledgments. We thank the authors of [15] for providing the 11,000
example automata, and the anonymous referees for their helpful comments.
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Abstract. We extend H1-clauses with disequalities between paths. This exten-
sion allows conveniently to reason about freshness of keys or nonces, as well
as about more intricate properties such as that a voter may deliver at most one
vote. We show that the extended clauses can be normalized into an equivalent
tree automaton with path disequalities and therefore conclude that satisfiability
of conjunctive queries to predicates defined by such clauses is decidable.

1 Introduction

In general, satisfiability of a finite conjunction of Horn clauses is undecidable. In [12,8],
a class H1 of Horn clauses has been identified for which satisfiability is decidable in
exponential time. The class H1 differs from general Horn clauses in that it requires the
heads of clauses to contain at most one constructor and to be linear, i.e., no variable may
occur twice in the head. Since any finite conjunction of Horn clauses can be approxi-
mated by means of H1-clauses, the decision procedure forH1 can be used for automatic
program analysis based on abstract interpretation, given that the analysis problem can
conveniently be described by means of Horn clauses. This approach has been success-
fully applied to the automatic analysis of secrecy in cryptographic protocols and their
implementation [7].

In [11], the class H1 of Horn clauses has been extended with disequality constraints
on terms. Such kinds of constraints allow to express that a key is fresh, i.e., different
from all keys in a given list.

Example 1. The H1-clauses

fresh_key(X) ⇐ q(X, [ ])
q(X, Z) ⇐ q(X, :: (Y, Z)), X �= Y
q(X, Y ) ⇐ key(X), old_keys(Y )

define a predicate fresh_key which expresses that a key is not contained in the list
old_keys . Here, the upper case letters represent variables, [ ] denotes an empty list, and
:: is the list constructor. The definition of the predicate q ensures that (within the least
model) q(t, [ ]) only holds if q(t, l) holds for a list l where t is not contained in l. ��

In [11], we extended the normalization procedure for H1 from [8,6] to clauses with
term disequality constraints. This procedure transforms every finite set of H1-clauses
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with term disequality constraints into an equivalent finite set of automata clauses with
disequality constraints [9] and thus allows to decide whether or not a given query is
satisfiable.

Disequalities between terms, however, are not expressive enough for expressing
more involved properties of cryptographic protocols than freshness of keys or nonces.
Consider, e.g., a voting protocol where for a submitted vote not freshness of the overall
expression must be checked but that the voter has not submitted any vote so far [4,1].

Example 2. Assume that we are given a list l of votes where each element of l is of the
form vote(p, v) for a constructor symbol vote , a person p who has voted, and his or her
vote v. The next vote vote(p′, v′) then should not only be not contained in the list l but
should differ from all elements of l in the first argument. This can be expressed by the
predicate valid as defined by:

valid(X) ⇐ q(X, [ ])
q(X, Z) ⇐ q(X, :: (Y, Z)), X.1 �= Y.1
q(X, Y ) ⇐ is_vote(X), votes(Y )

The second clause of this definition involves a comparison between the person trying
to vote, identified by X.1, and the leftmost subterm of the first list entry, identified by
Y.1, which denotes one of the persons who have already voted. ��

Disequalities between subterms identified by paths, though, turn out to be provably
more expressive than disequalities between terms. Finite tree automata with disequality
constraints between paths have extensively been studied by Comon and Jacquemard [2]
who showed that emptiness for these automata is decidable. Moreover, they applied this
emptiness test to provide a DEXPTIME algorithm for deciding inductive reducibility
[3]. While for tree automata with term disequalities, universality is decidable [9] — this
problem is undecidable for tree automata with disequalities between paths [5].

In this paper, we consider H1-clauses with disequalities between paths and try to
provide a normalization procedure in the spirit of [8,11] to construct for every finite set
of clauses an equivalent automaton with disequalities between paths. The construction,
turns out to be more intricate than the construction for H1-clauses with disequalities
between terms. The reason is that now extra precautions must be taken that only finitely
many different clauses are encountered during normalization. The key issue is to avoid
that the lengths of paths occurring in constraints grow. In order to deal with that, we
extend the language of constraints by additionally allowing disequalities between arbi-
trary terms which, instead of plain variables, contain path queries to variables. Another
problem arises when a clause is to be split in order to remove variables which do not
occur in the head. In this particular case of quantifier elimination, pigeon-hole like ar-
guments as applied in [11] do no longer suffice. Instead, we develop a novel technique
which is based on blind exploration.

The rest of the paper is organized as follows. Section 2 contains basic notions of
paths and constraints, while Section 3 introduces subclasses of Horn clauses extended
with disequality constraints. Section 4 then compares classes of automata extended with
disequalities with respect to their expressiveness. In Section 5 we provide the normal-
ization procedure for H1-clauses with path disequalities. Finally Section 6 concludes.
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2 Basics

In the following, we consider a fixed finite ranked alphabet Σ of atoms (with arity 0)
and constructor symbols (with arities ≥ 1). In order to avoid trivial cases, we assume
that there is at least one atom and at least one constructor. Let TΣ denote the set of all
ground (i.e., variable-free) terms over Σ. Note that, according to our assumption on Σ,
TΣ is infinite. A labeled path π is a finite sequence (f1, i1).(f2, i2). . . . .(fn, in) where
for every j, fj ∈ Σ and 1 ≤ ij ≤ mj if mj is the arity of fj . As usual, the empty
sequence is denoted ε. An expression X.π for a variable X and a path π is called path
expression. In case, π = ε, we also write X for X.ε.

A general term is built up from path expressions and nullary constructors by means
of constructor application. For a general term t, the sub-term at path π, denoted by t.π,
is recursively defined by:

– t.ε = t;
– (Y.π1).π2 = Y.(π1.π2);
– t.(f, i).π′ = ti.π

′ if t = f(t1, . . . , tm) and 1 ≤ i ≤ m. In particular, for g �= f ,
t.(g, i).π′ is undefined.

Example 3. For an atom a and a binary constructor b, the following expressions ti with

t1 = a t2 = b(b(a, a), X) t3 = b(a, X.(b, 1).(b, 2))

all are general terms. We have, e.g.:

t2.(b, 1).(b, 1) = a t3.(b, 2) = X.(b, 1).(b, 2)
t2.(b, 2).(b, 2) = X.(b, 2) t3.(b, 2).(b, 1) = X.(b, 1).(b, 2).(b, 1)

��

A general disequality constraint is a finite conjunction of general disequalities, each
of which is of the form t1 �= t2 where t1, t2 are general terms. This notion subsumes
term disequality constraints as considered in [9,11] which allow variables X only, i.e.,
rule out path expressions X.π with π �= ε. This notion also subsumes labeled-path
disequality constraints where each disequality is of the form X.π �= t where X.π is
a path expression and t is either another path expression Y.π′ or a ground term, i.e.,
a term not containing any variables or path expressions. In the following, we refer to
general disequality constraints when we mention disequality constraints without further
qualification.

Consider a general term t and a ground substitution θ which provides ground terms
for all variables occurring in t. If θ(X).π is defined for each path expression X.π oc-
curring in t, then tθ is obtained from t by replacing each occurrence of X.π with the
ground term θ(X).π. Otherwise, tθ is undefined. The ground substitution θ satisfies a
disequality t1 �= t2 between general terms t1, t2, if either t1θ or t2θ is undefined, or
both terms are defined but different. In this case, we write θ |= (t1 �= t2). Likewise, we
extend satisfiability to arbitrary monotone Boolean combinations of disequalities by:

θ |= (φ1 ∧ φ2) iff (θ |= φ1) ∧ (θ |= φ2)
θ |= (φ1 ∨ φ2) iff (θ |= φ1) ∨ (θ |= φ2)
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For convenience, we also consider equality constraints t1 = t2 between general terms.
A ground substitution θ satisfies the equality t1 = t2 if and only if it does not satisfy
the corresponding disequality t1 �= t2, i.e., if both t1θ and t2θ are defined and equal.

Lemma 1. For every disequality t1 �= t2 between general terms t1, t2, a finite disjunc-
tion φ of path disequalities can be constructed such that t1 �= t2 is equivalent to φ, i.e.,
for every substitution θ, it holds that θ |= (t1 �= t2) iff θ |= φ.

Proof. In the first step, we observe that the disequality t1 �= t2 is equivalent to a finite
disjunction of disequalities X.π �= t for suitable path expressions X.π and subterms
t occurring in t1 or t2. Now let Π denote the set of all labeled paths π′ such that t.π′

either is a path expression or a ground term. Let Π0 denote the minimal elements in
Π , i.e., the set of all paths π′ ∈ Π where Π does not contain a proper prefix of π′.
The elements in Π0 denote labeled paths in t reaching maximal ground subterms or
path expressions contained in t. Therefore, the subset Π0 is finite. Then the disequality
X.π �= t is equivalent to the disjunction∨

π′∈Π0

X.π.π′ �= t.π′ ��

3 Horn Clauses

Let us briefly introduce the notions of Horn clauses and subclasses of Horn clauses
which we consider here. Essentially, these classes are obtained from the classes con-
sidered in [11] by replacing constraints consisting of disequalities between terms with
constraints consisting of disequalities between terms which now may also refer to path
expressions. Thus, a Horn clause with (now general) disequality constraints is of the
form:

q(t) ⇐ p1(t1), . . . , pk(tk), φ

where φ is a finite conjunction of disequalities between general terms, q, p1, . . . , pk are
unary predicates, t, t1, . . . , tk are (ordinary) terms. Non-unary predicates can be inte-
grated in our framework by equipping their arguments with an implicit constructor. As
usual, q(t) is called the head, while p1(t1), . . . , pk(tk), φ is the body or precondition
of the clause. The Horn clause is from the class H1, if the term t in the head contains
at most one constructor and is linear, i.e., no variable occurs twice in t. For conve-
nience, we adopt the convention that the (distinct) variables in the head are enumerated
X1, . . . , Xk. This means that t either equals X1 or is of the form f(X1, . . . , Xk) for
some constructor of arity k where the case of atoms is subsumed by choosing k = 0
(writing f instead of f() in this case). Moreover for a distinction, variables not occur-
ring in the head will be denoted by Y, Y1, . . . .

The Horn clause is a normal clause if it is of one of the forms:

q(X1) ⇐ φ or
q(f(X1, . . . , Xk)) ⇐ p1(Xi1), . . . , pr(Xir ), φ
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where all variables occurring in the body of the clause also occur in the head. Moreover,
the Horn clause is an automata clause if additionally each variable Xi occurring in the
head occurs exactly once in the literals occurring in the body and the head contains
exactly one constructor, i.e., the clause is of the form:

q(f(X1, . . . , Xk)) ⇐ p1(X1), . . . , pk(Xk), φ .

In particular, each normal clause as well as each automata clause is H1.
Let C denote a (possibly infinite) set of Horn clauses. Then the least model of C is

the least set M such that q(tθ) ∈ M for a ground substitution θ whenever there is a
Horn clause q(t) ⇐ p1(t1), . . . , pk(tk), φ such that pi(tiθ) ∈ M for all i = 1, . . . , k,
and θ |= φ. The set of all all terms s with q(s) ∈ M , for a given predicate q, then is
denoted by [[q]]C . Similar to the case of ordinary Horn clauses or Horn clauses with term
constraints, we have:

Lemma 2 ([11]). For every finite set N of normal clauses, a finite set A of automata
clauses can be effectively constructed such that for every predicate p occurring in N ,
[[p]]N = [[p]]A. ��

Example 4. For terms t, let s0(t) = t, si+1(t) = s(si(t)). Consider the set N of normal
clauses:

adult(pers(X1, X2)) ⇐ age(X1),name(X2), old(X1)
old(X1) ⇐

∧
i≤18 X1 �= si(0)

age(0) ⇐
age(s(X1)) ⇐ age(X1)

In order to construct a corresponding finite set of automata clauses, the variables X1

occurring in the heads of normal clauses p(X1) ⇐ φ are instantiated with all terms
c(X1, . . . , Xk), c a constructor of arity k ≥ 0. Additionally, we introduce auxiliary
predicates for all conjunctions of predicates, possibly occurring in preconditions. For
the set N of normal clauses, we obtain the set A of clauses:

adult(pers(X1, X2)) ⇐ age_old(X1),name(X2) �(0) ⇐
old(s(X1)) ⇐ �(X1),

∧
i≤17 X1 �= si(0) �(s(X1)) ⇐ �(X1)

age_old(s(X1)) ⇐ age(X1),
∧

i≤17 X1 �= si(0) age(0) ⇐
�(pers(X1, X2)) ⇐ �(X1),�(X2) age(s(X1)) ⇐ age(X1)
old(pers(X1, X2)) ⇐ �(X1),�(X2)

From the three possible new clauses defining the predicate old , we only kept the clauses
for the constructors s and pers , since the precondition of the clause

old(0) ⇐
∧

i≤18

0 �= si(0)

contains the disequality 0 �= 0 which is unsatisfiable. Concerning the required conjunc-
tions, the new predicate � denotes the empty conjunction of predicates, i.e., accepts all
terms in TΣ where Σ = {0, s, pers} is given by the atoms and constructors occurring
in N . And the new predicate age_old, on the other hand represents the conjunction of
the predicates age and old . ��
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4 Automata Classes and Expressiveness

A finite set of automata clauses together with a finite set of accepting predicates can be
considered as a non-deterministic tree automaton with disequality constraints. Different
classes of disequality constraints thus correspond to different classes of tree automata.
Automata clauses with term disequality constraints have been considered in [11], while
tree automata with disequalities of path expressions have been investigated by Comon
and Jacquemard [2]. In fact, they have only considered disequalities between unlabeled
paths. Unlabeled paths are obtained from labeled paths (f1, i1). . . . . (fn, in) by omit-
ting the labels f1, . . . , fn. The resulting automata, though, are equally expressive since
the constructors occurring in paths can be recorded by means of specialized predicates.
E.g., a clause

p(f(X1, X2)) ⇐ q(X1), r(X2), X1.(f, 1) �= X2

is replaced by the clauses

pf(_,_)(f(X1, X2)) ⇐ qf(_,_)(X1), rt(X2), X1.1 �= X2

pf(_,_)(f(X1, X2)) ⇐ qg(_,...,_)(X1), rt(X2)

for arbitrary patterns t and all g �= f . In this construction, only those patterns are enu-
merated which are made up from suffixes of paths occurring in the given set of automata
clauses. For the reverse direction, we observe that every unlabeled-path disequality is
equivalent to a finite conjunction of labeled-path disequalities (since Σ is finite). Re-
calling Lemma 1, the following simulations therefore can be proven.

Theorem 1. Assume that C is a finite subset of automata clauses with general term
disequality constraints. Then the following holds:

1. A finite subset C′ of automata clauses with labeled-path disequality constraints can
be effectively constructed such that for every predicate p, [[p]]C = [[p]]C′ .

2. A finite subset C′′ of automata clauses with unlabeled-path disequality constraints
can be effectively constructed such that for all predicates p, [[p]]C = [[p]]C′′ .

��

In [2], it has also been proven that emptiness for finite tree automata with unlabeled-
path disequality constraints is decidable. From that, we deduce that emptiness is also
decidable for automata clauses with general term disequalities. We have:

Corollary 1. Given a finite set C of automata clauses with general term disequality
constraints and a predicate p, it is decidable whether or not [[p]]C = ∅. Moreover in
case that [[p]]C �= ∅, a witness t ∈ [[p]]C can effectively be computed. ��

Since unlabeled-path disequality constraints can be expressed by means of labeled-path
disequality constraints, and labeled-path disequality constraints are a special case of
general term disequality constraints, all three classes of automata clauses compared in
Theorem 1, are equally expressive.

Term disequality constraints are special cases of general term disequality constraints.
Therefore by Theorem 1, automata clauses with term disequality constraints can be sim-
ulated by means of automata clauses with labeled-path or unlabeled-path disequality
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constraints. The reverse simulation, though, is not possible. One indication is that uni-
versality is decidable [9] for tree automata with term disequality constraints — while it
is undecidable for tree automata with path disequality constraints, since emptiness for
automata with path equalities only [5] is undecidable.

Here, we additionally present a specific language T which can be expressed as [[p]]C
for a finite set C of automata clauses with labeled-path disequality constraints, but which
cannot be characterized by means of finite sets of automata clauses with term disequal-
ity constraints only. Let T = [[p]]C for the following set C of automata clauses:

p(f(X1, X2)) ⇐ �(X1),�(X2), X1 �= X2.(f, 1)
�(f(X1, X2)) ⇐ �(X1),�(X2)
�(a) ⇐

Lemma 3. There is no finite set C′ of automata clauses with term disequality con-
straints which define a predicate p such that [[p]]C = [[p]]C′ .

Proof. Assume for a contradiction that there is such a finite set C′ which defines such
a predicate p. Then we construct a finite set N of normal clauses for C′ using equal-
ity term constraints only such that for every predicate q of C′, N has a predicate q̄
with [[q̄]]N is the complement of [[q]]C′ . This set is constructed as follows. Assume that
q(f(X1, . . . , Xk)) ⇐ li1, . . . , liri for i = 1, . . . , m are the clauses for q and construc-
tor f where each lij either is a literal of the form p′(Xs) or a single disequality. Then
the predicate q̄ for constructor f is defined by the set of all clauses

q̄(f(X1, . . . , Xk)) ⇐
∧

1≤i≤m

l̄iji

where for each i, 1 ≤ ji ≤ ri. For a literal liji of the form p′(Xs), l̄iji is given
by p̄′(Xs), and if liji equals a disequality t1 �= t2, l̄iji is given by t1 = t2. By this
construction the resulting clauses contain equality constraints only. As in Lemma 2, a
finite set A of automata clauses with term equality constraints can be computed such
that for all predicates q̄ of N , [[q̄]]N = [[q̄]]A.

A similar construction for automata without constraints has been described in [10].
Another variant recently has been presented in [5].

Let T denote the complement of T , i.e., the set TΣ \ T . T consists of all elements of
the form

f(t, f(t, s))

for arbitrary terms s, t. By construction, [[p̄]]A = T̄ . Then A must contain a clause

p(f(X1, X2)) ⇐ q1(X1), q2(X2), φ

where φ is a finite conjunction of term equalities, such that there are distinct ground
terms t1, t2 ∈ [[q1]]A and for i = 1, 2 there are two distinct terms ti1, ti2 such that
f(ti, tij) ∈ [[q2]]A and f(ti, f(ti, tij)) ∈ [[p]]A by application of this clause. This means
for θij(X1) = ti and θij(X2) = f(ti, tij), that θij |= φ. In order to see this, we first
convince ourselves that for every term t there must be some clause ct by which for
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two distinct terms s1, s2, facts p(f(t, f(t, s1))) and p(f(t, f(t, s2))) can be derived.
Assume for a contradiction, this were not the case. Then for some t and every clause c
for predicate p, there is at most one term tc such that a fact p(f(t, f(t, tc))) is derived
by means of c. Accordingly, for this t, the set {s | f(t, f(t, s)) ∈ T̄} were finite —
which is not the case. Consequently, for every t we can find a clause ct by which for
two distinct terms s1, s2, facts p(f(t, f(t, s1))) and p(f(t, f(t, s2))) can be derived.
Since the number of terms is infinite while the number of clauses is finite, we conclude
that there must be two distinct terms t1, t2 for which the clauses ct1 and ct2 coincide.

Now recall that each finite conjunction of term equalities si = sj between arbitrary
terms si, sj can be expressed as a finite conjunction of term equalities of the form
Z = s for variables Z . W.l.o.g. let φ be of this form. Furthermore, recall that a term
equality Z = s where s contains Z either is trivially true or trivially false. In addition
to equalities X1 = X1 and X2 = X2, the satisfiable constraint φ therefore can only
contain equalities of one of the following forms:

(1) X1 = g or X2 = g, where g denotes a ground term;
(2) X1 = s, where s contains variable X2;
(3) X2 = s, where s contains variable X1

In the following, we show that an equality of any of these forms leads to a contradiction.
Case 1. Assume that there is an equality Xr = g for some ground term g. If r = 1,

then either t1 �= g or t2 �= g implying that θij �|= (Xr = g) for some i, j. If on
the other hand, r = 2, then either f(t1, t11) �= g or f(t1, t12) �= g, and hence also
θij �|= (Xr = g) for some i, j.

Case 2. Assume that there is an equality X1 = s where s contains X2. If θ11 |=
(X1 = s), then t1 would contain the term f(t1, t11) — which is impossible.
Case 3. Finally, assume that there is an equality X2 = s where s contains X1.

Then consider the two substitutions θ11 and θ12. If θ11 |= (X2 = s), we conclude
that f(t1, t11) = θ11(X2) = s[t1/X1]. Then θ12 |= (X2 = s) implies that s[t1/X1]
also equals f(t1, t12), and therefore, f(t1, t11) = f(t1, t12). This however, implies that
t11 = t12 — in contradiction to our assumption.

We conclude that the conjunction φ is equivalent to true. But then [[p]]A must also
contain the term f(t1, f(t2, t21)) — which is not contained in T̄ . This completes the
proof. ��

5 H1-Normalization

This section describes a normalization procedure which constructs for each finite set of
H1-clauses with general term disequalities a finite set of normal clauses with general
term disequalities which is equivalent. The normalization procedure repeatedly applies
three rules. Each rule adds finitely many simpler clauses which are implied by the cur-
rent set of clauses. The three rules are resolution, splitting and propagation. Thus, this
general procedure is quite in-line with the normalization procedures for unconstrained
H1-clauses [8,6] or H1-clauses with (ordinary) term disequalities [11]. In order to make
this idea also work in presence of disequalities involving path expressions, a completely
new construction for splitting is required (see subsection 5.2). Also the argument for
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termination must be appropriately generalized. The following subsections provide the
normalization rules. We refer to the current set of all implied clauses (whether origi-
nally present or added during normalization) as C, while N ⊆ C denotes the subset of
normal clauses in C.

5.1 Resolution

The first type of rules simplifies a complicated clause from C by applying a resolution
step with a normal clause. Assume that C contains a clause h ⇐ α1, p(t), α2, ψ.

If N contains a clause p(X1) ⇐ φ, then we add the clause h ⇐ α1, α2, ψ, ψ′ where
ψ′ = φ[t/X1].

If N has a clause p(f(X1, . . . , Xk)) ⇐ β, φ, and t = f(t1, . . . , tk), then we add the
clause:

h ⇐ α1, α
′, α2, ψ, ψ′

where α′ = β[t1/X1, . . . , tk/Xk] and likewise, ψ′ = φ[t1/X1, . . . , tk/Xk]. These res-
olution steps may introduce new disequalities. The new constraints are obtained from
already available constraints by substitution of terms for variables. We remark, though,
that after simplification of queries t.π with t not a variable, the new constraints only
contain path expressions for paths which are suffixes of paths already occurring in con-
straints of C.

Example 5. Consider again the voting protocol Example 2:

valid (X1) ⇐ q(X1, [ ])
q(X1, X2) ⇐ q(X1, :: (Y, X2)), X1.(vote, 1) �= Y.(vote, 1)
q(X1, X2) ⇐ is_vote(X1), votes(X2)

enhanced with the normal clauses:

empty([ ]) ⇐ hb(pers(X1, X2)) ⇐ nbob(X1), age25(X2)
age15(15) ⇐ ha(pers(X1, X2)) ⇐ nalice(X1), age15(X2)
age25(25) ⇐ pbob(vote(X1, X2)) ⇐ hb(X1)

nalice(alice) ⇐ palice(vote(X1, X2)) ⇐ ha(X1)
nbob(bob) ⇐ votes(:: (X1, X2)) ⇐ pbob(X1), v′(X2)

v′(:: (X1, X2)) ⇐ palice(X1), empty(X2)

to fill the list of already submitted votes with the two entries vote(pers(alice, 15), _)
and vote(pers(bob, 25), _) where _ is intended to represent one of the atoms yes or no
(yes ,no ∈ Σ). Resolving the first two clauses of this example with the third one for the
substitution X2 	→ [ ] and X2 	→:: (Y, X2), respectively, yields the clauses:

valid(X1) ⇐ is_vote(X1), votes([ ])
q(X1, X2) ⇐ is_vote(X1), votes(:: (Y, X2)), X1.(vote, 1) �= Y.(vote, 1)

With the clause votes(:: (X1, X2)) ⇐ pbob(X1), v′(X2), the second new clause can
further be resolved to obtain

q(X1, X2) ⇐ is_vote(X1), pbob(Y ), v′(X2), X1.(vote, 1) �= Y.(vote, 1)
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5.2 Splitting

The next type of saturation rules is concerned with the removal of variables not con-
tained in the head of a clause. Assume that C contains a clause h ⇐ α, ψ and Y is a
variable occurring in α, ψ but not in h. We rearrange the precondition α into a sequence
α′, q1(Y ), . . . , qr(Y ) where α′ does not contain the variable Y . Then we construct a
finite sequence t1, . . . , tl of ground terms such that, w.r.t. N ,

ψ[t1/Y ] ∨ . . . ∨ ψ[tl/Y ]

is equivalent to ∃Y.q1(Y ), . . . , qr(Y ), ψ, and add the clauses

h ⇐ α′, ψ[tj/Y ], j = 1, . . . , l

to the set C. This operation is referred to as splitting.
According to this construction, splitting may introduce new disequalities. As in the

case of resolution, new constraints are obtained from already available constraints by
substitution of (ground) terms. This means that, after simplification of queries t.π with
t not a variable, the new constraints only contain path expressions for paths which are
suffixes of paths already occurring in constraints of C. The remainder of this section
provides a proof that the finite sequence t1, . . . , tl of ground terms exists together with
an effective construction of the tj . For notational convenience, let us assume that we are
not given a finite sequence q1, . . . , qr of predicates but just a single predicate p which
is defined by means of a finite set of automata clauses A.

Theorem 2. Let A be a finite set of automata clauses, p a predicate, and Y a variable.
For every conjunction of labeled-path disequalities ψ, a finite sequence of ground terms
t1, . . . , tl can be constructed such that with respect to A, the disjunction φ = ψ[t1/Y ]∨
. . . ∨ ψ[tl/Y ] is equivalent to the expression ∃Y. p(Y ), ψ.

Proof. W.l.o.g. we assume that the variable Y does not occur on both sides within the
same disequality in ψ. Otherwise, we modify the set A of clauses in such a way that
only those terms of the (original) set [[p]]A are accepted by the predicate p which satisfy
those disequalities.

Now let Π denote the set of path expressions Y.π occurring in ψ, and m the total
number of occurrences of such expressions in ψ. We construct a finite sequence of
terms t1, . . . , tl of [[p]]A such that for each ground substitution θ not mentioning Y ,
the following holds: if θ ⊕ {Y 	→ t} |= ψ for some t ∈ [[p]]A, then also θ ⊕ {Y 	→
ti} |= ψ for some i. Each of the terms ti is generated during one possible run of the
following nondeterministic algorithm. The algorithm starts with one term s0 ∈ [[p]]A. If
no such term exists, the empty sequence is returned. Otherwise, the algorithm adds s0

to the output sequence and proceeds according to one permutation of the occurrences
of path expressions Y.π occurring in ψ. Then it iterates of the path expressions in the
permutation. In the round i for the path expression Y.π, the current set A of automata
clauses is modified in such a way that all terms t with t.π = si−1.π are excluded from
[[p]]A. Let A′ be the resulting set of automata clauses. If [[p]]A′ is empty the algorithm
terminates. Otherwise, a term si ∈ [[p]]A′ is selected and added to the output sequence.
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For the correctness of the approach, consider an arbitrary ground substitution θ
defined for all variables occurring in ψ with the exception of Y . First, assume that
∃Y. p(Y ), ψθ is not satisfiable. Then for no s ∈ [[p]]A, ψθ[s/Y ] is true. Hence, also the
finite disjunction provided by our construction cannot be satisfiable for such a θ, and
therefore is equivalent to ∃Y. p(Y ), ψθ. Now assume that θ |= ∃Y. p(Y ), ψ, i.e., some
s ∈ [[p]]A exists with θ |= ψ[s/Y ]. Then we claim that there exists some s′ occurring
during one run of the nondeterministic algorithm with θ |= ψ[s′/Y ]. We construct this
run as follows. Let s0 ∈ [[p]]A denote the start term of the algorithm. If s0 satisfies all
disequalities, we are done. Otherwise, we choose one disequality Y.π �= t in ψθ which
is not satisfied. This means that s0.π = t. Accordingly, we choose Y.π as the first oc-
currence of a path expression selected by the algorithm. In particular, this means that all
further terms si output by the algorithm will satisfy the disequality Y.π �= t. After each
round, one further disequality is guaranteed to be satisfied – while still s is guaranteed
to be accepted at p by the resulting set A of automata clauses. ��

Corollary 2. Let N be a finite set of normal clauses, q1, . . . , qr a finite sequence of
predicates, and Y a variable. For every conjunction of arbitrary constraints ψ, a fi-
nite sequence of ground terms s1, . . . , sl can be constructed such that with respect
to N , the disjunction φ = ψ[s1/Y ] ∨ . . . ∨ ψ[sl/Y ] is equivalent to the expression
∃Y. q1(Y ), . . . , qr(Y ), ψ.

Proof. First, recall that we can construct a finite set A of automata clauses together with
a predicate p such that [[p]]A = [[q1]]N ∩ . . . ∩ [[qr]]N . Clearly, ∃Y. p(Y ), ψ is implied
by every constraint ψ[s/Y ] with s ∈ [[p]]A.

By Lemma 1, every disequality t1 �= t2 is equivalent to a disjunction of disequal-
ities of the form X.π �= Z.π′ or X.π �= t for variables X, Z and ground terms t.
Accordingly, ψ is equivalent to a disjunction ψ1 ∨ . . . ∨ ψk for suitable labeled-path
constraints ψi. By Theorem 2, each conjunction p(Y ), ψi is equivalent to a disjunction
ψi[si1/Y ] ∨ . . . ∨ ψi[sili/Y ]. Since p(Y ), ψ is equivalent to the disjunction

p(Y ), ψ1 ∨ . . . ∨ p(Y ), ψk

we conclude that it is equivalent to the disjunction:

ψ1[s11/Y ] ∨ . . . ∨ ψk[sklk/Y ]

The latter, on the other hand implies the disjunction

ψ[s11/Y ] ∨ . . . ∨ ψ[sklk/Y ]

Therefore, the sequence s11, . . . , sklk satisfies the requirements of the corollary. ��

Example 6. The resolution steps of Example 5 produced the clause

q(X1, X2) ⇐ is_vote(X1), pbob(Y ), v′(X2), X1.(vote, 1) �= Y.(vote, 1)

In order to decide satisfiability of ∃Y.pbob(Y ), X1.(vote, 1) �= Y.(vote, 1), the algo-
rithm of Theorem 2 starts with the term vote(pers(bob, 25), yes) ∈ [[pbob]]N for the sub-
set N of normal clauses. Then it enforces the disequality s.(vote, 1) �= pers(bob, 25)
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for terms s ∈ [[pbob]]N and finds out by a successful emptiness-test that no such term
exists. Therefore only the normal clause:

q(X1, X2) ⇐ is_vote(X1), v′(X2), X1.(vote, 1) �= pers(bob, 25)

is added. This new clause in turn enables two more resolution steps for the first two
clauses of this voting protocol example, yielding

valid (X1) ⇐ is_vote(X1), v′([ ]), X1.(vote, 1) �= pers(bob, 25)
q(X1, X2) ⇐ is_vote(X1), v′(:: (Y, X2)), X1.(vote, 1) �= pers(bob, 25),

X1.(vote, 1) �= Y.(vote, 1)

for the substitution X2 	→ [ ] and X2 	→:: (Y, X2), respectively. Another resolution step
with the clause v′(:: (X1, X2)) ⇐ palice(X1), empty(X2) now yields:

q(X1, X2) ⇐ is_vote(X1), palice(Y ), empty(X2), X1.(vote, 1) �= pers(bob, 25),
X1.(vote, 1) �= Y.(vote, 1)

with substitution X1 	→ Y . To the last clause, again splitting can be applied in order
to replace the precondition palice(Y ), X1.(vote, 1) �= Y.(vote, 1) with a disjunction of
constraints not containing Y . As is the case with pbob, the algorithm of Theorem 2 only
finds one term for predicate palice, say vote(pers(alice, 15),no). Then for the path
(vote, 1) the term pers(alice, 15) is excluded and palice becomes empty. Thus, the new
normal clause

q(X1, X2) ⇐ is_vote(X1), empty(X2), X1.(vote, 1) �= pers(bob, 25),
X1.(vote, 1) �= pers(alice, 15)

is added. Again the obtained normal clause enables two resolution steps for the first two
clauses of the voting protocol, yielding

valid(X1) ⇐ is_vote(X1), empty([ ]), φ
q(X1, X2) ⇐ is_vote(X1), empty(:: (Y, X2)), X1.(vote, 1) �= Y.(vote, 1), φ

where φ abbreviates the conjunction X1.(vote, 1) �= pers(bob, 25), X1.(vote, 1) �=
pers(alice, 15). Finally a last resolution step with the clause empty([ ]) ⇐ for the first
of these two clauses achieves the result

valid(X1) ⇐ is_vote(X1), φ

where φ again equals X1.(vote, 1) �= pers(bob, 25), X1.(vote, 1) �= pers(alice, 15),
stating that a vote is valid if it is submitted by a person who is different from the two
persons as stored in the given list. ��

5.3 Propagation

The last type of rules considers clauses p(X1) ⇐ q1(X1), . . . , qr(X1), ψ where ψ only
contains the variable X1 (or none). Assume that r > 0, and N contains normal clauses
qj(f(X1, . . . , Xk)) ⇐ αj , ψj for j = 1, . . . , r. Then we add the normal clause:

p(f(X1, . . . , Xk)) ⇐ α1, . . . , αr, ψ1, . . . , ψr, ψ
′
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where ψ′ = ψ[f(X1, . . . , Xk)/X1].
Also this rule may create new disequalities. Again, however, after simplification of

queries t.π where t is not a variable, the new constraints only contain path expressions
for paths which are suffixes of paths already occurring in disequalities of the original
set C.

Example 7. Consider the following variant of the voting protocol example

person(pers(X1, X2)) ⇐ name(X1), age(X2)
adult(X1) ⇐ person(X1),

∧
0≤i≤17 X1.(pers , 2) �= i

valid(vote(X1, Y )) ⇐ q(X1, [ ])
q(X1, X2) ⇐ q(X1, :: (Y, X2)), X1 �= Y.(vote, 1)
q(X1, X2) ⇐ adult(X1), votes(X2)

intending to only allow adults to submit a vote. Here, the first argument of q is a per-
son instead of a vote. Then the second clause is instantiated for constructor pers with
substitution X1 	→ pers(X1, X2). Together with the first clause, we obtain:

adult(pers(X1, X2)) ⇐ name(X1), age(X2),
∧

0≤i≤17

pers(X1, X2).(pers , 2) �= i

or simplified: adult(pers(X1, X2)) ⇐ name(X1), age(X2),
∧

0≤i≤17 X2 �= i ��

Theorem 3. Let C denote a finite set of H1-clauses. Let C denote the set of all clauses
obtained from C by adding all clauses according to the resolution, splitting and prop-
agation rules. Then the subset N of all normal clauses in C is equivalent to C, i.e.,
[[p]]C = [[p]]N for every predicate p occurring in C.

Proof. The proof follows the same lines as the proof of the corresponding statement in
[11]: every clause added to C by means of resolution, splitting or propagation is implied
by the set of H1-clauses in C. Therefore for every predicate p, [[p]]C = [[p]]C . In the
second step one verifies that every fact p(t) which can be deduced by means of the
clauses in C can also be deduced in at most as many steps with clauses from N alone.
This completes the proof. ��

For the proof of termination of H1-normalization we consider families of clauses which
(semantically) only differ in their constraints, and conceptually replace them by sin-
gle clauses whose constraints are disjunctions of (conjunctions of) disequalities. Two
clauses h ⇐ α1, φ1 and h ⇐ α2, φ2 belong to the same family if α1 and α2 contain the
same set of literals.

To enforce termination of H1-normalization it suffices not to add clauses that are
already subsumed by the current set of clauses. A clause h ⇐ α0, φ0 is subsumed by a
set of clauses h ⇐ αi, φi, i ≥ 1, if all clauses belong to the same family and φ0 implies
the disjunction

∨
i≥1 φi.

Theorem 4. Let C denote a finite set of H1-clauses. Let C denote the set of clauses
obtained from C by adding all clauses according to the resolution, splitting and propa-
gation rules that are not subsumed by the current set of clauses. Then C is finite.
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Proof. Since the number of predicates as well as the number of constructors is finite,
there are only finitely many distinct heads of clauses. Also, the number of literals oc-
curring in preconditions is bounded since new literals p(t) are only added for subterms
t of terms already present in the original set C of clauses. Therefore, the number of
occurring families of clauses is finite. For each family f let ψC,f denote the disjunction
of constraints of clauses of C which belong to f . Each clause that is added to C extends
one of the finitely many constraints ψC,f to ψC,f ∨ φ for a conjunction of disequalities
φ. The number of variables in each constraint ψC,f is bounded. Resolution with normal
clauses does not introduce new variables, and propagation steps always produce normal
clauses, which contain at most as many variables as the maximum arity in Σ.

In order to show that the resulting disjunctions eventually are implied, we recall
that in every normalization step, the terms in constraints may grow — but the lengths
of paths in path expressions remain bounded. Therefore, the number of all possibly
occurring path expressions is finite.

In [11] we have shown that for each sequence ψi of conjunctions of (ordinary) term
disequalities over finitely many plain variables, the disjunction

∨m
i=1 ψi, m ≥ 1, even-

tually becomes stable, i.e., there exists some M such that
∨m

i=1 ψi =
∨M

i=1 ψi for all
m ≥ M . This also holds true if we use finitely many path expressions instead of vari-
ables. Therefore a disjunction

∨m
i=1 ψi, m ≥ 1, also eventually becomes stable if each

ψi is a conjunction of general term disequalities if the set of occurring path expressions
is finite.

We conclude that eventually, every newly added clause is subsumed — implying that
the modified normalization procedure terminates with a finite set of clauses C. ��

By Theorem 3 and Theorem 4, H1-normalization constitutes a sound and complete
procedure which constructs for every finite set C of H1-clauses with path disequalities
an equivalent finite set N of normal clauses within finitely many steps. By Lemma 2, N
can in turn be transformed into an equivalent finite set A of automata clauses, for which
by Corollary 1 emptiness can be decided for every predicate. Altogether this proves our
main result:

Theorem 5. Assume that C is a finite set of H1-clauses with general term disequality
constraints. Then a finite set A of automata clauses can be effectively constructed such
that for every predicate p of C, [[p]]C = [[p]]A. In particular, it is decidable whether or
not [[p]]C is empty. ��

6 Conclusion

We showed that finite sets of H1-clauses with path disequalities can be effectively trans-
formed into finite tree automata with path disequalities. By that, we have provided a
procedure to decide arbitrary queries to predicates defined by H1-clauses. From the
proof of termination, however, little information could be extracted about the behavior
of the method on realistic examples. It is a challenging open problem to provide explicit
upper or nontrivial lower bounds to our algorithms.

H1-clauses can be used to approximate general Horn clauses and are therefore suit-
able for the analysis of term-manipulating programs such as cryptographic protocols.
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Beyond unconstrained H1-clauses, H1-clauses with path disequalities additionally al-
low to approximate notions such as freshness of nonces or keys directly and also to
some extent, negative information extracted from failing checks. It remains for future
work to provide a practical implementation of our methods and to evaluate it on realistic
protocols.

Acknowledgements. We thank Florent Jacquemard for a lively discussion, many help-
ful remarks and in particular, for pointing out reference [5].
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Brookes Is Relaxed, Almost!"

Radha Jagadeesan, Gustavo Petri, and James Riely

School of Computing, DePaul University

Abstract. We revisit the Brookes [1996] semantics for a shared variable parallel
programming language in the context of the Total Store Ordering (TSO) relaxed
memory model. We describe a denotational semantics that is fully abstract for
Brookes’ language and also sound for the new commands that are specific to
TSO. Our description supports the folklore sentiment about the simplicity of the
TSO memory model.

1 Introduction

Sequential Consistency (SC), defined by Lamport [1979], enforces total order on mem-
ory operations — reads and writes to the memory — respecting the program order of
each individual thread in the program. Operationally, SC is realized by traditional in-
terleaving semantics, where shared memory is represented as a map from locations to
values. For such an operational semantics, Brookes [1996] describes a fully abstract
denotational view that identifies a process with its transition traces. This technique sup-
ports several approaches to program logics for shared memory concurrent programs
based on separation logic (see Reynolds [2002] for an early survey). For example,
O’Hearn [2007] and Brookes [2007] develop the semantics of Concurrent Separation
Logic (CSL), an adaptation of separation logic to reason about concurrent threads op-
erating on shared memory. CSL has been used to prove correctness of several concur-
rent data structures; for example, [Parkinson et al., 2007] and [Vafeiadis and Parkinson,
2007]. Similarly, Brookes [1996] gives the foundation for refinement approaches to
prove the correctness of concurrent data structures such as in [Turon and Wand, 2011].

There are at least two motivations to consider memory models that are weaker, or
more relaxed, than SC: First, modern multicore architectures permit executions that are
not sequentially consistent. Second, SC disables some common compiler optimizations
for sequential programs, such as the reordering of independent statements. This has led
to a large body of work on on relaxed memory models; Adve and Gharachorloo [1996]
and Adve and Boehm [2010] provide a tutorial introduction with detailed bibliography
on architectures and their impact on language design.

The operational semantics of programming languages in the presence of such relaxed
memory models has now been explored. For example, Boudol and Petri [2009] explore
the operational semantics of a process language with write buffers; Sevcík et al. [2011]
explore the operational semantics of CLight executing with the TSO memory model;
and Jagadeesan et al. [2010] describe the operational semantics of an object language
under the Java Memory Model (JMM) of Manson et al. [2005].
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However, what has not been investigated in the literature is the denotational seman-
tics of a language with a relaxed memory execution model. We solve this open problem
in this paper.

1.1 Overview of the Paper

Our investigations are carried out in the context of the TSO memory model described
in SPARC [1994], recently proposed as the model of x86 architectures by Sewell et al.
[2010]. In TSO, each sequential thread carries its own write buffer that serves as the
initial target of the writes executed by the thread. Thus, TSO permits executions that
are not possible with SC.

To illustrate this relaxed behavior let us consider the canonical example depicted
in 1 below. We have two sequential threads running in parallel. The left thread, with
code (x := 1; y), sets x to 1 and then reads y returning the value read. The thread on
the right, with code (y := 1; x), sets y to 1 and then reads and returns x. We consider
that the initial state has x = y = 0. In the SC model, the execution where both threads
read 0 is impermissible. It is however achieved by the following TSO execution with
write buffers. Below we depict the initial configuration, where both threads have empty
buffers (indicated by /0) and the memory state is denoted by {x :=0,y :=0}.({x :=0,y :=0}, 〈 /0, x :=1;y〉��〈 /0, y :=1;x〉) (1)

The writes performed by a thread go into its write buffer (rather than the shared mem-
ory). Thus, the above process configuration can evolve to({x :=0,y :=0}, 〈[x :=1], y〉��〈[y :=1], x〉)
where 〈[x := 1], y〉 stands for the thread with local buffer containing the assignment of
1 to x, which is not visible to the other thread, and similarly for 〈[y :=1], x〉. Now, both
reads can return the value from the shared store, which is 0.

Of course, the usual SC executions are also available in a TSO model, which we
demonstrate an example execution where both reads yield 1 starting from the initial
process configuration. From the intermediate configuration above, both buffer updates
can nondeterministically move into memory before the reads execute. Then, we get:({x :=1,y :=1}, 〈 /0, y〉��〈 /0, x〉)
leading to an execution where both reads yield 1.

We provide a precise formalization of the denotational semantics for the language
of Brookes [1996] in the context of the TSO memory model. Our model includes the
characteristic mfence instructions of TSO, which terminates only when the local buffer
of the thread executing the instruction is empty.

Our formalization satisfies the Data Race Free (DRF) property Adve and Hill [1990].
Informally, a program is DRF if no SC execution of the program leads to a state in which
a write happens concurrently with another operation on the same location.
A DRF model requires that the programmer view of computation coincides with SC
for programs that satisfy the DRF property.
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Let us review [Brookes, 1996] before adapting it to a TSO setting. We use the
metavariable s to stand for a shared memory, that is a partial map of variables to values,
and C for commands (possibly partially executed). Brookes [1996] views the denotation
of a command, T �C�, as a set of completed transition traces, ranged by the metavari-
able α , and with the form α = (s0,s′0) · (s1,s′1) . . . (sn,s′n). These traces describe the
interaction between a system and its environment, where the following conditions hold.

– The execution starts with the command under consideration, so C0 =C.
– Transitions from sk to s′k model a system step, i.e. ∀k ∈ [0,n] . sk,Ck −→ s′k,Ck+1.
– Transitions from s′k to sk+1 model an environment step.
– The transition trace represents a terminated execution, so Cn = skip.
As in any sensible semantics, skip must be a unit for sequential composition.

skip; C; skip ≡ C (2)

This equation motivates the stuttering and mumbling closure properties. Closure by
stuttering accommodates the case when the system does not move at all but just observes
the current state, i.e. s′i = si. Closure by mumbling permits the combination of system
steps that have no intervening environment step.

We can now describe the model for TSO. The type of command denotations, T �C�,
changes to a function that takes an input buffer b and yields a set of pairs of the form
〈α,b′〉 where α is a transition trace as before, and b′ is the resulting buffer. The pair
〈α,b′〉 is to be understood as follows, where we use P’s as metavariables for threads,
and letting α = (s0,s′0) · (s1,s′1) . . . (sn,s′n).

– The execution of the command starts with the input buffer b, so P0 = 〈b,C〉.
– The state pairs still represent system steps, i.e. ∀k ∈ [0,n] . sk, Pk −→ s′k, Pk+1.
– The change from s′k to sk+1 still represents an environment step.
– The transition trace represents a terminated execution leaving b′ as the resulting

buffer, so Pn = 〈b′, skip〉. Thus, the pending updates in the resulting buffer b′ are yet to
reach the shared memory even though there is no command left to be executed.

Our TSO semantics has analogues of the stuttering and mumbling properties for the
same reasons as discussed above. In addition, it has two buffer closure properties.

Buffer update closure. Consider the program skip. Executions in T �skip�(b) can result
in a smaller buffer b′, because buffer updates can propagate into the shared memory.
Furthermore, the change from b to b′ can be done piecemeal, one buffer update at a
time. Thus, skip should permit any executions of upd(b) defined as the stuttering and
mumbling closure of the set{〈(s0,s

′
0) · · · (sn,s

′
n),b

′〉 | b = [x0 := v0, . . . ,xn := vn]++b′ & ∀i ∈ [0,n] . s′i = si[xi :=vi]
}

Each step in the above trace corresponds to the addition of one buffer update into
memory. Mumbling closure introduces the possibility of multiple buffer updates in one
atomic step.

To validate Equation 2, buffer-update closure permits data to potentially move from
the buffers to shared state before and after any command executes:

〈α1,b1〉 ∈ upd(b),〈α2,b2〉 ∈ T �C�(b1),〈α3,b
′〉 ∈ upd(b2)

〈α1 ·α2 ·α3,b
′〉 ∈ T �C�(b)
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Buffer reduction closure. The program (x := 1;x := 1) simulates the program (x := 1)
(taking the two steps uninterruptedly), whereas the converse is not true. In buffer terms,
this motivates the idea that two identical contiguous writes can be replaced by one copy
of the write without leading to any new behaviors. We formalize this notion of buffer
simulation as a binary relation b1 � b′ and demand:

〈α,b1〉 ∈ T �C�(b), b1 � b′

〈α,b′〉 ∈ T �C�(b)
Results. We present the following results.

– We describe operational and denotational semantics for the language that accom-
modate the extra executions permitted by TSO.

– We prove that our denotational semantics is fully abstract when we observe termi-
nation of programs.

– We use the model to identify some equational principles that hold for parallel
programs under the TSO memory model.
Our results provide some formal validation for the “folklore” sentiment about the sim-
plicity of the TSO memory model.

Organization of paper. We eschew a separate related works section since we cite the re-
lated work in context. In Section 2 we discuss the transition system for the programming
language. We develop the model theory in Section 3, and prove the correspondence be-
tween operational and denotational semantics in Section 4. In Section 5, we illustrate
the differences from Brookes [1996] by describing some laws that hold for programs.
More detailed proof sketches are found in a fuller version of the paper.1

2 Operational Semantics

We assume disjoint sets of variables, x, y and values, v. The only values we consider
are natural numbers. In conditionals, we interprets non-zero (resp. zero) integers as true
(resp. false). As usual we denote by FV(C) the set of free variables of command C.

E ::= x | v | E1 +E2 | ¬E | · · · (Expression)

C, D ::= skip | x :=E | C;D | C��D | if E thenC else D (Command)
| while E doC | local x inC | await E thenC | mfence

P, Q ::= 〈b,C〉 | P;D | P��Q | new x := v in P (Process)

P,Q ::= �–� | P;D | P��Q | P��Q | new x := v in P (Process context)

A buffer, b ∈Buff , is a list of variable/value pairs, with Buff the domain of all buffers. If
b = [x1 :=v1, . . . , xn :=vn], then dom(b)



= {x1, . . . , xn}. We write ++ for concatenation,

/0 for the empty buffer and b|x for the buffer that results from removing x from b. We
consider buffer rewrites (� : Buff ×Buff) that can merge contiguous identical writes,
e.g. [x1 := v1, . . . , xn := vn, xn := vn]� [x1 := v1, . . . , xn := vn].

1 �����������	
����
���������������
���
�����������
����

http://fpl.cs.depaul.edu/jriely/papers/2011brookes.pdf
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Definition 1. The relation � : Buff×Buff is defined inductively as follows.

∀x,v . [x := v, x := v]� [x := v] b � b

b � b1, b1 � b′

b � b′
b1 � b′

1, b2 � b′
2

b1 ++b2 � b′
1 ++b′

2

A memory, s ∈ Σ , is a partial map from variables to values, where Σ is the domain of
all memories. We adopt several notation conventions for partial maps: if s = {x1 := v1,
. . . , xn :=vn}, then dom(s)



= {x1, . . . , xn}. We write s[x := v] for the memory s with the

value of reference x substituted for v, and s[b] to denote the memory which results from
applying the updates contained in b from left to right.

As usual, we suppose a semantic function which maps expressions to functions from
memories to values (in notation �E�s = v). In the forthcoming transition rules, the mem-
ory passed to this function is already updated with (any) relevant buffer. The function
is defined by induction on e as

s(x) = v�x�(s) = v

�E1�(s) = v1, �E2�(s) = v2�E1 +E2�(s) = v1 + v2
. . .

In this paper, we consider that expressions evaluate atomically, following the first lan-
guage considered in Brookes [1996]. There are two standard approaches to formalizing
finer grain semantics; either 1. a compilation of complex expressions to a sequence of
simpler commands that only perform a single read or add local variables, or 2. a direct
formalization in terms of a transition system as done in the later sections of Brookes
[1996]. Our presentation can accommodate either of these changes. We elide details in
the interest of space.

Each sequential thread has its own buffer. Process are parallel compositions of com-
mands. A configuration is a pair of a memory and a process. In Figure 1 we define the
evaluation relation s, P −→ s′, P′, where −→∗ is the reflexive and transitive closure of
the relation −→, and C{[y/x]} denotes the command derived from C by replacing every
occurrence of x with y.

The buffers grow larger in ASSIGN that adds a new update to the buffer, and become
smaller in COMMIT that moves thread local buffer updates into the shared memory.
CTXT-BUF allows contiguous and identical updates in the buffer to be collapsed.

The command skip captures our notion of termination. For example, in SKIP-SEQ,
the succeeding command moves into the evaluation context when the preceding process
evaluates to skip. When a process terminates, its associated buffer is not necessarily
empty; e.g. when x :=E terminates, the update to x might still be in the buffer and not
yet reflected in the shared memory.

The rule FENCE implements mfence as an assertion that can terminate only when the
threads buffer is empty; e.g. x :=E;mfence terminates only when the update to x has
been moved to the shared memory, thus making it visible to every other parallel thread.

The rule PAR-CMD enables the initiation of a parallel composition only when the
buffer is empty. This restriction is in conformance with Appendix J of SPARC [1994]
to ensure that the newly created threads can be scheduled on different processors. For
similar reasons, SKIP-PAR ensures that a parallel composition terminates only when the
buffers of both parallel processes are empty.
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s, 〈b, while E doC〉 −→ s, 〈b, if E then (C;while E doC) else skip〉 (WHILE)

�E�(s[b]) %= 0

s, 〈b, if E thenC else D〉 −→ s, 〈b,C〉 (THEN)
�E�(s[b]) = 0

s, 〈b, if E thenC else D〉 −→ s, 〈b, D〉 (ELSE)

y %∈ dom(b)∪FV(C)

s, 〈b, local x inC〉 −→ s, new y := 0 in 〈b,C{[y/x]}〉 (LOCAL)

�E�s %= 0 s, 〈 /0,C〉 −→∗ s′, 〈 /0, skip〉
s, 〈 /0, await E thenC〉 −→ s′, 〈 /0, skip〉 (AWAIT)

�E�(s[b]) = v

s, 〈b, x :=E〉 −→ s, 〈b++[x :=v], skip〉 (ASSIGN)

s, 〈[x := v]++b,C〉 −→ s[x :=v], 〈b,C〉 (COMMIT)
s, 〈 /0,mfence〉 −→ s, 〈 /0, skip〉 (FENCE)

s, 〈 /0, (C��D)〉 −→ s, 〈 /0,C〉��〈 /0, D〉 (PAR-CMD)
s, 〈 /0, skip〉��〈 /0, skip〉 −→ s, 〈 /0, skip〉 (SKIP-PAR)

s, P −→ s′, P′

s, P��Q −→ s′, P′
��Q

(CTXT-LEFT)
s, Q −→ s′, Q′

s, P��Q −→ s′, P��Q′ (CTXT-RIGHT)

s, new y := v in 〈b, skip〉 −→ s, 〈b|y, skip〉
(SKIP-NEW)

s, 〈 /0, skip〉;D −→ s, 〈 /0, D〉 (SKIP-SEQ)

b�b′

s, 〈b,C〉 −→ s′, 〈b′,C〉 (CTXT-BUF)
s, 〈b,C〉 −→ s, 〈b′,C′〉

s, 〈b,C;D〉 −→ s′, 〈b′,C′;D〉 (CTXT-CMD)

s, P −→ s′, P′

s, P;D −→ s′, P′;D
(CTXT-SEQ)

s[y :=v], P −→ s′, P′ s′(y) = v′

s, new y := v in P −→ s′[y := s(y)], new y := v′ in P′ (CTXT-NEW)

Fig. 1. Evaluation: s, P −→ s′, P′

Our sole use of the local construct is to provide a model of thread-local registers in
the special case when C is a sequential thread. However, our more general formalization
permits the description of state that is shared among parallel processes. The process
context new y := v in P carries the shared state of this variable. The hypothesis on
the initial buffer in LOCAL ensures that any mfence in C does not affect the global x.
The renaming ensures that the updates of CTXT-NEW do not affect the global x. SKIP-
NEW discards any remaining updates to the local y. The commands IF and WHILE are
standard. The AWAIT construct from Brookes [1996] is a conditional critical region. It
provides atomic protection to the entire command C which in our use will be generally
be a series of assignments. The compare-and-set instruction of TSO architectures is
programmable as follows:

cas(x,v,w) = await 1 then if x = v then x :=w else x := v

And similarly for the other atomic instruction of TSO. Following the semantics of ���
in x86-TSO given by Owens et al. [2009], AWAIT ensures that the buffers are empty
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⎡⎣ f lag0 :=1;
if f lag1 = 0 then

CS0

⎤⎦‖
⎡⎣ f lag1 :=1;
if f lag0 = 0 then

CS1

⎤⎦
(a) Dekker Mutual Exclusion

[
data :=1;
f lag :=1

]
‖
⎡⎣local r in

if f lag = 0 then
r :=data

⎤⎦
(b) Safe Publication

Fig. 2. Examples of TSO Programs

before and after the command executes and prevents buffer updates from other threads
cf. the LOKD modifier of Owens et al. [2009]. While TSO does not directly support
such multi-instruction atomic conditional critical regions, our semantics continues to
be sound for a traditional TSO programming model, only providing the simpler ���
and the single-word atomics alluded to above. We use this construct to permit a direct
comparison with Brookes [1996] and use it (as in that work) to construct discriminating
contexts in the proof of full abstraction.

Let us revise some examples of TSO in Figure 2. Dekker’s mutual exclusion algo-
rithm 2a fails under TSO. In initial memories that contain 0 for f lag0 and f lag1, the
initial write of both threads can be put in their internal buffers, remaining unaccessible
to the other thread while the reads can proceed before the updates are performed. Thus,
both threads can get values 0 for their respective reads and execute their critical sec-
tions concurrently. On the other hand, the standard safe publication idiom of Figure 2b
is safe under TSO, since the updates of f lag and data will proceed in order. Thus, if
f lag is seen to have value 1 in the thread to the right, the update of 1 on data has also
propagated to the memory.

We end this section by remarking that our programming language satisfies the
standard DRF guarantee, following traditional proofs, e.g. see Adve and Gharachorloo
[1996]; Boudol and Petri [2009]; Owens et al. [2009].

3 Denotational Semantics

We use α,β etc. for elements of (Σ ×Σ)", the sequences of state pairs, and ε for the
empty trace. We will consider P((Σ ×Σ)") , the powerset of sequences of state pairs,
with the subset ordering. Similar assumptions are made for P((Σ ×Σ)"×Buff), ranged
by the metavariable U . Commands yield functions in Buff → P((Σ ×Σ)"×Buff).

Definition 2. For any b ∈ Buff, define T �C�(b) ∈ P((Σ ×Σ)"×Buff) as follows.

T �C�(b) = {〈(s0,s
′
0) · . . . · (sn,s

′
n)),b

′〉 | ∀k ∈ [0,n− 1] . sk, Pk −→∗ s′k, Pk+1 &

P0 = 〈b,C〉 & Pn = 〈b′, skip〉}
Thus, we only consider transition traces where the residual left of the command is skip,
albeit with potentially unfinished buffer updates.

As in [Brookes, 1996], the transition traces are closed under stuttering and mum-
bling, to capture the reflexivity and transitivity of the operational transition relation.

〈α ·β ,b〉 ∈ U

〈α · (s,s) ·β ,b〉 ∈ U
STUTTERING

〈α · (s,s′) · (s′,s′′) ·β ,b〉 ∈ U

〈α · (s,s′′) ·β ,b〉 ∈ U
MUMBLING
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Let U ∈ P((Σ ×Σ)"×Buff), we define U ‡ to be the smallest set containing U such
that is stuttering and mumbling closed.

Definition 3. Define upd(b) to be the stuttering and mumbling closure of{〈(s0,s′0) · · · (sn,s′n),b′〉 | b = [x0 := v0, . . . ,xn :=vn]++b′ & ∀k ∈ [0,n] . s′k = sk[xk :=vk]
}

And then we can deduce the inclusion: ∀b ∈ Buff . upd(b)⊆ T �skip�(b).
We now let f : Buff → P((Σ × Σ)" ×Buff), and consider the following closure

properties.

〈α1,b1〉 ∈ upd(b), 〈α2,b2〉 ∈ f (b1), 〈α3,b
′〉 ∈ upd(b2)

〈α1 ·α2 ·α3,b
′〉 ∈ f (b)

BUFF-UPD

〈α,b1〉 ∈ f (b), b1 � b′

〈α,b′〉 ∈ f (b)
BUFF-RED

Definition 4. Let f : Buff → P((Σ ×Σ)"×Buff). Then f † is the smallest function (in
the pointwise order) such that:

1. For all b, f (b) is stuttering and mumbling closed.
2. f is buffer-update and buffer-reduction closed.

If f = f †, we say f is closed. Any command yields a closed function.

Lemma 5. For every command C, (T �C�)† = T �C�.

The following auxiliary definitions enable us to describe the equations satisfied by the
transition traces semantics. Let h be a partial function from buffers to sets of transition
traces such that ∀b ∈ Buff . (∃b1 ∈ dom(h) . (∃b′ ∈ Buff . b = b′++b1)); then, there is a
unique closed function that contains h. Formally, we overload the closure notation and
write:

h† = λ b.{〈α ·β ,b′〉 | 〈α,b1〉 ∈ upd(b),〈β ,b′〉 ∈ h(b1)}†

We define the operator �� : (Σ ×Σ)"× (Σ ×Σ)" → P+((Σ ×Σ)") that yields the set of
all interleavings of its arguments. We write it infix and define it inductively.

α��ε = {α} β ∈ α1��α2

β ∈ α2��α1

β ∈ α1��α2

(s0,s
′
0) ·β ∈ ((s0,s

′
0) ·α1)��α2

We say that the system does not alter x in (s0,s′0) · · · (sn,s′n) if ∀k ∈ [1,n] . sk(x) =
s′k(x) and we use (Σ × Σ)"x+ for the set of such transition sequences. We say that the
environment does not alter x in (s0,s′0) · · · (sn,s′n), if ∀k ∈ [1,n− 1] . s′k(x) = sk+1(x)
and we use (Σ ×Σ)"x− for the set of such transition sequences. We write α|x = β |x if
traces α and β are identical except for the values of reference x. We write Buff|x for
the set of buffers that do not have x in their domain. We let �E=0� = λ b.{〈(s,s),b〉 |�E�(s[b]) = 0}† and similarly for �E %=0�.

The transition traces semantics from Theorem 2 satisfies the equations of Figure 3.

Lemma 6. For every command C, �C� = T �C�
The proof is a straightforward structural induction on the command, and we elide it in
the interests of space. In this light, we are able to freely interchange �C� and T �C� in
the rest of the paper.
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�skip� = λb . {〈ε,b〉}†�C;D� = λb . {〈α ·β ,b′〉 | ∃ b1 ∈ Buff . 〈α,b1〉 ∈ �C�(b),〈β ,b′〉 ∈ �D�(b1)}†�mfence� = λb . {〈α, /0〉 ∈ �skip�(b)}�x :=E� = λb . {〈(s,s),b++[x := v]〉 | �E�(s[b]) = v}†�if E thenC else D� = �E=0�;�D� ∪ �E %=0�;�C��while E doC� = (�E %=0�;�C�)";�E=0��await E thenC� = λb ∈ { /0}. {〈(s,s′), /0〉 | �E�(s) %= 0,〈(s,s′), /0〉 ∈ �C�( /0)}†�C1��C2� = λb ∈ { /0} . {〈β , /0〉 | β ∈ β1��β2, ∀i ∈ [1,2] . 〈βi, /0〉 ∈ �Ci�( /0)}†�local x inC� = λb ∈ Buff|x . {〈β ,b′ |x〉 | β ∈ (Σ ×Σ )"x+ ,

∃ 〈β1,b′〉 ∈ �C�(b) . β1 ∈ (Σ ×Σ )"x− & β |x = β1|x}†

Fig. 3. Denotational semantics of TSO + await

4 Full Abstraction

In this section we follow Brookes [1996] as closely as possible in order to highlight the
differences caused by TSO.

The input-output relation of a program is defined using only the shared memory, i.e.
the program is started with an empty buffer and the output state is observed when the
buffer is empty.

Definition 7 (IO). For every command C, IO�C� = {(s,s′) | 〈(s,s′), /0〉 ∈ T �C�( /0)}
Definition 8. The trace α = (s0,s′0) · · · (sn,s′n) is Interference Free (IF) if and only if
for all i ∈ [0,n− 1] we have s′i = si+1.

Notice that every (s,s′) ∈ IO�C� arises from the mumbling closure of IF traces.
We add the following notations for technical convenience:

IO�C�/s = {(s,s′) | (s,s′) ∈ IO�C�}�C�(b)/s = {〈α,b′〉 | 〈α,b′〉 ∈ �C�(b) & α = (s,s′) ·α ′}
Definition 9. The operational ordering compares the IO relation of commands in all
possible command contexts C�–�,

C �IO D ⇐⇒ ∀C�–�,s . FV(C[C])∪FV(C[D])⊆ dom(s)⇒ IO�C[C]�/s ⊆ IO�C[D]�/s

Definition 10. There is a natural ordering induced by the denotational semantics,

C � D ⇐⇒ ∀b,s . FV(C)∪FV(D)∪dom(b)⊆ dom(s)⇒ �C�(b)/s ⊆ �D�(b)/s

In the rest of this section, we prove that � and �IO coincide.
From Figure 3, it is evident that all the program combinators are monotone with

respect to set inclusion. Thus, we deduce the following lemma.

Lemma 11 (Compositional Monotonicity). For all commands C and D,

C � D ⇒∀C�–� . C[C]� C[D]

Since �� and T �� coincide by Theorem 6 we obtain:
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Corollary 12 (Adequacy). For all commands C and D, we have C � D ⇒ C �IO D.

We now introduce some macros that we will use for the following developments. For
all memories s, s′ and buffer b, there is evidently an expression ISs such that

�ISs�(s′[b]) %= 0 ⇔ dom(s) = dom(s′) & (∀x ∈ dom(s) . s(x) = s′[b](x))

Moreover, for all memories s, s′ and buffer b, there is evidently a program consisting of
a sequence of assignments MAKEs such that

s′, 〈b,MAKEs〉 −→∗ s, 〈 /0, skip〉
Finally, for each buffer b, there is evidently a program consisting of a sequence of
assignments MAKEb such that for any s,b′

s, 〈b′,MAKEb〉 −→∗ s[b′], 〈b, skip〉
The program MAKEb can be used to encode input buffers as a command context.

Lemma 13. For any command C and buffers b and b′, �MAKEb′ ;C�(b) = �C�(b++b′).

Proof (SKETCH). By induction on the length of b′. The base case is immediate and the
inductive case follows from the definition of sequential composition.

Corollary 14. For all C1 and C2, C1 %� C2 ⇒∃C,s . �C;C1�( /0)/s %⊆ �C;C2�( /0)/s.

Proof. If �C1�(b)/s %⊆ �C2�(b)/s, choose C =MAKEb.
For the proof of our main result we will need to encode a context that simulates the

environment of an arbitrary trace α . To that end we define the following program.

Definition 15. Given α = (s0,s′0) · · · (sn,s′n), define the command SIMULATEα as

SIMULATEα = await ISs0 then skip;
await ISs′0 then MAKEs1 ;
await ISs′1 then MAKEs2 ;
. . .
await ISs′n−1

then MAKEsn

Intuitively, �SIMULATEα� is given by the closure of the single trace that is “comple-
mentary” to α . Formally,

�SIMULATEα� = λ b ∈ { /0} . {〈(s′0,s1) · (s′1,s2) · · · (s′n−1,sn), /0〉}†

Lemma 16. Given α as in Theorem 15, letting { f lag, f inish} be disjoint from FV(C)∪
dom(b)∪⋃

i(dom(si)∪dom(s′i)), and considering the command context,

C�–� = f lag :=0; f inish :=0;(
MAKEb0 ;
�–�

‖ SIMULATEα

)
we obtain 〈α,b〉 ∈ �MAKEb0;C�( /0) ⇐⇒ 〈α0 · (s0,s′n) · α1, /0〉 ∈ �C[C]�( /0), where
〈α ′, /0〉 ∈ �SIMULATEα�( /0), (s0,s′n) ∈ (α��α ′)‡, 〈α0, /0〉 ∈ upd([ f lag := 0, f inish :=
0]), and 〈α1, /0〉 ∈ upd(b).
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This lemma characterizes the IF traces where the final state before flushing the final
buffer b is s′n, the first state is s0 and the trace terminates by flushing the buffer b. The
variables f lag and f inish play essentially no role in this lemma and are included only
to accommodate the use-case later.

The proof follows Brookes [1996]. For the forward direction, if 〈α,b〉 ∈ �C�( /0),
the IF trace 〈(s0,s′0) · (s′0,s1) · (s1,s′1) · (s′1,s2) · · · (s′n−1,sn) · (sn,s′n),b〉 is in �C[C]�( /0)
by interleaving. Thus, by mumbling closure, 〈(s0,s′n),b〉 ∈ �C[C]�( /0). Conversely,
〈(s0,s′n),b〉 ∈ �C[C]�( /0) for some b only if there is some β that can be interleaved with
(s′0,s1) · (s′1,s2) · · · (s′n−1,sn) to fill up the gaps between si and s′i for all i. Such a trace
yields α by stuttering and mumbling.

A significant difference from Brookes [1996] is that we need to check that the final
buffers – since they are part of the trace semantics – coincide. To that end, we define
the following program CHECKb that “observes” all the updates of buffer b as they are
performed one by one into the memory.

Definition 17. For any buffer b = [x1 := v1, . . . ,xn := vn] and memories s and s̄, define:

CHECKb,s,s̄ = await ISs then MAKEs̄;
await ISs̄[x1:=v1] then MAKEs̄;
. . .
await ISs̄[xn:=vn] then MAKEs̄

Informally, the program CHECKb starts by replacing the state s for a state s̄. In our use
case, s̄ maps every variable to values that do not appear in the trace generating the state
s. The await commands are intended to observe each update from the buffer b of another
thread. Upon observing each update in state s̄ that state is reinitialized to observe the
following buffer update.

Lemma 18. Let { f lag, f inish} be disjoint from FV(C) ∪ dom(b)
⋃

i(dom(si) ∪
dom(s′i)). Let s̄ be any memory such that the range of s̄ is disjoint from the range of
s and b. Considering the command context

C�–� = f lag :=0; f inish :=0;⎛⎜⎜⎜⎜⎝
MAKEb0 ;
�–�;
if f lag then f inish :=1

‖

D;
await 1 then f lag :=1;
await 1 then f lag :=0;
CHECKb,s,s̄;
await ISs̄[ f inish:=1] then skip

⎞⎟⎟⎟⎟⎠
there exist α0 and α1 such that 〈α0,b〉 ∈ �C�(b0) and 〈α1,ε〉 ∈ �D�(ε) with (s0,s) ∈
(α0‖α1)

‡ if and only if IO�C[C]�( /0) %= /0.

Proof (SKETCH). Let 〈α0,b〉 ∈ �C�(b0) and 〈α1, /0〉 ∈ �D� such that (s0,s) ∈ (α0��α1)
‡.

Consider the execution given by the following interleaving:

– obviously we start by executing the initial assignments of f lag and f inish, which are
updated before spawning the new threads,

– C, D execute with an appropriate interleaving to yield the shared memory s and a
buffer b′ for the thread on the left of the parallel component and an empty buffer for
the thread on the right, where b′ � b,
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– we then execute the first await on the right hand of the parallel composition to set
f lag in shared memory,

– the left thread of the parallel composition observes the update on f lag and sets f inish
and this update is added to the buffer of the left hand thread,

– the await on the right hand thread executes unsetting f lag in shared memory,
– CHECKb,s,s̄ terminates successfully since the individual awaits can be interleaved

with the propagation of buffer updates from b into the shared memory,
– the update to f inish moves into shared memory from the buffer of left thread. Since b

was exhausted in the previous step, there is no change in shared memory on dom(s̄),
– the final await in the right thread terminates successfully because f inish is set and

the state remains at s̄[ f inish :=1].
#$

Lemma 19. C1 %� C2 ⇒C1 %�IO C2

Proof (SKETCH). We have to construct a command context to distinguish the IO be-
havior of C1,C2. By Theorem 14, we can assume that �MAKEb0 ;C1�( /0) %⊆ �MAKEb0 ;
C2�( /0). Now let 〈α,b〉 ∈ �C1�( /0)\ �C2�( /0). Consider the program context

C�–� = f lag :=0; f inish :=0;⎛⎜⎜⎜⎜⎝
MAKEb0 ;
�–�;
if f lag then f inish :=1

‖

SIMULATEα ;
await 1 then f lag :=1;
await 1 then f lag :=0;
CHECKb,s,s̄;
await ISs̄[ f inish:=1] then skip

⎞⎟⎟⎟⎟⎠
where f lag, f inish, s̄, s and b satisfy the naming constraints of Lemmas 18 and 16.
Since 〈α,b〉 ∈ �C1�(b0), we use the forward direction of Lemmas 16 and 18 to deduce
that IO�C[C1]�( /0) %= /0. Let IO�C[C2]�( /0) %= /0. Then there are α0 and α ′ with 〈α0,b〉 ∈�C2�(b0) and 〈α ′, /0〉 ∈ �SIMULATEα� such that (s0,s) ∈ {α0‖α ′}‡. So by Theorem 18
〈α,b〉 ∈ �C2�(b0), which is a contradiction. #$

Combining Theorem 12 and Theorem 19, we deduce that the denotational semantics�� is inequationally fully abstract.

Theorem 20 (Full Abstraction). For any commands C and D we have

C � D ⇐⇒ C �IO D

A simple corollary of the proof of Theorem 19 is that it suffices to consider simple
sequential contexts to prove inter-substitutivity of programs. For a given sequential
command D and a given b, consider:

Cb
D�–� = f lag :=0; f inish :=0;⎛⎝ MAKEb;

�–�;
if f lag then f inish :=1

‖ D

⎞⎠
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where f lag and f inish satisfy the naming constraints of Lemmas 18 and 16. Then:

C1 � C2 ⇐⇒ ∀D,b . (IO�Cb
D[C1]� %= /0 ⇒ IO�Cb

D[C2]� %= /0)

This validates the folklore analysis of TSO programs using only sequential testers in
parallel.

5 Examples and Laws

We examine some laws of parallel programming under a TSO memory model, and con-
sider some standard TSO examples from the perspective of the denotational semantics
introduced in Section 3.

Laws of parallel programming. Most of the laws inherited from Brookes [1996] hold
in our setting.

skip;C ≡ C ≡ C;skip (1)
(C1;C2);C3 ≡ C1;(C2;C3) (2)

C1‖C2 ≡ C2‖C1 (3)
(C1‖C2)‖C3 ≡ C1‖(C2‖C3) (4)

(if E thenC0 elseC1);C ≡ if E thenC0;C elseC1;C (5)
while E doC ≡ if E then (C;while E doC) else skip (6)

In (1) and (2) we see that sequential composition is associative with unit skip. Laws (3)
and (4) say that parallel composition is commutative and associative. However, skip
is not a unit for parallel composition in general, since parallel composition requires
flushing the buffers before spawning the threads and when synchronizing them at the
end. Instead what holds is:

skip��C ≡ (mfence;C;mfence)

Law (5) implies that sequential composition distributes into conditionals, and finally
law (6) is the usual unrolling law for while loops. Also, The usual laws for local
variables hold. If x is not free in C then:

local x inC ≡ C
local x inC;D ≡ C; local x in D

local x in (C��D) ≡ C��local x in D

Thread inlining. Thread inlining is always sound in Brookes [1996], where for example
the following rule holds

x := y;C � x := y;��C

In our setting however, this equation holds only if C does not read reference x. In the
case where C reads x, C in the left hand side can potentially access newer local updates
that are not available globally. In this case, a mfence is needed to validate the equation:

x := y;mfence; C � x := y��C
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⎡⎢⎢⎣
local r0,r1 in

x :=1;
r0 :=x;
r1 := y

⎤⎥⎥⎦ ‖

⎡⎢⎢⎣
local r2,r3 in

y :=1;
r2 :=y;
r3 := x

⎤⎥⎥⎦
Possible: r0 = r2 = 1 & r1 = r3 = 0

(a) Buffer Forwarding

[
x :=1

] ‖ [
y :=1

] ‖
⎡⎣local r0,r1 in

r0 :=x;
r1 := y

⎤⎦ ‖
⎡⎣local r2,r3 in

r2 :=y;
r3 := x

⎤⎦
Impossible: r0 = r2 = 0 & r1 = r3 = 1

(b) IRIW

Fig. 4. TSO Examples

Commutation of independent statements. The TSO memory model permits reads to
move ahead of previous writes on independent references. This is generally seen with
the example below. Using the denotational semantics, we are able to prove the inequal-
ity, and moreover the denotations imply the existence of counterexamples to show that
the inequality cannot be strengthened to an equality. Thus we get:⎡⎢⎢⎣

local r in
r := y;
x := 1;
z := r;

⎤⎥⎥⎦ �

⎡⎢⎢⎣
local r in

x :=1;
r := y;
z := r;

⎤⎥⎥⎦ &

⎡⎢⎢⎣
local r in

x :=1;
r := y;
z := r;

⎤⎥⎥⎦ %�

⎡⎢⎢⎣
local r in

r := y;
x :=1;
z := r;

⎤⎥⎥⎦
In general, TSO does not permit writes of independent references or reads of indepen-
dent reference to commute. However, a special case of this latter class of transformation
can be modeled by the capability of reading one threads own writes (as shown in the
example of Figure 4a). Notice in particular that the example in Figure 4a is a case of in-
lining of the standard IRIW example (shown in Figure 4b), which provides evidence of
our previous claim that inlining is not a legal TSO transformation in general. Our deno-
tational semantics is able to explain this relaxed behavior by means of the inequalities
below. In particular, the one on the right can be proved using the inequality discussed
above and the one on the left.⎡⎢⎢⎣

local r in
x :=1;
r :=1;
z := r

⎤⎥⎥⎦�

⎡⎢⎢⎣
local r in

x :=1;
r := x;
z := r

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
local r1,r2 in

r2 := y;
x :=1;
r1 :=1;
z0 := r1;z1 := r2

⎤⎥⎥⎥⎥⎦�

⎡⎢⎢⎢⎢⎣
local r1,r2 in

x :=1;
r1 := x;
r2 := y;
z0 := r1;z1 := r2

⎤⎥⎥⎥⎥⎦
6 Conclusion

We describe how to modify the Brookes semantics for a shared variable parallel pro-
gramming language Brookes [1996] to address the TSO relaxed memory model. We
view our results as the foundations towards two developments: (a) separation logics for
relaxed memory models, and (b) refinement theory for relaxed memory models.
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Abstract. One of the most studied extensions of testing theory to non-
deterministic and probabilistic processes yields unrealistic probabilities
estimations that give rise to two anomalies. First, probabilistic test-
ing equivalence does not imply probabilistic trace equivalence. Second,
probabilistic testing equivalence differentiates processes that perform the
same sequence of actions with the same probability but make internal
choices in different moments and thus, when applied to processes without
probabilities, does not coincide with classical testing equivalence. In this
paper, new versions of probabilistic trace and testing equivalences are
presented for nondeterministic and probabilistic processes that resolve
the two anomalies. Instead of focussing only on suprema and infima of
the set of success probabilities of resolutions of interaction systems, our
testing equivalence matches all the resolutions on the basis of the success
probabilities of their identically labeled computations. A simple spectrum
is provided to relate the new relations with existing ones. It is also shown
that, with our approach, the standard probabilistic testing equivalences
for generative and reactive probabilistic processes can be retrieved.

1 Introduction

The testing theory for concurrent processes [5] is based on the idea that two
processes are equivalent if and only if they cannot be told apart when inter-
acting with their environment, which is represented by arbitrary processes with
distinguished successful actions or states, often called observers. In case purely
nondeterministic processes are considered, this approach has been very success-
ful and the induced relations enjoy a number of interesting properties. Testing
equivalence has been used in many contexts and it is a good compromise between
abstraction and inspection capabilities; it distinguishes processes that have dif-
ferent behaviors with respect to deadlock, but abstracts from the exact moment
in which a process performs internal (unobservable) choices.

When probabilities enter the game, the possible choices in defining the set
of observers, in deciding how to resolve nondeterminism, or in assembling the
results of the observations are many more and can give rise to significantly
different behavioral relations.
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One of the most studied variants of testing equivalence for nondeterministic
and probabilistic processes [17,10,14,6] considers the probability of performing
computations along which the same tests are passed. Due to the possible pres-
ence of equally labeled transitions departing from the same state, there is not
necessarily a single probability value with which a nondeterministic and proba-
bilistic process passes a test. Given two states s1 and s2 and the initial state o of
an observer, the above mentioned probabilistic testing equivalence computes the
probability of performing a successful computation from (s1, o) and (s2, o) in ev-
ery resolution of the interaction systems, then it compares the suprema (

⊔
) and

the infima (
�
) of these values over all possible resolutions of the interaction sys-

tems. This equivalence, which we denote by ∼PTe,��, enjoys nice properties and
possesses logical and equational characterizations but, if contrasted with classical
testing for purely nondeterministic processes [5], suffers from two anomalies.

The first anomaly is that ∼PTe,�� is not always included in one of the most
well-studied probabilistic versions of trace equivalence, namely ∼PTr,dis of [13].
Actually, the inclusion depends on the class of schedulers used for deriving resolu-
tions of interaction systems. It holds if randomized schedulers are admitted [14],
while it does not hold when only deterministic schedulers are considered like
in [17,10,6]. This anomaly could be solved by (i) considering a coarser proba-
bilistic trace equivalence ∼PTr,new that compares the execution probabilities of
single traces rather than trace distributions and (ii) replacing ∼PTe,�� with a
finer probabilistic testing equivalence ∼PTe,new, which does not focus only on
the highest and the lowest probability of passing a test but matches the maxi-
mal resolutions of the interaction systems according to their success probability.
Unfortunately, ∼PTe,new does not overcome the other anomaly.

The second anomaly of ∼PTe,�� (which also affects the testing equivalence
of [14]) is that, when used to test purely nondeterministic processes, it does not
preserve classical testing equivalence. In fact, given two fully nondeterministic
processes that are testing equivalent according to [5], they may be told apart by
∼PTe,�� because observers with probabilistic choices make the latter equivalence
sensitive to the moment of occurrence of internal choices, thus yielding unreal-
istic probability estimations. This problem has been recently tackled in [8] for a
significantly different probabilistic model by relying on a label massaging that
avoids over-/under-estimations of success probabilities in a parallel context.

In this paper, by using ∼PTe,new as a stepping stone, we propose a new prob-
abilistic testing equivalence, ∼PTe,tbt, that solves both anomalies by matching
success probabilities in a trace-by-trace fashion rather than on entire resolutions.
With respect to [8], the interesting feature of our definition is that it does not
require any model modification. We also show that the standard notions of test-
ing equivalences for generative probabilistic processes and reactive probabilistic
processes can be redefined, by following the same approach taken for the general
model, without altering their discriminating power. Finally, we relate ∼PTe,tbt

with some of the other probabilistic equivalences by showing that it is comprised
between ∼PTr,new and a novel probabilistic failure equivalence ∼PF,new, which
in turn is comprised between ∼PTe,tbt and ∼PTe,new.
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2 Nondeterministic and Probabilistic Processes

Processes combining nondeterminism and probability are typically represented
by means of extensions of labeled transitions systems (LTS), in which every
action-labeled transition goes from a source state to a probability distribution
over target states rather than to a single target state. The resulting processes
are essentially Markov decision processes [7] and correspond to a number of
slightly different probabilistic computational models including real nondeter-
minism, among which we mention concurrent Markov chains [16], alternating
probabilistic models [9,17], and probabilistic automata in the sense of [12].

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−−−→) where S is an at most countable set of
states, A is a countable set of transition-labeling actions, and −−−→ ⊆ S ×A×
Distr(S) is a transition relation where Distr(S) is the set of discrete probability
distributions over S.

Given a transition s
a−−−→D, we say that s′ ∈ S is not reachable from s via that

transition if D(s′) = 0, otherwise we say that it is reachable with probability
p = D(s′). The choice among all the transitions departing from s is external and
nondeterministic, while the choice of the target state for a specific transition
is internal and probabilistic. A NPLTS represents (i) a fully nondeterministic
process when every transition leads to a distribution that concentrates all the
probability mass into a single target state, (ii) a fully probabilistic process when
every state has at most one outgoing transition, or (iii) a reactive probabilistic
process [15] when no state has several transitions labeled with the same action.

A NPLTS can be depicted as a directed graph-like structure in which vertices
represent states and action-labeled edges represent action-labeled transitions.

Given a transition s
a−−−→D, the corresponding a-labeled edge goes from the

vertex representing state s to a set of vertices linked by a dashed line, each of
which represents a state s′ such that D(s′) > 0 and is labeled with D(s′) – label
omitted if D(s′) = 1. Figure 1 shows six NPLTS models, with the first two mixing
nondeterminism and probability and the last four being fully probabilistic.

In this setting, a computation is a sequence of state-to-state steps (denoted
by −−−→s) derived from the state-to-distribution transitions of the NPLTS.

Definition 2. Let L = (S,A,−−−→) be a NPLTS, n ∈ N, si ∈ S for all
i = 0, . . . , n, and ai ∈ A for all i = 1, . . . , n. We say that:

c ≡ s0
a1−−−→s s1

a2−−−→s s2 . . . sn−1

an−−−→s sn
is a computation of L of length n going from s0 to sn iff for all i = 1, . . . , n

there exists a transition si−1

ai−−−→Di such that Di(si) > 0, with Di(si) being

the execution probability of step si−1

ai−−−→s si of c conditioned on the selection

of transition si−1

ai−−−→Di of L at state si−1.

In the following, given s ∈ S we denote by Cfin(s) the set of finite-length com-
putations from s. Given c ∈ Cfin(s), we say that c is maximal iff it cannot be
further extended, i.e., it is not a proper prefix of any other element of Cfin(s).
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In order to define testing equivalence, we also need to introduce the notion of
parallel composition of two NPLTS models, borrowed from [10].

Definition 3. Let Li = (Si, A,−−−→i) be a NPLTS for i = 1, 2. The parallel
composition of L1 and L2 is the NPLTS L1 ‖ L2 = (S1 × S2, A,−−−→) where

−−−→ ⊆ (S1×S2)×A×Distr(S1×S2) is such that (s1, s2)
a−−−→D iff s1

a−−−→1 D1

and s2
a−−−→2 D2 with D(s′1, s

′
2) = D1(s

′
1) · D2(s

′
2) for each (s′1, s

′
2) ∈ S1 × S2.

3 Trace Equivalences for NPLTS Models

Trace equivalence for NPLTS models [13] examines the probability of performing
computations labeled with the same action sequences for each possible way of
solving nondeterminism. To formalize this for a NPLTS L, given a state s of L
we take the set of resolutions of s. Each of them is a tree-like structure whose
branching points represent probabilistic choices. This is obtained by unfolding
from s the graph structure underlying L and by selecting at each state a single
transition of L – deterministic scheduler – or a convex combination of equally
labeled transitions of L – randomized scheduler – among all the transitions
possible from that state. Below, we introduce the notion of resolution arising from
a deterministic scheduler as a fully probabilistic NPLTS. In this case, resolutions
coincide with computations if L is fully nondeterministic.

Definition 4. Let L = (S,A,−−−→) be a NPLTS and s ∈ S. We say that a
NPLTS Z = (Z,A,−−−→Z) is a resolution of s obtained via a deterministic
scheduler iff there exists a state correspondence function corr : Z → S such that
s = corr (zs), for some zs ∈ Z, and for all z ∈ Z:

– If z
a−−−→Z D, then corr(z)

a−−−→D′ with D(z′) = D′(corr(z′)) for all z′ ∈ Z.
– If z

a1−−−→Z D1 and z
a2−−−→Z D2, then a1 = a2 and D1 = D2.

Given a state s of a NPLTS L, we denote by Res(s) the set of resolutions of s
obtained via deterministic schedulers. Since Z ∈ Res(s) is fully probabilistic,
the probability prob(c) of executing c ∈ Cfin(zs) can be defined as the product of
the (no longer conditional) execution probabilities of the individual steps of c,
with prob(c) being always equal to 1 if L is fully nondeterministic. This notion
is lifted to C ⊆ Cfin(zs) by letting prob(C) =

∑
c∈C prob(c) whenever C is finite

and none of its computations is a proper prefix of one of the others.
Given α ∈ A∗, we then say that c is compatible with α iff the sequence of

actions labeling the steps of c is equal to α. We denote by CC(zs, α) the set
of computations in Cfin(zs) that are compatible with α. Below we introduce a
variant of the probabilistic trace distribution equivalence of [13] in which only
deterministic schedulers are admitted.

Definition 5. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic trace distribution equivalent, written s1 ∼PTr,dis s2, iff:
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s1

b3 b4b1 b2

s2

b4b1 b2b3 b3 b4b1 b2 b4b1 b2b3

s1 s2
a a

0.5 0.50.5 0.5

a a

0.5 0.50.5 0.5 0.5 0.50.5 0.5
a a

0.5 0.50.5 0.5
a a

two resolutions of two resolutions of

Fig. 1. Counterexample for probabilistic trace equivalences

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all α ∈ A∗:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that for all α ∈ A∗:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

The relation ∼PTr,dis is quite discriminating, because it compares trace distri-
butions and hence imposes a constraint on the execution probability of all the
traces of any pair of matching resolutions. This constraint can be relaxed by
considering a single trace at a time, i.e., by anticipating the quantification over
traces. In this way, differently labeled computations of a resolution are allowed to
be matched by computations of different resolutions, which leads to the following
coarser probabilistic trace equivalence that we will use later on.

Definition 6. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic trace equivalent, written s1 ∼PTr,new s2, iff for all traces α ∈ A∗:

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(CC(zs2 , α)) = prob(CC(zs1 , α))

Theorem 1. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTr,dis s2 =⇒ s1 ∼PTr,new s2

The inclusion of ∼PTr,dis in ∼PTr,new is strict. Indeed, if we consider the two
NPLTS models on the left-hand side of Fig. 1, when bi %= bj for i %= j
we have that s1 ∼PTr,new s2 while s1 %∼PTr,dis s2. In fact, the sets of traces of the
two resolutions of s1 depicted in the figure are {ε, a, a b1, a b2} and {ε, a, a b3, a b4},
respectively, while the sets of traces of the two resolutions of s2 depicted in the
figure are {ε, a, a b1, a b3} and {ε, a, a b2, a b4}, respectively. As a consequence,
neither of the two considered resolutions of s1 (resp. s2) can have the same trace
distribution as one of the two considered resolutions of s2 (resp. s1).

Both probabilistic trace equivalences are totally compatible with classical
trace equivalence ∼Tr [2], i.e., two fully nondeterministic NPLTS models are
related by ∼Tr iff ∼PTr,dis and ∼PTr,new relate them.

Theorem 2. Let (S,A,−−−→) be a fully nondeterministic NPLTS and s1,s2∈S.
Then:

s1 ∼Tr s2 ⇐⇒ s1 ∼PTr,dis s2 ⇐⇒ s1 ∼PTr,new s2
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4 Testing Equivalences for NPLTS Models

Testing equivalence for NPLTS models [17,10,14,6] considers the probability of
performing computations along which the same tests are passed, where tests
specify which actions of a process are permitted at each state and are formalized
as NPLTS models equipped with a success state. For the sake of simplicity, we
restrict ourselves to tests whose underlying graph structure is acyclic – i.e., only
finite-length computations are considered – and finitely branching – i.e., only a
choice among finitely many alternative actions is made available at each state.

Definition 7. A nondeterministic and probabilistic test is an acyclic and finitely-
branching NPLTS T = (O,A,−−−→) where O contains a distinguished success
state denoted by ω that has no outgoing transitions. We say that a computation
of T is successful iff its last state is ω.

Definition 8. Let L = (S,A,−−−→) be a NPLTS and T = (O,A,−−−→T ) be
a nondeterministic and probabilistic test. The interaction system of L and T is
the acyclic and finitely-branching NPLTS I(L, T ) = L‖ T where:

– Every element (s, o) ∈ S × O is called a configuration and is said to be
successful iff o = ω.

– A computation of I(L, T ) is said to be successful iff its last configuration is
successful. Given s ∈ S, o ∈ O, and Z ∈ Res(s, o), we denote by SC(zs,o) the
set of successful computations from the state of Z corresponding to (s, o).

Due to the possible presence of equally labeled transitions departing from the
same state, there is not necessarily a single probability value with which a NPLTS
passes a test. Thus, given two states s1 and s2 of the NPLTS and the initial
state o of the test, we need to compute the probability of performing a successful
computation from (s1, o) and (s2, o) in every resolution of the interaction system.
Then, one option is comparing, for the two configurations, the suprema (

⊔
) and

the infima (
�
) of these values over all resolutions of the interaction system.

Given a state s of a NPLTS L and the initial state o of a nondeterministic and
probabilistic test T , we denote by Resmax(s, o) the set of resolutions in Res(s, o)
that are maximal, i.e., that cannot be further extended in accordance with the
graph structure of I(L, T ) and the constraints of Def. 4. In the following, we will
consider only maximal resolutions because the non-maximal ones would lead to
obtain always 0 as infimum being them unsuccessful.

Definition 9. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [17,10,6], written s1 ∼PTe,�� s2, iff for
all nondeterministic and probabilistic tests T = (O,A,−−−→T ) with initial state
o ∈ O: ⊔

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Resmax(s2,o)

prob(SC(zs2,o))�
Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
�

Z2∈Resmax(s2,o)

prob(SC(zs2,o))
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Following the structure of classical testing equivalence ∼Te for fully nondetermin-
istic processes [5], the constraint on suprema is the may-part of∼PTe,�� while the
constraint on infima is the must-part of ∼PTe,��. The probabilistic testing equiv-
alence of [14] is defined in a similar way, but resolves nondeterminism through
randomized schedulers and makes use of countably many success actions. The
relation ∼PTe,�� possesses several properties investigated in [17,10,6,14], but
suffers from two anomalies when contrasting it with ∼Te.

The first anomaly of ∼PTe,�� is that it is not always included in ∼PTr,dis and
∼PTr,new. The inclusion depends on the class of schedulers that are considered
for deriving resolutions of interaction systems. If randomized schedulers are ad-
mitted, then inclusion holds as shown in [14]. However, this is no longer the case
when only deterministic schedulers are taken into account like in [17,10,6].

For instance, if we take the two NPLTS models on the left-hand side of
Fig. 2(i), when b %= c it turns out that s1 ∼PTe,�� s2 while s1 %∼PTr,dis s2
and s1 %∼PTr,new s2. States s1 and s2 are not related by the two probabilistic
trace equivalences because the maximal resolution of s1 starting with the central
a-transition is not matched by any of the two maximal resolutions of s2 (note
that we would have s1 ∼PTr,dis s2 if randomized schedulers were admitted).
It holds that s1 ∼PTe,�� s2 because, for any test, the same maximal resolution
of s1 cannot give rise to a success probability not comprised between the success
probabilities of the other two maximal resolutions of s1, which basically coincide
with the two maximal resolutions of s2.

The inclusion problem can be overcome by considering ∼PTr,new instead of
∼PTr,dis and by replacing ∼PTe,�� with the finer probabilistic testing equiva-
lence below. This equivalence does not only focus on the highest and the lowest
probability of passing a test but requires matching all maximal resolutions of
the interaction system according to their success probabilities.

Definition 10. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent, written s1 ∼PTe,new s2, iff for all nondeterministic
and probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:

– For each Z1 ∈ Resmax(s1, o) there exists Z2 ∈ Resmax(s2, o) such that:
prob(SC(zs1,o)) = prob(SC(zs2,o))

– For each Z2 ∈ Resmax(s2, o) there exists Z1 ∈ Resmax(s1, o) such that:
prob(SC(zs2,o)) = prob(SC(zs1,o))

Theorem 3. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTe,�� s2

The inclusion of ∼PTe,new in ∼PTe,�� is strict. Indeed, if we consider again the
two NPLTS models on the left-hand side of Fig. 2(i) together with the test next
to them, it turns out that s1 ∼PTe,�� s2 while s1 %∼PTe,new s2. The considered
test distinguishes s1 from s2 with respect to ∼PTe,new because – looking at the
interaction system on the right-hand side of Fig. 2(i) – the maximal resolution
of (s1, o) starting with the central a-transition gives rise to a success probability
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Fig. 2. Counterexamples for probabilistic testing and trace equivalences

equal to 0.25 that is not matched by any of the two maximal resolutions of
(s2, o). These resolutions – not shown in the figure – basically coincide with
the maximal resolutions of (s1, o) starting with the two outermost a-transitions,
hence their success probabilities are respectively 0.5 and 0.

We now show that ∼PTe,new does not suffer from the first anomaly because
it is included in ∼PTr,new. As expected, the inclusion is strict. For instance, if
we consider the two NPLTS models on the left-hand side of Fig. 2(ii) together
with the test next to them, when b %= c it turns out that (s1 ∼PTr,dis s2 and)
s1 ∼PTr,new s2 while s1 %∼PTe,new s2. In fact, the considered test distinguishes s1
from s2 with respect to ∼PTe,new because – looking at the two interaction systems
on the right-hand side of Fig. 2(ii) – the only maximal resolution of (s1, o) gives
rise to a success probability equal to 1 that is not matched by any of the two
maximal resolutions of (s2, o), whose success probabilities are p1 and p2.
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Theorem 4. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTr,new s2

Unfortunately, ∼PTe,new still does not avoid the second anomaly of ∼PTe,��
(which affects [14] too) because it does not preserve ∼Te. In fact, there exist
two fully nondeterministic processes that are testing equivalent according to [5],
but are differentiated by ∼PTe,new when probabilistic choices are present within
tests. The reason is that such probabilistic choices make it possible to take
copies of intermediate states of the processes under test, and thus to enhance
the discriminating power of observers [1].

As an example, if we consider the two NPLTS models on the left-hand side of
the upper part of Fig. 2(iii) together with the test next to them, when c %= d it
turns out that s1 ∼Te s2 while s1 %∼PTe,�� s2 and s1 %∼PTe,new s2. Let us look at
the two interaction systems on the right-hand side of the upper part of Fig. 2(iii),
whose maximal resolutions are shown in the lower part of the same figure. The
considered test distinguishes s1 from s2 with respect to ∼PTe,�� because the
supremum of the success probabilities of the four maximal resolutions of (s1, o)
is 1 – see the second maximal resolution of (s1, o) – whereas the supremum of
the success probabilities of the two maximal resolutions of (s2, o) is equal to the
maximum between p1 and p2. The considered test distinguishes s1 from s2 with
respect to ∼PTe,new because the third maximal resolution of (s1, o) gives rise to
a success probability equal to 0 that is not matched by any of the two maximal
resolutions of (s2, o), whose success probabilities are p1 and p2.

The second anomaly is essentially originated from an unrealistic estimation
of success probabilities. For instance, if we consider again the four maximal res-
olutions of (s1, o) in the lower part of Fig. 2(iii), we have that their success
probabilities are p1, 1, 0, and p2, respectively. However, value 1 is clearly an
overestimation of the success probability, in the same way as value 0 is an un-
derestimation. These two values come from the fact that in each of the two
corresponding maximal resolutions of (s1, o) the deterministic scheduler selects
a different b-transition in the two states of the probabilistic choice. The selection
is instead consistent in the other two maximal resolutions of (s1, o), which thus
yield realistic estimations of the success probability.

The issue of realistic probability estimation has been recently addressed in [8].
Their models are significantly different from ours, with three kinds of transition
(visible, invisible, and probabilistic) and each state having only one kind of out-
going transition. Equally labeled transitions departing from the same state are
tagged to be kept distinct. Moreover, in presence of cycles, models are unfolded
and the tagged transitions are further decorated with the unfolding stage. Since
schedulers, while testing, might encounter several instances of a given state with
tagged transitions, they must resolve nondeterminism consistently in all the in-
stances at the same stage; choices at different stages are instead independent.
Therefore, in Fig. 2(iii) the two pairs of b-transitions in the interaction system
with initial configuration (s1, o) would be identically tagged with bl and br and
the only allowed maximal resolutions of that interaction system would be the
first one (choice of bl) and the fourth one (choice of br).
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5 Trace-by-Trace Redefinition of Testing Equivalence

In this section, we propose a solution to the problem of estimating success prob-
abilities – and hence to the second anomaly – which is alternative to the solution
in [8]. Our solution is not invasive at all, in the sense that it does not require
any transition relabeling. In order to counterbalance the strong discriminating
power deriving from the presence of probabilistic choices within tests, our basic
idea is changing the definition of ∼PTe,new by considering success probabilities
in a trace-by-trace fashion rather than on entire resolutions.

In the following, given a state s of a NPLTS, a state o of a nondeterministic
and probabilistic test, and α ∈ A∗, we denote by Resmax,α(s, o) the set of res-
olutions Z ∈ Resmax(s, o) such that CCmax(zs,o, α) %= ∅, where CCmax(zs,o, α) is
the set of computations in CC(zs,o, α) that are maximal. Moreover, for each such
resolution Z we denote by SCC(zs,o, α) the set of computations in SC(zs,o) that
are compatible with α.

Definition 11. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are trace-
by-trace probabilistic testing equivalent, written s1 ∼PTe,tbt s2, iff for all non-
deterministic and probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O
and for all traces α ∈ A∗:

– For each Z1 ∈ Resmax,α(s1, o) there exists Z2 ∈ Resmax,α(s2, o) such that:
prob(SCC(zs1,o, α)) = prob(SCC(zs2,o, α))

– For each Z2 ∈ Resmax,α(s2, o) there exists Z1 ∈ Resmax,α(s1, o) such that:
prob(SCC(zs2,o, α)) = prob(SCC(zs1,o, α))

If we consider again the two NPLTS models on the left-hand side of the upper
part of Fig. 2(iii), it turns out that s1 ∼PTe,tbt s2. As an example, let us exam-
ine the interaction with the test in the same figure, which originates maximal
computations from (s1, o) or (s2, o) that are all labeled with traces a b, a b c, or
a b d. It is easy to see that, for each of these traces, say α, the probability of per-
forming a successful computation compatible with it in any of the four maximal
resolutions of (s1, o) having a maximal computation labeled with α is matched
by the probability of performing a successful computation compatible with α in
one of the two maximal resolutions of (s2, o), and vice versa. For instance, the
probability p1 (resp. p2) of performing a successful computation compatible with
a b c (resp. a b d) in the second maximal resolution of (s1, o) is matched by the
probability of performing a successful computation compatible with that trace
in the first (resp. second) maximal resolution of (s2, o). As another example, the
probability 0 of performing a successful computation compatible with a b in the
third maximal resolution of (s1, o) is matched by the probability of performing
a successful computation compatible with that trace in any of the two maximal
resolutions of (s2, o).

The previous example shows that ∼PTe,tbt is included neither in ∼PTe,�� nor
in ∼PTe,new. On the other hand, ∼PTe,�� is not included in ∼PTe,tbt as witnessed
by the two NPLTS models in Fig. 2(i), where the considered test distinguishes
s1 from s2 with respect to ∼PTe,tbt. In fact, the probability 0.25 of performing a
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successful computation compatible with a b in the maximal resolution of (s1, o)
beginning with the central a-transition is not matched by the probability 0.5 of
performing a successful computation compatible with a b in the only maximal
resolution of (s2, o) that has a maximal computation labeled with a b. In contrast,
∼PTe,new is (strictly) included in ∼PTe,tbt.

Theorem 5. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PTe,tbt s2

Apart from the use of prob(SCC(zs,o, α)) values instead of prob(SC(zs,o)) values,
another major difference between ∼PTe,tbt and ∼PTe,new is the consideration of
resolutions in Resmax,α(s, o) rather than in Resmax(s, o). The reason is that it is
not appropriate to match the (zero) success probability of unsuccessful maximal
computations labeled with α with the (zero) success probability of computa-
tions labeled with α that are not maximal, as it may happen when considering
Resmax(s, o). For example, let us take the two NPLTS models on the left-hand
side of the following figure:

s1

b1 b2 b3 b4

s2

b1 b3 b2 b4 b1 b2

o( ),s2

b1 b2

s1 o( ),

b1 b2

a a a a a

ω

o

a a

ω ωω ω

a a

where bi %= bj for i %= j. If we employed maximal resolutions not necessarily hav-
ing maximal computations labeled with a, then the test in the figure would not be
able to distinguish s1 from s2 with respect to ∼PTe,tbt. In fact, the success prob-
ability of the maximal resolution of (s1, o) formed by the rightmost a-transition
departing from (s1, o) – which is 0 – would be inappropriately matched by the
success probability of the a-prefix of the only maximal computation of both
maximal resolutions of (s2, o).

We now show that ∼PTe,tbt does not suffer from the two anomalies discussed
in Sect. 4. We start with the inclusion in ∼PTr,new, which is easily met. As
expected, the inclusion is strict. For instance, if we consider again the two NPLTS
models on the left-hand side of Fig. 2(ii) together with the test next to them, it
turns out that (s1 ∼PTr,dis s2 and) s1 ∼PTr,new s2 while s1 %∼PTe,tbt s2. In fact,
the considered test distinguishes s1 from s2 with respect to ∼PTe,tbt because –
looking at the two interaction systems on the right-hand side of Fig. 2(ii) – each
of the two maximal resolutions of (s2, o) has a maximal computation labeled
with a while the only maximal resolution of (s1, o) has not.

Theorem 6. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,tbt s2 =⇒ s1 ∼PTr,new s2

With regard to the second anomaly, we show that ∼PTe,tbt is totally compatible
with ∼Te, in the sense that two fully nondeterministic NPLTS models are related
by ∼Te iff they are related by ∼PTe,tbt regardless of the class of tests. Due to the
anomaly, only partial compatibility results could be provided in [17] for ∼PTe,��,
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because only tests without probabilistic choices (i.e., only fully nondeterministic
tests) could be considered.

Theorem 7. Let (S,A,−−−→) be a fully nondeterministic NPLTS and s1,s2∈S.
Then:

s1 ∼Te s2 ⇐⇒ s1 ∼PTe,tbt s2

We conclude by showing that ∼PTe,tbt is a congruence with respect to parallel
composition of NPLTS models (see Def. 3).

Theorem 8. Let Li = (Si, A,−−−→i) be a NPLTS and si ∈ Si for i = 0, 1, 2
and consider L1 ‖ L0 and L2 ‖ L0. Then:

s1 ∼PTe,tbt s2 =⇒ (s1, s0) ∼PTe,tbt (s2, s0)

6 Placing Trace-by-Trace Testing in the Spectrum

In this section, we show that ∼PTe,tbt is strictly comprised between ∼PTr,new

(see Thm. 6) and a novel probabilistic failure equivalence ∼PF,new that, in turn,
is strictly comprised between ∼PTe,tbt and ∼PTe,new.

In the following, we denote by 2Afin the set of finite subsets of A and we call
failure pair any element β of A∗ × 2Afin, which is formed by a trace α and a finite
action set F . Given a state s of a NPLTS L, Z ∈ Res(s), and c ∈ Cfin(zs), we
say that c is compatible with β iff c ∈ CC(zs, α) and the last state reached by c
has no outgoing transitions in L labeled with an action in F . We denote by
FCC(zs, β) the set of computations in Cfin(zs) that are compatible with β.

Definition 12. Let (S,A,−−−→) be a NPLTS. We say that s1, s2 ∈ S are prob-
abilistic failure equivalent, written s1 ∼PF,new s2, iff for all β ∈ A∗ × 2Afin:

– For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that:
prob(FCC(zs1 , β)) = prob(FCC(zs2 , β))

– For each Z2 ∈ Res(s2) there exists Z1 ∈ Res(s1) such that:
prob(FCC(zs2 , β)) = prob(FCC(zs1 , β))

Theorem 9. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PF,new s2 =⇒ s1 ∼PTe,tbt s2

The inclusion of ∼PF,new in ∼PTe,tbt is strict. For instance, if we consider again
the two NPLTS models on the left-hand side of Fig. 1, when bi %= bj for i %= j
it turns out that s1 ∼PTe,tbt s2 while s1 %∼PF,new s2. In fact, given the failure
pair β = (a, {b1, b2}), the second maximal resolution of s1 has probability 1 of
performing a computation compatible with β, whilst each of the two maximal
resolutions of s2 has probability 0.5.

~PTe,new

~PTe,

~PTe,tbt ~PTr,new

~PTr,dis

~PF,new

Fig. 3. Spectrum of the considered probabilistic equivalences for NPLTS models
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Theorem 10. Let (S,A,−−−→) be a NPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,new s2 =⇒ s1 ∼PF,new s2

The inclusion of ∼PTe,new in ∼PF,new is strict as ∼PTe,new suffers from the second
anomaly. Indeed, if we consider again the two NPLTS models on the left-hand
side of Fig. 2(iii), it holds that s1 ∼PF,new s2 while s1 %∼PTe,new s2.

We also note that ∼PTe,�� is incomparable not only with ∼PTr,dis, ∼PTr,new,
and ∼PTe,tbt, but with ∼PF,new too. The NPLTS models on the left-hand side of
Fig. 2(i) show that ∼PTe,�� is not included in ∼PF,new and the NPLTS models
on the left-hand side of Fig. 2(iii) show that ∼PF,new is not included in ∼PTe,��.
Similarly, ∼PTr,dis is incomparable with ∼PTe,tbt, ∼PF,new, and ∼PTe,new. The
NPLTS models on the left-hand side of Fig. 1 show that ∼PTe,tbt is not in-
cluded in ∼PTr,dis and the NPLTS models on the left-hand side of Fig. 2(ii)
show that ∼PTr,dis is not included in ∼PTe,tbt. Moreover, the NPLTS models
on the left-hand side of Fig. 2(ii) show that ∼PTr,dis is included in neither
∼PF,new nor ∼PTe,new. On the other hand, neither of ∼PF,new and ∼PTe,new

is included in ∼PTr,dis as can be seen by considering two NPLTS models both

having four states si,a, si,b, si,c, and si,− for i = 1, 2 such that: si,a
a−−−→Di,j for

j = 1, 2, 3 withD1,1(s1,b) = 0.6 = 1−D1,1(s1,−),D1,2(s1,b) = 0.4 = 1−D1,2(s1,c),
D1,3(s1,−) = 0.6 = 1− D1,3(s1,c), and D2,j(s2,∗) = 1− D1,j(s1,∗) for ∗ = b, c,−;

si,b
b−−−→Di,b with Di,b(si,−) = 1; and si,c

c−−−→Di,c with Di,b(si,−) = 1.
The relationships among the examined equivalences are summarized in Fig. 3,

where arrows mean more-discriminating-than. For the sake of completeness, we
remark that∼PTe,�� has been characterized in [10,6] through probabilistic simula-
tion equivalence for the may-part and probabilistic failure simulation
equivalence for the must-part.With regard to the variant of [14] based on random-
ized schedulers, the may-part coincides with the coarsest congruence contained
in ∼PTr,dis (again based on randomized schedulers) and the must-part coincides
with the coarsest congruence contained in probabilistic failure distribution equiv-
alence. The probabilistic testing equivalence of [8] has instead been characterized
via probabilistic ready-trace equivalence. Its connection with ∼PTe,tbt is hindered
by the different underlying models and is still an open problem.

7 Trace-by-Trace Testing for GPLTS and RPLTS Models

Our variant of testing equivalence naturally fits to generative and reactive prob-
abilistic processes [15]. In this section, we show that the two testing equivalences
for those two classes of processes can be redefined in a uniform trace-by-trace
fashion without altering their discriminating power.

Definition 13. A probabilistic labeled transition system, PLTS for short, is a
triple (S,A,−−−→) where S is an at most countable set of states, A is a countable
set of transition-labeling actions, and −−−→ ⊆ S ×A×R(0,1] × S is a transition
relation satisfying one of the following two conditions:
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–
∑{| p ∈ R(0,1] | ∃a ∈ A. ∃s′ ∈ S. s a,p−−−→ s′ |} ∈ {0, 1} for all s ∈ S (generative
PLTS, or GPLTS for short).

–
∑{| p ∈ R(0,1] | ∃s′ ∈ S. s

a,p−−−→ s′ |} ∈ {0, 1} for all s ∈ S and a ∈ A (reactive
PLTS, or RPLTS for short).

A test consistent with a PLTS L = (S,A,−−−→L) is an acyclic and finitely-
branching PLTS T = (O,A,−−−→T ) equipped with a success state, which is
generative (resp. reactive) if so is L. Their interaction system is the acyclic and
finitely-branching PLTS I(L, T ) = (S × O,A,−−−→) whose transition relation

−−−→ ⊆ (S×O)×A×R(0,1]×(S×O) is such that (s, o)
a,p−−−→ (s′, o′) iff s

a,p1−−−→L s
′

and o
a,p2−−−→T o

′ with p being equal to:

p1 · p2/
∑{| q1 · q2 | ∃b ∈ A, s′′ ∈ S, o′′ ∈ O. s b,q1−−−→L s

′′ ∧ o b,q2−−−→T o
′′ |} if GPLTS

p1 · p2 if RPLTS
Given s ∈ S and o ∈ O, we denote by SC(s, o) the set of successful computa-
tions of I(L, T ) with initial configuration (s, o) and by SCC(s, o, α) the set of
computations in SC(s, o) that are compatible with α ∈ A∗. Moreover, we denote
by Trmax(s, o) the set of traces labeling the maximal computations from (s, o).

Definition 14. Let (S,A,−−−→) be a GPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [3,4], written s1 ∼PTe,G s2, iff for all
generative probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:

prob(SC(s1, o)) = prob(SC(s2, o))
Definition 15. Let (S,A,−−−→) be a RPLTS. We say that s1, s2 ∈ S are prob-
abilistic testing equivalent according to [11], written s1 ∼PTe,R s2, iff for all
reactive probabilistic tests T = (O,A,−−−→T ) with initial state o ∈ O:⊔

α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
⊔

α∈Trmax(s2,o)

prob(SCC(s2, o, α))�
α∈Trmax(s1,o)

prob(SCC(s1, o, α)) =
�

α∈Trmax(s2,o)

prob(SCC(s2, o, α))

Definition 16. Let L = (S,A,−−−→) be a PLTS. We say that s1, s2 ∈ S are
trace-by-trace probabilistic testing equivalent, written s1 ∼PTe,tbt s2, iff for all
probabilistic tests T = (O,A,−−−→T ) consistent with L with initial state o ∈ O
and for all traces α ∈ A∗:

prob(SCC(s1, o, α)) = prob(SCC(s2, o, α))
Theorem 11. Let (S,A,−−−→) be a GPLTS and s1, s2 ∈ S. Then:

s1 ∼PTe,G s2 ⇐⇒ s1 ∼PTe,tbt s2

Theorem 12. Let (S,A,−−−→) be a RPLTS and s1, s2 ∈ S. Then:
s1 ∼PTe,R s2 ⇐⇒ s1 ∼PTe,tbt s2

8 Conclusion

In this paper, we have proposed solutions for avoiding two anomalies of prob-
abilistic testing equivalence for NPLTS models by (i) matching all resolutions
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on the basis of their success probabilities rather than taking only maximal and
minimal success probabilities and (ii) considering success probabilities in a trace-
by-trace fashion rather than on entire resolutions. The trace-by-trace approach
– which fits also testing equivalences for nondeterministic processes (Thm. 7),
generative probabilistic processes (Thm. 11), and reactive probabilistic processes
(Thm. 12) – thus annihilates the impact of the copying capability introduced by
probabilistic observers. In the future, we would like to find equational and log-
ical characterizations of ∼PTe,tbt. Moreover, we plan to investigate the whole
spectrum of probabilistic behavioral equivalences for NPLTS models.
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Is It a “Good” Encoding of Mixed Choice?�

Kirstin Peters and Uwe Nestmann

Technische Universität Berlin, Germany

Abstract. Mixed choice is a widely-used primitive in process calculi.
It is interesting, as it allows to break symmetries in distributed process
networks. We present an encoding of mixed choice in the context of the
π-calculus and investigate to what extent it can be considered “good”.
As a crucial novelty, we introduce a suitable criterion to measure whether
the degree of distribution in process networks is preserved.

1 Introduction

It is well-known [Pal03, Gor10, PN10] that there is no good encoding from the full
π-calculus—the synchronous π-calculus including mixed choice—into its
asynchronous variant if the encoding translates the parallel operator rigidly (a
criterion included in uniformity in [Pal03]). Palamidessi was the first to point out
that mixed choice strictly raises the absolute expressive power of the synchronous
π-calculus compared to its asynchronous variant. Analysing this result [PN10], we
observed that it boils down to the fact that the full π-calculus can break merely
syntactic symmetries, where its asynchronous variant can not. However, the con-
dition of rigid translation of the parallel operator is rather strict. Therefore, Gorla
proposed the weaker criterion of compositional translation of the source language
operators (see Definition 4 at page 214).We show that this weakening of the struc-
tural condition on the encoding of the parallel operator turns the separation result
into an encodability result, by presenting a good encoding of mixed choice1. So,
merely considering the (abstract) behaviour of terms, the full π-calculus and its
asynchronous variant have the same expressive power.

The situation changes again if we additionally take into account the degree
of distribution. In the area of distributed communicating systems it is natural
to consider distributed algorithms, that perform at least some of their tasks
concurrently. Thus, an answer to the question whether an encoding preserves
the degree of distribution of the original algorithm, becomes important. In order
to measure the preservation of the degree of distribution we introduce a novel
but intuitive (semantic) criterion, which is strictly weaker than the (syntactic)
requirement of rigid translation of the parallel operator. Using this criterion in
addition to the criteria presented in [Gor10], we again obtain, as expected, a
separation result by showing that there is no good encoding of mixed choice
that preserves the degree of distribution of source terms.

� Supported by the DFG (German Research Foundation), grant NE-1505/2-1.
1 Note that this encoding is neither prompt nor is the assumed equivalence � strict, so
the similar separation results of [Gor08] and [Gor10] do not apply here.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 210–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Overview of the Paper. In Section 2, we introduce the considered variants of the
π-calculus, some abbreviations to simplify the presentation of encodings, and
the criteria of [Gor10] to measure the correctness of encodings. In Section 3, we
revisit the encoding given in [Nes00]; based on it, we present a novel encoding,
denoted by � · �ma , of mixed choice. Section 4 discusses in how far an encoding
like � · �ma can preserve the degree of distribution. We conclude in Section 5.

2 Technical Preliminaries

2.1 The π-Calculus

Our source language is the monadic π-calculus as described for instance in
[SW01]. As already demonstrated in [Pal03] the most interesting operator for
a comparison of the expressive power between the full π-calculus and its asyn-
chronous variant is mixed choice, i.e., choice between input and output capabil-
ities. Thus we denote the full π-calculus also by πm. Let N denote a countably
infinite set of names with τ /∈ N andN the set of co-names, i.e.,N ={n | n ∈ N}.
We use lower case letters a, a′, a1, . . . , x, y, . . . to range over names.

Definition 1 (πm). The set of process terms of the synchronous π-calculus
(with mixed choice), denoted by Pm, is given by

P ::= (ν n)P | P1 | P2 | [ a = b ]P | y∗ (x) .P |
∑
i∈I

πi.Pi

π ::= y (x) | y 〈z〉 | τ

where n, a, b, x, y, z ∈ N range over names and I ranges over finite index sets.

The interpretation of process terms is as usual. We consider two subcalculi of
πm. The process terms Ps of πs —the π-calculus with separate choice—are ob-
tained by restricting the choice primitive such that in each choice either no input
guarded or no output guarded alternatives appear. The process terms Pa of the
asynchronous π-calculus πa [Bou92, HT91] are obtained by limiting each sum to
at most one branch and requiring that outputs can only guard the empty sum.

Note that we augment all three variants of the π-Calculus with matching,
because we need it at least in πa to encode mixed choice. Of course, the pres-
ence of match influences the expressive power of πa. However, we do not know,
whether the use of match in the encoding of mixed choice can be circumvented,
although there are reasons indicating that this is indeed not possible. We leave
the consideration of this problem to further research.

We use capital letters P, P ′, P1, . . . , Q,R, . . . to range over processes. Let
fn(P ), bn(P ), and n(P ) denotes the sets of free names, bound names and all
names occurring in P, respectively. Their definitions are completely standard.
Given an input prefix y (x) or an output prefix y 〈x〉 we call y the subject and x
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Taum . . .+ τ.P + . . . �−→ P

Comm (. . .+ y (x) .P + . . .) | (. . .+ y 〈z〉 .Q+ . . .) �−→ {z/x}P | Q

Par
P �−→ P ′

P | Q �−→ P ′ | Q Res
P �−→ P ′

(ν x)P �−→ (ν x)P ′

Cong
P ≡ P ′ P ′ �−→ Q′ Q′ ≡ Q

P �−→ Q

Fig. 1. Reduction Semantics of πm

the object of the action. We denote the subject of an action also as link or channel
name, while we denote the object as value or parameter. Note that in case the
object does not matter we omit it, i.e., we abbreviate an input guarded term
y (x) .P or an output guarded term y 〈x〉 .P such that x %∈ fn(P ) by y.P or y.P ,
respectively. We denote the empty sum with 0 and often omit it in continuations.
As usual, we sometimes write a sum

∑
i∈{i1,...,in} πi.Pi as πi1 .Pi1 + . . .+πin .Pin .

We use σ, σ′, σ1, . . . to range over substitutions. A substitution is a mapping
{x1/y1 , . . . ,

xn/yn} from names to names. The application of a substitution on
a term {x1/y1 , . . . ,

xn/yn} (P ) is defined as the result of simultaneously replac-
ing all free occurrences of yi by xi for i ∈ {1, . . . , n}, possibly applying alpha-
conversion to avoid capture or name clashes. For all names in N \ {y1, . . . , yn},
the substitution behaves as the identity mapping. Let id denote identity, i.e. id
is the empty substitution. We naturally extend substitutions to co-names, i.e.
∀n ∈ N . σ (n) = σ (n) for all substitutions σ.

The reduction semantics of πm is given by the transition rules in Figure 1,
where structural congruence, denoted by ≡, is defined as usual2. The reduction
semantics of πs is the same, and it is even simpler for πa because of the restrictions
on its syntax. As usual, we use ≡α if we refer to alpha-conversion only.

Let P "−→ (P %"−→) denote existence (non-existence) of a step from P , i.e.
there is (no) P ′ ∈ P such that P "−→ P ′. Moreover, let �=⇒ be the reflexive and
transitive closure of "−→ and let "−→∞ define an infinite sequence of steps.

In Section 2.3, we present several criteria to measure the quality of an en-
coding. The first of these criteria relies on the notion of a context. A context
C ([·]1, . . . , [·]n) is a π-term, i.e., a πa-term in case of Definition 4, with n so-called
holes. Plugging the πa-terms P1, . . . , Pn into the respective holes [·]1, . . . , [·]n of
the context, yields a term denoted C (P1, . . . , Pn). A context C ([·]1, . . . , [·]n) can
be seen as a function of type Pa× . . .×Pa → Pa of arity n, applicable to param-
eters P1, . . . , Pn. Note that a context may bind some free names of P1, . . . , Pn.

2 Note that, since we do not use “!” but replicated input, the common rule !P ≡ P |!P
becomes y∗ (x) .P ≡ y (x) .P | y∗ (x) .P .
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2.2 Abbreviations

To shorten the presentation and ease the readability of the rather lengthy en-
coding function in Section 3, we use some abbreviations on πa-terms. First note
that we defined only monadic versions of the calculi πm, πs, and πa, where ac-
cross any link exactly one value is transmitted. However, within the presented
encoding function in Section 3, we treat the target language πa as if it allows for
polyadic communication. More precisely, we allow asynchronous links to carry
any number of values from zero to five, of course under the requirement that
within each πa-term no link name is used twice with different multiplicities. Let
x̃ denote a sequence of names. Note that these polyadic actions can be sim-
ply translated into monadic actions by a standard encoding as given in [SW01].
Thus, we silently use the polyadic version of πa in the following. Second, as
already done in [Nes00], we use the following abbreviations to define boolean
values and a conditional construct.

Definition 2 (Tests on Booleans). Let B � {�,⊥} be the set of boolean
values, where � denotes true and ⊥ denotes false.

Let l , t, f ∈ N and P,Q ∈ Pa. Then a boolean instantiation of l , i.e., the
allocation of a boolean value to a link l , and a test-statement on a boolean
instantiation are defined by

l 〈�〉 � l (t, f) .t

l 〈⊥〉 � l (t, f) .f

test l then P else Q � (ν t, f)
(
l 〈t, f〉 | t.P | f.Q)

for some t, f /∈ fn(P ) ∪ fn(Q).

Finally, we define forwarders, i.e., a simple process to forward each received
message along some specified set of links.

Definition 3 (Forwarder). Let I be a finite index set and for all i ∈ I let y
and yi be channel names with multiplicity n ∈ N, then a forwarder is given by:

y 
 {yi | i ∈ I } � y∗ (x1, . . . , xn) .

(∏
i∈I

yi 〈x1, . . . , xn〉
)

In case of a singleton set we omit the brackets, i.e., y 
 y′ � y 
 {y′}.

2.3 Quality Criteria for Encodings

Within this paper we consider two encodings, (1) an encoding from πs into
πa presented in [Nes00], denoted by � · �sa, and (2) a new encoding from πm
into πa, denoted by � · �ma . To measure the quality of such an encoding, Gorla
[Gor10] suggested five criteria well suited for language comparison. Accordingly,
we consider an encoding to be “good”, if it satisfies Gorla’s five criteria.
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As in [Gor10], an encoding is a mapping from a source into a target language;
in our case, πm and πs are source languages and πa is the target language. To
distinguish terms on these languages or definitions for the respective encodings,
we use m, s, and a as super- and subscripts. Thereby, the superscript usually
refers to the source and the subscript to the target language. Moreover, we use
S, S′, S1, . . . to range over terms of the source languages and T, T ′, T1, . . . to
range over terms of the target language.

The five conditions are divided into two structural and three semantic criteria.
The structural criteria include (1) name invariance and (2) compositionality. The
semantic criteria include (3) operational correspondence, (4) divergence reflection
and (5) success sensitiveness. We do not repeat them formally, here, except for
compositionality. Note that for name invariance and operational correspondence
a behavioural equivalence . on the target language is assumed. Its purpose is to
describe the “abstract” behaviour of a target process, where abstract basically
means “with respect to the behaviour of the source term”.

(1) The first structural criterion name invariance states that the encoding
should not depend on specific names used in the source term. This is important,
as sometimes it is necessary to translate a source term name into a sequence of
names or reserve some names for the encoding function. To ensure that there
are no conflicts between these reserved names and the source term names, the
encoding is equipped with a renaming policy, more precisely, a substitution φ
from names into sequences of names. Note that in the case of � · �sa and � · �ma
the renaming policies are injective substitutions from names into single names.
Based on such a renaming policy, an encoding is independent of specific names
if it preserves all substitutions σ on source terms by a substitution σ′ on target
terms such that σ′ respects the changes made by the renaming policy.

(2) The second structural criterion compositionality aims at relaxing rigidity.
We call the translation of a operator op rigid, if � op � is mapped onto opφ, i.e.,
essentially the same operator, but possibly adapted to comply with the renaming
policy φ. For example, � (ν x)P � = (ν φ(x)) � P � translates the restriction on a
single name into the restriction on the sequence of associated names. Now, we
call the translation of an operator op “merely” compositional if � op � is defined
quite more liberally as a context Cφ

op (of the same arity as op) that mediates
between the translations of op’s parameters, while those parameters are still
translated independently of op. In order to realize this mediation, the context
Cop must at least be allowed to know some of the parameters’ free names.

Definition 4 (Compositionality). The encoding � · � is compositional if, for
every k-ary operator op of the source language and for every subset of names N ,
there exists a k-ary context CN

op ([·]1, . . . , [·]k) such that, for all S1, . . . , Sk with
fn(S1) ∪ . . . ∪ fn(Sk) = N , it holds that

� op (S1, . . . , Sk) � = CN
op (� S1 � , . . . , � Sk �) .

Note that Gorla requires the parallel composition operator “|” to be binary
and unique in both the source and the target language. Thus, compositionality
prevents us from introducing a global coordinator or to use global knowledge, i.e.,
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� ∑
i∈I

πi.Pi

�s

a

� (ν l)

(
l 〈�〉 |

∏
i∈I

� πi.Pi �sa
)

� τ.P �sa � test l then
(
l 〈⊥〉 | � P �sa) else l 〈⊥〉� y 〈z〉 .P �sa � (ν s)

(
y 〈l , s, z〉 | s. � P �sa)� y (x) .P �sa � (ν r)
(
r | r∗.y

(
l ′, s, x

)
.

test l then test l ′ then l 〈⊥〉 | l ′ 〈⊥〉 | s | � P �sa
else l 〈�〉 | l ′ 〈⊥〉 | r

else l 〈⊥〉 | y
〈
l ′, s, x

〉 )
� y∗ (x) .P �sa � y∗ (l , s, x) .test l then l 〈⊥〉 | s | � P �sa else l 〈⊥〉

Fig. 2. Encode πs into πa [Nes00]

knowledge about surrounding source terms or the structure of the parameters.
We discuss this point in Section 4.

(3) The first semantic criterion and usually the most elaborate one to prove
is operational correspondence, which consists of a soundness and a completeness
condition. Completeness requires that every computation of a source term can be
emulated by its translation, i.e., the translation does not shrink the set of compu-
tations of the source term. Note that encodings often translate single source term
steps into sequences of target term steps. We call such sequences emulations of
the corresponding source term step. Soundness requires that every computation
of a target term corresponds to some computation of the corresponding source
term, i.e., the translation does not introduce new computations.

(4) With divergence reflection we require, that any infinite execution of a
target term corresponds to an infinite execution of the respective source.

(5) The last criterion success sensitiveness links the behaviour of source terms
to the behaviour of their encodings. With Gorla [Gor10], we assume a success
operator �as part of the syntax of both the source and the target language, i.e.,
of πm, πs, and πa. Since�can not be further reduced, the operational semantics is
left unchanged in all three cases. Moreover, note that n(�) = fn(�) = bn(�) = ∅,
so also interplay of �with the rules of structural congruence is smooth and does
not require explicit treatment. The test for reachability of success is standard.
Finally, an encoding preserves the abstract behaviour of the source term if it
and its encoding answer the tests for success in exactly the same way.

For a more exhaustive and formal description we refer to [Gor10].

3 Encoding Mixed Choice

Nestmann [Nes00] presents an encoding from πs into πa, in the following denoted
by � · �sa, that encodes the parallel operator rigidly: � P | Q �sa � � P �sa | � Q �sa.
In the following, for simplicity, we omit the indication of the renaming policy.
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The full details are given in [PN12]. The encodings of sum, guarded terms, and
replicated input are given in Figure 2 where, in the last four clauses, we assume
that the name l that is used on the right-hand sides is an implicit parameter
of the encoding function, as supplied in the first of the above clauses. The re-
maining operators are translated rigidly (compare to their translations in � · �ma ).
The main idea of this encoding is to introduce a so-called sum lock l carrying a
boolean value for each sum. In order to emulate a step on a source term summand
the respective sum lock is checked. In case its boolean value is � the respective
source term step is emulated, else the emulation is aborted and the terms cor-
responding to this emulation attempt remain as junk (compare to [Nes00] for a
more detailed discussion of this encoding). [Nes00] argues for the correctness of
this encoding by proving its deadlock- and divergence-freedom; he also discussed
the possibilities to state full abstraction results. In [PN12], we present a proof
of its correctness with respect to the criteria presented in Section 2.3.

As already proved in [Pal03] and later on rephrased in [Gor10, PN10], it
is not possible to encode πm into πa, while translating the parallel operator
rigidly. However, by weakening this requirement, the separation result no longer
holds—instead, an encodability result is possible. To prove this, we give an en-
coding from πm into πa, denoted as � · �ma , that is correct with respect to the
criteria established by [Gor08, Gor10].

As stated in [Nes00], the encoding presented above introduces deadlock when
applied in the case of mixed choice, due to the nested test-statements in the
encoding of an input-guarded source term. However, [Nes00] also states that all
potential deadlocks can be avoided by using a total ordering on the sum locks.
Of course, compositionality forbids to simply augment the encoding with an
arbitrary previously created ordering, because this would require some form of
global knowledge on the source terms. So, the main idea behind the design of� · �ma is to augment � · �sa with an algorithm to dynamically compute an order
on the sum locks—at runtime. Unfortunately, this algorithm fairly blows up the
translation of the parallel operator and replicated input.

For sums, the translation via � · �ma follows exactly the scheme of � · �sa.	 ∑
i∈I

πi.Pi


m

a

� (ν l)

(
l 〈�〉 |

∏
i∈I

� πi.Pi �ma
)

This translation splits up the encoded summands in parallel and introduces the
sum locks, which are initialised by �. To order these sum locks, we first have
to transport them to a surrounding parallel operator encoding: for example, in
P | Q, with P and Q being sequential processes, the sums occurring in either P
or Q will have their locks ordered by means of the translation � P | Q �ma . There-
fore, in the translation, we let input- and output-guarded source terms not com-
municate directly, but instead require that they first register their send/receive
abilities to a surrounding parallel operator encoding, by sending an output re-
quest po 〈y, l , s , z〉 or an input request pi 〈y, l , r〉. A request carries all necessary
information to resolve a nested test-statement, i.e., the translated link name,
the corresponding sum lock, a sender lock or a receiver lock, and, in case of
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an output request, the translation of the transmitted value. Note that a sender
lock, i.e., the s in � · �ma , is used to guard the encoded continuation of the sender,
while over the receiver lock, i.e., the r in � · �ma , the ordered sum locks are trans-
mitted back to the receiver. For convenience, the mapping � · �ma is implicitly
parametrised by the names po and pi ; in the clause for parallel composition,
some of their occurrences will be bound, while others will be free.

� τ.P �ma � test l then l 〈⊥〉 | � P �ma else l 〈⊥〉� y 〈z〉 .P �ma � (ν s) (po 〈y, l , s , z〉 | s . � P �ma )� y (x) .P �ma � (ν r)
(
pi 〈y, l , r〉 | r∗ (l1, l2,−, s , x) .

test l1 then test l2 then l1 〈⊥〉 | l2 〈⊥〉 | s | � P �ma
else l1 〈�〉 | l2 〈⊥〉

else l1 〈⊥〉 )
Apart from requests, the encoding of guarded terms is very similar to � · �sa. The
requests push the task of finding matching source term communication partners
to the surrounding parallel operator encodings. There, a strict policy controls
the redirection of requests. First, it restricts the request channels po and pi for
both of its parameters to be able to distinguish requests from the left from those
from the right side.

� P | Q �ma � (νmo ,mi , po,up , pi,up , co , ci ,mo,up ,mi,up)
(

(ν po , pi)
( � P �ma | procLeftOutReq | procLeftInReq)

| (ν po , pi)
( � Q �ma | procRightOutReq | procRightInReq)

| pushReq)
Note that, since “|” is binary, a source term is structured as a binary tree—its
parallel structure—with a sum or a replicated input in its leafs and a parallel
operator in each remaining node. At each such node, a matching pair of commu-
nication partners can meet. More precisely, for every pair of matching communi-
cation partners, there is exactly one node such that one partner is at its left and
the other at its right side. Therefore, each parallel operator encoding pushes all
received (left or right) requests further upwards to a surrounding parallel opera-
tor encoding by means of the forwarders in pushReq � po,up 
 po | pi,up 
 pi .

Requests from the left are forwarded to the links po,up or pi,up , to be pushed
further upwards with pushReq. Moreover, in order to combine requests from the
left with requests from the right side, all left requests are forwarded to the right
side over mo and mi . Thus left requests are processed by two simple forwarders,
procLeftOutReq � po 
 {mo , po,up} and procLeftInReq � pi 
 {mi , pi,up}.

The processing of requests from the right is more difficult. Intuitively, the
encoding ensures that any request of the left side is combined exactly once with
each opposite request of the right side. Then, the respective first parameters
of each pair of requests are matched, to reveal a pair that results from the
translation of matching communication partners. If such a pair is found, then the
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information necessary to resolve the respective test-statement are retransmitted
over the receiver lock back to the receiver, where the test-statement completes
the emulation in case of positive instantiated sum locks. To avoid deadlock, the
sum lock of the left request is always checked first. Since the encoding relies on
the parallel structure of the source term, which is a binary tree, to prefer always
the left lock indeed results in a total ordering of the sum locks.

procRightOutReq � co 〈mi〉 | co∗ (mi) .po (y, ls, s , z) .
(

(νmi,up)
(
mi

∗ (y′, lr, r) . ([ y
′ = y ] r 〈lr, ls, ls, s , z〉 | mi,up 〈y′, lr, r〉)

| (νmi) (mi,up 
 mi | co 〈mi〉)
)

| po,up 〈y, ls, s , z〉
)

procRightInReq � ci 〈mo〉 | ci∗ (mo) .pi (y, lr, r) .
(

(νmo,up)
(
mo

∗ (y′, ls, s , z) . ([ y
′ = y ] r 〈ls, lr, ls, s , z〉 | mo,up 〈y′, ls, s , z〉)

| (νmo) (mo,up 
 mo | ci 〈mo〉)
)

| pi,up 〈y, lr, r〉
)

In order to emulate arbitrary source term steps, all pairs of left and right requests
have to be checked at least once. On the other side, a careless checking of the
same pairs infinitely often introduces divergence. Thus, only a single copy of
each left request is transmitted to the right side and, there, each pair of left and
right requests is combined exactly once. To do so, the right requests are linked
together within two chains; one for right output requests and one for right input
requests. The first member of the chain receives all left requests via mo or mi ,
combines them with its own information, and sends a copy of each left request
to the next member over mo,up or mi,up , respectively. Subsequent members of
a chain are linked by mo or mi , i.e., each member creates a new version of
the corresponding name and sends this new version over co or ci to enable the
addition of a new member. Moreover, it transmits all received left requests along
this new version. A new member is then added to the chain by the consumption
of its request, also triggering to transmit a copy to pushReq via po,up or pi,up .

Finally restriction, match, and success are translated rigidly:

� (ν x)P �ma � (ν ϕm
a (x)) � P �ma� [ a = b ]P �ma � [ ϕm

a (a) = ϕm
a (b) ] � P �ma� ��ma � �

In the discussion so far, we omitted the encoding of replicated input, because
it is slightly tricky. The crux is that each replicated input implicitly represents
an unbounded number of copies of the respective input in parallel. Each such
copy changes the parallel structure of the source term, on which our encoding
function relies. Obviously, a compositional encoding can not first compute the
number of required copies. By the reduction semantics, the copies of a replicated
input are generated as soon they are needed. Likewise, the encoding of replicated
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input adds a branch to the constructed parallel structure, for each emulated
communication with a replicated input. To do so, it adapts the parallel operator
translation for each unguarded continuation in encodedContinuations.

� y∗ (x) .P �ma � (ν l , r , cr1 , cr2 , ro , ri)
(
pi 〈y, l , r〉

| r∗ (−,−, ls, s, x) .test ls then ls 〈⊥〉 | s | cr1 〈x〉 else ls 〈⊥〉
| ri 〈y, l , r〉 | l 〈�〉 | encodedContinuations)

To direct the flow of requests among the additional branches, they are again
ordered into a chain.

encodedContinuations � cr2 〈ro , ri〉 | cr1 ∗ (x) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi,up , ro,up , ri,up , co , ci ,mo,up ,mi,up)
(
pushReqIn

| (ν po , pi) (� P �ma | procRightOutReq | procRightInReq)
| (ν ro , ri) (cr2 〈ro , ri〉 | pushReqOut)

)
For each successful emulation on a replicated input, a new branch with the en-
coded continuation is unguarded by transmitting the received source term value
over cr1 . As in the chains of right requests, each branch in encodedContinuations
restricts its own versions of ro and ri to receive all requests from its succes-
sor. These links are transmitted over cr2 to the respective next member. The
translation of the replicated input serves itself as first member of the chain by
providing its own request over ri . Note that the third line of encodedContinua-
tions is exactly the same as the right side of a parallel operator encoding. There,
all received requests are combined with the requests of the respective continu-
ation to enable the emulation of a communication with the replicated input or
another of its unguarded continuations. Moreover, to enable an emulation of a
communication with the rest of the term, its requests are pushed upwards. The
remaining terms pushReqIn and pushReqOut direct the flow of requests.

pushReqIn � ro 
 {mo , ro,up} | ri 
 {mi , ri,up}
pushReqOut � po,up 
 {po , ro} | ro,up 
 ro | pi,up 
 {pi , ri} | ri,up 
 ri

pushReqIn receives all requests from a predecessor in the chain and forwards
one copy to the encoded continuation over mo and mi and one copy to pushRe-
qOut. There, all requests of the encoded continuation are pushed upwards to a
surrounding parallel operator encoding over po or pi , and for all such requests
and all requests received from a previous member, a copy is forwarded to the
successor over ro or ri .

For a more exhaustive description of the algorithm implemented by this encod-
ing and how it emulates source term steps, we refer to the proof of its correctness
in [PN12].

Theorem 1. The encodings � · �sa and � · �ma are good.
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Observations

The existence of a good encoding from πm into πa shows that πa is as expressive
as πm with respect to the abstract behaviour of terms. This looks surprising.
From [Pal03, Gor10, PN10], we know that it is not possible to implement mixed
choice without introducing some additional amount of coordination. The exis-
tence of the good encoding � · �ma proves that, to do so, no global coordination
is necessary. Instead the little amount of local coordination, which is allowed
in compositional encodings, suffices to completely implement the full power of
mixed (guarded) choice within an asynchronous and thus choice-free setting.

However, the encoding presented above comes with some drawbacks. The
most crucial of these drawbacks—at least with respect to efficiency measures—is
the impact of the encoding function on the degree of distribution of source
terms. We consider this problem in the next section. Another drawback is the
necessity of the match operator in the target language. Examining the proof of
the main result in [PSN11], we observe that it already indicates how to solve
the problem of the deadlocks in the test-statements of � · �sa. Moreover, it reveals
a second solution to that problem. Instead of implementing an algorithm to
order the sum locks, we could always test the sum lock of the receiver first,
if we restrict the number of emulations that can be performed simultaneously.
To do so, we augment � · �ma with an aditional coordinator lock—an output c
on a new channel c—for each encoding of a parallel operator and require that
this lock must be available in order to send an output over the receiver lock r.
Then, each completion of a test-statement in the encoding of input or replicate
input—regardless of its outcome—restores the coordinator lock of the respective
parallel operator encoding. Due to the restriction of simultaneous emulations, the
impact of such an encoding on the degree of distribution of source terms is even
worse than it is the case for � · �ma . However, for both solutions, it is necessary
to send some kind of input and output requests and to combine requests of
communication partners in order to emulate a communication step. Due to scope
extrusion in the source and the necessity in the target to restrict the request
channels, we cannot ensure that the requests of different source term steps can be
distinguished by their channel names. Thus, to examine which pairs of requests
refer to matching communication partners, we need the matching primitive.

A problem that already occurs in � · �sa is the introduction of observable junk,
i.e., of observable remainders left over by further emulations. In πm, if we perform
a step on a summand of a sum, immediately any other summand of that sum
disappears. In the implementation, we have to split up the encoded summands
in parallel, such that it is not possible to immediately withdraw the encoded
summands as soon as one summand is used within an emulation. In � · �sa and� · �ma such observable junk is marked by a false instantiation of its sum locks.
As a consequence, the encodings are not good w.r.t. a standard equivalence
., as asynchronous barbed congruence. However, for both encodings, we can
prove correctness with respect to a non trivial variant of barbed equivalence, by
redefining the notion of barbs to the result of translating source term barbs. The
result is a congruence w.r.t. contexts that respect the protocol of the encoding.
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As mentioned above, our encoding � · �ma augments the parallel structure of
source terms to order sum locks. Accordingly, another parallel structure of the
source—e.g. as a result of applying the rule P | Q ≡ Q | P to it—results in a
different order of the respective sum locks. Hence, it is possible that, for some
source terms S1 and S2, the target terms � S1 | S2 �ma and � S2 | S1 �ma differ in
the number of necessary pre- or postprocessing steps within an emulation, but
also in the reachability of “intermediate”, i.e.: “partially committed”, states.
Although these states exhibit different observables, their differences do not in-
troduce deadlock or influence the possibility to emulate source term steps, i.e.� S1 | S2 �ma and � S2 | S1 �ma still have the same abstract behaviour. Interest-
ingly, the alternative solution on coordinator locks reveals similar problems with
the rule P | (Q | R) ≡ (P | Q) | R. To overcome this problem, the equivalence .
has either to abstract from the reachability of intermediate states or we have to
avoid the rule Cong in our reduction semantics.

For a more formal and exhaustive discussion of these drawbacks and a def-
inition of the used equivalences, we refer to [PN12]. We believe that none of
the described drawbacks can be circumvented. In this sense, we think that the
encoding � · �ma given above is the best encoding from πm into πa we can achieve.

4 Distributability

The first result comparing the expressive power of πm and πa is given by the
separation result in [Pal03]. The main difference to our encodability result in
the last section is due to the requirement on the rigid translation of “|”. This
requirement ensures that the encoding “preserves the degree of distribution” of
the source term, which—thinking of distributed computing systems—is a crucial
measure for the efficiency of such an encoding. A distributed system is a network
of parallel processes. Accordingly, a distributed algorithm is an algorithm that
may perform at least some of its tasks in parallel. Therefore, a main issue when
considering an encoding between distributed algorithms is to ensure that it does
not sequentialise all tasks by introducing a global coordinator. On the other
side, the rigid translation of the parallel operator is a rather hard requirement.
Therefore, Gorla instead requires the compositional translation of all source term
operators. Note that also this requirement already prevents the use of global
coordinators. In that view, compositionality can be seen as a minimal criterion
to ensure the preservation of the degree of distribution.

However, sometimes—as in the current case—compositionality alone is too
weak to consider the preservation of the degree of distribution, because it still
allows for local coordinators : a compositional encoding may still sequentialise
some of the parallel tasks of a distributed algorithm. If we are not only interested
in the expressive power in terms of the abstract behaviour but additionally in how
far problems can be solved exploiting at least the same degree of distribution,
we must consider an additional criterion.

Up to now, there have been various approaches to explicitly consider the con-
current execution of independent steps directly within an operational semantics,
often called step semantics (e.g., [Lan07] for the case of process calculi), and also
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in the form of dedicated behavioral equivalences. In our case, we do not want to
explicitly quantify the degree of distribution in the source and the target term,
but only to measure whether it is preserved by an encodings. To this aim, we
choose a simple and intuitive formulation—in the style of Gorla’s criteria—of
our additional requirement based on the notion of parallel component.

Note that it does not suffice to consider the initial degree of distribution, i.e.,
to require that each source term and its encoding are distributed in the same
way. We also have to require, that whenever a part of a source term can solve a
task independently of the rest—i.e., it can reduce on its own—then the respective
part of its encoding must also be able to emulate this reduction independent of
the rest of the encoded term. Accordingly, we require that not only the source
term and its encoding are distributed in the same way, but also their derivatives.
In the following, ≡1 is the usual structural congruence naturally of the source
language and ≡2 is the usual structural congruence of the target language.

Definition 5. An encoding � · � preserves the degree of distribution if, for every
S such that S ≡1 S1 | . . . | Sn and Si �=⇒ S′

i for all i with 1 ≤ i ≤ n, there
exists T1, . . . , Tn and a context C with n holes such that � S � ≡2 C (T1, . . . , Tn)
and Ti �=⇒. � S′

i � for all i with 1 ≤ i ≤ n.
Here, the context C is introduced to allow, e.g., for some global restrictions or
parts of the encoded term that may be necessary to emulate communications
between Si and Sj for i %= j. This only makes sense because compositionality
already rules out global coordinators. Since the parallel operator is considered
to be binary, context C can be the result of assembling parts of the contexts
introduced by several parallel operator encodings. In essence, the requirement in
Definition 5 is a concurrency-enhanced adaptation of operational completeness:
whenever a source term can perform n steps in parallel, then its encoding must
be able to emulate all n steps in parallel; note that the Ti must be able to move
independent of the context C. So, Definition 5 describes a semantic criterion.

Definition 5 is not the only way to measure the preservation of the degree
of distribution. However, when considering the degree of distribution, we find
it natural and appealing to require that parallel source term steps can be emu-
lated truly in parallel, i.e., that for each pair of independent source term steps
there is at least the possibility to emulate them independently. Moreover, by
the following consideration, we observe that this requirement indeed suffices to
reveal a fundamental difference in the expressive power of πm compared to πs
or πa considering the degree of distribution. Since � · �sa translates the parallel
operator rigidly, it naturally preserves the degree of distribution.

Lemma 1. The encoding � · �sa preserves the degree of distribution.

Notably, in the proof of the lemma above we do not use any features of the encod-
ing � · �sa except that it satisfies operational completeness, i.e., it is a good encod-
ing, translates the parallel operator rigidly, and preserves structural congruence.
So, any such encoding preserves the degree of distribution. Not surprisingly, the
most crucial requirement here is the rigid translation of “|”.
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Lemma 2. Anygood encoding, that translates the parallel operator rigidly and pre-
serves enough of the structural congruence on source terms to ensure that S ≡1 S1 |
. . . | Sn implies � S � ≡2 � S1 | . . . | Sn �, preserves the degree of distribution.
Thus, the (semantic) criterion formalised in Definition 5 can be considered to
be at most as hard as the (syntactic) criterion to rigidly translate the parallel
operator. To see that it is not an equivalent requirement, but indeed strictly
weaker, we may consider an encoding (spelled out in [PN12]) from πm (without
replicated input) into π2a , the asynchronous π-calculus augmented with a two-
level polyadic synchronisation by Carbone and Maffeis [CM03]. It is a simplified
version of the encoding � · �ma , based on the same way to order sum locks but
without the necessity to link right requests in chains. To prove that it is good,
an argumentation similar as for � · �ma can be applied. Moreover, [CM03] prove
that there is no good encoding from πm into π2a that translates “|” rigidly; this
separation result does not rely on replication, i.e., it also implies that there is
no such encoding from πm without replicated input into π2a . On the other side,
since all parts of the context introduced by the parallel operator encoding are
replicated inputs, it preserves the degree of distribution.

The encoding � · �ma does not preserve the degree of distribution, because we
can not distribute the linking of right requests within a chain at the right side
of a parallel operator encoding. Because of that, all steps on communication
partners that meet at the same parallel operator in the source term, can never
be emulated independently even if the source term steps are.

Lemma 3. The encoding � · �ma does not preserve the degree of distribution.

This lemma is not due to an awkward design of the encoding function � · �ma ,
but is a general restriction on the encodability of mixed choice, i.e., it is not
possible to design a good encoding from πm into πa that preserves the degree of
distribution. This fact is a direct consequence of the theorem proved in [PSN11].

Theorem 2. There is no good encoding from πm into πa that preserves the
degree of distribution.

5 Conclusion

We present a novel and for some readers perhaps surprising encodability result,
showing that the asynchronous π-calculs is “as expressive as” the synchronous
π-calculus with mixed choice, if the non-rigid translation of parallel composition
is allowed. Furthermore, we present a fundamental limitation of each good en-
coding between these two languages concerning a novel criterion that measures
the preservation of the degree of distribution. In contrast to the three semantic
criteria of operational correspondence, divergence reflection, and success sensi-
tivity, our new criterion does not primarily consider the (abstract) behaviour
of terms but an additional dimension: the potential for concurrent execution.
We conclude that considering the behaviour of terms, the full π-calculus and its
asynchronous variant have the same expressive power. Our result complements
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Palamidessi’s result [Pal03], as her rigidity criterion includes more than just ab-
stract behavior. Likewise, as expected, then translating a πm-algorithm into a
πa-algorithm by such an encoding, one must tolerate losses in the efficiency of the
respective algorithm—which Palamidessi’s rigidity requirement would forbid.

Note that the separation of criteria considering the behaviour from additional
requirements as the degree of distribution offers additional advantages, because
we can more easily analyse the reasons of separation results and in how far they
limit the degree of distribution of the encoded algorithm. There is no way to
overcome the theoretical border stated by our separation result. However, the
proof that an encoding does not preserve the degree of distribution can point
out ways to nevertheless optimise a translation of algorithms, because it exactly
states which parts can not be distributed.

Of course, only a study of other process calculi and corresponding encoding
functions can reveal whether the proposed criterion is suited to measure the
degree of distribution in general.

Acknowledgements. We thank Daniele Gorla for his very constructive com-
ments and some fruitful discussions on preliminary versions of this work.
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Abstract. We give a compositional event structure semantics of the π-calculus.
The main issues to deal with are the communication of free names and the extru-
sion of bound names. These are the source of the expressiveness of the π-calculus,
but they also allow subtle forms of causal dependencies. We show that free name
communications can be modeled in terms of “incomplete/potential synchroniza-
tion” events. On the other hand, we argue that it is not possible to satisfactorily
model parallel extrusion within the framework of stable event structures. We pro-
pose to model a process as a pair (E ,X) where E is a prime event structure and
X is a set of (bound) names. Intuitively, E encodes the structural causality of the
process, while the set X affects the computation on E so as to capture the causal
dependencies introduced by scope extrusion. The correctness of our true concur-
rent semantics is shown by an operational adequacy theorem with respect to the
standard late semantics of the π-calculus.

1 Introduction

In the study of concurrent and distributed systems, the true-concurrent semantics ap-
proach takes concurrency as a primitive concept rather than reducing it to nondeter-
ministic interleaving. One of the by-products of this approach is that the causal links
between the process actions are more faithfully represented in true-concurrent models.

Prime event structures [14] are a causal model for concurrency which is particu-
larly suited for the traditional process calculi such as CCS and CSP since they directly
represent causality and concurrency simply as a partial order and an irreflexive binary
relation. Winskel [18] proposed a compositional event structure semantics of CCS, that
has been proved to be operationally adequate with respect to the standard labelled tran-
sition semantics, hence sound with respect to bisimilarity [20]. Similar results have been
proved for variants of the π-calculus, namely for a restricted typed subcalculus [17] and
for the internal πI-calculus [5], which are however less expressive than the full calculus.
In this paper we extend this result to the full π-calculus.

The main issues when dealing with the full π-calculus are name passing and the
extrusion of bound names. These two ingredients are the source of the expressiveness
of the calculus, but they are problematic in that they allow complex forms of causal
dependencies, as detailed below.
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1.1 Free Name Passing

Compared to pure CCS, (either free or bound) name passing adds the ability to dynam-
ically acquire new synchronization capabilities. For instance consider the π-calculus
process P = n(z).(z〈a〉 | m(x)), that reads from the channel n and uses the received
name to output the name a in parallel with a read action on m. Hence a synchroniza-
tion along the channel m is possible if a previous communication along the channel n
substitutes the variable z exactly with the name m. Then, in order to be compositional,
the semantics of P must also account for “potential” synchronizations that might be
activated by parallel compositions, like the one on channel m.

To account for this phenomenon, we define the parallel composition of event struc-
tures so that synchronization events that involve input and output on different channels,
at least one of which is a variable, are not deleted straight away. Moreover, the events
produced by the parallel composition are relabelled by taking into account their causal
history. For instance, the event corresponding to the synchronization pair (z〈a〉,m(x))
is relabelled into a τ action if, as in the process P above, its causal history contains a
synchronization that substitutes the variable z with the name m.

1.2 The Causal Links Created by Name Extrusion

Causal dependencies in π-calculus processes arise in two ways [1,8]: by nesting prefixes
(called structural or prefixing or subject causality) and by using a name that has been
bound by a previous action (called link or name or object causality). While subject
causality is already present in CCS, object causality is distinctive of the π-calculus.
The interactions between the two forms of causal dependencies are quite complex. We
illustrate them by means of examples.

Parallel Scope Extrusion. Consider the two processes P = (νn)(a〈n〉.n(x)) and Q =
(νn)(a〈n〉 | n(x)). The causal dependence of the action n(x) on the output a〈n〉 is clear
in the process P (i.e. there is a structural causal link), however, a similar dependence
appears also in Q since a process cannot synchronize on the fresh name n before re-
ceiving it along the channel a (i.e. there is an objective causal link). Now consider the
process P1 = (νn)(a〈n〉 | b〈n〉): in the standard interleaving semantics of π-calculus
only one output extrudes, either a〈n〉 or b〈n〉, and the other one does not. As a conse-
quence, the second (free) output depends on the previous extruding output. However,
in a true concurrent model we can hardly say that there is a dependence between the
two parallel outputs, which in principle could be concurrently executed resulting in the
parallel/simultaneous extrusion of the same name n to two different threads reading
respectively on channel a and on channel b.

Dynamic Addition of New Extruders. We have seen that a bound name may have
multiple extruders. In addition, the coexistence of free and bound outputs allows the
set of extruders to dynamically change during the computation. Consider the process
P2 = (νn)(a〈n〉 |n(z)) | a(x).(x〈b〉 |c〈x〉). It can either open the scope of n by extruding
it along the channel a, or it can evolve to the process (νn)(n(z) | n〈b〉 | c〈n〉) where the
output of the variable x has become a new extruder for both the actions with subject n.
Hence after the first synchronization there is still the possibility of opening the scope of
n by extruding it along the channel c.
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The Lesson we Learned. The examples above show that the causal dependencies in-
troduced by the scope extrusion mechanisms distinctive of the π-calculus can be under-
stood in terms of the two ingredients of extrusion: name restriction and communication.

1. The restriction (νn)P adds to the semantics of P a causal dependence between every
action with subject n and one of the outputs with object n.

2. The communication of a restricted name adds new causal dependencies since both
new extruders and new actions that need an extrusion may be generated by variable
substitution.

A causal semantics for the π-calculus should account for such a dynamic additional
objective causality introduced by scope extrusion. In particular, the first item above hints
at the fact that we have to deal with a form of disjunctive (objective) causality. Prime
event structures are stable models that represent disjunctive causality by duplicating
events and so that different copies causally depend on different (alternative) events. In
our case this amounts to represent different copies of any action with a bound subject,
each one causally depending on different (alternative) extrusions. However, the fact that
the set of extruders dynamically changes complicates the picture since new copies of
any action with a bound subject should be dynamically spawned for each new extruder.
In this way the technical details quickly become intractable, as discussed in Section 6.

In this paper we follow a different approach, that leads to an extremely simple tech-
nical development. The idea is to represent the disjunctive objective causality in a so-
called inclusive way: in order to trace the causality introduced by scope extrusion it is
sufficient to ensure that whenever an action with a bound subject is executed, at least one
extrusion of that bound name must have been already executed, but it is not necessary to
record which output was the real extruder. Clearly, such an inclusive-disjunctive causal-
ity is no longer representable with stable structures like prime event structures. How-
ever, we show that an operational adequate true concurrent semantics of the π-calculus
can be given by encoding a π-process simply as a pair (E ,X) where E is a prime event
structure and X is a set of (bound) names. Intuitively, the causal relation of E encodes
the structural causality of a process. Instead, the set X affects the computation on E : we
define a notion of permitted configurations, ensuring that any computation that contains
an action whose subject is a bound name in X , also contains a previous extrusion of that
name. Hence a further benefit of this semantics is that it clearly accounts for both forms
of causality: subjective causality is captured by the causal relation of event structures,
while objective causality is implicitly captured by permitted configurations.

2 The π-Calculus

In this section we illustrate the synchronous, monadic π-calculus that we consider. We
assume a countably-infinite set of names and a countably-infinite set of variables ranged
over by m, ..,q and by x, .,z, respectively. Let a,b,c range over both names and variables.

Prefixes π ::= a(x) | a〈b〉 Definitions A(x̃, p̃ | z,n) = PA

Processes P,Q ::= ∑i∈I πi.Pi | P | Q | (νn)P | A〈x̃, p̃ | z,n〉
The syntax consists of the parallel composition, name restriction, finite summation of
guarded processes and recursive definition. In ∑i∈I πi.Pi, I is a finite indexing set; when
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(IN LATE)

a(x).P
a(x)
−−→ P

(OUT)

a〈b〉.P
a〈b〉
−−→ P

(COMM)

P
a(x)
−−→ P′ Q

a〈b〉
−−→ Q′

P | Q
τ−−→ P′{b/x} | Q′

(PAR)

P
α−−→ P′

P | Q
α−−→ P′ | Q

(OPEN)

P
a〈n〉
−−→ P′ n %= a

(νn)P
a(n)
−−→ P′

(CLOSE)

P
a(x)
−−→ P′ Q

a(n)
−−→ Q′

P | Q
τ−−→ (νn)(P′{n/x} | Q′)

(RES)

P
α−−→ P′

(νn)P
α−−→ (νn)P′

(SUM)

Pi
α−−→ P′

i i ∈ I

∑i∈I Pi
α−−→ P′

i

(REC)

PA{ỹ,q̃/x̃,p̃}{w,m/z,n}
α−−→ P′ A(x̃, p̃ | z,n) = PA

A〈ỹ, q̃ | w,m〉 α−−→ P′

Fig. 1. Labelled Transition System of the π-calculus

I is empty we write 0, or we simply omit it; we denote by + the binary sum. A process
a(x).P can perform an input at a and the variable x is the placeholder for the name so
received. The output case is symmetric: a process a〈b〉.P can perform an output along
the channel a. Notice that an output can send a name (either free or restricted) or a
variable.

We assume that every constant A has a unique defining equation A(x̃, p̃ | z,n) = PA.
The symbol p̃, resp. x̃, denotes a tuple of distinct names, resp. variables, that correspond
to the free names, resp. variables, of PA. n, resp. z, represents an infinite sequence of
distinct names N → Names, resp. distinct variables N → Variables, that is intended
to enumerate the (possibly infinite) bound names, resp. bound variables, of PA. The
parameters n and z do not usually appear in recursive definitions in the literature. The
reason we add them is that we want to maintain the following Basic Assumption: Every
bound name/variable is different from any other name/variable, either bound or free.
In the π-calculus, this policy is usually implicit and maintained along the computation
by dynamic α-conversion: every time the definition A is unfolded, a copy of the process
PA is created whose bound names and variables must be fresh. This dynamic choice is
difficult to interpret in the event structures. Hence, in order to obtain a precise semantic
correspondence, our recursive definitions prescribe all the names and variables that will
be possibly used in the recursive process (see [5] for some examples).

The sets of free and bound names and free and bound variables of P, denoted by
fn(P),bn(P), fv(P),bv(P), are defined as usual but for constant processes, whose defini-
tions are as follows: fn(A〈x̃, p̃ | z,n〉)= { p̃}, bn(A〈x̃, p̃ | z,n〉)= n(N), fv(A〈x̃, p̃ | z,n〉)=
{x̃} and bv(A〈x̃, p̃ | z,n〉) = z(N). The operational semantics is given in Figure 1
in terms of an LTS (in late style1) where we let α,β range over the set of labels

1 We could as well choose the early style semantics. However, in that case the event structure
corresponding to a simple input process would be the sum of all possible (infinite) variable
instantiations. Instead, the use of late semantics allows a cleaner and more intuitive approach.



Event Structure Semantics of Parallel Extrusion 229

{τ,a(x),a〈b〉,a(n)}. The syntax of labels shows that the object of an input is always
a variable, whereas the object of a free output is either a variable (e.g. b(x) or a〈x〉)
or a name. On the other hand, the object of a bound output is always a name, since
it must occur under a restriction. Moreover, thanks to the Basic Assumption, the side
conditions in rules (PAR) and (RES) are not needed anymore.

3 Event Structures

This section reviews basic definitions of prime event structures [7,14,19].

Definition 1 (Labelled Event Structure). Let L be a set of labels. A labelled event
structure is a tuple E = 〈E,≤,#,λ〉 s.t.

– E is a countable set of events;
– 〈E,≤〉 is a partial order, called the causal order;
– for every e ∈ E, the set [e) := {e′ | e′ < e}, called the enabling set of e, is finite;
– # is an irreflexive and symmetric relation, called the conflict relation, satisfying

the following: for every e1,e2,e3 ∈ E if e1 ≤ e2 and e1 # e3 then e2 # e3.
– λ : E → L is a labelling function that associates a label to each event in E.

Intuitively, labels represent actions, and events should be thought of as occurrences of
actions. Labels allow us to identify events which represent different occurrences of the
same action. In addition, labels are essential when composing two event structures in a
parallel composition, as they identify which events correctly synchronise.

We say that the conflict e2 # e3 is inherited from the conflict e1 # e3, when e1 < e2.
If a conflict is not inherited we say that it is immediate. If two events are not causally
related nor in conflict they are said to be concurrent.

The notion of computation is usually captured in event structures in terms of config-
urations. A configuration C of an event structure E is a conflict free downward closed
subset of E , i.e. a subset C of E satisfying: (1) if e ∈ C then [e) ⊆ C and (2) for every
e,e′ ∈ C, it is not the case that e # e′, that is e and e′ are either causally dependent
or concurrent. In other words, a configuration represents a run of an event structure,
where events are partially ordered. The set of configurations of E , partially ordered
by inclusion, is denoted as L(E). An alternative notion of computation can be defined
in terms of labelled transition systems of event structures. Such a definition allows to
more directly state (and prove) that the computational steps of a π-calculus process are
reflected into its event structure semantics.

Definition 2 (LTS of event structures). Let E = 〈E,≤,#,λ〉 be a labelled event

structure and let e be one of its minimal events with λ(e)= β. Then we write E
β−→ E/e,

where E/e is the event structure 〈E ′,≤|E ′ ,#|E ′ ,λE ′ 〉 with E ′ = {e′∈E | e′ %=e and e′ %#e}.

Roughly speaking, E/e is E minus the event e, and minus all events that are in conflict
with e. The reachable LTS with initial state E corresponds to the computations over E .

Event structures have been shown to be the class of objects of a category [20]. More-
over, it is easily shown that an isomorphism in this category is a label-preserving bijec-
tive function that preserves and reflects causality and conflict. We denote by E1 ∼= E2

the fact that there is an isomorphism between E1 and E2.
We review here an informal description of several operations on labelled event struc-

tures, that we are going to use in the next section. See [19] for more details.
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– Prefixing a.E . This operation adds to the event structure a new minimal element,
labelled by a, below every other event in E .

– Prefixed sum ∑i∈I ai.Ei. This is obtained as the disjoint union of copies of the event
structures ai.Ei. The conflict relation is extended by putting in conflict every pair
of events belonging to two different copies of ai.Ei.

– Restriction (or Hiding) E \ X where X ⊆ L is a set of labels. This is obtained by
removing from E all events with label in X and all events that are above (i.e.,
causally depend on) one of those.

– Relabelling E [ f ] where L and L′ are two sets of labels and f : L→ L′. This operation
just consists in composing the labelling function λ of E with the function f . The
new event structure is labelled over L′ and its labelling function is f ◦λ.

The parallel composition of two event structures E1 and E2 gives a new event structure
E ′ whose events model the parallel occurrence of pairs of events e1 ∈ E1 and e2 ∈ E2.
In particular, when the labels of e1 and e2 match according to an underlying synchroni-
sation model, E ′ records (with an event e′ ∈ E ′) that a synchronisation between e1 and
e2 is possible, and deals with the causal effects of such a synchronisation.

Technically, the parallel composition is defined as the categorical product followed
by restriction and relabelling [20]. The categorical product represents all conceivable
synchronisations, relabelling implements a synchronisation model by expressing which
events are allowed to synchronise, and hiding removes synchronisations that are not per-
mitted. The synchronisation model underlying the relabelling operation is formalised by
the notion of synchronisation algebra, that is a partial binary operation •S defined on
L∗ := L0{∗} where ∗ is a distinguished label. If αi are the labels of events ei ∈ Ei, then
the event e′ ∈ E ′ representing the synchronisation of e1 and e2 is labelled by α1 •S α2.
When α1 •S α2 is undefined, the synchronisation event e′ is given a distinguished label
bad, indicating that this event is not allowed and should be deleted.

Definition 3 (Parallel Composition of Event Structures). Let E1,E2 two event struc-
tures labelled over L, let •S be a synchronisation algebra, and let fS : L∗ → L′ =
L∗∪{bad} be a function defined as fS(α1,α2)=α1•S α2, if S is defined on (α1,α2), and
fS(α1,α2) = bad otherwise. The parallel composition E1‖SE2 is defined as the categor-
ical product followed by relabelling and restriction: E1‖SE2 = (E1 ×E2)[ fS]\ {bad}.
The subscripts S are omitted when the synchronisation algebra is clear from the context.

Example 4. We show a simple example of parallel composition. Consider the set of la-
bels L = {α,β,α,τ} and the synchronisation algebra obtained as the symmetric closure
of the following rules: α•α = τ, α•∗=α, α•∗=α, β•∗= β and undefined otherwise.
Consider the two event structures E1,E2, where E1 = {a,b},E2 = {a′}, with a ≤1 b and
λ1(a) = α,λ1(b) = β,λ2(a′) = α. The event structures are represented as follows:

E1 :
β

E2 : E3 :
β β

α α α τ α
where dotted lines represent immediate conflict, while the causal order proceeds up-
wards along the straight lines. Then E3 :=E1‖E2 is the event structure 〈E3,≤,#,λ〉
where E3 = {e:=( /0,a,∗),e′:=( /0,∗,a′),e′′:=( /0,a,a′),d:=({e},a′,∗),d′′:=({e′′},a′,∗)},
and the ordering, immediate conflict and the labelling are as in the picture above.
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We say that an event structure E is a prefix of an event structure E ′, denoted E ≤ E ′
if there exists E ′′ ∼= E ′ such that E ⊆ E ′′, no event in E ′′ \E is below any event of E ,
and conflict and order in E are the restriction of those in E ′′. Winskel [18] has shown
that the class of event structures with the prefix order is a large CPO, and thus the
limits of countable increasing chains exist. Moreover all operators on event structures
are continuous. We will use this fact to define the semantics of the recursive definitions.

4 Free Name Passing

We present the event structure semantics of the full π-calculus in two phases, dealing
separately with the two main issues of the calculus. We start in this section discussing
free name passing, and we postpone to the next section the treatment of scope extrusion.

The core of a compositional semantics of a process calculus is parallel composition.
When a process P is put in parallel with another process, new synchronizations can be
triggered. Hence the semantics of P must also account for “potential” synchronizations
that might be activated by parallel compositions. In Winskel’s event structure semantics
of CCS [18], the parallel composition is defined as a product in a suitable category
followed by relabelling and hiding, as we have presented in Section 3. For the semantics
of the π-calculus, when the parallel composition of two event structures is computed,
synchronisation events that involve input and output on different channels cannot be
hidden straight away. If at least one of the two channels is a variable, then it is possible
that, after prefixing and parallel composition, the two channels will be made equal.

We then resort to a technique similar to the one used in [5]: we consider a generalized
notion of relabelling that takes into account the history of a (synchronization) event.
Such a relabelling is defined according to the following ideas:

– each pair (a(x),a〈b〉) made of two equal names or two equal variables is relabelled
τx→b, to indicate that it represents a legal synchronization where b is substituted for
x. Moreover, such a substitution must be propagated in all the events that causally
depend on this synchronization. However, after all substitutions have taken place,
there is no need to remember the extra information carried by the τ action, than the
subscripts of the τ events are erased.

– Synchronisations pairs, like (a(x),b〈c〉), involving different channels (at least) one
of which is a variable, are relabelled (a(x),b〈c〉)x→c, postponing the decision
whether they represent a correct synchronization or not.

– Each pair (n(x),m〈b〉) made of two different names is relabelled bad to denote a
synchronization that is not allowed.

Definition 5 (Generalised Relabelling). Let L and L′ be two sets of labels, and let
Pom(L′) be the set of pomsets (i.e., partially ordered multisets) over L′. Given an event
structure E = 〈E,≤,#,λ〉 with labels in L, and a function f : Pom(L′)× L −→ L′,
we define the relabelling operation E [ f ] as the event structure E ′ = 〈E,≤,#,λ′〉 with
labels in L′, where λ′ : E −→ L′ is defined by induction on the height of an element of
E: if h(e) = 0 then λ′(e) = f ( /0, λ(e)), if h(e) = n+ 1 then λ′(e) = f (λ′([e)), λ(e)).

In words, an event e is relabelled with a label λ′(e) that depends on the (pomset of)
labels of the events belonging to its causal history [e).
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In the case of π-calculus with free names, let L = {a(x),a〈b〉,τ | a,b ∈ Names∪
Variables, x ∈ Variables} be the set of labels used in the LTS of π-calculus without
restriction. We define the relabelling function needed by the parallel composition oper-
ation around the extended set of labels L′ = L∪{(α,β)x→b | α,β ∈ L}∪{τx→b, bad},
where bad is a distinguished label. The relabelling function fπ : Pom(L′)× (L′ 0 {∗}×
L′ 0 {∗})−→ L′ is defined as follows (we omit the symmetric clauses):

fπ(X ,〈a(y),a〈b〉〉) = τy→b fπ(X ,〈a(x),y〈c〉〉) =
{

τx→c if αy→a ∈ X
(a(x),y〈c〉)x→c otherwise

fπ(X ,〈n(y),m〈b〉〉) = bad fπ(X ,〈y(x),a〈n〉〉) =
{

τx→n if αy→a ∈ X
(y(x),a〈n〉)x→n otherwise

fπ(X ,〈y(x),∗〉) =
{

a(x) if αy→a ∈ X
y(x) otherwise

fπ(X ,〈y〈b〉,∗〉) =
{

a〈b〉 if αy→a ∈ X
y〈b〉 otherwise

fπ(X ,〈α,∗〉) = α fπ(X ,〈α,β〉) = bad otherwise

The extra information carried by the τ-actions, differently from that of “incomplete
synchronization” events, is only necessary in order to define the relabelling, but there
is no need to keep it after the synchronization has been completed. Hence we apply a
second relabelling er that simply erases the subscript of τ actions.

The semantics of the π-calculus is then defined as follows by induction on processes,
where the parallel composition of event structure is defined by

E1‖πE2 = ((E1 ×E2) [ fπ][er]) \{bad}
To deal with recursive definitions, we use an index k to denote the level of unfolding.

{|0 |}k = /0 {|∑i∈I πi.Pi |}k = ∑i∈I πi.{|Pi |}k {|P | Q |}k = {|P |}k ‖π {|Q |}k

{|A〈ỹ, q̃ | w,m〉 |}0 = /0 {|A〈ỹ, q̃ | w,m〉 |}k+1 = {|PA{ỹ,q̃/x̃, p̃}{w,m/z,n}|}k

Recall that all operators on event structures are continuous with respect to the prefix
order. It is thus easy to show that, for any k, {|P |}k ≤ {|P |}k+1. We define {|P |} to be the
limit of the increasing chain ...{|P |}k ≤{|P |}k+1 ≤{|P |}k+2..., that is {|P |}= supk∈N {|P |}k

Since all operators are continuous w.r.t. the prefix order we have the following result:

Theorem 6 (Compositionality). The semantics {|P |} is compositional, i.e. {|P | Q |}=
{|P |} ‖π {|Q |}, {|∑i∈I πi.Pi |}= ∑i∈I πi.{|Pi |},

Example 7. As an example, consider the process P = n(z).(z〈a〉 | m(x)) . The synchro-
nization along the channel m can be only performed if the previous synchronization
along n substitutes the variable z with the name m. Accordingly, the semantics of the
process P is the leftmost event structure depicted below, denoted by EP. Moreover, the
rightmost structure corresponds to the semantics of the process P | n〈m〉 | n〈p〉.
z〈a〉

    
  (z〈a〉,m(x))x→a m(x)

$$$$
$$

n(z)

p〈a〉 m(x) m〈a〉
���
τx→a m(x)

			
n〈p〉 τz→p





EP τz→m n〈m〉
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The following theorem shows that the event structure semantics is operationally correct.
Indeed, given a process P, the computational steps of P in the LTS of Section 2 are
reflected by the semantics {|P |}.

Theorem 8 (Operational Adequacy). Let β ∈ {a(x),a〈b〉,τ}. Suppose P
β−−→ P′ in

the π-calculus. Then there exists E such that {|P |} β−−→ E and E ∼={|P′ |}. Conversely,

suppose {|P |} β−−→ E ′. Then there exists P′ such that P
β−−→ P′ and {|P′ |}∼=E ′.

Note that the correspondence holds for the labels in the LTS of the calculus. Labels
that identify “incomplete synchronizations” have been introduced in the event structure
semantics for the sake of compositionality, but they are not considered in the theorem
above since they do not correspond to any operational step. Moreover, the semantics is
clearly not fully abstract in any reasonable sense, since interleaving equivalences are
less discriminating than the corresponding causal equivalences on event structures.

5 Scope Extrusion

In this section we show how the causal dependencies introduced by scope extrusion
can be captured by event structure-based models. As we discussed in Section 1, the
communication of bound names implies that any action with a bound subject causally
depends on a dynamic set of possible extruders of that bound subject. Hence dealing
with scope extrusion requires modelling some form of disjunctive causality. Prime event
structures are stable models that represent an action α that can be caused either by the
action β1 or the action β2 as two different events e,e′ that are both labelled α but e
causally depends on the event labeled β1 while e′ is caused by the event labelled β2.
In order to avoid the proliferation of events representing the same action with different
extruders, we follow here a different approach, postponing to the next section a more
detailed discussion on the use of prime event structures.

5.1 Event Structure with Bound Names

We define the semantics of the full π-calculus in terms of pairs (E ,X), where E is a
prime event structure, and is a X a set of names. We call such a pair an event structure
with bound names. Intuitively, the causal relation of E encodes the structural causality
of a process, while the set X records bound names. Given a pair (E , X) we define a
notion of permitted configurations: a configuration that contains an action whose sub-
ject is a bound name, is permitted if it also contains a previous extrusion of that name.
Objective causality is then implicitly captured by permitted configurations.

Definition 9 (Semantics). The semantics of the full π-calculus is inductively defined as
follows, where k denote the level of unfolding of recursive definitions, and we write Ek

P,
resp. Xk

P, for the first, resp. the second, projection of the pair {|P |}k:

{|∑i∈I πi.Pi |}k = ( ∑i∈I πi.Ek
Pi
,
⋃

i∈I Xk
Pi
) {|P | Q |}k = ( Ek

P ‖π Ek
Q , Xk

P ∪Xk
Q )

{|A〈ỹ, q̃ | w,m〉 |}0 = ( /0,{w(N)}) {|(νn)P |}k = ( Ek
P , Xk

P ∪{n} )
{|A〈ỹ, q̃ | w,m〉 |}k+1 = ( Ek

PA{ỹ,q̃/x̃, p̃}{w,m/z,n}, {w(N)} ) {|0 |}k = ( /0, /0)
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It is easy to show that, for any k, Ek
P ≤ Ek+1

P and Xk
P = Xk+1

P = XP. Then the semantics
of a process P is defined as the following limit: {|P |} = (supk∈N Ek

P , XP ) .

The semantics is surprisingly simple: a restricted process (νn)P is represented by a
prime event structure that encodes the process P where the scope of n has been opened,
and we collect the name n in the set of bound names. As for parallel composition, the
semantics {|P | Q |} is a pair (E ,X) where X collects the bound names of both {|P |}
and {|Q |} (recall that we assumed that bound names are pairwise different), while the
event structure E is obtained exactly as in the previous sections. This is since the event
structures that get composed correspond to the processes P and Q where the scope of
any bound name has been opened. The following property can be immediately proved.

Proposition 10. Let P,Q be two processes, then {|(νn)P | Q |}= {|(νn)(P | Q) |}.

Example 11. Consider the process P = (νn)(a〈n〉 | n(z)) | a(x).(x〈b〉 | c〈x〉), whose
first synchronization produces a new extruder c〈n〉 for the bound name n. The semantics
of P is the pair (EP,{n}), where EP is the following event structure:

τ n〈b〉 c〈n〉 x〈b〉 c〈x〉

n(z) a〈n〉 τ

���� %%%%
a(x)

&&

In order to study the operational correspondence between the LTS semantics of the π-
calculus and the event structure semantics above, we first need to adapt the notion of
computational steps of the pairs (E ,X). The definition of labelled transitions between
prime event structures, i.e., Definition 2, is generalized as follows.

Definition 12 (Permitted Transitions). Let (E ,X) be a labelled event structure with
bound names. Let e be a minimal event of E with λ(e) = β. We define the following
permitted labelled transitions:

– (E ,X)
β−→ (E/e, X), if β ∈ {τ,a(x),a〈b〉} with a,b %∈ X.

– (E ,X)
a(n)−→ (E/e, X\{n}), if β = a〈n〉 with a %∈ X and n ∈ X.

According to this definition, the set of bound names constrains the set of transitions
that can be performed. In particular, no transition whose label has a bound subject is
allowed. On the other hand, when a minimal event labeled a〈n〉 is consumed, if the
name n is bound, the transition’s labels records that this event is indeed a bound output.
Moreover, in this case we record that the scope of n is opened by removing n from the
set of bound names of the target pair. Finally, observe that the previous definition only
allows transitions whose labels are in the set L = {τ,a(x),a〈b〉,a(n)}, which is exactly
the sets of labels in the LTS of Section 2.

Theorem 13 (Operational Adequacy). Let be β ∈ {a(x),a〈b〉,a(n),τ}. Suppose

P
β−−→ P′ in the π-calculus. Then there exists E s.t. {|P |} β−−→ E and E ∼= {|P′ |}.

Conversely, suppose {|P |} β−−→ E ′. Then there exists P′ s.t. P
β−−→ P′ and {|P′ |} ∼=E ′.
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5.2 Subjective and Objective Causality

Given an event structure with bound names (E ,X), Definition 12 shows that some con-
figurations of E are no longer allowed. For instance, if e is minimal but its label has a
subject that is a name in X , e.g, λ(e) = n(x) with n ∈ X , then the configuration {e} is
no longer allowed since the event e requires a previous extrusion of the name n.

Definition 14 (Permitted Configuration). Let (E ,X) be an event structure with bound
names. For an event e ∈ E define e ↑= {e′ | e ≤ e′}. Given a configuration C of E , we
say that C is permitted in (E ,X) whenever, for any e ∈C whose label has subject n with
n ∈ X,

– C \ e ↑ is permitted, and
– C \ e ↑ contains an event whose label is an output action with object n.

The first item of the definition above is used to avoid circular definitions that would
allow wrong configurations like {n〈m〉,m〈n〉} with X = {n,m}. Now, the two forms of
causality of the π-calculus can be defined using event structures with bound names and
permitted configurations.

Definition 15 (Subjective and Objective Causality). Let P be a process of the π-
calculus, and {|P |}= (Ep,XP) be its semantics. Let be e1,e2 ∈ EP, then

– e2 has a subjective dependence on e1 if e1 ≤EP e2;
– e2 has a objective dependence on e1 if (i) the label of e1 is the output of a name in

X which is also the subject of the label of e2, and if (ii) there exists a configuration
C that is permitted in (E ,X) and that contains both e1 and e2.

Example 16. Let consider again the process P in Example 11. The configurations C1 =
{a〈n〉,n(z)} and C2 = {τ,c〈n〉,n(z)} are both permitted by {|P |}, and they witness the
fact that the action n(z) has an objective dependence on a〈n〉 and on c〈n〉. We could
also say that n(z) objectively depends either on a〈n〉 or on c〈n〉.
Example 17. Let be P = (νn)(a〈n〉 | b〈n〉 | n(x)), then {|P |}= (EP,{n}) where EP has
three concurrent events. In this process there is no subjective causality, however the ac-
tion n(x) has an objective dependence on a〈n〉 and on b〈n〉 since both C1 = {a〈n〉,n(x)}
and C2 = {b〈n〉,n(x)} are permitted configurations.

Example 18. Let be P = (νn)(a〈n〉.b〈n〉.n(x)), then {|P |} = (EP,{n}) where EP is a
chain of three events. According to the causal relation of EP, the action n(x) has a
structural dependence on both the outputs. Moreover, the permitted configuration C =
{a〈n〉,b〈n〉,n(x)} shows that n(x) has an objective dependence on a〈n〉 and on b〈n〉. In
this case we do not know which of the two outputs really extruded the bound name,
accordingly to the inclusive disjunctive causality approach we are following.

5.3 The Meaning of Labelled Causality

In this paper we focus on compositional semantics, studying a true concurrent seman-
tics that operationally matches the LTS semantics of the π-calculus. Alternatively, one
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could take as primitive the reduction semantics of the π-calculus, taking the perspec-
tive that only τ-events are “real” computational steps of a concurrent system. Therefore
one could argue that the concept of causal dependency makes only sense between τ
events. In this perspective, we propose to interpret the causal relation between non-τ
events as an anticipation of the causal relations involving the synchronizations they will
take part in. In other terms, non-τ events (from now on simply called labelled events)
represent “incomplete” events, that are waiting for a synchronization or a substitution
to be completed. Hence we can prove that in our semantics two labelled events e1 and
e2 are causally dependent if and only if the τ-events they can take part in are causally
dependent. This property is expressed by the following theorem in terms of permitted
configurations. Recall that the parallel composition of two event structures is obtained
by first constructing the cartesian product. Therefore there are projection morphisms
π1,π2 on the two composing structures. Let call τ-configuration a configuration whose
events are all τ-events. Note that every τ-configuration is permitted.

Theorem 19. Let P be a process. A configuration C is permitted in {|P |} if and only if
there exists a process Q and a τ-configuration C′ in {|P | Q |} such that π1(C′) =C.

Let e1,e2 be two labelled events of {|P |} = (Ep,Xp). If e1,e2 are structurally depen-
dent, i.e., e1 ≤EP e2, then such a structural dependence is preserved and reflected in
the τ-actions they are involved in because of the way the parallel composition of event
structures is defined. On the other hand, let be e1,e2 objectively dependent. Consider
the parallel composition (EP||πEQ,XP ∪XQ) for some Q such that there is a τ event e′2
in EP || πEQ with π1(e′2) = e2 and [e′2) is a τ-configuration. Then there must be an event
e′1 ∈ [e′2) such that π1(e′1) = e1.

6 Disjunctive Causality

As we discussed in Section 1, objective causality introduced by scope extrusion requires
for the π-calculus a semantic model that is able to express some form of disjunctive
causality. In the previous section we followed an approach that just ensures that some
extruder (causally) precedes any action with a bound subject. However, we could alter-
natively take the effort of tracing the identity of the actual extruders. We could do it by
duplicating the events corresponding to actions with bound subject and letting different
copies depend on different, alternative, extruders. Such a duplication allows us to use
prime event structures as semantics models. In this section we discuss this alternative
approach showing to what extent it can be pursued.

As a first example, the semantics of the process P = (νn)(a〈n〉 | b〈n〉 | n(x)), con-
taining two possible extruders for the action n(x), can be represented by left-most prime
event structure in Figure 2. When more than a single action use as subject the same
bound name, each one of these actions must depend on one of the possible extruders.
Then the causality of the process (νn)(a〈n〉 | b〈n〉 | n(x).n(y)), represented by the right-
most event structure in Figure 2, shows that the two read actions might depend either
on the same extruder or on two different extrusions.

Things get more complicate when dealing with the dynamic addition of new extrud-
ers by means of communications. In order to guarantee that there are distinct copies
of any event with a bound subject that causally depend on different extruders, we have
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��������
b(n)

��������

Fig. 2.

to consider the objective causalities generated by a communication. More precisely,
when the variable x is substituted with a bound name n by effect of a synchroniza-
tion, (i) any action with subject x appearing in the reading thread becomes an action
that requires a previous scope extrusion, and (ii) the outputs with object x become new
extruders for any action with subject n or x. To exemplify, consider the process P′ =
(νn)(a〈n〉 | b〈n〉 | n(z)) | a(x).(x〈a〉 | c〈x〉) that initially contains two extruders for n, and
with the synchronization along the channel a evolves to (νn)(b〈n〉 | n(z) | n〈a〉 | c〈n〉).
Its causal semantics can be represented with the following prime event structure:

n〈a〉 n(z)

��
��

c〈x〉 x〈a〉 c(n)









n τz→a n(z) n(z)

a(x)

����
τx→(n)

�����
�����

a(n) b(n)

�������������������

The read action n(z) may depend on one of the two initial extruders a〈n〉 and b〈n〉,
or on the new extruder c〈n〉 that is generated by the first communication. Accordingly,
three different copies of the event n(z) appear over each of the three extruders. On
the other hand, the output action on the bound name n is generated by the substitution
entailed by the communication along the channel a, hence any copy of that action keeps
a (structural) dependence on the corresponding τ event. Moreover, since it is an action
with bound subject, there must be a copy of it for each of the remaining extruders of
n, that is b〈n〉 and c〈n〉. To enhance readability, the event structure resulting from the
execution of the communication along the channel a is the leftmost e.s. in Figure 3.

n〈a〉 n(z) n〈a〉 n(z)

c(n)

���
τ b(n)

���
n(z) n(z)

b(n)

'' &&

a(n)

Fig. 3.

So far so good, in particular it seems possible to let the causal relation of prime
event structures encode both structural and objective causality of π-processes. How-
ever, this is not the case. Consider the process P = (νn)(a〈n〉.b〈n〉.n(z)) of Example 18.
If we just duplicate the event n(z) to distinguish the fact that it might depend on an
extrusion along a or along b, we obtain the rightmost structure in Figure 3, that we
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denote Ep. In particular, even if the two copies intends to represent two different ob-
jective causalities, nothing distinguishes them since they both structurally depend on
both outputs. This is a problem when we compose the process P in parallel with, e.g.,
Q = a(x).c〈x〉 | b(y).d〈y〉. After two synchronizations we would like to obtain two
copies of the read actions on n that depend on the two different remaining extruders
c〈n〉 and d〈n〉. However, in order to obtain such an event structure as the parallel com-
position of the semantics of P and Q we must be able to record somehow the different
objective causality that distinguishes the two copies of n(z) in the semantics of P.

The technical solution would be to enrich the event labels so that the label of an event
e also records the identity of the extruder events that e (objectively) causally depends
on. A precise account of this approach is technically involved and intractable, so that
the intuition on the semantics gets lost. Moreover, we think that this final example
sheds light on the fact that structural and objective causality of π-processes cannot be
expressed by the sole causal relation of event structures. To conclude, at the price of
losing the information about which extruder an event depends on, the approach we
developed in the previous section brings a number of benefits: it is technically much
simpler, it is operationally adequate, and it gives a clearer account of the two forms of
causality distinctive of π-processes.

7 Related Work

There are several causal models for the π-calculus, that use different techniques. There
exist noninterleaving semantics in terms of labelled transition systems, where the causal
relations between transitions are represented by “proofs” which allow to distinguish
different occurrences of the same transition [16,1,8]. In [4], a more abstract approach
is followed, which involves indexed transition systems. In [11], a semantics of the π-
calculus in terms of pomsets is given, following ideas from dataflow theory. The two
papers [3,9] present Petri nets semantics of the π-calculus. However, none of these
aproaches accounts for parallel extrusion. We finally recall [13] that introduces a graph
rewriting-based semantics of the π-calculus that allows parallel extrusions.

Previous work on an event structure semantics of the π-calculus are [17,5] that study
fragments of the calculus, while [2] gives an unlabelled event structure semantics of the
full calculus which only corresponds to the reduction semantics, hence which is not
compositional.

We plan for future work the application of the present semantics to the study of a
labelled reversible semantics of the π-calculus that would extend the work of Danos
and Krivine [6]. Phillips and Ulidowski [15] noted the strict correspondence between
reversible transition systems and event structures. A first step in this direction is [12],
which proposes a reversible semantics of the π-calculus that only considers reductions.
It would also be interesting to study which kind of configuration structures [10] can
naturally include our definition of permitted configuration.
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Abstract. Modal languages are well-known for their robust decidabil-
ity and relatively low complexity. However, as soon as one adds a self-
referencing construct, like hybrid logic’s down-arrow binder, to the basic
modal language, decidability is lost, even if one restricts binding to a
single variable. Here, we concentrate on the latter case and investigate
the logics obtained by restricting the nesting depth of modalities be-
tween binding and use. In particular, for distances strictly below 3 we
obtain well-behaved logics with a relatively high descriptive power. We
investigate the fragment with distance 1 in the framework of coalgebraic
modal logic, for which we provide very general decidability and com-
plexity results. For the fragment with distance 2 we focus on the case
of Kripke semantics and obtain optimum complexity bounds (no harder
than the base logic). We show that this fragment is expressive enough to
accommodate the guarded fragment over the correspondence language.

1 Introduction

Modal logics are known for their robust decidability and relatively low com-
plexity. However, they don’t play along well with binding constructs such as
the ↓ binder of hybrid logic, which allows naming the current point of evalua-
tion for later reference. Hybrid logic with ↓ and the satisfaction operator @ is a
conservative reduction class for first-order logic and, therefore, has undecidable
satisfiability and finite satisfiability problems (see, e.g., [3]). Undecidability in
the presence of ↓ is rather robust. E.g. it persists without @, without nominals,
and even if only one variable is allowed to be bound by ↓ (or, semantically, if only
one state can be remembered at any given time) [14]. Also, satisfiability with re-
spect to classes of models that are typically computationally well-behaved (e.g.,
linear, transitive or equivalence relation frames) is undecidable (except in the
uni-modal case) [18]. Weakened versions of ↓ were investigated and also turned
out to be undecidable [2].

Syntactic fragments of the hybrid language with ↓ were investigated in [22].
There, it is observed that undecidability of the logic with ↓ can be established
by reduction from the tiling problem using a formula that contains the so-called
�↓� pattern, i.e. a �-modality occurs under the scope of a ↓ that occurs under
the scope of a �. It is then shown that interdicting this pattern (in negation
normal forms) ensures decidability.
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Here, we investigate a different form of restriction, coming from the same ob-
servation. The reduction of the tiling problem given in [22] uses three modalities:
� is made a master modality using a spypoint; ♦1 and ♦2 are forced to be total
functions; and the crucial grid is defined by the formula

�↓x.�(s→ �(♦1♦2x→ ♦2♦1x)).

Observe that there are four modalities between the binding of x and its uses.
Informally, we say that x occurs at depth 4 from its binding. This raises the
question of the decidability status of fragments of the logic with ↓ (and only
one variable) where every use of the variable occurs at a given maximal depth
k from its binding. Known undecidabiltiy proofs work for k = 4 [14]; as a first
step in our investigation, we show that undecidability holds also for k = 3.

We then show (Section 3) that for depth at most 1, and not only for the
Kripke semantics of modal logic but for any logic in the framework of coalge-
braic logic (which supports, e.g., probabilities, counting, preferences, and game
logics) [16,21], we obtain a decidable logic with the exponential model property.
even when the global modality A is added to the language. Under mild assump-
tions, it can be shown that satisfiability is in fact in EXPTIME, a tight bound in
most cases. These results can be shown to hold also in the presence of nominals.

For Kripke semantics, we can improve these results in several ways (Section 4):
we can allow up to depth 2 and retain decidability in EXPTIME, even though the
finite model property breaks. Moreover, we establish a quasi-tree model property
for the fragment without A and prove decidability in PSPACE.

The language with A and a depth bound of 2 for occurrence of the bound vari-
able is quite expressive. In particular, we show (Section 5) that it subsumes the
guarded fragment over the modal correspondence language (without constants
and on formulas with two free variables). Because the guarded fragment does
enjoy the finite model property, the containment is proper.

2 Coalgebraic Logics with Self-reference

For greater generality, we work in the framework of coalgebraic modal logic [16],
which covers a broad range of modalities beyond the standard relational setup,
including probabilistic and game-theoretic phenomena as well as neighbourhood
semantics and non-material conditionals [21]. This framework is parametric in
syntax and semantics. The syntax is given by a similarity type Λ, i.e. a set of
modal operators with finite arities ≥ 0 (hence possibly including propositional
atoms); to simplify notation, we will pretend that all operators are unary. Adopt-
ing the notation of [14], we use the personal pronouns I and me as binder and
bindee, respectively. The full language F(Λ, I,@,A) is given by the grammar

F(Λ, I,@,A) 3 φ, ψ ::= ⊥ | me | φ→ ψ | ♥φ | Aφ | I.φ | @meφ

where ♥ ∈ Λ. We use the standard derived boolean operators ¬, ∧, etc., while
E denotes the dual of A. Occasionally, we will assume all formulas to be in
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negation normal form (nnf) and in such cases ¬, ∧ and ∨ will be taken as
primitive. We will also usually restrict our attention to syntactic fragments of
F(Λ, I,@,A), such as F(Λ, I,@) or F(Λ, I): the fragments without A and with
neither A nor @, respectively. We use rank(φ) to denote the maximum number
of nested occurrences of ♥ ∈ Λ in φ. The notion of rank is trivially extended to
finite sets of formulas.

The semantics of the logic is given by an endofunctor T : Set → Set and,
for each ♥ ∈ Λ, a predicate lifting �♥�, i.e., a natural transformation �♥� :
Q → Q ◦ T op , where Q is the contravariant powerset functor Setop → Set (i.e.
QX = 2X and Qf(A) = f−1[A]). As usual, T is assumed w.l.o.g. to preserve
injective maps [5] and to be non-trivial, in the sense that TX = ∅ implies X = ∅.

Models of the logic are T -coalgebras 〈X, γ〉, where X is a non-empty set of
states and γ : X → TX is the transition function. Given two states x, y ∈ X (the
current and the remembered state, respectively), the truth value of F(Λ, I,@,A)-
formulas is inductively defined by:

y, x |=γ me ⇐⇒ x = y y, x |=γ Aφ ⇐⇒ ∀z ∈ X. z, z |=γ φ

y, x |=γ ♥φ ⇐⇒ γ(x) ∈ �♥�X�φ�γ,y y, x |=γ @meφ ⇐⇒ y, y |=γ φ

y, x |=γ I.φ ⇐⇒ x, x |=γ φ

where �φ�γ,x = {z ∈ X | x, z |=γ φ}; Boolean operations were omitted. When
clear from context, we shall write simply y, x |= φ and �φ�x.

Occurrences of me in φ that are not under the scope of an I-binder are said to
be free. A formula that contains no free occurrences of me is called a sentence.

Lemma 1. If φ is a sentence, then y, x |=γ φ iff x, x |=γ φ, for all x, y.

Therefore, for a sentence φ, we may omit the remembered state and write x |=γ φ.

Example 2. 1. Kripke semantics is an instance of coalgebraic semantics:
For n < ω, the signature Kn has unary modal operators �1,�2, . . .�n and a
countably infinite set P of propositional atoms (nullary operators). As usual, ♦i

is the dual of �i, i.e. ♦iφ = ¬�i¬φ. The semantics is given by the endofunctor
T defined by TX = (PX)n × PP, equipped with predicate liftings ��i�X(C) =
{(A1, . . . , An, B) ∈ TX | Ai ⊆ C} and �p�X = {(A1, . . . , An, B) ∈ TX | p ∈ B}
for p ∈ P. Then T -coalgebras assign to each state an n-tuple of sets of successors
and a valuation for P, and hence are exactly Kripke models with n relations. We
shall denote these as Pn-models 〈X, γ, π〉 with γ : X → (PX)n and π : X → PP.

2. In graded logic [8] one has modal operators ♦k for k ≥ 0, read ‘in more than
k successors, it holds that’. We can interpret this logic over the functor B that
takes a setX to the set BX of multisets overX , i.e. mapsB : X → N∪{∞}, using
the predicate liftings �♦k�X(A) = {B ∈ B(X) | ∑x∈AB(x) > k}. This captures
the multigraph semantics of graded modalities [7], which in the absence of I-me
engenders the same notion of satisfiability as the more standard Kripke semantics
of graded modalities [19].
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3. Probabilistic logic [13] has operators Lp ‘in the next step, it holds with
probability at least p’, for p ∈ [0, 1] ∩ Q. Its semantics is based on the func-
tor D mapping X to the set of discrete probability distributions on X , with�Lp�X(A) = {P ∈ D(X) | PA ≥ p}. D-coalgebras are Markov chains.

Other modal logics that fit in the coalgebraic paradigm include neighbourhood
semantics, coalition logic, and non-monotonic conditionals ⇒ (‘if – then nor-
mally’), to name just a few [21].

Remark 3. One may consider variants @∗
me and A∗ of the operators @me and

A with semantic clauses y, x |=γ @∗
meφ ⇐⇒ x, y |=γ φ and y, x |=τ

δ A∗φ ⇐⇒
∀z ∈ X.y, z |=τ

δ φ, respectively (so that @me = @∗
meI and A = A∗I). The operator

@∗
me is not in general expresible in F(Λ, I,@,A): one can show using the notion

of bisimulation introduced in Section 4 that the formula I.♦(¬me∧@∗
me♦¬me) is

not expressible in F(Kn, I,@,A). In the relational case, one can however give a
polynomial reduction using inverse relations (which can be defined in F(Kn, I,@)
as shown below). Also A∗ is not in general expressible in F(Λ, I,@,A): in the
relational case, a sink can be defined by the formula I.A∗(¬me → ♦me); again,
inexpressibility of this property in F(Kn, I,@,A) is shown using bisimulations.
Technically, A∗ has a number of undesirable properties; e.g. unlike A it cannot be
reduced to TBox reasoning (Remark 4), and moreover it subverts the semantic
idea behind the depth restriction.

Remark 4. In the following, we will work with TBoxes in the style of descrip-
tion logic instead of the A operator in full generality, i.e. we will assume that
all formulas are of the form (Aφ) ∧ ψ where φ, ψ do not contain A; satisfiability
of such a formula will be referred to as satisfiability of ψ over (the TBox) φ.
Similarly, we refer to validity over φ, soundness over φ etc. Algorithmically, we
can reduce the A-operator to TBox reasoning as follows. We first guess which
subformulas Aφ of the target formula are valid (one can do this already in NP;
algorithms for A happen in EXPTIME). Given this guess, we can eliminate all
occurrences of A, thus ending up with a modified target formula, a TBox, and
a conjunction ¬Aρ1 ∧ · · · ∧ ¬Aρk. As our logic is invariant under coproducts of
models, it now suffices to check (separately) that the target formula and the
formulas ¬ρi are satisfiable over the TBox.

We are interested in the modal distance between every bound occurrence of me
and its associated I. We now make this notion precise. We define sets of formulas
Fn

i (Λ, I,@,A) (0 ≤ i ≤ n) intuitively containing those formulas where i) every
free occurrence of me is under at most i− 1 modalities; and ii) there are at most
n modalities between every bound me and its corresponding I:

Fn
0 (Λ, I,@,A) 3 φn0 , ψn

0 ::= ⊥ | p | φn0 → ψn
0 | ♥φn0 | I.φnn | Aφn0

Fn
l (Λ, I,@,A) 3 φnl , ψn

l ::= me | ⊥ | p | φnl → ψn
l | ♥φnl−1 | I.φnn | Aφn0 | @meφ

n
l

where l > 0. Notice that me does not occur in Fn
0 (Λ, I,@,A). According to the

grammar, me cannot occur free under A, which is not a real restriction as any
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Table 1. Encoding of the grid of an N× N tiling in F3(K9, I). Here L = {u, r, ur, ru}.

∧
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I.♦¬me ∧ I.�¬me ∧ I.�♦me ∧ I.��me∧
∗∈L (I.��∗♦me ∧ I.��∗♦me) ∧

∧
∗∈L (��∗I.�♦me ∧ ��∗I.�♦me)∧

∗∈L (�I.�∗�∗me ∧�I.�∗♦∗me ∧�I.�∗�∗me ∧�I.�∗�∗me)
�I.�u�r�urme ∧�I.�r�u�rume
�♦u� ∧�♦r� ∧�I.�ur�rume

formula Aφ is equivalent to AI.φ. We will usually write Fn(. . .) instead of Fn
n (. . .)

and informally refer to it as the formulas of depth n, which form the depth-n
fragment. We assume w.l.o.g. that I occurs only in front of modal operators.

Theorem 5. Satisfiability is undecidable for F4(K1, I) and for F3(K9, I).

Proof (sketch). Both claims are shown by reduction from the N×N tiling prob-
lem (cf. [6]) using the so-called spypoint technique. The proof for F4(K1, I)
can be found in [14] (a simpler one but for F4(K3, I) is given in [22]). Here
we show the construction for F3(K9, I). For the sake of clarity, we assume
K9 = {�,�u,�r,�ur,�ru,�u,�r,�ur,�ru}; �u and �r represent moving one
step, up or right, in the grid, while �ur and �ru correspond to a two-step move
up-right and right-up. Each �∗ is intended to be the inverse of �∗. We use � to
go back and forth between the points of the grid and the spypoint. The latter is
the initial point of evaluation. The encoding of the grid is shown in Table 1. The
first two lines define a spypoint. The next line makes �∗ and �∗ inverses and,
exploiting this fact, injective functions. The last two lines make �ur and �ru

composites of �u and �r, and force �u and �r to commute, respectively. #$
The stepmother example from [14] (I.♦hasSpouse♦hasChild�hasParent¬me) lives in the
depth-3 fragment, while the celebrity needs only depth 2 (I.�meets♦knowsme).
Although it is possible to reduce the number of relation symbols required in the
proof above (see, e.g. [14]), the decidability of F3(K1, I) remains open.

3 The Depth-1 Fragment in Coalgebraic Semantics

As a first step in our program, we investigate the depth-1 fragment, which allows
for defining the narcissist (I.♦lovesme) and the egotist (I.�loves.me), but can
also be applied in the coalgebraic setting to express phenomena such as usually
knowing oneself on Tuesdays (if maybe not on Mondays), I.Tuesday ⇒knows me
(here we index conditionals by role names) or a Markov chain staying in the
current state with probability at least 2/3 (I. L2/3me). Specifically, we prove that
even at the general coalgebraic level, the depth-1 fragment has the exponential
model property over general TBoxes (and hence in the presence of A), with
ensuing generic decidability and complexity results.

As we work in the depth-1 fragment, we can assume that every occurrence of
♥ ∈ Λ is prefixed by I, and we regard I.♥ as a single operator — consequently,
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the subformulas of I.♥φ are I.♥φ and the subformulas of φ, but not ♥φ. We next
recall some notation and previous results.

Definition 6. We use Prop(V ) to denote the set of Boolean expressions over
a set V (of atoms) and put Λ(V ) = {I.♥v | ♥ ∈ Λ, v ∈ V }. For any set X , an
X-substitution for V is a function V → X . Given α ∈ Prop(V ) and a P(X)-
substitution τ , �α�X,τ is the extension of α in the boolean algebra P(X) under
the interpretation τ . Similarly, for a functor T and predicate liftings �♥�, we write�α�TX,τ , with α ∈ Prop(Λ(V )) and τ a P(X)-substitution for V , to denote the
extension of α in the boolean algebra P(TX) under the interpretation function
λ♥v.�♥�X(τ(v)). We say that that α is one-step satisfiable over τ if �α�TX,τ %= ∅.
Definition 7. A clause over V is a disjunction of atoms in V ∪ ¬V . A one-
step rule over a set V is a pair φ/ψ where φ ∈ Prop(V ) and ψ is a clause
over Λ(V ). A one-step rule φ/ψ is one-step sound if whenever �φ�X,τ = X , then�ψ�TX,τ = TX . A collection R of one-step rules is one-step complete if whenever�χ�TX,τ = TX with χ a clause over Λ(V ), then there exist φ/ψ ∈ R over V and
a V -substitution σ such that ψσ propositionally entails χ and �φσ�X,τ = X .

In proofs, a one-step rule φ/ψ over V is applied in substituted form, i.e. conclude
ψσ from φσ, where σ substitutes formulas for the variables in V . Thanks to the
following result, we can assume that we have a one-step complete set R of one-
step sound rules.

Theorem 8 ([19]). The set of all one-step sound rules for a functor T and its
corresponding predicate liftings is one-step complete.

We will first show that whenever φ is satisfiable over a TBox χ, then φ has an
exponentially bounded model (in |χ| + |φ|) satisfying χ. To this end, we let Σ
be the closure of {φ, χ} under subformulas (in the above sense), negation, and
prefixing with @me, where we identify ¬¬φ with φ, ¬@meφ with @me¬φ, and
@me@meφ with @meφ. We use Σ′ to denote the set of sentences in Σ. We let Sχ
be the set of all maximally satisfiable subsets of Σ′ containing χ.

We build a syntactic model whose domain 2Sχ contains two copies of each
B ∈ Sχ. Formally, we define 2Sχ = {�,⊥}×Sχ and let l : 2Sχ → Sχ denote the
second projection. For A ∈ Sχ, let Sχ,A denote the set of maximally satisfiable
subsets of Σ (which may contain free occurrences of me) extending {χ}∪@meA,
where @meA = {@meψ | ψ ∈ A}. For each (a,A) ∈ 2Sχ, we define a function
r(a,A) : Sχ,A → 2Sχ as r(a,A)(B) = (b, B ∩ Σ′) where b = � iff B entails the
formula a↔ me.

For x ∈ 2Sχ, we define a valuation τx : VΣ → P(2Sχ) on VΣ = {aρ | ρ ∈ Σ}
by τx(aρ) = [ρ]x, with [ρ]x given by the usual clauses for Boolean operators plus

[a]x = {y ∈ 2Sχ | a ∈ l(y)} [me]x = {x}
[@meρ]x = {y ∈ 2Sχ | x ∈ [ρ]x} [I.♥ρ]x = {y ∈ 2Sχ | I.♥ρ ∈ l(y)}.

Also, define ηA : VΣ → P(Sχ,A) by ηA(aρ) = {B ∈ Sχ,A | ρ ∈ B}. The following
key lemma, whose proof depends crucially on the fact that for every x ∈ 2Sχ,
rx : Sχl(x) → 2Sχ is injective, allows us to move from the complex definition of
τx to the simpler ηl(x):
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Lemma 9. For all ρ ∈ Σ and x ∈ 2Sχ, ηl(x)(aρ) = r
−1
x [τx(aρ)].

We let σΣ : VΣ → Σ by σΣ(aρ) = ρ and then have, similar to Lemma 27 in [19],

Lemma 10. For A ∈ Sχ and θ ∈ Prop(VΣ), �θ�Sχ,A,ηA = Sχ,A iff @me

∧
A →

θσΣ is valid over the TBox χ (
∧
A is the conjunction of all formulas in A).

Lemma 11 (Existence). There is a coherent coalgebra structure ξ on 2Sχ,
i.e., one such that ξ(x) ∈ �♥�[ρ]x iff x ∈ [I.♥ρ]x for every x and every I.♥ρ ∈ Σ.

The key point in the proof of the existence lemma in comparison to the base
case [19] is the following lemma.

Lemma 12 (Rule relativization). If θ/ψ is a sound one-step rule, then we
can soundly conclude ρ→ ψσ from @meρ→ θσ, for any substitution σ and any
sentence ρ.

Lemma 13 (Truth). Let ξ be a coherent coalgebra structure on 2Sχ. Then
x, y |=ξ ρ iff y ∈ [ρ]x for ρ ∈ Σ and hence x, y |=ξ ρ

′ iff ρ′ ∈ l(y) for ρ′ ∈ Σ′.

Theorem 14. F1(Λ, I,@,A) has the exponential model property. Moreover, if
one-step satisfiability is in NP, satisfiability is NEXPTIME; when the former is
in P, the latter is in EXPTIME.

Proof. The exponential model property is established by the above construction,
as 2Sχ has exponential size. One-step satisfiability in NP allows guessing and
checking an exponential model in exponential time [19]. With one-step satisfia-
bility in P we can use Hintikka set elimination, similarly as in [20].

Remark 15. The EXPTIME bound is tight already in the relational case. Al-
most all instances of coalgebraic logics, including conditional logics, alter-
nating-time/coalition logics, and probabilistic logics, have one-step satisfiability
problems in P [19], so that the EXPTIME result applies in these cases. We have
little doubt that using global caching, one can show an EXPTIME bound for so-
called EXPTIME-tractable instances [9], which would cover essentially all cases of
interest. For graded logics (whose one-step satisfiability problem is NP-complete),
we have recent results proving an EXPTIME bound even at depth 2 [10].

Remark 16. Theorem 14 generalizes to a setting with nominals [3], i.e. propo-
sitional symbols i denoting single states which can appear by themselves or in
satisfaction operators @iρ (‘ρ holds at state i’). That is, the result also holds in
the framework of coalgebraic hybrid logic [15]. Only minor modifications of the
construction are required, the most notable one being that elements of Sχ that
are named, i.e. contain a positive nominal, are not duplicated in the construction
of the carrier. This is in sharp contrast to the depth-2 case, studied next, where
nominals cause drastic effects even in the relational case (Remark 25).
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4 The Depth-2 Fragment in Kripke Semantics

We will next we focus on the depth-2 fragment under relational semantics, i.e.,
F2(Kn, I,@,A) and some of its fragments. Syntactically, we view this as a logic
with two types of modal operators, I.�i and �i; by the depth-2 restriction,
no �i can occur directly under another �j . Our main result is decidability in
EXPTIME (even in PSPACE without A). This contrasts with Theorem 5 and,
more generally, with the robust undecidability of F(Kn, I) (Section 1).

A detailed observation of the proof of Theorem 5 shows that F2(Kn, I,@,A)
is quite expressive: only two formulas are needed outside this fragment. In par-
ticular, Table 1 illustrates that in depth-2, one can define inverse and functional
relations, and similarly one can define reflexive and symmetric relations. As an-
other example, consider the formula γ = ♦�∧ I.�(¬me∧♦me)∧�I.�♦¬me. It
is not hard to see that x |= γ implies that x has at least two successors, i.e. satis-
fies the formula ♦>1�, where ♦>1 is a graded modality (cf. Example 2). We can
delineate the expressive power of F2(Kn, I,@,A) using a notion of bisimulation:

Definition 17. Let 〈X, γ, π〉 and 〈Y, δ, τ〉 be Pn-models. Then Z1, Z2 ⊆ X2 ×
Y 2 constitute an I@A2-bisimulation whenever they satisfy all the conditions in
Table 2. The weaker notions of I@2-, IA2- and I2-bisimulations are obtained by
ignoring clauses {Al,Ar}, {@} and {Al,Ar,@}, respectively.
Proposition 18. Let 〈X, γ, π〉 and 〈Y, δ, τ〉 be two Pn-models such that relations
Z1, Z2 ⊆ X2 × Y 2 constitute an I@A2-bisimulation between them. Then:

1. (x0, x1)Z1(y0, y1) =⇒ (x0, x1 |=π
γ φ ⇐⇒ y0, y1 |=τ

δ φ) ∀φ ∈ F1(Kn, I,@,A)
2. (x0, x1)Z2(y0, y1) =⇒ (x0, x1 |=π

γ φ ⇐⇒ v0, v1 |=τ
δ φ) ∀φ ∈ F2(Kn, I,@,A)

Analogous results hold for I@2-, IA2- and I2-bisimulations.

Example 19. Formula γ above shows that F2(Kn, I) can express some car-
dinality requirements on successors. We make this expressivity more precise
by showing that it cannot distinguish structures with two and three succes-
sors. Consider two P-models 〈X, γ, π〉 and 〈A, δ, τ〉 where X = {x, y0, y1}; A =
{a, b0, b1, b2}; π(p) = τ(p) = ∅ for all proposition p; and γ and δ are such that

Table 2. Conditions that define a IA@2-bisimulation. Z∗ stands for both Z1 and Z2.

(p) (x0, x1)Z∗(y0, y1) =⇒ (x1 ∈ π(p) ⇐⇒ y1 ∈ τ (p)), for each proposition p
(me) (x0, x1)Z∗(y0, y1) =⇒ (x0 = x1 ⇐⇒ y0 = y1)
(I.�l) (x0, x1)Z1(y0, y1) and x1Rix2 =⇒ ∃y2 st. y1Riy2 and (x1, x2)Z∗(y1, y2)
(�l) (x0, x1)Z2(y0, y1) and x1Rix2 =⇒ ∃y2 st. y1Riy2 and (x0, x2)Z1(y0, y2)
(I.�r) (x0, x1)Z1(y0, y1) and y1Riy2 =⇒ ∃x2 st. x1Rix2 and (x1, x2)Z∗(y1, y2)
(�r) (x0, x1)Z2(y0, y1) and y1Riy2 =⇒ ∃w2 st. x1Rix2 and (x0, x2)Z1(y0, y2)
(@) (x0, x1)Z∗(y0, y0) =⇒ (x0, x0)Z∗(y0, y0)
(Al) ∀x∃y st. (x, x)Z∗(y, y)
(Ar) ∀y∃x st. (x, x)Z∗(y, y)
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Rγ = {(x, yi) | 0 ≤ i ≤ 1} and Rδ = {(a, bi) | 0 ≤ i ≤ 2}. It is not hard to verify
that Z1 = Z2 = {(s, t) ∈ X2 ×A2 | ∀0 ≤ i ≤ 1, πi(s) = a ⇐⇒ πi(t) = x} con-
stitute an I2-bisimulation.

4.1 F2(Kn, I) Is PSPACE-Complete

Using Proposition 18 we will show that F2(Kn, I) possesses a variant of the tree-
model property: every satisfiable formula has a model that is contained in the
reflexive-symmetric closure of a tree. Moreover these quasi-tree-models can be
shown to be shallow, i.e., have a depth polynomial on the size of the formula.
As usual, this is key in deriving a decision procedure for satisfiability that runs
in polynomial space.

Definition 20. We say that S ⊆ X2 is a quasi-tree with root r if for some tree R
with root r, R ⊆ S ⊆ R∪R−1∪ IdX . A Pn model 〈X, γ, π〉 is a quasi-tree-model
with root r when

⋃
iRγ,i is a quasi-tree with root r.

Theorem 21 (Quasi-tree model property). If φ ∈ F2(Kn, I) is a satisfiable
sentence then there exists a quasi-tree model that satisfies φ at its root.

Proof (sketch). By Lemma 1, let X be a model with domain X such that r, r |=π
γ

φ, for some r ∈ X . One builds an unravelling A of X such that it contains all
the paths in X from r where no self-loop is ever taken and such that one never
immediately returns to the preceding state, regardless of the relation used. This
unravelling gives us a quasi-tree and one then shows it to be bisimilar X .

We are now ready to introduce the announced tableau construction. In this
context, we will restrict our attention to F2(Kn, I)-formulas in nnf subject to
the following restriction: if me occurs free in φ, then it does so under the scope
of some modality. Notice that for such a formula �iφ, φ need not satisfy this
condition. We solve this by defining, for an arbitrary formula φ, φ(�) and φ(⊥)
as the result of replacing every free occurrence of me that is not under a modality
by � and ⊥, respectively. E.g., for φ = me∧�ime, φ(⊥) = ⊥∧�ime; the former
does not satisfy the restriction above, the latter does.

Given a set of formulas Σ, its closure Cl(Σ), is the smallest set that is closed
under nnf negation and pseudo-subformulas, that is, if φ ∈ Cl(Σ) and ψ is a
subformula of φ, then ψ(�) and ψ(⊥) are in Cl(Σ) as well. Cl∗(Σ) denotes the
set of sentences in Cl(Σ).

Let φ be a F2(Kn, I)-sentence. A tableau for φ is then a labelled quasi-tree
T = 〈T,R, ·T 〉 with root r, where each directed edge (s, t) ∈ R is labelled with a
non-empty set of relation indices (s, t)T ⊆ {1 . . . n} (we write sRit if (s, t) ∈ T
and i ∈ (s, t)T ) and each node is labelled with a tuple sT = 〈H∗, H∗∗, Hf∗, H∗f〉
where H∗ is a Hintikka set over (some subset of) Cl∗({φ}) and all the others are
Hintikka sets over (subsets of) Cl ({φ}) (for an s ∈ T , we will denote these sets
by sT∗ , s

T
∗∗, s

T
f∗ and sT∗f ; or even s∗, s∗∗, sf∗ and s∗f if T is clear from context).

Intuitively, sT∗ contains sentences that hold at s (where the remembered state
is irrelevant); sT∗∗ contains formulas that hold at s when the remembered state is
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Table 3. Conditions for a tableau T for φ with root r. For s ∈ T , fs is the father
of s (if s �= r); and t1, . . . tk ∈ T are the children of s. We use t to designate some
existentially quantified children of s. Also L = {∗, ∗∗, f∗, ∗f}.

1. φ ∈ r∗ and rf∗ = r∗f = ∅.
2.
⋃

x∈L sx ⊆ Cl({φ}) and rank(
⋃

x∈L sx) > rank(
⋃

x∈L tjx) for all j.
3. For a sentence ψ, if ψ ∈ s∗∗ ∪ sf∗ or ψ ∈ t∗f , then ψ ∈ s∗.
4. If ♦iψ ∈ s∗ or I.♦iψ ∈ s∗, then some of the following must hold:

i) sRifs, ψ(⊥) ∈ s∗f ; ii) sRis, ψ(�) ∈ s∗∗; iii) sRit, ψ(⊥) ∈ tf∗.
5. If �iψ ∈ s∗ or I.�iψ ∈ s∗, then all of the following must hold:

i) sRifs =⇒ ψ(⊥) ∈ s∗f ; ii) sRis =⇒ ψ(�) ∈ s∗∗; iii) sRit =⇒ ψ(⊥) ∈ tf∗.
6. If ♦iψ ∈ s∗∗ (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(⊥) ∈ fs∗; ii) sRis, ψ(�) ∈ s∗; iii) sRit, ψ(⊥) ∈ t∗.
7. If �iψ ∈ s∗∗ (with me free in ψ), then all of the following must hold:

i) sRifs =⇒ ψ(⊥) ∈ fs∗; ii) sRis =⇒ ψ(�) ∈ s∗; iii) sRit =⇒ ψ(⊥) ∈ t∗.
8. If ♦iψ ∈ sf∗ (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(�) ∈ fs∗; ii) sRis, ψ(⊥) ∈ s∗; iii) sRit, ψ(⊥) ∈ t∗.
9. If �iψ ∈ sf∗ (with me free in ψ), then all of the following must hold:

i) sRifs =⇒ ψ(�) ∈ fs∗; ii) sRis =⇒ ψ(⊥) ∈ s∗; iii) sRit =⇒ ψ(⊥) ∈ t∗.
10. If ♦iψ ∈ tj∗f (with me free in ψ), then some of the following must hold:

i) sRifs, ψ(⊥) ∈ fs∗; ii) sRis, ψ(⊥) ∈ s∗;
iii) sRitj , ψ(�) ∈ tj∗; iv) sRitk, j �= k, ψ(⊥) ∈ tk∗.

11. If �iψ ∈ tj∗f (with me free in ψ), then all of the following must hold:
i) sRifs =⇒ ψ(⊥) ∈ fs∗; ii) sRis =⇒ ψ(⊥) ∈ s∗;
iii) sRitj =⇒ ψ(�) ∈ tj∗; iv) sRitk with j �= k =⇒ ψ(⊥) ∈ tk∗.

s, sTf∗ the ones that hold when the remembered state is the father of s and sT∗f
the formulas that hold at the father of s when the remembered state is s. This
intuition suggests the conditions in Table 3. Notice that conditions 7–11 heavily
use the fact that, because I is assumed to occur always in front of a modality,
me cannot occur free under a modality in ψ.

Lemma 22. There exists a tableau for a sentence φ iff φ is satisfiable.

Lemma 23. Let φ be a satisfiable sentence. Every tableau for φ has depth
bounded by rank(φ). Moreover, φ has a tableau with breadth polynomial in |φ|.
Theorem 24. The satisfiability problem for F2(Kn, I) is PSPACE-complete.

Remark 25. Unlike the depth-1 case (Remark 16) this result does not hold
in the presence of nominals, were we can form a spypoint using the formula:
s ∧�(♦s ∧∧

i�iI.♦(s ∧ ♦me)), internalizing global reasoning. This gives us the
possibility of defining functions and inverses, which in combination with nominals
cause NEXPTIME-hardness and break the finite model property.

4.2 F2(Kn, I,@) Is PSPACE-Complete

It is not hard to see that F2(Kn, I,@) is as expressive as F2(Kn, I), although
perhaps more succinctly so. Indeed, as an example, consider the form
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�iI.�j(p∨�k(@me♦lme → p)). A trivial transformation leads to the equivalent
formula �iI.((♦lme ∧�j (p ∨�k(� → p)))∨ (¬♦lme ∧�j (p ∨�k(⊥ → p)))). It
is not hard to generalize this example into a truth-preserving translation from
F2(Kn, I,@) to F2(Kn, I) but with an exponential blow-up in size.

Lemma 26. There exists a polynomial, satisfiability preserving translation from
F2(Kn, I,@) to F2(Kn, I).

Proof. We use the standard technique of replacing subformulas by fresh propo-
sitional symbols. We illustrate the idea translating the example used above and
leave the formal details to the reader. The translated formula we obtain in this
case is �iI.(♦lme ↔ q ∧ (q → �j�kq) ∧ (¬q → �j�k¬q) ∧�j (p ∨�k(q → p))),
where q is fresh. Notice that formulas (¬)q → �j�k(¬)q are used to propagate
the value of q to the modal context in which the @-formula originally occurred.

Theorem 27. Satisfiability for F2(Kn, I,@) is PSPACE-complete.

4.3 F2(Kn, I,@,A) Is EXPTIME-Complete

We begin by observing that the proof of Lemma 26 can be used to show also
that F2(Kn, I,@,A) is polynomially reducible to F2(Kn, I,A), so the latter is the
logic we will consider. Moreover, we reduce A to TBoxes (Remark 4).

Now, it is not hard to adapt conditions 2 in Table 3 in order to obtain a
tableau for F2(Kn, I,A) such that an analogue of Lemma 22 holds. However,
we will not be able to give a bound for the depth of this tableau. In fact, since
F2(Kn, I,A) encodes inverse functional roles, standard examples show

Theorem 28. F2(K2, I,A) lacks the finite model property.

We will show that we can nevertheless effectively decide existence of infinite
tableaux by encoding the problem in the description logic ALCHIQ, whose
satisfiability problem with respect to general TBoxes is EXPTIME-complete [12].
As a modal language (i.e. avoiding the more common DL syntax), ALCHIQ
contains graded modalities ♦>n

i and �≤n
i and inverse modalities (denoted by �i

and �i). Additionally it features role inclusion axioms Ri � Rj , which roughly
correspond to AI.�i�jme. For an introduction to description logics, see [4].

Remark 29. In terms of descriptive power, ALCHIQ is not more expressive
than F2(Kn, I); for instance �I.♦me has no ALCHIQ equivalent.

Assume we are given a F2(Kn, I)-formula φ and a general TBox χ. The encoding
into ALCHIQ will use relation symbols R1, . . . , Rn and Rf , with role inclusion
axioms R−1

i � Rf for 1 ≤ i ≤ n (where R−1
i denotes the inverse relation of

Ri). Moreover, we impose a TBox axiom �≤1
f �, so that Rf is interpreted as a

partial function. This essentially means that we work with tree-models, where
Rf represents the “father-of” relation. Notice that a node may reach its children
by more than one Ri. Since models will be proper trees, we will need to make
explicit provisions for quasi-trees in the encoding.
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Table 4. Encoding of conditions 3–11 in Table 3 as global axioms in ALCHIQ

3.
∧

ψ∈Σ0
(ρ∗∗:ψ → ρ∗:ψ) ∧ (ρf∗:ψ → ρ∗:ψ) ∧ (ρ∗f :ψ → ♦fρ∗:ψ)

4.
∧

(I.)♦iψ∈Σ0
ρ∗:(I.)♦iψ →

((
↑i ∧ ρ∗f :ψ(⊥)

)
∨
(
�i ∧ ρ∗∗:ψ(�)

)
∨ ♦iρf∗:ψ(⊥)

)
5.
∧

(I.)�iψ∈Σ0
ρ∗:(I.)�iψ →

((
↑i → ρ∗f :ψ(⊥)

)
∧
(
�i → ρ∗∗:ψ(�)

)
∧�iρf∗:ψ(⊥)

)
6.
∧

♦iψ∈Σ1
ρ∗∗:♦iψ →

((
↑i ∧ �fρ∗:ψ(⊥)

)
∨
(
�i ∧ ρ∗:ψ(�)

)
∨ ♦iρ∗:ψ(⊥)

)
7.
∧

�iψ∈Σ1
ρ∗∗:�iψ →

((
↑i → �fρ∗:ψ(⊥)

)
∧
(
�i → ρ∗:ψ(�)

)
∧�iρ∗:ψ(⊥)

)
8.
∧

♦iψ∈Σ1
ρf∗:♦iψ →

((
↑i ∧�fρ∗:ψ(�)

)
∨
(
�i ∧ ρ∗:ψ(⊥)

)
∨ ♦iρ∗:ψ(⊥)

)
9.
∧

�iψ∈Σ1
ρf∗:�iψ →

((
↑i → �fρ∗:ψ(�)

)
∧
(
�i → ρ∗:ψ(⊥)

)
∧�iρ∗:ψ(⊥)

)
10.

∧
♦iψ∈Σ1

ρ∗f :♦iψ →
(
♦f

(
↑i ∧ ρ∗:ψ(⊥)

)
∨ ♦f

(
�i ∧ ρ∗:ψ(⊥)

)
∨
(
�i� ∧ ρ∗:ψ(�)

)
∨
(
ρ∗:¬ψ(⊥) ∧ ♦f♦iρ∗:ψ(⊥)

)
∨
(
ρ∗:ψ(⊥) ∧ ♦f♦>1

i ρ∗:ψ(⊥)

) )

11.
∧

�iψ∈Σ1
ρ∗f :�iψ →

⎛
⎜⎜⎝

♦f

(
↑i → �fρ∗:ψ(⊥)

)
∧ ♦f

(
�i → ρ∗:ψ(⊥)

)
∧
(
�i⊥ → ♦f�iρ∗:ψ(⊥)

)
∧�i� →

(
ρ∗:ψ(�) ∧

(
ρ∗:ψ(⊥) → ♦f�iρ∗:ψ(⊥) ∧
ρ∗:¬ψ(⊥) → ♦f�≤1

i ρ∗:ψ(⊥)

))
⎞
⎟⎟⎠

Let L = {∗, ∗∗, f∗, ∗f}, Σ = Cl ({χ, ψ}), Σ0 = Cl∗({χ, ψ}) and Σ1 = Σ \Σ0.
We use the set V = {ρl:ψ | l ∈ L,ψ ∈ Σ} ∪ {�i | 1 ≤ i ≤ n} ∪ {↑i | 1 ≤ i ≤ n} of
proposition symbols. Intuitively we want ρl:ψ to hold at a state s of a (quasi-)tree
if ψ ∈ sl. Moreover �i and ↑i are used to denote that state s has a self-loop or
reaches his father, respectively.

Since we want χ to hold globally, we impose the TBox axiom ρ∗:χ. Also, we
require nodes to be labelled with Hintikka sets by means of the TBox axiom∧

l∈L(¬ρl:⊥ ∧ ∧
ψ∈Σ ¬(ρl:ψ ∧ ρl:¬ψ) ∧

∧
ψ1	ψ2∈Σ(ρl:ψ1	ψ2 → ρl:ψ1 " ρl:ψ2)).

To ensure a correct distinction between the root and non-root nodes, we im-
pose TBox axioms ↑i → ♦f� which state that ↑i can only hold at non-root
nodes. Moreover, conditions 3 to 11 are encoded by the TBox axioms shown in
Table 4. The encoding is straightforward, except for conditions 10 and 11, since
ALCHIQ provides no direct way of expressing the requirement tj %= tk (cf. Ta-
ble 3). In the case of condition 10, for instance, we overcome this by splitting
into cases: if tj %|= ψ(⊥), then any tk that satisfies ψ(⊥) will be different from ti;
otherwise, we use the graded modality ♦>1 to ensure another one exists.

Existence of a tableau for Aχ ∧ φ then amounts to the satisfiability, over the
TBox described above, of the formula ρ∗φ ∧�f⊥ ∧ ∧

ψ∈Σ0
(¬ρf∗:ψ ∧ ¬ρ∗f :ψ).

Theorem 30. Satisfiability for F2(Kn, I,@,A) is EXPTIME-complete.

5 Embedding the Guarded Fragment

Modal correspondence theory studies the relation between modal logic and clas-
sical logics, most notably, first-order logic (cf. [23]). The link is typically estab-
lished through the modal correspondence language: a first-order language with
only one-place and two-place relation symbols; the former stand for proposition
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symbols on the modal side, the latter for (relational) modalities. Kripke mod-
els can then be seen as relational models, and well-known translations allow
embedding many modal logics into first-order logic (FO).

The guarded fragment of FO [1], characterized by its guarded quantification
pattern, generalizes the modal fragment of FO. It enjoys good computational
properties: both the finite model property and a form of tree-model property,
and an EXPTIME-complete satisfiability problem (under bounded arity) [11].

We will see that the guarded fragment over the modal correspondence lan-
guage can be almost perfectly (i.e. using fresh relation symbols whose inter-
pretation is uniquely determined by that of the old symbols) embedded into
F2(Kn, I,@,A). While they agree on the complexity of satisfiability, because the
latter lacks the finite model property (Theorem 28), the containment is proper.

We need to make precise what we mean by an almost perfect embedding. For
Kn = {�1, . . . ,�n}, let tense F2(Kn, I,@,A) to be the logic F2(K2n, I,@,A),
with K2n = {�1, . . .�n,�1, . . .�n}, restricted to the class of models that satisfy
the formula A

∧
i≤n (I.�i�ime ∧ I.�i♦ime), i.e. those where �i and �i are inter-

preted as inverse relations. There is a bijection between models for F2(Kn, I,@,A)
and models for tense F2(Kn, I,@,A).

Theorem 31. Given a guarded formula α(x1, x2) in the correspondence lan-
guage for Kn, there is a φ in tense F2(Kn, I,@,A) such that for every C, C |=fo

α[x1 "→ c1, x2 "→ c2] iff c1, c2 |= φ.

Proof. First, observe that every guarded formula with two free variables over the
correspondence language is equivalent to a guarded formula of FO2. Moreover,
the set of guarded formulas of FO2 can be split into four overlapping sets G∅,
Gx1 , Gx2 and Gx1x2 , such that α ∈ G	 iff the free variables of α are among ".
These sets can be described by simple, mutually recursive grammars, as shown
in Table 5, where x ranges over {x1, x2}, ẋ1 = x2 and ẋ2 = x1. Finally, Table 6
exhibits translation functions (Booleans omitted) for each of these sets. An in-
duction over α ∈ G	 shows that C |=fo α[ẋ "→ c1, x "→ c2] iff c1, c2 |= T 	

ẋx(α). #$

Remark 32. One point to observe about Table 6 is that modal operators appear
without a preceding I only in formulas of the form ♦ime and �ime; contrastingly,
F2(Kn, I) would also allow formulas such as ♦i(¬me ∧ φ). Indeed one can show
that the guarded fragment is essentially the extension of F1(Kn, I,@,A) with

Table 5. The guarded fragment of FO2 is the union of G∅, Gx1 , Gx2 and Gx1,x2

G∅ � α, β Gx � α(x), β(x) Gxẋ � α(x, ẋ), β(x, ẋ)

¬α | α ∨ β
∃x.x = x ∧ α(x)
∃x.Px ∧ α(x)
∃x.Rxx ∧ α(x)
∃x∃ẋ.Rxẋ ∧ α(x, ẋ)

x = x | Px | Rxx | α
¬α(x) | α(x) ∨ β(x)
∃ẋ.x = ẋ ∧ α(x, ẋ)
∃ẋ.Rxẋ ∧ α(x, ẋ)
∃ẋ.Rẋx ∧ α(x, ẋ)

x = ẋ | Rxẋ | Rẋx
α | α(x) | α(ẋ)
¬α(x, ẋ)
α(x, ẋ) ∨ β(x, ẋ)
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Table 6. Translations from the guarded fragment of FO2 to tense F2(Kn, I,@,A)

T x
ẋx(x = x)=�
T x
ẋx(Px)= p

T x
ẋx(Rixx)= I.♦ime

T x
ẋx(α)=T ∅

ẋx(α), if α ∈ G∅

T x
ẋx(∃ẋ.x = ẋ ∧ α)= I.T x1x2

ẋx (α)
T x
ẋx(∃ẋ.Rixẋ ∧ α))= I.♦iT

x1x2
xẋ (α)

T x
ẋx(∃ẋ.Riẋx ∧ α)= I.�iT

x1x2
xẋ (α)

T ẋ
ẋx(ẋ = ẋ)=�
T ẋ
ẋx(P ẋ)=@mep

T ẋ
ẋx(Riẋẋ)=@meI.♦ime

T ẋ
ẋx(α)=T ∅

ẋx(α), if α ∈ G∅

T ẋ
ẋx(∃x.x = ẋ ∧ α)=@meT

x1x2
ẋx (α)

T ẋ
ẋx(∃x.Riẋx ∧ α)=@meI.♦iT

x1x2
ẋx (α)

T ẋ
ẋx(∃x.Rixẋ ∧ α)=@meI.�iT

x1x2
ẋx (α)

T ∅
ẋx(∃x.x = x ∧ α)=EI.T x

ẋx(α)

T ∅
ẋx(∃x.Px ∧ α)=EI. (p ∧ T x

ẋx(α))

T ∅
ẋx(∃x.Rixx ∧ α)=E (I.♦ime ∧ I.T x

ẋx(α))

T ∅
ẋx(∃x∃ẋ.Rixẋ ∧ α)=EI.♦iT

x1x2
xẋ (α)

T x1x2
ẋx (x = ẋ)=me
T x1x2
ẋx (Riẋx)=♦ime

T x1x2
ẋx (Rixẋ)=�ime

T x1x2
ẋx (α)=T ∗

ẋx(α) (α ∈ G∗)

♦ime (noting that also the definition of inverses as in Table 1 needs only ♦ime).
Thus, one might call the guarded fragment the ‘depth-1.5’ fragment — use of me
is unrestricted at depth 1, and limited to positive occurrences at depth 2 when
♦ is taken as the basic modal operator. In fact, formulas of the form ♦i¬me can
be encoded in the guarded 2-variable fragment with counting quantifiers (which
is also known to be in EXPTIME [17]), while it does not seem easily possible to
encode formulas of the more general form ♦i(¬me ∧ φ).

6 Conclusion

Modal logics extended with the I-me operators (or alternatively, ↓ with only one
variable) are robustly undecidable. In this paper we have identified decidable
fragments, based on the modal distance (depth) between the binder I and the
bound variable me. We have shown that already for depth 3 the logic becomes un-
decidable (previous undecidability proofs required depth 4). However, for depth
less than 3 we obtain well-behaved logics with a relatively high descriptive power.
Indeed, for depth 2 we arrive at a logic that is EXPTIME-complete and strictly
more expressive than the (constant-free) guarded fragment of the correspon-
dence language. When restricted to local satisfiability (i.e., without TBoxes nor
a universal modality), the problem was shown to be PSPACE-complete.

For depth 1 we obtained a very general result: coalgebraic modal logics ex-
tended in this way have an exponential model property, even with general TBoxes
and nominals. Generalizing our results for depth 2 to the coalgebraic case is the
subject of ongoing work; recent results [10] show that they do extend to the
graded case. Unlike for depth 1, nominals cannot be added to the depth-2 logic
without losing most of the good properties even in the relational case: even one
nominal makes the logic NEXPTIME-hard and causes infinite branching. We
conjecture that the depth-2 logic with nominals is NEXPTIME-complete.
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On Nominal Regular Languages with Binders"

Alexander Kurz, Tomoyuki Suzuki"", and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We investigate regular languages on infinite alphabets where words
may contain binders on names. To this end, classical regular expressions and
automata are extended with binders. We prove the equivalence between finite
automata on binders and regular expressions with binders and investigate closure
properties and complementation of regular languages with binders.

1 Introduction

Automata over infinite alphabets have been receiving an increasing amount of attention,
see e.g. [16,22,4,26]. In these approaches, the countably infinite alphabet N can be
considered as a set of ‘names’, which can be tested only for equality.

Typically, in this context languages of interest such as

L = {n1 . . .nk ∈ N ∗ ∣∣ ∃ j > i .ni = n j}
from [16] are invariant under name-permutations: If e.g. nmn is in the language, then so
is n′ mn′ =(nn′) ·nmn, where (n n′) ·nmn stands for the application of the transposition
(n n′) to the word nmn. This suggests to think of names as being bound and languages
to be closed under α-equivalence.

On the other hand, we may fix a name n0 and consider the language

Ln0 = {n0n1 . . .nk ∈ N ∗ ∣∣ ∃ j > i> 0 .ni = n j}
so that we can think of n0 as a free name and of n1, . . . ,nk as bound names. This suggests
to study not only words over names, but also words which contain binders and allow us
to make explicit the distinction between bound and free names. For example, we might
then model Ln0 by a regular expression

n0〈n.〈m.m〉∗ n〈k.k〉∗ n〉 (1)

where 〈n.e〉 binds n in e and, in the reading above, 〈n.n〉∗ is interpreted as N ∗.

In this paper, we consider languages with explicit binders on names in words and
study regular expressions such as (1) together with the associated notion of finite au-
tomata. We prove a Kleene style theorem relating finite automata and regular expres-
sions (cf. § 4) and show that regular languages are closed under intersection, union, and
resource-sensitive complement (defined in § 5).
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Regular expressions for words with binders could be used for the design and analy-
sis of programming languages (as in [23] or [21]). For instance, to check that a ‘vari-
able’ (i.e. name) is declared before it is used, consider the finite set of ‘letters’ S =
{DECL,USE} and the nominal regular expression on the alphabet N ∪S

e1 〈n.DECL n e2 USE n e3〉∗

where with n ∈ N and e being some other regular expression not involving n.
Another motivation for words with binders comes from verification and testing. To

this aim, in § 2 we consider a scenario based on transactional computations to show how
regular languages with binders can suitably represent computations that classical regu-
lar languages can only approximate. More precisely, we give examples throughout the
paper that illustrate how the naming policies used to implement transactional behaviours
can be captured in terms of regular languages with binders. Then our Kleene theo-
rem yields in this context an automata that recognises the language and our resource-
sensitive complement operation can be used to obtain a transactional monitor, namely
an automaton that recognises anomalous transactional behaviours.

Related Work. Automata on words with binders already appear in [24] in the study of
the λ-calculus. In this paper we begin the systematic study of words with binders from
the point of view of the classical theory of formal languages and automata. This builds
on the recent convergence of three lines of research: languages over infinite alphabets,
HD-automata, and nominal sets, as we will explain now in more detail. As empha-
sised above, the languages over infinite alphabets typically considered are equivariant,
that is, they are invariant under permutations. On the other hand, history-dependent
(HD) automata [19,18] have been developed in order to check π-calculus expressions
for bisimilarity. This research highlighted that minimization requires to keep track of
permutations of local names. It is also known that HD-automata are automata internal
(in the sense of [3]) in the category of named sets [6,7]. Independently of the work on
HD-automata, nominal sets [13] were introduced as a framework of doing mathematics
in a set theory where every set comes equipped with a permutation action. In particular,
in nominal sets, binders arise naturally as name abstractions. Later it was shown that
the categories of nominal sets and named sets are equivalent [11,14].

Recently, these three developments have been coming together, see [8,26,4,12] and
in particular [5]. In these works, the idea of automata and language theory internal in
nominal sets takes shape, but, although binders are the raison d’être of nominal sets
they are, so far, not present in the words themselves.

Structure of the Paper. In § 2 we describe a transactional scenario used throughout the
paper. In § 3 we define regular languages with binders, nominal regular expressions, and
automata on binders. § 4 and 5 contain the main technical contributions of the paper.

2 Representing Transactions

Our running example is centred around the notion of nested transactions which are
paramount in information systems [27] because they feature data consistency in the
presence of concurrent or distributed accesses. A transaction is a logically atomic com-
putation made of several steps. A transaction either commits when all its steps are
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successful or rolls partial computations back when failures occur before completion.
Nested transactions are transactions that may possibly contain inner transactions so that
the failure of an inner transaction is confined and does not affect outer transactions. For
instance, let A, B, and C be basic activities subject to failure in the nested transaction

beginTX A ; beginTX B endTX ; C endTX (2)

where C is executed even if B fails and the outer transaction is successful if A and C do
not fail; on the contrary, a failure of C would require that also B is rolled-back.

Inner transactions can abort outer ones. This is typically implemented by using trans-
action identities that allow inner transactions to invoke abort operations on outer trans-
actions. Using identities transaction (2), becomes

beginTX2 A ; beginTX1 B endTX1 ; C endTX2 (3)

and B can execute an abort operation (say abt2) that makes transaction (3) fail.
We will consider i-bound nested transactions, namely transactions that can be nested

only up to a fixed level i. To characterise correct executions of bound nested transac-
tions, one could think of using regular expressions. For instance, take the alphabet

T = {s1, . . . ,sh} ∪ {�,×} ∪ {[j, ]j,cmtj,abtj}1≤ j≤i

where symbols si represent basic activities and the others denote success (�), failure
(×), and — for each possible nesting level — begin ([j), end (]j), and the intention
to commit (cmtj) or abort (abtj). Consider the following regular expressions (4), (5),
and (6) on T where, for simplicity, we examine 2-bound transactions:

e0 =
( h

∑
i=1

si

)∗
(4)

e1 =
(

e0 + [1 e0 cmt
1 ]1 � + [1 e0 abt

1 ]1 ×
)∗

(5)

e2 =
(

e0 + [2 e1 cmt
2 ]2 � + [2 e1 abt

2 ]2 × + [2 e1 [
1 e0 abt

2 ]1 ]2 ×
)∗

(6)

The language corresponding to e2 characterises the correct executions of computations
with transactions nested up to level two. Therefore, the automaton recognising the com-
plement of the language of e2 can be used as monitor of such transactions.

Although the expressions (4), (5), and (6) correctly capture the structure of correct
executions of our transactions (balanced parenthesis up to level 2), a main drawback is
that they do not suitably represent identities of transactions. For example,

beginTX1 s1 endTX1 . . . beginTXk s1 endTXk (7)

where k is unbound and all the identifiers beginTXi are pairwise distinct (and similarly
for endTXi), represents the sequential execution of k (non-nested) transactions. Trans-
lated in our alphabet T , computation (7) becomes the word [1 s1 ]

1� . . . [1 s1 ]
1�, where

the identities of the transactions vanish. Note that the alternative [1 s1 ]
1� . . . [k s1 ]

k�
requires an infinite alphabet because k is unbound.

We define nominal regular languages below and give a nominal regular expression
that captures computations like (7) (cf. Example 1). We provide a class of automata
with binders able to accept such language (cf. Example 2).
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3 Languages, Automata and Regular Expressions, with Binders

In this section, we introduce languages, automata and regular expressions to present
examples as above in a uniform and formal way.

Languages. The main idea is to handle local names by explicitly denoting the binding
scopes to express locality. A binding scope takes the form 〈〈n.· · ·〉〉 and represents the fact
that the name n is bound between the scope delimiters 〈〈 and 〉〉. For instance, the word
〈〈n.n m n〉〉 has the occurrences of n bound while m is not affected by the binder (it occurs
free in the word). Consequently, we consider words up to α-renaming for bound names,
e.g. 〈〈n.n m n〉〉 is identified with 〈〈n′.n′ m n′〉〉 for any n′ %= m.

Now, let N be a countably infinite set (of ‘names’) and S a finite set (of ‘letters’).
We define words w according to

w ::= ε | n | s | w◦w | 〈〈n.w〉〉

where n ranges over N and s over S . We do not consider equalities on words other than
α-renaming and, as in the classical case, the monoidal laws of composition. Namely,
every word is taken up to α-renaming and the concatenation operation ◦ is associative
and has the empty word ε as the neutral element. We often write w v for w◦v. We call a
set of words (closed under α-renaming) a nominal language, or simply a language.

The occurrence in a word w of n ∈ N is bound (resp. free) if it is (resp. not) in the
scope of a binder 〈〈n. 〉〉.

Regular Expressions. We define regular expressions with binders, or nominal regular
expressions via the grammar

ne ::= 1 | 0 | n | s | ne◦ne | ne+ne | 〈n.ne〉 | ne∗

An occurrence of a name n in a nominal regular expression ne, is bound if it is in the
scope of a binder 〈n. 〉, otherwise it is free; accordingly, we say that n is a bound (resp.
free) name of ne if there are bound (resp. free) occurrences of n in ne and we let FN(ne)
be the set of free names in ne (since ne is a finite expression, FN(ne) is finite).

Example 1. We describe the nominal regular expression addressing the problem from
§ 2(7). Let Stx = {�,×,cmt,abt}∪{s1, . . . ,sh} and n1,n2 ∈ N be distinct. Define

ne1 =
(

e0 + 〈n1. e0 cmt n1〉 �+ 〈n1. e0 abt n1〉 ×
)∗

(8)

ne2 =
(

e0 + 〈n2. ne1 cmt n2〉 �+ 〈n2. ne1 abt n2〉 × + (9)

〈n2. ne1 〈n1. e0 abt n2〉〉 ×
)∗

where e0 is defined in (4). The above equations are rather similar to (5), and (6); how-
ever, in (8) and (9), the binders delimit the scope of n1 and n2 and correspond to the
beginning and ending of transactions.

In Example 1, identities of transactions are modelled as bound names. Computations
of the form (7) are captured by ne1 that simply requires to re-bind n1 to beginTXi+1
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after it has been bound to beginTXi. This is made more precise by considering the
interpretation of nominal regular expressions below.

The nominal language L(ne) of a nominal regular expression ne, is defined as

L(1)
def
= {ε} L(0)

def
= /0 L(n)

def
= {n} L(s)

def
= {s}

L(ne1 +ne2)
def
= L(ne1)∪L(ne2) L(〈n.ne〉) def

= {〈〈n.w〉〉
∣∣ w ∈ L(ne)}

L(ne1 ◦ne2)
def
= L(ne1)◦L(ne2) = {w◦ v

∣∣ w ∈ L(ne1),v ∈ L(ne2)}

L(ne∗) def
=

⋃
j∈N

L(ne) j, where L(ne) j def
=

{
{ε} j = 0

L(ne)◦L(ne) j−1 j %= 0

A language of the form L(ne) is called a nominal regular language.

Automata. To describe a mechanism to handle local names and binders, we let N
denote the set of natural numbers and define i = {1, . . . , i} for each i ∈ N. We consider
sets (of states) Q paired with a map ‖ ‖ : Q → N and define the local registers of q ∈ Q
to be ‖q‖. Definition 2 below explains how registers store names via maps σ : ‖q‖→ N .

Definition 1. Let N fin ⊆ N be a finite set of names. An automaton on binders over S
and N fin — an (S ,N fin)-automaton for short — is a tuple H = 〈Q,q0,F, tr〉 such that

– Q is a finite set (of states) equipped with a map ‖ ‖ : Q → N
– q0 ∈ Q is the initial state and ‖q0‖= 0
– F ⊆ Q is the set of final states and ‖q‖= 0 for each q ∈ F

– for each q ∈ Q and α ∈ I N fin(q)∪{ε} — where I N fin(q)
def
= S ∪ {〈〈, 〉〉} ∪ ‖q‖ ∪ N fin

is the set of possible inputs on q — we have a set tr(q,α)⊆ Q of ‘successor states’;
for all q′ ∈ tr(q,α) the following must hold:

α = 〈〈 =⇒ ‖q′‖= ‖q‖+ 1

α = 〉〉 =⇒ ‖q′‖= ‖q‖− 1

α ∈ I N fin(q)\ {〈〈, 〉〉} or α = ε =⇒ ‖q′‖= ‖q‖
An α-transition is a triple (q,α,q′) such that q′ ∈ tr(q,α).

H is deterministic if, for each q ∈ Q,{
|tr(q,α)|= 0, if (α = 〈〈 and ‖q‖= max{‖q′‖ | q′ ∈ Q}) or (α = 〉〉 and ‖q‖= 0)

|tr(q,α)|= 1, otherwise.

The condition ‖q‖= 0 for each q ∈ F ∪{q0} in Definition 1 can be removed at the cost
of making the presentation technically more complex.

As in the classical case, we say that a (S ,N fin)-automaton is accessible when all its
states are reachable from the initial state. We tacitly assume that all (S ,N fin)-automata
in the current paper are accessible.

Fact 1. For any (S ,N fin)-automaton H = 〈Q,q0,F, tr〉 and q ∈ Q we have that ‖q‖= 0
implies tr(q, 〉〉) = /0 and that ‖q‖= maxq′∈Q ‖q′‖ implies tr(q, 〈〈) = /0.
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The notion of determinism in Definition 1 is slightly different from the classical one
because it must consider the constraints between the registers of source and target states
of transitions. We shall come back to this in § 5.

Example 2 below exhibits an (S ,N fin)-automaton for the nominal regular expres-
sion ne1 in Example 1. Instead of the formal definition, we introduce a more appealing
graphical notation, anticipating the notion of layer defined in § 4.

Example 2. Let Stx as defined in Example 1. The (Stx, /0)-automaton corresponding to
ne1 can be depicted as

S

�

×

1

1

cmt

abt

〉〉

〉〉

      
〈〈

0th layer

1st layer

S

which has a unique initial and final state (the circled one on the 0th layer).

In the figure of Example 2, dashed transitions denote 〈〈- and 〉〉-transitions. The 〈〈-transition
goes from a state on the 0th layer to a state on the 1st layer, whereas the two 〉〉-transitions
go in the opposite direction. Also note that within each layer the picture shows essen-
tially a classical automaton. This is typical for (S ,N fin)-automata, see § 4.

Let us fix an (S ,N fin)-automaton

H def
= 〈Q,q0,F, tr〉. (10)

and define how H processes words with free names in N fin. Hereafter, we denote the
image of a map σ by Im(σ) and the empty map by /0.

A configuration of H is a tuple 〈q,w,σ〉 consisting of a state q, a word w whose free
names are in N fin ∪ Im(σ), and a map σ : ‖q‖ → N . We call a configuration 〈q,w,σ〉
initial if q = q0, w is a word whose free names are in N fin, and σ = /0; we call 〈q,w,σ〉
accepting if q ∈ F , w = ε, and σ = /0.

Definition 2. Given q,q′ ∈ Q and two configurations t = 〈q,w,σ〉 and t ′ = 〈q′,w′,σ′〉,
H as in (10) moves from t to t ′ (written t

H→ t ′) if there is α ∈ N ∪N∪S ∪{〈〈, 〉〉,ε} such
that q′ ∈ tr(q,α) and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α ∈ ‖q‖, w = σ(α) w′, σ′ = σ and ∀i> α.σ(α) %= σ(i)
α ∈ N fin \ Im(σ), w = α w′, and σ′ = σ
α ∈ S , w = α w′, and σ′ = σ
α = ε, w = w′, and σ′ = σ
α = 〉〉, w = 〉〉w′, and σ′ = σ|‖q‖′

α = 〈〈, w = 〈〈n.w′, and σ′ = σ[‖q′‖ "→ n]
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where σ[‖q′‖ "→ n] extends σ by allocating the maximum index in ‖q′‖ to n.
The set reachH (t) of states reached by H from the configuration t is defined as

reachH (t)
def
=

{
{q} if t = 〈q,ε,σ〉⋃

t
H→t ′

reachH (t ′) otherwise

A run of H on a word w is a sequence of moves of H from 〈q0,w, /0〉.
Definition 3. The (S ,N fin)-automaton H in (10) accepts (or recognises) a word w if
F ∩ reachH (〈q0,w, /0〉) %= /0. The language of H is the set LH of words accepted by H .

Example 3. It is straightforward to observe that the (Stx, /0)-automaton in Example 2
accepts L(ne1). The only interesting steps are from a configuration where the word
starts with a binder, say 〈〈n.w〉〉. In our example, the automaton consumes the binder only
if it is in the initial/final state; in this case, the (unique) register of the target state on
the 1st layer is mapped to n and used in the transitions on the 1st layer. Observe that, if
the right-most states on the 1st layer are reached by consuming w, then the automaton
can “deallocate” n and possibly reach the final state.

A direct consequence of Definitions 2 and 3 is the following proposition.

Proposition 1. If H accepts w and w′ is α-equivalent to w then H accepts w′.

Remark 1. The automata in Definition 1 can be envisaged either as an instantiation of
basic history-dependent automata [19] or as a variant of finite-memory automata [16].
In fact, the constraint on local names imposed in Definition 1 allows us to treat names
as “global” (as done in finite-memory automata). More precisely, the semantics of each
index is uniformly fixed through our automata, once it has been allocated. A main dif-
ference wrt basic history-dependent and finite-memory automata though, is the “stack
discipline” imposed by 〈〈- and 〉〉-transitions.

4 A Kleene Theorem

This section gives the details of the equivalence, in the setting with binders, of finite
automata and regular expressions. The main results can be summarised as follows.

Theorem 1. For each (S ,N fin)-automaton H , there exists a deterministic (S ,N fin)-
automaton which recognises the same language as H .

Theorem 2. Every language recognised by an (S ,N fin)-automaton is representable by
a nominal regular expression. Conversely, every language represented by a nominal
regular expression ne is acceptable by an (S ,FN(ne))-automaton.

The proofs and constructions are obtained by extending the techniques of classical au-

tomata theory (see e.g. [15]) layer-wise: Given H = 〈Q,q0,F, tr〉 as in (10), Qi def
= {q ∈

Q
∣∣ ‖q‖ = i} is the i-th layer of H . Each layer of H is very much like a classical

automaton if all 〈〈− and 〉〉-transitions are ignored. In fact, the only way to move from
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layer i to i+1 is to read a 〈〈 along a 〈〈-transition; vice-versa, moving from layer i+1 to i
is possible only by reading a 〉〉 along a 〉〉-transition.

From (S ,N fin)-Automata to Regular Expressions. The first step to prove Theorem 1
is to construct a deterministic (S ,N fin)-automaton for each (S ,N fin)-automaton. Given
an (S ,N fin)-automaton H , we first remove all ε-transitions. Note that ε-transitions
are not allowed to connect states on different layers. For the ε-free non-deterministic
(S ,N fin)-automaton, we take the powerset construction for each layer, and make all
layers deterministic except 〈〈- and 〉〉-transitions. Finally, we define 〈〈-transitions and 〉〉-
transitions in a deterministic way: For each subset Q′ ⊆ Qi, we let

tr(Q′, 〈〈) def
=

⋃
q∈Q′

tr(q, 〈〈) and tr(Q′, 〉〉) def
=

⋃
q∈Q′

tr(q, 〉〉)

This construction allows us to claim Theorem 1.
There are two main reasons for applying the powerset construction layer-wise rather

than to the whole automaton. A technical reason is that the definition of the function
‖ ‖ on sets of states taken from different layers could not be given in a consistent way.
Secondly, since only 〈〈- and 〉〉-transitions can move between layers, each layer must have
a “sink” state (i.e. the empty set of states) to allow for transitions that reject words.

The following proposition yields one direction of Theorem 2.

Proposition 2. For any deterministic (S ,N fin)-automaton H there is a nominal regu-
lar expression neH such that L(neH ) is the language recognised by H .

Proof (Sketch). Take H as in (10) to be deterministic; Q can be decomposed into

Q0 = {q0
1, . . . ,q

0
m0
}, Q1 = {q1

1, . . . ,q
1
m1
}, · · · Qh = {qh

1, . . . ,q
h
mh
}

where h = maxq∈Q ‖q‖ is the highest layer of H . Note that q0 ∈ Q0 and we assume that
it is q0

1. Let sRk
i, j denote the set of paths from qs

i to qs
j which visit only states on layers

higher than s or states qs
r ∈ Qs with r ≤ k. Then, sRk

i, j is defined on the highest layer h
by

hR0
i, j

def
= {α

∣∣ qh
j ∈ tr(qh

i ,α)}∪E hRk
i, j

def
= hRk−1

i,k

(
hRk−1

k,k

)∗
hRk−1

k, j ∪ hRk−1
i, j

where, in the first clause, E = {ε} if i = j and E = /0 if i %= j and, for layer s< h, letting

Γs
i, j

def
= {(i′, j′)

∣∣ qs+1
i′ ∈ tr(qs

i , 〈〈) ∧ qs
j ∈ tr(qs+1

j′ , 〉〉)}, by

sR0
i, j

def
= {α

∣∣ qs
j ∈ tr(qs

i ,α)}∪
⋃

(i′, j′)∈Γs
i, j

s+1Rms+1
i′, j′ ∪E

sRk
i, j

def
= sRk−1

i,k

(
sRk−1

k,k

)∗
sRk−1

k, j ∪ sRk−1
i, j ∪

⋃
(i′, j′)∈Γs

i, j

s+1Rms+1
i′, j′

where, in the first clause, E = {ε} if i = j and E = /0 if i %= j.
Hence,

⋃
(i′, j′)∈Γs

i, j

s+1Rms
i′, j′ is the collection of all paths from qs

i to qs
j visiting only states

on the higher layers. Finally, we translate all paths from the initial state to final states
into a nominal regular expression, but this is analogous to the classical theory. #$



On Nominal Regular Languages with Binders 263

From Nominal Regular Expressions to (S ,N fin)-Automata. We now turn our atten-
tion to the construction of (S ,N fin)-automata from nominal regular expressions.

Proposition 3. Given a nominal regular expression ne, there is an (S ,FN(ne))-
automaton H which recognises L(ne).

We prove the above proposition by induction on the structure of ne. Let H�ne� denote
the (S ,FN(ne))-automaton defined by the following construction.

We start with the constructions for the base cases.

– ne = 1: let H�1� be 〈{q0},q0,{q0}, tr〉 where ‖q0‖ = 0 and tr(q0,α) = /0 for each
α ∈ I N fin(q0).

– ne = 0: let H�0� be 〈{q0},q0, /0, tr〉 where ‖q0‖ = 0 and tr(q0,α) = /0 for each α ∈
I N fin(q0).

– ne= n: let H�n� be 〈{q0,q1},q0,{q1}, tr〉 where, for j ∈ {0,1} ‖q j‖= 0 and

tr(q0,n) = {q1}
tr(q j,α) = /0, for α ∈ I N fin(q j) and α %= n if j = 0.

Note that, as FN(n) = {n}, each state may have a transition with the label n.
– ne= s: let H�s� be 〈{q0,q1},q0,{q1}, tr〉 where, for j ∈ {0,1}, ‖q j‖= 0 and

tr(q0,s) = {q1}
tr(q j,α) = /0, for α ∈ I N fin(q j) and α %= s if j = 0.

Lemma 1. H�1�, H�0�, H�n� and H�s� recognise, respectively, L(1), L(0), L(n) and L(s).
Further, H�1�, H�0� and H�s� are (S , /0)-automata, and H�n� is an (S ,{n})-automaton,
i.e. H�1�, H�0�, H�n� and H�s� are all (S ,FN(ne))-automata.

Union ne1 + ne2 : For j ∈ {1,2}, let H�ne j� = 〈Q j,q0, j,Fj, tr j〉 be an (S ,FN(ne j))-
automaton which recognises L(ne j). The union H�ne1+ne2� is a tuple 〈Q+,q+

0 ,F
+, tr+〉:

– Q+ def
= Q1 0Q2 0{q+

0 } (where 0 stands for disjoint union);
– q+

0 is a new state with
∥∥q+

0

∥∥= 0;

– F+ def
= F1 0F2;

– tr+(q,α) def
=

⎧⎪⎨⎪⎩
tr1(q,α), if j ∈ {1,2}, q ∈ Q j, and α ∈ I N fin

j (q)

{q0,1,q0,2}, if q = q+
0 and α = ε

/0, otherwise

where I N fin

1 (q) is the set of possible inputs on q in H�ne1� and I N fin

2 (q) is the set of
possible inputs on q in H�ne2�. Notice that possible inputs of free names are extended
from FN(ne1) or FN(ne2) to FN(ne1)∪FN(ne2) in H�ne1+ne2�, but the above definition
of transitions says that each state q in Q1 has no transition with labels in FN(ne2) \
I N fin

1 (q), and each state q in Q2 has no transition with labels in FN(ne1)\ I N fin

2 (q).
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Lemma 2. H�ne1+ne2� is an (S ,FN(ne1 +ne2))-automaton recognising L(ne1 +ne2).

Concatenation ne1 ◦ ne2 : For j ∈ {1,2}, let H�ne j� = 〈Q j,q0, j,Fj, tr j〉 be an
(S ,FN(ne j))-automaton which recognises L(ne j). The concatenation H�ne1◦ne2� is a tu-
ple 〈Q◦,q◦

0,F
◦, tr◦〉:

– Q◦ def
= Q1 0Q2;

– q◦
0

def
= q0,1;

– F◦ def
= F2;

– tr◦(q,α) def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tr1(q,α), if q ∈ Q1 \F1, and α ∈ I N fin

1 (q)

tr2(q,α), if q ∈ Q2 and α ∈ I N fin

2 (q)

tr1(q,α)∪{q0,2}, if q ∈ F1 and α = ε
tr1(q,α), if q ∈ F1 and α ∈ I N fin

1 (q)

/0, otherwise

Intuitively, we just add ε-transitions to q0,2 from the final states of H�ne1�.

Lemma 3. H�ne1◦ne2� is an (S ,FN(ne1 ◦ne2))-automaton recognising L(ne1 ◦ne2).

Iteration ne∗ : Given a nominal regular expression ne and an (S ,FN(ne))-automaton
H�ne� = 〈Q,q0,F, tr〉 which recognises L(ne), the iteration H�ne∗� is defined by a tuple
〈Q∗,q∗

0,F
∗, tr∗〉:

– Q∗ def
= Q;

– q∗
0

def
= q0;

– F∗ def
= {q0};

– tr∗(q,α) def
=

⎧⎪⎨⎪⎩
tr(q,α), if q ∈ Q\F and α ∈ I N fin(q)

tr(q,α)∪{q∗
0}, if if q ∈ F and α = ε

tr(q,α), if q ∈ F and α ∈ I N fin(q)\ {ε}
Notice that, since the possible inputs on q in H�ne∗� and H�ne� are the same, here we do
not need to consider the “otherwise” case.

Lemma 4. H�ne∗� is an (S ,FN(ne∗))-automaton recognising L(ne∗).

Name-abstraction 〈n.ne〉 : Given a nominal regular expression ne and an (S ,FN(ne))-
automaton H�ne� = 〈Q,q0,F, tr〉 which recognises L(ne), the name-abstraction H�〈n.ne〉�
is defined by a tuple 〈Q8,q8

0,F
8, tr8〉:

– qs and qt are new states with ‖qs‖= 0 and ‖qt‖= 0;

– Q8 def
= Q0{qs,qt} where we increase ‖q‖ by 1 for each state q ∈ Q (hence qs and

qt are the only states on the 0th layer);

– q8
0

def
= qs;

– F8 def
= {qt};



On Nominal Regular Languages with Binders 265

– tr8(q,α) def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tr(q,n), if q ∈ Q and α = 1 ∈ ‖q‖
tr(q,α− 1), if q ∈ Q and α ∈ ‖q‖\ {1}
tr(q,α), if q ∈ Q\F and α ∈ I N fin(q)\ ‖q‖
{qt}, if q ∈ F and α = 〉〉

tr(q,α), if q ∈ F and α ∈ I N fin(q)\
(
‖q‖∪{〉〉}

)
{q0}, if q = qs and α = 〈〈

/0, otherwise

Note that on an (S ,FN(〈n.ne〉))-automaton, n cannot be an input on any state. Intu-
itively, to bind the free name n, we first increase all numbers in all states in H�ne�

(accordingly for the labels on transitions) by 1, and then we allocate the new number
1 in each state in H�ne� for the new local name obtained by binding n and rename all
labels n on each transition in H�ne� (if they exist) with the number 1.

Lemma 5. H�〈n.ne〉� is an (S ,FN(〈n.ne〉))-automaton recognising L(〈n.ne〉).
Lemmas 1, 2, 3, 4 and 5 complete the proof of Proposition 3.

Example 4. We give an account of how the nominal regular expression ne2 in Example 1
is translated to an (Stx, /0)-automaton. Below is a simplified graphical representation of
the automaton H�ne2�.

S

S

S S

1

〈〈

abtabt

cmt
2

2

×

�

〉〉

〉〉 〈〈
〉〉

1

1

cmt

abt

〉〉

〉〉

×

�〈〈

0th layer

1st layer

2nd layer

(where “box” and “star” shaped states are used to ease the textual description be-
low). This automaton is basically obtained by the above inductive construction but for
the following simplifications:

1. we removed all ε-transitions in the obvious way;
2. three equivalent states of H�ne2� accessible from the initial state with 〈〈-transitions

are now unified as the single box state on the 1st layer;
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3. the star state on the 2nd layer which had a 〉〉-transition to a distinct state on the
1st layer in H�ne2� is now connected to the star state on the 1st layer. Accordingly,
non-accessible states are deleted.

5 Closure Properties

Here we shall discuss the closure properties of nominal languages summarised in

Theorem 3. Nominal languages are closed under union, intersection, and resource
sensitive complementation.

The notion of resource-sensitive complementation is given in Definition 4 below. Clo-
sure under unions is immediate and the construction is the same as the classical one.
Similarly, closure under intersections is shown by taking a product of the respective au-
tomata; the only difference wrt the analogous construction in the classical theory is that
we must take the product layer-wise (otherwise there is no meaningful way to define
the values of ‖ ‖). It remains to discuss complementation.

In our nominal languages, brackets 〈〈 and 〉〉 are explicitly expressed as syntax. So, for
example, 〈〈n.w〉〉 is different from 〈〈m.〈〈n.w〉〉〉〉, even when m does not freely occur in 〈〈n.w〉〉.
This is important for complementing nominal regular languages since every word has a
maximum depth of nested binders determined by the regular expression. Define ∂(ne),
the depth of a nominal regular expression ne as

ne ∈ {ε,1,0}∪N ∪S =⇒ ∂(ne) = 0

ne= ne1 +ne2 or ne1 ◦ne2 =⇒ ∂(ne) = max(∂(ne1),∂(ne2))

ne= 〈n.ne〉 =⇒ 1+ ∂(ne)
ne= ne∗ =⇒ ∂(ne)

For example, if ne = 〈n.〈m.s m n〉∗n n ◦ s〉◦ 〈l.s l〉◦ s then ∂(ne) = 2, hence no word in
L(ne) can have more than 2 nested binders; therefore the complement of L(ne) has to
include words which have finite but unbounded depth, e.g. 〈〈n1.〈〈n2. · · · 〈〈nk.n1 · · ·nk 〉〉 · · · 〉〉〉〉

for any natural number k> ∂(ne). But, it is impossible to accept all these words on any
finite (S ,N fin)-automaton. Therefore, nominal regular languages are not closed under
the standard complementation.

On the other hand, when contemplating nominal languages, is the notion of the stan-
dard complementation suitable? We claim that there are two distinct conditions for re-
jecting words on (S ,N fin)-automata:

1. The word is consumed and the automaton finishes in a non-accepting state.
2. The automaton is in a configuration whose word is of the form 〈〈n.w〉〉 and its state is

in the highest layer.

The first is the usual non-acceptance condition, while the second one, which we call
overflow condition, is necessary for (S ,N fin)-automata. Informally, the distinction of
the two conditions of rejection above can be rephrased as follows:

Rejection by non-acceptance takes place when the word represents a ‘wrong
behaviour’; instead, rejection by overflow happens when we do not have enough
resources to process the word.
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The considerations above lead to the notion of resource-sensitive complementation:

Definition 4. Let ne be a nominal regular expression. The resource sensitive comple-
mentation of L(ne) is the set {w %∈ L(ne)

∣∣ ∂(w) ≤ ∂(ne)} (where the depth of a word
is defined as the depth the corresponding expression).

The algebraic structure of union, intersection, and resource sensitive complementation
is that of a generalised Boolean algebra [25], that is, of a distributive lattice with bottom
and relative complement (but no top).

For the proof that nominal regular expressions are closed under resource-sensitive
complementation, note first that the overflow condition characterises the configurations
where a deterministic automaton (Definition 1) can get stuck. Further, recall that, by
Proposition 3, for each nominal regular expression ne, there is an (S ,N fin)-automaton
H�ne� which accepts the language L(ne). By Theorem 1 we can assume, without loss
of generality, that H�ne� is deterministic. Since configurations can get stuck only by
overflow, for any word in L(ne), H�ne� has a run to a final state which, by construction,
is on the 0-th layer. Hence, if we swap the final states with the non-final states on the
0-th layer, the automaton recognises the resource-sensitive complementation of L(ne).
Finally, by Proposition 2, we obtain

Proposition 4. Nominal regular expressions are closed under resource-sensitive com-
plementation.

We give an example of how to construct an (S ,N fin)-automaton which accepts the
resource-sensitive complementation of a nominal regular expression in Example 1.

Example 5. An automaton which recognises the resource-sensitive complementation of
L(ne1) from Example 1 is given below:

〉〉 〈〈

〈〈

〈〈

〉〉

〉〉

〉〉

×

�

S

S

1

1

cmt

abt

〉〉

〉〉

 〈〈

0th layer

1st layer

else

In this automaton, the transitions with non-filled heads represent “complement tran-
sitions”, that is transitions taken when the source state does not have any filled-head
transition with a label matching the input symbol. Let H�ne1� be the (S ,N fin)-automaton
in Example 2; the automaton above is constructed from H�ne1� as follows:

1. firstly H�ne1� is determinised, by means of the layer-wise powerset construction;
note that this adds deadlock states (in the automaton in the picture above, we just
added two deadlock states, one per layer);
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2. secondly, all non-accessible states are removed;
3. finally, accepting and non-accepting states on the 0th layer are swapped.

The automaton in Example 5 can be used as a transactional monitor of the transac-
tions characterised by ne2 in Example 1. Namely, it accepts words representing com-
putations of 2-level nested transactions that diverge from the expected behaviour, e.g.,
transactions that starts but do not explicitly commit or abort.

6 Conclusion

Our long-term aim is to develop a theory of nominal languages with binders. In this pa-
per we looked at the most basic case where the binders do not interact with the monoid
operations. But there is a range of other interesting possibilities. For example, one may
impose the additional equation 〈〈n.w〉〉 ◦ v = 〈〈n.w ◦ v〉〉 for n not free in v. This is known
as scope extrusion in the π-calculus and would have as a consequence that an automa-
ton recognising 〈n.n〉∗ would need to be able to keep track of an unbounded number
of local names (for an analysis of the interplay between binders and name locality see
e.g. [20,10]). A first sketch of some of the arising landscape is drafted in [17].

Although the use of binders in this paper is rather restricted, it is expressive enough
to represent interesting computational phenomena and it guarantees the properties in
§ 4 and 5. Increasing the expressiveness of our regular expressions by adding permuta-
tions is the natural step we are currently investigating. For instance, we are considering
languages where the Kleene-star operator interplays with name automorphisms.

It will be interesting to explore the connections with tree-walking pebble automata [9].
The idea is that the configuration of the automaton is given by a pair (q,v) where q is
a state of the automaton and v a node of the input tree. A run is obtained by letting
the automaton to change its state and mode to parent/children nodes of v according to
the label of v and the fact that v is the root, a leaf, or an internal node. Our approach
is reminiscent of this pushdown mechanism of tree-walking pebble automata, with the
difference that the decision of dropping/lifting pebbles is driven by binders in the word.

With an eye on applications to verification it is of interest to pursue further devel-
opments in the direction of the work [1] on Kleene algebra with local scope. Another
direction for future work starts from the observation that, due to the last two clauses
of Definition 2, automata with binders do not process words buts nested words (with
dangling brackets) [2]. This suggests extend the work of [2] to the nominal setting.

Acknowledgements. The authors thank the reviewers for their criticisms and com-
ments which helped to greatly improve the paper.
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Concurrent Parity Games�
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Abstract. We consider two-player stochastic games played on a finite state space
for an infinite number of rounds. The games are concurrent: in each round, the
two players (player 1 and player 2) choose their moves independently and si-
multaneously; the current state and the two moves determine a probability distri-
bution over the successor states. We also consider the important special case of
turn-based stochastic games where players make moves in turns, rather than con-
currently. We study concurrent games with ω-regular winning conditions spec-
ified as parity objectives. The value for player 1 for a parity objective is the
maximal probability with which the player can guarantee the satisfaction of the
objective against all strategies of the opponent. We study the problem of conti-
nuity and robustness of the value function in concurrent and turn-based stochas-
tic parity games with respect to imprecision in the transition probabilities. We
present quantitative bounds on the difference of the value function (in terms of
the imprecision of the transition probabilities) and show the value continuity for
structurally equivalent concurrent games (two games are structurally equivalent
if the supports of the transition functions are the same and the probabilities dif-
fer). We also show robustness of optimal strategies for structurally equivalent
turn-based stochastic parity games. Finally, we show that the value continuity
property breaks without the structural equivalence assumption (even for Markov
chains) and show that our quantitative bound is asymptotically optimal. Hence
our results are tight (the assumption is both necessary and sufficient) and optimal
(our quantitative bound is asymptotically optimal).

1 Introduction

Concurrent stochastic games are played by two players on a finite state space for
an infinite number of rounds. In every round, the two players simultaneously and
independently choose moves (or actions), and the current state and the two chosen
moves determine a probability distribution over the successor states. The outcome of
the game (or a play) is an infinite sequence of states. These games were introduced
by Shapley [25], and have been one of the most fundamental and well studied game
models in stochastic graph games. We consider ω-regular objectives specified as parity
objectives; that is, given an ω-regular set Φ of infinite state sequences, player 1 wins if
the outcome of the game lies in Φ. Otherwise, player 2 wins, i.e., the game is zero-sum.
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The class of concurrent stochastic games subsumes many other important classes of
games as sub-classes: (1) turn-based stochastic games, where in every round only one
player chooses moves (i.e., the players make moves in turns); and (2) Markov deci-
sion processes (MDPs) (one-player stochastic games). Concurrent games and the sub-
classes provide a rich framework to model various classes of dynamic reactive systems,
and ω-regular objectives provide a robust specification language to express all com-
monly used properties in verification, and all ω-regular objectives can be expressed as
parity objectives. Thus concurrent games with parity objectives provide the mathemat-
ical framework to study many important problems in the synthesis and verification of
reactive systems [7,24,22] (see also [1,15,2]).

The player-1 value v1(s) of the game at a state s is the limit probability with which
player 1 can ensure that the outcome of the game lies in Φ; that is, the value v1(s) is
the maximal probability with which player 1 can guarantee Φ against all strategies of
player 2. Symmetrically, the player-2 value v2(s) is the limit probability with which
player 2 can ensure that the outcome of the game lies outside Φ. The problem of study-
ing the computational complexity of MDPs, turn-based stochastic games, and concur-
rent games with parity objectives has received a lot of attention in literature. Markov
decision processes with ω-regular objectives have been studied in [9,10,5] and the re-
sults show existence of pure (deterministic) memoryless (stationary) optimal strategies
for parity objectives and the problem of value computation is achievable in polynomial
time. Turn-based stochastic games with the special case of reachability objectives have
been studied in [8] and existence of pure memoryless optimal strategies has been es-
tablished and the decision problem of whether the value at a state is at least a given
rational value lies in NP ∩ coNP. The existence of pure memoryless optimal strate-
gies for turn-based stochastic games with parity objectives was established in [6,29],
and again the decision problem lies in NP ∩ coNP. Concurrent parity games have been
studied in [11,13,4,16] and for concurrent parity games optimal strategies need not ex-
ist, and ε-optimal strategies (for ε > 0) require both infinite memory and randomization
in general, and the decision problem can be solved in PSPACE.

Almost all results in the literature consider the problem of computing values and
optimal strategies when the game model is given precisely along with the objective.
However, it is often unrealistic to know the precise probabilities of transition which
are only estimated through observation. Since the transition probabilities are not known
precisely, an extremely important question is how robust is the analysis of concurrent
games and its sub-classes with parity objectives with respect to small changes in the
transition probabilities. This question has been largely ignored in the study of con-
current and turn-based stochastic parity games. In this paper we study the following
problems related to continuity and robustness of values: (1) (continuity of values): un-
der what conditions can continuity of the value function be proved for concurrent parity
games; (2) (robustness of values): can quantitative bounds be obtained on the differ-
ence of the value function in terms of the difference of the transition probabilities; and
(3) (robustness of optimal strategies): do optimal strategies of a game remain ε-optimal,
for ε > 0, if the transition probabilities are slightly changed.
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Our contributions. Our contributions are as follows:
1. We consider structurally equivalent game structures, where the supports of the tran-

sition probabilities are the same, but the precise transition probabilities may differ.
We show the following results for structurally equivalent concurrent parity games:

(a) Quantitative bound. We present a quantitative bound on the difference of the
value functions of two structurally equivalent game structures in terms of
the difference of the transition probabilities. We show when the difference in
the transition probabilities are small, our bound is asymptotically optimal. Our
example to show the matching lower bound is on a Markov chain, and thus our
result shows that the bound for a Markov chain can be generalized to concur-
rent games.

(b) Value continuity. We show value continuity for structurally equivalent concur-
rent parity games, i.e., as the difference in the transition probabilities goes to 0,
the difference in value functions also goes to 0. We then show that the structural
equivalence assumption is necessary: we show a family of Markov chains (that
are not structurally equivalent) where the difference of the transition probabil-
ities goes to 0, but the difference in the value functions is 1. It follows that the
structural equivalence assumption is both necessary (even for Markov chains)
and sufficient (even for concurrent games).

It follows from above that our results are both optimal (quantitative bounds) as well
as tight (assumption both necessary and sufficient). Our result for concurrent par-
ity games is also a significant quantitative generalization of a result for concurrent
parity games of [11] which shows that the set of states with value 1 remains same
if the games are structurally equivalent. We also argue that the structural equiv-
alence assumption is not unrealistic in many cases: a reactive system consists of
many state variables, and given a state (valuation of variables) it is typically known
which variables are possibly updated, and what is unknown is the precise transition
probabilities (which are estimated by observation). Thus the system that is obtained
for analysis is structurally equivalent to the underlying original system and it only
differs in precise transition probabilities.

2. For turn-based stochastic parity games the value continuity and the quantitative
bounds are same as for concurrent games. We also prove a stronger result for struc-
turally equivalent turn-based stochastic games that shows that along with continuity
of the value function, there is also robustness property for pure memoryless opti-
mal strategies. More precisely, for all ε > 0, we present a bound β > 0, such that
any pure memoryless optimal strategy in a turn-based stochastic parity game is an
ε-optimal strategy in every structurally equivalent turn-based stochastic game such
that the transition probabilities differ by at most β. Our result has deep significance
as it allows the rich literature of work on turn-based stochastic games to carry over
robustly for structurally equivalent turn-based stochastic games. As argued before
the model of turn-based stochastic game obtained to analyze may differ slightly
in precise transition probabilities, and our results shows that the analysis on the
slightly imprecise model using the classical results carry over to the underlying
original system with small error bounds.
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Our results are obtained as follows. The result of [12] shows that the value function for
concurrent parity games can be characterized as the limit of the value function of con-
current multi-discounted games (concurrent discounted games with different discount
factors associated with every state). There exists bound on difference on value function
of discounted games [17], however, the bound depends on the discount factor, and in the
limit gives trivial bounds (and in general this approach does not work as value continu-
ity cannot be proven in general and the structural equivalence assumption is necessary).
We use a classical result on Markov chains by Friedlin and Wentzell [18] and generalize
a result of Solan [26] from Markov chains with single discount to Markov chains with
multi-discounted objective to obtain a bound that is independent of the discount factor
for structurally equivalent games. Then the bound also applies when we take the limit
of the discount factors, and gives us the desired bound.

Our paper is organized as follows: in Section 2 we present the basic definitions, in
Section 3 we consider Markov chains with multi-discounted and parity objectives; in
Section 4 (Subsection 4.1) we prove the results related to turn-based stochastic games
(item (2) of our contributions) and finally in Subsection 4.2 we present the quantitative
bound and value continuity for concurrent games along with the two examples to illus-
trate the asymptotic optimality of the bound and the structural equivalence assumption
is necessary. Detailed proofs available in [3].

2 Definitions

In this section we define game structures, strategies, objectives, values and present other
preliminary definitions.

Probability Distributions. For a finite set A, a probability distribution on A is a
function δ : A "→ [0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of prob-

ability distributions on A by D(A). Given a distribution δ ∈ D(A), we denote by
Supp(δ) = {x ∈ A | δ(x) > 0} the support of the distribution δ.

Concurrent Game Structures. A (two-player) concurrent stochastic game structure
G = 〈S,A, Γ1, Γ2, δ〉 consists of the following components.

– A finite state space S and a finite set A of moves (or actions).
– Two move assignments Γ1, Γ2 : S "→ 2A \ ∅. For i ∈ {1, 2}, assignment Γi as-

sociates with each state s ∈ S the nonempty set Γi(s) ⊆ A of moves available to
player i at state s.

– A probabilistic transition function δ : S × A × A "→ D(S), which associates with
every state s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability distribution
δ(s, a1, a2) ∈ D(S) for the successor state.

Plays. At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultane-
ously and independently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds
to the successor state t with probability δ(s, a1, a2)(t), for all t ∈ S. For all states
s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), we indicate by Dest(s, a1, a2) =
Supp(δ(s, a1, a2)) the set of possible successors of s when moves a1, a2 are selected.
A path or a play of G is an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states in S
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such that for all k ≥ 0, there are moves ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk) such that
sk+1 ∈ Dest(sk, a

k
1 , a

k
2). We denote by Ω the set of all paths. We denote by θi the ran-

dom variable that denotes the i-th state of a path. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω,
we define Inf(ω) = {s ∈ S | sk = s for infinitely many k ≥ 0} to be the set of states
that occur infinitely often in ω.

Special Classes of Games. We consider the following special classes of concurrent
games.
1. Turn-based stochastic games. A game structure G is turn-based stochastic if at

every state at most one player can choose among multiple moves; that is, for every
state s ∈ S there exists at most one i ∈ {1, 2} with |Γi(s)| > 1.

2. Markov decision processes. A game structure is a player-1 Markov decision process
(MDP) if for all s ∈ S we have |Γ2(s)| = 1, i.e., only player 1 has choice of actions
in the game. Similarly, a game structure is a player-2 MDP if for all s ∈ S we have
|Γ1(s)| = 1.

3. Markov chains. A game structure is a Markov chain if for all s ∈ S we have
|Γ1(s)| = 1 and |Γ2(s)| = 1. Hence in a Markov chain the players do not matter,
and for the rest of the paper a Markov chain consists of a tuple (S, δ) where δ :
S "→ D(S) is the probabilistic transition function.

Strategies. A strategy for a player is a recipe that describes how to extend a play.
Formally, a strategy for player i ∈ {1, 2} is a mapping πi : S+ "→ D(A) that associates
with every nonempty finite sequence x ∈ S+ of states, representing the past history of
the game, a probability distribution πi(x) used to select the next move. The strategy πi
can prescribe only moves that are available to player i; that is, for all sequences x ∈ S∗

and states s ∈ S, we require that Supp(πi(x · s)) ⊆ Γi(s). We denote byΠi the set of
all strategies for player i ∈ {1, 2}.

Given a state s ∈ S and two strategies π1 ∈ Π1 and π2 ∈ Π2, we define
Outcome(s, π1, π2) ⊆ Ω to be the set of paths that can be followed by the game,
when the game starts from s and the players use the strategies π1 and π2. Formally,
〈s0, s1, s2, . . .〉 ∈ Outcome(s, π1, π2) if s0 = s and if for all k ≥ 0 there ex-
ist moves ak1 ∈ Γ1(sk) and ak2 ∈ Γ2(sk) such that (i) π1(s0, . . . , sk)(ak1) > 0;
(ii) π2(s0, . . . , sk)(ak2) > 0; and (iii) sk+1 ∈ Dest(sk, a

k
1 , a

k
2). Once the starting state

s and the strategies π1 and π2 for the two players have been chosen, the probabilities of
events are uniquely defined [28], where an event A ⊆ Ω is a measurable set of paths1.
For an event A ⊆ Ω, we denote by Prπ1,π2

s (A) the probability that a path belongs to A
when the game starts from s and the players use the strategies π1 and π2.

Classification of Strategies. We consider the following special classes of strategies.
1. (Pure). A strategy π is pure (deterministic) if for all x ∈ S+ there exists a ∈ A

such that π(x)(a) = 1. Thus, deterministic strategies are equivalent to functions
S+ "→ A.

1 To be precise, we should define events as measurable sets of paths sharing the same initial
state, and we should replace our events with families of events, indexed by their initial state.
However, our (slightly) improper definition leads to more concise notation.
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2. (Finite-memory). Strategies in general are history-dependent and can be repre-
sented as follows: let M be a set called memory to remember the history of plays
(the set M can be infinite in general). A strategy with memory can be described as
a pair of functions: (a) a memory update function πu : S × M "→ M, that given
the memory M with the information about the history and the current state updates
the memory; and (b) a next move function πn : S × M "→ D(A) that given the
memory and the current state specifies the next move of the player. A strategy is
finite-memory if the memory M is finite.

3. (Memoryless). A memoryless strategy is independent of the history of play and
only depends on the current state. Formally, for a memoryless strategy π we have
π(x · s) = π(s) for all s ∈ S and all x ∈ S∗. Thus memoryless strategies are
equivalent to functions S "→ D(A).

4. (Pure memoryless). A strategy is pure memoryless if it is both pure and memoryless.
Pure memoryless strategies neither use memory, nor use randomization and are
equivalent to functions S "→ A.

Qualitative Objectives. We specify qualitative objectives for the players by providing
the set of winning plays Φ ⊆ Ω for each player. In this paper we study only zero-sum
games [23,17], where the objectives of the two players are complementary. A general
class of objectives are the Borel objectives [20]. A Borel objectiveΦ ⊆ Sω is a Borel set
in the Cantor topology on Sω. In this paper we consider ω-regular objectives, which lie
in the first 21/2 levels of the Borel hierarchy (i.e., in the intersection ofΣ3 andΠ3) [27].
All ω-regular objectives can be specified as parity objectives, and hence in this work we
focus on parity objectives, and they are defined as follows.

– Parity objectives. For c, d ∈ N, we let [c..d] = {c, c+1, . . . , d}. Let p : S "→ [0..d]
be a function that assigns a priority p(s) to every state s ∈ S, where d ∈ N. The
Even parity objective requires that the minimum priority visited infinitely often
is even. Formally, the set of winning plays is defined as Parity(p) = {ω ∈ Ω |
min

(
p(Inf(ω))

)
is even }.

Quantitative Objectives. Quantitative objectives are measurable functions f : Ω "→
R. We will consider multi-discounted objective functions, as there is a close connection
established between concurrent games with multi-discounted objectives and concurrent
games with parity objectives. Given a concurrent game structure with state space S,
let λ be a discount vector that assigns for all s ∈ S a discount factor 0 < λ(s) < 1
(unless otherwise mentioned we will always consider discount vectors λ such that for
all s ∈ S we have 0 < λ(s) < 1). Let r : S "→ R be a reward function that assigns a
real-valued reward r(s) to every state s ∈ S. The multi-discounted objective function
MDT(λ, r) : Ω "→ R maps every path to the mean-discounted reward of the path.
Formally, the function is defined as follows: for a path ω = s0s1s2 . . . we have

MDT(λ, r)(ω) =

∑∞
j=0(

∏j
i=0 λ(si)) · r(sj)∑∞

j=0(
∏j

i=0 λ(si))
.

Also note that a parity objective Φ can be intepreted as a function Φ : Ω "→ {0, 1} by
simply considering the characteristic function that assigns 1 to paths that belong to Φ
and 0 otherwise.
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Values, Optimality, ε-Optimality. Given an objective Φ which is a measurable func-
tion Φ : Ω "→ R, we define the value for player 1 of game G with objective Φ
from the state s ∈ S as Val(G,Φ)(s) = supπ1∈Π1

infπ2∈Π2 E
π1,π2
s (Φ); i.e., the

value is the maximal expectation with which player 1 can guarantee the satisfaction
of Φ against all player 2 strategies. Given a player-1 strategy π1, we use the nota-
tion Valπ1(G,Φ)(s) = infπ2∈Π2 E

π1,π2
s (Φ). A strategy π1 for player 1 is optimal

for an objective Φ if for all states s ∈ S, we have Valπ1(G,Φ)(s) = Val(G,Φ)(s).
For ε > 0, a strategy π1 for player 1 is ε-optimal if for all states s ∈ S, we have
Valπ1(G,Φ)(s) ≥ Val(G,Φ)(s)−ε. The notion of values, optimal and ε-optimal strate-
gies for player 2 are defined analogously. The following theorem summarizes the results
in literature related to determinacy and memory complexity of concurrent games and
its sub-classes for parity and multi-discounted objectives.

Theorem 1. The following assertions hold:

1. (Determinacy [21]). For all concurrent game structures and for all parity
and multi-discounted objectives Φ we have supπ1∈Π1

infπ2∈Π2 E
π1,π2
s (Φ) =

infπ2∈Π2 supπ1∈Π1
Eπ1,π2
s (Φ).

2. (Memory complexity). For all concurrent game structures and for all multi-
discounted objectives Φ, randomized memoryless optimal strategies exist [25]. For
all turn-based stochastic game structures and for all multi-discounted objectives Φ,
pure memoryless optimal strategies exist [17]. For all turn-based stochastic game
strucutures and for all parity objectives Φ, pure memoryless optimal strategies ex-
ist [6,29]. In general optimal strategies need not exist in concurrent games with
parity objectives, and ε-optimal strategies, for ε > 0, need both randomization and
infinite memory in general [11].

The results of [12] established that the value of concurrent games with certain special
multi-discounted objectives can be characterized as valuations of quantitaive discounted
μ-calculus formula. In the limit, the value function of the discountedμ-calculus formula
characterizes the value function of concurrent games with parity objectives. An elegant
interpretation of the result was given in [19], and from the interpretation we obtain the
following theorem.

Theorem 2 ([12,19]). Let G be a concurrent game structure with a parity objective Φ
defined by a priority function p. Let r be a reward function that assigns reward 1 to even
priority states and reward 0 to odd priority states. Then there exists an order s1s2 . . . sn
on the states (where S = {s1, s2, . . . , sn}) dependent only on the priority function
p such that Val(G,Φ) = limλ(s1)→1 limλ(s2)→1 . . . limλ(sn)→1 Val(G,MDT(λ, r));
in other words, if we consider the value function Val(G,MDT(λ, r)) with the multi-
discounted objective and take the limit of the discount factors to 1 in the order of the
states we obtain the value function for the parity objective.

We now present notions related to structure equivalent game structures and distances.

Structure Equivalent Game Structures. Given two game structures G1 =
〈S,A, Γ1, Γ2, δ1〉 and G2 = 〈S,A, Γ1, Γ2, δ2〉 on the same state and action space,
with different transition function, we say that G1 and G2 are structure equivalent
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(denoted G1 ≡ G2) if for all s ∈ S and all a1 ∈ Γ1(s) and a2 ∈ Γ2(s) we
have Supp(δ1(s, a1, a2)) = Supp(δ2(s, a1, a2)). Similarly, two Markov chains G1 =
(S, δ1) andG2 = (S, δ2) are structurally equivalent (denotedG1 ≡ G2) if for all s ∈ S
we have Supp(δ1(s)) = Supp(δ2(s)). For a game structure G (resp. Markov chain
G), we denote by [[G]]≡ the set of all game structures (resp. Markov chains) that are
structurally equivalent to G.

Ratio and Absolute Distances. Given two game structures G1 = 〈S,A, Γ1, Γ2, δ1〉
and G2 = 〈S,A, Γ1, Γ2, δ2〉, the absolute distance of the game structures is maxi-
mum absolute difference in the transition probabilities. Formally, distA(G1, G2) =
maxs,t∈S,a∈Γ1(s),b∈Γ2(s) |δ1(s, a, b)(t) − δ2(s, a, b)(t)|. The absolute distance for
two Markov chains G1 = (S, δ1) and G2 = (S, δ2) is distA(G1, G2) =
maxs,t∈S |δ1(s)(t) − δ2(s)(t)|. We now define the ratio distance between two struc-
turally equivalent game structures and Markov chains. Let G1 and G2 be two struc-
turally equivalent game structures. The ratio distance is defined on the ratio of the
transition probabilities. Formally,

distR(G1, G2) = max

{
δ1(s, a, b)(t)

δ2(s, a, b)(t)
,
δ2(s, a, b)(t)

δ1(s, a, b)(t)
| s ∈ S, a ∈ Γ1(s), b ∈ Γ2(s),

t ∈ Supp(δ1(s, a, b)) = Supp(δ2(s, a, b))

}
− 1

The ratio distance between two structurally equivalent Markov chains G1 and G2 is
max

{ δ1(s)(t)
δ2(s)(t)

, δ2(s)(t)δ1(s)(t)
| s ∈ S, t ∈ Supp(δ1(s)) = Supp(δ2(s))

} − 1.

Remarks about the Distance Functions. We first remark that the ratio distance is
not necessarily a metric. Consider the Markov chain with state space S = {s, s′}
and let ε ∈ (0, 1/7). For k = 1, 2, 5 consider the transition functions δk such that
δk(t)(s) = 1 − δk(t)(s

′) = k · ε, for all t ∈ S. Let Gk be the Markov chain with
transition function δk. Then we have distR(G1, G2) = 1, distR(G2, G5) = 3

2 and
distR(G1, G5) = 4, and hence distR(G1, G2) + distR(G2, G5) < distR(G1, G5).
The above example is from [26]. Also note that distR is only defined for structurally
equivalent game structures, and without the assumption distR is ∞. We also remark
that the absolute distance that measures the difference in the transition probabilities is
the most intuitive measure for the difference of two game structures.

Proposition 1. LetG1 be a game structure (resp. Markov chain) such that the minimum
positive transition probability is η > 0. For all game structures (resp. Markov chains)
G2 ∈ [[G1]]≡ we have distR(G1, G2) ≤ distA(G1,G2)

η .

Notation for Fixing Strategies. Given a concurrent game structure G =
〈S,A, Γ1, Γ2, δ〉, let π1 be a randomized memoryless strategy. Fixing the strategy π1
in G we obtain a player-2 MDP, denoted as G � π1, defined as follows: (1) the state
space is S; (2) for all s ∈ S we have Γ1(s) = {⊥} (hence it is a player-2 MDP); (3) the
new transition function δπ1 is defined as follows: for all s ∈ S and all b ∈ Γ2(s)
we have δπ1(s,⊥, b)(t) =

∑
a∈Γ1(s)

π1(s)(a) · δ(s, a, b)(t). Similarly if we fix a
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randomized memoryless strategy π1 in an MDP G we obtain a Markov chain, denoted
as G � π1. The following proposition is straightforward to verify from the definitions.

Proposition 2. Let G1 and G2 be two concurrent game structures (resp. MDPs)
that are structurally equivalent. Let π1 be a randomized memoryless strategy. Then
distA(G1 � π1, G2 � π1) ≤ distA(G1, G2) and distR(G1 � π1, G2 � π1) ≤
distR(G1, G2).

3 Markov Chains with Multi-discounted and Parity Objectives

In this section we consider Markov chains with multi-discounted and parity objectives.
We present a bound on the difference of value functions of two structurally equivalent
Markov chains that is dependent on the distance between the Markov chains and is in-
dependent of the discount factors. The result for parity objectives is then a consequence
of our result for multi-discounted objectives and Theorem 2. Our result crucially de-
pends on a result of Friedlin and Wentzell for Markov chains and we present this result
below, and then use it to obtain the main result of the section.

Result of Friedlin and Wentzell. Let (S, δ) be a Markov chain and let s0 be the initial
state. Let C ⊂ S be a proper subset of S and let us denote by exC = inf{n ∈ N |
θn %∈ C} the first hitting time to the set S \ C of states (or the first exit time from
set C) (recall that θn is the random variable to denote the n-th state of a path). Let
F(C, S) = {f : C "→ S} denote the set of all functions from C to S. For every
f ∈ F(C, S) we define a directed graph Gf = (S,Ef ) where (s, t) ∈ Ef iff f(s) = t.
Let αf = 1 if the directed graphGf has no directed cycles (i.e.,Gf is a directed acyclic
graph); and αf = 0 otherwise. Observe that since f is a function, for every s ∈ C there
is exactly one path that starts at s. For every s ∈ C and every t ∈ S, let βf (s, t) = 1 if
the directed path that leaves s in Gf reaches t, otherwise βf (s, t) = 0. We now state a
result that can be obtained as a special case of the result from Friedlin and Wentzell [18].
Below we use the formulation of the result as presented in [26] (Lemma 2 of [26]).

Theorem 3 (Friedlin-Wentzell result [18]). Let (S, δ) be a Markov chain, and letC ⊂
S be a proper subset of S such that Prs(exC < ∞) > 0 for every s ∈ C (i.e., from
all s ∈ C with positive probability the first hitting time to the complement set is finite).
Then for every initial state s1 ∈ C and for every t %∈ C we have

Prs1(θexC = t) =

∑
f∈F(C,S)(βf (s1, t) ·

∏
s∈C δ(s)(f(s)))∑

f∈F(C,S)(αf · ∏s∈C δ(s)(f(s)))
, (1)

in other words, the probability that the exit state is t when the starting state is s1 is
given by the expression on the right hand side (very informally the right hand side is
the normalized polynomial expression for exit probabilities).

Value Function Difference for Markov Chains. We will use the result of Theorem 3
to obtain bounds on the value functions of Markov chains. We start with the notion of
mean-discounted time.
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Mean-Discounted Time. Given a Markov chain (S, δ) and a discount vector λ, we
define for every state s ∈ S, the mean-discounted time the process is in the state s. We
first define the mean-discounted time function MDT(λ, s) : Ω "→ R that maps every
path to the mean-discounted time that the state s is visited, and the function is formally
defined as follows: for a path ω = s0s1s2 . . . we have

MDT(λ, s)(ω) =

∑∞
j=0(

∏j
i=0 λ(si)) · 1sj=s∑∞

j=0(
∏j

i=0 λ(si))
;

where 1sj=s is the indicator function. The expected mean-discounted time function for
a Markov chain G with transition function δ is defined as follows: MT(s1, s, G,λ) =
Es1 [MDT(λ, s)], i.e., it is the expected mean-discounted time for s when the starting
state is s1, where the expectation measure is defined by the Markov chain with transition
function δ. We now present a lemma that shows the value function for multi-discounted
Markov chains can be expressed as ratio of two polynomials (the result is obtained as a
simple extension of a result of Solan [26]).

Lemma 1. For Markov chains defined on state space S, for all initial states s0, for all
states s, for all discount vectors λ, there exists two polynomials g1(·) and g2(·) in |S|2
variables xt,t′ , where t, t′ ∈ S such that the following conditions hold:

1. the polynomials have degree at most |S| with non-negative coefficients; and

2. for all transition functions δ over S we have MT(s0, s, G,λ) =
g1(δ)
g2(δ)

, where G =

(S, δ), g1(δ) and g2(δ) denote the values of the function g1 and g2 such that all
the variables xt,t′ is instantiated with values δ(t)(t′) as given by the transition
function δ.

Proof. (Sketch). We present a sketch of the proof (details in [3]). Fix a discount vector
λ. We construct a Markov chain G = (S, δ) as follows: S = S ∪ S1, where S1 is a
copy of states of S (and for a state s ∈ S we denote its corresponding copy as s1); and
the transition function δ is defined below

1. δ(s1)(s1) = 1 for all s1 ∈ S1 (i.e., all copy states are absorbing);
2. for s ∈ S we have

δ(s)(t) =

⎧⎪⎨⎪⎩
(1− λ(s)) t = s1;

λ(s) · δ(s)(t) t ∈ S;
0 t ∈ S1 \ s1;

i.e., it goes to the copy with probability (1−λ(s)), it follows the transition δ in the
original copy with probabilities multiplied by λ(s).

We first show that for all s0 and s we have MT(s0, s, G,λ) = Prδs0(θexS = s1);
i.e., the expected mean-discounted time in s when the original Markov chain starts
in s0 is the probability in the Markov chain (S, δ) that the first hitting state out of S is
the copy s1 of the state s. The claim is easy to verify as both (MT(s0, s, G,λ))s0∈S



280 K. Chatterjee

and (Prδs0(θexS = s1))s0∈S are the unique solution of the following system of linear
equations: for all t ∈ S we have yt = (1− λ(t)) · 1t=s +

∑
z∈S λ(t) · δ(t)(z) · yz.

We now claim that Prδs0(exS < ∞) > 0 for all s0 ∈ S. This follows since for all

s ∈ S we have δ(s)(s1) = (1−λ(s)) > 0 and since s1 %∈ S we have Prδs0(exS = 2) =
(1 − λ(s0)) > 0. Now we observe that we can apply Theorem 3 on the Markov chain
G = (S, δ) with S as the set C of states of Theorem 3, and obtain the result. Indeed
the terms αf and βf (s, t) are independent of δ, and the two products of Equation (1)
each contains at most |S| terms of the form δ(s)(t) for s, t ∈ S. Thus the desired result
follows.

Lemma 2. Let h(x1, x2, . . . , xk) be a polynomial function with non-negative coeffi-
cients of degree at most n. Let ε > 0 and y, y′ ∈ Rk be two non-negative vec-
tors such that for all i = 1, 2, . . . , k we have 1

1+ε ≤ yi

y′
i

≤ 1 + ε. Then we have

(1 + ε)−n ≤ h(y)
h(y′) ≤ (1 + ε)n.

Lemma 3. Let G1 = (S, δ) and G2 = (S, δ′) be two structurally equivalent
Markov chains. For all non-negative reward functions r : S "→ R such that the re-
ward function is bounded by 1, for all discount vectors λ, for all s ∈ S we have
|Val(G1,MDT(λ, r))(s) − Val(G2,MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))

2·|S| − 1;
i.e., the absolute difference of the value functions for the multi-discounted objective is
bounded by (1 + distR(G1, G2))

2·|S| − 1.

The proof of Lemma 3 uses Lemma 1 and Lemma 2 and details available in [3].

Theorem 4. Let G1 = (S, δ) and G2 = (S, δ′) be two structurally equivalent Markov
chains. Let η be the minimum positive transition probability in G1. The following as-
sertions hold:

1. For all non-negative reward functions r : S "→ R such that the reward function is
bounded by 1, for all discount vectors λ, for all s ∈ S we have

|Val(G1,MDT(λ, r))(s) − Val(G2,MDT(λ, r))(s)| ≤ (1 + εR)
2·|S| − 1

≤ (1 + εA)
2·|S| − 1

2. For all parity objectives Φ and for all s ∈ S we have

|Val(G1, Φ)(s)− Val(G2, Φ)(s)| ≤ (1 + εR)
2·|S| − 1 ≤ (1 + εA)

2·|S| − 1

where εR = distR(G1, G2) and εA = distA(G1,G2)
η .

Proof. The first part follows from Lemma 3 and Proposition 1. The second part follows
from part 1, the fact the value function for parity objectives is obtained as the limit of
multi-discounted objectives (Theorem 2), and the fact the bound for part 1 is indepen-
dent of the discount factors (hence independent of taking the limit).

Remark on Structural Assumption in the Proof. The result of the previous theorem
depends on the structural equivalence assumption in two crucial ways. They are as
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follows: (1) Proposition 1 that establishes the relation of distR and distA only holds
with the assumption of structural equivalence; and (2) without the structural equivalence
assumption distR is ∞, and hence without the assumption the bound of the previous
theorem is ∞, which is a trivial bound. We will later show (in Example 1) that the
structural equivalence assumption is necessary.

4 Value Continuity for Parity Objectives

In this section we show two results: first we show robustness of strategies and present
quantitative bounds on value functions for turn-based stochastic games and then we
show continuity for concurrent parity games.

4.1 Bounds for Structurally Equivalent Turn-Based Stochastic Parity Games

In this section we present quantitative bounds for robustness of optimal strategies in
structurally equivalent turn-based stochastic games. For every ε > 0, we present a
bound β > 0, such that if the distance of the structurally equivalent turn-based stochas-
tic games differs by at most β, then any pure memoryless optimal strategy in one game
is ε-optimal in the other. The result is first shown for MDPs and then extended to turn-
based stochastic games (both proofs are in [3]).

Theorem 5. Let G1 be a turn-based stochastic game such that the minimum positive
transition probability is η > 0. The following assertions hold:

1. For all turn-based stochastic games G2 ∈ [[G1]]≡, for all parity objectives Φ and
for all s ∈ S we have

|Val(G1, Φ)(s)− Val(G2, Φ)(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤
(
1 +

distA(G1, G2)

η

)2·|S|
− 1

2. For ε > 0, let β ≤ η
2 · ((1 + ε

2 )
1

2·|S| − 1). For all G2 ∈ [[G1]]≡ such that
distA(G1, G2) ≤ β, for all parity objectives Φ, every pure memoryless optimal
strategy π1 in G1 is an ε-optimal strategy in G2.

4.2 Value Continuity for Concurrent Parity Games

In this section we show value continuity for structurally equivalent concurrent parity
games, and show with an example on Markov chains that the continuity property breaks
without the structural equivalence assumption. Finally with an example on Markov
chains we show the our quantitative bounds are asymptotically optimal for small dis-
tance values. We start with a lemma for MDPs.
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Lemma 4. Let G1 andG2 be two structurally equivalent MDPs. Let η be the minimum
positive transition probability in G1. For all non-negative reward functions r : S "→ R
such that the reward function is bounded by 1, for all discount vectors λ, for all s ∈ S
we have

|Val(G1,MDT(λ, r))(s)− Val(G2,MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤
(
1 +

distA(G1, G2)

η

)2·|S|
− 1

The main idea of the proof of the above lemma is to fix a pure memoryless optimal
strategy and then use the results for Markov chains. Using the same proof idea, along
with randomized memoryless optimal strategies for concurrent game structures and the
above lemma, we obtain the following lemma (the result is identical to the previous
lemma, but for concurrent game structures instead of MDPs).

Lemma 5. Let G1 and G2 be two structurally equivalent concurrent game structures.
Let η be the minimum positive transition probability inG1. For all non-negative reward
functions r : S "→ R such that the reward function is bounded by 1, for all discount
vectors λ, for all s ∈ S we have

|Val(G1,MDT(λ, r))(s)− Val(G2,MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤
(
1 +

distA(G1, G2)

η

)2·|S|
− 1

We now present the main theorem that depends on Lemma 5.

Theorem 6. LetG1 andG2 be two structurally equivalent concurrent game structures.
Let η be the minimum positive transition probability in G1. For all parity objectives Φ
and for all s ∈ S we have

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤
(
1 +

distA(G1, G2)

η

)2·|S|
− 1

Proof. The result follows from Theorem 2, Lemma 5 and the fact that the bound of
Lemma 5 are independent of the discount factors and hence independent of taking the
limits.

In the following theorem we show that for structurally equivalent game structures, for
all parity objectives, the value function is continuous in the absolute distance between
the game structures. We have already remarked (after Theorem 4) that the structural
equivalence assumption is required in our proofs, and we show in Example 1 that this
assumption is necessary.

Theorem 7. For all concurrent game structures G1, for all parity objectives Φ

lim
ε→0

sup
G2∈[[G1]]≡,distA(G1,G2)≤ε

sup
s∈S

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| = 0.
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Proof. Let η > 0 be the minimum positive transition probability in G1. By Theorem 6
we have

lim
ε→0

sup
G2∈[[G1]]≡,distA(G1,G2)≤ε

sup
s∈S

|Val(G1, Φ)(s)−Val(G2, Φ)(s)| ≤ lim
ε→0

(
1+

ε

η

)2·|S|
− 1

The above limit equals to 0, and the desired result follows.

Example 1 (Structurally equivalence assumption necessary). In this example we show
that in Theorem 7 the structural equivalence assumption is necessary, and thereby show
that the result is tight. We show an Markov chain G1 and a family of Markov chains
Gε

2, for ε > 0, such that distA(G1, G
ε
2) ≤ ε (but G1 is not structurally equiva-

lent to Gε
2) with a parity objective Φ and we have limε→0 sups∈S |Val(G1, Φ)(s) −

Val(Gε
2, Φ)(s)| = 1. The Markov chains G1 and Gε

2 are defined over the state space
{s0, s1}, and in G1 both states have self-loops with probability 1, and in Gε

2 the self-
loop at s0 has probability 1 − ε and the transition probability from s0 to s1 is ε (for
details see [3]). Clearly, distA(G1, G

ε
2) = ε. The parity objective Φ requires to visit

the state s1 infinitely often (i.e., assign priority 2 to s1 and priority 1 to s0). Then we
have Val(G1, Φ)(s0) = 0 as the state s0 is never left, whereas in Gε

2 the state s1 is
the only closed recurrent set of the Markov chain and hence reached with probability 1
from s0. Hence Val(Gε

2, Φ)(s0) = 1. It follows that limε→0 sups∈S |Val(G1, Φ)(s) −
Val(Gε

2, Φ)(s)| = 1.

Example 2 (Asymptotically tight bound for small distances). We now show that our
quantitative bound for the value function difference is asymptotically optimal for small
distances. Let us denote the absolute distance as ε, and the quantitative bound we obtain
in Theorem 6 is (1+ ε

η )
2·|S|−1, and if ε is small, then we obtain the following approxi-

mate bound:

(
1+ ε

η

)2·|S|
−1 ≈ 1+2 · |S| · εη −1 = 2 · |S| · εη .We now illustrate with an

example (on structurally equivalent Markov chains) where the difference in the value
function is O(|S| · ε), for small ε. Consider the Markov chain defined on state space
S = {s0, s1, . . . , s2n−1, s2n} as follows: states s0 and s2n are absorbing (states with
self-loops of probability 1) and for a state 1 ≤ i ≤ 2n−1 we have δ(si)(si−1) =

1
2 +ε;

and δ(si)(si+1) =
1
2 − ε; i.e., we have a Markov chain defined on a line from 0 to 2n

(with 0 and 2n absorbing states) and the chain moves towards 0 with probability 1
2 + ε

and towards 2n with probability 1
2 − ε (for complete details see [3]). Our goal is to

estimate the probability to reach the state s0, and let vi denote the probability to reach
s0 from the starting state si. We show (details in [3]) that if ε = 0, then vn = 1

2 and for
0 < ε < 1

2 , such that ε is close to 0, we have vn = 1
2 + n · ε. Observe that the Markov

chain obtained for ε = 0 and 1
2 > ε > 0 are structurally equivalent. Thus the desired

result follows.

5 Conclusion

In this work we studied the robustness and continuity property of concurrent and turn-
based stochastic parity games with respect to small imprecision in the transition prob-
abilities. We presented (i) quantitative bounds on difference of the value functions and



284 K. Chatterjee

proved value continuity for concurrent parity games under the structural equivalence
assumption, and (ii) showed robustness of all pure memoryless optimal strategies for
structurally equivalent turn-based stochastic parity games. We also showed that the
structural equivalence assumption is necessary and that our quantitative bounds are
asymptotically optimal for small imprecision. We believe our results will find appli-
cations in robustness analysis of various other classes of stochastic games.
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Abstract. We study turn-based quantitative multiplayer non zero-sum
games played on finite graphs with reachability objectives. In such games,
each player aims at reaching his own goal set of states as soon as possible.
A previous work on this model showed that Nash equilibria (resp. secure
equilibria) are guaranteed to exist in the multiplayer (resp. two-player)
case. The existence of secure equilibria in the multiplayer case remained,
and is still an open problem. In this paper, we focus our study on the
concept of subgame perfect equilibrium, a refinement of Nash equilib-
rium well-suited in the framework of games played on graphs. We also
introduce the new concept of subgame perfect secure equilibrium. We
prove the existence of subgame perfect equilibria (resp. subgame perfect
secure equilibria) in multiplayer (resp. two-player) quantitative reacha-
bility games. Moreover, we provide an algorithm deciding the existence
of secure equilibria in the multiplayer case.

1 Introduction

General framework. The construction of correct and efficient computer systems
(hardware or software) is recognized as an extremely difficult task. To support
the design and verification of such systems, mathematical logic, automata the-
ory [16] and more recently model-checking [13] have been intensively studied.
The efficiency of the model-checking approach is widely recognized when ap-
plied to systems that can be accurately modeled as a finite-state automaton.
In contrast, the application of these techniques to more complex systems like
embedded systems or distributed systems has been less successful. This could be
partly explained by the following reasons: classical automata-based models do
not faithfully capture the complex behavior of modern computational systems
that are usually composed of several interacting components, also interacting
with an environment that is only partially under control. One recent trend to
improve the automata models used in the classical approach of verification is
to generalize these models with the more flexible and mathematically deeper
game-theoretic framework [22,23].

The first steps to extend computational models with concepts from game the-
ory were done with the so-called two-player zero-sum games played on graphs [14].
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Those games are adequate to model controller-environment interactions prob-
lems [26,27]. Moves of player 1 model actions of the controller whereas moves
of player 2 model the uncontrollable actions of the environment, and a winning
strategy for player 1 is an abstract form of a control program that enforces the
control objective. However, only purely antagonist interactions between a con-
troller and a hostile environment can be modeled in this framework. In order to
study more complex systems with more than two components and objectives that
are not necessarily antagonist, we need multiplayer non zero-sum games. More-
over, we do not look for winning strategies, but rather try to find relevant notions
of equilibria, like the famous notion of Nash equilibrium [22]. We also consider
the more recent concept of secure equilibrium [9] which is especially well-suited
for assume-guarantee synthesis [11,12]. On the other hand, only qualitative ob-
jectives have been considered so far to specify, for example, that a player must
be able to reach a target set of states in the underlying game graph. But, in line
with the previous point, we also want to express and solve games for quantitative
objectives where each player wants to force the play to reach a particular set of
states within a given time bound, or within a given energy consumption limit.
In summary, we need to study equilibria for multiplayer non zero-sum games
played on graphs with quantitative objectives. This article provides some new
results in this research direction, in particular it is another step in the quest for
solution concepts well-suited for the computer-aided synthesis and verification
of multi-agent systems.

Our contribution. We study turn-based multiplayer non zero-sum games played
on finite graphs with quantitative reachability objectives, continuing work initi-
ated in [6]. In this framework each player aims at reaching his own goal as soon
as possible. In [6], among other results, it has been proved that a finite-memory
Nash (resp. secure) equilibria always exists in multiplayer (resp. 2-player) games.

In this paper we consider alternative solution concepts to the classical notion
of Nash equilibria. In particular, in the present framework of games on graphs, it
is very natural to consider the notion of subgame perfect equilibrium [25]: a choice
of strategies is not only required to be optimal for the initial vertex but also for
every possible initial history of the game. Indeed if the initial state or the initial
history of the system is not known, then a robust controller should be subgame
perfect. We introduce a new and even stronger solution concept with the notion
of subgame perfect secure equilibrium, which gathers both the sequential na-
ture of subgame perfect equilibria and the verification-oriented aspects of secure
equilibria. These different notions of equilibria are precisely defined in Section 2.

In this paper, we address the following problems:

Problem 1. Given a multiplayer quantitative reachability game G, does there
exist a Nash (resp. secure, subgame perfect, subgame perfect secure) equilibrium
in G?
Problem 2. Given a Nash (resp. secure, subgame perfect, subgame perfect se-
cure) equilibrium in a multiplayer quantitative reachability game G, does there
exist such an equilibrium with finite memory?
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These questions have been positively solved by some of the authors in [6] for
Nash equilibria in multiplayer games, and for secure equilibria in two-player
games. Notice that these problems and related ones have been investigated a lot
in the qualitative framework (see [15]).

Here we go a step further and establish the following results about subgame
perfect and secure equilibria:

– in every multiplayer quantitative reachability game, there exists a subgame
perfect equilibrium (Theorem 10),

– in every two-player quantitative reachability game, there exists a subgame
perfect secure equilibrium (Theorem 13),

– in every multiplayer quantitative reachability game, one can decide whether
there exists a secure equilibrium in ExpSpace (Theorem 14),

– if there exists a secure equilibrium in a multiplayer quantitative reachability
game, then there exists one that is finite-memory (Theorem 15).

Related work. Several recent papers have considered two-player zero-sum games
played on finite graphs with regular objectives enriched by some quantitative
aspects. Let us mention some of them: games with finitary objectives [10],
games with prioritized requirements [1], request-response games where the wait-
ing times between the requests and the responses are minimized [17,28], and
games whose winning conditions are expressed via quantitative languages [2].

Other works concern qualitative non zero-sum games. In [9] where the notion
of secure equilibrium has been introduced, it is proved that a unique maxi-
mal payoff profile of secure equilibria always exists for two-player non zero-sum
games with regular objectives. In [15], general criteria ensuring existence of Nash
equilibria and subgame perfect equilibria (resp. secure equilibria) are provided
for multiplayer (resp. 2-player) games, as well as complexity results. In [4], the
existence of Nash equilibria is studied for timed games with qualitative reacha-
bility objectives. Complexity issues are discussed in [5] about Nash equilibria in
multiplayer concurrent games with Büchi objectives.

Finally, let us mention works that combine both quantitative and non zero-
sum aspects. In [3], the authors study games played on graphs with terminal
vertices where quantitative payoffs are assigned to the players. These games may
have cycles but all the infinite plays form a single outcome (like in chess where
every infinite play is a draw). That paper gives criteria that ensure the existence
of Nash (and subgame perfect) equilibria in pure and memoryless strategies.
In [19], the studied games are played on priced graphs similar to the ones con-
sidered in this article, however in a concurrent way. In this concurrent framework,
Nash equilibria are not guaranteed to exist anymore. The authors provide an al-
gorithm to decide existence of Nash equilibria, thanks to a Büchi automaton
accepting all Nash equilibria outcomes. The complexity of some related decision
problems is also studied. In [24], the authors study Muller games on finite graphs
where players have a preference ordering on the sets of the Muller table. They
show that Nash equilibria always exist for such games, and that it is decidable
whether there exists a subgame perfect equilibrium. In both cases they give a
procedure to compute an equilibrium strategy profile (when it exists).
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2 Preliminaries

2.1 Games, Strategy Profiles and Equilibria

We consider here quantitative games played on a graph where all the players have
reachability objectives. It means that, given a certain set of vertices Goali, each
player i wants to reach one of these vertices as soon as possible. We recall the
basic notions about these games and we introduce different kinds of equilibria,
like Nash equilibria. This section is inspired from [6].

Definition 1. An infinite turn-based multiplayer quantitative reachability game
is a tuple G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) where

• Π is a finite set of players,
• G = (V, (Vi)i∈Π , v0, E) is a finite directed graph where V is the set of vertices,

(Vi)i∈Π is a partition of V into the state sets of each player, v0 ∈ V is the
initial vertex, and E ⊆ V × V is the set of edges, and

• Goali ⊆ V is the non-empty goal set of player i.

From now on we often use the term game to denote a multiplayer quantitative
reachability game according to Definition 1.

We assume that each vertex has at least one outgoing edge. The game is
played as follows. A token is first placed on the vertex v0. Player i, such that
v0 ∈ Vi, has to choose one of the outgoing edges of v0 and put the token on the
vertex v1 reached when following this edge. Then, it is the turn of the player
who owns v1. And so on.

A play ρ ∈ V ω (resp. a history h ∈ V +) of G is an infinite (resp. a finite)
path through the graph G starting from vertex v0. Note that a history is always
non-empty because it starts with v0. The set H ⊆ V + is made up of all the
histories of G, and for i ∈ Π , the set Hi is the set of all histories h ∈ H whose
last vertex belongs to Vi.

For any play ρ = ρ0ρ1 . . . of G, we define Costi(ρ) the cost of player i as:

Costi(ρ) =

{
l if l is the least index such that ρl ∈ Goali,
+∞ otherwise.

We note Cost(ρ) = (Costi(ρ))i∈Π the cost profile for the play ρ. Each player i
aims to minimize the cost he has to pay, i.e. reach his goal set as soon as possible.
The cost profile for a history h is defined similarly.

A prefix (resp. proper prefix ) α of a history h = h0 . . . hk is a finite sequence
h0 . . . hl, with l ≤ k (resp. l < k), denoted by α ≤ h (resp. α < h). We similarly
consider a prefix α of a play ρ, denoted by α < ρ. The function Last returns,
given a history h = h0 . . . hk, the last vertex hk of h, and the length |h| of h
is the number k of its edges1. Given a play ρ = ρ0ρ1 . . ., we denote by ρ≤l the
prefix of ρ of length l, i.e. ρ≤l = ρ0ρ1 . . . ρl. Similarly, ρ<l = ρ0ρ1 . . . ρl−1.

1 Note that the length is not defined as the number of vertices.
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We say that a play ρ = ρ0ρ1 . . . visits a set S ⊆ V (resp. a vertex v ∈ V ) if
there exists l ∈ N such that ρl is in S (resp. ρl = v). The same terminology also
stands for a history h.

A strategy of player i in G is a function σ : Hi → V assigning to each his-
tory h ∈ Hi, a next vertex σ(h) such that (Last(h), σ(h)) belongs to E. We
say that a play ρ = ρ0ρ1 . . . of G is consistent with a strategy σ of player i if
ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that ρk ∈ Vi. The same terminology is
used for a history h of G. A strategy profile of G is a tuple (σi)i∈Π where σi is
a strategy for player i. It determines a unique play of G consistent with each
strategy σi, called the outcome of (σi)i∈Π and denoted by 〈(σi)i∈Π〉. We write
σ−j for (σi)i∈Π\{j}, the set of strategies σi for all the players except for player j.

A strategy σ of player i is memoryless if σ depends only on the current vertex,
i.e. σ(hv) = σ(v) for all h ∈ H and v ∈ Vi. More generally, σ is a finite-memory
strategy if the equivalence relation ≈σ on H defined by h ≈σ h

′ if σ(hδ) = σ(h′δ)
for all δ ∈ Hi has finite index. In other words, a finite-memory strategy is a
strategy that can be implemented by a finite automaton with output. A strategy
profile (σi)i∈Π is called memoryless or finite-memory if each σi is a memoryless
or a finite-memory strategy, respectively.

For a strategy profile (σi)i∈Π with outcome ρ and a strategy σ′j of player j,
we say that player j deviates from ρ if there exists a prefix h of ρ, consistent
with σ′j , such that h ∈ Hj and σ′j(h) %= σj(h).

We now introduce different notions of equilibria in the quantitative framework
and give several examples to make clear the presented concepts. We first begin
with the definition of Nash equilibrium.

Definition 2. A strategy profile (σi)i∈Π of a game G is a Nash equilibrium if
for all player j ∈ Π and for all strategy σ′j of player j, we have:

Costj(ρ) ≤ Costj(ρ
′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′j , σ−j〉.
This definition means that for all j ∈ Π , player j has no incentive to deviate
since he can not strictly decrease his cost when using σ′j instead of σj . Keeping
notations of Definition 2 in mind, a strategy σ′j such that Costj(ρ) > Costj(ρ

′)
is called a profitable deviation for player j w.r.t. (σi)i∈Π . In this case, either
player j pays an infinite cost for ρ and a finite cost for ρ′ (i.e. ρ′ visits Goalj , but
ρ does not), or player j pays a finite cost for ρ and a strictly lower cost for ρ′

(i.e. ρ′ visits Goalj for the first time earlier than ρ does).
We now define the concept of secure equilibrium2. We first need to associate

a binary relation ≺j on cost profiles with each player j. Given two cost pro-
files (xi)i∈Π and (yi)i∈Π :

(xi)i∈Π ≺j (yi)i∈Π iff
(
xj > yj

)∨(
xj = yj ∧ (∀i ∈ Π xi ≤ yi) ∧ (∃i ∈ Π xi < yi)

)
.

2 Our definition naturally extends the notion of secure equilibrium proposed in [9] to
the quantitative framework.
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We then say that player j prefers (yi)i∈Π to (xi)i∈Π . In other words, player j
prefers a cost profile to another one either if he has a strictly lower cost, or if he
keeps the same cost, the other players have a greater cost, and at least one has
a strictly greater cost.

Definition 3. A strategy profile (σi)i∈Π of a game G is a secure equilibrium if
for all player j ∈ Π, there does not exist any strategy σ′j of player j such that:

Cost(ρ) ≺j Cost(ρ
′)

where ρ = 〈(σi)i∈Π〉 and ρ′ = 〈σ′j , σ−j〉.
In other words, player j has no incentive to deviate w.r.t. the relation ≺j. A
strategy σ′j such that Cost(ρ) ≺j Cost(ρ′) is called a ≺j-profitable deviation for
player j w.r.t. (σi)i∈Π . Clearly, any secure equilibrium is a Nash equilibrium.

We now introduce a third type of equilibrium: the subgame perfect equilib-
rium. In this case, a strategy profile is not only required to be optimal for the
initial vertex, but also after every possible history of the game. Before giving the
definition, we introduce the concept of subgame and explain some notations.

Given a game G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) and a history hv of G,
with v ∈ V , the subgame G|h of G is the game (Π,V, (Vi)i∈Π , v, E, (Goali)i∈Π)
with initial vertex v. Given a strategy σi for player i in G, we define the strategy
σi|h in G|h by σi|h(h′) = σi(hh′) for all history h′ of G|h such that Last(h′) ∈ Vi.
Let σ be the strategy profile (σi)i∈Π , we write σ|h for (σi|h)i∈Π , and h〈σ|h〉 for
the play in G with prefix h that is consistent with σ|h from v.

Then, we say that (σi|h)i∈Π is a Nash equilibrium in G|h if for all player j ∈ Π
and for all strategy σ′j of player j, we have that Costj(ρ) ≤ Costj(ρ

′), where
ρ = h〈(σi|h)i∈Π〉 and ρ′ = h〈σ′j |h, σ−j |h〉. Let us stress on the fact that plays ρ
and ρ′ both include the history h as their prefix, and that the related costs
Costj(ρ) and Costj(ρ

′) thus depend on h (the goal set Goalj could have already
been visited by h). The definition of a secure equilibrium in G|h is given similarly.

A subgame perfect equilibrium is a strategy profile that is a Nash equilibrium
after every possible history of the game, i.e. in every subgame. In particular, a
subgame perfect equilibrium is also a Nash equilibrium.

Definition 4. A strategy profile (σi)i∈Π of a game G is a subgame perfect equi-
librium if for all history h of G, (σi|h)i∈Π is a Nash equilibrium in G|h.
We now introduce the last kind of equilibrium that we study. It is a new no-
tion that combines both concepts of subgame perfect equilibrium and secure
equilibrium in the following way.

Definition 5. A strategy profile (σi)i∈Π of a game G is a subgame perfect se-
cure equilibrium if for all history h of G, (σi|h)i∈Π is a secure equilibrium in G|h.
Notice that a subgame perfect secure equilibrium is a secure equilibrium, as well
as a subgame perfect equilibrium.
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In order to understand the differences between the various notions of equi-
libria, we provide three simple examples of games limited to two players and
to finite trees. Some examples of equilibria involving cycles in two-player games
can be found in [8]. They provide further motivations for the introduction of
subgame perfect secure equilibria.

Example 6. Let G = (V, V1, V2, A,E,Goal1,Goal2) be the two-player game de-
picted in Fig. 1. The vertices of player 1 (resp. 2) are represented by circles
(resp. squares), that is, V1 = {A,D,E, F} and V2 = {B,C}. The initial ver-
tex v0 is A. The vertices of Goal1 are shaded whereas the vertices of Goal2 are
doubly circled; thus Goal1 = {D,F} and Goal2 = {F}. The number 2 labeling
the edge (B,D) is a shortcut to indicate that there are two consecutive edges
from B to D (through one intermediate vertex).

A

B C

D E F

2

Fig. 1. Game G

A

B C

D E F

Fig. 2. Game G′

A

B C

D E F

Fig. 3. Game G′′

In the games G, G′ and G′′ of Fig. 1, 2 and 3 (played on the same graph), we
define two strategies σ1, σ

′
1 of player 1 and two stategies σ2, σ

′
2 of player 2 in

the following way: σ1(A) = B, σ
′
1(A) = C, σ2(C) = E and σ′2(C) = F .

In G, one can easily check that the strategy profile (σ1, σ2) is a secure equilib-
rium (and thus a Nash equilibrium) with cost profile is (3,+∞). Such a secure
equilibrium exists because player 2 threatens player 1 to go to vertex E in the
case where vertex C is reached. This threat is not credible in this case since by
acting this way, player 2 gets an infinite cost instead of a cost of 2 (that he could
obtain by reaching F ). For this reason, (σ1, σ2) is not a subgame perfect equi-
librium (and thus not a subgame perfect secure equilibrium). However, one can
check that the strategy profile (σ′1, σ

′
2) is a subgame perfect secure equilibrium.

Let us now consider the game G′ depicted in Fig. 2 (notice that the number 2
has disappeared from the edge (B,D)). One can verify that the strategy pro-
file (σ′1, σ

′
2) is a subgame perfect equilibrium which is not a secure equilibrium

(and thus not a subgame perfect secure equilibrium). A subgame perfect secure
equilibrium for G′ is given by the strategy profile (σ1, σ

′
2).

Finally, for the game G′′ depicted in Fig. 3, one can check that the strategy
profile (σ1, σ

′
2) is both a subgame perfect equilibrium and a secure equilibrium.

However it is not a subgame perfect secure equilibrium. In particular, this shows
that being a subgame perfect secure equilibrium is not equivalent to be a sub-
game perfect equilibrium and a secure equilibrium. On the other hand, (σ1, σ2)
is a subgame perfect secure equilibrium in G′′.



Subgame Perfection for Equilibria in Quantitative Reachability Games 293

2.2 Unraveling

In the proofs of this article, it will be often useful to unravel the graph G =
(V, (Vi)i∈Π , v0, E) from the initial vertex v0, which ends up in an infinite tree,
denoted by T . This tree can be seen as a new graph where the set of vertices is
the set H of histories of G, the initial vertex is v0, and a pair (h, hv) ∈ H ×H is
an edge of T if (Last(h), v) ∈ E. A history h is a vertex of player i in T if h ∈ Hi,
and h belongs to the goal set of player i if Last(h) ∈ Goali.

We denote by T the related game. This game T played on the unraveling T
of G is equivalent to the game G that is played on G in the following sense. A
play (ρ0)(ρ0ρ1)(ρ0ρ1ρ2) . . . in T induces a unique play ρ = ρ0ρ1ρ2 . . . in G, and
conversely. Thus, we denote a play in T by the respective play in G. The bijection
between plays of G and plays of T allows us to use the same cost function Cost,
and to transform easily strategies in G to strategies in T (and conversely).

We also need to study the tree T limited to a certain depth d ∈ N: we denote
by Truncd(T ) the truncated tree of T of depth d and Truncd(T ) the finite game
played on Truncd(T ). More precisely, the set of vertices of Truncd(T ) is the set
of histories h ∈ H of length ≤ d; the edges of Truncd(T ) are defined in the
same way as for T , except that for the histories h of length d, there exists no
edge (h, hv). A play ρ in Truncd(T ) corresponds to a history of G of length equal
to d. The notions of cost and strategy are defined exactly like in the game T , but
limited to the depth d. For instance, a player pays an infinite cost for a play ρ
(of length d) if his goal set is not visited by ρ.

2.3 Kuhn’s Theorem

This section is devoted to the classical Kuhn’s theorem [20]. It claims the ex-
istence of a subgame perfect equilibrium (resp. subgame perfect secure equilib-
rium) in multiplayer games played on finite trees.

A preference relation is a total, reflexive and transitive binary relation.

Theorem 7 (Kuhn’s theorem). Let Γ be a finite tree and G a game played
on Γ . For each player i ∈ Π, let �i be a preference relation on cost profiles.
Then there exists a strategy profile (σi)i∈Π such that for all history h of G, all
player j ∈ Π, and all strategy σ′j of player j in G, we have

Cost(ρ′) �j Cost(ρ)

where ρ = h〈(σi|h)i∈Π〉 and ρ′ = h〈σ′j |h, σ−j |h〉.
One can easily be convinced that the binary relation on cost profiles used to
define the notion of Nash equilibrium (see Definition 2) is total, reflexive and
transitive. We thus have the following corollary.

Corollary 8. Let G be a game and T be the unraveling of G. Let Truncd(T ) be
the game played on the truncated tree of T of depth d ∈ N. Then there exists a
subgame perfect equilibrium in Truncd(T ).
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Let �j be the relation defined by x �j y iff x ≺j y or x = y, where ≺j is the
relation used in Definition 3. We notice that in the two-player case, this relation
is total, reflexive and transitive. However when there are more than two players,
�j is no longer total. Nevertheless, it is proved in [21] that Kuhn’s theorem
remains true when �j is only transitive. So, the next corollary holds.

Corollary 9. Let G be a game and T be the unraveling of G. Let Truncd(T ) be
the game played on the truncated tree of T of depth d ∈ N. Then there exists a
subgame perfect secure equilibrium in Truncd(T ).

3 Subgame Perfection

In this section, we positively solve Problem 1 for subgame perfect equilibria, and
for subgame perfect secure equilibria in the two-player case.

Theorem 10. In every multiplayer quantitative reachability game, there exists
a subgame perfect equilibrium.

The proof uses techniques completely different from the ones given in [6,7] for
the existence of Nash equilibria, and secure equilibria in two-player games.

Let G be a game and T be the infinite game played on the unraveling T of G.
Kuhn’s theorem (and in particular Corollary 8) guarantees the existence of a
subgame perfect equilibrium in each finite game Truncn(T ) for all depth n ∈ N.
Given a sequence of such equilibria, the keypoint is to derive the existence of
a subgame perfect equilibrium in the infinite game T . This is possible by the
following lemma.

Lemma 11. Let (σn)n∈N be a sequence of strategy profiles such that for every
n ∈ N, σn is a strategy profile in the truncated game Truncn(T ). Then there
exists a strategy profile σ	 in the game T with the property:

∀d ∈ N, ∃n ≥ d, σ	 and σn coincide on histories of length up to d. (1)

Proof. This result is a direct consequence of the compacity of the set of infinite
trees with bounded outdegree [18]. An alternative proof is as follows. We give
a tree structure, denoted by Γ , to the set of all strategy profiles in the games
Truncn(T ), n ∈ N: the nodes of Γ are the strategy profiles, and we draw an edge
from a strategy profile σ in Truncn(T ) to a strategy profile σ′ in Truncn+1(T ) if
and only if σ is the restriction of σ′ to histories of length less than n. It means
that the nodes at depth d correspond to strategy profiles of Truncd(T ). We then
consider the tree Γ ′ derived from Γ where we only keep the nodes σn, n ∈ N, and
their ancestors. Since Γ ′ has finite outdegree, it has an infinite path by König’s
lemma. This path goes through infinitely many nodes that are ancestors of nodes
in the set {σn, n ∈ N}. Therefore there exists a strategy profile σ	 in the infinite
game T (given by the previous infinite path in Γ ′) with property (1). #$
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Proof (of Theorem 10). Let G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) be a multi-
player quantitative reachability game and T the game played on the unraveling
of G. For all n ∈ N, we consider the finite game Truncn(T ) and get a subgame
perfect equilibrium σn = (σni )i∈Π in this game by Corollary 8. According to
Lemma 11, there exists a strategy profile σ	 in the game T with property (1).

It remains to show that σ	 is a subgame perfect equilibrium in T , and thus
in G. Let h ∈ H be a history of the game. We have to prove that σ	|h is a Nash
equilibrium in T |h. As a contradiction, suppose that there exists a profitable
deviation σ′j for some player j ∈ Π w.r.t. σ	|h in T |h. This means that Costj(ρ) >
Costj(ρ

′) for ρ = h〈σ	|h〉 and ρ′ = h〈σ′j |h, σ	−j |h〉, that is ρ′ visits Goalj for the
first time at a certain depth d, such that |h| < d < +∞, and ρ visits Goalj at a
depth strictly greater than d (see Figure 4). Thus:

Costj(ρ) > Costj(ρ
′) = d.

T T |h

d

n

h

ρρ′

Goalj

π′ π

Fig. 4. The game T with its subgame T |h

According to property (1), there exists n ∈ N such that σ	 coincide with σn on
histories of length up to d. It follows that for π = h〈σn|h〉 and π′ = h〈σ′j |h, σn−j |h〉,
we have that (see Figure 4)

Cost(π′) = Cost(ρ′) = d and Cost(π) > d.

And so, σ′j is a profitable deviation for player j w.r.t. σn|h in Truncn(T )|h, which
leads to a contradiction with the fact that σn is a subgame perfect equilibrium
in Truncn(T ) by hypothesis. #$
As an extension, we consider multiplayer quantitative reachability games with
tuples of costs on edges (see [7, Definition 31]). In these games, we assume that
edges are labelled with tuples of strictly positive costs (one cost for each player).
Here we do not only count the number of edges to reach the goal of a player,
but we sum up his costs along the path until his goal is reached. His aim is
still to minimize his global cost for a play. In this framework, we can also prove
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the existence of a subgame perfect equilibrium. The proof is similar to the one
of Theorem 10, the only difference lies in the choice of the different considered
depths.

Theorem 12. In every multiplayer quantitative reachability game with tuples
of costs on edges, there exists a subgame perfect equilibrium.

Regarding subgame perfect secure equilibria, we positively solve Problem 1 but
only in the case of two-player games.

Theorem 13. In every two-player quantitative reachability game, there exists a
subgame perfect secure equilibrium.

The main ideas of the proof are similar to the ones for Theorem 10 (see [8]).
Unfortunately the proof does not seem to extend to the multiplayer case. Indeed
we face the same kind of problems encountered in [6,7], where the existence of
secure equilibria is proved for two-player games, and left open for multiplayer
games. (See [7] for further discussion on these problems).

4 Decidability of the Existence of a Secure Equilibrium

In this section, we study Problems 1 and 2 in the context of secure equilibria.
Both problems have been positively solved in [6] for two-player games only. To
the best of our knowledge, the existence of secure equilibria in the multiplayer
framework is still an open problem. We here provide an algorithm that decides
the existence of a secure equilibrium. We also show that if there exists a secure
equilibrium, then there exists one that is finite-memory.

Theorem 14. In every multiplayer quantitative reachability game, one can de-
cide whether there exists a secure equilibrium in ExpSpace.

Theorem 15. If there exists a secure equilibrium in a multiplayer quantitative
reachability game, then there exists one that is finite-memory.

The proof of Theorem 14 is inspired from ideas developed in [6,7]. It is rather
technical and can be found in [8]. Nevertheless, let us give some flavor of the
proof. The keypoint is to show that the existence of a secure equilibrium in a
game G is equivalent to the existence of a secure equilibrium (with two additional
properties) in the finite game Truncd(T ) for a well-chosen depth d. The existence
of the latter equilibrium is decidable. Notice that by Corollary 9 a secure equilib-
rium always exists in Truncd(T ); however we do not know if a secure equilibrium
with the two required additional properties always exists in Truncd(T ). Let us
now give some details about these two properties.

The first property requires that the secure equilibrium is goal-optimized, mean-
ing that all the visited goal sets are visited for the first time before a certain given
depth. Let G = (Π,V, (Vi)i∈Π , v0, E, (Goali)i∈Π) be a game. We fix the following
constant: dgoal := 2 · |Π | · |V |.
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Definition 16. Given a strategy profile (σi)i∈Π in a game G, with outcome ρ,
we say that (σi)i∈Π is goal-optimized if and only if for all i ∈ Π such that
Costi(ρ) < +∞, we have that Costi(ρ) < dgoal.

The second property asks for a secure equilibrium that is deviation-optimized,
meaning that whenever a player deviates, he realizes within a certain given num-
ber of steps that his deviation is not profitable for him.

Definition 17. Given a secure equilibrium (σi)i∈Π in a game G, we say that
(σi)i∈Π is deviation-optimized if and only if for all player j ∈ Π, for all strategy
σ′j of player j,

Cost(ρ<ddev
) %≺j Cost(ρ

′
<ddev

),

where ρ = 〈(σi)i∈Π〉, ρ′ = 〈σ′j , σ−j〉, and ddev = max{Costi(ρ) | Costi(ρ) <
+∞}+ |V |.
We can now state the key proposition.

Proposition 18. Given a game G, there exists a secure equilibrium in G iff there
exists a goal-optimized and deviation-optimized secure equilibrium in Truncd(T ),
for d = dgoal + 3 · |V |.
The proof of this proposition is detailed in [8]. It is here difficult to give the
significance of choosing constants dgoal, ddev and d = dgoal + 3 · |V | as is done.
We just propose a sketch of proof.

Proof (of Proposition 18 - Sketch).
Suppose that there exists a secure equilibrium (σi)i∈Π in G. The first step
consists in transforming (σi)i∈Π into a goal-optimized and deviation-optimized
secure equilibrium in G. To get a goal-optimized equilibrium, the idea is to elim-
inate unnecessary cycles between two successively visited goal sets. Such an idea
is already developed in [7, Lemma 19] for Nash equilibria. Unfortunately, this
lemma cannot be applied for secure equilibria. We need to adapt it to the con-
text of secure equilibria, by modifying the strategies of the coalition against a
deviating player. In this way, we get a goal-optimized equilibrium that is also
deviation-optimized due to this particular form of the coalitions strategies.

Once we have a goal-optimized and deviation-optimized secure equilibrium
in G, the second step consists in showing that its restriction to Truncd(T ) with
d = dgoal + 3 · |V | is still a goal-optimized and deviation-optimized secure equi-
librium in Truncd(T ).

Suppose now that there exists a goal-optimized and deviation-optimized se-
cure equilibrium (σi)i∈Π in Truncd(T ), for d = dgoal+3 · |V |. To get from (σi)i∈Π

a secure equilibrium in G, we inspire from a construction proposed in [7, Propo-
sition 25] where it is shown, in the context of two-player games, how to extend
a secure equilibrium in a finite truncation of G to a secure equilibrium in G. The
rough idea is as follows. Due to the hypotheses, the outcome π of (σi)i∈Π has
a prefix αβ such that all goal sets visited by π are already visited by α, and
such that β is a cycle. The required secure equilibrium is specified such that its
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outcome is equal to αβω and any deviating player is punished by the coalition
of the other players in a way that this deviation is not profitable for him.3 #$
We are now able to prove the two theorems of this section.

Proof (of Theorem 14). By Proposition 18, there exists a secure equilibrium in G
iff there exists a goal-optimized and deviation-optimized secure equilibrium in
Truncd(T ), with d = dgoal+3 · |V |. The latter property is decidable in NExpSpace
(in |V | and |Π |). Indeed, Truncd(T ) has an exponential size. Guessing a strategy
profile (σi)i∈Π in this tree also needs an exponential size. Then we can test in
exponential size whether (σi)i∈Π is a goal-optimized and deviation-optimized
secure equilibrium in Truncd(T ). By Savitch’s theorem, deciding the existence
of a secure equilibria is thus in ExpSpace. #$
Proof (of Theorem 15). This theorem is a direct consequence of Proposition 18.
Indeed consider a secure equilibrium in a game G. We first apply Proposition 18
to this strategy profile to get a goal-optimized and deviation-optimized secure
equilibrium (σi)i∈Π in Truncd(T ), for d = dgoal + 3 · |V |. Then we apply Propo-
sition 18, in the other direction, to the equilibrium (σi)i∈Π , to get a secure equi-
librium back in G. The latter equilibrium can be supposed to be finite-memory
as explained in the proof of Proposition 18 (see Footnote 5). #$

5 Conclusion and Perspectives

In this paper, we study the concept of subgame perfect equilibrium, a refinement
of Nash equilibrium well-suited in the framework of games played on graphs. We
also introduce the new concept of subgame perfect secure equilibrium. We prove
the existence of subgame perfect equilibria in multiplayer quantitative reacha-
bility games. We also prove the existence of subgame perfect secure equilibria,
but only in the two-player framework. Finally, we provide an algorithm deciding
in ExpSpace the existence of secure equilibria in the multiplayer case. On one
hand, the first two results have been obtained by topological techniques, that are
completely different from the techniques used in [6,7]. On the other hand, proofs
of the last result are strongly inspired by proofs developed in these references,
but have required new ideas about the coalition strategies.

There are several interesting directions for future research. We are currently
working on the model of quantitative game, enriched by allowing n-tuples of
positive weights on edges (see Theorem 12). We do believe that our results remain
true in this context. The case of Nash equilibria is already treated in [7]. Notice
that our results trivially generalize to the particular case where the weights of
the edges are of the form (c, . . . , c) with c ∈ N0. Indeed it is enough to replace
each such edge by a path of length c composed of c new edges (of cost 1).

To the best of our knowledge, the existence of secure equilibria in the multi-
player framework is still an open problem. We prove that the existence of a secure

3 It should be noted that this secure equilibrium can be constructed in a way to be
finite-memory.
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equilibrium in an infinite game is equivalent to the existence of a goal-optimized
and deviation-optimized secure equilibrium in a finite game. This open problem
could be positively solved if Corollary 9 could be adapted in a way to get a
goal-optimized and deviation-optimized secure equilibrium in the finite game,
and then by applying Proposition 18. A deeper understanding of equilibria with
unnecessary cycles could also be helpful. For the moment, we are not able to
solve this problem with more than two players. The same kind of question is
also open for subgame perfect secure equilibria.

Another research direction concerns a deeper study of the memory needed in
the different kinds of equilibria. In the case of subgame perfect equilibria and
subgame perfect secure equilibria, the topological techniques give no results on
the memory needed. However, in the case of secure equilibria, we prove that we
can limit to finite-memory equilibria.
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References

1. Alur, R., Kanade, A., Weiss, G.: Ranking Automata and Games for Prioritized
Requirements. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
240–253. Springer, Heidelberg (2008)

2. Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better Quality in Syn-
thesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

3. Boros, E., Gurvich, V.: Why chess and back gammon can be solved in pure po-
sitional uniformly optimal strategies. Rutcor Research Report 21-2009. Rutgers
University (2009)

4. Bouyer, P., Brenguier, R., Markey, N.: Nash Equilibria for Reachability Objectives
in Multi-Player Timed Games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 192–206. Springer, Heidelberg (2010)

5. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Nash equilibria in concurrent
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Abstract. We consider concurrent games played on graphs, in which
each player has several qualitative (e.g. reachability or Büchi) objectives,
and a preorder on these objectives (for instance the counting order, where
the aim is to maximise the number of objectives that are fulfilled).

We study two fundamental problems in that setting: (1) the value
problem, which aims at deciding the existence of a strategy that ensures a
given payoff; (2) the Nash equilibrium problem, where we want to decide
the existence of a Nash equilibrium (possibly with a condition on the
payoffs). We characterise the exact complexities of these problems for
several relevant preorders, and several kinds of objectives.

1 Introduction

Games (and especially games played on graphs) have been intensively used in
computer science as a powerful way of modelling interactions between several
computerised systems [15,6]. Until recently, more focus had been put on the
study of purely antagonistic games (a.k.a. zero-sum games), useful for modelling
systems evolving in a (hostile) environment.

Over the last ten years, non-zero-sum games have come into the picture:
they are convenient for modelling complex infrastructures where each individual
system tries to fulfill its objectives, while still being subject to uncontrollable
actions of the surrounding systems. As an example, consider a wireless network
in which several devices try to send data: each device can modulate its transmit
power, in order to maximise its bandwidth and reduce energy consumption as
much as possible. In that setting, focusing only on optimal strategies for one
single agent may be too narrow, and several other solution concepts have been
defined and studied in the literature, of which Nash equilibrium [11] is the most
prominent. A Nash equilibrium is a strategy profile where no player can improve
her payoff by unilaterally changing her strategy, resulting in a configuration of
the network that is satisfactory to everyone. Notice that Nash equilibria need
not exist or be unique, and are not necessarily optimal: Nash equilibria where
all players lose may coexist with more interesting Nash equilibria.

Our contributions. In this paper, we extend our previous study of pure-strategy
Nash equilibria in concurrent games with qualitative objectives [2,4] to a (semi-)
quantitative setting: we assume that each player is given a set S of qualitative ob-
jectives (reachability, for instance), together with a preorder on 2S . This preorder

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 301–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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defines a preference relation (or payoff), and the aim of a player is to maximise
her payoff. For instance, the counting order compares the number of objectives
which are fulfilled. As another example, we will consider the lexicographic order,
defined in an obvious way once we have ordered the simple objectives. More
generally, preorders will be defined by Boolean circuits.

We characterise the exact complexity of deciding the existence of a Nash
equilibrium, for reachability and Büchi objectives, under arbitrary preorders.
Our techniques also provide us with solutions to the value problem, which corre-
sponds to the purely antagonistic setting described above. We prove for instance
that both problems are PSPACE-complete for reachability objectives together
with a lexicographic order on these objectives (or for the more general class of
preorders defined by Boolean circuits). On the other hand, we show that for sets
of Büchi objectives (assumed to be indexed) ordered by the maximum index
they contain, both problems are solvable in PTIME.

Related work. Even though works on concurrent games go back to the fifties,
the complexity of computing Nash equilibria in games played on graphs has only
recently been addressed [5,16]. Most of the works so far have focused on turn-
based games and on qualitative objectives, but have also considered the more
general setting of stochastic games or strategies. Our restriction to pure strate-
gies is justified by the undecidability of computing Nash equilibria in concurrent
games with qualitative reachability or Büchi objectives, when strategies can be
randomised [17]. Although their setting is turn-based, the most relevant related
work is [14], where a first step towards quantitative objectives is made: they con-
sider generalised Muller games (with a preference order on the set of states that
are visited infinitely often), show that pure Nash equilibria always exist, and give
a doubly-exponential algorithm for computing a Nash equilibrium. Generalised
Muller conditions can be expressed using Büchi conditions and Boolean circuits
(which in the worst-case can be exponential-size): from our results we derive an
EXPSPACE upper bound.

For lack of space, the technical proofs are omitted, and can be found in [3].

2 Preliminaries

2.1 Concurrent Games

Definition 1 ([1]). A (finite) concurrent game is a tuple G = 〈States,Agt,Act,
Mov,Tab〉, where States is a (finite) set of states, Agt is a finite set of players,
Act is a finite set of actions, and

– Mov: States×Agt → 2Act\{∅} is a mapping indicating the actions available
to a given player in a given state;

– Tab: States × ActAgt → States associates with a given state and a given
move1 of the players the resulting state.

1 A move is an element of ActAgt.
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s0 s1

s2s3

〈2,2〉

〈1,1〉

〈2,1〉
〈1,2〉

〈1,1〉

〈1,1〉

〈1,1〉

〈1,2〉

Fig. 1. Example of a two-player
concurrent game A

Fig. 1 displays an example of a concurrent
game. Transitions are labelled with the moves
that trigger them. We say that a move mAgt =

〈mA〉A∈Agt ∈ ActAgt is legal at s if mA ∈
Mov(s, A) for all A ∈ Agt. A game is turn-based
if for each state the set of allowed moves is a
singleton for all but at most one player.

In a concurrent game G, whenever we ar-
rive at a state s, the players simultaneously se-
lect an available action, which results in a legal
move mAgt; the next state of the game is then
Tab(s,mAgt). The same process repeats ad in-
finitum to form an infinite sequence of states.

A path π in G is a sequence (si)0≤i<n

(where n ∈ N>0 ∪ {∞}) of states. The length
of π, denoted by |π|, is n − 1. The set of fi-
nite paths (also called histories) of G is denoted
by HistG , the set of infinite paths (also called plays) of G is denoted by PlayG ,
and PathG = HistG ∪PlayG is the set of paths of G. Given a path π = (si)0≤i<n

and an integer j < n, the j-th prefix (resp. j-th suffix , j-th state) of π, denoted
by π≤j (resp. π≥j , π=j), is the finite path (si)0≤i<j+1 (resp. (si)j≤i<n, state sj).
If π = (si)0≤i<n is a history, we write last(π) = s|π|. In the sequel, we write
HistG(s), PlayG(s) and PathG(s) for the respective subsets of paths starting in
state s. If π is a play, Occ(π) = {s | ∃j. π=j = s} is the sets of states that appear
at least once along π, and Inf(π) = {s | ∀i. ∃j ≥ i. π=j = s} is the sets of states
that appear infinitely often along π.

Definition 2. Let G be a concurrent game, and A ∈ Agt. A strategy for A is a
mapping σA : HistG → Act such that σA(π) ∈ Mov(last(π), A) for all π ∈ HistG.
A strategy σP for a coalition P ⊆ Agt is a tuple of strategies, one for each
player in P . We write σP = (σA)A∈P for such a strategy. A strategy profile is
a strategy for Agt. We write StratPG for the set of strategies of coalition P , and

ProfG = StratAgt
G .

Note that we only consider pure (i.e., non-randomised) strategies. Notice also
that strategies are based on the sequences of visited states, and not on the
sequences of actions played by the players. This is realistic when considering
multi-agent systems, where only the global effect of the actions of the agents
may be observable. When computing Nash equilibria, this restriction makes it
more difficult to detect which players have deviated from their strategies.

Let G be a game, P a coalition, and σP a strategy for P . A path π is compatible
with the strategy σP if, for all k < |π|, there exists a move mAgt such that

1. mAgt is legal at π=k,

2. mA = σA(π≤k) for all A ∈ P , and
3. Tab(π=k,mAgt) = π=k+1.
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We write OutG(σP ) for the set of paths (called the outcomes) in G which are
compatible with strategy σP of P . We write OutfG (resp. Out∞G ) for the finite

(resp. infinite) outcomes, and OutG(s, σP ), OutfG(s, σP ) and Out∞G (s, σP ) for the
respective sets of outcomes of σP with initial state s. Notice that any strategy
profile has a single infinite outcome from a given state.

2.2 Winning Objectives

Objectives and preference relations. An objective (or winning condition) is an
arbitrary set of plays. With a set T of states, we associate an objective Ω(T ) in
three different ways:

Ω(T ) = {ρ ∈ PlayG | Occ(ρ) ∩ T %= ∅} (Reachability)

Ω(T ) = {ρ ∈ PlayG | Occ(ρ) ∩ T = ∅} (Safety)

Ω(T ) = {ρ ∈ PlayG | Inf(ρ) ∩ T %= ∅} (Büchi)

In our setting, each player A is assigned a tuple of such objectives (Ωi)1≤i≤n,
together with a preorder 	 on {0, 1}n. The payoff vector of a play ρ for player A
is the vector 1{i|ρ∈Ωi} ∈ {0, 1}n (1S is the vector v such that vi = 1 ⇔ i ∈
S; we write 1 for 1[1,n], and 0 for 1∅). The preorder 	 then defines another
preorder� on the set of plays of G, called the preference relation ofA, by ordering
the plays according to their payoffs: ρ′ � ρ if and only if 1{i|ρ′∈Ωi} 	 1{i|ρ∈Ωi}.
Intuitively, each player aims at a play that is preferred to most other plays.

Examples of preorders. We now describe some preorders on {0, 1}n that we
consider in the sequel (Fig. 2(a)–2(d) display four of these preorders for n = 3).
For the purpose of these definitions, we assume that max∅ = −∞.

– Conjunction: v 	 w iff either vi = 0 for some 0 ≤ i ≤ n, or wi = 1 for
all 0 ≤ i ≤ n. This corresponds to the case where a player wants to achieve
all her objectives.

– Disjunction: v 	 w iff either vi = 0 for all 0 ≤ i ≤ n, or wi = 1 for
some 0 ≤ i ≤ n. The aim here is to satisfy at least one objective.

– Counting: v 	 w iff |{i | vi = 1}| ≤ |{i | wi = 1}|. The aim is to maximise
the number of satisfied conditions.

– Subset : v 	 w iff {i | vi = 1} ⊆ {i | wi = 1}: in this setting, a player will
always struggle to satisfy a larger (for inclusion) set of objectives.

– Maximise: v 	 w iff max{i | vi = 1} ≤ max{i | wi = 1}. The aim is to
maximise the highest index of the satisfied objectives.

– Lexicographic: v 	 w iff either v = w, or there is an index i such that vi = 0,
wi = 1 and vj = wj for all 0 ≤ j < i.

– Parity: v 	 w iff either max{i | wi = 1} is even, or max{i | vi = 1} is odd
(or −∞). Combined with reachability objectives, this corresponds to a weak
parity condition; parity objectives as they are classically defined correspond
to parity preorders over Büchi objectives.
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– Boolean Circuit : given a Boolean circuit, with input from {0, 1}2n, v 	 w if
and only if the circuit evaluates to 1 on input v1 . . . vnw1 . . . wn.

– Monotonic Boolean Circuit : Same as above, with the restriction that the
input gates corresponding to v are negated, and no other negation appears
in the circuit.

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(1,1,1)

(a) Subset preorder

(0,0,0)

(1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1) (0,1,1) (1,1,1)

(b) Maximise order

(0,0,0)

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(1,1,1)

(c) Counting order

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(d) Lexicographic order

Fig. 2. Examples of preorders (for n = 3): dotted boxes represent equivalence classes
for ∼; arrows represent the preorder relation �, forgetting about ∼-equivalent elements

In terms of expressiveness, any preorder over {0, 1}n can be given as a Boolean
circuit: for each pair (v, w) with v 	 w, it is possible to construct a circuit whose
output is 1 if and only if the input is v1 . . . vnw1 . . . wn; taking the disjunction of
all these circuits we obtain a Boolean circuit defining the preorder. Its size can
be bounded by 22n+3n, which is exponential in general, but all of our examples
can be specified with a circuit of polynomial size.

A preorder 	 is monotonic if it is compatible with the subset ordering, i.e.
if {i | vi = 1} ⊆ {i | wi = 1} implies v 	 w. Hence, a preorder is monotonic if
fulfilling more objectives never results in a lower payoff. All the above examples
are monotonic, except the parity preorder and the general Boolean circuits.
Moreover, any monotonic preorder can be expressed as a monotonic Boolean
circuit.

2.3 Nash Equilibria

Given a move mAgt and an action m′ for some player B, we write mAgt[B "→ m′]
for the move nAgt with nA = mA when A %= B and nB = m′. This is extended
to strategies in the natural way.

Definition 3. Let G be a concurrent game with preference relation (�A)A∈Agt,
and let s be a state of G. A Nash equilibrium of G from s is a strategy profile
σAgt ∈ ProfG such that Out(s, σAgt[B "→ σ′]) �B Out(s, σAgt) for all players

B ∈ Agt and all strategies σ′ ∈ StratB.
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Hence, Nash equilibria are strategy profiles where no player has an incentive to
unilaterally deviate from her strategy.

Remark 4. Another possible way of defining Nash equilibrium would be to re-
quire that either Out(s, σAgt[B "→ σ′]) �B Out(s, σAgt) or Out(s, σAgt) %�B

Out(s, σAgt[B "→ σ′]). This definition is not equivalent to the one we adopted
if the preorder is not total, but both can be meaningful. Notice that with our
Definition 3, any Nash equilibrium σAgt for the subset preorder is also a Nash
equilibrium for any monotonic preorder.

2.4 Decision Problems

Given a game G = 〈States,Agt,Act,Mov,Tab〉, a type of objective (Reachability,
Safety or Büchi), for each player a list (TA

i )A∈Agt,i∈{1,...,nA} of targets and a
preorder 	A on {0, 1}nA , and a state s, we consider the following problems:

– Value: Given a player A and a payoff vector v, can player A ensure payoff v,
i.e., is there a strategy σA for player A such that any outcome of σA in G
from s with payoff v′ for A satisfies v 	A v

′?
– Existence: Does there exists a Nash equilibrium in G from s?
– Constrained existence: Given two vectors uA and wA for each player A,

does there exist a Nash equilibrium in G from s with some payoff (vA)A∈Agt

satisfying the constraint, i.e., uA 	A v
A 	A w

A for all A ∈ Agt?

2.5 Preliminary Lemma

We first characterise outcomes of Nash equilibria as ultimately periodic runs.

Lemma 5. Assume that every player has a preference relation which only de-
pends on the set of states that are visited, and the set of states that are visited
infinitely often, i.e. if Inf(ρ) = Inf(ρ′) and Occ(ρ) = Occ(ρ′), then ρ ∼A ρ

′ for
every player A ∈ Agt. If there is a Nash equilibrium with payoff v, then there
is a Nash equilibrium with payoff v for which the outcome is of the form π · τω,
where |π| and |τ | are bounded by |States|2.

3 Reachability Objectives

Multiplayer games with one reachability objective per player have been studied
in [2], where the existence and constrained existence are shown NP-complete.

We now assume that each player has several reachability objectives. In the
general case where the preorders are given as Boolean circuits, we show that the
various decision problems are PSPACE-complete, where the hardness result even
holds for several simpler preorders. We then improve this result in a number of
cases. The results are summarised in Table 1.
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Table 1. Summary of the results for reachability objectives

Preorder Value problem (Constrained) existence

Disjunction, Maximise P-c NP-c
Parity P-c [12] NP-h and in PSPACE
Subset PSPACE-c NP-c

Conjunction, Counting, Lexicographic PSPACE-c PSPACE-c
(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

3.1 General Case

Theorem 6. For reachability objectives with preorders given by Boolean cir-
cuits, the value, existence and constrained existence problems are in PSPACE. For
preorders having 1 as a unique maximal element, the value problem is PSPACE-
complete. If moreover there is an element v ∈ {0, 1}n such that 1 %	 v′ ⇔ v′ 	 v,
then the existence and constrained existence problems are PSPACE-complete (even
for two-player games).

Before proving these results, let us first discuss the above conditions. The con-
junction, subset, counting and lexicographic preorders have unique maximal ele-
ment 1. The conjunction, counting and lexicographic preorders have an element
v such that 1 %	 v′ ⇔ v′ 	 v.

As conjunction (for instance) can easily be encoded using a (monotonic)
Boolean circuit in polynomial time, the hardness results are also valid if the
order is given by a (monotonic) Boolean circuit. On the other hand, disjunction
and maximise preorders do not have a unique maximal element, so we cannot
apply the hardness result. In the same way, for the subset preorder there is no v
such that 1 %	 v′ ⇔ v′ 	 v, so the hardness result does not apply. We prove later
(Section 3.2) that in these special cases, the complexity is actually lower.

Proof of the PSPACE upper bounds. We first focus on the constrained existence
problem, and we fix a game G with reachability objectives and a preorder for
every player, and a constraint on the payoffs. The algorithm proceeds as follows.
For every possible payoff vector that satisfies the given constraint, we will check
whether there is an equilibrium with this payoff. Fix such a payoff tuple v =
(vA)A∈Agt. We construct a new game G(v): the structure of G(v) is identical
to G, but each player A has a single objective given by a 1-weak2 deterministic
Büchi automaton A(vA). The new game satisfies the following property: there is
a Nash equilibrium in G with payoff v iff there is a Nash equilibrium in G(v) with
payoff 0 whose outcome has payoff v in G. Then, applying arguments similar
to [4, Thm. 22], we easily design a polynomial-space algorithm for deciding the
existence of a Nash equilibrium with a given payoff, and therefore more generally
for the constrained existence problem.

2 That is, each strongly connected component contains exactly one state.
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The automata A(vA) are obtained from a common structure A (whose con-
struction is illustrated by an example in Fig. 3) by adding the set of accepting
states F (vA) = {S | 1{i|S∩TA

i �=∅} %	 vA}, where TA
i is the i-th target of player A

in G. While reading a word ρ from the initial state, the current state of A(vA)
is the set of states that have been seen so far. Hence, if v is the payoff of ρ for
player A in game G, then A(vA) accepts v iff v %	 vA. With this construction,
the announced equivalence is straightforward.

∅

{s1}

{s2}

{s3}

{s1; s2}

{s1; s3}

{s2; s3}

{s1; s2; s3}

s1

s2

s3

s2

s3
s1

s3

s2
s1

s3

s2

s1

s1

s2

s3

s1, s3

s2, s3

s1, s3 s1, s2, s3

Fig. 3. Automaton A for set of states {s1, s2, s3}

We now turn to the proof for the value problem. Without loss of generality,
we assume that we are given a two-player game G, a player A and a threshold
v. We define a new game (of polynomial size), by only changing the preferences
of the players. Player A has now no objective, and her opponent wins if the
payoff is not above v in the original game, i.e. if the run has payoff v′ with
v %	 v′. Then, there is a Nash equilibrium where the opponent loses iff there is
a strategy for A that ensures v in the original game. We can thereby use the
algorithm that decides constrained existence.

Hardness of the value problem. The proof is done by encoding an instance of
QSAT. Given a formula of QSAT, we construct a two-player turn-based game
with several reachability objectives for player A, such that the formula is valid
iff player A has a strategy that visits all her target sets. We do not give details
of the construction but better illustrate it on an example.

Example 7. We consider the formula

φ = ∀x1. ∃x2. ∀x3. ∃x4. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) ∧ ¬x4 (1)

The targets for player A are given by the clauses of φ: TA
1 = {x1,¬x2,¬x3},

TA
2 = {x1, x2, x4}, and TA

3 = {¬x4}. We fix any preorder with unique maximal
element (1, 1, 1). The structure of the game is represented in Fig. 4. In this
example, player B has a strategy that falsifies one of the clauses whatever A
does, which means that player A has no strategy to enforce all its target sets,
which means that the formula φ is not valid.
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player A

player B ∀1

x1

¬x1

∃2

x2

¬x2

∀3

x3

¬x3

∃4

x4

¬x4

z

Fig. 4. Reachability game associated with the formula (1)

Hardness of the (constrained) existence problem. The previous hardness proof
applies in particular to conjunctions of reachability objectives. We use a re-
duction from this problem to prove that the constrained existence problem is
PSPACE-hard, under the conditions specified in the statement of Theorem 6.
Let G be a turn-based game with a conjunction of reachability objectives for
player A and v be a threshold for player A. We construct a new game G′ as
follows. We add to G an initial state s′0, and a sink state z. In the initial state
s′0, the two players A and B play the matching-pennies game, to either go to
z or s0.

3 We modify the targets of player A so that, in G′, reaching z exactly
gives her payoff v. The new sink state is the unique target of player B. We can
check that if there is no strategy for A ensuring v in G, then there is a Nash
equilibrium in game G′, which consists in going to z. And conversely if there is a
Nash equilibrium in G′ then its outcome goes to z, which means that A cannot
ensure 1 in game G.

3.2 Simple Cases

For some preorders, the preference relation can (efficiently) be reduced to a
single reachability objective. For instance, a disjunction of several reachability
objectives can obviously be reduced to a single reachability objective, by forming
the union of the targets. Formally, we say that a preorder 	 is reducible to a
single (reachability) objective if, given any payoff vector v, we can construct in
polynomial time a target T̂A such that v 	 1{i|Occ(ρ)∩TA

i �=∅} iff Occ(ρ)∩T̂A %= ∅.
It means that securing the payoff corresponds to ensuring a visit to the new
target. Similarly, we say that the preorder is co-reducible to a single reachability
objective, if for any vector v we can construct T̂A such that 1{i|Occ(ρ)∩Ti �=∅} %	 v
if, and only if Occ(ρ)∩ T̂A %= ∅. It means that improving the payoff corresponds
to reaching the new target. The disjunction and maximise preorders are examples
of preorders that are reducible to single reachability objectives. The disjunction,
maximise and subset preorders are co-reducible.

Proposition 8. For reachability objectives with a (non-trivial) preorder reducible
to a single reachability objective, the value problem is P-complete. For a (non-
trivial) preorder co-reducible to a single reachability objective, the existence and
constrained existence problems are NP-complete.

3 That is, A and B play with two actions 0 and 1, and for instance moves (0, 0) and
(1, 1) lead to z whereas moves (0, 1) and (1, 0) lead to s0.
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4 Safety Objectives

The results for safety objectives are summarised in Table 2. We begin with a
polynomial-space algorithm when the preorder is given as a Boolean circuit,
and characterise classes of preorders for which PSPACE-hardness holds. We then
consider preorders outside those classes and establish the complexity of the as-
sociated problems.

Table 2. Summary of the results for safety

Preorder Value problem (Constr.) existence

Conjunction P-c NP-c
Subset P-c PSPACE-c

Disjunction, Parity PSPACE-c PSPACE-c
Counting, Maximise, Lexicographic PSPACE-c PSPACE-c

(Monotonic) Boolean Circuit PSPACE-c PSPACE-c

Theorem 9. For safety objectives with preorders given as Boolean circuits, the
value, existence and constrained existence problems are in PSPACE. For preorders
having 0 as a unique minimal element, the existence and constrained existence
problems are PSPACE-complete, even for two players. If additionally there is a
vector v ∈ {0, 1}n satisfying the equivalence v %	 v′ ⇔ v′ = 0, then the value
problem is PSPACE-complete.

Proof. In the most general case (Boolean circuits), safety objectives are dual to
reachability objectives, hence the PSPACE algorithm.

The hardness proof for the existence problem and preorders with a unique
minimal element uses the same arguments as in the proof of Theorem 6. We need
to insert a matching-pennies game at the beginning however, because we are
interested in Nash equilibria here. Hardness for the value problem is obtained
by dualizing the result of Theorem 6 for conjunctions of reachability objectives.

Disjunction, counting, maximise, and lexicographic preorders are examples
of preorders that satisfy this condition, and have a unique minimal element.
The subset preorder also has a unique element. #$
Note that the hardness results extends to parity, as it can encode disjunction.

We now consider simpler cases. As for reachability, the simple cases are for
the preference relations that are reducible or co-reducible to a single safety objec-
tive. For a (non-trivial) preorder reducible to a single safety objective, the value
problem retains the same complexity as in the single objective case, namely
P-completeness. In the same way, for a (non-trivial) preorder co-reducible to a
single safety objective, the existence and constrained existence problems remain
NP-complete. The conjunction order is reducible and co-reducible to a single
safety objective. The subset preorder is reducible to a single safety objective
(but not co-reducible).
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5 Büchi Objectives

We now turn to Büchi objectives, for which we prove the results listed in Table 3.
(For the definition of the class PNP

‖ , see [13, Chapter 17].)

Table 3. Summary of the results for Büchi objectives

Preorder Value Existence Constr. exist.

Maximise, Disjunction, Subset P-c P-c P-c
Conjunction, Lexicographic P-c P-h, in NP NP-c

Counting coNP-c NP-c NP-c
Monotonic Boolean Circuit coNP-c NP-c NP-c

Parity UP ∩ coUP [8] coNP-h [4], in PNP
‖ PNP

‖ -c

Boolean Circuit PSPACE-c PSPACE-c PSPACE-c

5.1 Reduction to Zero-Sum Games

In this section, we show how, from a multiplayer game G, we can construct a
two-player game H, such that there is a correspondence between Nash equilibria
in G and certain winning strategies in H. This allows us to reuse algorithmic
techniques for zero-sum games to solve our problems.

We begin with introducing a few extra definitions. We say that a strategy
profile σAgt is a trigger strategy for payoff (vA)A∈Agt from state s if for any
strategy σ′A of any player A ∈ Agt, the outcome ρ of σAgt[A "→ σ′A] from s
satisfies 1{i|ρ∈ΩA

i } 	 vA.

Remark 10. A Nash equilibrium is a trigger strategy for the payoff of its out-
come. Reciprocally, if the outcome of σAgt has payoff (vA)A∈Agt and σAgt is a
trigger strategy for (vA)A∈Agt, then σAgt is a Nash equilibrium.

Given two states s and s′, and a movemAgt, the set of suspect players [2] for (s, s
′)

and mAgt, denoted with Susp((s, s′),mAgt), is the set

{A ∈ Agt | ∃m′ ∈ Mov(s, A). Tab(s,mAgt[A "→ m′]) = s′}.

Intuitively, player A ∈ Agt is a suspect for transition (s, s′) and move mAgt if
she can unilaterally change her action to trigger the transition to s′. Notice that
if Tab(s,mAgt) = s′, then Susp((s, s′),mAgt) = Agt. Also notice that, given a
strategy profile σAgt, player A is a suspect along all the transitions of a play ρ
(i.e., for all index i, player A is in Susp((ρi, ρi+1), σAgt(ρ≤i))) iff there is a strat-
egy σ′A such that Out(s, σAgt[A "→ σ′A]) = ρ.

With a game G and a payoff (vA)A∈Agt, we associate a two-player turn-based
game H(G, (vA)A∈Agt). The set V1 of states (configurations) of H(G, (vA)A∈Agt)
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controlled by player A1 is (a subset of) States×2Agt, and the set V2 of configura-
tions controlled by player A2 is (a subset of) States×2Agt×ActAgt. The game is
played in the following way: from a configuration (s, P ) in V1, playerA1 chooses a
legal movemAgt from s; the next configuration is (s, P,mAgt), in which A2 choose
some state s′ ∈ States, and the new configuration is (s′, P ∩ Susp((s, s′),mAgt)).
In particular, when the state s′ chosen by player A2 satisfies s′ = Tab(s,mAgt)
(we say that A2 obeys A1), then the new configuration is (s′, P ).

We define projections π1 and π2 from V1 on States and 2Agt, respectively, in
the natural way. We extend these projections to plays, but only using player A1

states to avoid stutter, by setting π1((s0, P0)(s0, P0,m0)(s1, P1) · · · ) = s0s1 · · · .
For any run ρ, π2(ρ) (seen as a sequence of sets of players) is decreasing, therefore
its limit L(ρ) is well defined. An outcome ρ is winning for player A1 if, for
all A ∈ L(ρ), 1{i|π(ρ)∈ΩA

i } 	 vA. In general, since each ΩA
i is a Büchi objective,

the winning condition for A1 can be represented using a (possibly exponential-
size) Muller condition. The winning region is the set of configurations (s, P ) from
which A1 has a winning strategy. Intuitively, player A1 tries to have the players
play a Nash equilibrium, and player A2 tries to disprove that the played strategy
profile is a Nash equilibrium, by finding a possible deviation that improves the
payoff for one of the original players.

At first sight, the number of states in H(G, (vA)A∈Agt) is exponential (in the
number of players). However, since the transition table Tab is given explicitly [9],
the size of G is

∑
s∈States

∏
A∈Agt |Mov(s, A)|, and we have the following result:

Lemma 11. The number of reachable configurations from States × {Agt} in
H(G, (vA)A∈Agt) is polynomial in the size of G.
The next two lemmas state the correctness of our construction, establishing a
correspondence between winning strategies in H(G, (vA)A∈Agt) and Nash equi-
libria in G.
Lemma 12. Let (vA)A∈Agt be a payoff vector, and ρ be an infinite path in G.
The following two conditions are equivalent:

– player A1 has a winning strategy in H(G, (vA)A∈Agt) from (s,Agt), and its
outcome ρ′ from (s,Agt) when A2 obeys A1 is such that π1(ρ

′) = ρ;
– there is a trigger strategy for (vA)A∈Agt in G from state s whose outcome

from s is ρ.

Proof. Assume there is a winning strategy σ1 for player A1 in H(G, (vA)A∈Agt)
from (s,Agt). We define the strategy profile σAgt according to the actions played
by A1. Pick a history g = s1s2 · · · sk+1 with s1 = s. Let h be the outcome of σ1

from s ending in a player A1 state and such that π1(h) = s1 · · · sk. This history is
uniquely defined as follows: the first state of h is (s1,Agt), and if its (2i + 1)-th
state is (si, Pi), then its (2i + 2)-th state is (si, Pi, σ

1(h≤2i+1)) and its (2i + 3)-
th state is (si+1, Pi ∩ Susp((si, si+1), σ

1(h≤2i+1))). Now, write (sk, Pk) for the
last state of h, and let h′ = h ·(sk, Pk, σ

1(h)) ·(sk+1, Pk∩Susp((sk, sk+1), σ
1(h))).

Then we define σAgt(g) = σ1(h′). Notice that when g · s is a prefix of π1(ρ
′)
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(where ρ′ is the outcome of σ1 from s when A2 obeys A1), then g · s · σAgt(g · s) is
also a prefix of π1(ρ

′).
We now prove that σAgt is a trigger strategy for (vA)A∈Agt. Pick a player A ∈

Agt, a strategy σ′A for A, and an infinite play g in Out(s, σAgt[A "→ σ′A]). With g,
we associate an infinite play h in H(G, (vA)A∈Agt) in the same way as above.
Then player A is a suspect along all the transitions of g, so that she belongs
to L(h). Now, as σ1 is winning, the payoff for A of g = π1(h) is less than vA,
which proves that σAgt is a trigger strategy.

Conversely, assume that σAgt is a trigger strategy for (vA)A∈Agt, and define
the strategy σ1 by σ1(h) = σAgt(π1(h)). Notice that the outcome ρ′ of σ1 when
A2 obeys A1 satisfies π1(ρ

′) = ρ.
Let η be an outcome of σ1 from s, and A ∈ L(η). Then A is a suspect for

each transition along π1(η), which means that for all i there is a move mA
i such

that π1(η)=i+1 = Tab(π1(η)=i, σAgt(π1(η)≤i)[A "→ mA
i ]). Therefore there is a

strategy σ′A such that π1(η) = Out(s, σAgt[A "→ σ′A]). Since σAgt is a trigger
strategy for (vA)A∈Agt, the payoff for player A of π1(η) is less than vA. As this
holds for any A ∈ L(η), σ1 is winning. #$
Lemma 13. Let ρ be an infinite path in G with payoff (vA)A∈Agt. The following
two conditions are equivalent:

– there is a path ρ′ from (s,Agt) in H(G, (vA)A∈Agt) that never leaves the
winning region of A1 and along which A2 obeys A1, such that π1(ρ

′) = ρ;
– there is a Nash equilibrium σAgt from s in G whose outcome is ρ.

Proof. Let ρ be a path in the winning region of A1 in H(G, (vA)A∈Agt). We define
a strategy σ1 that follows ρ when A2 obeys. Along ρ, this strategy is defined
as follows: σ1(ρ≤2i) = mAgt such that Tab(π1(ρ)=i,mAgt) = π1(ρ)=i+1. Such a
legal move must exist since A2 obeys A1 along ρ. Now, if player A2 deviates from
the obeying strategy, we make σ1 follow a winning strategy of A1: given a finite
outcome η of σ1 that is not a prefix of ρ, we let j be the largest index such that
η≤j is a prefix of ρ. In particular, η=j belongs to the winning region W of A1,
and belongs to player A2 (otherwise η≤j+1 would also be a prefix of ρ). Hence,
all the successors of η=j are in W . Thus player A1 has a winning strategy σ̂1

from η=j+1. We then define σ1(η≤j · η′) = σ̂1(η′) for any outcome η′ of σ̂1

from η=j+1.
Each outcome of σ1 is either the path ρ or a path that, from some point

onwards, is compatible with a winning strategy. Since H(G, (vA)A∈Agt) has a
Muller winning condition, it follows that σ1 is winning. Applying Lemma 12,
we obtain a strategy profile σAgt in G that is a trigger strategy for (vA)A∈Agt.
Moreover, the outcome of σAgt from s equals π1(ρ), so that σAgt is a Nash
equilibrium.

Conversely, the Nash equilibrium is a trigger strategy, and from Lemma 12,
we get a winning strategy σ1 in H(G, (vA)A∈Agt). The outcome ρ of σ1 from s
when A2 obeys A1 is such that π1(ρ) is the outcome of the Nash equilibrium,
so that its payoff is (vA)A∈Agt. Since σ

1 is winning, ρ never leaves the winning
region, which concludes the proof. #$
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5.2 Applications of the Reduction

General Case. As noticed in [7], the algorithm from [10] to find the winning
states in a game can be adapted to the case where the winning conditions are
given as a Boolean circuit (the circuit has as many input gates as the number of
states, and a path is declared winning if the circuit evaluates to 1 when setting
the input gates to 1 for the states that are visited infinitely often). It uses
polynomial space. Using such an algorithm we get the following result.

Proposition 14. For Büchi objectives with preorders given as Boolean circuits,
the value, existence and constrained existence problems are PSPACE-complete.

Reduction to a Single Büchi Objective. The preorders that were reducible
to a single reachability objectives in the case of reachability can also be reduced
to a single Büchi objective in the Büchi case: just replace Occ with Inf. The same
holds for co-reducibility. The algorithm from [4] can then be adapted.

Proposition 15. For Büchi objectives with a monotonic preorder reducible to
a single objective, the value problem is P-complete. For Büchi objectives with a
preorder co-reducible to a single objective, the existence and constrained existence
problems are P-complete.

Reduction to a Deterministic Büchi Automaton. For some preorders,
given any payoff u, it is possible to construct (in polynomial time) a deterministic
Büchi automaton that recognises the plays whose payoff v for player A is higher
than u (i.e. u 	 v). When this is the case, we say that the preorder is reducible
to a deterministic Büchi automaton.

Proposition 16. For Büchi objectives and a preorder reducible to a determin-
istic Büchi automaton, the value problem is in P. In particular, it is P-complete
for conjunction, lexicographic and subset preorders.

The idea of the algorithm is to compute the product of the game with the Büchi
automaton to which the given payoff vA reduces. Notice that reachability objec-
tives with the parity order are also reducible to a deterministic Büchi automaton;
we thus recover the complexity result about weak parity games from [12].

Monotonic Preorders. When the preorder is monotonic, our problems are also
simpler than in the general case. This is because we can find suspect-based trigger
strategies, corresponding to memoryless strategies in the game H(G, (vA)A∈Agt).

Proposition 17. For Büchi objectives with preorders given by a monotonic cir-
cuits, the value problem is coNP-complete, and the existence and constrained
existence problem are NP-complete. For the counting order, the value problem
is coNP-complete, and existence and constrained existence are NP-complete. For
monotonic preorders with an element v such that u %	 v ⇔ u = 1, the constrained
existence problem is NP-complete.

Parity Games. Finally, for Büchi objectives with the parity preorder, we have:

Proposition 18. For Büchi objectives with the parity preorder, the constrained
existence problem is PNP

‖ -complete.
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6 Conclusion

We have contributed to the algorithmics of Nash equilibria computation in con-
current games with ordered objectives.We believe the game abstraction proposed
in Section 5.1 can be used in other contexts, which we are currently investigat-
ing. The algorithms presented in this paper have partly been implemented in
the tool PRALINE (http://www.lsv.ens-cachan.fr/Software/praline/).
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Abstract. The symmetric interaction combinators are a model of dis-
tributed and deterministic computation based on Lafont’s interaction
nets, a special form of graph rewriting. The interest of the symmetric in-
teraction combinators lies in their universality, that is, the fact that they
may encode all other interaction net systems; for instance, several imple-
mentations of the lambda-calculus in the symmetric interaction combi-
nators exist, related to Lamping’s sharing graphs for optimal reduction.
A certain number of observational equivalences were introduced for this
system, by Lafont, Fernandez and Mackie, and the first author. In this
paper, we study the problem of full abstraction with respect to one of
these equivalences, using a class of very simple denotational models based
on pointed sets.

Keywords: Interaction nets, Observational equivalence, Denotational
semantics.

1 Introduction

The symmetric interaction combinators. Interaction nets are a model of dis-
tributed, deterministic computation introduced by Lafont [7]. By distributed we
mean that computation, which is based on graph rewriting, is such that ele-
mentary rewriting steps may be applied at different places in the graph, in a
completely asynchronous way. By deterministic we mean that such elementary
steps never overlap, so that the order in which they are executed does not matter,
and the computation is essentially unique.

In terms of expressiveness, interaction nets are extremely versatile; for in-
stance, Turing machines may be seen as special interaction nets, in which paral-
lelism is absent. Also, the optimal implementation of λ-calculus evaluation uses
certain systems of interaction nets, known as sharing graphs [9,10].

Among all systems of interaction nets, the interaction combinators [8] are
of special interest, because of their simplicity and universality: in spite of being
composed of only 3 combinators with 6 rewriting rules, any system of interaction
nets may be encoded in the interaction combinators, preserving the parallelism
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of computations. Additionally, the λ-calculus under certain reduction strategies
(such as head reduction) may be directly represented in the interaction combi-
nators [11].

The symmetric interaction combinators are a variant of the interaction combi-
nators, also introduced by Lafont [8], having essentially the same expressiveness
(for instance, the results of [11] may be immediately transported to the sym-
metric interaction combinators). The advantage of considering this system is
that it is even simpler: although there are still 3 combinators and 6 rules, these
latter may actually be arranged in just 2 patterns (annihilations and commuta-
tions), and the systems lends itself to a simpler study from the point of view of
denotational semantics [12].

Contextual observational equivalences. As an abstract programming language,
the symmetric interaction combinators are not too far from the λ-calculus:
computation is based on a confluent rewriting relation (yielding the analog of
β-equivalence), there is a notion of normal form, a relation analogous to η-
equivalence, and so on. Additionally, one may also easily formulate the concept
of context, from which a rich class of observational equivalences may be defined.

As a matter of fact, after Morris [14], we have a general way of defining
observational equivalences in a language with an internal notion of context: given
a set of syntactic objects S, one defines, for any two syntactic objects t, u,

t :S u iff, for every context C, C[t] ∈ S iff C[u] ∈ S.
In languages like the λ-calculus, one usually considers S to be closed under
β-equivalence, so that this latter is automatically contained in :S . Morris him-
self introduced the first, still widely used, observational equivalence for the
λ-calculus, by taking S as the set of normalizable λ-terms; we denote such
equivalence by :n. Following this pattern, other interesting equivalences may
be defined; we refer the reader to [3] for a detailed survey.

The presence of contexts allows more generally to consider the notion of con-
gruence on the syntax, i.e., an equivalence relation ∼ such that t ∼ u implies
C[t] ∼ C[u], for all objects t, u and context C. Obviously, a Morris observational
equivalence is a congruence. Given a congruence ∼, it is natural to ask whether
and how it relates to a particular observational equivalence :. We say that ∼
is an abstraction of : when :⊆∼; it is adequate with respect to : when ∼⊆:.
These two properties are most frequently investigated when ∼ is induced by a
denotational model; in particular, one seeks a model whose induced congruence
enjoys both of them, in which case the model is said to be fully abstract.

The observational equivalence :n on λ-terms has been widely studied and
characterized in several different ways: it is the congruence =BTη

induced by
equality of η-normal Bhöm trees [6]; and it is the congruence induced by equality
in Coppo, Dezani-Ciancaglini and Zacchi’s filter model defined in [2].

Back to the symmetric interaction combinators. It is fairly natural to attempt re-
formulating all of the above congruences, and the questions concerning them, in
the symmetric interaction combinators. After Lafont’s initial work [8], Fernández
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and Mackie were the first to formulate a notion of observational equivalence for
interaction nets [4]. More recently, the first author [13] introduced a notion of
solvability for nets of symmetric interaction combinators, together with the con-
cept of observable axiom, corresponding to a “head variable”. With these, comes
a notion of edifice, which is a sort of infinite normal form for nets, analogous
to a Bhöm tree. According to these notions, Fernández and Mackie’s observa-
tional equivalence turns out to be quite strong: it is not sensible, i.e., it does not
identify all unsolvable nets. Alternatively, in analogy with the λ-calculus, it is
possible to consider the following two congruences on nets: one which we still de-
note by :n, the Morris observational equivalence induced by normalizable nets;
and =Eη , the congruence induced by equality of η-expanded edifices, analogous
to =BTη

.
Perhaps surprisingly, it turns out that these two congruences are distinct: in

fact, in the symmetric interaction combinators, :n is not even semi-sensible,
i.e., it equates a solvable and an unsolvable net; this is due to the purely local
nature of reduction in interaction nets, in which diverging computations cannot
be erased.

Interestingly, equality of η-expanded edifices does correspond to an obser-
vational equivalence on nets, called finitary axiom-equivalence, also introduced
in [13]. Rephrased in terms of Bhöm trees, this would correspond to the Morris
equivalence :Bf

, where Bf is the set of λ-terms whose Böhm tree is finite. In the
λ-calculus, it coincides with :n (to prove :n⊆:Bf

, simply observe that =BTη

obviously discriminates between terms in and not in Bf ; to prove :Bf
⊆:n,

consider the contrapositive, and use Böhm’s theorem to find a context discrim-
inating with respect to Bf ); in the symmetric interaction combinators, it is a
wholly different equivalence.

The contribution of this paper. Our present objective is to study the question
of full abstraction for finitary axiom-equivalence in terms of set-based models,
which have a more “abstract” flavor than edifices (just like, say, Plotkin’s model
Pω [1] is more “abstract” than Bhöm trees). These models, which were intro-
duced by the first author [12], interpret nets as pointed sets, and are based on
the notion of experiment, first used by Girard for linear logic [5]. The interest
of set-based models lies in their simplicity and concreteness: in many cases, the
denotational interpretation of a net may be explicitly computed with ease.

Technically, these models are given by an interaction set, which is a pointed set
X together with two pointed bijections ontoX⊕X (the product ofX with itself),
satisfying a certain commutation property. We give sufficient conditions for an
interaction set to be fully abstract with respect to finitary axiom-equivalence,
and we provide a concrete example of such an interaction set, which thus plays
the role, in interaction nets, that Coppo, Dezani-Ciancaglini and Zacchi’s filter
model [2] plays in the λ-calculus. The conditions we give are all related to some
kind of approximation property, i.e., the fact that the denotation of a net is
entirely determined by the denotation of its approximations.
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Fig. 1. A net

2 The Symmetric Interaction Combinators

2.1 Nets

Computation in the symmetric interaction combinators (or, henceforth, simply
the symmetric combinators) is a special form of graph rewriting. The graphs on
which computation is performed are called nets, which are composed by cells
and wires.

Each cell carries a symbol, and has a number of ports, exactly one of which is
principal, the other being auxiliary. There are three symbols: δ, ε, and ζ. We shall
use the letters α, β to range over symbols. Cells of type δ or ζ have two auxiliary
ports, hence are called binary, and are represented by a triangle; the principal
port is represented by one of the “tips” of the triangle, while the auxiliary ports
are on the opposite edge. Auxiliary ports are numbered: port 1 (resp. 2) is the
“left” (resp. “right”) auxiliary port when the cell is represented with its principal
port pointing “down”, and the numbering is preserved by rotations. Cells of type
ε have no auxiliary port, hence are called nullary, and are represented by a circle.

A wire has exactly two extremities, which may be connected to the ports of
cells. A loop is a wire with its extremities connected together. A wire which is
not a loop is called proper.

A net is a finite (possibly empty) collection of cells and wires, such that each
port of each cell is attached to the extremity of a wire. Nets will be ranged
over by μ, ν. A net may contain proper wires with one or both extremities not
connected to any cell; these are called the free ports of the net. If a net has
n free ports, they are supposed to be numbered by the integers 1, . . . , n. As an
example, the net in Fig. 1 has 11 cells, of which 4 nullary, 1 loop, 16 proper wires,
and 7 free ports, assumed to be numbered increasingly from “left” to “right”.

Let us introduce some remarkable nets, which will be useful in the sequel. A
wiring is a net containing no cell and no loop. Wirings are permutations of free
ports; they are ranged over by ω. We shall often use ω also to denote a single
wire.

The net with n free ports consisting of n ε cells is denoted by En.
A tree is a net defined by induction as follows. A single ε cell is a tree with no

leaf, denoted by ε; a proper wire is a tree with one leaf, denoted by •; if τ1, τ2 are
two trees with resp. n1, n2 leaves, and if α is a binary symbol, the net obtained by
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plugging the root of τi into the auxiliary port i of an α cell, with i ∈ {1, 2}, is a
tree with n1+n2 leaves, denoted by α(τ1, τ2). Trees are represented adopting the
same graphical notations as cells. We shall avoid possible ambiguities by never
using δ, ε, ζ to denote trees, and by using α, β exclusively to range over cell
symbols, so that a triangle annotated with α or β will unambiguously represent
a single cell.

An active pair is a net consisting of two cells whose principal ports are con-
nected by a wire.

It is also useful to define some special sorts of wires in nets. An axiom is a
proper wire such that none of its extremities is the principal port of a cell. A cut
is a proper wire connecting two principal ports. An axiom-cut is either a loop,
or a proper wire connecting the root of a tree to one of its own leaves. We say
that a net is cut-free if it contains no cuts and no axiom-cuts. Note that cuts
are in one-to-one correspondence with active pairs. As an example, consider the
net in Fig. 1, in which the reader should find 7 axioms, 2 cuts (or active pairs),
and 2 axiom-cuts.

The following result is proved by induction on the number of cells.

Lemma 1 (Shape). Let ν be a cut-free net with n free ports. Then, for each
1 ≤ i ≤ n there exist a unique tree τi, and there exists a unique wiring ω such
that the equality below on the left holds. Let μ be a net with n free ports and k
cuts and axiom-cuts. Then, there exists a cut-free net ν with n + 2k free ports
such that the equality below on the right holds.

ν ν

. . . . . .
μ =

. . . . . .

. . .

τ1 τn

ω

=

Note that we use rectangles to represent generic nets, including wirings. However,
ω will always denote a wiring. Observe that all wires in the wiring ω of the left
equality are axioms; in fact, that is the shape of a generic cut-free proof net of
multiplicative linear logic [5], with the axiom links in ω and the logical links
in τ1, . . . , τn, whence our terminology. Also observe that the net ν of the right
equality is unique as soon as μ does not contain axiom-cuts.

We conclude this section with the essential notion of context :

Definition 1 (Context, test). Let μ be a net with n free ports. A context for
μ is a net C with at least n free ports. We denote by C[μ] the application of C
to μ, which is the net obtained by plugging the free port i of μ to the free port
i of C, with i ∈ {1, . . . , n}. A test for μ is a particular context consisting of n
trees τ1, . . . , τn such that the root of each τi is the free port i.

In the sequel, when we use the notation C[μ] we implicitly assume that C has
enough ports so that μ can be plugged into it. Moreover, we shall say that μ′ is
a subnet of μ if there exists C such that μ = C[μ′].
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Fig. 2. The rules and equations defining β-reduction and η-equivalence. We assume
α �= β. In the left β-rule, the right member is empty in case α = ε. In the left η-
equation, α is binary.

2.2 Reductions and Equivalences

Computation in the symmetric combinators is performed by rewriting active
pairs. We define →β as the contextual closure of the rules of Fig. 2, and denote
by →∗

β its reflexive-transitive closure. Since active pairs are always disjoint, the
relation →β trivially satisfies the diamond property, i.e., reduction is strongly
confluent. A confluent rewriting relation always induces an equivalence relation
(in this case, a congruence): we define μ :β μ

′ iff there is ν such that μ →∗
β ν

and μ′ →∗
β ν. As usual, a net is normal when no β-reduction applies to it. Note

that cut-free nets are always normal, but normal nets need not be cut-free.
There is also a notion of η-equivalence, first introduced by Lafont [8] and

Fernández and Mackie [4]. Unlike in the λ-calculus, it cannot be presented as
the symmetrization of a rewriting relation, because the rightmost equation of
Fig. 2 when both α, β are binary is intrinsically non orientable. We define :η as
the reflexive, transitive, and contextual closure of the equations of Fig. 2. Then,
we define βη-equivalence as :βη= (:β ∪ :η)

+.
The following definitions were introduced by the first author in [13], and are

inspired by similar notions in the λ-calculus [1].

Definition 2 (Solvability). A quasi-wire is a net of the following shape:

μ0

where μ0 is any net with no free ports (including the empty net). A net μ is
solvable if there exists a test θ such that θ[μ] →∗

β W , where W is a quasi-wire.
A net is unsolvable if it is not solvable.

We write μ→ε μ
′ if μ = C[μ0], μ

′ = C[En], and μ0 is an unsolvable net with n
free ports different from En. We then define →βε as the union of →β and →ε,
and denote by →∗

βε its reflexive-transitive closure. The relation →∗
βε too may

be proved to enjoy the diamond property [13], so we may consider its induced
congruence :βε, and set :βηε= (:βε ∪ :η)

+ (the transitive closure of union).
The following Morris observational equivalence was also introduced in [13].

Definition 3 (Finitary axiom-equivalence). Let μ be a net with n free ports.
We write μ � if μ is βε-normalizable; otherwise, we write μ � . Let μ, μ′ be two
nets with the same number of free ports. We say that they are finitarily axiom-
equivalent, and we write μ ∼= μ′, if, for every context C, C[μ] � iff C[μ′] � .
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3 Denotational Semantics

Informally, a denotational semantics of a programming language with a notion
of evaluation (denoted by →β) and a notion of context is an interpretation �·� of
the syntax into some kind of mathematical structure (which might be the syntax
itself) which satisfies the following, for all syntactic objects t, u:

Invariance: t→β u implies �t� = �u�;
Congruence: for every context C, �t� = �u� implies �C[t]� = �C[u]�.
By definition, a denotational semantics induces a congruence on the syntax, by
setting t ∼ u iff �t� = �u�. We make the following important remark, concerning
the adequacy property. If :S is the Morris observational equivalence based on a
set S, it is easy to see that it is the greatest congruence contained in (S × S) ∪
(�S× �S); therefore, the semantic congruence is adequate w.r.t. :S iff �t� = �u�
implies that either both t, u are in S, or neither is.

3.1 Interaction Sets

The first set-based denotational semantics for the symmetric combinators was
introduced in [12]. It is based on pointed sets, i.e., sets with a distinguished el-
ement, which we denote by 0. A morphism of pointed sets, or pointed function,
is a function between the underlying sets which preserves the distinguished el-
ement. Pointed sets and their morphisms form a category, which is equivalent
to the category of sets and partial functions. This category has a zero object
(the pointed set {0}) and biproducts: given a family of pointed sets (Xi)i∈I ,
their biproduct

⊕
i∈I Xi is the pointed set whose underlying set is the prod-

uct of the underlying sets of the family, and whose distinguished element is the
everywhere-zero sequence.

Definition 4 (Interaction set). An interaction set is a triple (X, 〈·, ·〉, [·, ·])
where X is a pointed set, and 〈·, ·〉 and [·, ·] are isomorphisms between X ⊕ X
and X satisfying

〈[x, y], [z, w]〉 = [〈x, z〉, 〈y, w〉],
for all x, y, z, w ∈ X. An interaction set is non-trivial if X %= {0}.

Let ϕ, ψ : X → X ⊕X be the inverses of 〈·, ·〉 and [·, ·], respectively, and let
π1, π2 : X ⊕X → X be the projections associated with the biproduct. Then, for
i ∈ {1, 2}, we define δi = πi ◦ ϕ and ζi = πi ◦ ψ. In other words, for all x ∈ X,
δ1(x) and δ2(x) are the unique elements of X such that 〈δ1(x), δ2(x)〉 = x, and
similarly for ζi and [·, ·].
In the sequel, we shall denote interaction sets by specifying only their underlying
pointed set, leaving the bijections implicit.

Every interaction set X induces a denotational semantics of the symmetric
combinators. A net with n free ports is interpreted as a pointed subset of Xn =
X ⊕ · · · ⊕X (n times), as follows.
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Definition 5 (Experiment, interpretation). Let X be an interaction set,
and let μ be a net with n free ports. An experiment on μ in X is a function e
from the ports of μ (including the free ports) to X such that:

– if p, q are two ports connected by a wire, e(p) = e(q);
– if p1, p2 are auxiliary ports number 1 and 2 of a δ (resp. ζ) cell whose prin-

cipal port is q, then e(q) = 〈e(p1), e(p2)〉 (resp. e(q) = [e(p1), e(p2)]);
– if q is the principal port of a ε cell, then e(q) = 0.

If p1 < . . . < pn are the free ports of μ, the sequence (e(p1), . . . , e(pn)) is said
to be the result of e. We use the notation e : μ as a shorthand for “e is an
experiment on μ” (the interaction set will always be clear from the context), and
we denote by |e| the result of e.

The interpretation of μ in X, denoted by �μ�, is the set containing all results
of all experiments on μ in X.

Note that �En� = {(0, . . . ,0)}. The fact that �μ� is a pointed set is then imme-
diate:

Lemma 2. For every net μ with n free ports, �En� ⊆ �μ�.
Proof. The function assigning 0 to all ports of μ is always an experiment. #$
Proposition 1. For all nets μ, μ′, μ :βη μ

′ implies �μ� = �μ′�. Moreover, �·�
enjoys the congruence property.

Proof. To prove invariance under reduction, given μ →β μ′, it is enough to
show that, for every experiment on μ, there is an experiment on μ′ yielding the
same result, and vice versa. Invariance under η-equivalence is proved in the same
way. The congruence property is an immediate consequence of the definition of
experiment. Details may be found in [12]. #$

3.2 Edifices

The following notion, introduced in [13], is analogous to that of a head variable
in the λ-calculus.

Definition 6 (Observable axiom). Let μ be a net. An observable axiom of
μ is an axiom connecting the leaves of two trees τi, τj whose respective roots i, j
are both free ports of μ. We say that such observable axiom is based at i, j.

It is perhaps useful to visualize observable axioms. A net μ contains an observable
axiom ω iff it is of the following shape:

i j

τi τj

. . . . . . . . .

. . .. . .. . .

μ0

. . .

ω
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If i = j, then τi = τj , and ω connects two leaves of the same tree. Note also that
one or both of τi, τj may be equal to a wire; in particular, a wire whose both
extremities are free is an observable axiom.

The following result is proved in [13]. It is analogous to the λ-calculus result
stating that solvability is equivalent to having a head normal form.

Proposition 2. A net μ is solvable iff there exists a net μ′ containing an ob-
servable axiom such that μ→∗

β μ
′.

The observable axioms appearing during the reduction of a net may be collected,
just like the head variables of a λ-term, to form the analogous of a Böhm tree.
We first need to assign a unique identifier to each observable axiom within a
net. In what follows, W denotes the set of finite words over {1, 2}. We use a, b
to range over W and denote the empty word by ε. Concatenation of words is
denoted by juxtaposition.

Definition 7 (Address of a leaf). Let τ be a tree of cells, and let l be a leaf
of τ . We define the δ-address and ζ-address of l in τ , denoted by addrτδ (l) and
addrτζ (l), respectively, by induction on τ :

– if τ = •, then addrτδ (l) = addrτζ (l) = ε;
– if τ = δ(τ1, τ2), and l belongs to τi (with i ∈ {1, 2}), then addrτδ (l) =
iaddrτiδ (l), and addrτζ (l) = addrτiζ (l);

– if τ = ζ(τ1, τ2), and l belongs to τi (with i ∈ {1, 2}), then addrτδ (l) =
addrτiδ (l), and addrτζ (l) = iaddr

τi
ζ (l).

Definition 8 (Arch). A pillar is an element of W×W×N, denoted by (a, b)@i;
an arch is a set containing exactly two pillars, denoted by (a, b)@i ' (a′, b′)@i′

(which is the same as (a′, b′)@i′ ' (a, b)@i). Arches are ranged over by a.
Let ω be an observable axiom of the net μ. By definition, ω connects two leaves

li, lj of two trees τi, τj whose roots i, j are free ports of μ. Then, we represent ω
by the arch

(addrτiδ (li), addr
τi
ζ (li))@i ' (addr

τj
δ (lj), addr

τj
ζ (lj))@j.

Note that different observable axioms are necessarily represented by different
arches; even more, two different observable axioms have no pillar in common.
This is because each leaf of a tree in a net may only be connected to one extremity
of one observable axiom.

Definition 9 (Edifice). Let μ be a net. We denote by ax(μ) the set of all arches
representing all observable axioms of μ. Then, we define the edifice of μ to be
the following set of arches:

E(μ) =
⋃

μ→∗
βμ

′
ax(μ′).

The η-expanded edifice of μ is defined by

Eη(μ) = {(ac, bd)@i ' (a′c, b′d)@i′ | (a, b)@i ' (a′, b′)@i′ ∈ E(μ), c, d ∈ W}.
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In other words, E(μ) is the set of all arches representing all observable axioms
appearing during the reduction of μ, and Eη(μ) is obtained by “η-expanding”
the arches in all possible ways.

As mentioned above, edifices are to nets what Böhm trees are to λ-terms.
Indeed, they too yield a denotational semantics, whose induced congruence con-
tains :βηε and is fully abstract with respect to finitary axiom-equivalence:

Proposition 3 (Full abstraction for edifices). For all nets μ, μ′, μ ∼= μ′ iff
Eη(μ) = Eη(μ

′).

Proof. The result in non-trivial; we refer the reader to [13]. #$
Finally, the following result justifies the name given to ∼=: μ � means that μ
generates a finite number of observable axioms.

Proposition 4. For all μ, μ � iff E(μ) is finite.

Proof. Suppose μ � ; by definition μ→∗
βε ν with ν βε-normal. Now, it is easy to

verify that βε-normal nets are all cut-free, hence the result follows immediately
from Lemma 1. For the converse, E(μ) finite means that all observable axioms
are generated in a finite number of steps, i.e., μ →∗

β C[μ0], with μ0 unsolvable
by Proposition 2; but then μ is βε-normalizable to C[Ek]. #$

4 Approximations and Full Abstraction

Definition 10 (Approximation). An approximation of a net μ is a cut-free
net ν of the form C[Ek] such that μ→∗

β C[μ0] for some net μ0. In that case, we
write ν � μ, and we denote by apx(μ) the set of all approximations of μ.

Note that apx(μ) is never empty; in fact, if μ has n free ports, we always have
En � μ. Moreover, it is not hard to see that apx(μ) is a directed set w.r.t. �. It
is then natural to look for interaction sets X in which the interpretation enjoys
the following approximation property, inspired by algebraicity in domain theory:
for every net μ, we ask �μ� = ⋃

ν�μ

�ν�,
that is, the interpretation of μ in X is the supremum of the interpretations of
its approximations.

The congruence induced on nets by an interaction set X , which we denote
by =X , may be “located” quite precisely in case X satisfies the approximation
property (we mention this result without proof, as we shall not need it in the
sequel). Indeed, if we let : denote the Morris equivalence induced by unsolvable
nets (i.e., μ : μ′ iff, for every C, C[μ], C[μ′] are either both solvable, or both
unsolvable), which is the greatest semi-sensible theory, we have:

Proposition 5. Let X be an interaction set enjoying the approximation prop-
erty. Then, ∼= ⊆ =X ⊆ :.
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Observe that the approximation property is trivially enjoyed by edifices (it is
an immediate consequence of the definition). The key to full abstraction will be
another approximation property, this time connected to the way the set-based
semantics “sees” observable axioms.

If X is an interaction set, recall the “projections” δ1, δ2, ζ1, ζ2 : X → X
introduced in Definition 4. If w = i1 · · · in ∈ W, with n > 0, and if α ∈ {δ, ζ}
and x ∈ X , in the sequel we shall use the notation αw(x) = αi1(. . . αin(x) . . .).

Definition 11 (Semantic axioms). Let X be an interaction set; we denote
the diagonal of X2 by ΔX . Let z ∈ Xn with n > 0; we denote by zj the j-th
component of z. Given the arch a = (a, b)@i ' (a′, b′)@i′, with 1 ≤ i, i′ ≤ n, we
define the projection of z onto a as

πa(z) = (δa(ζb(zi)), δa′(ζb′ (zi′))).

If U ⊆ Xn, we denote by πa(U) the set resulting from the pointwise application
of πa to the elements of U . Then, given a net μ, we define

sax(μ) = {a | πa(�μ�) = ΔX}.
We say that an interaction set enjoys the axiom approximation property if, for
every net μ,

sax(μ) =
⋃
ν�μ

sax(ν).

Approximation and axiom approximation do not coincide; we know of interaction
sets satisfying the first but not the second, and we believe the converse implica-
tion to be false as well. However, we shall now establish that an interaction set
satisfying both is fully abstract with respect to finitary axiom-equivalence.

Lemma 3. Let ν be a cut-free net with 2 free ports such that �ν� = ΔX , where
X is a non-trivial interaction set. Then, ν is η-equivalent to a wire.

Proof. Observe that any cut-free net ν′ :η ν decomposes, by Lemma 1, into
two trees τ1, τ2 and a wiring ω. Now, suppose none of these nets (including ν)
is such that τ1 = τ2 = τ with ω connecting exactly the matching occurrences
of the leaves of the two copies of τ (i-th leaf with i-th leaf). Then, since X
is non-trivial, we may easily find an experiment showing that (x, x′) ∈ �ν� for
some x %= x′, a contradiction. Hence, there is an η-equivalent form of ν which
is as above; now, if τ contained any ε cell, it is easy to see that we would have�ν� � ΔX , another contradiction. But a net as the one obtained may be shown
to be η-equivalent to a wire by a straightforward induction on τ . #$
Lemma 4. In a non-trivial interaction set satisfying the axiom approximation
property, we have sax(μ) = Eη(μ), for every net μ.

Proof. The inclusion Eη(μ) ⊆ sax(μ) always holds, with no need of the axiom
approximation property. In fact, if a ∈ Eη(μ) by definition a = (ac, bd)@i '
(a′c, b′d)@i′ for some c, d ∈ W and with (a, b)@i ' (a′, b′)@i′ being the arch
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of an observable axiom ω of a reduct μ′ of μ. Then, it is enough to consider
experiments on μ′ which label every port with 0 except those “descending” from
ω to see that a ∈ sax(μ), by invariance under reduction.

For what concerns the converse, we first consider a cut-free net ν, with n free
ports. Let a = (a, b)@i ' (a′, b′)@i′ ∈ sax(ν). It can be shown [13] that, for
every sequence of trees τ1, . . . , τn, there exists a cut-free ν′ :βη ν such that, for
all 1 ≤ i ≤ n, we find τi rooted at the free port i of ν′. We may then choose τi, τi′

(the case i = i′ changes nothing to the argument) so that two of their resp. leaves
l, l′ have δ-addresses and ζ-addresses given by a, a′, and b, b′. Now, by invariance
under :βη, we still have a ∈ sax(ν′), which means that every experiment on ν′

is forced to assign the same element of X to l, l′, and all elements of X may be
assigned to them. But ν′ must therefore contain a subnet ν0 whose free ports
coincide with l, l′, and which is detached from the rest of the net, for otherwise,
by the non-triviality of X , it would be easy to define an experiment which sets
one of l, l′ to 0 and the other to a non-zero value. Then, we apply Lemma 3
to ν0 and infer a ∈ Eη(ν

′) = Eη(ν). The general statement follows immediately
from the axiom approximation property, and from the approximation property
for edifices. #$
Lemma 5. In a non-trivial interaction set satisfying both the approximation
and axiom approximation property, we have �μ� = �μ′� iff sax(μ) = sax(μ′), for
all nets μ, μ′.

Proof. The implication from left to right is obvious and does not depend on
any approximation property. It is then enough to show that sax(μ) ⊆ sax(μ′)
implies �μ� ⊆ �μ′�. By Lemma 4 and the approximation property, this amounts
to show that, under the hypothesis Eη(μ) ⊆ Eη(μ

′), �ν� ⊆ �μ′� for all ν � μ.
So let ν � μ and z ∈ �ν�. By Lemma 2, we may suppose z %= (0, . . . ,0). Then,
z is the result of an experiment assigning non-null points to p > 0 axioms of ν.
These axioms induce p edifices A1, . . . ,Ap ⊆ Eη(μ) ⊆ Eη(μ

′), which means that
the “same” axioms (modulo :η) appear during the reduction of μ′, from which
we immediately infer z ∈ �μ′�, as desired. #$
As announced, combining Proposition 3, Lemma 4, and Lemma 5, we obtain

Theorem 1 (Full abstraction for interaction sets). If X is a non-trivial
interaction set satisfying the approximation and axiom approximation properties,
then for all nets μ, μ′, μ ∼= μ′ iff �μ� = �μ′�.
4.1 A Fully Abstract Model

We now proceed to give an example of interaction set satisfying both the ap-
proximation and axiom approximation properties.

LetW∞ be the set of infinite words over {1, 2}.We shall consider the pointed set
X = Pfin(W∞ ×W∞) of finite subsets of pairs of infinite words, with 0 = ∅. If x ∈
X and (a, b) ∈ W×W, we set (a, b) ·x = {(au, bv) ∈ W∞ ×W∞ | (u, v) ∈ x}, and
define the pointed bijections 〈x, y〉 = (1, ε)·x∪(2, ε)·y and [x, y] = (ε, 1)·x∪(ε, 2)·y.
It is easy to see that (X, 〈·, ·〉, [·, ·]) is an interaction set.
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In the sequel, all denotational interpretations are assumed to be in X . We
shall keep denoting by δ1, δ2, ζ1, ζ2 the “projections” associated with 〈·, ·〉 and
[·, ·], and we also use the generalized notations δw, ζw, with w ∈ W, introduced
just before Definition 11.

Definition 12 (Mean and nice elements). We say that x ∈ X is δ-mean
(resp. ζ-mean), if the set π1(x) (resp. π2(x)), i.e., the set of first (resp. second)
projections of the elements of x, is empty or a singleton. If α ∈ {δ, ζ}, and if α is
“the other” binary symbol, we introduce the following notations and terminology:

– Mα is the set of α-mean elements;
– M =Mδ ∩Mζ is the set of mean elements (which are singletons or empty);
– N = X \ (Mδ ∪Mζ) is the set of nice elements
– M∗

α =Mα \Mα is the set of strictly α-mean elements.

In the sequel, if x ∈ X , we shall denote by ‖x‖ its cardinality. Moreover, we will
always have α ∈ {δ, ζ}, with α denoting “the other” binary symbol.

Lemma 6. For all x ∈ X, the following properties hold:

Positivity: ‖0‖ = 0, and ‖x‖ %= 0 for all x %= 0.
Additivity: ‖δ1(x)‖ + ‖δ2(x)‖ = ‖x‖ = ‖ζ1(x)‖ + ‖ζ2(x)‖.
Heredity: For all β ∈ {δ1, δ2, ζ1, ζ2}, x ∈Mα implies β(x) ∈Mα.

Proof. A simple verification. #$
In the following, we write e : μ to mean “e is an experiment on μ”.

Lemma 7. Let τ be a tree entirely composed of α cells (resp. an arbitrary tree).
If e : τ assigns x ∈ Mα (resp. x ∈ M) to the root of τ , then e assigns x′ ∈ Mα

(resp. x′ ∈ M) with ‖x′‖ = ‖x‖ to exactly one leaf of τ , and 0 to all remaining
leaves.

Proof. By heredity, additivity, and the fact that, if x ∈Mα and i ∈ {1, 2}, then
αi(x) is either empty, or has the same cardinality as x. #$
We say that an experiment assigns an element x to an active pair when it assigns
x to both extremities of the cut associated with the active pair.

Lemma 8. Let μ be a net with n > 0 free ports. If e : μ is such that the labels
assigned by e to the active pairs of μ all belong to M then there exists ν � μ and
e0 : ν such that |e0| = |e|.
Proof. The idea of the proof is to take each active pair labelled by some x ∈M ,
and replace the active pair with a net admitting an experiment of identical result.
The case x = 0 is easy; otherwise, Lemma 7 is used to extract only two leaves
of subtrees of μ on which e assigns non-zero points; then, the net formed by the
two trees rooted at the cut is wholly reduced, and the zero-labelled subnets in
the result are carefully removed. We omit the technical details. #$
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Proposition 6. X enjoys the approximation property.

Proof. The right-to-left inclusion holds for all interaction sets, as a corollary of
the fact that ν � μ implies �ν� ⊆ �μ�. Indeed, by definition, ν = C[En] and
μ→∗

β C[μ0]. Then, by Lemma 2 and the congruence property, �ν� ⊆ �C[μ0]�, so
we conclude by invariance.

For the converse, we give the idea of the proof, which is fairly straightforward.
We start by defining two functions #δ,#ζ : X → N. Let x ∈ X , and let nδ
(resp. nζ) be the length of the longest common prefix between two different
words in π1(x) (resp. π2(x)); then, we define #α(x) to be 0 if x = 0, 1 if
x ∈ Mα \ {0}, or nα + 2 otherwise. We define the measure of x as the integer
m(x) = ‖x‖ ·#δ(x) ·#ζ(x). Now, by a simple case inspection, one checks that:

(i) if x ∈ N , then for all β ∈ {δ1, δ2, ζ1, ζ2}, m(β(x)) < m(x);
(ii) if x ∈M∗

α, then for all i ∈ {1, 2}, m(αi(x)) < m(x).

We now show in three steps that by obstinately reducing the active pairs of μ
labelled by elements belonging to N first, M∗

δ then, and M∗
ζ finally, we obtain

a net μ′ and e′ : μ′ such that μ →∗
β μ

′, |e′| = |e|, and all the labels assigned to
the active pairs of μ′ by e′ belong to M . The result then follows by Lemma 8.

1. The first step is shown by induction on the multiset H(μ) (under the usual
well-ordering of multisets of integers) containing the measures of all nice
elements labelling the active pairs of μ in e, using property (i). At the end
of this step we obtain a reduct μ1 of μ and an experiment e1 : μ1 such that
|e1| = |e|, and no active pair is labelled by a nice element.

2. The second step is shown by induction on the multiset J(μ1) containing
the measures of all strictly δ-mean elements labelling the active pairs of μ1.
Here, we use Lemma 6, Lemma 7 and property (ii). At the end of this step
we obtain a reduct μ2 of μ1 and an experiment e2 : μ2 such that |e2| = |e1|,
and no active pair is labelled by a strictly δ-mean element.

3. The third step is similar to the second.
#$

The fact that X enjoys the axiom approximation property is a consequence of
the following

Lemma 9. Any net μ such that �μ� = ΔX is βη-equivalent to a wire.

Proof. It is enough to show that apx(μ) contains a net η-equivalent to a wire.
Suppose, for the sake of contradiction, that this is not the case. If μ is βε-
normalizable (necessarily to a cut-free form), we may immediately conclude by
Lemma 3; therefore, we suppose that that μ is not βε-normalizable. By Proposi-
tion 4, apx(μ) is infinite; since it is directed w.r.t. �, we may take an ascending
chain ν0 � ν1 � . . . of approximations of μ. By the same arguments given in
the proof of Lemma 3, every νk decomposes into two copies of a tree τk, whose
matching occurrences of leaves are joined by axioms forming a wiring ωk. Now,
by hypothesis, every νk is not η-equivalent to a wire, which implies that every νk



330 D. Mazza and N.J. Ross

contains at least one ε cell. Then, we may build a sequence of finite pairs of words
(ak, bk) describing a leaf of τk where we find an ε cell, such that (ak, bk) is a pre-
fix (not necessarily strict) of (ak+1, bk+1). This increasing sequence defines some
(u, v) ∈ W∞×W∞ such that, by construction, z = ({(u, v)}, {(u, v)}) %∈ �νk� for
all k ∈ N. Then, by the approximation property, z %∈ �μ�, in contradiction with
ΔX ⊆ �μ�. #$
Proposition 7. X enjoys the axiom approximation property.

Proof. Let μ be a net, and suppose a ∈ sax(μ). By the approximation property,
using the same argument given in the second part of the proof of Lemma 4, we
have that the arch a defines two leaves l, l′ of two trees rooted at two conclusions
of a β-reduct μ′ of μ, such that l, l′ are the free ports of a subnet μ′0 of μ′ whose
interpretation is exactly ΔX . Then, if we apply Lemma 9, reduce μ′0, and replace
everything else in μ′ by ε cells, we obtain an approximation ν of μ such that
a ∈ sax(ν). #$
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Abstract. We formalise a general concept of distributed systems as sequential
components interacting asynchronously. We define a corresponding class of Petri
nets, called LSGA nets, and precisely characterise those system specifications
which can be implemented as LSGA nets up to branching ST-bisimilarity with
explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental understanding of the concept of
a distributed reactive system and the paradigms of synchronous and asynchronous inter-
action. We start by giving an intuitive characterisation of the basic features
of distributed systems. In particular we assume that distributed systems consist of com-
ponents that reside on different locations, and that any signal from one component to
another takes time to travel. Hence the only interaction mechanism between compo-
nents is asynchronous communication.

Our aim is to characterise which system specifications may be implemented as dis-
tributed systems. In many formalisms for system specification or design, synchronous
communication is provided as a basic notion; this happens for example in process alge-
bras. Hence a particular challenge is that it may be necessary to simulate synchronous
communication by asynchronous communication.

Trivially, any system specification may be implemented distributedly by locating the
whole system on one single component. Hence we need to pose some additional re-
quirements. One option would be to specify locations for system activities and then to
ask for implementations satisfying this distribution and still preserving the behaviour of
the original specification. This is done in [1]. Here we pursue a different approach. We
add another requirement to our notion of a distributed system, namely that its compo-
nents only allow sequential behaviour. We then ask whether an arbitrary system specifi-
cation may be implemented as a distributed system consisting of sequential components
in an optimal way, that is without restricting the concurrency of the original specifica-
tion. This is a particular challenge when synchronous communication interacts with
concurrency in the specification of the original system. We will give a precise charac-
terisation of the class of distributable systems, which answers in particular under which
conditions synchronous communication may be implemented in a distributed setting.
� This work was partially supported by the DFG (German Research Foundation).
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For our investigations we need a model which is expressive enough to represent con-
currency. It is also useful to have an explicit representation of the distributed state space
of a distributed system, showing in particular the local control states of components.
We choose Petri nets, which offer these possibilities and additionally allow finite repre-
sentations of infinite behaviours. We work within the class of structural conflict nets [4]
—a proper generalisation of the class of one-safe place/transition systems, where con-
flict and concurrency are clearly separated.

For comparing the behaviour of systems with their distributed implementation we
need a suitable equivalence notion. Since we think of open systems interacting with
an environment, and since we do not want to restrict concurrency in applications, we
need an equivalence that respects branching time and concurrency to some degree.
Our implementations use transitions which are invisible to the environment, and this
should be reflected in the equivalence by abstracting from such transitions. However,
we do not want implementations to introduce divergence. In the light of these require-
ments we work with two semantic equivalences. Step readiness equivalence is one of
the weakest equivalences that captures branching time, concurrency and divergence to
some degree; whereas branching ST-bisimilarity with explicit divergence fully captures
branching time, divergence, and those aspects of concurrency that can be represented
by concurrent actions overlapping in time. We obtain the same characterisation for both
notions of equivalence, and thus implicitly for all notions in between these extremes.

We model distributed systems consisting of sequential components as an appropri-
ate class of Petri nets, called LSGA nets. These are obtained by composing nets with
sequential behaviour by means of an asynchronous parallel composition. We show that
this class corresponds exactly to a more abstract notion of distributed systems, for-
malised as distributed nets [5].

We then consider distributability of system specifications which are represented as
structural conflict nets. A netN is distributable if there exists a distributed implementa-
tion of N , that is a distributed net which is semantically equivalent to N . In the imple-
mentation we allow unobservable transitions, and labellings of transitions, so that single
actions of the original system may be implemented by multiple transitions. However,
the system specifications for which we search distributed implementations are plain
nets without these features.

We give a precise characterisation of distributable nets in terms of a semi-structural
property. This characterisation provides a formal proof that the interplay between choice
and synchronous communication is a key issue for distributability.

2 Basic Notions

We consider here general labelled place/transition nets with arc weights. Arc weights
are not necessary for the results of the paper, but are included for the sake of generality.

We will employ the following notations for multisets.

Definition 1. LetX be a set.

– A multiset overX is a functionA : X → IN, i.e. A ∈ INX .
– x ∈ X is an element of a multiset A ∈ INX , notation x ∈ A, iff A(x) > 0.
– For multisets A and B overX we write A ≤ B iff A(x) ≤ B(x) for all x ∈X ;
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A+B denotes the multiset overX with (A+B)(x) := A(x) +B(x),
A\B denotes the multiset overX with (A−B)(x) := max(A(x)−B(x), 0), and
for k ∈ IN the multiset k ·A is given by (k ·A)(x) := k ·A(x).

– The function ∅ : X → IN, given by ∅(x) := 0 for all x ∈X , is the empty multiset.
– If A is a multiset over X and Y ⊆ X then A � Y denotes the multiset over Y

defined by (A � Y )(x) := A(x) for all x ∈ Y .
– The cardinality |A| of a multiset A overX is given by |A| := ∑

x∈X A(x).
– A multiset A overX is finite iff {x | x ∈ A} is finite, i.e., iff |A| <∞.

Two multisets A :X→IN and B :Y→IN are extensionally equivalent iff A �(X\Y )=∅,
B �(Y \X)=∅, andA �(X∩Y )=B �(X∩Y ). In this paper we often do not distinguish
extensionally equivalent multisets. This enables us, for instance, to useA+B even when
A and B have different underlying domains.

A multiset A with A(x) ∈ {0, 1} for all x is identified with the set {x | A(x) = 1}.

Definition 2. Let Act be a set of visible actions and τ %∈ Act be an invisible action.
A (labelled) Petri net (over Act

.∪ {τ}) is a tupleN = (S, T, F,M0, () where

– S and T are disjoint sets (of places and transitions),
– F : (S × T ∪ T × S) → IN (the flow relation including arc weights),
– M0 : S → IN (the initial marking), and
– ( : T → Act

.∪ {τ} (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes,
containing their label. Identities of places and transitions are displayed next to the net
element. When F (x, y) > 0 for x, y ∈ S ∪ T there is an arrow (arc) from x to y,
labelled with the arc weight F (x, y). Weights 1 are elided. When a Petri net represents
a concurrent system, a global state of this system is given as a marking, a multisetM of
places, depicted by placingM(s) dots (tokens) in each place s. The initial state isM0.

To compress the graphical notation, we also allow universal quantifiers of the form
∀x.φ(x) to appear in the drawing (cf. Fig. 3). A quantifier replaces occurrences of x
in element identities with all concrete values for which φ(x) holds, possibly creating
a set of elements instead of the depicted single one. An arc of which only one end is
replicated by a given quantifier results in a fan of arcs, one for each replicated element.
If both ends of an arc are affected by the same quantifier, an arc is created between
pairs of elements corresponding to the same x, but not between elements created due to
differing values of x.

The behaviour of a Petri net is defined by the possible moves between markingsM
andM ′, which take place when a finite multisetG of transitions fires. In that case, each
occurrence of a transition t in G consumes F (s, t) tokens from each place s. Naturally,
this can happen only ifM makes all these tokens available in the first place. Next, each
t produces F (t, s) tokens in each s. Definition 4 formalises this notion of behaviour.

Definition 3. LetN = (S, T, F,M0, () be a Petri net and x ∈ S ∪ T .
The multisets •x, x• : S∪T → IN are given by •x(y) = F (y, x) and x•(y) = F (x, y)
for all y ∈ S ∪ T . If x ∈ T , the elements of •x and x• are called pre- and postplaces
of x, respectively. These functions extend to multisets X : S ∪ T → IN as usual, by
•X :=

∑
x∈S∪T X(x) · •x andX• :=

∑
x∈S∪T X(x) · x•.
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Definition 4. LetN =(S, T, F,M0, () be a Petri net,G∈ INT,G non-empty and finite,
and M,M ′ ∈ INS. G is a step from M to M ′, written M [G〉N M ′, iff •G ⊆ M (G is
enabled) andM ′ = (M \ •G) +G•.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the same tran-
sition can occur multiple times in a single step.

In our nets transitions are labelled with actions drawn from a set Act
.∪ {τ}. A transi-

tion t can be thought of as the occurrence of the action ((t). If ((t)∈Act, this occurrence
can be observed and influenced by the environment, but if ((t) = τ , it cannot and t is
an internal or silent transition. Transitions whose occurrences cannot be distinguished
by the environment carry the same label. In particular, since the environment cannot
observe the occurrence of internal transitions at all, they are all labelled τ .

To simplify statements about behaviours of nets, we use some abbreviations.

Definition 5. LetN = (S, T, F,M0, () be a Petri net.
We writeM1

α−→N M2, for α ∈ Act
.∪ {τ}, when ∃ t ∈ T. α= ((t) ∧M1 [{t}〉N M2.

Furthermore, for a1a2 · · · an ∈ Act∗ we write M1
a1a2···an======⇒N M2 when

M1 =⇒N
a1−→N=⇒N

a2−→N=⇒N · · · =⇒N
an−→N=⇒N M2

where =⇒N denotes the reflexive and transitive closure of
τ−→N .

For α ∈ Act
.∪ {τ}, we writeM1

(α)−→N M2 forM1
α−→N M2 ∨ (α = τ ∧M1 =M2),

meaning that in case α = τ performing a τ -transition is optional. We write M1
α−→N

for ∃M2.M1
α−→N M2, and M1 � α−→N for �M2.M1

α−→N M2. Likewise M1[G〉N
abbreviates ∃M2.M1[G〉NM2. We omit the subscriptN if clear from context.

Definition 6. LetN = (S, T, F,M0, () be a Petri net.
– A markingM ∈ INS is said to be reachable in N iff there is a σ ∈ Act∗ such that
M0

σ
=⇒N M . The set of all reachable markings of N is denoted by [M0〉N .

– N is one-safe iffM ∈ [M0〉N ⇒ ∀x ∈ S.M(x) ≤ 1.
– The concurrency relation# ⊆ T 2 is given by t # u⇔ ∃M ∈ [M0〉.M [{t, u}〉.
– N is a structural conflict net iff for all t, u ∈ T with t # u we have •t ∩ •u = ∅.

We use the term plain nets for Petri nets where ( is injective and no transition has the
label τ , i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: nets with finitely many places
and transitions. However, our work also applies to infinite nets with the properties that
•t %= ∅ for all transitions t ∈ T , and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call such nets finitary. Finitariness can
be ensured by requiring |M0|<∞ ∧ ∀t ∈ T. •t %= ∅ ∧ ∀x ∈ S ∪ T. |x•| <∞.

We use the following variant of readiness semantics [11] to compare behaviour.

Definition 7. LetN = (S, T, F,M0, () be a Petri net, σ ∈ Act∗ andX ⊆ INAct.
〈σ,X〉 is a step ready pair of N iff

∃M.M0
σ

=⇒M ∧M � τ−→ ∧X = {((G) |M [G〉}.
Here we extend the labelling function ( to finite multisets of transitions elementwise.
We write R(N) for the set of all step ready pairs of N .

Two Petri nets N1 and N2 are step readiness equivalent, N1 ≈R N2, iff R(N1) =
R(N2).
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ST-bisimilarity was proposed in [7] as a non-interleaved version of bisimilarity that
respects causality to the extent that it can be expressed in terms of the possibility of
durational actions to overlap in time. It was extended to a setting with internal actions
in [15], based on the notion of weak bisimilarity of [10]. Here we apply the same idea,
but based on branching bisimilarity [8], which unlike weak bisimilarity fully respects
the branching structure of related systems.

An ST-marking of a netN =(S, T, F,M0, () is a pair (M,U)∈ INS×T ∗ of a normal
marking, together with a sequence of transitions currently firing. The initial ST-marking
is M0 := (M0, ε). The elements of Act± := {a+, a−n | a ∈ Act, n > 0} are called
visible action phases, and Act±τ := Act±

.∪ {τ}. For U ∈ T ∗, we write t ∈(n) U if t is
the nth element of U . Furthermore U−n denotes U after removal of the nth transition.

Definition 8. LetN = (S, T, F,M0, () be a Petri net, labelled over Act
.∪ {τ}.

The ST-transition relations
η−→ for η ∈ Act±τ between ST-markings are given by

(M,U)
a+−→ (M ′, U ′) iff ∃t ∈ T. ((t) = a ∧M [{t}〉 ∧M ′ =M − •t ∧ U ′ = Ut.

(M,U)
a−n−−→ (M ′, U ′) iff ∃t ∈(n) U. ((t) = a ∧ U ′ = U−n ∧M ′ =M + t•.

(M,U)
τ−→ (M ′, U ′) iffM

τ−→M ′ ∧ U ′ = U .

Now branching ST-bisimilarity is branching bisimilarity [8], applied to the labelled
transition system made up of ST-markings of nets and the ST-transitions between them.

Definition 9. Two Petri nets N1 and N2 are branching ST-bisimilar iff there exists a
relation R between the ST-markings of N1 and N2 such that, for all η ∈ Act±τ :
1. M01RM02;
2. if M1RM2 and M1

η−→ M′
1 then ∃M†

2,M
′
2 such that

M2 =⇒ M†
2

(η)−→ M′
2, M1RM†

2 and M′
1RM′

2;
3. if M1RM2 and M2

η−→ M′
2 then ∃M†

1,M
′
1 such that

M1 =⇒ M†
1

(η)−→ M′
1, M†

1RM2 and M′
1RM′

2.

If a system has the potential to engage in an infinite sequence of internal actions, one
speaks of divergence. Branching bisimilarity with explicit divergence [8], is a variant
of branching bisimilarity that fully respects the diverging behaviour of related systems.
Since here we only compare systems of which one admits no divergence at all, the
definition simplifies to the requirement that the other system may not diverge either. We
writeN1 ≈Δ

bSTb N2 iffN1 andN2 are branching ST-bisimilar with explicit divergence.

3 Distributed Systems

In this section, we stipulate what we understand by a distributed system, and subse-
quently formalise a model of distributed systems in terms of Petri nets.

– A distributed system consists of components residing on different locations.
– Components work concurrently.
– Interactions between components are only possible by explicit communications.
– Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed system
for exchanging signals or information.
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– The sending of a message happens always strictly before its receipt (there is a causal
relation between sending and receiving a message).

– A sending component sends without regarding the state of the receiver; in particu-
lar there is no need to synchronise with a receiving component. After sending the
sender continues its behaviour independently of receipt of the message.

As explained in the introduction, we will add another requirement to our notion of a
distributed system, namely that its components only allow sequential behaviour.

Formally, we model distributed systems as nets consisting of component nets with
sequential behaviour and interfaces in terms of input and output places.

Definition 10. LetN=(S, T, F,M0, () be a Petri net, I, O⊆S, I ∩O=∅ andO• = ∅.
1. (N, I,O) is a component with interface (I, O).
2. (N, I,O) is a sequential component with interface (I, O) iff ∃Q⊆S\(I ∪O) with

∀t ∈ T.|•t �Q| = 1 ∧ |t•�Q| = 1 and |M0 �Q| = 1.

An input place i ∈ I of a component C can be regarded as a mailbox of C for a specific
type of messages. An output place o ∈ O, on the other hand, is an address outside C to
which C can send messages. Moving a token into o is like posting a letter. The condition
o• = ∅ says that a message, once posted, cannot be retrieved by the component.

A set of places like Q above is called an S-invariant. The requirements guarantee
that the number of tokens in these places remains constant, in this case 1. It follows that
no two transitions can ever fire concurrently (in one step). Conversely, whenever a net is
sequential, in the sense that no two transitions can fire in one step, it is easily converted
into a behaviourally equivalent net with the required S-invariant, namely by adding
a single marked place with a self-loop to all transitions. This modification preserves
virtually all semantic equivalences on Petri nets from the literature, including ≈Δ

bSTb.
Next we define an operator for combining components with asynchronous commu-

nication by fusing input and output places.

Definition 11. Let K be an index set.
Let ((Sk, Tk, Fk,M0k, (k), Ik, Ok) with k ∈ K be components with interface such that
(Sk ∪ Tk) ∩ (Sl ∪ Tl) = (Ik ∪Ok)∩ (Il ∪Ol) for all k, l ∈ K with k %= l (components
are disjoint except for interface places) and moreover Ik ∩ Il = ∅ for all k, l ∈ K with
k %= l (mailboxes cannot be shared; the recipient of a message is always unique).

Then the asynchronous parallel composition of these components is defined by∥∥∥
i∈K

((Sk, Tk, Fk,M0k, (k), Ik, Ok) = ((S, T, F,M0, (), I, O)

with S=
⋃

k∈K Sk, T=
⋃

k∈KTk, F=
⋃

k∈KFk, M0=
∑

k∈KM0k, (=
⋃

k∈K(k (com-
ponentwise union of all nets), I=

⋃
k∈K Ik (we accept additional inputs from outside),

and O=
⋃

k∈KOk \⋃
k∈K Ik (once fused with an input, o∈OI is no longer an output).

Observation 1. ‖ is associative.

This follows directly from the associativity of the (multi)set union operator. #$
We are now ready to define the class of nets representing systems of asynchronously
communicating sequential components.

Definition 12. A Petri netN is an LSGA net (a locally sequential globally asynchronous
net) iff there exists an index set K and sequential components with interface Ck, k ∈ K,
such that (N, I,O) = ‖k∈KCk for some I and O.
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Up to ≈Δ
bSTb—or any reasonable equivalence preserving causality and branching time

but abstracting from internal activity—the same class of LSGA systems would have
been obtained if we had imposed, in Def. 10, that I , O and Q form a partition of S and
that •I = ∅. However, it is essential that our definition allows multiple transitions of a
component to read from the same input place.

In the remainder of this section we give a more abstract characterisation of Petri nets
representing distributed systems, namely as distributed Petri nets, which we introduced
in [5]. This will be useful in Section 4, where we investigate distributability using this
more semantic characterisation. We show below that the concrete characterisation of
distributed systems as LSGA nets and this abstract characterisation agree.

Following [1], to arrive at a class of nets representing distributed systems, we as-
sociate localities to the elements of a net N = (S, T, F,M0, (). We model this by a
function D : S ∪ T → Loc, with Loc a set of possible locations. We refer to such a
function as a distribution of N . Since the identity of the locations is irrelevant for our
purposes, we can just as well abstract from Loc and represent D by the equivalence
relation ≡D on S ∪ T given by x ≡D y iffD(x) = D(y).

Following [5], we impose a fundamental restriction on distributions, namely that
when two transitions can occur in one step, they cannot be co-located. This reflects our
assumption that at a given location actions can only occur sequentially.

In [5] we observed that Petri nets incorporate a notion of synchronous interaction,
in that a transition can fire only by synchronously taking the tokens from all of its
preplaces. In general the behaviour of a net would change radically if a transition would
take its input tokens one by one—in particular deadlocks may be introduced. Therefore
we insist that in a distributed Petri net, a transition and all its input places reside on
the same location. There is no reason to require the same for the output places of a
transition, for the behaviour of a net would not change significantly if transitions were
to deposit their output tokens one by one [5].

This leads to the following definition of a distributed Petri net.

Definition 13 ([5]). A Petri net N = (S, T, F,M0, () is distributed iff there exists a
distributionD such that

(1) ∀s ∈ S, t ∈ T. s ∈ •t⇒ t ≡D s,
(2) ∀t, u ∈ T. t # u⇒ t %≡D u.

N is essentially distributed if (2) is weakened to ∀t, u∈T. t # u∧((t) %= τ ⇒ t %≡D u.

A typical example of a net which is not distributed is shown in Fig. 1 on Page 339.
Transitions t and v are concurrently executable and hence should be placed on differ-
ent locations. However, both have preplaces in common with u which would enforce
putting all three transitions on the same location. In fact, distributed nets can be charac-
terised in the following semi-structural way.

Observation 2. A Petri net is distributed iff there is no sequence t0, . . . , tn of transi-
tions with t0 # tn and •ti−1 ∩ •ti %= ∅ for i = 1, . . . , n. #$
It turns out that the classes of LSGA nets and distributable nets essentially coincide.
Moreover, up to ≈Δ

bSTb these classes also coincide with the more liberal notion of es-
sentially distributed nets, permitting concurrency of internal transitions at the same lo-
cation. We will make use of that in proving our main theorem.
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Theorem 1. Any LSGA net is distributed, and for any essentially distributed net N
there is an LSGA net N ′ with N ′ ≈Δ

bSTb N .

Proof. In the full version of this paper [6]. #$
Observation 3. Every distributed Petri net is a structural conflict net. #$
Corollary 1. Every LSGA net is a structural conflict net. #$

4 Distributable Systems

We now consider Petri nets as specifications of concurrent systems and ask the question
which of those specifications can be implemented as distributed systems. This question
can be formalised as

Which Petri nets are semantically equivalent to distributed nets?

Of course the answer depends on the choice of a suitable semantic equivalence. Here
we will answer this question using the two equivalences introduced in Section 2. We
will give a precise characterisation of those nets for which we can find semantically
equivalent distributed nets. For the negative part of this characterisation, stating that
certain nets are not distributable, we will use step readiness equivalence, which is one
of the simplest and least discriminating equivalences imaginable that abstracts from
internal actions, but preserves branching time, concurrency and divergence to some
small degree. As explained in [5], giving up on any of these latter three properties
would make any Petri net distributable, but in a rather trivial and unsatisfactory way.
For the positive part, namely that all other nets are indeed distributable, we will use the
most discriminating equivalence for which our implementation works, namely branch-
ing ST-bisimilarity with explicit divergence, which is finer than step readiness equiv-
alence. Hence we will obtain the strongest possible results for both directions and it
turns out that the concept of distributability is fairly robust w.r.t. the choice of a suitable
equivalence: any equivalence notion between step readiness equivalence and branching
ST-bisimilarity with explicit divergence will yield the same characterisation.

Definition 14. A Petri net N is distributable up to an equivalence ≈ iff there exists a
distributed netN ′ with N ′ ≈ N .

Formally we give our characterisation of distributability by classifying which finitary
plain structural conflict nets can be implemented as distributed nets, and hence as LSGA
nets. In such implementations, we use invisible transitions. We study the concept “dis-
tributable” for plain nets only, but in order to get the largest class possible we allow
non-plain implementations, where a given transition may be split into multiple transi-
tions carrying the same label.

It is well known that sometimes a global protocol is necessary to implement syn-
chronous interaction present in system specifications. In particular, this may be needed
for deciding choices in a coherent way, when these choices require agreement of multi-
ple components. The simple net in Fig. 1 shows a typical situation of this kind.
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Independent decisions of the two choices might
lead to a deadlock. As remarked in [5], for this
particular net there exists no satisfactory dis-
tributed implementation that fully respects the
reactive behaviour of the original system. In-
deed such M-structures, representing interfer-
ence between concurrency and choice, turn out
to play a crucial rôle for characterising dis-
tributability.

p q

a t b u c v

Fig. 1. A fully marked M

Definition 15. LetN = (S, T, F,M0, () be a Petri net.N has a fully reachable pure M
iff ∃t, u, v ∈ T.•t∩•u %= ∅∧•u∩•v %= ∅∧•t∩•v = ∅∧∃M ∈ [M0〉.•t∪•u∪•v ⊆M .

Note that Definition 15 implies that t %= u, u %= v and t %= v.

We now give an upper bound on the class of distributable nets by adopting a result
from [5].

Theorem 2. Let N be a plain structural conflict Petri net. If N has a fully reachable
pure M, then N is not distributable up to step readiness equivalence.

Proof. In [5] this theorem was obtained for plain one-safe nets.1 The proof applies
verbatim to plain structural conflict nets as well. #$
Since ≈Δ

bSTb is finer than ≈R, this result holds also for distributability up to ≈Δ
bSTb (and

any equivalence between ≈R and ≈Δ
bSTb).

In the following, we establish that this upper bound is tight, and hence a finitary plain
structural conflict net is distributable iff it has no fully reachable pure M. For this, it is
helpful to first introduce macros in Petri nets for reversibility of transitions.

4.1 Petri Nets with Reversible Transitions

A Petri net with reversible transitions generalises the notion of a Petri net; its se-
mantics is given by a translation to an ordinary Petri net, thereby interpreting the re-
versible transitions as syntactic sugar for certain net fragments. It is defined as a tuple
(S, T,Ω, ı, F,M0, () with S a set of places, T a set of (reversible) transitions, labelled
by ( : T → Act

.∪ {τ}, Ω a set of undo interfaces with the relation ı ⊆ Ω × T linking
interfaces to transitions,M0 ∈ INS an initial marking, and

F : (S × T × {in, early, late, out, far} → IN)

the flow relation. For t ∈ T and type ∈ {in, early, late, out, far}, the multiset of places
ttype∈INS is given by ttype(s) = F (s, t, type). When s∈ttype for type ∈ {in, early, late},
the place s is called a preplace of t of type type; when s ∈ ttype for type ∈ {out, far},
s is called a postplace of t of type type. For each undo interface ω ∈ Ω and transition t
with ı(ω, t) there must be places undoω(t), resetω(t) and ackω(t) in S. A transition
with a nonempty set of interfaces is called reversible; the other (standard) transitions
may have pre- and postplaces of types in and out only—for these transitions tin = •t and
tout = t•. In case Ω = ∅, the net is just a normal Petri net.

1 In [5] the theorem was claimed and proven only for plain nets with a fully reachable visible
pure M; however, for plain nets the requirement of visibility is irrelevant.
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A global state of a Petri net with reversible transitions is given by a markingM∈INS,
together with the state of each reversible transition “currently in progress”. Each tran-
sition in the net can fire as usual. A reversible transition can moreover take back (some
of) its output tokens, and be undone and reset. When a transition t fires, it consumes∑

type∈{in, early, late} F (s, t, type) tokens from each of its preplaces s and produces∑
type∈{out, far} F (s, t, type) tokens in each of its postplaces s. A reversible transition

t that has fired can start its reversal by consuming a token from undoω(t) for one of its
interfaces ω. Subsequently, it can take back one by one a token from its postplaces of
type far. After it has retrieved all its output of type far, the transition is undone, thereby
returningF (s, t, early) tokens in each of its preplaces s of type early. Afterwards, by con-
suming a token from resetω(t), for the same interface ω that started the undo-process,
the transition terminates its chain of activities by returning F (s, t, late) tokens in each
of its late preplaces s. At that occasion it also produces a token in ackω(t). Alternatively,
two tokens in undoω(t) and resetω(t) can annihilate each other without involving the
transition t; this also produces a token in ackω(t). The latter mechanism comes in action
when trying to undo a transition that has not yet fired.

Fig. 2 shows the translation of a reversible transition twith ((t)=a into a ordinary net
fragment. The arc weights on the green (or grey) arcs are inherited from the untranslated
net; the other arcs have weight 1.

(in)(late) (early)

undoω(t)

resetω(t)

ackω(t)(far)

(out)

a

t
ω

f

o

i l e

take(f, t)

τ

t · undo(f) took(f, t)

τ

t · undoω

τ t · undone

fired(t) ρ(t)

a

t · fire

τ

t · resetω

undoω(t)

ρω(t)

τt · elideω

ackω(t)

resetω(t)

∀f ∈ t far

∀o ∈ tout

∀i ∈ tin ∀l ∈ tlate ∀e ∈ tearly

∀ω.ı(ω, t)

Fig. 2. A reversible transition and its macro expansion
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4.2 The Conflict Replicating Implementation

Now we establish that a finitary plain structural conflict net that has no fully reachable
pure M is distributable. We do this by proposing the conflict replicating implementation
of any such net, and show that this implementation is always (a) essentially distributed,
and (b) equivalent to the original net. In order to get the strongest possible result, for
(b) we use branching ST-bisimilarity with explicit divergence.

To define the conflict replicating implementation of a net N = (S, T, F,M0, () we
fix an arbitrary well-ordering< on its transitions. We let b, c, h, i, j, k, l range over these
ordered transitions, and write

– i#j iff i %=j∧•i∩•j %=∅ (transitions i and j are in conflict), and i
#
=j iff i#j∨i=j,

– i <# j iff i < j ∧ i# j, and i ≤# j iff i <# j ∨ i = j.
Fig. 3 shows the conflict replicating implementation N . It is presented as a Petri net
I(N) = (S′, T ′, F ′, Ω, ı,M ′

0, (
′) with reversible transitions. The set Ω of undo inter-

faces (not drawn) is T , and for i∈Ω we have ı(i, t) iff t∈Ωi, where the sets of transitions
Ωi ∈ INT ′

are specified in Fig. 3. The implementation I(N) inherits the places of N
(i.e. S′ ⊇ S), and we postulate that M ′

0�S = M0. Given this, Fig. 3 is not merely
an illustration of I(N)—it provides a complete and accurate description of it, thereby
defining the conflict replicating implementation of any net. In interpreting this figure
it is important to realise that net elements are completely determined by their name
(identity), and exist only once, even if they show up multiple times in the figure. For
instance, the place πh#j with h=2 and j=5 (when using natural numbers for the transi-
tions in T ) is the same as the place πj#l with j=2 and l=5; it is a standard preplace of
executei

2 (for all i ≤# 2), a standard postplace of fetchedi
2, as well as a late preplace

of transfer25.
The rôle of the transitions distributep for p∈ S is to distribute a token in p to copies

pj of p in the localities of all transitions j ∈ T with p ∈ •j. In case j is enabled in N ,
the transition initialisej will become enabled in I(N). These transitions put tokens in
the places prej

k, which are preconditions for all transitions executej
k, which model the

execution of j at the location of k. When two conflicting transitions h and j are both
enabled in N , the first steps initialiseh and initialisej towards their execution in I(N)
can happen in parallel. To prevent them from executing both, executej

j (of j at its own
location) is only possible after transferhj , which disables executeh

h.
The main idea behind the conflict replicating implementation is that a transition h∈T

is primarily executed by a sequential component of its own, but when a conflicting
transition j gets enabled, the sequential component implementing j may “steal” the
possibility to execute h from the home component of h, and keep the options to do
h and j open until one of them occurs. To prevent h and j from stealing each other’s
initiative, which would result in deadlock, a global asymmetry is built in by ordering
the transitions. Transition j can steal the initiative from h only when h < j.

In case j is also in conflict with a transition l, with j < l, the initiative to perform
j may subsequently be stolen by l. In that case either h and l are in conflict too—then
l takes responsibility for the execution of h as well—or h and l are concurrent—in
that case h will not be enabled, due to the absence of fully reachable pure Ms in N .
The absence of fully reachable pure Ms also guarantees that it cannot happen that two
concurrent transitions j and k both steal the initiative from an enabled transition h.
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∀j ∈ T ′

∀p ∈ •j
∀h <# j
∀i ≤# j
∀k ≥# j
∀l ># j
∀q ∈ •i
∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi := {initialisec | c #
= i}+

{transferbc | b <# c
#
= i}

F (p, j)

F (i, r)

F (q, i)

p

τdistributep

pj

prej
k

πj

τinitialisej

transh
j -in

πh#j τ transferhj

transh
j -outprei

j

πj#l

�(i)

executei
j

undoi(t)

fetchq,c
i,j -in

qc τ fetchq,c
i,j

fetchq,c
i,j -out

τfetchedi
j

acki(t)reseti(t)

τfinalisei

r

Fig. 3. The conflict replicating implementation
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After the firing of executei
j all tokens that were left behind in the process of carefully

orchestrating this firing will have to be cleaned up, to prepare the net for the next activity
in the same neighbourhood. This is the reason for the reversibility of the transitions
preparing the firing of executei

j . Hence there is an undo interface for each transition
i ∈ T ′, cleaning up the mess made in preparation of firing executei

j for some j. Ωi

is the multiset of all transitions t that could possibly have contributed to this. For each
of them its interface i is activated, by executei

j depositing a token in undoi(t). When
all preparatory transitions that have fired are undone, tokens appear in the places pc
for all p∈ •i and c ∈ p•. These are collected by fetchp,c

i,j , after which all t ∈ Ωi get
a reset signal. Those that have fired and were undone are reset, and those that never
fired perform elidei(t). In either case a token appears in acki(t). These are collected
by finalisei, which finishes the execution of i by depositing tokens in its postplaces.

Proposition 1. I(N) is essentially distributed for every Petri net N .

Proof sketch. We take the canonical distribution D of N , in which ≡D is the equiva-
lence relation on places and transitions generated by Condition (1) of Definition 13. We
need to show thatD satisfies the weakened Condition 2. Any location that harbours an
external transition executei

j for some i≤ j ∈ T ′, also harbours initialisej ·undo(prei
j),

transferhj ·undo(transhj -out) for all h<#j, executei
j for all i ≤# j, and, for all l ># j,

transferjl ·fire and initialisel·undo(transjl -in). In [6] we show that none of these tran-
sitions can happen concurrently with executei

j .

Theorem 3. Let N be a finitary plain structural conflict net net without a fully reach-
able pure M. Then N is distributable up to ≈Δ

bSTb.

Proof. In the full version of this paper [6]. There we show that I(N) ≈Δ
bSTb N . Hence

I(N) is a essentially distributed implementation ofN . Now apply Theorem 1. #$
Given the complexity of our construction, no techniques known to us were adequate
for performing this proof. We therefore had to develop an entirely new method for
rigorously proving the equivalence of two Petri nets up to ≈Δ

bSTb, one of which known
to be plain. This method is presented in [6].

Corollary 2. Let N be a finitary plain structural conflict net. Then N is distributable
iff it has no fully reachable pure M. #$

5 Conclusion

In this paper, we have given a precise characterisation of distributable Petri nets in terms
of a semi-structural property. Moreover, we have shown that our notion of distributabil-
ity corresponds to an intuitive notion of a distributed system by establishing that any
distributable net may be implemented as a network of asynchronously communicating
components.

In order to formalise what qualifies as a valid implementation, we needed a suitable
equivalence relation. We have chosen step readiness equivalence for showing the impos-
sibility part of our characterisation, since it is one of the simplest and least discriminat-
ing semantic equivalences imaginable that abstracts from internal actions but preserves
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branching time, concurrency and divergence to some small degree. For the positive
part, stating that all other nets are implementable, we have introduced a combination of
several well known rather discriminating equivalences, namely a divergence sensitive
version of branching bisimulation adapted to ST-semantics. Hence our characterisation
is rather robust against the chosen equivalence; it holds in fact for all equivalences be-
tween these two notions. However, ST-equivalence (and our version of it) preserves the
causal structure between action occurrences only as far as it can be expressed in terms
of the possibility of durational actions to overlap in time. Hence a natural question
is whether we could have chosen an even stronger causality sensitive equivalence for
our implementability result, respecting e.g. pomset equivalence or history preserving
bisimulation. Our conflict replicating implementation does not fully preserve the causal
behaviour of nets; we are convinced we have chosen the strongest possible equiva-
lence for which our implementation works. It is an open problem to find a class of nets
that can be implemented distributedly while preserving divergence, branching time and
causality in full. Another line of research is to investigate which Petri nets can be imple-
mented as distributed nets when relaxing the requirement of preserving the branching
structure. If we allow linear time correct implementations (using a step trace equiva-
lence), we conjecture that all Petri nets become distributable. However, also in this case
it is problematic, in fact even impossible in our setting, to preserve the causal structure,
as has been shown in [14]. A similar impossibility result has been obtained in the world
of the π-calculus in [12].

The interplay between choice and synchronous communication has already been in-
vestigated in quite a number of approaches in different frameworks. We refer to [5]
for a rather comprehensive overview and concentrate here on recent and closely related
work.

The idea of modelling asynchronously communicating sequential components by
sequential Petri nets interacting though buffer places has already been considered in
[13]. There Wolfgang Reisig introduces a class of systems, represented as Petri nets,
where the relative speeds of different components are guaranteed to be irrelevant. His
class is a strict subset of our LSGA nets, requiring additionally, amongst others, that
all choices in sequential components are free, i.e. do not depend upon the existence of
buffer tokens, and that places are output buffers of only one component. Another quite
similar approach was taken in [3], where transition labels are classified as being either
input or output. There, asynchrony is introduced by adding new buffer places during net
composition. This framework does not allow multiple senders for a single receiver.

Other notions of distributed and distributable Petri nets are proposed in [9,1,2]. In
these works, given a distribution of the transitions of a net, the net is distributable iff it
can be implemented by a net that is distributed w.r.t. that distribution. The requirement
that concurrent transitions may not be co-located is absent; given the fixed distribution,
there is no need for such a requirement. These papers differ from each other, and from
ours, in what counts as a valid implementation. A comparison of our criterion with that
of Hopkins [9] is provided in [5].

In [5] we have obtained a characterisation similar to Corollary 2, but for a much
more restricted notion of distributed implementation (plain distributability), disallow-
ing nontrivial transition labellings in distributed implementations. We also proved that
fully reachable pure Ms are not implementable in a distributed way, even when using
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transition labels (Theorem 2). However, we were not able to show that this upper bound
on the class of distributable systems was tight. Our current work implies the validity of
Conjecture 1 of [5]. While in [5] we considered only one-safe place/transition systems,
the present paper employs a more general class of place/transition systems, namely
structural conflict nets. This enables us to give a concrete characterisation of distributed
nets as systems of sequential components interacting via non-safe buffer places.
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Abstract. We study type-directed encodings of the simply-typed λ-calculus in a
session-typed π-calculus. The translations proceed in two steps: standard embed-
dings of simply-typed λ-calculus in a linear λ-calculus, followed by a standard
translation of linear natural deduction to linear sequent calculus. We have shown
in prior work how to give a Curry-Howard interpretation of the proofs in the
linear sequent calculus as π-calculus processes subject to a session type disci-
pline. We show that the resulting translations induce sharing and copying parallel
evaluation strategies for the original λ-terms, thereby providing a new logically
motivated explanation for these strategies.

1 Introduction

The goal of this paper is to study type-directed encodings of the simply-typedλ-calculus
in a session-typed π-calculus, including a novel encoding that captures a reduction
strategy in which shared sub-expressions are evaluated in parallel (providing a logi-
cal justification for futures [10]). Unlike other proposals, our encodings are canonically
extracted from standard translations of linear natural deduction to linear sequent calcu-
lus in standard logical systems, based on the interpretation of session-typed processes
as intuitionistic linear logic proofs we developed in [6].

Milner [17] presented two translations of the λ-calculus into the π-calculus: one
capturing call-by-name and one capturing call-by-value. This provided evidence for
the universality of the π-calculus for expressing sequential computation. Since then, a
number of other translations have been developed (see [19]).

An interesting foundational question is if similar translations exist from typed λ-
calculus to a typed π-calculus. Van Bakel and Vigliotti [21] give a partial answer by
providing a conceptually different translation into the asynchronous π-calculus where
the image of simply-typed λ-terms can be assigned types in Gentzen’s classical sequent
calculus LK. In this paper we provide another answer, also rooted in logic. We first
translate from the simply-typed λ-calculus to a linear λ-calculus, using either of the
two canonical embeddings proposed by Girard [8] as detailed by Maraist et al [15].
The linear λ-calculus is related to intuitionistic linear logic by a Curry-Howard iso-
morphism [22,1], so we can now apply a standard translation from natural deduction
to the dual intuitionistic linear sequent calculus. In prior work [6], we have shown how

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 346–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to view this sequent calculus as a type assignment system for the π-calculus, capturing
session types [12] in a purely logical manner. Viewed end-to-end, we have two type-
directed translations from the simply-typed λ-calculus to the session-typed π-calculus,
depending which of Girard’s embeddings of intuitionistic logic in linear logic we use.

Remarkably, the translations constructed in this type-directed manner are closely re-
lated to Milner’s two original translations that capture call-by-name and call-by-value.
While our call-by-name translation behaves the same way, our analog of the call-by-
value translation is subtly different in that the resulting terms behave like futures [10]:
in an application (λx.M)N reductions in the function bodyM and the argumentN can
proceed in parallel, synchronizing only when the value of x is needed. If we always pro-
ceed with reducingN first, we obtain call-by-value. If we always proceed with the body
M first we obtain call-by-need. So perhaps it is more appropriate to characterize the se-
mantic endpoints of the two translations as copying (as in call-by-name) and sharing
(as in futures, relaxing the sequentiality constraints of call-by-value and call-by-need).
Remarkably, the sharing semantics thus obtained is reminiscent of sharing reductions
as studied in the context of optimal reduction strategies [14,9], a study that goes back to
Wadsworth’s thesis [23], although in our case it just comes out naturally from our logi-
cally grounded translations. Furthermore, to the best of the authors’ knowledge, such a
sharing encoding of the λ-calculus in the π-calculus was not identified before this work.

Another remarkable property, due to the simple logical nature of the interpretations,
is that the linear target type of the translation is inhabited by a π-calculus term if and
only if the source type is inhabited by a λ-calculus term In a sense, the linear session
type discipline is a tight characterization for simple typing in the λ-calculus source,
exposing intrinsic parallelism in its structure. We thus show that session types are pow-
erful enough to type functional evaluation.

In the remainder of this paper we proceed as follows: We detail our translation of the
λ-calculus to the π-calculus, by presenting the several intermediate steps (Sections 2.1,
2.2) and composing them in Section 2.4. In Section 3 we show the operational sound-
ness and completeness of our translation. Finally, we present some concluding remarks
and a discussion of related work in Section 4.

2 From the λ-Calculus to the π-Calculus

In this section we present several translations which, in combination, allow us to trans-
late typed λ-calculus terms to session-typed π-calculus processes. We first review two
well-known translations from the simply typed λ-calculus to the linear λ-calculus, in-
troduced in Girard’s seminal paper [8] as translations from intuitionistic to linear logic,
and hence by the Curry-Howard correspondence, from the λ-calculus to the linear λ-
calculus [15,1]. We then show how to translate from the linear λ-calculus (logically,
a system of natural deduction) to a sequent formulation of linear logic. The latter will
yield the desired π-calculus terms by a Curry-Howard interpretation.

2.1 Interpreting the λ-Calculus in the Linear λ-Calculus

We consider the simply typed λ-calculus with function types T → S and base types b.
Our translation naturally extends to products and sums, interpreted as the product and
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sum types of the linear λ-calculus, but we refrain from presenting those here for the sake
of simplicity. The simply-typed λ calculus is given by the following grammar of terms
M,N and types T, S, where b denotes base types. The typing rules for the calculus are
given below, inductively defining the judgment Γ ; M : T , where Γ denotes a finite
set of unique typing assumptions of the form x : T , as usual.

Definition 2.1 (λ-calculus Terms and Typing)

M,N ::= x | λx : T.M |M N
T, S ::= T → S | b

Γ, x : T ; x : T
hyp

Γ, x : T ;M : S

Γ ; λx : T.M : T → S
→ I

Γ ;M : S → T Γ ; N : S
Γ ;M N : T

→ E

The linear λ-calculus is a more fine-grained version of the λ-calculus, in which vari-
ables in a λ-abstraction must be used exactly once. The calculus is endowed with a
modal type !T (referred to as an exponential) that allows for unrestricted usage of vari-
ables, in order to obtain the full generality of the λ-calculus. We distinguish between
the unrestricted and linear λ-abstraction by using λ̂ for the latter. The linear function
type is written as �. The terms and types of the linear λ-calculus are given below.

Definition 2.2 (Linear λ-calculus Terms)

M,N ::= x | u | λ̂x : T.M |M N | !M | let !u =M in N
T, S ::= T � S | !T | b

We syntactically distinguish between linear variables x and unrestricted variables u
(typing ensures linear variables are used exactly once, while unrestricted variables can
be used arbitrarily often). The terms !M and let !u = M in N are the introduction and
elimination forms of the exponential type, respectively, where the variable u can occur
in the term N in an unrestricted manner.

The typing rules for the linear calculus are given below, defining the judgmentΓ ;Δ ;
M : T with Δ denoting linear (used exactly once) assumptions of the form x : T (not
subject to weakening or contraction) and Γ unrestricted assumptions u : T .

Definition 2.3 (Linear λ-calculus Typing)

Γ ;x : T ; x : T
hyp

Γ, u : T ; · ; u : T
uhyp

Γ ;Δ,x : T ;M : S

Γ ;Δ ; λ̂x : T.M : T � S
� I

Γ ; · ;M : T

Γ ; · ; !M : !T
!I

Γ ;Δ ;M : T � S Γ ;Δ′ ; N : T

Γ ;Δ,Δ′ ;M N : S
� E

Γ ;Δ ;M : !T Γ, u : T ;Δ′ ; N : S

Γ ;Δ,Δ′ ; let !u =M in N : S
!E
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Given that the Curry-Howard correspondence allows us to identify the simply typed
λ-calculus with intuitionistic logic and the linear λ-calculus with linear intuitionistic
logic, we make use of two well-known embeddings of intuitionistic logic in linear logic
to interpret the λ-calculus in the linear λ-calculus. These embeddings originate from
Girard’s seminal paper on linear logic [8] and are detailed by Maraist et al [15]. The
first translation, which we will refer to as the [·] translation, is defined inductively on
types, terms and contexts below.

Definition 2.4 (The [·] Translation)

[T → S] � (![T ]) � [S]

[b] � b

[x] � ux
[λx : T.M ] � λ̂x : ![T ]. let !ux = x in [M ]

[M N ] � [M ] (![N ])

[Γ, x : T ] � [Γ ], x : [T ]

Intuitively, this translation maps λ-abstractions to linear λ-abstractions, where the ar-
gument is forced to be of exponential type, and thus can be let-bound to a unrestricted
variable ux. We write ux for a fresh unrestricted variable encoding the (linear) vari-
able x. The translation of application enforces the invariant, resulting in an application
of the translated terms where the argument is prefixed with !. The correctness of the
translation can be shown by a straightforward induction on typing.

Theorem 2.5 (Correctness of the [·] Translation). If Γ ; M : T then [Γ ]; · ; [M ] :
[T ].

The second translation, which we denote as the (·)∗ translation (of which Girard cu-
riously remarked: “This boring translation is reminiscent of the modal translation of
intuitionistic logic”) is slightly more involved, being inductively defined using an auxil-
iary translation, denoted by (·)+. The idea behind this translation is that all components
of composite types are prefixed with a !, which results in the following inductive defi-
nition on types, terms and contexts, given below.

Definition 2.6 (The (·)∗ Translation)

(T )∗ � !T+

(T → S)+ � T ∗ � S∗

(τ)+ � τ

(x)∗ � !ux
(λx : T.M)∗ � !(λ̂x : !T+. let !ux = x inM∗)

(M N)∗ � (let !u =M∗ in u)N∗

(Γ, x : T )+ � (Γ )+, x : T+
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Similar to the previous translation, we can show the correctness of the translation
through a straightforward induction on typing.

Theorem 2.7 (Correctness of the (·)∗ Translation). If Γ ;M : T then Γ+; · ;M∗ :
T ∗ and Γ+; · ;M+ : T+.

Using the two translations given above, we can take any well-typed λ-calculus term
and translate it to a corresponding well-typed linear λ-calculus term (we omit type
annotations in abstractions for readability purposes). For instance, the redex (λx.M)N
can be translated into the following linear terms (we denote by −→ the linear λ calculus
operational semantics, as given in Def. 3.1 – by-name application, by-value let binding,
where the values are λ-abstractions and terms of the form !M ):

[(λx.M)N ] = (λ̂x. let !ux = x in [M ]) (![N ])
−→ let !ux = ![N ] in [M ]
−→ [M ]{[N ]/ux}

((λx.M)N)∗ = (let !u = !(λ̂x. let !ux = x inM∗) in u)N∗

−→ (λ̂x. let !ux = x inM∗)N∗

−→ let !ux = N∗ inM∗

As can be seen in the example reductions above, the [·] translation induces a call-by-
name reduction strategy on λ terms, while the (·)∗ translation induces call-by-value.
These observations are made precise by Maraist et al. [15].

Our goal is to ultimately translate a λ-calculus term to a π-calculus process, which
as we detail in the following sections, is achieved by translating a linear λ-calculus term
into a sequent calculus proof and then interpreting the result as a session-typed process.

2.2 From Natural Deduction to Sequent Calculus

The Curry-Howard correspondence of linear logic and the linear λ-calculus allows us
to move interchangeably between typing derivations and linear logic proofs in natural
deduction form. Another typical form of presenting logic is through a sequent calculus.
A sequent calculus consists of a collection of so-called left and right rules which de-
fine how to use and prove a particular proposition, respectively. We can further equip
a sequent calculus with a faithful proof term assignment, where proof terms serve as
compact notation for proofs. The rules for a sequent calculus for linear logic (in par-
ticular, the fragment with implication and exponential) are given below, defining the
judgment Γ ;Δ⇒ D : A, meaning that D is a proof term for the proposition A, under
the linear assumptions recorded in Δ and the unrestricted assumptions recorded in Γ .
This formulation is usually called Dual Intuitionistic Linear Logic (DILL) [1].
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Definition 2.8 (Sequent Calculus for DILL)

Γ ;x : A⇒ id x : A
id

Γ ;Δ,x : A⇒ D : B

Γ ;Δ⇒ �R (x.D) : A� B
�R

Γ ; · ⇒ D : A

Γ ; · ⇒ !R D : !A
!R

Γ ;Δ⇒ D : A Γ ;Δ′, y : B ⇒ E : C

Γ ;Δ,Δ′, x : A� B ⇒ �L x D (y. E) : C
�L

Γ, u : A;Δ⇒ D : C

Γ ;Δ,x : !A⇒ !L x (u.D) : C
!L

Γ, u : A;Δ,x : A⇒ D : C

Γ, u : A;Δ⇒ copy u (x.D) : C
copy

Γ ;Δ⇒ D : A Γ ;Δ′, x : A⇒ E : C

Γ ;Δ,Δ′ ⇒ cut D (x.E) : C
cut

Γ ; · ⇒ D : A Γ, u : A;Δ⇒ E : C

Γ ;Δ⇒ cut! D (u.E) : C
cut!

It is possible to translate proofs in natural deduction style to sequent calculus, and there-
fore by the Curry-Howard correspondence we can straightforwardly translate linear
λ-terms to the sequent calculus proof terms given above. Intuitively, the introduction
forms (λ̂ abstractions and !) are directly translated to the proof terms corresponding
to the respective right rules. The elimination forms (application and let) are translated
to instances of cut with their respective left rules. This translation is defined below,
written as [[ · ]], and is the computational content of the following theorem (modulo
α-equivalence).

Theorem 2.9. If Γ ;Δ ;M : A then Γ ;Δ⇒ [[M ]] : A.

Definition 2.10 (The [[ · ]] Sequent Calculus Translation)

[[x]] � id x

[[u]] � copy u (x. id x)

[[λ̂x.M ]] � �R (x. [[M ]])

[[M N ]] � cut [[M ]] (x.�L x [[N ]] (y. id y))

[[!M ]] � !RM

[[let !u =M in N ]] � cut [[M ]] (x. !L x (u. [[N ]]))

The relevance of this translation step is made clear in the next section, where we detail
a tight correspondence between sequent calculus proofs and session-typed processes in
a π-calculus.

There is also a more complex translation from natural deduction to sequent calcu-
lus, which eliminates some unnecessary instances of cut. An instance cut in a proof
corresponds to a process reduction and so this other translation can be seen as a more
optimized version, with fewer administrative reduction steps.

2.3 Linear Logic and Session Types

It turns out that there exists a tight correspondence between linear logic proofs and ses-
sion typed π-calculus processes [6,20]. We summarize it here in the following rules for
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the fragment of linear logic we are interested in. Letters P,Q,R range over processes,
as defined below.

Definition 2.11 (π-calculus Processes)

P,Q ::= 0 | P |Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P | [y ↔ x]

The process calculus is mostly standard. 0 stands for the terminated process, P |Q is
the parallel composition of processes P andQ, (νy)P denotes the binding of a channel
name y whose scope is P , x〈y〉.P denotes the process that outputs y along channel x
and continues as P , x(y).P stands for the process that inputs along x and binds the
received value to y in P , !x(y).P denotes replicated input and [x ↔ y] is a channel
forwarding construct, that equates channel names x and y [20]. We consider it here as
a primitive construct, even if in the typed language it may be encoded by a copycat
process generated by expanding proofs of non-atomic identity axioms as shown in [6],
in a way closely related to the internal mobility translation of [18].

The operational semantics of the processes given above are defined modulo a struc-
tural congruence relation, written P ≡ Q.

Definition 2.12 (Structural Congruence). Structural congruence is the least congru-
ence satisfying the following rules

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | (Q |R) ≡ (P |Q)|R P |Q ≡ Q |P
x %∈ fn(P ) ⇒ P |(νx)Q ≡ (νx)(P |Q) (νx)0 ≡ 0
(νx)(νy)P ≡ (νy)(νx)P [y ↔ x] ≡ [x↔ y]

All structural congruence rules given above are standard. The reduction rules for pro-
cesses are as follows.

Definition 2.13 (Operational Semantics of Processes)

x〈y〉.Q | x(z).P → Q | P{y/z}
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔ y] | P ) → P{y/x} (provided x %= y)

Q→ Q′ ⇒ P | Q→ P | Q′

P → Q⇒ (νy)P → (νy)Q

P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q

The typing judgment for processes is Γ ;Δ ⇒ P :: z : A, where P is a process that
implements a session of type A on channel z, when composed with processes imple-
menting the sessions in Γ and Δ. All channel names in Γ , Δ and z must be mutually
distinct, and we may implicitly rename bound names to maintain this invariant.
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Γ ;x : A⇒ [x↔ z] :: z : A
id

Γ ;Δ,x : A⇒ P :: z : B

Γ ;Δ⇒ z(x).P :: z : A� B
�R

Γ ; · ⇒ P :: x : A

Γ ; · ⇒ !z(x).P :: z : !A
!R

Γ, u : A;Δ⇒ P :: z : C

Γ ;Δ,x : !A⇒ P{x/u} :: z : C
!L

Γ ;Δ⇒ P :: y : A Γ ;Δ′, x : B ⇒ Q :: z : C

Γ ;Δ,Δ′, x : A� B ⇒ (νy)x〈y〉.(P | Q) :: z : C �L

Γ, u : A;Δ,x : A⇒ P :: z : C

Γ, u : A;Δ⇒ (νx)u〈x〉.P :: z : C
copy

Γ ;Δ⇒ P :: x : A Γ ;Δ′, x : A⇒ Q :: z : C

Γ ;Δ,Δ′ ⇒ (νx)(P | Q) :: z : C cut

Γ ; · ⇒ P :: x : A Γ, u : A;Δ⇒ Q :: z : C

Γ ;Δ⇒ (νu)(!u(x).P | Q) :: z : C cut!

A� B corresponds to the session input type (i.e. input a session of typeA and proceed
asB), !A corresponds to a persistent session of typeA, while cut corresponds to session
composition (and cut elimination to reduction). The left rules indicate how to use a
session of a given type. The translation of a sequent calculus proof term D to a well-
typed process D̂z is a straightforward mapping of the sequent calculus rules to the
appropriate typing rules, singling out a distinguished channel name z.

Definition 2.14 (Translation from Sequent to Type Derivations). The translation of
a proof term D to a process D̂z , written D � D̂z is defined by:

id x � [x↔ z]

�R (y.D) � z(y).D̂z

�L x D (x.E) � (νy)x〈y〉.(D̂y | Êz)

!R D � !z(y).D̂y

!L x (u.D) � D̂z{x/u}
copy u (y.D) � (νy)u〈y〉.D̂z

cut D (x.E) � (νx)(D̂x | Êz)

cut! D (u.E) � (νu)((!u(y).D̂y) | Êz)

The correctness of the translation, and other results regarding the correspondence men-
tioned above, including some discussion on channel linking are detailed in [6].

Finally, by composing the [[ · ]] and process translations, we can translate a linear
λ-calculus term to a process (we refer to this composition as [[ · ]]z , where z is the name
on which the process implements the appropriate session).
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Definition 2.15 (The [[ · ]]z Translation)

[[x]]z � [x↔ z]

[[u]]z � (νx)u〈x〉.[x ↔ z]

[[λ̂x.M ]]z � z(x).[[M ]]z
[[M N ]]z � (νx)([[M ]]x | (νy)x〈y〉.([[N ]]y | [x↔ z]))

[[!M ]]z � !z(x).[[M ]]x
[[let !u =M in N ]]z � (νx)([[M ]]x | [[N ]]z{x/u})

And thus we have the following correctness theorem, which follows straightforwardly
from the composition of Theorems 2.9 and the correctness of the process translation.

Theorem 2.16. If Γ ;Δ ;M : A then Γ ;Δ⇒ [[M ]]z :: z : A

2.4 Composing the Translations

We can now compose the translations from Sections 2.1 and 2.2 with the translation
[[ · ]]z defined above to give translations from the λ-calculus to the session typed process
calculus of the previous section. Note that while our typing discipline requires channel
linking (arising from the proof theory), this is done without loss of generality, given that
it is possible to encode this behavior using a forwarding process [18,4].

Copying Translation. Let us first consider the composition of [·] with [[ · ]]z , which we
will write as [·]z (we will omit the translation of types and contexts since those are the
same as in [·]):

[x]z � (νx)ux〈x〉.[x↔ z]

[λx.M ]z � z(x).(νy)([x↔ y] | [M ]z{y/ux})
[M N ]z � (νw)([M ]w | (νy)w〈y〉.((!y(x).[N ]x) | [w ↔ z]))

By composing the translation correctness theorems (Theorems 2.5 and 2.16) we obtain
the following correctness result.

Theorem 2.17. If Γ ;M : T then [Γ ]; · ⇒ [M ]z :: z : [T ].

It is known that the [·] translation from the λ-calculus to the linear λ-calculus corre-
sponds to a call-by-name evaluation strategy. We can observe the evaluation strategy
induced by our [·]z translation by considering the process in the image of the translation
of a β-redex (we write →n for the n-fold iteration of →):

[(λx.M)N ]z = (νw)(w(x).(νy′)([x↔ y′] | [M ]w{y′/ux})
| (νy)w〈y〉.((!y(x).[N ]x) | [w ↔ z]))

→ (νw)(νy)(νy′)([y ↔ y′] | [M ]w{y′/ux}
| !y(x).[N ]x | [w ↔ z])

→2 (νy)([M ]z{y/ux} | !y(x).[N ]x)

As we can see above, in the [·]z translation, a β-redex is translated to a process that
is the parallel composition of the translation of the body M of the λ-abstraction and a
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replicated instance of the argument N (both sharing a private channel y, along which
they can communicate). For each occurrence of the variable x inM , the translation will
generate outputs along y that trigger the evaluation of a new copy ofN . For this reason,
we call the evaluation strategy induced by [·]z a copying evaluation strategy.

This translation is surprisingly similar to that originally presented by Milner in [17]
as the call-by-name translation of the λ-calculus. Milner’s untyped translation is (we
use a different notation than Milner’s since it overlaps with our [[ · ]] translation):

�x z � x〈z〉
�λx.M z � z(x).z(v).�M v
�M N z � (νw)(�M w | (νy)w〈y〉.w〈z〉.(!y(x).�N x))

Milner’s additional communication steps fundamentally play the role of our channel
links. In the translation of a variable, we output a fresh name which we then link to the
free name z, while Milner’s outputs z outright. In the translation of application, there is
an output of a fresh name y (that will be used by the function to receive its argument)
and then an output of the free name z, which is the distinguished channel of the trans-
lation. We avoid this second output by, after sending the fresh channel that will be used
to communicate with the argument, linking the name w with the distinguished name z.
In essence, Milner’s translation is fundamentally the same as ours (modulo some minor
syntactical issues). As mentioned above, it is possible to eliminate channel linking in
the translation by replacing the explicit linking construct with a forwarder process in
the style of [18,4], or by appealing to a natural notion of observational equivalence.
Nonetheless, our typing discipline requires the channel links, thus typing modulo this
notion of observational equivalence is left for future work. The fact that his untyped
translation, in some sense, predicted the one that can be derived by proof theory, further
acknowledges Milner’s foresight.

However, we are motivated by the proof theoretical underpinnings of type preserv-
ing translations, which is in some sense a more canonical approach to the problem.
Furthermore, Milner’s goal was to encode call-by-name and call-by-value as closely as
possible, using the π-calculus. Our approach just examines the result of standard proof-
theoretic translations and observes that they are distinguished not so much by evaluation
order, but by the degree of sharing.

Sharing Translation. Similarly, we can compose (·)∗ with [[ · ]]z , written [[ · ]]∗z , as
follows:

[[x]]
∗
z � !z(a).(νx)ux〈x〉.[x↔ a]

[[λx.M ]]
∗
z � !z(a).a(x).(νy)([x↔ y] | [[M ]]

∗
a{y/ux})

[[M N ]]
∗
z � (νw)((νx)([[M ]]

∗
x | (νv)x〈v〉.[v ↔ w]) |

(νy)w〈y〉.([[N ]]
∗
y | [w ↔ z]))

As for the previous translation, we can compose Theorems 2.7 and 2.16 to obtain the
correctness of the translation.

Theorem 2.18. If Γ ;M : A then Γ+; · ⇒ [[M ]]
∗
z :: z : A∗.

The (·)∗ translation from λ to linear λ terms corresponds to call-by-value. However, let
us consider the translation of a β-redex in the [[ · ]]z translation:
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[[(λx.M)N ]]
∗
z = (νw)((νx)(!x(a).a(b).(νy′)([b↔ y′] | [[M ]]

∗
a{y′/ux})

| (νv)x〈v〉.[v ↔ w]) | (νy)w〈y〉.([[N ]]
∗
y | [w ↔ z]))

→2 (νw)(νy)(w(b).(νy′)([b↔ y′] | [[M ]]
∗
w{y′/ux})

| w〈y〉.([[N ]]∗y | [w ↔ z]))

→3 (νy)([[M ]]∗z{y/ux} | [[N ]]∗y)

In the redex above, we obtain the translation of the abstraction bodyM in parallel with
the translation of the argument N (sharing the private name y for communication).
Unlike in the copying reduction strategy, the reductions of the argument and the ab-
straction body can proceed concurrently, generating no extra copies ofN (note that this
translation explicitly guards λ-abstractions and variables with replication). Since the
reductions of N are shared by all variable occurrences in a λ-abstraction, we call this
a sharing evaluation strategy. This strategy is that of futures in Multilisp [10], in which
the body of a function can be evaluated in parallel with its argument, synchronizing
upon the parameter variable.

One interesting fact about this viewpoint of sharing vs copying, is that in the sharing
translation, we obtain what can be understood as call-by-value and call-by-need as two
extremal execution traces of the resulting processes (i.e., on one extreme we reduce a
function argument all the way to a value, and only after that we begin to reduce the
abstraction body – call-by-value; on the other extreme we never reduce the argument
until it is actually needed by the abstraction body – call-by-need).

As was previously mentioned, the (·)∗ translation was discovered to induce a call-by-
value reduction strategy at the linear λ-calculus level [15]. One may then wonder why
our [[ · ]]∗z translation (which makes use of (·)∗) is “looser”, in some sense, given that it
does not force arguments to reduce to values before reductions in an abstraction body
can take place. The answer to this question lies in the translation of the let !u =M in N
construct, since it does not guard the processes in the image of the translation of M or
N , allowing for reductions to take place in both. A careful look at the terms in the image
(·)∗ reveals that the β redex (λx.M)N translates (after some administrative reduction
steps) to let !u = N∗ inM∗, explaining the apparent discrepancy mentioned above.

Moreover, the logical basis of our approach provides the following property, relating
type inhabitance in the λ-calculus and the session-typed π-calculus.

Theorem 2.19. For any type T in the simply typed λ-calculus, T is inhabited iff [T ]
and T ∗ are inhabited.

Proof. The forward direction follows from Theorems 2.17 and 2.18, respectively, dis-
carding the proof terms. The backward direction follows from the correctness of the
logical translations, which are standard in the literature (the process to λ-term transla-
tions can be straightforwardly extracted from these proofs).

3 Soundness and Completeness

The correctness results we have presented are related to the well-formedness (through
typing) of the terms in the image of each translation. We will now present a soundness
and completeness result for the dynamic behavior of the translations. Our translation
from the linear λ-calculus to process calculus is looser than one might initially expect,
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that is, it allows for reductions that are not typical in the standard operational semantics
of the linear λ-calculus. This means that w.r.t the standard operational semantics of the
linear λ-calculus, our translation should be able to simulate all reductions, but the con-
verse cannot possibly hold. We now make this remark precise by first stating the typical
operational semantics for the linear λ-calculus and showing a completeness result for
our translation (i.e., reductions in λ-terms can be matched by a small sequence of reduc-
tions in the processes in the image of the translation). We then extend the operational
semantics with a rule that allows for reductions under the let-binder, showing the new
operational semantics to be observationally equivalent to the standard reduction rules
in a precise sense. With this extended rule, we show soundness of our translation with
respect to the operational semantics.

Definition 3.1 (Linear λ-calculus Operational Semantics)

M −→M ′

M N −→M ′N (λx.M)N −→M{N/x}
M −→M ′

let !u =M in N −→ let !u =M ′ in N let !u = !M in N −→ N{M/u}
To accurately state the desired theorems, we need to characterize the relation between
the substitutive behavior on the λ-calculus, where variables are substituted by λ-terms,
and the π-calculus, where names are substituted by names. The idea is that instead
of plugging in a term for a variable, we can think of names as “references” to a term
(a channel name along which we communicate with a parallel process that encodes a
given term). More precisely, we want to capture the “equivalence” of [[M{N/x}]]z and
(νx)([[M ]]z | [[N ]]x), where x is a linear variable in M . For the unrestricted case, a
similar equivalence is required, but using replicated processes. We combine these two
key insights in the following relation.

Definition 3.2 (Substitution Lifting). For a given linear λ-term M and process P ,
we say that P lifts the substitutions of M , written M ) P , if P ≡ (νxi, ui, yi)([[R]]z |
[[Wi]]xi

| !ui(x).[[Ei]]x) andM = R{Wi/xi, Ei/yi}.

Intuitively, the relation above holds if P can be decomposed in such a way that we ob-
tain the parallel composition of [[R]]z , which is the translation of a λ-term R on which
no substitutions are actually carried out, and possibly many other processes that encode
the λ-terms that are to be substituted into R (either linearly or in an unrestricted man-
ner), to obtain the given term M . We now state the following completeness result for
our translation of the linear λ-calculus.

Theorem 3.3 (Completeness of Translation). If Γ ;Δ ; M : A and M −→ N then
[[M ]]z →∗ P such thatN ) P .

As mentioned above, the processes in the image of our translation induce more non-
determinism in the operational semantics of the linear λ-calculus. In particular, the pro-
cess resulting from the translation of the term let !u =M in N allows for reductions to
take place in both the translation of M and N , while the operational semantics of Def.
3.1 do not. However, these extra reductions do not change the observable outcome of a
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λ-term, in a very precise sense. Consider the following operational semantics, consist-
ing of the rules of of Def. 3.1 extended with an additional rule that allows for reductions
under the let-binder:

Definition 3.4 (Extended Operational Semantics)

M −→M ′

M "−→M ′
N "−→ N ′

let !u =M in N "−→ let !u =M in N ′

If we consider observables to be values (which is the standard observable in functional
languages), the two operational semantics are equivalent in our typed setting. This can
be made precise with the following theorem.

Theorem 3.5. M −→∗ V iffM "−→∗ V , where: V ::= !M | λx : T.M

Proof. The left to right direction is immediate. From right to left, the idea is that we
can delay all the reductions of N in the additional rule until after M reduces to a term
of the form !M and the substitution into N takes place.

Theorem 3.6 (Soundness of Translation). If [[M ]]z → P , with Γ ;Δ ; M : A then
there is Q andN such that P →∗ Q,M "−→ N and N ) Q

Given these two results, we can see that sharing and copying reduction arises from
the typing discipline enforced by each translation, given the operational semantics for
the linear λ-calculus considered above. This validates the translation from the linear
λ-calculus to the π-calculus, and given that the translations from the λ to the linear λ-
calculus have been shown to be sound and complete w.r.t the operational semantics in
[15], these results extend to our full translations.

4 Concluding Remarks

There is a substantial body of work on the connection of functional and concurrent
programming, both from the concurrency and proof theory communities. Milner [17]
developed two embeddings of the λ-calculus in the π-calculus, corresponding to call-
by-value and call-by-name. His focus was mainly operational, while ours is strictly
driven by the logical considerations we have alluded to previously. Along these lines,
Sangiorgi and Walker [19] provide an uniform presentation of encodings for call-by-
value (in parallel or non parallel form), as well as call-by-need, but do not address
sharing versus copying as we do here. Boudol’s [5] work on the λ-calculus with mul-
tiplicities (arising from the study of Milner’s call-by-name embedding), consists of a
λ-calculus with inherently non-deterministic and parallel constructs for function ap-
plication, drawing inspiration on many ideas from linear logic but not studying the
deeper connections of the two systems. Yoshida et al. have studied sequentiality in the
π-calculus [3] by introducing a typing discipline that allows for direct interpretations of
call-by-value and call-by-name, presenting a full abstraction result for an encoding of
PCF and connections to game semantics. This contrasts with our work which focuses
on the concurrency and parallelism that can be extracted from π-calculus encodings,
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instead of using the π-calculus as a tool for the study of sequential computation. Fur-
thermore, their work does not explore connections with logic.

On the proof theory side, the connection of linear logic and concurrency has been
explored in some detail, using proof net-like structures. Mazza’s work on Multiport
Interaction Nets [16], which are a non-deterministic extension of Interaction Nets [13],
shows that these are a model of concurrent computation by encoding the full π-calculus.
Faggian and Piccolo [7] perform a similar development for Ludics and the finitary linear
π-calculus. A correspondence between polarised proof-nets and an IO-typed π-calculus
is given in [11]. The line of work summarized above is quite different from ours, in that
it is mostly concerned with semantic models for concurrency, derived from linear logic.

In work much closer to our own, Beffara [2] presents embeddings of the λ-calculus
and a restricted version the λμ-calculus in a π-calculus derived from an interpretation
of second-order classical linear logic. The λ-calculus translation is closely related to
our copying translation. This work provides a family of call-by-value and by-name
translations, in both classical and intuitionistic settings, and explores the duality of both
reduction strategies by exploring the dualities of classical (linear) logic, while our work
focuses on the issues of sharing and copying that can be derived from translations in the
purely intuitionistic (and non-higher order) setting.

Finally, the work on Multilisp [10], which is an extension of Lisp with explicit par-
allelism, pioneered the concept of futures, which allow for the concurrent execution of
function arguments and bodies. Our sharing reduction strategy captures this concept,
by enabling such parallel execution, and thus validates the ideas of Multilisp in a typed
setting, motivated by proof theory.

Conclusion and Future Work. We have developed two logically motivated embed-
dings of the simply-typed λ-calculus in a session-typed π-calculus, using standard
techniques for translating natural deduction into sequent calculus and a concurrent in-
terpretation of the latter. The logical foundation provides a clean and canonical account
of each step of our translation, relying only on well-established techniques from proof
theory and their interpretation as functional programming. We have shown that the two
translations we consider induce a copying and a sharing reduction strategy (i.e. parallel
evaluation of shared sub-expressions – no implementation of the λ-calculus in the π-
calculus in this sense has been proposed before), respectively, providing a logical under-
standing of these concurrent evaluation strategies. Finally, the typical call-by-value and
call-by-need sequential reduction strategies can be understood as two extremal traces
of the sharing reduction strategy, where in the former all reductions on arguments are
done before those of the function body, and in the latter the evaluation of the argument
is postponed until it is needed in the function body. For future work, we plan on investi-
gating further the issues of observational equivalence at the process level and its impact
on the translations, as well as a natural generalization to dependently typed languages,
using dependent session types.

Acknowledgments. Support for this research was provided by the Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through
the Carnegie Mellon Portugal Program, under grants SFRH / BD / 33763 / 2009, IN-
TERFACES NGN-44 / 2009, and CITI.



360 B. Toninho, L. Caires, and F. Pfenning

References

1. Barber, A., Plotkin, G.: Dual Intuitionistic Linear Logic. Technical Report LFCS-96-347.
Univ. of Edinburgh (1997)

2. Beffara, E.: Functions as proofs as processes. CoRR, abs/1107.4160 (2011)
3. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-Calculus. In: Abramsky, S. (ed.)

TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)
4. Boreale, M.: On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoreti-

cal Computer Science 195(2), 205–226 (1998)
5. Boudol, G.: The lambda-calculus with multiplicities. Technical report, INRIA (1993)
6. Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions. In: Gastin,

P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236. Springer, Hei-
delberg (2010)

7. Faggian, C., Piccolo, M.: Ludics is a Model for the Finitary Linear pi-Calculus. In: Della
Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 148–162. Springer, Heidelberg (2007)

8. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
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Abstract. We consider conditional reactive systems, a general abstract frame-
work for rewriting, in which reactive systems à la Leifer and Milner are enriched
with (nested) application conditions. We study the problem of deriving labelled
transitions and bisimulation congruences from a reduction semantics. That is, we
synthesize interactions with the environment in order to obtain a compositional
semantics. Compared to earlier work we not only address the problem of deriving
information about the (minimal) context needed to obtain a full left-hand side and
thus be able to perform a reduction, but also generate conditions on the remaining
context.

1 Introduction

Given the reduction semantics of a process calculus, it is often hard to define a labelled
transition system in such a way that the resulting bisimilarity is a congruence, in order
to obtain a compositional semantics. That is, we want to ensure that subsystems can
be replaced by behaviourally equivalent subsystems, without changing the overall be-
haviour. In [15,14] Leifer and Milner showed how to generate such labels in the general
framework of reactive systems (an abstract setting for rewriting), using the notion of
idem pushout squares (IPOs). This idea has been further developed by other authors
[8,20,7]. The underlying idea is simply to label transitions with the minimal context
required by a process/term to perform a transition. That is, using the standard example,

a CCS process a.P can do a move a.P |a.Q−→ P | Q, with the meaning that the context
| a.Q is provided by the environment.
Since the existence and derivation of IPOs is a non-trivial task (due to tricky auto-

morphism problems), Sassone and Sobociński studied the definition of IPOs in a bi-
categorical setting [20] (so-called groupoidal idem pushouts). Inspired by this line of
work we have adapted the approach to label derivation for graph transformation systems
[3,4] (borrowed contexts), for which no encompassing theory of labelled transitions and
bisimulation was available until this point.

The overall approach works fine in a setting where left-hand sides are simply re-
placed by right-hand sides, but no extra requirements on the surrounding context are
made. Such requirements or application conditions not only require the existence of
a left-hand side, but ask for the presence or (more importantly) absence of certain
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components or items in the remaining system. The paper [15] introduced reactive sys-
tems together with the notion of reactive contexts, which allow to impose some limited
conditions on the context, but reactive contexts are not dependent on the rule and fur-
thermore they have to satisfy the fairly strict requirement that the decomposition of a
reactive context always yields two reactive contexts.

In graph transformation there is a well-developed theory of nested application
conditions [19,9]. While such conditions do not seem to be strictly necessary for pro-
gramming formalisms (i.e. the setting where process calculi are often used), they are
ubiquitous in specification formalisms, such as languages describing UML model trans-
formations (see for instance [5]). On the other hand, a theory of bisimulation is ex-
tremely helpful to show behaviour preservation in model transformation, i.e., to prove
that a source model is transformed into a behaviourally equivalent target model. A suc-
cessful proof strategy is to show that every left-hand side of a transformation rule is
bisimilar to the corresponding right-hand side and then rely on the fact that bisimilarity
is a congruence. However, the presence of application conditions, especially negative
application conditions which destroy monotonicity, are a severe problem, in fact the ma-
jor problem we had to deal with in a case study where we compared proof techniques
for showing semantics preservation in model transformation [11].

Hence we believe that it is important to study the theory of bisimulation congru-
ences in the setting of reactive systems equipped with application conditions, so-called
conditional reactive systems which we introduced in [2]. In [18] we already studied
bisimulation congruences for graph transformation systems with negative application
conditions. The present paper generalizes this in several respects: (i) Generalizing neg-
ative application conditions we use nested application conditions; (ii) We work in the
more general framework of reactive systems instead of graph transformation systems,
which are a specific instance; (iii) Instead of fixing a specific way to derive “minimal”
context (via IPOs or borrowed context diagrams as in [4,18]) we define the general (and
very simple) notion of representative squares, which leads to the same results (at least
for saturated equivalences).

We define a notion of bisimilarity, show that it is a congruence and study it by giv-
ing an alternative characterization, which is less practical, but more intuitive. Further-
more we compare with other (different) notions of behavioural equivalence. We will
here study saturated bisimilarity (as compared to IPO-bisimilarity), where a transition
labelled with a minimal context can be answered by a transition with an arbitrary (pos-
sibly non-minimal) context (see [1]).

2 Conditional Reactive Systems

2.1 Reactive Systems with Conditions

We now define the notion of reactive systems, first introduced in [15,14] for label deriva-
tion and the definition of bisimulation congruences.
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Definition 1 (Reactive System Rules). Let C be a category with a distinguished object
0 (not necessarily initial). A reactive system rule is a pairR = ((, r) of arrows – called
left-hand side and right-hand side respectively – with (, r : 0 → I for some object I .
Let R be a set of rules. We say that an arrow a : 0 → J reduces to a′ : 0 → J with the
rules in R (in symbols: a �R a′ or simply a � a′) if there exists a rule (r, () ∈ R
with (, r : 0 → I and an arrow c : I → J such that a = (; c and a′ = r; c.1

In [15] it is additionally required that c is contained in a subcategory of reactive con-
texts, which, in our setting, will be replaced later by the requirement that c satisfies a
given condition.

An important class of reactive systems can be defined over a base category D which
has all pushouts along monos and in which pushouts preserve monos. Then we define as
C = ILC (D) the category which has as objects the objects of D and as arrows cospans

of the form A
f
� B

g← C (called input-linear cospans, because the left arrow f is a
mono), where the middle object is taken up to isomorphism. Composition of cospans is
performed via pushouts.

In several of the examples we will use as base category the category D = Graphfin
which has finite graphs (with node and edge labels) as objects and graph morphisms as
arrows. Reactive systems over ILC (Graphfin) coincide exactly with DPO graph trans-
formation systems with injective matches (see [21]). Consider the figure below: in DPO

rewriting a rule is given by a span L �′← I r′→ R of arrows in Graphfin and a graphG
can be transformed into a graph H if we can find a graph D and morphisms such that
the inner two squares (drawn with gray arrows) are pushouts. (Intuitively every item of
the left-hand side L not contained in I is removed from G by a pushout complement
and the right-hand sideR is glued to the resulting graphD.) By completing the diagram
with empty graphs (corresponding to the distinguished object 0) and the dotted arrows,
we obtain two commuting triangles in the cospan category (black arrows), which cor-
respond to the conditions for reactive systems (a = (; c, a′ = r; c). The objects that are
rewritten in Graphfin are the inner objects of the cospans a and a′.

∅ L I R ∅

G D H

∅

(′ r′

( r

a a′

c

In the rest of this section we will summarize definitions and results from [2]. We
will first define conditions, similar to the presentation in [19,9], as tree-like structures,
where nodes are annotated with quantifiers and objects and edges are annotated with
arrows.

1 For arrows f : A → B and g : B → C we use the notation f ; g for their composition, that is
f ; g : A → C.
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Definition 2 (Conditions). Let C be a category. A condition (in C) is a triple A =
(A,Q, S) where

– A is an object of C (called the root object of A or RO(A)),
– Q is a quantifier (either ∀ or ∃) and
– S is a finite set of pairs (A′, f) such that A′ is a condition and f : A→ RO(A′) is

a C-arrow.

The pair (A′, f) will be denoted by A
f−→ A′. A condition A can be viewed as a tree,

with RO(A) as the root and edges labelled with arrows.

Definition 3. For all conditions A, all objects C and all arrows c : RO(A) → C we
define a satisfaction relation as follows:

c |= (A, ∀, S) iff for every (A
f−→ A′) ∈ S and every arrow α : RO(A′) → C

such that f ;α = c we have α |= A′

c |= (A, ∃, S) iff for some (A
f−→ A′) ∈ S there is an arrow α : RO(A′) → C

with f ;α = c and α |= A′

In [2] we have shown that if we instantiate C with Graphfin we are equal in expressive-
ness to first-order logic on graphs. If we instantiate with ILC (Graphfin) instead we are
more expressive, since we are able to express the existence of isolated nodes directly in
the logics (even in the presence of infinitely many edge labels).

Given two conditions A,B with root object C we will in the following write A |= B
if for every arrow c (with source object C) c |= A implies c |= B. Furthermore we
write A ≡ B whenever A |= B and B |= A. Note that for many categories, for instance
for Graphfin and ILC (Graphfin) implication and equivalence will be undecidable, a
consequence of the undecidability of implication and equivalence in first-order logic.

Now, given a reactive system over C, it is natural to associate conditions with the
target object of left-hand and right-hand sides and to interpret them on the contexts.

Definition 4 (Rules with application conditions). Let C be a category with a distin-
guished object 0. A rule with application condition is a triple ((, r,B) where (, r : 0 → I
and B is a condition with root object I . We say that the rule is applicable to a : 0 → J
whenever a = (; c for some c : I → J such that c |= B. The result of the rule applica-
tion is r; c. Again we denote by �R (or simply �) the rewriting relation induced by a
set R of rules with application conditions.

Example 5. As a running example, we will introduce a simple message transportation
protocol in a network of nodes, using duplex as well as simplex connections. In both
cases, messages can only be transferred from node a to node b, whenever there is no
message on b, waiting to be processed. If b however has a buffer (or extra capacity),
it is possible to forward the message to b, even if there are already messages at b. To
model this, we choose the following graph representation: Nodes in the network are
(unlabelled) nodes in the graph; a simplex connection is a directed s-labelled edge; a
duplex connection is a a directed edge, labelled d; a message is anm-loop at that node.
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If the node has a buffer, we attach a c-loop. As category we choose ILC (Graphfin). To
describe the rules, we first give the following graphs:

S0 =
s

S1 = m
s

S2 = m
s

D0 =
d

D1 = m
d

D2 = m
d

C0 = C1 = c

Using these graphs, we can now give the set of rules:

PassS = (∅ → S1 ← S0, ∅ → S2 ← S0, CondS0)

PassD1 = (∅ → D1 ← D0, ∅ → D2 ← D0, CondD0)

PassD2 =
(∅ → D2 ← D0, ∅ → D1 ← D0, Cond

′
D0

)
where conditions are defined as follows, where trueA = (A, ∀, ∅):
CondS0 = (S0, ∀, {((C0, ∃, {(trueC0 , C0 → C1 ← C0)}) , S0 → S2 ← C0)})
CondD0 = (D0, ∀, {((C0, ∃, {(trueC0 , C0 → C1 ← C0)}) , D0 → D2 ← C0)})
Cond′D0

= (D0, ∀, {((C0, ∃, {(trueC0 , C0 → C1 ← C0)}) , D0 → D1 ← α − C0)})
All graph morphisms (apart from α) are induced by the edge labels and by the positions
of the nodes in the images above. The morphism α instead swaps the two nodes, in
order to ensure that the buffer is at the left node of the duplex edge (see rule PassD2).
The conditions can be read as follows: In all cases, where there is a message at the
target node, there must exist a c-loop at that node to make the rule applicable.

2.2 Representative Squares

We will now define the notion of representative squares (first introduced in [2]), which
describe representative ways to close a span of arrows. Such squares are intimately
related to idem pushouts [15] or borrowed context diagrams [4].

Definition 6 (Representative class of squares). A class κ of commuting squares in
a category C is called representative if κ satisfies the following property: for every
commuting square of C (such as the one consisting of f0, f1, g0, g1 on the left) there
exists a square in κ (consisting of f0, f1, h0, h1) and an arrow h : D → E which makes
the diagram commute (on the right).

A B

C

E

f0

f1
g0

g1

A B

C D

E

f0

f1
g0

g1

h0

h1
h
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For two arrows f0 : A→ B, f1 : A→ C we denote by κ(f0, f1) the set of pairs (h0, h1)
of arrows h0 : B → D and h1 : C → D such that f0, f1, h0, f1 form a representative
square in κ.

In the following, we fix a representative class κ of squares and we shall call every square
in κ representative. Also note that the class of all squares of C is representative. How-
ever, we will in the following require that for each pair a, b the set κ(a, b) is finite, which
means that the constructions described in Section 2.3 are effective since the finiteness
of the transformed conditions is preserved. In the following we will discuss possible
choices for the class of representative squares.

Pushouts: If we have a category where all pushouts exist, they are the most natural
candidate for representative squares and we can define that every class κ(a, b) contains
only one pair of arrows: a representative pushout. Unfortunately, pushouts do not exist
in many categories of interest.

Jointly epi squares: Consider the subcategory of an adhesive category [12] which con-
sists exactly of the mono arrows. Then, the class of all squares a, b, c, d where c, d are
jointly epi, is representative.

Idem pushouts: In a category where every commuting square contains an idem pushout
(IPO), the IPOs are a representative class of squares. IPOs were introduced in [15] for
the purpose of automatically deriving labels, specifying interactions with the environ-
ment in reactive systems, and bisimulation congruences.

IPOs are defined as follows: consider a commuting square as shown in 1 below such
that f0; g0 = f1; g1. A relative pushout (RPO) for this commuting square is a triple
h0, h1, h satisfying the following two properties: (i) commutativity: f0;h0 = f1;h1
and hi;h = gi for i = 0, 1 (see (2)); (ii) universality: for any h′0, h′1, h′ satisfying
f0;h

′
0 = f1;h

′
1 and h′i;h

′ = gi there exists a unique mediating arrow k such that
k;h′ = h and hi; k = h′i for i = 0, 1 (see (3)).

f0

f1 g0

g1

(1)

f0

f1 g0

g1

h0

h1 h

(2)

f0

f1 g0

g1

h0

h1

h

h′
0

h′
1

h′

k (3)

A commuting square as in Diagram (1) is an idem pushout (IPO) if the triple g0, g1,
id is a relative pushout for the same Diagram (1).

Note that in order to obtain the congruence results of [15] more properties of IPOs
than the one of Definition 6 are required.

Borrowed context squares: The category ILC (D), where D is adhesive, is of special
interest for the construction of IPOs, since it integrates nicely with double-pushout
(graph) rewriting as shown above. Unfortunately, this category does not have IPOs, due
to automorphism problems. One solution is to switch to a bicategorical setting [21,20],
another – that we are following here – is to give up the characterizations of the squares
via a universal property and concentrate on the relevant properties.
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∅ L I

G G+ C

J F K

j.e PO

PO PB

The borrowed context diagrams introduced in [4] (with the ex-
tensions introduced in [21]) can be seen as GIPOs (groupoidal
pushouts) in a bicategory and they are also representative squares
in our sense. A commuting diagram in the cospan category is a bor-
rowed context diagram if and only if it has the form of the diagram
on the right, where the left upper square is jointly epi (j.e.), the
right lower square is a pullback and the two remaining squares are
pushouts: The idea behind these borrowed context diagrams is exactly to close a span
of cospans in all minimal representative ways. If we assume that the right leg of all
cospans is the identity, then we are in the sub-case treated above, where we consider
jointly epi squares.

2.3 Operations on Conditions

We continue to recapitulate concepts and results from [2]: first we define boolean oper-
ations on conditions.

Definition 7 (Boolean Operations on Conditions)

Constants: For an object A define falseA := (A, ∃, ∅), trueA := (A, ∀, ∅).
Negation: For a condition of the form (A,Q, S) with Q ∈ {∀, ∃} we define:

¬(A, ∀, S) := (A, ∃, {A f−→ ¬A′ | (A f−→ A′) ∈ S})
¬(A, ∃, S) := (A, ∀, {A f−→ ¬A′ | (A f−→ A′) ∈ S})

Conjunction und Disjunction: For two conditions A,B with root object C we define:

A∧B := (C, ∀, {C idC−→ A, C idC−→ B}) A∨B := (C, ∃, {C idC−→ A, C idC−→ B})
The boolean operations satisfy the usual laws of propositional logic.

One central operation is the shift of a condition along an arrow (see also [17]). Intu-
itively a shift corresponds to a partial evaluation, where we assume that the arrows on
which the condition is to be evaluated are of the form ϕ; c for a fixed ϕ.

Definition 8 (Shift of a Condition). Given a fixed set κ of representative squares, the
shift A↓ϕ of a condition A = (A,Q, S) along an arrow ϕ : A → B is inductively
defined as follows:

A↓ϕ = (B,Q, {(B g−→ A′
↓ψ) | (A f−→ A′) ∈ S, (ψ, g) ∈ κ(f, ϕ)})

A B

A
A↓ϕ

ϕ

That is we perform a kind of partial evaluation on the con-
dition. In the following we will visualize conditions by tri-
angles and denote a shift as depicted on the right. We will
now give some properties of the shift operator.

Proposition 9 (Shift [2]). Given two arrows ϕ : A→ B and c : B → C, and a condi-
tion A with root object A, the following holds:

ϕ; c |= A ⇐⇒ c |= A↓ϕ

As a consequence shift satisfies the following laws:

A↓ϕ;ψ ≡ (A↓ϕ)↓ψ (A ∧ B)↓ϕ ≡ A↓ϕ ∧ B↓ϕ (A ∨ B)↓ϕ ≡ A↓ϕ ∨ B↓ϕ



368 M. Hülsbusch and B. König

2.4 Finiteness Assumptions

In the rest of the paper we will make the following two finiteness assumptions, which
hold for many categories, for instance for our example category ILC (Graphfin):

(i) for every pair of arrows a, b κ(a, b) is a finite set;
(ii) for two arrows a, c with the same domain, there are only finitely many arrows b

such that a; b = c.

Note that for (left-linear) cospans over graphs Condition (i) can be enforced by taking
borrowed context diagrams as representative squares. Furthermore Condition (ii) holds
for cospans (over finite graphs), since the middle object is taken up to isomorphism.

3 Label Derivation and Saturated Bisimilarity

Our aim is now to define behavioural congruences on reactive systems. As observed
by many authors before (e.g., in [15]), defining bisimulation relations on the reduction
semantics introduced in Section 2 is insufficient for a compositional semantics, since
in general the resulting equivalence will not be congruence. It is easy to construct an
example involving two arrows a, b which both can not perform a step, whereas a can do
a step when put into a suitable context c, but b can not.

Hence, it is necessary to incorporate potential interactions with the environment. We
will study this first for reactive systems without conditions, i.e., we will summarize
results from [15,1] with the new contribution that the IPO squares used in these papers
are replaced by the conceptually simpler representative squares.

We will start by defining context transitions, which describe that a component a can
do a step (and evolve to b) whenever the environment provides a context f . Repre-
sentative transitions are those context transitions that are generated by representative
squares.

Definition 10 (Context transitions, representative transitions). Let R be a set of re-

active system rules. Let a : 0 → I , f : I → J , a′ : 0 → J . We write a f→C a
′ whenever

a; f � a′, i.e. if there exists a rule ((, r) ∈ R such that a′ = r; c and a; f = (; c
for some arrow c. Such transitions are called context transitions. Furthermore we write

a
f→R r; c when in addition (f, c) ∈ κ(a, (). We call such transitions representative

transitions.

From the definitions it follows immediately that a f→R a′ implies a f→C a′. Here

we are not treating the case of simulating f→R-transitions by f→R-transitions, which
leads to a notion of equivalence analogous to IPO-bisimilarity. We take the position
that it should not be observable whether a context is minimal (resp. representative)
or not, leading to saturated bisimilarity defined below. Furthermore IPO-bisimilarity
admits, to our knowledge, no interesting alternative characterization (as in Section 5),
different from saturated bisimilarity. We state here, for completeness, that bisimilarity
on representative transition does not necessarily give rise to a congruence: it would
be necessary to impose some extra conditions on representative squares (such as the
composition and decomposition properties of IPOs established in [15]).
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Instead we concentrate on saturated semantics, requiring that every f→C -step is

matched by a f→C -step. Under normal circumstances, this notion is impractical, since
the resulting labelled transition system is infinitely branching. However, it can be easily
shown that saturated semantics coincides with semi-saturated bisimilarity where every
f→R-step is matched by a f→C -step. Since in many application areas of interest we can

guarantee that κ(a, b) is finite for every pair of arrows a, b, the transition relation f→R

is finitely branching and hence amenable to mechanization.

Definition 11 (Saturated/semi-saturated bisimilarity). Let R be a set of reactive sys-
tem rules. Let R be a symmetric relation, which relates pairs of arrows a, b with source
object 0 and identical target object. We say that R is a saturated bisimulation if when-

ever aR b and a f→C a′, then there exists b′ such that b f→C b′ and a′Rb′. Two
arrows a, b are called saturated bisimilar (a ∼SAT b) whenever there exists a saturated
bisimulation R with aR b.

A relation R is a semi-saturated bisimulation if whener aR b and a f→R a′, then

there exists b′ such that b f→C b
′ and a′Rb′. Two arrows a, b are called semi-saturated

bisimilar (a ∼ b) whenever there exists a semi-saturated bisimulation R with aR b.

Theorem 12 ([1])

1. Saturated and semi-saturated bisimilarity coincide, i.e., for two arrows a, bwe have
a ∼SAT 0b ⇐⇒ a ∼ b.

2. Furthermore saturated bisimilarity is a congruence, i.e., whenever we have
a, b : 0 → I with a ∼SAT b and c : I → J , then a; c ∼SAT b; c.

3. Finally, saturated bisimularity is the coarsest bisimulation on � that is also a
congruence.

The theorem is due to [1], however observe that we here employ representative squares,
different from the IPOs used in [1]. The main aim of this paper is to extend the theorem
to deal with conditions and to establish an analogous (but more complex) result in the
setting of conditional reactive systems, which generalizes Theorem 12. For this we
will first define a notion of labelled transitions and of (semi-)saturated bisimilarity for
conditional reactive systems.

4 Bisimilarity for Conditional Reactive Systems

We will first define notions of context and representative transitions in the presence of
(application) conditions.

Definition 13 (Context transitions, representative transitions (with application
conditions)). Let R be a set of reactive system rules with conditions. Let a : 0 → J ,

f : J → K , a′ : 0 → K and A be a condition with root objectK . We write a f,A−→C a
′

whenever there exists a rule ((, r,B) ∈ R such that a; f = (; c, a′ = r; c and A |= B↓c

for some arrow c. Furthermore we write a f,A−→R a
′ when in addition (f, c) ∈ κ(a, ()

and A = B↓c.
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0 I 0

J K

B

A

( r

a
a′

c

f

The figure to the right visualizes this situation. Note that
in the case of a context transition the square simply com-
mutes, whereas in case of a representative transition it must

be a representative square. Intuitively a f,A−→C a′ means
that a can be transformed to a′ whenever the environment
provides or “borrows” f and furthermore a; f is put into
a passive context (i.e. a context not participating in the re-

duction) satisfying A. On the other hand a f,A−→R a
′ means

that the context f is not arbitrary, but one of the represen-
tative contexts required for the move. In addition A is the weakest possible requirement

on the context. Clearly a f,A−→R a
′ implies a f,A−→C a

′.

Example 14. To illustrate one label derivation, in this case for a representative transition
(using borrowed context diagrams as the class of representative squares), we need the
following graphs:

G1 =
d

c F = m G′
1 =

d
c

m

We consider rule PassD2 (see Example 5) and the arrow a = ∅ → G1 ← C0

and take a borrowed context diagram where the two graphs G1, D2 overlap on the
d-edge (there are other possible representative squares). In this case we obtain as label
f (which describes the context to be borrowed) a cospan with F as the center graph
(i.e., we borrow a message on the right node). Furthermore we derive the condition
A = (Cond ′

D0
)↓c ≡ trueC0 . This reflects the fact, that a message at the right node

can always be transferred to the left node, since this node has unbounded capacity. In
addition, the resulting cospan a′ has graphG′

1 as center graph.

Definition 15 (Saturated/semi-saturated bisimilarity (with application condi-
tions)). Let R be a set of reactive system rules with conditions. Let R be a symmet-
ric relation, which relates pairs of arrows a, b with source object 0 and identical target

object. We say that R is a saturated bisimulation if whenever aR b and a f,A−→C a′,

then there exist arrows b′1, . . . , b
′
n and conditions A1, . . . ,An such that b f,Ai−→C b′i

with a′Rb′i for all i ∈ {1, . . . , n} and A |= ∨n
i=1 Ai. Two arrows a, b are called

saturated bisimilar (a ∼SAT b) whenever there exists a saturated bisimulation R with
aR b.

A relation R is a semi-saturated bisimulation if in the definition above a f,A−→C a′

is replaced by a f,A−→R a
′. Two arrows a, b are called semi-saturated bisimilar (a ∼ b)

whenever there exists a saturated bisimulation R with aR b.

We will motivate why several answering moves are allowed: whenever the first partner
makes a move, the second partner may have the chance to simulate this move, but the
used rule may depend on the context. For instance, assume that we want to show that a
single A-edge is bisimilar to a single B-edge under the presence of the following rules:
the A-edge can be (unconditionally) deleted, but there are two different deletion rules
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for the B-edge, one that requires the presence of C edge and another that forbids the
presence of a C-edge.

Observe that a move of a with condition A ≡ false can always be mimicked by b by
doing nothing, that is, an empty set of answering moves is allowed.

Note also, that in the definition of semi-saturated bisimulation above, in the answer-
ing moves of the form b f,Ai−→C b

′
i we can always assume that Ai is the weakest possible

condition, i.e., Ai is obtained by shifting the rule condition over the context and is hence
of the form A = B↓c for some B, c.

Furthermore it is straightforward to show that the relations ∼,∼SAT themselves are
also (semi-)saturated bisimulations.

Lemma 16. Let a : 0 → I , f : I → J , a′ : 0 → J and A be a condition with root

object J . In addition let d, c′, f ′ be arrows with d; f ′ = f ; c′. Then a f,A−→C a
′ implies

a; d
f ′,A↓c′−→ C a

′; c′. As a special case (if d = id and f ′ = f ; c′) we obtain that a f,A−→C

b implies a
f ;c′,A↓c′−→ C a

′; c′.

We will first show that semi-saturated bisimilarity is a congruence. It is easier to show
that saturated bisimilarity is a congruence (and the two coincide anyway), but we need
this result for the proof of Theorem 18.

Theorem 17 (Congruence). Semi-saturated bisimilarity is a congruence, i.e., when-
ever we have a, b : 0 → I with a ∼ b and c : I → J , then a; c ∼ b; c.
Note that we would not obtain a congruence result if we omitted conditions from the
labels: again, it is easy to think of an example with two arrows a, b where a contains a
left-hand side, but can not perform the step, since the condition requires the presence of
another item. On the other hand, b can not perform a reduction at all. Then both would
be bisimilar if we do not take conditions into account, but by putting them into a context
containing the item required by a we would obtain a pair of non-bisimilar arrows. As a
next step we show that saturated and semi-saturated bisimilarity coincide.

Theorem 18 (Saturated vs. semi-saturated bisimilarity). Saturated and semi-
saturated bisimilarity coincide, i.e., for two arrows a, b we have:

a ∼SAT b ⇐⇒ a ∼ b.

Example 19. Using the techniques presented in this paper, we can now show that the
cospans a = ∅ → G1 ← C0 (see Example 14) and b = ∅ → G2 ← C0 (for G2 shown
below) are (saturated) bisimular.

G2 =
s

s
c

It is also possible to prove that a duplex connection can be mimicked by two simplex
connections and vice versa, if the c-loops are placed alike in both cases.
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5 An Alternative Characterization

In order to characterize the equivalence that we have obtained, we will give an alterna-
tive definition as the coarsest bisimilarity for a certain transition system that is also a
congruence.

Definition 20 (Environment transition). Let R be a set of reactive system rules with

conditions. Let a : 0 → I , a′ : 0 → I , d : I → J . We write a
d� a′ whenever there exists

a rule ((, r,B) ∈ R and an arrow c such that a = (; c, a′ = r; c and c; d |= B.

Note that
d�-transitions are infinitely branching. Intuitively a

d�-transition is possible if
a rule can be applied under a passive context d that does not participate in the reduction.

a
d� a′ implies a; d � a′; d, but the reverse does not necessarily hold, since the right-

hand reduction may consume (and recreate) parts of d.

Definition 21 (Environment bisimilarity). Let R be a set of reactive system rules
with conditions. Let R be a symmetric relation, which relates pairs of arrows a, b with
source object 0 and identical target object. We say that R is an environment bisimula-

tion if whenever a
d� a′, then b

d� b′ and a′Rb′ for some arrow b′. We denote by ∼e

(environment congruence) the coarsest relation that is a congruence and an environ-
ment bisimulation.

In order to show that saturated bisimilarity and environment congruence coincide, we
first need the following lemma.

Lemma 22. Let a : 0 → I, f : I → J, a′ : 0 → J, d : J → K . Let A be a condition

with root object J such that a f,A→C a
′ and d |= A. Then we have a; f

d� a′.

In the other direction if a; f
d� a′, then there exists a condition A with a f,A→C a′

and d |= A. More precisely there exists a rule ((, r,B) and an arrow c with a; f = (; c,
a′ = r; c and A = B↓c.

We will now show that the natural, but impractical, notion of environment congruence is
equivalent to (semi-)saturated bisimilarity, which is more amenable to mechanization.

Theorem 23 (Saturated bisimilarity vs. environment congruence). Saturated bisim-
ilarity (and hence also semi-saturated bisimilarity) and environment congruence coin-
cide, i.e., for two arrows a, b we have a ∼SAT b ⇐⇒ a ∼e b.

Note that the notion of environment congruence and hence also of (semi-)saturated
bisimilarity is entirely independent on the notion of representative squares. This allows
to choose any suitable class of representative squares in implementations or proofs.

Our new results generalize the results of Section 3: if we assume that all application
conditions for rules are true, the condition A in a transition will also always be true
and hence (semi-)saturated bisimilarity with conditions specializes to (semi-)saturated
bisimilarity without conditions. Furthermore, whenever an arrow a can do a �-step

without conditions, it can do an environment transition
d� for every (composable) arrow

d. Hence environment bisimilarity is simply the coarsest relation which is a congruence
and a bisimilarity.
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6 Comparison

There is another equivalence to which we could naturally compare: the coarsest congru-

ence that is a bisimulation wrt.
id�-steps (equivalently �-steps), i.e., the bisimulation

where we consider only reduction steps. Clearly, (semi-)saturated bisimilarity (∼) is
finer than this equivalence, here we show that the inclusion is strict by means of two
examples. In both cases we work in the category ILC (Graphfin) and assume node-
labelled graphs.

Example 24. Consider two rules: one replaces a node labelled B by a node labelledD,
but only if an A-labelled node is present (rule R1). The other (rule R2) replaces two
nodes labelled A and C by two nodes labelled A and D (i.e., here node A is deleted
and recreated).

Now we consider as cospans b = ∅ → GB ← ∅ the graph with two empty interfaces
consisting simply of a B-labelled node, similarly we define c = ∅ → GC ← ∅. Clearly

b, c are not saturated bisimilar: b can perform a transition b id ,A→ R where A requires
the presence of an A-node, whereas c can not answer with context id . In other words b
can reduce under an empty environment, while c can not. Both graphs differ wrt. their
consumption of items provided by the environment.

On the other hand if we close the pair (b, c) wrt. all possible contexts (and take the
union with the identity relation) we obtain a congruence that is also a bisimulation. It is
a congruence by definition and it is a bisimilarity: if either the B-node or the C-node is
replaced by a D-node, then an A-node is present in the environment, which means that
the step can be mimicked by the respective partner.

The two equivalences also differ concerning the notion of an environment which may
change (independently of the system rules).

Example 25. Now keep rule R1 above, but replace R2 by rule R3 where a C-labelled
node is replaced by an F -labelled node if an A-node is present. Furthermore imagine
another rule (rule R4), which replaces a node labelledD by a node labelled E, but only
if no A-labelled node is present. Now use R1, R3 and R4 as the only rules.

Again, consider the two cospans b, c above. They are not saturated bisimilar, since
b can do two environment steps (where the first step demands the presence of an A-
node and the second its absence), whereas c can do only one. This means that we take
into account that some outside entity might change the environment without using the
predefined reduction rules.

However, if we close the pair (b, c) wrt. all possible contexts and furthermore close
the pair of graphs consisting of a singleD-node and a single F -node under all contexts
containing A, we obtain a bisimulation that is also a congruence. It is a bisimulation
since neither b nor c can do a step (if no A-node is present), or – if they can do a step –
we are sure that there exists an A in the environment. However, in this case we end up
in the second part of the bisimulation, where no further moves are possible.

This means that our notion of equivalence is motivated by the following philosophy: we
can observe whether an item is consumed or simply required by a rule. And second, we
do not trust that the environmental context is only influenced by the reduction rules, but
assume that there could be other modifications by an outside entity.
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7 Conclusion

We have shown how to generate bisimulation congruences in a rule-based formalism
with application conditions. We are aware of only few papers that explicitly add condi-
tions or restrict contexts in defining behavioural equivalences. In [10] a symbolic bisim-
ulation is studied, where bisimulation is a parametrized relation: two processes may not
always be bisimilar, but only bisimilar under certain restrictions. A similar parametriza-
tion is investigated in [6], however not in the context of process algebra. Furthermore
in [13] a form of context-dependent bisimulation for processes is introduced.

We believe that this paper is a first step towards a better understanding of context
dependency. Several open problems still remain, for instance: is there a different way
to characterize the equivalence of Section 6 (the coarsest congruence which is a bisim-
ilarity wrt. reduction rules)?

One could also study an even coarser relation: the coarsest congruence that is con-
tained in bisimilarity. The problem with this equivalence is that it does not naturally
admit a coinductive definition. We believe that it should be possible to adapt ideas from
[10] and to parametrize the bisimulation over contexts.

Considering the results of this paper we think that saturated bisimilarity (which we
studied here) is more stable than the notion of IPO-bisimilarity, since it is independent
on the specific choice of representative squares. On the other hand, the “right” notion of
bisimilarity for process calculi is sometimes IPO-bisimilarity and it would be worthwile
studying how this notion of bisimilarity integrates into the proposed framework. On the
more speculative side, conditions as presented here could be used to define barbs [16]
and hence represent a means to fine-tune the equivalence.

Our main application area is graph transformation, but it should be worthwile to
study conditional reactive systems in different categories, for instance using a Lawvere
theory (i.e., a category with terms as arrows).

Furthermore we plan to continue our work in [11] and to conduct further case studies
in the area of the verification of model transformations. In order to obtain a practically
usable method, we have to integrate up-to techniques, but we expect that this can be
done without problems. Since label derivation is complex and can not easily be done
manually, we however require an implemention, which we have already started to de-
veloped. In order to come to terms with the undecidability of implication we will either
restrict to simpler conditions or use an approximative algorithm as in [17].

Acknowledgements. We would like to thank Vladimiro Sassone for asking an inspiring
question after a talk. Furthermore we are grateful to Filippo Bonchi for valuable insights
concerning the “right” notion of bisimilarity.
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Abstract. Recently we proved that first-order model checking on nested
pushdown trees can be done in doubly exponential alternating time with
linearly many alternations. Using the interpretation method of Comp-
ton and Henson we give a matching lower bound, i.e., we prove that
first-order model checking on nested pushdown trees is complete for
ATIME(exp2(cn), cn) with respect to log-lin reductions.

Keywords: nestedpushdown trees, first-order logic,ATIME(exp2(cn), cn)
lower bounds, model checking.

1 Introduction

Nested pushdown trees were first introduced by Alur et al. [1] as a representa-
tion of recursive first-order programs. Nested pushdown trees are unfoldings of
pushdown graphs expanded by so-called jump edges. These edges connect cor-
responding push and pop operations. If one considers nested pushdown trees as
representations of programs, each push corresponds to a function call and each
pop corresponds to a function return. Thus, jump edges allow one to reason in
first-order logic about pre-/post-conditions on function calls and returns. Note
that in the usual representation of first-order programs by pushdown graphs,
such a kind of reasoning is even not possible in monadic second-order logic. This
advantage comes at a price: while monadic second-order logic is decidable on
pushdown graphs [5], it is undecidable on nested pushdown trees [1]. But Alur
et al. showed that a variant of the modal μ-calculus is still decidable. These
results turn nested pushdown trees intro an interesting class of graphs from a
model-theoretic point of view. The author only knows one other natural class
of graphs with these model checking properties, viz., the class of collapsible
pushdown graphs. This common behaviour is explained by the fact that nested
pushdown trees are uniformly first-order interpretable in collapsible pushdown
graphs [4]. Nevertheless, the two classes differ when one considers first-order
model checking. First-order model checking on the second level of the collapsible
pushdown graph hierarchy is decidable but has nonelementary complexity [4].
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In contrast, for nested pushdown trees we proved an ATIME(exp2(cn), cn) upper
bound for first-order model checking [3].1

The aim of this paper is to provide a matching lower bound for the first-order
model checking problem on nested pushdown trees. In fact, we present a fixed
nested pushdown tree with ATIME(exp2(cn), cn)-hard first-order theory. This
implies that the first-order model checking problem on nested pushdown trees is
also ATIME(exp2(cn), cn)-hard. As a byproduct of our proof we also obtain that
the set of FO-sentences valid in all nested pushdown trees is ATIME(exp2(cn), cn)-
hard. But we do not know of any upper bound for this set.

Our tool is the interpretation method of Compton and Henson [2]: there is
a family (T 2n

3 )n∈N of classes of trees such that the following holds. If there is a
structure A and a sequence of interpretation (In)n∈N whose formulas come from
a so-called prescribed set such that In interprets T 2n

3 in a A, then the theory
of A is ATIME(exp2(cn), cn)-hard. Moreover, the interpretation method is closed
under composition in the following sense. If there is a family (Cn)n∈N of classes
of structures and families of interpretations (In)n∈N, (Jn)n∈N (using formulas of
the mentioned special type) such that In interprets T 2n

3 in Cn and Jn interprets
Cn in A then the theory of A is ATIME(exp2(cn), cn)-hard.

In analogy to Compton and Henson’s ATIME(exp(cn), cn)-hardness result
for the first-order theory of the binary successor tree (Example 8.3 in [2]) we
prove the hardness result for model checking on nested pushdown trees in two
steps. First, we provide interpretations of T 2n

3 in finite linear orders of length
exp2(13n) with one unary predicate. Using another family of interpretations
we reduce the monadic second-order theories of such orders to the first-order
theory of a fixed nested pushdown tree. This interpretation method yields the
ATIME(exp2(cn), cn)-hardness of the theory of this nested pushdown tree.

1.1 Related Work

It follows from the works of Volger [7] and Compton and Henson [2] that first-
order model checking on (unfoldings of) pushdown graphs is ATIME(exp(cn), cn)-
complete. Hence, we show that the introduction of jump edges lead to an
exponential blow up in the complexity of model checking. Alur et al. [1] stud-
ied the model checking problem on nested pushdown trees for MSO and for a
variant of the modal μ-calculus. The former is undecidable while the latter is
EXPTIME-complete. We have shown in [4] that for first-order logic extended
with the reachability predicate, the model checking is decidable but has nonele-
mentary complexity (the lower bound already holds for (unfoldings of) pushdown
graphs and even for the full infinite binary tree). Since nested pushdown trees are
tree-automatic [4] it follows from [6,4] that the extension of first-order logic by
infinity quantifier ∃∞, modulo counting quantifiers ∃nmodm and Ramsey quanti-
fiers Ramn is decidable on nested pushdown trees. The model checking procedure
obtained from these results has nonelementary complexity.

1 A problem is in ATIME(exp2(cn), cn) if there is a constant c and an alternating Tur-
ing Machine that solves the problem in times exp(exp(cn)) and cn many alternations
where n is the input size.
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1.2 Outline

In the next section, we fix our notation, especially concerning interpretations and
nested pushdown trees. In Section 3 we recall the central result of Compton and
Henson, i.e., we present the classes T 2n

3 of trees and recall how interpretation
of these classes in a given structure yields lower bounds for the model checking
problem. We then provide interpretations of these classes in finite linear orders of
size doubly exponential in n in Section 4. In Section 5 the lower bound for model
checking on nested pushdown trees is obtained by interpreting these linear orders
of doubly exponential size in a fixed nested pushdown tree. Section 6 contains
some concluding remarks.

2 Preliminaries

We set exp(n) := 2n and exp2(n) := 2exp(n). In the following x̄, ȳ, etc. will denote
tuples of (pairwise distinct) variables x̄ = x1, x2, . . . , xn, ȳ = y1, y2, . . . , ym. We
omit the specification of the arity of a tuple x̄ whenever the arity is arbitrary or
is implicitly defined by the way we use the tuple.

By FO we denote first-order logic and by MSO we denote monadic second-
order logic. For structures A and B we write A : B if A is isomorphic to B.

2.1 Interpretations

In this paper we will use the interpretation of the MSO theory of a family
(Cn)n∈N of classes of structures in the MSO theory (or FO theory, respectively)
of another family (Dn)n ∈ N in order to transfer lower bounds for theMSOmodel
checking problem on (Cn)n∈N to the MSO (FO, respectively) model checking on
(Dn)n∈N. In the following we fix two (relational) signatures σ = {E1, E2, . . . , Em}
and τ . For some σ-formula ϕ(x̄, ȳ), some σ-structure A and p̄ ∈ A, we write
ϕA(x̄, p̄) for the relation defined by ϕ in A with parameter p̄. This means that
ϕA(x̄, p̄) := {ā ∈ A : A |= ϕ(ā, p̄)}.
Definition 1. Let (Cn)n∈N be a family of classes of σ-structures, (C′

n)n∈N a
family of classes of τ-structures and L either MSO or FO. Furthermore, let x
and y be first-order variables and let x̄Ei be a k-tuple of first-order variables
where k is the arity of Ei. Let (In)n∈N be a sequence such that

In = (δn(x, y), (ϕn
Ei
(x̄Ei , y))Ei∈σ)

is an (m+ 1)-tuple of L[τ ]-formulas. We call (In)n∈N an L-to-L-interpretation
of (Cn)n∈N in (C′

n)n∈N if for each A ∈ Cn, there is a B ∈ C′
n and some b ∈ B

such that

A : ((δn)B(x, b), ((ϕn
Ei
)B(x̄Ei , b))Ei∈σ).

Let (In)n∈N be a sequence such that

In = (δn(x, y), (ϕn
Ei
(x̄Ei , y))Ei∈σ, ϕ

n
∈(x, z, y))
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is a tuple of FO[τ ]-formulas. We call (In)n∈N an MSO-to-FO-interpretation of
(Cn)n∈N in (C′

n)n∈N if for each A ∈ C′
n there are B ∈ Cn and b ∈ B such that

A : ((δn)B(x, b), ((ϕn
Ei
)B(x̄Ei , b))Ei∈σ)

and ϕn
∈
B(x, b′, b) ranges over all subsets of δnB(x, b) as b′ ranges over the uni-

verse of B.2

Remark 2. For a fixed structure A we write “(In)n∈N is an interpretation of
(Cn)n∈N in A” as an abbreviation for “(In)n∈N is an interpretation of (Cn)n∈N in
(Dn)n∈N where Dn = {A} for all n ∈ N”.

2.2 Nested Pushdown Trees

Nested pushdown trees are the unfoldings of the configuration graphs of push-
down systems with an added jump relation that connects every push- with the
corresponding pop-operations.

Definition 3. A pushdown system is a 5-tuple P = (Q,Σ, Γ,Δ, (q0,⊥)) with a
finite set of states Q, a finite set of stack symbols Σ, a transition alphabet Γ , an
initial configuration (q0,⊥) ∈ Q×Σ and a transition relation

Δ ⊆ Q×Σ × Γ ×Q× ({pop, idΣ+} ∪ {pushσ : σ ∈ Σ}) .

Let w ∈ Σ+ and σ ∈ Σ. We call w a stack. A configuration of P is a pair
(q, w) ∈ Q×Σ+ of a state and a nonempty stack. We define the stack operations
for all σ ∈ Σ and w ∈ Σ+ by

pushσ(w) := wσ and pop(wσ) = w.

We define labelled transitions
γ→ on the set of configurations of P for γ ∈ Γ as

follows: (q, wσ)
γ→ (p, v) if there is some (q, σ, γ, p, op) ∈ Δ such that v = op(wσ).

We use → as abbreviation of
⋃

γ∈Γ

γ→.

A run r of P is a sequence c0
γ1→ c1

γ2→ c2
γ3→ . . .

γn→ cn where the ci are arbitrary
configurations of P . We denote by � the prefix order on the set of runs. We call
r a run from c0 to cn and say that the length of r is length(r) := n.

Definition 4. Let P = (Q,Σ,Δ, (q0,⊥)) be a pushdown system. The nested

pushdown tree generated by P is the structure NPT(P) := (R, (
γ→)γ∈Γ , ↪→) de-

fined as follows:

2 This condition means that (In)n∈N is an FO-to-FO-interpretation of (Cn)n∈N in
(C′

n)n∈N if we forget about the formulas ϕn
∈ and ϕn

∈ allows to transfer set quan-
tification in Cn into element quantification in C′

n by replacing ∃X with ∃xδ(x, y) and
Xz by ϕn(z, x, y).
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– R is the set of runs starting in (q0,⊥),

–
γ→ connects a run r1 with a run r2 if r2 extends r1 by exactly one

γ→ transition
at the end, and

– the so-called jump-relation ↪→ connects r1 ∈ R with r2 ∈ R if r1 � r2, the
final stack of r1 and r2 is the same word w and all stacks between have w as
proper prefix.

Remark 5. Let r1 � r2 be runs. Then r1 ↪→ r2 holds if and only if r2 extends
r1 by some run r that starts with some pushσ transition and ends with a pop
transition that removes this σ from the stack again.

a aa aaa aaaa

aaa

aa

a

aa

a

a

Fig. 1. Nested pushdown tree with undecidable MSO theory (the unique state and the
edge labels are omitted)

Example 6. Figure 1 shows the nested pushdown tree induced by the transition
relation (q0, a, γ1, pusha, q0), (q0, a, γ2, pop, q0)}. The MSO theory of this nested
pushdown tree is undecidable because the symmetric transitive closure of γ2-
edges is the “same column relation” and the symmetric transitive closure of the
jump edges is the “same diagonal relation” whence the half grid {(n,m) : m > n}
with right and downward edges is MSO interpretable in this graph. Standard
arguments reduce undecidable tiling problems to the MSO theory of this half
grid.

The previous example shows that the MSO theories of nested pushdown trees
are undecidable in general. But the FO theories are uniformly decidable. In [3]
(Theorem 2), we provided an FO model checking algorithm on nested pushdown
trees. Even though we only claimed it was an 2-EXPSPACE algorithm, the proof
reveals the following fact.

Theorem 7. The FO model checking problem on nested pushdown trees is in
ATIME(exp2(cn), n).
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3 The Interpretation Method

In this section, we recall some results of Compton and Henson [2] that we
are going to use in the following. We first present the classes T 2n

3 of trees.
Then we recall the necessary results relating interpretations of these classes to
ATIME(exp2(cn), cn)-hardness of the model checking problem.

3.1 Classes of Special Trees

A tree is a finite, prefix closed subset of N∗ together with the successor relation
S := {(x, y) ∈ N∗ : ∃z ∈ N y = xz}. For T some tree we call |T| its size, i.e. |T|
is the number of elements in T. For T = (T, S) some tree and d ∈ T , we denote
by Td the subtree rooted at d, i.e., Td = (Td, S) where Td = {x ∈ N∗ : dx ∈ T }.
Note that for each tree T = (T, S) the set N∩T is the set of children of the root.

Definition 8. Let T 2n

0 be the class of the tree of depth 0, i.e., the class con-
taining ({ε}, S). Inductively, let T 2n

n+1 be the class of trees T = (T, S) such that

Td ∈ T 2n

n for all d ∈ N ∩ T and for each d ∈ N ∩ T there are at most 2n many
pairwise distinct elements d′ ∈ N∩ T such that Td′ : Td, i.e., there are at most
2n isomorphic maximal proper subtrees of T.

We will exclusively deal with T 2n

3 in this paper. The following lemma summarises
some combinatorial properties of this class.

Lemma 9. T 2n

3 contains at most (2n + 1)(2
n+1)2

n+1

many trees up to isomor-

phism. A tree T ∈ T 2n

3 has size at most 22
12n

.

Proof. The first claim is by induction: Note that T 2n

0 consists of only one tree.
Each element of T 2n

i+1 is determined by the number of maximal proper subtrees
of each isomorphism type. Since there are at most 2n maximal proper subtrees
of the same isomorphism type, there are at most (2n+1)m many nonisomorphic
trees in T 2n

i+1 where m is the number of distinct trees in T 2n

i up to isomorphism.
The first claim follows by induction.

Let f(i) be the number of nonisomorphic trees in T 2n

i and g(i) the maximal
number of nodes of a tree in T 2n

i . Note that the size of a tree T ∈ T 2n

i+1 is bounded
by 1 + 2n · f(i) · g(i). We conclude that

– for T ∈ T 2n

1 , |T| ≤ 1 + 2n · 1 · 1 = 2n + 1,
– for T ∈ T 2n

2 , |T| ≤ 1 + 2n · (2n + 1) · (2n + 1) ≤ 26n, and

– for T ∈ T 2n

3 , |T| ≤ 1+2n ·(2n+1)2
n+1 ·26n ≤ 1+27n+(n+1)·(2n+1) ≤ 22

12n #$

3.2 Iterative Definitions and Prescribed Sets

The relevance of (T 2n

3 )n∈N for this paper stems from the fact that certain inter-
pretations of these classes in a fixed structure A establish ATIME(exp2(cn), cn)-
hardness of the theory of A. Before we can specify the kind of interpretations
that one may use for this purpose, we have to recall Compton and Henson’s
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notion of explicit and iterative definitions. Let MSO∗ denote the extension of
MSO by explicit and iterative definitions. MSO∗ is defined using the formation
rules of MSO and the rules that

– for ψ, ϕ ∈ MSO∗ and P some free variable of ψ, the formula [P = ϕ]ψ is in
MSO∗ where [P = ϕ] is called an explicit definition, and

– for ψ, ϕ ∈ MSO∗ and P some free variable of ψ and ϕ, the formula [P = ϕ]nψ
is in MSO∗ where [P = ϕ]n is called an iterative definition.

The semantics of MSO∗ is defined using the semantics of MSO and the following
rules.3

– Let A be some structure with domain A. Let Pϕ be the predicate that contain
a tuple ā ∈ A iff A |= ϕ(ā). Now A |= [P = ϕ]ψ iff A, Pϕ |= ψ, i.e. if A is a
model of ψ where each occurrence of P is replaced by the relation defined
by ϕ.

– Let A be some structure. A satisfies an iterative definition [P = ϕ]0ψ if A
satisfies ψ where each occurrence of P is replaced by ∃xx %= x, i.e., by a
sentence which is false in every structure. A satisfies an iterative definition
[P = ϕ]n+1ψ iff A satisfies [P = [P = ϕ]nϕ]ψ.

Analogously, we can define the extension FO∗ of FO by explicit and iterative def-
initions. Adding explicit and iterative definitions do not increase the expressive
power of MSO or FO but allow for more succinct definitions.

Definition 10. We call a set M of MSO∗-formulas a prescribed set4 if there is
some l ∈ N such that each ϕ ∈M is of the form

[P1 = ϕ1]n1 [P2 = ϕ2]n2 . . . [Pk = ϕk]nk
ψ

for some k ∈ N and n1, n2, . . . , nk ∈ N where each ϕj is an MSO formula of
size at most l whose only free set variable is Pj and ψ is an MSO formula in
prenex normal form, i.e., ψ is quantifier free except for a block of quantifiers at
the beginning. Fix some prescribed set M and an interpretation I = (In)n∈N.
We say I is formed from M and – abusing notation – write I ⊆ M if for each
n ∈ N and for each formula ϕ in In there is an equivalent formula ϕ′ ∈M of size
linear in n (where the subscript ni occurring in iterative definitions [Pi = ϕi]ni

are written in unary notation, i.e., a subscript ni counts as a string of length ni.

In the rest of this paper, the interpretations we define are always formed from
some prescribed set. Since iterative definitions do not increase the expressive
power of FO or MSO and since we aim at showing that the formulas used have
equivalent versions in some prescribed set, we will use iterative definitions when
defining MSO-to-MSO- or MSO-to-FO-interpretations.

3 In the following rules we suppress the occurrence of free variables; these are handled
as usual.

4 Compton and Henson’s definition of prescribed sets is more general, but the special
cases defined here suffice for our purpose.
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3.3 Lower Bounds for Model Checking via Interpretations

One of the central results of Compton and Henson (Corollary 7.5 in [2]) is that
interpretations (In)n∈N formed from some prescribed setM can be used to obtain
lower bounds on the model checking problem. We only state a simplified version
of the more general result which is sufficient for our purposes.

Lemma 11 ([2]). If there is some prescribed set M and (In)n∈N ⊆ M is an
MSO-to-FO-interpretation of (T 2n

3 )n∈N in a structure A, then the FO theory of
A is ATIME(exp2(cn), cn)-hard with respect to log-lin reduction5.

Remark 12. In fact, Compton and Henson prove a stronger result. Under the as-
sumptions of the lemma, A has a hereditary lower bound of ATIME(exp2(cn), cn).
This means that for T the FO-theory of A, and every subset Φ ⊆ T the sets
SAT(Φ) and VAL(Φ) are ATIME(exp2(cn), cn)-hard where SAT(Φ) denotes the
set of FO sentences that are satisfiable in some model of Φ and VAL(Φ) denotes
the set of FO sentences that are valid in every model of Φ.

Corollary 13. Under the same assumptions as in the lemma, the FO model
checking problem on any class C such that A ∈ C is ATIME(exp2(cn), cn)-hard.

The use of the previous lemma is further facilitated since interpretations formed
from prescribed sets are closed under composition.

Lemma 14 ([2]). LetM andM ′ be prescribed sets of formulas. If (In)n∈N ⊆M
and (Jn)n∈N ⊆M ′ are families of interpretations such that (In)n∈N is an MSO-
to-MSO-interpretation of (Cn)n∈N in (Dn)n∈N and (Jn)n∈N is an MSO-to-FO-
interpretation of (Dn)n∈N in (En)n∈N, then there is a prescribed set M ′′ and an
MSO-to-FO-interpretation (Kn)n∈N ⊆M ′′ of ((C)n)n∈N in (En)n∈N.

4 Interpretation of Trees in Linear Orders

Following the ideas of Compton and Henson (Examples 8.1, 8.6, and 8.8 in [2])
we first provide interpretations of the classes (T 2n

3 )n∈N in the classes (L13n)n∈N

of linear orders of size exactly 22
13n

with unary predicate P . We identify such
a linear order L with a bitstring of the same length, where we interpret P as
indicator of 1’s in the bitstring. Fix a tree T. We use a string of the form 0i1 in
order to represent a node of depth i and encode T by traversing T in-order and
code every node with the corresponding representation. The following function
f does this encoding. For k ∈ N and T some tree of depth at most k, set

f(T, k) := 0k−11f(Ti1 , k − 1)f(Ti2 , k − 1)f(Ti3 , k − 1) . . . f(Tik , k − 1)

where ij ∈ N is the j-th element of N such that ij ∈ T.

For T ∈ T 2n

3 , its depth is bounded by 3 and T has at most 22
12n

nodes. Thus,

f(T, 3) has length at most 4 · 2212n ≤ 22
13n

By padding 0’s in the end, we obtain

5 A log-lin reduction is a reduction computable in logarithmic space and linear time.
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bitstrings of length 22
13n

that encodes T. As mentioned before, we identify this
bitstring with a linear order in L13n.

In Example 8.1 of [2], Compton and Henson show that the classes T 2n

3 can
be recovered from these encodings with MSO-to-MSO-interpretations.

Lemma 15. There is a prescribed set M such that there is an MSO-to-MSO-
interpretations (In)n∈N ⊆M of (T 2n

3 )n∈N in (L13n)n∈N.

Proof. For Pr(x, y, z) := x < y ∧ (x < z → y ≤ z), set

ψ(x, y,Q) := ∃x1∃y1∀z
(
(z ≥ x ∨ (P (x1) ∧ Pr(x1, x, z)))

∧ (z ≥ y ∨ (P (y1) ∧ Pr(y1, y, z)))
)

∨ (
Pr(x1, x, z) ∧ Pr(y1, y, z) ∧ ¬P (x1) ∧ ¬P (y1) ∧Q(x1, y1)

)
In ψ, Pr(x, y, z) is used to express that x is the direct predecessor of y. The
iterative definition [Q = ψ]n+1 defines those tuples (a, b) where the number of
consecutive 0’s preceeding a is equal to the number of consecutive 0’s preceeding
b and this number is at most n. Then

ϕE :=[Q = ψ]4∃x1∀z′∀z
(
Pr(x1, x, z

′) ∧ x < y
∧ P (x) ∧ P (y) ∧ ¬P (x1) ∧Q(x1, y) ∧ (x < z < y → ¬Q(x, z)))

says that y and the predecessor of x have the same number of consecutive pre-
ceeding 0’s (up to 3) and no element in between x and y has the same number
of consecutive preceeding 0’s as x (up to 3). On a linear order that stems from
the encoding f(T) for some T ∈ T 2n

3 , ϕE interprets exactly the edge relation of
T. Setting In := (δ(x), ϕE(x, y)), (In)n∈N is an MSO-to-MSO-interpretation of
(T 2n

3 )n∈N in (L13n)n∈N. #$

5 Reduction of Linear Orders to NPT

Due to Lemmas 11, 14 and 15, it suffices to provide anMSO-to-FO-interpretation
ofL13n in some fixed nested pushdown tree in order to show ATIME(exp2(cn), cn)-
hardness of FO model checking on NPT. In the rest of this paper, we consider the
fixed pushdown system

S := (Q,Σ, Γ,Δ, (q0, a))] with

Q = {q0, q1}, Σ = {a},
Γ = {+0,+1,−0,−1} and

Δ = {(qi, a,+j, pusha, qj), (qi, a,−j, pop, qj) : i, j ∈ {0, 1}}.

In each configuration S nondeterministically changes to state q0 or q1 and per-
forms a push or a pop operation. This means that the runs of S are all possible
runs of pushdown systems with 2 states 1 stack symbol. The nested pushdown
system generated by S is depicted in Figure 2.
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Fig. 2. Nested pushdown tree NPT(S)
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In the following, we show that NPT(S) contains nodes a that have 22
13n

pairwise distinct ancestors each of which is connected to a by a path of length

213n whose edges consist of
−i→ and ↪→, i.e.,

|{b ∈ NPT(S) : NPT(S) |= ϕ=213n

p (b, a)}| = exp2(13n).

Such a are used to represent elements from L13n as follows: each of the 22
13n

ancestors of a represent one element of L13n. The order is given by the an-
cestor relation which can be expressed in linear size using the formula ϕ≤213n

p .
Furthermore, the unary predicate P contains those nodes that are in state q1.
This yields an FO-to-FO-interpretation of L13n in NPT(S). We extend this in-
terpretation to an MSO-to-FO-interpretation as follows. Given nodes a1 and a2
representing linear orders with one unary predicate Pa1 and Pa2 respectively,

the formula ϕ=213n

e (b1, a1, b2, a2) is satisfied if and only if there is some j ≤ 22
13n

such that b1 is the j-th element of the order induced by a1 and b2 is the j-th
element of the order induced by a2. Using this fact, we can express “a is the
j-th node of the order induced by x and the j-th element of the order induced
by y is in Py”. Thus, given a fixed g ∈ NPT(S) representing a linear order in
L13n, quantification over representations of linear orders in L13n is the same as
quantification over monadic predicates in the order induced by g.

5.1 Short Formulas for Paths of Exponential Length

Aiming at the interpretation of L13n in NPT(S), we define formulas ϕ≤213n

p ,

ϕ=213n

p , ϕ≤213n

e , and ϕ=213n

e talking about paths in NPT(S). ϕ≤213n

p (x, y) ex-
presses that there is a path of length at most 213n from x to y using only pop
transitions and jump edges. ϕ=213n

p (x, y) is the variant for a path of length ex-

actly 213n. ϕ≤213n

p (x1, x2, y1, y2) expresses that there is a path of length k ≤ 213n

from x1 to x2 and a path of length k from y1 to y2 such that both paths only
consist of jump edges and pop transitions and the i-th edge in one of the paths
is a jump edge if and only if the i-th edge in the other is also a jump edge.
Analogously, the i-th edge in one path is a pop if and only if the i-th edge in the
other path is a pop.

Definition 16. Define by induction on m the following formulas:

ψ1(x, y,Q) := ∃z (Qxz ∧Qzy) ∨ x = y ∨ x −0→ y ∨ x −1→ y ∨ x ↪→ y

ϕ≤2m

p (x, y) := [Q = ψ1]m+1Qxy

ψ2(x, y,R) := ∃z∀z′∀z′′ (Rxz ∧Rzy) ∨
(
¬Rz′z′′ ∧ (x

−0→ y ∨ x −1→ y ∨ x ↪→ y)
)

ϕ=2m

p (x, y) := [R = ψ2]m+1Rxy
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ψ3(x1, x2, y1, y2, S) := ∃z∃z′ (Sx1zy1z′ ∧ Szx2z′y2)
∨ (x1 = x2 ∧ y1 = y2) ∨ (x1 ↪→ x2 ∧ y1 ↪→ y2)∨(
(x1

−0→ x2 ∨ x1 −1→ x2) ∧ (y1
−0→ y2 ∨ y1 −1→ y2)

)
ϕ≤2m

e (x1, x2, y1, y2) := [S = ψ3]m+1Sx1x2y1y2

ψ4(x1, x2, y1, y2, T ) := ∃z∃z′∀t∀u∀v∀w (Tx1zy1z
′ ∧ Tzx2z′y2)

∨
(
¬T tuvw ∧ (

(x1 ↪→ x2 ∧ y1 ↪→ y2)∨

((x1
−0→ x2 ∨ x1 −1→ x2) ∧ (y1

−0→ y2 ∨ y1 −1→ y2))
))

ϕ=2m

e (x1, x2, y1, y2) := [T = ψ4]m+1Tx1x2y1y2

5.2 Nodes with Many Ancestors

In this section, we prove that there are formulas of size linear in n that define
subsets of NPT(S) of size exp2(13n) that can be interpreted as bitstrings of the
same size. We start with an auxiliary lemma that allows to separate different
ancestors of a given node of NPT(S). The lemma says the following: Given two
paths p1, p2 in NPT(S) that consist of jump edges and pop transitions such that
p1 and p2 end in the same node c ∈ NPT(S) such that p1 ends in a jump edge
and p2 ends in a pop transition, then p1 starts in an ancestor of the first node
of p2.

Lemma 17. Let, a, a′b, b′, c ∈ NPT(S) and m ∈ N. If

NPT(S) |= ϕ≤2m

p (a, b) ∧ ϕ≤2m

p (a′, b′) ∧ b′ → c ∧ b ↪→ c

then a � b ≺ a′ � b′ ≺ c.
Proof. The nontrivial claim is that b ≺ a′. If x

−j→ y for some j ∈ {0, 1}, then
x has a bigger stack than y. Furthermore, if x ↪→ y then the stacks of x and y
agree and all x ≺ z ≺ y have bigger stacks.

Applying this observation to b ↪→ c, we obtain that the predecessor b′ of c is
connected via a pop transition to c. Thus, the stacks of b and c agree while the
stack of b′ is bigger than that of c. Furthermore, between a′ and b′ all stacks are
at least as big as the stack of b′. Since b ≺ c and its stack is smaller than that
of b′, one concludes that b ≺ a′. #$
Using the previous lemma inductively, one concludes that going backward differ-
ent pop and jump-edge paths lead to different nodes. One formalisation of this
claim is the following corollary.

Corollary 18. Let a, b, c ∈ NPT(S) such thatNPT(S) |= ϕ≤2m

p (a, c)∧ϕ≤2m

p (b, c).

Either NPT(S) |= ϕ≤2m

e (a, c, b, c) or a %= b.
Definition 19. We define the formula ϕn

lin(x) := ∀y∃z(ϕ≤213n

p (y, x) → (z ↪→
y)). For each a ∈ NPT(S), let Dn

a :=
{
b ∈ NPT(S) : NPT(S) |= ϕ=213n

p (b, a)
}
.
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Since z ↪→ y implies that y has a direct predecessor z′ → y such that the
transition from z′ to y is a pop-transition, ϕn

lin(x) is satisfied if and only if for
each sequence s of pop-transitions and jump-edges of length 213n + 1 there is
some node y connected to x via a path of form s. Due to Corollary 18, all these
different sequences lead to different ancestors of x. Thus, if ϕn

lin(x) holds, the
paths to all elements of Dn

x form a full binary tree of depth 213n. Since Dn
x is

the set of leaves of this tree, it contains exactly exp2(13n) elements.

Corollary 20. If NPT(S) |= ϕn
lin(a) then |Dn

a | = exp2(13n).

We will now construct elements a ∈ NPT(S) that satisfy ϕn
lin.

Lemma 21. For each m there is a node a ∈ NPT(S) with 2m many ancestors
of distance m. Each of these ancestors is connected to a via some path of length
m that only uses jump edges and pop transitions.

Proof. The proof is by induction on m. In fact, we prove the following stronger
claim: for m ∈ N and an arbitrary a0 ∈ NPT(S), we can construct a node
a ∈ NPT(S) with 2m many ancestors of distance m such that each of these
ancestors is a descendant of a0 and connected to a via some path of length m
that only uses ↪→- and pop-edges. Furthermore, a0 is connected to a via a path
of m ↪→-edges.

For m = 0 the claim holds trivially by setting a := a0.
Now assume that for some m ∈ N the claim holds. Let a0 ∈ NPT(S). Let a1

be a node in NPT(S) satisfying the claim with respect to m and a0. Let a2 be

the unique node such that a1
+1→ a2. Let a3 be a node in NPT(S) satisfying the

claim with respect to m and a2. Let a be the unique node such that a3
−1→ a.

Note that a1 and a3 are the ancestors of a of distance 1. Each of these has
2m ancestors of distance m. By Lemma 17 these are disjoint whence a has
2 · 2m = 2m+1 ancestors at distance m + 1. Moreover a0 is connected to a1
via a ↪→ path of length m and a1 ↪→ a. Thus, a satisfies the claim. #$
Remark 22. Note that the construction in the previous proof does not rely on

the use of the transition
+1→ and

−1→. In each construction step, we can arbitrarily

replace
+1→ by

+0→ and
−1→ by

−0→. Hence, the state of each node occurring in the
construction can be chosen independently.

Corollary 23. For a fixed string b ∈ {0, 1}exp2(13n), there is some a ∈ NPT(S)
such that NPT(S) |= ϕn

lin(a) and the i-th element of Dn
a (w.r.t. ≺) is in state q1

if and only if the i-th bit of b is 1.

5.3 Interpretation of Order and Monadic Quantification

We fix an element a satisfying ϕn
lin(a). We can interpret every ↪→-edge as 0

and every →-edge as 1. Using this convention each path p of length 213n from
some ancestor b to a can be interpreted as the 2n-bit number p̂ induced by its
transitions. By induction on Lemma 17, we obtain that b is the p̂b-th element of
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Dn
a with respect to ≺ for all b ∈ Dn

a and for pb the unique path from b to a of
length 213n.

We next present a formula of size linear in n that defines ≺ on Dn
a . Afterwards

we will show that monadic quantification in linear orders in L13n can be reduced
to first-order quantification in NPT(S).

Recall that b ≺ b′ holds for b, b′ ∈ Dn
a if and only if for p the minimal path

from b to a and p′ the minimal path from b′ to a (both of length 213n) have a
common suffix and at the maximal position where p and p′ differ, p consists of

a jump edge. Note that this implies that p′ contains at this position a
−j→-edge

for some j ∈ {0, 1}. Let In = (δn, ϕn
<, ϕ

n
P ) be given by

δn(x, y) := ϕn
lin(y) ∧ ϕ=213n

p (x, y),

ϕn
<(x1, x2, y) := ∃z∃z1∃z2δn(x1, y) ∧ δn(x2, y) ∧ z1 ↪→ z ∧ z2 → z

∧ ϕ≤213n

p (z, y) ∧ ϕ≤213n

p (x1, z1) ∧ ϕ≤213n

p (x2, z2) and

ϕn
P (x, y) := ∃z(z −1→ x ∨ z +1→ x) ∧ δn(x, y)

Note that for every a ∈ NPT(S) with NPT(S) |= ϕn
lin(y), δ

nNPT(S)(x, a) is a set

of size exp2(13n) that is linearly ordered by ϕn
<
NPT(S)(x1, x2, a). Furthermore,

ϕn
P
NPT(S)(x, a) selects the subset of nodes of δnNPT(S)(x, a) which represent runs

that end in state q1. Due to remark 22, for each L ∈ L13n there is some a ∈
NPT(S) such that In interprets L in NPT(S). Thus, (In)n∈N is an FO-to-FO-
interpretation of (L13n)n∈N in NPT(S).

We extend this interpretation to an MSO-to-FO-interpretation. Given some
L ∈ L13n we can identify its domain with the set {1, 2, . . . , exp2(13n)} such that
its order coincides with the order of the natural numbers on this set. Given
some a ∈ NPT(S) such that NPT(S) |= ϕn

lin(a), we identify the linear order
La obtained by I ′n with parameter a with the set {n ∈ La : La |= Pn}. Since
all subsets of {1, 2, . . . , exp2(13n)} appear as predicates of orders in L13n, quan-
tification over subsets of {1, 2, . . . , exp2(13n)} can be reduced to quantification
over elements satisfying ϕn

lin. We only need to construct a formula ϕn
=(b, a, b

′, a′)
which expresses that b is the j-th element of Dn

a iff b′ is the j-th element of Dn
a′ .

Note that this is the case if and only if the minimal path from b to a consists
of the same transitions (in the same order) as the path from b′ to a′. Thus, we
may set

ϕn
=(x1, x2, y1, y2) := ϕn

lin(x2) ∧ ϕn
lin(y2) ∧ ϕ=213n

e (x1, x2, y1, y2),

ϕn
∈(x, z, y) := ∃z′(ϕn

=(x, y, z
′, z) ∧ ϕn

P (z
′, z)) and

In := (δn(x, y), ϕn
<(x1, x2, y), ϕ

n
P (x, y), ϕ

n
∈(x, z, y)).

Theorem 24. There is a prescribed set M such that there is an MSO-to-FO-
interpretation (In)n∈N ⊆M of (L13n)n∈N in NPT(S).
Proof. Note that all formulas occurring in In are in prenex normal form. More-
over their size is linear in n. By moving iterative definitions to the front, we
obtain an interpretation as desired. #$
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Using the result of Compton and Henson (Lemma 11), we immediately get the
following corollary (the second part uses Remark 12).

Corollary 25. The FO theory of NPT(S) is ATIME(exp2(cn), cn)-hard. Thus,
FO model checking on the class of all NPT is ATIME(exp2(cn), cn)-complete
with respect to log-lin reductions. Moreover, the set of FO sentences valid in
every nested pushdown tree, i.e., the theory of nested pushdown trees is
ATIME(exp2(cn), cn)-hard.

6 Conclusions

We have studied the complexity of first-order model checking on the class of
nested pushdown trees. We obtained a matching lower bound resulting in the
fact that the first-order model checking is ATIME(exp2(cn), cn)-complete. This
bound even holds for a fixed nested pushdown tree. Thus, also the expression
complexity of first order model checking is exactly in ATIME(exp2(cn), cn). The
exact structure complexity of first-order model checking remains open. We have
given an ATIME(exp(cn), cn)-algorithm [3] but we do not have any lower bounds.

Another open question concerns decidability of model checking for other frag-
ments of monadic second order logic on nested pushdown trees. For instance,
is first-order logic extended by the transitive closure operator decidable? Is the
extension of first-order logic by regular reachability decidable? We know [4] that
the extension of first-order logic by the reachability predicate is decidable and
has non-elementary complexity. We have started to investigate the extension by
transitive closure operators and we believe that it is undecidable if we allow
sufficiently many nestings of the transitive closure operator.
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Abstract. We consider the model-checking problem for data multi-
pushdown automata (DMPA). DMPA generate data words, i.e, strings
enriched with values from an infinite domain. The latter can be used
to represent an unbounded number of process identifiers so that DMPA
are suitable to model concurrent programs with dynamic process cre-
ation. To specify properties of data words, we use monadic second-order
(MSO) logic, which comes with a predicate to test two word positions for
data equality. While satisfiability for MSO logic is undecidable (even for
weaker fragments such as first-order logic), our main result states that
one can decide if all words generated by a DMPA satisfy a given formula
from the full MSO logic.

1 Introduction

In recent years, there has been an increasing interest in data words and data
trees, i.e., structures over an infinite alphabet. Data trees may serve as a model
of XML documents where the data part refers to attribute values or text con-
tents [3]. Data words, on the other hand, are suitable to model the behavior of
concurrent programs where an unbounded number of processes communicate via
message passing [4, 5].

Naturally, a variety of formalisms have been considered to specify sets of data
words in the context of verification. A considerable amount of work has gone into
the study of temporal and monadic second-order (MSO) logic, mainly focusing
on the satisfiability problem [2, 8, 9, 19]. MSO logic over data words allows us
to check data values of two word positions for equality. However, the logic is
so complex that only severely restricted fragments preserve its decidability. A
remarkable result due to Bojańczyk et al. states that satisfiability is decidable
for first-order logic when it is restricted to two variables [2], albeit of very high
complexity, as it is equivalent to reachability for Petri nets. Elementary upper
bounds were only obtained by restricting the logic further [8, 19]. Anyway, decid-
ability crucially relies on the fact that there is only one data value per position,
which is clearly not sufficient to model executions of concurrent message-passing
programs. Indeed, the lack of expressiveness and extensibility of those logics
limits their use for verification.
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In this paper, we consider the model-checking problem, which has not received
as much attention in the context of data words as satisfiability, and we adopt the
orthogonal approach of restricting the domain of data words instead of pruning
the logic. More precisely, we introduce data multi-pushdown automata (DMPA),
which may, for example, represent the behavior of a concurrent program. Re-
quirements specifications for such languages can then be written in the full MSO
logic. Our main result is that the model-checking problem is decidable: Do all
data words accepted by a DMPA satisfy a given MSO formula?

Like automata over finite alphabets, a DMPA uses standard building blocks
such as states and stack symbols. Moreover, it has (finitely many) registers, which
can store concrete data values in a run. Unlike a simple pushdown automaton,
a DMPA is equipped with several stacks and can define non-context free behav-
iors. However, while multi-pushdown automata over a finite alphabet are often
used for the verification of concurrent recursive programs [15, 16], modeling re-
cursion is not our primary goal. Rather, in the context of an unbounded number
of processes, context-sensitive rewriting is necessary to describe distributed pro-
tocols, as they typically operate in several phases. For example, DMPA are able
to model a token-based leader election protocol where the number of processes
is unknown. Though such a protocol can be implemented locally in terms of
finite-state processes, their global, observable behavior is not context-free.

Our decidability proof relies on the following idea: A tree-like structure in
terms of (multiply) nested words over a finite alphabet is built on top of a data
word and is used to recover word positions that carry the same data value.
Nested words naturally appear as runs of DMPA. To preserve decidability of
MSO model checking, as we deal with several stacks, we have to impose a bound
on the number of switches from one stack to another. Model checking DMPA can
then be reduced to satisfiability of MSO logic over nested words with a bounded
number of phases, which is decidable due to [15].

At first glance, DMPA produce data words, which are linearly ordered and
of course suitable to describe sequential behaviors. One important aspect of
MSO logic, however, is that it can easily define causal dependencies between
events that go beyond the linear order induced by a data word. Our approach is,
therefore, not restricted to sequential systems, but allows us to model complex
dynamic concurrent programs and protocols from mobile computing. Our hope
is that this will help to bring data words closer to applications in verification.

Related Work. A wide range of automata over data words have been intro-
duced in the literature [2, 6, 12, 13, 14, 20]. For all of them, MSO model checking
is undecidable. Moreover, none of them is suited to represent distributed pro-
tocols: they either run on one-dimensional data words, process a data word in
several passes, or do not support concurrency. An automaton model that cap-
tures the interplay of communicating processes is due to [4]. Its modeling power,
however, comes at the price of an undecidable emptiness problem.

Model checking of counter machines against freeze LTL was considered in
[10, 11]. That setting is quite different from ours, as formulas are interpreted over
runs, which contain counter evaluations as data values. Moreover, the temporal
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logic, which can be embedded into MSO logic, has to be restricted further to
obtain decidability results.

Our approach of introducing DMPA as a model of programs and using unre-
stricted MSO as requirements-specification language is partly inspired by [17].
There, Leucker et al. consider dynamic message sequence graphs as a model of
dynamic communicating systems where an unbounded number of processes com-
municate through message exchange. No link with data words was established,
though, and rules are context-free so that a leader election protocol cannot be
described. Thus, we provide a more general, but conceptually simple, framework
with a generic proof of decidability of MSO model checking.

Outline. In Section 2, we introduce data words and DMPA. Section 3 presents
MSO logic to specify properties over data words. In Section 4, we establish
decidability of the model-checking problem. We conclude in Section 5.

2 Data Words and Data Multi-pushdown Automata

By � = {0, 1, 2, . . .}, we denote the set of natural numbers. For n ∈ �, we let [n]
denote the set {1, . . . , n}. A ranked alphabet is a non-empty set Σ where every
letter a ∈ Σ has an arity, denoted arityΣ(a) ∈ �. We sometimes write arity(a)
instead of arityΣ(a) when Σ is clear from the context. For any set D, we let
ΣD = {a(d1, . . . , dm) | a ∈ Σ, m = arity(a), and d1, . . . , dm ∈ D}.

Henceforth, we fix a finite ranked alphabet Σ (of labels) and an infinite set
D (of data values). The elements of ΣD are called actions. A data word is a
sequence of actions, i.e., an element from Σ∗

D. Given a data word w = w1 . . . wn

of length n, we denote by dom(w) its domain {1, . . . , n}, i.e., its set of positions.
For i ∈ dom(w) with wi = a(d1, . . . , dm), we let label(i) refer to a and datak(i) to
dk, for all k ∈ {1, . . . ,m}. Moreover, we set arity(i) = m. For example, if D = �

and Σ = {a, b} with arity(a) = 1 and arity(b) = 2, then a(4) b(7, 9) a(6) b(10, 7)
is a data word from Σ∗

D. We have label (3) = a and data2(4) = 7.
To represent systems whose executions are data words, we use data multi-

pushdown automata (DMPA). Basically, a DMPA is a multi-pushdown automa-
ton with � ≥ 1 stacks over some finite alphabet. In addition, it has � ≥ 0 global
registers, R = {r1, . . . , r�}, which can store data values. Data values can also
be stored on stacks along with a stack symbol from a finite ranked alphabet
Z. To refer to these data values, we use parameters from the infinite supply
P = {p1, p2, . . .}. A transition of a DMPA depends on the current state of the
automaton, the data values that are stored in the registers, and the top sym-
bol of the stack chosen by the transition as well as its associated data values.
The data values that are stored along with A ∈ Z can be accessed by means
of the parameters PA = {p1, . . . , parity(A)} ⊆ P . Now, a transition is controlled
by a guard that allows us to compare data values stored in registers with data
values from the target stack. A guard (wrt. A) is generated by the grammar
Φ ::= true | π1 = π2 | Φ ∧ Φ | ¬Φ where π1, π2 ∈ R ∪ PA. For example, guard
r1 = r2 ∧ ¬(r1 = p3) requires that the contents of register r1 equals the data
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value held in r2, but is different from the third data value stored on top of the
target stack. If the guard is satisfied, the automaton outputs one or several ac-
tions that may use the data values represented by R ∪ PA. They may also use
fresh data values, and we will use the parameters Q = {q1, q2, . . .} as place-
holders for them. Finally, the transition updates the current state, the register
contents, and the stacks. Register and stack updates are allowed to use stored
data values as well as fresh ones. More precisely, an update (wrt. A) is a tuple
upd = (π1, . . . , π�, u1, . . . , u�). For i ∈ [�], πi ∈ R ∪ PA ∪ Q determines the new
data value stored in ri. For example, if πi = p1, then ri obtains the first value
stored on top of the the target stack; if πi = ri, then ri is left unchanged; if
πi = qj , then ri will get some fresh data value. For t ∈ [�], ut is a string over
ZR∪PA∪Q, which, instantiated with data values, is pushed onto stack t. Again,
this string may use data values stored in registers (R) or the target stack (PA),
as well as fresh data values (Q). Let us formally define DMPA.

Definition 1 (data multi-pushdown automaton). Let � ≥ 0 and � ≥ 1.
A (�-register, �-stack) data multi-pushdown automaton (DMPA) over (Σ,D) is
a 6-tuple A = (S,Z, s0, Z, F,Δ) where S is a finite set of states, Z is a finite
ranked alphabet of stack symbols, s0 ∈ S is the initial state, Z ∈ Z is the start
symbol with arity(Z) = 0, and F ⊆ S is the set of final states. Moreover, Δ is
a finite set of transitions. A transition δ is of the form

t:A, s
Φ,u,upd−−−−−→ s′

where s, s′ ∈ S are states, t ∈ [�] is a stack, A ∈ Z, Φ is a guard wrt. A,
u ∈ (ΣR∪PA∪Q)

∗, and upd is an update wrt. A. We let Πδ = R ∪ PA ∪ Qδ with
Qδ the set of parameters from Q occurring in u or upd.

We let ConfA := S × D� × 2D × (Z∗
D)� denote the set of configurations of A.

Configuration γ = [s, r, U, w1, . . . , w�] with r = (d1, . . . , d�) says that the current
state is s, the content of register ri is di, the data values from U have already
been used, and the stack contents are w1, . . . , w� where we assume that the

topmost symbol is written last. Now, consider a transition δ = t:A, s
Φ,u,upd−−−−−→ s′

with upd = (π1, . . . , π�, u1, . . . , u�), which we call a t-transition since it pops
A from stack t. It is enabled at γ if wt = w′

tA(d
′
1, . . . , d

′
m) and σ |= Φ where

σ : R ∪ PA → D is the interpretation defined by σ(ri) = di for i ∈ [�] and
σ(pj) = d′j for j ∈ [m]. In this case, for any extension of σ to Πδ (still denoted
σ) assigning to parameters in Qδ pairwise distinct fresh values from D \U , there
is a concrete transition γ

σ(u)
=⇒σ,δ γ

′ where σ(u) is the data word obtained from u
by replacing any parameter π ∈ Πδ occuring in u by σ(π) ∈ D, and

γ′ = [s′, (σ(π1), . . . , σ(π�)), U ∪ σ(Qδ), w1σ(u1), . . . , w
′
tσ(ut), . . . , w�σ(u�)] .

A configuration of the form [s0, (d1, . . . , d�), {d1, . . . , d�}, Z, ε, . . . , ε] with the
data values d1, . . . , d� pairwise distinct is called initial, and a configuration
[s, r, U, w1, . . . , w�] such that s ∈ F is called final. A run of A on w ∈ Σ∗

D
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Fig. 1. A data word generated by the leader election protocol

is a sequence γ0
w1=⇒σ1,δ1 γ1

w2=⇒σ2,δ2 . . .
wn=⇒σn,δn γn such that w = w1 · · ·wn

and γ0 is initial. The run is accepting if γn is final. We let L(A) := {w ∈ Σ∗
D |

there is an accepting run of A on w} be the language of A. Note that L(A) is
closed under permutation of data values.

It is easy to see that DMPA have an undecidable emptiness problem, even
when we assume only two stacks as well as labels and stack symbols with arity
0. Therefore, we will restrict the number of phases, a notion that goes back to
La Torre et al. who introduced it for multi-stack pushdown automata [15]. In
one phase, one can only pop from one particular stack. Formally, for ( ≥ 1, a run
γ0

w1=⇒σ1,δ1 γ1
w2=⇒σ2,δ2 . . .

wn=⇒σn,δn γn is an (-phase run if the sequence δ1 . . . δn
can be split into ( blocks, each block using only t-transitions for some t ∈ [�]. By
L�(A), we then denote the restriction of L(A) to data words that are accepted
by (-phase runs.

Remark 2. A DMPA that does not use its stacks (i.e., it never replaces the
start symbol Z) corresponds to a restriction of fresh-register automata [20]. The
restriction consists in allowing the automaton to read only data values that are
either fresh or stored in the registers. In the terminology of [20], local -freshness
transitions are discarded, while global -freshness transitions are permitted.

Example 3. We will specify a 1-register 2-stack DMPA that models the commu-
nication flow of a token-based leader election protocol. One possible behavior of
the protocol is captured by the data word from Figure 1. The underlying alpha-
bet of labels is Σ = {c,m, e, a}. The labels c and m have arity 2, and the labels
e and a have arity 3. Data values from D = � will be used to model process
identifiers (pids).

In the figure, a root process with pid 1 initiates a cascade of process spawns.
It first executes action c(1, 2), which creates a new process with pid 2. Process
2 then executes c(2, 3) to create a new process 3, and so on. The number of pro-
cesses created is not fixed apriori. The creation phase is followed by a message
exchange between the very last process and the root, whereupon the former ini-
tiates the election phase. In the election phase, a process d non-deterministically
chooses either the pid received from d+1 or its own identity, and forwards it to
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s stack Φ action upd s′

lep1 s0 1:Z() true ε q1 Z()C(q1) Y () s1

lep2 s1 1:C(p1) true c(p1, q1) r1 X(p1)E(q1, p1)C(q1) ε s1

lep3 s1 1:C(p1) true m(p1, r1)m(r1, p1) p1 ε ε s2

lep4 s2 1:E(p1, p2) true e(p1, p2, r1) r1 ε A(p2, p1) s2

lep5 s2 1:X(p1) true ε r1 ε ε s2

lep6 s2 1:X(p1) true ε p1 ε ε s2

lep7 s2 1:Z() true ε r1 ε ε s3

lep8 s3 2:A(p1, p2) true a(p1, p2, r1) r1 ε ε s3

lep9 s3 2:Y () true ε r1 ε ε s4

Fig. 2. A DMPA for the leader election protocol

d − 1 by executing e(d, d − 1, (). In the following announcement phase, the pid
( of the elected leader is forwarded to all the processes, by executing actions of
the form a(d, d + 1, (). The figure depicted on top of the data word illustrates
the creation, election, and announcement phases and the processes involved in
their actions. Recall that data values have no meaning and may only be checked
for equality, and we could have assumed any possible permutation of pids.

Figure 2 depicts a 1-register 2-stack DMPA Alep = (S,Z, s0, Z, F,Δ) for
the leader election protocol. Hereby, S = {s0, . . . , s4}, F = {s4}, and Z =
{Z, Y,X,C,E,A} where arity(Z) = arity(Y ) = 0, arity(X) = arity(C) = 1,
and arity(E) = arity(A) = 2. Moreover, Δ contains 9 transitions, lep1, . . . , lep9.

A run of Alep involving four processes is given in Figure 3 (we omit the
renamings involved in transitions). The transitions lep1, lep2, lep3 put up the
creation phase, represented by the upper part of the figure. For every action
c(d, d+1) that is produced, X(d)E(d+1, d) is written onto the first stack to be
used in the election phase. Simultaneously, the topmost stack symbol C(d + 1)
stores the process d + 1 that has to perform the following action. During the
creation phase, the register stores the identity 1 so that it can later execute
m(4, 1)m(1, 4). The election phase is performed by transitions lep4 to lep6. Here,
the register stores the current leader ( which is sent to the next process in lep4
with action e(d+ 1, d, (). Moreover, A(d, d+ 1) is written onto the second stack
to prepare the announcement phase. Then, process d chooses either to preserve
the current leader in lep5 or to switch the leader to itself in lep6. Transition
lep7 triggers the announcement phase which is performed by lep8 where the final
leader ( stored in the register is sent to all processes with a(d, d + 1, (). Note
that, lep8 causes the only control change, from the first to the second stack. We
actually have L(Alep) = L2(Alep). #$
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[s0 0 {0} Z() ε]
ε

===⇒lep1 [s1 1 {0, 1} Z()C(1) Y ()]
c(1,2)
===⇒lep2 [s1 1 {0, 1, 2} Z()X(1)E(2, 1)C(2) Y ()]
c(2,3)
===⇒lep2 [s1 1 {0, . . . , 3} Z()X(1)E(2, 1)X(2)E(3, 2)C(3) Y ()]
c(3,4)
===⇒lep2 [s1 1 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3)E(4, 3)C(4) Y ()]

m(4,1)m(1,4)
=======⇒lep3 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3)E(4, 3) Y ()]

e(4,3,4)
====⇒lep4 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2)X(3) Y ()A(3, 4)]

ε
===⇒lep5 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2)E(3, 2) Y ()A(3, 4)]

e(3,2,4)
====⇒lep4 [s2 4 {0, . . . , 4} Z()X(1)E(2, 1)X(2) Y ()A(3, 4)A(2, 3)]

ε
===⇒lep6 [s2 2 {0, . . . , 4} Z()X(1)E(2, 1) Y ()A(3, 4)A(2, 3)]

e(2,1,2)
====⇒lep4 [s2 2 {0, . . . , 4} Z()X(1) Y ()A(3, 4)A(2, 3)A(1, 2)]

ε
===⇒lep5 [s2 2 {0, . . . , 4} Z() Y ()A(3, 4)A(2, 3)A(1, 2)]

ε
===⇒lep7 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)A(2, 3)A(1, 2)]

a(1,2,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)A(2, 3)]
a(2,3,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()A(3, 4)]
a(3,4,2)
====⇒lep8 [s3 2 {0, . . . , 4} ε Y ()]

ε
===⇒lep9 [s4 2 {0, . . . , 4} ε ε]

Fig. 3. A run of the leader election protocol

3 Monadic Second-Order Logic

While DMPA serve as system models, we use monadic second-order logic to
specify properties of data words. We assume countably infinite supplies of first-
order and second-order variables. We let x, y, . . . denote first-order variables,
which vary over word positions, and we use X,Y, . . . to denote second-order
variables, which vary over sets of positions.

Definition 4 (MSO logic over data words). The class MSOd-word(Σ,D) of
monadic second-order (MSO) formulas over data words is given by the following
grammar, where a ranges over Σ, and 1 ≤ k, l ≤ max(arity(Σ)):

ϕ ::= a(x) | dk(x) = dl(y) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ
Formula a(x) holds in a data word w ∈ Σ∗

D if label (i) = a when x is interpreted
as i ∈ dom(w). Formula dk(x) = dl(y) is satisfied wrt. interpretations i and j
of x and y, respectively, if k ≤ arity(i), l ≤ arity(j), and datak(i) = data l(j).
Formula x ≤ y, the boolean connectives, and quantifiers are self-explanatory.
We also use the usual abbreviations x < y, ∀xϕ, ϕ→ ψ . . .

For a data word w and a formula ϕ(x1, . . . , xn, X1, . . . , Xm) with free variables
in {x1, . . . , xn, X1, . . . , Xm}, we write w, i1, . . . , in, I1, . . . , Im |= ϕ if ϕ evaluates
to true when interpreting the first-order variables by i1, . . . , in ∈ dom(w) and
the second-order variables by I1, . . . , Im ⊆ dom(w), respectively.

If ϕ is a sentence, i.e., it does not have any free variable, then we set L(ϕ) to
be the set of data words w such that w |= ϕ.
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Example 5. We define a property satisfied by the 1-register 2-stack DMPA Alep

from Example 3 modeling the leader election protocol. To express that every new
process will eventually receive an announcement containing a unique leader pid,
we write ϕ = ∃z ∀x (c(x) → ∃y (a(y) ∧ x ≤ y ∧ d2(x) = d2(y) ∧ d1(z) = d3(y))).
We have L(Alep) = L2(Alep) ⊆ L(ϕ). #$

Example 6. This example will show that MSO logic can be used to abstract from
the linear order of a data word to model partially ordered behaviors.

We model concurrent programs where processes can fork other processes and
exchange messages via send and receive primitives. Unlike in the leader elec-
tion protocol, we will model sends and receives separately, which allows us
a finer treatment when we formulate MSO properties. Again, processes have
unique pids, which are modeled as data values. We let D = � be the pids and
Σ = {s, f, !, ?} be the labels. Label s takes one pid d, and s(d) ∈ ΣD indicates
that d has just started its execution. Labels f, !, and ? each take two arguments,
one for the executing (i.e., forking, sending, receiving) process, and one for the
communication partner (i.e., the new, receiving, sending process, respectively).
In particular, f(c, d) is matched by s(d), and !(c, d) is matched by ?(d, c). Figure 4
shows two data words, w1 and w2. The graphs above them illustrate their in-
terpretation as the execution of a concurrent program, connecting a fork with a
corresponding start action and a send with a matching receive. This connection
will, in the following, be formalized in terms of MSO logic.

Rather than the linear order of the data word, we are interested in the causal
dependencies in the underlying concurrent execution modeled by this data word,
and these can be captured via MSO formulas. Let x <proc y be a shorthand for
x < y ∧ d1(x) = d1(y), which denotes that there is a process that executes
first x and later y (we may say that a word position is “executed”, as it is
considered as a system event). In Figure 4, the relation induced by x <proc y
is given in terms of the transitive closure of the horizontal edges. For example,
w1, 1, 2 |= x <proc y and w1, 1, 6 |= x <proc y. Now, consider formula x <m y,
which stands for !(x)∧ ?(y) ∧ x < y ∧ d1(x) = d2(y)∧ d2(x) = d1(y). We assume
a bound 1 on the channel capacities. To say that x and y form a message, we
let x <msg y abbreviate x <m y ∧ ¬∃z (x < z < y ∧ (x <m z ∨ z <m y)). For
example, we have w1, 6, 7 |= x <msg y. Let us relate a fork position with the
first position executed by the new process: x <fork y stands for f(x) ∧ s(y) ∧
d2(x) = d1(y). For example, w1, 4, 5 |= x <fork y. To define causal dependencies
between positions of a data word, we let <causal denote the transitive closure
of the relation <proc ∪ <msg ∪ <fork. It corresponds to the transitive closure
of the edge relation depicted in Figure 4. Note that the transitive closure of
an MSO definable binary relation is indeed MSO definable [7]. For example,
w1, 1, 7 |= x <causal y, but w1, 4, 6 %|= x <causal y and w1, 6, 4 %|= x <causal y.

Like in the leader election protocol, we assume a system architecture that
allows us to pass pids along messages or process forks. When we consider concrete
implementations of such concurrent programs, it is crucial that a process sending
a message to another knows the pid of the receiving process. We will determine an
MSO formula ϕrealizable that checks a system for such consistency (realizability in
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Fig. 4. Two data words

the terminology of [5]). It uses a formula knows(x, y), which holds if the process
executing x, right before performing the action, knows the pid of the process
executing y. Regarding Figure 4, we would like to have w1, 6, 7 %|= knows(x, y),
as there is no way to communicate pid 3 to the process with pid 1. On the other
hand, we will have w2, 10, 11 |= knows(x, y) as pid 3 can be communicated to
process 1 along the message from 2 (which spawned 3) to 1. We first describe a
formula x <flow y, which intuitively says that there is some flow of information
from position x to position y. In other words, pids can be passed from the process
executing x to the process executing y. We set <flow to be the transitive closure of
<causal ∪ <−1

fork. For example, w1, 3, 6 |= x <flow y, but w1, 4, 6 %|= x <flow y. Now,
we set knows(x, y) to be ∃y′ (y′ <proc y ∧ flow(y′, x)). Finally, we consider our
system to be realizable if it satisfies ϕrealizable := ∀x∀y (x <msg y → knows(x, y)).
We have w1 %|= ϕrealizable but w2 |= ϕrealizable . #$

4 Model Checking DMPA

We now present our main result, decidability of the model-checking problem for
(bounded control change) DMPA wrt. MSO logic:

Theorem 7. For a DMPA A over (Σ,D), a natural number ( ≥ 1, and a
sentence ϕ ∈ MSOd-word(Σ,D), one can decide if L�(A) ⊆ L(ϕ).
The rest of this section is devoted to the proof of Theorem 7, which we outline
in the following. First, we represent a run ρ of a DMPA as a (multiply) nested
data word. The nested data word associated with ρ is the concatenation of the
instantiations of transitions used in ρ. In addition, it has nesting edges from
a pushed stack symbol to the position where it is popped. There is a precise
correspondence between ((-phase) runs and (certain (-phase) nested data words.
Moreover, the data word generated by ρ will be exactly the word projection
(without nesting edges) of its nested word onto the alphabet ΣD. Next, we look
at abstract nested words, which, instead of data values, contain the parameters
used in the run. We, therefore, deal with nested words over a finite alphabet.
A nested data word and the abstract version corresponding to a run are de-
picted in Figure 5. The trick is now that we can, using the nesting edges, define
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MSO formulas over abstract nested words that recover equality of data values
in the concrete version. As the set of abstract nested words that correspond to
accepting runs of the DMPA is also definable in MSO logic, we reduce, in this
way, the model-checking problem for a DMPA to a satisfiability problem over
abstract nested words. Satisfiability of MSO formulas over (-phase nested words
is decidable due to [15] so that the theorem follows.

Nested Words. Let � ≥ 1. An �-stack alphabet is a (possibly infinite) al-
phabet Γ together with mappings stack : Γ → {0, 1, . . . ,�} and type : Γ →
{push, pop, int} such that, for all a ∈ Γ , we have type(a) = int iff stack(a) = 0.
Given w = a1 . . . an ∈ Γ ∗ and i ∈ dom(w), we let stack(i) = stack (ai) and
type(i) = type(ai). For t ∈ [�], we call w ∈ Γ ∗ t-well-nested if it can be gener-
ated by the context-free grammar A ::= aAb | AA | ε | c where a, b, c ∈ Γ are
such that stack (a) = stack(b) = t %= stack(c), type(a) = push, and type(b) = pop.

A nested word over Γ is a pairW = (w,�) where w ∈ Γ ∗ and� ⊆ dom(w) ×
dom(w) is the binary matching relation, which is uniquely determined as follows:
for all i, j ∈ dom(w), i � j iff i < j and there is t ∈ [�] such that stack(i) =
stack(j) = t, type(i) = push, type(j) = pop, and ai+1 . . . aj−1 is t-well-nested.
Note that there might be push or pop positions that are not matched wrt. �.
The set of nested words over Γ is denoted by Nested(Γ ).

Let ( ≥ 1. A nested word (w,�) is an (-phase nested word if w can be written
as w1 . . . w� with wi ∈ Γ ∗ where, for all i ∈ {1, . . . , (}, there is t ∈ [�] such that,
for each letter a ∈ Γ that occurs in wi, type(a) = pop implies stack(a) = t.

The class MSOnw(Γ ) of MSO formulas over nested words is given by the
following grammar, where a ranges over Γ :

ϕ ::= a(x) | x� y | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ
The atomic predicates are interpreted over a nested word W = (a1 . . . an,�) as
follows: W, i |= a(x) if ai = a, W, i, j |= x � y if i � j, and W, i, j |= x ≤ y if
i ≤ j. The other connectives are as expected.

Theorem 8 (La Torre et al. [15]). Given a finite �-stack alphabet Γ , ( ≥ 1,
and a sentence ϕ ∈ MSOnw(Γ ), one can decide if there is an (-phase nested word
W over Γ such that W |= ϕ.
Nested Data Words. Next, we define nested words carrying data values.
Let Γ be a finite ranked �-stack alphabet, i.e., every letter a ∈ Γ has some
arityΓ (a) ∈ �. We can interpret ΓD as an infinite �-stack alphabet in the obvi-
ous manner. A nested data word over (Γ,D) is a nested word over ΓD. Notions
from data words such as dom(w) and datak(i) can be transferred to nested data
words W = (w,�) by applying them to the w-component.

The set MSOd-nw(Γ,D) of MSO formulas over nested data words is given by
the following grammar, where a ranges over Γ , and 1 ≤ k, l ≤ max(arity(Γ )):

ϕ ::= a(x) | dk(x) = dl(y) | x� y | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ
We omit the definition of the semantics, which is as expected.
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Suppose Σ ⊆ Γ . Given a nested data word W over (Γ,D), we denote by
ProjΣ(W ) the data word from Σ∗

D obtained by restricting (or projecting) W to
ΣD and discarding �. Using a simple relativization, we obtain:

Proposition 9. Let Σ ⊆ Γ and ϕ ∈ MSOd-word(Σ,D) be a sentence. We can
effectively construct a sentence ϕ̃ ∈ MSOd-nw(Γ,D) such that, for all W ∈
Nested(ΓD), we have W |= ϕ̃ iff ProjΣ(W ) |= ϕ.
Parse Words. Let ( ≥ 1 and A = (S,Z, s0, Z, F,Δ) be a (�-register, �-stack)
DMPA over (Σ,D). Without loss of generality, we assume that there is a map-
ping stack : Z → [�] such that each stack symbol A ∈ Z is written on/removed
from stack(A) only. We assume stack(Z) = 1. We define a finite ranked �-stack
alphabet Γ = Σ 0 Z 0 Z 0 S 0 S where Z = {A | A ∈ Z} and S = {s | s ∈ S}
contain a marked copy of every letter from Z and S, respectively. We retain the
arities defined by the alphabets Σ and Z. We let arityΓ (s) = arityΓ (s) = � for
all s ∈ S and arityΓ (A) = arityΓ (A) for all A ∈ Z. Moreover, type(a) = int
and stack(a) = 0 for all a ∈ Σ ∪ S ∪ S. Finally, stack (A) = stack(A),
type(A) = push, and type(A) = pop for all A ∈ Z.

Let O ⊂ Π denote the finite set of parameters occurring in A. Recall that,
by ΓO, we denote the (finite) �-stack alphabet {a(π1, . . . , πm) | a ∈ Γ , m =
arityΓ (a), and π1, . . . , πm ∈ O}. For b = a(π1, . . . , πm) ∈ ΓO and 1 ≤ k ≤ m, we
denote by park(b), its k-th parameter πk.

We are now ready to define the (abstract and concrete) parse words of A.

Consider a transition δ = t:A, s
Φ,u,upd−−−−−→ s′ with upd = (π1, . . . , π�, u1, . . . , u�).

Note that t = stack(A) by assumption. Let m = arity(A). We define the string
of δ as string(δ) := s(r1, . . . , r�)A(p1, . . . , pm)uu1 . . . u�s

′(π1, . . . , π�) ∈ Γ ∗
O . For

instance, for the DMPA Alep from Example 3, we have

string(lep1) = s0(r1)Z()Z()C(q1)Y ()s1(q1)

string(lep2) = s1(r1)C(p1)c(p1, q1)X(p1)E(q1, p1)C(q1)s1(r1)

For an interpretation σ : O → D, we define similarly the string of the concrete
transition σ(δ) with data values σ(π) substituted for parameters π ∈ O. It
is denoted string(σ(δ)). Note that the string of a transition does not consider
guards. Guards are taken into account later, in Proposition 14.

Consider a run ρ of A of the form

γ0
w1=⇒σ1,δ1 γ1

w2=⇒σ2,δ2 . . .
wn=⇒σn,δn γn

The nested word (w,�) with w = Z()s0(r1, . . . , r�)string(δ1) . . . string(δn) ∈ Γ ∗
O

is the abstract parse word of ρ and denoted apwρ. The nested data word (w′,�)
with w′ = Z()s0(σ1(r1), . . . , σ1(r�))string(σ1(δ1)) . . . string(σn(δn)) ∈ Γ ∗

D is the
concrete parse word of ρ denoted pwρ. Notice that dom(pwρ) = dom(apwρ).
Moreover, ρ is (-phase iff pwρ is (-phase iff apwρ is (-phase.

Figure 5 illustrates an abstract parse word and a concrete parse word of the
run lep1lep2lep2lep3lep4lep6lep4lep5lep7lep8lep8lep9 of DMPA Alep from Exam-
ple 3. The curved lines depict the nesting relation � (straight lines for stack 1,
dotted lines for stack 2).
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Fig. 5. An abstract and a concrete parse word (split over two lines)

The data word σ(u) generated by a concrete transition σ(δ) is precisely
the Σ-projection of string(σ(δ)). Hence, the data word generated by a run ρ
is ProjΣ(pwρ). The data words accepted by A with (-phase runs are the Σ-
projections of the concrete parse words of these runs:

Proposition 10. We have L�(A) = {ProjΣ(pwρ) ∈ Σ∗
D | ρ is an (-phase ac-

cepting run of A}.
An abstract parse word is an abstraction of several concrete parse words. Our
aim is to recover from an abstract parse word all data equalities that hold in the
concrete parse word. To do so, we will define formulas ϕk,l(x, y) ∈ MSOnw(ΓO)
for all 1 ≤ k, l ≤ max(arity(Γ )), with free variables x and y. Intuitively, ϕk,l(x, y)
will hold in an abstract parse word iff dk(x) = dl(y) holds in any corresponding
concrete parse word.

We first give some definitions and macros. Block 0 of an abstract parse word
consists of the first two positions, which are labelled Z() and s0(r1, . . . , r�) re-
spectively. Then, we find a concatenation of blocks of the form string(δ) =
s(r1, . . . , r�)A(p1, . . . , pm)vs′(π1, . . . , π�) for some transition δ (see Figure 5). For
any position x, we denote by Block(x) the block of x. We use Block(x) = Block(y)
to state that x and y belong to the same block, which can be expressed by the
following first-order formula: x, y ≤ 2 ∨ ∃x′, y′ (x′ ≤ x, y ≤ y′ ∧ ∨

s∈SO s(x
′) ∧
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s∈SO s(y

′) ∧ ∀z ((z < y′ ∧ ∨
s∈SO s(z)) → z ≤ x′)). Moreover, we will use the

macro Block(x) ≤ Block(y) := x ≤ y ∨ Block(x) = Block(y).
Let park(x) denote the k-th parameter of position x of the abstract parse

word. The macro park(x) = parl(y) says that x and y carry the same parameter
at indices k and l, respectively. It is the disjunction of formulas b(x) ∧ b′(y)
where b, b′ ∈ ΓO are such that park(b) = parl(b

′). We also let existspark(x) be the
disjunction of formulas b(x) where b ∈ ΓO is such that arity(b) ≥ k.

Let us see how to propagate a data value to a later block. Clearly, we have
dk(x) = dl(y) in the concrete parse word if in the abstract parse word the formula

ψk,l(x, y) :=

⎛⎝ Block(x) = Block(y) ∧ park(x) = parl(y)
∨ Block(x) %= Block(y) ∧ x+ 1 = y ∧ k = l ≤ �

∨ x� y ∧ ∨
a=A(...)∈ZO(a(x) ∧ k = l ≤ arity(A))

⎞⎠
holds. Note that ψk,l(x, y) implies Block(x) ≤ Block(y) and that ψk,k(x, x) is
equivalent to existspark(x). Data equality is also ensured if we can reach y from
x using a sequence of ψi,j steps. It is well-known that such a “transitive closure”
can be defined in MSO: we let m = max(arity(Γ )) and define x k�l y by

existspark(x) ∧ ∀X1, . . . , Xm(
x ∈ Xk ∧

∧
1≤i,j≤m

∀z1, z2 (z1 ∈ Xi ∧ ψi,j(z1, z2)) → z2 ∈ Xj

)
→ y ∈ Xl

so that we have apwρ, i, j |= x k�l y iff for some n > 0, there are sequences
i = i0, i1, . . . , in = j and k = k0, k1, . . . , kn = l such that apwρ, ip, ip+1 |=
ψkp,kp+1(x, y) for all 0 ≤ p < n. Therefore, x k�l y in the abstract parse word
implies dk(x) = dl(y) in the concrete parse word.

For the general case, we will prove that dk(x) = dl(y) in the concrete parse
word iff there exists a position z such that the i-th value of z was propagated to
x as its k-th value and to y as its l-th value. So we define

ϕk,l(x, y) := ∃z
∨

i
z i�k x ∧ z i�l y

Example 11. We will see how the formulas defined above retrieve data equality
on the abstract parse word from Figure 5. Let us check whether the data at the
third component of e in Block 5 is same as the data at the second component of
a in Block 11, i.e., whether r1 in Block 5 and p2 of Block 11 hold the same value.
First, p2 in Block 11 equals p1 in Block 5, which equals q1 in Block 3, which is
fresh. Similarly, r1 in Block 5 is the same as p1 in Block 4, which equals q1 in
Block 3, which is fresh. Hence, from q1 of Block 3, we can reach both r1 in Block
5 and p2 in Block 11 by �, thus concluding they hold the same data value. #$
We can prove that the formulas ϕk,l(x, y) defined above are indeed correct.

Proposition 12. For all runs ρ of A and all positions i, j ∈ dom(pwρ), we have
pwρ, i, j |= dk(x) = dl(y) iff apwρ, i, j |= ϕk,l(x, y).
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Corollary 13. For every sentence ξ ∈ MSOd-nw(Γ,D), we can effectively con-

struct a sentence ξ̂ ∈ MSOnw(ΓO) such that, for all runs ρ of A, we have pwρ |= ξ
iff apwρ |= ξ̂.
We obtain ξ̂ by replacing every occurrence of dk(x) = dl(y) in ξ with ϕk,l(x, y),
and every occurrence of a(x) with the disjunction of formulas b(x) where b =
a(π1, . . . , πm) ∈ ΓO. The result then follows from Proposition 12.

The last proposition needed for our proof says that the set of abstract parse
words of (-phase accepting runs of A is MSO definable. The MSO formula has
to make sure that there is a suitable assignment of blocks to guards such that
the guards are satisfied. Satisfaction is checked using the formulas ϕk,l(x, y).

Proposition 14. There is ψ ∈ MSOnw(ΓO) such that L(ψ) = {apwρ | ρ is an
(-phase accepting run of A}.
Proof (of Theorem 7). Let ϕ ∈ MSOd-word(Σ,D). We consider the formulẫϕ ∈ MSOnw(ΓO) obtained from Proposition 9 and Corollary 13. We show that

L�(A) ⊆ L(ϕ) iff the formula ψ → ̂̃ϕ is valid over Nested(ΓO) where ψ is from
Proposition 14. This validity is decidable due to Theorem 8.
=⇒: Assume L�(A) ⊆ L(ϕ). Let W ∈ Nested(ΓO) be such that W |= ψ. By
Proposition 14, there is an (-phase accepting run ρ of A such that W = apwρ.
By Proposition 10, we get ProjΣ(pwρ) ∈ L�(A). Hence ProjΣ(pwρ) |= ϕ and, by

Proposition 9, we get pwρ |= ϕ̃. Finally, Corollary 13 implies W = apwρ |= ̂̃ϕ.
⇐=: Assume that ψ → ̂̃ϕ is valid. Let w ∈ L�(A). By Proposition 10, there is an
(-phase accepting run ρ of A such that w = ProjΣ(pwρ). By Proposition 14, we

have apwρ |= ψ and since ψ → ̂̃ϕ is valid we get apwρ |= ̂̃ϕ. We obtain pwρ |= ϕ̃
by Corollary 13 and, finally, w = ProjΣ(pwρ) |= ϕ by Proposition 9. #$

5 Conclusion

In this paper, we introduced DMPA and showed that their model-checking prob-
lem is decidable wrt. the full MSO logic over data words. Note that this con-
tributes to the area of parametrized verification [1], as model checking can prove
that a property holds for any number of processes.

An important next step is to bridge the gap between DMPA specifications and
concrete implementations, for example in terms of automata with pid-passing
capabilities [4, 5]. Recall that the leader election protocol requires a context-
sensitive specification when we define its behavior globally. However, it can be
implemented as a finite-state system when we assume several local copies of
processes that can send and receive messages as well as process identities. It
remains to identify classes of DMPA that can be implemented in this way.

Recall that our main result relies on Theorem 8, whose proof [15, 18] essen-
tially shows that (-phase nested words have bounded tree width. It would be
worthwhile to study if one can reduce our model-checking problem to a satisfi-
ability problem for MSO logic over some class of graphs of bounded tree width
or bounded clique width.
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Abstract. We study the computational complexity of model checking EF logic
and modal logic on parametric one-counter automata (POCA). A POCA is a one-
counter automaton whose counter updates are either integer values encoded in
binary or integer-valued parameters. Given a formula and a configuration of a
POCA, the model-checking problem asks whether the formula is true in this con-
figuration for all possible valuations of the parameters. We show that this problem
is undecidable for EF logic via reduction from Hilbert’s tenth problem, however
for modal logic we prove PSPACE-completeness. Obtaining the PSPACE upper
bound involves analysing systems of linear Diophantine inequalities of exponen-
tial size that admit solutions of polynomial size. Finally, we show that model
checking EF logic on POCA without parameters is PSPACE-complete.

1 Introduction

Counter automata, a fundamental and widely-studied model of computation, consist
of a finite-state controller which manipulates a finite set of counters ranging over the
naturals. A classic result by Minsky states that Turing completeness can already be ob-
tained when restricting to two counters [17]. Due to this fact, research has subsequently
focused on studying restricted classes of counter automata and related formalisms.
Among others, we note the use of restrictions to a single counter (one-counter automata
or OCA, for short), restrictions on the underlying structure of the controller (such as flat-
ness [5,15]), restrictions on the kinds of allowable tests on the counters, and on the types
of computations considered (such as reversal-boundedness [10,11]). Counter automata
are also closely related to Petri nets and pushdown automata. In recent years, motivated
by complexity-theoretic considerations on the one hand and practical applications on
the other, researchers have investigated decision problems for counter automata with
additional primitive operations on counters, such as additive updates encoded in bi-
nary [1,15] or even in parametric form, i.e., updates whose precise values depend on a
finite set of parameters [3,12]. We refer to such counter automata as succinct and para-
metric respectively, the former being a subclass of the latter. Natural applications of
such counter automata include the modeling of resource-bounded processes, numeric
data types, programs with lists, recursive or multi-threaded programs, and XML query
evaluation; see, e.g., [4,11,10,1].

The two most prominent decision problems for counter automata are reachability and
model checking. Reachability asks whether there is path between two configurations in
the potentially infinite transition system generated by a counter automaton. For counter
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automata with parameters, this problem generalises to asking whether there exists a
valuation of the parameters such that reachability holds between two configurations in
the concrete transition system induced through the valuation. Model checking is the
problem of deciding whether a formula given in some temporal logic holds in a con-
figuration of the transition system induced by a counter automaton, and when param-
eters are present whether the formula holds in a configuration in all transition systems
induced by all possible valuations. Due to Minsky’s result, the restriction to a single
counter is a natural way to potentially obtain decidability for reachability and model
checking problems. Consequently, in this paper we restrict our attention to this class of
counter automata, and in particular investigate model checking problems for succinct
one-counter automata (SOCA) and parametric one-counter automata (POCA).

State of the art. Reachability is known to be NL-complete for OCA and has recently
been shown to be NP-complete for SOCA and decidable for POCA [9]. The complex-
ity of model-checking problems for various temporal logics including LTL, CTL and
fragments thereof has been studied for OCA, SOCA and POCA in a number of re-
cent works [20,8,7,6,22]. When comparing OCA with SOCA, an exponential complex-
ity jump for the model checking problem may arise: both CTL and μ-calculus model
checking on OCA are PSPACE-complete [20,7], whereas for SOCA these problems
are EXPSPACE-complete [20,6]. However, this jump is not inherent, since for example
model checking LTL is PSPACE-complete for both OCA and SOCA. When parameters
come into play, model checking LTL on POCA is NEXP-complete and becomes unde-
cidable for CTL [6]. In [8], model checking the fragment EF of CTL on OCA, which
can be seen as an extension of modal logic with a reachability predicate, is shown to be
complete for PNP. Despite its relatively limited expressiveness, EF is a useful specifica-
tion language, and in particular bisimilarity checking of arbitrary systems against finite
systems is polynomial-time reducible to EF model checking [13].

Our contribution. In this paper, we investigate the decidability and complexity of
EF and modal logic (ML) model checking on transition systems generated by SOCA
and POCA. As mentioned above, CTL model checking of POCA is undecidable [6],
which is shown by reduction from the reachability problem for two-counter automata.
In [6], we conjectured that EF model checking on POCA could be decidable, which
is not unreasonable for two reasons. First, the undecidability proof for CTL on POCA
in [6] heavily relies on the use of the until operator. Second, reachability for POCA
is decidable [9], which is shown via a translation into the quantifier-free fragment of
Presburger arithmetic with divisibility. Since there exist extensions of the latter theory
that allow for universal quantification, see e.g. [2], and since EF primarily allows for
reasoning about reachability relations, it seemed plausible that an instance of an EF
model-checking problem on POCA could be translated into a sentence in such an ex-
tended theory. Nevertheless, we show in this paper that model checking EF logic on
POCA is undecidable via a different reduction, namely from Hilbert’s tenth problem,
which Matiyasevich showed to be undecidable [16]. On the positive side, we establish
tight complexity bounds for model checking POCA and SOCA against large fragments
of EF. First, by dropping the reachability modality and thus restricting EF to ML, we
show that the model-checking problem for POCA becomes PSPACE-complete. Obtain-
ing the PSPACE upper bound involves a careful analysis of the size of the solution sets
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Table 1. Complexity of model checking EF, ML and CTL/modal μ-calculus on OCA, SOCA and
POCA

OCA SOCA POCA

CTL, μ-cal. PSPACE-complete [7,20] EXPSPACE-complete [6,20] Π0
1 -complete[6]

EF PNP-complete [7,8] Π0
1-complete

ML P-complete [14]
PSPACE-complete

of certain systems of linear Diophantine inequalities of potentially exponential size.
Second, when no parameters are present, we show that EF model checking for SOCA
is PSPACE-complete. The main technical challenge is to develop an “exponential peri-
odicity property” that characterizes those counter values at which an EF formula holds.
Our results are summarized in bold font in Table 1, which also summarizes known
results from the literature.

Structure of this paper. We introduce basic definitions and notations in Section 2
and present results on model checking POCA in Section 3. Section 4 deals with model
checking SOCA before we conclude in Section 5. Due to space limitations, details of
some proofs are deferred to a full version of this paper.

2 Preliminaries

Throughout this paper, we denote by N = {0, 1, . . .} the non-negative integers and by

Z the integers. We define [i, j]
def
= {i, i+ 1, . . . , j} and introduce [i] as an abbreviation

for [1, i]. For any n ∈ N, we denote by lgn the smallest i ∈ N such that n ≤ 2i. Given
a function f : N → N, we write f(n) = poly(n) (resp. f(n) = exp(n)) if there is some
polynomial p(n) such that f(n) ≤ p(n) (resp. f(n) ≤ 2p(n)) for each n ∈ N.

The Branching-Time Logic EF: Formulas of EF over a finite set P of atomic propo-
sitions are inductively defined by the following grammar, where p ranges over P:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | EXϕ | EFϕ.

We define the standard Boolean abbreviationsϕ1 ∨ϕ2
def
= ¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2

def
=

¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2
def
= ϕ1 → ϕ2 ∧ ϕ2 → ϕ1. Moreover, we define the additional

modalities AXϕ
def
= ¬EX¬ϕ and AGϕ

def
= ¬EF¬ϕ. Modal Logic (ML) is obtained from

EF by disallowing the EF operator. An EF formula ϕ is in negation normal form if
all negation symbols occur only in front of atomic propositions. The size |ϕ| of EF
formulas ϕ is defined as usual.

The semantics of an EF formula is given in terms of transition systems. A transition
system T is a tuple T = (S,P, λ,−→), where S is the set of states, P is a finite set
of atomic propositions, λ : S → 2P is the state-labeling function and −→ ⊆ S × S
is the transition relation. We use infix notation for −→ and write s −→ s′ whenever
(s, s′) ∈−→. An s-s′ path � in a transition system T is a finite sequence of states
� : s1 · · · sn such that s = s1, s′ = sn and si −→ si+1 for all i ∈ [n − 1], and we
write � : s −→∗ s′ to express that � is an s-s′ path. Table 2 presents the semantics
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Table 2. Semantics of EF

(T, s) |= p ⇐⇒ p ∈ λ(s)

(T, s) |= ¬ϕ ⇐⇒ (T, s) �|= ϕ

(T, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (T, s) |= ϕ1 and (T, s) |= ϕ2

(T, s) |= EXϕ ⇐⇒ ∃s′ ∈ S.(T, s′) |= ϕ and s −→ s′

(T, s) |= EFϕ ⇐⇒ ∃s′ ∈ S.(T, s′) |= ϕ and s −→∗ s′

of EF formulas. Given an EF formula ϕ, a transition system T and a state s ∈ S, the
satisfaction relation (T, s) |= ϕ is defined by induction on the structure of ϕ, and we
say ϕ holds at s in T if (T, s) |= ϕ.

Parametric One-Counter Automata: Let X = {x1, . . . , xn} denote a finite set of

parameters, and let Op
def
= {add(z), add(x) : z ∈ Z, x ∈ X} ∪ {zero} be a set of oper-

ations. A parametric one-counter automaton (POCA) is a tuple A = (Q,X,P, λ,Δ),
where Q is a finite set of control locations, P is a finite set of atomic propositions,
λ : Q → 2P is the location-labeling function, and Δ ⊆ Q × Op × Q is the transi-
tion relation. A succinct one-counter automaton (SOCA) is a POCA with X = ∅. We
write q

op−→ q′ whenever (q, op, q′) ∈ Δ. By nmax (A) we denote the largest absolute
value of all integers occurring in the operations of A. The size |A| of a POCA A is

defined as |A| def
= |Δ| + lg nmax (A). A valuation ν : X → Z is a function assign-

ing an integer to each parameter. Given a POCA A, a valuation induces a SOCA Aν

which is obtained by replacing each transition q
add(xi)−−−−→ q′ with q

add(ν(xi))−−−−−−→ q′. For

a SOCA A, we denote by T (A)
def
= (SA,P, λA,−→A) the transition system induced

by A, where SA
def
= Q × N, λA

def
= (q, n) "→ λ(q), and (q, n) −→A (q′, n′) if, and

only if, either q
add(z)−−−−→ q′ and n′ = n + z, or q

zero−→ q′ ∈ Δ and n = n′ = 0. For
convenience, we write q(n) instead of (q, n) for states in SA. Given two states q(n) and
q′(n′), reachability is to decide whether there exists a q(n)-q′(n′) path in T (A).

Proposition 1 ([9]). Reachability in SOCA is NP-complete.

The model-checking problem for POCA, and thus for SOCA, is defined as follows:
ML/EF MODEL CHECKING ON POCA

INPUT: A POCA A = (Q,X,P, λ,Δ), q ∈ Q and an ML/EF formula ϕ.
QUESTION: Does (T (Aν), q(0)) |= ϕ hold for each assignment ν : X → Z?

We note that deciding whether (T (Aν), q(0)) |= ϕ holds for each assignment ν is the
complement of deciding if (T (Aν), q(0)) |= ¬ϕ holds for some assignment ν.

We close this section with an example of a model-checking problem. Figure 1
depicts a SOCA Ai with i ∈ [0,m] for some m ∈ N. Starting in state qi(n) with
n ∈ [0, 2m+1 − 1], it is easily verified that the state qz(0), which is labeled with pi,
is reachable from qi(n) if, and only if, the coefficient of 2i in the binary expansion
of n is 1, which is the case if, and only if, (T (A), qi(n)) |= EFpi or alternatively
(T (A), qi(n)) |= EXm+2pi. Here, EXm+2 is an abbreviation for the m+ 2-fold appli-
cation of the EX operator.
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qi •

add(−20)

add(0)
. . . • • •

add(−2i−1)

add(0) add(−2i)
•

add(−2i+1)

add(0)
. . . • •

add(−2m)

add(0)
qzzero pi

Fig. 1. SOCA Ai used for testing a bit of a number n ∈ [2m+1 − 1]

3 Model Checking POCA

In this section, we prove that model checking EF on POCA is undecidable (Section
3.1). We show that for ML model checking on POCA is decidable and in PSPACE
(Section 3.2).

3.1 Model Checking EF on POCA

We now consider model checking EF on POCA and show that this problem is Π0
1 -

complete. With EF being a notational fragment of CTL, membership in Π0
1 follows

from the fact that CTL model checking on POCA is Π0
1 -complete [6]. Thus, we con-

centrate in this section on a matching Π0
1 -lower bound by giving a reduction from

Hilbert’s Tenth Problem to the complement of the model checking problem.

HILBERT’S TENTH PROBLEM (HTP)

INPUT: A polynomial p with coefficients ranging over the integers.
QUESTION: Do there exist a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0?

HTP was shown to beΣ0
1 -complete by Matiyasevich [16]. Note that HTP remainsΣ0

1 -
hard if we restrict the ai to range over N: A Diophantine equation p(x1, x2, .., xn) = 0
is solvable in the integers if, and only if, one of the 2n equations p(±x1, . . . ,±xn) = 0
has a solution in the naturals. Replacing every unknown with the sum of squares of four
unknowns gives, by Lagrange’s Theorem, the reduction in the other direction.

Moreover, we may assume with no loss of generality that ai > 0 for each i ∈ [n].
If some ai were to be zero in a solution, we can obtain a new polynomial p′ in n − 1
variables by replacing ai with 0 in p.

Let us fix some polynomial p with coefficients ranging over Z. We will subsequently
show how we can compute from p a POCA Ap with a control state qp and an EF formula
ϕp such that p has a solution over the naturals if, and only if, (T (Aν

p), qp(0)) |= ϕp for
some valuation ν of the parameters of A. Recall that the valuation of the parameters
of Ap ranges over Z. However, we can easily ensure with a simple EF formula that a
parameter x is positive. For the following SOCA Ax≥1.

(T (Aν
x≥1), q(0)) |= ¬EF(

we have if, and only if,

ν(x) ≥ 1.
q • •

add(1)

add(x) zero
(

More challenging than testing if a parameter is positive when reducing fromHTP is that
we need to be able to express a multiplication relation over the parameters in the POCA.
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In order to do that, we employ a trick that became popular by the work of Robinson [18]
which allows us to define multiplication in terms of the least common multiple. In fact
given x, y ∈ N, we have

lcm(x+ y, x+ y + 1)− lcm(x, x + 1)− lcm(y, y + 1)

=(x2 + x+ 2xy + y2 + y)− (x2 + x) − (y2 + y) = 2xy

We note that addition and subtraction of the parameters can easily be realized by in-
troducing additional slack parameters in the POCA. Thus, we can enhance our POCA
by transitions of the kind sub(x), meaning that ν(x) is subtracted from the counter,
provided the counter is at least ν(x). We now demonstrate that for parameters x, y, z
of some POCA that each assume positive values, which we can check as seen above,
we can “express” in EF that z = lcm(x, y). Consider the following POCA Alcm, where
unlabeled transitions are assumed to be labeled with “add(0)”:

Alcm : q •

•

•

•

•

•

•

pz

py

px

p?

add(1)

sub(z)

sub(y)

sub(x)

zero

zero

zero

The idea is to express that for all n ∈ N, we have that both x and y divide n if, and
only if, z divides n. We note that for each ν : {x, y, z} → Z with ν(x), ν(y), ν(y) ≥ 1
we have that (T (Aν

lcm), q(0))) |= AG(p? → ((EFpx ∧ EFpy) ↔ EFpz)) if, and only if,
ν(z) = lcm(ν(x), ν(y)).

Thus, by introducing a sufficient number of slack variables, we can express mul-
tiplication, addition and subtraction, which allows us to solve HTP for any arbitrary
polynomial. Thus, we obtain the following theorem.

Theorem 2. Model checking EF logic on POCA isΠ0
1 -complete.

We note that by [16] there exists a fixed universal polynomial pu(n, k, x1, . . . , xm)
such that for each recursively enumerable set S ⊆ N, there is some k0 ∈ N such that
S = {n ∈ N | ∃n1, . . . , nm ∈ N : pu(n, k0, n1, . . . , nm) = 0}. This allows us to
strengthen our result insofar as there exists a fixed EF formula ϕ and a fixed POCA

A = (Q,X,P, λ,Δ) with a transition q
add(y)−−−−→ q′ ∈ Δ and a control state q0 ∈ Q

such that it is Π0
1 -complete to decide for a given n ∈ N whether by replacing y with n,

(T (Aν), q0(0)) |= ϕ holds for all ν : X → Z.

3.2 Model Checking ML on POCA

This section will be devoted to proving a PSPACE upper bound for model checking ML
on POCA. Let us fix some POCA A = (Q,X,P, λ,Δ) with X = {x1, . . . , x�}, some
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control state q0 ∈ Q and some ML formula α. Provided that ML model checking of
SOCA is in PSPACE (we show that even model checking EF on SOCA is in PSPACE
in Section 4.2), in order to obtain a PSPACE upper bound, it is sufficient to show that
if (T (Aν), q0(0)) |= α holds for some ν : X → Z then there is some μ : X → Z such
that (T (Aμ), q(0)) |= α and |μ(x)| can be represented with polynomially many bits in
|A|+ |α| for each x ∈ X , since such an assignment can be guessed in PSPACE.

For each q ∈ Q and each subformulaϕ of α, let us define M(q, ϕ) ⊆ Z�×N ⊆ Z�+1

as follows:

M(q, ϕ)
def
= {(z1, . . . , z�, n) | (T (Aν), q(n)) |= ϕ and ν(xi) = zi, i ∈ [1, (]}.

Before we proceed with the proof of the upper bound, we need to introduce some ad-
ditional notation. For an integer matrix A = (aij) ∈ Zm×n, we denote by ||A|| =
maxi{

∑
j |aij |} the norm of A. For an integer vector b = (bi), we denote by ||b|| =∑

i |bi| the norm of b. A system of linear Diophantine inequalities (SLDI) is a system
of the form S = (Ax ≥ b), where A ∈ Zm×n is an m × n matrix, b ∈ Zm is an m-
vector and x is an n-vector of indeterminates all ranging over the integers. By Sol(S),
we denote the set of integer solutions to the SLDI S = (Ax ≥ b). Finally, we define

||S||mat
def
= ||A|| and ||S||vec

def
= ||b||.

Recall that x1, . . . , x� are the parameters of A. Our overall goal is to expressM(q, ϕ)
by a union of solutions to SLDIs, each of the form

S = (Ax ≥ b), where A ∈ Zm×(�+1) and b ∈ Zm for somem ≥ 1.

In the remainder of this section, we will assume for any (Ax ≥ b) that A is some
m × (( + 1) matrix and b is some m-vector for some m ≥ 1. The intuition is that the
ith component of x with i ∈ [(] is going to correspond to the parameter xi of A and
the ((+ 1)th component of x is going to correspond to the counter value where the ML

formula is evaluated. In case A = (aij) we define ||A||�+1
def
= max{|ai(�+1)| : i ∈ [m]}

and lift this definition to ||S||�+1
def
= ||A||�+1.

In order to prove that small valuations ν : X → Z suffice for α, we are now going
to prove that for each q ∈ Q and each subformula ϕ of α, we have

M(q, α) =
⋃
i∈I

Sol(Si)

for some index set I with ||Si||mat = poly(|ϕ|) and ||Si||vec = poly(|ϕ|) · exp(|A|)
for each i ∈ I . Once this fact has been established, we will show that each SLDI Si

admits solutions that can be represented using polynomially many bits in |A|+ |α|, thus
establishing the desired upper bound on necessary valuations of the parameters of A.

We require some additional notation that, together with the subsequent lemma, will
be useful for proving the existence of sets of SLDIs of “small” size for each M(q, ϕ).

LetH ⊆ Z�+1. We defineH−xk def
= {(z1, . . . , z�, z�+1−zk) ∈ Z�+1 | (z1, . . . , z�+1) ∈

H} for each k ∈ [(] andH−z def
= {(z1, . . . , z�, z�+1−z) ∈ Z�+1 | (z1, . . . , z�+1) ∈ H}

for each z ∈ Z. The following lemma states that solutions to SLDIs are closed under
the operations −xk and −z and gives bounds on the blow-up of the introduced norms.
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We remark that we do not require an effective variant of this lemma to establish our
PSPACE upper bound.

Lemma 3. Let S = (Ax ≥ b) be an SLDI with A = (aij) ∈ Zm×(�+1). Then the
following holds:

(1) For each k ∈ [(] there is some SLDI S ′ with Sol(S ′) = Sol(S) − xk , ||S ′||mat ≤
||S||mat + ||S||�+1, ||S ′||�+1 = ||S||�+1, and ||S ′||vec = ||S||vec.

(2) For each z ∈ Z, there is some SLDI S ′ with Sol(S ′) = Sol(S)−z, ||S ′||mat = ||S||mat,
||S ′||�+1 = ||S||�+1, and ||S ′||vec ≤ ||S||vec + ||S||�+1 · |z|.

Proof. Let us assume b = (bi). For Point (1), let k ∈ [1, (]. For each (z1, . . . , z�+1) ∈
Z�+1 we have

(z1, . . . , z�+1) ∈ Sol(S) − xk
⇐⇒ (z1, . . . , z�, z�+1 + zk) ∈ Sol(S)

⇐⇒ ∀i ∈ [1,m] :

⎛⎝ ∑
j∈[1,�]

aij · zj + ai(�+1)(z�+1 + zk) ≥ bi
⎞⎠

⇐⇒ ∀i ∈ [1,m] :

⎛⎜⎝(aik + ai(�+1))zk +
∑

j∈[1,�+1],
j 	=k

aij · zj ≥ bi

⎞⎟⎠ .
We can thus define the matrix A′ = (a′ij), where a′ij = aij if j %= k and aij =
aij + ai(�+1) if j = k, for each i ∈ [1,m]. We put S ′ = (A′x ≥ b) and we just
proved Sol(S ′) = Sol(S) − xk . Moreover, it holds ||S ′||mat = ||A′|| ≤ ||A|| + ||A||�+1 =
||S||mat + ||S||�+1, ||S ′||�+1 = ||A||�+1 = ||S||�+1, and ||S ′||vec = ||b|| = ||S||vec.

Point (2) is shown analogously. #$
We are now ready to prove the desired lemma.

Lemma 4. For every q ∈ Q and every subformula ϕ of α in negation normal form, we
have M(q, ϕ) =

⋃
i∈I Sol(Si), where I is some index set and each Si is some SLDI

with ||Si||mat ≤ |ϕ|, ||Si||�+1 ≤ 1, ||Si||vec ≤ (nmax(A) + 1) · |ϕ|.
Proof. We prove the lemma by structural induction on ϕ.

Case ϕ = p for some p ∈ P (the case ϕ = ¬p is dual).
First, let us assume p ∈ λ(q). Then M(q, ϕ) = Z� × N, which can be described by

the solutions to the single SLDI S def
= (Ax ≥ b) with b

def
= 0 andA

def
= (aij) ∈ Z1×(�+1)

with a1j
def
= 0 for each j ∈ [1, (] and a1(�+1)

def
= 1. Note that ||S||mat = ||A|| = 1 = |ϕ|,

||S||�+1 = ||A||�+1 = 1, and ||S||vec = ||b|| = 0 ≤ (nmax(A) + 1) · |ϕ|.
In case p %∈ λ(q), we have M(q, ϕ) = ∅, which we express as the solutions of

the SLDI S = (Ax ≥ b), where A is 1 × (( + 1) zero matrix and b
def
= 1. We have

||S||mat = ||A|| = 0 ≤ 1 = |ϕ|, ||S||�+1 = ||A||�+1 = 0 ≤ 1, and ||S||vec = ||b|| = 0 ≤
(nmax(A) + 1) · |ϕ|.
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Case ϕ = ψ ∨ ψ′: By the induction hypothesis we have M(q, ψ) =
⋃

i∈I Sol(Si) for
some index set I and for SLDI Si, for each i ∈ I and M(q, ψ′) =

⋃
i∈I′ Sol(S ′

i) for
some index set I ′ and for SLDI S ′

i , for each i ∈ I ′. Obviously we can write M(q, ϕ)
as

⋃
i∈I Sol(Si) ∪

⋃
i∈I′ Sol(S ′

i) and the bounds on the norms easily carry over from
induction hypothesis.

Case ϕ = ψ ∧ ψ′: By induction the hypothesis we have M(q, ψ) =
⋃

i∈I Sol(Si) for
some index set I and for SLDIs Si, for each i ∈ I and M(q, ψ′) =

⋃
i∈I′ Sol(S ′

i) for
some index set I ′ and for SLDIs S ′

i , for each i ∈ I ′. Let us assume Si = (Aix ≥ bi)

for each i ∈ I and S ′
i = (A′

ix ≥ b′i) for each i ∈ I ′. We define the matrixAii′
def
=

(
Ai

Ai′

)
and the vector bii′

def
=

(
bi
bi′

)
for each i ∈ I and each i′ ∈ I ′. Obviously, we have

M(q, ϕ) = M(q, ψ) ∩ M(q, ψ′) =
⋃

i∈I,i′∈I′ Sol(Aii′x ≥ bii′). Again, the bounds
on the norms immediately carry over from induction hypothesis.

Case ϕ = AXψ: By the induction hypothesis, we have M(q′, ψ) =
⋃

i∈Iq′
Sol(Si,q′)

for some SLDIs Si,q′ for each q′ ∈ Q. Let us assume that Si,q′ = (Ai,q′x ≥ bi,q′) for
each i ∈ Iq′ and each q′ ∈ Q. Before giving the translation, we need to introduce some
auxiliary SLDIs S◦z and S◦xk

for each z ∈ Z, each k ∈ [(] and each ◦ ∈ {<,>,≤,≥}
such that

Sol(S◦z) = {(z1, . . . , z�+1) ∈ Z�+1 | z�+1 ◦ z} and

Sol(S◦xk
) = {(z1, . . . , z�+1) ∈ Z�+1 | z�+1 ◦ zk}.

For z ∈ Z, we only give S◦z for ◦ =“<”, the remaining cases for ◦ can be defined

analogously. We put S<z
def
= (Ax ≥ b), where A

def
= (a1j) ∈ Z1×(�+1) with a1j

def
= 0 if

j ∈ [(] and a1(�+1)
def
= −1, and finally b

def
= (−z + 1) since over the integers we have

z�+1 < z if, and only if, z�+1 ≤ z − 1 if, and only if, −z�+1 ≥ −z + 1. Observe that
||S◦z ||mat ≤ 1, ||S◦z ||�+1 ≤ 1, and ||S◦z ||vec ≤ |z|+ 1 for each ◦ ∈ {<,>,≤,≥}.

Likewise, we define S◦xk
for ◦ =“<“, the other cases for ◦ can be dealt with

analogously. The reader easily verifies that one can define S<xi

def
= (Cx ≥ d) with

C
def
= (c1j) ∈ Z1×(�+1) with c1j

def
= 1 if j = i, c1j

def
= −1 if j = ( + 1, and c1j

def
= 0

otherwise. Moreover, we put d
def
= (1). Observe that ||S◦xk

||mat ≤ 1, ||S◦xk
||�+1 ≤ 1, and

||S◦xk
||vec ≤ 1 for each ◦ ∈ {<,>,≤,≥}. We now define

M(q, ϕ)
def
= Sol(S≥0) ∩

⋂
q
add(y)−→ q′∈Δ
y∈Z∪X

⎛⎝Sol(S<y) ∪
⋃

i∈Iq′

(Sol(Si,q′ )− y)
⎞⎠ .

In the same fashion as for disjunction and conjunction, we can express the right-hand
side of the latter equality as a union of SLDIs. Note that in this modification process
the number of rows of the matrix may change, but neither do the norms of the matrices
nor the norms of the vectors of the systems. The reader easily verifies that the || · ||mat,
|| · ||�+1, and || · ||vec norms of each auxiliary SLDI satisfy the bounds required by the
lemma. Hence, in order to bound the norms of the SLDI that occur in the final union, it
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suffices to bound the norms of each SLDI S such that Sol(S) = Sol(Si,q′)−y for some

q′ ∈ Q, some i ∈ Iq′ and some q
add(y)−−−−→ q′ ∈ Δ, where y ∈ Z ∪ X . To this end, we

apply Lemma 3 by distinguishing between y ∈ Z and y ∈ X .
If y = xk for some k ∈ [(], i.e. y ∈ X , we obtain the following bounds by Point (1)

of Lemma 3:

– ||S||mat

Lemma 3 (1)
≤ ||Ai,q′ ||+ ||Ai,q′ ||�+1

IH≤ |ψ|+ 1 = |ϕ|,
– ||S||�+1

Lemma 3 (1)
= ||Ai,q′ ||�+1

IH≤ 1, and

– ||S||vec
Lemma 3 (1)

= ||bi,q′ || IH≤ (nmax(A) + 1) · |ψ| ≤ (nmax(A) + 1) · |ϕ|
In case y ∈ Z, we obtain the following by Point (2) of Lemma 3:

– ||S||mat
Lemma 3 (2)

= ||Ai,q′ ||
IH≤ |ψ| ≤ |ϕ|,

– ||S||�+1
Lemma 3 (2)

= ||Ai,q′ ||�+1

IH≤ 1, and

– ||S||vec

Lemma 3 (2)
≤ ||bi,q′ || + ||Ai,q′ ||�+1 · |y| IH≤ (nmax(A) + 1) · |ψ| + 1 · nmax(A) ≤

(nmax(A) + 1) · |ϕ|

Case ϕ = EXψ. By induction hypothesis, we have M(q′, ψ) =
⋃

i∈Iq′
Sol(Si,q′ ) for

some SLDIs Si,q′ for each q′ ∈ Q. Let us assume that Si,q′ = (Ai,q′x ≥ bi,q′) for each
i ∈ Iq′ and each q′ ∈ Q. We define

M(q, ϕ)
def
= Sol(S≥0) ∩

⎛⎜⎝ ⋃
q
add(y)−→ q′∈Δ

⋃
i∈Iq′

(Sol(Si,q′ )− y)

⎞⎟⎠ .
The analysis of the sizes of the norms can be proven analogously as for the case ϕ =
AXψ. #$
The following lemma from [19] states that solvable SLDIs have small solutions whose
norm is independent on the number of rows of the SLDI.

Lemma 5 ([19], p. 239). Each solvable SLDI Ax ≥ b has a solution of norm at most
poly(||A||+ ||b||).
Let us return to our original formula α. By Lemma 4, there exists some SLDI Si such
that M(q0, α) = Sol(Si), and where ||Si||mat ≤ |α| and ||Si||vec ≤ (nmax(A) + 1) · |α|.
Since we are interested if (T (Aν), q0(0)) |= α for some ν : X → Z, think of adding to
each matrix that occurs in Si two more rows expressing that x�+1 = 0. Let us call the
resulting SLDI S ′

i. By Lemma 5, we know that if S ′
i is solvable, then S ′

i has a solution
of norm at most poly(nmax(A) + |α|). In other words, if (T (Aν), q0(0)) |= α for some
ν : X → Z, then (T (Aμ), q0(0)) |= α already holds for some μ : X → Z and μ(x) is
polynomially bounded in |A|+ |α| for each x ∈ X .

Hence, we obtain the following theorem.

Theorem 6. ML model checking for POCA is in PSPACE.
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q0 •

add(21)

add(0)
•

add(22)

add(0)
· · · • •

add(2n)

add(0)

q1 A1

Anqn

...

add(0)

add(0)

Fig. 2. SOCA A constructed for simulating the QBF formula α

4 Model Checking SOCA

In this section we prove that model checking ML on SOCA is PSPACE-hard (Section
4.1) and that model checking EF on SOCA is in PSPACE (Section 4.2).

4.1 Model Checking ML on SOCA

PSPACE-hardness of ML model checking on SOCA follows from a straight-forward
reduction from QBF.

Proposition 7. Model checking ML on SOCA is PSPACE-hard.

Proof. We give a reduction from QBF. Let α = ∃x1∀x2 · · · ∃xnβ(x1, . . . , xn) be an
instance of QBF. Without loss of generality, we can assume that β is in 3-CNF, i.e.,
of the form β =

∧
i∈[m] βi, where each clause βi consists of three literals, so βi =

((i1 ∨ (i2 ∨ (i3). We construct in polynomial time a SOCA A = (Q,P, λ,Δ) and
an ML formula ϕ such that for some q0 ∈ Q we have that α is valid if, and only if,

(T (A), q0(0)) |= ϕ. We define P
def
= {pi | i ∈ [n]}. The states and transitions of A are

given in Figure 2, where the SOCA Ai is taken from Figure 1. Finally, we define ϕ to
be the ML formula that is obtained by replacing each ∃xi from α with EX, each ∀xi
with AX, and each literal (ij with EXn+2pij if (ij = xij and ¬EXn+2pij if (ij = xij .
It is easily verified that α is valid if, and only if, (T (A), q0(0)) |= ϕ. #$

4.2 Model Checking EF on SOCA

In this section, we are going to show that EF model checking on SOCA is in PSPACE,
and hence PSPACE-complete by Proposition 7. To this end, let us fix some SOCA A =
(Q,P, λ, δ). Our result is based on the following lemma, which expresses periodicity
properties of reachability relations in A.

Lemma 8. There are naturals τ, ε, δ = exp(|A|) with ε ≥ nmax(A) such that for each
n, n′,m,m′ > τ with n ≡ n′ mod δ andm ≡ m′ mod δ the following statements hold
for each q, q′ ∈ Q:
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(1) Ifm+ ε < n andm′ + ε < n′, then q(n) −→∗
A q

′(m) if, and only if, q(n′) −→∗
A

q′(m′).
(2) Ifm > n+ ε andm′ > n′ + ε, then q(n) −→∗

A q
′(m) if, and only if, q(n′) −→∗

A
q′(m′).

Section 4.3 will be devoted to sketching a proof of Lemma 8. Assume the constants τ ,
ε and δ from Lemma 8 to be fixed for the rest of this section. Let us define M(q, ϕ) =
{n ∈ N : (T (A), q(n)) |= ϕ} for each control state q ∈ Q and each EF formula ϕ over
P. For the PSPACE upper bound, we will show that M(q, ϕ) is ultimately periodic with
period δ.

Lemma 9. If n ≡ n′ mod δ, then n ∈ M(q, ϕ) if, and only if, n′ ∈ M(q, ϕ), for each
control state q ∈ Q, each EF formula ϕ over P and each n, n′ > τ + |ϕ| · ε+ δ.
Proof. Without loss of generality assume n′ > n. We show (T (A), q(n)) |= ϕ if, and
only if, (T (A), q(n + δ)) |= ϕ by induction on |ϕ|, from which the statement will
follow. We only consider the most interesting cases ϕ = EXϕ′ and ϕ = EFϕ′, the other
cases are easy.

If ϕ = EXϕ′, we have (T (A), q(n)) |= ϕ if, and only if, there is some q′ ∈ Q and

z ∈ Z such that q
add(z)−→ q′ ∈ Δ and (T (A), q′(n+z)) |= ϕ′. Since n+z > τ+|ϕ′|·ε+δ,

the induction hypothesis yields (T (A), q′(n+ z)) |= ϕ′ if, and only if, (T (A), q′(n+
z + δ)) |= ϕ′. Hence (T (A), q(n)) |= EXϕ′ if, and only if, (T (A), q(n+ δ)) |= EXϕ′.

If ϕ = EFϕ′, we have (T (A), q(n)) |= ϕ if, and only if, there are q′ ∈ Q, m ∈ N
and � such that � : q(n) −→∗

A q′(m) and (T (A), q(m)) |= ϕ′. Suppose m > τ +
|ϕ′| · ε + δ and no counter value less than δ occurs along �, so in particular there is
no zero test along �. The induction hypothesis yields (T (A), q(m + δ)) |= ϕ′, and by
shifting � by δ the existence of a path �′ : q(n + δ) −→∗

A q(m + δ) follows, hence
(T (A), q(n + δ)) |= EFϕ′. Otherwise, if m ≤ τ + |ϕ′| · ε + δ or a counter value less
than δ occurs along �, Lemma 8, Point (1) guarantees that q(n) →∗

A q
′(m) if, and only

if, q(n+ δ) →∗
A q

′(m), which again allows us to conclude that (T (A), q(n)) |= EFϕ′.
The direction (T (A), q(n)) |= ϕ implies (T (A), q(n+ δ)) |= ϕ follows analogously.

#$
Theorem 10. EF model checking of SOCA is PSPACE-complete.

Proof. PSPACE-hardness has already been established in Section 4.1. For the upper
bound, Algorithm 1 is an alternating algorithm that decides (T (A), q(n)) |= ϕ in
PSPACE. For brevity, the cases ϕ = AXϕ′ and ϕ′ = AGϕ′ have been left out, they
are defined complementary to their EX respectively EF counterparts. We only sketch
correctness of the case ϕ = EFϕ′ by induction on |ϕ|, all other cases are obviously cor-
rect. Letm = max{n+ ε+ δ, τ + |ϕ′| · ε+ δ}. Suppose T (A), q(n)) |= EFϕ′, there is
some q′(n′) such that q(n) −→∗

A q
′(n′) and (T (A), q′(n′)) |= ϕ′. If n′ > m, Lemma

9 guarantees that there is n′′ ∈ [0,m] such that T (A), q′(n′′)) |= ϕ′, and Lemma 8,
Point (2) yields q(n) −→∗

A q
′(n′′), which by Proposition 1 can be checked in NP. By

the induction hypothesis, Algorithm 1 returns true on input q′(n′′) and ϕ′, which con-
cludes the correctness proof. #$
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Algorithm 1. Fragment of the EF SOCA model checking algorithm
Input: EF formula ϕ, configuration q(n) of A

case ϕ = p: return p ∈ λ(q)
case ϕ = ¬p: return p /∈ λ(q)
case ϕ = ϕ1 ∧ ϕ2: return (T (A), q(n)) |= ϕ1 and (T (A), q(n)) |= ϕ2

case ϕ = ϕ1 ∨ ϕ2: return (T (A), q(n)) |= ϕ1 or (T (A), q(n)) |= ϕ2

case ϕ = EXϕ′: existential move:
choose q

op−→ q′ ∈ Δ
case op = add(z): return (T (A), q′(n+ z)) |= ϕ′

case op = zero and n = 0: return (T (A), q′(0)) |= ϕ′

case ϕ = EFϕ′: existential move:
choose q′(m) such that q(n) −→∗

A q′(m) and m ∈ [0,max{n+ε+δ, τ+|ϕ′|·ε+δ}]
return (T (A), q′(m)) |= ϕ′

4.3 Proof Sketch of Lemma 8

In this section, we give a proof sketch of Lemma 8 which was left open in the previous
section. The technical details are deferred to a full version of this paper.

On a technical level, it is helpful to view SOCA as weighted graphs, an approach
also used in [9]. Given a SOCA A, its corresponding weighted graphGA is obtained by
removing all zero-labeled edges from A, and for every edge labeled with add(z), GA
has an edge labeled with z. Thus, we can assign any path π in GA a weight w(π) and
a drop d(π), which is the smallest weight of all prefixes of π. This allows us to relate
runs in T (A) with paths in GA: there is a zero-test free run q(n) −→∗

A q′(n′) if, and
only if, there is a path π from q to q′ in GA with w(π) = n′ − n and d(π) ≥ −n.

Let us fix a SOCA A and its corresponding graphG. In order to prove the periodicity
properties expressed in Lemma 8, we will use cycles in G in order to construct paths
whose weight is periodic for some period δ. For a start, let us concentrate on cycles
in G with negative weight. Given a strongly connected component (SCC) S in G, we
define gcdS as greatest common divisor of the set of all weights of all loop-free cycles
in S. Note that gcdS = exp(|A|). It is easy to check that gcdS divides the weight of
every cycle that runs through S, so gcdS could potentially serve as a period. However,
if the weights of all cycles in S have the same sign, we cannot necessarily construct
a cycle whose weight is an arbitrary multiple of gcdS. For example, let {5, 7} be the
set of all weights of simple cycles in some SCC S with S = {q} for some q ∈ Q. We
have gcdS = 1, however there is no cycle π in S with, say, w(π) = 23. This obstacle
is related to the Frobenius problem, which is stated as follows [21]: given x1 < . . . <
xn ∈ N such that gcd{x1, . . . , xn} = 1, what is the largest g ∈ N such that g cannot
be represented as non-negative integer linear combination of the xi. It is shown in [21]
that g < x2n. Thus in our example, this fact guarantees that there is a q-cycle π with
w(π) = m for every m ≥ 49. The preceding observations allow us to conclude that
once a certain threshold is crossed, we have periodicity of weights of cycles in an SCC.

Lemma 11. There exists a local threshold γ ∈ N such that γ = exp(|A|) and for all
w,w′ < −γ and q ∈ Q such that w ≡ w′ mod (gcdS) for some SCC S such that
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q ∈ S, whenever there exists a q-cycle π with w(π) = w then there exists q-cycle π′

with w(π′) = w′ and d(π′) ≥ w(π′)− γ.

Proving this lemma involves some tedious analysis of paths in G, but it is not too com-
plicated. Note that the drop of π′ does not get too large. We can now generalise Lemma
11 to arbitrary paths, and we define the global period δ as the least common multi-
ple of gcdS of all SCCs in G. It is easily checked that δ = exp(|A|). Now consider
an arbitrary q-q′ path π in G with negative weight. If we find a q′′-cycle π′ along π
with w(π′) < −γ, we can invoke Lemma 11 in order to obtain a q′′-cycle π′′ with
w(π′) ≡ w(π′′) mod δ. Thus, by using a counting argument on the number of control
locations of A, we can define a global threshold ε = exp(|A|) that guarantees the ex-
istence of such a cycle. This allows us to state a variant of Lemma 11 for arbitrary paths:

Lemma 12. For all w,w′ ∈ Z such that w,w′ < −ε and w ≡ w′ mod δ, whenever
there exists a q-q′ path π with w(π) = w then there exists a q-q′ path π′ with w(π′) =
w′ and d(π′) ≥ w(π′)− γ.

We can now “re-import” the observations made for paths in weighted graphs to paths

in T (A) and sketch how to prove Lemma 8. To this end, we define τ
def
= 2ε. Regarding

Point 1 of the lemma, we have that min{n, n′} − min{m,m′} > ε. Lemma 12 thus
guarantees the existence of a path π with w(π) = n−m if, and only if, there is a path
π′ with w(π′) = n′ −m′. Since d(π) ≥ w(π) − τ and m > τ , the existence of a run
q(n) −→∗

A q
′(m) is guaranteed. The same argument yields a run q(n′) −→∗

A q
′(m′).

Finally regarding Point 2, by using a symmetry argument, we can get a similar statement
as in Lemma 12 for paths with positive weight that exceed ε. The existence of the
desired runs then follows from an argument similar to Point 1.

5 Conclusion

We have strengthened our results from [6] and have proved that model checking the
CTL fragment EF on POCA is undecidable via reduction from Hilbert’s tenth prob-
lem. We showed that, when dropping the reachability modality, we regain decidability:
Model checking ML on POCA is PSPACE-complete, which was proved by showing
the existence of small solutions for a class of systems of linear Diophantine inequalities
whose matrix norm is small. We showed that it is also PSPACE-complete to model
check EF on SOCA by establishing an exponential periodicity property. It is inter-
esting to mention that, in contrast to CTL, one can avoid an exponential complexity
jump for EF and ML when model checking SOCA. More precisely, model checking
EF (respectively ML) is PNP-complete (respectively P-complete) on OCA, whereas it
is PSPACE-complete for SOCA.
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Abstract. Synthesis from components is the automated construction of
a composite system from a library of reusable components such that the
system satisfies the given specification. This is in contrast to classical
synthesis, where systems are always “constructed from scratch”. In the
control-flow model of composition, exactly one component is in control
at a given time and control is switched to another when the component
reaches an exit state. The composition can then be described implicitly
by a transducer, called a composer, which statically determines how the
system transitions between components.

Recently, Lustig, Nain and Vardi have shown that control-flow syn-
thesis of deterministic composers from libraries of probabilistic compo-
nents is decidable. In this work, we consider the more general case of
probabilistic composers. We show that probabilistic composers are more
expressive than deterministic composers, and that the synthesis problem
still remains decidable.

Keywords: synthesis, temporal logic, probabilistic components.

1 Introduction

Hardware and software systems are rarely built from scratch. Almost every non-
trivial system is based on existing components. A typical component might be
used in the design of multiple systems. Examples of such components include
function libraries, web APIs, and ASICs. The construction of systems from
reusable components is an area of active research. Some examples of important
work on the subject can be found in Sifakis’ work on component-based con-
struction [11], and de Alfaro and Henzinger’s work on “interface-based design”
[7]. Furthermore, other situations, such as web-service orchestration [3], can be
viewed as the construction of systems from libraries of reusable components.

Synthesis is the automated construction of a system from its specification.
In contrast to model checking, which involves verifying that a system satisfies
the given specification, synthesis aims to automatically construct the required
system from its formal specification. The modern approach to temporal syn-
thesis was initiated by Pnueli and Rosner who introduced linear temporal logic
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(LTL) synthesis [10]. In LTL synthesis, the specification is given in LTL and the
system constructed is a finite-state transducer modeling a reactive system. In
this setting it is always assumed that the system is “constructed from scratch”
rather than “composed” from existing components. Recently, Lustig and Vardi
[9] introduced the study of synthesis from reusable components. The use of com-
ponents abstracts much of the detailed behavior of a sub-system, and allows one
to write specifications that mention only the aspects of sub-systems relevant for
the synthesis of the system at large.

A major concern in the study of synthesis from reusable components is the
choice of a mathematical model for the components and their composition. The
exact nature of the reusable components in a software library may differ. One
finds in the literature many different types of components; for example, function
libraries (for procedural programming languages) or object libraries (for object-
oriented programming languages). Indeed, there is no single “right” model en-
compassing all possible facets of the problem. The problem of synthesis from
reusable components is a general problem to which there are as many facets as
there are models for components and types of composition [11].

Our model is based on the control-flow composition model of [9]. In this model,
a component is just a transducer, i.e., a finite-state machine with outputs. Trans-
ducers constitute a canonical model for reactive components, abstracting away
internal architecture and focusing on modeling input/output behavior. In con-
trast to [9], we allow components to be probabilistic, i.e., the transducers have a
probabilistic transition function. The use of probabilistic transducers is a com-
mon approach to modeling systems where there is probabilistic uncertainty about
the results of input actions. Intuitively, we aim at constructing a reliable system
from unreliable components. There is a rich literature about verification and
analysis of such systems, cf. [5,6,12,13], as well about synthesis in the face of
probabilistic uncertainty [1]. The introduction of probability requires us to use a
probabilistic notion of correctness; here we choose the qualitative criterion that
the specification be satisfied with probability 1, leaving the study of quantitative
criteria to future work.

In control-flow composition, control is held by a single component at every
point in time. When the current component reaches an exit state, the execution
passes to the start state of another component. The flow of control between
components can itself be modeled by a supervisory transducer called a composer.
Given the name of the current component and exit state, the composer gives the
name of the next component in control. In essence, the composer describes how
the composite system is put together and can be viewed as an implicit description
of the composite system. The goal of the synthesis problem is then to find a
suitable composer such that the resulting system satisfies the specification.

Here we consider two kinds of specification formalism: embedded parity and
deterministic parity automaton (DPW). An embedded parity specification is
given by associating a natural number called a priority to each state of each
component in the given set of components. The specification is satisfied if the
run of the system satisfies the parity condition with probability 1. A DPW
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specification is satisfied if the input-output behavior of the system is accepted
by the DPW with probability 1.

In previous work [8], the synthesis problem for probabilistic components was
shown to be decidable for both DPW and embedded parity specifications. How-
ever, while the components there were probabilistic, the composer, and thus the
control-flow of the composite system, was still deterministic. Since the composer
is itself a transducer that describes the flow of control between components in
a composition, it is natural to consider the more general case of allowing the
composer to also be a probabilistic transducer. In this case, not just the behav-
ior of individual components, but also the flow of control between components
is probabilistic. Does this allow the composite system to satisfy more specifica-
tions? That is, we would like to know whether probabilistic composers are more
expressive than deterministic composers. And if so, how do we synthesize them?
These questions are the focus of this paper.

We have two main goals: to investigate the expressiveness of probabilistic
composers and to solve the synthesis problem for probabilistic composers. We
show that expressive power depends on the type of specification. For embedded
parity specifications, allowing the composer to be probabilistic gives no advan-
tage. In particular, if a suitable probabilistic composer exists then a suitable
deterministic composer also exists. In contrast, for the more general case of a
DPW specification, we find that probabilistic composers are more expressive. We
give an instance of the DPW synthesis problem such that there exists a suitable
probabilistic composer that solves it, but no suitable deterministic composer ex-
ists. We note that expressiveness is not just a theoretical concern. The fact that
probabilistic composers are more expressive means that some systems can only
be constructed using a probabilistic composition. As a result the DPW synthesis
problem for probabilistic composers becomes important in its own right and not
just as an extension of the deterministic case. It is interesting that probabilis-
tic composers only gain expressive power in the presence of specifications with
memory (DPW specifications). We view this as another example of a memory
vs. randomness trade-off that is well-known in the game-theoretic literature [4].

In [8], the DPW synthesis problem for deterministic composers is solved by
reducing it to the embedded parity version. But for probabilistic composers, a
similar approach does not work because their expressive power differs for em-
bedded parity and DPW specifications. Instead, we solve the DPW synthesis
problem for probabilistic composers by a reduction to deterministic composers.
The key insight is that it is possible to equip the library with an additional
component with a specific structure, called Mrand, such that the probabilistic
choices made by a composer can be simulated by the probabilistic transitions
within Mrand. The idea is that whenever a probabilistic composer C makes a
probabilistic transition, the equivalent deterministic composer C′ can instead
call an instance of Mrand to simulate the moves of C. The result is that the
DPW synthesis problem for probabilistic composers is decidable.

Finally, the embedded-parity version of our synthesis problem can also be
viewed as a partial information stochastic game between two players, the
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composer C, which chooses components, and the environment E, which chooses
paths through the components chosen by C. The partial information arises be-
cause our model of composition is static, which means the components chosen by
the composer cannot depend on the inputs selected by the environment. In con-
trast to standard parity games, partial information stochastic games are known
to be undecidable even for co-Büchi objectives (and thus for parity objectives)
[2]. Thus, in the framework of games, our result can be viewed as a rare positive
result for partial-information stochastic games. We explain this game-theoretic
view of the problem in more detail in Section 7.

This paper is self-contained, except for certain proofs that have been omitted
to save space; a longer version is posted on the authors’ home pages.

2 Preliminaries

A deterministic transducer is a tuple B = 〈ΣI , ΣO, Q, q0, δ, L〉, where: ΣI is a
finite input alphabet, ΣO is a finite output alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, L : Q → ΣO is an output function labeling states with
output letters, and δ : Q × ΣI → Q is a transition function.

A strongly connected component of a directed graph G = (V, E) is a subset
U of V , such that for all u, v ∈ U , u is reachable from v. We can define a
natural partial order on the set of maximal strongly connected components of G
as follows: U1 ≤ U2 if there exists u1 ∈ U1 and u2 ∈ U2 such that u1 is reachable
from u2. An ergodic set of G is a minimal element of this partial order.

A probability distribution on a finite set X is a function μ : X → [0, 1] such
that

∑
x∈X μ(x) = 1. The support of μ, denoted supp(μ), is the set {x ∈ X :

μ(x) > 0}. Dist(X) denotes the set of all probability distributions on set X .
A probabilistic transducer, is a tuple T = 〈ΣI , ΣO, Q, q0, δ, F, L〉, where: ΣI is a
finite input alphabet, ΣO is a finite output alphabet, Q is a finite set of states,
q0 ∈ Q is an initial state, δ : (Q−F )×ΣI → Dist(Q) is a probabilistic transition
function, F ⊆ Q is a set of exit states, and L : Q → ΣO is an output function
labeling states with output letters. Note that there are no transitions out of an
exit state. If F is empty, we say T is a probabilistic transducer without exits.

Given a probabilistic transducer M = (ΣI , Σo, Q, q0, δ, F, L), a strategy for M
is a function f : Q∗ → Dist(ΣI) that probabilistically chooses an input for each
sequence of states. A strategy is memoryless if the choice depends only on the
last state in the sequence. A memoryless strategy is a function g : Q → Dist(ΣI).
A strategy is pure if the choice is deterministic. A pure strategy is a function
h : Q∗ → ΣI , and a memoryless and pure strategy is a function h : Q → ΣI .

A strategy f along with a probabilistic transducer M , with set of states Q,
induces a probability distribution on Qω, denoted μf . By standard measure
theoretic arguments, it suffices to define μf for the cylinders of Qω, which are
sets of the form β ·Qω, where β ∈ Q∗. First we extend δ to exit states as follows:
for a ∈ ΣI , q ∈ F , q′ ∈ Q, δ(q, a)(q) = 1 and δ(q, a)(q′) = 0 when q′ �= q.
Then we define μf (q0 · Qω) = 1, and for β ∈ Q∗, q, q′ ∈ Q, μf (βqq′ · Qω) =
μf (βq)(

∑
a∈ΣI

f(βq)(a)×δ(q, a)(q′)). These conditions say that there is a unique
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start state, and the probability of visiting a state q′, after visiting βq, is the same
as the probability of the strategy picking a particular letter multiplied by the
probability that the transducer transitions from q to q′ on that input letter,
summed over all input letters.

Let M be a probabilistic transducer, Q be its set of states, and f be a memory-
less strategy for M . We define the graph induced by f on Q, denoted by GM,f , as
the directed graph (Q, E), where (q1, q2) ∈ E if

∑
a∈ΣI

f(q1)(a) δ(q1, a)(q2) > 0.
That is, there is an edge from q1 to q2 if the transducer can transition from the
state q1 to the state q2 on an input letter that the strategy chooses with positive
probability. Given q1, q2 ∈ Q, we say that q2 is reachable from q1 if there is a
path from q1 to q2 in GM,f . We say a state is ergodic if it belongs to some ergodic
set of GM,f . An ergodic set is reachable if there is a path from the start state to
some state in the ergodic set. A state q of M is reachable under f , if there is a
path in GM,f from q0 to q.

A library is a set of probabilistic transducers that share the same input and
output alphabets. Each transducer in the library is called a component. Given a
finite set of directions D, we say a library L has width D, if each component in the
library has exactly |D| exit states. Since we can always add dummy unreachable
exit states to any component, we assume, w.l.o.g., that all libraries have an
associated width, usually denoted D. In the context of a particular component,
we often refer to elements of D as exits, and subsets of D as sets of exits.

An index function for a transducer is a function that assigns a natural number,
called a priority index, to each state of the transducer. An index function for a
library is a function that assigns a priority to every state of every component
in the library. Given an index function α, and a set of states X , we denote by
α(X) the highest priority assigned by α in X .

3 Control-Flow Composition

Let L be a library with width D. We first informally describe our notion of proba-
bilistic control-flow composition of components from L. Each library component
can be used multiple times in a composition, and we treat these occurrences as
distinct component instances. Thus, the size of a composition, a priori, is not
bounded. The component instances in a composition take turns interacting with
the environment, and at each point in time, exactly one component instance
is active. When the active component instance reaches an exit state, control is
transferred probabilistically to the start state of some other component instance.

Given a set of component instances to be composed, a control flow composi-
tion can be defined by giving, for each exit state of each component instance,
the probability distribution that determines the probability of transitioning from
that exit state to another component instance. This information can be repre-
sented naturally by a probabilistic transducer, called a (probabilistic) composer,
whose set of states corresponds to the set of component instances and whose
input alphabet corresponds to the set of exits D. Then, for each component
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instance and exit, the transition function of the composer gives the probability
distribution that determines which component instance will be in control next.

Formally, a composer over a library L with width D is a probabilistic tran-
ducer C = (D,L,M, M0, Δ, λ). Here M is an arbitrary finite set of states. In
particular, there is no a priori bound on the size of M. Each Mi ∈ M is the
name of an instance of a component from L and λ(Mi) ∈ L is the type of Mi.
The transition function Δ : M×D → Dist(M) gives a distribution on the set of
instance names. We say a composer is a deterministic composer if its transition
function is deterministic.

Note that while each component name Mi is distinct, the corresponding com-
ponent instances λ(Mi) need not be distinct. Each composer defines a unique
composition over components from L. The current state of the composer corre-
sponds to the component that is in control. The transition function Δ describes
how to transfer control between components: Δ(M, i)(M′) = p denotes that when
the composition is in the ith exit state of component instance λ(M) it moves to
the start state of component instance λ(M′) with probability p. A composer can
be viewed as an implicit representation of a composition. We give the explicit
definition of composition below.

Definition 1 (Control-flow Composition). Let C = (D,L,M, M0, Δ, λ) be
a composer over library L with width D, such that M = {M0, . . ., Mn}, λ(Mi) =
(ΣI , ΣO, Qi, q

i
0, δi, Fi, Li) and Fi = {qi

x : x ∈ D}. The composition defined by
C, denoted TC , is a probabilistic transducer 〈ΣI , ΣO, Q, q0, δ, ∅, L〉, where Q =⋃n

i=0(Qi × {i}), q0 = 〈q0
0 , 0〉, L(〈q, i〉) = Li(q), and the transition function δ is

defined as follows: For σ ∈ ΣI , 〈q, i〉 ∈ Q and 〈q′, j〉 ∈ Q,
1. If q ∈ Qi \ Fi, then

δ(〈q, i〉, σ)(〈q′, j〉) =

{
δi(q, σ)(q′) if i = j

0 otherwise

2. If q = qi
x ∈ Fi, then δ(〈q, i〉, σ)(〈q′, j〉) = Δ(Mi, x)(Mk).

When the composition is in a state 〈q, i〉 corresponding to a non-exit state q of
component instance λ(Mi), it behaves like λ(Mi). When the composition is in
a state 〈qf , i〉 corresponding to an exit state qf of component instance λ(Mi),
the control is transferred to the start state of another component instance as
determined by the transition function of the composer. Thus, at each point
in time, only one component is active and interacting with the environment.
Note that our notion of composition is static, where the components called are
determined before run time, rather than dynamic, where the components called
are determined during run time.

Definition 2. Given a library L with width D, an exit control relation is a
set R ⊆ D × L. We say that a composer C = (D,L,M, M0, Δ, λ) over L is
compatible with R, if the following holds: for all M, M′ ∈ M and i ∈ D, if
Δ(M, i) = M′ then (i, M′) ∈ R. Thus, each element of R can be viewed as a
constraint on how the composer is allowed to connect components.
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4 Defining the Synthesis and Realizability Problems

The goal of synthesis from components is to find a composer C over library L
such that TC , the composition defined by C, satisfies the given specification,
which is typically some ω-regular property. In general, a specification property
is usually defined as a subset of (Σ × Q)ω where Σ is the input alphabet and
Q is the set of states of the system. However, here we assume, without loss
of generalization, that the states of the transducers ‘remember’ the input, so
defining a property as a subset of Qω is sufficient. In this paper, we focus on two
different but related formalisms for describing ω-regular properties:
– embedded parity specification: This is a simple specification given by an in-

dex function α, which assigns a priority to each state of the system. We
say a run of the system satisfies the parity condition if the highest priority
visited infinitely often is even. Then the ω-regular property defined by the
specification is just the set of all runs that satisfies the parity condition.

– deterministic parity word automata (DPW): This is a more powerful for-
malism that can express all ω-regular specifications. Given a DPW A, the
ω-regular property defined by A is simply the language of A.

While the two formalisms differ in power, they ultimately both use the parity
condition to check whether a run of the system is accepting or not. As we see
in Section 5, the contrast between the relatively weak embedded parity speci-
fication and the more general DPW specification is a useful tool to study the
expressiveness of probabilistic composers. In particular, we note that a DPW
specification has memory while an embedded parity specification is memoryless.
As we see in the next section, this difference illuminates the issue of expressive-
ness of probabilistic composers.

Now, in order to formalize the synthesis problem, we need to define an ap-
propriate notion of correctness for a reactive probabilistic system w.r.t. a given
specification. We assume the presence of an adversarial environment that con-
trols the input, while the system, a probabilistic transducer, controls the output.
We require that the executions of the system satisfy the specification with prob-
ability 1 irrespective of the inputs selected by the environment. Our notion of
correctness is qualitative [12].

Definition 3. Let M be a probabilistic transducer, Q be the state space of M ,
and P ⊆ Qω be an ω-regular property. Let f be a strategy for M . Then f is
winning for the environment if μf (P ) < 1. We say that M satisfies P if there
exists no winning strategy for the environment. If M satisfies P , and the property
P is given by index function α or DPW A, we say M satisfies α or, respectively,
M satisfies A.

Let L be a library, α be an index function, and A be a DPW. Let C be a
composer over L. We say C satisfies α or C satisfies A, if TC satisfies α or,
respectively, TC satisfies A.

The two types of specifications give rise to two related synthesis problems.

Definition 4. The embedded parity realizability problem for probabilistic com-
posers is: Given a library L with width D, an exit control relation R for L, and
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an index function α for L, decide whether there exists a probabilistic composer C
over L, such that TC satisfies α and C is compatible with R. If such a composer
exists we say L realizes α under R. The embedded parity synthesis problem for
probabilistic composers is to find such a composer C if it exists.

Definition 5. The DPW realizability problem for probabilistic composers is:
Given a library L and a DPW specification A, decide whether there exists a
probabilistic composer C over L, such that TC satisfies A. If such a composer
exists, we say that L realizes A. The DPW synthesis problem for probabilistic
composers is to find such a composer C if it exists.

We can obtain weaker versions of these problems by restricting ourselves to
deterministic composers. The resulting problems are then known to be decidable:

Theorem 1. [8] The embedded parity realizability and synthesis problems for
deterministic composers are decidable. ��

Theorem 2. [8] The DPW realizability and synthesis problems for deterministic
composers are decidable. ��

We observe that while one might hope to solve the more general case of prob-
abilistic composers by using the methods of [8], there are two main difficulties
with that approach. First, in [8], the DPW version of the problem is solved by
reducing it to the embedded parity version. However, as we show in the next sec-
tion, while deterministic and probabilistic composers have the same expressive
power for embedded parity specifications, probabilistic composers are strictly
more expressive than deterministic composers for DPW specifications. Thus it
is not possible to reduce the DPW realizability of probabilistic composers to the
embedded parity version. Second, the automata theoretic techniques used in [8]
crucially depend on the fact that every deterministic composer can be repre-
sented as a regular D-tree (a tree with constant branching degree D) where D is
the width of the library. This is because when the control-flow is deterministic,
there is exactly one successor component for each exit of a component, and so
the number of outgoing edges from each component is always the same as the
number of exits. When the composer is probabilistic, the branching degree of
its unfolding can be as large as the number of its states, which is not a priori
bounded.

5 The Expressive Power of Probabilistic Composers

Given a specification formalism, it is natural to ask the following question: Do
we gain any additional power for solving the synthesis problem by allowing com-
posers to be probabilistic? That is, are there instances of the synthesis problem
(i.e. a library and a specification) such that some probabilistic composer satis-
fies the specification, but no deterministic composer does? If the answer is yes,
then we say that probabilistic composers are more expressive than deterministic
composers for that class of specifications. Otherwise, we say they are equally
expressive.
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5.1 Embedded Parity Specifications

We first consider the issue of expressiveness for embedded parity specifications.
Our main result here is that deterministic and probabilistic composers are both
equally expressive for embedded parity specifications. To prove this, we need to
show that, for every library L, exit control relation R and index function α, if
there is a probabilistic composer over L that satisfies α under R, then we can
also find a deterministic composer over L that satisfies α under R. We first recall
the following useful characterization of winning strategies.

Theorem 3. [8] Let M be a probabilistic transducer and α be an index function.
1. If there exists a winning strategy for the environment then there exists a pure

and memoryless winning strategy.
2. Let f be a memoryless strategy for M . Then f is winning for the environment

iff GM,f has a reachable ergodic set whose highest priority is odd. ��
The key idea behind our approach is that instead of directly comparing prob-
abilistic composers to deterministic composers, we should instead compare a
probabilistic composer C to a composer C′ which is ‘less probabilistic’ than it.
We formalize what it means for one composer to be less probabilistic then an-
other, by introducing a partial order, denoted ≤prob, on the set of all composers.

Definition 6. Let COMP(L) be the set of all probabilistic composers over L. We
define the partial order ≤prob on COMP(L): for C1 = (D,L,M1, M

1
0, Δ1, λ1) and

C2 = (D,L,M2, M
2
0, Δ2, λ2), we have C1 ≤prob C2 if

– M1 = M2, M1
0 = M2

0, and λ1 = λ2

– ∀i ∈ D, M ∈ M1, supp(Δ1(M, i)) ⊆ supp(Δ2(M, i))
If C1 ≤prob C2 and C2 ≤prob C1, we say that C1 and C2 are qualitatively
equivalent. We denote by <prob the strict partial order corresponding to ≤prob.

Thus C1 <prob C2 if they have the same set of states and output functions
and the set of possible transitions of C1 is a proper subset of the set of possible
transitions of C2. We note that <prob is a well-founded relation, and deterministic
composers are the minimal elements of the relation. The well-foundedness of
<prob is crucial because it allows the use of induction.

Next we show that if all the composers obtained by removing transitions from
a composer C, fail to satisfy α under R, then C itself also fails to satisfy α under
R. The intuition here is that the behavior of C can be determined by looking
at the behavior of composers that make fewer probabilistic choices than C but
have the same underlying structure.

Lemma 1. Let L be a library with width D, R be an exit control relation and
α be an index function for L, and let C ∈ COMP(L) be such that C is not
deterministic. Suppose that for all C′ ∈ COMP(L) and C′ <prob C, we have that
C′ does not satisfy α under R. Then C also does not satisfy α under R.

Proof. Let C = (D,L,M, M0, Δ, λ) ∈ COMP(L). If C is not compatible with
R, then C trivially does not satisfy α under R. So we assume that C is com-
patible with R. We first arbitrarily choose Ma ∈ M and i0 ∈ D such that
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|supp(Δ(Ma, i0))| > 1. That is, we require that the transition out of state Ma

on input i0 is not deterministic. Since it is given that C is not a deterministic
composer, there is at least one such state and input pair. Consider Ma and i0 to
be fixed for the rest of this proof.

Let supp(Δ(Ma, i0)) = {M1, . . ., Mk} ⊆ M. For 1 ≤ j ≤ k, we define prob-
abilistic composers Cj = (D,L,M, M0, Δj , λ), where Δj(Ma, i0) = Mj and for
all M ∈ M, i ∈ D, Δj(M, i) = Δ(M, i) when i �= i0 or Ma �= M. Thus each Cj is
deterministic at state Ma and behaves exactly like C at other states. Further, for
each possible choice of next state available to C at state Ma on input i0, there is
exactly one of the Cj ’s that makes that choice deterministically. By construction,
for all 1 ≤ j ≤ k, we have Cj ∈ COMP(L), Cj < C, and Cj is compatible with
R. So, by the assumption in the theorem statement, Cj does not satisfy α for
all 1 ≤ j ≤ k. Then, by Definition 3 and Theorem 3, for each 1 ≤ j ≤ k, there
exists memoryless strategy fj for TCj that is winning for the environment. Note
that each fj is also a memoryless strategy for TC .

Let Q be the set of states of TC , q0 be the start state of λ(M0) and q be the exit
state of λ(Ma) in direction i0. For 1 ≤ j ≤ k, let Gj = GTC ,fj and G′

j = GTCj
,fj .

Now, by construction, we have Δj(M, i) = Δ(M, i) for i �= i0 or M �= Ma. That
is, C and Cj differ in their choices only when the composition is in exit state q
of component λ(Ma). Further, Gj and G′

j have the same set of vertices Q and
G′

j is a subgraph of Gj . Thus all edges that lie in Gj but not in G′
j must have q

as their source. Let Xj be a reachable ergodic set of G′
j such that α(Xj) is odd.

Such an Xj must exist because fj is winning for the environment for TCj . Then,
since G′

j is a subgraph of Gj , Xj is also reachable and strongly connected in Gj .
Also q is the source of all the edges that lie in Gj but not in G′

j . So if q does not
lie in Xj , then no edges can leave Xj in Gj and Xj is also a reachable ergodic
set of Gj . In this case, fj is also a winning strategy for the environment for TC .
Note that this argument does not depend on the particular value of j. For the
rest of the proof we can assume that q ∈ Xj for all 1 ≤ j ≤ k.

Let X =
⋃k

j=1 Xj and x ∈ X be such that α(x) = α(X). Since, by definition,
α(Xj) is odd for all 1 ≤ j ≤ k, therefore α(x) is also odd. We assume, without
loss of generalization, that x ∈ X1 and define a memoryless strategy f for TC such
that: f(x) = f1(x) for x ∈ (Q−X)∪X1, and f(x) = fj(x) for x ∈ Xj −

⋃j−1
i=1 Xi.

Let G = GTC ,f . Since f takes the same values as f1 on X1, then X1 must be
strongly connected in G. We first show that no edges in G leave X . Since X1 is an
ergodic set of G1, therefore q is the source of all the edges that leave X1 in G. By
construction of the Cj , each of these edges goes to some Xj . Thus no edges from
X1 leave X in G. Similarly, any edge leaving a vertex x ∈ Xj −

⋃j−1
i=1 Xi must

stay in Xj , because f and fj agree on those vertices and q �∈ Xj −
⋃j−1

i=1 Xi. Thus
there are no edges leaving X in G. Thus X must contain at least one ergodic set
of G. Let Y be this ergodic set of G.

We next show that X1 is reachable in G from every vertex in X . Clearly X1

is reachable in G from X1. Assume that X1 is reachable in G from every vertex
in Xm −

⋃m−1
i=1 Xi, for all 1 < m ≤ j, for some j < k. Let X ′ = Xj+1 −

⋃j
i=1 Xi

and let x ∈ X ′. We claim that there is a path in G that starts from x and leaves
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X ′. If there is no such path, then some Y ′ ⊆ X ′ must be an ergodic set of G.
Since f and fj+1 agree on vertices in X ′, if Y ′ is an ergodic set of G, then Y ′ is
also an ergodic set of Gj+1. But this contradicts the fact that Xj+1 is an ergodic
set of G′

j+1, and so is strongly connected in Gj+1. Thus there is a path in G
that starts from x and leaves X ′. Further, any outgoing edge from a vertex in X ′

cannot leave Xj+1, because f and fj+1 agree on X ′. Thus there is a path from
x to some vertex y in Xj+1 − X ′ =

⋃j
i=1 Xi. Now, by the inductive hypothesis,

X1 is reachable in G from y. Thus X1 is also reachable in G from x. Since x was
chosen arbitrarily, X1 is reachable in G from every vertex in Xj+1 −

⋃j
i=1 Xi.

By induction, X1 is reachable in G from every vertex in X . In particular, X1 is
reachable in G from the ergodic set Y ⊆ X of G. Thus, X must be contained in
Y . Then we have α(x) ≤ α(X1) ≤ α(Y ) ≤ α(X) = α(x). Thus α(Y ) is also odd.

Finally, all that remains is to show that Y is reachable from the start state q0.
Since f1 is winning for the environment for TC1 , we know that X1 is reachable
in G1 from the start state q0. Since X1 ⊆ X , X is also reachable in G1 from q0.
Consider the shortest path in G1 that starts from q0 and reaches X . Then all
vertices, except the last one, in this path are in Q−X . Since f and f1 agree on
vertices in Q−X , this path is also present in G. Then X is reachable from q0 in
G and so Y is reachable from q0 in G. Thus f is a pure and memoryless winning
strategy for the environment. ��

Finally, we show that, for embedded parity specifications, probabilistic com-
posers are not more expressive than deterministic composers.

Theorem 4. Let L be a library with width D and α be an index function for L.
There is a probabilistic composer C ∈ COMP(L) that satisfies α if and only if
there is a deterministic composer C′ ∈ COMP(L) that satisfies α.

Proof. Follows immediately from Lemma 1 using transfinite induction on the
well-founded strict partial order <prob. ��

As a consequence of Theorem 4, together with Theorem 1, we obtain:

Theorem 5. The embedded parity synthesis problem for probabilistic composers
is decidable. ��

5.2 DPW Specifications

While embedded parity specifications are memoryless, DPW specifications have
an associated memory (the state of the DPW). This difference turns out to be
crucial in determining the expressive power of probabilistic composers. As we see
below, the ability to make random transitions allows a probabilistic composer to
successfully deal with memoryful specifications where deterministic composers
fail. We find that, in contrast to the embedded parity case, there are instances
of the DPW realizability problem where a suitable probabilistic composer exists
but no suitable deterministic composer exists. Thus, probabilistic composers are
strictly more expressive than deterministic composers for DPW specifications.
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We describe a suitable problem instance, consisting of a library L and DPW A.
Let Σ = {a, b, c, b′, c′} and A be a DPW that accepts a word over Σ iff it contains
at least one occurrence of bab′ or cac′. The language of A is Σ∗(bab′ + cac′)Σω.
Consider the library L = {M1, M2, M3} consisting of the three components M1,
M2 and M3, which are shown in Fig. 1 (the figure depicts a composition built
using a single instance of each component). Each component in the library has
a single exit state. The input alphabet of each component is {0, 1} and the
output alphabet is Σ. The components M2 and M3 each consist of a single
state, which serves as both the start and exit state. As a result, they have no
internal transitions. They are only distinguished by the output in their single
state. M2 outputs b′ and M3 outputs c′. The component M1 has four states
and its transition function is such that every run from its start state to its exit
state always deterministically produces an output of either aba or aca, depending
solely on the input selected by the environment in the start state.

Fig. 1. A composition with probabilistic control-flow that satifies Σ∗(bab′ + cac′)Σω

Now consider a composition built from components in L that is defined by
a deterministic composer. Since each component in L has exactly one exit, if
the composer is deterministic, then the composition can be viewed as a linear
sequence of components, i.e., a pipeline. We claim that in this situation, the envi-
ronment can always prevent bab′ or cac′ from occurring anywhere in the output.
This is because bab′ can only be output if an instance of M2 occurs immediately
after an instance of M1 in the pipeline, but in any such case, the environment
can always force that particular instance of M1 to output aca instead of aba.
Similarly, the environment can always prevent cac′ from being output. The result
is that no deterministic composer over L can satisfy A.

Theorem 6. Let L and A be as defined above. Then there does not exist a
deterministic composer over L that satisfies A. ��

In contrast to the deterministic case, there is a probabilistic composer over L
that satisfies A. Intuitively, the composer needs to overcome the fact that the
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environment has complete control over the output of M1. It can do this by
probabilistically connecting each instance of M1 to instances of both M2 and
M3. Then the control that the environment has over the output of M1 becomes
irrelevant. One such composition is shown in Fig. 1, where control is transfered
from the single exit state of M1 to either M2 or M3 with equal probability.

Theorem 7. Let L and A be as defined above. Then there exists a probabilistic
composer over L that satisfies A. ��

6 Synthesizing Probabilistic Composers

In the previous section, we saw that probabilistic composers are more expressive
than deterministic composers for DPW specifications, but both have the same
expressive power for embedded parity specifications. This unfortunately rules out
following the approach of [8] to solve the DPW synthesis problem for probabilistic
composers by reducing it to the embedded parity version. Instead, we show that
the DPW synthesis problem for probabilistic composers can be reduced to the
DPW synthesis problem for deterministic composers. Since, by Theorem 2, the
latter problem is decidable, this suffices to solve the probabilistic version too.

The key idea behind our reduction is that probabilistic choices made by a
composer can be simulated with the help of a component with a specific struc-
ture. Consider a component, called Mrand, which ignores the environment’s input
and transitions uniformly at random from its start state to each of its two exit
states. Now suppose that a composer C over L probabilistically calls two dif-
ferent components, say M1 and M2. Then this behavior can be simulated by a
deterministic composer, say C′, that first calls Mrand, and then calls M1 and M2

from the two exits of Mrand. In this way, we can replace a probabilistic composer
over L by a deterministic composer over the larger library L∪{Mrand}. We first
formally define the special component Mrand.

Definition 7. Let ΣI and ΣO be the input and output alphabets of every com-
ponent in L. Let b be a fresh output symbol not contained in ΣO. We de-
fine the probabilistic transducer Mrand = {ΣI , {b}, Q, q0, δ, F, L}, where F =
{q1, q2, . . ., q|D|}, Q = {q0} ∪ F , L(q) = b for all q ∈ Q, and δ(q0, a)(q) = 1/|D|
for all a ∈ ΣI and q ∈ F .

So Mrand has |D| final states and |D|+1 total states, it outputs b in every state,
and it transitions with uniform probability from the start state to a final state
irrespective of the input. Note that Mrand is not a component in L since b �∈ ΣO

by construction. If we add Mrand to L to obtain a larger library, we also have to
translate DPW specifications for L into specifications for the larger library. The
idea is to modify the DPW to ignore the output of Mrand.

Definition 8. Let A = (ΣO, QA, s0, δA, αA) be a DPW specification for L. We
define the DPW Ab = (ΣO ∪ {b}, QA × {0, 1}, (s0, 0), δb

A, αb
A), where αb

A(q, 0) =
αA(q) and αb

A(q, 1) = 1, and δb
A is defined as follows:
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– For a ∈ ΣO, i ∈ {0, 1} and s ∈ QA, δb
A((s, i), a) = (δA(s), 0)

– For i ∈ {0, 1} and s ∈ QA, δb
A((s, i), b) = (s, 1)

Thus Ab ignores b and behaves like A on other inputs. Ab accepts a word w iff
A accepts w′ where w′ is the result of removing all occurences of b in w. Note
that Ab is a DPW specification for the library L′ = L ∪ {Mrand}.

We now reduce the problem of finding a probabilistic composer over L that
satisfies A to the problem of finding a deterministic composer over L′ that satis-
fies Ab. We give a mapping that transforms a deterministic composer C over L′

to a probabilistic composer prob(C) over L. The intuition behind the mapping
is that C uses multiple instances of Mrand to simulate the probabilistic choices
made by prob(C), such that C and prob(C) have the same behaviour.

Definition 9. Let L′ = L ∪ {Mrand} and C = (D,L′,M, M1, Δ, λ) be a deter-
ministic composer over L′. Let M = M0 ∪ Mrand where for all M ∈ M0,
λ(M) �= Mrand and for all M ∈ Mrand, λ(M) = Mrand. Then prob(C) =
(D,L,M0, M1, Δ

′, λ) is the probabilistic composer over L, whose probabilistic
transition function Δ′ is defined as follows: For all M ∈ M0 and i ∈ D,

– Δ′(M, i) is a uniform distribution on its support
– For all M′ ∈ M0, Δ′(M, i)(M′) > 0 if there is a finite run of C that starts

in M, ends in M′, and visits only states in Mrand.

Note that the mapping prob is not reversible, and given a probabilistic composer
C over L, there might not be a deterministic composer C′ over L′ such that
C = prob(C′). However, if we partition the set of all composers over L by
qualitative equivalence (see Defn. 6), then we obtain a reversible mapping. We
use this reversible mapping to show that the synthesis of probabilistic composers
is reducible to the synthesis of deterministic composers over a larger library.

Lemma 2. Let C′ be a deterministic composer over L∪{Mrand} and let C be a
probabilistic composer over L such that C is qualitatively equivalent to prob(C′).
Then C satisfies A iff C′ satisfies Ab. ��

Theorem 8. The DPW synthesis problem for probabilistic composers is
decidable. ��

7 Discussion

In the framework of parity games, the embedded parity version of our synthesis
problem can be viewed as a 2-player stochastic game with partial information;
that is, one player cannot see the moves of the other player in full. Informally,
the game is the following: We are given a library L of n components each with
D exits with index function α. The two players are the composer C and the en-
vironment E. Player C chooses components and player E chooses paths through
the components chosen by C. However, C cannot see the moves E makes inside
a component. At the start C chooses a component M from L. The turn passes
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to E, who chooses a sequence of inputs, inducing a path in M from its start
state to some exit x of M . The turn then passes to C, which must choose some
component M ′ in L and pass the turn to E. As C cannot see the moves made
by E inside M , C cannot base its choice on the run of E in M , but only on the
exit induced by the inputs selected by E and previous moves made by C. So
C must choose the same next component M ′ for different runs that reach exit
x of M . In general, different runs will visit different priorities inside M . This
is a two-player stochastic parity game where one of the players does not have
full information. If C has a winning strategy that requires a finite amount of
memory, then we can use such a strategy to obtain a suitable finite composer
that satisfies the index function α, thus solving the embedded parity problem. If
C has no winning strategy or if every winning strategy requires infinite memory,
then α is not realizable from the library L.

In contrast to standard parity games, partial information 2-player stochastic
parity games are known to be undecidable in general [2]. Thus, when viewed in
the framework of games, our result is a rare positive result for partial-information
stochastic games. Since the general problem is undecidable, the best result one
can hope for is to show that some restricted but useful class of partial information
parity games is decidable. Our result on the embedded parity synthesis problem
can be viewed as just such a result.
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Abstract. Probabilistic bisimilarity is a fundamental notion of equiva-
lence on labelled Markov chains. It has a natural generalisation to a
probabilistic bisimilarity pseudometric, whose definition involves the Kan-
torovich metric on probability distributions. The pseudometric has dis-
counted and undiscounted variants, according to whether one discounts
the future in observing discrepancies between states.

This paper is concerned with the complexity of computing proba-
bilistic bisimilarity and the probabilistic bisimilarity pseudometric on
labelled Markov chains. We show that the problem of computing prob-
abilistic bisimilarity is P-hard by reduction from the monotone circuit
value problem. We also show that the discounted pseudometric is ratio-
nal and can be computed exactly in polynomial time using the network
simplex algorithm and the continued fraction algorithm. In the undis-
counted case we show that the pseudometric is again rational and can be
computed exactly in polynomial time using the ellipsoid algorithm. Fi-
nally, using the notion of couplings on Markov chains, we show that the
pseudometric can be used to compute bounds on the variational distance
of trace distributions, which is NP-hard to compute directly.

1 Introduction

Probabilistic bisimilarity is a notion of equivalence for probabilistic labelled tran-
sition systems, introduced by Larsen and Skou [21]. It is based on Park and
Milner’s classical notion of bisimilarity for (non-deterministic) labelled transi-
tion systems [23]. A very similar and widely used concept on Markov chains,
called lumpability, can be found as far back as the classical text of Kemeny and
Snell [20]. A system and its probabilistic bisimilarity quotient can be considered
indistinguishable, and quotienting by probabilistic bisimilarity is a widely used
compression technique in verification and performance analysis [18,19].

The first part of this paper concerns the complexity of computing probabilistic
bisimilarity. It is known that this can be done in polynomial time, e.g., by par-
tition refinement [2,11,32]. Our first result shows that probabilistic bisimilarity
is P-hard, and therefore P-complete. As a consequence probabilistic bisimilarity
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is not in NC unless P = NC. (Recall that NC is a subclass of P comprising
problems that can be solved in polylogarithmic time using PRAMs of polynomial
size [16]. Informally such problems are considered to be efficiently parallelisable.)
By contrast, language equivalence of probabilistic automata is in NC [31], as
are related equivalence problems such as tree isomorphism [16].

For (non-deterministic) labelled transition systems it is known that computing
bisimilarity is P-complete [4,26]. However the proof in the probabilistic case
requires a different construction than in op. cit.

For probabilistic systems it is natural to generalise from bivalent notions of
equivalence, such as probabilistic bisimilarity or language equivalence [30], to
quantitative measures of similarity. As well as being more informative, such
measures are more meaningful in the presence of rounding errors in computation
and modelling (see, for example, [15]).

In the second part of this paper we consider a probabilistic bisimilarity pseu-
dometric on labelled Markov chains. This generalises the notion of probabilistic
bisimilarity by assigning a similarity distance to pairs of states of a labelled
Markov chain. The smaller the distance, the more alike the states, with states
at zero distance if and only if they are probabilistic bisimilar. This pseudomet-
ric was first introduced in [12] and, together with closely related notions, has
subsequently been studied in the context of systems biology [28], games [9],
planning [10] and security [8], among others. The definition of the pseudometric
is based on the classical Kantorovich metric on probability distributions. The
pseudometric has discounted versions, which discount the future in observing
discrepancies between states.

We show that for labelled Markov chains with rational transition probabil-
ities the discounted probabilistic bisimilarity pseudometric is rational and can
be computed exactly by a polynomial-time algorithm. In particular, we show
that the distances can be approximated by using the network simplex algorithm
repeatedly and the exact distances can be obtained from the approximated ones
by means of the continued fraction algorithm. In the undiscounted case we also
obtain a polynomial-time algorithm to exactly compute the pseudometric, this
time using the heavier machinery of the ellipsoid algorithm. In combination with
our lower bound on computing probabilistic bisimilarity we conclude that com-
puting the pseudometric is P-complete. These results go beyond previous work
which only showed how to approximate the pseudometric up to some desired
level of precision [7]. In the undiscounted case it was only known how to ap-
proximate the pseudometric using polynomial space [6]. We use the notion of
couplings of Markov chains to show that the pseudometric is an upper bound
on the variational distance between the trace distributions generated by states
of the Markov chain, which is NP-hard to compute directly [22].

Fu [14] shows that the complexity of approximating a bisimilarity pseudo-
metric on probabilistic automata, which generalise labelled Markov chains, lies
in the intersection of NP and coNP. Even more general than probabilistic au-
tomata are stochastic games. A generalisation of the bisimilarity pseudometric
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from labelled Markov chains to stochastic games has been shown to be as hard
as the sum-of-square-roots problem [9], a problem not known even to be in NP.

2 Probabilistic Bisimilarity

In this section we introduce labelled Markov chains and probabilistic bisimilarity,
and we show that computing probabilistic bisimilarity is P-hard.

A labelled Markov chain is a tuple M = (S, Σ, π, �) consisting of a finite set
of states S, a finite set of labels Σ, a rational transition matrix π such that∑

t∈S πs,t = 1 for all s ∈ S, and a labelling function � : S → Σ.
A probabilistic bisimulation on M is an equivalence relation R ⊆ S × S such

that if s R t then �(s) = �(t) and
∑

u∈E πs,u =
∑

u∈E πt,u for each R-equivalence
class E, i.e., related states have the same label and the same probability to
transition into any given equivalence class. It is a standard result that there is a
largest probabilistic bisimulation on M and that this relation is an equivalence
relation (see, e.g., [25, Section 7.6]). The maximum probabilistic bisimulation is
called probabilistic bisimilarity and is denoted ∼. From now on, we mostly refer
to probabilistic bisimilarity as simply bisimilarity.

We are interested in the problem of computing bisimilarity ∼ on M. The
decision version of the problem asks whether s ∼ t for two designated states
s, t ∈ S.

The above formulation of the bisimilarity problem is convenient for our hard-
ness proof, however variations, such as replacing state labels with labels on
transitions, can easily be accommodated. It is also not difficult to reduce the
problem above to the restricted case in which the set of labels has two elements.

For a state s, let succ(s) = {u : πs,u > 0}. We say that a transition matrix π
is uniform if for all s ∈ S and u, v ∈ succ(s), πs,u = πs,v. That is, the transition
probability out of each state is a uniform distribution over its support.

Lemma 1 (Matching Lemma). Assume that |succ(s)| = |succ(t)| and π is
uniform. Then s ∼ t if and only if �(s) = �(t) and there exists a bijection
f : succ(s) → succ(t) with u ∼ f(u) for each u ∈ succ(s).

Proof. Suppose that s ∼ t. Since ∼ is a bisimulation, �(s) = �(t) and for each
∼-equivalence class E, ∑

x∈E πs,x =
∑

x∈E πt,x. (1)

Since |succ(s)| = |succ(t)| and π is uniform, |E∩succ(s)| = |E∩succ(t)| for each
∼-equivalence class E. Hence there exists a bijection f : succ(s) → succ(t) with
u ∼ f(u) for all u ∈ succ(s).

Conversely, assume that �(s) = �(t) and suppose that f is a bijection as above.
To conclude that s ∼ t we prove that the smallest equivalence relation containing
∼ ∪ {(s, t)}, which we denote by R, is a bisimulation.

Since ∼ is a bisimulation and �(s) = �(t), R only relates states with the
same label. Moreover, since every R-equivalence class is a union of ∼-equivalence
classes, it suffices to show (1) for ∼-equivalences classes only.
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Assume uRv. We distinguish three cases. First, let u = s and v = t. Because of
the existence of the bijection f , we have that |E∩succ(s)| = |E∩succ(t)| for each
∼-equivalence class E. Because π is uniform, (1) holds for each ∼-equivalence
class E. Second, let u ∼ s and v ∼ t. Recall that ∼ is a bisimulation. Hence, for
each ∼-equivalence class E,∑

x∈E πu,x =
∑

x∈E πs,x =
∑

x∈E πt,x =
∑

x∈E πv,x,

where we use u ∼ s, the previous case, and v ∼ t. The third and final case,
u ∼ v, follows immediately from the fact that ∼ is a bisimulation. ��

Theorem 2. Deciding probabilistic bisimilarity is P-hard.

Proof. We reduce from the Monotone Circuit Value problem which is P-
hard [16, Theorem 6.2.2]. Recall that a monotone circuit is a finite directed
acyclic graph in which nodes have in-degree either two or zero. Nodes with in-
degree two are labelled ∧ or ∨; nodes with in-degree zero, called input nodes, are
labelled either true (1) or false (0). There is a distinguished output node with
out-degree zero. The Monotone Circuit Value problem is to compute the
output of a given monotone circuit.

Given a circuit C, we define a Markov chain M(C) with a uniform transi-
tion matrix. For each node ni of C and its incoming edges, we include a gadget
consisting of states and their outgoing transitions in M(C). Note that the transi-
tions of the Markov chain go in the opposite direction of the edges of the circuit.
Each gadget contains states ui and vi. We will prove that ui ∼ vi if and only if
ni evaluates to true. We define the labelling function � such that states have the
same label if and only if they belong to the same gadget and the gadget does
not represent an input node that is labelled false. In the diagrams below, states
have the same label if and only if they have the same index and the same colour.

We describe M(C) by giving gadgets for each input node, and -gate and or -
gate of C.

The gadget for input node labelled true is shown below.

1
ni

uiui vivi

The gadget for input node labelled false is shown below.

0
ni

uiui vivi

Note that ui and vi have the same label if and only if ni is labelled true and
therefore ui ∼ vi if and only if ni is labelled true.
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The gadget for an and -gate is shown below.

∧
ni

nj nk

uiui vivi

uj vj uk vk

Note that uj, vj and uk, vk are states of the gadgets corresponding to the nodes
nj and nk. The correctness of this gadget amounts to showing that ui ∼ vi if and
only if both uj ∼ vj and uk ∼ vk. This follows immediately from the Matching
Lemma and the fact that the definition of � precludes uj ∼ vk and vj ∼ uk in
case nj and nk are different nodes. If nj and nk are one and the same node, the
and -gate can be removed from the circuit.

The gadget for an or -gate is shown below.

∨
ni

nj nk

ui vi

wi xi yi zi

ui vi

wi xi yi zi

uj vj uk vk

The correctness of this gadget amounts to showing that ui ∼ vi if and only if
uj ∼ vj or uk ∼ vk.

ui ∼ vi iff (wi ∼ yi ∧ xi ∼ zi) ∨ (wi ∼ zi ∧ xi ∼ yi) [Matching Lemma]
ff uj ∼ vj ∨ uk ∼ vk [Matching Lemma]

In the last step we use again the fact that the definition of � precludes uj ∼ vk

and vj ∼ uk in case nj and nk are different nodes. If nj and nk are one and the
same node, the or -gate can be removed from the circuit.

This completes the description of the gadgets. The Markov chain M(C) is
obtained by composing the gadgets for each node of C. The transduction of a
circuit to a Markov chain is done gate by gate. To produce the output gadget
corresponding to each circuit gate one only needs to store the indices of the gate
and its two inputs, and the states of the output gadget. Thus the reduction can
be done in deterministic logarithmic space. ��

The proofs of P-hardness of ordinary bisimilarity for labelled transition systems
by Balcázar, Gabarró and Sántha [4] and Sawa and Jančar [26] are also by re-
duction from Monotone Circuit Value. However in the probabilistic case
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disjunction cannot be translated directly as in the non-deterministic case. Inter-
estingly, a formally identical gadget to the above disjunction gadget appears in
Toran’s proof of DET-hardness of graph isomorphism [29]. However DET is a
subclass of P and the graph isomorphism problem is not known to be P-hard.

3 The Bisimilarity Pseudometric

In this section we recall the definition of a bisimilarity pseudometric on la-
belled Markov chains. We first give a logical characterisation, due to Deshar-
nais, Gupta, Jagadeesan and Panangaden [12], based on a real-valued semantics
for Larsen and Skou’s probabilistic modal logic [21]. This characterisation illus-
trates the sense in which states that are close in the pseudometric satisfy similar
behavioural properties. In the next section we give a more abstract fixed-point
characterisation of the pseudometric, which will be used in our algorithms.

The logic L is defined by the grammar

ϕ ::= σ | ϕ ∨ ϕ | ¬ϕ | ϕ � q | �ϕ (2)

where σ ∈ Σ and q ∈ [0, 1] is rational.
We consider a real-valued semantics of L, which is parameterised by a discount

factor c ∈ (0, 1]. The smaller the value of c, the more the future is discounted,
with c = 1 being the undiscounted case. Given a labelled Markov chain M =
(S, Σ, π, �), the interpretation of a formula ϕ is a function [[ϕ]] : S → [0, 1] defined
by the following clauses:

[[σ]](s) =
{

1 if �(s) = σ
0 otherwise

[[ϕ ∨ ψ]](s) = max([[ϕ]](s), [[ψ]](s))
[[¬ϕ]](s) = 1 − [[ϕ]](s)

[[ϕ � q]](s) = max([[ϕ]](s) − q, 0)

[[�ϕ]](s) = c ·
∑
t∈S

πs,t · [[ϕ]](t)

A pseudometric is a relaxation of the notion of an ordinary metric in which
different states can have distance zero. Formally a (1-bounded) pseudometric on
a set S is a map d : S × S → [0, 1] such that for all s, t, u ∈ S, d(s, s) = 0,
d(s, t) = d(t, s) and d(s, u) ≤ d(s, t) + d(t, u).

Given a discount factor c ∈ (0, 1] the function dc : S × S → [0, 1] assigns
a distance to every pair of states of a labelled Markov chain according to the
following definition:

dc(s, t) = sup
ϕ∈L

|[[ϕ]](s) − [[ϕ]](t)| . (3)

It is straightforward that, with this definition, dc is a pseudometric. The following
theorem justifies our description of dc as a bisimilarity pseudometric.



On the Complexity of Computing Probabilistic Bisimilarity 443

Theorem 3. [25, Section 8.2] dc(s, t) = 0 if and only if s ∼ t.

In [9], Chatterjee, de Alfaro, Majumdar and Raman enriched the logic L by the
addition of fixed-point operators, yielding a quantitative μ-calculus Lμ which can
express reachability and ω-regular specifications. For example, the Lμ-formula
μx.(σ∨�x) represents the probability to reach a σ-labelled state, while νy.μx.((σ∧
y)∨�x) represents the probability to infinitely often visit a σ-labelled state. It is
shown in [9] that dc(s, t) = supϕ∈Lμ

|[[ϕ]](s)− [[ϕ]](t)| for any pair of states s, t ∈ S;
thus dc can equivalently be defined in terms of the more powerful logic Lμ.

4 Matchings, Couplings and the Kantorovich Metric

In this section we give a fixed-point characterisation of the probabilistic bisim-
ilarity pseudometric. Based on this we relate the pseudometric to the classical
notion of couplings on Markov chains.

Say that a probability distribution ω on S × S is a matching of probability
distributions μ, ν on S if∑

v∈S ω(u, v) = μ(u) for all u ∈ S∑
u∈S ω(u, v) = ν(v) for all v ∈ S .

In other words, ω is a joint probability distribution whose marginals are μ and ν.
Suppose that (S, d) is a finite metric space. The Kantorovich metric dK on

the set of probability distributions on S is defined by

dK(μ, ν) = min
ω∈Ωμ,ν

∑
u,v∈S

d(u, v) · ω(u, v) ,

where Ωμ,ν is the set of matchings of μ and ν.
Informally we can characterise the bisimilarity pseudometric dc(s, t) as the

distance between the distributions πs,− and πt,− in the Kantorovich metric over
(S, dc). This characterisation is recursive, and accordingly we will show that dc

is a fixed point of a functional Δc based on the Kantorovich metric.
Define Δc : [0, 1]S×S → [0, 1]S×S as follows. If �(s) �= �(t) then Δc(d)(s, t) = 1

and if �(s) = �(t) then

Δc(d)(s, t) = c · min
ω∈Ωs,t

∑
u,v∈S

d(u, v) · ω(u, v) , (4)

where Ωs,t is the set of matchings of πs,− and πt,−.
The set [0, 1]S×S is a complete lattice in the pointwise order. It is shown in [5,

Proposition 38] that Δc is a monotone selfmap on [0, 1]S×S and thus, by Tarski’s
fixed point theorem, has a least fixed point. Since the least element of [0, 1]S×S

is a pseudometric, Δc maps a pseudometric to a pseudometric, and the least
upper-bound of a set of pseudometrics is a pseudometric, we can conclude that
the least fixed point of Δc is a pseudometric as well. This turns out to be the
pseudometric dc.
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Theorem 4. [6, Theorem 4.6] dc is the least fixed point of Δc.

Remark 5. In the relational setting it is traditional to view bisimilarity as a
greatest fixed point. Intuitively the situation is opposite in the pseudometric
setting because the bottom element of [0, 1] represents relatedness.

Theorem 6. If c < 1 then dc is the unique fixed point of Δc.

Proof sketch. We can show that Δc is c-Lipschitz. From Banach’s fixed point
theorem we can conclude that the fixed point is unique. ��

However, Δ1 need not have a unique fixed point. For example, consider the
labelled Markov chain with a single state. Then Δ1 is the identity mapping.

Example 7. Consider the Markov chain below, where �(s) = �(t) �= �(u):

s t u

1 c 1

1−c

For c < 1, dc(s, t) = c−c2

1−c2 . The pseudometric 0 assigns to every pair of states

distance zero. For all n ∈ N, Δn
c (0)(s, t) ≤ c−c2n+1

1+c . This shows that the fixed
point may not be reached by a finite number of iterations of Δc.

For each s, t ∈ S, let ω(s,t),(−,−) be a matching of πs,− and πt,−. Then the
Markov chain C = (S × S, ω) is a coupling (see, e.g., [24, Chapter 11] for a
discussion of couplings). Such a coupling can be seen as two copies of M running
synchronously, although not necessarily independently. Couplings are typically
used to give upper bounds on convergence to stationary distributions. Here we
use them to a slightly different end. Given a coupling C, as above, define the
discrepancy of a state (s, t) ∈ S × S, denoted dC(s, t), to be the probability that
a trajectory of C starting in state (s, t) reaches a state (u, v) with �(u) �= �(v).

Formally, given a coupling C, we define ΓC : [0, 1]S×S → [0, 1]S×S as follows.
If �(s) �= �(t) then ΓC(d)(s, t) = 1 and if �(s) = �(t) then

ΓC(d)(s, t) =
∑

u,v∈S

d(u, v) · ω(s,t),(u,v).

We leave it to the reader to check that ΓC is a monotone selfmap on [0, 1]S×S. By
Tarski’s fixed point theorem, ΓC has a least fixed point, which we denote by dC .
As we will show next, dC is closely related to our bisimilarity pseudometric d1.

Theorem 8. d1 = min{ dC : C is a coupling }.

As a consequence of the above theorem, the bisimilarity pseudometric d1 cor-
responds to the minimal coupling. Next, we will show that two states have dis-
crepancy zero in some coupling if and only if they are bisimilar.
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Proposition 9. dC(s, t) = 0 for some coupling C if and only if s ∼ t.

Proof. From Theorem 8 we can conclude that dC(s, t) = 0 for some coupling C
if and only if d1(s, t) = 0. By Theorem 3 this gives us the desired result. ��

The following simple lemma shows that the discrepancy can be used to bound
the variational distance between trace distributions. This can be seen as a quan-
titative version of the folklore that bisimilar states satisfy the same linear-time
properties. In the lemma we use PrM,s(A) to denote the probability that a run
of the labelled Markov chain M started in state s is in the set A. For a formal
definition of PrM,s(A) and a definition of measurable subset of the set Σω of
infinite sequences over Σ, we refer the reader to, e.g., [3, Chapter 10].

Lemma 10 (Coupling Lemma). Let C be a coupling of the labelled Markov
chain M = (S, Σ, π, �). Then for any measurable set A ⊆ Σω and s, t ∈ S,

|PrM,s(A) − PrM,t(A)| ≤ dC(s, t) .

As a consequence of the Coupling Lemma and Theorem 8, our bisimilarity
pseudometric is an upper bound for the variational distance between trace
distributions.

Corollary 11. For any measurable set A ⊆ Σω and s, t ∈ S,

|PrM,s(A) − PrM,t(A)| ≤ d1(s, t) .

Whereas the variational distance between trace distributions is NP-hard to com-
pute, as shown by Lyngsø and Pedersen in [22], we will show that our bisimilarity
pseudometric can be computed in polynomial time.

5 Algorithms for Bisimilarity Pseudometrics

5.1 The Discounted Case

Let c < 1 be a fixed rational discount factor. Given a labelled Markov chain M,
we show that dc is rational and can be computed exactly in time polynomial in
size(M) and size(c).1

In Theorem 4 we have characterised dc as the least fixed point of Δc. While
the stipulation that dc be the least fixed point is essential in the undiscounted
case, it is redundant in the discounted case. In the latter case, Δc has a unique
fixed point (see Theorem 6). As a consequence, dc is also the greatest fixed point
of Δc for c < 1. Thus, by Tarski’s fixed point theorem, we have

dc =
⊔

{ d ∈ RS×S : d ≤ Δc(d) ∧ 0 ≤ d ≤ 1 } . (5)

1 We denote by size(X) the size of the representation of an object X. We represent
rational numbers as quotients of integers written in binary. For example, the size of
a rational number is the sum of the bit lengths of its numerator and denominator
and the size of a matrix is the sum of the sizes of its entries.
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This simple change in perspective is fruitful because the characterisation (5)
directly yields a translation of the problem of computing dc to the following
linear program:

maximise
∑

s,t∈S ds,t

such that ds,t ≤ c ·
∑

u,v∈S du,v · ω(u, v) ω ∈ Ωs,t, �(s) �= �(t)
ds,t = 1 �(s) = �(t)
0 ≤ ds,t ≤ 1

(6)

As we will see, the linear program (6) can be solved in polynomial time using the
ellipsoid algorithm. We pursue this option in the undiscounted setting below. How-
ever, here we do not require such powerful techniques. Instead we just use the lin-
ear programming formulation to observe that the fixed point of Δc is rational and
bounded in size by a polynomial in size(M) and size(c). We then approximate
the fixed point by repeating the network simplex algorithm, obtaining the exact
solution by rounding by means of the continued fraction algorithm.

Recall that the set of matchings Ωs,t is a polytope in RS×S defined by the
following constraints:∑

v∈S ω(u, v) = πs,u and
∑

u∈S ω(u, v) = πt,v and ω(u, v) ≥ 0 (7)

In general, Ωs,t is infinite and therefore the set of constraints in (6) is infinite
also. However, for each fixed d the linear function mapping a matching ω to
c ·

∑
u,v d(u, v) · ω(u, v) achieves its minimum on Ωs,t at some vertex. Thus,

writing V (Ωs,t) for the (finite) set of vertices of Ωs,t, we can replace Ωs,t with
V (Ωs,t) in (6), obtaining a linear program with the same feasible region. We
denote the polytope defined by the set of constraints of this linear program by
D. To prove that the distances are rational, we first observe the following.

Proposition 12. Each ω ∈ V (Ωs,t) is rational of size polynomial in size(M).

Proof sketch. Since a vertex of Ωs,t is by definition an intersection of hyperplanes
given by the (in)equalities defining Ωs,t and the coefficients of the (in)equalities
are rationals bounded in size by size(M), we can conclude that each ω ∈ V (Ωs,t)
is rational of size polynomial in size(M). ��

Proposition 13. dc is rational of size polynomial in size(M) and size(c).

Proof sketch. Along a similar line of reasoning as used in the proof of Propo-
sition 12, we can conclude that the vertices of polytope D are rational of size
polynomial in size(M) and size(c).

Since the function mapping any d of the polytope D to
∑

s,t∈S ds,t is linear,
it attains its maximum, dc, at some vertex of D, which, as we have just shown,
is rational of size polynomial in size(M) and size(c). ��

Note that the proofs of Proposition 12 and 13 are also valid for c = 1 and, hence,
d1 is rational as well. Having established that dc is rational, we now give a simple
iterative algorithm to approximate dc starting from the pseudometric 0.
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Proposition 14. For all n ∈ N, Δn
c (0) is rational of size polynomial in size(M)

and size(c) and can be computed in time polynomial in size(M) and size(c).

Proof sketch. We prove this property by induction on n. Obviously, the property
holds for n = 0. Let n > 0. Obviously, the property holds when �(s) �= �(t).
Otherwise, Δn

c (0)(s, t) = c ·minω∈Ωs,t

∑
u,v∈S Δn−1

c (0)(u, v) ·ω(u, v). The above
minimum is attained at a vertex of Ωs,t. As we have seen in Proposition 12, these
vertices are rationals of size polynomial in size(M). Furthermore, by induction,
Δn−1

c (0) is rational of size polynomial in size(M) and size(c). Hence, Δn
c (0)(s, t)

is a rational of size polynomial in size(M) and size(c). Computing Δc(d)(s, t) is a
minimum-cost flow problem for which there are versions of the network simplex
algorithm that are strongly polynomial time [1]. ��

To get ε-close to dc, we need to iterate �logc(ε)� times.

Proposition 15. For all ε > 0, ||Δ�logc(ε)	
c (0) − dc|| ≤ ε.

From Proposition 14 and 15 we can conclude that we can approximate dc in time
polynomial in size(M), size(c) and log2(

1
ε ). Once we have iterated close enough

to dc, we can use the continued fraction algorithm (see, e.g. [17, Section 5.1]) to
obtain dc.

Theorem 16. The pseudometric dc can be computed in time polynomial in
size(M) and size(c).

Proof sketch. This follows now immediately from the observation made by Etes-
sami and Yannakakis [13, page 2540] that for problems whose solutions are ra-
tional, of size polynomial in the input size, if we can solve the approximation
problem in polynomial time, then we can also solve the exact computation prob-
lem in polynomial time by using the continued fraction algorithm. ��

5.2 The Undiscounted Case

Throughout this section we refer to the undiscounted bisimilarity pseudometric
as d, rather than d1 and likewise use Δ instead of Δ1.

In the previous section we gave a reduction of the problem of computing dc

to linear programming by characterising dc as the greatest fixed point of Δc for
c < 1. However, recall from Section 4 that d is not in general the greatest fixed
point of Δ. Nevertheless we can recover a greatest-fixed-point characterisation
of d by separately handling the set of bisimilar states, i.e. the states at distance
zero. This will allow us to use linear programming to compute d.

As a first step we define Δ′ : [0, 1]S×S → [0, 1]S×S by

Δ′(d)(s, t) =
{

Δ(d)(s, t) if s �∼ t
0 if s ∼ t.

Proposition 17. Δ′ has a unique fixed point.
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Proof sketch. Since Δ is monotone, we can easily deduce that Δ′ is monotone
as well. According to Tarski’s fixed point theorem, Δ′ has a least and a greatest
fixed point. Hence, it is sufficient to prove that if d ≤ d′ are both fixed points of
Δ′ then d = d′.

To this end, let m = max{ d′(s, t) − d(s, t) : s, t ∈ S } and let M be the set
of pairs { (s, t) ∈ S × S : d′(s, t)− d(s, t) = m } which maximise the discrepancy
between d′ and d. We will show that m = 0, which implies that d = d′. We
distinguish two cases.

Assume that (s, t) ∈ M such that �(s) �= �(t). Then

d′(s, t) − d(s, t) = Δ′(d′)(s, t) − Δ′(d)(s, t) = 1 − 1 = 0

and, hence, m = 0.
Otherwise, for all (s, t) ∈ M we have that �(s) = �(t). In this case, we claim

that M ⊆ ∼. From this claim it follows that for all (s, t) ∈ M ,

d′(s, t) − d(s, t) = Δ′(d′)(s, t) − Δ′(d)(s, t) = 0 − 0 = 0

and, hence, m = 0. It just remains to prove the claim.
By Proposition 9 it suffices to define a coupling C such that dC(s, t) = 0 for

all (s, t) ∈ M . To define C we must specify a matching ω ∈ Ωs,t for each pair of
states (s, t) ∈ S×S. For (s, t) �∈ M any matching will do. For (s, t) ∈ M we show
that we can choose a matching ω ∈ Ωs,t whose support is contained in M . Then
in the coupling C no pair in (s, t) ∈ M can reach a pair (u, v) with �(u) �= �(v),
that is, dC(s, t) = 0.

Let (s, t) ∈ M . Suppose Δ′(d)(s, t) =
∑

u,v∈S d(u, v) ·ω(u, v), where ω ∈ Ωs,t.
Then

m = d′(s, t) − d(s, t)
= Δ′(d′)(s, t) − Δ′(d)(s, t)

=

⎛⎝ min
ω′∈Ωs,t

∑
u,v∈S

d′(u, v) · ω′(u, v)

⎞
⎠ −

∑
u,v∈S

d(u, v) · ω(u, v)

≤
∑

u,v∈S

d′(u, v) · ω(u, v) −
∑

u,v∈S

d(u, v) · ω(u, v)

=
∑

u,v∈S

(d′(u, v) − d(u, v)) · ω(u, v).

Since d′(u, v) − d(u, v) ≤ m and
∑

u,v∈S ω(u, v) = 1, we can conclude from∑
u,v∈S(d′(u, v) − d(u, v)) · ω(u, v) ≥ m that d′(u, v) − d(u, v) = m whenever

ω(u, v) > 0. ��

Corollary 18. d is the unique fixed point of Δ′.

Proof. It is enough to prove that d is a fixed point of Δ′. On the one hand,
suppose that s ∼ t. Then d(s, t) = 0 = Δ′(d)(s, t) by Theorem 3. On the other
hand, suppose that s �∼ t. Then d(s, t) = Δ(d)(s, t) = Δ′(d)(s, t). ��
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Corollary 18 implies that d is the greatest fixed point of Δ′. Thus, following the
development in Section 5.1, we can compute d as the solution to the following
linear program:

maximise
∑

s,t∈S ds,t

such that ds,t = 0 s ∼ t
ds,t = 1 �(s) �= �(t)
ds,t ≤

∑
u,v∈S du,v · ω(u, v) ω ∈ V (Ωs,t), s �∼ t, �(s) = �(t)

(8)

Unfortunately we cannot solve (8) using the iterative method adopted in the
discounted case. The reason is that it may require exponentially many iterations
of Δ′ to achieve a sufficiently close approximation to d.

Example 19. Consider the Markov chain below, where �(s) = �(t) �= �(u):

s t u

1 1−2−m
1

2−m

Then d(s, t) = 1 and (Δ′)n(0)(s, t) ≤ n · 2−m for all n ∈ N. This shows that it
may require exponentially many iterations in size(M) to approximate the fixed
point of Δ′.

Instead we use the ellipsoid algorithm (see, e.g. [27, Chapter 14]) to solve the linear
program (8). According to Proposition 12 (which also holds for c = 1), the coeffi-
cients of the constraints of the linear program (8) are rational of size polynomial
in size(M). By, e.g. [27, Corollary 14.1a], to conclude that the linear program (8)
can be solved in time polynomial in size(M), it suffices to show that there exists a
polynomial time separation algorithm. In our setting, given a d ∈ RS×S rational of
size polynomial in size(M), the separation algorithm has to decide whether d sat-
isfies the constraints of (8) or not, and, in the latter case, find in time polynomial
in size(M) a separating hyperplane, i.e., an α ∈ QS×S such that∑

u,v∈S d(u, v) · α(u, v) <
∑

u,v∈S d′(u, v) · α(u, v) (9)

for all d′ ∈ RS×S that satisfy the constraints of (8).
Let d ∈ RS×S be rational of size polynomial in size(M). For each pair of

states s, t ∈ S, we consider the following linear program:

minimise
∑

u,v∈S d(u, v) · ωu,v

such that
∑

v∈S ωu,v = πs,u and
∑

u∈S ωu,v = πt,v and ωu,v ≥ 0
(10)

This linear program is a minimum-cost flow problem for which there are ver-
sions of the network simplex algorithm that can compute an (ωu,v)u,v∈S , which
satisfies the constraints of (10) and minimizes the objective function, and that
are strongly polynomial time [1].

Note that d satisfies the constraints of (10) if and only if d(s, t) is smaller than
or equal to the optimal value of (10) for each pair of states s, t ∈ S. Otherwise,
there exists a pair of states s, t ∈ S such that d(s, t) is greater than the optimal
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value of (10). Let ω ∈ V (Ωs,t) be a vertex that realizes the optimal value of (10).
As we have seen in Proposition 12, ω is rational of size polynomial in size(M).

It remains to define an α that satisfies (9). We define α in terms of ω as
follows:

α(u, v) =
{

ω(u, v) − 1 if (u, v) = (s, t)
ω(u, v) otherwise.

Proposition 20. Assume that d does not satisfy the constraints of (10). Then
for all d′ ∈ RS×S that satisfy the constraints of (10), we have (9).

Proof. Since d does not satisfy the constraints of (10), there exists a pair of
states s, t ∈ S such that d(s, t) >

∑
u,v∈S d(u, v) · ω(u, v). Hence,∑

u,v∈S d(u, v) · α(u, v) < 0. (11)

Assume that d′ ∈ RS×S satisfies the constraints of (10). Then we have that
d′(s, t) ≤

∑
u,v∈S d′(u, v) · ω(u, v). Hence,∑

u,v∈S d′(u, v) · α(u, v) ≥ 0. (12)

From (11) and (12) we can immediately conclude (9). ��

6 Conclusion

The linear program (6) shows inter alia that the problem of computing proba-
bilistic bisimilarity can naturally be reduced to linear programming. It would be
interesting to relate the resulting procedure for computing probabilistic bisimi-
larity to the classical partition refinement algorithm.

The problem of computing probabilistic bisimilarity bears some similarity to
the graph isomorphism problem. While the latter is not known to be in P, for cer-
tain restricted graph classes, such as graphs of bounded degree or with bounded
colour classes, it is in DET (a subclass of P). By contrast, deciding probabilistic
bisimilarity is P-hard already for labelled Markov chains with branching degree
at most two, in which at most four states share the same label.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows – theory, algorithms and
applications (1993)

2. Baier, C.: Polynomial Time Algorithms for Testing Probabilistic Bisimulation and
Simulation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
50–61. Springer, Heidelberg (1996)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking (2008)
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Abstract. We present a format for the specification of probabilistic transition
systems that guarantees that bisimulation equivalence is a congruence for any
operator defined in this format. In this sense, the format is somehow comparable
to the ntyft/ntyxt format in a non-probabilistic setting. We also study the modular
construction of probabilistic transition systems specifications and prove that some
standard conservative extension theorems also hold in our setting. Finally, we
show that the trace congruence for image-finite processes induced by our format
is precisely bisimulation on probabilistic systems.

1 Introduction

Plotkin’s approach to operational semantics [21] is the standard way to give semantics
to specification and programming language in terms of transition systems. It has been
formalized with an algebraic flavor as Transition Systems Specifications (TSS) [8, 9, 12,
13, 20, etc.]. Basically, a TSS contains a signature, a set of actions or labels, and a set
of rules. The signature defines the terms in the language. The set of actions represents
all possible activities that a process (i.e., a term over the signature) can perform. The
rules define how a process should behave (i.e., perform certain activities) in terms of the
behavior of its subprocesses, that is, the rules define compositionally the transition sys-
tem associated to each term of the language. A particular focus of these formalizations
was to provide a meta-theory that ensures a diversity of semantic properties by sim-
ple inspection on the form of the rules. Thus, there are results on congruences and full
abstraction, conservative extension, security, etc. (see, e.g., [1, 2, 20] for overviews).

In this paper we focus on congruence and full abstraction. A congruence theorem
guarantees that whenever the rules of a TSS are in a particular format, then a desig-
nated equivalence relation is preserved by every context in the signature of such TSS.
Thus, for instance, strong bisimulation equivalence [19] is a congruence on any TSS in
the ntyft/ntyxt format [12]. Full abstraction is somewhat a dual result: an equivalence
relation is fully abstract with respect to a particular format if it is the largest relation
s.t. no context definable in the format can exhibit different behavior when applied to
two equivalent processes. For example, strong bisimilarity is fully abstract w.r.t. the
ntyft/ntyxt format [12] but not w.r.t. the tyft/tyxt format [13] or the GSOS format [8].

The introduction of probabilistic process algebras [4, 14, 25, etc.] motivated the need
for a theory of structural operational semantics to define probabilistic transition sys-
tems. A few results have appeared in this direction [6, 7, 16, 17] and, to our knowledge,
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only these works present congruence theorems for (probabilistic) bisimilarity [18], but
no full abstraction result. All previously mentioned studies consider transitions in the

form of a quadruple denoted by t
a,q−−−→ t′, where t and t′ are terms in the language, a is

an action or label, and q ∈ (0, 1] is a probability value. A transition of that form denotes
that term t can perform an action a and with probability q continue with the execution
of t′. Moreover, it is required that πt,a, defined by πt,a(t′) =

∑

t
a,q−→t′ q, is a probability

distribution. (This interpretation corresponds to the reactive view, it varies under the
generative view [25].) This notation introduces several problems. The first one is that
the transition relation cannot be treated as a set because two different derivations may
yield the same quadruple. This requires artifacts like multisets or bookkeeping indexes.
The second one is that formats need to be defined jointly on a set of rules rather than a
single rule to ensure that πt,a is a probability distribution. (Notice that πt,a depends on a
set of transitions which are obtained using different rules.)

Rather than following this approach, we directly represent transitions as a triple

t
a−→ πt,a. Thus, a single triple contains the complete information of the probabilistic

jump. Moreover, this representation also allows for non-determinism in the sense that

if t
a−→ π and t

a−→ π′ not necessarily π = π′ as requested by reactive systems. Hence,
our probabilistic transition system specifications (PTSS) define objects very much like

Segala’s probabilistic automata [22]. So, each probabilistic transition t
a−→ π is obtained

by a single derivation in our PTSSs, and hence formats focus on single rules (as it is
the case for non-probabilistic TSSs). This significantly eases the inspection of the for-
mat. In addition, a byproduct of this choice is that the proof strategies for the majority
of the lemmas and theorems of this paper are much the same as those for their non-
probabilistic relatives. We observe that this way of representing transitions in rules for
process algebra has already appeared in [5], it is also used in the Segala-GSOS for-
mat [7] and it is pretty much related to bialgebraic approaches to SOS [7, 15].

In this paper we introduce PTSS with negative and quantitative premises which also
allow for lookahead. We use stratification [9, 12] as means to define probabilistic tran-
sition systems and prove the existence and uniqueness of models for stratifiable PTSSs
(Sec. 3). We also propose a format, which we call ntμfν/ntμxν, that is very much like
the ntyft/ntyxt format in non-probabilistic TSS and show that bisimilarity is a congru-
ence for any operation defined under this format (Sec. 4). Besides, we give a definition
for the modular construction of PTSSs and give sufficient conditions to ensure that one
PTSS conservatively extends another (Sec. 5). We finally show that bisimilarity is fully
abstract with respect to the ntμfν/ntμxν format, that is, it is the coarsest congruence w.r.t.
any operator defined in ntμfν/ntμxν PTSSs that is included in trace equivalence (Sec. 6).

2 Preliminaries

We assume the presence of an infinite set of (term) variables V and we let x, y, z, x′,
x0, x1, . . . range over V. A signature is a structure Σ = (F, r), where (i) F is a set of
function names disjoint with V, and (ii) r : F → N0 is a rank function which gives
the arity of a function name; if f ∈ F and r( f ) = 0 then f is called a constant name.
Let W ⊆ V be a set of variables. The set of Σ-terms over W, notation T (Σ,W) is the
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least set satisfying: (i) W ⊆ T (Σ,W), and (ii) if f ∈ F and t1, · · · , tr( f ) ∈ T (Σ,W),
then f (t1, · · · , tr( f )) ∈ T (Σ,W). T (Σ, ∅) is abbreviated as T (Σ); the elements of T (Σ) are
called closed terms. T (Σ,V) is abbreviated as T(Σ); the elements of T(Σ) are called
open terms. Var(t) ⊆ V is the set of variables in the open term t.

Since our aim is to deal with languages that describe probabilistic behavior, apart
from signatures, variables, and terms, we also need to introduce probability distributions
on terms and variables to run on these distributions. Let Δ(T (Σ)) denote the set of all
(discrete) probability distributions on T (Σ). We let π, π′, π0, π1, . . . range over Δ(T (Σ)).
As usual, for π ∈ Δ(T (Σ)) and T ⊆ T (Σ), we define π(T ) =

∑
t∈T π(t). For t ∈ T (Σ),

let δt denote the Dirac distribution, that is, δt(t′) = if (t=t′) then 1 else 0. Moreover, the
product measure

∏n
i=1 πi is defined by (

∏n
i=1 πi)(t1, . . . , tn) =

∏n
i=1 πi(ti). In particular,

if n = 0, (
∏

j∈∅ π j) = δ() is the distribution that assigns probability 1 to the 0-ary
tuple. Let g : T (Σ)n → T (Σ) and recall that g−1(t′) = {�t ∈ T (Σ)n | g(�t) = t′}. Then
(
∏n

i=1 πi) ◦ g−1 is a well defined probability distribution on closed terms. In particular,
if g : T (Σ)0 → T (Σ) and g(()) = t, then (

∏
j∈∅ π j) ◦ g−1 = δ() ◦ g−1 = δt.

A distribution variable is a variable that takes values on Δ(T (Σ)). LetM be an infinite
set of distribution variables and let μ, μ′, μ0, μ1, . . . range overM. For a term variable
x ∈ V we let δx be an instantiable Dirac distribution. That is, δx is a symbol that
takes value δt whenever variable x takes value t. Let D = {δx : x ∈ V} be the set of
instantiable Dirac distributions according to the variable setV.

A substitution is a mapping that assigns terms to variables. In our case we need
to extend this notion to probabilistic variables and instantiable Dirac distributions. A
(closed) substitution ρ is a mapping in (V ∪M) → (T (Σ) ∪ Δ(T (Σ))) such that ρ(x) ∈
T (Σ) whenever x ∈ V, and ρ(μ) ∈ Δ(T (Σ)) whenever μ ∈ M. A substitution ρ extends
to open terms and sets as usual and to instantiable Dirac distributions by ρ(δx) = δρ(x).

Example 1. We introduce the signature of a probabilistic process algebra that includes
many of the most representative operators. We assume the existence of a setL of action
labels. Then, our signature (which is the base of our running example) contains: two
constants, 0 (stop process) and ε (skip process); a family of n-ary probabilistic prefix
operators a.([p1] ⊕· · ·⊕[pn] ) with a ∈ L, n ≥ 1, p1, . . . , pn ∈ (0, 1] s.t.

∑n
i=1 pi = 1 (we

usually write a.
∑n

i=1[pi]ti for given terms t1, . . . , tn); binary operators + (alternative
composition or sum), ; (sequential composition), and, for each B ⊆ L, ||B (parallel
composition); and a unary operator U( ) that we call unreach. The intended meaning of
a.
∑n

i=1[pi]ti is that this term can perform action a and move to term ti with probability
pi. The unreach operation U(t) can perform an action a and stop if there is a probabilis-
tic execution (or scheduler) from t in which action a is never performed (or properly
speaking, it is not performed with probability 1). Finally, t ||B t′ is a CSP-like parallel
composition where actions in B are forced to synchronize and all other actions should
be performed independently. The rest of the operators have the usual meaning. ��

3 Probabilistic Transition System Specifications

A (probabilistic) transition relation prescribes what possible activity can be performed
by a term in a signature. Such activity is described by the label of the action and a
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probability distribution on terms that indicates the probability to reach a particular new
term. We will follow the probabilistic automata style of probabilistic transitions [22]
which are a generalization of the so called reactive model [18]. So, let Σ be a signature
and A be a set of labels. A transition relation is a set −→ ⊆ PTr(Σ, A), where PTr(Σ, A) =
T (Σ) × A × Δ(T (Σ)). We denote (t, a, π) ∈ −→ by t

a−→ π.
Transition relations are usually defined by means of structured operational semantics

in Plotkin’s style [21]. Algebraic characterizations of this style were provided in [9,
12, 13] where the term transition system specification was used and which we adopt
in our paper. In fact, based on these works, we define probabilistic transition system
specifications.

Definition 2. A probabilistic transition system specification (PTSS) is a triple P =
(Σ, A,R) where Σ = (F, r) is a signature, A is a set of labels, and R is a set of rules
of the form:

{tk ak−−→ μk : k ∈ K} ∪ {tl bl−−→
 : l ∈ L} ∪ {μ j(W j) ≷ j q j : j ∈ J}
t

a−→ ∑i∈I pi(
∏

ni∈Ni
νni ) ◦ g−1

i

where K, L, J are index sets, I is a denumerable index set, each Ni is a finite index set,
t, tk, tl ∈ T(Σ), a, ak, bl ∈ A, μk, μ j ∈ M, W j ⊆ V, ≷ j ∈ {>,≥, <,≤}, pi, q j ∈ [0, 1] with
∑

i∈I pi = 1, each gi is a function s.t. gi : T (Σ)Ni → T (Σ), and νni ∈ M ∪D.

An expression of the form t
a−→ π, (t

a−→
 , π(T ) ≷ p) is a positive literal (negative literal,
quantitative literal, resp.). For any rule r ∈ R, literals above the line are called premises,
notation prem(r); the literal below the line is called conclusion, notation conc(r). We
denote with pprem(r) (nprem(r), qprem(r)) the set of positive (negative, quantitative,
resp.) literals of the rule r. A rule r is called positive if there are no negative premises,
i.e., nprem(r) = ∅. A PTSS is called positive if it has only positive rules. A rule r
without premises is called axiom. In general, we allow that the sets of positive, negative,
and quantitative premises are infinite.

Substitutions provide instances to the rules of a PTSS that, together with some ap-
propriate machinery, allow us to define probabilistic transition relations. Given a sub-

stitution ρ, it extends to literals as follows: ρ(t
a−→ μ) = ρ(t)

a−→ ρ(μ), ρ(t
a−→
 ) =

ρ(t)
a−→
 , ρ(μ(W) ≷ p) = ρ(μ)(ρ(W)) ≷ p, and ρ(t

a−→ ∑i∈I pi(
∏

ni∈Ni
νni )◦g−1

i ) = ρ(t)
a−→

∑
i∈I pi(

∏
ni∈Ni

ρ(νni ))◦g−1
i . Then, the notion of substitution extends to rules as expected.

We say that r′ is a (closed) instance of a rule r if there is a (closed) substitution ρ so
that r′ = ρ(r). We say that ρ is a proper substitution of r if for all quantitative premise
ρ(μ(W)) ≷ p of r it holds that ρ(μ(w)) > 0 for all w ∈ W. Thus, if ρ is proper, all terms
in ρ(W) are in the support set of ρ(μ). Proper substitutions avoid the introduction of
spurious terms. This is of particular importance for the conservative extension theorem
(Theorem 14).

Example 3. The rules for the process algebra of Example 1 are defined in Table 1.
We consider the set of actions A = L ∪ {√} where

√
� L. In the table we use the

following shorthand notations for the target of the conclusion which we also adopt
along the paper. We omit the summation if I is a singleton and, if g(()) = t, we write
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Table 1. Rules for our probabilistic process algebra (Y ⊆ V is a countably infinite set)

ε
√
−→ δ0 a.

∑n
i=1[pi]xi

a−→ ∑n
i=1 piδxi

x
a−→ μ

x + y
a−→ μ

y
a−→ μ

x + y
a−→ μ

x
a−→ μ

x; y
a−→ μ; δy

a �
√ x

√
−→ μ y

a−→ μ′

x; y
a−→ μ′

x
a−→ μ y

a−→ μ′

x ||B y
a−→ μ ||B μ′

a ∈ B\{√}

x
a−→ μ

x ||B y
a−→ μ ||B δy

a � B ∪ {√} y
a−→ μ

x ||B y
a−→ δx ||B μ

a � B ∪ {√} x
√
−→ μ y

√
−→ μ′

x ||B y
√
−→ δ0

x
a−→


U(x)
a−→ δ0

x
b−→ μ μ(Y) ≥ 1 {U(y)

a−→ μ′y | y ∈ Y}
U(x)

a−→ δ0

b � a, x � Y

δt instead of (
∏

ni∈∅ νni ) ◦ g−1. Thus, in the rules of ε and U(x), we write δ0 instead of
∑

i∈{1} 1(
∏

ni∈∅ νni ) ◦ g−1
0 with g0(()) = 0. If g = id is the identity function, we only write

μ instead of μ◦ id−1 as it is the case in the conclusion of rules for +. Finally, for an n-ary
operator f , we write f (ν1, . . . , νn) instead of (ν1 × · · · × νn) ◦ f −1. For instance, in the
first rule of the sequential composition, we write μ; δy instead of (μ × δy) ◦ (;)−1.

We give some examples of closed instances of rules to understand the notation in the

target of the conclusion. Take the closed instance a.
∑3

i=1[pi]ti
a−→ ∑3

i=1 piδti of the rule
of the probabilistic prefix operator and assume that t1 � t2 = t3. Then, (

∑3
i=1 piδti )(t1) =

p1 which is what we expect. Moreover (
∑3

i=1 piδti )(t2) = (p2 + p3) which is also what
we expect, since we need (

∑3
i=1 piδti)({t1, t2, t3}) = 1 (and {t1, t2, t3} = {t1, t2}!).

Now, take the same term a.
∑3

i=1[pi]ti and the closed instance of the first rule of

sequential composition a.
∑3

i=1[pi]ti
a−→π

(a.
∑3

i=1[pi]ti);ε
a−→π;δε

with π =
∑3

i=1 piδti . Notice that (π; δε)(t2; ε) =

(π × δε)({(t2, ε)}) = (p2 + p3). Instead, for example, (π; δε)(t2; 0) = (π × δε)({(t2, 0)}) =
π(t2)δε(0) = 0, and (π; δε)(t2 + ε) = (π × δε)((;)−1({t2 + ε})) = (π × δε)(∅) = 0. ��
As has already been argued many times (see, e.g., [9, 12, 24]), transition system specifi-
cations with negative premises do not uniquely define a transition relation and different
reasonable techniques may lead to incomparable choices. In any case, we expect that a
transition relation associated to a PTSS P (i) respects the rules of P, that is, whenever
the premises of a closed instance of a rule of P belong to the transition relation, so does
its conclusion; and (ii) it does not include more transitions than those explicitly justi-
fied, i.e., a transition is defined only whenever there is a closed rule whose premises are
in the transition relation. The first notion corresponds to that of model, and the second
one to that of supported transition.

Before formally defining these notions we introduce some notation. Given a transi-

tion relation −→ ⊆ PTr(Σ, A), a positive literal t
a−→ π holds in −→, notation −→ |= t

a−→ π,

if (t, a, π) ∈ −→. A negative literal t
a−→
 holds in −→, notation −→ |= t

a−→
 , if there is
no π ∈ Δ(T (Σ)) s.t. (t, a, π) ∈ −→. A quantitative literal π(T ) ≷ p holds in −→, notation
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−→ |= π(T ) ≷ p precisely when π(T ) ≷ p. Notice that the satisfaction of a quantitative
literal does not depend on the transition relation. We nonetheless use this last notation
as it turns out to be convenient. Given a set of literals H, we write −→ |= H if ∀φ ∈ H :
−→ |= φ.

Definition 4. Let P = (Σ, A,R) be a PTSS. Let −→ ⊆ PTr(Σ, A) be a probabilistic tran-
sition system. Then −→ is a supported model of P if it satisfies that: ψ ∈ −→ iff there is a
rule H

χ
∈ R and a proper substitution ρ s.t. ρ(χ) = ψ and −→ |= ρ(H).

Notice that the form of the target of the conclusion of a rule guarantees that if ψ = t
a−→ π

then π is indeed a probability distribution (and hence, π(T (Σ)) = 1).
We have already pointed out that PTSSs with negative premises do not uniquely

define a transition relation. In fact, a PTSS may have more than one supported model.
For instance, the PTSS with the single constant f , set of labels {a, b} and the two rules

f
a−→μ

f
a−→δ f

and f
a−→


f
b−→δ f

, has two supported models: { f a−→ δ f } and { f b−→ δ f }. We will not dwell

on this problem which has been studied at length in [9] and [24] in a non-probabilistic
setting. We will only focus on the stratification method [12] which has been widely
used to give meaning to TSS with negative premises. A stratification defines an order
on closed positive literals that ensures that, in the stratified PTSS, the validity of a
transition does not depend on the negation of the same transition.

Definition 5. Let P = (Σ, A,R) be a PTSS. A function S : PTr(Σ, A) → α, where α is
an ordinal, is called stratification of P (and P is said to be stratified) if for every rule

r =
{tk ak−−→ μk : k ∈ K} ∪ {tl bl−−→
 : l ∈ L} ∪ {μ j(W j) ≷ q j : j ∈ J}

t
a−→ ∑i pi(

∏
ni∈Ni

νni ) ◦ g−1
i

and substitution ρ : (V ∪ M) → (T (Σ) ∪ Δ(T (Σ))) it holds that: (i) for all k ∈ K,

S (ρ(tk
ak−−→ μk)) ≤ S (conc(r)), and (ii) for all l ∈ L and μ ∈ M, S (ρ(tl

bl−−→ μ)) <
S (conc(r)). Each set S β = {φ | S (φ) = β}, with β < α, is called stratum. If for all k ∈ K,

S (ρ(tk
ak−−→ μk)) < S (conc(r)), then the stratification is said to be strict.

A transition relation is constructed stratum by stratum in an increasing manner by trans-
finite recursion. If it has been decided whether a transition in a stratum S β′ , with β′ < β,
is valid or not, we already know the validity of the negative premise occurring in the
premises of a transition ϕ in stratum S β (since all positive instances of the negative
premises are in strictly lesser stratums) and hence we can determine the validity of ϕ.

Definition 6. Let P = (Σ, A,R) be a PTSS with stratification S : PTr(Σ, A) → α for
some ordinal α. For all rule r, let D(r) be the smallest regular cardinal greater than
|pprem(r)|, and let D(P) be the smallest regular cardinal such that D(P) ≥ D(r) for all
r ∈ R. The transition relation −→P,S associated with P (and based on S ) is defined by
−→P,S =

⋃
β<α −→Pβ

, where each −→Pβ
=
⋃

j≤D(P) −→Pβ, j and each −→Pβ, j is defined by

−→Pβ, j =
{
ψ
∣∣∣ S (ψ) = β and ∃r ∈ R and proper substitution ρ s.t. ψ = conc(ρ(r)),

(
⋃
γ<β −→Pγ

) ∪ (
⋃

j′< j −→Pβ, j′ ) |= qprem(ρ(r)) ∪ pprem(ρ(r)) and

(
⋃
γ<β −→Pγ

) |= nprem(ρ(r))
}
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The PTSS with the only two rules f
a−→μ

f
a−→δ f

and f
a−→


f
b−→δ f

(given before) can be stratified by

a function S such that S ( f
a−→ δ f ) = 0 and S ( f

b−→ δ f ) = 1. Using S , the model

associated with the PTSS is { f b−→ δ f }. More interestingly, a stratification for our run-

ning example is given by S (t
a−→ μ) = ζ(t) where ζ(0) = ζ(ε) = ζ(a.

∑n
i=1[pi]ti) = 0,

ζ(t1 + t2) = ζ(t1; t2) = ζ(t1 ||B t2) = max{ζ(t1), ζ(t2)}, and ζ(U(t)) = ζ(t) + 1. Notice that
this stratification is not strict.

The existence of a stratification guarantees the existence of a supported model. In
fact, such model is the one in Def. 6 (Theorem 7) and it is the only possible one defined
via stratification (Theorem 8). Moreover, if it is defined using a strict stratification, the
supported model is unique (Theorem 9).

The proofs of the following theorems follow closely the proofs of their non-probabi-
listic counterparts in [12] (Theorem 2.15, Lemma 2.16 and Theorem 2.18, respectively).
The only actual difference lies on the quantitative premises, which do not pose any
particular problem since their validity only depends on the substitution. For the next
theorems, let P = (Σ, A,R) be a PTSS with stratification S .

Theorem 7. The transition relation −→P,S is a supported model of P.

Theorem 8. If S ′ is another stratification for P, −→P,S = −→P,S ′ .

Theorem 9. If S is strict, then, −→P,S is the only supported model of P.

4 The ntμfν/ntμxν Format and the Congruence Theorem

In this section we present one of the main results of our paper: we introduce a general
format that ensures that bisimulation equivalence is a congruence for any operator de-
fined in this format. The importance of the theorem is that congruence of bisimilarity is
guaranteed by mere inspection of the rules. We first define the notion of bisimulation on
probabilistic transition system [18]. We use a more modern (but equivalent) definition.

Given a relation R ⊆ T (Σ) × T (Σ), a set Q ⊆ T (Σ) is R-closed if for all t ∈ Q
and t′ ∈ T (Σ), t R t′ implies t′ ∈ Q (i.e. R(Q) ⊆ Q). If a set Q is R-closed we write
R-closed(Q). It is easy to verify that if two relation R,R′ ⊆ T (Σ) × T (Σ) are such that
R′ ⊆ R, then for all set Q ⊆ T (Σ), R-closed(Q) implies R′-closed(Q).

Definition 10. A relation R ⊆ T (Σ) × T (Σ) is a bisimulation if R is symmetric and for
all t, t′ ∈ T (Σ), π ∈ Δ(T (Σ)), a ∈ A,

t R t′ and t
a−→ π imply that there exists π′ ∈ Δ(T (Σ)) s.t. t′

a−→ π′ and π R π′,

where π R π′ if and only if ∀Q ⊆ T (Σ) : R-closed(Q) ⇒ π(Q) = π′(Q). We define the
relation ∼ as the smallest relation that includes all other bisimulation. It is known that
∼ is itself a bisimulation relation and an equivalence relation.

Before introducing the ntμfν/ntμxν format, we give a first approach to extend the
ntyft/ntyxt format with probabilities that considers a very restrictive form of quantita-
tive premise. It can also be seen as a generalization of Segala-GSOS format [7] with
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terms in the premises as well as lookahead. This first approach considers rules of the
form

{tm am−−→ μm : m ∈ M} ∪ {tn bn−−→
 : n ∈ N} ∪ {μl(zl) > 0 : l ∈ L}
f (x1, . . . , xr( f ))

a−→ ∑i∈I pi(
∏

ni∈Ni
νni ) ◦ g−1

i

(F)

where M, N, and L are index sets, μm, zl, xk (1 ≤ k ≤ r( f )) are all different variables, f ∈
F, tm, tn ∈ T(Σ), and pi and gi are like in Def. 2. Notice that all rules in Table 1 respond
to this format except for the last one which has a quantitative premise comparing to
a number different from 0. (It can be proved that bisimilarity is a congruence for any
operator defined in format (F).)

In the following we present several counterexamples justifying the restrictions im-
posed by format in eq. (F). We consider a signature with a unary operator f and three

constants b, c and d, together with a label a. We will also consider axioms c
a−→ δc

and d
a−→ (0.5 · δc + 0.5 · δd), and no rule associated to constant b. (We write πd for

(0.5 · δc + 0.5 · δd)). Notice that c ∼ d. In the following we concentrate in rules for f .
The need that the source of the conclusion of a rule has a particular format has

already been shown by several counterexamples in [12, 13] for the tyft/tyxt format. We

adapt an example form [12] to motivate the need. Consider the axiom f (b)
a−→ δ f (b).

Then f ( f (b)) ∼ b since none of them perform any action. But f ( f ( f (b))) and f (b)
are not bisimilar since f (b) can perform an action but f ( f ( f (b))) cannot. Similarly, the
requirement that all variables μm, zl, xk are different is inherited from the tyft/tyxt format.
Examples from [13] should be easily adaptable to our setting.

The next example shows that the target of a positive premise cannot be a distribution

on a particular (shape of) term. Consider rule x
a−→δc

f (x)
a−→δc

. Then, despite that c ∼ d, f (c) and

f (d) are not bisimilar since d
a−→ δc is not a valid transition in the (unique) supported

model. A similar effect has rule x
a−→μ μ(d)>0

f (x)
a−→δc

, which shows that quantitative literals can-

not enquire over arbitrary terms: note that f (c) and f (d) are not bisimilar since c
a−→ δc

and δc(d) = 0.
Allowing for a quantitative literal that compares with a value different from 0 is

also problematic. Consider rule x
a−→μ y

a−→μ′ μ(y)≥1

f (x)
a−→δc

. Again f (c) and f (d) are not bisimilar

since d
a−→ πd, and there is no single term t in which πd(t) ≥ 1.

This example suggest that quantitative premises should have the form μ(Y) > p
or μ(Y) ≥ p where Y is a set of variables. So the previous rule could be recast as
x

a−→μ y
a−→μ′ μ({y,z})≥1

f (x)
a−→δc

. However, the same problem repeats if we introduce a new constant

e with e
a−→ (0.4 · δc + 0.3 · δd + 0.3 · δe). In fact, it turns out that Y needs to be

infinite (consider the case in which a new infinite set of constants {en}n∈N0 is defined

with en
a−→ (
∑

i∈N0

1
2i+1 · δei )). Moreover, it is necessary that all terms that substitutes

some variable in Y have symmetric behavior. Notice that the term substituting z is not
required to perform action a, which was not the originally intended behavior. Moreover,
symmetry is also necessary for the congruence result as we will see later.
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After the previous considerations, we extend format (F) with quantitative premises
of the form μ(Y) > p or μ(Y) ≥ p. We call this format ntμfν/ntμxν following the nomen-
clature of [12, 13]. Later we give more examples justifying our restrictions.

Let {Yl}L be a family of sets of variables with the same cardinality. Given a tuple �y,
the l-th element of �y is denoted by �y(l). Fix a set Diag{Yl}L ⊆∏l∈L Yl so that:

(i) for all l ∈ L, πl(Diag{Yl}L) = Yl (here, πl indicates the l-th projection); and
(ii) for all �y, �y′ ∈ Diag{Yl}L, (∃l ∈ L : �y(l) = �y′(l))⇒ �y = �y′.

Notice that if each set Yl = {y0
l , y

1
l , y

2
l , . . .}, a possible definition for Diag{Yl}L may be

Diag{Yl}L = {(y0
0, y

0
1, . . . , y

0
L), (y1

0, y
1
1, . . . , y

1
L), (y2

0, y
2
1, . . . , y

2
L), . . .}.

Definition 11 (ntμfν/ntμxν). Let P = (Σ, A,R) be a stratifiable PTSS. A rule r ∈ R is
in ntμfν format if it has the form

⋃
m∈M{tm(�z)

am−−→ μ�zm : �z ∈ Z} ∪⋃n∈N {tn(�z)
bn−−→
 : �z ∈ Z} ∪ {μ�zl (Yl) �l ql : l ∈ L,�z ∈ Z}

f (x1, . . . , xr( f ))
a−→ ∑i∈I pi(

∏
ni∈Ni

νni ) ◦ g−1
i

with �l ∈ {>,≥}, for all l ∈ L, satisfying the following conditions:

1. Each set Yl should be at least countably infinite, for all l ∈ L, and the cardinality of
L should be strictly smaller than that of the Yl’s.

2. Z = Diag{Yl}L ×∏w∈W {w}, with W ⊆ V\⋃l∈L Yl.
3. All variables μ�zm, with m ∈ M and �z ∈ Z, are different.
4. For all �z, �z′ ∈ Z, m ∈ M, if μ�zm = νni and μ�z

′
m = νnh for some ni ∈ Ni, nh ∈ Nh,

i, h ∈ I, then �z = �z′.
5. For all l ∈ L, Yl ∩ {x1, . . . , xr( f )} = ∅, and Yl ∩ Yl′ = ∅ for all l′ ∈ L, l � l′.
6. All variables x1, . . . , xr( f ) are different.
7. f ∈ F and for all m ∈ M and n ∈ N, tm, tn ∈ T(Σ). In all cases, if t ∈ T(Σ) and

Var(t) ⊆ {w1, . . . ,wH}, t(w′1, . . . ,w
′
H) is the same term as t where each occurrence

of variable wh (if it appears in t) has been replaced by variable w′h, for 1 ≤ h ≤ H.

A rule r ∈ R is in ntμxν format if its form is like before but with the conclusion having

instead the form x
a−→ ∑i∈I pi(

∏
ni∈Ni

νni ) ◦ g−1
i . It satisfies the same conditions as above

only that x � Yl for all l ∈ L instead of Yl ∩ {x1, . . . , xr( f )} = ∅ in item 5.
P is in ntμfν (resp. ntμxν) format if all its rules are in ntμfν (resp. ntμxν) format. P is

in ntμfν/ntμxν format if all its rules are either in ntμfν format or ntμxν format.

We define notation tm(�Zm)
am−−→ μm as an abbreviation for {tm(�z)

am−−→ μ�zm : �z ∈ Z} where
�Zm = Diag{Yl}L′ ×∏w∈W′ {w} with L′ ⊆ L and W′ ⊆ W, where the number of variables
of tm is exactly the dimension of �Zm (i.e. |Var(tm)| = |L′| + |W′|). Similarly, we define

tn(�Zn)
bn−−→
 as an abbreviation for {tn(�z)

bn−−→
 : �z ∈ Z}, and μl(Yl) �l ql for the set

{μ�zl (Yl) �l ql : �z ∈ Z}. Thus, rule y
a−→μ

x+y
a−→μ is the notational rewriting of rule {y

a−→μi |i≥0}
x+y

a−→μ0

and rule
x

b−→μ μ(Y)≥1 {U(y)
a−→μ′y |y∈Y}

U(x)
a−→δ0

b�a can be rewritten to x
b−→μ μ(Y)≥1 U(Y)

a−→μ′
U(x)

a−→δ0
b�a. In fact,

notice that all rules of our running example (see Table 1) are in ntμfν format.
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Restrictions 3, 5, 6 and 7 are basically the same requirements present in the format
of eq. (F). Hence, all examples given before also apply to the ntμfν/ntμxν format. Be-

sides, notice that rule x
a−→μ y

a−→μ′ μ(y)≥1

f (x)
a−→δc

given before is not in ntμfν/ntμxν format, but

the intended behavior can be encoded as the ntμfν rule x
a−→μ Y

a−→μ′ μ(Y)≥1

f (x)
a−→δc

.

The next example shows that quantitative literals cannot check for upper bounds (or

equality). Consider the rule x
a−→μ Y

a−→μ′ μ(Y)≤0.5

f (x)
a−→δc

with c and d defined as before. f (c) and

f (d) are not bisimilar because f (d)
a−→ δc by taking the substitution ρ such that ρ(y) = c

for all y ∈ Y, but f (c)
a−→
 since there is no set of terms T such that properly substituted

in Y (i.e., such that δc(t) > 0 for all t ∈ T ), δc(T ) ≤ 0.5.
Finally, if symmetry of behavior on variables in Yl were not enforced, it would also

be possible to distinguish distributions that are equivalent. Consider now a signature

with constants c, d, and {n, n′ | n ∈ N0}, unary operator f and rules n
n−→ δn, n′

n−→ δn,

c
a−→ π, and d

a−→ π′with π =
∑

i∈N0

1
2i+1 · δn and π′ =

∑
i∈N0

( 1
2i+2 · δn +

1
2i+2 · δn′ ), and

x
a−→μ {yk

k−→μk |k∈N0} μ({yk}k∈N0 )≥1

f (x)
b−→μ

. Notice that c ∼ d; nonetheless, f (c)
b−→ δc but f (d)

b−→

since d

a−→ π′ but there is no way to match both n and n′ to two different variables yk1

and yk2 (for all n ∈ N0), and hence π′(ρ({yk}k∈N0 )) = 0.5 for any substitution ρ satisfying
the positive premises. We finally mention that conditions 1 and 4 in Def. 11 are more
technical and their justification only becomes apparent in the proof of Theorem 12.

The strategy of proof for the congruence theorem follows the lines of the proof of
Theorem 4.14 in [12] though some considerable rework is needed to manipulate quan-
titative premises. Notice, however that we do not require well-foundedness.

Theorem 12. Let P be a stratifiable PTSS in ntμfν/ntμxν format. Then ∼ is a congru-
ence relation.

5 Modular Properties

Often, one wants to extend a language with new operations and behaviors. This is nat-
urally done by adding new functions and rules to the original PTSS. In other words,
given two PTSSs P0 and P1, one wants to combine them in a new PTSS P0 ⊕ P1, where
we generally assume that P0 is the original PTSS and P1 is the extension. A desired
property is that the extension does not alter the behavior of the terms in the original
language. That is, one expects that for every old term t ∈ T (Σ0), the set of outgoing
transitions defined by P0 is exactly the same that those defined by P0 ⊕ P1. In this case
we say that P0 ⊕ P1 is a conservative extension of P0.

Definition 13. Let Σ0 = (F0, r0) and Σ1 = (F1, r1) be two signatures s.t. f ∈ F0∩F1 ⇒
r0( f ) = r1( f ). The sum of Σ0 and Σ1, notation Σ0 ⊕Σ1, is the new signature (F0 ∪ F1, r)
where r( f ) = if f ∈ F0 then r0( f ) else r1( f ) for all f ∈ F0 ∪ F1.

Given two PTSS P0 = (Σ0, A0,R0) and P1 = (Σ1, A1,R1) s.t. Σ = Σ0 ⊕ Σ1 is defined,
the sum of P0 and P1, notation P0 ⊕ P1, is the PTSS P0 ⊕ P1 = (Σ0 ⊕ Σ1, A0 ∪ A1,R0 ∪
R1). We say that P0 ⊕ P1 is a conservative extension of P0 and that P1 can be added
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conservatively to P0 if P0 ⊕ P1 is stratifiable and for all t ∈ T (Σ0), a ∈ A0 ∪ A1 and

μ ∈ Δ(T (Σ0 ∪ Σ1)) it holds t
a−→ μ ∈ −→P0⊕P1 ⇔ t

a−→ μ ∈ −→P0

Basically, a rule is well-founded if there is no circular dependency of variables in its set
of premises. We adapt the definition of well-founded from [13] to our setting. Besides,
we also require that distribution variables in the premises appear always bound.

Let W be a set containing positive and quantitative literals. The variable dependency
graph of W is a directed graph with (i) set of nodes

⋃{Var(ψ) : ψ ∈ W}, and (ii) edges

{〈x, μ〉 : x ∈ Var(t), (t
a−→ μ) ∈ W} ∪ {〈μ, x〉 : x ∈ X, (μ(X) � p) ∈ W}. W is well-founded

if any backward chain of edges in the variable dependency graph is finite and every dis-
tribution variable has a predecessor. A rule is well-founded if the set of all its premises
is well-founded. A PTSS is well-founded if all its rules are well-founded. A rule r is
called pure if it is well-founded and does not contain free variables. A PTSS P is called
pure if all of its rules are pure.

Theorem 14 gives sufficient conditions to ensure that a PTSS can be extended conser-
vatively and its similar to Theorem 4.8 in [10]. Theorem 15 gives sufficient conditions
to ensure that the sum PTSS P0 ⊕ P1 is stratifiable, knowing that the original PTSSs P0

and P1 are also stratifiable. Its proof follows closely that of Theorem 5.8 in [12].

Theorem 14. Let P0 = (Σ0, A0,R0) be a PTSS in pure ntμfν/ntμxν format and let P1 =

(Σ1, A1,R1) be a PTSS such that for all rule r ∈ R1 with conc(r) = t
a−→ μ, t � T(Σ0).

Let P = P0 ⊕P1 be defined and stratifiable. Then P1 can be added conservatively to P0.

Theorem 15. Let Σ0 = (F0, r0) and Σ1 = (F0, r1) be two signatures with constants a0 ∈
F0 and a1 ∈ F1, such that Σ0⊕Σ1 is defined. Let P0 = (Σ0, A0,R0) and P1 = (Σ1, A1,R1)
be two stratifiable PTSS. If for all substitutions ρ0 and ρ1 and rules r0 ∈ R0 and r1 ∈ R1,

it holds that ρ0(ψ) � ρ1(φ) with φ = conc(r1) and ψ ∈ pprem(r0) or ψ = t
a−→ μ with

t
a−→
 ∈ nprem(r0), then P0 ⊕ P1 is also stratifiable.

6 Tracing Bisimulation

Two terms are (possibilistic) trace equivalent if they can perform the same sequences of
actions with some positive probability (but not necessarily the same). In this section we
show that the trace congruence induced by the ntμfν/ntμxν format is exactly a “finitary”
version of the bisimulation equivalence. This relation, which we called bounded bisimi-
larity, agrees with ∼ on image finite probabilistic transition systems. (−→P is image-finite

iff for all t ∈ T (Σ) and a ∈ A, the set {μ | t a−→P μ} is finite.)

Definition 16. Let P = (Σ, A,R) be a stratifiable PTSS with associated relation −→P.
Given t ∈ T (Σ), a sequence a1 . . . an ∈ A∗ is a trace from t iff there are terms t0, . . . , tn ∈
T (Σ) and distributions π1, . . . , πn s.t. t0 = t, ti

ai+1−−−→ πi+1 and πi+1(ti+1) > 0 for 0 ≤ i < n.
Let Tr(t) be the set of all traces from t. Two terms t, t′ ∈ T (Σ) are trace equivalent with
respect to P, notation t ≡T

P t′, iff Tr(t) = Tr(t′).

We say that C[x1, . . . , xn] is a context if C[x1, . . . , xn] is an open term in which at most
the distinct variables x1, . . . , xn appear. As usual, C[t1, . . . , tn] denotes the term obtained
by replacing all occurrences of variables xi by ti.



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 463

Definition 17. Let P = (Σ, A,R) be a stratifiable PTSS in ntμfν/ntμxν format. Two terms
t, t′ ∈ T (Σ) are trace congruent with respect to ntμfν/ntμxν, notation t ≡T

ntμfν/ntμxν t′, iff
for all PTSS P′ = (Σ′, A′,R′) in ntμfν/ntμxν format which can be added conservatively
to P and for every context C[x] it holds that C[t] ≡T

P⊕P′ C[t′].

Let P = (Σ, A,R) be a stratifiable PTSS with associated relation −→P. The relations
�n

P ⊆ T (Σ) × T (Σ) for n ∈ N are inductively defined by:

�0
P = T (Σ) × T (Σ)

�n+1
P = {(t, t′) | (t a−→π⇒ ∃π′ : t′

a−→π′ ∧ π �n
P π
′) ∧ (t′

a−→π′ ⇒ ∃π : t
a−→π ∧ π �n

P π
′)}

Given t, t′ ∈ T (Σ), t and t′ are n-bounded bisimilar iff t �n
P t′. We say that t and t′ are

bounded bisimilar, notation t �P t′, if t �n
P t′ for all n ∈ N.

Bounded bisimilarity and bisimulation equivalence agree on image-finite probabilis-
tic transition systems [5, Lemma 3.5.8]. That is, if −→P is image-finite, then ∼ = �P.

We now define the bisimulation tester, that is, a PTSS PT that can be added con-
servatively to another PTSS and introduce contexts that are able to distinguish non-
bisimilar terms. More precisely, PT introduces two family of functions, binary functions
Bn, (k+1)-ary functions Prk

n (n, k ∈ N), and a trivial constant⊥. Their intended meaning
is as follows. Bn(t, u) can detect whether t and u are n-bounded bisimilar by showing

transition Bn(t, u)
yes−−−→ δ⊥. Otherwise, Bn(t, u)

no−−→ δ⊥. In this way, two non-bisimilar
terms t and u can be distinguished by the context Bn(t, ) for some appropriate n. Prk

n is
used as an auxiliary operator to test the measures of k (not necessarily different) (n−1)-

bounded bisimulation equivalence classes. More precisely, Prk
n(t, u1, · · · , uk)

(a,q1,...,qk)−−−−−−−−→
δ⊥ if there is a transition t

a−→ π such that π([u1]�n−1 ) ≥ q1, . . . , π([uk]�n−1 ) ≥ qk, where
q1, . . . , qk are some rational numbers.

Definition 18. Let P = (Σ, A,R) be a PTSS. The bisimulation tester of P is a PTSS
PT = (ΣT, AT,RT) where Σ ⊆ ΣT and ΣT contains binary functions Bn and functions Prk

n
with arity k + 1, n ∈ N and a constant ⊥, AT = A ∪ (

⋃
i>0(A × Qi)) ∪ {yes, no}, and R

contains the following rules (for all n, k > 0, a ∈ A and q ∈ Q):

(1) B0(x, y)
yes−−−→ δ⊥

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→ μ Prk
n(y, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→

Bn(x, y)

no−−→ δ⊥
(3)

(2)
x

a−→ μ {Bn−1(zi, Zi)
yes−−−→ μi, μ(Zi) ≥ qi}ki=1

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→ δ⊥

Bn(x, y)
no−−→
 Bn(y, x)

no−−→

Bn(x, y)

yes−−−→ δ⊥
(4)

The idea behind functions Prk
n explained above becomes apparent in rule (2). Besides,

notice that distinction between two non n-bounded bisimilar terms is revealed by rule
(3) where the negative premise indicates that it is is not able to find an a-transition for y
that measures more than qi in each equivalence class [zi]�n−1 (in the appropriate instance
of zi) while the positive premise is able to do it for x.

Observe that PT is in ntμfν format but is not pure. Though this is not necessary, it
is quite convenient in our case: the non-pure rule (3) allows for instances of arbitrary
terms (and hence arbitrary (n − 1)-bounded bisimulation equivalence classes) which is
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in the core of the definition of the n-bisimulations. Nevertheless, the fact that PT is not
pure is not a problem to ensure that it extends conservatively a given PTSS in a well
behaved manner using Theorems 14 and 15.

It is not too difficult to find a stratification for PT (it can be obtained in a similar
manner to [12, Lemma 6.8]). The following lemma is the core of Theorem 20 below.

Lemma 19. Let P = (Σ, A,R) be a stratifiable PTSS in pure ntμfν/ntμxν format contain-
ing at least one constant in its signature. Moreover, yes, no � A and Σ does not contain

function names Bn and Prk
n for all n, k ∈ N. Then, Bn(t, t′)

yes−−−→ δ⊥ ∈ −→P⊕PT ⇔ t �n
P t′,

for all t, t′ ∈ T (Σ).

Theorem 20 states that bisimulation equivalence is fully abstract with respect to the
ntμfν/ntμxν format and trace equivalence. That is, it states that bisimulation equivalence
is the coarsest congruence with respect to any operator whose semantics is defined
through ntμfν/ntμxν rules and that is included in trace equivalence. Its proof is a direct
consequence of Theorem 12, Lemma 19 and [5, Lemma 3.5.8].

Theorem 20. Let P = (Σ, A,R) be a stratifiable PTSS in pure ntμfν/ntμxν format con-
taining at least one constant in Σ. Moreover, −→P is image-finite, yes, no � A and Σ
does not contain function names Bn and Prk

n for all n, k ∈ N. Then, for all t, t′ ∈ T (Σ),
t ≡T

ntμfν/ntμxν t′ ⇔ t �P t′ ⇔ t ∼ t′

7 Concluding Remarks

Related Work. SOS for probabilistic systems have received relatively little attention. To
our knowledge, only [6, 7, 16, 17] study rule formats to specify probabilistic transition
systems, and in [7, 15] they are embedded in general bialgebraic frameworks.

Both RTSS format [17] and PGSOS format [6, 7] consider transitions with the form

t
a,q−−−→ t′ as already explained in the introduction. They allow for the specification of

only reactive probabilistic systems (i.e. they should satisfy that if t
a−→ π and t

a−→ π′,
then π = π′). Moreover, these formats are very much like GSOS [8] in the sense that

premises are of the form xi
ai ,qi−−−→ yi or xi

bi−−→
 where each xi is a variable appearing
on the term f (�x) at the source of the conclusion. Moreover, qi needs to be a variable,
so there is no possibility of testing for a particular probability value. In addition, RTSS
allows for a restricted form of lookahead: only one step ahead from variable yi can be
tested and moreover probabilities should be appropriately combined in the conclusion
of the rule. We remark that both RTSS and PGSOS formats can be encoded in the
ntμfν/ntμxν format. Segala-GSOS format [7] allows for rules like in eq. (F), with the
restriction that terms tm and tn can only be any of the variables xk. Therefore, lookahead
is not permitted. Clearly this format can also be encoded in the ntμfν/ntμxν format.

Bialgebras present an abstract categorical framework to study structured operational
semantics and, in this setting, general congruence theorems have been presented [15, 23].
They introduce the so called abstract GSOS and abstract safe ntree [15, 23]. In fact,
Segala-GSOS is derived as an instance of abstract GSOS [7]. In a recent and yet unpub-
lished work, we showed that the ntμfν/ntμxν format reduces to a form of probabilistic
ntree format, just like the ntyft/ntyxt format reduces to ntree format [11]. As in the
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non-probabilistic case, negative premises are not reducible to the form x
a−→
 and retain

the form t
a−→
 with t being an arbitrary term. Precisely because of this, our format (like

the ntyft/ntyxt format) cannot be instanced as an abstract safe ntree. Moreover, it is also
not fully clear to us how to encode quantitative premises in the bialgebraic framework.

Notice that none of the previously mentioned formats can encode the bisimulation

tester of Def. 18 since it needs lookahead, negative premises of the form f (�x)
a−→
 ,

and quantitative premises testing against any possible probability value and none of the
previous formats allow for all these simultaneously. In fact, to the authors knowledge no
full abstraction result for rule formats has been presented before for PTSS. However,
related to this result, we should remark that testers for bisimulation of deterministic
probabilistic transition systems were already introduced in [18].

We also remark that the ntμfν/ntμxν format should be considered as a probabilistic
extension of the tyft/tyxt and ntyft/ntyxt formats [12, 13]. These formats can be encoded
in ntμfν/ntμxν format if non-probabilistic transitions t

a−→ t′ are considered as a prob-

abilistic transition in the usual way, i.e., as t
a−→ δt′ . Finally, we observe that there is

a rule format for generative probabilistic systems [16, 17] which is not covered by our
format since it is very different in nature to the model we use.

Conclusion. In this article we have introduced PTSSs and the ntμfν/ntμxν format for
rules that specify probabilistic transition systems. We proved that bisimilarity is a con-
gruence for all operators definable in this format and that it is also the least congruence
relation preserved by all such operators included in possibilistic trace equivalence. We
have also presented several standard theorems that ensure definability and uniqueness
of models and conservative extensions, among others.

We highlight the introduction of our quantitative premises which, in combination
with lookahead, permits the constructions of powerful operators. An example is the
tester of Def. 18. Another one, more interesting, is a deadlock measuring operator dk

where dk(t)
q−→ ν iff t reaches a deadlock state with probability larger or equal to q in

any possible resolution of nondeterminism. The rules are as follows
{
x

a−→
 | a ∈ A
}

dk(x)
1−→ δ⊥

{
Bn(x, y)

yes−−→ μn | n ∈ N0

}

B(x, y)
yes−−→ δ⊥

x
a−→ μ

{
dk(zi)

pi−−→ μi, μ(Zi) ≥ qi, B(zi,Zi)
yes−−→ μ′i , B(zi, z j)

yes−−→

}

i, j∈I
i� j

dk(x)
∑

i∈I qi pi−−−−−−→ δ⊥

I is a countable
index set and
∑

i∈I qi ≤ 1

The last rule appropriately collect the probabilities by looking ahead on disjoint (non-
bisimilar) terms (notice the use of the bisimulation tester). Operation dk is somehow
related to the zero process of [3] that allows for detection of inevitable deadlock.

We remark that the congruence theorem also holds for PTSs with subprobability dis-
tributions (i.e. distributions such that π(T (Σ)) < 1). However, we do not know whether
the full abstraction result remains valid in this setting: our tester would fail to distinguish

c from d where c
a−→ (0.5 · δc + 0.5 · δ⊥), c

a−→ (0.5 · δc), and d
a−→ (0.5 · δc + 0.5 · δ⊥).
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Abstract. Deciding equivalence of probabilistic automata is a key prob-
lem for establishing various behavioural and anonymity properties of
probabilistic systems. In recent experiments a randomised equivalence
test based on polynomial identity testing outperformed deterministic al-
gorithms. In this paper we show that polynomial identity testing yields
efficient algorithms for various generalisations of the equivalence prob-
lem. First, we provide a randomized NC procedure that also outputs a
counterexample trace in case of inequivalence. Second, we consider equiv-
alence of probabilistic cost automata. In these automata transitions are
labelled with integer costs and each word is associated with a distribu-
tion on costs, corresponding to the cumulative costs of the accepting
runs on that word. Two automata are equivalent if they induce the same
cost distributions on each input word. We show that equivalence can be
checked in randomised polynomial time. Finally we show that the equiv-
alence problem for probabilistic visibly pushdown automata is logspace
equivalent to the problem of whether a polynomial represented by an
arithmetic circuit is identically zero.

1 Introduction

Probabilistic automata were introduced by Michael Rabin [21] as an extension of
deterministic finite automata. Nowadays probabilistic automata, together with
associated notions of refinement and equivalence, are widely used in automated
verification and learning. Two probabilistic automata are said to be equivalent
if each word is accepted with the same probability by both automata. Checking
two probabilistic automata for equivalence has been shown crucial for efficiently
establishing various behavioural and anonymity properties of probabilistic sys-
tems, and is the key algorithmic problem underlying the apex tool [19,17,13].

It was shown by Tzeng [28] that equivalence for probabilistic automata is
decidable in polynomial time. By contrast, the natural analog of language inclu-
sion, that one automaton accepts each word with probability at least as great as
another automaton, is undecidable [6] even for automata of fixed dimension [4].
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It has been pointed out in [8] that the equivalence problem for probabilistic
automata can also be solved by reducing it to the minimisation problem for
weighted automata and applying an algorithm of Schützenberger [24].

In [13] we suggested a new randomised algorithm which is based on polynomial
identity testing. In our experiments [13] the randomised algorithm compared
well with the Schützenberger-Tzeng procedure on a collection of benchmarks.
In this paper we further explore the connection between polynomial identity
testing and the equivalence problem of probabilistic automata. We show that
polynomial identity testing yields efficient algorithms for various generalisations
of the equivalence problem.

In Section 3 we give a new randomised NC algorithm for deciding equivalence
of probabilistic automata. Recall that NC is the subclass of P containing those
problems that can be solved in polylogarithmic parallel time [11] (see also Sec-
tion 2). Tzeng [29] considers the path equivalence problem for nondeterministic
automata which asks, given nondeterministic automata A and B, whether each
word has the same number of accepting paths in A as in B. He gives a determin-
istic NC algorithm for deciding path equivalence which can be straightforwardly
adapted to yield anNC algorithm for equivalence of probabilistic automata. Our
new randomised algorithm has the same parallel time complexity as Tzeng’s al-
gorithm, but it also outputs a word on which the automata differ in case of
inequivalence, which Tzeng’s algorithm cannot. Our algorithm is based on the
Isolating Lemma, which was used in [18] to compute perfect matchings in ran-
domised NC. The randomised algorithm in [13], which relies on the Schwartz-
Zippel lemma, can also output a counterexample, exploiting the self-reducibility
of the equivalence problem—however it does not seem possible to use this algo-
rithm to compute counterexamples in NC. Whether there is a deterministic NC
algorithm that outputs counterexamples in case of inequivalence remains open.

In Section 4 we consider equivalence of probabilistic automata with one or
more cost structures. Costs (or rewards, which can be considered as negative
costs) are omnipresent in probabilistic modelling for capturing quantitative ef-
fects of probabilistic computations, such as consumption of time, (de-)allocation
of memory, energy usage, financial gains, etc. We model each cost structure as
an integer-valued counter, and annotate the transitions with counter changes.

In nondeterministic cost automata [2,15] the cost of a word is the minimum
of the costs of all accepting runs on that word. In probabilistic cost automata
we instead associate a probability distribution over costs with each input word,
representing the probability that a run over that word has a given cost. Whereas
equivalence for nondeterministic cost automata is undecidable [2,15], we show
that equivalence of probabilistic cost automata is decidable in randomised poly-
nomial time (and in deterministic polynomial time if the number of counters is
fixed). Our proof of decidability, and the complexity bounds we obtain, involves
a combination of classical techniques of [24,28] with basic ideas from polynomial
identity testing.
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We present a case study in which costs are used to model the computation time
required by an RSA encryption algorithm, and show that the vulnerability of the
algorithm to timing attacks depends on the (in-)equivalence of probabilistic cost
automata. In [14] two possible defenses against such timing leaks were suggested.
We also analyse their effectiveness.

In Section 5 we consider pushdown automata. Probabilistic pushdown au-
tomata are a natural model of recursive probabilistic procedures, stochastic
grammars and branching processes [10,16]. The equivalence problem of deter-
ministic pushdown automata has been extensively studied [26,27]. We study the
equivalence problem for probabilistic visibly pushdown automata (VPA) [3]. In a
visibly pushdown automaton, whether the stack is popped or pushed is deter-
mined by the input symbol being read.

We show that the equivalence problem for probabilistic VPA is logspace equiv-
alent to Arithmetic Circuit Identity Testing (ACIT), which is the problem of de-
termining equivalence of polynomials presented via arithmetic circuits [1]. Several
polynomial-time randomized algorithms are known for ACIT, but it is a major
open problem whether it can be solved in polynomial time by a deterministic algo-
rithm. The inter-reducibility of probabilistic VPA equivalence and ACIT is rem-
iniscent of the reduction of the positivity problem for arithmetic circuits to the
reachability problem for recursive Markov chains [10]. However in this case the
reduction is only in one direction—from circuits to recursive Markov chains.

In the technical development below it is convenient to consider Q-weighted
automata, which generalise probabilistic automata. All our results and examples
are stated in terms of Q-weighted automata. Missing proofs can be found in a
technical report [12].

2 Preliminaries

2.1 Complexity Classes

Recall that NC is the subclass of P comprising those problems considered ef-
ficiently parallelisable. NC can be defined via parallel random-access machines
(PRAMs), which consist of a set of processors communicating through a shared
memory. A problem is in NC if it can be solved in time (logn)O(1) (polyloga-
rithmic time) on a PRAM with nO(1) (polynomially many) processors. A more
abstract definition of NC is as the class of languages which have L-uniform
Boolean circuits of polylogarithmic depth and polynomial size. More specifically,
denote by NCk the class of languages which have circuits of depth O(logk n).
The complexity class RNC consists of those languages with randomized NC al-
gorithms. We have the following inclusions none of which is known to be strict:

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ RNC ⊆ P .

Problems in NC include directed reachability, computing the rank and de-
terminant of an integer matrix, solving linear systems of equations and the
tree-isomorphism problem. Problems that are P-hard under logspace reductions
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include circuit value and max-flow. Such problems are not in NC unless P =
NC. Problems in RNC include matching in graphs and max flow in 0/1-valued
networks. In both cases these problems have resisted classification as either in
NC or P-hard. See [11] for more details about NC and RNC.

2.2 Sequence Spaces

In this section we recall some results about spaces of sequences [23].
Given s > 0, define the following space of formal power series :

(1(Z
s) := {f : Zs → R :

∑
v∈Zs |f(v)| <∞} .

Then (1(Zs) is a complete vector space under the norm ||f || = ∑
v∈Zs |f(v)|. We

can moreover endow (1(Zs) with a Banach algebra structure with multiplication

(f ∗ g)(v) :=
∑

u,w∈Z
s

u+w=v

f(u)g(w) .

Given n > 0 we also consider the space (1(Zs)n×n of n × n matrices with co-
efficients in (1(Zs). This is a complete normed linear space with respect to the
infinity matrix norm

||M || := max
1≤i≤n

∑
1≤j≤n

||Mi,j|| .

If we define matrix multiplication in the standard way, using the algebra struc-
ture on (1(Zs), then ||MN || ≤ ||M ||||N ||. In particular, if ||M || < 1 then we can
define a Kleene-star operation by M∗ := (I −M)−1 =

∑∞
k=0M

k.

3 Weighted Automata

To permit effective representation of automata we assume that all transition
probabilities are rational numbers. In our technical development it is convenient
to work with Q-weighted automata [24], which are a generalisation of Rabin’s
probabilistic automata.

A Q-weighted automaton A = (n,Σ,M,α,η) consists of a positive integer
n ∈ N representing the number of states, a finite alphabet Σ, a map M : Σ →
Qn×n assigning a transition matrix to each alphabet symbol, an initial (row)
vector α ∈ Qn, and a final (column) vector η ∈ Qn. We extend M to Σ∗ as the
matrix product M(σ1 . . . σk) := M(σ1) · . . . ·M(σk). The automaton A assigns
each word w a weight A(w) ∈ Q, where A(w) := αM(w)η. An automaton A is
said to be zero if A(w) = 0 for all w ∈ Σ∗. Two automata B, C over the same
alphabet Σ are said to be equivalent if B(w) = C(w) for all w ∈ Σ∗. In the
remainder of this section we present a randomised NC2 algorithm for deciding
equivalence of Q-weighted automata and, in case of inequivalence, outputting a
counterexample.
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Given two automata B, C that are to be checked for equivalence, one can com-
pute an automaton A with A(w) = B(w)−C(w) for all w ∈ Σ∗. Then A is zero
if and only if B and C are equivalent. Given B = (n(B), Σ,M (B),α(B),η(B)) and
C = (n(C), Σ,M (C),α(C),η(C)), set A = (n,Σ,M,α,η) with n := n(B)+n(C) and

M(σ) :=

(
M (B)(σ) 0

0 M (C)(σ)

)
, α := (α(B),−α(C)) , η :=

(
η(B)

η(C)

)
.

This reduction allows us to focus on zeroness, i.e., the problem of determin-
ing whether a given Q-weighted automaton A = (n,Σ,M,α,η) is zero. (Since
transition weights can be negative, zeroness is not the same as emptiness of the
underlying unweighted automaton.) Note that a witness word w ∈ Σ∗ against
zeroness of A is also a witness against the equivalence of B and C. The following
result from [28] is crucial.

Proposition 1. If A is not equal to the zero automaton then there exists a word
u ∈ Σ∗ of length at most n− 1 such that A(u) %= 0.

Our randomisedNC2 procedure uses the Isolating Lemma of Mulmuley, Vazirani
and Vazirani [18]. We use this lemma in a very similar way to [18], who are
concerned with computing maximum matchings in graphs in RNC.

Lemma 2. Let F be a family of subsets of a set {x1, . . . , xN}. Suppose that
each element xi is assigned a weight wi chosen independently and uniformly at
random from {1, . . . , 2N}. Define the weight of S ∈ F to be

∑
xi∈S wi. Then the

probability that there is a unique minimum weight set in F is at least 1/2.

We will apply the Isolating Lemma in conjunction with Proposition 1 to decide
zeroness of a weighted automaton A. Suppose A has n states and alphabet Σ.
Given σ ∈ Σ and 1 ≤ i ≤ n, choose a weight wi,σ independently and uniformly
at random from the set {1, . . . , 2|Σ|n}. Define the weight of a word u = σ1 . . . σk,

k ≤ n, to be wt(u) :=
∑k

i=1 wi,σi . (The reader should not confuse this with the
weight A(u) assigned to u by the automaton A.) Then we obtain a univariate
polynomial P from automaton A as follows:

P (x) =
n∑

k=0

∑
u∈Σk

A(u)xwt(u) .

If A is equivalent to the zero automaton then clearly P ≡ 0. On the other hand, if
A is non-zero, then by Proposition 1 the set F = {u ∈ Σ≤n : A(u) %= 0} is non-
empty. Thus there is a unique minimum-weight word u ∈ F with probability
at least 1/2 by the Isolating Lemma. In this case P contains the monomial
xwt(u) with coefficient A(u) as its smallest-degree monomial. Thus P %≡ 0 with
probability at least 1/2.

It remains to observe that from the formula

P (x) = α

⎛⎝ n∑
i=0

i∏
j=1

∑
σ∈Σ

M(σ)xwj,σ

⎞⎠η
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and the fact that iterated products of matrices of univariate polynomials can be
computed in NC2 [7] we obtain an RNC algorithm for determining zeroness of
weighted automata.

It is straightforward to extend the above algorithm to obtain an RNC pro-
cedure that not only decides zeroness of A but also outputs a word u such that
A(u) %= 0 in case A is non-zero. Assume that A is non-zero and that the random
choice of weights has isolated a unique minimum-weight word u = σ1 . . . σk such
that A(u) %= 0. To determine whether σ ∈ Σ is the i-th letter of u we can increase
the weight wi,σ by 1 while leaving all other weights unchanged and recompute
the polynomial P (x). Then σ is the i-th letter in u if and only if the minimum-
degree monomial in P changes. All of these tests can be done independently,
yielding an RNC procedure.

Theorem 3. Given two weighted automata A and B, there is an RNC proce-
dure that determines whether or not A and B are equivalent and that outputs a
word w with A(w) %= B(w) in case A and B are inequivalent.

4 Weighted Cost Automata

In this section we consider weighted automata with costs. Each transition has
a cost, and the cumulative cost of a run is recorded in a tuple of counters.
Transitions can also have negative costs, which can be considered as rewards.
Note though that the counters do not affect the control flow of the automata. In
Example 9 we use costs to record the passage of time in an encryption protocol.
We explicitly include ε-transitions in our automata because they are convenient
for applications (cf. Example 8) and we cannot rely on existing ε-elimination
results in the presence of costs.

Let Σ be a finite alphabet not containing the symbol ε. A Q-weighted cost
automaton is a tuple A = (n, s,Σ,M,α,η), where n ∈ N is the number of states;
s ∈ N is the number of counters; M : Σ ∪ {ε} → (C → Q)n×n is the transition
function, where C = {−1, 0, 1}s is the set of elementary cost vectors ; α ∈ Qn

is an initial (row) vector; η ∈ Qn is a final (column) vector. In this definition,
M(σ)i,j(v) represents the weight of a σ-transition from state i to j with cost
vector v ∈ C. For the semantics to be well-defined we assume that the total
weight of all outgoing ε-labelled transitions from any given state is strictly less
than 1.

In order to define the semantics of weighted cost automata it is convenient
to use results on matrices of formal power series from Section 2. We can regard
M(σ) as an n×n matrix whose entries are elements of the space (1(Zs) of formal
power series, where M(σ)i,j(v) = 0 for v ∈ Zs \ C. Our convention on the total
weight of ε-transitions is equivalent to the requirement that ||M(ε)|| < 1. We
next extendM to a mapM : Σ∗ → ((1(Zs))n×n such that, given a word w ∈ Σ∗

and states i, j, M(w)i,j(v) is the total weight of all w-labelled paths from state
i to state j with accumulated cost v ∈ Zs. Given a word w = σ1σ2 . . . σm ∈ Σ∗,
we define

M(w) :=M(ε)∗M(σ1)M(ε)∗ · · ·M(σm)M(ε)∗ . (1)
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Finally, given w ∈ Σ∗ we define A(w) := αM(w)η. Then A(w) is an element
of (1(Zs) such that A(w)(v) gives the total weight of all accepting runs with
accumulated cost v ∈ Zs.

Let x = (x1, . . . , xs) be a vector of variables, one for each counter. Our equiv-
alence algorithm is based on a representation of A(w) as a rational function in
x, following classical ideas [20]. Given v ∈ Zs we denote by xv the monomial
xv11 · · ·xvss . (Note that we allow negative powers in monomials.) We say that
f ∈ (1(Zs) has finite support if f(v) = 0 for all but finitely many v ∈ Zs. We
identify such an f with the polynomial

∑
v∈Zs f(v)xv. We furthermore say that

f ∈ (1(Zs) is rational if there exist g, h : Zs → Q with finite support such that
f ∗ h = g. We then identify f with the rational function∑

v∈Zs

g(v)xv
/ ∑

v∈Zs

h(v)xv .

Note that we can clear all negative exponents from the numerator and denomina-
tor of such an expression. Note also that sums and products of rational functions
correspond to sums and products in (1(Zs) in the above representation.

Proposition 4. M(w) can be represented as a matrix of rational functions in x
such that the numerator and denominator in each matrix entry have degrees at
most 2n(s+ 1) · |w|.
Proof. From equation (1) it suffices to show that M(ε)∗ can be represented
as a matrix of rational functions with appropriate degree bounds. Recall that
M(ε)∗ = (I −M(ε))−1, so it suffices to show that I −M(ε) (considered as a
matrix of polynomials) has an inverse that can be represented as a matrix of
rational functions. But the determinant formula yields that det(I − M(ε)) is
a (non-zero) polynomial in x, thus the cofactor formula for inverting matrices
yields a representation of (I −M(ε))−1 as a matrix of rational functions in x of
degree at most 2ns. #$
An automaton A is said to be zero if A(w) ≡ 0 for all w ∈ Σ∗. Two automata
B, C over the same alphabet Σ with the same number of counters are said to
be equivalent if B(w) ≡ C(w) for all w ∈ Σ∗. As in Section 3, the equivalence
problem can be reduced to the zeroness problem, so we focus on the latter.

The following proposition states that if there is a word witnessing that A is
non-zero, then there is a “short” such word.

Proposition 5. A is zero if and only if A(w) ≡ 0 for all w ∈ Σ∗ of length at
most n− 1.

The proof, given in full in [12], is similar to the linear algebra arguments
from [24,28], but involves an additional twist. The key idea is to substitute
concrete values for the variables x, thereby transforming from the setting of
infinite-dimensional vector spaces of rational functions in x to a finite dimen-
sional setting where the arguments of [24,28] apply.
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The decidability of zeroness (and hence equivalence) for weighted cost au-
tomata follows immediately from Proposition 5. However, using polynomial iden-
tity testing, we arrive at the following theorem.

Theorem 6. The equivalence problem for weighted cost automata is decidable
in randomised polynomial time.

Proof. We have already observed that the equivalence problem can be reduced
to the zeroness problem. We now reduce the zeroness problem to polynomial
identity testing.

Given an automaton A = (n, s,Σ,M,α,η), for each word w ∈ Σ∗ of length
at most n we have a rational expression A(w) in variables x = (x1, . . . , xs) which
has degree at most d := 2n(s+ 1) · n by Proposition 4.

Now consider the set R := {1, 2, . . . , 2d}. Suppose that we pick r ∈ Rs uni-
formly at random. Denote by A(w)(r) the result of substituting r for x in the
rational expression A(w). Clearly if A is a zero automaton then A(w)(r) = 0
for all r. On the other hand, if A is non-zero then by Proposition 5 there exists
a word w ∈ Σ∗ of length at most n such that A(w) %≡ 0. Since the degree of
the rational expression A(w) is at most d it follows from the Schwartz-Zippel
theorem [9,25,30] that the probability that A(w)(r) = 0 is at most 1/2.

Thus our randomised procedure is to pick r ∈ Rs uniformly at random and
to check whether A(w)(r) = 0 for some w ∈ Σ∗. It remains to show how we
can do this check in polynomial time. To achieve this we show that there is
a Q-weighted automaton B with no counters such that A(w)(r) = B(w) for all
w ∈ Σ∗, since we can then check B for zeroness using, e.g., Tzeng’s algorithm [28].
The automaton B has the form B = (n(B), Σ,M (B),α(B),η(B)), where n(B) = n,
α(B) = α, η(B) = η and M (B)(σ) =

∑
v∈Zs M(σ)(v)rv for all σ ∈ Σ. #$

Corollary 7. For each fixed number of counters the equivalence problem for
weighted cost automata is decidable in deterministic polynomial time.

See [12] for a proof.

Example 8. We consider probabilistic programs that randomly increase and de-
crease a single counter (initialised with 0) so that upon termination the counter
has a random value X ∈ Z. The programs should be such that X is a random
variable with X = Y −Z where Y and Z are independent random variables with
a geometric distribution with parameters p = 1/2 and p = 1/3, respectively. (By
that we mean that Pr(Y = k) = (1 − p)kp for k ∈ {0, 1, . . .}, and similarly for
Z.) Figure 1 shows code in the syntax of the apex tool.

The program on the left consecutively runs two while loops: it first incre-
ments the counter according to a geometric distribution with parameter 1/2 and
then decrements the counter according to a geometric distribution with parame-
ter 1/3, so that the final counter value is distributed as desired. The program on
the right is more efficient in that it runs only one of two while loops, depending
on a single coin flip at the beginning. It may not be obvious though that the
final counter value follows the same distribution as in the left program. We used
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inc:com, dec:com |-

var%2 flip;

flip := 0;

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

flip := 0;

while (flip = 0) do {

flip := coin[0:2/3,1:1/3];

if (flip = 0) then {

dec;

};

}

:com

inc:com, dec:com |-

var%2 flip;

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

} else {

flip := 0;

while (flip = 0) do {

dec;

flip := coin[0:2/3,1:1/3];

};

}

:com

Fig. 1. Two apex programs for producing a counter that is distributed as the difference
between two geometrically distributed random variables

the apex tool to translate the programs to the probabilistic cost automata B
and C shown in Figure 2.

Since the input alphabets are empty, it suffices to consider the input word ε
when comparing B and C for equivalence. If we construct the difference automa-
ton A = (5, 1, ∅,M,α,η) and invert the matrix of polynomials I −M(ε), we
obtain

A(ε)(x) =

(
2

x− 2
,

2

(3x− 2)(x− 2)
, 1,

−x
2(x− 2)

,
3

2(3x− 2)

)
η ≡ 0 ,

which proves equivalence of B and C. Notice that the actual algorithm would
not compute A(ε)(x) as a polynomial, but it would compute A(ε)(r) only for a
few concrete values r ∈ Q. #$
Example 9. RSA [22] is a widely-used cryptographic algorithm. Popular imple-
mentations of the RSA algorithm have been shown to be vulnerable to timing
attacks that reveal private keys [14,5]. The preferred countermeasures are blind-
ing techniques that randomise certain aspects of the computation, which are
described in, e.g., [14]. We model the timing behaviour of the RSA algorithm
using probabilistic cost automata, where costs encode time. These automata are
produced by apex, and are then used to check for timing leaks with and without
blinding.

At the heart of RSA decryption is a modular exponentiation, which computes
the value md mod N where m ∈ {0, . . . , N−1} is the encrypted message, d ∈ N
is the private decryption exponent and N ∈ N is a modulus. An attacker wants
to find out d. We model RSA decryption in apex by implementing modular
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1, 1
6

2, 1
3

ε
1
2
: inc

ε
2
3
: dec

ε
1
3
: dec

1, 1
4

2, 1
2

3, 1
3

ε

1
4
: inc

ε
1
2
: inc

ε
1
2 : dec

ε
2
3
: dec

(B) (C)

Fig. 2. Automata produced from the code in Figure 1. The states are labelled with
their number and their “acceptance probability” (η-weight). In both automata, state 1
is the only initial state (α1 = 1 and αi = 0 for i �= 1). The transitions are labelled
with the input symbol ε, with a probability (weight) and a counter action (i.e. cost).

exponentiation by iterative squaring (see Figure 3). We consider the situation
where the attacker is able to control the message m, and tries to derive d by
observing the runtime distribution over different messages m. Following [14]
we assume that the running time of multiplication depends on the operand
values (because a source-level multiplication typically corresponds to a cascade
of processor-level multiplications). By choosing the ‘right’ input message m, an
attacker can observe which private keys are most likely.

We consider two blinding techniques mentioned in Kocher [14]. The first one
is base blinding, i.e., the message is multiplied by rd before exponentiation where
d is a random number, which gives a result that can be fixed by dividing by r
but makes it impossible for the attacker to control the basis of the exponentia-
tion. The second one is exponent blinding, which adds a multiple of the group
order ϕ(N) of Z/NZ to the exponent, which doesn’t change the result of the
exponentiation1 but changes the timing behaviour.

Figure 4 shows the automaton for N = 10, and private key 0, 1, 0, 1 with
message blinding enabled. The apex program is given in Figure 3.

We investigate the effectiveness of blinding. Two private keys are indistin-
guishable if the resulting automata are equivalent. The more keys are indistin-
guishable the safer the algorithm. We analyse which private keys are identified
by plain RSA, RSA with a blinded message and RSA with blinded exponent.

For example, in plain RSA, the following keys 0, 1, 0, 1 and 1, 0, 0, 1 are indis-
tinguishable, keys 0, 1, 1, 0 and 0, 0, 1, 1 are indistinguishable with base blinding,
lastly 1, 0, 0, 1 and 1, 0, 1, 1 are equivalent only with exponent blinding. Overall
9 different keys are distinguishable with plain RSA, 7 classes with base blinding
and 4 classes with exponent blinding.

1 Euler’s totient function ϕ satisfies aϕ(N) ≡ 1 mod N for all a ∈ Z.



On the Complexity of the Equivalence Problem for Probabilistic Automata 477

const N := 10; // modulus

const Bits := 4 ; // number of bits of the key

m :int%N, inc:com |-

var%2 exponent[Bits] = [0,1,0,1];

com power(x:int%N) {

var%N s := 1;

var%N R;

for(var%(Bits + 1) k; k < Bits; ++k) do {

R:=s;

if(exponent[k]) then {

R := R*x;

if(5<=R) then { inc; inc } else { inc }

}

s := R*R;

}

}

var%N message := m*rand[N]; // blinding

power(message) : com

Fig. 3. apex code for RSA

5 Pushdown Automata and Arithmetic Circuits

In a visibly pushdown automaton [3] the stack operations are determined by
the input word. Consequently VPA have a more tractable language theory than
ordinary pushdown automata. The main result of this section shows that the
equivalence problem for weighted VPA is logspace equivalent to the problem
ACIT of determining whether a polynomial represented by an arithmetic circuit
is identically zero.

A visibly pushdown alphabet Σ = Σc ∪ Σr ∪ Σint consists of a finite set of
calls Σc, a finite set of returns Σr, and a finite set of internal actions Σint .
A visibly pushdown automaton over alphabet Σ is restricted so that it pushes
onto the stack when it reads a call, pops the stack when it reads a return, and
leaves the stack untouched when reading internal actions. Due to this restriction
visibly pushdown automata only accept words in which calls and returns are
appropriately matched. Define the set of well-matched words to be

⋃
i∈N

Li,
where L0 = Σint + {ε} and Li+1 = ΣcLiΣr + LiLi.

A Q-weighted visibly pushdown automaton on alphabet Σ is a tuple A =
(n,α,η, Γ,M), where n is the number of states, α is an n-dimensional initial
(row) vector, η is an n-dimensional final (column) vector, Γ is a finite stack
alphabet, andM = (Mc,Mr,Mint ) is a tuple ofmatrix-valued transition functions
with typesMc : Σc×Γ → Qn×n,Mr : Σr×Γ → Qn×n andMint : Σint → Qn×n.
If a ∈ Σc and γ ∈ Γ then Mc(a, γ)i,j gives the weight of an a-labelled transition
from state i to state j that pushes γ on the stack. If a ∈ Σr and γ ∈ Γ then
Mr(a, γ)i,j gives the weight of an a-labelled transition from state i to j that
pops γ from the stack.
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Fig. 4. Modeling RSA decryption with apex

For each well-matched word u ∈ Σ∗ we define an n×n rational matrixM (A)(u)
whose (i, j)-th entry denotes the total weight of all paths from state i to state j
along input u. The definition ofM (A)(u) follows the inductive definition of well-
matched words. The base cases are M (A)(ε) = I and M (A)(a)i,j = Mint (a)i,j .
The inductive cases are

M (A)(uv) =M (A)(u) ·M (A)(v)

M (A)(aub) =
∑
γ∈Γ

Mc(a, γ) ·M (A)(u) ·Mr(b, γ) ,

for a ∈ Σc, b ∈ Σr.
The weight assigned by A to a well-matched word w is defined to be A(w) :=

αM (A)(u)η. We say that two weighted VPA A and B are equivalent if for each
well-matched word w we have A(w) = B(w).

An arithmetic circuit is a finite directed acyclic multigraph whose vertices,
called gates, have indegree 0 or 2. Vertices of indegree 0 are called input gates
and are labelled with a constant 0 or 1, or a variable from the set {xi : i ∈ N}.
Vertices of indegree 2 are called internal gates and are labelled with one of the
arithmetic operations +, ∗ or −. We assume that there is a unique gate with
outdegree 0 called the output. Note that C is a multigraph, so there can be two
edges between a pair of gates, i.e., both inputs to a given gate can lead from the
same source. We call a circuit variable-free if all inputs gates are labelled 0 or 1.

The Arithmetic Circuit Identity Testing (ACIT) problem asks whether the
output of a given circuit is equal to the zero polynomial. ACIT is known to
be in coRP but it remains open whether there is a polynomial or even sub-
exponential algorithm for this problem [1]. Utilising the fact that a variable-
free arithmetic circuit of size O(n) can compute 22

n

, Allender et al. [1] give a
logspace reduction of the general ACIT problem to the special case of variable-
free circuits. Henceforth we assume without loss of generality that all circuits
are variable-free. Furthermore we recall that ACIT can be reformulated as the
problem of deciding whether two variable-free circuits using only the arithmetic
operations + and ∗ compute the same number [1].

The proof of the following proposition is given in [12].
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Proposition 10. ACIT is logspace reducible to the equivalence problem for
weighted visibly pushdown automata.

In the remainder of this section we give a converse reduction: from equivalence
of weighted VPA to ACIT. The following result gives a decision procedure for
the equivalence of two weighted VPA A and B.
Proposition 11. A is equivalent to B if and only if A(w) = B(w) for all words
w ∈ Ln2 , where n is the sum of the number of states of A and the number of
states of B.
Proof. Recall that for each balanced word u ∈ Σ∗ we have rational matrices
M (A)(u) and M (B)(u) giving the respective state-to-state transition weights of
A and B on reading u. These two families of matrices can be combined into a
single family

M =

{(
M (A)(u) 0

0 M (B)(u)

)
: u well-matched

}
of n× n matrices. Let us also write Mi for the subset of M generated by those
well-matched words u ∈ Li.

Let α(A),η(A) and α(B),η(B) be the respective initial and final-state vectors
of A and B. Then A is equivalent to B if and only if

(α(A) α(B) )M

(
η(A)

−η(B)

)
= 0 (2)

for all M ∈ M. It follows that A is equivalent to B if and only if (2) holds for
all M in span(M), where the span is taken in the rational vector space of n× n
rational matrices. But span(Mi) is an ascending sequence of vector spaces:

Span(M0) ⊆ Span(M1) ⊆ Span(M2) ⊆ . . .
It follows from a dimension argument that this sequence stops in at most n2

steps and we conclude that span(M) = span(Mn2). #$
Proposition 12. Given a weighted visibly pushdown automaton A and n ∈ N
one can compute in logarithmic space a circuit that represents

∑
w∈Ln2

A(w).

Proof. From the definition of the language Li and the family of matrices M (A)

we have:∑
w∈Li+1

M (A)(w) =
∑
a∈Σc

∑
b∈Σr

∑
γ∈Γ

M (A)(a, γ)

( ∑
u∈Li

M (A)(u)

)
M (A)(b, γ)

+

( ∑
u∈Li

M (A)(u)

)( ∑
u∈Li

M (A)(u)

)
.

The above equation implies that we can compute in logarithmic space a circuit
that represents

∑
w∈Ln

M (A)(w). The result of the proposition immediately fol-
lows by premultiplying by the initial state vector and postmultiplying by the
final state vector. #$
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A key property of weighted VPA is their closure under product.

Proposition 13. Given weighted VPA A and B on the same alphabet Σ one can
define a synchronous-product automaton, denoted A×B, such that (A×B)(w) =
A(w)B(w) for all w ∈ Σ∗.

The proof of Proposition 13, given in [12], exploits the fact that the stack height
is determined by the input word, so the respective stacks of A and B operating
in parallel can be simulated in a single stack.

Proposition 14. The equivalence problem for weighted visibly pushdown au-
tomata is logspace reducible to ACIT.

Proof. Let A and B be weighted visibly pushdown automata with a total of n
states between them. Then∑

w∈Ln

(A(w) − B(w))2 =
∑

w∈Ln

A(w)2 + B(w)2 − 2A(w)B(w)

=
∑

w∈Ln

(A × A)(w) + (B × B)(w)− 2(A × B)(w)

Thus A is equivalent to B iff
∑

w∈Ln
(A × A)(w) + (B × B)(w)

= 2
∑

w∈Ln
(A × B)(w). But Propositions 12 and 13 allow us to translate

the above equation into an instance of ACIT. #$
The trick of considering sums-of-squares of acceptance weights in the above proof
is inspired by [29, Lemma 1].
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