Lars Birkedal (Ed.)

ARCoSS

Foundations
of Software Science and
Computational Structures

15th International Conference, FOSSACS 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March/April 2012, Proceedings

LNCS 7213

7." ETAPS t

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

-

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

7213

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Lars Birkedal (Ed.)

Foundations
of Software Science and
Computational Structures

15th International Conference, FOSSACS 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March 24 — April 1, 2012
Proceedings

@ Springer

Volume Editor

Lars Birkedal

IT University of Copenhagen

Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
E-mail: birkedal @itu.dk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-28728-2 e-ISBN 978-3-642-28729-9
DOI 10.1007/978-3-642-28729-9

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932640
CR Subject Classification (1998): F.3, F.1, F4,D.3,D.2,1.2.3

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.

VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of FTAPS
e. V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbriicken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

> European Association for Theoretical Computer Science (EATCS)
> European Association for Programming Languages and Systems (EAPLS)
> European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

INSTITUTE OF CYBERNETICS AT TUT; TALLINN UNIVERSITY OF TECH-
NOLOGY (TUT); ESTONIAN CENTRE OF EXCELLENCE IN COMPUTER
SciENCE (EXCS) FUNDED BY THE EUROPEAN REGIONAL DEVELOP-
MENT FUND (ERDF); ESTONIAN CONVENTION BUREAU; and MI-
CROSOFT RESEARCH.

The organising team comprised:
General Chair: Tarmo Uustalu
Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Ziirich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbriicken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbriicken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara Konig (Duisburg), Juan de Lara (Madrid), Gerald Luttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),

Foreword VII

Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Déniel Varré (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair

Preface

FoSSaCS presents original papers on the foundations of software science. The
Program Committee (PC) invited submissions on theories and methods to sup-
port analysis, synthesis, transformation, and verification of programs and soft-
ware systems. We received 100 full-paper submissions; of these, 29 were selected
for presentation at FoSSaCS and inclusion in the proceedings. Also included are
two invited papers, one by Cali, Gottlob, Orsi, and Pieris on “Querying UML
Class Diagrams,” presented by the ETAPS 2012 invited speaker Georg Gottlob;
and one by Glynn Winkskel, the FoSSaCS 2012 invited speaker, on “Bicategories
of Concurrent Games.”

I thank all the authors of papers submitted to FoSSaCS 2012; the quality
of the submissions was very high indeed, and the Program Committee had to
reject several good papers. I thank also the members of the PC for their excellent
work, as well as the external reviewers for the expert help and reviews they
provided. Throughout the phases of submission, evaluation, and production of
the proceedings, we relied on the invaluable assistance of the EasyChair system;
we are very grateful to its developer Andrei Voronkov and his team. Last but
not least, we would like to thank the ETAPS 2012 Local Organizing Committee
(chaired by Tarmo Uustalu) and the ETAPS Steering Committee (chaired by
Vladimiro Sassone) for their efficient coordination of all the activities leading up
to FoSSaCS 2012.

January 2012 Lars Birkedal

Organization

Program Committee

Luca Aceto
Roberto Amadio
Torben Amtoft
Lars Birkedal
Mikolaj Bojanczyk
Thierry Coquand
Andrea Corradini
Volker Diekert
Maribel Fernandez
Kohei Honda

Bart Jacobs
Joost-Pieter Katoen
Olivier Laurent
Rupak Majumdar
Markus Mueller-Olm
Hanne Riis Nielson
Joachim Parrow
Dusko Pavlovic
Alex Simpson
Carolyn Talcott
Yde Venema
Thomas Vojnar

Reykjavik University, Iceland

University of Paris 7, France

Kansas State University, USA

IT University of Copenhagen, Denmark
Warsaw University, Poland

Chalmers University, Sweden

University of Pisa, Italy

University of Stuttgart, Germany

King’s College London, UK

Queen Mary, University of London, UK
Radboud University of Nijmegen, The Netherlands
RWTH Aachen University, Germany

ENS Lyon, France

Max Planck Institute for Software Systems, Germany
University of Muenster, Germany
Technical University of Denmark

Uppsala University, Sweden

University of Oxford, UK

University of Edinburgh, UK

SRI International, USA

University of Amsterdam, The Netherlands
Brno University, Czech Republic

Additional Reviewers

Alves, Sandra
Alvim, Mario S.
Andres, Miguel E.
Aranda, Jesus
Asperti, Andrea
Atkey, Robert
Bae, Kyungmin
Bahr, Patrick
Baillot, Patrick
Baldan, Paolo
Baltazar, Pedro
Barany, Vince

Berdine, Josh
Bernardo, Marco
Boker, Udi

Bollig, Benedikt
Boreale, Michele
Borgstroem, Johannes
Bouajjani, Ahmed
Bouyer, Patricia
Boyer, Benoit
Bradfield, Julian
Brock-Nannestad, Taus
Brotherston, James

XII Organization

Bruggink, H.J. Sander
Bruni, Roberto
Bruyere, Véronique
Bucciarelli, Antonio
Caires, Luis
Carbone, Marco
Chlipala, Adam
Chockler, Hana
Ciancia, Vincenzo
Cimini, Matteo
Cirstea, Corina
Clairambault, Pierre
Clarkson, Michael
Compton, Kevin

De Liguoro, Ugo

De Nicola, Rocco
De Vries, Edsko
De-Falco, Marc
Debois, Soren
Demangeon, Romain
Deng, Yuxin

Di Gianantonio, Pietro
Donaldson, Robin
Dragoi, Cezara
Droste, Manfred
Dybjer, Peter
Faggian, Claudia
Fearnley, John
Ferrari, Gianluigi
French, Tim

Fu, Hongfei
Gadducci, Fabio
Galmiche, Didier
Gambino, Nicola
Gelderie, Marcus
Geuvers, Herman

Goldwurm, Massimiliano

Goubault-Larrecq, Jean
Groote, Jan Friso
Guerrini, Stefano
Gumm, H. Peter
Gutkovas, Ramunas
Habermehl, Peter
Hansen, Helle Hvid
Hasuo, Ichiro

Heindel, Tobias
Hemaspaandra, Edith
Herbelin, Hugo
Hermann, Frank
Hillston, Jane
Holik, Lukas
Hyvernat, Pierre
Tosif, Radu

Jansen, David N.
Jha, Susmit
Jibladze, Mamuka
Jonsson, Bengt
Jurdzinski, Marcin
Kaiser, Lukasz
Kara, Ahmet
Kartzow, Alexander
Klin, Bartek
Knapik, Teodor
Koenig, Barbara

Krishnaswami, Neelakantan

Kucera, Antonin
Kufleitner, Manfred
Kupferman, Orna
Kupke, Clemens
Kurz, Alexander
La Torre, Salvatore
Laird, Jim

Lange, Martin
Lasota, Slawomir
Lauser, Alexander
Leal, Raul

Lenisa, Marina
Leroux, Jerome
Leucker, Martin
Lluch Lafuente, Alberto
Longley, John
Loreti, Michele
Luo, Zhaohui
Luttenberger, Michael
Mardare, Radu
Marion, Jean-Yves
Markey, Nicolas
Meinecke, Ingmar
Merro, Massimo
Miculan, Marino

Mogelberg, Rasmus
Monreale, Giacoma
Montanari, Ugo
Moss, Larry
Mostrous, Dimitris
Myers, Robert
Negri, Sara

Neis, Georg
Nielson, Flemming
Noll, Thomas
Nordhoff, Benedikt
Ogawa, Mizuhito
Otop, Jan

Otto, Martin
Ouaknine, Joel
Palamidessi, Catuscia
Panangaden, Prakash
Parys, Pawel
Petersen, Rasmus Lerchedahl
Place, Thomas
Pollack, Randy
Polonsky, Andrew
Riba, Colin
Rypacek, Ondrej
Sack, Joshua
Salvati, Sylvain
Sangiorgi, Davide
Sangnier, Arnaud
Sasse, Ralf

Sewell, Peter
Sharma, Arpit

Organization

Sher, Falak

Silva, Alexandra
Simmons, Robert
Skrypnyuk, Nataliya
Skrzypczak, Michal
Sobocinski, Pawel
Staton, Sam
Stephan, Frank
Stirling, Colin
Streicher, Thomas
Svendsen, Kasper
Swierstra, Wouter
Tabareau, Nicolas
Ten Cate, Balder
Terui, Kazushige
Tiu, Alwen
Torunczyk, Szymon
Turon, Aaron
Vaux, Lionel
Victor, Bjorn
Vogler, Walter
Wahl, Thomas
Walter, Tobias
Weiss, Armin
Wenner, Alexander
Winskel, Glynn
Wolter, Uwe
Yoshida, Nobuko
Zhang, Fuyuan
Zhang, Lijun

XIII

Table of Contents

Querying UML Class Diagrams (Invited Paper)
Andrea Cali, Georg Gottlob, Giorgio Orsi, and Andreas Pieris

Bicategories of Concurrent Games (Invited Paper)
Glynn Winskel

Fibrational Induction Meets Effects
Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann

A Coalgebraic Perspective on Minimization and Determinization
Jiri Addmek, Filippo Bonchi, Mathias Hilsbusch, Barbara Konig,
Stefan Milius, and Alexandra Silva

Danel Ahman, James Chapman, and Tarmo Uustalu

Well-Pointed Coalgebras (Extended Abstract)
Jirit Adamek, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa

Combining Interactive and Automatic Reasoning in First Order
Theories of Functional Programs o oo,
Ana Bove, Peter Dybjer, and Andrés Sicard-Ramirez

Applicative Bisimulations for Delimited-Control Operators
Dariusz Biernacki and Serguei Lenglet

Effective Characterizations of Simple Fragments of Temporal Logic
Using Prophetic Automata i
Sebastian Preugschat and Thomas Wilke

Improved Ramsey-Based Biichi Complementation
Stefan Breuers, Christof Loding, and Jorg Olschewski

Extending H1-Clauses with Path Disequalities
Helmut Seidl and Andreas Reuf

Radha Jagadeesan, Gustavo Petri, and James Riely

Revisiting Trace and Testing Equivalences for Nondeterministic and
Probabilistic Processes.o i
Marco Bernardo, Rocco De Nicola, and Michele Loreti

XVI Table of Contents

Is It a “Good” Encoding of Mixed Choice?
Kirstin Peters and Uwe Nestmann

Event Structure Semantics of Parallel Extrusion in the Pi-Calculus
Silvia Crafa, Daniele Varacca, and Nobuko Yoshida

Narcissists Are Easy, Stepmothers Are Hard
Daniel Gorin and Lutz Schroder

On Nominal Regular Languages with Binders..............
Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto

Robustness of Structurally Equivalent Concurrent Parity Games
Krishnendu Chatterjee

Subgame Perfection for Equilibria in Quantitative Reachability

Thomas Brihaye, Véronique Bruyere, Julie De Pril, and
Hugo Gimbert

Concurrent Games with Ordered Objectives
Patricia Bouyer, Romain Brenguier, Nicolas Markey, and
Michael Ummels

Full Abstraction for Set-Based Models of the Symmetric Interaction
CombInatorsttt
Damiano Mazza and Neil J. Ross

On Distributability of Petri Nets (Extended Abstract)
Rob van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke- Uffmann

Functions as Session-Typed Processes
Bernardo Toninho, Luis Caires, and Frank Pfenning

Deriving Bisimulation Congruences for Conditional Reactive Systems . ..
Mathias Hiilsbusch and Barbara Konig

First-Order Model Checking on Nested Pushdown Trees is Complete
for Doubly Exponential Alternating Time
Alexander Kartzow

Model Checking Languages of Data Words
Benedikt Bollig, Aiswarya Cyriac, Paul Gastin, and
K. Narayan Kumar

Branching-Time Model Checking of Parametric One-Counter
AUtomatao
Stefan Géller, Christoph Haase, Joél Ouaknine, and James Worrell

210

225

240

255

270

286

301

316

331

346

361

376

391

406

Table of Contents

Synthesizing Probabilistic Composers...........o ...
Sumit Nain and Moshe Y. Vardi

On the Complexity of Computing Probabilistic Bisimilarity
Di Chen, Franck van Breugel, and James Worrell

Probabilistic Transition System Specification: Congruence and Full
Abstraction of Bisimulation i
Pedro Rubén D’Argenio and Matias David Lee

On the Complexity of the Equivalence Problem for Probabilistic
Automatao
Stefan Kiefer, Andrzej S. Murawski, Joél Ouaknine,
Bjorn Wachter, and James Worrell

Author Index

XVII

Querying UML Class Diagrams

Andrea Cali®3, Georg Gottlob™3#, Giorgio Orsi*#, and Andreas Pieris!

! Department of Computer Science, University of Oxford, UK
2 Dept. of Computer Science and Inf. Systems, Birkbeck University of London, UK
3 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
4 Institute for the Future of Computing, Oxford Martin School, UK
andrea@dcs.bbk.ac.uk,
{georg.gottlob,giorgio.orsi,andreas.pieris}@cs.ox.ac.uk

Abstract. UML Class Diagrams (UCDs) are the best known class-based
formalism for conceptual modeling. They are used by software engineers
to model the intensional structure of a system in terms of classes, at-
tributes and operations, and to express constraints that must hold for
every instance of the system. Reasoning over UCDs is of paramount im-
portance in design, validation, maintenance and system analysis; how-
ever, for medium and large software projects, reasoning over UCDs may
be impractical. Query answering, in particular, can be used to verify
whether a (possibly incomplete) instance of the system modeled by the
UCD, i.e., a snapshot, enjoys a certain property. In this work, we study
the problem of querying UCD instances, and we relate it to query answer-
ing under guarded Datalog™®, that is, a powerful Datalog-based language
for ontological modeling. We present an expressive and meaningful class
of UCDs, named Lean UCD, under which conjunctive query answering
is tractable in the size of the instances.

1 Introduction

Developing complex systems requires accurate design and early prototyping. To
avoid the cost of fixing errors at later stages of a project, system designers use
models of the final system to negotiate the system design, ensure all resulting
requirements, and rule out unintended behavior manifesting itself during the
system’s lifetime. Models are also of paramount importance for software mainte-
nance and for recovering the structure of a legacy and undocumented software.

UML Class Diagrams. The Unified Modeling Language (UML is one of the
major tools for the design of complex systems such as software, business processes
and even organizational structures. UML models were proposed by the Object
Modeling Group (OMG) to diagrammatically represent the static and dynamic,
e.g., behavioral aspects of a system, as well as the use cases the system will
operate in. More specifically, UML class diagrams (UCDs) are widely used to
represent the classes (types or entities) of a domain of interest, the associations
(relationships) among them, their attributes (fields) and operations (methods).

!http://www.omg.org/spec/UML/2.4.1/

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 1-£§, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www.omg.org/spec/UML/2.4.1/

2 A. Cali et al.

Person

{disjoint}

Student Worker

Fig. 1. A UCD which is not fully satisfiable

UCDs for complex projects become very large. Therefore, reasoning tasks such
as verifying that a UCD is satisfiable, meaning that the model is realizable, can
easily become unfeasible in practice. As a consequence, it is critical to adopt
automated procedures to reason on the diagrams and to ensure that the final
system will behave as planned.

When a UCD models a software system, the typical reasoning tasks include
the following (see [7I37] for additional reasoning tasks):

1. Checking for satisfiability (or consistency) of the UCD, i.e., checking whether
the class diagram admits at least one instantiation, that is, an instance of
the system modeled by the UCD that satisfies the diagram.

2. Checking for full satisfiability (or strong consistency) of the UCD, i.e., check-
ing whether the class diagram admits at least one instantiation where all
classes and associations are non-empty. For example, consider the UCD G
of Figure [[I which expresses that each student is a worker, and also that
students and workers are disjoint sets of persons. It is easy to see that G is
satisfiable, but not fully satisfiable since the class Student must be empty.

3. Querying the UCD, i.e., verifying whether a given property — expressed as
a query — holds for a given instance of the system modeled by the UCD.
This is the reasoning task that we address in this work.

(Full) Satisfiability of UCDs. The seminal work by Berardi et al. [7] estab-
lished that reasoning on UCDs is hard. In fact, even satisfiability of UCDs is
EXPTIME-complete w.r.t. the size of the given diagram. The EXPTIME-hardness
is obtained by a reduction from the problem of checking the satisfiability of a
concept in ALC KBs [23126]. The EXPTIME membership is obtained by providing
a polynomial translation of UCD constructs to DLR; 4 KBs [16].

The above results have been refined and extended to full satisfiability of UCDs
by Artale et al. [2] and Kaneiwa et al. [30]; upper (resp., lower) bounds are
obtained by a reduction to (resp., from) satisfiability of UCDs. In [2], classes of
UCDs were identified for which statisfiability is NP-complete and NLOGSPACE-
complete by restricting the constructs allowed in the diagrams. In [30], it has also
been shown that there exists a fragment of UCDs for which full satisfiability is
in PTIME. Moreover, in the same paper, a fragment of UCDs has been identified
that allows to check satisfiability in constant time, since the expressive power of
its constructs is not enough to capture any unsatisfiable UCD.

Querying UML Class Diagrams 3

Student Worker

PT'Student

Fig. 2. The UCD of Example[I]

Despite its expressiveness, the language of UCDs is often insufficient to express
all constraints the designer would like to enforce. For this reason, the OMG
consortium devised the Object Constraint Language (OCL E, which allows for
expressing arbitrary constraints on UCDs. OCL is a powerful language, but is
not widely adopted due to its complex syntax and ambiguous semantics.

Ezample 1. Consider the UCD shown in Figure 2] which represents the fact that
part-time students are, at the same time, workers and regular students. However,
the fact that whenever a student is also a worker, then necessarily (s)he must
be a part-time student, cannot be expressed using UCDs. We can express such
a constraint using the FOL expression

VX Student(X) A Worker(X) — PTStudent(X).

Note that the FOL constraint above corresponds to the OCL expression

context PTStudent inv:
Student.allInstances -> forAll (s: Student |
Worker.allInstances -> forAll (w: Worker |
s=w implies c.oclIsTypeOf (PTStudent)
)
)

For OCL syntax and semantics we refer the interested reader to [39].

Reasoning on UML with OCL constraints is considerably harder. It is well known
that satisfiability of UCDs extended with OCL constraints is undecidable since
it amounts to checking satisfiability of arbitrary first-order formulas. Following
Queralt et al. [36I38], the approaches can be classified into three families:

1. Unrestricted OCL constraints without guaranteeing termination, except for
specific cases [24J37].

2. Unrestricted OCL constraints with terminating, but incomplete reasoning
procedures [S[928/40].

3. Restricted classes of OCL constraints with both terminating and complete
reasoning procedures [38].

2 http://www.omg.org/spec/0CL/2.3/

http://www.omg.org/spec/OCL/2.3/

4 A. Cali et al.

Competes
0..00
Company L.1 Has
0..00
1.0 1..00
BoardMember Stock
1..00 0..00
FEzecutive » Person

1..00 Owns

Fig. 3. UCD for the trading scenario

Querying UCDs. UCD satisfiability is an intensional property as it depends
only on the class diagram and the OCL constraints, without involving any in-
stance of the system modeled by the UCD. On the other hand, in many cases
it is useful to reason over instances together with the diagram. For example,
a typical task in specification recovery [20] is the reconstruction of a model of
an unknown system involving low-level information obtained directly from a
running instance of the system. The analyst usually starts from a partial speci-
fication (i.e., a UCD) and refines it based on information provided by instances,
e.g., by verifying that they are consistent with the specification, and by adjust-
ing the specification when they are not. However, instance-data collected during
the analysis is partial but poorly structured. As a consequence they can easily
become very large, emphasizing the importance of having procedures that are
capable of handling very large instances. In this setting, query answering is a
very useful tool for checking whether a property, not expressible diagrammati-
cally, holds. More formally, given an instance D of a system modeled by a UCD
G, we can verify whether a property, represented as a query ¢, holds by check-
ing whether ¢ is a logical consequence of D and G. This problem is known, in
the knowledge representation (resp., database) community, as ontological query
answering (resp., query answering over incomplete databases).

Ezample 2. Consider the UCD of Figure Bl representing a simplified high-
frequency trading system. The diagram models companies and the associated
stocks together with board members and stakeholders. The conjunctive query

Conflict < Person(P), Company(C1), Company(Cs), Stock(S),
BoardMember (P, Cy), Owns(P, S), Has(C2, S),
Competes(Cy, Cs)

can be used to detect whether the system allows persons to be, at the same time,
in the board of a company and owners of shares of a competing company, and
are therefore operating in a conflict of interest.

Conjunctive query answering under UCDs and OCL constraints is undecidable
in its general form, and has been addressed mainly by reducing it to answering

Querying UML Class Diagrams 5

queries in known formalisms such as Prolog [21[41]. Decidable fragments of UCDs
have been identified by comparing their expressive power with that of known
description logics [3IT4/T8]. By leveraging on the results of Berardi et al. [7],
Calvanese et al. [I5] and Lutz [33], it is easy to see that the combined complezity
of conjunctive query answering over UCDs (without OCL constraints), that is,
the complexity w.r.t. the combined size of the the query, the system instance, and
the corresponding diagram, is decidable and EXPTIME-complete; this is shown by
a reduction from conjunctive query answering under ALC KBs, and a reduction
to conjunctive query answering under DLR f ;¢ KBs. Calvanese et al. [I8] showed
the coNP-completeness w.r.t. data complexity, i.e., the complexity calculated by
considering only the system instance as part of the input, while the query and
the diagram are considered fixed. Artale et al. [3] established that fragments

of UCDs are captured by the description logic DL-Litegr/\é), for which query
answering is NP-complete w.r.t. combined complexity, and in ACy w.r.t. data
complexity. This result subsumes the tractability results for restricted classes of

UCDs provided by [18].

Contributions. In this work, we study conjunctive query answering over UCDs
and (a restricted class of) OCL constraints that are instrumental to the enforce-
ment of specific assumptions that are commonly adopted for UCDs. We relate the
problem to query answering under guarded Datalog® [11], a powerful Datalog-
based ontological language under which query answering is not only decidable,
but also tractable w.r.t. data complexity. In particular, we identify an expres-
sive fragment of UCDs with a limited form of OCL constraints, named Lean
UCD, which translates into guarded Datalog®, that features tractable conjunc-
tive query answering w.r.t. data complexity.

Roadmap. After providing some preliminary notions in Section[2, we introduce
the UML class diagram formalism, and describe its semantics in terms of first-
order logic in Section Bl In Section [we present Lean UCD, and we study
query answering under the proposed formalism. Finally, Section Bl draws some
conclusions and delineates future research directions.

2 Theoretical Background

As we shall see, query answering under UCDs can be reduced to query answering
under relational constraints, in particular, tuple-generating dependencies. There-
fore, in this section, we recall some basics on relational instances, (Boolean) con-
junctive queries, tuple-generating dependencies, and the chase procedure relative
to such dependencies.

Alphabets. We define the following pairwise disjoint (infinite) sets of symbols: a
set I of constants, that constitute the “normal” domain of a database, a set I’y of
labeled nulls, used as placeholders for unknown values, and thus can be also seen
as (globally) existentially-quantified variables, and a set I'y of (regular) variables,
used in queries and dependencies. Different constants represent different values
(unique name assumption), while different nulls may represent the same value.

6 A. Cali et al.

A lexicographic order is defined on I"UI'y, such that every value in I'y follows all
those in I". We denote by X sequences (or sets, with a slight abuse of notation) of
variables or constants X1, ..., Xy, with & > 0. Throughout, let [n] = {1,...,n},
for any integer n > 1.

Relational Model. A relational schema R (or simply schema) is a set of re-
lational symbols (or predicates), each with its associated arity. A term t is a
constant, null, or variable. An atomic formula (or simply atom) has the form
r(t1,...,tn), where r is an n-ary relation and ¢1,...,t, are terms. Conjunctions
of atoms are often identified with the sets of their atoms. A relational instance
(or simply instance) I for a schema R is a (possibly infinite) set of atoms of the
form r(t), where r is an n-ary predicate of R and t € (I'U I'y)™. A database is
a finite relational instance.

Substitutions and Homomorphisms. A substitution from one set of symbols
S1 to another set of symbols S is a function h : S; — Sy defined as follows: @ is
a substitution (empty substitution), and if & is a substitution, then hU{X — Y}
is a substitution, where X € S; and Y € S;. If X — Y € h, then we write
h(X) =Y. A homomorphism from a set of atoms A; to a set of atoms As is a
substitution h from the set of terms of A; to the set of terms of A, such that:
if t € I', then h(t) = t, and if r(t1,...,t,) is in Ay, then h(r(ti,...,t,)) =
r(h(ty),...,h(ty)) is in As.

(Boolean) Conjunctive Queries. A conjunctive query (CQ) q of arity n over
a schema R, written as ¢/n, is an assertion the form ¢(X) + ¢(X,Y), where
»(X,Y) is a conjunction of atoms over R, and ¢ is an n-ary predicate that does
not occur in R. ¢(X,Y) is called the body of ¢, denoted as body(q). A Boolean
conjunctive query (BCQ) is a CQ of arity zero. The answer to a CQ g/n over
an instance I, denoted as ¢(I), is the set of all n-tuples t € I'"™ for which there
exists a homomorphism h : X UY — I' U I'y such that h(o(X,Y)) C I and
h(X) =t. A BCQ has only the empty tuple () as possible answer, in which case
it is said that has positive answer. Formally, a BCQ has positive answer over I,
denoted as I |= ¢, iff () € q(I), or, equivalently, ¢(I) # @.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) o
over a schema R is a first-order formula VXYY ¢(X,Y) — 3Z (X, Z), where
»(X,Y) and ¢(X,Z) are conjunctions of atoms over R, called the body and
the head of o, and denoted as body(c) and head(c), respectively. Such o is
satisfied by an instance I for R, written as I = o, iff, whenever there exists a
homomorphism A such that h(p(X,Y)) C I, then there exists an extension k' of
h, i.e., b’ 2 h, such that A/ (¢(X,Z)) C I. We write I [~ o if I violates . Given
a set of TGDs X, we say that I satisfies X, denoted as I = X, iff I satisfies all
the TGDs of X. Conversely, we say that I violates X, written as I & X, iff T
violates at least one TGD of X.

Query Answering under TGDs. Given a database D for a schema R, and
a set of TGDs X' over R, the answers we consider are those that are true in all
models of D w.r.t. X, i.e., all instances that contain D and satisfy Y. Formally,

Querying UML Class Diagrams 7

the models of D w.r.t. X, denoted as mods(D, Y), is the set of all instances T
such that I E D U X. The answer to a CQ ¢/n w.r.t. D and X, denoted as
ans(q, D, X)), is the set of n-tuples {t | t € ¢(I), for each I € mods(D, X)}.
The answer to a BCQ ¢ w.r.t. D and X' is positive, denoted as D U X' = ¢, iff
() € ans(q, D, X)), or, equivalently, ans(q, D, X) # @.

Given a CQ ¢/n over a schema R, a database D for R, a set X of TGDs
over R, and an n-tuple t € I'™, CQAns is defined as the problem whether
t € ans(q, D, X). In case that ¢ is a BCQ (and thus, t is the empty tuple
()), the above problem is called BCQAns. Notice that these two problems under
general TGDs are undecidable [6], even when the schema and the set of TGDs
are fixed [10], or even when the set of TGDs is restricted to a single rule [4].
Following Vardi’s taxonomy [42], the data complezity of the above problems is
the complexity calculated taking only the database as input, while the query
and the set of dependencies are considered fixed. The combined complexity is
the complexity calculated considering as input, together with the database, also
the query and the set of dependencies.

It is well-known that the above decision problems are LOGSPACE-equivalent;
this result is implicit in [19], and stated explicitly in [I0]. Henceforth, we thus
focus only on BCQAns, and all complexity results carry over to CQAns.

The TGD Chase Procedure. The chase procedure (or simply chase) is a
fundamental algorithmic tool introduced for checking implication of dependen-
cies [34], and later for checking query containment [29]. Informally, the chase
is a process of repairing a database w.r.t. a set of dependencies so that the re-
sulted instance satisfies the dependencies. By abuse of terminology, we shall use
the term “chase” interchangeably for both the procedure and its result. The
building block of the chase procedure is the so-called TGD chase rule.

Definition 1 (TGD Chase Rule). Consider an instance I for a schema R,
and a TGD o : o(X,Y) — 3Z (X, Z) over R. If o is applicable to I, i.e., there
exists a homomorphism h such that h(p(X,Y)) C I, but there is no extension
R of h (i.e., K 2 h) that maps (X, Z) to I, then: (i) define k' O h such
that h'(Z;) = z;, for each Z; € 7, where z; € I'y is a “fresh” labeled null not
introduced before, and following lexicographically all those introduced so far, and
(i) add to I the set of atoms in h'(¢(X,Z)), if not already in I.

Given a database D and a set X of TGDs, the chase algorithm for D w.r.t. X
consists of an exhaustive application of the TGD chase rule, which leads to a
(possibly infinite) instance denoted as chase(D, Y). We assume that the chase
algorithm is fair, i.e., each TGD that must be applied during the construction
of chase(D, X)) is eventually applied.

Ezample 3. Consider the set X constituted by the TGDs o1 : VX, Y r(X,Y) A
s(Y) = 3Zr(Z,X) and 02 : VX, Y r(X,Y) — s(X). Let D be the database
{r(a,b),s(b)}. During the chase of D w.r.t. X, we first apply o1 and we add
the atom 7(z1,a), where z; € I'y. Also, o3 is applicable and we add the atom
s(a). Now, o1 is applicable and the atom r(z9, 21) is obtained, where 2o € I'y.

8 A. Cali et al.

Then, o is applicable and the atom s(z1) is generated. It is straightforward to
see that there is no finite chase. Satisfying both TGDs ¢; and o9 would require
to built the infinite instance {r(a,b), s(b),r(z1,a), s(a), r(z2, z1), s(z1), (23, 22),
s(z2), ...}, where, for each i > 0, z; € I'y.

The fact that the chase algorithm is fair allows us to show that chase of a
database D w.r.t. a set of TGDs X is a universal model of D w.rt. X i.e.,
for each I € mods(D, X)), there exists a homomorphism from chase(D,X) to
I [2225]. Using this fact it can be shown that the chase is a useful tool for query
answering under TGDs. More precisely, the problem whether the answer to a
BCQ ¢ is positive w.r.t. a database D and a set of TGDs X, is equivalent to the
problem whether ¢ is entailed by the chase of D w.r.t. X.

Theorem 1 ([2225]). Consider a BCQ q over a schema R, a database D for
R, and a set X of TGDs over R. DU X |= q iff chase(D, X) = q.

Guarded Datalog®. Since query answering under TGDs is undecidable, several
classes of TGDs have been proposed under which the problem becomes decidable,
and even tractable w.r.t. data complexity (see, e.g., [4I25/31]). In particular,
Datalog® [12] is a family of languages for ontological modeling based on classes
of TGDs under which query answering is decidable and, in almost all cases,
tractable w.r.t. data complexity. Datalog® proved to be a valid alternative to
description logics in many database and knowledge management applications.

A member of the Datalog® family which is of special interest for our work
is guarded Datalog™ [I0/I1]. A TGD ¢ is guarded if it has a body-atom which
contains all the universally quantified variables of o. Such atom is called the
guard atom (or simply guard) of o. The non-guard atoms are the side atoms
of 0. For example, the TGD r(X,Y),s(Y, X, Z) — IWs(Z, X, W) is guarded
(via the guard s(Y, X, Z)), while the TGD r(X,Y),r(Y,Z) — r(X,Z) is not
guarded. Note that sets of guarded TGDs (with single-atom heads) are theories
in the guarded fragment of first-order logic [IJ.

As shown in [I0], the chase constructed under a set of guarded TGDs has
finite treewidth, which, intuitively speaking, means that the chase is a tree-
like structure. This is exactly the reason why query answering under guarded
TGDs is decidable. The data and combined complexity of query answering under
guarded TGDs have been investigated in [I1] and [I0], respectively.

Theorem 2 ([I0J11]). BCQAns under guarded TGDs is PTIME-complete w.r.1.
data complexity, EXPTIME-complete in the case of bounded arity, and 2EXPTIME-
complete w.r.t. combined complexity.

3 UML Class Diagrams

As already mentioned in Section [I, UML class diagrams (UCDs) describe the
static structure of a system by showing the system’s classes, their attributes and
operations, and the relationships among the classes. In this section, we describe

Querying UML Class Diagrams 9

C
al[’tj] . U]
il : Us
f](T],...,Tn) . ‘/1
FThoe T 2 Vin

Fig. 4. Class representation

the semantics of each construct of UCDs in terms of first-order logic (FOL)
generalized by counting quantifiers. The formalization adopted in this paper is
based on the one presented in [30].

Classes. A class is graphically represented as shown in Figure [i.e., as a
rectangle divided into three parts. The top part contains the name of the class
which is unique in the diagram, the middle part contains the attributes of the
class, and the bottom part contains the operations of the class, that is, the
operations associated to the instances of the class. Note that both the middle
and the bottom part are optional.

An attribute assertion of the form ali..j] : T states that the class C has
an attribute a of typ(E T, where the optional multiplicity [i..j] specifies that a
associates to each instance of C' at least ¢ and at most j instances of T. When
there is no lower (resp., upper) bound on the multiplicity, the symbol 0 (resp.,
o0) is used for i (resp., j). Notice that attributes are unique within a class.
However, different classes may have attributes with the same name, possibly
with different types.

An operation of a class C is a function from the instances of C, and possibly
additional parameters, to objects and values. An operation assertion of the form
f(Ty,...,Ty,) : T asserts that the class C' has an operation f with n > 0 param-
eters, where its i-th parameter is of type T; and its result is of type T'. Let us
clarify that the class diagram represents only the signature, that is, the name of
the functions as well as the number and the types of their parameters, and the
type of their result. The actual behavior of the function, which is not part of
the diagram, can be represented using OCL constraints. Notice that operations
are unique within a class. However, different classes may have operations with
the same name, possibly with different signature, providing that they have the
same number of parameters.

We are now ready to give the formal translation of a UML class definition
into FOL. A class C is represented by a FOL unary predicate C'. An attribute
a for class C' corresponds to a binary predicate a, and the attribute assertion

3 For simplicity, types, i.e., collections of values such as integers, are considered as
classes, i.e., as collections of objects.

10 A. Cali et al.

Cl my.. My, M. My, Cz Cl my..my, NNy 02
A |
Ca
(a) (c)
CZ OZ
Ci \ C, Ci \ C,
Y
A I
Cy
(b) (d)

Fig. 5. Association representation

afi..j] : T is translated into two FOL assertions. The first one asserts that for
each instance c¢ of class C, an object ¢’ related to ¢ by the attribute a is an
instance of T

VX, Y C(X)Na(X,Y) = T(Y).

The second one asserts that for each instance ¢ of class C, there exist at least i
and at most j different objects related to ¢ by a:

VX C(X) = 35:Z a(X, Z) A I<; Z a(X, Z).

If ¢ = 0, which implies that there is no lower bound, then the corresponding
FOL assertion is of the form VX C(X) — 3¢;Z a(X,Z). Dually, if j = oo,
which implies that there is no upper bound, then the obtained assertion is of the
form VX C(X) — 35:Z o(X, 2).

An operation f, with m > 0 parameters, for class C' corresponds to an (m+2)-
ary predicate f, and the operation assertion f(T1,...,Ty,) : T is translated into
the FOL assertions

VX, Y1i,.... Y, Z C(X)A f(X,Y1,...,Y0, Z) - N2y Ti(Y5) AT(Z),
which imposes the correct typing for the parameters and the result, and

VX, Y1,..., Y0, 21,2, C(X) AN f(X,)Y1,...,Y0, Z1)
A\ f(X,Yh...,Ym,ZQ) — Z1 = ZQ,

Querying UML Class Diagrams 11

i.e., the operation f is a function from the instances of C' and the parameters to
the result.

Associations. An association is a relation between the instances of two or more
classes, that are said to participate in the association. Names of associations are
unique in the diagram. A binary association A between two classes C; and Cy
is graphically represented as in Figure Bh. The multiplicity ng..n,, specifies that
each instance of class C7 can participate at least ny times and at most n,, times
to A; similarly we have the multiplicity my..m,, for Cs.

Clearly, we can have also n-ary associations which relate several classes as
shown in Figure Bl As already discussed in [7], while multiplicity constraints
in binary associations appear natural, for non-binary associations they do not
correspond to an intuitive property of the multiplicity. Due to this fact, their
presence in non-binary associations is awkward to a designer, and also they
express a constraint which is (in general) too weak in practice. Therefore, in this
paper, multiplicity in non-binary associations it is assumed to be always 0..c0.
Notice that in [30] arbitrary multiplicity constraints in non-binary associations
are allowed.

An association can have an association class which describes properties of the
association such as attributes and operations. A binary association between C
and Cy with an association class C'4 is graphically represented as in Figure Bk.
An n-ary association can also have an association class as depicted in Figure BH.

Let us now give the formal translation of an association definition into FOL.
An n-ary association A corresponds to an n-ary predicate A. Assuming that A
is among classes C1,...,C},, A is translated into the FOL assertion

\V/Xh - 7Xn 14()(17 .. 7Xn) — /\:-L:l Cz(Xz)

If A has a related association class C'4, then we have also the FOL assertions
(in the sequel, r, is an (n + 1)-ary auxiliary predicate)

VX1, X, Y AX, o X)) AT (X, ., X0, YY) = Ca(Y),
which types the association A,
VX1,..., Xn A(Xq,.. ., X)) = 32 mp (X, ..., X0, Z),

i.e., for each instance (z1,...,x,) of A, there exists at least one object related
to <x17 <oy Tn) by T,

VXh...,Xn,Yl,Yé A(Xl,,Xn) /\rn(Xl,...,XmYl)
/\rn(X17~-~7Xn71/2) _>Y1 :}/27

that is, for each instance (z1,...,z,) of A, there exists at most one object related
to (x1,...,2n) by 1, and

VvX1,...,. Xn, Y1, Y0, Zrn (X, X0, Z2) Ary(Va, .., Y, 2)
A CA(Z) — /\ZL:I Xz = Y;‘,

12 A. Cali et al.

C] C12
A

Fig. 6. Association generalization

C, |nmemu el C, C, |a0-1/1..1 | O
(v
G G

(a) (b)

Fig. 7. Aggregation and composition

which imposes that there are no two different instances of C'4 that are related by
rn, with the same instance of A; this rule guarantees the faithful representation
of the association A by C'4, according to the original UML semantics.

Now, for a binary association A among C7 and Cy with multiplicities my..1m,,
and ny..n,, we have also the FOL assertions

VX C\(X) = 30, Z A(X,Z) N3<n, Z AX, Z),
VX Co(X) = Fom, Z A(Z, X) A Tem, Z A(Z,X).

We can also have association generalization such that an n-ary association A’
between C1,...,C! generalizes the n-ary association A between C1,...,C,, (see
Figure [fl for the binary case). This feature is captured by the FOL assertion

\V/Xl,...,Xn A(Xh,Xn) — A/(Xh...,Xn).

A special kind of binary associations are aggregations and compositions, repre-
senting two different forms of whole-part or part-of relationship. An aggregation
(see Figure [Th) between two classes C; and Cs specifies that each instance of
C5, called the contained class, is conceptually part of an instance of C, called
the container class; for example, a handle is part of a door. A composition (see
Figure[@b) is more specific than aggregation. Composition has a strong life cycle
dependency between instances of the container class and instances of the con-
tained class. In particular, if the container is destroyed, then each instance that
it contains is destroyed as well. Notice that the contained class of a composition
must have a multiplicity of 0..1 or 1..1. Clearly, the life cycle dependency of a
composition must be considered during the implementation phase of a system,
however it is not relevant for query answering purposes. The translation of an
aggregation and a composition into FOL is the same as the one given above for

Querying UML Class Diagrams 13

9

A

{disjoint,complete}

C, Cy

Fig. 8. A class hierarchy

binary associations without an association class (since aggregations and compo-
sitions have no association class).

Class Hierarchies. Similar to association generalization, one can use class
generalization to assert that each instance of a child class is also an instance of
the parent class. Several generalizations can be grouped together to form a class
hierarchy, as shown in Figure B Disjointness and completeness constraints can
also be enforced on a class hierarchy (graphically, by adding the labels { disjoint}
and {complete}). A class hierarchy, as the one in Figure 8 is translated into the
FOL assertions

VX C1(X) — O(X),

VX Co(X) — C(X),

i.e., each instance of C; is also an instance of C,
VX Ci(X) = Njzipa ~C5(X),
for each i € [n — 1], which specify the disjointness constraints, and
VX C(X) — Vi, Ci(X),

which specify the completeness constraints.

Sometimes, it is assumed that all classes in the same hierarchy are disjoint.
However, we do not enforce this assumption, and we allow two classes to have
common instances. When needed, disjointness can be enforced by means of FOL
assertions, called negative constraints, of the form

VX p(X) = L,

where p(X) is a conjunction of atoms, and L denotes the truth constant false.
Moreover, we do not enforce the most specific class assumption, stating that
objects in a hierarchy must belong to a single most specific class. Therefore, two
classes in a hierarchy may have common instances, even though they may not
have a common subclass. When needed, the existence of the most specific class
can be enforced by means of multi-linear TGDs [I1] of the form

VX CLX)A .. A Cn(X) = Crgr (X),

14 A. Cali et al.

9
C, C, Cs

CIZ

Fig. 9. A class hierarchy with most specific class assumption

where each C; is a unary predicate representing a class. Observe that multi-
linear TGDs are guarded TGDs where each body-atom is a guard. Notice that
negative constraints and multi-linear TGDs can be represented using suitable
OCL constraints.

For example, besides the assertions representing the hierarchy depicted in
Figure [(taken from [7]), the most specific class assumption can be expressed
by the following FOL assertions:

vX Cl(X) /\CS(X) — 1
VX Co(X) ACs(X) = L
VX Cl(X) N CQ(X) — Clg(X).

4 Querying Lean UML Class Diagrams

The main goal of the present work is to study the problem of conjunctive query
answering under UCDs. In particular, we are interested to identify an expressive
fragment of UCDs which can be encoded in Datalog® so that chase-like tech-
niques (for the chase algorithm see Section [2)) and known complexity results can
be employed.

In this section, we propose mild syntactic restrictions on the full version of
UCDs, presented in Section 3l in order to get a fragment with the aforementioned
desirable properties, called Lean UCD. We then study query answering under
the proposed formalism. As we shall see, given a Lean UCD G, by applying the
translation of UCDs into FOL assertions given in the previous section — in the
following we refer to this translation by 7 — on G, we get FOL assertions which
have one of the following forms:

1. VXVY o(X,Y) — FZ¢Y(X,Z), where ¢(X,Y) and (X, Z) are conjunc-
tions of atoms, and ¢(X,Y) has an atom that contains all the universally
quantified variables; recall that an assertion of this form is called guarded
TGD.

Querying UML Class Diagrams 15

2. VX ¢(X) = X; = X, where ¢(X) is a conjunction of atoms, and both X;
and X; are variables of X; assertions of this form are known as equality-
generating dependencies (EGDs).

3. VX ¢(X) — L, where ¢(X) is a conjunction of atoms, and 1 denotes the
truth constant false; recall that assertions of this form are called negative
constraints.

The rest of this section is organized as follows. In Subsection Bl we formal-
ize Lean UCDs by applying a series of syntactic restrictions on UCDs. Then,
the problem of query answering under Lean UCDs is defined and studied in
Subsection

4.1 Formalizing Lean UCDs

Lean UCDs are obtained by restricting the multiplicity of attributes and binary
associations, and by omitting completeness constraints. Formally, a UML class
diagram G is a Lean UCD if the following conditions hold:

1. For each attribute assertion of the form ali..j] : T of G:
—i€{0,1} and j € {1, 00}.
2. For each binary association A of G, either with or without an association
class (consider the binary associations depicted in Figures [Bh and [Bk):
— ng,my € {0,1} and n,,m, € {1,000},
— if A generalizes some other binary association of G, then n, = m, = cc.
3. There are no completeness constraints in G.

Ezample 4. The Lean UCD of Figure [I0 describes members of a university de-
partment working in research groups. In particular, the class hierarchy specifies
that students and professors, which are disjoint classes, are members of the de-
partment. A member of the department works in at least one research group, and
at least one departmental member works in a research group. Moreover, a pro-
fessor leads at most one research group, while a research group is led by exactly
one professor; notice that a professor works in the same group that (s)he leads.
Finally, a publication is authored by at least one member of the department.

Interestingly, the FOL assertions which represent multiplicities of attributes or
multiplicities of binary associations, obtained by applying the translation 7 on
a Lean UCD G, are guarded TGDs and EGDs. More precisely, from a class C
with an attribute assertion afi..j] : T' we get FOL assertions of the form

VX C(X) = 31Z a(X,Z) =VX C(X) — 3Z a(X, Z),

VX C(X) = 3<1Z a(X,2)=VXY, Z C(X)Na(X,Y)Na(X,Z) =Y = Z.
From a binary association A among C; and Cy with multiplicities my..m, and
Ng..Ny, we get FOL assertions of the form

VX C1(X) = 3517 A(X, Z) =YX C1(X) — 3Z A(X, Z),
VX C1(X) = 3a1Z A(X,Z) =VX,Y,Z CL(X)NAX,Y)NA(X, Z) > Y = Z,
VX Co(X) = 3517 A(Z,X) = VX Co(X) — 32 A(Z, X),
VX Co(X) = 31 Z A(Z,X) =YX, Y, Z Co(X)NAY, X)ANA(Z,X) > Y = Z.

16 A. Cali et al.

Publication
0..00
WorksIn
AuthorOf since : Date
l..00
Member :
1..
name[l..1]: String * ' r
l..00
h
{disjoint} Group
Student Professor 0.1

gpa : Float

1.1 Leads

Fig. 10. Lean UCD of Example [4]

It is an easy task to verify that, given a Lean UCD @, the set of FOL assertions
7(G) is constituted by guarded TGDs, EGDs and negative constraints.

4.2 Query Answering under Lean UCDs

The problem of query answering under TGDs (discussed in Section [2]) can be
naturally extended to sets of TGDs, EGDs and negative constraints. An EGD
VX p(X) = X; = X is satisfied by a relational instance I if, whenever there
exists a homomorphism A such that h(p(X)) C I, then h(X;) = h(X;). A
negative constraint VX ¢(X) — L is satisfied by I if there is no homomorphism
h such that h(p(X)) C I.

From the above discussion we immediately get that query answering under
Lean UCDs is a well-defined problem. Formally, given a Lean UCD G, a BCQ
q (which represents a desirable property of the system; recall Example [2]), and
a relational database D (which is an instance of the system), the answer to ¢
w.r.t. D and G is positive, denoted as DU G = ¢, iff () € ans(q, D, 7(G)), or,
equivalently, ans(q, D, 7(G)) # @.

In the rest of the paper, given a Lean UCD G we denote by Rg the relational
schema associated to G, i.e., the set of predicates occurring in 7(G), excluding
the auxiliary predicates of the form r;, where ¢ > 2. Moreover, an instance of
the system modeled by G is considered as a (relational) database for Rg, while
a property to be verified is encoded as a BCQ over Rg.

Elimination of EGDs and Negative Constraints. Recall that our main
algorithmic tool for query answering is the chase algorithm. However, the chase

Querying UML Class Diagrams 17

algorithm presented in Section 2] can treat only TGDSH, but in the set of FOL
assertions that we obtain by applying 7 on a Lean UCD G we have also EGDs
and negative constraints. Interestingly, as we shall see, providing that the log-
ical theory constituted by the given database and the set of assertions 7(G) is
consistent, we are allowed to eliminate the EGDs and the negative constraints,
and proceed only with the TGDs.

Let us first concentrate on the EGDs. Consider a Lean UCD G. For notational
convenience, in the rest of this section, let 71(G) be the set of TGDs occurring in
7(G), 72(G) be the set of EGDs occurring in 7(G), and 73(G) be the set of negative
constraints occurring in 7(G). The semantic notion of separability expresses a
controlled interaction of TGDs and EGDs, so that the presence of EGDs does
not play any role in query answering, and thus can be ignored [ITJI3]. Similarly,
we can define separable Lean UCDs.

Definition 2 (Separability). A Lean UCD G is separable if, for every
database D for Rg, either D W= 12(G), or DUT1(G)UT2(G) = q iff DUT1(G) = g,
for every BCQ q over Rg.

It is possible to show that each Lean UCD G is separable. Lean UCDs, in fact,
enjoy a stronger property than separability: during the construction of the chase
of a database D for Rg w.r.t. 71 (G), it is not possible to violate an EGD of 75(G),
and therefore, if D satisfies 72(G), then chase(D,71(G)) is a universal model of
D w.r.t. 7(G) U72(G) which implies separability of G.

Lemma 1. Each Lean UCD is separable.

Proof (sketch). Consider a Lean UCD G, and a database D for Rg such that
D |= 1(G); it D [~ m2(G), then the claim holds trivially. We need to show that
DU (G)UT(G) E qiff DUT(G) = ¢, for every BCQ ¢ over Rg. Observe that
each model of the logical theory D U 71(G) U72(G) is also a model of D U7 (G).
Therefore, if DUT1(G) UT2(G) k= ¢, then DU (G) |= ¢. It remains to establish
the other direction. It suffices to show that, for each i > 0, chase (D, 71(G)), i.e.,
the initial segment of chase(D,71(G)) obtained starting from D and applying i
times the TGD chase rule (see Definition [l), does not violate any of the EGDs
of 75(G). We proceed by induction on i > 0.

Base Step. Clearly, chase”)(D,7(G)) = D, and the claim follows since D =
Tg(g).

Inductive Step. Suppose that during the i-th application of the TGD chase
rule we apply the TGD o € 71(G) with homomorphism A, and the atom a is
obtained. Notice that each set X of guarded TGDs can be rewritten into an
equivalent set X of guarded TGDs, where each TGD of X’ has just one head-
atom [10]. Therefore, for technical clarity, we assume w.l.o.g. that each TGD of
71(G) has just one head-atom.

* Notice that the chase algorithm can be extended to treat also EGDs (see, e.g., [25]).
However, such an extended version of the chase algorithm is not needed for the
purposes of the present paper.

18 A. Cali et al.

Consider an EGD 7 € 7»(G). It suffices to show that there is no homomor-
phism which maps body(n) to chase!) (D, 71(G)). Suppose that 7 is of the form
VX1 o X Vi, Ye A(Xs s X)) ATn(X s, X, Y1) AT (X1 o, Xon, Ya) —
Y1 = Y5. We show that there is no homomorphism that maps the set of atoms
A= {ra(X1, o, Xy Y1), (X, o, X, Y2)} © body(n) to chasel (D, 71(G)),
and thus there is no homomorphism that maps body(n) to chase’ (D, 7 (G)).
The critical case is when o is of the form VXi,..., X, A(X1,...,X,) —
AZ rp(X1,...,Xn, Z). In the sequel, let a = r,(t), and consider an arbitrary
atom o' = r,(t') € chasel™ Y (D, 71(G)). Towards a contradiction, suppose that
there exists a homomorphism that maps A to {a,a’}. This implies that there
exists an extension of A that maps head(c) to o’ € chase™"Y(D,r(G)), and
hence o is not applicable with homomorphism A. But this contradicts the fact
that o has been applied during the i-th application of the TGD chase rule.

By providing a similar argument, we can establish the same fact for all the
forms of EGDs that can appear in 72(G), and the claim follows.

Let us now focus on the negative constraints. Given a Lean UCD, checking
whether 75(G) is satisfied by a database D for Rg and the set of assertions
71(G) U 12(G) is tantamount to query answering; this is implicit in [II]. More
precisely, for each negative constraint v of the form VX o(X) — L of 73(G),
we evaluate the BCQ ¢, : p < ¢(X) over D UT1(G) UTa(G). If at least one of
such queries answers positively, then the logical theory D U 7(G) is inconsistent,
and thus DU G [g, for every BCQ ¢; otherwise, given a BCQ ¢, it holds that
DUT(G) Eqifft DUT(G)UT(G) [g, i.e., we answer ¢ by ignoring the negative
constraints. The next lemma follows immediately.

Lemma 2. Consider a Lean UCD G, a BCQ q over Rg, and a database D for
Rg. Then, DUG = q iff (1)) DUT(G)UT2(G) = q or (ii) there exists v € 13(G)
such that DU (G) UT2(G) = qu.

By combining Lemmas[Iland 2] we immediately get the following useful technical
result, which implies that query answering under Lean UCDs can be reduced
to query answering under guarded TGDs, and thus chase-like techniques and
existing complexity results can be employed.

Corollary 1. Consider a Lean UCD G, a BCQ q over Rg, and a database D
for Rg. If D = 12(G), then DUG = q iff (i) DUT(G) |= q or (i) there exists
v € 13(G) such that DUT(G) E q,.

Complexity of Query Answering. We are now ready to investigate the com-
plexity of BCQAns under Lean UCDs. Before we proceed further, let us analyze
the complexity of the problem of deciding whether a database violates the set
of EGDs obtained from a Lean UCD.

Lemma 3. Consider a Lean UCD G, and a database D for Rg. The problem
of deciding whether D [~ 12(G) is feasible in PTIME if G is fized, and in NP in
general.

Querying UML Class Diagrams 19

C

CLIZTI
G,Q:Tz
CL3:C

Fig. 11. The construction in the proof of Theorem

Proof. 1t is possible to show that a database D’ and a set of BCQs @ can be
constructed in PTIME such that D }= 75(G) iff D’ = ¢, for some ¢ € Q. The
database D’ is constructed by adding to D an atom neg(c1,c2), for each pair
(c1,co) of distinct constants occurring in D, where neg is an auxiliary binary
predicate not occurring in Rg. Clearly, the number of atoms that we need to
add in D is at most n?, where n is the number of constants occurring in D, and
thus D’ can be constructed in polynomial time. The set Q of BCQs is defined as
follows. For each EGD VX ¢(X) — X; = X of (G), in @ there exists a BCQ
p < ©(X), neq(X;, X;), where p is a 0-ary auxiliary predicate. Clearly, Q) can be
constructed in linear time. Clearly, by construction, D £ 72(G) iff D’ | ¢, for
some ¢ € (). Since the evaluation of a BCQ over a database is feasible in ACq if
the query is fixed [43], and in NP in general [19], the claim follows.

We continue to investigate the data complexity of BCQAns under Lean UCDs;
recall that the data complexity is calculated by considering only the database
as part of the input, while the query and the diagram are considered fixed.

Theorem 3. BCQAns wunder Lean UCDs is PTIME-complete w.r.t. data
complexity.

Proof. By Corollary [l given a Lean UCD G, a BCQ ¢ over Rg, and a database
D for Rg, we can decide whether D U G = ¢ by applying the following simple
algorithm: (1) if D = 75(G), then answer yes; (2) if DU (G) = ¢, then answer
yes; (3) if there exists v € 73(G) such that D U 11(G) = ¢v, then answer yes;
(4) answer no. Since the diagram is fixed, Lemma B implies that the first step
can be carried out in PTIME. Recall that 71 (G) is a set of guarded TGDs. Since,
by Theorem 2 BCQAns under guarded TGDs is feasible in PTIME w.r.t. data
complexity, the claimed upper bound follows.

Let us now establish the PTIME-hardness of the problem under consideration.
The proof is by reduction from Path System Accessibility (PSA) which is PTIME-
hard [27]. An instance of PSA is a quadruple (N, E, S,t), where N is a set of
nodes, E C N x N x N is an accessibility relation (its elements are called edges),
S C N is a set of source nodes, and t € N is a terminal node. The question is
whether ¢ is accessible, where a node v € N is said to be accessible if v € S or
there exist accessible nodes v1 and vy s.t. (v,v1,v2) € E.

20 A. Cali et al.

Let G be the Lean UCD depicted in Figure [IIl which contains also the addi-
tional rule VX T1(X) A To(X) — C(X). Clearly, 7(G) is constituted by

Oll\V/X,Y C(X)/\al()—>T1(Y)
o2 VX, Y C(X) Nax(X,Y) = Ta(Y)
o3 : VX, Y C(X)/\ad(X Y)— C(Y)

o4 : VX Tl(X)/\TQ()—)C()

For the construction of the database D we make use of the nodes and the edges
of N and E, respectively, as constants. In particular, the domain of D is the set
of constants {¢, | v € N}U{c. | e € E}. Foranode v € N, let €Y,...,el, where
n > 0, be all edges of E that have v as their first component (the order is not
relevant). The database D contains, for each node v € N, the following atoms:

— ag(cey, ¢v) and ag(cey, ,, cep), for each i € [n —1],
— a1(Cu, cer) and az(cw, cev), where ef = (v, u,w), for each i € [n].

In addition, D contains an atom C(c,) for each v € S. Finally, let ¢ be the BCQ
p < C(ct). Intuitively speaking, 71 keeps all the edges (v1,v2,v3) where vy is
accessible, T keeps all the edges (v, v2,v3) where vs is accessible, and C keeps
all the nodes which are accessible, and also all the edges (v1, v, v3) where vy is
accessible. Let us say that the above construction is similar to a construction
given in [I7], where the data complexity of query answering under description
logics is investigated. It is easy to verify that G, D and ¢ can be constructed in
LOGSPACE. Moreover, observe that only the database D depends on the given
instance of PSA, while the diagram and the query are fixed. It remains to show
that ¢ is accessible iff D UG [¢, or, equivalently, chase(D,7(G)) | q. For
brevity, in the rest of the proof, a constant c¢,, where x is either a node of N or
an edge of F, is denoted as .

(=) Suppose first that t is accessible. It is possible to show, by induction
on the derivation of accessibility, that if a node v € N is accessible, then
chase(D,7(G)) = qv, where g, is the BCQ p < C(v).

Base Step. Suppose that v € S. By construction, C(v) € D, and thus

chase(D,7(G)) E qo.

Inductive Step. Clearly, there exists an edge (v, v1,v2) € E, where both v; and
v are accessible. By induction hypothesis, both atoms C(v1) and C(v2) belong
to chase(D,7(G)). Let eq, ..., e, be the edges of F that have v as their first com-
ponent, where e, = (v,v1,v2); assume the same order used in the construction
of the database D. Since the atoms aq(v1,e,) and as(ve, e,) belong to D, and
chase(D,1(G)) E 7(G), the atoms T (e,,) and Ta(e,,) belong to chase(D, 7(G)).
Therefore, due to the TGD o4, C(ey,) € chase(D,7(G)). Now, by exploiting the
atoms {az(eir1,€i)}iepn—1) C D and the TGD o3, it is easy to show that the
atom C/(eq) belongs to chase(D, 7(G)). Finally, since as(e1,v) € chase(D, 7(G)),
we get that C'(v) € chase(D, 7(G)). Consequently, chase(D,7(G)) = ¢o-

(«=) Suppose now that chase(D,7(G)) = q. We need to show that ¢ is accessi-
ble. We are going to show that, for each v € N, if C(v) € chase(D,7(G)), then v

Querying UML Class Diagrams 21

Clu) ai(ur,en) Clu) ai(upe,)

SV

Ti(en) Tx(en)

S A

C(En) a3(emen—l)

C(Ez) (l3(62,61)
o3 o3
Cley) as(er,v)
o3 o3

Cv)

Fig. 12. The chase derivation in the proof of Theorem [3]

is accessible. Observe that the only way to obtain C(v) during the construction
of the chase is as depicted in Figure Since C(u1) and C(us) are database
atoms, by construction, both u; and uy belong to S, and thus they are accessi-
ble. Since e,, = (w, u1,us2), we immediately get that w is accessible. But observe
that w = v, and hence v is accessible. This completes the proof.

We conclude this subsection by investigating the combined complexity of
BCQAns under Lean UCDs; recall that the combined complexity is calculated
by considering, apart from the database, also the query and the diagram as part
of the input. As we shall see, query answering under Lean UCDs can be re-
duced to query answering under guarded TGDs of bounded arity, and thus (by
Theorem [2)) we get an EXPTIME upper bound.

Theorem 4. BCQAns wunder Lean UCDs is in EXPTIME w.r.t. combined
complexity.

Proof. As already discussed in the proof of Theorem [3] given a Lean UCD G, a
BCQ ¢ over Rg, and a database D for Rg, we can decide whether DU G = ¢
by applying the following simple algorithm: (1) if D & 72(G), then answer yes;
(2) it DUT(G) = g, then answer yes; (3) if there exists v € 73(G) such that
DU (9) E qu, then answer yes; (4) answer no. By Lemma [3] we get that the
first step can be carried out in NP. Now, in order to show that steps (2) and
(3) can be carried out in EXPTIME, we are going to show that the problem of
answering a BCQ under the set 71(G) can be reduced to query answering under
a set of guarded TGDs of bounded arity, which is in EXPTIME (by Theorem [2]).
Any TGD of 7(G) which has one of the following forms is called harmless:

VX17' . 7Xn A(Xla . aXn) - CI(X1)7' . 7Cn(Xn)7
VX1, XY AKX, X)) AP (X, X, V) — Ca(Y),

VX1, X A(X1s ey X)) — 3207 (X0, o X, Z),
\V/Xl,...,Xn A(Xh,Xn) —>A/(X17...,Xn).

22 A. Cali et al.

Let X, be the set of harmless TGDs of 71(G). It is not difficult to see that, for
every BCQ p over Rg, DUT1(G) = p iff chase(chase(D, X3), m(G) \ 1) E p,
where chase(D, X)), is the (finite) database obtained by freezing chase(D, X},),
i.e., by replacing each null of I'y occurring in chase(D, X) with a fresh constant
of I'. Now, observe that atoms of the form f(c1,...,c,) are necessarily database
atoms since the predicate f does not occur in the head of any of the TGDs
of 71(G). Therefore, whenever a TGD of the form VX, Yy,..., Y., Z C(X) A
f(X,Y1,....Ym, Z2) - (Y1), ..., T (Yin), T(Z) is applied during the chase,
the variable X is mapped (via a homomorphism) to a constant. Thus, for each
database atom f(c1,...,Cm+2), we can replace the above rule with the rule
Cler) = Ti(e2)y oy Tm(em+1), T (cm+2)- Let X be the set obtained by applying
the above transformation on the set 71 (G) \ Xj. It holds that, DU (G) = p iff
chase(chase(D, Xy,), X) [= p, for every BCQ p over Rg. It is not difficult to see
that X is a set of guarded TGDs of bounded arity, and the claim follows.

Notice that the above theorem does not provide tight combined complexity
bounds for the problem of query answering under Lean UCDs. The exact bound
is currently under investigation, and the results will be presented in an upcoming
work. Preliminary findings can be found in an online manuscriptt.

Interestingly, both the data and combined complexity of query answering un-
der Lean UCDs can be reduced by applying further restrictions. In particular,
this can be achieved by assuming that each attribute and operation is associ-
ated to a unique class, i.e., different classes have disjoint sets of attributes and
operations, and also an association A with an association class C'4 does not
generalize some other association A’. These assumptions allow us to establish
the following: given a diagram G, a BCQ ¢ over Rg, and a database D for Rg,
there exists a set X' of multi-linear TGDs over a schema R, where each predicate
of R has bounded arity, such that D U 7(G) | ¢ iff DU X [¢; recall that a
multi-linear TGD is a guarded TGD where each body-atom is a guard. Since
query answering under multi-linear TGDs is in ACy w.r.t. data complexity and
NP-complete in the case of bounded arity [I1], we immediately get that query
answering under Lean UCDs that satisfy the above assumptions is in ACy w.r.t.
data complexity and NP-complete w.r.t. combined complexity.

5 Discussion and Future Work

In this work, we have studied the problem of query answering under UML class
diagrams (UCDs) by relating it to the problem of query answering under guarded
Datalog®. In particular, we have identified an expressive fragment of UCDs,
called Lean UCD, under which query answering is PTIME-complete w.r.t. data
complexity and in EXPTIME w.r.t. combined complexity.

In the immediate future we plan to investigate expressive, but still tractable,
extensions of Lean UCD with additional constructs such as stratified negation.

5 http://dl.dropbox.com/u/3185659/uml . pdf

http://dl.dropbox.com/u/3185659/uml.pdf

Querying UML Class Diagrams 23

Moreover, we are planning to investigate the problem of query answering under
Lean UCDs by considering only finite instantiations. This is an interesting and
important research direction since, in practice, it is natural (for obvious reasons)
to concentrate only on finite instances of a system.

Reasoning on UCDs by considering only finite instantiations has been studied
first by Cadoli et al. [9] by building on results of Lenzerini and Nobili [32] estab-
lished for the Entity-Relationship model. In particular, [9] proposes an encoding
of satisfiability of UCDs under finite instantiations into a constraint satisfaction
problem, showing that satisfiability of UCDs under finite instantiations is EX-
PTIME-complete. Later, more efficient algorithms based on linear programming
were presented by Maraee and Balaban for specific instances of the problem [35].
Recently, Queralt et al. [38] extended the results of [9] to cope with a restricted
form of OCL constraints, called OCL-Lite, and shown that satisfiability of UCDs
and OCL-Lite constraints under finite instantiations is EXPTIME-complete.

An important notion related to query answering under UCDs and OCL
constraints is the so-called finite controllability. A class of UCDs C (possibly
with OCL constraints) is finitely controllable if the following holds: given a
diagram G that falls in C, an instance D of the system modeled by G, and a
query ¢, DUG = qiff DUG =g, g, i.e., g is entailed by D U G under arbitrary
instantiations iff it is entailed by D U G under finite instantiations only. It is
worthwhile to remark that by forbidding functional participation Lean UCD is
finitely controllable. This is a consequence of the fact the guarded fragment of
first-order logic, and thus guarded Datalog®, is finitely controllable [5].

Acknowledgements. This research has received funding from the European
Research Council under the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement DIADEM no. 246858 and
from the Oxford Martin School’s grant no. LC0910-019.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments
of predicate logic. J. Philosophical Logic 27, 217-274 (1998)

2. Artale, A., Calvanese, D., Ibanez-Garcia, Y.A.: Full Satisfiability of UML Class
Diagrams. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER
2010. LNCS, vol. 6412, pp. 317-331. Springer, Heidelberg (2010)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artificial Intelligence Res. 36, 1-69 (2009)

4. Baget, J.-F., Leclere, M., Mugnier, M.-L., Salvat, E.: On rules with existential
variables: Walking the decidability line. Artif. Intell. 175(9-10), 16201654 (2011)

5. Bérany, V., Gottlob, G., Otto, M.: Querying the guarded fragment. In: Proc. of
LICS, pp. 1-10 (2010)

6. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73-85. Springer, Heidelberg
(1981)

7. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1-2), 70-118 (2005)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Cali et al.

. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using

constraint programming. In: Proc. of ICSTW, pp. 73-80 (2008)

. Cadoli, M., Calvanese, D., De Giacomo, G., Mancini, T.: Finite Model Reasoning

on UML Class Diagrams Via Constraint Programming. In: Basili, R., Pazienza,
M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 36-47. Springer, Heidelberg
(2007)

Cali, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering un-
der expressive relational constraints. In: Proc. of KR, pp. 70-80 (2008); Extended
version available from the authors

Cali, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. In: Proc. of PODS, pp. 77-86 (2009);
To appear in the J. of Web Semantics

Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A fam-
ily of logical knowledge representation and query languages for new applications.
In: Proc. of LICS, pp. 228-242 (2010)

Cali, A., Lembo, D., Rosati, R.: On the decidability and complexity of query an-
swering over inconsistent and incomplete databases. In: Proc. of PODS, pp. 260—
271 (2003)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385-429 (2007)

Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. PODS, pp. 149-158 (1998)

Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Proc. of IJCAI, pp. 155-160 (2001)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR, pp. 260-270 (2006)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Conceptual
Modeling for Data Integration. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu,
E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600,
pp. 173-197. Springer, Heidelberg (2009)

Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. of STOCS, pp. 77-90 (1977)

Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: a taxon-
omy. IEEE Software 7(1), 13-17 (1990)

Chimia-Opoka, J., Felderer, M., Lenz, C., Lange, C.: Querying UML models using
OCL and Prolog: A performance study. In: Proc. of ICSTW, pp. 81-88 (2008)
Deutsch, A., Nash, A., Remmel, J.B.: The chase revisisted. In: Proc. of PODS, pp.
149-158 (2008)

Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artif. Intell. 124, 87-138
(2000)

Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An Overview of RoZ: A Tool for Inte-
grating UML and Z Specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 417-430. Springer, Heidelberg (2000)

Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comput. Sci. 336(1), 89-124 (2005)

Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. System Sci. 18(2), 194-211 (1979)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Querying UML Class Diagrams 25

Gogolla, M., Biittner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. of Computer Progr. 69(1-3), 27-34 (2007)
Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167-189 (1984)
Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted
UML class diagrams. Theor. Comput. Sci. 411(2), 301-323 (2010)

Krotzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclic-
ity and guardedness. In: Proc. of IJCAI, pp. 963-968 (2011)

Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Inf. Syst. 15(4), 453-461 (1990)

Lutz, C.: The Complexity of Conjunctive Query Answering in Expressive Descrip-
tion Logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNATI), vol. 5195, pp. 179-193. Springer, Heidelberg (2008)

Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455-469 (1979)

Maraee, A., Balaban, M.: Efficient Reasoning about Finite Satisfiability of UML
Class Diagrams with Constrained Generalization Sets. In: Akehurst, D.H., Vogel,
R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 17-31. Springer, Heidel-
berg (2007)

Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
straints. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215,
pp. 497-512. Springer, Heidelberg (2006)

Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Trans. Softw. Eng. Meth. 21(2) (2011) (in press)
Queralt, A., Teniente, E., Artale, A., Calvanese, D.: OCL-Lite: Finite reasoning
on UML/OCL conceptual schemas. Data and Know. Eng. (2011) (in press)
Richters, M., Gogolla, M.: OCL: Syntax, Semantics, and Tools. In: Clark, A.,
Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 447-450.
Springer, Heidelberg (2002)

Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Meth. 15, 92-122 (2006)

Storrle, H.: A PROLOG-based approach to representing and querying software
engineering models. In: Proc. of VLL, pp. 71-83 (2007)

Vardi, M.Y.: The complexity of relational query languages. In: Proc. of STOC, pp.
137-146 (1982)

Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS,
pp- 266—276 (1995)

Bicategories of Concurrent Games
(Invited Paper)

Glynn Winskel

University of Cambridge Computer Laboratory, England
Glynn.Winskel@cl.cam.ac.uk
http://www.cl.cam.ac.uk/users/gwl04

Abstract. This paper summarises recent results on bicategories of
concurrent games and strategies. Nondeterministic concurrent strategies,
those nondeterministic plays of a game left essentially unchanged by
composition with copy-cat strategies, have recently been characterized
as certain maps of event structures. This leads to a bicategory of gen-
eral concurrent games in which the maps are nondeterministic concurrent
strategies. It is shown how the bicategory can be refined to a bicategory of
winning strategies by adjoining winning conditions to games. Assigning
“access levels” to moves addresses situations where Player or Opponent
have imperfect information as to what has occurred in the game. Finally,
a bicategory of deterministic “linear” strategies, a recently discovered
model of MALL (multiplicative-additive linear logic), is described. All
the bicategories become equivalent to simpler order-enriched categories
when restricted to deterministic strategies.

Keywords: Games, strategies, concurrency, event structures, winning
conditions, determinacy.

1 Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, leisure and in life. As abundant, but much less understood, are
concurrent games in which a Player (or team of players) compete against an
Opponent (or team of opponents) in a highly interactive and distributed fash-
ion, especially when we recognize that the dichotomy Player vs. Opponent has
several readings, as for example, process vs. environment, proof vs. refutation,
or more ominously as ally vs. enemy. This paper summarises recent results on
the mathematical foundations of concurrent games. It describes what it means
to be a concurrent game, a concurrent strategy, a winning strategy, a concurrent
game of imperfect information, and a linear strategy, and generally illustrates
the rich mathematical structure concurrency brings to games.

Our primary motivation has come from the semantics of computation and
the role of games in logic, although games are situated at a crossing point of
several areas. In semantics it is becoming clear that we need an intensional
theory to capture the ways of computing, to near operational and algorithmic

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 26—, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www.cl.cam.ac.uk/users/gw104

Concurrent Games 27

concerns. Sometimes unexpected intensionality is forced through the demands of
compositionality, e.g. in nondeterministic dataflow [I]. More to the point we need
to repair the artificial division between denotational and operational semantics.
But what is to be our fundamental model of processes? Game semantics provides
a possible answer: strategies. (There are others, e.g. profunctors as maps between
presheaf categories [213].) Meanwhile in logic the well-known Curry-Howard
correspondence “propositions as types, proofs as programs” is being recast as
“propositions as games, proofs as strategies.”

However, in both semantics and logic, traditional definitions of strategies and
games are not general enough: they do not adequately address the concurrent
nature of computation and proof—see e.g. [4]. Game semantics has developed
from simple sequential games, where only one move is allowed at a time and, for
instance, it is often assumed that the moves of Player and Opponent alternate.
Because of its history it is not obvious how to extend traditional game semantics
to concurrent computation, or what relation it bears to other generalised domain
theories such as those where domains are presheaf categories [23]. It is time
to build game semantics on a broader foundation, one more squarely founded
within a general model for concurrent processes. The standpoint of this paper
is to base games and strategies on event structures, the analogue of trees but in
a concurrent world; just as transition systems, an “interleaving” model, unfold
to trees so do Petri nets, a “concurrent” model, unfold to event structures.
In doing so we re-encounter earlier work of Abramsky and Mellies, first in their
presentation of deterministic concurrent strategies as closure operators, and later
in Mellies programme of asynchronous games, culminating in his definition with
Mimram of ingenuous strategies; a consequence of the work described here is a
characterization of Mellies and Mimram’s receptive ingenuous strategies [5] as
precisely those deterministic pre-strategies for which copy-cat strategies behave
as identities.

Our slogan: processes are nondeterministic concurrent strategies. For method-
ology we adopt ideas of Joyal who recognized that there was a category of games
underlying Conway’s construction of the “surreal numbers” [6/7]. Like many 2-
party games Conway’s games support two important operations: a form of paral-
lel composition G||H; a dualizing operation G- which reverses the roles of Player
and Opponent in G. Joyal defined a strategy o from a game G to a game H, to be
a strategy o in G| H. Following Conway’s method of proof, Joyal showed that
strategies compose, with identities given by copy-cat strategies.

We shall transport the pattern established by Joyal to a general model for con-
current computation: games will be represented by event structures and strategies
as certain maps into them. The motivation is to obtain: forms of generalised do-
main theory in which domains are replaced by concurrent games and continuous
functions by nondeterministic concurrent strategies; operations, including higher-
order operations via “function spaces” G| H, within a model for concurrency;
techniques for logic (via proofs as concurrent strategies), and possibly verification
and algorithmics. However, first things first, here we will concentrate on the rich

28 G. Winskel

algebra of concurrent strategies. Most proofs and background on stable families,
on which proofs often rely, can be found in [§].

2 Event Structures

An event structure comprises (E, Con, <), consisting of a set E, of events which
are partially ordered by <, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e' | ¢’ < e} is finite for all e € E,
{e} € Con for all e € E,

Y CXeCon = Y € Con, and
XeCm&e<e eX = XU{e} e Con.

The configurations, C*°(E), of an event structure E consist of those subsets
x C E which are

Consistent: VX C x. X is finite = X € Con, and
Down-closed: Ve,e'. ¢! <ecx =— ¢ €.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(F) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation
of immediate dependency e — ¢’, meaning e and ¢’ are distinct with e < €’
and no event in between, will play a very important role. For X C FE we write
[X] for {e € E'| 3¢’ € X. e < €'}, the down-closure of X; note if X € Con, then
[X] € Con.

Notation 1. Let E be an event structure. We use z—Cy to mean y covers x
e

in C*(FE), i.e. Cyin C*°(E) with nothing in between, and x—cC y to mean

zU{e} =y for z,y € C®(E) and event e ¢ x. We sometimes use x—eC,

e
expressing that event e is enabled at configuration z, when x—C y for some .

2.1 Maps of Event Structures

Let E and E’ be event structures. A (partial) map of event structures f : E — E’
is a partial function on events f : E — E’ such that for all x € C(FE) its direct
image fz € C(E’) and

if e1,e2 € x and f(e1) = f(e2) (with both defined), then e; = es.

The map expresses how the occurrence of an event e in F induces the coincident
occurrence of the event f(e) in E’ whenever it is defined. Partial maps of event
structures compose as partial functions, with identity maps given by identity
functions.

Concurrent Games 29

For any event e a map of event structures f : E — E’ must send the con-
figuration [e] to the configuration f[e]. Partial maps preserve the concurrency
relation, when defined.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from
x is injective; the restriction of f to a function from z to fz is thus bijective.
A partial map of event structures which preserves causal dependency whenever
it is defined, i.e. ¢’ < e implies f(e’) < f(e) whenever both f(e') and f(e) are
defined, is called partial rigid. We reserve the term rigid for those total maps of
event structures which preserve causal dependency.

2.2 Process Operations

Products. The category of event structures with partial maps has products
A x B with projections IT; to A and I15 to B. The effect is to introduce arbitrary
synchronisations between events of A and events of B in the manner of process
algebra.

Restriction. The restriction of an event structure E to a subset of events R,
written E | R, is the event structure with events £/ = {e € E | [¢] C R} and
causal dependency and consistency induced by F.

Synchronized Compositions and Pullbacks. Synchronized compositions
play a central role in process algebra, with such seminal work as Milner’s CCS
and Hoare’s CSP. Synchronized compositions of event structures A and B are
obtained as restrictions A x B [R. We obtain pullbacks as a special case. Let
f:A— C and g: B — C be maps of event structures. Defining

P =4t Ax B|{p€AxB| fII(p) = gIlz(p) with both defined}

we obtain a pullback square
P
2N
A B
C

in the category of event structures. When f and g are total the same construction
gives the pullback in the category of event structures with total maps.

30 G. Winskel

2.3 Projection

Let (E, <,Con) be an event structure. Let V' C E be a subset of ‘visible’ events.
Define the projection of E on V, to be ElV =g4¢t (V, <y, Cony), where v <y
vifo<v &v,v €V and X € Cony if X €eCon & X C V.

3 Event Structures with Polarities

Both a game and a strategy in a game are to be represented as an event struc-
ture with polarity, which comprises (E, pol) where E is an event structure with
a polarity function pol : E — {4+, —} ascribing a polarity + (Player) or — (Op-
ponent) to its events. The events correspond to (occurrences of) moves. Maps
of event structures with polarity are maps of event structures which preserve
polarity.

3.1 Operations

Dual. The dual, E*, of an event structure with polarity E comprises a copy of
the event structure F but with a reversal of polarities.

Simple Parallel Composition. The operation A||B simply forms the disjoint
juxtaposition of A, B, two event structures with polarity; a finite subset of events
is consistent if its intersection with each component is consistent.

4 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand
for the possible occurrences of moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.
A pre-strategy represents a nondeterministic play of the game—all its moves
are moves allowed by the game and obey the constraints of the game; the con-
cept will later be refined to that of strategy (and winning strategy in Section [7).
A pre-strategy in A is defined to be a total map o : § — A from an event struc-
ture with polarity S. Two pre-strategies 0 : S — Aand 7 : T — A in A will
be essentially the same when they are isomorphic, i.e. there is an isomorphism
0 : S =T such that o = 76; then we write o = 7.

Let A and B be event structures with polarity. Following Joyal [7], a pre-
strategy from A to B is a pre-strategy in A*||B, so a total map o : S — A*||B.

It thus determines a span
S
RN
At B,

Concurrent Games 31

of event structures with polarity where o1, 05 are partial maps and for all s € S
either, but not both, o1(s) or o2(s) is defined. Two pre-strategies from A to
B will be isomorphic when they are isomorphic as pre-strategies in A*||B, or
equivalently are isomorphic as spans. We write 0 : A +B to express that o is
a pre-strategy from A to B. Note a pre-strategy o in a game A coincides with a
pre-strategy from the empty game o : § +A.

4.1 Composing Pre-strategies

We can present the composition of pre-strategies via pullbacksEI Given two pre-
strategies ¢ : S — AY||B and 7 : T — B%|C, ignoring polarities we can
consider the maps on the underlying event structures, viz. o : S — A||B and
7 : T — B|C. Viewed this way we can form the pullback in the category of
event structures
P
/ N \

S| AlT

A||BJ|C.

There is an obvious partial map of event structures A|B||C — A|C undefined
on B and acting as identity on A and C. The partial map from P to A||C given
by following the diagram (either way round the pullback square)

P
A\

S|c AT
& %
A|B|C
\

AllC

factors as the composition of the partial map P — P | V, where V is the set of
events of P at which the map P — A||C is defined, and a total map P | V —
A||C. The resulting total map gives us the composition TG0 : P |V — AL||C
once we reinstate polarities.

! The construction here gives the same result as that via synchronized composition
in [9]— I'm grateful to Nathan Bowler for this observation. Notice the analogy with
the composition of relations S C A x B, T' C B x C' which can be defined as
ToS=(SxCNAXT)] AxC, the image of S x C N A x T under the projection
of Ax BxCtoAxC.

32 G. Winskel

4.2 Concurrent Copy-Cat

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event
structure with polarity. The copy-cat strategy from A to A is an instance of
a pre-strategy, so a total map v4 : @Ca — AL||A. It describes a concurrent,
or distributed, strategy based on the idea that Player moves, of +ve polarity,
always copy previous corresponding moves of Opponent, of —ve polarity.

For ¢ € A*||A we use ¢ to mean the corresponding copy of ¢, of opposite po-
larity, in the alternative component. Define (C 4 to comprise the event structure
with polarity A~L||A together with extra causal dependencies ¢ <, ¢ for all
events ¢ with pol 41 4(c) = +.

Proposition 1. Let A be an event structure with polarity. Then event struc-
ture with polarity (Ca is an event structure. Moreover, x € C((C,) iff x €
C(A*]|A) & Ve e x. polyrjalc) =+ = cex.

The copy-cat pre-strategy v4 : A +-A is defined to be the map v4 : C4 —
AL||A where 74 is the identity on the common set of events.

Example 1. We illustrate the construction of the copy-cat strategy for the event
structure A comprising the single immediate dependency a; — as from an Op-
ponent move a; to a Player move as. The event structure (C 4 is obtained from
AL||A by adjoining the additional immediate dependencies shown:

At as © ———+D as A
A A

a; P<t-——0O aq

5 Strategies

The main result of [9] is that two conditions on pre-strategies, receptivity and in-
nocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the
composition of pre-strategies. Receptivity ensures an openness to all possible
moves of Opponent. Innocence restricts the behaviour of Player; Player may
only introduce new relations of immediate causality of the form & — & beyond
those imposed by the game.

Receptivity. A pre-strategy o is receptive iff or—C & poly(a) = — = 3Fls €
S a—c & o(s)=a.

Innocence. A pre-strategy o is innocent when it is both

+-innocent: if s — s’ & pol(s) = + then o(s) — o(s'), and

—-innocent: if s — s' & pol(s’) = — then o(s) — o(s).

Theorem 1. Let o : A +B be pre-strategy. Copy-cat behaves as identity w.r.t.

composition, i.e. govyy = o and yg oo = o, iff o is receptive and innocent.
Copy-cat pre-stategies y4 : A +=A are receptive and innocent.

Concurrent Games 33

5.1 The Bicategory of Concurrent Games and Strategies

Theorem [[l motivates the definition of a strategy as a pre-strategy which is recep-
tive and innocent. In fact, we obtain a bicategory, Games, in which the objects
are event structures with polarity—the games, the arrows from A to B are strate-
gies 0 : A + B and the 2-cells are maps of spans. The vertical composition of
2-cells is the usual composition of maps of spans. Horizontal composition is given
by the composition of strategies ® (which extends to a functor on 2-cells via the
universality of pullback).

A strategy o : A +>B corresponds to a dual strategy ot : B+ +>A'. This
duality arises from the correspondence

S —

/ \\ / S \
(B4)* AL

At B

The dual of copy-cat, 7%, is isomorphic to the copy-cat of the dual, 41, for
A an event structure with polarity. The dual of a composition of pre-strategies
(t®0)t is isomorphic to the composition o~ ®7+. This duality is maintained in
the major bicategories of games we shall consider.

One notable sub-bicategory of games, though one not maintaining duality, is
obtained on restricting to objects which comprise purely +ve events: then we
obtain the bicategory of stable spans, which have played a central role in the
semantics of nondeterministic dataflow [1].

5.2 The Subcategory of Deterministic Strategies
Say an event structure with polarity S is deterministic iff
VX Chn S. Neg[X] € Cong = X € Cong,

where Neg[X]| =ger {s' € S | pol(s’) = — & Is € X. s’ < s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends only
on a consistent set of opponent moves. Say a strategy o : § — A is deterministic
if S is deterministic.

Lemma 1. An event structure with polarity S is deterministic iff

’

Vs, s’ € S,z € C(S). r—C & a—C & pol(s) =+ = zU{s,s'} € C(9).
In general, a copy-cat strategy can fail to be deterministic, illustrated below.

Example 2. Take A to consist of two events, one +ve and one —ve event, incon-
sistent with each other (indicated by the wiggly line). The construction (C 4:

At 6—-——+ ¢ A

B4 —— O

34 G. Winskel

To see (C 4 is not deterministic, take = to be the singleton set consisting e.g. of
the —ve event on the left and s, s’ to be the +ve and —ve events on the right.

Copy-cat 4 is deterministic iff immediate conflict in A respects polarity, or
equivalently that there is no immediate conflict between +ve and —ve events, a
condition we call race-free.

Lemma 2. Let A be an event structure with polarity. The copy-cat strategy va
is deterministic iff A is race-free, i.e. for all x € C(A),

a—C & 1—C & pol(a) = + & pol(d’) = — = 2U{a,d’} € C(A).
Lemma 3. The composition of deterministic strategies is deterministic.

Lemma 4. A deterministic strategy o : S — A is injective on configurations
(equivalently, o is mono in the category of event structures with polarity).

We obtain a sub-bicategory DGames of Games by restricting objects to race-
free games and strategies to being deterministic. Via Lemma (] deterministic
strategies in a game correspond to certain subfamilies of configurations of the
game. A characterization of those subfamilies which correspond to deterministic
strategies shows them to coincide with the receptive ingenuous strategies of Mim-
ram and Mellies [5]. This work grew out of Abramsky and Mellies early work
in which deterministic concurrent strategies are presented, essentially, as partial
closure operators on the domain of configurations of an event structure [4]. Via
the presentation of deterministic strategies as families DGames is equivalent
to an order-enriched category. There are notable subcategories: when the ob-
jects are countable event structures with polarity which consist of purely +ve
events we recover as a full subcategory the classical category of stable domain
theory, viz. Berry’s dl-domains and stable functions; this in turn has Girard’s
qualitative domains and coherence spaces, both with stable functions, as full
subcategories [10]. The category of simple games [I1/12], underlying both HO
and AJM games, is a subcategory, though not full.

6 From Strategies to Profunctors

Let x and 2’ be configurations of an event structure with polarity. Write z C*
' to mean x C 2’ and pol(z’ \ z) C {+}, i.e. the configuration =’ extends
the configuration x solely by events of +ve polarity. Similarly z C~ 2’ means
configuration =’ extends x solely by events of —ve polarity. With this notation
in place we can give an attractive characterization of concurrent strategies:

Lemma 5. A strategy S in a game A comprises a total map of event structures
with polarityo : S — A such that

Concurrent Games 35

(i) whenever y C ox in C(A) there is a (necessarily unique) ' € C(S) so that
o Cx & or' =y, iec

8
N
RS

and
(i) whenever ox C~ y in C(A) there is a unique ' € C(S) so that x C
' & ox' =y, ie.

x c o
g o
Y \%

oxr <y

The above lemma tells us how to form a discrete fibration, so presheaf, from a
strategy. For A, an event structure with polarity, we can define a new order, the
Scott order, between configurations x,y € C*°(A), by

zlay <= xQ‘xﬁyQ*’y.

Proposition 2. Leto : S — A be a pre-strategy in game A. The map o“ taking a
finite configuration x € C(S) to ox € C(A) is a discrete fibration from (C(S),Cg)
to (C(A),C4) iff o is a strategy.

As discrete fibrations correspond to presheaves, an alternative reading of Propo-
sition[2is that a pre-strategy o : S — A is a strategy iff ¢ determines a presheaf
over (C(A),C4).

Consequently, a strategy o : A +B determines a discrete fibration over
(C(A*[|B),E 4y p)- But

(C(AM||B),Caryp) = (C(AY), Ear)x (C(B),Cr) = (C(A),C)® x (C(B),CBp),
so o determines a presheaf over (C(A),C4)°P x (C(B),Cp), i.e. a profunctor
o+ (C(4),C4) +(C(B),Cp).

The operation ¢“, on a strategy o, forms a laz functor from Games to Prof,
the bicategory of profunctors: whereas it preserves identities, it is not the case
that (7G0)“ and 7“0 “ coincide up to isomorphism; the profunctor composition
7“0 o “ will generally contain extra “unreachable” elements.

However, in special cases composition is preserved up to isomorphism. Say a
strategy o is partial rigid when the components o1, o5 are partial-rigid maps of
event structures (with polarity). Partial-rigid strategies form a sub-bicategory
of Games—see Section @l For composable partial-rigid strategies o and 7 we do
have (TGO0)“ 22 7“0 ¢ “. Stable spans and simple games lie within the bicategory
partial-rigid strategies.

36 G. Winskel
7 Winning Strategies

A game with winning conditions comprises G = (A, W) where A is an event
structure with polarity and W C C*(A) consists of the winning configurations
for Player. We define the losing conditions to be C*(A) \ wh

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy ¢ : S — Ain G
is winning (for Player) if ox € W for all +-maximal configurations z € C*>°(S)—

a configuration z is +-maximal if whenever x—sC then the event s has —ve
polarity. Any achievable position z € C*°(.S) of the game can be extended to a +-
maximal, so winning, configuration (via Zorn’s Lemma). So a strategy prescribes
Player moves to reach a winning configuration whatever state of play is achieved
following the strategy. Note that for a game A, if winning conditions W =C>°(A4),
i.e. every configuration is winning, then any strategy in A is a winning strategy.

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose ¢ : S — A is a strategy in a game (A, W). A counter-strategy
is strategy of Opponent, so a strategy 7 : T — AL in the dual game. We
can view o as a strategy o :) +~A and 7 as a strategy 7 : A +({. Their
composition 7O0 : @ +=0 is not in itself so informative. Rather it is the status
of the configurations in C*°(A) their full interaction induces which decides which
of Player or Opponent wins. Ignoring polarities, we have total maps of event
structures 0 : S — A and 7 : T — A. Form their pullback,

P
o
S

Y
T

A
A4,
to obtain the event structure P resulting from the interaction of o and 7. Because
o or T may be nondeterministic there can be more than one maximal configura-
tion z in C*°(P). A maximal configuration z in C*>°(P) images to a configuration
olliz = Tll3z in C*(A). Define the set of results of the interaction of o and 7
to be

(0,7) =det {01112 | z is maximal in C*°(P)}.

It can be shown that a strategy o is a winning for Player iff all the results of
the interaction (o, 7) lie within the winning configurations W, for any counter-
strategy 7 : T'— AL of Opponent.

2 It is fairly straightforward to generalize to the situation where configurations may
be neutral, neither winning nor losing [13/§].

Concurrent Games 37

7.1 Operations

There is an obvious dual of a game with winning conditions G = (A, W¢):
Gt = (Alv COO(A) \ WG))

reversing the role of Player and Opponent, and consequently that of winning
and losing conditions.
The parallel composition of two games with winning conditions G = (A, Wg),
H=(B,Wg) is
G B H =qet (A|B, Wann)

where, for x € C*(A|B),
x € Wanyg i 21 € Wg or 29 € Wy

—a configuration x of A||B comprises the disjoint union of a configuration z; of
A and a configuration x5 of B. To win in G % H is to win in either game. The
unit of || is (0, 0). Defining G ® H =ge (GH||[HL)* we obtain a game where to
win is to win in both games G and H. The unit of ® is (0, {0}).

Defining G — H =q¢f G+ % H, a win in G — H is a win in H conditional on
a win in G: For x € C*(A*| B),

r€EWqgog iff 1 €Wg — 29 € Wgy.

7.2 The Bicategory of Winning Strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G — H. We compose strategies as before.
The composition of winning strategies is winning. However, for a general game
with winning conditions (A, W) the copy-cat strategy need not be winning, as
shown in the following example.

Example 3. Let A be the event structure with polarity of Example 21 Take as
winning conditions the set {{&}}. To see (C4 is not winning consider the con-
figuration x consisting of the two —ve events in (C 4. Then x is +-maximal as
any +ve event is inconsistent with x. However, x; € W while zo ¢ W, failing
the winning condition of (A, W) —o (A, W).

Recall from Section[6, that each event structure with polarity A possesses a Scott
order on its configurations C*(A): 2/ C z iff 2’ D~ zNa’ CT z. With it we
can express a necessary and sufficient for copy-cat to be winning w.r.t. a game
(A, W):

Vo, 2’ € C*(A). if 2’ Cx & 2’ is +-maximal & z is —maximal,

, (Cwins)
then zeW = ' e W.

38 G. Winskel

The condition (Cwins) is assured for event structures with polarity which are
race-free.

We can now refine the bicategory of strategies Games to the bicategory
WGames with objects games with winning conditions G, H,--- satisfying
(Cwins) and arrows winning strategies G +-H; 2-cells, their vertical and hori-
zontal composition are as before. Its restriction to deterministic strategies yields
a bicategory equivalent to a simpler order-enriched category.

7.3 Applications

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent [I4T1]—see [§] for details. Often problems can be reduced to
whether Player or Opponent has a winning strategy, for which it is important
to know when concurrent games are determined, i.e. either Player or Opponent
has a winning strategy. As a first step, well-founded, race-free concurrent games
have now been shown to be determined and have been applied to give a concur-
rent game semantics to predicate logic [8/I5]. (A game A is well-founded if all
configurations in C*°(A) are finite.) The game semantics extends to Hintikka’s
“independence-friendly” logic, using ideas of the next section to associate ‘levels’
with quantified variables.

8 Imperfect Information

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of (“rock”), s (“scissors”) or p (“paper”).
The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP, the event structure with
polarity

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1,r2}, {p1, 82}, {r1,p2}

and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a

Concurrent Games 39

dominant move. Explicitly, the winning strategy ¢ : S — RSP is given as the
obvious map from S, the following event structure with polarity:

/rl@s\ N
$19qc Dprg j@gz\

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible
to both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

We can extend concurrent games to games with imperfect information. To do
so in way that respects the operations of the bicategory of games we suppose a
fixed preorder of levels (A, <). The levels are to be thought of as levels of access,
or permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

A A-game (G,l) comprises a game G = (A, W) with winning conditions to-
gether with a level function | : A — A such that

a<asd = l(a) 21(a)

for all a,a’ € A. A A-strategy in the A-game (G,!) is a strategy o : S — A for
which
s<gs = lo(s) Xlo(s)

for all s,8" € S.

For example, for “rock, scissors, paper” we can take A to be the discrete
preorder consisting of levels 1 and 2 unrelated to each other under <. To make
RSP into a suitable A-game the level function [takes +ve events in RSP to level
1 and —ve events to level 2. The strategy above, where Player awaits the move
of Opponent then beats it with a dominant move, is now disallowed because it is
not a A-strategy—it introduces causal dependencies which do not respect levels.
If instead we took A to be the unique preorder on a single level the A-strategies
would coincide with all the strategies.

Fortunately the introduction of levels meshes smoothly with the bicategorical
structure on games. For A-games (G,lg) and (H,ly), define the dual (G,lg)*
to be (G*,1g1) where lg1 = lg, and define the parallel composition (G, lg) ¥

40 G. Winskel

(H,lg) to be (G® H,lgxm) where lgzp(a) =lg(a) for a € G, lgzu(b) = 1y (D)
forbe H.

A A-strategy between A-games from (G,lg) to (H,lmg) is a strategy in
(G,lg)* B (H,ly). Let (G,lg) be a A-game where G satisfies (Cwins). The
copy-cat strategy on G is a A-strategy. The composition of A-strategies is a
A-strategy.

9 Linear Strategies

It has recently become clear that concurrent strategies support several refine-
ments. For example, define a partial-rigid strategy to be a strategy o in which
both components o1 and o9 are partial rigid. Copy-cat strategies are partial
rigid, and the composition of partial-rigid strategies is partial-rigid, so partial-
rigid strategies form a sub-bicategory of Games. We can refine partial-rigid
strategies further to linear strategies, where each +ve output event depends on
a maximum +ve event of input, and dually, a —ve event of input depends on a
maximum —ve event of output. By introducing this extra relevance, of input to
output and output to input, we can recover coproducts and products lacking in
Games.

Formally, a (nondeterministic) linear strategy is a strategy

where o1 and o9 are partial rigid maps such that

Vs € S. polg(s) = + & o2(s) is defined

—
dsg € S. polg(sg) = — & o1(s0) is defined & sp <g s &
Vs1 € S. polg(s1) = — & o1(s1) is defined & 51 <g s = s1 <g 5o

and

Vs € S. polg(s) =+ & o1(s) is defined

=
Jso € S. polg(sg) = — & 02(sp) is defined & sg <g5 s &
Vs1 € S. polg(s1) = — & o2(s1) is defined & $1 <g s = $1 <g 5¢.

Copy-cat strategies are linear and linear strategies are closed under composi-
tion. Linear strategies form a sub-bicategory Games. Its sub-bicategory Lin of
deterministic subcategories is a model of MALL (multiplicative-additive linear
logic) and a promising candidate in which to establish full-completeness—work
in progress.

Concurrent Games 41

10 Conclusion

We have summarised the main results on concurrent strategies to date
(December 2011). Two current research directions: One current is the develop-
ment of an intensional semantics of processes and proofs. But games and concur-
rent strategies form a generalized affine domain theory. Does the bicategory Lin
of deterministic linear strategies provide a fully-complete model of MALL? A next
step is to extend concurrent games to allow back-tracking via “copying” monads
in event structures with symmetry [16]. Another direction concerns the possible
application of concurrent games for which we seek stronger determinacy results.

Acknowledgments. Thanks to Silvain Rideau and my coworkers on the project
ECSYM, Pierre Clairambault and Julian Gutierrez who in particular assisted
in the Aarhus course on which this summary is based. The support of Ad-
vanced Grant ECSYM of the European Research Council is acknowledged with
gratitude.

References

1. Saunders-Evans, L., Winskel, G.: Event structure spans for nondeterministic
dataflow. Electr. Notes Theor. Comput. Sci. 175(3), 109-129 (2007)

2. Hyland, M.: Some reasons for generalising domain theory. Mathematical Structures
in Computer Science 20(2), 239-265 (2010)

3. Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation. Mathemat-
ical Structures in Computer Science 15(3), 553-614 (2005)

4. Abramsky, S., Mellies, P.A.: Concurrent games and full completeness. In: LICS
1999. IEEE Computer Society (1999)

5. Mellies, P.A., Mimram, S.: Asynchronous Games: Innocence without Alternation.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395—
411. Springer, Heidelberg (2007)

6. Conway, J.: On Numbers and Games. A K Peters, Wellesley (2000)

7. Joyal, A.: Remarques sur la théorie des jeux a deux personnes. Gazette des Sciences
Mathématiques du Québec 1(4) (1997)

8. Winskel, G.: Event structures, stable families and games. Lecture notes, Comp.
Science Dept. Aarhus University (2011), http://daimi.au.dk/~gwinskel

9. Rideau, S., Winskel, G.: Concurrent strategies. In: LICS 2011. IEEE Computer
Society (2011)

10. Girard, J.Y.: The blind spot. European Mathematical Society (2011)

11. Hyland, M.: Game semantics. In: Pitts, A., Dybjer, P. (eds.) Semantics and Logics
of Computation. Publications of the Newton Institute (1997)

12. Harmer, R., Hyland, M., Mellies, P.A.: Categorical combinatorics for innocent
strategies. In: LICS 2007. IEEE Computer Society (2007)

13. Winskel, G.: Winning, losing and drawing in games with perfect and imperfect
information. In: Festschrift for Dexter Kozen. LNCS. Springer, Heidelberg (2012)

14. Abramsky, S.: Semantics of interaction. In: Pitts, A., Dybjer, P. (eds.) Semantics
and Logics of Computation. Publications of the Newton Institute (1997)

15. Winskel, G., Gutierrez, J., Clairambault, P.: The winning ways of concurrent games
(2011) (in preparation)

16. Winskel, G.: Event structures with symmetry. Electr. Notes Theor. Comput.
Sci. 172, 611-652 (2007)

http://daimi.au.dk/~gwinskel

Fibrational Induction Meets Effects

Robert Atkey?, Neil Ghani?, Bart Jacobs', and Patricia Johann?

! Radboud University, The Netherlands
bart@cs.ru.nl
2 University of Strathclyde, Scotland
{Robert.Atkey,Neil.Ghani,Patricia.Johann}@cis.strath.ac.uk

Abstract. This paper provides several induction rules that can be used
to prove properties of effectful data types. Our results are semantic in
nature and build upon Hermida and Jacobs’ fibrational formulation of
induction for polynomial data types and its extension to all inductive
data types by Ghani, Johann, and Fumex. An effectful data type u(TF) is
built from a functor F' that describes data, and a monad 7" that computes
effects. Our main contribution is to derive induction rules that are generic
over all functors F' and monads 7" such that u(TF) exists. Along the way,
we also derive a principle of definition by structural recursion for effectful
data types that is similarly generic. Our induction rule is also generic
over the kinds of properties to be proved: like the work on which we
build, we work in a general fibrational setting and so can accommodate
very general notions of properties, rather than just those of particular
syntactic forms. We give examples exploiting the generality of our results,
and show how our results specialize to those in the literature, particularly
those of Filinski and Stgvring.

1 Introduction

Induction is a powerful principle for proving properties of data types and the
programs that manipulate them. Probably the simplest induction rule is the
familiar one for the set of natural numbers: For any property P of natural num-
bers, if PO holds, and if P(n+1) holds whenever Pn holds, then Pn holds for all
natural numbers n. As early as the 1960s, Burstall [2] observed that induction
rules are definable for various forms of tree-like data types as well. The data
types he considered can all be modelled by polynomial functors on Set, and even
today induction is most often used to prove properties of these types. But while
most treatments of induction for tree-like data types use a specific notion of
predicate, other reasonable notions are possible. For example, a predicate on a
set A is often taken by type theorists to be a function P : A — Set, by category
theorists to be an object of the slice category Set/A, and by logicians to be a
subset of A. Thus, even just for tree-like data types, induction rules are typi-
cally derived on an ad hoc basis, with seemingly different results available for
the different kinds of properties of data types and their programs to be proved.

Until fairly recently a comprehensive and general treatment of induction re-
mained elusive. But in 1998 Hermida and Jacobs [9] showed how to replace ad hoc

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 42-F1, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Fibrational Induction Meets Effects 43

treatments of induction by a unifying axiomatic approach based on fibrations. The
use of fibrations was motivated by the facts that i) the semantics of data types in
languages involving, say, non-termination usually involves categories other than
Set; ii) in such circumstances, standard set-based notions of predicates are no
longer germane; iii) even when working in Set there are many reasonable notions of
predicate (e.g., the three mentioned above); and iv) when deriving induction rules
for more sophisticated classes of data types, we do not want to have to develop a
specialised theory of induction for each one; We hope instead to appropriately in-
stantiate a single, generic, axiomatic theory of induction that is widely applicable
and abstracts over the specific choices of category, functor, and predicate giving
rise to different induction rules for specific classes of data types. Fibrations sup-
port precisely such an axiomatic approach.

Although Hermida and Jacobs derive their induction rules only for data types
modelled by polynomial functors, this result was recently extended to all induc-
tive data types — i.e., all data types that are fixed points of functors — by
Ghani, Johann, and Fumex [7l§]. Examples of non-polynomial inductive data
types include rose trees, inductive families (e.g., perfect trees), quotient types
(e.g., finite power sets), and hyperfunctions. These data types are sophisticated,
but nevertheless are still pure, i.e., effect-free. This leads us to ask:

How can we reason inductively about data types in the presence of effects?

In this situation, we are interested in effectful data structures — i.e., data struc-
tures whose constructors can perform effectful computations — and the (possibly
effectful) programs that manipulate them. Such programs can fail to terminate,
raise exceptions, alter state, perform non-deterministic computations, and so on.

Moggi’s landmark paper [I3] suggests that one way to handle effectful pro-
grams is to model effects via a monad T', where T'X represents effectful compu-
tations that return values of type X with effects described by T'. In Haskell, for
example, input/output effects are modelled by the monad I0, and we can define
the following effectful data type of I10-lists:

type IOList a I0 (IOList’ a)

IONil | IOCons a (IO (IOList’ a))

data IOList’ a

For any list of type IOList a, some I0 action must be performed to discover
whether or not there is an element at the head of the list. Additional IO actions
must be performed to obtain any remaining elements. Such a data type could be
used to read list data “on demand” from some file or input device, for instance.
Recalling that the standard append function is associative on pure lists, and
observing that standard induction techniques for lists do not apply to functions
on effectful data types, we can ask whether or not it is possible to prove by
induction that the following effectful append function is associative on 10O-lists:

appI0 :: IOList a -> IOList a -> IOList a
appl0 s t = do z <- s
case z of IONil ->t
I0Cons w u -> return (IOCons w (appI0 u t))

44 R. Atkey et al.

In fact, an even more fundamental question must first be addressed: How do
we know that appIO is well-defined? After all, it is not at all obvious that the
argument u to the recursive call of appI0 is smaller than the original input s.

More generally, we can consider effectful data types given by the following
type definitions. These generalise 10-lists by abstracting, via f, over the data
structure involved and, via m, over the monad involved.

type D fm=m (Mu f m)

data Mu f m = In (f (m (Mu f m))

We can then ask whether structural recursion can be used to define functions on
data structures of type D £ m and induction can be used to prove their properties.

Filinski and Stevring [5] provide partial answers to these questions. Taking
types to be interpreted in the category CPO of w-complete partial orders and
total continuous functions, and taking a predicate to be an admissible subset of
a CPO, they give a mathematically principled induction rule for establishing the
truth of predicates for effectful strictly positive data types that can be modelled
in CPO. Their induction rule is modular, in that they separate the premises
for inductive reasoning about data structures from those for inductive reasoning
about effects, and a number of examples are given to illustrate its use. Filinski
and Stevring also give a principle of definition by structural recursion for effect-
ful data types. But because they restrict attention to CPO, to a syntactically
restricted class of functors, and to a particular notion of predicate, their results
are not as widely applicable as we might hope.

In this paper we show how the fibrational approach to induction can be
extended to the effectful setting. We obtain a generalisation of Filinski and
Stevring’s induction rule that is completely free of the above three restrictions.
We also derive a principle of definition by structural recursion for effectful data
types that is similarly restriction-free. Our principle of definition can be used to
show that appI0 is well-defined, and our induction rule can be used to show that
it is associative on 10-lists (see Example[d)). These results lie outside the scope of
Filinski and Stgvring’s work. (Interestingly, while the standard reverse function
is an involution on lists, a similarly effectful reverse function is not an involu-
tion on I0-lists, so not all results transfer from the pure setting to the effectful
one.) When specialised to the fibration of subobjects of CPO implicitly used by
Filinski and Stgvring, Theorem 2 and Corollary [l give precisely their definition
principle and induction rule, respectively. But because we treat functors that
are not strictly positive, we are able to derive results for data types they cannot
handle. Moreover, even if we restrict to the same class of functors as Filinski
and Stgvring, our fibrational approach allows us to derive, in addition to our
generalisation of their modular one, another more powerful effectful induction
rule (see Theorem H). More specifically, our contributions are as follows:

e Given a functor F' and a monad T, we first show in TheoremPlthat the carrier
w(TF) of the initial T F-algebra deserves to be thought of as the effectful
data type built from data described by F' and effects computed by T'. In

Fibrational Induction Meets Effects 45

fact, the effectful data types introduced by the Haskell code above are all of
the form u(TF). Informally, the data type u(TF) contains all interleavings
of F and T; formally, it is the free structure which is the carrier of both
an F-algebra and Eilenberg-Moore algebra for T'. Theorem [2 also gives a
principle of definition by structural recursion for effectful data types.

e We then turn to the question of proof by induction and show that there are
a number of useful induction rules for effectful data types. (See Corollary[Il
and Theorems A 6l and [71) We consider the relative merits of these rules,
and note that in the proof-irrelevant case, which includes that considered
by Filinski and Stgvring, Theorems [and [coincide. We note that each
of our induction rules also gives us a definitional format for dependently
typed functions whose domains are effectful data types. This generalises the
elimination rules for (pure) inductive data types in Martin-Lof Type Theory.

e Finally, we consider effectful induction in fibrations having very strong sums.
Examples include the codomain and families fibrations, used heavily by cat-
egory theorists and type theorists, respectively. In such fibrations, we show
that the key operation of lifting is a strong monoidal functor from the cate-
gory of endofunctors on the base category to the category of endofunctors on
the total category of the fibration, and thus that liftings preserve monads.
This ensures that all of our inductive reasoning can be performed in the total
category of the fibration (see Section [G]).

The rest of this paper is structured as follows. Section 2] introduces some cate-
gorical preliminaries. Section [3 formalises the notion of an effectful data type. It
also shows how to construct algebras for the composition of two functors from
algebras for each of the component functors, gives a converse construction when
one of the functors is a monad, and uses these two constructions to generalise
Filinski and Stgvring’s induction rule to arbitrary effectful data types. This is
all achieved without the use of fibrations, although, implicitly, Section [takes
place entirely within the subobject fibration over CPO. Section M reviews the
fibrational approach to induction. Section Bl relaxes the restriction to the subob-
ject fibration on CPOs and uses arbitrary fibrations explicitly to further abstract
the notion of predicate under consideration. We capitalise on this abstraction
to give a number of different induction rules derivable in the fibrational setting.
Section [G] considers induction in the presence of very strong sums. Section [1]
concludes and discuss directions for further research.

2 Categorical Preliminaries

We assume familiarity with basic category theory, initial algebra semantics of
data types, and the representation of computational effects as monads.

Let B be a category and F' : B — B be a functor. Recall that an F-algebra is
a morphism h : FX — X for some object X of B, called the carrier of h. For
any functor F, the collection of F-algebras itself forms the category Algp. In
Algr, an F-algebra morphism from the F-algebra h : FX — X to the F-algebra
g: FY — Y is amorphism f: X — Y such that foh = go Ff. When it exists,

46 R. Atkey et al.

the initial F-algebra in : F(uF) — pF is unique. We write U for the forgetful
functor mapping each F-algebra to its carrier, and we suppress the subscript F
on U and on in when convenient.

Let B be a category and (7,7, 1) be a monad on B We write T for the monad
(T,n, 1) when no confusion may result. An Eilenberg-Moore algebra for T is a
T-algebra h : TX — X such that houx = hoTh and honx = id; we can think of
such algebra as a T-algebra that respects the unit and multiplication of T'. The
collection of Eilenberg-Moore algebras for a monad T forms the category EMy.
In EMp, an EMp-morphism from an Eilenberg-Moore algebra h : TX — X to
an Eilenberg-Moore algebra g : TY — Y is just a T-algebra morphism from h
to g. It is easy to check that EMp is a full subcategory of Algr.

3 Effectful Data Types and an Effectful Induction Rule

The carrier pF of the initial F-algebra can thought of as the data type defined
by F. But if we are in an effectful setting, with effects modelled by a monad
(T, n, 1), then what type should we consider the effectful data type defined by F
and T together? Whatever it is, it should be the carrier of an F-algebra f that
describes the data. It should also be the carrier of a Eilenberg-Moore algebra g
for T' so that it respects and u. Finally, it should be the carrier of an algebra
constructed from f and g that is initial in the same way that pF' is the carrier
of the initial F-algebra. We therefore define the effectful data type generated by
F and T to be u(TF). Moreover, in o7 is an F-algebra, and in o up o T(in™") is
an Eilenberg-Moore algebra for T', both with carrier u(T'F). It is easy to verify
that no T-algebra structure exists on the other obvious choice, namely p(FT).

Unfortunately, however, carriers of initial T'F-algebras can be hard to work
with. We therefore write u(TF') for T'(u(FT')) when convenient. This is justified
by the “rolling lemma” [6], which entails that if F' and G are functors such
that u(GF) exists, then u(F'G) exists and pu(GF) = G(u(FG)). The data types
D f m from the introduction all have the form T'(u(FT)). We establish that
T(u(FT)) satisfies the above specification by first showing in Lemma [l how to
construct F'T-algebras from F-algebras and T-algebras, and then refining this
construction in Theorem [to take into account that T is a monad and we are
actually interested in its Eilenberg-Moore algebras. We begin with a definition.

Definition 1 Let F,G : B — B be functors, and let Algp x5 Alge be defined by
the pullback of Up : Algp — B and Ug : Alg, — B in Cat. An F-and-G-algebra
is an object of Algr x5 Algq, i.e., a triple comprising an object A of B, an F'-
algebra f : FA — A, and a G-algebra g : GA — A. Morphisms of Algp x5 Algg
are morphisms of B that are simultaneously F-algebra and G-algebra morphisms.

Lemma 1. Let F,G : B — B be functors. There is a functor @ : Algp xgAlgs —
Algrq that sends F-and-G-algebras to F'G-algebras.

1 We use p to denote both least fixed points of functors and multiplication operators
of monads as is traditional. Which is meant when will be made clear from context.

Fibrational Induction Meets Effects 47

Proof. Define ®(A, f,g) = f o Fg. The action of ¢ on morphisms is obvious. [

In the setting of effectful data types, where G is a monad in whose Eilenberg-
Moore algebras we are interested, Lemma [Tl can be strengthened.

Definition 2 Let F : B — B be a functor, let (T,n, 1) be a monad on B, and
let Algr xg EMp be the category defined by the pullback of Up : Algp — B
and Ur : EMp — B in Cat. An F-and-T-Eilenberg-Moore algebra is an object
of Algr xg EMr, d.e., a triple comprising an object A of B, an F-algebra f :
FA — A, and an FEilenberg-Moore algebra g : TA — A for T. Morphisms of
Algr X g EM7 are morphisms of B that are simultaneously F-algebra morphisms
and EMp-morphisms, i.e., F-algebra morphisms and T-algebra morphisms.

The key point about F-and-T-Eilenberg-Moore algebras is that the functor map-
ping them to F'T-algebras has a left adjoint. Since every Eilenberg-Moore algebra
for T is a T-algebra, we abuse notation and also call this functor .

Theorem 1. Let F : B — B be a functor and (T,n, 1) be a monad on B. The
functor @ : Algp xgEMp — Algpp has a left adjoint ¥ : Algppr — Algp XxgEMyp.

Proof. Define W by W(k: FTA— A) = (TA,nok: FTA— TA,u:T?A — TA)
on objects and by ¥ f = Tf on morphisms. For any FT-algebra morphism
f + A — B, naturality of n and u ensure that ¥ f is a morphism in Algz x g EMr.

To see that ¢ and ¥ are adjoint let k& : FT A — A be an object of Algpp and
(B,f: FB — B,g: TB — B) be an object of Algp xg EMp. We construct a
natural isomorphism between morphisms from ¥ k to (B, f,g) and morphisms
from k to ®(B, f,g). Given h : Uk — (B, f,g), define ¢(h) : k — &(B, f,g) by
@(h) = hon. Then ¢(h) is an FT-algebra morphism because fo Fgo FT¢(h) =
foFgoFThoFTn= foFhoFuoFTn= foFh = honok = ¢(h)ok. Here, the first
equality holds because F'T is a functor, the second holds because h is a T-algebra
morphism, the third by the monad laws, and the fourth because h is an F-algebra
morphism. Conversely, given h : k — &(B, f,g), define ¢(h) : ¥k — (B, f,g) by
¥(h) = goTh. Then ¥(h) is an F-algebra morphism because ¥(h)onok = goTho
nok =gonohok=hok= foFgoFTh= foFi(h). Here, the second equality
holds by naturality of 7, the third because ¢ is an Eilenberg-Moore algebra for T',
and the fourth since h is an F'T-algebra morphism. Moreover, 1)(h) is a T-algebra
morphism because goT(h) = goTgoTTh = gouoTTh = goThoyu = 1(h)op.
Here, the second equality holds since ¢ is an Eilenberg-Moore algebra for T" and
the third holds by naturality of u.

To see that ¢ and @ constitute an isomorphism, first note that ¢((h)) =
@(goTh) = goThon = gonoh = h by naturality of n and the fact that g
is an Eilenberg-Moore algebra for T. We also have that ¢ (¢(h)) = ¥(hon) =
goThoTn= hopoTn=h by the fact that h is a T-algebra morphism and the
monad laws. Naturality of ¢ and v is easily checked. ([

A slightly slicker proof abstracts away from the category of Eilenberg-Moore
algebras for T to any adjunction L 4 R : B — D whose induced monad RL
is T'. In this setting, we define Algr xg D to be the pullback of the forgetful

48 R. Atkey et al.

functor Up and R. The adjunction L 4 R : B — D then lifts to an adjunction
LT 4 R': Algpp — Algg x5 D. Theorem[lis the special case of this more general
construction for which D is EM7. Another special case takes D to be the Kleisli
category of T.

We can now give our principle of definition by effectful structural recursion.

Theorem 2. Let F be a functor and T be a monad. Then T (u(FT)), if it exists,
1s the carrier of the initial F-and-T -FEilenberg-Moore algebra.

Proof. Since inpr is the initial F'T-algebra, and since left adjoints preserve initial
objects, we have that the initial F-and-T-FEilenberg-Moore algebra is ¥inpr, i.e.,
the triple (T(u(FT)),n o in, p). O

Given an F-and-T-Eilenberg-Moore algebra (A, f,g), Theorem [2] ensures the
existence of a unique F-and-T-Eilenberg-Moore algebra morphism from the ini-
tial such algebra to (4, f,g). This gives a morphism from T'(u(FT)) to A, and
hence a principle of definition by effectful structural recursion. Indeed, when T’
is the identity monad, we recover precisely the standard principle of definition
by structural recursion for (pure) carriers of initial algebras.

Example 1. We can place the definition of appI0 from the introduction on a for-
mal footing as follows. First note that I0List a is of the form T'(u(FT)), where
FX =14ax X and T is the monad I0. The F-and-T-Eilenberg-Moore algebra
whose F-algebra sends inl * to ys and inr(z, zs) to (noin)(inr(z, zs)), and whose
Eilenberg-Moore algebra for T is u, defines appI0 _ ys. It further ensures that
appI0 _ ys is a T-algebra morphism between the T-algebra structure within
the initial F-and-T-Eilenberg-Moore algebra and the T-algebra structure within
the F-and-T-Eilenberg-Moore algebra just defined.

From Theorem 2] we also get the first of our effectful induction rules.

Corollary 1. Let P be a subobject of T(u(FT)), as well as the carrier of an F-
and-T -Filenberg-Moore algebra such that the inclusion map from P to T (u(FT))
is an F-and-T'-Filenberg-Moore algebra morphism. Then P =T (u(FT)).

Proof. There is an F-and-T-Eilenberg-Moore algebra morphism from the initial
such algebra to any with carrier P, and this induces a morphism from T'(u(FT))
to P. That this morphism is an inverse to the inclusion map from P to T'(u(EF'T))
follows from initiality and the fact that the inclusion map is monic. O

In Theorem [[below we generalise Corollary [Il to handle more general notions
of predicate than that given by subobjects. But first we argue that Corol-
lary [specialises to recover Filinski and Stgvring’s induction rule. This rule
assumes a minimal T-invariant (T'C,4) for F' and a subset P of T'C that is both
T-admissible and F-closed, and concludes that P = T'C. But i) the minimal
T-invariant for F' is precisely the initial F-and-T-algebra T'(u(FT)) in CPO, ii)
P C T(u(FT)) is T-admissible iff there exists a T-algebra k : TP — P such
that the inclusion map ¢ from P to T'(u(F'T)) is a T-algebra morphism from & to
w: T*(u(FT)) — T(u(FT)), and iii) P C T(u(FT)) is F-closed iff there exists

Fibrational Induction Meets Effects 49

an F-algebra h : FP — P such that ¢ is an F-algebra morphism from h to noin.
Thus, P is the carrier of an F-and-T-Eilenberg-Moore algebra. Moreover, since
k coincides with p and h coincides with n o in on P, ¢ is an F-and-T-Eilenberg-
Moore algebra morphism. Thus, by Corollary [l P = T'(u(FT)). Of course this
observation allows us to handle all of Filinski and Stgvring’s examples.

4 Induction in a Fibrational Setting

Thus far we have characterised effectful data types and given our first induction
rule for them. This rule is generic over the category interpreting data types, as
well as over both the monad interpreting the effects in question and the functor
constructing the data type, and specialises to Filinski and Stgvring’s rule. On the
other hand, it holds only for a specific notion of predicate, namely that given by
subobjects. Since we seek an induction rule that is also generic over predicates,
we turn to fibrations, which support an axiomatic approach to them. We begin
by recalling the basics of fibrations. More details can be found in, e.g., [10].

Let U : £ — B be a functor. A morphism g : Q@ — P in £ is cartesian over a
morphism f: X — Y in Bif Ug = f, and for every ¢’ : Q" — P in £ for which
Ug' = fow for some v: UQ' — X there exists a unique h : Q' — @ in & such
that Uh = v and goh = ¢’. The cartesian morphism f1§3 over a morphism f with
codomain U P is unique. We write f*P for the domain of f1§3.

Cartesian morphisms are the essence of fibrations. A functor U : £ — B is a
fibration if for every object P of £ and every morphism f: X — UP in B there
is a cartesian morphism f1§3 : f*P — P in & such that U(f?_,) =fIfU:E—>B
is a fibration, we call B the base category of U and & the total category of U.
Objects of £ can be thought of as predicates, objects of B can be thought of as
types, and U can be thought of as mapping each predicate P in £ to the type
UP on which P is a predicate. We say that an object P in £ is over its image
UP under U, and similarly for morphisms. For any object X of B, we write Ex
for the fibre over X, i.e., for the subcategory of £ consisting of objects over X
and vertical morphisms, i.e., morphisms over idx. If f: X — Y is a morphism
in B, then the function mapping each object P of £ to f* P extends to a functor
f*: & — Ex. We call the functor f* the reindering functor induced by f.

Ezample 2. The category Fam(Set) has as objects pairs (X, P), where X is a
set and P : X — Set. We refer to (X, P) simply as P when convenient and
call X its domain. A morphism from P : X — Set to P’ : X’ — Set is a pair
(f,f~"): P — P, where f: X - X" and f~ : Vo : X.Px — P'(fx). The
functor U : Fam(Set) — Set mapping (X, P) to X is called the families fibration.

Dependently typed programmers typically work in the families fibration, in which
induction amounts to defining dependently typed functions. It can be generalised
(in an equivalent form) to the following fibration.

Example 3. Let B be a category. The arrow category of B, denoted B, has
the morphisms of B as its objects. A morphism in B~ from f : X — Y to

50 R. Atkey et al.

f': X’ =Y’ is a pair (a1, as) of morphisms in B such that f'oa; = aso f. The
codomain functor cod : B~ — B maps an object f: X — Y of B~ to the object
Y of B. If B has pullbacks, then cod is a fibration, called the codomain fibration
over B: given an object f : X — Y in (B7)y and a morphism f’: X’ - Y in
B, the pullback of f and f’ gives a cartesian morphism over f at f’.

Example 4. If B is a category, then the category of subobjects of B, denoted
Sub(B), has (equivalence classes of) monomorphisms in B as its objects.
A monomorphism f : X < Y is called a subobject of Y. A morphism in Sub(B)
from f: X <Y to f': X' Y isamap as : Y — Y’ for which there exists a
unique map «; : X — X’ such that ag o f = f' 0 ay. The map U : Sub(B) — B
sending f : X — Y to Y extends to a functor. If B has pullbacks then U is
a fibration since the pullback of a monomorphism is a monomorphism. In this
case, U is called the subobject fibration over B.

We also need the notion of an opfibration. Abstractly, U : £ — B is an opfibration
iff U : £ — B°P is a fibration. More concretely, U is an opfibration if for every
object P of £ and every morphism f : UP — Y in B there is an opcartesian
morphism f§P : P — X¢Pin £ over f. Moreover, if f : X =Y is a morphism in
B, then the function mapping each object P of £x to Xt P extends to a functor
Yy Ex — E which we call the opreindezing functor. A functor is a bifibration
if it is both a fibration and an opfibration. The families and codomain fibrations
are examples of bifibrations. More generally, a fibration is a bifibration iff, for
every morphism f: X — Y in B, f* is left adjoint to Y.

We can now give the key definitions and results for our fibrational approach
to induction. If U : & — B is a fibration and F' : B — B is a functor, then a
lifting of F with respect to U is a functor F : & — & such that UF = FU. We
say that U has fibred terminal objects if each fibre has a terminal object and
reindexing functors preserve them. In this case, the functor T : B — £ mapping
each object to the terminal object of the fibre over it is called the truth functor
for U. A lifting F' of F is called truth-preserving if TF = FT.

Example 5. A truth-preserving lifting F'~ of F with respect to the codomain
fibration cod is given by the action of F' on morphisms.

A comprehension category with unit (or CCU, for short) is a fibration U : £ — B
that has fibred terminal objects and is such that the terminal object functor T
has a right adjoint {—}. In this case, {—} is called the comprehension functor for
U. If € is the counit of the adjunction T 4 {—}, then defining 7p = Uep gives
a projection natural transformation from {P} to UP. Truth-preserving liftings
with respect to CCUs are used in [9] to give induction rules. The key result is:

Theorem 3. LetU : £ — B be a CCU and F : B — B be a functor such that uF
exists, and let F' be a truth-preserving lifting of F. Then for every object P of £
and every algebra o : FP — P, there is a unique morphism indpa uF — {P}
such that mp o indp o = fold(Ua).

The proof consists of constructing a right adjoint (—) : Algz — Algy mapping
F -algebras with carrier P to F-algebras with carrier {P}. Given an F -algebra

Fibrational Induction Meets Effects 51

o : FP — P, we can define indp o to be fold (o) : pF — {P}. For second part of
the theorem, first note that mp is an F-algebra morphism from (a) to Ua. Then,
by the uniqueness of folds, we have that mp o indp o = 7p o fold{a) = fold(Uc).

Fibrations thus provide just the right structure for defining induction rules for
inductive data types. Although the truth-preserving liftings are given in [9] only
for polynomial functors, this restriction was removed in [7§], which showed that
in a Lawvere fibration — i.e., a CCU that is also a bifibration — every functor
has a truth-preserving lifting. Indeed, observing that 7 extends to a functor
m: & — B with left adjoint [: B7 — Edefinedby I (f: X = Y) = Xy (T X),
we have that for any functor F, F = 1IF’r : E5€isa truth-preserving
lifting with respect to U, where F'~ is the lifting from Example Bl If uF' exists,
then Theorem [3] guarantees that it has an induction rule.

5 Effectful Induction

In the remainder of the paper we assume a Lawvere fibration U : £ — B, a
functor F': B — B, and a monad (7,7, u) on B. We further assume that p(FT)
exists. Our first effectful induction rule is obtained by recalling that T'(u(FT))
is the initial T'F-algebra and instantiating Theorem 3] for TF.

Theorem 4. For every object P of £ and algebra « : (ﬁ)P — P there is a
unique morphism indrp o : T(W(FT)) — {P} with np o indrr o = fold(Ua).

Unfortunately, the induction rule in Theorem [is more complicated than we
would like since the rule requires the user to supply a T F-algebra, and thus to
deal with F' and T at the same time, rather than separately as in Corollary [
To produce a fibrational variant of CorollaryIIL we therefore need to understand
the relationship between TF and TF. We turn to this now.

Lemma 2. If I and G are functors on B, and o : F' — G is a natural trans-
formation, then there is a natural transformation & : F — G.

Proof. Since I and 7 are functors, we can define & = Ia™m, where a™ : 7 —
G7 maps f: X — Y in B to the naturality square for « at f. O

Theorem 5. The lifting operation (/—\) defines a laxz monoidal functor mapping
functors on B to functors on &.

Proof. That (/\) preserves identity and composition of natural transformations
is verified by simple calculation, so it is indeed a functor. To see that this functor
is lax monoidal, we need natural transformations from Id to Id and from FG
to F'G. We take the former to be the counit of the adjunction I + 7. For the
latter, define o : FG — FG — ie., o : I(FG)7nm —» IF7nIG7n — by 0 =
I1F7nG~ 7, where 7 is the unit of the adjunction I - 7.

We will use the natural transformation o : FG — FG from the proof of Theo-
rem [0l in the proof of Theorem [@] below. Note that if o were oplax rather than

52 R. Atkey et al.

lax — i.e., if we had o : FG — FG — then T would be a monad whenever T is.
An induction rule for effectful data types that assumes T is a monad is discussed
in Section [0l For now, we derive induction rules for effectful data types that hold
even when 7 is not a monad. The first is a fibrational variant of Corollary [T}

Theorem 6. Let P be an object of £, and let f : Fp—p and g : TP — P be
morphisms of €. Then there is a unique morphism h : T(u(FT)) — {P} in B
such that wp o h = fold(Ug o TU f). If P is over T(u(FT)), g is over u, and f
s over n o in, then mp o h = id.

Proof. From the algebra @(P, g, f) : TEP — P, where & is as in Lemma [I]
we can construct the ﬁ—algebra &(P,g, f) o op. By Theorem [l there exists a
morphism h : T(u(FT)) — {P} in B such that mpoh = fold(U(P(P, g, f)oop)).
If f: X = Y is an object of B, then 7y is a pair whose second component
is id. The second component of F7ny¢ is thus also id, so by the definition of
I we have that IF 77y is vertical. Since op = IF 7 ng-n»,, op is also vertical.
Thus fold(U(P(P, g, f) o op)) = fold(U(P(P, g, f))), and by the definition of &
and the fact that 7" is a lifting of 7', we have that 7p o h = fold(UgoTUf) as
desired. If ¢ is over p and f is over o in, then 7p o h = fold(Ug o TUf) =
fold(proTnoT(in)) = fold (T(in)) = fold in = id. O

The condition 7p o h = id ensures that h maps every element ¢t of T'(u(FT)) to
a proof that Pt holds. We will make good use of the following generalisation of
Prop. 2.13 in [5], which shows how to build new T-algebras from old.

Lemma 3. Let k: TA — A be an Eilenberg-Moore algebra for T.

1. Let 6 be the natural transformation defined by 64 : A — A X A and consider
the equality predicate Eqy = X5T(A). Then U(Eqa) = A x A and (ko
Tm,koTm) : T(Ax A) - A X A is an Eilenberg-Moore algebra for T. If
{Eqa} = A for every A € B, then there exists a morphism h : TEqA — Eq 4
such that Uh = (ko T'my, k o Tma).

2. Leth:TP — P be a T-algebm such that UP = A and Uh = k. Then for
every FEilenberg-Moore algebra k' : TB — B for T and T-algebra morphism
f: B — A, there exists a morphism h' : T(f*P) — [*P such that Uh' = k'.

3. Let I be a set and suppose € has I-indexed products in its fibres. Then for
any I-indexed family (Pi, h; : TP, — P;) of T-algebras with UP; = A and
Uh; = k for alli, there is a morphism h : T(UieIPi) — e P, withUh = k.

Proof. The first part follows from a lemma in [I0], and the third part follows
from the universal property of products. For the second part, note that because
h is over k, there is a vertical morphism v : TP — k*P. We construct o
T(f*P) — P by first noting that, since f is a T-Eilenberg-Moore algebra mor-
phism, we have (T'f)*(k*P) = k"*(f*P). We can then take h’ to be the compo-
sition of j : T(f*P) — (Tf)*(T'P) and (T f)*v: (T f)*(TP) — (Tf)*(k*P) and
k}%P s k"™ (f*P) — f*P. Here, j is constructed by first observing that T'(f*P) =
St T(T{f*P}) by definition of T, and that this is 7. . (T{fp})* T(T{P})

Fibrational Induction Meets Effects 53

because reindexing preserves terminal objects. We then construct a morphism
from ETWI,*P(T{f%})*T(T{P}) to (Tf)*Xrap T(T{P}) using a morphism in-
duced by a natural transformation from ETﬂf*P(T{fg})* to (Tf)*Xra, that
is itself constructed using i) the fact that f is a T-algebra morphism, ii) the
unit of the adjunction X7, - (Twp)*, and iii) the counit of the adjunction
Stry.p A (Trpep)*. Noting that (T'f)*S1x, T(T{P}) = (T'f)*(TP) by the
definition of 7' completes the proof. O

Example 6. We can now prove that appI0 is associative. We use the families fi-
bration, and so exploit the generality of our framework over that of [5] by working
with a base category other than CPO and a notion of predicate other than that
given by subobjects. The predicate P : I0List a — Set sends xs to 1 if, for
all ys zs: IOList a, appI0 xs (appIO ys zs) = appIl0 (appI0 xs ys) zs
holds and to @ otherwise. Recalling that I0List a is T(u(FT)) for F and T
as in Example [Il we can show that P is the carrier of a T' -algebra by observ-
ing that i) the equality predicate on I0List a is the carrier of a T-algebra over
(woTmy, poTms) by the first part of Lemmalf3} ii) for all ys zs : IOList a, the
predicate appI0 xs (appI0 ys zs) = appI0 (appI0 xs ys) zson IOList a
x I0List a is the carrier of a T-algebra over . by the second part of Lemma [3}
and iii) P is thus the carrier of a T—algebra over i by the third part of Lemma 3l
In addition, P is the carrier of an F -algebra: indeed by direct calculation we
have that the predicate FP : FX — Set sends inl* to 1 and sends inr(x,xs)
to Pxs. An F—algebra with carrier P over n o in is therefore given by an ele-
ment of P(return IONil) and, for every x:a and xs : IOList a, a function
Pxs — P (return (I0Cons x xs)). Both can be computed directly using the
definition of appI0. By Theorem [l we thus have that P holds for all elements
of I0List a.

Example 7. We can exploit our ability to move beyond the effectful strictly posi-
tive data types treated by Filinski and Stgvring to reason about indezed effectful
data types. We work in the subobject fibration over Set" (see Example H]). For
any set A and monad T on Set", consider the N-indexed data type of effectful
perfect trees with data from A and effects from T given by T(u(FaT)) : Set",
where, Fa(X : Set™) = M.{x | n = 0} + {(a,21,22) | In'. a € A, x; €
Xn', zo € Xn',n = n’ + 1}. By Theorem 2 if f : A — B then we can
define a morphism map(f,—) : T(u(FaT)) — T(u(FpT)) in Set" by giving
an F-and-T-Eilenberg-Moore algebra with carrier T'(u(FgT')). The F4-algebra
sends, when n = 0, inl* to n(in(inl*)), and, when n = n’ 4+ 1, inr(a,x1,z2)
to n(in(inr(fa,x1,22))). The Eilenberg-Moore algebra for T' is just the multi-
plication p of T. Now define the subobject i : P < T(u(FaT)) in Sub(Set")
by Pn = {t: T(u(FaT))n | Vf,g. map(f, map(g,t)) = map(f og,t)}. To show
that P = T(u(FaT)), and hence that map preserves composition, we apply
Theorem [Bl As in Example [we use Lemma [3 to give a T-algebra on i over
w; this uses the fact that map(f,—) is a T-Eilenberg-Moore algebra morphism
by construction. The existence of a F‘—algebra on i over 7 o in follows by direct
calculation. By Theorem [f] there is a morphism h : T'(u(F4T)) — { P} such that

54 R. Atkey et al.

mp o h = id. But since {P} = P in Sub(Set"), we have that i and h together
give P =T (u(FaT)).

Should we be satisfied with the effectful induction rule in Theorem G It is not as
expressive as that in Theorem Hl since not all TF- algebras arise from T-algebras
and F-algebras individually, but it is easier to use since we can check whether or
not predicates have T—algebra structures without considering the functor F at
all and vice-versa. However, neither rule ensures that h respects the structure of
the monad, i.e., is an F-and-T-Eilenberg-Moore algebra morphism. As we now
see, this is the case if (g) is an Eilenberg-Moore algebra for T'.

Theorem 7. Let f : FP — P and g : TP — P be morphisms of € such that (9)
is an Eilenberg-Moore algebra for T. Then there is a unique h : T(uW(FT)) — {P}
in B that is an F-and-T'-Eilenberg-Moore algebra morphism. Further, mp o h =
fold(Uf o FUg). If g is over p and f is over noin, then mp o h = id.

Proof. Since ({P},(f),(g)) is an F-and-T-Eilenberg-Moore algebra there is a
unique F-and-T-Eilenberg-Moore algebra morphism from the initial such alge-
bra to it. Since T'(u(F'T)) is the carrier of the initial F-and-T-Eilenberg-Moore
algebra, this gives the required morphism h : T(u(FT)) — {P}. Indeed, h is the
morphism guaranteed by Theorem [6] and so 7w, o h = id as desired. |

As expected, the effectful world contains the pure world. For example, if (T, n, i)
is a monad, then we can think of n as a family of functions nx : X — T X map-
ping values of type X to the pure computations that just return those values.
Similarly, an effectful data structure T'(11(F'T')) contains the pure data structure
1F': indeed, the natural transformation nF : FF — TF and the functoriality of
the fixed point operator u together give the inclusion u(nF) : pF — T(u(FT)).
Moreover, if P is a property over T'(u(FT)), then (u(nF))* P is a property over
pF. Thus given f : FP — P and g : TP — P such that (g) is an Eilenberg-
Moore algebra for T, we may ask about the relationship between proofs of
(u(nEF))* P for uF obtained from f by Theorem Bl and proofs of P for T'(u(EFT))
obtained from f and g by Theorem [It is not hard to see that induction for
T(u(FT)) specialises to induction for uF when T (u(FT)) is pure.

Finally, note that in a fibred preorder, for any T -algebra g, (g) is always
an Eilenberg-Moore algebra for T'. This is the case for the subobject fibration
implicitly used by Filinski and Stgvring since, there, admissible predicates are
Eilenberg-Moore algebras over the multiplication g of T. However, in the non-
fibred preorder case, there are a variety of different induction rules which are
possible. This reflects a trade-off: the more we assume, the better behaved our
induction proof is! Our default preference is for structure and we believe that
Theorem [1l provides the best rule. However, if we cannot establish the stronger
premises so as to obtain the better behaved induction rules, it is comforting to
know that the induction rules of Theorems [and [f] are still available.

Fibrational Induction Meets Effects 55
6 A More Logical Treatment of Effectful Induction

The treatment we have given above of induction for effectful data types addresses
many of our practical concerns. It is derived from the general theory of fibra-
tional induction, it is axiomatic in terms of the functors, monads, and fibrations
involved, and Theorems [f] and [7] allow us to separate the proof obligations in an
induction proof into those pertaining only to the monad in question and those
pertaining only to the functor in question. There is, however, one feature of The-
orem [{] that is less than optimal. Underlying the fibrational methodology is the
separation between logical structure in the total category of the fibration and
type-theoretic structure in the base category of the fibration. Theorem[7] can thus
be seen as converting logical structure in the form of F -algebras and T—algebras
into type-theoretic structure in the form of F-and-T-Eilenberg-Moore algebras.
This is, of course, completely valid, especially in light of the propositions-as-
types interpretation, but this section shows there is a different approach which
reasons solely in the total category of the fibration and is thus purely logical.
The key idea is to deploy Theorem [l in the total category of the fibration,
and work directly with F and T—algebras on P rather than converting them to
F-and-T-Eilenberg-Moore algebras on {P}. The major stumbling block to doing
this is that, in general, T is not a monad. In this section we investigate effectful
induction in the case when 7' is a monad. The condition we use to ensure this is
that the Lawvere fibration in which we work has very strong sums.

Definition 3 A Lawvere fibration U : £ — B is said to have very strong sums if
Jorall f: X =Y inBand P € Ex, {fb}: {P} — {¥P} is an isomorphism.

The following important property of very strong sums is from [I]: f U : £ — B
is a Lawvere fibration with very strong sums, F' : B — Bis a functor, f : X - Y
is a morphism, and P € £x, then F(EfP) = EFfFP. Using this, we can prove
that in a Lawvere fibration with very strong sums lifting is actually a strong
monoidal functor, i.e., that lifting preserves functor composition.

Lemma 4. Let U : & — B be a_Lawvere fibration with very strong sums. If
F,G : B — B are functors, then FG=FQG. If T is a monad, then so is T.

Proof. For the first part of the lemma, note that (FE’)P Yrerp K1FG{P} =
EpGﬂPFKlG{P} = F(EGWPKlG{P}) = FGP. Here, the first equality is by
the definition of F G the second holds because F is truth preserving, the third is
by the aforementioned property from [I], and the last is by definition of G. The
essence of the proof of the second part is the observations that monads are just
monoids in the monoidal category of endofunctors and strong monoidal functors
map monoids to monoids. ([l

Using Lemma [l we can derive induction rules allowing us to work as much as
possible in the total category of a Lawvere fibration with very strong sums. To do
this, let (P, f,g) be an F-and-T- Ellenberg—Moore algebra. By Theorem [2] there is

a unique morphism from the initial TE- algebra to (P, f, g). But since TE=TF

56 R. Atkey et al.

and p(ﬁ) = T(u(TF)) (see Corollary 4.10 of [§]), there is a morphism from
T(T(w(FT))) to P, and thus one from T'(u(FT)) to {P} as desired.
The families and codomain fibrations both have very strong sums.

7 Conclusions, Related Work, and Future Work

We have investigated the interaction between induction and effects. We for-
malised the former using the recently developed fibrational interpretation of
induction because it is axiomatic in the category interpreting types and pro-
grams, the functor representing the data type in question, and the category
interpreting predicates. We formalised effects using monads because they are
both simple to understand and widely used. We have shown, perhaps surpris-
ingly, that several induction rules can be derived for effectful data types. These
rules assume progressively more structure in their hypotheses but deliver pro-
gressively stronger inductive proofs. Ultimately, we hope this research will lay
the foundation for a reasoning module for effectful data types in a proof system
such as Coq.

The combination of monadic effects and inductive data types has previously
been studied by Fokkinga [4] and Pardo [14]. They use distributive laws A : FT' —
TF relating functors describing data types to monads modelling effects. Given a
distributive law, it can be shown that pF is the carrier of an initial algebra in the
Kleisli category of T. From this, a theory of effectful structural recursion over
pure data is derived. By contrast, in this paper we have explored computation
and reasoning with effectful data, where data and effects are interleaved.

Lehman and Smyth [12] give a generic induction rule for (pure) inductive data
types in the case when predicates are taken to be subobjects in a category. Crole
and Pitts [3] use this rule to give a fixpoint induction rule for effectful compu-
tations, generalising the usual notion of Scott induction. Filinski and Stgvring’s
induction principle, which we have generalised in this paper, extends these rules
to handle the interleaving of data and effects.

References

1. Atkey, R., Johann, P., Ghani, N.: When is a Type Refinement an Inductive Type?
In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 72-87. Springer,
Heidelberg (2011)

2. Burstall, R.: Proving Properties of Programs by Structural Induction. Computer
Journal 12(1), 41-48 (1969)

3. Crole, R., Pitts, A.: New Foundations for Fixpoint Computations: FIX-
Hyperdoctrines and the FIX-Logic. Information and Computation 98(2), 171-210
(1992)

4. Fokkinga, M.: Monadic Maps and Folds for Arbitrary Datatypes. Technical Report,
University of Twente (1994)

5. Filinski, A., Stgvring, K.: Inductive Reasoning About Effectful Data Types. In:
Proc. International Conference on Functional Programming, pp. 97-110 (2007)

10.

11.

12.

13.

14.

Fibrational Induction Meets Effects 57

. Gill, A., Hutton, G.: The worker/wrapper Transformation. Journal of Functional

Programming 19(2), 227-251 (2009)

. Ghani, N., Johann, P., Fumex, C.: Fibrational Induction Rules for Initial Algebras.

In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 336-350. Springer,
Heidelberg (2010)

. Ghani, N., Johann, P., Fumex, C.: Generic Fibrational Induction (2011) (submit-

ted)

. Hermida, C., Jacobs, B.: Structural Induction and Coinduction in a Fibrational

Setting. Information and Computation 145, 107-152 (1998)

Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. Elsevier (1999)

Jacobs, B.: Comprehension Categories and the Semantics of Type Dependency.
Theoretical Computer Science 107, 169-207 (1993)

Lehmann, D.; Smyth, M.: Algebraic Specification of Data Types: A Synthetic Ap-
proach. Theory of Computing Systems 14(1), 97-139 (1981)

Moggi, E.: Computational Lambda-Calculus and Monads. In: Proc. Logic in Com-
puter Science, pp. 14-23 (1989)

Pardo, A.: Combining Datatypes and Effects. In: Vene, V., Yu, H.-J. (eds.) AFP
2004. LNCS, vol. 3622, pp. 171-209. Springer, Heidelberg (2005)

A Coalgebraic Perspective on Minimization
and Determinization™

Jif{ Addmek!, Filippo Bonchi2, Mathias Hiilsbusch?,
Barbara Konig?, Stefan Milius', and Alexandra Silva®**

! Technische Universitit Braunschweig
2 CNRS, ENS Lyon, Université de Lyon LIP (UMR 5668)
3 Universitit Duisburg-Essen
4 Radboud University Nijmegen

Abstract. Coalgebra offers a unified theory of state based systems, including
infinite streams, labelled transition systems and deterministic automata. In this
paper, we use the coalgebraic view on systems to derive, in a uniform way, ab-
stract procedures for checking behavioural equivalence in coalgebras, which per-
form (a combination of) minimization and determinization. First, we show that
for coalgebras in categories equipped with factorization structures, there exists
an abstract procedure for equivalence checking. Then, we consider coalgebras in
categories without suitable factorization structures: under certain conditions, it is
possible to apply the above procedure after transforming coalgebras with reflec-
tions. This transformation can be thought of as some kind of determinization. We
will apply our theory to the following examples: conditional transition systems
and (non-deterministic) automata.

1 Introduction

Finite automata are one of the most basic structures in computer science. One partic-
ularly interesting problem is that of minimization: given a (non-)deterministic finite
automaton is there an equivalent one which has a minimal number of states?

Given a regular language L, minimal deterministic automata (DA) can be thought of
as the canonical acceptors of the given language L. A minimal automaton is universal,
in the sense that given any automaton which recognizes the same language (and where
all states are reachable) there is a unique mapping into the minimal one. Similar notions
exist for other kinds of transition systems such as Mealy machines or labelled transition
systems. However, in many interesting cases, such as for non-deterministic automata
(NDA) or for weighted automata, what it means to be a minimal system is not yet clear.
Typically, for NDA one first determinizes the automaton and then minimizes it, since
for DA minimization algorithms are well-known ([[16]).

* The work of Mathias Hiilsbusch and Barbara Konig was partially supported by the DFG
project Bevaviour-GT. The work of Alexandra Silva was partially supported by Fundag@o para
a Ciéncia e a Tecnologia, Portugal, under grant number SFRH/BPD/71956/2010.
** Also affiliated to Centrum Wiskunde & Informatica (Amsterdam, The Netherlands) and
HASLab / INESC TEC, Universidade do Minho (Braga, Portugal).

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 58-173, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

A Coalgebraic Perspective on Minimization and Determinization 59

It is the main aim of this paper to find a general notion of canonicity for a large class
of transition systems, in a uniform manner. This encompasses two things: (i) casting
the automata and the intended equivalence in a general framework; and (ii) using the
general framework to devise algorithms to minimize (and determinize) the automata,
yielding a canonical representative. To study all the types of automata mentioned above
(and more) in a uniform setting, we use coalgebras.

For a functor F': C — C, on a category C, an F'-coalgebra is a pair (X,), where
X is an object of C representing the “state space” of the system and a: X — FX is
a morphism of C defining the “transitions” of the states. For instance, given an input
alphabet A, DAs are coalgebras for the functor 2 x (—)4: Set — Set and NDAs are
coalgebras for the functor A x (—) + 1: Rel — Rel, where Set is the category of sets
and functions and Rel the category of sets and relations.

The strength of the coalgebraic approach lies in the fact that many important notions,
such as behavioural equivalence, are uniquely determined by the type of the system.
Under mild conditions, functors F' have a final coalgebra (unique up to isomorphism)
into which every F'-coalgebra can be mapped via a unique homomorphism. The final
coalgebra can be viewed as the universe of all possible behaviours: the unique homo-
morphism into the final coalgebra maps every state of a coalgebra to its behaviour. This
provides a general notion of behavioural equivalence: two states are equivalent iff they
are mapped to the same element of the final coalgebra. In the case of DAs, the final
coalgebra is P(A*) (the set of all languages over input alphabet A) and the unique ho-
momorphism is a function mapping each state to the language that it accepts. In the case
of NDAs, as shown in [13]], the final coalgebra is A* (the set of all finite words over A)
and the unique homomorphism is a relation linking each state with all the words that
it accepts. In both cases, the induced behavioural equivalence is language equivalence.
The base category chosen to model the system plays an important role in the obtained
equivalence. For instance, NDAs can alternatively be modelled as coalgebras for the
functor 2 x fP(—)A : Set — Set, where P is the powerset functor, but then the induced
behavioural equivalence is bisimilarity (which is finer than language equivalence).

For a functor F' on Set, the image of an F'-coalgebra under the unique morphism is
its minimal representative (with respect to the induced behavioural equivalence) that,
in the finite case, can be computed via ordinary partition refinement algorithms. For
functors on categories not equipped with proper image factorization structures (such
as Rel, for instance) the situation is less clear-cut. This observation instantiates to the
well-known fact that for every DA there exists an equivalent minimal automaton, while
for NDAs the uniqueness of minimal automata is not guaranteed.

It is our aim to, on the one hand, offer a procedure to perform ordinary partition re-
finement for categories with suitable factorization structures (such as Set, wherein DAs
are modelled), yielding the minimization of a coalgebra. On the other hand, we want to
offer an alternative procedure for categories without proper factorization structures: we
describe a general setting for determinizations and show how to obtain a single algo-
rithm that does determinization and minimization simultaneously. It is worth to note
that the latter approach holds for functors for which a final coalgebra does not exist.

Our work was motivated by several examples, considering coalgebras in various un-
derlying categories. In this paper, we take one example in Set and two examples in

60 J. Adamek et al.

Xe(T), the Kleisli category for a monad 7'. More precisely, we consider DAs in Set,
NDAs in Rel, which is K¢(P) where P is the powerset monad, and conditional tran-
sition systems in K/(T") where T is the input monad. For DAs, we recover the usual
Hopcroft minimization algorithm [16]]. Instantiation to NDAs gives us (a part of) Br-
zozowski’s algorithm [[7]]: the obtained automata coincide with dfomata, that are a new
kind of “canonical” NDAs recently introduced in [S§]].

Conditional Transition Systems (CTS). To better illustrate our work, we employ transi-
tion systems labelled with conditions that have similarly been studied in [[14410]. Con-
sider the transition system (Il) below where transitions are decorated with conditions
a, a, where intuitively a stands for “not a”. Labelled transitions are either present or
absent, depending on whether a or a hold. Unlabelled transitions are always present
(they can be thought of as two transitions labelled a and a@).

Fpay dhow dha

(1) 2

The environment can make one choice, which can not be changed later: it decides
whether to take either a or a. Regardless of the specific choice of the environment,
the two states 1 and 6 in () above will be bisimilar. If a holds then the systems above
would be instantiated to the left half of transition system @) above. Instead if a does
not hold then we obtain the right half. In both cases, the instances of the states 1 and 6
are bisimilar.

This shows that one possible way to solve the question whether two states are always
bisimilar consists in enumerating all conditions and to create suitably many instantia-
tions of the transition system. Then the resulting transition system can be minimized
with respect to bisimilarity. This is analogous to the steps of determinization and mini-
mization for NDAs. Indeed, the base category of coalgebras of CTSs, as Rel for NDAs,
has no suitable factorization structures. In order to minimize (both NDAs and CTSs),
coalgebras should be transformed via reflections that, in the case of NDAs means deter-
minizing, while for CTS, means instantiating CTSs for all the conditions.

In this work, we will study both constructions in a general setting and also show how
they can be combined into a single algorithm. For CTSs this mean that we will provide
an algorithm that checks if two states are bisimilar under all the possible conditions,
without performing all the possible instantiations.

Now, what would be a canonical representative of the systems above? In other words,
is there a system into which CTS () can be mapped? In the example above, it is rel-
atively easy to see that that system would be the transition system consisting of states
x,y, z in (@) below. One would map both 1 and 6 to z, 7 to y, 4,5,9 and 10 to z.
What about 2 and 3? We want to map 2 to y whenever a holds and to z whenever

A Coalgebraic Perspective on Minimization and Determinization 61

a holds, dually for 3. In order to do that we need to work in a category where we can
represent such conditional maps. As we will show in the sequel, by modelling CTS as
coalgebras in a Kleisli category this will be possible. The full mapping is represented
below.

3)

An extended version of this paper [2] contains all the proofs, further details and ex-
amples. In particular, there we instantiate our theory to the case of linear weighted
automata [6].

2 Background Material on Coalgebras

We assume some prior knowledge of category theory (categories, functors, monads,
limits and adjunctions). Definitions can be found in [3]]. However, to establish some no-
tation, we recall some basic definitions. We denote by Ord the class of all ordinals. Let
Set be the category of sets and functions. Sets (and other objects) are denoted by capital
letters X, Y, ... and functions (and other morphisms) by lower case f,g,...,q, [, ...
We write () for the empty set, 1 for the singleton set, typically written as 1 = {e}, and 2
for the two elements set 2 = {0, 1}. The collection of all subsets of a set X is denoted
by P(X) and the collection of functions from a set X to a set Y is denoted by Y.
We write g o f for function composition, when defined. The product of two sets X, Y
is written as X x Y, while the coproduct, or disjoint union, as X + Y. These opera-
tions, defined on sets, can analogously be defined on functions, yielding (bi-)functors.
A category C is called concrete if a faithful functor U : C — Set is given.

Definition 2.1 (Coalgebra). Given an endofunctor F': C — C an (F'-)coalgebra is
a pair (X, «), where X is an object of C and a: X — FX a morphism in C. A
(coalgebra) homomorphism f: (X, «) — (Y,) between two coalgebras a: X —
FXandB:Y — FY isa C-morphism f: X — Y suchthat Ff oo = (o f.

An F-coalgebra (£2,w) is final if for any F-coalgebra (X, «) there exists a unique
homomorphism behx : (X,a) — (§2,w). If C is concrete we can define behavioural
equivalence. Given an F'-coalgebra (X, «) and z,y € UX, we say that z and y are
behaviourally equivalent, written x = vy, if and only if there exist an F'-coalgebra (Z,)
and a homomorphism f: (X,«) — (Z,~) such that U f(x) = U f(y). If a final F-
coalgebra exists, we have a simpler characterization of behavioural equivalence: x ~ y
iff Ubehx (z) = Ubehx (y).

Example 2.2. (DA) A deterministic automaton over the alphabet A is a pair (X, «),
where X is a set of states and a: X — 2 x X“ is a function that to each state
associates a pair a(z) = (o,,t,), where o,, the output value, determines if a state

62 J. Adamek et al.

x is final (o, = 1) or not (0o, = 0); and ¢,, the transition function, returns for each
a € A the next state. DAs are coalgebras for the functor /X = 2 x X4 on Set. The
final coalgebra for this functor is (P(A*),w) where P(A*) is the set of languages over
A and, for a language L, w(L) = (e, L), where £, determines whether or not the
empty word is in the language (¢, = 1 or €, = 0, resp.) and, for each input letter a,
L, is the derivative of L: L, = {w € A* | aw € L}. From any DA (X, «), there is a
unique homomorphism beh x into P(A*) which assigns to each state its behaviour (that
is, the language that the state recognizes). Two states are behaviourally equivalent iff
they accept the same language.

Take A = {a,b} and consider the DAs on the right. We call the topmost X a)
where X = {x,y, 2} and a: X — 2x X“ maps z to the *
pair (1,{a — =, bHy}}ytO(O{aHy,be} Cb @
and z to (1, {a — z, b — y}). The bottom one is (Z,)
where Z = {0, D} and y: Z — 2 x Z4 maps © to Q{N@
(I,{a— <, b—0O})and Oto (0,{a — O, b O}).

As an example of a coalgebra homomorphism, take the function e: X — Z mapping
x, zto < and y to. O

Non-deterministic automata (NDA) can be described as coalgebras for the functor 2 x
P(—)4 (on Set): to each input in A, we assign a set of possible successors states.
Unfortunately, the resulting behavioural equivalence is not language equivalence (as for
DAs), but bisimilarity (i.e., it only identifies states having the same branching structure).
In [21413], it is shown that in order to retrieve language equivalence for NDAs, one
should consider coalgebras in a Kleisli category. In what follows, we introduce Kleisli
categories, in which we model NDAs and CTSs as coalgebras. While objects in a Kleisli
category are sets, morphisms are generalized functions that incorporate side effects,
such as non-determinism, specified by a monad (see [3113\18]]).

Definition 2.3 (Kleisli Category). Let (T: Set — Set,n,u) (or simply T) be a
monad on Set. Its Kleisli category K¢(T') has sets as objects and a morphism X —'Y
in XL(T) is a function X — TY. The identity idx is nx and the composition g o f of
f: X =Y, g:Y — Z(ie, functions f: X - TY,g:Y - TZ)isuzoTgo f.

In the following we will employ overloading and use the same letter to both denote a
morphism in X¢(T") and the corresponding function in Set. Furthermore, note that Set
can be seen as a (non-full) subcategory of KX¢(T'), where each function f: X — Y
is identified with ny o f. Every Kleisli category X¢(T') is a concrete category where
UX =TXand U f = py o T f for an object X and a morphism f: X — Y.

To define coalgebras over Kleisli categories we need the notion of lifting of a functor,
which we define here directly, but could otherwise be specified via a distributive law (for
details see [13I19]): a functor F': K4(T') — KL(T') is called a lifting of F': Set — Set
whenever it coincides with F on Set, seen as a subcategory of K4(T').

Since F' and F coincide on objects, F-coalgebras in K¢(T') are of the form X —
TF X, where intuitively the functor F' describes the explicit branching, i.e. choices
which are visible to the observer, and the monad 7' the implicit branching, i.e. side-
effects, which are there but cannot be observed directly. In this way, the implicit branch-
ing is part of the underlying category and is also present in the morphism from any

A Coalgebraic Perspective on Minimization and Determinization 63

coalgebra into the final coalgebra. As in functional programming languages such as
Haskell, the idea is to “hide” computational effects underneath a monad and to separate
them from the (functional) behaviour as much as possible.

Example 2.4. (NDA) Consider the powerset monad TX = P(X). The Kleisli cate-
gory K/4(P) coincides with the category Rel of sets and relations. As an example of
a lifting, take FX = A x X 4+ 1 in Set (with 1 = {e}). The functor F lifts to
F in Rel as follows: for any f: X — Y in Rel (thatis f: X — P(Y) in Set),
Ff: AxX+4+1— AxY +1is defined as Ff(e) = {o} and Ff({(a,z)) =
{{a,vy) | y € f(x)}. Non-deterministic automata over the input alphabet A can be re-
garded as coalgebras in Rel for the functor F. A coalgebra oo: X — F X is a function
a: X — P(Ax X +1), which assigns to each state x € X a set which contains e if z is
final and (a, y) for all transitions 2 % 3. For 1nstance a,b

the automaton on the right is the coalgebra (X, a) (ED Q@(/N
where X = {1,2,3}anda:: X — P({a, b}xX+{ } @

is defined as follows: «(1) = {{a, 1), (b, 1), (b,2)}, a(2) = {{(a, 2}, (b, 3) } and «(3)
{e,(a,2),(b,3)}. In [13], it is shown that the final F coalgebra (in Rel) is the set A*
of words. For an NDA (X, «), the unique coalgebra homomorphism behx into A* is
the relation that links every state in X with all the words in A* that it accepts.

Example 2.5. (CTS) We shortly discuss how to specify the example from the introduc-
tion in a Kleisli category. All the details can be found in [2] .

We use the input monad 7'X = X A where A is a set of conditions or inputs (for the
example of the introduction A = {a,a}). Given a function f: X - YV, Tf: TX —
TY is f4: X4 — Y4 defined forall g € X4 anda € A as f4(g)(a) = f(g(a)).

Note that a morphism f: X — Y in the Kleisli category over the input monad is a
function f: X — Y4, For instance, the dashed arrows in the introduction describe a
morphism in K¢(T'): state 2 is mapped to y if condition @ holds and to z if @ holds.

We will use the countable powerset functor F'X = P.(X) as endofunctor, which is
lifted to C¢(T") as follows: a morphism f: X — Y in K¢(T"), which is a function of the
form f: X — Y4, ismappedto F'f: Po(X) — P.(Y) with F f(X")(a) = {f(z)(a) |
x € X'} for X' C X, a € A. Hence, CTS () from the introduction is modelled by a
morphism a: X — P.(X) in K¢(T) (i.e., a function a: X — P.(X)?), where X =
{1,...,10} and A = {a, a}. For instance
a(D)(a) = a(1)(@) = 2,3}, a(2)@) = @ 1 2 345 6 7 8910
{4}, a(2)(a) = 0. The entire coalgebra a a {2,3} {4} 0 00{7,8} {9} 000
is represented by the matrix on the right. a{2,3} 0 {5}00{7.8} {10100 0

Note that the above a: X — P.(X)“ can be seen as a coalgebra for the functor
FX = P.(X)" in Set, which yields ordinary A-labelled transition systems. However,
the resulting behavioural equivalence (that is, ordinary bisimilarity) would be inade-
quate for our intuition, since it would distinguish the states 1 and 6. In [2], we prove
that behavioural equivalence of F'-coalgebras coincides with the expected one.

3 Minimization via (€, M)-Factorizations

We now introduce the notion of minimization of a coalgebra and its iterative construc-
tion that generalizes the minimization of transition systems via partition refinement.

64 J. Adamek et al.

This notion is parametrized by two classes € and M of morphisms that form a factor-
ization structure for the considered category C.

Definition 3.1 (Factorization Structures). Let C be a category and let E, M be classes
of morphisms in C. The pair (€, M) is called a factorization structure for C whenever
— &€ and M are closed under composition with isos.
— C has (&, M)-factorizations of morphisms, i.e., each morphism f of C has a fac-
torization f = moewithe € € andm € M.

e e

. - A »B A " »B
= C has the unique (&,M)-diagonalization g d g
property: for each commutative square as (1, "y [oS ™y D

shown on the left-hand side with e € € and

m € M there exists a unique diagonal, i.e., a morphism d such that the diagram on
the right-hand side commutes (i.e., do e = f and m o d = g). If all morphisms in
& are epis we call (€, M) a right factorization structure.

In any category with an (&, M)-factorization structure, the classes €, M are closed un-
der composition and factorizations of morphisms are unique up to iso (see [3]]). For Set
we always consider below the factorization structure (€, M) with & = epimorphims
(surjections) and M = monomorphisms (injections); for the category Set°® we take
the corresponding structure (M, €), i.e., where the epic part consists of functions that
in Set are monomorphisms, analogously with €. Morphisms from € are drawn using
double-headed arrows A — B, whereas morphisms from M are depicted using arrows
of the form A — B. Whenever the endofunctor F' preserves M-morphisms, which we
assume in the following, the factorization structure can be straightforwardly lifted to
coalgebra homomorphisms (see [17]).

Assumption 3.2. We assume that C is a complete category with a right (€, M)-factori-
zation structure and C is E-cowellpowered, i. e., every object X only has a set of &-
quotients (i.e., E-morphisms with domain X up to isomorphism of the codomains). We
also assume that F': C — C is a functor preserving M, i. e., if m € M then Fm € M.

Definition 3.3 (Minimization). 7The minimization of a coalgebra ov: X — F X is the
greatest E-quotient coalgebra. More precisely, the minimization is a coalgebra (Z,~)
with a homomorphisme: (X, a) — (Z,7) withe € & such that for any other coalgebra
homomorphism €' : (X, o) — (Y, 3) with €' € & there exists a (necessarily) unique
coalgebra homomorphism h: (Y, 8) — (Z,~) such thate = h o €.

X © % 7
Ty ow
« vﬂ Y
Fe' EFY Fn
rx— SFz

Fe

Remark 3.4. (1) Since C is E-cowellpowered and € consists of epimorphisms, the &-
quotient coalgebras of a coalgebra (X, «) form a pre-ordered set: a quotient coalgebra
e (X,a) - (Y',3') is larger than e: (X,) — (Y, () iff there exists a coalgebra

A Coalgebraic Perspective on Minimization and Determinization 65

homomorphism h: (Y, 8) — (Y, 5’) with e’ = h o e; notice that h is uniquely deter-
mined and h € & by the properties of factorization systems. Thus, the minimization is
simply the greatest element in the pre-order of €-quotient coalgebras of (X, «).
(2) While in Set the minimization is also determined by the strict minimality of the
number of states, this is not necessarily true for other categories (see Example [.10).
(3) We often speak about (Z,) (without explicitly referring to the morphism e) or
even just the object Z as the minimization of the given coalgebra.

Theorem[3.8 will show that under Assumption[3.2]the minimization always exists, even
when there is no final coalgebra. When the final coalgebra exists, minimization is the
quotient of the unique morphism.

Proposition 3.5 (Minimization and Final Coalgebra). If the final coalgebraw: 2 —
F (2 exists, then — for a given coalgebra a.: X — F X — the minimizationy: Z — FZ
can be obtained by factoring the unique coalgebra homomorphism behx : (X, a) —
(£2,w) into an E-morphism and an M-morphism.

beh x
X _o»Z 50
a Y v
FX Fe y 75 FnL?F.Q
Fbehx

Note that whenever the concretization functor U: C — Set maps M-morphisms to
injections, x,y € UX are behaviourally equivalent (z ~ y) iff Ue(z) = Ue(y).

Example 3.6 (DA, Minimal Automata). Recall that DAs are coalgebras for the functor
FX =2 x X% on Set (Example[2.2). In this case, minimization corresponds to the
well known minimization of deterministic automata. For instance, the minimization of
the top automaton (X, @) in Example 2.2l yields the automaton (Z,~) (on the bottom).

We now describe a construction that — given a coalgebra (X,) — obtains the mini-
mization y without going via the final coalgebra. This closely resembles the partition
refinement algorithm for minimizing deterministic automata or for computing bisimi-
larity. Whenever the construction below becomes stationary, we obtain the minimiza-
tion. In many examples the constructed sequence might even become stationary after
finitely many steps. The construction is reminiscent of the construction (in the dual set-
ting) of the initial algebra by Addmek [1], for the coalgebraic version see Worrel [24]
and Adamek and Koubek [4]. As in those papers, our construction works for ordinals
beyond w. Hereafter 1 denotes the final object of C.

Construction 3.7 Recall the final chain W : Ord — C given by
Wy =1, Wit1 = FW,, W; =UmW; (j a limit ordinal.)
1<J
This is the unique chain, up to natural isomorphism, whose connecting morphisms w; ;
Sulfil (a) wiy1 j+1 = Fw; ; and (b) for limit ordinals they form a limit cone.

As we do not assume that F has a final coalgebra, the chain W need not con-
verge. Every coalgebra oo: X — FX defines a unique canonical cone (o;: X —

66 J. Adamek et al.

Wi)icord on W with the property that a;11 = Foa;oa: X — FW; = Wiy,
Let ¢;: X — FE;, m;: E; — W; be an (E,M)- X_ .
factorization of «;. Then, we obtain an ordinal indexed Q\e/ e,xy
chain (E;) of quotients of X with the connecting mor- Ei Qi ‘€j
phisms e; ; obtained by diagonalization for i < j, as de- iy 1
W; < Wj

picted on the right. wji
Theorem 3.8. For every F-coalgebra (X, &), its minimization is E;, for some i € Ord.

More precisely, there exists an ordinal ¢ such that E; carries a coalgebra structure
e: E; — FE; such that ¢;: (X,a) — (E;,¢) is the minimization; for details see
the proof of Theorem[3.8]in the extended version of this paper [2].

By the above theorem, minimizations always exist even when there is no final coal-
gebra. Worrell [24]] shows that for a finitary functor F': Set — Set, the final chain W;
converges at the final coalgebra in w + w iterations. The chain F;, instead, converges at
the minimization in w iterations.

Theorem 3.9. Let F': Set — Set be a finitary functor. Then for every F-coalgebra
(X, @), its minimization is E,,,.

In our examples, we will use the following construction which is closer to the standard
minimization algorithm and to any reasonable implementation of Construction[3.71

Theorem 3.10. The chain (E;);cord of Constructionl3 A can also be defined as follows:
(a) Factor the unique morphism dy: X — lintoey: X — Egandng: Ey — 1.

(b) Givene;: X — E;, factord;11 = Fejoaintoe;y1: X — E;y1andn;i1: By —
FE;.

(¢) For a limit ordinal j, form a limit of the preceding chain (E;);<;, obtaining Ej and
éj: X — Ej as mediating morphism. Factor é; into ej: X —» Ejandn;: E; — Ej.

By instantiating the above construction to the case of DAs, we obtain the standard
minimization algorithm by Hopcroft [[16]].

4 Determinization via Reflections

For several categories there are no suitable factorization structures. This can for in-
stance be observed in Rel, wherein we model non-deterministic automata as coalge-
bras. It is known that minimization of non-deterministic automata is not unique. The
usual procedure is to first construct the corresponding deterministic automaton (via
the powerset construction), which is then minimized in a second step. In this section,
we will give a general framework for determinization-like constructions in the form
of reflections, which can also be applied to other settings, such as conditional transi-
tion systems. For non-deterministic automata we will obtain an automaton which is
“backward-deterministic”, i.e., for every state and each letter there is exactly one pre-
decessor. Then we will show how reflections can be combined with the minimization.

A Coalgebraic Perspective on Minimization and Determinization 67

Definition 4.1 (Reflective Subcategory). Let S be a subcategory of C. Let X be an
object of C. An S-reflection for X is a morphism nx: X — X', where X' is an S-
object, such that for every other morphism f: X — Y withY in S there exists a unique
S-morphism [': X' — Y such that f = f' onx. S is called a reflective subcategory
of C whenever each C-object has an S-reflection.

This definition is equivalent to saying that the functor embedding S into C has a left
adjoint L: C — S called reflector. The morphisms 77x form the unit of this adjunction.
In our examples in K¢(T'), the unit 7 of the reflection will not coincide with the natural
transformation 7 of the monad T'. It is well-known that for a monad 7": Set — Set the
category Set is coreflective in K¢(T'), whereas here we need a reflective subcategory.

Example 4.2. (NDA) The category Set°P is a reflective subcategory of Rel. The re-
flector L is the contravariant powerset functor, i.e., for a relation R: X — Y we have
L(R): P(X) — P(Y) in Set®® where L(R) maps Y’ C Y to R~*(Y"). The reflection
nx: X — P(X) relates an element z € X with X’ C X ifand only if z € X

(CTS) For X¢(T) where T is the input monad, we have the following situation:
since every function f: X — Y4 corresponds to a function f': A x X — Y by
currying, the category X¢(T') is isomorphic to the co-Kleisli category over the comonad
VX = A x X on Set. Hence, Set is both reflective and coreflective in K¢(T'). The
reflection is the Kleisli morphism nx: X — A x X with nx(z)(a) = (a,x). The
reflector L coincides with V' on objects and takes the product of the state set X with
the label set A. More concretely, for a morphism f: X — Y in K¢(T') we obtain a
morphism Lf: A x X — A x Y in Set with Lf({a,z)) = (a, f(z)(a)).

Definition 4.3 (Reflection of Coalgebras). Let S be a reflective subcategory of a cat-
egory C and let L: C — S be the reflector. Assume that S is preserved by the endo-
functor F. Then, given a coalgebra o: X — FX in C we reflect it into S, obtaining a
coalgebra o' : LX — FLX by the following construction:

«

X »FX

Fnx
% La "X~ (x
LX »LFX >»FLX
\ ,

«

Note that the existence of a unique morphism (x is guaranteed by Definition
since I preserves S and hence F'LX is an object of S.

Whenever C is a concrete category (with concretization functor U) and z,y € UX it
holds that x ~ y iff Unx(z) = Uny(y). Hence two states in UX are behaviourally
equivalent if and only if this holds for their images in the reflected coalgebra.

That the above construction indeed gives a reflection of coalgebras for F' is a special
instance of a known result (see for instance Hermida and Jacobs [15], Corollary 2.15).

Proposition 4.4. Let S be a reflective subcategory of C, which is preserved by the
endofunctor F. The category of F-coalgebras in S is a reflective subcategory of the
category of F-coalgebras in C.

68 J. Adamek et al.

A limit in a reflective subcategory S is also a limit in C. Hence, if the final coalgebra
exists in the subcategory S, it is also the final coalgebra in C. In particular, whenever S
is complete, the chain (W;) (Construction[3.7) in S will coincide with the chain in C.

Example 4.5. (NDA) We will first study the effect of a reflection on a non-deterministic
automaton, for which we use the reflective subcategory Set®® of Rel (see Exam-
ple B.2). The effect of the reflection on coalgebras is a powerset automaton which
is however “backwards-deterministic”: more specifically, given a coalgebra av: X —
A x X + 1 in Rel, the reflected coalgebra o/ : P(X) — A >< P(X) + 1 is a relation
which lives in Set®® and, when seen as a function, maps (a, X') with X’ C X to

T BT, B

set of a-predecessors of X') and e to {z € , b a

X | o € a(x)} (the set of final states, the @ @ C‘
unique final state of the new automaton). For

instance, the reflection of the NDA (X, &) in Example IZ._AI is the above backwards-
deterministic automaton. Note that the above automaton has a single final state (con-
sisting of the set of final states of the original automaton) and every state has a unique
predecessor for each alphabet letter. Hence, it can be seen as a functiona’: AXY +1 —
Y (i.e., an algebra for the functor F'Y = A x Y + 1). Note that Set is not a reflective
subcategory of Rel — it is instead coreflective — and hence both categories have differ-

ent final coalgebras. However for the reflective subcategory Set®P, we have exactly the
same final coalgebra as for Rel, which, as shown in [[13]], is the initial algebra in Set.

(CTS) Now we come back to the Kleisli category K¢(T') over the input monad T (see
Example 2.3) and coalgebras with endofunctor P.. As discussed in Example [£.2] Set
is a reflective subcategory of K¢(T'). On coalgebras reflection has the following ef-
fect: given a coalgebra a: X — P.(X) in K¢(T) we obtain a reflected coalgebra
o/: Ax X — P(A x X)in Set with o ({a, z)) = {{a,2") | 2’ € a(z)(a))}. That
is, we generate the disjoint union of | A| different transition systems, each of which de-
scribes the behaviour for some a € A. For instance, the reflection of CTS (I)) (formally
introduced in Example[2.3] see also the introduction) is CTS (@) from the introduction.

We now consider other forms of factorizations that do not conform to Definition[3.1]

Definition 4.6 (Pseudo-Factorization). Let C be a category and let S be a reflective
subcategory with a factorization structure (£, M). Let f: X — Y be a morphism of C
where Y is an object of S. Take the unique morphism

f'i LX — Y with f' onx = f (which exists due to the /
reflection) and factor f' = moewithm € M, e € &, [x \§

Then the decomposition f = m o c with c = e o nx is _)» J

called the (&, M)-pseudo-factorization of f.

Example 4.7. (NDA) Consider Set®® as the reflective subcategory of Rel (Exam-
ple £2). Given a relation R: X — Y, letZ = {R7!(y) | y € Y} C P(X) be the

A Coalgebraic Perspective on Minimization and Determinization 69

set of pre-images of elements of Y under R. Now define relations R.: X — Z with
R.(z)={Z€2|zeZ}andRp,: Z - Y withR,,,(Z) ={y €Y | Z = R (y)}.
Note that R,,, o R. = R. As an example consider

the relation R between sets X = {a,b,c,d} and :><; “— (0. b} /;
Y = {1,2,3,4,5} visualized on the left (where 3 ’

R(a) = R(b) = {12} R(c) = (3}, R(d) = ,—, ¢ _ledb 3
{3,4}). Its pseudo-factorization into R, and R,, is 5 d {d} 4
shown on the right. Here R,,, maps elements of ¥ to 0 5

their preimage under R in P(X).

(CTS) For Set, the reflective subcategory of K¢(T'), where T is the input monad, we
use the classical factorization structure with surjective and injective functions. Given a
morphism f: X — Y in K¢(T'), seen as a function f: X — Y4, we define Y’ = {y €
Y |3z € X,a € A: f(z)(a) = y}. Then f.: X — Y4 with f.(z)(a) = f(x)(a)
and f,: Y’ — Y4 with f,,(y)(a) = y forall a € A, i.e., f, is simply an injection
without side-effects. Note that f,,, o f. = f in I(T).

Note that pseudo-factorizations enjoy the diagonalization property as in Definition 3.1]
whenever g is a morphism of S. However pseudo-factors are not necessarily closed
under composition with the isos of C.

Assumption 4.8. We assume that S is a reflective subcategory of C. We also assume
that an endofunctor F of C is given preserving S. And S and F fulfil Assumption[3.2]

Theorem 4.9. Given a coalgebra a: X — F X in C, the following four constructions
obtain the same result (we also call this result the minimization):

(i) Apply Construction3. Ausing the (&€, M)-pseudo-factorizations of Definitiond.6]
(ii) Reflect o into the subcategory S according to Definition 4.3l and then apply Con-
struction[3. A using (€, M)-factorizations.
(iii) Apply the construction of Theorem[Z 10 using (&€, M)-pseudo-factorizations.
(iv) Reflect «v into the subcategory S and then apply the construction of Theorem[3.10]
using (€, M)-factorizations.

Note that we do not have to require here that C is complete. As it is clear from the proof
of Theorem [4.9] (see the extended version of this paper [2]]) Construction 3.7 and the
construction in Theorem[3.T0lcan be straightforwardly adapted to pseudo-factorizations
instead of factorizations: The quotients F; and the chain ¢; ; of connecting morphisms
obtained in variants (i)—(iv) are identical and live in the subcategory S. Since S is re-
flective in C we obtain the same results when taking the limit in C or in S, respectively.

Variant (iii) allows to tightly integrate minimization with a determinization-like con-
struction, i.e., to do both simultaneously instead of sequentially. For practical purposes
it is usually the most efficient solution, since it avoids building the final chain of Con-
struction [3.7] and the reflected coalgebra of Definition 3] which both usually involve
significant combinatorial explosion.

70 J. Adamek et al.

Example 4.10. (NDA) Theorem suggests two ways to build the minimization of
an NDA (and thus checking the equivalence of its states). We first apply Construc-
tion (iv) to the NDA (X, «) in Example 2.4] and then we illustrate Construction (iii).
Recall that the reflection of (X,«) into Set°? is

a,b a a,b
(P(X),d') in Example By applying Construc- Q
tion [3.7] (with the factorization structure of Set°P), we @ b @ b a
remove from (P(X), ') the states that are not related to
any word in the final coalgebra or, in other words, those states from which there is no
path to the final state. Intuitively, we perform a backwards breadth-first search and the
factorizations make sure that unreachable states are discarded. The resulting automaton
is illustrated above.

Construction (iii) can be understood as an efficient implementation of Construc-
tion (iv): we do not build the entire (P(X),a’), but we construct directly the above
automaton by iteratively adding states and transitions. We start with state 3, then we
add 23 and () and finally we add 123. All the details are shown in [2]].

The minimized NDA can be thought of as a canonical representative of its equiva-
lence class. The quest for canonical NDAs (also referred to as “universal”) started in
the seventies and, recently, an interesting kind of canonical NDAs (called dtomata) has
been proposed in [8]]. In [2]] , we show that our minimized NDAs coincide with dtomata
of [8]]. This provides a universal property that uniquely characterizes dtomata (up to
isomorphism), namely the dtomaton of a regular language is the minimization of any
NDA accepting the language.

It is worth noting that the automaton obtained above is precisely the automaton
in the third step of the well-known Brzozowski algorithm for minimization of non-
deterministic automata [7]], which, in a nutshell, works as follows: 1) given an NDA
reverse it, by reversing all arrows and exchanging final and initial states; 2) determinize
it, using the subset construction, and remove unreachable states; 3) reverse it again; 4)
determinize it, using the subset construction, and remove unreachable states. In our ex-
ample, we are doing steps 1)-3) but without the explicit reversal. Our automata do not
have initial states, but steps 1)-3) are independent on the specific choice of initial states,
because of the two reversals.

Example 4.11. (CTS) Recall the coalgebraic description of CTS given in Example[2.3t
the base category is K¢(T'), where T is the input monad and F = P, is the count-
able powerset functor. CTS (1) of the introduction is the coalgebra a: X — P.(X)
represented by the table in Example[2.3

We describe the algorithm in Theorem [.9(iii) with the pseudo-factorization of Ex-
ample 4.7l (Construction (iv) only consists in the standard minimization of the reflected
coalgebra o/, that is CTS (@) of the introduction). We start by taking the unique mor-
phism dp: X — 1 into the final object of K¢(T'), thatis 1 = {e}. At the iteration i, we
obtain e; via the pseudo-factorization of d; = n;oe;, and then we build d;+1 = Fe;oq.
The iterations of the algorithm are shown in the following tables below.

A Coalgebraic Perspective on Minimization and Determinization 71

do: X — 1= {e} =Ep da: X — Pe(Er), B2 = {0,{0},{0, {e}}}
do,e0 12345678910 dz, ez 1 2 3 45 6 7 8910
G eeeeeeece o a {0,{e}} {0} O 00 {0, {e}}{0}00 0
G eeeeeeeee o a {@,{O}} 0 {@}@@{@,{0}}{(2)}@@@
di: X — Pe(Eo) = {0,{e}} = Ex dz: X — Pe(E2), Es—{Q) {03, {0,{0}}}
di,etr 1 2 3 45 6 7 8910 ds,es 1 2 3 45 7 8910
a {e}{e} 0 00 {e}{e} 00 0 a {0,{0}} {0} 0 @@{(0,{ {000 0
a {e} 0 {e} 00 {e} {e} 00 0 a {0,{0}} 0 {0} 00{0,{0}} {0} 00 0

Each table represents both d; and e;: X — E; (the morphisms n; such thatd; = n;oe;
are just the obvious injections). At the iterations 0 and 1, Fy = 1 and Fy = P.(Ep). At
the iteration 2 instead, E2 # P.(E1), since nothing maps to {{e}} € P.(E1).

The algorithm reaches a fixed-point at iteration 3, since there is an iso ¢: Fs — Fj.
The minimization (E3, P.(t) o n3) is depicted below.

000 (050

It is easy to see that the above transition system is isomorphic to the one from the
introduction having states x,y, z. Moreover, the coalgebra morphism e3: (X,a) —
(E3,P.(t) o ng), illustrated in the table above, corresponds to the dashed arrow of the
introduction, where 2 is mapped to {0} (= y) if a holds, and to (§ (= z) if @ holds.

5 Conclusion, Related and Future Work

In this work, we have introduced a notion of minimization, which encompasses several
concepts of “canonical” systems in the literature, and abstract procedures to compute
it. Our approach only relies on (pseudo-)factorization structures and it is completely
independent of the base category and of the endofunctor F'. Together with appropriate
reflections, this allows to compute minimizations of interesting types of systems that,
for the purpose of minimization, cannot be regarded as coalgebras over Set, such as
non-deterministic automata and conditional transition systems.

For non-deterministic automata, which we model as coalgebras in Rel following [13]],
the result of the proposed algorithm coincides with the one of the third step of Brzo-
zowski’s algorithm [7]. The resulting automata are not minimal in the number of states
(it is well-known that there exists no unique minimal non-deterministic automata), but
they correspond to dtomata, recently introduced in [8]].

The example of conditional transition systems is completely original, but it has been
motivated by the work in [14410]], which introduces notions of bisimilarity depending on
conditions (which are fixed once and for all). The setting of [[10] is closer to ours, but no
algorithm is given there. Our algorithm can be made more efficient by considering CTSs
where conditions are boolean expressions. We already have a prototype implementa-
tion performing the fixed-point iteration based on binary decision diagrams. Moreover,
our coalgebraic model of CTSs provides a notion of quantitative bisimulations that can

72 J. Adamek et al.

be seen as a behavioural (pseudo-)metric. We plan to study how our approach can be
integrated to define and compute behavioural metrics.

As related work, we should also mention that the notion of minimization general-
izes simple [22] and minimal [12] coalgebras in the case where the base category is
Set with epi-mono factorizations. Moreover, several previous studies (e.g. [1719.23]))
have pointed out the relationship between the construction of the final coalgebra (via
the final chain [24/4]) and the minimization algorithm. For instance, in case of regu-
lar categories the chain of quotients e¢;: X —» FE; (Construction 3.7) corresponds to
the chain K; — X x X of their kernel pairs, which is precisely the relation refine-
ment sequence of Staton [23, Section 5.1]. However, none of these works employed
reflections for determinization-like constructions, that is exactly what allows us to min-
imize coalgebras in categories not equipped with a proper factorization structure, such
as non-deterministic automata and conditional transition systems.

In future work we will study general conditions ensuring finite convergence: it is
immediate to see that for any functor on Set with epi-mono factorizations, the sequence
E; of a finite coalgebra converges in a finite number of iterations. However, discovering
general conditions encompassing all the examples of this paper seems to be non-trivial.

Preliminary research suggests that by integrating our approach with well-pointed
coalgebras [3]], we might obtain an explicit account of initial states. Indeed, given the
reachable part of a pointed coalgebra for a set functor (which is defined through the
canonical graph of Gumm [[11]), the result of its minimization is a well-pointed coalge-
bra, i. e., a pointed coalgebra with no proper subcoalgebra and no proper quotient.

In addition we plan to study how our work is related to [20]], which also recovers
Brzozowski’s algorithm in an abstract categorical setting.

Acknowledgements. We would like to thank Ana Sokolova, Paolo Baldan and Walter
Tholen for answering our questions and giving generous feedback. We also thank the
reviewers for their valuable comments.

References

1. Adamek, J.: Free algebras and automata realizations in the language of categories. Com-
ment. Math. Univ. Carolin. 15, 589-602 (1974)

2. Adéamek, J., Bonchi, F., Hiilsbusch, M., Konig, B., Milius, S., Silva, A.: A coalgebraic per-
spective on minimization and determinization (extended version),
http://alexandrasilva.org/files/fossacsl2-extended.pdf

3. Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories — The Joy of Cats.
Wiley (1990)

4. Adamek, J., Koubek, V.: On the greatest fixed point of a set functor. TCS 150, 57-75 (1995)

5. Adéamek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. In: Birkedal, L. (ed.)
FOSSACS 2012. LNCS, vol. 7213, Springer, Heidelberg (2012)

6. Boreale, M.: Weighted Bisimulation in Linear Algebraic Form. In: Bravetti, M., Zavattaro,
G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163—177. Springer, Heidelberg (2009)

7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events.
Mathematical Theory of Automata 12(6), 529-561 (1962)

8. Brzozowski, J., Tamm, H.: Theory of Atomata. Tn: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 105-116. Springer, Heidelberg (2011)

http://alexandrasilva.org/files/fossacs12-extended.pdf

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

A Coalgebraic Perspective on Minimization and Determinization 73

. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the

pi-calculus using polymorphic types. TCS 331(2-3), 325-365 (2005)

Fitting, M.: Bisimulations and boolean vectors. In: Advances in Modal Logic, vol. 4, pp.
1-29. World Scientific Publishing (2002)

Gumm, H.P.: From T-Coalgebras to Filter Structures and Transition Systems. In: Fiadeiro,
J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp.
194-212. Springer, Heidelberg (2005)

Gumm, H.P.: On minimal coalgebras. Applied Categorical Structures 16, 313-332 (2008)
Hasuo, 1., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. LMCS 3(4:11),
1-36 (2007)

Hennessy, M., Lin, H.: Symbolic bisimulations. TCS 138(2), 353389 (1995)

Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Infor-
mation and Computation 145, 107-152 (1998)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, 3rd edn. Wesley (2006)

Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis,
Ludwigs-Maximilians-Universitdt Miinchen (2000)

Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
Mulry, P.S.: Lifting Theorems for Kleisli Categories. In: Main, M.G., Melton, A.C., Mis-
love, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 304-319.
Springer, Heidelberg (1994)

Panangaden, P.: Duality in probabilistic automata Slides (May 19, 2011),
http://www.cs.mcgill.ca/~prakash/Talks/duality_talk.pdf

Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Proc. of CTCS
1999. ENTCS, vol. 29, pp. 259-274 (1999)

Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. TCS 249, 3-80 (2000)

Staton, S.: Relating coalgebraic notions of bisimulation. LMCS 7(1) (2011)

Worrell, J.: On the final sequence of a finitary set functor. TCS 338(1-3), 184—199 (2005)

http://www.cs.mcgill.ca/~prakash/Talks/duality_talk.pdf

When Is a Container a Comonad?

Danel Ahman®*, James Chapman?, and Tarmo Uustalu?

L Computer Laboratory, University of Cambridge,
15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom
danel.ahman@cl.cam.ac.uk
2 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia
{james,tarmo}@cs.ioc.ee

Abstract. Abbott, Altenkirch, Ghani and others have taught us that
many parameterized datatypes (set functors) can be usefully analyzed
via container representations in terms of a set of shapes and a set of po-
sitions in each shape. This paper builds on the observation that datatypes
often carry additional structure that containers alone do not account for.
We introduce directed containers to capture the common situation where
every position in a datastructure determines another datastructure, in-
formally, the sub-datastructure rooted by that position. Some natural
examples are non-empty lists and node-labelled trees, and datastructures
with a designated position (zippers). While containers denote set functors
via a fully-faithful functor, directed containers interpret fully-faithfully
into comonads. But more is true: every comonad whose underlying func-
tor is a container is represented by a directed container. In fact, directed
containers are the same as containers that are comonads. We also de-
scribe some constructions of directed containers. We have formalized our
development in the dependently typed programming language Agda.

1 Introduction

Containers, as introduced by Abbott, Altenkirch and Ghani [I] are a neat rep-
resentation for a wide class of parameterized datatypes (set functors) in terms
of a set of shapes and a set of positions in each shape. They cover lists, col-
ists, streams, various kinds of trees, etc. Containers can be used as a “syntax”
for programming with these datatypes and reasoning about them, as can the
strictly positive datatypes and polynomial functors of Dybjer [§], Moerdijk and
Palmgren [16], Gambino and Hyland [9], and Kock [I5]. The theory of this class
of datatypes is elegant, as they are well-behaved in many respects.

This paper proceeds from the observation that datatypes often carry ad-
ditional structure that containers alone do not account for. We introduce di-
rected containers to capture the common situation in programming where every
position in a datastructure determines another datastructure, informally, the

* The first author was a summer intern at the Institute of Cybernetics, Tallinn Uni-
versity of Technology when the bulk of this work was carried out.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 74-B8, 2012.
© Springer-Verlag Berlin Heidelberg 2012

When Is a Container a Comonad? 75

sub-datastructure rooted by that position. Some natural examples of such datas-
tructures are non-empty lists and node-labelled trees, and datastructures with a
designated position or focus (zippers). In the former case, the sub-datastructure
is a sublist or a subtree. In the latter case, it is the whole datastructure but with
the focus moved to the given position.

We show that directed containers are no less neat than containers. While
containers denote set functors via a fully-faithful functor, directed containers
interpret fully-faithfully into comonads. They admit some of the constructions
that containers do, but not others: for instance, two directed containers cannot be
composed in general. Our main result is that every comonad whose underlying
functor is the interpretation of a container is the interpretation of a directed
container. So the answer to the question in the title of this paper is: a container
is a comonad exactly when it is a directed container. In more precise terms, the
category of directed containers is the pullback of the forgetful functor from the
category of comonads to that of set functors along the interpretation functor of
containers. This also means that a directed container is the same as a comonoid
in the category of containers.

In Sect. Bl we review the basic theory of containers, showing also some ex-
amples. We introduce containers and their interpretation into set functors. We
show some constructions of containers such as the coproduct of containers. In
Sect. B, we revisit our examples and introduce directed containers as a special-
ization of containers and describe their interpretation into comonads. We look at
some constructions, in particular the focussed container (zipper) construction.
Our main result, that a container is a comonad exactly when it is directed, is
the subject of Sect. 4 In Sect. Bl we ask whether a similar characterization is
possible for containers that are monads and hint that this is the case. We briefly
summarize related work in Sect. [6l and conclude with outlining some directions
for future work in Sect. [1

We spend a section on the background theory of containers as they are central
for our paper but relatively little known, but assume that the reader knows about
comonads, monoidal categories, monoidal functors and comonoids.

In our mathematics, we use syntax similar to the dependently typed functional
programming language Agda [18]. If some function argument will be derivable
in most contexts, we mark it as implicit by enclosing it/its type in braces in the
function’s type declaration and either give this argument in braces or omit it in
the definition and applications of the function.

For lack of space, we have omitted all proofs from the paper. We
have formalised our proofs in Agda; the development is available at
http://cs.ioc.ee/~danel/dcont.html.

2 Containers

We begin with a recap of containers. We introduce the category of containers
and the fully-faithful functor into the category of set functors defining the inter-
pretation of containers and show that these are monoidal. We also recall some

http://cs.ioc.ee/~danel/dcont.html

76 D. Ahman, J. Chapman, and T. Uustalu

basic constructions of containers. For proofs of the propositions in this section
and further information, we refer the reader to Abbott et al. [I], [].

2.1 Containers

Containers are a form of “syntax” for datatypes. A container S <1 P is given by
a set S : Set of shapes and a shape-indexed family P : S — Set of positions.

Intuitively, shapes are “templates” for datastructures and positions identify
“blanks” in these templates that can be filled with data. The datatype of lists is
represented by S <1 P where the shapes S = Nat are the possible lengths of lists
and the positions P s = Fins = {0,...,s— 1} provide s places for data in lists of
length s. Non-empty lists are obtained by letting S = Nat and P s = Fin (s + 1)
(so that shape s has s + 1 rather than s positions). Streams are characterized
by a single shape with natural number positions: S = 1 = {*} and P = Nat.
The singleton datatype has one shape and one position: S =1, Px = 1.

A morphism between containers S <t P and S’ < P’ is a pair t < ¢ of maps
t:S — S and q: II{s : S}.P'(ts) — Ps (the shape map and position
map). Note how the positions are mapped backwards. The intuition is that, if a
function between two datatypes does not look at the data, then the shape of a
datastructure given to it must determine the shape of the datastructure returned
and the data in any position in the shape returned must come from a definite
position in the given shape.

For example, the head function, sending a non-empty list to a single data
item, is determined by the maps ¢ : Nat — 1 and ¢ : IT{s : Nat}.1 — Fin (s + 1)
defined by ¢ = % and g% = 0. The tail function, sending a non-empty list to
a list, is represented by ¢ : Nat — Nat and ¢ : II{s : Nat}. Fins — Fin(s + 1)
defined by ts = s and ¢p = p + 1. For the function dropping every second
element of a non-empty list, the shape and position maps ¢ : Nat — Nat and
q:I{s:Nat}.Fin(s+2+1) - Fin(s+1) arets =s+2and ¢{s}p=p=2. For
reversal of non-empty lists, they are ¢ : Nat — Nat and ¢ : IT{s : Nat}.Fin (s +
1) = Fin(s+ 1) defined by ¢t s = s and ¢ {s} p = s — p. (See Prince et al. [19] for
more similar examples.)

The identity morphism id°{C} on a container C' = S <1 P is defined by id® =
id {S}<A\{s}.id{P s}. The composition h o° h' of container morphisms h = t<q
and b’ =t' Q¢ is defined by h o¢ b’ =tot' <X{s}. ¢ {s}oq{t' s}. Composition
of container morphisms is associative, identity is the unit.

Proposition 1. Containers form a category Cont.

2.2 Interpretation of Containers

To map containers into datatypes made of datastructures that have the positions
in some shape filled with data, we must equip containers with a “semantics”.
For a container C' = S<1P, we define its interpretation [C]° : Set — Set on sets
by [C]° X = Xs:S5.Ps— X, sothat [C]° X consists of pairs of a shape and an
assignment of an element of X to each of the positions in this shape, reflecting

When Is a Container a Comonad? s

the “template-and-blanks” idea. The interpretation [C]° : V{X},{Y}. (X —
Y)—= (¥s: S Ps— X)— XYs:S5 Ps— Y of C on functions is defined by
[C]¢ f (s,v) = (s, f ow). It is straightforward that [C]° preserves identity and
composition of functions, so it is a set functor (as any datatype should be).

Our example containers denote the datatypes intended. If we let C' be the
container of lists, we have [C]° X = X's : Nat. Fins — X = List X. The container
of streams interprets into X'« : 1. Nat — X = Nat — X = Str X. Etc.

A morphism h = t < ¢ between containers C = S <P and C = §' < P/
is interpreted as a natural transformation between [C]° and [C']°, i.e., as a
polymorphic function [r]¢ : V{X}.(Xs: S.Ps — X) —» X : . P's - X
that is natural. It is defined by [h]€ (s,v) = (¢s,v 0 g{s}). [-]¢ preserves the
identities and composition of container morphisms.

The interpretation of the container morphism h corresponding to the list head
function [A]°: V{X}.(Xs: Nat.Fin(s+1) - X) - X+ : 1.1 — X is defined by
[R]€ (s,v) = (%, Ax.v0).

Proposition 2. [-]° is a functor from Cont to [Set, Set].

Every natural transformation between container interpretations is the interpre-
tation of some container morphism. For containers C = S<1P and C' = S’ < P/,
a natural transformation 7 between [C]°¢ and [C’]°, i.e., a polymorphic func-
tion 7 : V{X}.(Xs : S.Ps —» X) — X¢ : S'".P's" — X that is nat-
ural, can be “quoted” to a container morphism "77¢ = (¢ < ¢) between C
and ¢’ where t : S — S and ¢ : IT{s : S}.P'(ts) — Ps are defined by
Fr7¢ = (As.fst (T {P s} (s,id))) < (A{s}.snd (7 {P s} (s,id))).

For any container morphism h, "[A]°7 = h, and, for any natural transforma-
tion 7 and 7' between container interpretations, "7'¢ = "7/7¢ implies T = 7.

Proposition 3. [—]° is fully faithful.

2.3 Monoidal Structure

We have already seen the identity container 1d° = 1 < Ax.1. The composition
Cy -¢ Cy of containers Cy = Sy <« Py and C; = S1 < Py is the container S < P
defined by S = XYs : S9.Pys — S1 and P (s,v) = YXpy : Pys. Py (vpg). It
has as shapes pairs of an outer shape s and an assignment of an inner shape
to every position in s. The positions in the composite container are pairs of a
position p in the outer shape and a position in the inner shape assigned to p.
The (horizontal) composition hg -© hy of container morphisms hy = to <1 qp and
hi = t1<q; is the container morphism t<1q defined by ¢ (s,v) = (to s, t1ovoqy {s})
and ¢ {s,v} (po,p1) = (qo {s}po,q1 {v (g0 {s}po)} p1). The horizontal composi-
tion preserves the identity container morphisms and the (vertical) composition
of container morphisms, which means that — - — is a bifunctor.

Cont has isomorphisms p : V{C}.C - Id° — C, A : V{C}.ld° < C — C
and « : V{C}{C'},{C"}.(C < C') ¢ C" — C © (C" ¢ C"), defined by
p = As,v).s < AMs,0bAp. (D, %), A = A(x,v).v%x < M0} Ap. (%,p), @ =
A((3,0),). (5, Ap. (09, A" 0" (p,'))) < AL (5 0), 0"} Ay (55 0))- (021, 2")-

78 D. Ahman, J. Chapman, and T. Uustalu

Proposition 4. The category Cont is a monoidal category.

There are also natural isomorphisms e : Id — [Id°]¢ and m : V{Co},{C1}.
[Col¢ - [C1]° — [Co -¢ C1]° that are defined by ex = (x, A+.z) and m (s,v) =
((s, A\p.fst (vp)), A (p,p’).snd (vp)p’) and are coherent.

Proposition 5. The functor [—]° is a monoidal functor.

2.4 Constructions of Containers

Containers are closed under various constructions such as products, coproducts
and constant exponentiation, preserved by interpretation.

— For two containers Cy = Sy <1 Py and Cy = 51 < Py, their product Cy x C1 is
the container S < P defined by S = Sy x S and P (sg,s1) = Py so + P1 s1.
It holds that [[CO X Cl]]c = [[Co]]c X HCl]]C.

— The coproduct Cy + C; of containers Cy = Sy < Py and C; = S7 < Py is the
container S <1 P defined by S = Sp+ S1, P (inls) = Py s and P (inrs) = P; s.
It is the case that [Cy + C1]° =2 [Co]© + [C1]°.

— For a set K € Set and a container Cy = Sy <1 Py, the exponential K — Cy
is the container S <9 P where S = K — Sy and Pf =Xk : K. P(fk). We
have that [K — Cp]° = K — [Co]°.

3 Directed Containers

We now proceed to our contribution, directed containers. We define the category
of directed containers and a fully-faithful functor interpreting directed containers
as comonads, and discuss some examples and constructions.

3.1 Directed Containers

Datatypes often carry some additional structure that is worth making explicit.
For example, each node in a list or non-empty list defines a sublist (a suffix).
In container terms, this corresponds to every position in a shape determining
another shape, the subshape corresponding to this position. The theory of con-
tainers alone does not account for such additional structure. Directed containers,
studied in the rest of this paper, axiomatize subshapes and translation of posi-
tions in a subshape into the global shape.
A directed container is a container S <1 P together with three operations

— 1 :IIs:S.Ps— S (the subshape for a position),

— 0:II{s:S}.Ps (the root),

— @:II{s: S}.IIp: Ps.P(s | p) — Ps (translation of subshape positions
into positions in the global shape).

satisfying the following two shape equations and three position equations:

When Is a Container a Comonad? 79

V{s}.sJo=s,

Y{s,p,p'}.sl(p@dp)=(slp) Ly,

V{s,p}.p ® {s}o=p,

V{s,p}.o{s} & p=p,

{s,p,p, 0"} (p@{s}p)©p" =p@ (p ©p").

G o=

(Using @ as an infix operation, we write the first, implicit, argument next to the
operation symbol when we want to give it explicitly.) Modulo the fact that the
positions involved come from different sets, laws 3-5 are the laws of a monoid.

To help explain the operations and laws, we sketch in Fig. [Il a datastructure
with nested sub-datastructures.

o{s}

(p@p")®p" =p®d(»’®p"")

S =sl(p@p)=5" 1o’ N s'=slp s=slo{s}
Fig. 1. A datastructure with two nested sub-datastructures

The global shape s is marked with a solid boundary and has a root position
o{s}. Then, any position p in s determines a shape s’ = s | p, marked with a
dotted boundary, to be thought of as the subshape of s given by this position.
The root position in s’ is o {s'}. Law 3 says that its translation p @ o{s'} into a
position in shape s is p, reflecting the idea that the subshape given by a position
should have that position as the root.

By law 1, the subshape s | o{s} corresponding to the root position o{s} in
the global shape s is s itself. Law 4, which is only well-typed thanks to law 1,
stipulates that the translation of position p in s | 0{s} into a position in s is
just p (which is possible, as P (s | o{s}) = Ps).

A further position p’ in s’ determines a shape s” = s’ | p’. But p’ also
translates into a position p @ p’ in s and that determines a shape s | (p @ p’).
Law 2 says that s” and s | (p @ p’) are the same shape, which is marked by a
dashed boundary in the figure. Finally, law 5 (well-typed only because of law 2)
says that the two alternative ways to translate a position p” in shape s” into a
position in shape s agree with each other.

80 D. Ahman, J. Chapman, and T. Uustalu

Lists cannot form a directed container, as the shape 0 (for the empty list),
having no positions, has no possible root position. But the container of non-
empty lists (with S = Nat and Ps = Fin(sucs)) is a directed container with
respect to suffizes as (non-empty) sublists. The subshape given by a position p
in a shape s (for lists of length s + 1) is the shape of the corresponding suffix,
given by s | p = s — p. The root o{s} is the position 0 of the head node. A
position in the global shape is recovered from a position p’ in the subshape of
the position p by p@®p' =p+p'.

The “template” of non-empty lists of shape s = 5 (length 6) is given in Fig. 2l
This figure also shows that the subshape determined by a position p = 2 in the
global shape sis 8’ = s | p=05—2 =3 and a position p’ = 1 in s’ is rendered
as the position p @ p’ = 2+ 1 = 3 in the initial shape. Clearly one could

s'=s|p=5—2=3

Fig. 2. The “template” of non-empty lists of shape 5 (length 6)

also choose prefixes as subshapes and the last node of a non-empty list as the
root, but this gives an isomorphic directed container. Non-empty lists also give
rise to an entirely different directed container structure that has cyclic shifts as
“sublists” (this example was suggested to us by Jeremy Gibbons). The subshape
at each position is the global shape (s | p = s). The root is still o {s} = 0. The
interesting part is that translation into the global shape of a subshape position
is defined by p @ {s}p' = (p+p') mod s, satisfying all the required laws.

The container of streams (S = 1, P* = Nat) carries a very trivial directed
container structure given by * | p =%, 0=0and p ® p’ = p + p’. Fig. B shows
how a position p = 2 in the only possible global shape s = % and a position
p’ = 2 in the equal subshape s’ = s | p = give back a position p+p = 4 in the
global shape.

Similarly to the theory of containers, one can also define morphisms between
directed containers. A morphism between directed containers (S<1P,], 0, ®) and
(8"« P',],o,®) is a morphism ¢ < ¢ between the containers S <1 P and S’ < P’
that satisfies three laws:

- Vs, pht(slqp)=ts]'p,
— V{s}.o{s} =q (o' {t s}),
s, p,0'}aqp @ {stap =q(p @ {ts}p).

When Is a Container a Comonad? 81

Fig. 3. The template of streams

Recall the intuition that ¢ determines the shape of the datastructure that some
given datastructure is sent to and ¢ identifies for every position in the datas-
tructure returned a position in the given datastructure. These laws say that the
positions in the sub-datastructure for any position in the resulting datastructure
must map back to positions in the corresponding sub-datastructure of the given
datastructure. This means that they can receive data only from those positions,
other flows are forbidden.

The container representations of the head and drop-even functions for non-
empty lists are directed container morphisms. But that of reversal is not.

The identities and composition of Cont can give the identities and composi-
tion for directed containers, since for every directed container E = (C, |, 0, ®),
the identity container morphism id° {C} is a directed container morphism and
the composition h o h' of two directed container morphisms is also a directed
container morphism.

Proposition 6. Directed containers form a category DCont.

3.2 Interpretation of Directed Containers

As directed containers are containers with some operations obeying some laws,
a directed container should denote not just a set functor, but a set functor with
operations obeying some laws. The correct domain of denotation for directed
containers is provided by comonads on sets.

Given a directed container E = (S < P,],0,®), we define its interpretation
[E]“¢ to be the set functor D = [S<P]° (i.e., the interpretation of the underlying
container) together with two natural transformations

e: WX} (Xs: 5. Ps—X)—X

(s,0) = v (o{s})
(ES:V{X}.(ES:S.Ps—>X)—>ES:S.P3—>ES’:S.P5’—>X
§(s,v) = (s, Ap- (s L p, A" v (p @ {5} p")))

The directed container laws ensure that the natural transformations e, § make
the counit and comultiplication of a comonad structure on D.

82 D. Ahman, J. Chapman, and T. Uustalu

Intuitively, the counit extracts the data at the root position of a datastruc-
ture (e.g., the head of a non-empty list), the comultiplication, which produces
a datastructure of datastructures, replaces the data at every position with the
sub-datastructure corresponding to this position (e.g., the corresponding suffix
or cyclic shift).

The interpretation [h]9¢ of a morphism h between directed containers
E = (C,l,0,®), E' = (C",]',0',@") is defined by [h]¢ = [h]¢ (using that h
is a container morphism between C' and C”). The directed container morphism
laws ensure that this natural transformation between [C]° and [C']¢ is also a
comonad morphism between [E]4¢ and [E’]4¢.

Since Comonads(Set) inherits its identities and composition from [Set, Set],
[-]9¢ also preserves the identities and composition.

Proposition 7. [-]4¢ is a functor from DCont to Comonads(Set).

Similarly to the case of natural transformations between container interpreta-
tions, one can also “quote” comonad morphisms between directed container in-
terpretations into directed container morphisms. For any directed containers
E=(C,l,o0,®), E' = (C",]/,0,®") and any morphism 7 between the comonads
[E]4¢ and [E’]9¢ (which is a natural transformation between [C]¢ and [C']¢),
the container morphism "779¢ = T77¢ between the underlying containers C' and
C’" is also a directed container morphism between E and E’. The directed con-
tainer morphism laws follow from the comonad morphism laws.

From what we already know about interpretation and quoting of container
morphisms, it is immediate that "[h]9¢79¢ = b for any directed container mor-
phism A and that T779¢ = T7/74¢ implies 7 = 7/ for any comonad morphisms 7
and 7’ between directed container interpretations.

Proposition 8. [-]4¢ is fully faithful.

The identity container 1d° = 1 < A+.1 extends trivially to an identity directed
container whose denotation is isomorphic to the identity comonad. But, similarly
to the situation with functors and comonads, composition of containers fails to
yield a composition monoidal structure on DCont.

3.3 Constructions of Directed Containers

We now show some constructions of directed containers. While some standard
constructions of containers extend to directed containers, others do not.

Coproducts. Given two directed containers Ey = (So < Po, g, 00,®0), E1 =
(S1<4Py,)q,01,®1), their coproduct is (S<1 P, |, 0, ®) whose underlying container
S < P is the coproduct of containers Sy <1 Py and S <0 P;. All of the directed
container operations are defined either using |, 0o, o or |, 01, 1 depending on
the given shape. This means that the subshape is given by inls | p = inl (s {(p)
and inrs | p = inr(s J; p), the root position is given by o {inls} = og{s} or
o{inrs} = o1 {s} and the position in the initial shape is given by p @ {inls}p’ =
p ®o {s}p and p ® {inrs}p’ = p ®; {s}p’. Its interpretation is isomorphic to
the coproduct of comonads [Fo]4¢ and [E;]4¢.

When Is a Container a Comonad? 83

Directed containers from monoids. Any monoid (M, e, ®) gives rise to a directed
container E = (S < P,|,0,®) where there is only one shape x (with S = 1)
whose positions Px = M are the elements in the carrier set. The subshape
operation * | p = % thus becomes trivial as there is only one shape to return.
Furthermore, the root position o {*} = e in the shape * is the unit of the monoid
and the position in the initial shape is given by using the monoid operation
p ® {x}p’ = pep’. The interpretation of this directed container is the comonad
(D,e,6) where DX =M = X, e=Af. fe, 0 =Af.Ap,p'. f(pep).

Cofree directed containers. The cofree directed container on a container C' =
So <Py is E = (S<P,|,o,@) where the underlying container is defined as
S =vZYXs: 8.Pos - Z and P = puZ. A\s,v).1+ Xp : Pys.Z (vp). The
subshapes are defined by (s,v) | inlx = (s,v) and (s,v) | inr(p,p’) = vp |
p’. The root position is defined by o{s,v} = inl* and subshape positions by
inlx @ {s,v}p” = p” and inr(p,p’) ® {s,v}p” = inr(p,p’ ® {vp}p”). The
interpretation [E]9¢ = (D,¢,§) of this directed container has its underlying
functor given by DX = vZ. X x [C]°Z and is the cofree comonad on the
functor [C]°.

A different directed container, the cofree recursive directed container on C' is
obtained by replacing the v in the definition of S with . The interpretation has
its underlying functor given by D X = uZ. X x [C]° Z and is the cofree recursive
comonad on [C]°.

There is no general way to endow the product of the underlying containers of
two directed containers Ey = (So <1 Py, dg, 00, ®0) and Ey = (S1 < Py, 44,01, P1)
with the structure of a directed container. One can define S = Sy x S and
P (so,51) = Py so + Py s1, but there are two choices op and o; for o. Moreover,
there is no general way to define p ® p’. But this should not be surprising, as the
product of the underlying functors of two comonads is not generally a comonad.
Also, the product of two comonads would not be a comonad structure on the
product of the underlying functors.

3.4 Focussing

Another interesting construction turning any container into a directed container
is “focussing”.

Datastructures with a focus. Any container C' = Sy <1 Py defines a directed
container (S < P, ,0,®) as follows. We take S = Xs: Sp. Py s, so that a shape
is a pair of a shape s, the “shape proper”, and an arbitrary position p in that
shape, the “focus”. We take P (s,p) = Py s, so that a position in the shape (s, p)
is a position in the shape proper s, irrespective of the focus. The subshape de-
termined by position p’ in shape (s, p) is given by keeping the shape proper but
changing the focus: (s,p) | p’ = (s,p’). The root in the shape (s,p) is the focus
p such that o{s,p} = p. Finally, we take the translation of positions from the
subshape (s, p’) given by position p’ to shape (s, p) to be the identity, by defining

84 D. Ahman, J. Chapman, and T. Uustalu

p @ {s,p}p” = p”. All directed container laws are satisfied. This directed
container interprets into the canonical comonad structure on the functor 9[C]° x
Id where OF denotes the derivative of the functor F.

Zippers. Inductive (tree-like) datatypes with a designated focus position are
isomorphic to the zipper types of Huet [13]. A zipper datastructure encodes a
tree with a focus as a pair of a context and a tree. The tree is the subtree of the
global tree rooted by the focus and the context encodes the rest of the global
tree. On zippers, changing the focus is supported via local navigation operations
for moving one step down into the tree or up or aside into the context.

Zipper datatypes are directly representable as directed containers. We illus-
trate this on the example of zippers for non-empty lists. Such a zipper is a pair
of a list (the context) and a non-empty list (the suffix determined by the focus
position). Accordingly, by defining S = Nat x Nat, the shape of a zipper is a pair
(so, $1) where sg is the shape of the context and s; is the shape of the suffix. For
positions, it is convenient to choose P (sg,s1) = {—so,..., 1} by allocating the
negative numbers in the interval for positions in the context and non-negative
numbers for positions in the suffix. The root position is 0 {sg, s1} = 0, i.e., the
focus. The subshape for each position is given by (so,s1) 4 p = (so + p,s1 — p)
and translation of subshape positions by p @ {sg,s1}p' =p+p'.

Fig. [gives an example of a non-empty list with focus with its shape fixed
to s = (5,6). It should be clear from the figure how the @ operation works on
positions p = 4 and p’ = —7 to get back the position p @ p’ = —3 in the initial
shape. The subshape operation | works as follows: s | p gives back a subshape
s'=1(9,2) and s | (p ® p’) gives s = (2,9).

s=(5,6) s'=(9,2)
p'=—7
.
_/ _/
p@pﬂp’/ \ p=d

Fig. 4. The template for non-empty lists of length 12 focussed at position 5

4 Containers N Comonads = Directed Containers

Since not every functor can be represented by a container, there is no point
in asking whether every comonad can be represented as a directed container.
An example of a natural comonad that is not a directed container is the cofree
comonad on the finite powerset functor P (node-labelled nonwellfounded
strongly-extensional trees) where the carrier of this comonad is not a container

When Is a Container a Comonad? 85

(P¢ is also not a container). But, what about those comonads whose underlying
functor is an interpretation of a container? It turns out that any such comonad
does indeed define a directed container that is obtained as follows.

Given a comonad (D, ¢,0) and a container C' = S < P such that D = [C]°,
the counit ¢ and comultiplication ¢ induce container morphisms

he : C — Id°
hE:tE<]q5:re05—|C
M.C—-C-«<C

R =t <¢’ ="m{C}{C}os°

using that [—]¢ is fully faithful. From (D, ¢,) satisfying the laws of a comonad
we can prove that (C, h®, h9) satisfies the laws of a comonoid in Cont. Further,
we can define

slp=snd(t®s)p

ofs} =q*{s}=

p®{s}p' =q"{s} (p.p)

and the comonoid laws further enforce the laws of the directed container for

(07 ‘1/7 o, @)
It may seem that the maps t© and fstot® are not used in the directed container
structure, but ¢t : S — 1 contains no information (V{s}.t*s = %) and the

comonad/comonoid right unit law forces that V{s}.fst(t’s) = s, which gets
used in the proof of each of the five directed container laws. The latter fact is
quite significant. It tells us that the comultiplication § of any comonad whose
underlying functor is the interpretation of a container preserves the shape of a
given datastructure as the outer shape of the datastructure returned.

The situation is summarized as follows.

Proposition 9. Any comonad (D,¢e,d) and container C = S < P such that
D = [C]° determine a directed container [(D,e,d),C].

Proposition 10. [[C,|,0,®]%, C] = (C,{,0,®).
Proposition 11. [[(D,e¢,d),C1]% = (D, ¢,).
These observations suggest the following theorem.

Proposition 12. The following is a pullback in CAT:

DCont v > Cont
[-1% ff. [-1° t.f.

\
Comonads(Set) v [Set, Set]

It is proved by first noting that a pullback is provided by Comonoids(Cont)
and then verifying that Comonoids(Cont) is isomorphic to DCont.

Sam Staton pointed it out to us that the proof of the first part only hinges on
Cont and [Set, Set| being monoidal categories and [—]¢ : Cont — [Set, Set]

86 D. Ahman, J. Chapman, and T. Uustalu

being a fully faithful monoidal functor. Thus we actually establish a more general
fact, viz., that for any two monoidal categories C and D and a fully-faithful
monoidal functor F' : C — D, the pullback of F' along the forgetful functor
U : Comonoids(D) — D is Comonoids(C).

In summary, we have seen that the interpretation of a container carries the
structure of a comonad exactly when it extends to a directed container.

5 Containers N Monads = ?

Given that comonads whose underlying functor is the interpretation of a con-
tainer are the same as directed containers, it is natural to ask whether a similar
characterization is possible for monads whose underlying functor can be repre-
sented as a container. The answer is “yes”, but the additional structure is more
involved than that of directed containers.

Given a container C = S < P, the structure (n, 1) of a monad on the functor
T = [C]° is interdefinable with the following structure on C

— e: S (for the shape map for 7),

—e:]ls:S.(Ps— S)— S (for the shape map for p),

- N:II{s:S8}.lIv: Ps— S.P(sev) - Ps and

—/:I{s:S}.IIv:Ps— SIp: P(sev).P(v(v\ {s}p)) (both for the
position map for u)

subject to three shape equations and five position equations. Perhaps not unex-
pectedly, this amounts to having a monoid structure on C.

To get some intuition, consider the monad structure on the datatype of lists.
The unit is given by singleton lists and multiplication is flattening a list of lists
by concatenation. For the list container S = Nat, P s = Fin s, we get that e = 1,
sev = Zp:Fins vp, v \ {s}p = [greatest p’ : Fins such that Zp,,:Finp, vp” < p]
andv / {s}p=p=> ({5}t p) vp”. The reason is that the shape of singleton
lists is e while flattening a list of lists with outer shape s and inner shape v p for
every position p in s results in a list of shape sev. For a position p in the shape
of the flattened list, the corresponding positions in the outer and inner shapes
of the given list of lists are v \ {s} p and v / {s} p.

For lack of space, we refrain from a more detailed discussion of this variation
of the concept of containers.

6 Related Work

We build on the theory of containers as developed by Abbott, Altenkirch and
Ghani [T}, 4] to analyze strictly positive datatypes. Some generalizations of the
concept of containers are the indexed containers of Altenkirch and Morris [[17]
and the quotient containers of Abbott et al. [2]. In our work we look at a special-
ization of containers rather than a generalization. Simple/indexed containers are
intimately related to strongly positive datatypes/families and simple/dependent

When Is a Container a Comonad? 87

polynomial functors as appearing in the works of Dybjer [§], Moerdijk and Palm-
gren [16], Gambino and Hyland [9], Kock [I5]. Girard’s normal functors [I1] and
Joyal’s analytic functors [14] functors are similar to containers resp. quotient
containers, but only allow for finitely many positions in a shape.

Gambino and Kock [10] treat polynomial monads.

Abbott, Altenkirch, Ghani and McBride [3] have investigated derivatives of
datatypes that provide a systematic way to explain Huet’s zipper type [13].

Brookes and Geva [6] and later Uustalu with coauthors [20, 21, 12| [7] have
used comonads to analyze notions of context-dependent computation such as
dataflow computation, attribute grammars, tree transduction and cellular au-
tomata. Uustalu and Vene’s [22] observation of a connection between bottom-up
tree relabellings and containers with extra structure started our investigation
into directed containers.

7 Conclusions and Future Work

We introduced directed containers as a specialization of containers for describing
a certain class of datatypes (datastructures where every position determines a
sub-datastructure) that occur very naturally in programming. It was a pleasant
discovery for us that directed containers are an entirely natural concept also
from the mathematical point of view: they are the same as containers whose
interpretation carries the structure of a comonad.

In this paper, we could not discuss the equivalents of distributive laws between
comonads, the composition of comonads, strict comonads and the product of
(strict) comonads in the directed container world. We have already done some
work around these concepts and constructions and plan to report our results in
an extended version of this paper and elsewhere.

Acknowledgments. We are indebted to Thorsten Altenkirch, Jeremy Gib-
bons, Peter Morris, and Sam Staton for comments and suggestions. This work
was supported by the European Regional Development Fund (ERDF) through
Estonian Centre of Excellence in Computer Science (EXCS) project.

References

[1] Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3-27 (2005)

[2] Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: Constructing Polymorphic
Programs with Quotient Types. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125,
pp. 2-15. Springer, Heidelberg (2004)

[3] Abbott, M., Altenkirch, T., Ghani, N., McBride, C.: § for data: Differentiating
data structures. Fund. Inform. 65(1-2), 1-28 (2005)

[4] Abbott, M.: Categories of Containers. Ph.D. thesis, University of Leicester (2003)

[5] Altenkirch, T., Morris, P.: Indexed containers. In: Proc. of 24th Ann. IEEE Symp.
on Logic in Computer Science, LICS 2009, pp. 277-285. IEEE CS Press (2009)

88

[6]

[7]

8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]

22]

D. Ahman, J. Chapman, and T. Uustalu

Brookes, S., Geva, S.: Computational comonads and intensional semantics. In:
Fourman, M.P., Johnstone, P.T., Pitts, A.M. (eds.) Applications of Categories in
Computer Science, London. Math. Society Lect. Note Series, vol. 77, pp. 1-44.
Cambridge Univ. Press (1992)

Capobianco, S., Uustalu, T.: A categorical outlook on cellular automata. In: Kari,
J. (ed.) Proc. of 2nd Symp. on Cellular Automata, JAC 2010. TUCS Lecture Note
Series, vol. 13, pp. 88-89. Turku Centre for Comput. Sci. (2011)

Dybjer, P.: Representing inductively defined sets by wellorderings in Martin-Lof’s
type theory. Theor. Comput. Sci. 176(1-2), 329-335 (1997)

Gambino, N., Hyland, M.: Wellfounded Trees and Dependent Polynomial Func-
tors. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085,
pp. 210-225. Springer, Heidelberg (2004)

Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Tech. Rep.
867, Centre de Recerca Matematica, Barcelona (2009)

Girard, J.Y.: Normal functors, power series and lambda-calculus. Ann. of Pure
and Appl. Logic 37(2), 129-177 (1988)

Hasuo, I., Jacobs, B., Uustalu, T.: Categorical Views on Computations on Trees.
In: Arge, L., Cachin, C., Jurdziiski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 619-630. Springer, Heidelberg (2007)

Huet, G.: The zipper. J. of Funct. Program. 7, 549-554 (1997)

Joyal, A.: Foncteurs analytiques et espéces de structures. In: Labelle, G., Leroux,
P. (eds.) Combinatoire énumerative. Lect. Notes in Math., vol. 1234, pp. 126-159.
Springer, Heidelberg (1987)

Kock, J.: Polynomial functors and trees. Int. Math. Research Notices 2011(3),
609-673 (2011)

Moerdijk, I., Palmgren, E.: Wellfounded trees in categories. Ann. of Pure and
Appl. Logic 104(1-3), 189-218 (2000)

Morris, P.: Constructing Universes for Generic Programming. Ph.D. thesis, Uni-
versity of Nottingham (2007)

Norell, U.: Towards a Practical Programming Language Based on Dependent type
Theory. Ph.D. thesis, Chalmers University of Technology (2007)

Prince, R., Ghani, N., McBride, C.: Proving Properties about Lists using Con-
tainers. In: Garrigue, J., Hermenegildo, M. (eds.) FLOPS 2008. LNCS, vol. 4989,
pp- 97-112. Springer, Heidelberg (2008)

Uustalu, T., Vene, V.: The Essence of Dataflow Programming. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 2-18. Springer, Heidelberg (2005)

Uustalu, T., Vene, V.: Attribute evaluation is comonadic. In: van Eekelen, M.
(ed.) Trends in Functional Programming, vol. 6, pp. 145-162. Intellect (2007)
Uustalu, T., Vene, V.: Comonadic notions of computation. In: Adamek, J., Kupke,
C. (eds.) Proc. of 9th Int. Wksh. on Coalgebraic Methods in Computer Science,
CMCS 2008. Electron. Notes in Theor. Comput. Sci., vol. 203(5), pp. 263-284.
Elsevier (2008)

Well-Pointed Coalgebras
(Extended Abstract)*

Jifi Addmek!, Stefan Milius', Lawrence S. Moss?, and Lurdes Sousa®**

! Institut fiir Theoretische Informatik,
Technische Universitdt Braunschweig, Germany
adamek@iti.cs.tu-bs.de, mail@stefan-milius.eu
2 Department of Mathematics, Indiana University, Bloomington, IN, USA
1sm@indiana.edu
3 Departamento de Matemética, Instituto Politécnico de Viseu, Portugal
sousal@mat.estv.ipv.pt

Abstract. For set functors preserving intersections, a new description of
the final coalgebra and the initial algebra is presented: the former consists
of all well-pointed coalgebras. These are the pointed coalgebras having
no proper subobject and no proper quotient. And the initial algebra
consists of all well-pointed coalgebras that are well-founded in the sense
of Taylor [16]. Finally, the initial iterative algebra consists of all finite
well-pointed coalgebras. Numerous examples are discussed e.g. automata,
graphs, and labeled transition systems.

1 Introduction

Initial algebras are known to be of primary interest in denotational semantics,
where abstract data types are often presented as initial algebras for an endofunc-
tor H expressing the type of the constructor operations of the data type. For
example, finite binary trees are the initial algebra for the functor HX = X x X+1
on sets. Analogously, final coalgebras for an endofunctor H play an important
role in the theory of systems developed by Rutten [13]: H expresses the system
type, i.e., which kind of one-step reactions states can exhibit (input, output,
state transitions etc.), and the elements of a final coalgebra represent the behav-
ior of all states in all systems of type H (and the unique homomorphism from a
system into the final one assign to every state its behavior). For example, deter-
ministic automata with input alphabet I are coalgebras for HX = X! x {0, 1},
the final coalgebra is the set of all languages on I.

In this paper a unified description is presented for (a) initial algebras, (b) final
coalgebras and (c) initial iterative algebras (in the automata example this is the
set of all regular languages on I). We also demonstrate that this new description

* The full version containing all proofs is available at
http://www.iti.cs.tu-bs.de/TI-INFO/milius/research/wellS.full.pdf

** Financial support by the Centre for Mathematics of the University of Coimbra is
acknowledged.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 89-{[03, 2012.
© Springer-Verlag Berlin Heidelberg 2012

90 J. Addmek et al.

provides a unifying view of a number of other important examples. We work
with set functors H preserving intersections. This is a requirement that many
“everyday” set functors satisfy. We prove that the final coalgebra of H can then
be described as the set of all well-pointed coalgebras, i.e., pointed coalgebras not
having any proper subobject and also not having any proper quotient. Moreover,
the initial algebra can be described as the set of all well-pointed coalgebras which
are well-founded in the sense of Taylor [16]. A coalgebra (A, «) is well-founded
if no proper subcoalgebra (A’, a’) of (A,) forms a pullback

A S HA
A N >HA
This concept was first studied by Osius [12] for graphs considered as coalgebras
of the power-set functor &: a graph is well-founded iff it has no infinite paths.
Taylor [16/17] introduced well-founded coalgebras for general endofunctors, and
he proved that for endofunctors preserving inverse images the concepts of initial
algebra and final well-founded coalgebra coincide.

We are going to prove that this result holds for every set functor H; the
step towards making no assumptions on H is non-trivial. And if H preserves
intersections, we describe its final coalgebra, initial algebra, and initial iterative
algebra using well-pointed coalgebras as above. The first result will be proved in
a much more general context, working with an endofunctor of a locally finitely
presentable category preserving finite intersections, but this extra assumption
can be dropped in the case of set functors.

2 Well-Founded Coalgebras

Throughout this section &/ denotes an LFP category with a simple initial ob-
ject. And H is an endofunctor preserving monomorphisms. Let us recall these
concepts:

Definition 2.1. 1. A category < is locally finitely presentable (LFP) if
(a) o is complete, and
(b) there is a set of finitely presentable objects whose closure under filtered
colimits is all of <7 .
2. An object A is called simple if it has no proper quotients. That is, every
epimorphism with domain A is invertible.

Ezxample 2.2. The categories of sets, graphs, posets, and semigroups are locally
finitely presentable. The initial objects of these categories are empty, hence sim-
ple. The category of rings is LFP but the initial object Z is not simple.

Notation 2.3. For every endofunctor H denote by Coalg H the category of
coalgebras a: A » HA and coalgebra homomorphisms, where a homomor-
phism h from (A,) to (B,) is a morphism h : A > B such that 8-h = Hh-a.

Well-Pointed Coalgebras 91

Remark 2.4. There are some consequences of the LFP assumption that play an
important role in our development. These pertain to monomorphisms.

1. & has (strong epi, mono)-factorizations; see 1.16 in [5]. Recall that an epi-
morphis is strong iff it has the diagonal fill-in property w.r.t. all monomor-
phisms.

2. o is wellpowered, see 1.56 in [5]. This implies that for every object A the
poset Sub(A) of all subobjects of A is a complete lattice.

3. Monomorphisms are closed under filtered colimits; see 1.62 in [5].

Since subcoalgebras play a basic role in the whole paper, and quotients are
important from Section [B] onwards, we need to make clear what we mean by
those. We use the term subcoalgebra of a coalgebra (A, a) to mean a subobject
m: (A,) > (A, @) represented by a monomorphism m in /. Then m is
clearly a monomorphism of Coalg H; however, in general, monomorphisms in
Coalg H need not be carried by monomorphisms from 7. As usual, if a subcoal-
gebra m is not invertible, it is said to be proper. What about quotient coalgebras?
A quotient of a coalgebra (A, «) is represented by e: (4, «) » (A, a), where e
is a strong epimorphism in &/. Since H is assumed to preserve monomorphisms,
Coalg H has factorizations of morphisms f : (4, «) » (B, 8) into homomor-
phisms e: (4, o) > (C,~) and m: (C,7) > (B, B), i.e., such that (C,7) is
a quotient of (A, «) and a subcoalgebra of (B, ().

Definition 2.5. A cartesian subcoalgebra of a coalgebra (A, a) is a subcoal-
gebra (A',) forming a pullback [LI)). A coalgebra is called well-founded if it
has no proper cartesian subcoalgebra.

Ezample 2.6. (1) The concept of well-founded coalgebra was introduced orig-
inally by Osius [12] for the power set functor 2. A graph is a coalgebra
(A,a) for &, where a(z) is the set of neighbors of x in the graph. Then
a subcoalgebra of A is an (induced) subgraph A’ with the property that
every neighbor of a vertex of A’ lies in A’. The subgraph A’ is cartesian iff
it contains every vertex all of whose neighbors lie in A’. The graph A is a
well-founded coalgebra iff it has no infinite path.

(2) Let A be a deterministic automaton considered as a coalgebra for HX =
XTx{0,1}. A subcoalgebra A’ is cartesian iff it contains every state all whose
successors (under the inputs from I) lie in A’. This holds, in particular, for
A’ = (). Thus, no nonempty automaton is well-founded.

(3) Coalgebras for HX = X + 1 are dynamical systems with deadlocks, see [13].
A subcoalgebra A’ of a dynamical system A is cartesian iff it contains all
deadlocks and every state whose next state lies in A’.

A dynamical system is well-founded iff it has no infinite computation.

Definition 2.7. Fvery coalgebra a: A > HA induces an endofunction
of Sub(A) (see Remark [Z24)2) assigning to a subobject m: A’ > A the
inverse image Om of Hm under «, i. e., we have a pullback square:

92 J. Addmek et al.

Om Hm (2.1)
A . sHA

This function m1 > Om is obviously order-preserving. By the Knaster-Tarski
fixed point theorem, this function has a least fixed point.

Incidentally, the notation (Om comes from modal logic, especially the areas of
temporal logic where one reads ()¢ as “¢ is true in the next moment,” or “next
time ¢” for short.

Ezample 2.8. Recall our discussion of graphs from Example[Z6] (1). The pullback
OA’ of a subgraph A’ is the set of vertices of A all of whose neighbors belong
to A’.

Remark 2.9. As we mentioned in the introduction, the concept of well-founded
coalgebra was introduced by Taylor [T6JI7]. Our formulation is a bit simpler.
In [I7), Definition 6.3.2] he calls a coalgebra (A, a) well-founded if for every pair
of monomorphisms m: U »Aand h: H » U such that h-m is the inverse
image of Hm under « it follows that m is an isomorphism. Thus in lieu of fixed
points of m —— (Om he uses pre-fixed points.

In addition, our overall work has a methodological difference from Taylor’s
that is worth mentioning at this point. Taylor is giving a general account of
recursion and induction, and so he is concerned with general principles that
underlie these phenomena. Indeed, he is interested in settings like non-boolean
toposes where classical reasoning is not necessarily valid. On the other hand, in
this paper we are studying initial algebras, final coalgebras, and similar concepts,
using standard classical mathematical reasoning. In particular, we make free use
of transfinite recursion. The definitions in Notation just below would look
out of place in Taylor’s paper. But we believe they are an important step in our
development.

Notation 2.10. (a) For every coalgebra a: A » HA denote by
a*: A* s A (2.2)

the least fixed point of the function m1 > Om of Definition 277 (Thus,
(A, a) is well-founded iff a* is invertible.) Since a* is a fixed point we have
a coalgebra structure a*: A* > HA* making a* a coalgebra homomor-
phism.

(b) For every coalgebra a: A » HA we define a chain of subobjects

aji: A} > A (i € Ord)

of A in &/ by transfinite recursion: ag: 0 > A is the unique morphism;
aiy1 = Oa; and for limit ordinals a; = {J;_, aj. Since 0 is simple, a5 is a

Well-Pointed Coalgebras 93

monomorphisms. Moreover, what we have is nothing else than the construc-
tion of the least fixed point of m 1 > Om (cf. Remark 2Z9)) in the proof
of the Knaster-Tarski Theorem in [I5]. Thus, a* = ,copq @i~ Also, there
exists an ordinal ¢ with A* = A¥ (due to wellpoweredness). Henceforth, we

call A* the smallest cartesian subcoalgebra of A.

Proposition 2.11. For every coalgebra (A, o), the smallest cartesian subcoalge-
bra (A*,a*) is its coreflection in the full subcategory of well-founded coalgebras.

Remark. We thus prove that (A%, a*) is well-founded, and for every homomor-
phism f: (B,) » (A,) with (B, 8) well-founded there exists a unique ho-
momorphism f: (B,) y (A%, ™) with f =a* f.

Corollary 2.12. The full subcategory of Coalg H consisting of the well-founded
coalgebras is closed under quotients and colimits in Coalg H.

For endofunctors preserving inverse images the above corollary is Exercise VI.16
in Taylor [I7] and the following theorem is Corollary 9.9 of [16]. As we mentioned
in the introduction, it is non-trivial to relax the assumption on the endofunctor,
and so our proof is different from Taylor’s.

Theorem 2.13. If H preserves finite intersections, then
initial algebra = final well-founded coalgebra.

That is, an algebra p: HI » I is indtial iff o= 1: I > HI is the final
well-founded coalgebra.

Proof (Sketch). (a) Let I be an initial algebra. It follows from [20] that I is
obtained as H'0 for some ordinal i for the initial chain introduced in [2] defined
by H°0 =0, H*'0 = H(H'0) and H'0 = colimj; H70 for limit ordinals i. We
prove by transfinite induction that if I = H*0 then the connecting morphisms
H0 > H*0 for i < k are precisely a; of Notation Consequently, I is
well-founded. We next use the concept of recursive coalgebra of Capretta et
al [6]: It is a coalgebra from which a unique coalgebra-to-algebra morphism into
every algebra exists. Initial algebras are proved there to be precisely the final
recursive coalgebras. We prove that every well-founded coalgebra is recursive.
We thus derive that I is a final well-founded coalgebra.

(b) Let o : I > HI be a final well-founded coalgebra. Factorize ¥ = m-e
where e is a strong epimorphism and m a monomorphism (Remark 2.
By diagonal fill-in we obtain a quotient e: (I,1)) > (I',4¢") which, by
Corollary 12| is well-founded, thus recursive. Consequently, a coalgebra ho-
momorphism f: (I',1’) > (I,4) exists. Then f-e is an endomorphism of the
final well-founded coalgebra, hence, f-e = id;. This proves that e is an isomor-
phism, thus, v is a monomorphism. This fact is used to prove that the coalge-
bra (HI, Hv) is well-founded. Using an argument similar to Lambek’s Lemma
we derive that 1 is invertible. Therefore results of [20] imply that the initial chain

94 J. Addmek et al.

above converges, and for some ordinal k, H*0 is an initial algebra. Moreover,
H*0 is by (a) a final well-founded coalgebra, thus, isomorphic to t: I »HI.
Thus (I, =) is isomorphic to the initial algebra. a

Theorem 2.14. For every endofunctor of Set we have:
initial algebra = final well-founded coalgebra.

Proof (Sketch). There exists an endofunctor H* preserving finite intersections
and agreeing on nonempty sets with H, see [19]. Given H, we know from Theo-
rem 2. T3] that the equation above holds for H*. From this one can prove it for H.
The proof is quite technical because we need to compare well-foundedness of coal-
gebras for H and H*, and the empty set plays a substantial role here. a

This last result and Corollary 2.12] serve as a basis for a description of initial
algebras in Theorem [3.13]

3 Well-Pointed Coalgebras

We arrive at the centerpiece of this paper, characterizations of the initial algebra,
final coalgebra, and initial iterative algebra for set functors.

Throughout this section H denotes an endofunctor of Set which preserves
(wide) intersections. Many endofunctors of interest satisfy this condition, for
example:

(a) the power-set functor, all polynomial functors, the finite distribution func-
tor,

(b) products, coproducts, quotients, and subfunctors of functors preserving in-
tersections, and

(¢) “almost” all finitary functors: if H is finitary then H* in Theorem 214
preserves intersections.

An example of a set functor not preserving intersections is the continuation
monad HX = R(RX)7 where R is the set of results. A simpler example is the one
taking every nonempty set to the terminal object and the empty set to itself.
By a pointed coalgebra is meant a triple (4, a,x), where (A, a) is a coalgebra
and x an element of A called initial state. When speaking about morphisms
between pointed coalgebras we mean those preserving the initial state. In par-

ticular, given a pointed coalgebra 1 “ » A » HA by a subobject is meant a
subcoalgebra containing the initial state x.

Definition 3.1. A well-pointed coalgebra is a pointed coalgebra which has no
proper subobjects and no proper quotients.

Remark 3.2. Recall that a simple coalgebra (called minimal coalgebra by
Gumm|8]) is a coalgebra (A, a) with no nontrivial quotient. That is, a coal-
gebra such that every homomorphism h: (A, a) > (B, b) has h monic. Gumm
observed that

Well-Pointed Coalgebras 95

(a) The full subcategory of Coalg H given by all simple coalgebras is reflective:
the reflection of a coalgebra (A, a) is the simple quotient

e(a,q): (A, a) > (A, a)

obtained as the wide pushout of all quotients of (4, a).
(b) Every subcoalgebra of a simple coalgebra is simple.
(¢) The coalgebra map a: A > HA of a simple coalgebra is monic.

Remark 3.3. Thus, 1 “ » A “ » HA is a well-pointed coalgebra iff (A,a) is
simple and is generated by xz. We call the latter condition reachability. That
is, a pointed coalgebra is reachable if it has no proper pointed subcoalgebra.
It is easy to see that this holds iff the canonical graph (see Definition BTl below)
is reachable: every state has a directed path from the initial state.

Ezamples 3.4. (a) A deterministic automaton with a given initial state is a
pointed coalgebra for HX = X! x {0,1}. Reachability means that every
state can be reached (in finitely many steps) from the initial state. Simplic-
ity means that the automaton is observable, i.e., for every pair of different
states there exists an input word leading one of them to an accepting state
and the other to a non-accepting state.

The usual terminology is that reachability and observability together are
called minimality.

(b) For the power-set functor the pointed coalgebras are the pointed graphs.
Well-pointed means reachable and simple, where simplicity states that no
pair of different vertices is bisimilar.

Notation 3.5. Since H preserves intersections, there is a canonical process of
turning an arbitrary pointed coalgebra (A,a,z) into a well-pointed one: form
the simple quotient, see Remark 3.2(a) pointed by e(4 4)-2: 1 » A, then form
the least subcoalgebra containing that point:

A() >HAO
*o m Hm
1 > A > A) >y HA
T €(A,a) a

That is, m is the intersection of all subcoalgebras of (A,a) through which
e(a,q) T factorizes. Then (Ao, ao, o) is well-pointed due to Remark B.2(b).

Example 3.6. For deterministic automata our process A1 > Ay above means
that we first merge the states that are observably equivalent and then discard
the states that are not reachable. A more efficient way is first discarding the
unreachable states and then merging observably equivalent pairs. Both ways are
possible since our functor preserves inverse images: this implies that a quotient
of a reachable pointed coalgebra is reachable.

96 J. Addmek et al.

Notation 3.7. The collection of all well-pointed coalgebras up to isomorphism
is denoted by

vH.
For every coalgebra a: A » HA we have a function a™: A > VH assigning
to every element x: 1 > A the well-pointed coalgebra of Notation
a*(x) = (Ao, a0, o). (3.1)

Theorem 3.8. A set functor H preserving intersections has a final coalgebra
iff it has only a set of well-pointed coalgebras up to isomorphism. And, if it is
the case, vH is a final coalgebra.

Remark. Whenever vH is a set, it carries a canonical coalgebra structure ¢: vH
> H(vH). Tt assigns to every member (A, a,x) of vH the following element

of HwH):

Hat

1 “»A “»HA
We prove below that this is a final coalgebra.

s H(vH). (3.2)

Proof. (1) If H has a final coalgebra, then due to Remark every simple
coalgebra is its subcoalgebra, since the unique homomorphism is monic. The
final coalgebra has only a set of subcoalgebras, consequently, there exists up to
isomorphism only a set of simple coalgebras. Consequently, only a set of well-
pointed coalgebras.

(2) Let H have a set vH of representative well-pointed coalgebras. We prove
that vH with the coalgebra structure 9 from (3.2)) is final.

(2a) We first prove that for every coalgebra homomorphism h: (4,a) >
(B,b) we have

at =bt-h. (3.3)

Given z: 1 » A, then bt -h assigns to it the well-pointed coalgebra (B, by, yo)
obtained from (B, b,y), where y = h-z, as in NotationB.1l It is not difficult, using
Remark[3:2] to prove that this well-pointed coalgebra is isomorphic to (Ao, @, z).

(2b) vH is a weakly final coalgebra because for every coalgebra (4, a) we
have a coalgebra homomorphism a*: (4,a) > (vH, z). Indeed, by we
have 1-a*(x) = Hag -ao(wo) and the diagram below shows that this is equal to
Hat-a(x):

Well-Pointed Coalgebras 97

Notice that the upper and lower triangles commute since m and e are homomor-
phisms, see (2a).

(2¢) We next prove that for the coalgebra ¢: vH > H(vH) we have
%+ = id,g. Indeed, given a well-pointed coalgebra (A4,a,z) € vH, consider
the equality (3.3) with h = a™ (which is a homomorphism by (2b)) and b = .
Of course, a™(x) = (A,a,x), since (A,a) is simple and (4, a,) is reachable.
Then ¢+ (A,a,z) = (A, a,x).

Finally, to prove uniqueness of the homomorphism a™, suppose that h: (A, a)

> (vH,) is any homomorphism. Then we have

at (2:a) ’(/)+-h (2)

h. O

Ezamples 3.9. (a) For deterministic automata the final coalgebra (for HX =
X1 x {0,1}) consists of all minimal (i.e., reachable and observable) au-
tomata. The more usual description is: the set Z2I* of all formal languages.
However, this is isomorphic: every formal language is accepted by a minimal
automaton, unique up to isomorphism.

(b) The final coalgebra for the finite power-set functor is the coalgebra of all
finitely branching well-pointed graphs. See Section [for more details.

Remark 3.10. If vH is not a set, then H does not have a (small) final coalgebra.
However, vH is its large final coalgebra: in the above proof smallness was not
used.

Definition 3.11. For every coalgebra a: A » HA define the canonical
graph on A: the neighbors of x € A are precisely those elements of A which
lie in the least subset m: M ¢ » A with a(x) € Hm[HM].

Proposition 3.12. A coalgebra for H is well-founded iff its canonical graph is
well-founded.

Remark. For functors H preserving inverse images this fact is proved by Taylor,
see 6.3.4 in [I7]. Our proof is essentially the same.

Corollary 3.13. Subcoalgebras of a well-founded coalgebra are well-founded.

Notation 3.14. The collection of all well-founded, well-pointed coalgebras (up
to isomorphism) is denoted by
wH.

For every well-founded coalgebra a: A » HA we have a function a®: A
» wH assigning to every element z: 1 > A the well-founded, well-pointed
coalgebra ([B]). Indeed, (Ao, ao) is well-founded due to CorollariesZI2and B13

Theorem 3.15. A set functor H preservring intersections has an initial algebra
iff it has only a set of well-founded, well-pointed coalgebras up to isomorphism.
And, if it is the case, uH is an initial algebra.

98 J. Addmek et al.

Remark. Whenever pH is a set, it carries a canonical coalgebra structure v : uH

> H(pH) defined by ([B2). We prove below that this is a final well-founded
coalgebra. Thus, by Theorem 214 pH is an initial algebra with the structure
given by the inverse of 1.

Proof. (1) If H has an initial algebra I, then by Theorem 2Tl this is a final well-
founded coalgebra. Every well-founded, well-pointed coalgebra is simple, whence
a subcoalgebra of I since the unique homomorphism into I is monomorphic by
Remark [3:21 Consequently, uH is a set.

(2) Let H have a set pH of representatives of well-founded, well-pointed coal-
gebras. The proof that for every well-founded coalgebra (A, a) the map a™ : A

» wH is a unique coalgebra homomorphism into v: uH > H(uH) is com-
pletely analogous to the proof of finality of ¥ : vH > H(vH) in Theorem [3.8
Just recall that subcoalgebras and quotients of a well-founded coalgebra are all
well-founded (by Corollaries and B.13).

It remains to prove that (uH,) is a well-founded coalgebra. To this end no-
tice that for every well-pointed, well-founded coalgebra (A, a,x) in pH we have
a®(x) = (A, a,r). Now take the coproduct (in Coalg H) of all (A, a) for which
there is an & € A such that (4, a, z) lies in pwH. This coproduct is a well-founded
coalgebra by Corollary 212, and, as we have just seen, the unique induced ho-
momorphism from the coproduct into (uH,) is epimorphic, whence pH is a
quotient coalgebra of the coproduct. Thus, another application of Corollary Z.12]
shows that uH is a well-founded coalgebra as desired. O

Remark 3.16. (a) Recall from [4] that an algebra a: HA » A is iterative
provided that every (equation) morphism e: X » HX + A, where X is a finite
set, has a unique solution, i.e., ef: X » A such that e = [a, A]-(Hel + A)-e.
It was proved in [10] that the initial iterative algebra is precisely the final locally
finite coalgebra, where a coalgebra is called locally finite if every element of it
lies in a finite subcoalgebra.

Ezample 3.17 (see [{]]). The initial iterative algebra for HX = X x {0,1} con-
sists of all finite minimal automata. This is isomorphic to its description as all
regular languages.

Notation 3.18. For every finitary set functor denote by
oH

the set of all finite well-pointed coalgebras up to isomorphism.
Given a finite coalgebra a: A » HA we define a function at: A > oH

by BII).

Theorem 3.19. Every finitary set functor H has an initial iterative algebra oH
formed by all finite well-pointed coalgebras.

Remark. poH has the canonical coalgebra structure 77[;: oH > H(oH) given
by ([B2). The proof that this is the final locally finite coalgebra is analogous to
the proof of Theorem [3.8]

Well-Pointed Coalgebras 99
4 Examples of Well-Pointed Coalgebras

Example 4.1. Deterministic automata, HX = X’ x {0,1}. In Example
we saw that vH consists of all minimal automata, or, equivalently, all languages
over I. The initial iterative algebra oH consists of all finite minimal automata,
this is isomorphic to

oH = all regular languages.

Finally, no well-pointed coalgebra is well-founded because the empty subcoalge-
bra is cartesian, thus,
wH = 0.

Ezxample 4.2. Streams. Consider the coalgebras for HX = X x [+ 1. Jan
Rutten [I3] interprets them as dynamical systems with outputs in I and with
terminating states (where no next state is given). Every state ¢ yields a stream,
finite or infinite, over I by starting in ¢ and traversing the dynamic system as
long as possible. We call it the response of ¢. It is an element of I“ 4 I*.

(a) For every word s - -+ s, in I* we have a well-pointed dynamic system

@ " O " O

(b) For every eventually periodic stream in I,
w = uv® for u,v € I*,

we have a well-pointed dynamic system which uses u as in (a) and adds a cycle
repeating v.

The following was already proved by Arbib and Manes [9] 10.2.5].
Corollary 4.3. For HX = X x I + 1 we have

vH 21"+ 1%, all finite and infinite streams,
oH = all finite and eventually periodic streams,
wH =T all finite streams.

Ezxample 4.4. Binary trees. Coalgebras for the functor
HX=XxX+1

are given, as observed by Jan Rutten [13], by a set @ of states which are ei-
ther terminating or have precisely two next states according to a binary input,
say {l,7}. Every state ¢ € Q yields an ordered binary tree Tj (i.e, nodes that
are not leaves have a left-hand child and a right-hand one) by tree expansion:
the root is ¢ and a node is either a leaf, if it is a terminating state, or has the
two next states as children (left-hand for input /, right-hand for input). Binary
trees are considered up to isomorphism.

100 J. Addmek et al.

Lemma 4.5. For every coalgebra of the functor HX = X x X + 1 the largest
congruence merges precisely the pairs of states having the same tree expansion.

Proof. Let ~ be the equivalence with ¢ ~ ¢’ iff T, = T,/. There is an obvious
structure of a coalgebra on @/~ showing that ~ is a congruence. For every
coalgebra homomorphism h: @ > @ the tree expansion of ¢ € Q is always the
same as the tree expansion of h(g) in Q. Thus, ~ is the largest congruence. 0

Corollary 4.6. A well-pointed coalgebra of the functor HX = X x X + 1 is a
coalgebra with an initial state qo which is reachable (every state can be reached
from qo) and simple (different states have different tree expansions).

Moreover, tree expansion of the initial state is a bijection between well-pointed
coalgebras and binary trees. The coalgebra is finite iff the tree expansion is
rational, i.e., it has only finitely many subtrees up to isomorphism. And the
well-founded coalgebras are precisely those yielding a finite tree expansion.

The following result was proved by Arbib and Manes [9], 10.2.5 (description
of vH) and in [] (description of pH).

Corollary 4.7. For the functor HX = X x X + 1 we have

vH 2= all binary trees,
oH = all rational binary trees,

wH =2 all finite binary trees.

Example 4.8. Graphs. Here we investigate coalgebras for the power-set func-
tor & (that is, graphs) and for the finitary power-set functor &, (that is,
finitely branching graphs). In the rest of Section[d all trees are understood to be
non-ordered. That is, a tree is a directed graph with a node (root) from which
every node can be reached by a unique path.

Recall the concept of a bisimulation between graphs X and Y: it is a relation
R C X x Y such that whenever R y then every child of x is related to a child
of y, and vice versa. Two nodes of a graph X are called bisimilar if they are
related by a bisimulation R C X x X.

Lemma 4.9. The greatest congruence on a graph merges precisely the bisimilar
pairs of states.

This follows, since & preserves weak pullbacks, from general results of
Rutten [13].

Corollary 4.10. A pointed graph (G, qo) is well-pointed iff it is reachable (every
vertex can be reached from qo by a directed path) and simple (all distinct pairs
of states are non-bisimilar).

Ezample 4.11. Peter Aczel introduced in [I] the canonical picture of a (well-
founded) set X. It is the graph with vertices all sets Y such that a sequence

Y=YyeY e --€eY, =X

Well-Pointed Coalgebras 101

of sets exists. The neighbors of a vertex Y are all of its elements. When pointed
by X, this is a well-pointed graph which is, due to the Foundation Axiom, well-
founded. Conversely, every well-founded well-pointed graph is isomorphic to the
canonical picture of a set.

Corollary 4.12. u& = all sets.

This was proved by Rutten and Turi in [I4]. The bijection between well-founded,
well-pointed graphs and sets (given by the canonical picture) takes the finite
well-founded graphs to the hereditarily finite sets X, i.e., finite sets with finite
elements which also have finite elements, etc. More precisely: a set is hereditarily
finite if all sets in the canonical picture of X are finite:

Corollary 4.13. 22, = all hereditarily finite sets.

In order to describe the final coalgebra for & in a similar set-theoretic manner,
we must move from the classical theory to the non-well-founded set theory of
Peter Aczel [I]. Recall that a decoration of a graph is a coalgebra homomorphism
from this graph into the large coalgebra (Set, €). Non-well-founded set theory
is obtained by swapping the axiom of foundation, telling us that (Set,€) is
well-founded, with the following

Anti-Foundation Axiom. Every graph has a unique decoration.

Ezample 4.14. The decoration of a single loop is a set 2 such that 2 = {£2}.
The coalgebra (Set, €) where now Set is the class of all non-well-founded
sets, is of course final: the decoration of G is the unique homomorphism d: G
> Set.

Corollary 4.15. In the non-well-founded set theory: v = all sets.

Let us turn to the finite power-set functor &,,.

Remark 4.16. Worrell introduced in [21I] the notion of a tree-bisimulation be-
tween trees T7 and Tb; this is a graph bisimulation R C T; x T, which relates
the roots and such that x1 R xo implies that x; and zo are the roots or have
related parents.

A tree T is called strongly extensional iff every tree bisimulation R C T x T
is trivial: R C Ap. The tree expansion is a bijection between all well-pointed
finitely branching graphs and strongly extensional finitely branching trees.

Corollary 4.17. For the finite power-set functor &,, we have

v,
0P,

nZ, = all finite strongly extensional trees.

all finitely branching, strongly extensional trees,

all finitely branching, rational, strongly extensional trees,

102 J. Addmek et al.

Ezxample 4.18. Labeled transition systems. Here we consider, for a set A of
actions, coalgebras for 2, (—x A). A bisimulation between two finitely branching
labeled transition systems (LTS) G and G’ is a relation R C G x G’ such that

if o Ry then for every transition x “ » 2’ in G there exists

a transition y “ »7/ with 2’ R 3/, and vice versa.

States z,y of an LTS are called bisimilar if x R y for some bisimulation R C
G xG.

A well-pointed LTS is an LTS together with an initial state gy which is reach-
able (every state can be reached from ¢g) and simple (distinct states are non-
bisimilar).

The tree expansion of a state ¢ is a (non-ordered) tree with edges labeled in A,
shortly, an A-labeled tree. For A-labeled trees we modify Definition 16| in an
obvious manner.

Corollary 4.19. For the finitely branching LTS we have

vP,(—xA) = dll finitely branching, strongly extensional A-labeled trees,

02,,(—xA) = all rational, finitely branching, strongly extensional
A-labeled trees,

uP,(—xA) = all finite extensional A-labeled trees.

5 Conclusions

For set functors H satisfying the (mild) assumption of preservation of intersec-
tions we described (a) the final coalgebra as the set of all well-pointed coalge-
bras, (b) the initial algebra as the set of all well-pointed coalgebras that are
well-founded, and (c) in the case where H is finitary, the initial iterative algebra
as the set of all finite well-pointed coalgebras. This is based on the observa-
tion that given an element of a final coalgebra, the subcoalgebra it generates
has no proper subcoalgebras nor proper quotients—shortly, this subcoalgebra
is well-pointed. And different elements define nonisomorphic well-pointed sub-
coalgebras. We then combined this with our result that for all set functors the
initial algebra is precisely the final well-founded coalgebra. This resulted in the
above description of the initial algebra. Numerous examples demonstrate that
this view of final coalgebras and initial algebras is useful in applications.

Whereas our result about well-founded coalgebras was proved in locally
finitely presentable categories, the description of the final coalgebra was for-
mulated for set functors only. In future research we intend to generalize this
result to a wider class of base categories.

Well-Pointed Coalgebras 103

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Aczel, P.: Non-well-founded Sets. CSLL Lect. Notes, vol. 14. Stanford CSLI Pub-
lications, Stanford (1988)

Adamek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carolinae 15, 589-602 (1974)

. Adéamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John

Wiley and Sons, New York (1990)

. Adamek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures

Comput. Sci. 16, 1085-1131 (2006)

. Adamek, J., Rosicky, J.: Locally Presentable and Accessible Categories. Cambridge

University Press (1994)

. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform.

and Comput. 204, 437-468 (2006)

. Gabriel, P., Ulmer, F.: Lokal prasentierbare Kategorien. Lecture Notes in Math.,

vol. 221. Springer, Berlin (1971)

. Gumm, H.-P.: On minimal coalgebras. Appl. Categ. Structures 16, 313-332 (2008)
. Manes, E.G., Arbib, M.A.: Algebraic Approaches to Program Semantics. Springer,

New York (1986)

Milius, S.: A sound and complete calculus for finite stream circuits. In: Proc. 25th
Annual Symposium on Logic in Computer Science (LICS 2010), pp. 449-458. IEEE
Computer Society (2010)

Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67-94 (1983)

Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4, 79-119 (1974)

Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput.
Sci. 249, 3-80 (2000)

Rutten, J.J.M.M., Turi, D.: On the Foundations of Final Semantics: Non-Standard
Sets, Metric Spaces, Partial Orders. In: de Bakker, J.W., de Roever, W.-P., Rozen-
berg, G. (eds.) REX 1992. LNCS, vol. 666, pp. 477-530. Springer, Heidelberg (1993)
Tarski, A.: A lattice theoretical fixed point theorem and its applications. Pacific J.
Math. 5, 285-309 (1955)

Taylor, P.: Towards a unified treatement of induction I: the general recursion the-
orem, preprint (1995-6), http://www.paultaylor.eu/ordinals/#towuti

Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press
(1999)

Tiurin, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12,
229-254 (1980)

Trnkovd, V.: On a descriptive classification of set functor I. Comment. Math. Univ.
Carolinee 12, 323-352 (1971)

Trnkovd, V., Adamek, J., Koubek, V., Reiterman, J.: Free algebras, input processes
and free monads. Comment. Math. Univ. Carolinee 16, 339-351 (1975)

Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput.
Sci. 338, 184-199 (2005)

http://www.paultaylor.eu/ordinals/#towuti

Combining Interactive and Automatic Reasoning
in First Order Theories of Functional Programs

Ana Bove!, Peter Dybjer!, and Andrés Sicard-Ramirez?*

! Chalmers University of Technology, Gothenburg, Sweden
2 EAFIT University, Medellin, Colombia

Abstract. We propose a new approach to the computer-assisted veri-
fication of functional programs. We work in first order theories of func-
tional programs which are obtained by extending Aczel’s first order
theory of combinatory formal arithmetic with positive inductive and
coinductive predicates. Rather than building a special purpose system
we implement our theories in Agda, a proof assistant for dependent type
theory which can be used as a generic theorem prover. Agda provides
support for interactive reasoning by encoding first order theories using
the formulae-as-types principle. Further support is provided by off-the-
shelf automatic theorem provers for first order logic which can be called
by a program which translates Agda representations of first order for-
mulae into the TPTP language understood by the provers. We show
some examples where we combine interactive and automatic reasoning,
covering both proof by induction and coinduction.

1 Introduction

The goal of this paper is to show a simple way to build a system for reasoning
about programs in functional languages with higher order functions, general
recursion and lazy evaluation in the style of Haskell [23]. Building a mature
proof assistant from scratch for this purpose is a daunting task, although there
are some attempts in this direction [I520]. Here we suggest to achieve this goal
by building on existing state-of-the-art systems in interactive and automatic
theorem proving. Our solution combines the following three strands of research:

— Using a logic for general recursive functional programs [IJIOJTT] which is
based on Aczel’s first order theory of combinatory arithmetic [3]; we extend
this theory to deal in a seamless way with full general recursion, higher order
functions, termination proofs, and inductive and coinductive predicates.

— Using automatic theorem provers for proving properties of functional pro-
grams by translating them into first order logic as proposed by Claessen and
Hamon in their work on “The Cover Translator” (Chalmers, 2003).

— Using automatic theorem provers for first order logic for proof assistants
based on dependent type theory, see Tammet and Smith’s Gandalf [27], and
Abel, Coquand, and Norell’s AgdaLight [I].

* Part of this research was performed during a research visit to Chalmers University of
Technology which was funded by the ALFA network LERnet and EAFIT University.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 104-[[1§, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Combining Interactive and Automatic Reasoning 105

We use the Agda system [28] as our interactive theorem prover. It is simul-
taneously a dependently typed functional programming language and a proof
assistant. It is an extension of Martin-Lof type theory with numerous pro-
gramming language features which facilitate programming and interactive proof
construction.

Like Martin-Lof type theory, Agda has the strong normalisation property. This
property is ensured by only allowing restricted forms of recursion. A consequence
is that one cannot write programs by arbitrary general recursion. It is the goal of
the dependently typed programming community to turn this restricted discipline
of programming into a practical methodology.

In this paper we directly verify mainstream general recursive functional pro-
grams. To this end we use Agda as a logical framework in much the same way as
the Edinburgh logical framework [14], that is, as a meta-logical system which is
used as a basis for the implementation of a range of special purpose logics. Our
logic is a first order theory of combinators (FOTC) based on Aczel’s theory [3].
When implementing FOTC in Agda we get access to advanced features for in-
teractively building proofs in the proof assistant, such as, commands for refining
proof terms, definition by pattern matching, flexible mixfix syntax accepting
Unicode, etc.

Furthermore, we provide a translation of Agda representations of formulae
in the FOTC into the TPTP language [26] so that we can call off-the-shelf
automatic theorem provers (ATPs) when proving properties of our programs.

A key point of our approach is that Martin-Lof type theory is a subsystem of
our theory through a natural interpretation [3]. However, our theory is strictly
more general; in particular, we can write arbitrary general recursive functional
programs. This extra generality comes at a price: since we can now reason about
programs which do not terminate, we can no longer make use of the automatic
type-checking in the same way as before. To compensate for this loss we use
automatic first order theorem proving, although it does not fully replace the
type-checking algorithm as we shall see. On the other hand, the ATPs can prove
theorems automatically which would otherwise require manual proofs.

Overview of the paper. Section [2 introduces our FOTC for Plotkin’s PCF lan-
guage. In Section [l we explain how to encode first order theories in Agda and
how to instruct the proof assistant to call the ATPs. Section @ shows how to
encode FOTC for PCF in Agda and how this enables us to combine interactive
and automatic theorem proving. In Section [fl we extend FOTC by adding induc-
tive and coinductive predicates and we present an example using both. Finally,
Section [f] contains some discussion of future and related work.

The programs and the examples described in the paper are available at
wwwl.eafit.edu.co/asicard/code/fossacs-2012/.

2 First Order Theories of Combinators

As we mentioned before, Aczel showed how to interpret Martin-Lof type theory in
traditional first order logic. He gave an abstract realisability interpretation, where

www1.eafit.edu.co/asicard/code/fossacs-2012/

106 A. Bove, P. Dybjer, and A. Sicard-Ramirez

the proof objects are interpreted as terms in combinatory logic and types are
interpreted as unary predicates. Aczel’s first order theory only has two constants
(K and S) and one binary function symbol (for application). This is because
all the term formers of Martin-Lof type theory can be encoded in the usual
way using bracket abstraction, Church encodings, and fixed point operators.
The theory also has three unary predicate symbols A/, P, and 7 meaning that
a combinatory term encodes a natural number, an internal proposition, and
an internal true proposition, respectively. Aczel’s paper was the first of several
papers on realisability interpretations of Martin-Lof type theory; see for example
Aczel [4] and Smith [25].

A Logic for PCF with Totality Predicates. Dybjer [9] showed that one of these
logics for realisability interpretations, the so called Logical Theory of Construc-
tions (LTC) is appropriate for practical verification of functional programs. This
logic is closely related to Aczel’s first order theory, but is based on the A-calculus,
and is hence not a first order theory.

For the purpose of this paper we begin by considering an LTC-style logic for
Plotkin’s PCF language [24]. PCF does not have internal propositions, hence
we do not need the predicate symbols P and 7. On the other hand, we have
two unary predicate symbols Bool and N, where Bool(t) means that ¢ is a to-
tal boolean value (true or false), and AN (¢) that ¢ is a total natural number.
We will use these predicates to assert that a certain (possibly non-terminating)
PCF program terminates with a total boolean value or a total natural number,
respectively.

In a previous paper [7] we showed how to use Agda for implementing this
LTC-style logic. The aim of the present paper is to make use of off-the-shelf
automatic theorem provers for first order logic. Hence, we must make our logic
first order by removing A-abstraction. Instead, we work in an extensible theory
and add a new function symbol for each recursive function definition of the form

fxl "’anG[fvxla"'axn]'

It is well-known how to translate such definitions into terms using A-abstraction
and fixed point operators. For convenience, we might actually define function
symbols by pattern matching, whenever it is clear that this pattern matching
can be replaced by a single recursive equation by using if, pred and iszero.

The grammar for terms is now first order:

t = |tt|truelfalse|if | 0|succ|pred |iszero| f

where f ranges over new combinators defined by recursive equations as above.
The axioms can be classified into three groups: (i) conversion rules for the com-
binators, (ii) discrimination rules expressing that terms beginning with different
constructors are not convertible, and (iii) introduction and elimination rules for
Bool and N. We show these axioms in Section F

Combining Interactive and Automatic Reasoning 107

3 Combining Interactive and Automatic Proofs in First
Order Logic

3.1 First Order Logic in Agda

The encoding of intuitionistic first order logic in dependent type theory using
the formulae-as-types principle is of course well-known; below we briefly show
what it looks like in Agda. For example, to implement disjunction we encode it
as the disjoint union; note that below, we declare the constants as postulates.

postulate _V_ : Set — Set — Set
inl : {A B : Set} - A —~ A VB
inr : {A B : Set} -4 B — A VB
case : {ABC : Set} > A —>C) - B—-C —-AVB—>C

The first constant declares the syntax of disjunction as an infix binary set
former. The second and third constants declare the introduction rules, and the
fourth the elimination rule. Note that these rules are axiom schemata that is,
they are sets of first order formulae, one for each instance of A, B and C. Agda
is a higher order logic; to express the schematic nature of these rules we use
(implicit) quantification over Set. Curly brackets {,} declare implicit arguments,
that is, arguments that do not appear explicitly in the proof terms.

The proof of commutativity of disjunction can now be written as

commOr : {AB : Set}) - AVB—BVA
commOr ¢ = case inr inl c

By using postulates we can encode all of classical first order logic. The ade-
quacy problem —the question of whether such an encoding gives rise to exactly
the same provable formulae as the original theory— is studied by Gardner [12].

However, to make the most of the proof assistant it is preferable to use Agda’s
data declarations for inductively defined types, whenever appropriate. Hence, we
declare the syntax and the introduction rules for disjunction as follows:

data _V_ (A B : Set) : Set where
inl : A - AV B
inr : B — A V B

We can now write proofs by pattern matching; for example the proof of commu-
tativity of disjunction becomes

commOr : {AB : Set}) - AVB—BVA
commOr (inl a) = inr a
commOr (inr b) = inl b

When we encode our theory using data rather than postulate we get a new
adequacy problem, since we have a more general language where we can write
proofs by pattern matching. Here, we should only use pattern matching in ways
which are reducible to the case combinator, encoding disjunction elimination.

We shall use data for all logical constants, the equality relation (denoted as =),
and the totality predicates in our FOTC (with the same remark as above).

108 A. Bove, P. Dybjer, and A. Sicard-Ramirez

Furthermore, to define the quantifiers we postulate a domain of individuals:
postulate D : Set

The wuniversal quantifier is implemented by the dependent function type
(x : D) — P. If the domain D can be deduced by the type checker, we use the
alternative notation vV x — P for this type.

Finally, since the automatic theorem provers implement classical first order
logic we need to include (a postulate for) the law of excluded middle:

postulate lem : {A : Set} — AV - A

3.2 Combining Agda with Automatic Theorem Provers

We have modified Agda by adding pragmas containing information to be used by
the ATPs. These pragmas instruct the system to add information in an interface
file which is generated after type-checking a file. In this way we tell the ATPs to
prove a certain formula, or that a certain formula is an axiom or a general hint,
or that a certain constant is a definition.

We tell the ATPs that the formula name is an axiom by the pragma

{-# ATP axiom name #-}

To prove a property automatically we first postulate it and add the pragma that
instructs the ATPs to prove this conjecture. For example, to prove commutativity
of disjunction automatically we write

postulate commOr : {A B : Set} - AV B —- BV A
{-# ATP prove commOr #-}

After type-checking we run the program agda2atp, which first translates all ax-
ioms, definitions and conjectures in the generated interface file into the TPTP
language, and then tries to prove the conjectures calling independently the auto-
matic theorem provers E, Equinox, SPASS, Metis, or Vampire. In the terminal,
we get information about which property is being proved and which ATP was
able to prove a property first, if any.

Proving the conjecture in /tmp/Examples.commOr_7.tptp ...
Vampire 0.6 (...) proved the conjecture in /tmp/Examples.commOr_7.tptp

If no ATP could prove a conjecture within five minutes (by default), the process
is cancelled and the ATPs will continue and try to prove the next conjecture.

It is possible to specify local hints in the pragma {-# ATP prove ... #-} by
giving their names after the name of the conjecture to be proved.

4 Implementing FOTC for PCF in Agda

We first declare the syntax of PCF terms as the following postulates:

postulate if_then_else_ : D - D —- D — D
__:D—=D—=1D

succ pred isZero : D — D
zero true false : D

Combining Interactive and Automatic Reasoning 109

Note that if we were faithful to the syntax of PCF given in Section 2 if, succ,
pred and isZero would have type D. However, the above versions are definable,
and easier to use with the theorem prover (and easier to read for humans).

We now postulate the conversion rules, and add a pragma which declare them
to be axioms for the ATPs:

postulate if-true : V d; {d2} — if true then d; else d2 = d;
if-false : V {di} do — if false then d; else ds =
pred-S : V d — pred (succ d) = d
isZero-0 : isZero zero = true
isZero-S : V d — isZero (succ d) = false

{-# ATP axiom if-true if-false pred-S isZero-O isZero-S #-}

do

We omit the discrimination rules.
Then we define a predicate for total natural numbers as a data type, and the
induction schema for natural numbers by pattern matching:

data N : D — Set where

zN : N zero

sN : V{n} - Nn — N (succ n)
{-# ATP axiom zN sN #-}

indN : (P : D — Set) — P zero —

(W{n} - Pn— P (succn) -V{n} =Nn—=>Pn
indN P PO h zN = PO
indN P PO h (sN Nn) = h (indN P PO h Nn)

Note that since induction is a schema we cannot declare it as an axiom until it
is instantiated. There are analogous rules for total Booleans.

Let us now add a combinator for addition. We postulate a binary infix oper-
ation on D and the (recursive) equations as axioms for the ATPs.

postulate _+_ : D - D — D
+-0x : Vd — zero + e =
+-8x : Vde — succ d +

{-# ATP axiom +-0x +-Sx #-}

e
e = succ (d + e)
We can show that addition is a total function on natural numbers by induction

on the first argument. If we manually instantiate the induction schema, then both
cases can be proved automatically (using a hint in the proof of +-N;):

indN-instance : V x — N (zero + x) —
WV {n} - N (n+x) - N (succ n + x)) —
V{n} = Nn—= N (n+ x)

indN-instance x = indN (A i — N (i + x))

postulate +-N; : V{m n} - Nm — Nn — N (m + n)
{-# ATP prove +-N; indN-instance #-}

A more convenient way to instantiate the induction schema is to instruct Agda
to do pattern matching on the first argument:

110 A. Bove, P. Dybjer, and A. Sicard-Ramirez

+N : V{mn} > Nm - Nn — N (m + n)
+-N {n = n} zN Nn = prf
where postulate prf : N (zero + n)
{-# ATP prove prf #-}
+-N {n = n} (sN {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) — N (succ m + n)
{-# ATP prove prf #-}

To prove commutativity of addition we proceed in the same way: we do pattern
matching on one of the arguments, then we prove the base case and the step
case of the induction automatically.

+-comm : V{mn} - Nm—-Nn-—-m+n=n+mn
+-comm {n = n} zN Nn = prf
where postulate prf : zero + n = n + zero
{-# ATP prove prf +-rightIdentity #-}
+-comm {n = n} (sN {m} Nm) Nn = prf (+-comm Nm Nn)
where postulate prf : m+n =n+m — succm +n =n + succ m
{-# ATP prove prf x+Sy=S[x+y] #-}

Here we used the following hints, which both were proved automatically:

+-rightIdentity : V {n} — Nn — n + zero =n
x+Sy=S[x+y] : V{mn} - Nm - Nn — m + succ n = succ (m + n)

4.1 An Example with Nested Recursion
McCarthy’s 91-function is defined by the following axiom:

postulate mc91 : D — D
mc9l-eq : Vn — mc9l n =
if n > 100 then n — 10 else mc91 (mc91 (n + 11))
{-# ATP axiom mc91-eq #-}

We shall show that it has the following property:
mc91-res)100 : V {n} - Nn — n ¥ 100 —» mc91 n = 91

The proof is done interactively by well-founded induction on the relation
101 — m < 101 = n. Most of the auxiliary properties are proved with the help
of the ATPs. We show only a few of them.

First we show that mc91 100 = 91 by using the ATPs

postulate mc91-res-100 : mc91 100 = 91
{-# ATP prove mc91-res-100 100+11>100 100+11-10>100
101=100+11-10 91=100+11-10-10 #-}

where the hints are arithmetic properties which are proved automatically. To
prove the remaining cases, we use a lemma that is proved automatically:

postulate mc91x-res)100 : Vmn — m % 100 — mc91 (m + 11) = n —
mc9l n = 91 — mc91 m = 91
{-# ATP prove mc91lx-res}100 #-}

Combining Interactive and Automatic Reasoning 111

Let m < 100. To compute mc91 m we use mc91-eq, for which we first need to
compute mc91 (m + 11). Which branch of the definition of mc91 we use for this
computation depends of the value of m.

If 90 < m < 99 then m + 11 > 100, so we apply the true-branch and obtain
(m + 11) = 10 and we apply mc91 again to the result of mc91 (m + 11). We now
use mc91x-res¥100 to prove that mc91 m returns 91. For the case of 98 we have:

postulate mc91-res-109 : mc91 (98 + 11) = 99
mc91-res-99 : mc91 99 = 91
{-# ATP prove mc91-res-109 98+11>100 x+11-10=Sx #-}
{-# ATP prove mc91-res-99 mc91x-res}100 mc91l-res-110 mc91l-res-100 #-}

On the other hand, if m < 89 then m + 11 % 100. Hence, our inductive hy-
pothesis tells us that mc91 (m + 11) = 91. Using mc91x-res#100 on the inductive
hypothesis and on the proof that mc91 91 = 91 we obtain the desired result.

Additionally, using well-founded induction on the relation 101 — m < 101 ~ n
and with the help of the ATPs, we proved that mc91 is a total function, we prove
that mc91 n = n =~ 10 whenn > 100, and we prove thatV n. n < (mc91 n + 11).

5 Adding Inductive and Coinductive Predicates

5.1 Inductive Predicates

Note that FOTC for PCF is not one first order theory; it is a family of first order
theories. When we add a new recursive function, we extend the theory with a
new function symbol and one (or several) equational axioms. As we already
remarked, it is easy to extend the model accordingly, since the model is based
on Scott domains with a fixed point operator.

Furthermore, in addition to our inductively defined totality predicates N' and
Bool, we may add other inductively defined predicates. For example, we may
add a new inductively defined unary predicate symbol Even with axioms stating
the introduction rules that zero is an even number and that even numbers are
closed under the function which adds 2 to a natural number; and the induction
schema stating that Even is the least predicate with those properties.

A schema for (intuitionistically valid) inductive predicates in first order logic
is given by Martin-Lof [I8]. However, since we work in classical logic, nothing
prohibits us from adding inductively generated predicates by arbitrary (not nec-
essarily strictly) positive operators, since they can easily be modelled as least
fixed points of monotone operators on subsets of the domain [2].

5.2 An Example with Higher-Order Recursion

Here we define the mirror function for general trees in FOTC. First we extend
our language with constructors for lists and trees:

postulate [] : D
node : D - D — D

112 A. Bove, P. Dybjer, and A. Sicard-Ramirez

Then we mutually define predicates for total forests and trees.

mutual data Forest : D — Set where
nilF : Forest []
consF : V {t ts} — Tree t — Forest ts — Forest (t :: ts)
data Tree : D — Set where
treeT : V d {ts} — Forest ts — Tree (node d ts)

(For space reasons we will omit the pragmas instructing the ATPs about axioms.)
Furthermore, we define the map function for lists

postulate map : D —- D — D
map-[] : V£ — map £ [1 = []
map-:: : Vfdds - map f (d ::ds) = f - d : map f ds

and the mirror function for trees:

postulate mirror : D
mirror-eq : V d ts — mirror - (node d ts) =
node d (reverse (map mirror ts))

We prove the following property:
mirror? : V {t} — Tree t — mirror - (mirror - t) = t

We do induction on the proof that the tree is total and then on its underlying
forest; we obtain two cases depending on whether the forest is empty or not.

mirror? (treeT d nilF) = prf
where postulate prf : mirror - (mirror - node d []) = node d []
{-# ATP prove prf #-}
mirror? (treeT d (consF {t} {ts} Tt Fts)) = prf
where postulate prf : mirror - (mirror - mnode d (t :: ts)) =
node d (t :: ts)
{-# ATP prove prf helper #-}

The hint helper is the following lemma:

helper : V {ts} — Forest ts —
reverse (map mirror (reverse (map mirror ts))) = ts

It follows by induction on forests. Both cases are proved automatically.

5.3 Coinductive Predicates

We shall now show how to prove the correctness of a functional programming
version of the alternating bit protocol (ABP). The purpose of this protocol is to
ensure safe communication over an unreliable transmission channel. The sender
tags the message with an (alternating) bit which is checked by the receiver. In
the case of proper transmission the receiver sends the bit back to the sender as
an acknowledgment. Otherwise, it sends the opposite bit back to signal that the
message needs to be resent.

Combining Interactive and Automatic Reasoning 113

We follow Dybjer and Sander [11] who showed how to represent the ABP as
a Kahn network, that is, as a network of communicating stream transformers,
written in the lazy functional programming language Miranda [30] (a precursor
of Haskell). They proved it correct in Park’s p-calculus [21]. This is an extension
of first order classical logic with a p-operator: for any positive formula ¢[X]
with a free predicate variable X, we can form pX.®[X], with axioms which
express that (i) uX.9[X] is a prefized point of @[X] (the introduction rule for the
inductive predicate), and (ii) that it is the least prefized point (the elimination
rule or induction principle). Since we work in classical logic we automatically
have coinductive predicates, since greatest fized points of ¢[X] can be defined as
special least fixed points by dualisation.

Dybjer and Sander implemented the p-calculus in the Isabelle system [22],
and the proof was mechanically checked using Isabelle’s tactics.

We here show how to modify Dybjer and Sander’s approach so that it fits
within first order logic. Rather than using the p-operator (a second order con-
struct) for inductive and coinductive predicates, we add new predicate symbols
to our first order theories with axioms and axiom schemata corresponding to the
least and greatest fixed point properties, respectively. In the previous section
we showed how to add some inductive predicates. Now we will also add some
coinductive predicates which will be used in the proof of the correctness of the
alternating bit protocol.

Our first example is the coinductive definition of the predicate expressing that
a certain list is infinite or productive. We add a unary predicate symbol Stream
and two axioms expressing (i) that it is a postfized point of a certain operator,
and (ii) that it is the greatest such postfixed point:

Stream-gfp; : V {xs} — Stream xs —
d[x>] 3[xs’] Stream xs’ A xs = x’ :: x8’
Stream-gfps : (P : D — Set) —
(V {xs} > Pxs — d[x>] 3[xs’]
P xs’ A xs = x’ :: x8’) —
V {xs} — P xs — Stream xs

Similarly, we coinductively define when two streams are bisimilar:

~-gfpr : V {xs ys} = xs =~ ys — I[x>] I[xs’> 1 [ys’] xs8’ = ys’
AN xs =x’ 1 xs8” Nys = x’ i ys’
~-gfp2 : (R_ : D - D — Set) — (V {xs ys} — xs R ys —
30 x> 1 30 xs> 1 3[ys’] xs’ R ys’
A xs =x’:1x8’ ANys =x’ 1ys’) —
V {xs ys} > xs R ys = xs = ys
In order to express the correctness property of the ABP we need a certain fairness
property of the unreliable transmission channels. This property will be encoded
in terms of oracle bit streams, where the bits T and F represent proper and
improper transmission, respectively. Fairness here means that the bit stream
contains an infinite number of Ts and is defined as follows:

Fair-gfp; : V {fs} — Fair fs —
J[£t] I3[£s’ 1 F*T ft A Fair fs’ A fs = ft ++ fs’

114 A. Bove, P. Dybjer, and A. Sicard-Ramirez

fSo
> corrupt

as bs
. is T Js
input > abpsend abpack, abpout >output
S —Ce
ds corrupt < 8
S1

Fig. 1. The alternating bit protocol

Fair-gfps : (P : D — Set) — (V {fs} — P fs —
J0 £t 1 3[£s> 1 F*T ft A P fs’ A fs = ft ++ fs’) —
V {fs} — P fs — Fair fs

Here F*T ft is an inductive predicate expressing that ft is a finite list of Fs
followed by a final T. Note that we have added the constant symbols T and F
for bits, and a binary infix function symbol ++ for appending lists. In the proof
below we will also make use of the predicate Bit : D — Set. Moreover, we use
<, > for pairs, not for negation of bits, error for a corrupted message, and ok
for a constructor for a proper message.

5.4 A Kahn Network for the Alternating Bit Protocol

Dybjer and Sander model the sender as a stream transformer abpsend and the
receiver as a pair of stream transformers abpack, which returns the acknowl-
edgement stream cs, and abpout, which returns the output stream js. Moreover,
an unreliable transmission channel is modelled as a stream transformer, which
non-deterministically corrupts the messages in the stream. To stay within the
framework of deterministic lazy functional programming, we model the chan-
nels as a stream transformer corrupt : D which accepts an oracle stream as an
auxiliary argument as described above (see Fig[ll). The axioms for corrupt are:

corrupt-T : corrupt - (T :: fs) - (x :: xs)
corrupt-F : corrupt - (F :: fs) - (x :: xs)

ok x :: corrupt - fs - xs
error :: corrupt - fs - xs

(Note that for space reasons we have omitted the universal quantifiers. We will
do so in the sequel as well. We will also omit the keyword postulate.)

The sender is written as a program which is mutually recursive with an aux-
iliary program await:

abpsend-eq : abpsend - b - (i it is) -ds =< i , b > :: await b i is ds
await-ok= : b = bg — await b i is (ok bg :: ds) =
abpsend - (not b) - is - ds
await-ok# : = (b = bg) — await b i is (ok by :: ds) =
<i, b>: await b i is ds
await-error : await b i is (error :: ds) = < i , b > :: await b i is ds

Combining Interactive and Automatic Reasoning 115

The first order axioms for the receiver programs abpout and abpack are

abpack-ok= : b = by — abpack - b - (ok < i , by > :: bs) =
b :: abpack - (not b) - bs
abpack-ok# : - (b = by) — abpack - b - (ok < i , by > :: bs) =
not b :: abpack - b - bs
abpack-error : abpack - b - (error :: bs) = not b :: abpack - b - bs

abpout-ok= : b = by — abpout - b - (ok < i , by > :: bs) =
i :: abpout - (not b) - bs
bg) — abpout - b - (ok < i , by > :: bs)
abpout - b - bs
abpout-error : V b bs — abpout - b - (error :: bs) = abpout - b - bs

abpout-ok# : — (b

We can now write a function abptransfer which computes the output js from
the input is, and accepts three more arguments: the initial bit b, and the two
oracle streams oso and os1:

abptransfer-eq : abptransfer b fso fs; is =
transfer (abpsend - b) (abpack - b) (abpout - b)
(corrupt - fsg) (corrupt - fsi) is

Here transfer is the general transfer function for the network topology of Fig. 2l
It simultaneously computes the output js and the streams as, bs, cs, ds given

as bs
\

input >f; / fa,f3 >ouput
} gQ 4

Fig. 2. Network topology for the alternating bit protocol

the stream transformers £1, f2, f3, g1, go:

transfer-eq : transfer fi fu f3 g1 g2 is = f3 - (hbs f1 f2 f3 g1 g2 is)
has-eq : has f; fo f3 g1 g2 is f1 - is - (hds f; f2 f3 g1 go is)
hbs-eq : hbs fi f2 f3 g1 g2 is = g1 - (has f1 f2 f3 g1 g2 is)

hcs-eq : hcs f1 fo f3 g1 go is fa - (hbs f1 f2 f3 g1 g2 is)

hds-eq : hds f; fo f3 g1 g2 is g2 - (hes £1 fo f3 g1 go is)

To prove that the alternating bit protocol is correct means to prove that each
message is eventually transmitted properly. Formally this means that the input
stream is bisimilar to the output stream computed by abptransfer. This property
can only hold if one assumes that the transmission channel(s) are “fair” in the
sense described above. Formally we thus need to prove

spec : Bit b — Stream is — Fair fso — Fair fs; —
is & abptransfer b fsg fs; is

116 A. Bove, P. Dybjer, and A. Sicard-Ramirez

The proof is by coinduction. We prove the is and js are in the greatest bisimu-
lation = by finding another bisimulation which they are in. This proof uses an
auxiliary proof by induction on the predicate F*T.

As in the previous examples, we manually need to instantiate the axiom
schemata (for induction and coinduction), but once this has been done a major
part (but not all) equational and logical reasoning is done automatically by the
ATPs. We do not have space here to present the details of this proof. The reader
is referred to the paper’s website.

6 Conclusions and Related Work

What is unique about our approach is that its logical basis is Aczel’s first order
theories of combinators. These theories were used for interpreting early versions
of Martin-L6f’s intuitionistic type theory, and our approach can be summarised
by saying that we work in models of type theory rather than in type theory
itself. In particular we make essential use of totality predicates (which were used
for interpreting types of type theory) and other inductive definitions.

A similar viewpoint has been exploited in the NuPrl project [29], where
Martin-Lof type theory is also viewed through an interpretation in untyped
computation systems. The difference is that in NuPrl the user still works in an
extension of (extensional) Martin-Lof’s type theory, while we work in a setting
which abandons most of the characteristics of Martin-Lof type theory. We work
in classical rather than intuitionistic logic; we do not use the formulae-as-types
principle; we have no dependent types, in fact our language is untyped rather
than typed; and we deal with non-terminating as well as terminating programs.
The advantage is that we can write our functional programs in the usual way as
in mainstream functional languages. Although our term language is untyped, we
may use polymorphic type inference during programming. However, the inferred
types play no role during verification.

In this work we use the Agda system, but we could carry out similar work
using another generic theorem prover such as Isabelle. However, Agda seems to
work well as an interface to automatic first order theorem provers is positive: we
have used it not only for FOTC but also for other first order theories such as
Group Theory and Peano Arithmetic with encouraging results.

Future research. The present approach can be improved in several ways. The
most obvious is to extend Agda so that it gives more support for FOTC and
for interacting with ATPs. It would also be interesting to modify our program
agda2atp and return witnesses for the automatically generated proofs so that
they can be checked by Agda. Another interesting direction is to connect Agda
to systems which can automatically do proof by induction; currently we only
automate pure first order logic reasoning. In fact, Agda comes with its own
automatic theorem prover Agsy - the Agda Synthesiser which can do proof by
induction [17].

Combining Interactive and Automatic Reasoning 117

Related work. There is much related work on different aspects of this topic, and
we only have space to mention a few. Perhaps most importantly, we should com-
pare our approach with other systems which can be used for reasoning about
general recursive programs, going back at least to the LCF-system [I3]. We al-
ready mentioned some recent dedicated such systems [I5J20]. Another interesting
approach is the function package [16] built on top of the Isabelle system. The
logical basis is here different from ours: the basic idea is to interpret first or-
der functions as relations in Isabelle-HOL. The function package can also deal
with higher order functions. Moreover, the Boyer-Moore theorem prover [§] is
a powerful system for automatically proving properties of programs by induc-
tion. Logically, however it is based on primitive recursive arithmetic rather than
untyped combinatory logic as ours. Yet another system in somewhat the same
spirit as ours is Schwichtenberg’s Minlog [5].

We will only mention some other related areas. One such area is concerned
with methods for encoding general recursive functions in intuitionistic type the-
ory, see for example [0]. Another area is concerned with connecting theorem
provers with dependent type theory [I27] or other generic theorem provers such
as Isabelle [19].

References

1. Abel, A., Coquand, T., Norell, U.: Connecting a Logical Framework to a First-
Order Logic Prover. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717,
pp. 285-301. Springer, Heidelberg (2005)

2. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, pp. 739-782. North-Holland Publishing Company (1977)

3. Aczel, P.: The strength of Martin-Lof’s intuitionistic type theory with one universe.
In: Miettinen, S., Vaananen, J. (eds.) Proc. of the Symposium on Mathematical
Logic (Oulu, 1974). Report No. 2, Department of Philosopy, pp. 1-32. University
of Helsinki, Helsinki (1977)

4. Aczel, P.: Frege structures and the notions of proposition, truth and set. In: Bar-
wise, J., et al. (eds.) The Kleene Symposium, pp. 31-59. North-Holland, Amsterdan
(1980)

5. Benl, H., et al.: Proof theory at work: Program development in the Minlog sys-
tem. In: Bibel, W., et al. (eds.) Automated Deduction, vol. II, pp. 41-71. Kluwer
Academic Publishers (1998)

6. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct.
in Comp. Science 15, 671-708 (2005)

7. Bove, A., Dybjer, P., Sicard-Ramirez, A.: Embedding a Logical Theory of Con-
structions in Agda. In: PLPV 2009, pp. 59-66 (2009)

8. Boyer, R.S., Kaufmann, M., Moore, J.S.: The Boyer-Moore theorem prover and
its interactive enhancement. Computers & Mathematics with Applications 29(2),
27-62 (1995)

9. Dybjer, P.: Program Verification in a Logical Theory of Constructions. In: Jouan-
naud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 334-349. Springer, Heidelberg
(1985)

10. Dybjer, P.: Comparing integrated and external logics of functional programs. Sci-
ence of Computer Programming 14, 59-79 (1990)

118

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Bove, P. Dybjer, and A. Sicard-Ramirez

Dybjer, P., Sander, H.P.: A functional programming approach to the specification
and verification of concurrent systems. Formal Aspects of Computing 1, 303—-319
(1989)

Gardner, P.: Representing Logics in Type Theory. Ph.D. thesis. University of Ed-
inburgh, Department of Computer Science (1992)

Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. JACM 40(1),
143-184 (1993)

Harrison, W.L., Kieburtz, R.B.: The logic of demand in Haskell. Journal of Func-
tional Programming 15(6), 837-891 (2005)

Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
Journal of Automated Reasoning 44(4), 303-336 (2010)

Lindblad, F., Benke, M.: A Tool for Automated Theorem Proving in Agda.
In: Fillidtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS,
vol. 3839, pp. 154-169. Springer, Heidelberg (2006)

Martin-Lof, P.: Hauptsatz for the intuitionistic theory of iterated inductive def-
initions. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic
Symposium, pp. 179-216. North-Holland Publishing Company (1971)

Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First pro-
totype. Information and Computation 204(10), 1575-1596 (2006)

de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional
Programmers. Sparkle: A Functional Theorem Prover. In: Arts, T., Mohnen, M.
(eds.) IFL 2001. LNCS, vol. 2312, pp. 55-71. Springer, Heidelberg (2002)

Park, D.: Finitess is mu-ineffable. Theoretical Computer Science 3, 173-181 (1976)
Paulson, L.C.: Isabelle. A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994) (With a contribution by T. Nipkow)

Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003)

Plotkin, G.: LCF considered as a programming language. Theoretical Computer
Science 5(3), 223-255 (1997)

Smith, J.: An interpretation of Martin-Lof’s type theory in a type-free theory of
propositions. The Journal of Symbolic Logic 49(3), 730-753 (1984)

Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOT
and CNF parts, v.3.5.0. Journal of Automated Reasoning 43(4), 337-362 (2009)
Tammet, T., Smith, J.M.: Optimized Encodings of Fragments of Type Theory in
First Order Logic. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158,
pp. 265-287. Springer, Heidelberg (1996)

The Agda development team: The Agda Wiki (2011),
http://wiki.portal.chalmers.se/agda

The Nuprl development team: PRL Project (2011),
http://www.cs.cornell.edu/info/projects/nuprl/

Turner, D.: An overview of Miranda. SIGPLAN Notices 21, 158-166 (1986)

http://wiki.portal.chalmers.se/agda
http://www.cs.cornell.edu/info/projects/nuprl/

Applicative Bisimulations
for Delimited-Control Operators

Dariusz Biernacki and Serguei Lenglet*

University of Wroclaw

Abstract. We develop a behavioral theory for the untyped call-by-value
A-calculus extended with the delimited-control operators shift and reset.
For this calculus, we discuss the possible observable behaviors and we de-
fine an applicative bisimilarity that characterizes contextual equivalence.
We then compare the applicative bisimilarity and the CPS equivalence,
a relation on terms often used in studies of control operators. In the pro-
cess, we illustrate how bisimilarity can be used to prove equivalence of
terms with delimited-control effects.

1 Introduction

Morris-style contextual equivalence [21] is usually regarded as the most natural
behavioral equivalence for functional languages based on A-calculi. Roughly, two
terms are equivalent if we can exchange one for the other in a bigger program
without affecting its behavior (i.e., whether it terminates or not). The quantifica-
tion over program contexts makes contextual equivalence hard to use in practice
and, therefore, it is common to look for more effective characterizations of this
relation. One approach is to rely on coinduction, by searching for an appropriate
notion of bisimulation. The bisimulation has to be defined in such a way that its
resulting behavioral equivalence, called bisimilarity, is sound and complete with
respect to contextual equivalence (i.e., it is included and contains contextual
equivalence, respectively).

The problem of finding a sound and complete bisimilarity in the A-calculus
has been well studied and usually leads to the definition of an applicative bisim-
ilarity [IT2ITT] (or, more recently, environmental bisimilarity [23]). The situa-
tion is more complex in A-calculi extended with control operators for first-class
continuations—so far, only a few works have been conducted on the behavioral
theory of such calculi. A first step can be found for the Au-calculus (a calculus
that mimics abortive control operators such as call/cc [22]) in [3] and [9], where
it is proved that the definition of contextual equivalence can be slightly simpli-
fied by quantifying over evaluation contexts only; such a result is usually called a
context lemma. In [25], Stgvring and Lassen define an eager normal form bisim-
ilarity (based on the notion of Lévy-Longo tree equivalence) [IBIT6/I7] which
is sound for the Au-calculus, and which becomes sound and complete when a

* The author is supported by the Alain Bensoussan Fellowship Programme.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 119-[[34, 2012.
© Springer-Verlag Berlin Heidelberg 2012

120 D. Biernacki and S. Lenglet

notion of state is added to the Ap-calculus. In [19], Merro and Biasi define an
applicative bisimilarity which characterizes contextual equivalence in the CPS
calculus [26], a minimal calculus which models the control features of functional
languages with imperative jumps. As for the A-calculus extended with control
only, however, no sound and complete bisimilarities have been defined.

In this article, we present a sound and complete applicative bisimilarity for a
A-calculus extended with Danvy and Filinski’s static delimited-control operators
shift and reset [§]. In contrast to abortive control operators, delimited-control
operators allow to delimit access to the current continuation and to compose
continuations. The operators shift and reset were introduced as a direct-style
realization of the traditional success/failure continuation model of backtracking
otherwise expressible only in continuation-passing style. The numerous theoret-
ical and practical applications of shift and reset (see, e.g., [B] for an extensive
list) include the seminal result by Filinski showing that a programming language
endowed with shift and reset is monadically complete [I0].

The A-calculi with static delimited-control operators have been an active re-
search topic from the semantics as well as type- and proof-theoretic point of
view (see, e.g., [B/412]). However, to our knowledge, no work has been carried
out on the behavioral theory of such A-calculi. In order to fill this void, we
present a study of the behavioral theory of an untyped, call-by-value A-calculus
extended with shift and reset [§], called As. In Section 2 we give the syntax
and reduction semantics of A\g, and discuss the possible observable behaviors
for the calculus. In Section Bl we define an applicative bisimilarity, based on a
labelled transition semantics, and prove it characterizes contextual equivalence,
using an adaptation of Howe’s congruence proof method [I2]. As a byproduct,
we also prove a context lemma for As. In Section [we study the relationship
between applicative bisimilarity and an equivalence based on translation into
continuation-passing style (CPS), a relation often used in works on control oper-
ators and CPS. In the process, we show how applicative bisimilarity can be used
to prove equivalence of terms. Section [l concludes the article and gives ideas for
future work. Most of the proofs missing from the article are avalaible in [7].

2 The Language Ags

In this section, we present the syntax, reduction semantics, and contextual equiv-
alence of the language As used throughout this article.

2.1 Syntax

The language As extends the call-by-value A-calculus with the delimited-control
operators shift and reset [8]. We assume we have a set of term variables, ranged
over by z and k. We use two metavariables to distinguish term variables bound
with a A-abstraction from variables bound with a shift; we believe such distinc-
tion helps to understand examples and reduction rules. The syntax of terms and
values is given by the following grammars:

Applicative Bisimulations for Delimited-Control Operators 121

Terms: ¢ u=x | \x.t | tt | Skt | ()
Values: v = A\x.t

The operator shift (Sk.t) is a capture operator, the extent of which is determined
by the delimiter reset ({-)). A A-abstraction Az.t binds z in ¢ and a shift construct
Sk.t binds k in ¢; terms are equated up to a-conversion of their bound variables.
The set of free variables of ¢ is written fv(t); a term is closed if it does not contain
any free variable. Because we work mostly with closed terms, we consider only
A-abstractions as values.

We distinguish several kinds of contexts, defined below, which all can be seen
as terms with a hole.

Pure evaluation contexts: F =0 | vE | Et
Evaluation contexts: F:=0|vF | Ft| (F)
Contexts: C:=01]Xxe.C |tC | Ct | Sk.C | (C)

Regular contexts are ranged over by C'. The pure evaluation contextd] (abbrevi-
ated as pure contexts), ranged over by E, represent delimited continuations and
can be captured by the shift operator. The call-by-value evaluation contexts,
ranged over by F', represent arbitrary continuations and encode the chosen re-
duction strategy. Following the correspondence between evaluation contexts of
the reduction semantics and control stacks of the abstract machine for shift and
reset, established by Biernacka et al. [5], we interpret contexts inside-out, i.e., O
stands for the empty context, v E represents the “term with a hole” E[v[]], E' t
represents E[[] t], (F) represents F[([])], etc. (This choice does not affect the
results presented in this article in any way.) Filling a context C (respectively E,
F) with a term ¢ produces a term, written C[t] (respectively E[t], F[t]); the free
variables of ¢t can be captured in the process. A context is closed if it contains
only closed terms.

2.2 Reduction Semantics

Let us first briefly describe the intuitive semantics of shift and reset by means of
an example written in SML using Filinski’s implementation of shift and reset [10].

Ezample 1. The following function copies a list [6] (the SML expression shift
(fn k => t) corresponds to Sk.t and reset (fn () => t) corresponds to (t)):

fun copy xs =
let fun visit nil = nil
| visit (x::xs) = visit (shift (fn k => x :: (k xs)))
in reset (fn () => visit xs) end

This program illustrates the main ideas of programming with shift and reset:

! This terminology comes from Kameyama (e.g., in [13]).

122 D. Biernacki and S. Lenglet

— Reset delimits continuations. Control effects are local to copy.

— Shift captures delimited continuations. Each, but last, recursive call to visit
abstracts the continuation fn v => reset (fn () => visit v) and binds
it to k.

— Captured continuations are statically composed. When applied in the ex-
pression k xs, the captured continuation becomes the current delimited
continuation that is isolated from the rest of the program by a control
delimiter—witness the reset expression in the captured continuation.

Formally, the call-by-value reduction semantics of A\s is defined by the following
rules, where ¢t{v/z} is the usual capture-avoiding substitution of v for z in ¢:

(Bv) F[(M t) v] =y Flt{v/z}]
(shift) — FE[Sk.A])] = F[(H{Az(E[z])/k})] with z ¢ fv(E)
(reset) Fl{v)] =y Flo]

The term (Az.t) v is the usual call-by-value redex for S-reduction (rule (5,)).
The operator Sk.t captures its surrounding context E up to the dynamically
nearest enclosing reset, and substitutes Az.(E[z]) for k in ¢ (rule (shift)). If a
reset is enclosing a value, then it has no purpose as a delimiter for a potential
capture, and it can be safely removed (rule (reset)). All these reductions may
occur within a metalevel context F. The chosen call-by-value evaluation strategy
is encoded in the grammar of the evaluation contexts.

Example 2. Let i = Ax.x and w = Az.zx. We present the sequence of reductions
initiated by (((Ski.i (k1 4)) Ska.w) (ww)). The term Sky.i (ky i) is within the
pure context F = (O (ww)) Ska.w (remember that we represent contexts inside-
out), enclosed in a delimiter (-), so E is captured according to rule (shift).

((Sky.i (k1 1)) Skaw) (W w)) =y (i (A2-{(z Skaw) (ww))) 7))

The role of reset in A\xz.(E[x]) becomes clearer after reduction of the (j3,)-redex

(i (Az((x Skyw) (ww))) i) = (i (i Sky-w) (ww)))

When the captured context F is reactivated, it is not merged with the context
1 O, but composed thanks to the reset enclosing E. As a result, the capture
triggered by Sko.w leaves the term 4 outside the first enclosing reset untouched.

(i ((i Sky-w) (ww))) = (i (W)

Because ko does not occur in w, the context ¢ (O (w w)) is discarded when
captured by Sko.w. Finally, we remove the useless delimiter (i (w)) —, (i w)
with rule (reset), and we then (8,)-reduce and remove the last delimiter (i w) —
(w) —+ w. Note that, while the reduction strategy is call-by-value, some function
arguments are not evaluated, like the non-terminating term w w in this example.

Applicative Bisimulations for Delimited-Control Operators 123

There exist terms which are not values and which cannot be reduced any
further; these are called stuck terms.

Definition 1. A closed term t is stuck if t is not a value and t .

For example, the term E[Sk.t] is stuck because there is no enclosing reset; the
capture of F by the shift operator cannot be triggered. In fact, closed stuck
terms are easy to characterize.

Lemma 1. A closed term t is stuck iff t = E[Sk.t'] for some E, k, and t'.

We call redexes (ranged over by r) the terms of the form (A\z.t)v, (E[Sk.t]), and
(v). Thanks to the following unique-decomposition property, the reduction —
is deterministic.

Lemma 2. For all closed terms t, either t is a value, or it is a stuck term, or
there exist a unique redex r and a unique context F' such that t = F[r].

Given a relation R on terms, we write R* for the transitive and reflexive closure
of R. We define the evaluation relation of As as follows.

Definition 2. We write t ||, ' if t =% t' and t' A

The result of the evaluation of a closed term, if it exists, is either a value or a
stuck term. If a term ¢ admits an infinite reduction sequence, we say it diverges,
written ¢ fv. In the rest of the article, we use extensively 2 = (Az.x z) (Az.z z)
as an example of such a term.

2.3 Contextual Equivalence

In this section, we discuss the possible definitions of a Morris-style contextual
equivalence for the calculus As. As usual, the idea is to express that two terms
are equivalent iff they cannot be distinguished when put in an arbitrary context.
The question is then what kind of behavior we want to observe. As in the regular
A-calculus we could observe only termination (i.e., does a term reduce to a value
or not), leading to the following relation.

Definition 3. Let to, t1 be closed terms. We write to =L t1 if for all closed C,
Clto] 4y vo implies C[t1] Y+ v1, and conversely for Clt1].

This definition does not mention stuck terms; as a result, they can be equated
with diverging terms. For example, let tg = (Sk.k Ax.x) £2, t; = 2, and C be a
closed context. If C[to] {v vo, then we can prove that for all closed ¢, there exists
v such that C[t] |, v (roughly, because ¢ is never evaluated; see [7] for further
details). In particular, we have C[t1] |y v1. Hence, we have to ~_ ¢;.

A more fine-grained analysis is possible, by observing stuck terms.

124 D. Biernacki and S. Lenglet

Definition 4. Let tg, t1 be closed terms. We write to ~2 t1 if for all closed C,

— Clto] ¥v vo implies C[t1] Iy v1;
— Clto] Vv tg, where t is stuck, implies C[t1] Uy t}, with t] stuck as well;

and conversely for C[t1].

The relation ~2 distinguishes the terms to and ¢; defined above. We believe ~2

is more interesting because it gives more information on the behavior of terms;
consequently, we use it as the contextual equivalence for \s. Henceforth, we
simply write ~, for ~2.

The relation =, like the other equivalences on terms defined in this article,
can be extended to open terms in the following way.

Definition 5. Let R be a relation on closed terms. The open extension of R,
written R°, is defined on open terms as: we write tg R° t1 if for every substitution
o which closes ty and t1, tgo R t1o holds.

Remark 1. Contextual equivalence can be defined directly on open terms by
requiring that the context C binds the free variables of the related terms. The
resulting relation would be equal to ~.° [L1].

3 Bisimilarity for A\s

In this section, we define an applicative bisimilarity and prove it equal to con-
textual equivalence.

3.1 Labelled Transition System

To define the bisimilarity for A\s, we propose a labelled transition system (LTS),
where the possible interactions of a term with its environment are encoded in the
labels. Figure[dl defines a LTS ¢y — ¢; with three kinds of transitions. An internal
action t = t' is an evolution from ¢ to #' without any help from the surrounding
context; it corresponds to a reduction step from ¢ to ¢. The transition vy —» ¢
expresses the fact that vy needs to be applied to another value v; to evolve,

reducing to t. Finally, the transition ¢ Ey ' means that ¢ is stuck, and when ¢ is
put in a context F enclosed in a reset, the capture can be triggered, the result
of which being ¢'.

Most rules for internal actions (Fig. [l are straightforward; the rules (fy)
and (reset) mimic the corresponding reduction rules, and the compositional rules
(right,), (left;), and ({-),) allow internal actions to happen within any evaluation
context. The rule ((-)s) for context capture is explained later. Rule (val) defines
the only possible transition for values. Note that while both rules ($,) and (val)
encode B-reduction, they are quite different in nature; in the former, the term
(Az.t) v can evolve by itself, without any help from the surrounding context,
while the latter expresses the possibility for Ax.t to evolve only if a value v is
provided by the environment.

Applicative Bisimulations for Delimited-Control Operators 125

———— (Bv) (reset) w (left,)
Az.t)v — t{v/z} (v) = v toth — to t1
T L L
N A VA Y
E t1 / v E /
v ¢ f(E) (shift) R P00 rights)
Skt 2 (t{\z.(E[z])/k}) tot1 2t} vt St

Fig. 1. Labelled Transition System

The rules for context capture are built following the principles of comple-

mentary semantics developed in [I8]. The label of the transition ¢ L, ¢ contains
what the environment needs to provide (a context E, but also an enclosing reset,

left implicit) for the stuck term ¢ to reduce to ¢'. Hence, the transition ¢ By
means that we have (E[t]) = ¢ by context capture. For example, in the rule
(shift), the result of the capture of E by Sk.t is (t{\x.(E[z])/k}).

In rule (lefts), we want to know the result of the capture of F by the term
to t1, assuming ty contains an operator shift. Under this hypothesis, the capture
of E by tot1 comes from the capture of E t1 by tg. Therefore, as premise of the
rule (lefts), we check that to is able to capture E t;, and the result ¢}, of this
transition is exactly the result we want for the capture of E by tg t1. The rule
(rightg) follows the same pattern. Finally, a stuck term ¢ enclosed in a reset is
able to perform an internal action (rule ({-)s)); we obtain the result ¢ of the
transition (£) = ¢’ by letting ¢ capture the empty context, i.e., by considering
the transition ¢ = ¢/,

Ezample 3. With the same notations as in Example[2] we illustrate how the LTS
handles capture by considering the transition from ((i Sk.w) (w w)).

(O (ww) (shift)

— (W

Sk.w
O (ww) (rightg)
i Skw —— (w)
(|efts)

(i Sk.w) (ww) = (w) o)
(i Sk.w) (ww)) = (W)

Reading the tree from bottom to top, we see that the rules ((-)s), (lefts), and
(rightg) build the captured context in the label by deconstructing the initial term.
Indeed, the rule ({-)s) removes the outermost reset, and initiates the context in
the label with O. The rules (lefts) and (rightg) then successively remove the
outermost application and store it in the context. The process continues until

126 D. Biernacki and S. Lenglet

a shift operator is found; then we know the captured context is completed, and
the rule (shift) computes the result of the capture. This result is then simply
propagated from top to bottom by the other rules.

The LTS corresponds to the reduction semantics and exhibits the observable
terms (values and stuck terms) of the language in the following way.

Lemma 3. The following hold:

— We have D> = —,.
— Ift B¢, then t is a stuck term, and (E[t]) Tt
— Ift 5 ¢, thent is a value, and tv = t'.

3.2 Applicative Bisimilarity

We now define the notion of applicative bisimilarity for As. We write = for the
reflexive and transitive closure of —. We define the weak delay@ transition = as
= if « = 7 and as =% otherwise. The definition of the (weak delay) bisimilarity
is then straightforward.

Definition 6. A relation R on closed terms is an applicative simulation if tg R
ty implies that for all to = t}), there exists t such that t; = ti and th) R t}.

A relation R on closed terms is an applicative bisimulation if R and R~ are
simulations. Applicative bisimilarity = is the largest applicative bisimulation.

In words, two terms are equivalent if any transition from one is matched by a
weak transition with the same label from the other. As in the A-calculus [TJTT],
it is not mandatory to test the internal steps when proving that two terms are
bisimilar, because of the following result.

Lemma 4. Ift 5 t' (respectively t ||, t') then t ~t'.

Lemma @ holds because {(t,#'), t = '} is an applicative bisimulation. Conse-
quently, applicative bisimulation can be defined in terms of big-step transitions
as follows.

Definition 7. A relation R on closed terms is a big-step applicative simulation
ifto R t1 implies that for all to = t}, with o # T, there exists t| such that t; =t/
and ty R).

A relation R on closed terms is a big-step applicative bisimulation if R and
R~ are big-step applicative simulations. Big-step applicative bisimilarity =~ is
the largest big-step applicative bisimulation.

Henceforth, we drop the adjective “applicative” and refer to the two kinds of
relations simply as “bisimulation” and “big-step bisimulation”.

2 Where internal steps are allowed before, but not after a visible action.

Applicative Bisimulations for Delimited-Control Operators 127

Lemma 5. We have ~==~.

The proof is by showing that ~ is a big step bisimulation, and that =~ is a
bisimulation (using a variant of Lemma H involving ~). As a result, if R is a
big-step bisimulation, then R C~ C~. We work with both styles (small-step
and big-step), depending on which one is easier to use in a given proof.

Ezxample 4. Assuming we add lists and recursion to the calculus, we informally
prove that the function copy defined in Example [Il is bisimilar to its effect-free
variant, defined below.
fun copy2 nil = nil
| copy2 (x::xs) = x::(copy2 xs)

To this end, we define the relations (where we let [range over lists, and e over
their elements)

Ri={((e1 :: (e2 ... {en : (visit I)))), e1 = (e2 i1 ...en 2 (copy2 1))}
Ro={({ex::{e2 ... {en: ()))), e1:: (e2:: ...y 1))}

and we prove that Ry U Ro U{(l, [)} is a bisimulation. First, let tg Rq t1. If I is
empty, then both visit [and copy2 [reduce to the empty list, and we obtain
two terms related by Ro. Otherwise, we have [= e, 11 :: I/, (visit I) reduces to
(en+1 i (visit I')), copy2 | reduces to ept1 :: (copy2 I’), and therefore ¢y and
t1 reduce to terms that are still in Ry. Now, consider tg Ry t1; the transition
from o removes the delimiter surrounding [, giving a term related by R to ¢; if
there are still some delimiters left, or equal to t; if all the delimiters are removed.
Finally, two identical lists are clearly bisimilar.

3.3 Soundness

To prove soundness of =~ w.r.t. contextual equivalence, we show that = is a con-
gruence using Howe’s method, a well-known congruence proof method initially
developed for the A-calculus [1211]. We briefly sketch the method and explain
how we apply it to ~2; the complete proof can be found in [7].

The idea of the method is as follows: first, prove some basic properties of
Howe’s closure =*®, a relation which contains ~ and is a congruence by con-
struction. Then, prove a simulation-like property for ~°. From this result, prove
that ~°® and = coincide on closed terms. Because ~* is a congruence, it shows
that = is a congruence as well. The definition of =*® relies on the notion of com-
patible refinement; given a relation R on open terms, the compatible refinement
R relates two terms iff they have the same outermost operator and their im-
mediate subterms are related by R. Formally, it is inductively defined by the
following rules.

to R t1 to Rt to Rt} to Rt to Rt
cRz Axto R Aty toth Ritg t) Sk.to R Sk.ty (to) R (t1)
Howe’s closure =*® is inductively defined as the smallest congruence containing
~° and closed under right composition with ~=°.

128 D. Biernacki and S. Lenglet

Definition 8. Howe’s closure =~* is the smallest relation satisfying:

to ~° t to ~°R° 1 to ~* t,

to ~* t1 to ~* tq to ~* t1
By construction, ~* is a congruence (by the third rule of the definition), and
composing on the right with ~° gives some transitivity properties to =~°. In

particular, it helps in proving the following classical results (see [I1] for the
proofs).

Lemma 6 (Basic properties of ~*). The following hold:

— For all tg, t1, vo, and vy, tg =* t; and vy =* vy implies to{vo/x} ~°
t1{v1/x}.

— The relation (=*)* is symmetric.
The first item states that ~® is substitutive. This property helps in establishing
the simulation-like property of a* (second step of the method). Let (=*)¢ be
the restriction of ~* to closed terms. We cannot prove directly that (/~*)° is
a bisimulation, so we prove a stronger result instead. We extend =® to labels,
by defining £ =~* E’ as the smallest congruence extending ~*® with the relation
O =* [, and by adding the relation 7 ~* 7.

Lemma 7 (Simulation-like property). If ty (~*)° t; and to — t}, then for
all a (=*)¢ o/, there exists t, such that t; =t and t} (=*)° t}.

Using Lemma [7] and the fact that ((=*)¢)* is symmetric (by the second item
of Lemma [G]), we can prove that ((=*)¢)* is a bisimulation. Therefore, we have
((=*)°)* C =, and because ~ C (=*)°C ((=*)°)* holds by construction, we can
deduce ~ = (~*)°. Because (~*) is a congruence, we have the following result.
Theorem 1. The relation =~ is a congruence.

As a corollary, ~ is sound w.r.t. contextual equivalence.

Theorem 2. We have ~ C =,.

3.4 Completeness and Context Lemma

In this section, we prove that ~ is complete w.r.t. =~.. To this end, we use
an auxiliary relation =, defined below, which refines contextual equivalence
by testing terms with evaluation contexts only. While proving completeness,
we also prove ~. = &, which means that testing with evaluation contexts is as
discriminative as testing with any contexts. Such a simplification result is similar
to Milner’s context lemma [20].

Definition 9. Let tg, t1 be closed terms. We write tg =~ t1 if for all closed F,

— Flto] Uy vo implies F[t1] Jv v1;
— Flto] Uy ty, where ty is stuck, implies F[t1] |y t], with t] stuck as well;

and conversely for F[t1].

Clearly we have ~. C ~, by definition. The relation = is complete w.r.t. ~~..

Applicative Bisimulations for Delimited-Control Operators 129

T =)\k‘lk‘Q.kl X k2
m =)\k‘le.kl ()\I'f) kg
to7t1 =)\]ﬁkz.% ()\xokéﬁ ()\l'1/€é/.$o 1 kl ké/)]fé)]fg
(t) = Merka T 0 (\z.ky 2 ko)
% =)\]ﬁkg.i{(/\ivlkiké.kl X1 ()\afgki T2 k‘/z))/k} 0 kz
with 0 = A\zks.ks x

Fig. 2. CPS translation

Theorem 3. We have ~. C ~.

The proof of Theorem [is the same as in A-calculus [I1]; we prove that =,
is a big-step bisimulation, using Lemmas [B] @] and Theorem 2l The complete
proof can be found in [7]. We can now prove that all the relations defined so far
coincide.

Theorem 4. We have ~.=~,=~.

Indeed, we have ~.C =~ (Theorem B]), ~ C ~. (Theorem [2), and =, C =, (by
definition).

4 Relation to CPS Equivalence

In this section we study the relationship between our bisimilarity (and thus
contextual equivalence) and an equivalence relation based on translating terms
with shift and reset into continuation-passing style (CPS). Such an equivalence
has been characterized in terms of direct-style equations by Kameyama and
Hasegawa who developed an axiomatization of shift and reset [I3]. We show
that all but one of their axioms are validated by the bisimilarity of this article,
which also provides several examples of use of the bisimilarity. We also pinpoint
where the two relations differ.

4.1 Axiomatization of Delimited Continuations

The operators shift and reset have been originally defined by a translation into
continuation-passing style [§] that we present in Fig. [Translated terms ex-
pect two continuations: the delimited continuation representing the rest of the
computation up to the dynamically nearest enclosing delimiter and the meta-
continuation representing the rest of the computation beyond this delimiter.

It is natural to relate any other theory of shift and reset to their definitional
CPS translation. For example, the reduction rules ¢ — ' given in Section
are sound w.r.t. the CPS because CPS translating ¢ and ¢’ yields n-convertible
terms in the A-calculus. More generally, the CPS translation for shift and reset
induces the following notion of equivalence on terms:

130 D. Biernacki and S. Lenglet

(Az.t) v = t{v/x} By (Az.E[z])t = Et] if x ¢ fv(E) fBa
(B[Sk) = (tH{Az(El2l)/k}) (S (A tO) (t1>> = (/\ < 0)) (t1) () Lift
(v) = () val k.(t) = S ()
vz =vif x ¢ fv(v) v Sk: kt= 1f k ¢ fu(t) S elim

Fig. 3. Axiomatization of As

Definition 10. Termst and t' are CPS equivalent if their CPS translations are
Bn-convertible.

In order to relate the bisimilarity of this article and the CPS equivalence, we use
Kameyama and Hasegawa’s axioms [I3], which characterize the CPS equivalence
in a sound and complete way: two terms are CPS equivalent iff one can derive
their equality using the equations of Fig. Bl Kameyama and Hasegawa’s axioms
relate not only closed, but arbitrary terms and they assume variables as values.

4.2 Kameyama and Hasegawa’s Axioms through Bisimilarity

We show that closed terms related by all the axioms except for & elim are
bisimilar. In the following, we write Z for the bisimulation {(¢,¢)}.

f’r)‘oposition 1. We have (A\x.t)v = t{v/x}, (E[Sk.t]) = (t{ \z.(E[z])/k}), and

Proof. These are direct consequences of the fact that — C ~ (Lemma []). O
Proposition 2. If x ¢ fv(v), then Az.v z ~ v.

Proof. We prove that R = {(Az.(Ay.t) z, A\y.t),z ¢ fv(t)}U =~ is a bisimulation.
To this end, we have to check that A\z.(\y.t)z ~2 (A\y.t)vo is matched by \y.t >
t{vo/y}, i.e., that (A\y.t) vo R t{vo/y} holds for all vg. We have (A\y.t) vg =
t{vo/y}, and because - C ~ C R, we have the required result. O

Prop