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Abstract. In this paper, we present a trace slicing technique for rewrit-
ing logic that is suitable for analyzing complex, textually-large system
computations in rewrite theories that may contain conditional equations
and/or rules. Given a conditional execution trace T and a slicing criterion
for the trace (i.e., a set of positions that we want to observe in the final
state of the trace), we traverse T from back to front, and at each rewrite
step, we incrementally compute the origins of the observed positions,
which is done by inductively processing the conditions of the applied
equations and rules. During the traversal, we also carry a boolean com-
patibility condition that is needed for the executability of the processed
rewrite steps. At the end of the traversal, the trace slice is obtained by
filtering out the irrelevant data that do not contribute to the criterion of
interest.

1 Introduction

The analysis of computation traces plays an important role in many program
analysis approaches. Software systems commonly generate large and complex
execution traces, whose analysis (or even simple inspection) is extremely time-
consuming, and in some cases unfeasible to perform by hand. Trace slicing is
a technique for reducing the size of execution traces by focusing on selected
execution aspects, which makes it suitable for trace analysis and monitoring [10].

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [7] and Web systems [2,5]). RWL is efficiently
implemented in the high-performance system Maude [12]. Roughly speaking, a
(conditional) rewriting logic theory [16] seamlessly combines a (conditional) term
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rewriting system (CTRS), together with an equational theory (also possibly con-
ditional) that may include equations and axioms (i.e., algebraic laws such as
commutativity, associativity, and unity) so that rewrite steps are applied mod-
ulo the equations and axioms.

In recent years, the debugging and optimization techniques based on RWL
have received growing attention. However, to the best of our knowledge, the only
trace slicing technique that gives support to the analysis of RWL computations
is [3]. Given an execution trace T , [3] generates a trace slice of T w.r.t. a set
of symbols of interest (target symbols) that appear in a given state of T . The
technique relies on a suitable mechanism of backward tracing that computes the
reverse dependence among the symbols involved in an execution step by using a
procedure that dynamically labels the calls (terms) involved in the steps.

Unfortunately, the technique in [3] is only applicable to unconditional RWL
theories, and hence it cannot be employed when the source program includes
conditional equations and/or rules since it would deliver incorrect and/or in-
complete trace slices. The following example illustrates why conditions cannot
be disregarded by the slicing process, which is what has motivated our work.

Example 1. Consider the Maude specification of the function _mod_ in Figure 1,
which computes the reminder of the division of two natural numbers, and the
associated execution trace 4 mod 5 → 4. Assume
that we are interested in observing the origins of

mod M is inc NAT .
var X : Nat .
var Y : NzNat .
op _mod_ : Nat NzNat -> Nat .
ceq X mod Y = X if Y > X .
ceq X mod Y = (X - Y) mod Y

if Y <= X .
endm

Fig. 1. The mod operator

the target symbol 4 that appears in the final state.
If we disregard the condition Y > X of the first
conditional equation, the slicing technique of [3]
computes the trace slice 4 mod • → 4, whereas
the correct trace slice is 4 mod 5 → 4 since both
arguments of mod are required to prove the rewrite
step that introduces the symbol 4 in the final state.

Contributions. We present the first conditional trace slicing technique for RWL
computations. Our technique is fully general and can be applied for debug-
ging as well as for optimizing any RWL-based tool that manipulates conditional
RWL computations such as those delivered as counterexample traces by the
Maude model-checker [6]. The backward conditional slicing algorithm in this
paper cannot be considered to be a natural extension of the unconditional slic-
ing method of [3], but greatly simplifies [3] by replacing the involved and costly
dynamic labeling procedure, based on [8], with a simple mechanism for substi-
tution refinement that allows control and data dependencies to be propagated
between consecutive rewrite steps. Moreover, the conditional slicing algorithm
copes with three different types of conditions that occur in Maude theories: equa-
tional conditions, matching conditions, and rewrite expressions. Our formulation
takes into account the precise way in which Maude mechanizes the conditional
rewriting process and revisits all those rewrite steps backwards in an instru-
mented, fine-grained way where each small step corresponds to the application
of an equation (conditional equation or equational axiom) or rule. This allows
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us to slice the input execution trace with regard to the set of symbols of interest
(target symbols) by tracing back the target symbols along the execution trace
so that all data that are not antecedents of the observed symbols are simply
discarded.

Related Work. Tracing techniques have been extensively used in functional de-
bugging [11]. For instance, Hat [11] is an interactive debugging system that
enables a computation to be explored backwards, starting from the program
output or an error message (with which the computation aborted). Backward
tracing in Hat is carried out by navigating a redex trail (i.e., a graph-like data
structure that records dependencies among function calls), whereas our tracing
technique does not require handling any supplementary data structure.

There exist very few approaches that address the problem of tracing rewrite
sequences in term rewrite systems [3,8,14,18], and all of them apply to uncon-
ditional systems. The techniques in [3,8,18] rely on a labeling relation on sym-
bols that allows data content to be traced back within the computation; this is
achieved in [14] by formalizing a notion of dynamic dependence among symbols
by means of contexts. In [8,18], non-left linear and collapsing rules are not consid-
ered or are dealt using ad-hoc strategies, while our approach requires no special
treatment of such rules. Furthermore, only [3] describes a tracing methodology
for rewrite theories with rules, equations, sorts, and algebraic axioms.

In this paper, we propose a more general slicing technique for conditional
rewrite theories that generalizes and simplifies the formal development in [3]
by getting rid of the complex dynamic labeling algorithm that was needed to
trace back the origins of the symbols of interest. Our technique also avoids
manipulating the origins by recording their addressing positions; we simply and
explicitly record the origins of the meaningful positions within the computed
term slices themselves, without resorting to any other artifact.

To debug Maude programs, Maude has a tracing facility that allows the exe-
cution sequence to be traced, and is very customizable: it provides some control
over conditions and allows the user to select the statements being applied at
each step. A main difference with the trace slicing technique of ours is that
the tracer of Maude allows the trace size to be reduced by manually focusing
on statements, while slicing is automatic and focuses on terms. Moreover, since
each small rewrite step that is obtained by applying a single conditional equa-
tion, equational axiom or rule is shown in the trace, the user can easily miss the
general view, and when the user detects an incorrect intermediate result, it is
difficult to know where the incorrect inference started. In this regard, the trace
slices computed by our technique can be very helpful in debugging, since they
only consist of the information that is strictly needed to deliver a critical part
of the result (see discussion in [1]).

Plan of the Paper. Section 2 recalls some fundamental notions of RWL and
Section 3 summarizes the conditional rewriting modulo equational theories de-
fined in Maude. In Section 4, the backward conditional slicing technique is
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formalized by means of a transition system that traverses the execution traces
from back to front. Finally, Section 5 reports on a prototypical implementation
of the proposed slicing technique and its experimental evaluation.

2 Preliminaries

Let us recall some important notions that are relevant to this work. We assume
some basic knowledge of term rewriting [18] and Rewriting Logic [16]. Some
familiarity with the Maude language [12] is also required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<)
that models the usual subsort relation [12]. We assume an S-sorted family
V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets of terms
and ground terms of sort s, respectively. We write τ(Σ,V) and τ(Σ) for the cor-
responding term algebras. The set of variables that occur in a term t is denoted
by Var(t). In order to simplify the presentation, we often disregard sorts when
no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
By notation w1.w2, we denote the concatenation of positions (sequences) w1 and
w2. Positions are ordered by the prefix ordering, that is, given the positions w1

and w2, w1 ≤ w2 if there exists a position u such that w1.u = w2. Given a set
of positions P , the prefix closure of P is the set P̄ = {u | u ≤ p ∧ p ∈ P}. Given
a term t, we let Pos(t) denote the set of positions of t. By t|w, we denote the
subterm of t at position w, and by t[s]w, we denote the result of replacing the
subterm t|w by the term s.

A substitution σ is a mapping from variables to terms {X1/t1, . . . , Xn/tn}
such that Xiσ = ti for i = 1, . . . , n (with Xi �= xj if i �= j), and Xσ = X for all
other variables X . Given a substitution σ = {X1/t1, . . . , Xn/tn}, the domain of
σ is the set Dom(σ) = {X1, . . . , Xn}. For any substitution σ and set of variables
V , σ|̀V denotes the substitution obtained from σ by restricting its domain to V ,
(i.e., σ|̀V (X) = Xσ if X ∈ V , otherwise σ|̀V (X) = X). Given two terms s and
t, a substitution σ is a matcher of t in s, if sσ = t. By matchs(t), we denote
the function that returns a matcher of t in s if such a matcher exists, otherwise
matchs(t) returns fail.

We consider three different kinds of conditions that may appear in a condi-
tional Maude theory: an equational condition1 e is any (ordinary) equation t = t′,
with t, t′ ∈ τ(Σ,V); a matching condition is a pair p := t with p, t ∈ τ(Σ,V); a
rewrite expression is a pair t⇒ p, with p, t ∈ τ(Σ,V).

A conditional equation is an expression of the form λ = ρ if C, where λ, σ ∈
τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is
either an equational condition, or a matching condition. When the condition C
is empty, we simply write λ = ρ. A conditional equation λ = ρ if c1 ∧ . . .∧ cn is
1 A boolean equational condition b = true, with b ∈ τ (Σ,V) of sort Bool, is simply

abbreviated as b. A boolean condition is a sequence of abbreviated boolean equational
conditions.
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admissible, iff (i) Var(ρ) ⊆ Var(λ)∪
⋃n
i=1 Var(ci), and (ii) for each ci, Var(ci) ⊆

Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is an equational condition, and Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj) if ci is a matching condition p := e.
A conditional rule is an expression of the form λ → ρ if C, where λ, σ ∈

τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is
an equational condition, a matching condition, or a rewrite expression. When
the condition C is empty, we simply write λ → ρ. A conditional rule λ →
ρ if c1∧ . . .∧cn is admissible iff it fulfils the exact analogous of the admissibility
constraints (i) and (ii) for the equational conditions and the matching conditions,
plus the following additional constraint: for each rewrite expression ci in C of
the form e⇒ p, Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj).

The set of variables that occur in a (conditional) rule/equation r is denoted
by Var(r). Note that admissible equations and rules can contain extra-variables
(i.e., variables that appear in the right-hand side or in the condition of a rule/e-
quation but do not occur in the corresponding left-hand side). The admissibility
requirements ensure that all the extra-variables will become instantiated when-
ever an admissible rule/equation is applied.

3 Conditional Rewriting Modulo Equational Theories

An order-sorted equational theory is a pair E = (Σ,Δ∪B), where Σ is an order-
sorted signature,Δ is a collection of (oriented) admissible, conditional equations,
and B is a collection of unconditional equational axioms (e.g., associativity,
commutativity, and unity) that can be associated with any binary operator of
Σ. The equational theory E induces a congruence relation on the term algebra
T (Σ,V), which is denoted by =E . A conditional rewrite theory (or simply, rewrite
theory) is a triple R = (Σ,Δ ∪ B,R), where (Σ,Δ ∪ B) is an order-sorted
equational theory, and R is a set of admissible conditional rules2.

Example 2. The following Maude rewrite theory defines a simple banking sys-
tem. It includes three conditional rules: credit, debit, and transfer.

mod BANK is inc INT .
sorts Account Msg State Id .
subsorts Account Msg < State .
var Id Id1 Id2 : Id .
var bal bal1 bal2 newBal newBal1 newBal2 M : Nat .
op empty-state : -> State .
op _;_ : State State -> State [assoc comm id: empty-state] .
op <_|_> : Id Nat -> Account [ctor] .
ops credit debit : Id Nat -> Msg [ctor] .
op transfer : Id Id Nat -> Msg [ctor] .
crl [credit] : <Id|bal>;credit(Id,M) => <Id|newBal> if newBal := bal + M .
crl [debit] : <Id|bal>;debit(Id,M) => <Id|newBal> if bal >= M /\ newBal := bal - M .
crl [transfer] : <Id1|bal1>;<Id2|bal2>;transfer(Id1,Id2,M) => <Id1|newBal1>;<Id2|newBal2>
if <Id1|bal1>;debit(Id1,M) => <Id1|newBal1> /\ <Id2|bal2>;credit(Id2,M) => <Id2|newBal2> .

endm

2 Equational specifications in Maude can be theories in membership equational logic,
which may include conditional membership axioms not addressed in this paper.
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The rule credit contains a matching condition newBal := bal + M. The rule
debit contains an equational condition bal >= M and a matching condition
newBal := bal - M. Finally, the rule transfer has a rule condition that con-
tains two rewrite expressions <Id1|bal1>;debit(Id1,M) => <Id1|newBal1>
and <Id2|bal2>;credit(Id2,M) => <Id2|newBal2>.

Given a conditional rewrite theory (Σ,E,R), with E = Δ ∪ B, the conditional
rewriting modulo E relation (in symbols, →R/E) can be defined by lifting the
usual conditional rewrite relation on terms [15] to the E-congruence classes [t]E
on the term algebra τ(Σ,V) that are induced by =E [9], that is, [t]E is the
class of all terms that are equal to t modulo E. Unfortunately, →R/E is in
general undecidable, since a rewrite step t →R/E t′ involves searching through
the possibly infinite equivalence classes [t]E and [t′]E .

The conditional slicing technique formalized in this work is formulated by con-
sidering the precise way in which Maude proves the conditional rewriting steps
(see Section 5.2 in [12]). Actually, the Maude interpreter implements conditional
rewriting modulo E by means of two much simpler relations, namely →Δ,B and
→R,B, that allow rules and equations to be intermixed in the rewriting pro-
cess by simply using an algorithm of matching modulo B. We define →R∪Δ,B
as →R,B ∪ →Δ,B . Roughly speaking, the relation →Δ,B uses the equations of
Δ (oriented from left to right) as simplification rules: thus, for any term t, by
repeatedly applying the equations as simplification rules, we eventually reach a
term t↓Δ to which no further equations can be applied. The term t↓Δ is called a
canonical form of t w.r.t. Δ. On the other hand, the relation →R,B implements
rewriting with the rules of R, which might be non-terminating and non-confluent,
whereas Δ is required to be terminating and Church-Rosser modulo B in order
to guarantee the existence and unicity (modulo B) of a canonical form w.r.t. Δ
for any term [12].

Formally, →R,B and →Δ,B are defined as follows. Given a rewrite rule r =
(λ → ρ if C) ∈ R (resp., an equation e = (λ = ρ if C) ∈ Δ), a substitution σ,
a term t, and a position w of t, t

r,σ,w→R,B t′ (resp., t
e,σ,w→Δ,B t′) iff λσ =B t|w,

t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion can arise, we
simply write t→R,B t′ (resp. t→Δ,Bt

′) instead of t
r,σ,w→R,B t′ (resp. t

e,σ,w→Δ,B t′).
Note that the evaluation of a condition C is typically a recursive process,

since it may involve further (conditional) rewrites in order to normalize C to
true. Specifically, an equational condition e evaluates to true w.r.t. σ if eσ↓Δ=B

true; a matching equation p := t evaluates to true w.r.t. σ if pσ =B tσ ↓Δ;
a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there exists a rewrite
sequence tσ →∗

R∪Δ,B u, such that u =B pσ3. Although rewrite expressions and
matching/equational conditions can be intermixed in any order, we assume that
their satisfaction is attempted sequentially from left to right, as in Maude.

3 Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition
p := t, the term p is required to be a Δ-pattern —i.e., a term p such that, for every
substitution σ, if xσ is a canonical form w.r.t. Δ for every x ∈ Dom(σ), then pσ is
also a canonical form w.r.t. Δ.
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Under appropriate conditions on the rewrite theory, a rewrite step modulo E
on a term t can be implemented without loss of completeness by applying the
following rewrite strategy [13]: (i) reduce t w.r.t. →Δ,B until the canonical form
t ↓Δ is reached; (ii) rewrite t ↓Δ w.r.t. →R,B.

An execution trace T in the rewrite theory (Σ,Δ∪B,R) is a rewrite sequence

s0 →∗
Δ,B s0↓Δ →R,B s1 →∗

Δ,B s1↓Δ . . .

that interleaves →Δ,B rewrite steps and →R,B steps following the strategy men-
tioned above.

Given an execution trace T , it is always possible to expand T in an instru-
mented trace T ′ in which every application of the matching modulo B algorithm
is mimicked by the explicit application of a suitable equational axiom, which is
also oriented as a rewrite rule [3]. This way, any given instrumented execution
trace consists of a sequence of (standard) rewrites using the conditional equations
(→Δ), conditional rules (→R), and axioms (→B).

Example 3. Consider the rewrite theory in Example 2 together with the following
execution trace T : credit(A,2+3);<A|10> →Δ,B credit(A,5);<A|10> →R,B <A|15>

Thus, the corresponding instrumented execution trace is given by expanding the
commutative “step” applied to the term credit(A,2+3);<A|10> using the im-
plicit rule (X; Y → Y; X) in B that models the commutativity axiom for the
(juxtaposition) operator ; .

credit(A,2+3);<A|10> →Δcredit(A,5);<A|10> →B<A|10>;credit(A,5) →R<A|15>

Also, typically hidden inside the B-matching algorithms, some transformations
allow terms that contain operators that obey associative-commutative axioms
to be rewritten by first producing a single representative of their AC congruence
class [3]. For example, consider a binary AC operator f together with the stan-
dard lexicographic ordering over symbols. Given the B-equivalence f(b, f(f(b, a),
c)) =B f(f(b, c), f(a, b)), we can represent it by using the “internal sequence” of
transformations f(b, f(f(b, a), c)) →∗

flatB
f(a, b, b, c) →∗

unflatB
f(f(b, c), f(a, b)),

where the first one corresponds to a flattening transformation sequence that ob-
tains the AC canonical form, while the second one corresponds to the inverse,
unflattening one.

In the sequel, we assume all execution traces are instrumented as explained
above. By abuse of notation, we frequently denote the rewrite relations →Δ,
→R, →B by →. Also, by →∗ (resp. →+), we denote the transitive and reflexive
(resp. transitive) closure of the relation →Δ ∪ →R ∪ →B.

4 Backward Conditional Slicing

In this section, we formulate our backward conditional slicing algorithm for RWL
computations. The algorithm is formalized by means of a transition system that
traverses the execution traces from back to front. The transition system is given
by a single inference rule that relies on a backward rewrite step slicing procedure
that is based on substitution refinement.
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4.1 Term Slices and Term Slice Concretizations

A term slice of a term t is a term abstraction that disregards part of the in-
formation in t, that is, the irrelevant data in t are simply replaced by special
•-variables, denoted by •i, with i = 0, 1, 2, . . ., which are generated by calling
the auxiliary function fresh•4. More formally, a term slice is defined as follows.

Definition 1 (term slice). Let t ∈ τ(Σ,V) be a term, and let P be a set of
positions s.t. P ⊆ Pos(t). A term slice of t w.r.t. P is defined as follows:

slice(t, P ) = rslice(t, P, Λ), where

rslice(t, P, p) =

⎧
⎪⎨

⎪⎩

f(rslice(t1, P, p.1), .., rslice(tn, P, p.n)) if t=f(t1, .., tn) and p ∈ P̄

x if t=x and x ∈ V and p ∈ P̄

fresh• otherwise

When P is understood, a term slice of t w.r.t. P is simply denoted by t•.

Roughly speaking, a term slice t w.r.t. a set of positions P includes all symbols
of t that occur within the paths from the root to any position in P , while each
maximal subterm t|p, with p �∈ P , is abstracted by means of a •-variable.

Given a term slice t•, a meaningful position p of t• is a position p ∈ Pos(t•)
such that t•|p �= •i, for some i = 0, 1, . . .. By MPos(t•), we denote the set that
contains all the meaningful positions of t•. Symbols that occur at meaningful
positions are called meaningful symbols.

Example 4. Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2}
be a set of positions of t. By applying Definition 1, we get the term slice
t• = slice(t, P ) = d(f(g(•1, •2), y), •3) and the set of meaningful positions
MPos(t•) = {Λ, 1, 1.1, 1.2}.

Now we show how we particularize a term slice, i.e., we instantiate •-variables
with data that satisfy a given boolean condition that we call compatibility con-
dition. Term slice concretization is formally defined as follows.

Definition 2 (term slice concretization). Let t, t′ ∈ τ(Σ,V) be two terms.
Let t• be a term slice of t and let B• be a boolean condition. We say that t′ is
a concretization of t• that is compatible with B• (in symbols t• ∝B•

t′), if (i)
there exists a substitution σ such that t•σ = t′, and (ii) B•σ evaluates to true.

Example 5. Let t• = •1 + •2 + •2 and B• = (•1 > 6 ∧ •2 ≤ 7). Then, 10 + 2 + 2
is a concretization of t• that is compatible with B•, while 4 + 2 + 2 is not.

In the following, we formulate a backward trace slicing algorithm that, given an
execution trace T : s0 →∗ sn and a term slice s•n of sn, generates the sliced
counterpart T • : s•0 →∗ s•n of T that only encodes the information required
to reproduce (the meaningful symbols of) the term slice s•n. Additionally, the
algorithm returns a companion compatibility condition B• that guarantees the
soundness of the generated trace slice.
4 Each invocation of fresh• returns a (fresh) variable •i, which is distinct from any

previously generated variable •j .
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4.2 Backward Slicing for Execution Traces

Consider an execution trace T : s0 →∗ sn. A trace slice T • of T is defined
w.r.t. a slicing criterion — i.e., a set of positions Osn ⊆ Pos(sn) that refer to
those symbols of sn that we want to observe. Basically, the trace slice T • of T is
obtained by removing all the information from T that is not required to produce
the term slice s•n = slice(sn,Osn). A trace slice is formally defined as follows.

Definition 3. Let R = (Σ,Δ ∪ B,R) be a conditional rewrite theory, and let
T : s0

r1,σ1,w1→ s1
r2,σ2,w2→ . . .

rn,σn,wn→ sn be an execution trace in R. Let Osn be a
slicing criterion for T . A trace slice of T w.r.t. Osn is a pair [s•0 → s•1 → . . .→
s•n, B

•], where

1. s•i is a term slice of si, for i = 0, . . . , n, and B• is a boolean condition;
2. s•n = slice(sn,Osn);
3. for every term s′0 such that s•0 ∝B•

s′0, there exists an execution trace
s′0→s′1→ . . .→sn in R such that

i) s′i → s′i+1 is either the rewrite step s′i
ri+1,σ

′
i+1,wi+1→ s′i+1 or s′i = s′i+1,

i = 0, . . . , n− 1;
ii) s•i ∝B

•
s′i, i = 1, . . . , n.

Note that Point 3 of Definition 3 ensures that the rules involved in the sliced steps
of T • can be applied again, at the corresponding positions, to every concrete
trace T ′ that can be obtained by instantiating all the •-variables in s•0 with ar-
bitrary terms. The following example illustrates the slicing of an execution trace.

Example 6. Consider the Maude specification of Example 2 together with the
following execution trace T : (<a|30>;debit(a,5));credit(a,3) debit→ <a|25>;

credit(a,3)
credit→ <a|28>. Let <a|•1> be a term slice of <a|28> generated with

the slicing criterion {1} —i.e., <a|•1>=slice(<a|28>, {1}). Then, the trace slice
for T is [T •, •8 ≥ •9] where T • is as follows

(<a|•8>;debit(a,•9));credit(a|•4)
debit→ <a|•3>;credit(a,•4)

credit→ <a|•1>

Note that T • needs to be endowed with the compatibility condition •8 ≥ •9 in
order to ensure the applicability of the debit rule. In other words, any instance
s•σ of <a|•8>;debit(a,•9) can be rewritten by the debit rule only if •8σ ≥ •9σ.

Informally, given a slicing criterion Osn for the execution trace T = s0 →∗ sn,
at each rewrite step si−1 → si, i = n, . . . , 1, our technique inductively computes
the association between the meaningful information of si and the meaningful
information in si−1. For each such rewrite step, the conditions of the applied rule
are recursively processed in order to ascertain from si the meaningful information
in si−1, together with the accumulated condition B•

i . The technique proceeds
backwards, from the final term sn to the initial term s0. A simplified trace is
obtained where each si is replaced by the corresponding term slice s•i .

We define a transition system (Conf , •→) [17] where Conf is a set of config-
urations and •→ is the transition relation that implements the backward trace
slicing algorithm. Configurations are formally defined as follows.
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Definition 4. A configuration, written as 〈T , S•, B•〉, consists of three com-
ponents:
– the execution trace T : s0 →∗ si−1 → si to be sliced;
– the term slice s•i , that records the computed term slice of si
– a boolean condition B•.

The transition system (Conf , •→) is defined as follows.

Definition 5. Let R = (Σ,Δ ∪ B,R) be a rewrite theory, let T = U →∗ W
be an execution trace in R, and let V → W be a rewrite step. Let B•

W and B•
V

be two boolean conditions, and W • be a term slice of W . Then, the transition
relation •→⊆ Conf × Conf is the smallest relation that satisfies the following
rule:

(V •, B•
V ) = slice-step(V →W, W •, B•

W )
〈U →∗ V →W, W •, B•

W 〉•→ 〈U →∗ V, V •, B•
V 〉

Roughly speaking, the relation •→ transforms a configuration 〈U →∗ V →
W, W •, B•

W 〉 into a configuration 〈U →∗ V, V •, B•
V 〉 by calling the function

slice-step(V → W, W •, B•
W ) of Section 4.3, which returns a rewrite step slice

for V → W . More precisely, slice-step computes a suitable term slice V • of V
and a boolean condition B•

V that updates the compatibility condition specified
by B•

W .
The initial configuration 〈s0 →∗ sn, slice(sn,Osn), true〉 is transformed until

a terminal configuration 〈s0, s•0, B•
0〉 is reached. Then, the computed trace

slice is obtained by replacing each term si by the corresponding term slice s•i ,
i = 0, . . . , n, in the original execution trace s0 →∗ sn. The algorithm additionally
returns the accumulated compatibility condition B•

0 attained in the terminal
configuration.

More formally, the backward trace slicing of an execution trace w.r.t. a slicing
criterion is implemented by the function backward-slicing defined as follows.

Definition 6 (Backward trace slicing algorithm). Let R = (Σ,Δ ∪ B,R)
be a rewrite theory, and let T : s0 →∗ sn be an execution trace in R. Let Osn

be a slicing criterion for T . Then, the function backward-slicing is computed as
follows:

backward-slicing(s0 →∗ sn,Osn) = [s•0 →∗ s•n, B
•
0 ]

iff there exists a transition sequence in (Conf , •→)

〈s0 →∗ sn, s
•
n, true〉•→ 〈s0 →∗ sn−1, s

•
n−1, B

•
n−1〉•→∗ 〈s0, s•0, B•

0〉
where s•n = slice(sn, Osn)

In the following, we formulate the auxiliary procedure for the slicing of
conditional rewrite steps.
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4.3 The Function slice-step

The function slice-step, which is out-
function slice-step(s

r,σ,w→ t, t•, B•
prev)

1. if w �∈ MPos(t•)
2. then
3. s• = t•

4. B• = B•
prev

5. else
6. θ = {x/fresh• | x ∈ V ar(r)}
7. ρ• = slice(ρ,MPos(t•|w))

8. ψρ = 〈|θ,matchρ•θ(t•|w)|〉
9. for i = n downto 1 do
10. (ψi, B

•
i ) = process-condition(ci, σ,

〈|ψρ, ψn...ψi+1|〉)
11. od
12. s• = t•[λ〈|ψρ, ψn...ψ1|〉]w
13. B• = (B•

prev ∧ B•
n... ∧ B

•
1 )(ψ1ψ2 . . . ψn)

14.fi
15. return (s•, B•)

Fig. 2. Backward step slicing function

lined in Figure 2, takes as input three
parameters, namely, a rewrite stepμ :
s
r,σ,w→ t (with r = λ → ρ if C5),

a term slice t• of t, and a compatibil-
ity condition B•

prev; and delivers the
term slice s• and a new compatibility
condition B•. Within the algorithm
slice-step, we use an auxiliary opera-
tor 〈|σ1, σ2|〉 that refines (overrides) a
substitutionσ1 with a substitutionσ2,
where both σ1 and σ2 may contain •-
variables. The main idea behind 〈| , |〉
is that, for the slicing of the step μ, all
variables in the applied rewrite rule r
are näıvely assumed to be initially bound to irrelevant data •, and the bindings are
incrementally refined as we (partially) solve the conditions of r.

Definition 7 (refinement).Letσ1 andσ2 be two substitutions.The refinement of
σ1 w.r.t. σ2 is defined by the operator 〈| , |〉 as follows: 〈|σ1, σ2|〉 = σ|̀Dom(σ1), where

xσ =

⎧
⎨

⎩

xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1σ2 if x ∈ Dom(σ1) \Dom(σ2) ∧ σ2 �= fail
xσ1 otherwise

Note that 〈|σ1, σ2|〉 differs from the (standard) instantiation of σ1 with σ2. We write
〈|σ1, . . . , σn|〉 as a compact denotation for 〈|〈| . . . 〈|σ1, σ2|〉, . . . , σn−1|〉, σn|〉.

Example 7. Let σ1 = {x/•1, y/•2} and σ2 = {x/a, •2 /g(•3), z/5} be two sub-
stitutions. Thus, 〈|σ1, σ2|〉 = {x/a, y/g(•3)}.

Roughly speaking, the function slice-step works as follows. When the rewrite step
μ occurs at a position w that is not a meaningful position of t• (in symbols, w �∈
MPos(t•)), trivially μ does not contribute to producing the meaningful symbols
of t•. Therefore, the function returns s• = t•, with the input compatibility condi-
tion B•

prev.

Example 8. Consider the Maude specification of Example 2 and the following
rewrite step μ: (<a|30>;debit(a,5));credit(a,3) debit→ <a|25>;credit(a,3).
Let •1; credit(a, 3)be a term slice of <a|25>;credit(a,3).Since the rewrite step
μ occurs at position 1 �∈ MPos(•1; credit(a, 3)), the term <a|25> introduced by
μ in <a|25>;credit(a,3) is completely ignored in •1; credit(a, 3). Hence, the

5 Since equations and axioms are both interpreted as rewrite rules in our formulation,
we often abuse the notation λ → ρ if C to denote rules as well as (oriented) equations
and axioms.
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computed term slice for (<a|30>;debit(a,5));credit(a,3) is the very same
•1; credit(a, 3).

On the other hand, when w ∈
MPos(t•), the computation of s• and
B• involves a more in-depth analysis
of the rewrite step, which is based on
an inductive refinement process that
is obtained by recursively processing
the conditions of the applied rule.

More specifically,we initially define

function process-condition(c, σ, θ)
1. case c of
2. (p := t) ∨ (t ⇒ p) :
3. if (tσ = pσ)
4. then return ({}, true) fi
5. Q = MPos(pθ)
6. [t• →∗ p•, B•] =

backward-slicing(tσ →∗ pσ, Q)
7. t•′ = slice(t,MPos(t•))
8. ψ = matcht•′θ(t•)
9. e :
10. ψ = { }
12. B• = eθ
12. end case
13. return (ψ, B•)

Fig. 3. Condition processing function

the substitution θ = {x/fresh• | x ∈
V ar(r)} that binds each variable in
r to a fresh •-variable.This corresponds
to assuming that all the information
in μ, which is introduced by the sub-
stitution σ, can be marked as irrele-
vant. Then, θ is incrementally refined using the following two-step procedure.

Step 1. We compute the matcher matchρθ(t•|w), and then generate the refinement
ψρ of θ w.r.t. matchρθ(t•|w) (in symbols, ψρ = 〈|θ,matchρθ(t•|w)|〉). Roughly
speaking, the refinement ψρ updates the bindings of θ with the meaningful
information extracted from t•|w.

Example 9. Consider the rewrite theory in Example 2together with the follow-
ing rewrite step μdebit : <a|30>;debit(a,5) debit→ <a|25> that involves the
application of the debit rule whose right-hand side is
ρdebit =<Id|newBal>. Let t• =<a|•1> be a term slice of <a|25>. Then, the
initially ascertained substitution for μ is θ={Id/•2, bal/•3, M/•4, newBal/•5},
and matchρdebitθ(t•) = match<•2|•5>(<a|•1>) = {•2/a, •5 /•1}. Thus, the
substitution ψρdebit = 〈|θ, ψρdebit |〉 = {Id/a, bal/•3, M/•4, newBal/•1}. That
is, ψρdebit refines θ by replacing the uninformed binding Id/•2, with Id/a.

Step 2. LetCσ = c1σ∧. . .∧cnσ be the instance of the condition in the rule r that
enables the rewrite step μ. We process each (sub)condition ciσ, i = 1, . . . , n, in
reversed evaluation order, i.e., from cnσ to c1σ, by using the auxiliary function
process-condition given in Figure 3 that generates a pair (ψi, B•

i ) such that ψi
is used to further refine the partially ascertained substitution 〈|ψρ, ψn, . . . , ψi+1

|〉 computed by incrementally analyzing conditions cnσ, cn−1σ . . . , ci+1σ, and
B•
i is a boolean condition that is derived from the analysis of the condition ci.

When the whole Cσ has been processed, we get the refinement 〈|ψρ, ψn, . . . , ψ1|〉,
which basically encodes all the instantiations required to construct the term slice
s• from t•. More specifically, s• is obtained from t• by replacing the subterm t•|w
with the left-hand side λ of r instantiated with 〈|ψρ, ψn, . . . , ψ1|〉. Furthermore,
B• is built by collecting all the boolean compatibility conditions B•

i delivered by
process-condition and instantiating them with the composition of the computed
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refinements ψ1 . . . ψn. It is worth noting that process-condition handles rewrite ex-
pressions, equational conditions, and matching conditions differently. More specif-
ically, the pair (ψi, Bi) that is returned after processing each condition ci is com-
puted as follows.

– Matching Conditions. Let c be a matching condition with the form p := m

in the condition of rule r. During the execution of the step μ : s
r,σ,w→ t, recall

that c is evaluated as follows: first,mσ is reduced to its canonical formmσ↓Δ,
and then the condition mσ ↓Δ=B pσ is checked. Therefore, the analysis of
the matching condition p := m during the slicing process of μ implies slicing
the (internal) execution trace Tint = mσ →∗ pσ, which is done by recursively
invoking the function backward-slicing for execution trace slicingwith respect
to the meaningful positions of the term slice pθ of p, where θ is a refinement
that records the meaningful information computed so far. That is, [m• →∗

p•, B•] = backward-slicing(mσ →∗ pσ, MPos(pθ)). The result delivered
by the function backward-slicing is a trace slicem• →∗ p• with compatibility
condition B•.

In order to deliver the final outcome for the matching condition p := m, we
first compute the substitution ψ = matchmθ(m•), which is the substitution
needed to refine θ, and then the pair (ψ, B•) is returned.

Example 10. Consider the the rewrite step μdebit of Example 9 together with
the refined substitution θ = {Id/a, bal/•3, M/•4, newBal/•1}. We process
the condition newBal := bal - M of debit by considering an internal execu-
tion trace Tint = 30− 5 → 25 6. By invoking the function backward-slicing
the trace slice result is [•6 → •6, true]. The final outcome is given by
match•7−•8(•6), that is fail. Thus θ does not need any further refinement.

– Rewrite Expressions. The case when c is a rewrite expression t ⇒ p is han-
dled similarly to the case of a matching equation p := t, with the difference that
t can be reduced by using the rules of R in addition to equations and axioms.

– Equational Conditions. During the execution of the rewrite step μ : s
r,σ,w→ t,

the instance eσ of an equational condition e in the condition of the rule r is
just fulfilled or falsified, but it does not bring any instantiation into the out-
put term t. Therefore, when processing eσ, no meaningful information to fur-
ther refine the partially ascertained substitution θ must be added. However,
the equational condition emust be recorded in order to compute the compati-
bility conditionB• for the considered conditional rewrite step. In other words,
after processing an equational condition e, we deliver the tuple (ψ, B•), with
ψ = { } and B• = eθ. Note that the condition e is instantiated with the up-
dated substitution θ, in order to transfer only the meaningful information of
eσ computed so far in e.

6 Note that the trace 30-5→25 involves an application of the Maude built-in opera-
tor “-”. Given a built-in operator op, in order to handle the reduction a op b → c as
an ordinary rewrite step, we add the rule a op b ⇒ c to the considered rewrite theory.
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Example 11. Consider the refined substitution given in Example 10
θ = {Id/a, bal/•3, M/•4, newBal/•1} together with the rewrite step μdebit
of Example 9 that involves the application of the debit rule. After processing
the condition bal >= M of debit, we deliver B• = (•3 >= •4).

Soundness of our conditional slicing technique is established by the following the-
orem. The proof can be found in [4].

Theorem 1 (soundness). Let R be a rewrite theory. Let T : s0
r1,σ1,w1→ ...

rn,σn,wn→
sn be an execution trace in the rewrite theory R, with n > 0, and let Osn be a slic-
ing criterion for T . Then, the pair [s•0 → ... → s•n, B

•
0 ] computed by backward-

slicing(T , Osn) is a trace slice for T .

5 Implementation and Experimental Evaluation

The conditional slicing methodology presented so far has been implemented
in a prototype tool that is written in Maude and publicly available at
http://users.dsic.upv.es/grupos/elp/soft.html. The prototype takes in
input a slicing criterion and a Maude execution trace, which is a term of sort Trace
(generated by means of the the Maude metalevel operator metaSearchPath), and
delivers the corresponding trace slice.

Table 1. Backward trace slicing benchmarks

Example Original Slicing Sliced %
trace trace size criterion trace size reduction

Web-TLR.T1 19114 Web-TLR.T1.O1 3982 79.17%
Web-TLR.T1.O2 3091 83.83%

Web-TLR.T2 22018 Web-TLR.T2.O1 2984 86.45%
Web-TLR.T2.O2 2508 88.61%

Web-TLR.T3 38983 Web-TLR.T3.O1 2045 94.75%
Web-TLR.T3.O2 2778 92.87%

Web-TLR.T4 69491 Web-TLR.T4.O1 8493 87.78%
Web-TLR.T4.O2 5034 92.76%

We have tested our prototype on
rather large execution traces, such
as the counterexamples generated by
the model checker for Web applica-
tions Web-TLR [2]. In our exper-
iments, we have considered a Web-
mail application together with four
LTLR properties that have been re-
futed by Web-TLR. For each refuted
property, Web-TLR has produced
the corresponding counterexample in
the form of a huge, textual execution
trace Ti, i = 1, ..., 4, in the range 10− 100Kb that has been used to feed our slicer.

Table 1 shows the size of the original counterexample trace and that of the com-
puted trace slice, both measured as the length of the corresponding string, w.r.t.
two slicing criteria, that are detailed in the tool website. The considered criteria
allow one to monitor the messages exchanged by a specific Web browser and the
Webmail server, as well as to isolate the changes on the data structures of the two
interacting entities. The %reduction column in Table 1 refers to the percentage of
reduction achieved. The results we have obtained are very encouraging, and show
an impressive reduction rate (up to ∼ 95%) in reasonable time (max. 0.9s on a
Linux box equipped with an Intel Core 2 Duo 2.26GHz and 4Gb of RAM mem-
ory). Actually, sometimes the trace slices are small enough to be easily inspected
by the users, who can restrict their attention to the part of the computation that
they want to observe.

http://users.dsic.upv.es/grupos/elp/soft.html
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