
Labelled Superposition for PLTL

Martin Suda1,2,3,� and Christoph Weidenbach1,��

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany
3 Charles University, Prague, Czech Republic

Abstract. This paper introduces a new decision procedure for PLTL
based on labelled superposition. Its main idea is to treat temporal for-
mulas as infinite sets of purely propositional clauses over an extended sig-
nature. These infinite sets are then represented by finite sets of labelled
propositional clauses. The new representation enables the replacement
of the complex temporal resolution rule, suggested by existing resolution
calculi for PLTL, by a fine grained repetition check of finitely saturated
labelled clause sets followed by a simple inference. The completeness ar-
gument is based on the standard model building idea from superposition.
It inherently justifies ordering restrictions, redundancy elimination and
effective partial model building. The latter can be directly used to ef-
fectively generate counterexamples of non-valid PLTL conjectures out of
saturated labelled clause sets in a straightforward way.

1 Introduction

Propositional linear temporal logic [15] is an extension of classical propositional
logic for reasoning about time. It introduces temporal operators such as ♦P
meaning P holds eventually in the future, �P meaning P holds always in the
future, and©P meaning P holds at the next time point. Time is considered to be
a linear discrete sequence of time points represented by propositional valuations,
called worlds. Such a potentially infinite sequence forms a PLTL interpretation.
A decision procedure for PLTL takes a PLTL formula P and checks whether it is
valid, i.e., that all PLTL interpretations are actually models for P . For example,
the PLTL formula �P → ©P is valid (a theorem) whereas the PLTL formula
©P → �P is not, but is satisfiable, i.e., there is a PLTL model for it.

Attempts to use clausal resolution to attack the decision problem for PLTL
appeared first in [3, 21]. The most recent resolution-based approach is the one of
[6]. It relies on a satisfiability preserving clausal translation of PLTL formulas,
where, in particular, all nestings of temporal operators are reduced to formulas
(and, eventually, clauses) of the form P , �(P → ©Q), and �(P → ♦Q), where
P and Q do not contain temporal operators. Classical propositional resolution is
extended to cope with “local” temporal reasoning within neighbouring worlds,

� Supported by Microsoft Research through its PhD Scholarship Programme.
�� Supported by the German Transregional Collaborative Research Center SFB/TR 14

AVACS.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 391–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

392 M. Suda and C. Weidenbach

while an additional inference rule called temporal resolution is introduced to deal
with eventuality (�♦) clauses. The temporal resolution rule is quite complex.
It requires a search for certain combinations of clauses that together form a
loop, i.e. imply that certain sets of worlds must be discarded from consideration,
because an eventuality clause would be unsatisfied forever within them. This is
verified via an additional proof task. Finally, the conclusion of the rule needs to
be transformed back into the clause form.

Our labelled superposition calculus builds on a refinement of the above clause
normal form [4]. It introduces a notion of labelled clauses in the spirit of [12]
and replaces the temporal resolution rule by saturation and a new Leap rule. Al-
though in PLTL equality is not present, the principles of superposition are funda-
mental for our calculus. Our completeness result is based on a model generation
approach with an inherent redundancy concept based on a total well-founded
ordering on the propositional atoms.

The main contributions of our paper are: 1) we replace the temporal reso-
lution rule by a much more streamlined saturation of certain labelled clauses
followed by a simple Leap inference, 2) our inference rules are guided by an or-
dering restriction that is known to reduce the search space considerably, 3) the
completeness proof justifies an abstract redundancy notion that enables strong
reductions, 4) if a contradiction cannot be derived, a temporal model can be
extracted from a saturated clause set.

The paper is organized as follows. We fix our notation and formalize the
problem to be solved in Sect. 2. Then in Sect. 3 we show how to use labelled
clauses as a tool to “lift” the standard propositional calculus to reason about
PLTL-satisfiability. Our calculus is introduced in Sect. 4 and used as a basis for
an effective decision procedure in Sect. 5. We deal with abstract redundancy, its
relation to the completeness proof, and model building in Sect. 6. Discussion of
previous work and an experimental comparison to existing resolution approaches
appear in Sect. 7. Finally, Sect. 8 concludes. Detailed proofs and additional
material are available in a technical report [20].

2 Preliminaries

In this section we fix our notation and briefly recall the standard notions we will
be using. We assume the reader to be familiar with ordered resolution calculus
for propositional logic and its completeness proof [2] including the concepts of
redundancy, saturation, and model construction. In the following, the symbol N
stands for the naturals, and N

+ denotes the set N \ {0}.
The language of propositional formulas and clauses over a given signature

Σ = {p, q, . . .} of propositional variables is defined in the usual way. We denote
propositional clauses by letters C orD, possibly with subscripts, and understand
them as multisets of literals. By propositional valuation, or simply a world, we
mean a mapping V : Σ → {0, 1}. We write V |= P if a propositional formula P
is satisfied by V . The semantics of PLTL is based on a discrete linear model of
time, where the structure of possible time points is isomorphic to N. A PLTL-
interpretation is a sequence (Vi)i∈N of propositional valuations.

Labelled Superposition for PLTL 393

In order to be able to talk about several neighbouring worlds at once we
introduce copies (i.e. pairwise disjoint, bijectively equivalent sets) of the basic
signature Σ. We use priming to denote the shift from one signature to the next
(thus Σ′ is the set of symbols {p′, q′, . . .}), and shorten repeated primes by paren-
thesised integers (e.g. p′′′ is the same thing as p(3)). This notational convention
can be extended from symbols and signatures to formulas, and also to valua-
tions in a natural way. For example, if V is a valuation over Σ(i) we write V ′

for the valuation over Σ(i+1) such that V ′(p(i+1)) = V (p(i)) for every p ∈ Σ. We
also need to consider formulas over two consecutive joined signatures, e.g. over
Σ ∪ Σ′. Such formulas can be evaluated over the respective joined valuations.
When both V1 and V2 are valuations over Σ, we write [V1, V2] as a shorthand
for the mapping V1 ∪ (V2)

′ : (Σ ∪Σ′) → {0, 1}.
As usual in refutational theorem proving, our method starts with negating the

input formula and translating the result into a clause normal form. Then the task
is to show that the translated form is unsatisfiable, which implies validity of the
original formula. We build on the Separated Normal Form to which any PLTL
formula can be translated by a satisfiability preserving transformation with at
most linear increase in size [6, 4]. We skip here the details of the transformation
due to lack of space and instead directly present its final result, the starting
point for our method:

Definition 1. A PLTL-specification S is a quadruple (Σ, I, T,G) such that

– Σ is a finite propositional signature,
– I is a set of initial clauses Ci (over the signature Σ),
– T is a set of step clauses Ct ∨D′

t (over the joint signature Σ ∪Σ′),
– G is a set of goal clauses Cg (over the signature Σ).

The initial and step clauses match their counterparts from [6] in the obvious
way. Our goal clauses are a generalization of a single unconditional sometimes
clause that can be obtained using the transformations described in [4]. The whole
specification represents the PLTL formula:

(∧
Ci

)
∧�

(∧
(Ct ∨©Dt)

)
∧�♦

(∧
Cg

)
.

Example 1. We will be using the valid PLTL formula �((a → b) → ©b) →
♦�(a ∨ b) as a running example that will guide us through the whole theorem
proving process presented in this paper. By negating the formula and performing
standard transformations we obtain �(a∨©b)∧�(¬b∨©b)∧�♦(¬a∧¬b), which
gives us the following PLTL-specification S = ({a, b}, ∅, {a∨b′,¬b∨b′}, {¬a,¬b}).
It is a known fact that when considering satisfiability of PLTL formulas attention
can be restricted to ultimately periodic [18] interpretations. These start with
a finite sequence of worlds and then repeat another finite sequence of worlds
forever. This observation, which is also one of the key ingredients of our approach,
motivates the following definition.

394 M. Suda and C. Weidenbach

Definition 2. Let K ∈ N, and L ∈ N
+ be given. A PLTL-interpretation (Vi)i∈N

is a (K,L)-model of S = (Σ, I, T,G) if

1. for every C ∈ I, V0 |= C,
2. for every i ∈ N and every C ∈ T , [Vi, Vi+1] |= C,
3. for every i ∈ N and every C ∈ G, V(K+i·L) |= C.

A PLTL-specification is satisfiable if it has a (K,L)-model for some K and L.

Note that the eventuality represented by the goal clauses of S is satisfied in-
finitely often as the standard PLTL semantics dictates. Moreover, we keep track
of the worlds where this is bound to happen by requiring they form an arith-
metic progression with K as the initial term and L the common difference. This
additional requirement doesn’t change the notion of satisfiability thanks to the
observation mentioned above. We will call the pair (K,L) the rank of a model.

3 Labelled Clauses

Recall that we defined a PLTL-interpretation as an infinite sequence of proposi-
tional valuations over the finite signature Σ. Alternatively though, it can be
viewed as a single propositional valuation over the infinite signature Σ∗ =⋃

i∈N
Σ(i). We simply index the signature symbols by the time moments to obtain

this isomorphic representation. If we now examine Definition 2 of (K,L)-models
from this perspective, we can reveal a simple (though at first sight not very use-
ful) reduction of satisfiability in a (K,L)-model to propositional satisfiability of
a potentially infinite set of clauses over Σ∗. For a specification S = (Σ, I, T,G)
this clause set will consist of copies of the clauses from I, T , and G that are
“shifted in time” to proper positions, such that the whole set is (proposition-
ally) satisfiable if and only if S has a (K,L)-model. Formally, the set is the union
of {C(0) |C ∈ I}, {C(i) |C ∈ T, i ∈ N}, and {C(K+i·L) |C ∈ G, i ∈ N}. See Fig. 1
for the intuition behind this idea.

Σ Σ′ Σ(2) Σ(3) Σ(4) Σ(5)

C1 ∈ I

C2 ∈ T

C3 ∈ G

K K + L

. . .

. . .

Fig. 1. Schematic presentation of the potentially infinite set of clauses that is satisfiable
iff a PLTL-specification S = (Σ, I, T, G) has a model of rank (2, 3)

In order to make use of the above described reduction we need to show how
to solve for infinitely many values of K and L the propositional satisfiability
problem consisting of infinitely many clauses. We do this by assigning labels to

Labelled Superposition for PLTL 395

the clauses of S such that a labelled clause represents up to infinitely many
standard clauses over Σ∗. Then an inference performed between labelled clauses
corresponds to infinitely many inferences on the level of Σ∗. This is not dissim-
ilar to the idea of “lifting” from first-order theorem proving where clauses with
variables represent up to infinitely many ground instances. Here, however, we
deal with the additional dimension of performing infinitely many proof tasks “on
the ground level” in parallel, one for each rank (K,L).

Formally, a label is a pair (b, k) where b is either ∗ or 0, and k is either ∗ or
an element of N. A labelled clause is a pair (b, k) ||C consisting of a label and a
(standard) clause over Σ ∪Σ′. Given a PLTL-specification S = (Σ, I, T,G), the
initial labelled clause set NS for S is defined to contain

– labelled clauses of the form (0, ∗) ||C for every C ∈ I,
– labelled clauses of the form (∗, ∗) ||C for every C ∈ T , and
– labelled clauses of the form (∗, 0) ||C for every C ∈ G.

We can think of the first label component b as relating the clause to the beginning
of time, while the second component relates the clause to the indices of the form
K + i ·L, where the goal should be satisfied. In both cases, ∗ stands for a “don’t
care” value, thus, e.g., the label (∗, ∗) marks clauses that occupy every possible
index. It turns out that during inferences we also need to talk about clauses that
reside k steps before indices of the goal. That is why the second label component
may assume any value from N. The semantics of labels is given via a map to
world indices.

Let (K,L) be a rank. We define a set R(K,L)(b, k) of indices represented by
the label (b, k) as the set of all t ∈ N such that

[b
= ∗ → t = 0] ∧ [k
= ∗ → ∃s ∈ N.t+ k = K + s · L] .

Observe that while R(K,L)(0, k) ⊆ {0}, the sets R(K,L)(∗, k) are always infinite,
and for k ∈ N constitute a range of an arithmetic progression with difference L.
Now a standard clause of the form C(t) is said to be represented by the labelled
clause (b, k) ||C in (K,L) if t ∈ R(K,L)(b, k). We denote the set of all standard
clauses represented in (K,L) by the labelled clauses N by the symbol N(K,L).

N(K,L) = {C(t) | clause (b, k) ||C ∈ N and t ∈ R(K,L)(b, k)} .

Example 2. Our example specification S = ({a, b}, ∅, {a ∨ b′,¬b ∨ b′}, {¬a,¬b})
contains among others the single literal goal clause ¬a. In the initial labelled
clause set NS this goal clause becomes (∗, 0) || ¬a. If we now, for example, fix
the same rank (2, 3) as in Fig. 1, our labelled clause will in that rank represent
all the standard clauses (¬a)(t) with t ∈ R(2,3)(∗, 0) = {2, 5, 8, . . .}.
We summarize the main message of this section in the next lemma. Its proof
follows from the definitions and ideas already given.

Lemma 1. Let a rank (K,L) and a PLTL-specification S be given and let NS

be the initial labelled clause set for S. Then the set (NS)(K,L) is satisfiable if and
only if S has a (K,L)-model.

396 M. Suda and C. Weidenbach

4 The Labelled Superposition Calculus LPSup

In this section we present our calculus for labelled clauses LPSup. We lift the
ordered resolution calculus of [2], which we call PSup for Propositional Super-
position, and transfer to LPSup its valuable properties, including the ordering
restrictions of inferences. For that purpose, we parameterize LPSup by a total
ordering < on the symbols of the signature Σ, which we implicitly extend to
indexed signatures by first comparing the indices and only then the actual sym-
bols. This means that p(i) < q(j) if and only if i < j, or i = j and p < q.1 We
then use the standard extension of this ordering to compare literals in clauses.

Before we proceed to the actual presentation of the calculus, we need to define
how labels are updated by inferences. Two labelled clauses should only interact
with each other when they actually represent standard clauses that interact
on the ground level. Moreover, the resulting labelled clause should represent
exactly all the possible results of the interactions on the ground level. We define
the merge of two labels (b1, k1) and (b2, k2) as the label (b, k) such that

– if b1 = b2 = ∗ then b = ∗, otherwise b = 0,
– if k1 = ∗ then k = k2; if k2 = ∗ then k = k1; if k1 = k2
= ∗ then k = k1 = k2.

In the case when k1, k2 ∈ N and k1
= k2, the merge operation is undefined. The
idea is that the merged label represents the intersection of the sets of indices
represented by the arguments.

The calculus LPSup consists of the inference rules Ordered Resolution, Or-
dered Factoring, Temporal Shift, and Leap. They operate on a clause set N , an
initial labelled clause set of a given PLTL-specification. While Ordered Reso-
lution and Ordered Factoring constitute the labelled analogue of inferences of
PSup, Temporal Shift and Leap are “structural” in nature, as they only mod-
ify the syntactic format, but the underlying represented set of standard clauses
remains the same.

(i) Ordered Resolution

I (b1, k1) ||C ∨ L (b2, k2) ||D ∨ L̄

(b, k) ||C ∨D

where literal L is maximal in C, its complement L̄ is maximal in D, and
the merge of labels (b1, k1) and (b2, k2) is defined and equal to (b, k),

(ii) Ordered Factoring

I (b, k) ||C ∨ A ∨ A

(b, k) ||C ∨A

where A is an atom maximal in C,

1 In the case of labelled clauses this amounts to saying that the symbols of Σ′ are
considered larger than those of Σ. Our definition, however, also makes sense over
the infinite signature Σ∗ and it is this particular ordering that restricts the inferences
on the level of standard clauses.

Labelled Superposition for PLTL 397

(iii) Temporal Shift

I (∗, k) ||C
(∗, k′) || (C)′

where C is a clause over Σ only, and k = k′ = ∗ or k ∈ N and k′ = k + 1,
(iv) Leap

I {(b, u+ i · v) ||C}i∈N derivable from N

(b, u− v) ||C
where u ≥ v > 0 are integers and C is an arbitrary standard clause.

Further explanation is needed for the inference rule Leap. In its present form it
requires an infinite number of premises, one for each i ∈ N, and thus cannot,
strictly speaking, become applicable in any finite derivation. Here it is only a
mathematical abstraction. In the next section we show how to effectively gener-
ate and finitely represent infinite sets of labelled clauses from which it will follow
that Leap is, in fact, effective.

Going back to the other inferences note that the merge operation on labels
ensures that the conclusion of Ordered Resolution represents exactly all the
conclusions of the standard ordered resolution inferences between the standard
clauses represented by the premises. Ordered Factoring carries over from PSup
in a similar fashion.2 The Temporal Shift operates only on clauses over the
signature Σ. We will from now on call such clauses simple. Notice that the
restriction to simple clauses is essential as it keeps the symbols of the conclusion
to stay within Σ ∪Σ′.

Example 3. The initial labelled clause set NS of our running example contains
among others also clauses (∗, ∗) || a ∨ b′ and (∗, 0) || ¬b. We can apply Temporal
Shift to the second to obtain (∗, 1) || ¬b′. Now b′ is the only literal over Σ′ in the
first clauses and therefore maximal. So the first clause and the newly derived
one can participate in Ordered Resolution inference with conclusion (∗, 1) || a.
Although the rules Temporal Shift and Leap derive new labelled clauses, the
represented sets of standard clauses remain the same in any rank (K,L). This
is easy to see for Temporal Shift, but a little bit more involved for Leap, where
it relies on the periodicity of (K,L)-models. The overall soundness of LPSup is
established by relating it to the same property of the standard calculus PSup.

Theorem 1 (Soundness of LPSup). Let NS be the initial labelled clause set
for a PLTL-specification S, and (b, k) ||C a labelled clause derivable from NS by
LPSup. Then for any rank (K,L) and any t ∈ R(K,L)(b, k) the standard clause

C(t) is derivable from (NS)(K,L) by PSup.
If an empty labelled clause (b, k) || ⊥ is derivable from NS by LPSup, such that

R(K,L)(b, k)
= ∅, then S doesn’t have a (K,L)-model.

2 Here we present the rule in a form as close as possible to the one in [2]. In practical
implementation, however, it is reasonable to remove duplicate literals as soon as they
occur without regard to ordering restrictions.

398 M. Suda and C. Weidenbach

Notice that in LPSup the fact that an empty labelled clause (b, k) || ⊥ is derived
does not necessarily mean that the whole clause set is unsatisfiable. It only rules
out those (K,L)-models for which R(K,L)(b, k) is non-empty. This motivates the
following definition.

Definition 3. An empty labelled clause (b, k) || ⊥ is called conditional if b = 0
and k ∈ N, and unconditional otherwise. We say that a set of labelled clauses
N is contradictory if it contains an unconditional empty clause, or (0, k) || ⊥ is
in N for every k ∈ N.

In Sect. 6 we demonstrate that a (K,L)-model can be found for any non-con-
tradictory set of labelled clauses that is saturated by LPSup.

To complete the picture of LPSup we move on to mention reduction rules.
As we discuss in detail in Sect. 6, these are justified by the abstract redundancy
notion [2] which our calculus inherits from PSup. Thus the following are only
examples and other reductions can be developed and used as long as they satisfy
the criteria of abstract redundancy.

Tautology Deletion allows us to remove from the search any labelled clause
the standard part of which contains both a literal and its complement. Another
useful reduction is Subsumption3

R (b1, k1) ||C (b2, k2) ||D
(b1, k1) ||C

where C is a sub-multiset of D and the merge of labels (b1, k1) and (b2, k2) is
defined and equal to (b2, k2).

5 Decision Procedure

In this section we explain how to turn the calculus LPSup into an effective
decision procedure for PLTL. First, we have a look at termination.

Example 4. We have already derived the labelled clause (∗, 1) || ¬b′ from our set
NS of initial clauses for S by Temporal Shift. Ordered Resolution between this
clause and the clause (∗, ∗) || ¬b∨ b′ yields (∗, 1) || ¬b to which Temporal Shift is
again applicable, giving us (∗, 2) || ¬b′. We see that the clause we started with
differs from the last one only in the label where the k-component got increased
by one. The whole sequence of inferences can now be repeated, allowing us to
eventually derive labelled clauses (∗, k) || ¬b and (∗, k) || ¬b′ for any k ∈ N

+.

The example demonstrates how the Temporal Shift inference may cause non-
termination when the k-component of the generated labelled clauses increases
one by one. It also suggests, however, that from a certain point the derived
clauses don’t add any new information and the inferences essentially repeat in

3 We use the letter I and R to distinguish between inference rules, whose premises are
kept after the conclusion has been added to the given set of clauses, and reduction
rules, whose premises are replaced by the conclusion.

Labelled Superposition for PLTL 399

cycles. Detecting these repetitions and finitely representing the resulting infinite
clause sets is the key idea for obtaining a termination result for our calculus.

Given a set of labelled clauses N , it is convenient to think of N as being
separated into layers, sets of clauses with the same value of their labels’ second
component k. This way we obtain the ∗-layer of clauses with the label of the
form (b, ∗) for b ∈ {∗, 0}, and similarly layers indexed by k ∈ N. The following
list of observations forms the basis of our strategy for saturating clause sets by
LPSup.

(1) In an initial labelled clause set only the ∗-layer and 0-layer are non-empty.
(2) If all premises of Ordered Resolution, Factoring or Temporal Shift inference

belong to the ∗-layer, so does the conclusion of the respective inference.
(3) If a premise of Ordered Resolution or Factoring inference belongs to the

k-layer for k ∈ N, so does the inference’s conclusion.
(4) If a premise of Temporal Shift belongs to the k-layer for k ∈ N, the inference’s

conclusion belongs to the layer with index (k + 1).
(5) The number of clauses in each layer is bounded by a constant depending

only on the size of the signature.

We are ready to describe what we call layer-by-layer saturation of an initial
labelled clause set. During this process we don’t yet consider the Leap infer-
ence, which will be incorporated later. It follows from our observations that the
∗-layer can always be finitely saturated. We then perform all the remaining Or-
dered Resolution and Factoring inferences (together with possible reductions) to
saturate the 0-layer, again in a finite number of steps. After that we exhaustively
apply the Temporal Shift rule to populate the 1-layer and again saturate this
layer by Ordered Resolution and Factoring. This process can be repeated in the
described fashion to saturate layers of increasing indices. It is important that the
new clauses of the higher layers can never influence (by participating on infer-
ences or reductions) clauses in the lower, already saturated, layers. Eventually,
thanks to point (5) above, we will encounter a layer we have seen before and
then we stop. More precisely, in a finite number of steps we are bound to obtain
a set of labelled clauses N such that there are integers o ∈ N and p ∈ N

+ and

– the o-layer of N is equal to the (o+ p)-layer of N (up to reindexing4),
– the clause set is saturated by LPSup (without Leap), except, possibly, for

Temporal Shift inferences with premise in layer (o+ p),
– the layers with index larger than (o+ p) are empty.

Now we need a final observation to finish the argument. The applicability of
Ordered Resolution, Factoring and Temporal Shift (as well as that of the re-
ductions of LPSup) is “invariant under the move from one layer to another”.
In other words, exactly the same (up to reindexing) inferences (and reductions)
that have been performed to obtain, e.g., the saturated layer of index (o + 1),
can now be repeated to obtain the saturated layer of index (o + p+ 1). We can
therefore stop the saturation process here and define:

4 Meaning the first mentioned set would be identical to the second if we changed the
second label component of all its clauses from o to (o+ p).

400 M. Suda and C. Weidenbach

Definition 4. Let N be a clause set obtained by layer-by-layer saturation as
described above. We call the numbers o and p the offset and period of N , re-
spectively. The infinite extension of such N is the only set of labelled clauses N∗

for which N ⊆ N∗ and such that for every i ∈ N the (o+ i)-layer of N∗ is equal
to the (o+ i mod p)-layer of N (up to reindexing).

The infinite extension of N is completely saturated by LPSup (without Leap).

Example 5. In our running example, the ∗-layer and 0-layer are already satu-
rated. The next layers we obtain are

{(∗, 1) || ¬a′, (∗, 1) || ¬b′, (∗, 1) || a, (∗, 1) || ¬b} , (1)

{(∗, 2) || a′, (∗, 2) || ¬b′, (∗, 2) || a, (∗, 2) || ¬b} (2)

As the 3-layer is then equal to the previous (up to reindexing), layer-by-layer
saturation terminates with offset 2 and period 1.

In layer-by-layer saturation we always give priority to Ordered Resolution and
Factoring inferences, and only when these are no longer applicable in the current
clause set, we perform all the pending Temporal Shift inferences, and possibly
repeat. Similarly, the overall saturation procedure which we present next com-
bines layer-by-layer saturation phases with an exhaustive application of the Leap
inference:

1. Set N1 to the initial labelled clause set NS of a given PLTL-specification S.
2. Set N2 to the layer-by-layer saturation on N1.
3. If the clause set N∗

2 is contradictory, stop and report UNSAT.
4. Set N3 to be the set N2 enriched by all the possible conclusions of Leap

inference with premises in N∗
2 , possibly reduced.

5. If N3 = N2 stop and report SAT, else go back to step 2 resetting N1 := N3.

Note that if we go to line 2 for the second time, N1 is no longer an initial
labelled clause set. Although we didn’t discuss it previously, it is straightforward
to perform layer-by-layer saturation of any finitely represented clause set.

On lines 3 and 4 we refer to the infinite extension N∗
2 . It actually means

that we operate with the layer-by-layer saturation N2 together with offset o
and period p. Now N∗

2 is bound to be contradictory if and only if N2 contains
an unconditional empty clause or (0, k) || ⊥ is in N2 for every 0 ≤ k < o + p.
Similarly, a labelled clause (b, j) ||C with j < o5 can be derived by Leap inference
with premises in N∗

2 if and only if there is a clause (b, i) ||C in N2 such that
o ≤ i < o+ p and p divides i− j.

Finally note that while the values of offset and period associated with N2 may
change from one repetition to another, their sum is each time bounded by the
same constant depending only on the size of the signature, namely the number
of different possible layers (up to reindexing). Moreover, thanks to the fact that
we only work with a fixed finite signature, there is also a bound on the number
of non-trivial additions to the individual layers on line 4. These together ensure
that the procedure always terminates.

5 Leap conclusion with j ≥ o is always redundant.

Labelled Superposition for PLTL 401

Example 6. In our example, the infinite extension of the layer-by-layer saturation
contains the premises {(∗, 1 + i) || a}i∈N of a Leap inference with conclusion
(∗, 0) || a. This clause together with the already present (∗, 0) || ¬a gives us the
empty clause (∗, 0) || ⊥ by Ordered Resolution, which eventually terminates the
overall procedure, because the empty clause is unconditional and therefore the
overall set becomes contradictory.

6 Redundancy, Completeness and Model Building

The calculus LPSup comes with an abstract notion of redundancy in the spirit of
[2]. Also here one can recognize the idea of “lifting”, which relates the standard
level of PSup to the level of labelled clauses. Recall that a standard clause C is
called redundant with respect to a set of standard clauses N if there are clauses
C1, . . . , Cn ∈ N such that for every i = 1, . . . n, Ci < C, and C1, . . . , Cn |= C.
On the level of labelled clause we define:

Definition 5. A labelled clause (b, k) ||C is redundant with respect to a set of
labelled clauses N , if for any rank (K,L) every standard clause represented by
(b, k) ||C in (K,L) is redundant w.r.t. N(K,L).

A set of labelled clauses N is saturated up to redundancy with respect to
LPSup, if for every inference from N such that its premises are not redundant
w.r.t. N , the conclusion is either redundant w.r.t. N or contained in N .

Note that the reductions of LPSup described in Sect. 4 are instances of redun-
dancy elimination. This is easy to see for Tautology deletion, and follows from
the semantics of the merge operation on labels for the Subsumption reduction.
It is important to note that these are just examples and further reductions can
be developed and used. As long as they fit into the framework prescribed by
Definition 5, they are guaranteed to preserve completeness and the underlying
proof need not be changed.

Our main theorem relates completeness of LPSup to the same property of the
underlying calculus PSup via the notion of redundancy.

Theorem 2 (Completeness of LPSup). Let N be a labelled clause set sat-
urated in a layer-by-layer fashion with offset o and period p and let N∗, the
infinite extension of N , be a non-contradictory set of labelled clause saturated up
to redundancy w.r.t. LPSup. We set K to be the smallest number from N such
that (0,K) || ⊥ is not in N∗ (note that N∗ is non-contradictory), and further
set L to the smallest positive multiple of p that is not smaller than o. Then the
set N∗

(K,L) does not contain the (standard) empty clause and is saturated up to
redundancy w.r.t. PSup.

Recall the overall saturation procedure of the previous section. Its input is a
PLTL-specification which is immediately transformed into the initial labelled
clause set. If the procedure reports UNSAT, we know the input is unsatisfi-
able, because we derived (using a sound calculus) a contradictory set of labelled
clauses, which rules out any (K,L)-model. If, on the other hand, the procedure

402 M. Suda and C. Weidenbach

reports SAT, we may apply Theorem 2 together with completeness of PSup to
conclude that the set N∗

(K,L) is satisfiable, and, therefore, the specification we

started with has a (K,L)-model. Thus the overall saturation procedure decides
satisfiability of PLTL-specifications.

We close this section by commenting on the possibility of using our method to
provide counterexamples to non-valid PLTL formulas. Due to space restrictions,
we cannot describe the method in full detail, but to those familiar with the
model construction for classical logic based on PSup [2], it should be clear that
with Theorem 2 proven, we are practically done.

Given a non-contradictory set of labelled clauses N∗ that is saturated up to
redundancy w.r.t. LPSup, we pick (K,L) as described in Theorem 2 and generate
the standard clauses of N∗

(K,L) one by one with increasing <. We apply classical

model construction to these clauses to gradually build a (partial) valuation over
Σ∗ =

⋃
i∈N

Σ(i), which, as we know, corresponds in the obvious way to a (K,L)-
model (Vi)i∈N. We can stop the generation as soon as a particular (already
completed) valuation repeats (i.e. Vi = Vi−j for some j ∈ N

+) and the goal has
already been reached (i.e. i > K). An ultimately periodic model is then output
as a result.

7 Final Discussion and Experiments

We now compare our calculus to Clausal Temporal Resolution [6]. Older reso-
lution based approaches to PLTL are [3, 21], but they don’t seem to be used
or developed any further nowadays. Besides resolution there are approaches to
PLTL satisfiability based on tableaux deduction [22, 17], and on automata theory
[16]. These seem to be less related and we don’t discuss them here further.

It can be shown that operationally there is a close connection between LPSup
and the Clausal Temporal Resolution (CTR) of [6]. From this perspective, our
formalism of labelled clauses can be seen as a new way to derive completeness of
CTR that justifies the use of ordering restrictions and redundancy elimination.
This has not been achieved yet in full by previous work: [9] contains a proof
theoretic argument, but only for the use of ordering restrictions, [11] sketches
the idea how to justify tautology removal and subsumption, but not the general
redundancy notion in the style of [2] that we provide.

Moreover, there is also a correspondence between our layer-by-layer saturation
followed by the application of the Leap inference and the BFS-Loop search of
CTR as described in [7, 13]. Apart from being interesting in its own right, this
view sheds new light on explaining BFS-Loop search, as it gives meaning to the
intermediate clauses generated in the process, and we thus don’t need to take
the detour through the DNF representation of [5]. Even here, the idea of labels
clearly separates logical content of the clauses from the meta-logical one (c.f. the
ad hoc marker literal of [7]).

Despite these similarities between LPSup and CTR, the calculi are by no
means identical. As discussed before, a temporal model can be extracted in a
straightforward way from a satisfiable set of labelled clauses saturated by LPSup.

Labelled Superposition for PLTL 403

This doesn’t hold for CTR, where a more complex approach that simulates the
model construction of [2] only locally needs to be applied [14]. In particular,
because saturation by CTR doesn’t give the model building procedure any guid-
ance as to where to look for the goal, in each considered world all the possible
orderings on the signature (in the worse case) need to be tried out in a fair way
to make sure a goal world is eventually reached. As each change of the order-
ing calls for a subsequent resaturation of the clause set in question (so that the
local model construction still works), it obviously diminishes the positive effect
orderings in general have on reducing the search space.

Finally note that since we eventually rely on propositional superposition, we
can also take into account the explicit use of partial models to further guide
the search for a proof or saturation. The idea is to build a partial model based
on the ordering on propositional literals. Then it can be shown that resolution
can be restricted to premises where one is false and the other true in the partial
model [1]. This superposition approach on propositional clauses is closely related
to the state of the art CDCL calculus (see, e.g. [23]) for propositional logic. The
missing bit is to “lift” this setting to our labelled clauses. This will be one
direction for future research.

We implemented a simple prototype of both LPSup and CTR (with BFS
loop-search in the style of [7]), in order to compare the two calculi on non-trivial
examples. In this section we briefly report on our experiment. The prototype,
written in SWI-Prolog, is available along with the test examples at [19].

For the experiment we choose two formula families described in [10], which
we call C1

n and C2
n. In addition, we also tested the calculi on formulas from two

families specifically constructed to highlight the respective weaknesses of LPSup
and CTR. These we call the implicit and explicit cycles problems, respectively,
and denote them by I(l1+···+lk) and E(l1+···+lk). The problems are parameterized
by the sequence of numbers l1, . . . , lk, which denote the cycles’ lengths.

Table 1. Results of comparing our implementations of LPSup and CTR with TRP++

LPSup-Prolog CTR-Prolog TRP++
Problem Size Cl-gen Lits-gen Cl-subs Cl-gen Lits-gen Cl-subs Cl-gen Cl-subs

C1
10 56 53 202 100 174 576 110 363 300

C1
15 81 78 377 145 334 1161 240 688 595

C1
20 106 103 602 190 544 1946 420 1113 990

C2
3 22 442 1376 324 984 3972 909 1146 968

C2
4 30 1937 7649 1612 5298 26086 5047 3560 3053

C2
5 38 6287 28576 5635 18724 102704 18134 7925 6922

I(3+5) 62 406 1563 368 203 1022 194 86 160
I(3+5+8) 253 8010 42024 7356 1087 7613 1145 390 745

E(2+3) 8 23 25 4 131 424 78 177 77
E(2+3+4) 13 52 55 6 1061 4490 595 1597 627

404 M. Suda and C. Weidenbach

Table 7 summarizes the results of our experiments. For each problem and
for both calculi we report the number of clauses in the input, the number of
derived6 clauses and literals, and the number of subsumed clauses. For compar-
ison, we also include in the last two columns clause data obtained by running
the temporal prover TRP++ [8]7, which also implements the CTR calculus, to
provide evidence that our experimental results are not biased. We decided not
to report on running times as our aim here is to compare the calculi rather than
the implementations. The number of generated clauses (literals) should provide
a good measure on the amount of data to be processed by any prover, which
is, moreover, independent on the choice programming language or the use of
particular data structures.

As we can see, LPSup needs to generate consistently less clauses to draw
its conclusion for both C1

n and C2
n. It only behaves worse on the implicit cycles

examples I, which are constructed in such a way that the number of iterations of
the layer-by-layer saturation is much higher for LPSup than CTR. The examples
E , on the other hand, present much more work for CTR, where the equivalent of
Temporal Shift rule causes the clause set to “blow-up”. All in all, LPSup seems
to come considerably better off out of our experiments.

8 Conclusion

We applied the ideas of labelled superposition to develop a new decision proce-
dure for propositional linear temporal logic. On the presentation level, it replaces
the complex temporal resolution rule from the previously proposed calculus by a
simple check for repetition in the derived clause set and a subsequent inference.
Its unique treatment of goal clauses enables straightforward partial model build-
ing of satisfiable clause sets which could potentially be used to further restrict
inferences. Moreover, the experimental comparison to previous work suggests
that the new calculus typically explores smaller search spaces to derive its con-
clusion. Development of an optimized implementation, to be tested on a set of
representative benchmarks, will be part of our future work.

References

[1] Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with
Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441.
Springer, Heidelberg (1990)

[2] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and
MIT Press (2001)

6 This covers all the resolvents, plus the clauses derived by non-trivial Leap inference.
(Leap conclusions subsumed by other clauses are not generated at all.)

7 We used version 2.1 available at http://www.csc.liv.ac.uk/~konev/software/

trp++/.

http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.csc.liv.ac.uk/~konev/software/trp++/

Labelled Superposition for PLTL 405

[3] Cavalli, A., del Cerro, L.: A Decision Method for Linear Temporal Logic. In:
Shostak, R.E. (ed.) CADE 1984. LNCS, vol. 170, pp. 113–127. Springer, Heidelberg
(1984)

[4] Degtyarev, A., Fisher, M., Konev, B.: A Simplified Clausal Resolution Procedure
for Propositional Linear-Time Temporal Logic. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX2002. LNCS (LNAI), vol. 2381, pp. 85–99. Springer, Heidelberg (2002)

[5] Dixon, C.: Search Strategies for Resolution in Temporal Logics. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 673–687. Springer,
Heidelberg (1996)

[6] Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Com-
put. Logic 2, 12–56 (2001)

[7] Fernández Gago, M.C., Fisher, M., Dixon, C.: Algorithms for Guiding Clausal
Temporal Resolution. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002.
LNCS (LNAI), vol. 2479, pp. 235–252. Springer, Heidelberg (2002)

[8] Hustadt, U., Konev, B.: TRP++ 2.0: A Temporal Resolution Prover. In: Baader, F.
(ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)

[9] Hustadt, U., Konev, B., Schmidt, R.A.: Deciding Monodic Fragments by Temporal
Resolution. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp.
204–218. Springer, Heidelberg (2005)

[10] Hustadt, U., Schmidt, R.: Scientific benchmarking with temporal logic decision
procedures. In: KR 2002, pp. 533–546. Morgan Kaufmann (2002)

[11] Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-
order temporal resolution. Inf. Comput. 199, 55–86 (2005)

[12] Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled Clauses. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Heidelberg
(2007)

[13] Ludwig, M., Hustadt, U.: Fair Derivations in Monodic Temporal Reasoning. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 261–276. Springer, Heidelberg
(2009)

[14] Ludwig, M., Hustadt, U.: Resolution-based model construction for PLTL. In:
TIME 2009, pp. 73–80. IEEE Computer Society (2009)

[15] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

[16] Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

[17] Schwendimann, S.: A New One-Pass Tableau Calculus for PLTL. In: de Swart, H.
(ed.)TABLEAUX1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg
(1998)

[18] Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32, 733–749 (1985)

[19] Suda, M., Weidenbach, C.: Prototype implementation of LPSup. (2011),
http://www.mpi-inf.mpg.de/~suda/supLTL.html

[20] Suda, M., Weidenbach, C.: Labelled Superposition for PLTL. Research Report
MPI-I-2012-RG1-001, Max-Planck-Institut für Informatik, Saarbrücken (2012)

[21] Venkatesh, G.: A Decision Method for Temporal Logic Based on Resolution. In:
Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 272–289. Springer,
Heidelberg (1985)

[22] Wolper, P.: The tableau method for temporal logic: An overview. Logique et Anal-
yse 28, 119–136 (1985)

[23] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

http://www.mpi-inf.mpg.de/~suda/supLTL.html

	Labelled Superposition for PLTL
	Introduction
	Preliminaries
	Labelled Clauses
	The Labelled Superposition Calculus LPSup
	Decision Procedure
	Redundancy, Completeness and Model Building
	Final Discussion and Experiments
	Conclusion
	References

