
Random: R-Based Analyzer

for Numerical Domains

Gianluca Amato and Francesca Scozzari

Università “G. d’Annunzio” di Chieti–Pescara — Dipartimento di Scienze

Abstract. We present the tool Random (R-based Analyzer for Numerical
DOMains) for static analysis of imperative programs. The tool is based
on the theory of abstract interpretation and implements several abstract
domains for detecting numerical properties, in particular integer loop
invariants. The tool combines a statistical dynamic analysis with a static
analysis on the new domain of parallelotopes. The tool has a graphical
interface for tuning the parameters of the analysis and visualizing partial
traces.

1 Introduction

In the abstract interpretation framework [14], the expressive power of an analyzer
strictly depends on the choice of the abstract domain. In the last 20 years,
many abstract interpretation frameworks have been proposed based on different
semantics (see, for instance, [19,10,2]), equipped with many abstract domains,
with different trade-offs between expressivity and efficiency. The expressivity
of an abstract domain mostly depends on the kind of constraints (assertions)
that the abstract domain can represent. The simplest constraint is a constant
bound on the value of a program variable, such as −20 ≤ x ≤ 100. The abstract
domain of intervals [13], which can handle conjunctions of these constraints, is
very efficient but not very expressive, since it cannot prove relationships between
variables, such as x1+x2 ≤ 100. On the contrary, the abstract domain of (convex)
polyhedra [15] can represent any linear constraint between program variables,
such as a1x1+a2x2+ . . .+anxn ≤ b, where x1, . . . , xn are program variables and
a1, . . . , an, b are numerical constants (which may be integer, rational or floating
point). The abstract domain of polyhedra is very precise for linear constraints
but its computational cost is very high.

Many other abstract domains, which reduce the expressive power of general
polyhedra while improving efficiency, have been proposed. In most cases, new ab-
stract domains are derived by considering linear constraints subject to syntactic
restrictions. This is the case of the difference bound matrices domain [20], which
allows only the constraints a ≤ x1 ≤ b and a ≤ x1 − x2 ≤ b, and for the octagon
domain [21] which allows the constraints a ≤ x1 + x2 ≤ b and a ≤ x1 − x2 ≤ b.
A slight generalization is the two-variables per-inequality domain [26] whose
constraints may only contain two variables, such as a1x1+a2x2 ≤ b, and the oc-
tahedron abstract domain [12], which can handle constraints whose coefficients
are 0, 1,−1, that is ±x1 ± x2 + . . .± xn ≤ b.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 375–382, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

376 G. Amato and F. Scozzari

A different approach has been followed in the template polyhedra abstract
domain [24]. This is a parametric domain which, given a finite set {a1ix1 +
. . .+anixn}i of linear forms fixed a priori (the template), allows the constraints
a1ix1+. . .+anixn ≤ bi. The template approach may be viewed as a generalization
of difference bound matrices, octagon and octahedron, since it allows any kind
of linear constraints. However, the computational cost of its abstract operators
is higher, since any algorithm should be able to deal with any kind and any
number of constraints. Moreover, it remains the key problem of how to find the
template.

The recently proposed abstract domain of template parallelotopes [3,5] tries
to retain the advantages of both approaches. Like template polyhedra, it allows
to represent any kind of linear constraint, but the number of constraints in the
template is n – the number of variables in the program – and the constraints
are required to be linearly independent. Bounding the number of constraints
is the key to find very efficient algorithms for the abstract operators. In fact,
parallelotopes can be thought of as intervals expressed in a non-standard basis
in the vector space of variable’s values.

Our tool Random (R-based Analyzer for Numerical DOMains) implements
three different ways of using parallelotopes. First, we have implemented the
template parallelotope domain, using a fixed template to analyze the whole pro-
gram. In order to find the coefficients in the template, we use two statistical
tools, namely the Principal Component Analysis (PCA) and the Independent
Component Analysis (ICA) [17]. Second, we have implemented a template par-
allelotope approach where we can associate a template to each program point
(or to some selected program points). Third, we provide an implementation of
the parallelotope abstract domain (without templates), which exploits the full
expressive power of parallelotopes. At the end, Random annotates each program
point of the input program with the constraints discovered by the static analysis.

In the tool, we have privileged the implementation of efficient (and obviously
correct) operators, disregarding optimality and completeness (see, for instance,
[14,6,16,25]), in particular in the parallelotope abstract domain.

1.1 Template Parallelotopes

The tool can analyze a given program by using the domain of template paral-
lelotopes. In order to find the template, we have implemented a technique based
on the pre-analysis of the partial execution traces of the program. Consider the
example program in Figure 1. Initially, we run an instrumented version of the
program to collect the values of numerical variables in some specific program
points for different inputs. Figure 2 shows the set of values collected at the
program points ① and ②, where the grey rectangle is the abstraction on the
interval domain. Then, we apply to the sample data a statistical technique in
order to find the template. The tool implements two different techniques: the
Principal Component Analysis and a new technique combining the PCA with
the Independent Component Analysis.

Random: R-Based Analyzer for Numerical Domains 377

x = 42

y = 0

while (x>y) {

① x = x-1

② y = y+2

}

Fig. 1. The example
program

Fig. 2. Interval abstraction
of a partial execution trace,
observed at program points
① and ②

Fig. 3. Parallelotope ab-
straction with axes rotated
according to PCA

The principal component analysis finds a new orthonormal coordinate system
maximizing the variance of the collected values. More explicitly, PCA finds new
axes such that the variance of the projection of the data points on the first axis
is the maximum among all possible directions, the variance of the projection of
the data points on the second axis is the maximum among all possible directions
which are orthogonal to the first axis, and so on. For instance, if we apply PCA
to the values collected from partial executions traces of the program in Figure
1, we get the new basis (x′, y′) in Figure 3.

On the contrary, the independent component analysis looks for components
that are both independent and non-Gaussian. Two variables are independent if
knowing something about the value of one variable does not yield any information
about the value of the other one. Independence is a stronger property than
uncorrelatedness, and it is immediate to see that if two variables are independent,
then their covariance is zero. In practice, ICA cannot find a representation whose
components are really independent, but it can at least find components that are
as independent as possible. We have implemented a combination of PCA and
ICA, where we combine the most promising PCA components (those with very
low variance) with the most promising ICA components.

The result of the statistical analysis is further refined by a simplification proce-
dure, which stabilizes the result and avoids approximation errors. We supply two
simplification procedures which return an approximation of the principal com-
ponents which are proportional to vectors of small integers. The first procedure,
namely the Orthogonal Simple Component Analysis (OSCA) [7], minimizes the
angle between a principal component and its approximation, while the second
procedure analyzes the ratio between the coefficients in a single component.

For the program shown in Figure 1, OSCA finds the change of basis matrix[
1 2

−2 1

]
whose columns correspond to the axes (x′, y′) in Figure 3. With this

template, we can represent the constraints a ≤ x − 2y ≤ b and c ≤ 2x + y ≤ d,
thus proving that 2x+ y = 84 holds at the program point ①. Note that none of
these constraints may be expressed either in the interval domain or in octagon.
The result of the analysis is shown in Figure 4.

378 G. Amato and F. Scozzari

{

[x=0 , y=0 : -x+2*y=0 , 2*x+y=0 ()]

x = 42

[x=42 , y=0 : -x+2*y=-42 , 2*x+y=84 ()]

y = 0

[x=42 , y=0 : -x+2*y=-42 , 2*x+y=84 ()]

while ({

[27<=x<=42 , 0<=y<=30 : -42<=-x+2*y<=33 , 2*x+y=84 ()]

x > y

}) {

[28<=x<=42 , 0<=y<=28 : -42<=-x+2*y<=28 , 2*x+y=84 ()]

x = x - 1

[27<=x<=41 , 0<=y<=28 : -41<=-x+2*y<=29 , 2*x+y=82 ()]

y = y + 2

[27<=x<=41 , 2<=y<=30 : -37<=-x+2*y<=33 , 2*x+y=84 ()]

}

[27<=x<=28 , 28<=y<=30 : 28<=-x+2*y<=33 , 2*x+y=84 ()]

}

Fig. 4. The result of the static analysis

1.2 Multiple Template Parallelotopes

The tool is able to change the template in specific program points, marked by
a call to the function .tag(n). The parameter n is optional and can be used to
glue the collected data coming from different program points, thus creating a
virtual program point.

Random uses statistical tools to compute different templates for any (virtual)
program point, and then selects each template in the corresponding program
point. In order to switch from a template to the next one, the tool projects the
data on the new template with standard algebraic operations. In practice, this
approach amounts to partition the source code in fragments, and to apply a
different template to each fragment. Thus, in each fragment we can represent up
to n different constraints, which must be linearly independent, and do not need
to be related to the constraints in other fragments.

Using multiple templates improves the precision of the template parallelotope
domain, but can significantly reduce efficiency.

1.3 Parallelotope Abstract Domain

We have implemented the full domain of parallelotopes. The domain changes the
template at each program point, according to the operation to be performed. The
key points in the design of this domain are the join and widening operators. Both
are implemented as a variant of the inverse join [23], which allows us to discover
new constraints at a reasonable computational cost. It is also crucial, at least in
our implementation, to use delayed widening, so that new invariants may be dis-
coveredwithout being immediately discarded. For instance, consider the following
program.

Random: R-Based Analyzer for Numerical Domains 379

x = 1

y = 1

while (y < 100) {

y = y + y

y = y + y

x = x + x

x = x + x

}

The tool starts the analysis with the standard interval domain. After the first
two lines, the constraints are x = 1, y = 1. At the end of the first while iteration
we obtain the constraints x = 4, y = 4. Since we use delayed widening, in the
first iteration we simply join the two constraints. The inverse join of x = 1, y = 1
and x = 4, y = 4 yields −x+ y = 0, 1 ≤ x ≤ 4 and 1 ≤ y ≤ 4. The heuristic we
have developed chooses two linearly independent constraints from the result, in
this case −x+ y = 0 and 1 ≤ x ≤ 4. The constraint −x+ y = 0 is preferred to
1 ≤ y ≤ 4 since it is saturated by both constraints x = 1, y = 1 and x = 4, y = 4.

When processing the assignment y = y + y the analyzer changes the template
by transforming −x+ y = 0 in the new constraint −2x+ y = 0. After the second
assignment y = y+y, we get−4x+y = 0.Nowwe process the assignmentx = x+x
and get the constraints −2x+ y = 0, 2 ≤ x ≤ 8, and after the last assignment we
get the constraints −x + y = 0, 4 ≤ x ≤ 16. By applying the widening operator,
we discard all the constraints which are changed w.r.t. the previous iteration, and
we get −x+ y = 0, 1 ≤ x which is the final result of the analysis.

2 The Tool Interface

Figure 5 shows the tool’s interface. On the left side, there are the four main
panels. The Source code panel allows to upload and edit a program, while the
Analysis result shows the result of the analysis. The Matrix panel shows the tem-
plates used in the analysis, while the Partial Trace panel shows the collected
values to be analyzed with the statistical engines.

On the right side we may choose the abstract domains and tune the precision.
In the first section Partial Execution Traces, we instruct the tool on the program
points to be considered and we may select a subset of the variables for the
analysis. In the Trace Analysis section we choose the statistical engine (either
PCA or ICA), or we can provide a user-defined template matrix. We can also
choose whether to use a single template for the whole program or to change the
template at the program points selected in the previous section.

In the Trace Analysis Simplification section we choose the simplification strat-
egy to be applied to the result of the statistical engine. The OSCA procedure can
be fine-tuned by choosing several parameters. The most important is the Thresh-
old, which misures the distance between the original matrix and the simplified
one. In the Static Analysis section we choose the abstract domains to be used
in the analysis: the intervals, the template parallelotopes, a combination of the
two, or the parallelotope domain. In the last section Output options we can tune

380 G. Amato and F. Scozzari

Fig. 5. A screenshot of Random

the output of the analysis. The Displayed forms textbox allows to insert a list of
linear forms (such as 3*x+2*z). The result of the analysis is projected on these
linear forms. This may be useful to compare the result of analyses performed
with different templates. The print debug info option shows, on the console, the
intermediate computations of the static analysis, and the graphics option draws
the values in the partial execution traces and the principal components.

3 Implementation Details

The tool is available at http://www.sci.unich.it/~amato/random under the
terms of the GNU GPLv3. A previous and partial version of the tool appeared
in [4], without the multiple template parallelotopes, the general parallelotope
abstract domain, the ICA analysis, the graphical user interface, the graphical
display of partial execution traces and most of the options.

The tool is written in R, a language and environment for statistical computing
[22]. It is a functional language with powerful meta-programming features and a
vast library of statistical functions. However, it does not excel in efficiency and
convenience of debugging facilities.

We analyze programs written in an imperative fragment of the R language,
which includes assignments, conditionals and while loops. In addition, the pro-
grammer can use the built-in functions brandom(), which returns a random

http://www.sci.unich.it/~amato/random

Random: R-Based Analyzer for Numerical Domains 381

boolean value, and assume(·), in order to make assumptions on program vari-
ables, such as assume(x>0). The function .tag(·) allows to declare specific
program points to be traced. The programmer can insert in the source code the
calls .tag(0), .tag(1),.tag(2), . . . , even multiple times, in order to create
virtual program points. In case of programs with parameters, the user should
provide some input values, in order to generate the partial execution traces.
The analyzer instruments the program to record the values of the variables in
specific program points, computes the partial execution traces starting from the
input values, performs the PCA or ICA statistical analysis, simplifies the re-
sults, and finally executes the static analysis. PCA and ICA are computed using
respectively the standard built-in functions of R and the fastICA package.

The static analyzer uses a recursive chaotic iteration strategy on the weak
topological ordering induced by the program structure (see [9]). Correctness of all
the abstract operators is ensured by using either rational arithmetic through the
GNU Multiple Precision Arithmetic Library or, when it is possible, by changing
the rounding mode of the floating point arithmetic. To this aim, we have written
an auxiliary R package ieeeround [1] to control the rounding mode of the CPU.

4 Conclusion and Future Work

In order to improve usefulness and to ease further developments of Random,
many changes are necessary. First of all, the domains should be ported to C/C++,
preferably inside well known libraries such as PPL [8] or APRON [18]. The an-
alyzer engine and the program tracer should be ported to a faster and more
robust language than R. Finally, the analyzer should support a mainstream
target language. To this aim, we could exploit Frama-C [11], an extensible
platform for source-code analysis of C programs, or the Clang static analyzer
(http://clang-analyzer.llvm.org/).

References

1. Amato, G.: ieeeround: Functions to set and get the IEEE rounding mode (2011),
R package version 0.2-0, http://CRAN.R-project.org/package=ieeeround

2. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative pro-
gramming languages. Theoretical Computer Science 410(46), 4626–4671 (2009)

3. Amato, G., Parton, M., Scozzari, F.: Deriving Numerical Abstract Domains via
Principal Component Analysis. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS,
vol. 6337, pp. 134–150. Springer, Heidelberg (2010)

4. Amato, G., Parton, M., Scozzari, F.: A Tool Which Mines Partial Execution
Traces to Improve Static Analysis. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 475–479. Springer, Heidelberg (2010)

5. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. Journal of Symbolic Computation (to appear, 2012),
doi:10.1016/j.jsc.2011.12.052

6. Amato, G., Scozzari, F.: Optimality in goal-dependent analysis of sharing. Theory
and Practice of Logic Programming 9(5), 617–689 (2009)

http://clang-analyzer.llvm.org/
http://CRAN.R-project.org/package=ieeeround

382 G. Amato and F. Scozzari

7. Anaya-Izquierdo, K., Critchley, F., Vines, K.: Orthogonal simple component analy-
sis: a new, exploratory approach. Annals of Applied Statistics 5(1), 486–522 (2011)

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

9. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

10. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. The Journal of Logic Programming 10(1/2/3 & 4), 91–124 (1991)

11. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: SCAM 2009,
Proceedings, pp. 123–124. IEEE Computer Society Press (2009)

12. Clarisó, R., Cortadella, J.: The octahedron abstract domain. Science of Computer
Programming 64, 115–139 (2007)

13. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proc. Second Int’l Symposium on Programming, Dunod, pp. 106–130 (1976)

14. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979, Proc., pp. 269–282. ACM Press (1979)

15. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, Proc., pp. 84–97. ACM Press (1978)

16. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing.
ACM Transactions on Computational Logic 6(1), 33–60 (2005)

17. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John
Wiley & Sons (2001)

18. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for
Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

19. Marriott, K., Søndergaard, H., Jones, N.D.: Denotational abstract interpretation of
logic programs. ACM Transactions on Programming Languages and Systems 16(3),
607–648 (1994)

20. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

21. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

22. R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2011),
http://www.R-project.org/

23. Sankaranarayanan, S., Colón, M., Sipma, H.B., Manna, Z.: Efficient Strongly Re-
lational Polyhedral Analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI
2006. LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005)

24. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

25. Scozzari, F.: Abstract Domains for Sharing Analysis by Optimal Semantics. In:
SAS 2000. LNCS, vol. 1824, pp. 397–412. Springer, Heidelberg (2000)

26. Simon, A., King, A., Howe, J.M.: Two Variables Per Linear Inequality as an Ab-
stract Domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)

http://www.R-project.org/

	Random: R-Based Analyzer for Numerical Domains
	Introduction
	Template Parallelotopes
	Multiple Template Parallelotopes
	Parallelotope Abstract Domain

	The Tool Interface
	Implementation Details
	Conclusion and Future Work
	References

