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Abstract. Runtime verification of temporal logic properties requires a
definition of the truth value of these properties on the finite paths that
are observed at runtime. However, while the semantics of temporal logic
on infinite paths has been precisely defined, there is not yet an agreement
on the definition of the semantics on finite paths. Recently, it has been
observed that the accuracy of runtime verification can be improved by
a 4-valued semantics of temporal logic on finite paths. However, as we
argue in this paper, even a 4-valued semantics is not sufficient to achieve
a semantics on finite paths that converges to the semantics on infinite
paths. To overcome this deficiency, we consider in this paper Manna
and Pnueli’s temporal logic hierarchy consisting of safety, liveness (guar-
antee), co-Büchi (persistence), and Büchi (recurrence) properties. We
propose the use of specialized semantics for each of these subclasses to
improve the accuracy of runtime verification. In particular, we prove that
our new semantics converges to the infinite path semantics which is an
important property that has not been achieved by previous approaches.

1 Introduction

Runtime verification aims at detecting faults of a system by monitoring its
input/output behavior during runtime. For the specification of the desired be-
havior, temporal logics in general, and linear temporal logic (LTL) in particu-
lar, proved to be convenient formalisms to precisely and conveniently determine
complex temporal properties. During the last two decades, many model-checking
procedures for temporal logics have been developed that improved the efficiency
to become interesting for practical use. As a consequence, the PSL logic (ex-
tending LTL) became now an industry standard that is used by many tools and
programming languages. Since temporal logics are therefore well-established, it
is natural to use them also for runtime verification.

However, while the tools used to solve the model-checking problem refer to
the original LTL semantics that is given for infinite behaviors, runtime verifica-
tion can only reason about the finite behavior that has been observed up to a
considered point of time. Whether a fault occurred at runtime can therefore not
be decided by the existing LTL semantics, and instead one has to consider the
meaning of LTL formulas on finite paths.
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While the semantics of LTL on infinite paths has been precisely defined in
the literature (without producing alternatives), there is not yet such a consensus
on the meaning of LTL properties on finite paths. Several two-valued semantics
for LTL on finite paths have been proposed [6] that are well-suited for safety
properties. In [1], special reset and abort operators have been added to LTL to
cope with finite path semantics, but these do not solve the problem for the other
operators. Recently, it has been observed that at least a three-valued semantics
is necessary to give informative results [14,2,13]. Using three-valued semantics, a
property evaluates to true or false whenever the truth value defined by the LTL
semantics on infinite paths is already determined by its finite prefix. If the finite
prefix does not determine the truth value, an inconclusive result is obtained by
a third truth value. In the first case, the considered prefix is called a good prefix,
otherwise it is called a bad prefix. This scheme is well-suited for pure safety
properties like Gp and simple liveness (guarantee) properties like Fp. Indeed,
it has been observed in [8] that the only properties for which a three-valued
semantics gives satisfactory results consists of boolean combinations of safety
and guarantee properties which form the obligation properties in the temporal
logic hierarchy of Manna and Pnueli [5]. For this reason, the formulas in this
class have been already called prefix properties in [15,16].

However, there are many properties which can not be dealt with such a three-
valued semantics: consider e. g. the request/acknowledge property G (r → Fa)
taken from [2] that states that every request is finally acknowledged. Finite
paths cannot decide the truth of this property since it belongs to the Büchi
(recurrence) class, but not to the prefix (obligation) class. Hence a three-valued
logic will always evaluate to an inconclusive result. In [3], previously proposed
semantics for LTL are compared with each other and a new four-valued semantics
for LTL on finite paths was proposed that is argued to overcome these problems.
For the request/acknowledge property, the proposed RV-LTL semantics yields
value �P (meaning ‘presumable good’) whenever the so-far read finite input path
ends at a point of time where a holds. The value ⊥P (meaning ‘presumably bad’ )
is used whenever the so-far read finite input path ends at a point of time where
r holds, indicating that is is likely that the specification remains unsatisfied.

While the proposed solution gives a reasonable result for the above mentioned
request/acknowledge property, we argue that for other interesting properties,
the proposed RV-LTL semantics gives misleading results: For example, consider
the property FGp1 ∨ FGp2. This property states that from a certain point on,
either always p1 or always p2 holds (note its equivalence to F(Gp1 ∨ Gp2)). For
the behavior p1, p2, p1, p2, . . . , RV-LTL determines the value �P (presumably
good) for every finite prefix, indicating the misleading result that the property
is ‘presumably true’ while the property is not satisfied on the infinite behavior.

In this paper, we therefore define a new semantics of LTL on finite paths to
improve the previously proposed semantics so that the definition on finite paths
converges to the definition of infinite paths. To this end, we consider the temporal
logic hierarchy of Manna and Pnueli [5,16]. Instead of distinguishing between
presumably good and presumably bad in case no definitive answer is possible,
we use truth values that are more specialized to the unknown infinite suffix.
For example, a persistence (co-Büchi) property like FGp1 ∨ FGp2 is evaluated
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over a four-valued semantics with the truth values {true, false,�FG,⊥FG} with
the intuition that whenever an infinite path satisfies the property from a certain
point of time on, we assign �FG for the corresponding prefixes of that path from
that point on. On the other hand, output ⊥FG is used whenever the system has
not yet stabilized; and outputs true and false are used whenever a definite answer
is possible.

While this modification of the many-valued semantics seems to be only a
notational change, it already improves the evaluation of the above example:
FGp1 ∨ FGp2 is evaluated on every finite prefix of even length of p1, p2, p1, p2 to
⊥FG so that a verification engineer considering the results during simulation or
runtime verification will see that either the system has not yet stabilized or that
something is wrong in the system. Indeed, we prove that our new semantics is
asymptotically correct for persistence properties in the sense that only finitely
many prefixes of a satisfying infinite path of a persistence property yield the
wrong result ⊥FG.

Recurrence properties like the request/response property are evaluated over
a different four-valued set of truth values {true, false,�GF,⊥GF}. For the prefixes
of a satisfying infinite path of a recurrence property, infinitely often the right
result �GF is obtained so that we again obtain an asymptotically correct seman-
tics for recurrence properties. For the simpler classes of safety, guarantee and
prefix (boolean combination of safety and guarantee) properties that can be al-
ready evaluated on a three-valued semantics, we obtain the same semantics as
in RV-LTL (and LTL3). Our improvements are based on a new definition of the
disjunction operator which also considers the prefix of a path, and a context-
dependent interpretation of the next operator.

While we ultimately fail to give a finite path semantics for full LTL, we are
able to provide a solution for all classes of the temporal logic hierarchy. In prac-
tice, this is no restriction: nearly all formulas belong (syntactically) to the most
powerful class of the hierarchy and for others, it is typically not difficult to find
an equivalent formula in that class [11]. This is due to the fact that this class
contains an (semantically) equivalent formula for every LTL formula [16].

The outline of this paper is as follows: In Section 2, the syntax and semantics
of LTL over infinite words and Manna and Pnueli’s temporal logic hierarchy are
reviewed. We reconsider the definition of two previously published definitions
of LTL on finite words in Section 3, namely LTL3 [4] which is essentially the
same as [13] and the four-valued semantics of RV-LTL [3] which is essentially the
logic-based variant of [8]. Since both logics produce misleading results on certain
properties, we present a new semantics of LTL on finite paths in Section 4. We
prove that our new semantics is asymptotically correct in Section 4.3 and add
concluding remarks in Section 5.

2 Syntax and Semantics of LTL

Linear Temporal Logic (LTL) [12,7] is a popular formalism for the specification
of temporal properties. For a given set of boolean variables (propositions) V , we
define the set of LTL formulas by the following grammar: ϕ := V | ¬ϕ | ϕ ∨ ϕ |
Xϕ | [ϕ U ϕ]. Additionally, we define ϕ∧ψ, Fϕ, Gϕ, and [ϕ U ψ] as abbreviations
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for ¬(¬ϕ ∨ ¬ψ), [1 U ϕ], ¬F¬ϕ, and [ϕ U ψ] ∨ Gϕ, respectively. The semantics
of LTL is usually given with respect to an infinite path through a transition
system. These infinite paths are nothing else than infinite sequences of boolean
assignments to the variables V :
Definition 1 (Infinite Words). Given a set of atomic propositions V, an in-
finite word is a function v : N → ℘(V). For reasons of simplicity, v(i) is often
denoted by v(i) for i ∈ N. Using this notation, words are often given in the
form v(0)v(1) . . . . The suffix starting at t is written as : v(t... ) := v(t)v(t+1) . . . .
For a ∈ V, we define v = aω as v = a(0)a(1)a(2) . . . . Given an infinite word
v = a(0)a(1) . . . , we define v(s...t) as the finite word u = v(s)v(s+1) . . . v(t).

The semantics of LTL is typically defined as follows [7,16]:

Definition 2 (Semantics of LTL). Given an infinite word v, the following
rules define the semantics of LTL:

– [v |=ω p] iff p ∈ v(0) for p ∈ V
– [v |=ω ¬ϕ] iff [v �|=ω ϕ]
– [v |=ω ϕ ∧ ψ] iff [v |=ω ϕ] and [v |=ω ψ]
– [v |=ω ϕ ∨ ψ] iff [v |=ω ϕ] or [v |=ω ψ]
– [v |=ω Xϕ] iff [v(1... ) |=ω ϕ]
– [v |=ω [ϕ U ψ]] iff there is a δ such that [v(δ... ) |=ω ψ] and for all t with t < δ,

we have [v(t... ) |=ω ϕ]
In [5,15,16], a temporal logic hierarchy has been defined in analogy to the hierar-
chy of ω-automata. Following [15], we define the hierarchy of temporal formulas
by the grammar rules of Figure 1:

PG ::= V | ¬PF | PG ∧ PG | PG ∨ PG

| XPG | [PG U PG]
PF ::= V | ¬PG | PF ∧ PF | PF ∨ PF

| XPF | [PF U PF]
PPrefix ::= PG | PF | ¬PPrefix | PPrefix ∧ PPrefix | PPrefix ∨ PPrefix

PGF ::= PPrefix

| ¬PFG | PGF ∧ PGF | PGF ∨ PGF

| XPGF | [PGF U PGF] | [PGF U PF]

PFG ::= PPrefix

| ¬PGF | PFG ∧ PFG | PFG ∨ PFG

| XPFG | [PFG U PFG] | [PG U PFG]
PStreett ::= PGF | PFG | ¬PStreett | PStreett ∧ PStreett | PStreett ∨ PStreett

Fig. 1. Classes of the Temporal Logic Hierarchy

Definition 3 (Temporal Logic Classes). We define the logics TLκ for κ ∈
{G, F, Prefix, FG, GF, Streett} by the grammar rules given in Figure 1, where
TLκ is the set of formulas that can be derived from the non-terminal Pκ (V
represents any variable v ∈ V).
TLG is the set of formulas where each occurrence of a weak/strong temporal
operator is positive/negative, and similarly, each occurrence of a weak/strong
temporal operator in TLF is negative/positive. Hence, both logics are dual to
each other, which means that one contains the negations of the other one. TLPrefix
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is the boolean closure of TLG and TLF. The logics TLGF and TLFG are constructed
in the same way as TLG and TLF; however, there are two differences: (1) these
logics allow occurrences of TLPrefix where otherwise variables would have been
required in TLG and TLF, and (2) there are additional ‘asymmetric’ grammar
rules. It can be easily proved that TLGF and TLFG are also dual to each other,
and their intersection strictly contains TLPrefix. Finally, TLStreett is the boolean
closure of TLGF and TLFG. While there are syntactic restrictions on TLStreett,
i. e. not every LTL formula is a TLStreett formula, TLStreett contains for each LTL
formula an equivalent formula, and nearly all formulas used in practice belong
to TLStreett [11]. Moreover, for those formulas not in TLStreett, it is typically not
difficult to find an equivalent one in TLStreett.

3 Previous Definitions of LTL on Finite Paths

In the following, we consider the recently proposed semantics for LTL on finite
paths as given in [3]. We also show that this definition has certain deficiencies.

3.1 LTL3

In [2], LTL3 was introduced as an extension of LTL to finite paths which follows
the idea that a finite path is a prefix of a so-far unknown infinite path. LTL3
uses three-valued truth values B3 = {1, 0, ?}. While the syntax of LTL3 coincides
with that of LTL, its semantics is defined on finite words:

Definition 4 (Semantics of LTL3). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a
finite path of length n+1. The truth value of a LTL3 formula ϕ w.r.t. u, denoted
by [u |=3 ϕ] is defined as follows:

[u |=3 ϕ] =

⎧
⎪⎨

⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ
0 if ∀w ∈ Σω : uw �|=ω ϕ
? else

The intuition behind LTL3 is clear: whenever all infinite words obtained by con-
catenating the finite word with an infinite suffix agree on the truth value of ϕ,
this truth value is used also for the prefix. Otherwise, the value ? is used. As
argued in [3], LTL3 can never give a result other than ? for request-response
properties like G(r → Fa) since every prefix of an infinite accepted word can be
both a good or a bad prefix. Hence the authors propose to combine LTL3 with
another logic called FLTL.

3.2 FLTL

In [9,3] it is argued that there is a need to distinguish between a strong (X) and
a weak (X) next operator when interpreting LTL over finite paths. While a weak
next operator should be satisfied whenever no next position exists, a strong next
operator should be evaluated to false in that case. This leads to the following
definition of FLTL:
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Definition 5 (FLTL). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of
length n + 1 with u �= ε. The truth value of a FLTL formula ϕ wrt. u, denoted
as [u |=FLTL ϕ], is an element of B2 = {⊥,�} and is inductively defined as
follows: While atomic propositions and boolean operators are defined as for LTL,
the temporal operators are defined as follows:

[u |=FLTL Xϕ] =

{
[u1 |=FLTL ϕ] if u1 �= ε

� else

[u |=FLTL Xϕ] =

{
[u1 |=FLTL ϕ] if u1 �= ε

⊥ else

[u |=FLTL [ϕ U ψ]] =

⎧
⎪⎨

⎪⎩

� ∃k ∈ {1, . . . n} : [uk |=FLTL ψ] = �∧
∀1 ≤ l ≤ k : [ul |=FLTL φ] = �

⊥ else

[u |=FLTL [ϕ U ψ]] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� ∀1 ≤ l ≤ n : [ul |=FLTL ϕ] = �∨
∃k ∈ {1, . . . n} : [uk |=FLTL ψ] = �∧
∀1 ≤ l ≤ k : [ul |=FLTL φ] = �

⊥ else

In [3], the two definitions of LTL3 and FLTL are combined in a logic called RV-
LTL. This logic is evaluated over a four-valued de Morgan lattice 0 � ⊥P �
�P � 1 to express false, presumably false, presumably true and true. To obtain
a de Morgan lattice and thus a truth domain, the operators � and 
 are defined
as expected and 1/0 and �P /⊥P , respectively, are defined to be complementary
to each other. Note that the thereby obtained truth domain B4 is not a boolean
lattice.

RV-LTL is now defined such that the truth value of LTL3 is used whenever it
is conclusive, i.e. gives 1 or 0. If LTL3 provides the inconclusive result (?), the
definition of FLTL is used instead:

Definition 6 (RV-LTL). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of
length n+1 with u �= ε. The truth value of an RV-LTL formula ϕ wrt. u, denoted
as [u |=FLTL ϕ], is an element of B4 and is defined as follows:

[u |=3 ϕ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if [uw |=3 ϕ] = 1

0 if [uw |=3 ϕ] = 0

�P if [uw |=3 ϕ] =? ∧ [uw |=FLTL ϕ] = �
⊥P if [uw |=3 ϕ] =? ∧ [uw |=FLTL ϕ] = ⊥

3.3 Problems with RV-LTL

In the following, we consider some examples to show unsatisfactory results of
the RV-LTL semantics.
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Request/Acknowledge Properties: In [3], it has been shown that Fϕ ≡RV
ϕ∨XFϕ holds, satisfying the intuitive meaning that Fϕ holds, iff either ϕ holds
immediately or there must be a future state satisfying ϕ. If no such future state
exists, the formula evaluates to ⊥P , unless the formula evaluates to one of {1, 0},
in which case the future is not important. Similarly, we have Gϕ ≡RV ϕ ∧ XGϕ
which shows that ϕ must be satisfied in the current state and in all observable
future states. Hence, if there is no future state, the formula evaluates to �P ,
unless the formula evaluates to one of {1, 0}. Hence, the request/acknowledge
property is evaluated as follows:

G (r → Fa) ≡RV (r → Fa) ∧ XG (r → Fa)

≡RV (¬r ∨ a ∨ XFa) ∧ XG (r → Fa)

This formula evaluates to ⊥P under RV-LTL if the path contains an r but
ends before a occurs and evaluates to �P in all other cases. Thus, its se-
mantics seems to be reasonable. However, consider the following generalized
request/acknowledge property:

G (r1 → Fa1) ∧ G (r2 → Fa2) ≡RV
(¬r1 ∨ a1 ∨ XFa1) ∧ XG (r1 → Fa1) ∧ (¬r2 ∨ a2 ∨ XFa2) ∧ XG (r2 → Fa2)

According to the previous discussion, a finite word that satisfies r1 ∧ a2 on odd
positions and r2∧a1 on even positions (the others being false) will be evaluated to
⊥P in all states. This is unfortunate because the infinite word that is obtained
by an infinite concatenation of those odd/even positions clearly satisfies the
specification under the infinite semantics

Stabilization Properties: While having a semantics that evaluates to a ‘bad’
value even if we read a ‘good’ word may be acceptable, the following example
demonstrates that RV-LTL even has the undesirable property that for a non-
accepted word of a LTL property, each finite prefix may be evaluated to �P . To
this end, consider the following RV-LTL equivalence:

FGa ∨ FG¬a ≡RV F
(
a ∧ XGa

) ∨ F
(¬a ∧ XG¬a)

Since XGa is evaluated weakly and FGa may start the evaluation of XGa at an
arbitrary position (for example, the last position of the finite word read so far),
every finite word that ends with a evaluates to true. However, with the same
argument, every finite word that ends with ¬a is evaluated to true, too. Hence,
the word with a on even positions and ¬a on odd positions will be evaluated to
�P on each position. Nevertheless, the thereby constructed infinite word is not
accepted by the infinite semantics of LTL. The problem is that the evaluation
of ϕ ∨ ψ in RV-LTL does not consider which property has been responsible for
the satisfaction in previous steps and hence such an infinite shift between good
and bad prefixes for ϕ and ψ is possible. We will later see that this problem can
be fixed by an improved semantics for the disjunction.
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The Problem with Two Next-Operators: While having weak/strong next
operators may seem plausible at first sight, we argue that it leads to problems
when one is interested in an asymptotically correct semantics for LTL. One might
expect that both X and X will behave asymptotically like the original X operator.
However, this may not hold: Consider e.g. the property GXa. This property is
evaluated to ⊥ on every input at every step. However, since the formula GXa
holds on the word aω with the infinite semantics, one might expect that at
least at some point, GXa yields �, which is however not the case. Moreover, the
intuitive meaning of G should be that it is evaluated to � as long as we have
not detected that the property is violated. This intuitive interpretation does no
longer hold if we allow a X inside a G. A similar problem occurs with FXa. One
might expect that in the limit, this formula behaves like FXa. However, since
Xa is evaluated weak, it is not hard to see that this formula evaluates to �, no
matter which input is read.

To circumvent those problems, we refrain therefore from two different next
operators and evaluate the next operator depending on the context of a formula.
The intuitive idea behind our construction is that if Xϕ is in the scope of a weak
temporal operator, it is evaluated weakly, otherwise it is evaluated strongly.
Hence, for TLG formulas, we evaluate the formula always weakly in accordance
to the intuitive meaning that a safety formula should be evaluated to � as long
as nothing bad happened. Analogously, we evaluate a X operator in the scope of
a strong until operator strongly, as e.g. in F(a∧Xb). This supports the intuitive
meaning that a guarantee property should be evaluated to ⊥ as long as it has
not definitely been satisfied.

4 Asymptotic Finite Linear Temporal Logic (RV∞–LTL)

In this section, we define for each κ ∈ {G, F, Prefix, FG, GF, Streett} specialized
semantics that are intended to replace the FLTL semantics in the definition of
RV-LTL. We call the resulting logics RV∞–TLκ. For better readability of the
following definitions, we assume that the case conditions are evaluated in a top-
down manner, i.e, if the first satisfied case is used (ignoring all remaining ones,
including also possibly satisfied cases).

4.1 The Temporal Logic Classes RV∞–TLG and RV∞–TLF

We start by defining the base class RV∞–TLG:

Definition 7 (Semantics of Linear Temporal Logic RV∞–TLG). Let u =
u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of length n + 1. The truth value of
an TLG formula ϕ wrt. u, denoted with [u |=G ϕ], is an element of B3 and is
inductively defined as follows:

– [ε |=G ϕ] = �G

– [u |=G a] =

{
1 if a ∈ u(0)

0 else
, for every a ∈ V
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– [u |=G ϕ ∧ ψ] =

⎧
⎪⎨

⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ ∧ ψ
�G, if [u |=G ϕ] = �G and [u |=G ψ] = �G

0, otherwise

– [u |=G ϕ ∨ ψ] =

⎧
⎪⎨

⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ ∨ ψ
�G, if [u |=G ϕ] = �G or [u |=G ψ] = �G

0, otherwise

– [u |=G Xϕ] = [u(1...n) |=G ϕ]
– [u |=G [ϕ U ψ]] = [u |=G (ψ ∨ (ϕ ∧ X [ϕ U ψ]))]

Taking into account that the X operator is evaluated weakly in a TLG formula,
the definition of [ϕ U ψ] is exactly the fixpoint evaluation of [ϕ U ψ]. Hence, it
is not hard to see that FLTL and RV∞–LTL are evaluated in the same manner:

Proposition 1. Let ϕ be a TLG formula and u �= ε be a finite word. Let ϕ′
be obtained from ϕ by replacing each X operator by a X operator. Then, the
following holds: [u |=G ϕ] = �G iff [u |=FLTL ϕ′] = �.

Since the negations of safety properties are guarantee properties, we define:

Definition 8 (Semantics of Linear Temporal Logic RV∞–TLF). Given a
finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞, the the semantics of

RV∞–TLF is defined by [u |=F ϕ] =

⎧
⎪⎨

⎪⎩

1, if [u |=G ¬ϕ] = 0

⊥F, if [u |=G ¬ϕ] = �G

0, otherwise

Hence, the following is also obvious:

Proposition 2. Let ϕ be a TLF formula and u �= ε be a finite word. Let ϕ′
be obtained from ϕ by replacing each X operator by a X operator. Then, the
following holds: [u |=F ϕ] = 1 iff [u |=FLTL ϕ′] = �.

4.2 The Temporal Logic RV∞–TLFG

In the following, we will use u |=FG ϕ as shorthand for [u |=FG ϕ] ∈ {1,�FG} and
u �|=FG ϕ as a shorthand for [u |=FG ϕ] ∈ {0,⊥FG}
Definition 9 (Semantics of Linear Temporal Logic RV∞–TLFG). Let u =
u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of length n + 1. The truth value of
a TLFG formula ϕ wrt. u, denoted with [u |=FG ϕ], is an element of B4 and is
recursively defined as follows:

[u |=FG ϕ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ
0 if ∀w ∈ Σω : uw �|=ω ϕ
�FG

1 if ϕ ∈ TLG
2 and u |=G ϕ

[u |=FG′ ϕ] otherwise
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where we define [u |=FG′ ϕ] by: 3

– [ε |=FG′ ϕ] = ⊥FG

– [u |=FG′ ϕ ∧ ψ] =
{
�FG, if u |=FG ϕ and u |=FG ψ

⊥FG, otherwise

– [u |=FG′ ϕ∨ψ]=

⎧
⎪⎨

⎪⎩

�FG, if ∃t (u(0...t) �|=FG ϕ ∨ ψ) and
((∀nk=t+1u

(0...k) |=FG ϕ
)
or
(∀nk=t+1u

(0...k) |=FG ψ
))

⊥FG, otherwise

– [u |=FG′ [ϕ U ψ]] =

⎧
⎪⎨

⎪⎩

�FG, if ∃t (u(0...t) �|=FG [ϕ U ψ]
)
and

∃j ≤ t.u(j...n) |=FG ψ ∧ ∀k < j.u(k...n) |=FG ϕ

⊥FG, otherwise

– [u |=FG′ [ϕ U ψ]] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�FG, if
(∀k ≤ n.u(k...n) |=FG ϕ

)
(∗)

or

∃t (u(0...t) �|=FG [ϕ U ψ]
)
and

∃j ≤ t.u(j...n) |=FG ψ ∧ ∀k < j.u(k...n) |=FG ϕ

⊥FG, otherwise

Before presenting the proof of asymptotic correctness, we would like to emphasize
the strength of our definition which is the consideration of breakpoints4 in the
definition of the ∨ and the two until operators. This breakpoint is a point of time
where the currently evaluated formula has evaluated to ⊥FG for the last time. In
case of a disjunction, the evaluation of a finite word u of length n+ 1 evaluates
to �FG if and only if after a breakpoint (which can be also at position -1 where
we evaluate the empty word) one of the two formulas invariantly evaluates to
�FG. This ensures that we can not jump freely from evaluating once ϕ and once
ψ, but must instead stick to one particular subformula.

A similar trick is used in the definition of the strong until operator. Here, we
demand that the starting point j from where on ψ holds does not cross the last
breakpoint. This ensures that we can not freely jump to an arbitrary position and
restart the evaluation of ψ in each step in an RV-context. Consider for example
the formula [a U (FGb ∨ FGc)] and the following path for runtime verification: a
holds in every step while in an even step b holds and in an odd step c holds. If
we remove the t-breakpoint from the definition, we would have the unpleasant
behavior that this formula evaluates to �FG in every step which is however not
true. Having the breakpoint ensures that this can not happen.

1 The value �G is also reasonable here.
2 Notice that the case ϕ ∈ TLF is already contained in the first case, because u |=F ϕ
is defined as [u |=F ϕ] = 1, which means that once we found that a TLF is satisfied,
it is satisfied for all suffixes.

3 Notice that the case of propositional variables is handled by the RV∞–TLG evaluation.
4 Readers familiar with Miyano and Hayashi’s breakpoint construction [10] for the non-
determinization of alternating Büchi automata or the closely related determinization
procedure for co-Büchi automata [16] might notice the similarity: in their construc-
tion a set is filled with a new set of states whenever it is discovered that the co-Büchi
condition is falsified.
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4.3 Asymptotic Correctness

We will now turn to the proof of asymptotic correctness. To this end, we show
that an (infinite) word u is accepted by a TLFG formula if and only if there is
a definitive last breakpoint, called the rv-threshold, so that after this point, the
RV∞–TLFG-definition invariantly evaluates to �FG.

Lemma 1. Let u be an infinite word, and Φ be an TLFG formula. Then, the
following holds: If u |=ω Φ, there exists a rv-threshold t ∈ N such that for every
k > t we have u(0...k) |=FG Φ.

Proof. We neglect the case that at some point the whole formula evaluates to 1
since in that case the claim trivially holds. We prove this lemma by induction
on the formula length. Clearly, if the length is 1, we have a constant value and
our rv-threshold is 1 so that the proof is obtained. Assume now that the claim
holds for every formula of length l. We show that it also holds for formula of
length l + 1. To this end, we split the proof into different cases, depending on
the top-level operator Φ:

ϕ ∨ ψ: According to the definition of LTL, we must have that u |=ω ϕ or u |=ω ψ
holds. W.l.o.g. assume that u |=ω ϕ holds. Thus, we must have a rv-threshold
t for ϕ according to our induction hypothesis. Now assume that we have
infinitely often that u(0...k) �|=FG Φ holds. Thus, we must have a position
t′ > t such that u(0...k) �|=FG ϕ ∨ ψ holds. However, according to the rv-
threshold, we have that u(0...k) |=FG ϕ holds for every k > t. It is not hard
to see that this ensures that ϕ ∨ ψ is evaluated to �FG from that point on.

[ϕ U ψ]: According to the definition of LTL, there must exist a position j such
that u(j... ) |=ω ψ and for all k < j we have u(k... ) |=ω ϕ. According to
the induction hypothesis, there must exists a rv-threshold tψ and for each

k < j a rv-threshold tk such that u(0...t
′) |=FG ψ for every t′ > tψ and

u(k...t
′) |=FG ϕ for every t′ > tk. Thus, the maximum of tψ, t0 . . . tj−1 is our

desired rv-threshold.
[ϕ U ψ]: We can distinguish two cases: if u also satisfies the strong until operator,

we can use the same proof as above. For the second case, notice that ϕ is a
TLG formula (see Figure 1). Since ϕ is satisfied by u, the evaluation function
for RV∞–TLG will always be evaluated to �G. Thus, the claim holds.

Xψ: : According to the definition of LTL, we have u(1... ) |=ω ψ and we can apply
the induction hypothesis on u(1... ) to proof the claim.

ϕ ∧ ψ: According to the definition of LTL, u |=ω ϕ and u |=ω ψ holds. Thus,
according to the induction hypothesis, there must exist tϕ and tψ as rv-
thresholds. The maximum of them is the rv-threshold for ϕ ∧ ψ.

The opposite direction is shown in a similar manner:

Lemma 2. Let u be an infinite word, and Φ be an TLFG formula. Then, the
following holds: If there exists a rv-threshold t ∈ N such that for every k > t we
have u(0...k) |=FG Φ. Then, u |=ω Φ.
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Proof. Again, we neglect the case that at some point u(0...k) evaluates to 1 in a
rv-context. We prove this lemma by induction on the formula length. Clearly, if
the length is 1, we have a constant value and our rv-threshold is 1 and the proof
is obtained. Assume now that the claim holds for every formula of length l. We
show that it also holds for formula of length l+1. To this end, we split the proof
into different cases, depending on the top-level operator:

ϕ ∨ ψ: According to our assumption, we have a minimal rv-threshold t such
that for every t′ ≥ t u(0...t

′) |=FG ϕ ∨ ψ holds. Since t is minimal, we
have u(0...t−1) �|=FG ϕ ∨ ψ. According to the definition of [u |=FG′ ϕ ∨ ψ],

this means that either
(
∀t′k=tu(0...k) |=FG ϕ

)
or
(
∀t′k=tu(0...k) |=FG ψ

)
holds.

In other words, we can not freely switch between evaluating either ϕ or ψ,
but one of the two formulas must be evaluated to �FG in all places after t.
This means that we can apply the induction hypothesis and can conclude
that either u |=ω ϕ or u |=ω ψ holds. Hence, u |=ω ϕ ∨ ψ holds trivially.

[ϕ U ψ]: According to our assumption, a rv-threshold t exists such that for every

t′ ≥ t we have u(0...t
′) |=FG [ϕ U ψ]. This means that for every t′ there must

exist a jt′ ≤ t such that u(jt′ ...t
′) |=FG ψ and ∀k < jt‘.u

(k...t′) |=FG ϕ holds.
Now, notice that although we might have different jt‘ for each t

′, there can
be only finitely many of them (namely those less or equal t). Hence, we must

have a minimal j such that for every t′ > t the following holds: u(j...t
′) |=FG ψ

and ∀k < j.u(k...t
′) |=FG ϕ. Hence, according to our induction hypothesis, we

must have u(j... ) |=ω ψ and ∀k < j. u(k... ) |=ω ϕ.
[ϕ U ψ]: The first case is that for every n ∈ N and every n′ > n.u(n...n

′) |=FG ϕ.
This means that for every n ∈ N the rv-threshold for u(n... ) is one. But
this implies that we can use our induction hypothesis to show that for every
n ∈ N, we have u(n... ) |=ω ϕ. Thus u |=ω [ϕ U ψ] holds. Assume now that
this property does not hold, i. e. for some n ∈ N and some n < n′ ∈ N, we
have that u(n...n

′) �|=FG ϕ. According to the grammar of TLFG, ϕ is a TLG
formula, thus u(n...n

′) �|=G ϕ holds also. However, the safety formula of TLG
are evaluated in a way such that if they are evaluated to 0 for a finite prefix
w, they are evaluated to 0 for every suffix of w. Hence, after position n′, the
first case (*) in the RV∞–TLFG definition of [ϕ U ψ] is never again satisfied.
This means that the second condition must be satisfied from that point on
which is exactly the same as the condition used for defining [ϕ U ψ]. Hence
we can use the same proof as for [ϕ U ψ].

Xϕ, ϕ ∧ ψ: are trivial and omitted here.

Remark 1. The proof for the weak until operator [ϕ U ψ] shows why we restricted
our attention to TLFG formula: we can guarantee that ϕ is evaluated to ⊥FG

whenever a prefix is evaluated to ⊥FG only due the special syntactic requirement
that ϕ is a safety formula, something that is missing in arbitrary LTL formulas.

Remark 2. An alternative definition for the [ϕ U ψ] operator would be based on
the fixpoint iteration scheme known from translating LTL to Büchi automata:
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[u |=FG [ϕ U ψ]] := [u |=FG (ψ ∨ (ϕ ∧ X [ϕ U ψ]))]. Here, the ∨-operator is eval-
uated according to our breakpoint-definition. The two definitions are indeed
equivalent as one can check by an induction on n. Nevertheless we preferred the
one given above since it simplifies the correctness proof.

The following theorem is therefore our main result:

Theorem 1. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
we have [u∞ |=ω ϕ] iff �

∞k.u(0...k) �|=FG ϕ for every RV∞–TLFG formula ϕ.

Hence, [u∞ |=ω ϕ] iff lim
n→∞ [u(0...n) |=FG ϕ] = �FG.

4.4 The Temporal Logic RV∞–TLGF

Since TLGF is the dual class of TLFG, the following definition together with the
corresponding theorem is rather straightforward:

Definition 10 (Semantics of RV∞–TLGF).
Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞, the semantics
of RV∞–TLGF is defined by

[u |=GF ϕ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if [u |=FG ¬ϕ] = 0

�GF if [u |=FG ¬ϕ] = ⊥FG

⊥GF, if [u |=FG ¬ϕ] = �FG

0, if [u |=FG ¬ϕ] = 1

Theorem 2. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
we have [u∞ |=ω ϕ] iff ∃∞k.u(0...k) |=GF ϕ for every RV∞–TLGF formula ϕ.

Hence, [u∞ |=ω ϕ] iff lim
n→∞ [u(1...n) |=GF ϕ] �∈ {⊥GF, 0}. This means, that either

(1) no limit exists or (2) the limit exists and is neither ⊥GF nor 0. In case (1)
holds, the result of the evaluation must oscillate between the two possible truth
values, hence �GF holds infinitely often (note that 1 is a limit of the evaluation).
If (2) holds, the limit exists and is neither ⊥GF nor 0, hence either �GF must
hold infinitely often or 1 holds from a certain point on.

4.5 The Temporal Logic RV∞–TLStreett

We now consider the most expressive logic RV∞–TLStreett that is obtained from
TLStreett. Looking at the grammar of TLStreett, one sees that this logic is a positive
boolean combination of TLFG and TLGF formulas. Hence, in the following we
assume that our formula is given in conjunctive normal form, meaning that we
have a formula of the following form:

k∧

i=0

⎛

⎝
m∨

j=0

ϕi,j ∨
n∨

j=0

ψi,j

⎞

⎠
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where every ϕj ∈ TLFG and every ψj ∈ TLGF. This means that for every i we

have
(∨m

j=0 ϕi,j

)
∈ TLFG and

(∨n
j=0 ψi,j

)
∈ TLGF. Thus, we may even assume

that our formula has the form:
∧k
i=0 ϕi ∨ ψi where ϕi ∈ TLFG and ψi ∈ TLGF.

Hence, we can restrict ourself to formulae of that type, since every formula from
TLStreett can be brought into the desired form. To formally define a semantics
for these formulae, we introduce first the Streett-k class:

Definition 11. A TLStreett-k formula is a formula of the form
∧k
i=0 ϕi∨ψi, where

each ϕi ∈ TLFG and each ψi ∈ TLGF.

Restricting our attention first to TLStreett-1-formulas, a straightforward definition
for their runtime semantics is given as follows:

Definition 12 (Semantics of RV∞–TLStreett-1). Let u = u(0)u(1) . . . u(n) ∈ Σ∗

denote a finite path of length n+1. The truth value of a TLStreett-1 formula ϕ∨ψ
wrt. u, denoted with [u |=Street-1 ϕ], is defined as follows:

[u |=Street-1 ϕ ∨ ψ] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ ∨ ψ
0 if ∀w ∈ Σω : uw �|=ω ϕ ∨ ψ
�FG if [u |=FG ϕ]

�GF if [u �|=FG ϕ] and

∃t ≤ n.

(
u(0...t) |=GF ψ and

∀t ≤ t′ < n. [u |=Street-1 ϕ ∨ ψ] �= �GF

)

⊥ else

Hence, if from a certain point on the so-far read prefix invariantly evaluates to
�FG, we can be sure that the corresponding ϕ-formula from TLFG is invariantly
satisfied. If, on the other hand, this does not hold, and we have detected that at
some point t ≤ n the following holds: u(0...t) |=GF ψ and this ’good’ event has not
been registered, i. e. for all values between t and n we have [u |=Street-1 ϕ ∨ ψ] �=
�GF, then this ’good’ event must be reported in the current step. Accordingly,
if �GF holds infinitely often, ϕ need not hold, but we know from Theorem 2
that in that case ψ holds in the limit. Hence, the following theorem immediately
follows:

Theorem 3. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
the following holds for the semantics of RV∞–TLStreett-1:

[u∞ |=ω ϕ] iff
(∃∞k.[u(0...k) |=Street-1 ϕ] = �GF or
� ∃∞k.[u(0...k) |=Street-1 ϕ] �∈ {�FG, 1}

)

Hence, [u∞ |=ω ϕ] holds iff lim
n→∞ [u(0...n) |=Street-1 ϕ] �∈ {⊥, 0} holds which means

that either no limit exists (i.e., �GF holds infinitely often), or the limit is in
{1,�FG,�GF}.

Finally, we can easily generalize this result to RV∞–TLStreett-k:
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Definition 13 (Semantics of RV∞–TLStreett-k). Let u = u(0)u(1) . . . u(n) ∈ Σ∗

denote a finite path of length n + 1. The truth value of a TLStreett-k formula
∧k−1
i=0 ϕi∨ψi wrt. u, denoted with [u |=Street-k ϕ], is a truth value from the domain

(B5)
k
given by:

[u |=Street-k ϕ ∨ ψ] = [u |=Street-1 ϕ0 ∨ ψ0]× · · · × [u |=Street-1 ϕk−1 ∨ ψk−1]

5 Conclusion

In this paper, we show that the semantics for LTL on finite paths used in run-
time verification so-far have certain deficiencies, in particular, they do not always
converge to the truth values of infinite paths. Therefore, we defined a new se-
mantics for LTL on finite paths that is asymptotically correct in this sense. To
this end, we considered the temporal logic hierarchy of Manna and Pnueli [5,16]
and developed specialized semantics for each temporal logic of this hierarchy.
All classes are evaluated over a different set of truth values which leads to the
surprising result that for the most expressive logic TLStreett of the hierarchy, we
need a n-tuple of five-valued truth values where n is the number of clauses in the
conjunctive normal form of the formula. It would be interesting to investigate
whether this is unavoidable. More precisely: are there formulas in TLStreett such
that an asymptotically correct semantics will need at least 5n different truth
values? We speculate that this is the case and that this question is related to
the Rabin/Streett index of the formula.
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