
Automatic Generation of Invariants

for Circular Derivations in SUP(LA)�

Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach

Max-Planck-Institut für Informatik, Saarbrücken, Germany
Saarland University – Computer Science, Saarbrücken, Germany

{fietzke,ekruglov,weidenbach}@mpi-inf.mpg.de

Abstract. The hierarchic combination of linear arithmetic and first-
order logic with free function symbols, FOL(LA), results in a strictly
more expressive logic than its two parts. The SUP(LA) calculus can be
turned into a decision procedure for interesting fragments of FOL(LA).
For example, reachability problems for timed automata can be decided
by SUP(LA) using an appropriate translation into FOL(LA). In this pa-
per, we extend the SUP(LA) calculus with an additional inference rule,
automatically generating inductive invariants from partial SUP(LA)
derivations. The rule enables decidability of more expressive fragments,
including reachability for timed automata with unbounded integer vari-
ables. We have implemented the rule in the SPASS(LA) theorem prover
with promising results, showing that it can considerably speed up proof
search and enable termination of saturation for practically relevant
problems.

1 Introduction

One important aspect for successful development of automated reasoning calculi
for logical languages is the potential of the calculus to act as a decision pro-
cedure for known decidable classes and to be an instrument for detecting new
decidable fragments. This is because a sound and complete calculus for some
logical language that can at the same time be used as a decision procedure has a
high potential to be successfully applied in practice. The superposition calculus
has been very successful in this respect for first-order logic, e.g., [3,10,17]. This
is further illustrated by the fact that the leading first-order ATPs (E, SPASS,
Vampire) are all superposition-based.

In this paper we continue this line of work for the FOL(LA) language, the
hierarchic combination of first-order logic with linear arithmetic. The hierar-
chic superposition calculus SUP(LA) [1] is a sound calculus for FOL(LA) and
together with a sufficient completeness assumption, also complete. Complete-
ness cannot be achieved in general, because the FOL(LA) language can express
second-order properties. For example, starting with LA over the reals, the nat-
urals can be expressed in FOL(LA) [18] and it is known that the addition of a

� This work has been partly supported by the German Transregional Collaborative
Research Center SFB/TR 14 AVACS.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 197–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

198 A. Fietzke, E. Kruglov, and C. Weidenbach

single monadic predicate to the LA language already causes undecidability [15],
in general.

Nevertheless, the SUP(LA) calculus is a decision procedure for the FOL(LA)
ground case [19] and for the FOL(LA) fragment resulting from the translation
of timed automata [13]. In this paper we extend the latter result to the fragment
corresponding to the translation of timed automata extended with unbounded
integer variables. Termination of the SUP(LA) calculus on this fragment is made
possible by a new simplification technique based on the automatic generation of
inductive invariants. The invariant generation rule combines ideas from acceler-
ation for automata [16,5] with the automatic detection of infinite loops [20] in
SUP(LA) derivations.

The following example illustrates the basic idea: assume we have used the
clause x = 1 ‖ → P (x) in a derivation of x = 2 ‖ → P (x) (clauses are in
purified form: arithmetic literals to the left of ‖, first-order literals to the right;
x=1 ‖ → P (x) means ∀x(x=1 → P (x))). Depending on how it was derived, the
same sequence of inferences may be applied to the second clause, yielding a third
clause with right-hand side P (x). For instance, the second clause may have been
obtained by resolving the first one with x′=x+1 ‖ P (x) → P (x′). Then we could
also derive x=3 ‖ → P (x), x=4 ‖ → P (x) and so on. The idea of the invariant
generation rule is to detect such loops during proof search, in the form of clauses
with the same free (i.e., non-arithmetic) part (up to variable renaming), and
to determine the transformation relating their arithmetic constraints. If it is
possible to express the transitive closure of this transformation as a conjunction
of arithmetic literals, then a corresponding invariant clause is derived. In the
above example, such a clause would be k ≥ 1, x= k ‖ → P (x), where k is an
integer variable.

This paper is organized as follows: Section 2 gives some preliminary defini-
tions relating to superposition modulo linear arithmetic. Section 3 defines the
constraint induction rule in its general form, and presents a class of linear arith-
metic constraints for which it can be effectively implemented. In Section 4, we
define timed automata extended with unbounded integer variables, and we show
that SUP(LA) together with the constraint induction rule provides a decision
procedure for the corresponding reachability problem. Section 5 deals with our
implementation of the rule and shows some promising experimental results. We
end with a summary of the results and an outlook in Section 6. Detailed defini-
tions and proofs can be found in a technical report [12].

2 Preliminaries

We will use the notions and notations for hierarchic superposition modulo lin-
ear arithmetic SUP(LA) [4,1]. In SUP(LA), clauses appear in purified form
Λ ‖ Γ → Δ where Λ is a sequence of linear arithmetic literals over real and
integer variables, called the clause constraint, and Γ,Δ are sequences of free
first-order atoms, called the free part, sharing universally quantified variables
with Λ. Semantically, a clause Λ ‖ Γ → Δ is interpreted as the universal

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 199

closure of the implication (
∧
Λ ∧

∧
Γ) →

∨
Δ. A constrained empty clause

Λ ‖ � represents a contradiction if Λ is satisfiable.
We use lowercase Latin characters x, y, z to denote variables. Vectors of vari-

ables are denoted by boldface characters (x). We use the notation Λ[x] to mean
that x are the variables occurring in Λ. When x is clear from the context, we also
denote by Λ[y] the result of substituting all occurrences of variables from x in Λ
by the corresponding variables from y. Substitutions are denoted by lowercase
Greek letters (σ, τ). A substitution is called simple, if it maps every variable of
arithmetic sort to an arithmetic term.

The overall superposition calculus is based on a reduction ordering that is total
on ground atoms. In particular all ground terms of the arithmetic sort containing
only arithmetic symbols are assumed to be strictly smaller than any ground
term containing a free function symbol. For example, this can be achieved by
an LPO (lexicographic path ordering) where the arithmetic symbols are smaller
in the precedence than any free symbol. This ordering on the ground atoms is
then lifted via the usual twofold multiset extension to clauses. A ground clause
C is redundant in some clause set N , if it follows from smaller clauses in N .
Redundancy is lifted by instantiation to clauses with variables.

To keep the presentation simple, we use superposition left (ordered resolution)
the only inference rule, and subsumption as the only reduction rule. We will not
need factoring for the types of clause sets considered in this paper.

A clause C1 = Λ1 ‖ Γ1 → Δ1 subsumes a clause C2 = Λ2 ‖ Γ2 → Δ2 if there
is a substitution σ such that Γ1σ ⊆ Γ2, Δ1σ ⊆ Δ2 and ∀x∃y (Λ2 → Λ1σ) holds
in the theory of linear arithmetic, where x are the variables occurring in Λ2 and
y the variables occurring in Λ1σ but not in Λ2. Note that in theorem proving
derivations, forward subsumption (i.e. removing a newly derived clause which is
subsumed by an old clause) does not need to be strict to maintain completeness.

The ordered resolution rule is

Λ1 ‖ Γ1, A → Δ1 Λ2 ‖ Γ2 → Δ2, B

Λ3 ‖ (Γ1, Γ2 → Δ1, Δ2)σ

such that σ is the most general simple unifier of A and B; A is strictly maximal
in Γ1, A → Δ1; B is strictly maximal in Γ2 → Δ2, B.

The calculus SUP(LA) is complete for clause sets that enjoy sufficient
completeness, meaning that every ground non-arithmetic term is equal to some
arithmetic ground term. A sufficient condition for a clause set to be sufficiently
complete is the absence of function symbols ranging into the arithmetic sorts
(real or integer).

3 Constraint Induction

Given a relation R ⊆ R
2n, the composition R ◦ R is the relation such that

(R ◦ R)(x1, . . . , xn, x
′
1, . . . , x

′
n) holds if and only if there exist y1, . . . , yn such

that R(x1, . . . , xn, y1, . . . , yn) and R(y1, . . . , yn, x
′
1, . . . , x

′
n). If we define R1 =

200 A. Fietzke, E. Kruglov, and C. Weidenbach

R and Rk = Rk−1 ◦ R, then the transitive closure of R is the relation R+

such that R+(x1, . . . , xn, x
′
1, . . . , x

′
n) if and only if there exists k ≥ 1 such that

Rk(x1, . . . , xn, x
′
1, . . . , x

′
n).

If a clause in a derivation has an ancestor (i.e., a clause to which it is related
by a sequence of rule applications) with the same free part (modulo variable
renaming), then the clause can be used to derive a third clause with the same
free part, and so on. This yields a potentially infinite sequence of inferences,
where clauses differing only in the arithmetic constraint are being derived.

The idea of the invariant generation rule is to find the transformation relating
the constraints along the sequence and to compute its transitive closure. To
find the transformation, the sequence of inferences is applied to a parameterized
version of the initial clause, as shown in Figure 1. If the closure can itself be
expressed as a constraint, then we can derive a corresponding inductive invariant
clause which can be used to subsume all its instances, thereby avoiding repeated
applications of the same sequence of inference rules.

Λ0 ‖C D1 . . . Dm

Λm ‖C

. . .

(a)

�

x=p‖C[x] D1 . . . Dm

ΛΔ ‖C

. . .

(b)

� Λ0[x], Λ
k
Δ[x,x′] ‖C[x′]

(c)

Fig. 1. After a loop has been detected during proof search (a), the corresponding
inferences are replayed on a parameterized clause (b) and the inductive invariant clause
is derived (c).

The parameterized clause is of the form x1=p1, . . . , xn=pn ‖ C[x1, . . . , xn],
where pi are fresh parameters (i.e., arithmetic constants) not appearing anywhere
in the clause set, one for each arithmetic variable in the clause Λ0 ‖ C. After
the inferences leading from Λ0 ‖ C to Λm ‖ C have been performed on the
parameterized clause, a clause of the form ΛΔ ‖ C is obtained. This replaying of
inferences is always possible, because the SUP(LA) calculus does not take the
clause constraints into account when deciding which inferences to perform (the
constraints are only considered when testing for subsumption, or when checking
satisfiability of an empty clause’s constraint). Also note that the parameters pi
are introduced only for the purpose of replaying the derivation, and do never
appear in the actual clause set, thus they play no semantic role. The constraint
ΛΔ will contain variables from the free part, as well as parameters pi, which
stand for the constraint variables of the original parameterized clause1.

1 Possibly after simplification and variable elimination to get rid of variables not
occurring in C.

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 201

Example 1. Consider the inference

x=1 ‖ → P (x) x′=x+1 ‖ P (x) → P (x′)

x=2 ‖ → P (x)

from the introduction. We would now perform the inference

x=p ‖ → P (x) x′=x+1 ‖ P (x) → P (x′)

x=p+1 ‖ → P (x)

to get x = p+ 1 as ΛΔ.

If we replace the parameters by their corresponding variables, and replace the re-
maining variables by their primed versions, we obtain ΛΔ[x1, . . . , xn, x

′
1, . . . , x

′
n],

which describes a relation2 RΔ ⊆ R
2n. We write Λk

Δ for the constraint repre-
senting Rk

Δ, if it exists. This constraint will in general contain k as an addi-
tional integer variable (we chose k to be distinct from all xi, x

′
i). Note that

(Λ0[x] ∧ Λk
Δ[x,x

′, k]){k
→ 1} is equivalent to Λm[x].

Definition 2 (Constraint Induction). Let N be a clause set containing two
clauses Λ0 ‖ C,Λm ‖ C with identical free part (up to variable renaming) such
that Λm ‖ C was derived from Λ0 ‖ C using clauses D1, . . . , Dm in N . The
constraint induction rule is the inference rule

Λ0 ‖ C D1 . . . Dm Λm ‖ C

Λ0[x], Λ
k
Δ[x,x′, k] ‖ C[x′]

where ΛΔ is the constraint obtained by replaying the derivation as described
above.

Proposition 3 (Soundness of Constraint Induction). Let N be a clause
set, and assume Λ0[x], Λ

k
Δ[x,x′, k] was derived from Λ0 ‖ C,D1, . . . , Dm, Λm ‖ C

∈ N by constraint induction. Then N |= Λ0[x], Λ
k
Δ[x,x

′, k].

Proof:

C[p], D1, . . . , Dm |= ΛΔ[p,x
′] → C[x′] (1)

=⇒ D1, . . . , Dm |= (C[p] ∧ ΛΔ[p,x
′]) → C[x′] (2)

=⇒ D1, . . . , Dm |= (C[x] ∧ ΛΔ[x,x′]) → C[x′] (3)

=⇒ D1, . . . , Dm |=
(
C[x] ∧ Λk

Δ[x,x
′, k]

)
→ C[x′] (4)

=⇒ N |=
(
Λ[x] ∧ Λk

Δ[x,x
′, k]

)
→ C[x′] (5)

(1) holds by soundness of SUP(LA) and the fact that x = p ‖ C[x] is equivalent
to C[p]; (2) follows because C[p] is ground; (3) follows because the p do not

2 Some parameters and variables may not occur in ΛΔ, we may then just consider
them to be unconstrained, i.e., they can take any value in R.

202 A. Fietzke, E. Kruglov, and C. Weidenbach

occur outside of C[p] and ΛΔ[p,x
′]; (4) follows by induction on k; (5) follows

because D1, . . . , Dm ∈ N and N |= Λ[x] → C[x].

Of course, the constraint induction rule is only applicable if Λk
Δ exists and can be

effectively computed. We will now look at a class of linear arithmetic constraints
for which this is always the case. Given two relations R1 ⊆ R

2n and R2 ⊆ R
2m,

the product of R1, R2 is the relation R ⊆ R
2(m+n) such that R(x,y,x′,y′) if

and only if R1(x,x
′) and R2(y,y

′), where x = x1, . . . , xn and y = y1, . . . , ym.
If R is the product of R1, R2, then Rk(x,y,x′,y′) if and only if Rk

1(x,x
′) and

Rk
2(y,y

′). Hence we can compute the transitive closure of a product relation if
we can compute the transitive closure for each component relation.

Proposition 4. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R

2n be defined by

∧

i∈I

xi + αijxj + ai # x′
i ∧

∧

αij �=0

x′
j = 0

for I ⊆ {1, . . . , n}, αij ∈ R, αii = 0 for all 1 ≤ i ≤ n, ai ∈ R ∪ {−∞,∞} and
∈ {<,≤,≥, >}. Then Rk(x1, . . . , xn, x

′
1, . . . , x

′
n) holds if and only if

∧

i∈I

xi + αi,jxj + kai # x′
i ∧

∧

αij �=0

x′
j = 0

Proof: By induction on k.

Proposition 5. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R

2n be defined by

m∧

l=1

∑

j∈J

βljxj ≤ dl ∧
∧

j∈J

x′
j = δjxj + cj

for J ⊆ {1, . . . , n},m ≥ 1, δj ∈ {0, 1} and cj , βlj , dl ∈ R. Then Rk(x1, . . . , xn, x
′
1,

. . . , x′
n) holds for k ≥ 2 if and only if

m∧

l=1

⎛

⎝
∑

j∈J

βljxj ≤ dl ∧
∑

j∈J

βlj (δj (xj + (k − 2)cj) + cj) ≤ dl

⎞

⎠

∧
∧

j∈J

x′
j = δj (xj + (k − 1)cj) + cj

Proof: A straightforward proof using matrix operations can be found in [5].

In the following, we will apply the induction rule to constraints that describe
products of the kinds of relations described in Propositions 4 and 5. It turns out
that this is sufficient to turn SUP(LA) with constraint induction into a decision
procedure for timed automata extended with unbounded integer variables, as

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 203

long as they satisfy certain flatness properties (Section 4) and also speed up
proof search, shorten proofs and enable termination of saturation for other kinds
of problems (Section 5).

If we don’t insist on being able to express the transitive closure as a single
conjunction, then it becomes possible to compute the transitive closure of more
involved types of constraints [8,21,14,6]. For instance, if the closure can be ex-
pressed in Presburger arithmetic, we can derive several clauses that together
constitute the inductive invariant (by expressing the closure in disjunctive nor-
mal form and introducing one clause per disjunct). For the time being, we restrict
ourselves to constraints of the above form, as this already yields nice results. We
plan to investigate extensions of the rule in future work.

4 Finite Saturation of Extended Timed Automata

For a set of variables X , the sets CC(X), IG(X) and IA(X) of clock constraints
and integer guards, respectively, are defined as

CC(X) : cc ::= x ◦ c | x− y ◦ c | cc∧ cc

IG(X) : ig ::= a1x1 + · · ·+ anxn ≤ a | ig∧ ig

where x ∈ X , c ∈ N, ◦ ∈ {<,≤,=,≥, >}, and ai, a ∈ Z. The set IA(X) of integer
assignments consists of all substitutions mapping each x ∈ X to a term of the
form a or x+ a, for a ∈ Z.

Definition 6 (Extended Timed Automaton). An extended timed automa-
ton is a tuple

T = (L, l0, X, ig0, {invl}l∈L, E)

where L is a finite set of locations with initial location l0 ∈ L, X is a finite
set of variables partitioned into subsets XC , XD of real-valued clock variables
and integer-valued variables, respectively; ig0 ∈ IG(XD) describes the initial
values of the integer variables; invl ∈ CC(XC) is the invariant of location l;
E ⊆ L × CC(XC) × IG(XD) × IA(XD) × 2XC × L is a finite set of edges. An
edge (l, cc, ig, ia, Z, l′) represents a transition from location l to location l′. The
constraints cc and ig determine when the edge is enabled, and the set Z contains
the clocks to be reset to zero when taking the edge, together with the assignment
ia. If X = XC, T is a classical timed automaton [2,13].

States of an extended timed automaton are tuples (l, ν) consisting of a location
l ∈ L and a valuation ν ∈ R

X for all clocks and integer variables. The initial
states are of the form (l0, ν0) where ν0 assigns zero to all clocks and the values
of integer variables satisfy ig0. The automaton can stay in a location as long as
the clock values satisfy the location’s invariant. When the valuation of a state
satisfies the guards cc and ig of an outgoing edge, the corresponding transition
can be taken, resetting the clocks in Z and applying the assignment ia.

204 A. Fietzke, E. Kruglov, and C. Weidenbach

Let T = (L, l0, X, ig0, {invl}l∈L, E) be an extended timed automaton. The
encoding of reachability for extended timed automata is analogous to that for
classical timed automata [13], except that clauses encoding discrete transitions
now also include integer guards and assignments. We use a reachability predicate
Reach, and constant symbols l ∈ L for every location3. The vector x contains
the clock variables variables XC , z contains the integer variables XD. The clause

x=0, ig0(z) ‖ → Reach(x, z, l0).

encodes reachability of the initial states. For every location l ∈ L,

t≥0, x′=x+t, invl[x
′] ‖ Reach(x, z, l) → Reach(x′, z, l).

encodes time-reachability for location l. For a variable x and set of variables
Z, we define the substitution ρZ to be ρZ(x) = 0 if x ∈ Z, and ρZ(x) = x
otherwise, and we extend it to vectors of variables pointwise. For every edge
e = (l, cc, ig, ia, Z, l′) in E, the clause

cc[x], x′=ρZ(x), ig(z), z
′=ia(z), invl′ [x

′] ‖ Reach(x, z, l) → Reach(x′, z′, l′).

represents the discrete transition from l to l′ via e. A reachability conjecture is
a clause of the form Λ ‖ Reach(x, z, l) → .

The states described by the reachability conjecture are reachable if and only
if the empty clause can be derived from the clause set. In [13], we show how to
ensure that the positive literals of such clauses are always strictly maximal in the
clause. This guarantees that starting from the encoding of an extended timed
automaton and one (or more) reachability conjecture, only negative unit clauses
can be derived (that’s why we don’t need factoring). The inferences correspond
to a backward traversal of the automaton’s state space, starting from the states
represented by the reachability conjecture. This restriction to backward traversal
ensures termination of saturation for the encoding of classical timed automata
(without integer variables). In the case of extended timed automata, this alone
is no longer sufficient, since the assignments to the integer variables cannot be
assumed to be monotonic. Thus assignments to integer variables that occur on a
cycle may lead to non-termination of saturation, because such a cycle will induce
a loop during proof search. This loop however can be handled by the constraint
induction rule if the clock constraints and clock resets on such a cycle satisfy
certain properties.

Definition 7 (Acceleratable cycle). Let (L, l0, X, ig0, {invl}l∈L, E) be an ex-
tended timed automaton. A sequence (e0, . . . , en−1) of edges ei = (li, cci, igi, iai,
Zi, l

′
i) ∈ E is called a cycle if l′i = li+1 mod n for all 0 ≤ i < n. It is called a

simple cycle, if additionally li �= lj for all i �= j. Following [16], a simple cycle
is called acceleratable, if all invariants and guards on the cycle contain at most
a single clock variable, which is the same for all invariants and guards on the

3 For readability, we omit the additional terms ensuring maximality of right-hand sides
[13].

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 205

cycle, and this clock, say xm, is reset on all incoming edges to l0. The clock xm is
called the clock of the cycle, and l0 is called the reset location. By acceleratable
cycle, we mean an acceleratable simple cycle. By an integer cycle, we mean a
cycle where at least one edge contains an assignment to integer variables.

In [16] it is shown that for any acceleratable simple cycle, there exists an interval
[a, b] of clock values, such that [a, b] contains exactly all the possible execution
times of the cycle, independently of any path prefix. It follows that any k ≥ 1
consecutive executions of the cycle take time in [ka, kb].

Let us see what happens during saturation when a cycle (e0, . . . , en−1) is
reached. We denote by Ci

t the time-reachability clause for location li, and by
Ci

d the discrete-step clause corresponding to edge ei. Let C0 be a reachability
conjecture referring to location l0. The clause C0 can be resolved with Cn−1

d to
yield a clause C1 referring to location ln−1, which in turn can be resolved with
Cn−1

t . After 2n resolution steps, we obtain a clause C2n which again refers to
location l0, as shown in Figure 2. Since clauses C0 and C2n have the same free
part R(x, z, l0) →, the induction rule may be applied, under the condition that
replaying the derivation (as explained in Section 3) yields a constraint ΛΔ of the
required form.

l0 e0

C2n C2n-1

l1 e1

C2n-2 C2n-3

. . .
ln-1 en-1

C2 C1

l0

C0

Cn-1
dCn-1

tC1
tC0

dC0
t

Fig. 2. Backward traversal of a cycle (e0, . . . , en−1)

The parameterized version of C0 has the form x=q, z=p ‖ Reach(x, z, l0) →
where p,q are vectors of fresh parameters, one for each xi and zi, respectively.
This clause is successively resolved with the clauses Cn−1

d , Cn−1
t , . . . , C0

d , yielding
ΛΔ[p,q,x, z] ‖ Reach(x, z, l0) →. Since there are no atomic constraints contain-
ing both variables from XC and from XD, the constraint ΛΔ is of the form
Λx[p,x], Λz [q, z] and hence represents a product of two independent relations.
After renaming we obtain two constraints Λx[x,x

′] (referring only to clock vari-
ables) and Λz[z, z

′] (referring only to integer variables) which can be shown to
be of the forms required by Proposition 4 and Proposition 5, respectively, by
induction over the derivation.

Theorem 8. Let T be an extended timed automaton such that any integer cycle
is acceleratable, and any location belongs to at most one integer cycle. Let N be
a clause set containing the encoding of T and a reachability conjecture. Then N
can be finitely saturated by SUP(LA) with constraint induction.

Proof: Consider a fair derivation N = N0, N1, N2, . . . from N where Ni+1 =
Ni∪{Ci} and Ci is the non-redundant result of an inference from clauses fromNi,

206 A. Fietzke, E. Kruglov, and C. Weidenbach

and no clause in Ni subsumes Ci. Assume for contradiction that the derivation
is infinite. Since there are only finitely many locations, there must be infinitely
many clauses in the derivation referring to the same location, say l, (those are
clauses of the form Λ ‖ Reach(x, z, l) →) and hence l must lie on a cycle. If no
path from l back to itself involves any integer operations, then l can only repeat
finitely often ([13], Theorem 4.6). Hence l must lie on an integer cycle, which
by assumption is unique and acceleratable, and at least one of its locations
is a reset location, say lr. Furthermore, lr must also repeat infinitely often,
hence there is an infinite sequence Ci1 , Ci2 , . . . of clauses referring to lr. Since
the derivation is fair, we eventually apply the constraint induction rule to two
successive such clauses, say Cij and Cij+1 . Assume the rule is a applied at step
j of the derivation i.e., the resulting invariant clause is Cj . Writing Λij , Λij+1 for
the constraints of clause Cij , Cij+1 , respectively, the invariant clause has the form
Λij [x], Λ

k
Δ[x,x′, k] ‖ Reach(x′, lr) →. This clause cannot eliminated by forward

subsumption, for otherwise there would have to be a clause Λ′ ‖ Reach(x, lr) →
in Nj such that

∀x,x′, k.
(
Λij [x], Λ

k
Δ[x,x′, k] → ∃y.Λ′[x′,y]

)

would have to hold, where y are the variables of Λ′ different from x,x′, k. But
then the last premise of the constraint induction rule would also be subsumed,
because Λij+1 is equivalent to

(
Λij [x], Λ

k
Δ[x,x′, k]

)
{k
→ 1}, and so the rule could

not have been applied in the first place. It follows that the invariant clause is con-
tained in Nj+1 and all subsequent clause sets, since backward subsumption has
to be strict. The invariant clause can be resolved with the clauses corresponding
to the edges in the cycle, yielding clauses of the form Λ[x,x′, k] ‖ Reach(x′, l) →
for every location l on the cycle. Any further traversal of the cycle then yields
clauses of the form Λ[x,x′, k + 1] ‖ Reach(x′, l) →, which are subsumed, as

∀x,x′, k. (Λ[x,x′, k + 1] → ∃k′.Λ[x,x′, k′])

holds. Finally, all clauses Cij+m , m > 0, are instances of Cj (via instantiation of
k), and hence eliminated by forward subsumption, so the sequence Ci1 , Ci2 , . . .
cannot be infinite, a contradiction.

Since the encoding of extended timed automata does not introduce any func-
tion symbols ranging into the arithmetic sorts, it is sufficiently complete, and
SUP(LA) is therefore refutationally complete for such encodings. Together with
Theorem 8, this implies that SUP(LA) is a decision procedure for the reachability
problem in extended timed automata.

5 Implementation and Results

We have implemented the constraint induction rule in our SPASS(LA) theo-
rem prover [1]. SPASS(LA) currently uses Z3 [9] as a back end for constraint
solving, both for satisfiability and implication checking. Although Z3 supports

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 207

mixed real/integer constraints, it turned out that when checking implication
between two constraints both containing integer variables (as they arise in our
approach), Z3 almost always returned “unknown”. Since the implication check
is needed for subsumption and hence is ultimately the key to termination, we
decided to implement our own implication test for mixed constraints. The test
consists of a preprocessing step, which tries to eliminate all conjuncts containing
integer variables from the right-hand side of the implication, followed by a call to
Z3 with the resulting implication problem. The preprocessing works as follows:
suppose we are trying to prove the implication ∀x.Λ2 ⇒ ∃y.Λ1, where Λ1, Λ2

are constraints, x are the variables of Λ2 and y are the variables of Λ1 not oc-
curring in Λ2. Suppose there are atomic constraints φ1 ∈ Λ1, φ2 ∈ Λ2 such that
φ1 = x−

∑n
i=1 αiki # c and φ2 = x−

∑
j∈J

J⊆{1,...,n}
αjk

′
j # c+ d, where # is one

of <,≤,=,≥ or >, x is a real (or integer) variable, ki, k
′
j are integer variables

and c, d ∈ R. If d =
∑

l∈L
L⊆{1,...,n}

mlαil (where ml are integer constants ≥ 1) such

that L contains at least the indices missing from J , i.e., ({1, . . . , n} \ J) ⊆ L,
then φ2 implies ∃(k′j)j∈J .φ1: assign ml to k′l, and either kj or kj + mj to the
other k′j . In this case, we can remove φ1 from Λ1. In the implementation, we
currently only consider the case where L = {i} for some i ∈ {1, . . . , n}, and
either J = {1, . . . , n} or J = {1, . . . , n} \L, which is enough to handle all impli-
cation problems arising in our examples. Nevertheless, we are investigating the
use of other solvers that implement complete quantifier elimination for mixed
constraints.

Example 9 (Extended timed automaton). Consider the extended timed automa-
ton in Figure 3, where x1, x2 are clocks and z1, z2 are integer variables. We want
to check whether location L2 is reachable with a valuation such that z1 ≥ z2
and x2 < 12. Since x2 is never reset to zero, its value represents the total time
elapsed since first entering L1. As the cycle at L1 must be traversed four times
before z1 has overtaken z2, and each cycle traversal takes at least three time
units, such a state is not reachable.

L0 L1 L2

x1 := 0,
x2 := 0,
z1 := 0,
z2 := 10

x1≥3?

z1 := z1 + 2,
z2 := z2 − 1

x1 := 0

Fig. 3. An extended timed automaton

This problem can be encoded by the following clause set, where the last clause
is the negated conjecture:4

4 For simplicity, we use Li(. . .) instead of Reach(. . . , Li), and we also omit L0.

208 A. Fietzke, E. Kruglov, and C. Weidenbach

x1=0, x2=0, z1=0, z2= 0 ‖ →L1(x1, x2, z1, z2)
t≥0, x′

1=x1+t, x′
2=x2+t ‖ L1(x1, x2, z1, z2)→L1(x

′
1, x

′
2, z1, z2)

z′1=z′1+2, z′2=z′2−1 ‖ L1(x1, x2, z1, z2)→L2(x1, x2, z
′
1, z

′
2)

t≥0, x′
1=x1+t, x′

2=x2+t ‖ L2(x1, x2, z1, z2)→L2(x
′
1, x

′
2, z1, z2)

x′
1=0 ‖ L2(x1, x2, z1, z2)→L1(x

′
1, x2, z1, z2)

z1≥z2, x2<12 ‖ L2(x1, x2, z1, z2)→
The clause set is satisfiable, and without the constraint induction rule, SPASS(LA)
does not terminate. With constraint induction activated, the invariant clause

k≥1, x1=0, x2≥3k, z1=2k, z2=10−k ‖ → L1(x1, x2, z1, z2)

is derived as soon as the cycle has been traversed once, and is used to subsume all
other L1-clauses. SPASS(LA) terminates with the answer “completion found”5

after deriving 23 clauses.

The next example shows that the induction rule is also useful for speeding up
proof search and finding shorter proofs in the case of unsatisfiable clause sets.

Example 10 (Water tank controller). Figure 4 depicts a water tank controller [1]
monitoring the water level x in a water tank, into which water is flowing with
a constant rate cin. Whenever the water level is greater than 200, the controller
opens a valve through which water leaves the tank at a constant rate of cout.

S0

S1

S2

x > 200

x ≤ 200

x := x+ cin − cout

x := x+ cin

Fig. 4. Water tank controller

We may want to prove that, starting from an empty tank, the water level can
reach 200 + cin. This problem can be encoded by the following clause set:

x > 200 ‖ S0(x)→S1(x)
x ≤ 200 ‖ S0(x)→S2(x)

x′ = x+ cin − cout ‖ S1(x)→S0(x
′)

x′ = x+ cin ‖ S2(x)→S0(x
′)

x = 0 ‖ →S0(x)
x ≥ 201 ‖ S0(x)→

5 A completion is a satisfiable saturation of the initial clause set.

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 209

For cin = 1 and cout = 26, SPASS(LA) without constraint induction needs to
derive 1212 clauses before finding a proof of length 211. The proof consists of
repeated traversals of the S0 → S1 → S0 cycle with increasing values of x, until
x = 201 is reached.

With constraint induction activated, as soon as the clause x = 1‖ → S0(x)
has been derived from the initial clause x = 0‖ → S0(x) (using the second and
fourth clause) SPASS(LA) detects the cycle and derives the invariant clause

1 ≤ k ≤ 201, x = k ‖ → S0(x).

which is resolved with the negated conjecture, yielding the empty clause. The
proof has length 9 and SPASS(LA) finds it after deriving 13 clauses in total.

If we replace the last clause with x > 201 ‖ S0(x) →, the clause set becomes
satisfiable. Without constraint induction, SPASS(LA) now derives 1214 clauses
before answering “completion found”, whereas with constraint induction, only
23 clauses need to be derived (among them the above invariant clause).

Table 1 shows the results from the above examples, together with the total time
spent on the problem.

Table 1. Summary of experimental results

SUP(LA) SUP(LA)+ind
Problem clauses derived time clauses derived time

Extended TA sat – – 23 0.25s
Water tank unsat 1212 33s 13 0.15s
Water tank sat 1214 33s 23 0.18s

6 Conclusion

We have presented the constraint induction rule that automatically generates
inductive invariants during proof search in the context of superposition modulo
linear arithmetic. The rule applies to loops in which repeated applications of
the same sequence of inferences yield clauses which differ only in their arith-
metic constraints (their free parts being identical up to renaming of universally
quantified variables). The derived invariant summarizes these clauses by repre-
senting the transitive closure of the transformation relating the clauses in the
loop. The loop can thus be avoided, by using the invariant clause to subsumes
its instances, provided that the invariant clause is smaller in the clause ordering
(which is required to maintain completeness of the calculus). In order to find
a well-founded ordering for which this is the case, one has to ensure that the
constraint induction rule is only applied a finite number of times.

6 In principle, cin and cout don’t need to be instantiated, since the invariant computa-
tion does not care about the values of constants, but our implementation does not
yet handle constant symbols in constraints.

210 A. Fietzke, E. Kruglov, and C. Weidenbach

As evidenced by our implementation, the constraint induction rule can consid-
erably speed up proof search, enabling termination of saturation in cases where
it would otherwise diverge, and allowing shorter proofs to be found. Since the
induction rule applies to clauses with the same free part and invariants thus
only talk about the arithmetic constraints, their computation does not require
proof generalization and schematization techniques that are necessary to com-
pute invariants for the full first-order setting [20]. Nevertheless, the induction
rule significantly increases the power of the SUP(LA) calculus, making it possible
to turn it into a decision procedure for reachability in timed automata extended
with unbounded integer variables. The decidability of the reachability problem
for extended timed automata is not a new result in itself, as it can be obtained
from results on counter automata [8,7]. However, we are able to obtain the re-
sult using a general-purpose approach like superposition (which applies to full
first-order logic), extended with an induction rule that is also applicable outside
the specific automata setting.

Preliminary testing of our implementation shows that the rule enables termi-
nation of saturation and the finding of short proofs for practically interesting
problems. We are currently evaluating the use of the rule for problems from
program and protocol verification (particularly in the setting of first-order prob-
abilistic timed automata [11]) and ontology reasoning. Finally, we are working
on extending the rule to handle wider classes of constraints.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification as a
Decision Procedure for the Monadic Class with Equality. In: Mundici, D., Gottlob,
G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication
and Computing, AAECC 5(3/4), 193–212 (1994)

5. Boigelot, B., Wolper, P.: Symbolic Verification with Periodic Sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

6. Bozga, M., Iosif, R., Konečný, F.: Fast Acceleration of Ultimately Periodic Re-
lations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 227–242. Springer, Heidelberg (2010)

7. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.
Inform. 91(2), 275–303 (2009)

8. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Pres-
burger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

Automatic Generation of Invariants for Circular Derivations in SUP(LA) 211

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
vol. II, ch.25, pp. 1791–1849. Elsevier (2001)

11. Fietzke, A., Hermanns, H., Weidenbach, C.: Superposition-Based Analysis of First-
Order Probabilistic Timed Automata. In: Fermüller, C.G., Voronkov, A. (eds.)
LPAR-17. LNCS, vol. 6397, pp. 302–316. Springer, Heidelberg (2010)

12. Fietzke, A., Kruglov, E., Weidenbach, C.: Automatic generation of inductive invari-
ants by SUP(LA). Technical Report MPI-I-2012-RG1-002, Max-Planck-Institut für
Informatik (2012)

13. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed au-
tomata. In: MACIS, pp. 52–62 (2011)

14. Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications
to Broadcast Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

15. Halpern, J.Y.: Presburger arithmetic with unary predicates isΠ1
1 complete. Journal

of Symbolic Logic 56(2), 637–642 (1991)
16. Hendriks, M., Larsen, K.G.: Exact acceleration of real-time model checking. Electr.

Notes Theor. Comput. Sci. 65(6) (2002)
17. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree Automata with Equality

Constraints Modulo Equational Theories. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)

18. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

19. Kruglov, E., Weidenbach, C.: SUP(T) decides the first-order logic fragment over
ground theories. In: MACIS, pp. 126–148 (2011)

20. Peltier, N.: A General Method for Using Schematizations in Automated Deduction.
In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 578–592. Springer, Heidelberg (2001)

21. Wolper, P., Boigelot, B.: Verifying Systems with Infinite but Regular State. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg
(1998)

	Automatic Generation of Invariants for Circular Derivations in SUP(LA)
	Introduction
	Preliminaries
	Constraint Induction
	Finite Saturation of Extended Timed Automata
	Implementation and Results
	Conclusion
	References

