
Solving Language Equations and Disequations

with Applications to Disunification in
Description Logics and Monadic Set Constraints�

Franz Baader1 and Alexander Okhotin2

1 Institute for Theoretical Computer Science, TU Dresden, Germany
2 Department of Mathematics, University of Turku, Finland

Abstract. We extend previous results on the complexity of solving lan-
guage equations with one-sided concatenation and all Boolean operations
to the case where also disequations (i.e., negated equations) may occur.
To show that solvability of systems of equations and disequations is still
in ExpTime, we introduce a new type of automata working on infinite
trees, which we call looping automata with colors. As applications of
these results, we show new complexity results for disunification in the
description logic FL0 and for monadic set constraints with negation. We
believe that looping automata with colors may also turn out to be useful
in other applications.

1 Introduction

Equations with formal languages as constant parameters and unknowns are
among the basic notions of formal language theory, first introduced by Gins-
burg and Rice [9], who gave a characterization of the context-free languages by
solutions of systems of equations of the resolved form Xi = ϕi(X1, . . . , Xn).
For equations of the general form ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn) built using
union and two-sided concatenation, testing their solvability is easily shown to
be undecidable [15]. The state-of-the-art in this area as of 2007 is presented in a
survey by Kunc [11]. More recent work shows that undecidability already holds
for equations over a one-letter alphabet with concatenation as the only oper-
ation [10,12]. In contrast, solvability of language equations with concatenation
restricted to one-sided concatenation with constants can often be shown to be
decidable by encoding the problem into monadic second-order logic on infinite
trees (MSO) [16], but this usually does not yield optimal complexity results.

In logic for programming and artificial intelligence, language equations with
one-sided concatenation are, for instance, relevant in the context of monadic set
constraints and unification in description logics (DLs). Unification in DLs has
been proposed [4] as a novel inference service that can, for example, be used to
detect redundancies in ontologies. As a simple example, assume that one knowl-
edge engineer has defined the concept of “women having only daughters” by the

� Supported by DFG (BA1122/14-1) and the Academy of Finland (grant 134860).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 107–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 F. Baader and A. Okhotin

concept term Woman � ∀child.Woman. A second knowledge engineer might rep-
resent this notion in a somewhat more fine-grained way, e.g., by using the term
Female�Human in place of Woman. The concept terms Woman� ∀child.Woman
and Female�Human� ∀child.(Female�Human) are not equivalent, but they are
meant to represent the same concept. The two terms can obviously be made
equivalent by viewing the concept name Woman as a concept variable and re-
placing it in the first term by the concept term Female � Human. Unification in
DLs checks for the existence of such substitutions, and thus can be used to alert
the knowledge engineers to potential redundancies in the ontology. In [4] it was
shown that unification in the DL FL0 can be reduced to finite solvability1 of lan-
guage equations with one-sided concatenation and union, and that this problem
is in turn ExpTime-complete. In [3] it was shown that the same complexity result
holds for solvability,2 and in [5] this result was extended to language equations
with one-sided concatenation and all Boolean operations, and to other decision
problems than just solvability.

Language equations with one-sided concatenation and all Boolean operations
can also be regarded as a particular case of equations on sets of terms, known as
set constraints, which received significant attention [14] in logic for programming
since they can be used in program analysis. In fact, solvability of such language
equations corresponds to solvability of monadic set constraints, where all func-
tion symbols are at most unary. In [1] it was already shown that solvability of
monadic set constraints is an ExpTime-complete problem.

In the present paper, we extend the existing results for language equations
with one-sided concatenation and all Boolean operations to the case of finite
systems of language equations and disequations (i.e., negated equations). We will
show that solvability and finite solvability of such systems are still in ExpTime.
The motivation comes again from description logics and from set constraints.
Set constraints with negation have been investigated in several papers [8,17,2],
where it is shown that solvability in the general case is NExpTime-complete.
The exact complexity of the monadic case has, to the best of our knowledge,
not been determined yet. In description logics, it makes sense to consider not
only unification, but also disunification problems in order to prevent certain
unifiers. For example the concept term Woman�∀child.Woman also unifies with
Male�Human�∀child.(Male�Human), which could, e.g., be prevented by stating
that Woman should not become a subconcept of Male, i.e., that Woman �Male
must not be unified with Woman.

In Section 2, we formally define language equations and disequations with
one-sided concatenation and all Boolean operations, and show that their (finite)
solvability can be reduced to the existence of certain runs of a corresponding
looping tree automaton. In Section 3, we introduce looping tree automata with
colors, which can express the condition on the runs formulated in the previous
section, and then analyze the complexity of their emptiness problem. Finally,
in Section 4 we use these results to determine the complexity of testing (finite)

1 i.e., existence of a solution consisting of finite languages.
2 i.e., existence of a solution consisting of arbitrary (not necessarily finite) languages.

Solving Language Equations and Disequations 109

solvability of the systems of language (dis)equations introduced in Section 2, and
then in turn apply this result to identify the complexity of solving disunification
problems in FL0 as well as monadic set constraints with negation.

2 Language (Dis)equations With One-Sided
Concatenation

In this section, we first introduce the language (dis)equations that we want to
solve, and then we show how solvability can be reduced to a problem for looping
automata working on infinite trees.

2.1 The Problem Definition

Given a finite alphabet Σ and finitely many variables X1, . . . , Xn, the set of
language expressions is defined by induction:

– any variable Xi is a language expression;
– the empty word ε is a language expression;
– a concatenation ϕa of a language expression ϕ with a symbol a ∈ Σ is a

language expression;3

– if ϕ, ϕ′ are language expressions, then so are (ϕ ∪ ϕ′), (ϕ ∩ ϕ′) and (∼ϕ).
Given a mapping θ = {X1 �→ L1, . . . , Xn �→ Ln} of the variables to languages
L1, . . . , Ln over Σ, its extension to language expressions is defined as

– θ(Xi) := Li for all i, 1 ≤ i ≤ n;
– θ(ε) := {ε};
– θ(ϕa) := θ(ϕ)·{a} for a ∈ Σ;
– θ(ϕ∪ϕ′) := θ(ϕ)∪ θ(ϕ′), θ(ϕ∩ϕ′) := θ(ϕ)∩ θ(ϕ′), and θ(∼ϕ) := Σ∗ \ θ(ϕ).

We call such a mapping a substitution.
A language equation is of the form ϕ = ψ and a language disequation is of the

form ϕ �= ψ, where ϕ, ψ are language expressions. The substitution θ solves the
equation ϕ = ψ (the disequation ϕ �= ψ) iff θ(ϕ) = θ(ψ) (θ(ϕ) �= θ(ψ)). We are
interested in solvability of finite systems of language equations and disequations,
where a substitution θ solves such a system iff it solves every (dis)equation in the
system. Such a solution is called finite iff the languages L1 = θ(X1), . . . , Ln =
θ(Xn) are finite.

Using the fact that, for any sets M1,M2, we have M1 = M2 iff (M1 \M2) ∪
(M2 \M1) = ∅ and M1 = ∅ = M2 iff M1 ∪M2 = ∅, we can transform a given
finite system of language equations and disequations into an equivalent one (i.e.,
one with the same set of solutions) of the form

ϕ = ∅, ψ1 �= ∅, . . . , ψk �= ∅. (1)

In order to test such a system for (finite) solvability, we translate it into a looping
tree automaton.
3 Note that the concatenation is one-sided in the sense that constants (a ∈ Σ) are
only concatenated from the right to expressions.

110 F. Baader and A. Okhotin

2.2 Translation into Looping Tree Automata

Given a ranked alphabet Γ , where every symbol has a nonzero rank, infinite trees
over Γ are defined in the usual way, that is, every node in the tree is labeled
with an element f ∈ Γ and has as many successor nodes as is the rank of f .
A looping tree automaton A = (Q,Γ,Q0, Δ) consists of a finite set of states Q,
a ranked alphabet Γ , a set of initial states Q0 ⊆ Q, and a transition function
Δ : Q × Γ → 2Q

∗
that maps each pair (q, f) to a subset of Qk, where k is the

rank of f . A run r of A on a tree t labels the nodes of t with elements of Q,
such that the root is labeled with q0 ∈ Q0, and the labels respect the transition
function, that is, if a node v has label t(v) in t and label r(v) in r, then the tuple
(q1, . . . , qk) labeling the successors of v in r must belong to Δ(q, t(v)). The tree t
is accepted by A if there is a run of A on t. The language accepted by the looping
tree automaton A is defined as

L(A) := {t | t is an infinite tree over Γ that is accepted by A}.
It is well-known that the non-emptiness problem for looping tree automata, that
is, the question whether, given such an automaton A, the accepted language
L(A) is non-empty, is decidable in linear time [7].

When reducing a finite system of language (dis)equations of the form (1) to a
looping tree automaton, we actually consider a very restricted case of looping tree
automata. Assume that the alphabet used in the system is Σ = {a1, . . . , am}.
Then we restrict our attention to a ranked alphabet Γ containing a single symbol
γ of rankm. Thus, there is only one infinite tree, and the labeling of its nodes by
γ can basically be ignored. Every node in this tree can be uniquely represented
by a word w ∈ Σ∗, where each symbol ai selects the ith successor of a node.
Consequently, any run on this tree of a looping tree automaton with set of states
Q can be represented as a mapping from Σ∗ to Q.

Given a finite system of language (dis)equations of the form (1), let Φ denote
the set of all subexpressions of ϕ, ψ1, . . . , ψk. We assume that ε,X1, . . . , Xn ∈ Φ
(otherwise, we simply add them). In [5] we have shown how to construct a looping
tree automaton A with the set of states Q := 2Φ, and with a 1–1-correspondence
between runs of A and substitutions. To be more precise, given a run r : Σ∗ → Q
of A, the corresponding substitution θr = {X1 �→ Lr

1, . . . , Xn �→ Lr
n} is obtained

by defining
Lr
i := {w ∈ Σ∗ | Xi ∈ r(w)}.

Conversely, given a substitution θ = {X1 �→ L1, . . . , Xn �→ Ln}, the correspond-
ing run rθ is

rθ(w) := {ξ ∈ Φ | w ∈ θ(ξ)}.
Lemma 1 ([5]). The mapping of runs to substitutions introduced above is a
bijection, and the mapping of substitutions to runs is its inverse.

How do runs that correspond to solutions look like? Given a substitution θ, the
corresponding run rθ satisfies

ξ ∈ rθ(w) iff w ∈ θ(ξ)

Solving Language Equations and Disequations 111

for all ξ ∈ Φ. Recall that our system is of the form (1) and that ϕ, ψ1, . . . , ψk

belong to Φ. Thus, θ solves the equation ϕ = ∅ iff ϕ /∈ rθ(w) for all w ∈ Σ∗,
i.e., the run does not use any states containing ϕ. Consequently, if we remove
from A all states containing ϕ, then we obtain an automaton whose runs are in a
1–1-correspondence with the solutions of ϕ = ∅. Let us call the resulting looping
tree automaton Aϕ. Obviously, the size of Aϕ is exponential in the size of the
input system of language (dis)equations, and this automaton can be constructed
in exponential time. To decide solvability of the equation ϕ = ∅ it is enough to
test whether Aϕ has a run, which can be done using the (linear-time) emptiness
test for looping tree automata.

However, some of the runs of Aϕ may correspond to substitutions that do not
solve the disequations. If θ solves the disequation ψi �= ∅, then there is a w ∈ Σ∗

such that w ∈ θ(ψi), which is equivalent to ψi ∈ rθ(w).

Lemma 2. A run r of Aϕ corresponds to a solution of the whole system (1) iff
for every i, 1 ≤ i ≤ k, there is a word w ∈ Σ∗ such that ψi ∈ rθ(w).

If we view the indices 1, . . . , k as colors and assign to each state q of Aϕ the color
set κ(q) := {i | ψi ∈ q}, then the condition in the lemma can be reformulated as
follows: we are looking for runs in which each color occurs in the color set of at
least one state. We will show in the next section how one can check whether a
run satisfying such an additional “color condition” exists.

Finiteness of a solution can also easily be expressed by a condition on runs. In
fact, since we have w ∈ θ(Xi) iff Xi ∈ rθ(w), we need to look for runs in which
the variables Xi occur only finitely often. Let us call a state q of Aϕ a variable
state if Xi ∈ q for some i, 1 ≤ i ≤ n.

Lemma 3. A run r of Aϕ corresponds to a finite solution of ϕ = ∅ iff it
contains only finitely many variable states, i.e., the set {w ∈ Σ∗ | r(w) is a
variable state} is finite.

3 Looping Tree Automata with Colors

In this section, we first introduce a new type of automata that can express the
“color condition” caused by disequations, and then analyze the complexity of
the non-emptiness problem for these automata.

Definition 1. A looping tree automaton with colors is of the form A = (Q,Γ,
Q0, Δ,K, κ), where A = (Q,Γ,Q0, Δ) is a looping tree automaton, K is a finite
set (of colors), and κ : Q→ 2K assigns to every state q a set of colors κ(q) ⊆ K.

A run of A = (Q,Γ,Q0, Δ,K, κ) on a tree t is a run of the underlying looping
tree automaton (Q,Γ,Q0, Δ) on t. The set κ(r) of colors of the run r is defined
as

κ(r) := {ν ∈ K | there is a node v in t with ν ∈ κ(r(v))}.
The run r satisfies the color condition if K = κ(r). The tree t is accepted by the
looping tree automaton with colors A if there is a run of A on t that satisfies
the color condition. The language L(A) accepted by the looping tree automaton
with colors A is the set of all trees accepted by A.

112 F. Baader and A. Okhotin

3.1 Decidability of the Emptiness Problem

In order to show decidability of the non-emptiness problem for looping tree
automata with colors, we reduce it to the non-emptiness problem for Büchi
tree automata. A Büchi tree automaton A = (Q,Γ,Q0, Δ, F) is a looping tree
automaton that additionally is equipped with a set F of final states. A run r
of this automaton on a tree t satisfies the Büchi acceptance condition if, on
every infinite path through the tree, infinitely many nodes are labeled with final
states. The tree t is accepted by the Büchi tree automaton A if there is a run of
A on t that satisfies the Büchi acceptance condition. Again, the language L(A)
accepted by the Büchi tree automaton A is the set of all trees accepted by A. It
is well-known that the emptiness problem for Büchi tree automata is decidable
in quadratic time [18].

Let A = (Q,Γ,Q0, Δ,K, κ) be a looping tree automaton with colors. The cor-
responding Büchi tree automaton BA = (Q′, Γ,Q′

0, Δ
′, F) is defined as follows:

– Q′ := Q× 2K ;
– Q′

0 := {(q,K) | q ∈ Q0};
– for q ∈ Q, L ⊆ K, and f ∈ Γ of arity k we define

Δ′((q, L), f) := {((q1, L1), . . . , (qk, Lk)) | (q1, . . . , qk) ∈ Δ(q, f), L \ κ(q) is
the union of disjoint sets L1, . . . , Lk};

– F := Q× {∅}.
The automaton BA simulates A in the first components of its states. The second
component guesses in which subtree the still required colors are to be found.
The Büchi acceptance condition ensures that only runs where these guesses are
correct are accepting runs.

Proposition 1. L(A) = L(BA).

Proof. First, assume that r is a run of A on t that satisfies the color condition,
i.e., κ(r) = K. For each color ν ∈ K, select a node vν of t such that ν ∈ κ(r(vν))
and vν has minimal distance from the root, i.e., no node u in t strictly above
vν satisfies ν ∈ κ(r(u)). We now construct a run of BA on t by adding to r the
second components of the states of BA. Consider an arbitrary node v in t. We
assign to this node the color set

λ(v) := {ν ∈ K | vν = v or vν lies below v}.
The mapping r′ from the nodes of t to the states of BA is defined as r′(v) =
(r(v), λ(v)). We claim that this mapping is a run of BA on t that satisfies the
Büchi acceptance condition.

To show that r′ is indeed a run of BA, consider an arbitrary node v of t. Let
v1, . . . , vk be the successor nodes of v. We must show that ((r(v), λ(v)), t(v)) →
((r(v1), λ(v1)), . . . , (r(vk), λ(vk))) is a valid transition of BA. Since r is a run of
A, we have (r(v1), . . . , r(vk)) ∈ Δ(r(v), t(v)), and thus it is sufficient to show

Solving Language Equations and Disequations 113

that λ(v) \κ(r(v)) is the disjoint union of λ(v1), . . . , λ(vk). Pairwise disjointness
of the sets λ(v1), . . . , λ(vk) is an immediate consequence of the fact that we have
chosen only one node vν for each color ν, and such a node can belong only to
one of the successor subtrees of v. To show that

λ(v) \ κ(r(v)) = λ(v1) ∪ . . . ∪ λ(vk),

first observe that ν ∈ λ(vi) means that vν = vi or vν lies below vi. Thus, vν lies
below v, which shows that ν ∈ λ(v). Since vν was chosen so that it has minimal
distance from the root, ν ∈ κ(r(v)) is not possible. Thus, we have shown that
ν ∈ λ(vi) implies ν ∈ λ(v) \ κ(r(v)). Conversely, assume that ν ∈ λ(v) \ κ(r(v)).
Then ν ∈ λ(v) means that vν = v or vν lies below v. However, ν /∈ κ(r(v))
shows that the first option is not possible. Consequently, vν belongs to one of
the subtrees below v, which yields ν ∈ λ(vi) for some i, 1 ≤ i ≤ k.

To show that r′ satisfies the Büchi acceptance condition, consider the maximal
distance of the color nodes vν for ν ∈ K from the root. Since K is finite, this
maximal distance is a well-defined natural number d. Any node v that has a
larger distance from the root than d cannot be equal to or have below itself any
of the color nodes. Consequently, λ(v) = ∅. This shows that, in any infinite path
in t, infinitely many nodes are labeled by r′ with a state of BA whose second
component is ∅. Since these are exactly the final states of BA, this shows that
r′ satisfies the Büchi acceptance condition. Thus, we have shown that any tree
accepted by A is also accepted by BA, i.e., L(A) ⊆ L(BA).

To show that the inclusion in the other direction also holds, assume that r′

is a run of BA on t that satisfies the Büchi acceptance condition. Let r be the
mapping from the nodes of t to Q that is obtained from r′ by disregarding the
second components of states, i.e., if r′(v) = (q, L) , then r(v) = q. Obviously, r is
a run of A. It remains to show that it satisfies the color condition. Assume that
there is a color ν ∈ K that does not occur in κ(r). We claim that this implies
that there is an infinite path in t satisfying the following property: (∗) for any
node v in this path, the second component of r′(v) contains ν. Since this would
imply that r′ does not satisfy the Büchi acceptance condition, this then shows
that such a color cannot exist, i.e., K = κ(r).

To show the existence of an infinite path satisfying property (∗), it is sufficient
to show the following: if v is a node in t such that the second component L of
r′(v) contains ν, then there is a successor node vi of v such that the second
component Li of r

′(vi) contains ν. The existence of such a successor node is an
immediate consequence of the definition of the transition relation of BA and the
fact that ν cannot be an element of κ(r(v)) since we have assumed ν �∈ κ(r). ��

As an immediate consequence of this proposition we have that the non-emptiness
problem for looping tree automata with colors is decidable: given a looping tree
automaton with colors A, we can construct BA, and then use the quadratic non-
emptiness test for Büchi automata. Regarding the complexity of this decision
procedure, we can observe that the size of BA is polynomial in the number of
states of A, but exponential in the number of colors.

114 F. Baader and A. Okhotin

Theorem 1. The non-emptiness problem for looping tree automata with colors
can be decided in time polynomial in the number of states, but exponential in the
number of colors.

The non-emptiness for looping tree automata with colors can actually also be
reduced to the one for looping tree automata without colors. However, this re-
duction is not language-preserving, but only emptiness-preserving. In fact, it is
easy to show that looping tree automata with colors are more expressive than
looping tree automata (see [6] for proofs of these results).

3.2 The Exact Complexity of the Emptiness Problem

If we consider the complexity of the emptiness test described in the previous
subsection w.r.t. the overall size of the input automaton, then the test yields an
ExpTime upper bound for the emptiness problem. In this section, we show that
the problem is actually NP-complete.

We show NP-hardness of the non-emptiness problem for looping tree automata
with colors by a simple reduction from SAT, the satisfiability problem for sets
of clauses in propositional logic. Let P = {p1, . . . , pn} be a set of propositional
variables, and L = P ∪ {¬p1, . . . ,¬pn} the corresponding set of literals. Re-
call that a clause c is a set of literals {�1, . . . , �m}, which stands for the dis-
junction �1 ∨ . . . ∨ �m of these literals. A set of clauses C = {c1, . . . , cp} is
read conjunctively, i.e., a propositional valuation satisfies C iff it satisfies all
clauses in C. Given a set of clauses C = {c1, . . . , cp} built using literals from
L = P ∪ {¬p1, . . . ,¬pn}, we define the corresponding looping tree automaton
with colors AC = (Q,Γ,Q0, Δ,K, κ) as follows:

– Γ := {f} where f has arity 1;
– Q := L ∪ {qloop};
– Q0 := {p1,¬p1};
– for 1 ≤ i < n and � ∈ {pi,¬pi} we define Δ(�, f) := {pi+1,¬pi+1};
– for � ∈ {pn,¬pn, qloop} we define Δ(�, f) := {qloop};
– K := C;
– κ(�) := {c ∈ C | � ∈ c} for � ∈ L and κ(qloop) := ∅.

Obviously, the size of AC is polynomial in the size of L and C.
A run r ofAC on the unique infinite tree over Γ contains, for every i, 1 ≤ i ≤ n,

either pi or ¬pi, i.e., it determines a propositional valuation. If this run satisfies
the color condition, then every clause c belongs to κ(r), i.e., there is a literal
� that occurs in r (i.e., � is true in the valuation determined by r) and that is
contained in c. This shows that runs satisfying the color condition determine
valuations that satisfy all clauses in C. Conversely, a propositional valuation
determines a unique run r, by choosing for every i the literal that is true in this
valuation. If the valuation satisfies C, then for each clause c one of its literals
is true, and thus occurs in r. Consequently, each clause occurs in the color set
κ(r), which shows that r satisfies the color condition. Therefore, the clause set
C is satisfiable iff L(AC) �= ∅.

Solving Language Equations and Disequations 115

Since the satisfiability problem for sets of propositional clauses is NP-hard,
this shows that the same is true for the non-emptiness problem for looping tree
automata with colors.

Proposition 2. The non-emptiness problem for looping tree automata with col-
ors is NP-hard.

To show that the non-emptiness problem for looping tree automata with colors
is in NP we consider the Büchi tree automaton constructed in the previous
subsection. But first, we eliminate all states in the given automaton that do not
occur in any run: these states can be identified in polynomial time using the
emptiness test for looping tree automata [7]. The resulting automaton has the
same set of runs on any tree, and thus also accepts the same language.

Let us now assume that all states of the looping tree automaton with colors
A = (Q,Γ,Q0, Δ,K, κ) occur in some run, and that the set of colors K is non-
empty.4 Let BA = (Q′, Γ,Q′

0, Δ
′, F) be the Büchi automaton constructed from

A in the previous section. Call a transition ((q, L), f) → ((q1, L1), . . . , (qk, Lk))
decreasing if |L| > |Li| holds for all i, 1 ≤ i ≤ k. Otherwise, the transition
is called non-decreasing. The following lemma is an easy consequence of the
definition of Δ′.

Lemma 4. If ((q, L), f) → ((q1, L1), . . . , (qk, Lk)) is non-decreasing, then κ(q)∩
L = ∅ and there is an i, 1 ≤ i ≤ k, such that Li = L and Lj = ∅ for all j �= i.

Now, assume that r is a run of BA satisfying the Büchi acceptance condition.
This run starts with an initial state (q0,K) ∈ Q′

0 = Q0 × {K}. If the first
transition that is applied is a non-decreasing transition, then there is exactly one
successor node n1 of the root to which r assigns a state with K �= ∅ as second
component, whereas all the other nodes are assigned states with empty second
components (i.e., final states). If another non-decreasing transition is applied to
n1, then there is exactly one successor node of n1 to which r assigns a state
with K �= ∅ as second component, etc. Since r satisfies the Büchi acceptance
condition, after a finite number of non-decreasing steps we reach a node v to
which a decreasing transition is applied. Let this decreasing transition be of the
form ((q,K),) → ((q1, L1), . . . , (qk, Lk)) (where here and in the following, the
alphabet symbol from Γ is irrelevant). Since the transition is decreasing, we have
|K| > |Li| for all i, 1 ≤ i ≤ k. Let v1, . . . , vk be the successor nodes of v, and
consider all vi such that Li �= ∅. We can now apply the same analysis as for the
root and K to the nodes vi and Li �= ∅, i.e., we follow a chain of non-decreasing
transitions that reproduce Li until we find the next decreasing transition. This
can be done until all color sets are empty. Basically, this construction yields a
finite tree of decreasing transitions satisfying certain easy to check properties (see
Definition 2 below). Our NP-algorithm guesses such a tree and checks whether
the required properties are satisfied. Before we can formally define the relevant
properties of this tree, we need to introduce one more notation.

4 If K = ∅, then A is a normal looping tree automaton, for which the non-emptiness
problem is decidable in polynomial time.

116 F. Baader and A. Okhotin

Let L ⊆ K be a non-empty set of colors and let q, q′ be states in Q. We say that
q′ is directly L-reachable from q if there is a transition (q,) → (q1, . . . , qk) in Δ
such that q′ = qi for some i, 1 ≤ i ≤ k, and L∩ κ(q) = ∅. Note that this implies
that there is a non-decreasing transition ((q, L),) → ((q1, L1), . . . , (qk, Lk)) with
Li = L and Lj = ∅ for j �= i in the transition relation Δ′ of BA. We say that q′

is L-reachable from q if there is a sequence of states p0, . . . , p� (� ≥ 0) such that
q = p0, q

′ = p�, and pi+1 is directly L-reachable from pi for all i, 0 ≤ i < �.

Definition 2. Given a looping tree automaton with colors A and the correspond-
ing Büchi tree automaton BA, a dt-tree for BA is a finite tree T whose nodes
are decreasing transitions of BA such that the following properties are satisfied:

– the root of T is of the form ((q,K),) → ((q1, L1), . . . , (qk, Lk)) such that q
is K-reachable from some initial state of A;

– if ((q, L),) → ((q1, L1), . . . , (qk, Lk)) is a node in T and i1, . . . , i� are all
the indices i with Li �= ∅, then this node has � successor nodes of the form
((q′ij , Lij),) → · · · such that q′ij is Lij -reachable from qij for j = 1, . . . , �.

Note that the leaves of a dt-tree are labeled with transitions ((q, L),) →
((q1, L1), . . . , (qk, Lk)) for which L1 = . . . = Lk = ∅.

Lemma 5. We have L(BA) �= ∅ iff there exists a dt-tree for BA.

The lemma, whose proof can be found in [6], shows that it is enough to design
an algorithm that checks for the existence of a dt-tree. For this to be possible in
non-deterministic polynomial time, we need to know that the size of dt-trees is
polynomial in the size of A. We can actually show the following linear bound in
the number of colors.

Lemma 6. The number of nodes of a dt-tree is bounded by 2·|K|.
Proof. We call a decreasing transition ((q, L),) → ((q1, L1), . . . , (qk, Lk)) re-
moving if L ∩ κ(q) �= ∅ and branching otherwise. Note that, for a branching
transition ((q, L),) → ((q1, L1), . . . , (qk, Lk)), there must be indices i �= j such
that Li and Lj are non-empty.

In a dt-tree, for every color there is exactly one transition removing it, and
every removing transition removes at least one color. Consequently, a dt-tree can
contain at most |K| removing transitions. Since decreasing transitions that are
leaves in a dt-tree are necessarily removing, this also shows that the number of
leaves of a dt-tree is bounded by |K|.

Any branching transition increases the number of leaves by at least one, which
shows that a dt-tree can contain at most |K| − 1 branching transitions. Since
every decreasing transition is either removing or branching, this completes the
proof of the lemma. ��
Together with Lemma 5, this lemma yields the desired NP upper bound (see [6]
for more details). Given the NP-hardness result of Proposition 2, we thus have
determined the exact worst-case complexity of the non-emptiness problem.

Theorem 2. The non-emptiness problem for looping tree automata with colors
is NP-complete.

Solving Language Equations and Disequations 117

4 Applying the Results

We will first show that the results obtained so far allow us to determine the exact
complexity of (finite) solvability of finite systems of language (dis)equations with
one-sided concatenation.

Proposition 3. For a given finite system of language (dis)equations of the form
(1), solvability and finite solvability are decidable in ExpTime.

Proof. Let Aφ = (Q,Γ,Q0, Δ) be the looping tree automaton constructed from
the system (1) in Section 2.2, and define K := {1, . . . , k} and κ(q) := {i ∈ K |
ψi ∈ q} for all q ∈ Q. According to Lemma 2, the system (1) has a solution
iff the looping tree automaton with colors A = (Q,Γ,Q0, Δ,K, κ) has a run
satisfying the color condition, i.e., accepts a non-empty language. As shown in
the previous section, from A we can construct a Büchi automaton BA such that
L(A) = L(BA) and the size of BA is polynomial in the number of states, but
exponential in the number of colors of A. Since the number of states of A is
exponential in the size of the system (1), but the number of colors is linear in
that size, the size of BA is exponential in the size of the system (1). As the
emptiness problem for Büchi automata can be solved in polynomial time, this
yields the desired ExpTime upper bound for solvability.

For finite solvability, we also must take the condition formulated in Lemma 3
into account, i.e., we are looking for runs of BA such that states of BA whose first
components are variable states of A occur only finitely often. This condition can
easily be expressed by modifying the Büchi automaton BA, as described in a more
general setting in the proof of the next lemma. Since the new Büchi automaton
constructed in that proof is linear in the size of the original automaton, this
yields the desired ExpTime upper bound for finite solvability. ��
Lemma 7. Let B = (Q,Γ,Q0, Δ, F) be a Büchi automaton and P ⊆ Q. Then
we can construct in linear time a Büchi automaton B′ = (Q′, Γ,Q′

0, Δ
′, F ′) such

that L(B′) = {t | there is a run of B on t that contains only finitely many states
from P}.
Proof. We define Q′ := Q×{1}∪(Q\P)×{0},Q′

0 = Q0×{1}, F ′ := (F \P)×{0},
and

Δ′((q, 1), γ) := {((q1, i1), . . . , (qk, ik)) | (q1, . . . , qk) ∈ Δ(q, γ),
ij = 1 if qj ∈ P,

ij ∈ {0, 1} if qj ∈ Q \ P },
Δ′((q, 0), γ) := {((q1, 0), . . . , (qk, 0)) | (q1, . . . , qk) ∈ Δ(q, γ),

q1, . . . , qk �∈ P }.
Basically, this Büchi automaton guesses (by decreasing the second component of
a state to 0) that from now on only states from Q \P will be seen. In fact, once
the second component is 0, it stays 0 in all successor states, and only states from
Q\P are paired with 0. Since F ′ contains only states with second component 0,
this enforces that on every path eventually only states with second component 0

118 F. Baader and A. Okhotin

(and thus first component in Q \ P) occur. By König’s lemma, this implies that
a run of B′ satisfying the Büchi acceptance condition contains only finitely many
states with second component 1, and thus only finitely many states whose first
component belongs to P . ��
Since (finite) solvability of language equations that are simpler than the ones
considered here are ExpTime-hard [4,3], we thus have determined the exact
complexity of (finite) solvability of our systems of language (dis)equations.

Theorem 3. The problems of deciding solvability and finite solvability of finite
systems of language (dis)equations of the form (1) are ExpTime-complete.

4.1 Disunification in FL0

Unification in the description logic FL0 has been investigated in detail in [4]. In
particular, it is shown there that solvability of FL0-unification problems is an
ExpTime-complete problem. The ExpTime upper bound is based on a reduction
to finite solvability of a restricted form of language equations with one-sided
concatenation. In this subsection, we use Theorem 3 to show that this upper
bound also holds for FL0-disunification problems.

Due to the space restriction, we cannot recall syntax and semantics of the
description logic (DL) FL0 and the exact definition of unification in FL0 here
(they can be found in [4] and in [6]). For our purposes, it is enough to recall
on an abstract level how such unification problems are translated into language
equations. The syntax of FL0 determines what kind of concept terms one can
build from given finite sets NC of concept names and NR of role names, and
the semantics is based on interpretations I, which assign sets CI to concept
terms C. Two concept terms C,D are equivalent (C ≡ D) iff CI = DI for
every interpretation I. An FL0-unification problem is a finite set of equivalences
C ≡? D, where C,D are FL0-concept patterns, i.e., FL0-concept terms with
variables. Substitutions replace concept variables by concept terms. A unifier σ
of a given unification problem is a substitution that solves all its equivalences,
i.e., satisfies σ(C) ≡ σ(D) for all equivalences C ≡? D in the problem.

As shown in [4], every unification problem can be transformed in linear time
into an equivalent one consisting of a single equation C0 ≡? D0. This equation
can then be transformed into a system of language equations, with one language
equation EC0,D0(A) for every concept name A ∈ NC .

5 The alphabet of these
language equations is the set NR of role names, and the variables occurring in
EC0,D0(A) are renamed copies XA of the variables X occurring in the patterns
C0, D0. In particular, this implies that the equations EC0,D0(A) do not share
variables, and thus can be solved independently from each other.

5 These equations are basically language equations with one-sided concatenation, as
introduced in the present paper, but with concatenation of constants from the left
rather than from the right. However, one can transform them into equations with
concatenation of constants from the right, by reversing all concatenations [4]. We
assume from now on that the equations EC0,D0(A) are already of this form.

Solving Language Equations and Disequations 119

Lemma 8 ([4]). The equivalence C0 ≡? D0 has a unifier iff for all concept
names A ∈ NC , the language equations EC0,D0(A) have finite solutions.

For disunification, we additionally consider finitely many disequivalences
Ci �≡? Di for i = 1, . . . , k. A substitution σ solves such a disequivalence iff
σ(Ci) �≡ σ(Di). Disequivalences can now be translated into language disequa-
tions DCi,Di(A), which are defined like ECi,Di(A), with the only difference that
equality = is replaced by inequality �=. For a disequivalence it is enough to solve
one of the associated language disequations. The following can be shown by a
simple adaptation of the proof of Lemma 8 in [4].

Lemma 9. The disunification problem {C0 ≡? D0, C1 �≡? D1, . . . , Ck �≡? Dk}
has a solution iff for every A ∈ NC, there is a substitution θA such that

– θA(XA) is finite for all A ∈ NC and all variables X occurring in the problem;
– θA solves the language equation EC0,D0(A) for all A ∈ NC ;
– for every index i ∈ {1, . . . , k} there is a concept name A ∈ NC such that θA

solves the language disequation DCi,Di(A).

In order to take care of the last condition of the lemma, we consider functions
f : {1, . . . , k} → NC . Given such a function f , we define, for each A ∈ NC , the
system of language (dis)equations DEf (A) as

DEf (A) := {EC0,D0(A)} ∪ {DCi,Di(A) | f(i) = A}.
The following theorem is then an immediate consequence of Lemma 9.

Theorem 4. The disunification problem {C0 ≡? D0, C1 �≡? D1, . . . , Ck �≡? Dk}
has a solution iff there is a function f : {1, . . . , k} → NC such that, for every
concept names A ∈ NC, the system of language (dis)equations DEf (A) has a
finite solution.

Since there are exponentially many functions f : {1, . . . , k} → NC and finite
solvability of each system of language (dis)equations DEf (A) can be tested in
exponential time by Theorem 3, this yields an overall exponential time complex-
ity. ExpTime-hardness already holds for the special case of unification.

Corollary 1. Solvability of FL0-disunification problems is ExpTime-complete.

4.2 Monadic Set Constraints

As already mentioned in [3] and [5], there is a close connection between language
equations with one-sided concatenation and monadic set constraints, i.e., set con-
straints where all function symbols are unary or nullary. For the case of set con-
straints without negation (i.e., where only inclusions between sets are allowed),
it has been known for a long time [1] that the unrestricted case is NExpTime-
complete and the monadic one (with at least two unary symbols and at least one
nullary symbol) is ExpTime-complete. For the case of set constraints with nega-
tion (i.e., where inclusions and negated inclusions between sets are allowed),

120 F. Baader and A. Okhotin

NExpTime-completeness for the unrestricted case has been shown by several au-
thors [8,17,2], but to the best of our knowledge, the monadic case has not been
investigated.

Because of the space constraints, we cannot formally introduce monadic set
constraints and their translation into language equations here, but it should be
noted that this translation is quite obvious (see [6] for details). In fact, nullary
and unary function symbols correspond to the elements of the alphabet and ap-
plication of unary functions to concatenation. To be more precise, using postfix
notation, the term f1(f2(· · · fk(a) · · ·)) can be written as a word afk . . . f1. This
way, sets of terms can be translated into sets of words, where each word starts
with a constant and is followed by a (possibly empty) sequence of unary func-
tion symbols. Since they basically have the same syntax rules, positive set con-
straints can be translated into language equations and negative set constraints
into language disequations, so that solutions of the set constraints translate into
solutions of the language (dis)equations, as sketched above. In order to translate
solutions of the languages (dis)equations back to solutions of the sets constraints,
one must make sure that every word occurring in such a solution starts with a
constant and is followed by a sequence of unary function symbols. This restriction
can easily be enforced by adding appropriate equations. This shows that solvabil-
ity of finite systems of monadic set constraints with negation can be reduced in
polynomial time to solvability of finite systems of language (dis)equations. Since
Theorem 3 states an ExpTime upper bound also for solvability, this yields an
ExpTime upper bound for solvability of monadic set constraints with negation.
ExpTime-hardness already holds for the special case of monadic set constraints
without negation [1].

Corollary 2. Solvability of monadic set constraints with negation is ExpTime-
complete.

5 Conclusion

We have shown that solvability and finite solvability of systems of language
(dis)equations are ExpTime-complete, in contrast to their undecidability (Σ0

2 -
completeness) in the case of unrestricted concatenation [13]. We have used these
results to obtain new complexity results for solving monadic set constraints with
negation, and for disunification problems in the DL FL0. As a tool, we have in-
troduced looping tree automata with colors. Though the results of Section 3 show
that a direct reduction to the emptiness problem for Büchi tree automata would
be possible, using looping tree automata with colors as intermediate formalism
makes the presentation much clearer and easier to comprehend. In addition, we
believe that these automata may be of interest also for other applications in logic.

References

1. Aiken, A., Kozen, D., Vardi, M.Y., Wimmers, E.L.: The Complexity of Set Con-
straints. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832,
pp. 1–17. Springer, Heidelberg (1994)

Solving Language Equations and Disequations 121

2. Aiken, A., Kozen, D., Wimmers, E.L.: Decidability of systems of set constraints
with negative constraints. Information and Computation 122(1), 30–44 (1995)

3. Baader, F., Küsters, R.: Unification in a Description Logic with Transitive Closure
of Roles. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 217–232. Springer, Heidelberg (2001)

4. Baader, F., Narendran, P.: Unification of concept terms in description logic. Journal
of Symbolic Computation 31, 277–305 (2001)

5. Baader, F., Okhotin, A.: On Language Equations with One-sided Concatenation.,
LTCS-Report LTCS-06-01, Chair for Automata Theory, Institute for Theoretical
Computer Science, TU Dresden, A short version has been published in the Pro-
ceedings of the 20th International Workshop on Unification, UNIF 2006 (2006),
http://lat.inf.tu-dresden.de/research/reports.html

6. Baader, F., Okhotin, A.: Solving Language Equations and Disequations Using
Looping Tree Automata with Colors, LTCS-Report LTCS-12-01, Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, TU Dresden (2012),
http://lat.inf.tu-dresden.de/research/reports.html

7. Baader, F., Tobies, S.: The Inverse Method Implements the Automata Approach
for Modal Satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

8. Charatonik, W., Pacholski, L.: Negative set constraints with equality. In: Logic in
Computer Science, LICS 1994, Paris, France, pp. 128–136 (1994)

9. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. of the
ACM 9, 350–371 (1962)

10. Jeż, A., Okhotin, A.: On the Computational Completeness of Equations over Sets of
Natural Numbers. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 63–74. Springer, Heidelberg (2008)

11. Kunc, M.: What Do We Know About Language Equations? In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer,
Heidelberg (2007)

12. Lehtinen, T., Okhotin, A.: On Language Equations XXK = XXL and XM = N over
a Unary Alphabet. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS,
vol. 6224, pp. 291–302. Springer, Heidelberg (2010)

13. Okhotin, A.: Strict Language Inequalities and Their Decision Problems. In:
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 708–719.
Springer, Heidelberg (2005)

14. Pacholski, L., Podelski, A.: Set Constraints: A Pearl in Research on Constraints. In:
Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 549–562. Springer, Heidelberg (1997)

15. Parikh,R.,Chandra,A.,Halpern, J.,Meyer,A.:Equationsbetween regular termsand
an application to process logic. SIAM Journal on Computing 14(4), 935–942 (1985)

16. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

17. Stefánsson, K.: Systems of set constraints with negative constraints are NEXP-
TIME-complete. In: Logic in Computer Science, LICS 1994, Paris, France,
pp. 137–141 (1994)

18. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Sciences 32, 183–221 (1986)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

	Solving Language Equations and Disequations with Applications to Disunification in Description Logics and Monadic Set Constraints
	Introduction
	Language (Dis)equations With One-Sided Concatenation
	The Problem Definition
	Translation into Looping Tree Automata

	Looping Tree Automata with Colors
	Decidability of the Emptiness Problem
	The Exact Complexity of the Emptiness Problem

	Applying the Results
	Disunification in FL0
	Monadic Set Constraints

	Conclusion
	References

