
Automatic Inference

of Resource Consumption Bounds

Elvira Albert1, Puri Arenas1, Samir Genaim1,
Miguel Gómez-Zamalloa1, and Germán Puebla2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. One of the main features of programs is the amount of re-
sources which are needed in order to run them. Different resources can be
taken into consideration, such as the number of execution steps, amount
of memory allocated, number of calls to certain methods, etc. Unfortu-
nately, manually determining the resource consumption of programs is
difficult and error-prone. We provide an overview of a state of the art
framework for automatically obtaining both upper and lower bounds on
the resource consumption of programs. The bounds obtained are func-
tions on the size of the input arguments to the program and are obtained
statically, i.e., without running the program. Due to the approximations
introduced, the framework can fail to obtain (non-trivial) bounds even if
they exist. On the other hand, modulo implementation bugs, the bounds
thus obtained are valid for any execution of the program. The frame-
work has been implemented in the COSTA system and can provide
useful bounds for realistic object-oriented and actor-based concurrent
programs.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource consumption. Resource
analysis (a.k.a. cost analysis [37]) aims at statically bounding the cost of execut-
ing programs for any possible input data value. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over
the net, etc. Resource usage information has many applications, both during
program development and deployment. Upper bounds are useful because they
provide resource guarantees, i.e., it is ensured that the execution of the program
will never exceed the amount of resources inferred by the analysis. Lower bounds
on the resource usage have applications in program parallelization, they can be
used to decide if it is worth executing locally a task or requesting remote exe-
cution. Therefore, automated ways of estimating resource usage are quite useful
and the general area of resource analysis has received [37,21,33] and is nowadays
receiving [10,23,25] considerable attention. In this paper, we describe the main
components underlying resource analysis of a today’s imperative programming

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. Albert et al.

language, e.g., such techniques have been applied to analyze the resource con-
sumption of sequential Java, Java bytecode [28], Featherweight X10 [27] and
concurrent ABS programs [26].

The rest of the paper is organized as follows. Section 2 describes the process
of, from the program, generating cost relations which define, by means of recur-
rence equations, the resource consumption of executing the program in terms of
the input data sizes. Section 3 overviews a general approach to, from the cost
relations, obtain upper and lower bounds which are not in recursive form. The
compositionallity and incrementality of the analysis are described in Section 4.
Standard cost analysis can be applied to infer any cumulative type of resource
which always increases along the execution. We discuss in Section 5 the required
extensions to estimate non-cumulative resources like the memory consumption
in the presence of garbage collection. As distribution and concurrency are now
mainstream, one of the most interesting extensions is to handle concurrency in
cost analysis. This will be described in Section 6. The results of the analysis
are correct only if the implementation does not contain bugs. In Section 7, we
describe how the analysis results can be certified by existing program verifica-
tion tools. Finally, in Section 8 we conclude and point out directions for future
research.

2 Generation of Cost Relations

In the first phase, cost analysis takes as input a program, a selection of a cost
model (among those available in the system), and yields a set of recursive equa-
tions which capture the cost of executing the program. For a general purpose
programming language, the following steps are performed in order to generate
the equations:

1 A control flow graph is constructed for each method in the original program
by using standard techniques from compiler theory [1,2].

2 The control flow graph can then be represented by using some intermediate
formalism, with the purpose of making the subsequent static analysis sim-
pler. In [10], we propose that the control flow graph is represented as a set
of procedures (defined by one or more rules) by using a rule-based, recursive
representation.

3 Static analysis can be then performed on the rule-base representation in order
to infer, for each rule, size relations, which define the size relationships among
the input variables to the rule and the variables in the calls performed within
the rule.

4 A parametric notion of cost model is used, which allows specifying the resource
of interest (e.g., steps, memory). In particular, the cost model defines the
cost assigned to each execution step and, by extension, to an entire execution
trace.

5 From the rule-based representation, the size relations, and the selected cost
model, a cost relation system is automatically generated. Cost relations are

Automatic Inference of Resource Consumption Bounds 3

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;

}}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i+ 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, n′ = n− 1}〉

Fig. 1. Java method and Cost Relation

defined by means of recursive expressions which define the cost of executing
a block in the control flow graph (or rule in the rule-based representation)
in terms of the cost of executing the block itself plus the cost of its successor
blocks.

All details about how to automatically obtain a cost relation from a program
can be found in [8,10,22,32,37]. We illustrate the notion of cost relation systems
by means of a simple example.

Example 1. Consider the Java method m shown in Figure 1 (left), which invokes
the auxiliary method g, where x is a linked list of Boolean values implemented
in the standard way. We have selected a cost model which counts the number
of executed instructions. The cost relation associated to method m is shown in
Figure 1 (right). The relations Cm and Cg capture, respectively, the costs of
executing methods m and g. Intuitively, in cost relations, variables represent the
sizes of the corresponding data structures in the program and in the case of in-
teger variables they represent their integer value. Equation 1 is a base case and
captures the case where the loop body is not executed. It can be observed that
we have two recursive equations (Equations 2 and 3) which capture the respec-
tive costs of the then and else branches within the while loop. The constraints
in the equations (namely ϕ1, ϕ2 and ϕ3) contain the applicability conditions
for the equations and also the size constraints computed in the previous step of
the analysis (see Section 2). As the list x has been abstracted to its length, the
values of x.data are not visible in the cost relation and the two equations have
the same (incomplete) guard, which results in a non-deterministic cost relation.
Also, variables which do not affect the cost (e.g., x) do not appear in the cost
relation [9].

3 Inference of Closed-Form Bounds

The second main phase of cost analysis consists in generating closed-form bounds
from the cost relations, i.e., cost expressions which are not in recursive form.
Let us first see how we can infer an upper bound for m from the equations
in Figure 1. We shall start by computing upper bounds for the cost relations
which do not depend on any other cost relations, referred to as standalone cost
relations, and continue by replacing the computed upper bounds on the equations

4 E. Albert et al.

which call such relations. For instance, assuming that the upper bound for g
is C+

g (a, b)=4+5∗nat(b−a), where nat(v) = max({v, 0}), the cost relation in
Figure 1 becomes standalone:

(1) 〈Cm(i, n) = 3 , ϕ1 = {i ≥ n}〉
(2) 〈Cm(i, n) = 15 + nat(n− i) +Cm(i′, n) , ϕ2 = {i < n, i′ = i+ 1}〉
(3) 〈Cm(i, n) = 17 + nat(i) +Cm(i, n′) , ϕ3 = {i < n, n′ = n− 1}〉

The use of nat in cost expressions is required in order to avoid incorrectly eval-
uating upper bounds to negative values (see [7]), as for instance, when b < a in
C+

g (a, b). The problem is thus now reduced to automatically inferring bounds
from standalone relations. In general, given a standalone cost relation made up
of nb base cases of the form 〈C(x̄)=basej , ϕj〉, 1 ≤ j ≤ nb and nr recursive

equations of the form, 〈C(x̄)=recj+
∑kj

i=1 C(ȳi), ϕj〉, 1 ≤ j ≤ nr , [7] proposes
to compute an upper bound for C(x̄), denoted C(x̄)+, as follows:

(∗) C(x̄)+ = Ib ∗ worst({base1 , . . . , basenb}) + Ir ∗ worst({rec1 , . . . , recnr})

where Ib and Ir are, respectively, upper bounds of the number of visits to the
base cases and recursive equations and worst({Set}) denotes the worst-case (the
maximum) value that the expressions in Set can take. The first challenge is thus
to have an automatic method to compute Ib and Ir. In [7], we have proposed the
use of ranking functions to automatically find Ib and Ir. Intuitively, a ranking
function [30] is a function on the variables of a relation which (1) is positive and
(2) decreases in each iteration. For our example, a ranking function is fCm(i, n) =
n − i since the constraints of the corresponding equations imply the previous
two conditions, i.e., ϕ2 |= f(i, n) > f(i′, n) ∧ f(i, n) > 0 and ϕ3 |= f(i, n) >
f(i′, n) ∧ f(i, n) > 0.

The next challenge is to have an automatic method to compute the maximum
value worst({Set}). Following [6], in order to obtain worst({Set}), first we need
to infer invariants between the equation’s variables and their initial values. For
example, the cost relation Cm(i, n) admits as invariant for the recursive equa-
tions the formula I defined as I((i0, n0), (i, n)) ≡ i ≥ i0 ∧ n ≤ n0 ∧ i < n, which
captures that the values of i (resp. n) are greater (resp. smaller) or equal than
the initial value and that i is smaller than n at all iterations. Once we have the
invariant, we can maximize the expressions w.r.t. these values and take the max-
imal: worst({rec1 , . . . , recnr}) = max(maximize(I, {rec1 , . . . , recnr})) (see [6] for
the technical details of the maximization procedure). For instance, for our cost
relation, we compute:

worst({rec1 , rec2}) = max(maximize(I, {nat(n−i), nat(i)}))
which results in worst({rec1 , rec2}) = max({nat(n0 − i0), nat(n0−1)}). The
same procedure can be applied to the expressions in the base cases. However, it
is unnecessary in our example, because the base case is a constant. By applying

Automatic Inference of Resource Consumption Bounds 5

the same reasoning to the standalone cost relation above, we obtain the following
upper bound (on the number of instructions):

C+
m=6+nat(n−i)∗max({21+5∗nat(n−1), 19+5∗nat(n−i)})

The framework could be adapted to infer closed-form lower bounds by using min-
imization instead of maximization (i.e., using min instead of max when defining
best , the counterpart of worst). However, taking always the best case cost of
all iterations would lead to a too pessimistic lower bound, indeed, the obtained
lower bound would be in most cases zero. In [16], we propose a refined method in
which, instead of assuming the best-case cost for all iterations, we infer tighter
bounds on each of them in an automatic way and then approximate the sum-
mation of the sequence.

4 Modularity and Incrementality

Typically, cost analysis performs a global analysis of the program which requires
that all reachable code is available. Such traditional analysis scheme in which all
code is analyzed from scratch, and no previous analysis information is available,
is unsatisfactory in many situations. For a practical uptake of cost analysis, it is
thus required to reach some degree of compositionallity which allows decompos-
ing the analysis of large programs into the analysis of smaller parts.

In [31], a modular approach for the particular case of termination analysis
is presented, which allows reasoning on a method at a time. This approach is
generalized in [13], where an incremental resource analysis scheme is presented.
The aim of incremental global analysis is, given a program, its analysis results
and a series of changes to the program, to obtain the new analysis results as
efficiently as possible and, ideally, without having to re-analyze fragments of
code which are not affected by the changes. Incremental analysis can significantly
reduce both the time and the memory requirements of analysis.

5 Memory Consumption Analysis for Garbage-Collected
Languages

Predicting the memory required to run a program is crucial in many contexts
like in embedded applications with stringent space requirements or in real-time
systems which must respond to events or signals within a predefined amount of
time. When the considered resource is cumulative, the approach to cost analysis
described so far is parametric w.r.t. the notion of cost model, which defines the
type of resource we are measuring and, which gives a cost unit to each instruction.
It can therefore be directly applied for inferring bounds on the total memory
usage of programs by devising a cost model which assigns the corresponding
cost only to those instructions that consume memory [14].

However, in presence of garbage collection, memory is not a cumulative re-
source but rather it can increase or decrease at any point of the execution.

6 E. Albert et al.

Thus, the above approach, though still correct, can produce too pessimistic esti-
mations. Peak memory analysis [36,19,20], also known as live memory analysis,
aims at approximating the maximum memory usage during a program’s exe-
cution, which provides a much tighter estimation. Whereas analyzing the total
memory consumption needs to observe the consumption at the final state only,
peak memory analysis has to reason on the memory consumption at all program
states along the execution, hence making the analysis much more complicated.
In [15], we present a peak memory analysis which is parametric w.r.t the life-
time of objects and which can therefore be instantiated with different garbage
collection strategies. This requires a non-standard type of recurrence equations.

Example 2. Let us consider method m of Figure. 1, and let us assume that
method g only creates an array of 10 integers. Our memory consumption analysis
obtains an upper bound of 40∗nat(n−i) bytes for the total memory usage of
method m (assuming that the size of an integer is 4 bytes). Let us now consider
a scope-based garbage collection, i.e., one that reclaims the local memory created
in a method call when it finishes. In this case, our memory consumption analysis
obtains a constant upper bound of 40 bytes for the peak memory usage of method
m. This intuitively corresponds to the maximum between the peak usage of
method g (40 bytes) and what escapes (i.e. what the garbage collection cannot
collect) from g plus the consumption after the call to g (which is 0 bytes).

6 Concurrency in Cost Analysis

Distribution and concurrency are now mainstream, as the availability of multi-
processors radically influences software. This brings renewed interest in develop-
ing techniques that help in understanding, analyzing, and verifying the behavior
of concurrent programs. This includes the resource consumption behavior.

In concurrent and distributed settings, the meaning of a resource is not limited
to traditional measures such as memory consumption or number of executed
instructions, but it rather extends to other measures such as the tasks spawned
[11], the number of requests to remote servers, etc. In addition, the consumption
is not anymore associated to a single execution entity, but rather is distributed
over the different components of the system (servers, CPUs, etc). This opens up
new interesting applications for resource guarantees, for example, upper bounds
can be used to predict that one component may be overloaded, while other
siblings are idle most of the time; and lower bounds can be used to decide if it
is worth executing locally a task or requesting remote execution.

In [4], we extended the underlying techniques used in the analysis for a concur-
rency model based on the notion of concurrently running (groups of) objects, in
the spirit of the actor-based and active-objects approaches [34,35]. These models
aim at taking advantage of the inherent concurrency implicit in the notion of
object in order to provide programmers with high-level concurrency constructs
that help in producing concurrent applications more modularly and in a less
error-prone way. The main challenges we had to deal with are: (1) developing a

Automatic Inference of Resource Consumption Bounds 7

size analysis that is able to infer sound size relations taking into account all pos-
sible interleavings between the different tasks. The main problem is that when a
suspended task is resumed, it cannot assume that the global (shared) state has
not been changed since the task has been suspended, but rather it should take
into account that it has been possibly modified by other tasks; and (2) incorpo-
rating the idea of distributing the cost over the system components in the cost
relations.

For (1), we have developed a size analysis that is based on the idea of tracking
the global state when it is possible, and using class invariants at points in which
interleaving might occur, in order to describe how the global state has been
modified. In many cases we are able to automatically infer these invariants, and
in some others the user has to provide them. For (2), we have introduced a new
kind of cost relations which extend those standard ones with explicit cost centers
that represent the system components on which the cost should be distributed.
Example of such centers are classes, objects, and groups of objects.

7 Certified Resource Bounds

Resource guarantees, like any other program property which is automatically
inferred by static analysis tools, are generally not considered to be completely
trustworthy, unless the correctness of the tools or the results have been formally
verified. In the case of static analyzers, verifying the correctness of the tools is
a daunting task, among other things, because of the sophisticated algorithms
used for the analysis and their evolution over time. Thus, in COSTA we take an
alternative approach [18,12] in which we verify the results after each run using
KeY, a state-of-the-art theorem prover for Java programs. This approach, which
apart from being simpler, has the advantage that the proof generated by the
theorem prover can then be translated to independently checkable certificates in
the proof-carrying code style [29].

The certification component of COSTA is based on verifying that all inter-
mediate results produced by COSTA are correct. Then, the correctness of com-
posing them into bounds is straightforward. The intermediate results need to
be verified include: (1) ranking functions, which are used to bound the number
of iterations of each loop; (2) loop invariants, which provide an insight on the
values that each variable can take, and relations between them; (3) size rela-
tions ; which describe how the size of the data change when moving from one
part of the program to another; and (4) heap properties, such as depth of data-
structures and acyclicity, which are essential for inferring resource guarantees
for heap manipulating programs.

8 Conclusions and Future Work

We have described the main techniques used in cost analysis of a today’s pro-
gramming language. Our approach is based on the traditional cost analysis
framework which generates recurrence relations from programs and then solves

8 E. Albert et al.

them to obtain upper and/or lower bounds. There exist other approaches to cost
analysis (e.g., [23,24]) which are not based on recurrence relations. It is hence
not possible to formally compare the resulting upper bounds in the general case
(more details are provided in [16]).

COSTA (available at http://costa.ls.fi.upm.es) is a state-of-the-art cost
and termination analyzer which implements our approach. The system was orig-
inally designed to obtain upper bounds from bytecode programs. Analyzing byte-
code has a much wider application area than analyzing Java source code since
the latter is often not available. The COSTA system can be used online through
a web interface and also from its Eclipse plugin. The user can provide assertions
which state the expected resource consumption of selected methods by using
JML notation. COSTA then tries to verify (or falsify) the assertions [5]. The
assertions can also be written in asymptotic form [3]. This facilitates human rea-
soning, as asymptotic cost expressions are much simpler than the non-asymptotic
ones.

Recently, the system has been extended to obtain upper bounds from concur-
rent ABS programs [26]. The resulting extension is called COSTABS [17]. ABS
is an Abstract Behavioral Specification language for distributed object-oriented
systems. COSTABS is integrated in the ABS development tools (available at
http://www.hats-project.eu), which can be used within the Eclipse devel-
opment environment. Moreover, it can be used through a web-interface1, and
can be downloaded and used through a command-line. In [11], we have applied
similar, but simpler, techniques to an async-finish concurrency model.

As regards certifying the upper bounds, we have succeed to make the COSTA
and KeY system cooperate as follows: COSTA outputs the intermediate results
of the analyzed program by means of extended JML annotations, and then KeY
verifies the resulting proof obligations in its program logic and produces proof
certificates that can be saved and reloaded. Realizing the above cooperation
between COSTA and KeY, and integrating it in the Eclipse development envi-
ronment, has required a number of non-trivial extensions of both systems.

Our current research is mainly focused on improving the accuracy and effi-
ciency of the analysis. Being more accurate is especially relevant in the context
of concurrency as, due to potential tasks interleavings, shared data are currently
lost when the processor is released. We are working on automatically generat-
ing class invariants to improve the abstraction of share data such that we gain
precision when the cost depends on the sizes of such data.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the EC, Future and Emerging Technologies
(FET), under the ICT-231620 HATS project, by the Spanish Ministry of Sci-
ence and Innovation (MICINN) under the TIN-2008-05624 DOVES project, the
UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the Madrid Re-
gional Government under the S2009TIC-1465 PROMETIDOS-CM project.

1 http://costa.ls.fi.upm.es/costabs

http://costa.ls.fi.upm.es
http://www.hats-project.eu
http://costa.ls.fi.upm.es/costabs

Automatic Inference of Resource Consumption Bounds 9

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers – Principles, Techniques and Tools.
Addison-Wesley (1986)

3. Albert, E., Alonso, D., Arenas, P., Genaim, S., Puebla, G.: Asymptotic Resource
Usage Bounds. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 294–310.
Springer, Heidelberg (2009)

4. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

5. Albert, E., Arenas, P., Genaim, S., Herraiz, I., Puebla, G.: Comparing Cost Func-
tions in Resource Analysis. In: van Eekelen, M., Shkaravska, O. (eds.) FOPARA
2009. LNCS, vol. 6324, pp. 1–17. Springer, Heidelberg (2010)

6. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G.
(eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)

7. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

8. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

9. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Removing Use-
less Variables in Cost Analysis of Java Bytecode. In: ACM Symposium on Ap-
plied Computing (SAC) - Software Verification Track (SV 2008), Fortaleza, Brasil,
pp. 368–375. ACM Press, New York (2008)

10. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis
of Object-Oriented Bytecode Programs. Theoretical Computer Science 413(1),
142–159 (2012)

11. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-Level Analysis for a Lan-
guage with Async-Finish parallelism. In: Vitek, J., De Sutter, B. (eds.) Proceed-
ings of the ACM SIGPLAN/SIGBED 2011 Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES 2011, Chicago, IL, USA, April 11-14,
pp. 21–30. ACM (2011)

12. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Román-Dı́ez, G.: Verified Resource
Guarantees for Heap Manipulating Programs. In: Proceedings of the 15th Interna-
tional Conference on Fundamental Approaches to Software Engineering, FASE 2012,
Tallinn, Estonia. Springer, Heidelberg (to appear, 2012)

13. Albert, E., Correas, J., Puebla, G., Román-Dı́ez, G.: Incremental Resource Usage
Analysis. In: Proceedings of the 2012 ACM SIGPLAN Workshop on Partial Evalu-
ation and Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania, USA,
January 23-24. ACM Press (to appear, 2012)

14. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap Space Analysis of Java Byte-
code. In: 6th International Symposium on Memory Management (ISMM 2007),
pp. 105–116. ACM Press (2007)

15. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory
Requirements for Garbage Collected Languages. In: 9th International Symposium
on Memory Management (ISMM 2010), pp. 121–130. ACM Press, New York (2010)

10 E. Albert et al.

16. Albert, E., Genaim, S., Masud, A.N.: More Precise Yet Widely Applicable Cost
Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 38–53. Springer, Heidelberg (2011)

17. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
A Cost and Termination Analyzer for ABS. In: Proceedings of the 2012 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2012, Philadelphia, Pennsylvania, USA, January 23-24, ACM Press (to appear,
2012)

18. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: Verified
resource guarantees using costa and key. In: Khoo, S.-C., Siek, J.G. (eds.) PEPM,
pp. 73–76. ACM (2011)

19. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric Prediction
of Heap Memory Requirements. In: ISMM. ACM Press (2008)

20. Chin, W.-N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing Memory Resource
Bounds for Low-Level Programs. In: ISMM. ACM Press (2008)

21. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

22. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM TOPLAS 15(5),
826–875 (1993)

23. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: The 36th Symposium on
Principles of Programming Languages (POPL 2009), pp. 127–139. ACM (2009)

24. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

25. Hofmann, M., Hoffmann, J., Aehlig, K.: Multivariate Amortized Resource Analysis.
In: The 38th Symposium on Principles of Programming Languages (POPL 2011),
pp. 357–370. ACM (2011)

26. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

27. Lee, J.K., Palsberg, J.: Featherweight X10: A Core Calculus for Async-Finish
Parallelism. In: Principles and Practice of Parallel Programming (PPoPP 2010),
pp. 25–36. ACM, New York (2010)

28. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley
(1996)

29. Necula, G.: Proof-Carrying Code. In: ACM Symposium on Principles of program-
ming languages (POPL 1997). ACM Press (1997)

30. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

31. Ramı́rez-Deantes, D., Correas, J., Puebla, G.: Modular Termination Analysis of
Java Bytecode and Its Application to phoneME Core Libraries. In: Barbosa, L.S.
(ed.) FACS 2010. LNCS, vol. 6921, pp. 218–236. Springer, Heidelberg (2010)

32. Sands, D.: Complexity Analysis for a Lazy Higher-Order Language. In: Jones, N.D.
(ed.) ESOP 1990. LNCS, vol. 432, pp. 361–376. Springer, Heidelberg (1990)

33. Sands, D.: A Näıve Time Analysis and its Theory of Cost Equivalence. Journal of
Logic and Computation 5(4) (1995)

Automatic Inference of Resource Consumption Bounds 11

34. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 275–299. Springer, Heidelberg (2010)

35. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Ryan, M.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

36. Unnikrishnan, L., Stoller, S.D., Liu, Y.A.: Optimized Live Heap Bound Analysis.
In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 70–85. Springer, Heidelberg (2002)

37. Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9)
(1975)

	Automatic Inference of Resource Consumption Bounds

	Introduction
	Generation of Cost Relations
	Inference of Closed-Form Bounds
	Modularity and Incrementality
	Memory Consumption Analysis for Garbage-Collected Languages
	Concurrency in Cost Analysis
	Certified Resource Bounds
	Conclusions and Future Work
	References

